

Environmental Engineers, Geologists and Scientists

Tel 847,573,8900 Fax 847,573,8953 Polo Park Business Center 27834 N. Irma Lee Circle Lake Forest, Illinois 60045-5130

March 4, 2020

Mr. Riley Neumann Wisconsin Department of Natural Resources 2300 North Dr. Martin Luther King, Jr. Drive Milwaukee, Wisconsin 53212-3128

Re: Quarterly Groundwater Sampling Report

(January 2020 Results)

BRRTS #: 02-41-576336 & 02-41-579429

FID #: 241828620

Sunrise Shopping Center

2410-2424 10th Avenue & 1009 Marquette Avenue

South Milwaukee, Wisconsin 53172

Mr. Neumann:

Please find enclosed the *Quarterly Groundwater Sampling Report* for the Sunrise Shopping Center facility located at the above-referenced address. Quarterly groundwater sampling of three (3) monitoring wells on-site continues to monitor any changes in Polynuclear Aromatic Hydrocarbon (PAH) and Tetrachloroethene (Perc) concentrations. PAH groundwater contaminant concentrations are monitored at MW-3 and MW-4 to assess if there is a need for remedial actions. Sampling for Perc concentrations in MW-5 continues to assess remedial progress and to determine plume stability.

A brief discussion of the quarterly sampling protocol and results of the January 2020 groundwater sampling are included in this quarterly report. As required, this quarterly report and all supporting documentation have also been submitted electronically to WDNR. If you have any questions or require additional information in regards to this submission, please contact me at 847-573-8900 extension 580. Thank you for your time.

Sincerely,

DAI Environmental, Inc.

Christopher Cailles, P.E.

Christyphus Cailles

Project Engineer

Enclosure

cc: Steven Dukatt – Carol Investment Corporation (w/enclosure electronically)

Environmental Engineers, Geologists and Scientists

Tel 847.573.8900 Fax 847.573.8953 Polo Park Business Center 27634 N. Irms Lee Circle Lake Forest, Illinois 60045-5130

QUARTERLY GROUNDWATER SAMPLING REPORT (JANUARY 2020 RESULTS) SUNRISE SHOPPING CENTER 2410-2424 10TH AVENUE & 1009 MARQUETTE AVENUE SOUTH MILWAUKEE, WISCONSIN 53172 WDNR BRRTS ACTIVITY #02-41-576336 & 02-41-579429 WDNR FID #241828620

March 4, 2020

DAI Project Number: 6255

Prepared For: Carol Investment Corporation 1410 South Clinton Street Chicago, IL 60607

Prepared By: DAI Environmental, Inc. 27834 North Irma Lee Circle Lake Forest, Illinois 60045

TABLE OF CONTENTS

LIST OF TABLES	i
LIST OF FIGURES	i
LIST OF APPENDICES	i
1.0 INTRODUCTION	1
2.0 QUARTERLY GROUNDWATER SAMPLING PROGRAM	2
2.1 Quarterly Sampling Protocol	
2.2 Groundwater Sampling Procedures and Chemical Analysis	3
3.0 QUARTERLY GROUNDWATER SAMPLING RESULTS	
3.1 Static Groundwater Elevations	
3.2 Groundwater Analytical Results	4
4.0 SUMP WATER SAMPLING RESULTS	7
5.0 SUMMARY AND SCHEDULE	8
LIST OF TABLES (APPENDIX A)	
Groundwater Analytical Table for VOCs	Table A.1.A
Groundwater Analytical Table for PAHs	
Ace Hardware Sump Water Analytical Table for Perc	
Water Level Elevations	1 able A.6
LIST OF FIGURES (APPENDIX B)	
Detailed Site Map with Aerial View of Site and Surrounding Property	Figure B.1.b.1
Groundwater Isoconcentration (Perc)	
Groundwater Isoconcentration (TCE)	
Groundwater Isoconcentration (Benzo(a)pyrene)	
Groundwater Isoconcentration (Benzo(b)fluoranthene)	
Groundwater Isoconcentration (Chrysene)	
Groundwater Isoconcentration (Naphthalene)	
Groundwater Flow Direction (January 17, 2019)	
Monitoring Wells	Figure B.3.d
LIST OF APPENDICES	
TABLES	
FIGURES	
LABORATORY ANALYTICAL REPORTS	APPENDIX C.1.E

i

1.0 INTRODUCTION

Soil and groundwater Remedial Actions are being performed at the Sunrise Shopping Center facility, addressed as 2410-2424 10th Avenue and 1009 Marquette Avenue in South Milwaukee, Wisconsin (Site). Figure B.1.b.1 in Attachment B provides an aerial view of the Site and surrounding property. The Remedial Actions to address Volatile Organic Compound (VOC) contamination are being performed under BRRTS number 02-41-576336 and the Remedial Actions to address Polynuclear Aromatic Hydrocarbon (PAH) contamination are being performed under BRRTS number 02-41-579429. As part of the Remedial Actions quarterly groundwater sampling has been conducted since January 2018. A brief discussion of the quarterly sampling protocol and results are provided below.

2.0 QUARTERLY GROUNDWATER SAMPLING PROGRAM

Quarterly groundwater sampling was first performed on January 5, 2018. The first quarterly sampling event included a complete round of sampling from each of the six (6) monitoring wells (MW-1 to MW-5 and MW-201) installed at the Site. Figure B.3.d provides the locations of the monitoring wells. As proposed in the December 28, 2017, *Site Investigation Work Plan*, the groundwater samples from all monitoring wells were submitted for analysis of PAHs, and a sample from MW-5 was also collected for VOC analysis. Results of the January 2018 groundwater sampling were provided to the Wisconsin Department of Natural Resources (WDNR) in the *Site Investigation Report Amendment Addendum* dated February 28, 2018. Results of subsequent 2018 quarterly sampling events were provided in *Quarterly Groundwater Sampling Reports*.

2.1 Quarterly Sampling Protocol

Quarterly groundwater sampling is being conducted at monitoring wells MW-3 to MW-5. The purpose of the quarterly groundwater sampling is to monitor any changes in groundwater contaminant concentrations and determine the need for any future remedial actions. The groundwater sampling will document Tetrachloroethene (Perc) groundwater concentrations during and following the chemical injections as described in October 18, 2018, *Design Report Addendum/Remedial Action Plan* (RAP) approved by the WDNR in a letter dated December 19, 2018. Based upon the historical sampling results provided in the RAP, the quarterly groundwater sampling shall continue as follows:

- Static water level measurements are collected from all accessible monitoring wells using an electronic water level indicator capable of detecting water depth with an accuracy of ±0.01 ft;
- Groundwater samples are collected from monitoring wells MW-3 and MW-4 for laboratory analysis of PAHs; and
- A groundwater sample is collected from monitoring well MW-5 for laboratory analysis of VOCs.

2

2.2 Groundwater Sampling Procedures and Chemical Analysis

Consistent with sampling protocol followed during Site Investigation activities, the three (3) monitoring wells were purged prior to sample collection, to the extent practicable, to remove turbidity from the groundwater and allow the collection of a sediment-free sample that was representative of the surrounding groundwater conditions. Following purging, groundwater samples were collected from MW-3 to MW-5. Monitoring wells MW-4 and MW-5 were sampled using disposable PVC bailers; a groundwater sample was obtained from MW-3 using a peristaltic pump with dedicated PVC tubing. Groundwater samples were distributed directly into the appropriate sample containers for subsequent laboratory analyses as follows:

- MW-5: VOCs via USEPA Method SW8260; and
- MW-3 and MW-4: PAHs via USEPA Method SW8270 by HVI.

The sample submitted for analysis of VOCs was dispensed into 40-mL vials preserved with hydrochloric acid, and the samples submitted for analysis of PAHs were dispensed into unpreserved 100-mL amber glass containers. New disposable nitrile gloves were used to collect each sample to limit cross contamination. The samples were stored on ice immediately after collection and were maintained at a temperature of 4°C or lower via a cooler with ice. Samples were ultimately transferred to Pace Analytical Services, LLC (Pace Analytical) of Green Bay, Wisconsin, an independent analytical laboratory following the standard chain-of-custody procedures.

3.0 QUARTERLY GROUNDWATER SAMPLING RESULTS

3.1 Static Groundwater Elevations

To evaluate potential seasonal fluctuation in static water elevation and/or groundwater flow

direction, a complete round of static groundwater elevations was collected as part of the first

quarter 2020 groundwater sampling event. The static water level elevations were collected from

all monitoring wells on January 17, 2020. Table A.6 in Attachment A provides a historical

summary of groundwater elevation information.

Review of Table A.6 shows that the January groundwater elevations were slightly higher than

were observed in October, with the exception of MW-4 and MW-201 (which were lower than in

the last quarter). In general, monitoring wells MW-1 through MW-4 indicate the highest

quarterly variability, while MW-5 and MW-201 fluctuate less between quarters. The highest

static elevation differences are noted in monitoring wells MW-1 and MW-3, which are located in

areas of the Site with known subsurface disturbance.

While some variability in elevation between quarters is noted, the groundwater flow direction is

generally consistent. The groundwater flow direction along the southern half of the Site remains

northwesterly, and a northerly groundwater flow direction is indicated along the northern half of

the Site. The potentiometric surface map generated from the January 2020 data is included as

Figure B.3.c.12 (see Attachment B).

3.2 Groundwater Analytical Results

Groundwater samples for the first quarter 2020 (i.e., January-March 2020) were collected on

January 17, 2020, following the protocol described in Section 2.2. The groundwater sample

collected from MW-5 was analyzed for VOCs, and the samples from MW-3 and MW-4 were

analyzed for PAHs. A summary of all groundwater sampling data collected from monitoring

wells MW-3 to MW-5 since the beginning of Site Investigations is provided Tables A.1.A-A.1.B

(see Attachment A). The tables are compared to the Preventative Action Limits PAL (s) and

Enforcement Standards listed in Table 1 of NR 140. A copy of the laboratory analytical report

for the first quarter 2020 sampling is provided in this report as Attachment C.1.E.

January 2020 Quarterly Report Sunrise Shopping Center, DAI Project #6255 4

March 4, 2020

©2020. DAI Environmental. Inc.

Volatile Organic Compounds

Table A.1.A summarizes the results for Perc and Trichloroethene (TCE), the only VOCs of

concern in the groundwater (previous quarterly reports include a full summary of VOC

analyses). All results are for groundwater samples collected from MW-5, installed to the rear of

the 2410 tenant space (former Sunbrite Cleaners location).

As noted in the table, Perc has been consistently observed in monitoring well MW-5, with

concentrations exceeding the Enforcement Standard of 0.005-mg/L, since February 2016.

However, the Perc concentrations in MW-5 indicate a continued decline from 0.0153-mg/L

(September 2019) to 0.012-mg/L (October 2019) to 0.0084-mg/L (January 2020). The observed

January concentration is consistent with the earlier July 2018 concentration, when a sample was

collected following the chemical injection pilot testing. Figure B.3.b.1a provides a historical

summary of Perc groundwater concentrations and the estimated extent of Perc groundwater

contamination.

Since the groundwater sampling was initiated, the TCE concentration in MW-5 was observed at

a level above the PAL on two occasions; in January 2019 (0.0027-mg/L) and April 2019

(0.00071-mg/L). However, all subsequent TCE concentrations are below the PAL, with the most

recent concentration from January 2020 of 0.00038-mg/L. Figure B.3.b.1b has been added to

provide a historical summary of TCE groundwater concentrations.

Polynuclear Aromatic Hydrocarbons

Table A.1.B summarizes the results of the PAH analyses for MW-3 and MW-4. Figures B.3.b.2a

to B.3.b.2d provide a historical summary of groundwater results for Benzo(a)pyrene,

Benzo(b)fluoranthene, Chrysene, and Naphthalene, respectively.

A review of historical sampling results from MW-3 (which is installed in the southern portion of

the property where contamination from historical petroleum and/or coal storage is identified)

indicates the presence of PAH contamination in groundwater during each sampling event.

Consistent with past sampling events, Benzo(a)pyrene, Benzo(b)fluoranthene, and Chrysene

groundwater contamination was observed in MW-3. The most recent January 2020 results

January 2020 Quarterly Report Sunrise Shopping Center, DAI Project #6255 5

March 4, 2020

©2020, DAI Environmental, Inc.

remain above the Enforcement Standards but show a small decrease from the October 2019 results, and are two (2) orders of magnitude lower than the April 2019 concentration spike. As previously noted, no discernable trend in PAH concentrations can be determined due to the high variability in observed concentrations with time. It appears that the groundwater concentrations are most influenced by fluctuations in the groundwater table elevation changes through the contaminated fill material, particularly in the area for MW-3. However, these impacts are still limited to the area along the southern property boundary.

Several PAH constituents continue to be observed at concentrations above the Limit of Detection (LOD) in MW-4 (installed to the rear of the 2414B tenant space in the approximate location of a former heating oil UST). In contrast to the observations in MW-3, PAH concentrations in MW-4 increased for the second quarter in a row, with January 2020 concentrations of Benzo(a)pyrene, Benzo(b)fluoranthene, and Chrysene an order of magnitude above the Enforcement Standards, the highest concentrations observed to date. Review of the historical data indicates that the Benzo(a)pyrene, Benzo(b)fluoranthene, and Chrysene concentrations are approximately equal to the PALs. While the increase is slightly concerning, there is no known active source of contamination, and the fluctuation in concentrations in MW-4 appear to correlate most closely with fluctuations in the groundwater table.

4.0 SUMP WATER SAMPLING RESULTS

To address the Perc contamination identified in the sump water from the basement of the Ace

Hardware building, an activated carbon treatment system was proposed to the WDNR. The

proposed treatment system discharge was issued coverage under WPDES Permit Number WI-

0046566-07-0 in a letter dated April 10, 2019, and the system began operation on May 14, 2019.

As a condition of the permit approval, weekly discharge samples were required to be collected

for a period of 4-weeks followed by monthly sampling thereafter. Weekly samples were

collected on May 15th, 23rd, 29th, and June 6, 2019. The first monthly sample was collected on

June 25, 2019. In addition to the required discharge samples, samples of the sump water have

been collected for VOC analysis to both monitor the groundwater contaminant concentrations

around the Ace Hardware building and verify the system is operating correctly.

While not strictly part of the quarterly sampling protocol, results of the sump water sampling are

included with this submission as an indication of the groundwater contaminant concentrations

below and around the Ace Hardware building. The results of the sump water samples are

summarized in Table A.5. (Because all VOCs are reported below the LOD with the exception of

Perc, Table A.5 only summarizes the Perc results.) The historical sump water sample results are

also provided in Figure B.3.b.1a.

As noted in Table A.5, the Perc concentrations in the influent sump water are often above the

Enforcement Standard, and always above the PAL. However, all corresponding discharge

samples indicate that the treatment system has been fully effective in removing Perc from the

water prior to discharge into the stormwater sewer system. None of the discharge samples are

reported with a detectable concentration of Perc.

Monthly sampling of the sump water influent and system effluent discharge will continue. The

discharge sample results are submitted electronically to WDNR, as required by the WPDES

permit and the results of the sump water sampling will be provided in future quarterly sampling

reports.

7

5.0 SUMMARY AND SCHEDULE

- Perc has been observed in monitoring well MW-5 at concentrations exceeding the Enforcement Standard since February 2016. The concentrations were increasing with time until July 2018 when the pilot-scale chemical injection was performed. The Perc concentration measured in MW-5 in July 2018 indicated a reduction in concentration, demonstrating that the chemical injections helped reduce the Perc concentration in the area of MW-5. However, because not all the Perc contamination in the soil was removed during the pilot scale test, the groundwater Perc concentrations rebounded to levels above the Enforcement Standard. No significant change in groundwater concentration was observed immediately following an additional chemical injection in the area of MW-5 in August 2019, although a slowly decreasing concentrations of PCE has been noted since that time.
- Sampling of the Ace Hardware sump water indicates influent Perc concentrations above the Enforcement Standard, although all effluent discharge samples from the treatment system are below detectable concentrations. Influent and effluent sampling will continue on a monthly basis.
- The PAH concentrations observed in MW-3 in January 2020 remain above the Enforcement Standards for Benzo(a)pyrene, Benzo(b)fluoranthene, and Chrysene, although the concentrations do indicate a slight decrease from those observed in October 2019. Benzo(a)pyrene, Benzo(b)fluoranthene, and Chrysene concentrations in MW-4 increased for the second quarter to levels above the Enforcement Standard. Groundwater concentrations will be closely monitored for any continuing trend.
- The next quarterly sampling event is scheduled for April 2020.

APPENDIX A TABLES

Table A.1.A. Groundwater Analytical Table for Volatile Organic Compounds (mg/L) (Quarterly Groundwater Sampling Wells)

Sample Location	Sample Date	Tetrachloroethene	Trichloroethene
	01/17/20	0.0084	0.00038 (J)
	10/24/19	0.012	0.00039 (J)
	09/05/19	<u>0.0153</u>	0.00038 (J)
	07/07/19	<u>0.0106</u>	0.00048 (J)
	04/29/19	0.0114	0.00071 (J)
	01/25/19	<u>0.0065</u>	0.0027
MW-5	10/11/18	0.021	0.00027 (J)
IVI VV - 3	07/30/18	0.0086	< 0.00026
	04/07/18	<u>0.0203</u>	< 0.00033
	01/05/18	<u>0.0181</u>	< 0.00033
	05/30/17	0.0124	< 0.00033
	02/23/16	0.0083	< 0.00033
	01/27/15	$\overline{0.0026}$	< 0.00033
	11/12/14 (TW-2)	0.0026	< 0.00033
PA	L^1	0.0005	0.0005
Enforcemen	nt Standard ²	0.005	0.005

¹ – Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

<u>Underlined</u> – Concentration exceeds the PAL and the ES

(J) – Concentration reported by the laboratory above the Limit of Detection, but below the Limit of Quantification VOCs via USEPA Method SW8260

² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Table A.1.B. Groundwater Analytical Table for Polynuclear Aromatics (mg/L) (Quarterly Groundwater Sampling Wells)

Delamandean Assessation	Sample Location (Sample Date)							ES^2
Polynuclear Aromatic	TW-5 (11/13/14)	MW-3 (01/27/15)	MW-3 (05/30/17)	MW-3 (01/05/18)	MW-3 (04/07/18)	MW-3 (07/30/18)	PAL ¹	ES
Acenaphthene	0.00076	0.0000043 (J)	0.000026 (J)	0.0000077 (J)	0.000029	0.000014 (J)	NL	NL
Acenaphthylene	0.00013	0.0000036 (J)	0.000016 (J)	< 0.0000045	0.000053	0.000023	NL	NL
Anthracene	0.00056	< 0.0000023	0.00013	0.000031 (J)	0.00015	0.000073	0.6	3
Benzo(a)anthracene	0.00069	< 0.0000031	0.00073	0.0000069 (J)	0.001	0.00043	NL	NL
Benzo(a)pyrene	0.0006	0.000011 (J)	0.001	< 0.0000096	0.0019	0.00068	0.00002	0.0002
Benzo(b)fluoranthene	<u>0.00077</u>	0.00002 (J)	0.002	0.000037	0.0039	0.0013	0.00002	0.0002
Benzo(g,h,i)perylene	0.0004	0.000016 (J)	0.0011	0.00018 (J)	0.0025	0.00082	NL	NL
Benzo(k)fluoranthene	0.00029	0.00001 (J)	0.00068	0.000014 (J)	0.0014	0.00041	NL	NL
Chrysene	0.00084	0.000028 (J)	0.0015	0.000047 (J)	0.003	0.00095	0.00002	0.0002
Dibenzo(a,h)anthracene	0.000091	< 0.0000032	0.00022	< 0.0000091	0.00034	0.00015	NL	NL
Fluoranthene	0.0024	0.000041 (J)	0.0031	0.00021	0.0052	0.0019	0.08	0.4
Fluorene	0.0011	0.0000035 (J)	0.000052	0.000022 (J)	0.000048	0.00004	0.08	0.4
Indeno(1,2,3-cd)pyrene	0.0003	0.0000081 (J)	0.00086	< 0.000016	0.0021	0.00089	NL	NL
1-Methylnaphthalene	0.002	0.0000091 (J)	0.00018	0.00016	0.000033	0.000033	NL	NL
2-Methylnaphthalene	0.00017	0.0000084 (J)	0.00013	0.00016	0.000024	0.000031	NL	NL
Naphthalene	0.00016	< 0.0000056	0.00012	0.00046	0.000051	0.000053 (J)	0.017	0.1
Phenanthrene	0.0021	0.000043 (J)	0.00071	0.000085	0.0013	0.00047	NL	NL
Pyrene	0.0025	0.000059	0.002	0.00011	0.0037	0.0012	0.05	0.25

¹ – Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

<u>Underlined</u> – Concentration exceeds the PAL and the ES

(J) – Concentration reported by the laboratory above the Limit of Detection, but below the Limit of Quantification

NL – Not Listed in Wisconsin Administrative Code

PNAs via USEPA Method SW8270SIM

NOTE – MW-3 installed to duplicate TW-5

² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Table A.1.B (Continued). Groundwater Analytical Table for Polynuclear Aromatics (mg/L) (Quarterly Groundwater Sampling Wells)

Dalumuslaan Anamatia	Sample Location (Sample Date)							ES^2
Polynuclear Aromatic	MW-3 (10/11/18)	MW-3 (01/25/19)	MW-3 (04/29/19)	MW-3 (07/07/19)	MW-3 (10/24/19)	MW-3 (01/17/20)	PAL ¹	ES
Acenaphthene	0.00001 (J)	0.0000068 (J)	0.0015	0.000023 (J)	0.00016	0.0003	NL	NL
Acenaphthylene	< 0.0000045	< 0.0000047	0.0027	0.000084	0.00043	0.0002	NL	NL
Anthracene	0.00002 (J)	0.000027 (J)	0.0089	0.00013	0.00088	0.00028	0.6	3
Benzo(a)anthracene	0.000017 (J)	0.000053	0.11	0.00087	0.009	0.0042	NL	NL
Benzo(a)pyrene	0.000024 (J)	0.00017	<u>0.115</u>	0.0019	0.015	0.0063	0.00002	0.0002
Benzo(b)fluoranthene	0.000074	0.00034	<u>0.209</u>	0.0036	0.03	0.0104	0.00002	0.0002
Benzo(g,h,i)perylene	0.000037	0.00023	0.132	0.0025	0.018	0.0072	NL	NL
Benzo(k)fluoranthene	0.000026 (J)	0.00012	0.0643	0.0016	0.0095	0.004	NL	NL
Chrysene	0.000079	0.00028	<u>0.13</u>	0.0026	0.016	0.0013	0.00002	0.0002
Dibenzo(a,h)anthracene	< 0.000009	0.000034 (J)	0.0258	0.00028	0.0034	0.0117	NL	NL
Fluoranthene	0.00026	0.00043	0.248	0.0035	0.025	0.0005	0.08	0.4
Fluorene	0.000031 (J)	0.000014 (J)	0.0028	0.000037	0.00022	0.00004	0.08	0.4
Indeno(1,2,3-cd)pyrene	0.000027 (J)	0.00016	0.108	0.0019	0.014	0.0056	NL	NL
1-Methylnaphthalene	0.000019 (J)	0.000013 (J)	0.0003	0.000011 (J)		0.00039	NL	NL
2-Methylnaphthalene	0.000015 (J)	0.000012 (J)	0.00025	0.000014 (J)		0.000048	NL	NL
Naphthalene	0.000032 (J)	0.000022 (J)	0.00035	0.000019 (J)	0.00015	0.0001	0.017	0.1
Phenanthrene	0.000093	0.00011	0.066	0.00079	0.0061	0.003	NL	NL
Pyrene	0.0002	0.00031	0.21	0.0029	0.024	0.011	0.05	0.25

¹ – Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

<u>Underlined</u> – Concentration exceeds the PAL and the ES

(J) – Concentration reported by the laboratory above the Limit of Detection, but below the Limit of Quantification

NL – Not Listed in Wisconsin Administrative Code

PNAs via USEPA Method SW8270SIM

² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Table A.1.B (Continued). Groundwater Analytical Table for Polynuclear Aromatics (mg/L) (Quarterly Groundwater Sampling Wells)

Polynuclear Aromatic		PAL^1	\mathbf{ES}^2			
Folyhuciear Aromatic	TW-6 (11/13/14)	MW-4 (01/27/15)	MW-4 (02/23/16)	MW-4 (05/30/17)	FAL	ES
Acenaphthene	0.00049	0.0000039 (J)	0.00056	0.0386	NL	NL
Acenaphthylene	0.00012	0.000084	0.000073	0.0166	NL	NL
Anthracene	0.00006	0.00006	0.00011	0.0018 (J)	0.6	3
Benzo(a)anthracene	0.000013 (J)	< 0.0000032	0.0000082 (J)	0.00044 (J)	NL	NL
Benzo(a)pyrene	0.0000053 (J)	0.000017 (J)	0.000006 (J)	< 0.00049	0.00002	0.0002
Benzo(b)fluoranthene	0.0000093 (J)	0.000043 (J)	0.000014 (J)	< 0.00027	0.00002	0.0002
Benzo(g,h,i)perylene	0.0000071 (J)	0.000025 (J)	0.0000081 (J)	< 0.00031	NL	NL
Benzo(k)fluoranthene	< 0.000005	0.000021 (J)	< 0.0000051	< 0.00035	NL	NL
Chrysene	0.000021 (J)	0.000042 (J)	0.000017 (J)	0.0018 (J)	0.00002	0.0002
Dibenzo(a,h)anthracene	< 0.0000035	< 0.0000033	< 0.0000051	< 0.00046	NL	NL
Fluoranthene	0.00004 (J)	0.000049	0.00003 (J)	0.0037	0.08	0.4
Fluorene	0.00061	0.000031 (J)	0.00051	0.0759	0.08	0.4
Indeno(1,2,3-cd)pyrene	0.0000044 (J)	0.000017 (J)	0.0000056 (J)	< 0.00082	NL	NL
1-Methylnaphthalene	0.0087	0.000076	0.0041	0.357	NL	NL
2-Methylnaphthalene	0.0065	0.000066	0.000037 (J)	0.0747	NL	NL
Naphthalene	0.0022	0.00027	0.00017	0.0243	0.01	0.1
Phenanthrene	0.00062	0.000033 (J)	0.00029	0.165	NL	NL
Pyrene	0.00006	0.0001	0.000081	0.0165	0.05	0.25

¹ – Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Underlined – Concentration exceeds the PAL and the ES

(J) – Concentration reported by the laboratory above the Limit of Detection, but below the Limit of Quantification

NL – Not Listed in Wisconsin Administrative Code

PNAs via USEPA Method SW8270SIM

NOTE – MW-4 installed to duplicate TW-6

² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Table A.1.B (Continued). Groundwater Analytical Table for Polynuclear Aromatics (mg/L) (Quarterly Groundwater Sampling Wells)

Polynuclear Aromatic		Sample Location (Sample Date)				
Folynuclear Aromatic	MW-4 (01/05/18)	MW-4 (04/07/18)	MW-4 (07/30/18)	MW-4 (10/11/18)	PAL ¹	ES^2
Acenaphthene	0.0246	0.0031	0.0021	0.004	NL	NL
Acenaphthylene	0.0083	0.00073	0.00064	0.00091	NL	NL
Anthracene	0.0019	0.00051	0.00024	0.001	0.6	3
Benzo(a)anthracene	< 0.00014	0.000012 (J)	< 0.000035	0.00004 (J)	NL	NL
Benzo(a)pyrene	< 0.0002	< 0.0000095	<0.000048	<0.000029	0.00002	0.0002
Benzo(b)fluoranthene	0.00022 (J)	0.0000096 (J)	< 0.000026	0.000022	0.00002	0.0002
Benzo(g,h,i)perylene	< 0.00013	< 0.0000061	< 0.000031	< 0.000018	NL	NL
Benzo(k)fluoranthene	< 0.00014	< 0.0000068	< 0.000035	< 0.000021	NL	NL
Chrysene	<u>0.001 (J)</u>	0.000031 (J)	<0.00006	0.000084 (J)	0.00002	0.0002
Dibenzo(a,h)anthracene	< 0.00019	< 0.000009	< 0.000046	< 0.000027	NL	NL
Fluoranthene	0.0046	0.0001	0.000061 (J)	0.00019	0.08	0.4
Fluorene	0.0504	0.0053	0.0035	0.0067	0.08	0.4
Indeno(1,2,3-cd)pyrene	< 0.00033	< 0.000016	< 0.000081	< 0.000048	NL	NL
1-Methylnaphthalene	0.183	0.0109	0.0395	0.0268	NL	NL
2-Methylnaphthalene	0.0126	0.00026	0.00051	0.00021	NL	NL
Naphthalene	0.0151	0.0022	0.0015	0.00081	0.01	0.1
Phenanthrene	0.102	0.0033	0.0031	0.0059	NL	NL
Pyrene	0.0102	0.00032	0.00017 (J)	0.0001	0.05	0.25

¹ – Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Underlined – Concentration exceeds the PAL and the ES

(J) – Concentration reported by the laboratory above the Limit of Detection, but below the Limit of Quantification

NL – Not Listed in Wisconsin Administrative Code

PNAs via USEPA Method SW8270SIM

NOTE – MW-4 installed to duplicate TW-6

² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Table A.1.B (Continued). Groundwater Analytical Table for Polynuclear Aromatics (mg/L) (Quarterly Groundwater Sampling Wells)

Polynuclear Aromatic		Sample Location (Sample Date)					
rolynuciear Aromatic	MW-4 (01/25/19)	MW-4 (04/29/19)	MW-4 (07/07/19)	MW-4 (10/24/19)	MW-4 (01/17/20)	PAL ¹	ES ²
Acenaphthene	0.0016	0.0033	0.0028	0.01	0.0357	NL	NL
Acenaphthylene	0.00024	0.00059	0.0005	0.0029	0.0114	NL	NL
Anthracene	0.000093	0.00033	0.00044	0.0068	0.0063	0.6	3
Benzo(a)anthracene	0.0000076 (J)	0.000061	< 0.000026	0.00069	0.0036	NL	NL
Benzo(a)pyrene	< 0.0000095	0.000041 (J)	< 0.000037	0.00045	0.0031	0.00002	0.0002
Benzo(b)fluoranthene	0.000012 (J)	0.000093	< 0.00002	0.00086	0.0056	0.00002	0.0002
Benzo(g,h,i)perylene	< 0.0000061	0.000045	< 0.000024	0.00049	0.0032	NL	NL
Benzo(k)fluoranthene	0.000016 (J)	0.00005	< 0.000026	0.00038	0.0022	NL	NL
Chrysene	0.000033 (J)	0.00017	< 0.000046	0.0016	0.0074	0.00002	0.0002
Dibenzo(a,h)anthracene	< 0.000009	0.0000091 (J)	< 0.000035	0.000074 (J)	0.000061 (J)	NL	NL
Fluoranthene	0.000091	0.0004	0.00011 (J)	0.0026	0.0128	0.08	0.4
Fluorene	0.0022	0.0046	0.0044	0.019	0.0576	0.08	0.4
Indeno(1,2,3-cd)pyrene	< 0.000016	0.00004 (J)	< 0.000062	0.00033 (J)	0.0025	NL	NL
1-Methylnaphthalene	0.006	0.0151	0.0174		0.0947	NL	NL
2-Methylnaphthalene	0.000048	0.00026	0.00048		0.0032	NL	NL
Naphthalene	0.00078	0.0014	0.0034	0.0026	0.0074	0.01	0.1
Phenanthrene	0.00077	0.0037	0.0013	0.026	0.0992	NL	NL
Pyrene	0.00021	0.0014	0.00037	0.0096	0.0344	0.05	0.25

¹ – Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

<u>Underlined</u> – Concentration exceeds the PAL and the ES

(J) – Concentration reported by the laboratory above the Limit of Detection, but below the Limit of Quantification

NL – Not Listed in Wisconsin Administrative Code

PNAs via USEPA Method SW8270SIM

² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Table A.5. Ace Hardware Sump Water Analytical Table for Tetrachlorethene (mg/L)

Sample Location	Sample Date	Tetrachloroethene			
	02/03/20	<u>0.006</u>			
	01/07/20	<u>0.0065</u>			
	12/03/19	<u>0.0068</u>			
	11/04/19	<u>0.008</u>			
	10/02/19	<u>0.0069</u>			
	09/05/19	0.0076			
	08/02/19	0.005			
C	07/19/19	<u>0.0062</u>			
Sump	06/25/19	0.0054			
	06/06/19	0.0069			
	05/29/19	0.0043			
	05/23/19	0.0042			
	05/15/19	<u>0.0093</u>			
	02/04/19	0.0064			
	01/05/18	0.0082			
	06/04/17	0.006			
PA	PAL^1				
Enforcemen	0.005				

¹ – Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

<u>Underlined</u> – Concentration exceeds the PAL and the ES

NOTE – All other VOCs reported below the Limit of Detection

VOCs via USEPA Method SW8260

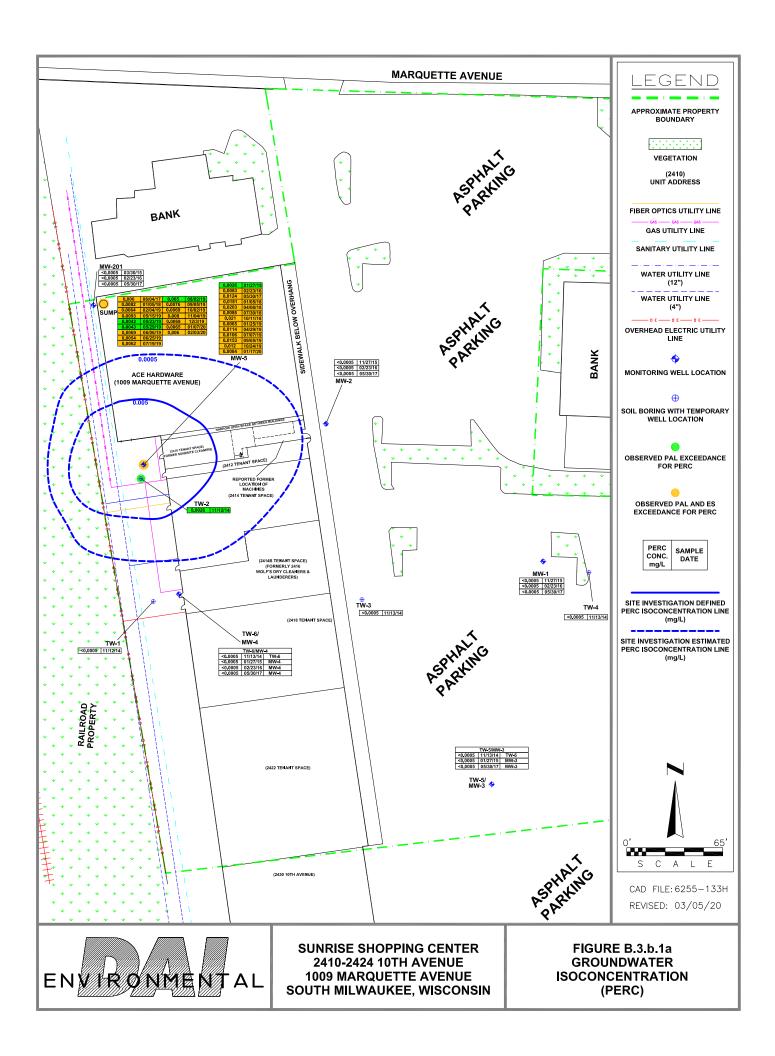
² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

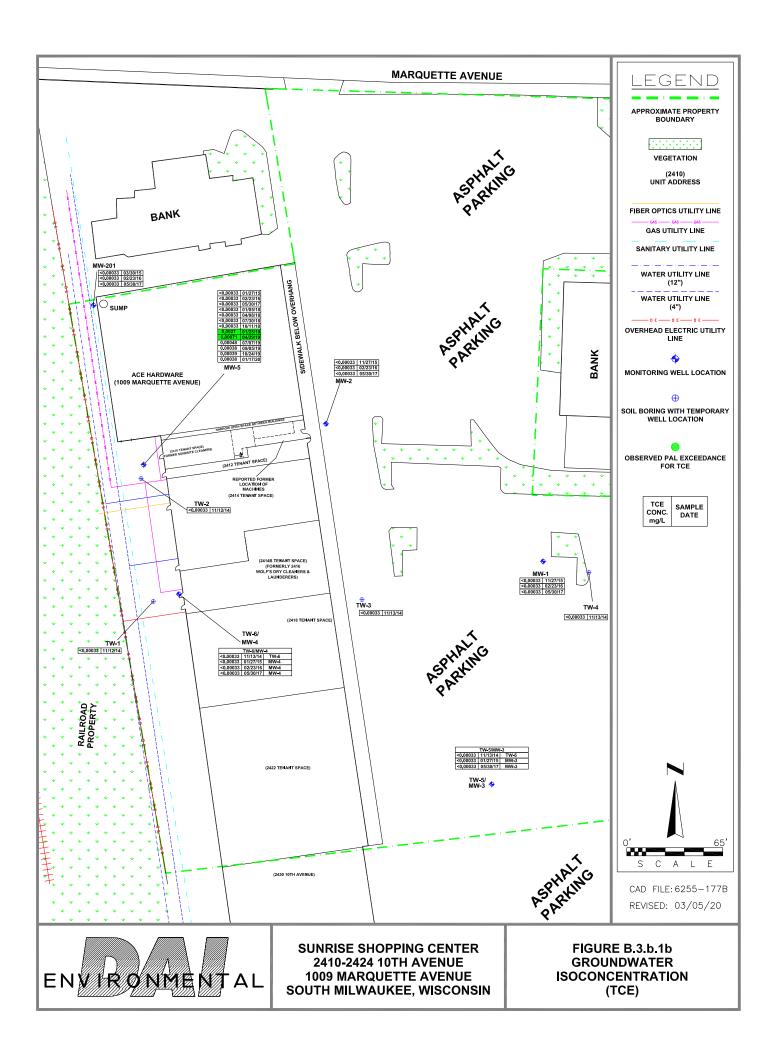
Table A.6. Water Level Elevations

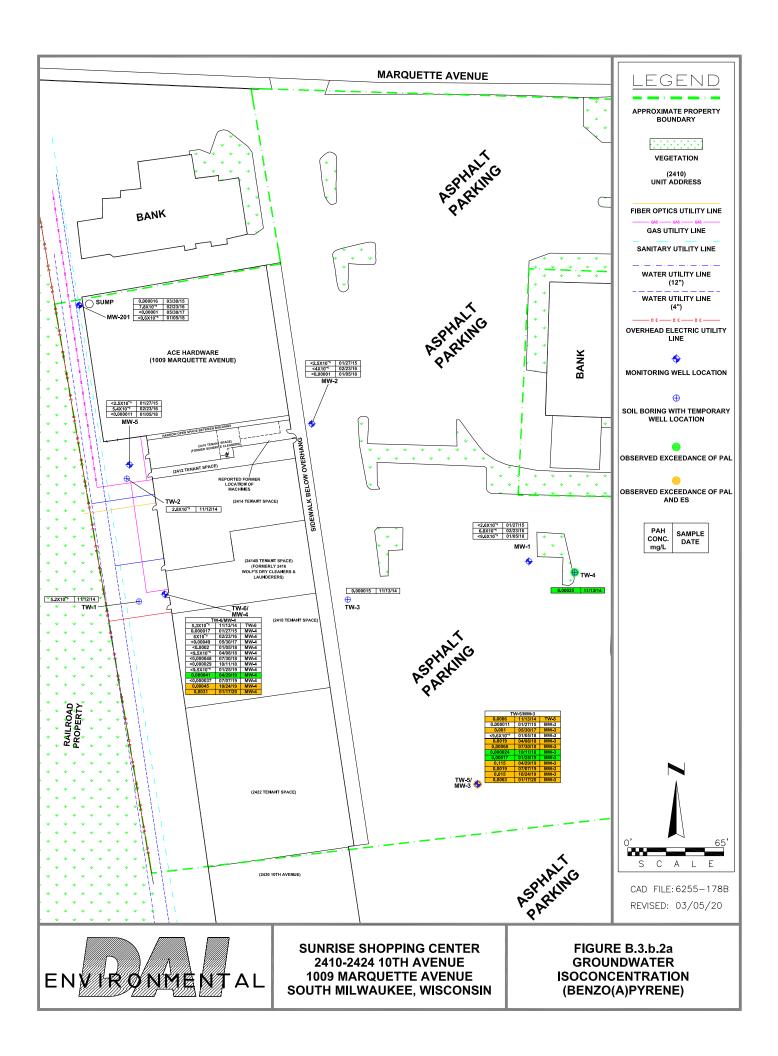

Monitoring Well	Top of Casing Elevation*	Date	Measured Depth to Groundwater (ft)	Measured Depth to Well Bottom (ft)	Relative Groundwater Elevation (ft)
		01/17/20	2.74		96.39
		10/24/19	3.07		96.06
		07/07/19	3.46		95.67
		04/29/19	2.35		96.78
		01/25/19	4.65		94.48
		10/11/18	1.66		97.47
MW-1	99.13	07/30/18	3.32	14.49	95.81
		04/08/18	2.24		96.89
		02/27/18	1.58		97.55
		05/30/17	2.17		96.96
		04/24/15	1.46		97.67
		03/30/15	1.98		97.15
		01/27/15	3.93		95.20
		01/17/20	6.83		93.92
		10/14/19	Obstructed		
		07/07/19	7.51		93.24
		04/29/19	8.47		92.28
		01/25/19	8.42		92.33
		10/11/18	6.45		94.30
MW-2	100.75	07/30/18	7.45	14.41	93.30
		04/08/18	8.36		92.39
		02/27/18	8.54		92.21
		05/30/17	7.95		92.80
		04/24/15	7.21		93.54
		03/30/15	8.01		92.74
		01/27/15	8.60		92.15
		01/17/20	3.20		96.85
		10/14/19	3.61		96.44
		07/07/19	3.73		96.32
		04/29/19	2.61		97.44
		01/25/19	4.44		95.61
		10/11/18	2.35		97.70
MW-3	100.05	07/30/18	3.62	14.46	96.43
		04/08/18	2.53		97.52
		02/27/18	2.43		97.62
		05/30/17	2.45		97.60
		04/24/15	2.27		97.78
		03/30/15	2.73		97.32
		01/27/15	4.46		95.59

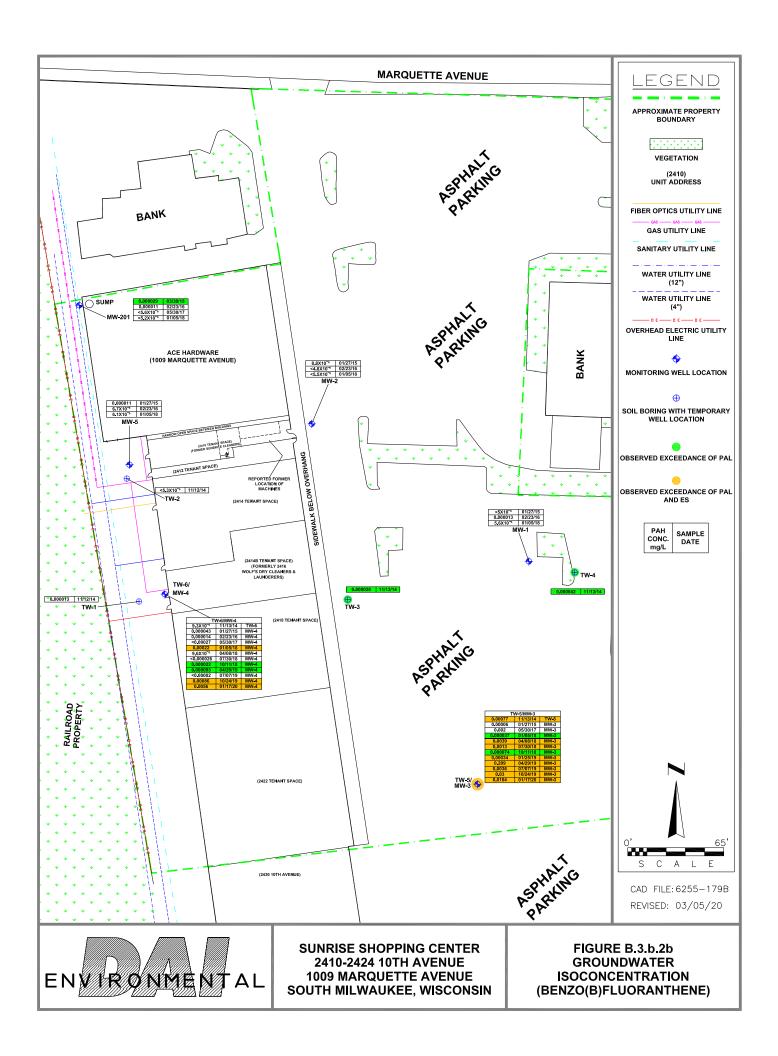
Table A.6. Water Level Elevations

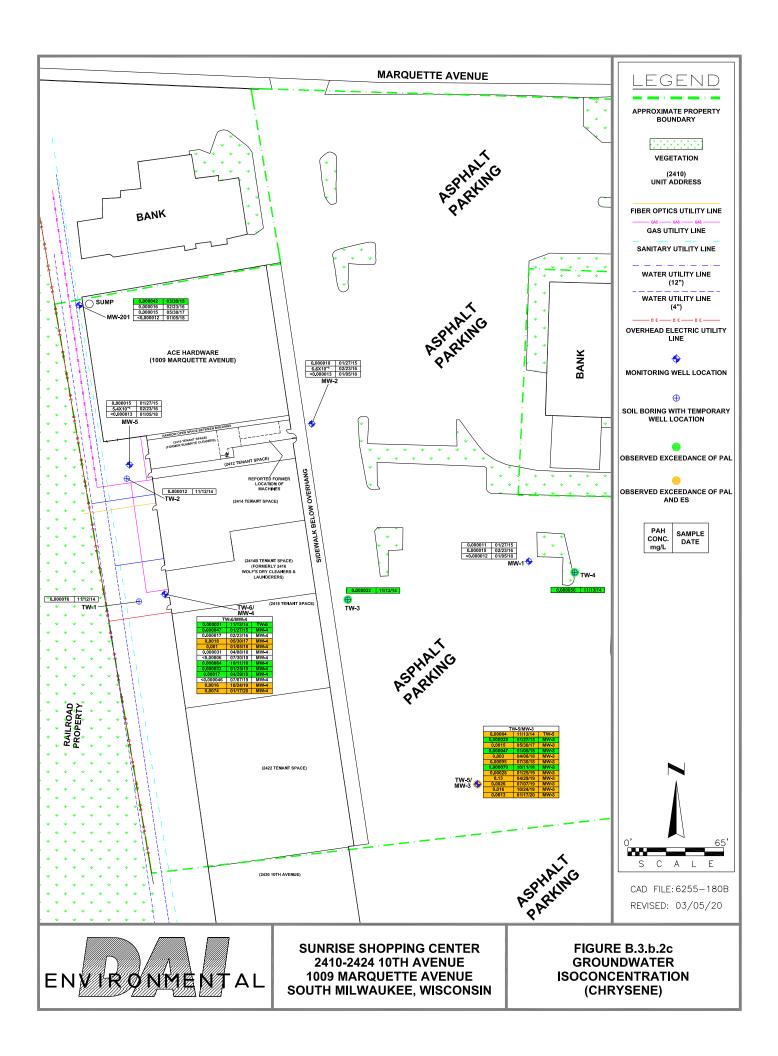
Monitoring Well	Top of Casing Elevation*	Date	Measured Depth to Groundwater (ft)	Measured Depth to Well Bottom (ft)	Relative Groundwater Elevation (ft)
		01/17/20	6.21		94.36
		10/24/19	6.14		94.43
		07/07/19	6.98		93.59
		04/29/19	7.30		93.27
		01/25/19	6.88		93.69
		10/11/18	5.43		95.14
MW-4	100.57	07/30/18	6.91	14.57	93.66
		04/08/18	7.26		93.31
		02/27/18	7.23		93.34
		05/30/17	6.38		94.19
		04/24/15	5.94		94.63
		03/30/15	7.04		93.53
		01/27/15	6.53		94.04
		01/17/20	5.87		94.37
		10/24/19	5.98		94.26
		07/07/19	6.25		93.99
		04/29/19	6.33		93.91
		01/25/19	6.35		93.89
		10/11/18	5.85		94.39
MW-5	100.24	07/30/18	6.19	14.60	94.05
		04/08/18	6.27		93.97
		02/27/18	6.15		94.09
		05/30/17	5.96		94.28
		04/24/15	5.92		94.32
		03/30/15	6.26		93.98
		01/27/15	6.50		93.74
		01/17/20	7.00		93.10
		10/24/19	6.57		93.53
		07/07/19	6.72		93.38
		04/29/19	6.82		93.28
		01/25/19	6.88		93.22
		10/11/18	6.22		93.88
MW-201	100.10	07/30/18	6.69	14.57	93.41
201		04/08/18	6.79		93.34
		02/27/18	6.46		93.64
		05/30/17	6.26		93.84
		04/24/15	5.91		94.19
		03/30/15	6.28		93.82
		01/27/15	Not Installed		Not Installed

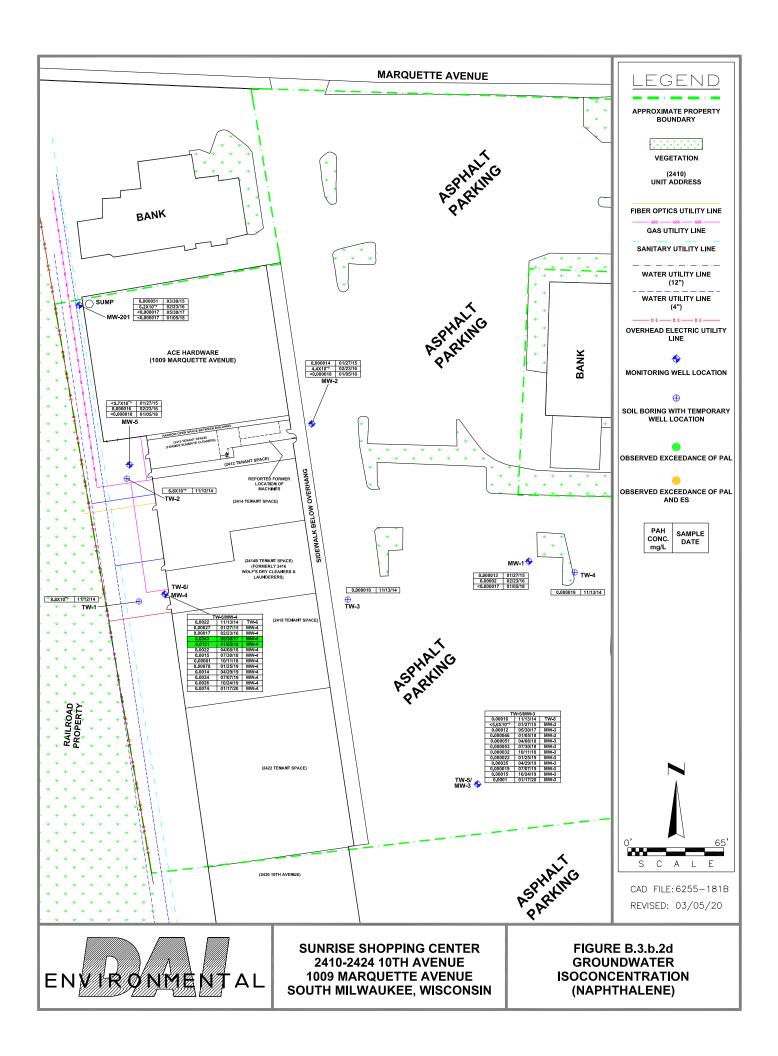

^{*} – Relative Elevation based upon generic 100-ft on-site datum and survey data collected on January 27, 2015, and March 30, 2015.

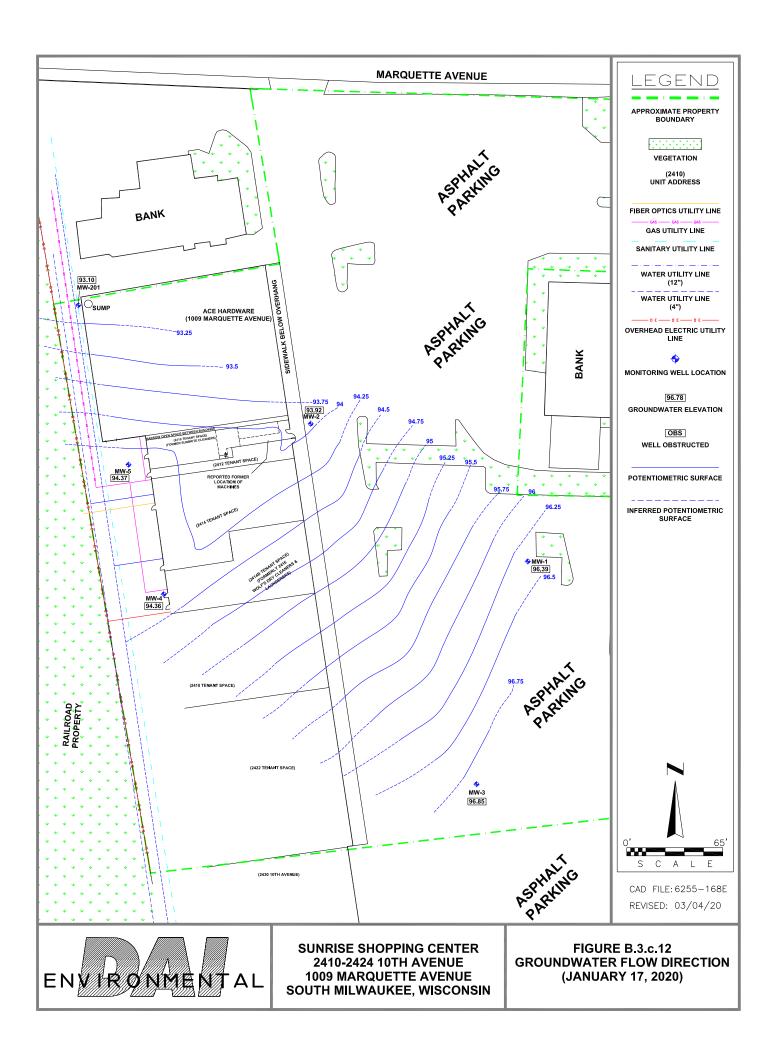

APPENDIX B FIGURES

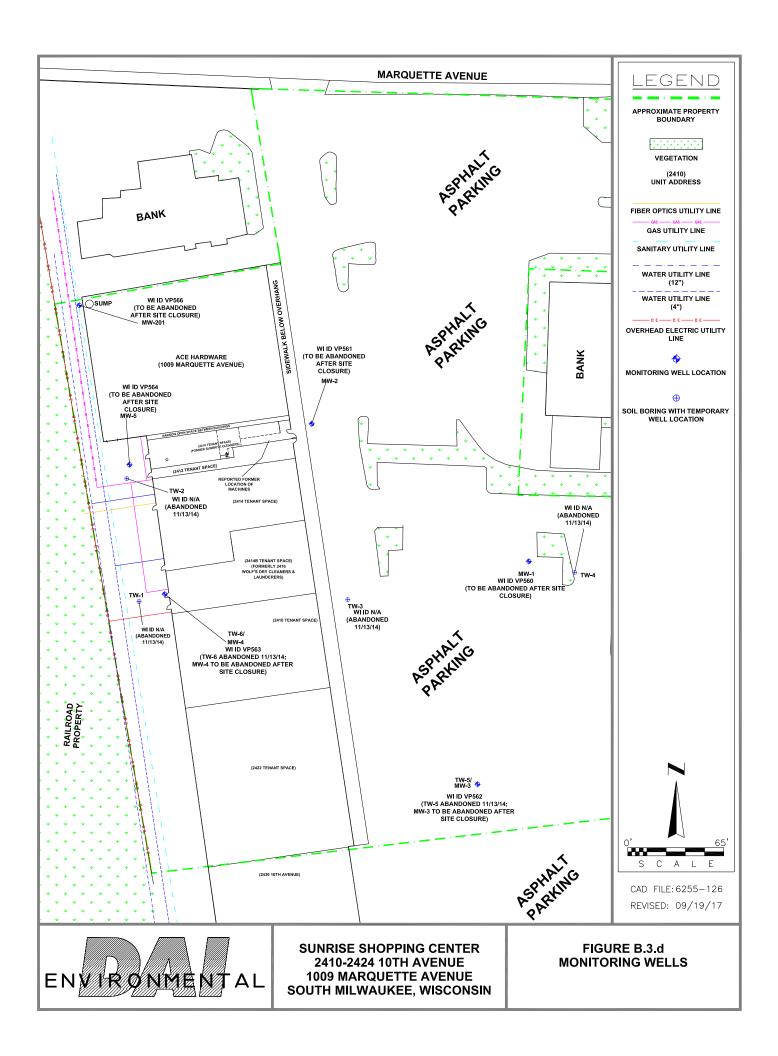





SUNRISE SHOPPING CENTER 2410-2424 10TH AVENUE 1009 MARQUETTE AVENUE SOUTH MILWAUKEE, WISCONSIN FIGURE B.1.b.1
DETAILED SITE MAP WITH AERIAL VIEW
OF SITE AND SURROUNDING PROPERTY
(2015 AERIAL TAKEN FROM GOOGLE EARTH)







APPENDIX C.1.E LABORATORY ANALYTICAL REPORTS (FIRST QUARTER 2020)

(920)469-2436

January 23, 2020

Chris Cailles
DAI Environmental
Polo Park Business Center
27834 Irma Lee Circle
Lake Forest, IL 60045

RE: Project: 6255 SOUTH MILWAUKEE

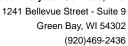
Pace Project No.: 40202194

Dear Chris Cailles:

Enclosed are the analytical results for sample(s) received by the laboratory on January 18, 2020. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Laurie Woerfel

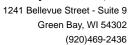
Laurie Woelfel laurie.woelfel@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Jenny Rovzar, DAI

CERTIFICATIONS

Project: 6255 SOUTH MILWAUKEE

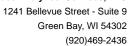

Pace Project No.: 40202194

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0


SAMPLE SUMMARY

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
40202194001	MW-5	Water	01/17/20 12:35	01/18/20 09:40	
40202194002	MW-4	Water	01/17/20 12:50	01/18/20 09:40	
40202194003	MW-3	Water	01/17/20 13:45	01/18/20 09:40	

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40202194001	MW-5	EPA 8260	LAP	64
40202194002	MW-4	EPA 8270 by HVI	TPO	20
40202194003	MW-3	EPA 8270 by HVI	TPO	20

REPORT OF LABORATORY ANALYSIS

ANALYTICAL RESULTS

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Date: 01/23/2020 03:43 PM

Sample: MW-5 Lab ID: 40202194001 Collected: 01/17/20 12:35 Received: 01/18/20 09:40 Matrix: Water

Benzene Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroform	 <0.25 <0.24 <0.36 <0.36 <4.0 <0.97 <0.71 <0.85 <0.30 <0.17 	Method: EPA ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 1.0 5.0 1.2 13.2 5.0 2.4	0.25 0.24 0.36 0.36 4.0	1 1 1	01/22/20 12:54 01/22/20 12:54 01/22/20 12:54	108-86-1	
Bromobenzene Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane	<0.24 <0.36 <0.36 <4.0 <0.97 <0.71 <0.85 <0.30	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	1.0 5.0 1.2 13.2 5.0	0.24 0.36 0.36	1 1	01/22/20 12:54	108-86-1	
Bromochloromethane Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane	<0.36 <0.36 <4.0 <0.97 <0.71 <0.85 <0.30	ug/L ug/L ug/L ug/L ug/L ug/L	5.0 1.2 13.2 5.0	0.36 0.36	1			
Bromodichloromethane Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene cert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane	<0.36 <4.0 <0.97 <0.71 <0.85 <0.30	ug/L ug/L ug/L ug/L ug/L	1.2 13.2 5.0	0.36		01/22/20 12:54		
Bromoform Bromomethane n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane	<4.0 <0.97 <0.71 <0.85 <0.30	ug/L ug/L ug/L ug/L	13.2 5.0		1	01/22/20 12:34	74-97-5	
Bromomethane n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane	<0.97 <0.71 <0.85 <0.30	ug/L ug/L ug/L	5.0	4.0	1	01/22/20 12:54	75-27-4	
n-Butylbenzene sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane	<0.71 <0.85 <0.30	ug/L ug/L ug/L			1	01/22/20 12:54	75-25-2	
sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane	<0.85 <0.30	ug/L ug/L	2.4	0.97	1	01/22/20 12:54	74-83-9	
sec-Butylbenzene ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane	<0.85 <0.30	ug/L	∠.4	0.71	1	01/22/20 12:54	104-51-8	
ert-Butylbenzene Carbon tetrachloride Chlorobenzene Chloroethane	<0.30	-	5.0	0.85	1	01/22/20 12:54		
Carbon tetrachloride Chlorobenzene Chloroethane		ug/L	1.0	0.30	1	01/22/20 12:54		
Chlorobenzene Chloroethane		ug/L	1.0	0.17	1	01/22/20 12:54		
Chloroethane	<0.71	ug/L	2.4	0.71	1	01/22/20 12:54		
	<1.3	ug/L	5.0	1.3	1	01/22/20 12:54		
	<1.3	ug/L	5.0	1.3	1	01/22/20 12:54		
Chloromethane	<2.2	ug/L	7.3	2.2	1	01/22/20 12:54		
2-Chlorotoluene	<0.93	ug/L	7.5 5.0	0.93	1	01/22/20 12:54		
1-Chlorotoluene	<0.76	-	2.5	0.93	1	01/22/20 12:54		
		ug/L		1.8	1			
,2-Dibromo-3-chloropropane	<1.8	ug/L	5.9			01/22/20 12:54		
Dibromochloromethane	<2.6	ug/L	8.7	2.6	1	01/22/20 12:54		
,2-Dibromoethane (EDB)	<0.83	ug/L	2.8	0.83	1	01/22/20 12:54		
Dibromomethane	<0.94	ug/L	3.1	0.94	1	01/22/20 12:54		
,2-Dichlorobenzene	<0.71	ug/L	2.4	0.71	1	01/22/20 12:54		
,3-Dichlorobenzene	<0.63	ug/L	2.1	0.63	1	01/22/20 12:54		
,4-Dichlorobenzene	<0.94	ug/L	3.1	0.94	1	01/22/20 12:54		
Dichlorodifluoromethane	<0.50	ug/L	5.0	0.50	1	01/22/20 12:54	75-71-8	
,1-Dichloroethane	<0.27	ug/L	1.0	0.27	1	01/22/20 12:54	75-34-3	
,2-Dichloroethane	<0.28	ug/L	1.0	0.28	1	01/22/20 12:54	107-06-2	
,1-Dichloroethene	<0.24	ug/L	1.0	0.24	1	01/22/20 12:54	75-35-4	
cis-1,2-Dichloroethene	<0.27	ug/L	1.0	0.27	1	01/22/20 12:54	156-59-2	
rans-1,2-Dichloroethene	<1.1	ug/L	3.6	1.1	1	01/22/20 12:54	156-60-5	
,2-Dichloropropane	<0.28	ug/L	1.0	0.28	1	01/22/20 12:54	78-87-5	
,3-Dichloropropane	< 0.83	ug/L	2.8	0.83	1	01/22/20 12:54	142-28-9	
2,2-Dichloropropane	<2.3	ug/L	7.6	2.3	1	01/22/20 12:54	594-20-7	
,1-Dichloropropene	<0.54	ug/L	1.8	0.54	1	01/22/20 12:54	563-58-6	
cis-1,3-Dichloropropene	<3.6	ug/L	12.1	3.6	1	01/22/20 12:54		
rans-1,3-Dichloropropene	<4.4	ug/L	14.6	4.4	1	01/22/20 12:54		
Diisopropyl ether	<1.9	ug/L	6.3	1.9	1	01/22/20 12:54		
Ethylbenzene	<0.22	ug/L	1.0	0.22	1	01/22/20 12:54		
lexachloro-1,3-butadiene	<1.2	ug/L	5.0	1.2	1	01/22/20 12:54		
sopropylbenzene (Cumene)	<0.39	ug/L	5.0	0.39	1	01/22/20 12:54		
-Isopropyltoluene	<0.80	ug/L ug/L	2.7	0.89	1	01/22/20 12:54		
	<0.58	-	5.0	0.58	1	01/22/20 12:54		
Methylene Chloride		ug/L						
Methyl-tert-butyl ether	<1.2	ug/L	4.2	1.2	1	01/22/20 12:54		
Naphthalene	<1.2	ug/L	5.0	1.2	1	01/22/20 12:54		
n-Propylbenzene	<0.81	ug/L	5.0	0.81	1	01/22/20 12:54		
Styrene 1,1,1,2-Tetrachloroethane	<0.47 <0.27	ug/L ug/L	1.6 1.0	0.47 0.27	1 1	01/22/20 12:54 01/22/20 12:54		

01/22/20 12:54 2037-26-5

ANALYTICAL RESULTS

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Toluene-d8 (S)

Date: 01/23/2020 03:43 PM

Sample: MW-5	Lab ID:	40202194001	Collecte	d: 01/17/20	12:35	Received: 01	/18/20 09:40 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
1,1,2,2-Tetrachloroethane	<0.28	ug/L	1.0	0.28	1		01/22/20 12:54	79-34-5	
Tetrachloroethene	8.4	ug/L	1.1	0.33	1		01/22/20 12:54	127-18-4	
Toluene	<0.17	ug/L	5.0	0.17	1		01/22/20 12:54	108-88-3	
1,2,3-Trichlorobenzene	< 0.63	ug/L	5.0	0.63	1		01/22/20 12:54	87-61-6	
1,2,4-Trichlorobenzene	<0.95	ug/L	5.0	0.95	1		01/22/20 12:54	120-82-1	
1,1,1-Trichloroethane	0.28J	ug/L	1.0	0.24	1		01/22/20 12:54	71-55-6	
1,1,2-Trichloroethane	<0.55	ug/L	5.0	0.55	1		01/22/20 12:54	79-00-5	
Trichloroethene	0.38J	ug/L	1.0	0.26	1		01/22/20 12:54	79-01-6	
Trichlorofluoromethane	<0.21	ug/L	1.0	0.21	1		01/22/20 12:54	75-69-4	
1,2,3-Trichloropropane	<0.59	ug/L	5.0	0.59	1		01/22/20 12:54	96-18-4	
1,2,4-Trimethylbenzene	<0.84	ug/L	2.8	0.84	1		01/22/20 12:54	95-63-6	
1,3,5-Trimethylbenzene	<0.87	ug/L	2.9	0.87	1		01/22/20 12:54	108-67-8	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		01/22/20 12:54	75-01-4	
m&p-Xylene	<0.47	ug/L	2.0	0.47	1		01/22/20 12:54	179601-23-1	
o-Xylene	<0.26	ug/L	1.0	0.26	1		01/22/20 12:54	95-47-6	
Surrogates		Č							
4-Bromofluorobenzene (S)	89	%	70-130		1		01/22/20 12:54	460-00-4	
Dibromofluoromethane (S)	101	%	70-130		1		01/22/20 12:54	1868-53-7	

70-130

(920)469-2436

ANALYTICAL RESULTS

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Terphenyl-d14 (S)

Date: 01/23/2020 03:43 PM

Sample: MW-4	Lab ID:	40202194002	Collected	d: 01/17/20	12:50	Received: 01/	18/20 09:40 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV PAH by HVI	Analytical	Method: EPA 8	270 by HVI	Preparation	n Meth	od: EPA 3510			
Acenaphthene	35.7	ug/L	0.55	0.11	20	01/20/20 09:23	01/22/20 16:11	83-32-9	
Acenaphthylene	11.4	ug/L	0.45	0.090	20	01/20/20 09:23	01/22/20 16:11	208-96-8	
Anthracene	6.3	ug/L	0.94	0.19	20	01/20/20 09:23	01/22/20 16:11	120-12-7	
Benzo(a)anthracene	3.6	ug/L	0.68	0.14	20	01/20/20 09:23	01/22/20 16:11	56-55-3	
Benzo(a)pyrene	3.1	ug/L	0.95	0.19	20	01/20/20 09:23	01/22/20 16:11	50-32-8	
Benzo(b)fluoranthene	5.6	ug/L	0.52	0.10	20	01/20/20 09:23	01/22/20 16:11	205-99-2	
Benzo(g,h,i)perylene	3.2	ug/L	0.61	0.12	20	01/20/20 09:23	01/22/20 16:11	191-24-2	
Benzo(k)fluoranthene	2.2	ug/L	0.68	0.14	20	01/20/20 09:23	01/22/20 16:11	207-08-9	
Chrysene	7.4	ug/L	1.2	0.24	20	01/20/20 09:23	01/22/20 16:11	218-01-9	L1
Dibenz(a,h)anthracene	0.61J	ug/L	0.90	0.18	20	01/20/20 09:23	01/22/20 16:11	53-70-3	
Fluoranthene	12.8	ug/L	0.96	0.19	20	01/20/20 09:23	01/22/20 16:11	206-44-0	
Fluorene	57.6	ug/L	0.72	0.14	20	01/20/20 09:23	01/22/20 16:11	86-73-7	
Indeno(1,2,3-cd)pyrene	2.5	ug/L	1.6	0.32	20	01/20/20 09:23	01/22/20 16:11	193-39-5	
1-Methylnaphthalene	94.7	ug/L	0.53	0.11	20	01/20/20 09:23	01/22/20 16:11	90-12-0	
2-Methylnaphthalene	3.2	ug/L	0.44	0.088	20	01/20/20 09:23	01/22/20 16:11	91-57-6	
Naphthalene	7.4	ug/L	1.7	0.33	20	01/20/20 09:23	01/22/20 16:11	91-20-3	
Phenanthrene	99.2	ug/L	1.2	0.25	20	01/20/20 09:23	01/22/20 16:11	85-01-8	
Pyrene	34.4	ug/L	0.69	0.14	20	01/20/20 09:23	01/22/20 16:11	129-00-0	
Surrogates		-							
2-Fluorobiphenyl (S)	0	%	30-85		20	01/20/20 09:23	01/22/20 16:11	321-60-8	S4

10-120

20 01/20/20 09:23 01/22/20 16:11 1718-51-0

10

01/20/20 09:23 01/22/20 15:34 1718-51-0

(920)469-2436

ANALYTICAL RESULTS

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Terphenyl-d14 (S)

Date: 01/23/2020 03:43 PM

Sample: MW-3 Lab ID: 40202194003 Collected: 01/17/20 13:45 Received: 01/18/20 09:40 Matrix: Water LOQ LOD DF **Parameters** Results Units Prepared CAS No. Analyzed Qual Analytical Method: EPA 8270 by HVI Preparation Method: EPA 3510 8270 MSSV PAH by HVI Acenaphthene 0.30 ug/L 0.028 0.0056 0.023 0.0046 Acenaphthylene 0.20 ug/L 0.0096 Anthracene 0.28 ug/L 0.048 1 Benzo(a)anthracene 4.2 ug/L 0.035 0.0069 1 6.3 ug/L 0.048 0.0097 Benzo(a)pyrene 10.4 ug/L 0.026 0.0053 Benzo(b)fluoranthene 1 7.2 ug/L 0.0062 Benzo(g,h,i)perylene 0.031 1 Benzo(k)fluoranthene 4.0 ug/L 0.035 0.0069 1 Chrysene 7.5 ug/L 0.060 0.012 1 11 Dibenz(a,h)anthracene 1.3 ug/L 0.046 0.0092 1 Fluoranthene 11.7 ug/L 0.049 0.0098 0.50 0.0073 Fluorene ug/L 0.037 Indeno(1,2,3-cd)pyrene 0.016 5.6 ug/L 0.081 1-Methylnaphthalene 0.39 ug/L 0.027 0.0054 1 01/20/20 09:23 01/22/20 15:34 90-12-0 2-Methylnaphthalene 0.048 0.022 0.0045 ug/L 1 Naphthalene 0.10 ug/L 0.084 0.017 1 Phenanthrene 3.0 ug/L 0.063 0.013 1 0.035 0.0070 Pyrene 11.0 ug/L 1 Surrogates 2-Fluorobiphenyl (S) 52 % 30-85 1

10-120

49

%

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Date: 01/23/2020 03:43 PM

QC Batch: 345897 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 40202194001

METHOD BLANK: 2006918 Matrix: Water

Associated Lab Samples: 40202194001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<0.27	1.0	01/22/20 09:11	
1,1,1-Trichloroethane	ug/L	<0.24	1.0	01/22/20 09:11	
1,1,2,2-Tetrachloroethane	ug/L	<0.28	1.0	01/22/20 09:11	
1,1,2-Trichloroethane	ug/L	<0.55	5.0	01/22/20 09:11	
1,1-Dichloroethane	ug/L	<0.27	1.0	01/22/20 09:11	
1,1-Dichloroethene	ug/L	<0.24	1.0	01/22/20 09:11	
1,1-Dichloropropene	ug/L	< 0.54	1.8	01/22/20 09:11	
1,2,3-Trichlorobenzene	ug/L	< 0.63	5.0	01/22/20 09:11	
1,2,3-Trichloropropane	ug/L	< 0.59	5.0	01/22/20 09:11	
1,2,4-Trichlorobenzene	ug/L	< 0.95	5.0	01/22/20 09:11	
1,2,4-Trimethylbenzene	ug/L	<0.84	2.8	01/22/20 09:11	
1,2-Dibromo-3-chloropropane	ug/L	<1.8	5.9	01/22/20 09:11	
1,2-Dibromoethane (EDB)	ug/L	<0.83	2.8	01/22/20 09:11	
1,2-Dichlorobenzene	ug/L	<0.71	2.4	01/22/20 09:11	
1,2-Dichloroethane	ug/L	<0.28	1.0	01/22/20 09:11	
1,2-Dichloropropane	ug/L	<0.28	1.0	01/22/20 09:11	
1,3,5-Trimethylbenzene	ug/L	<0.87	2.9	01/22/20 09:11	
1,3-Dichlorobenzene	ug/L	< 0.63	2.1	01/22/20 09:11	
1,3-Dichloropropane	ug/L	<0.83	2.8	01/22/20 09:11	
1,4-Dichlorobenzene	ug/L	< 0.94	3.1	01/22/20 09:11	
2,2-Dichloropropane	ug/L	<2.3	7.6	01/22/20 09:11	
2-Chlorotoluene	ug/L	< 0.93	5.0	01/22/20 09:11	
4-Chlorotoluene	ug/L	< 0.76	2.5	01/22/20 09:11	
Benzene	ug/L	< 0.25	1.0	01/22/20 09:11	
Bromobenzene	ug/L	<0.24	1.0	01/22/20 09:11	
Bromochloromethane	ug/L	< 0.36	5.0	01/22/20 09:11	
Bromodichloromethane	ug/L	< 0.36	1.2	01/22/20 09:11	
Bromoform	ug/L	<4.0	13.2	01/22/20 09:11	
Bromomethane	ug/L	< 0.97	5.0	01/22/20 09:11	
Carbon tetrachloride	ug/L	<0.17	1.0	01/22/20 09:11	
Chlorobenzene	ug/L	<0.71	2.4	01/22/20 09:11	
Chloroethane	ug/L	<1.3	5.0	01/22/20 09:11	
Chloroform	ug/L	<1.3	5.0	01/22/20 09:11	
Chloromethane	ug/L	<2.2	7.3	01/22/20 09:11	
cis-1,2-Dichloroethene	ug/L	<0.27	1.0	01/22/20 09:11	
cis-1,3-Dichloropropene	ug/L	<3.6	12.1	01/22/20 09:11	
Dibromochloromethane	ug/L	<2.6	8.7	01/22/20 09:11	
Dibromomethane	ug/L	< 0.94	3.1	01/22/20 09:11	
Dichlorodifluoromethane	ug/L	<0.50	5.0	01/22/20 09:11	
Diisopropyl ether	ug/L	<1.9	6.3	01/22/20 09:11	
Ethylbenzene	ug/L	<0.22	1.0	01/22/20 09:11	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Date: 01/23/2020 03:43 PM

METHOD BLANK: 2006918 Matrix: Water

Associated Lab Samples: 40202194001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
					- Qualificity
Hexachloro-1,3-butadiene	ug/L	<1.2	5.0	01/22/20 09:11	
Isopropylbenzene (Cumene)	ug/L	<0.39	5.0	01/22/20 09:11	
m&p-Xylene	ug/L	<0.47	2.0	01/22/20 09:11	
Methyl-tert-butyl ether	ug/L	<1.2	4.2	01/22/20 09:11	
Methylene Chloride	ug/L	<0.58	5.0	01/22/20 09:11	
n-Butylbenzene	ug/L	<0.71	2.4	01/22/20 09:11	
n-Propylbenzene	ug/L	<0.81	5.0	01/22/20 09:11	
Naphthalene	ug/L	<1.2	5.0	01/22/20 09:11	
o-Xylene	ug/L	< 0.26	1.0	01/22/20 09:11	
p-Isopropyltoluene	ug/L	<0.80	2.7	01/22/20 09:11	
sec-Butylbenzene	ug/L	<0.85	5.0	01/22/20 09:11	
Styrene	ug/L	< 0.47	1.6	01/22/20 09:11	
tert-Butylbenzene	ug/L	< 0.30	1.0	01/22/20 09:11	
Tetrachloroethene	ug/L	< 0.33	1.1	01/22/20 09:11	
Toluene	ug/L	< 0.17	5.0	01/22/20 09:11	
trans-1,2-Dichloroethene	ug/L	<1.1	3.6	01/22/20 09:11	
trans-1,3-Dichloropropene	ug/L	<4.4	14.6	01/22/20 09:11	
Trichloroethene	ug/L	< 0.26	1.0	01/22/20 09:11	
Trichlorofluoromethane	ug/L	<0.21	1.0	01/22/20 09:11	
Vinyl chloride	ug/L	<0.17	1.0	01/22/20 09:11	
4-Bromofluorobenzene (S)	%	87	70-130	01/22/20 09:11	
Dibromofluoromethane (S)	%	102	70-130	01/22/20 09:11	
Toluene-d8 (S)	%	89	70-130	01/22/20 09:11	

LABORATORY CONTROL SAMPLE:	2006919					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		56.3	113	70-130	
1,1,2,2-Tetrachloroethane	ug/L	50	45.5	91	70-130	
1,1,2-Trichloroethane	ug/L	50	48.6	97	70-130	
1,1-Dichloroethane	ug/L	50	68.0	136	73-150	
1,1-Dichloroethene	ug/L	50	59.0	118	73-138	
1,2,4-Trichlorobenzene	ug/L	50	52.9	106	70-130	
1,2-Dibromo-3-chloropropane	ug/L	50	43.3	87	64-129	
1,2-Dibromoethane (EDB)	ug/L	50	52.3	105	70-130	
1,2-Dichlorobenzene	ug/L	50	51.6	103	70-130	
1,2-Dichloroethane	ug/L	50	56.1	112	75-140	
1,2-Dichloropropane	ug/L	50	50.1	100	73-135	
1,3-Dichlorobenzene	ug/L	50	52.5	105	70-130	
1,4-Dichlorobenzene	ug/L	50	52.5	105	70-130	
Benzene	ug/L	50	51.7	103	70-130	
Bromodichloromethane	ug/L	50	50.8	102	70-130	
Bromoform	ug/L	50	48.5	97	68-129	
Bromomethane	ug/L	50	47.1	94	18-159	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Date: 01/23/2020 03:43 PM

ABORATORY CONTROL SAMPLE:	2006919					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride	ug/L	50	51.0	102	70-130	
Chlorobenzene	ug/L	50	56.0	112	70-130	
hloroethane	ug/L	50	55.5	111	53-147	
loroform	ug/L	50	52.8	106	74-136	
loromethane	ug/L	50	53.0	106	29-115	
-1,2-Dichloroethene	ug/L	50	53.5	107	70-130	
s-1,3-Dichloropropene	ug/L	50	46.6	93	70-130	
bromochloromethane	ug/L	50	50.7	101	70-130	
chlorodifluoromethane	ug/L	50	52.0	104	10-130	
ylbenzene	ug/L	50	50.5	101	80-124	
propylbenzene (Cumene)	ug/L	50	53.0	106	70-130	
p-Xylene	ug/L	100	111	111	70-130	
thyl-tert-butyl ether	ug/L	50	53.7	107	54-137	
thylene Chloride	ug/L	50	55.8	112	73-138	
ylene	ug/L	50	53.2	106	70-130	
rene	ug/L	50	54.2	108	70-130	
rachloroethene	ug/L	50	56.8	114	70-130	
uene	ug/L	50	52.5	105	80-126	
ns-1,2-Dichloroethene	ug/L	50	59.9	120	73-145	
ns-1,3-Dichloropropene	ug/L	50	41.1	82	70-130	
chloroethene	ug/L	50	55.4	111	70-130	
hlorofluoromethane	ug/L	50	57.0	114	76-147	
yl chloride	ug/L	50	56.6	113	51-120	
romofluorobenzene (S)	%			95	70-130	
romofluoromethane (S)	%			100	70-130	
uene-d8 (S)	%			91	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

QC Batch: 345848 Analysis Method: EPA 8270 by HVI
QC Batch Method: EPA 3510 Analysis Description: 8270 Water PAH by HVI

Associated Lab Samples: 40202194002, 40202194003

METHOD BLANK: 2006681 Matrix: Water

Associated Lab Samples: 40202194002, 40202194003

_		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	< 0.0059	0.030	01/22/20 11:54	
2-Methylnaphthalene	ug/L	< 0.0049	0.024	01/22/20 11:54	
Acenaphthene	ug/L	<0.0061	0.030	01/22/20 11:54	
Acenaphthylene	ug/L	< 0.0050	0.025	01/22/20 11:54	
Anthracene	ug/L	<0.010	0.052	01/22/20 11:54	
Benzo(a)anthracene	ug/L	< 0.0076	0.038	01/22/20 11:54	
Benzo(a)pyrene	ug/L	<0.011	0.053	01/22/20 11:54	
Benzo(b)fluoranthene	ug/L	< 0.0057	0.029	01/22/20 11:54	
Benzo(g,h,i)perylene	ug/L	<0.0068	0.034	01/22/20 11:54	
Benzo(k)fluoranthene	ug/L	< 0.0076	0.038	01/22/20 11:54	
Chrysene	ug/L	< 0.013	0.065	01/22/20 11:54	
Dibenz(a,h)anthracene	ug/L	< 0.010	0.050	01/22/20 11:54	
Fluoranthene	ug/L	<0.011	0.053	01/22/20 11:54	
Fluorene	ug/L	<0.0080	0.040	01/22/20 11:54	
Indeno(1,2,3-cd)pyrene	ug/L	<0.018	0.088	01/22/20 11:54	
Naphthalene	ug/L	<0.018	0.092	01/22/20 11:54	
Phenanthrene	ug/L	< 0.014	0.069	01/22/20 11:54	
Pyrene	ug/L	< 0.0076	0.038	01/22/20 11:54	
2-Fluorobiphenyl (S)	%	64	30-85	01/22/20 11:54	
Terphenyl-d14 (S)	%	118	10-120	01/22/20 11:54	

METHOD BLANK: 2006708 Matrix: Water

Associated Lab Samples: 40202194002, 40202194003

Date: 01/23/2020 03:43 PM

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/L	<0.0055	0.028	01/22/20 12:12	
2-Methylnaphthalene	ug/L	<0.0035	0.023	01/22/20 12:12	
Acenaphthene	ug/L	<0.0040	0.028	01/22/20 12:12	
Acenaphthylene	ug/L	< 0.0047	0.023	01/22/20 12:12	
Anthracene	ug/L	< 0.0098	0.049	01/22/20 12:12	
Benzo(a)anthracene	ug/L	< 0.0071	0.035	01/22/20 12:12	
Benzo(a)pyrene	ug/L	<0.0098	0.049	01/22/20 12:12	
Benzo(b)fluoranthene	ug/L	< 0.0054	0.027	01/22/20 12:12	
Benzo(g,h,i)perylene	ug/L	< 0.0063	0.032	01/22/20 12:12	
Benzo(k)fluoranthene	ug/L	< 0.0071	0.035	01/22/20 12:12	
Chrysene	ug/L	< 0.012	0.061	01/22/20 12:12	
Dibenz(a,h)anthracene	ug/L	< 0.0094	0.047	01/22/20 12:12	
Fluoranthene	ug/L	< 0.010	0.050	01/22/20 12:12	
Fluorene	ug/L	< 0.0074	0.037	01/22/20 12:12	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Date: 01/23/2020 03:43 PM

METHOD BLANK: 2006708 Matrix: Water

Associated Lab Samples: 40202194002, 40202194003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Indeno(1,2,3-cd)pyrene	ug/L	<0.016	0.082	01/22/20 12:12	
Naphthalene	ug/L	< 0.017	0.086	01/22/20 12:12	
Phenanthrene	ug/L	< 0.013	0.064	01/22/20 12:12	
Pyrene	ug/L	< 0.0071	0.036	01/22/20 12:12	
2-Fluorobiphenyl (S)	%	66	30-85	01/22/20 12:12	
Terphenyl-d14 (S)	%	98	10-120	01/22/20 12:12	

LABORATORY CONTROL SAMPLE	& LCSD: 2006682		20	006683						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
1-Methylnaphthalene	ug/L	2	1.1	1.1	55	57	39-88	4	29	
2-Methylnaphthalene	ug/L	2	1.2	1.2	58	60	40-93	4	29	
Acenaphthene	ug/L	2	1.5	1.5	73	75	43-102	2	30	
Acenaphthylene	ug/L	2	1.4	1.5	71	73	42-103	2	31	
Anthracene	ug/L	2	2.0	1.7	98	87	52-105	12	36	
Benzo(a)anthracene	ug/L	2	1.8	1.7	88	83	39-120	5	39	
Benzo(a)pyrene	ug/L	2	1.9	1.9	94	93	57-117	1	39	
Benzo(b)fluoranthene	ug/L	2	1.6	1.6	82	79	54-117	3	41	
Benzo(g,h,i)perylene	ug/L	2	1.2	0.91	60	46	32-82	27	44	
Benzo(k)fluoranthene	ug/L	2	2.0	2.0	102	101	56-123	0	39	
Chrysene	ug/L	2	2.5	2.5	126	124	63-122	2	38 L′	1
Dibenz(a,h)anthracene	ug/L	2	1.0	0.73	52	37	23-76	34	46	
Fluoranthene	ug/L	2	1.9	1.8	95	88	52-112	7	35	
Fluorene	ug/L	2	1.6	1.6	80	82	46-116	2	33	
Indeno(1,2,3-cd)pyrene	ug/L	2	1.8	1.6	89	81	49-110	10	32	
Naphthalene	ug/L	2	1.2	1.2	60	62	37-84	4	29	
Phenanthrene	ug/L	2	1.6	1.5	81	77	50-104	5	36	
Pyrene	ug/L	2	2.1	2.0	103	100	57-123	3	36	
2-Fluorobiphenyl (S)	%				72	74	30-85			
Terphenyl-d14 (S)	%				120	118	10-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

BATCH QUALIFIERS

Batch: 345882

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

Date: 01/23/2020 03:43 PM

- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 6255 SOUTH MILWAUKEE

Pace Project No.: 40202194

Date: 01/23/2020 03:43 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40202194002	MW-4	EPA 3510	345848	EPA 8270 by HVI	345882
40202194003	MW-3	EPA 3510	345848	EPA 8270 by HVI	345882
40202194001	MW-5	EPA 8260	345897		

(Plea	ase Print Clearly)		Ī		一							MIDWES	200 00000				Page 1	of ∫ [∞]
Company Name:	DA)			75	Z.	4	. 4. 49.				MN: 61	12-607-170	۱ 00	WI: 920-4	69-2436	1.		1 9 1 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Branch/Location:	Lake Folest IL		l ,	/_/	Pace		ilytic			1	M		_			40	2046	14 :
and the second of the second o	Chris Carlles		1 /							10	\sim			Qu	ote #:	, C		
Phone:	847-573-8900)]	C	H	NI	OF	F C	US	TO	DY			Mail T	o Contact:			
Project Number:	6 à 55		A=No	one B=I	HCL C=	H2SO4		ation Coc 3 E≖DI	des Water f	Methan	ol G=Na	юн		Mail To	Company:			
	South Millowkee		H=Se	odium Bisu	ifate Solut	ion	I≑Sodiur	m Thiosul	fate J	=Other				Mail To	o Address:			
	uM			RED? S/NO)	Y/N	N	N											
Sampled By (Print):	Koniad Grøchock	1		RVATION DE)*	Pick Letter	В	A							Invoice	To Contact:			
Sampled By (Sign):	4.1 Color		,											Invoice 1	To Company:			
PO#:		egulatory 'rogram:			pessen									Invoice	To Address:			
Data Package Option (biliable) EPA Level III	On your sample A=	Section of the Control	rix Codes W = Water DW = Drinki GW = Groun	ing Water	Analyses Requested	١,,							-	Invoice	To Phone:			
EPA Level IV	NOT needed on S	Oil	SW = Surfac	ce Water	alys	900	PNA						ŀ		JENT	LARC	OMMENTS	Profile #
PACE LAB# (your sample si =	210,710,000,000,000,000,000	WP × Wipe ECTION	MATRIX	₹	18	15								JEN I IMENTS		Use Only)	Fione#
	MW-5	1/17/2	IQ35	60		X										•		l
	MW-4		1920			+	X											
	MW-3		1345				文											
499	100 3		בוניו	Dec														
																-		
													1					
											7							
(Rush TAT subj	Time Requested - Prelims ect to approval/surcharge)	L.		uy	an			te/Time:		:46	Received I		Noe	ndd	Date/Jime:	1546	PACE Pro)ject No. 2194
	leeded: tesults by (complete what you want	I): Kall	ujshed By:	1/0	Inc	W.	<i>Y</i> 15	te/Time: /20	ארו	00	0	$i C \propto$	VI	st155	1/17/20		Receipt Temp =	aal °C
Email #1:		MANAGEMENT STATES STATES	uished By:	100	1,24,10	ر		te/Time:	ව රි	14/	Received	"- (1)	W.	: Dave	Date/Time:	0948	Sample R	10t
Email #2: Telephone:		Reline	quished By:		(SHC		THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	te/Time:	<u>, </u>	·	Received I	3y: /		<u> </u>	Date/Time:		OK / Ad	justed
	HOLD are subject to and release of liability	Relina	quished By:				Dai	te/Time:			Received E	Зу:			Date/Time:		Cooler Cus Present / N Intact / N	ot Present

Sample Preservation Receipt Form

Pace Analytical Services, LL& 1241 Bellevue Street, Suite 3 Green Bay, WI 54302

Client Name: DAI Project # All containers needing preservation have been checked and noted below: \(\pi \text{Yes} \) \(\pi \text{No} \) Initial when Date/ completed Time: Lab Lot# of pH paper: Lab Sid #ID of preservation (if pH adjusted) aOH+Zn Act pH≥9 'OA Vials (>6mm) Glass Plastic Vials Jars General H after adjusted Volume 2SO4 pH <2 aOH pH≥12 pH ≤2 WGFU (mL) **M69**M AG1U AG1H DG9A DG9T 7697 IGFU ZPLC BG3U BP1U **BP2N BP3S** SPST Pace N03 | Z Lab # 001 2.5 / 5 / 10 2. 002 2.5 / 5 / 10 003 2.5 / 5 / 10 0042.5 / 5 / 10 005 2.5 / 5 / 10 006 2.5 / 5 / 10 007 2.5 / 5 / 10 008 2.5 / 5 / 10 009 2.5 / 5 / 10 010 2.5 / 5 / 10 011 2.5 / 5 / 10 012 2.5 / 5 / 10 013 2.5 / 5 / 10 014 2.5 / 5 / 10 015 2.5 / 5 / 10 0162.5 / 5 / 10 017 2.5 / 5 / 10 018 2.5 / 5 / 10 019 2.5 / 5 / 10 020 2.5 / 5 / 10 Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other: Headspace in VOA Vials (>6mm): □Yes tho □N/A *If yes look in headspace column AG1U 1 liter amber glass 1 liter plastic unpres BP1U DG9A 40 mL amber ascorbic **JGFU** 4 oz amber jar unpres AG1H I liter amber glass HCL BP2N 500 mL plastic HNO3 DG9T 40 mL amber Na Thio WGFU 4 oz clear jar unpres AG4S 125 mL amber glass H2SO4 BP2Z 500 mL plastic NaOH, Znact VG9U 40 mL clear vial unpres WPFU 4 oz plastic jar unpres AG4U 120 mL amber glass unpres BP3U 250 mL plastic unpres VG9H 40 mL clear vial HCL AG5U 100 mL amber glass unpres BP3B 250 mL plastic NaOH VG9M 40 mL clear vial MeOH SP5T 120 mL plastic Na Thiosulfate AG2S 500 mL amber glass H2SO4 BP3N 250 mL plastic HNO3 VG9D 40 mL clear vial DI **ZPLC** ziploc bag BG3U 250 mL clear glass unpres BP3S 250 mL plastic H2SO4 GN:

Pace Analytical 1241 Bellevue Street, Green Bay, WI 54302

Document Name: Sample Condition Upon Receipt (SCUR)

Document No.: F-GB-C-031-Rev.07 Document Revised: 25Apr2018

Issuing Authority: Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

Client Name: DAS Courier: TxCS Logistics T Fed Ex T Spee T Client T Pace Other:	dee 「UPS 「Wa		40202194
Tracking #:	A CONTRACTOR	40202194	
Custody Seal on Cooler/Box Present: yes Custody Seal on Samples Present: yes Packing Material: Bubble Wrap Thermometer Used SR - NA Cooler Temperature Uncorr: Pot /Corr:	✓no Seals intact: bble Bags □ None Type of Ice: (Vet	「 yes	on ice, cooling process has begun
Temp Blank Present:	Biological Ti	ssue is Frozen: ☐ yes ☐ no	Person examining contents: Date: \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Chain of Custody Present:	⊠ Yes □No □N/A	1.	
Chain of Custody Filled Out:	□Yes □N/A	2. No mail to , Thud	10.P9# 1/18/2
Chain of Custody Relinquished:	YYes □No □N/A		
Sampler Name & Signature on COC:	¶Yes □No □N/A	4.	
Samples Arrived within Hold Time:	.454	5.	
- VOA Samples frozen upon receipt		Date/Time:	
Short Hold Time Analysis (<72hr):		6.	
Rush Turn Around Time Requested:	_ 333443	7.	
Sufficient Volume:		8.	
For Analysis: ∰Yes □No MS/MS	D: DYes Dyno DN/A	•	
Correct Containers Used:		9.	
-Pace Containers Used:	MaYes □No □N/A		
-Pace IR Containers Used:	□Yes □No ☑ N/A		
Containers Intact:	Mary Carlo	 10.	
Filtered volume received for Dissolved tests	□Yes □No ½ N/A		
Sample Labels match COC:	¶ Yes □No □N/A		
-Includes date/time/ID/Analysis Matrix:	ω l	144	
Trip Blank Present:	□Yes □No ¼ N/A	13.	
rip Blank Custody Seals Present	□Yes □No IQN/A		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:	Date/Ti		hed form for additional comments
	<u></u>		