Environmental Engineers, Geologists and Scientists

Tel 847.573.8900 Fax 847.573.8953 Polo Park Business Center 27834 N. Irma Lee Circle Lake Forest, Illinois 60045-5130

May 22, 2024

Mr. Riley Neumann Wisconsin Department of Natural Resources 1027 West St. Paul Avenue Milwaukee, Wisconsin 53233

Re: Quarterly Groundwater Sampling Report
(April 2024 Results)
BRRTS #: 02-41-576336
FID #: 241828620

Sunrise Shopping Center 2410-2424 10th Avenue & 1009 Marquette Avenue

South Milwaukee, Wisconsin 53172

Mr. Neumann:

Please find submitted the *Quarterly Groundwater Sampling Report* for the Sunrise Shopping Center facility located at the above-referenced address. Quarterly groundwater sampling to monitor any changes in Tetrachloroethene (Perc) concentrations continues at monitoring well MW-5. Sample results continue to document Perc concentration stability. With the closure of BRRTS number 02-41-579429, quarterly groundwater sampling of MW-3 and MW-4 has been discontinued.

As required, this quarterly report and all supporting documentation are submitted electronically to WDNR. If you have any questions or require additional information in regard to this submission, please contact me at (847) 9963-3580. Thank you for your time.

Sincerely,

DAI Environmental, Inc.

Christopher Cailles, P.E.

Christopher Carlles

Project Engineer

Environmental Engineers, Geologists and Scientists

Tel 847.573.8900 Fax 847.573.8953 Polo Park Business Center 27834 N. Irma Lee Circle Lake Forest, Illinois 60045-5130

QUARTERLY GROUNDWATER SAMPLING REPORT (APRIL 2024 RESULTS) SUNRISE SHOPPING CENTER-FORMER DRY CLEANER 2410-2424 10TH AVENUE & 1009 MARQUETTE AVENUE SOUTH MILWAUKEE, WISCONSIN 53172 WDNR BRRTS ACTIVITY #02-41-576336 WDNR FID #241828620

May 22, 2024

DAI Project Number: 6255

Prepared For: Carol Investment Corporation 1410 South Clinton Street Chicago, IL 60607

Prepared By: DAI Environmental, Inc. 27834 North Irma Lee Circle Lake Forest, Illinois 60045

TABLE OF CONTENTS

LIST OF TABLES	i
LIST OF FIGURES	i
LIST OF APPENDICES	i
1.0 INTRODUCTION	1
2.0 QUARTERLY GROUNDWATER SAMPLING PROGRAM	2
2.1 Quarterly Sampling Protocol	2
2.2 Groundwater Sampling Procedures and Chemical Analysis	
3.0 QUARTERLY GROUNDWATER SAMPLING RESULTS	
3.1 Static Groundwater Elevations	4
3.2 Groundwater Analytical Results	4
4.0 SUMP WATER SAMPLING RESULTS	6
5.0 SUMMARY AND SCHEDULE	8
LIST OF TABLES (APPENDIX A)	
Groundwater Analytical Table for VOCs	
Ace Hardware Sump Water Analytical Table for Perc	
Water Level Elevations	Table A.6
LIST OF FIGURES (APPENDIX B)	
Detailed Site Map with Aerial View of Site and Surrounding Property	Figure B.1.b.1
Groundwater Isoconcentration (Perc)	
Groundwater Isoconcentration (TCE)	
Groundwater Elevation Map (April 25, 2024)	Figure B.3.c.28
Monitoring Wells	Figure B.3.d
LIST OF APPENDICES	
TABLES	APPENDIX A
FIGURES	
LABORATORY ANALYTICAL REPORT	APPENDIX C.1.E

1.0 INTRODUCTION

Two (2) BRRTS numbers have been assigned by the Wisconsin Department of Natural Resources (WDNR) to the Sunrise Shopping Center facility, addressed as 2410-2424 10th Avenue and 1009 Marquette Avenue in South Milwaukee, Wisconsin (Site). Figure B.1.b.1 in Attachment B provides an aerial view of the Site and surrounding property. Volatile Organic Compound (VOC) contamination at the Site which is associated with the former dry cleaner operations addressed as 2410 10th Avenue was assigned BRRTS number 02-41-576336. Petroleum-associated contamination, including Benzene and Polynuclear Aromatic Hydrocarbons (PAH), was assigned BRRTS number 02-41-579429. As part of the Remedial Actions for both BRRTS numbers assigned to the Site, quarterly groundwater sampling has been conducted since January 2018. A Case Closure Letter dated December 20, 2023, was received from WDNR for BRRTS number 02-41-579429. Therefore, quarterly groundwater sampling will only continue for BRRTS number 02-41-576336 until a Case Closure Letter is received from WDNR. A brief discussion of the quarterly sampling protocol and results are provided below.

2.0 QUARTERLY GROUNDWATER SAMPLING PROGRAM

Quarterly groundwater sampling was first performed on January 5, 2018. The first quarterly sampling event included a complete round of sampling from each of six (6) monitoring wells (MW-1 to MW-5 and MW-201) installed at the Site. Figure B.3.d provides the locations of the monitoring wells. As proposed in the December 28, 2017, *Site Investigation Work Plan*, the groundwater samples from all monitoring wells were submitted for analysis of PAHs, and a sample from MW-5 was also collected for VOC analysis. Results of the January 2018 groundwater sampling were provided to the Wisconsin Department of Natural Resources (WDNR) in the *Site Investigation Report Amendment Addendum* dated February 28, 2018. Results of subsequent 2018 quarterly sampling events were provided in *Quarterly Groundwater Sampling Reports*.

2.1 Quarterly Sampling Protocol

Based upon the results of the January 2018 sampling event, quarterly groundwater sampling was conducted at monitoring wells MW-3 to MW-5 through October 2023. Since no contamination was observed in monitoring wells MW-1, MW-2, or MW-201, no groundwater samples are collected from these wells as part of the quarterly sampling protocol. With the closure of BRRTS number 02-41-579429, quarterly groundwater sampling will only continue for MW-5. Four (4) additional groundwater monitoring wells (MW-600 to MW-603) installed in January 2022 (see Figure B.3.d) are not part of the quarterly groundwater sampling, but are used for static water elevation measurements.

The purpose of the continued quarterly groundwater sampling at MW-5 is to monitor any changes in groundwater contaminant concentrations for Tetrachloroethene (Perc). The sampling has documented concentrations before, during, and following the Remedial Actions conducted using chemical treatment. The quarterly groundwater sampling protocol beginning in January 2024 includes:

- Static water level measurement collection from all accessible monitoring wells using an electronic water level indicator capable of detecting water depth with an accuracy of ± 0.01 ft; and
- Groundwater sample collection from monitoring well MW-5 for laboratory analysis of VOCs.

2.2 Groundwater Sampling Procedures and Chemical Analysis

Consistent with sampling protocol followed during Site Investigation activities, MW-5 was purged prior to sample collection, to the extent practicable, to remove turbidity from the groundwater and allow the collection of a sediment-free sample that was representative of the surrounding groundwater conditions. Following purging, the groundwater sample was collected using a disposable PVC bailer and distributed directly into the appropriate sample containers (40-mL vials preserved with hydrochloric acid) for subsequent laboratory of VOCs via USEPA Method SW8260. New disposable nitrile gloves were used to collect each sample to limit cross contamination. The samples were stored on ice immediately after collection and were maintained at a temperature of 4°C or lower via a cooler with ice. Samples were ultimately transferred to Pace Analytical Services, LLC (Pace Analytical) of Green Bay, Wisconsin, an independent analytical laboratory following the standard chain-of-custody procedures.

3.0 QUARTERLY GROUNDWATER SAMPLING RESULTS

3.1 Static Groundwater Elevations

To evaluate potential seasonal fluctuation in static water elevation and/or groundwater flow direction, static groundwater elevations have been collected quarterly since the second quarter 2018. Static water level elevations were referenced to the surveyed top of casing elevations. Quarterly static groundwater elevations indicated relatively high variability in elevation between quarters, with monitoring wells MW-1 and MW-3 most influenced by large areas of backfill. Prior to installation of the 600-series monitoring wells, the groundwater flow direction was consistently from the northwest along the southern half of the Site and north-northeasterly along the northern half of the Site. However, with the addition of the 600-series monitoring wells and the exclusion of MW-1 and MW-3, which are influenced by large areas of backfill, a more east-northeasterly groundwater flow direction has been observed.

Although the groundwater flow direction below the Site has been well established, WDNR requested that the groundwater elevation and flow direction be re-evaluated with the installation and beginning of operation of two (2) additional sump pits in the basement of the Ace Hardware building. Therefore, a potentiometric surface map was generated for the first quarter 2024. Based upon review of January 2024 elevations, the addition of the sumps in the Ace Hardware basement has not impacted the overall groundwater elevations or flow direction (east-northeasterly groundwater). A full round of statics was again collected during the second quarter 2024, and the data are consistent with January 2024 (and previously collected measurements). Table A.6 in Attachment A provides a historical summary of groundwater elevation information, and the groundwater elevation map generated for April 25, 2024, is included as Figure B.3.c.28 (see Attachment B).

3.2 Groundwater Analytical Results

Groundwater samples for the second quarter of 2024 (i.e., April-June 2024) were collected on April 25, 2024, following the protocol described in Section 2.2. The groundwater sample collected from MW-5 was analyzed for VOCs. A historical summary of all groundwater sampling data since the beginning of Site Investigations is provided Table A.1.A of Attachment A. Results are

compared to the Preventative Action Limits PAL (PALs) and Enforcement Standards listed in Table 1 of NR 140. A copy of the laboratory analytical report for the second quarter 2024 sampling is provided in this report as Attachment C.1.E.

Table A.1.A summarizes the quarterly groundwater sampling results from MW-5 for Perc and Trichloroethene (TCE), which are the only VOCs of concern observed in the groundwater. (Previous quarterly reports include a full summary of VOC analyses). Results of groundwater sampling at MW-5, installed to the rear of the 2410 tenant space (former Sunbrite Cleaners location), have indicated Perc at concentrations exceeding the Enforcement Standard of 0.005-mg/L since February 2016. These Perc concentrations increased through October 2018, followed by a decline in concentration, and then a period of general stable concentration since September 2019. The April 2024 concentration was 0.0099-mg/L, the lowest reading since May 2020, but still consistent with the past results, indicating stable Perc concentrations. Figure B.3.b.1a provides a historical summary of Perc groundwater concentrations and the estimated extent of Perc groundwater contamination.

The monthly samples collected from the Ace Hardware sumps, which continue to function for groundwater recovery, also indicates stable Perc concentrations. (The influent water in the sumps is collected prior to treatment and final discharge to the stormwater sewer system). Table A.5 summarizes the monthly sump sample results, and Figure B.3.b.1a provides a summary of monthly Perc concentrations since July 2021.

Since the groundwater sampling was initiated, the TCE concentration in MW-5 was observed at a level above the PAL (0.0005-mg/L) on three (3) occasions: January 2019 (0.0027-mg/L), April 2019 (0.00071-mg/L), and January 2022 (0.00067). All other TCE concentrations were below the PAL. Figure B.3.b.1b provides a historical summary of TCE groundwater concentrations.

4.0 SUMP WATER SAMPLING RESULTS

To address the Perc contamination identified in the sump water from the basement of the Ace Hardware building, an activated carbon treatment system was proposed to the WDNR. The proposed treatment system discharge was issued coverage under WPDES Permit Number WI-0046566-07-0 in a letter dated April 10, 2019, and the system began operation on May 14, 2019. Two (2) additional sumps and treatment systems were installed in the Ace Hardware building in June 2023 and were issued coverage under WPDES Permit Number WI-0046566-07-0 on July 21, 2023.

System discharge and sump water sampling of the original one sump system began on June 25, 2019. The sump water samples are collected for VOC analysis to both monitor the groundwater contaminant concentrations around the Ace Hardware building, and to verify the system is operating correctly. Weekly samples of the two (2) additionally installed systems began in September 2023, followed by monthly sampling as required by the WPDES permit. Monthly sampling of the sump water influent and system effluent discharges will continue. Discharge sample results are submitted electronically to WDNR, as required by the WPDES permit.

While not strictly part of the quarterly sampling protocol, results of the sump water sampling are included with this submission as an indication of the groundwater contaminant concentrations around the Ace Hardware building. The results of the sump water samples are summarized in Table A.5. (Because all VOCs are reported below the LOD with the exception of Perc, Table A.5 only summarizes the Perc results.) The sump water sample results since July 2021 to the present are provided in Figure B.3.b.1a. (Previous reports included earlier sump data.)

As noted in Table A.5, the Perc concentrations in the influent sump water are often above the Enforcement Standard, and always above the PAL. However, all corresponding discharge samples indicate that the treatment system has been fully effective in removing Perc from the water prior to discharge into the stormwater sewer system. Only one (1) discharge sample has ever been reported with a detectable concentration of Perc, and that concentration was below the permit limit.

Replacement of the activated carbon in concentration observed in May 2023.	the original syste	m was completed	following the d	etectable

5.0 SUMMARY AND SCHEDULE

- The Perc concentrations observed in monitoring well MW-5 have exceeded the Enforcement Standard since February 2016. Though the Perc concentrations have remained above the Enforcement Standard, the chemical injection activities performed in July 2018 and August 2019 in the vicinity of MW-5 have helped reduce the mass of Perc contamination. The Perc groundwater concentrations in MW-5 have remained relatively stable since that time. Quarterly monitoring of Perc concentrations in MW-5 will be continued until closure of the Site is approved.
- Sampling of the Ace Hardware sump water indicates influent Perc concentrations above the Enforcement Standard, although all effluent discharge samples from the treatment system are below detectable concentrations. System influent and effluent sampling will continue on a monthly basis, as required.

APPENDIX A TABLES

Table A.1.A. Groundwater Analytical Table for Volatile Organic Compounds (mg/L) (Quarterly Groundwater Sampling Wells)

Sample Location	Sample Date	Tetrachloroethene	Trichloroethene
	04/25/24	<u>0.0099</u>	< 0.00032
	01/22/24	0.012	< 0.00032
	10/30/23	0.022	0.0004 (J)
	07/10/23	0.022	0.0005 (J)
	04/21/23	0.01	< 0.00032
	01/06/23	0.013	< 0.00032
	10/04/22	0.019	< 0.00032
	08/05/22	$\overline{0.021}$	0.00069 (J)
	04/11/22	0.011	< 0.00032
	01/24/22	$\overline{0.021}$	0.00067
	11/11/21	0.024	0.00034 (J)
	08/31/21	0.021	< 0.00032
	05/09/21	0.012	< 0.00032
	01/18/21	<u>0.01</u>	< 0.00026
	10/12/20	<u>0.014</u>	0.00047
MW-5	07/14/20	<u>0.01</u>	< 0.00026
	05/05/20	0.0088	< 0.00026
	01/17/20	<u>0.0084</u>	0.00038 (J)
	10/24/19	0.012	0.00039 (J)
	09/05/19	<u>0.0153</u>	0.00038 (J)
	07/07/19	<u>0.0106</u>	0.00048 (J)
	04/29/19	<u>0.0114</u>	0.00071 (J)
	01/25/19	<u>0.0065</u>	0.0027
	10/11/18	<u>0.021</u>	0.00027 (J)
	07/30/18	<u>0.0086</u>	< 0.00026
	04/07/18	<u>0.0203</u>	< 0.00033
	01/05/18	<u>0.0181</u>	< 0.00033
	05/30/17	<u>0.0124</u>	< 0.00033
	02/23/16	0.0083	< 0.00033
	01/27/15	0.0026	< 0.00033
	11/12/14 (TW-2)		< 0.00033
PA	L^1	0.0005	0.0005
Enforcemen	nt Standard ²	0.005	0.005

¹ – Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

<u>Underlined</u> – Concentration exceeds the PAL and the ES

(J) – Concentration reported by the laboratory above the Limit of Detection, but below the Limit of Quantification VOCs via USEPA Method SW8260

² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1 **Bold** – Concentration exceeds the PAL

 $\begin{tabular}{ll} Table A.5.A. Ace Hardware Sump Water Analytical Table for Tetrachlorethene (mg/L) \\ (Sump 1-Northwest Corner of Basement) \end{tabular}$

Sample Location	Sample Date	Tetrachloroethene
	04/04/24	0.0035
	03/01/24	<u>0.0071</u>
	02/01/24	<u>0.0071</u>
	01/05/24	<u>0.0066</u>
	12/11/23	<u>0.0074</u>
	11/07/23	<u>0.012</u>
	10/05/23	<u>0.011</u>
	09/14/23	<u>0.013</u>
	09/05/23	<u>0.013</u>
	08/08/23	<u>0.015</u>
	07/10/23	<u>0.017</u>
	06/12/23	<u>0.012</u>
	05/09/23	<u>0.0075</u>
	04/07/23	<u>0.0066</u>
	03/07/23	<u>0.0069</u>
	02/06/23	<u>0.0072</u>
	01/13/23	<u>0.0081</u>
	12/05/22	<u>0.0076</u>
	11/21/22	<u>0.0077</u>
	10/03/22	<u>0.011</u>
Sump	09/13/22	<u>0.0091</u>
	08/01/22	<u>0.01</u>
	07/14/22	0.01
	06/02/22	0.012
	05/06/22	<u>0.006</u>
	04/01/22	0.0041
	03/03/22	0.01
	02/01/22	0.01
	01/18/22	0.013
	12/06/21	0.013
	11/05/21	0.014
	10/04/21	<u>0.016</u>
	09/10/21	0.015
	08/06/21 07/02/21	<u>0.016</u>
	07/02/21 06/14/21	$\frac{0.014}{0.013}$
	06/14/21 05/03/21	<u>0.013</u> <u>0.016</u>
	05/03/21 04/06/21	$\frac{0.016}{0.012}$
	03/08/21	$\frac{0.012}{0.01}$
	02/02/21	$\frac{0.01}{0.014}$
	01/12/21	$\frac{0.014}{0.005}$
PA	0.0005	
Enforcement	0.005	
Emorcemen	ii Stanuai u	0.003

¹ - Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Bold – Concentration exceeds the PAL

<u>Underlined</u> – Concentration exceeds the PAL and the ES

NOTE – All other VOCs reported below the Limit of Detection

VOCs via USEPA Method SW8260

² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Table A.5.A (Continued). Ace Hardware Sump Water Analytical Table for Tetrachlorethene (mg/L) (Sump 1 – Northwest Corner of Basement)

Sample Location Sample Date Tetrachloroethene 12/09/20 0.0048 11/12/20 0.0068 0.009 10/12/20 0.0065 09/03/20 0.01 08/17/20 0.0078 07/14/20 06/03/20 0.0068 0.0054 05/05/20 0.005 04/06/20 0.006303/10/20 0.006 02/03/20 0.00650.0068 01/07/2012/03/19 11/04/19 0.008 Sump 10/02/19 0.0069 0.0076 09/05/19 0.005 08/02/19 07/19/19 0.0062 06/25/19 (first monthly) 0.0054 06/06/19 (week 4) 0.0069 05/29/19 (week 3) 0.0043 05/23/19 (week 2) 0.0042 05/15/19 (week 1) 0.0093 02/04/19 0.0064 01/05/18 0.008206/04/17 0.006 PAL^1 0.0005

0.005

Enforcement Standard²

Bold – Concentration exceeds the PAL

<u>Underlined</u> – Concentration exceeds the PAL and the ES

NOTE – All other VOCs reported below the Limit of Detection

VOCs via USEPA Method SW8260

¹ - Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

² - Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Table A.5.B. Ace Hardware Sump Water Analytical Table for Tetrachlorethene (mg/L) (Sump 2 – Southeast Interior Wall of Basement)

Sample Location	Sample Date	Tetrachloroethene
	04/04/24	0.0018
	03/01/24	< 0.00041
	02/01/24	0.0041
	01/05/24	0.0022
	12/11/23	< 0.00041
Sump	11/07/23	<u>0.0068</u>
_	10/05/23	0.0052
	09/27/23	0.0049
	09/19/23	0.0043
	09/14/23	0.0038
	09/05/23	< 0.00041
\overrightarrow{PAL}^1		0.0005
Enforcement Standard ²		0.005

¹ – Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Bold – Concentration exceeds the PAL

<u>Underlined</u> – Concentration exceeds the PAL and the ES

NOTE - All other VOCs reported below the Limit of Detection

VOCs via USEPA Method SW8260

Table A.5.C. Ace Hardware Sump Water Analytical Table for Tetrachlorethene (mg/L) (Sump 3 – Southwest Interior Wall of Basement)

Sample Location	Sample Date	Tetrachloroethene
	04/04/24	< 0.00041
	03/01/24	< 0.00041
	02/01/24	< 0.00041
	01/05/24	< 0.00041
	12/11/23	< 0.00041
Sump	11/07/23	< 0.00041
	10/05/23	< 0.00041
	09/27/23	< 0.00041
	09/19/23	< 0.00041
	09/14/23	< 0.00041
	09/05/23	0.0026
PA	0.0005	
Enforcement Standard ²		0.005

¹ – Preventive Action Limits (PALs) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Bold – Concentration exceeds the PAL

Underlined – Concentration exceeds the PAL and the ES

NOTE – All other VOCs reported below the Limit of Detection

VOCs via USEPA Method SW8260

² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

² – Enforcement Standards (ES) taken from Wisconsin Administrative Code, Chapter NR 140, Table 1

Monitoring Well	Top of Casing Elevation*	Date	Measured Depth to Groundwater (ft)	Relative Groundwater Elevation (ft)
		04/25/29	2.12	95.96
		01/22/24	1.55	96.53
		10/30/23	2.82	95.26
		05/09/23	1.73	96.35
	98.08	01/06/23	2.28	95.80
	(2022 survey)	10/03/22	3.05	95.03
		08/02/22	2.69	95.39
		04/11/22	1.18	96.90
		02/03/22	5.52	92.56
		01/24/22	4.22	93.83
		11/11/21	3.97	95.16
		08/31/21	3.75	95.38
		05/03/21	2.97	96.16
		01/18/21	3.34	95.79
MW-1		10/12/20	Obstructed	
IVI VV - I		07/14/20	1.79	97.34
	99.13 (2015 survey)	05/05/20	1.80	97.33
		01/17/20	2.74	96.39
		10/24/19	3.07	96.06
		07/07/19	3.46	95.67
		04/29/19	2.35	96.78
		01/25/19	4.65	94.48
		10/11/18	1.66	97.47
		07/30/18	3.32	95.81
		04/08/18	2.24	96.89
		02/27/18	1.58	97.55
		05/30/17	2.17	96.96
		04/24/15	1.46	97.67
		03/30/15	1.98	97.15
		01/27/15	3.93	95.20
		04/25/29	Inaccessible	
		01/22/24	6.55	92.77
		10/30/23	7.21	92.11
		05/09/23	7.15	92.17
) (TV) (2	99.32	01/06/23	7.68	91.64
MW-2	(2022 survey)	10/03/22	7.46	91.86
		08/02/22	6.95	92.37
		04/11/22	6.57	92.75
		02/03/22	9.32	90.00
		01/24/22	8.20	91.12

Monitoring Well	Top of Casing Elevation*	Date	Measured Depth to Groundwater (ft)	Relative Groundwater Elevation (ft)
		11/11/21	7.99	92.76
		08/31/21	7.70	93.05
		05/03/21	7.55	93.20
		01/18/21	8.12	92.63
		10/12/20	7.82	92.93
		07/14/20	6.36	94.39
		05/05/20	6.24	94.51
		01/17/20	6.83	93.92
		10/24/19	Obstructed	
	100.75	07/07/19	7.51	93.24
MW-2	(2015 survey)	04/29/19	8.47	92.28
	(2013 survey)	01/25/19	8.42	92.33
		10/11/18	6.45	94.30
		07/30/18	7.45	93.30
		04/08/18	8.36	
				92.39
		02/27/18	8.54	92.21
		05/30/17	7.95	92.80
		04/24/15	7.21	93.54
		03/30/15	8.01	92.74
		01/27/15	8.60	92.15
		04/25/29	2.89	96.08
		01/22/24	2.25	96.72
	98.97	10/30/23	3.45	95.52
		05/09/23	2.60	96.37
		01/06/23	3.30	95.67
	(2022 survey)	10/03/22	5.71	93.26
		08/02/22	<1	≈98.97
		04/11/22	1.85	91.12
		02/03/22	5.20	93.77
		01/24/22	4.90	94.07
		11/11/21	4.12	95.93
		08/31/21	4.37	95.68
		05/03/21	3.45	96.60
		01/18/21	4.50	95.55
MW 2		10/12/20	4.25	95.80
MW-3		07/14/20	3.37	96.68
		05/05/20	2.27	97.78
		01/17/20	3.20	96.85
		10/24/19	3.61	96.44
	100.05	07/07/19	3.73	96.32
	(2015 survey)	04/29/19	2.61	97.44
	(2010 50110)	01/25/19	4.44	95.61
		10/11/18	2.35	97.70
		07/30/18	3.62	96.43
		04/08/18	2.53	97.52
		02/27/18	2.43	97.62
		05/30/17	2.45	97.60
		03/30/17	2.43	97.60 97.78
		03/30/15	2.77	97.78
		03/30/13	4.46	97.32 95.59

Monitoring Well	Top of Casing Elevation*	Date	Measured Depth to Groundwater (ft)	Relative Groundwater Elevation (ft)
		04/25/29	5.22	94.53
		01/22/24	4.89	94.86
		10/30/23	5.20	94.55
		05/09/23	5.23	94.52
	99.75	01/06/23	4.50	95.25
	(2022 survey)	10/03/22	5.59	94.16
		08/02/22	5.75	94.00
		04/11/22	5.20	94.55
		02/03/22	8.86	90.89
		01/24/22	7.75	92.00
		11/11/21	6.78	93.79
		08/31/21	6.51	94.06
		05/03/21	6.19	94.38
		01/18/21	6.51	94.06
) (TY) 4		10/12/20	6.65	93.92
MW-4		07/14/20	5.34	95.23
	100.57 (2015 survey)	05/05/20	5.07	95.50
		01/17/20	6.21	94.36
		10/24/19	6.14	94.43
		07/07/19	6.98	93.59
		04/29/19	7.30	93.27
		01/25/19	6.88	93.69
		10/11/18	5.43	95.14
		07/30/18	6.91	93.66
		04/08/18	7.26	93.31
		02/27/18	7.23	93.34
		05/30/17	6.38	94.19
		04/24/15	5.94	94.63
		03/30/15	7.04	93.53
		01/27/15	6.53	94.04
		04/25/29	5.79	93.57
		01/22/24	5.85	93.51
		10/30/23	5.88	93.48
		05/09/23	5.80	93.56
2.077. 7	99.36	01/06/23	5.99	93.37
MW-5	(2022 survey)	10/03/22	6.21	93.15
		08/02/22	6.24	93.12
		04/11/22	5.96	93.40
		02/03/22	7.42	91.94
		01/24/22	7.13	92.23

Monitoring Well	Top of Casing Elevation*	Date	Measured Depth to Groundwater (ft)	Relative Groundwater Elevation (ft)
		11/11/21	6.69	93.55
		08/31/21	6.48	93.76
		05/03/21	6.25	93.99
		01/18/21	5.90	94.34
		10/12/20	6.30	93.94
		07/14/20	5.84	94.39
		05/05/20	5.83	94.41
		01/17/20	5.87	94.37
		10/24/19	5.98	94.26
MW 5	100.24	07/07/19	6.25	93.99
MW-5	(2015 survey)	04/29/19	6.33	93.91
	•	01/25/19	6.35	93.89
		10/11/18	5.85	94.39
		07/30/18	6.19	94.05
		04/08/18	6.27	93.97
		02/27/18	6.15	94.09
		05/30/17	5.96	94.28
		04/24/15	5.92	94.32
		03/30/15	6.26	93.98
		01/27/15	6.50	93.74
	99.43	04/25/29	7.11	92.32
		01/22/24	7.02	92.41
		10/30/23	8.20	91.23
		05/09/23	7.36	92.07
		01/06/23	8.00	91.43
	(2022 survey)	10/03/22	7.50	91.93
		08/02/22	7.45	91.98
		04/11/22	6.48	92.96
		02/03/22	8.67	90.76
		01/24/22	8.48	90.95
		11/11/21	8.12	91.98
		08/31/21	7.78	92.32
		05/03/21	7.56	92.54
		01/18/21	8.24	91.86
MW-201		10/12/20	7.95	92.15
141 44 -201		07/14/20	7.11	92.29
		05/05/20	6.44	93.66
		01/17/20	7.00	93.10
		10/24/19	6.57	93.53
	100.10	07/07/19	6.72	93.38
	(2015 survey)	04/29/19	6.82	93.28
		01/25/19	6.88	93.22
		10/11/18	6.22	93.88
		07/30/18	6.69	93.41
		04/08/18	6.79	93.34
		02/27/18	6.46	93.64
		05/30/17	6.26	93.84
		04/24/15	5.91	94.19
		03/30/15	6.28	93.82
		01/27/15	Not Installed	Not Installed

Table A.6. Water Level Elevations

Monitoring Well	Top of Casing Elevation*	Date	Measured Depth to Groundwater (ft)	Relative Groundwater Elevation (ft)
		04/25/29	Inaccessible	
		01/22/24	7.43	90.29
		10/30/23	7.68	90.04
		05/09/23	Inaccessible	
MW 600	97.72	01/06/23	8.02	89.70
MW-600	(2022 survey)	10/03/22	7.58	90.14
	•	08/02/22	8.76	88.96
		04/11/22	Inaccessible	
		02/03/22	9.60	88.12
		01/24/22	8.80	88.92
		04/25/29	8.98	89.13
		01/22/24	Inaccessible	
		10/30/23	9.11	89.00
		05/09/23	9.02	89.09
MW 601	98.11	01/06/23	8.80	89.31
MW-601	(2022 survey)	10/03/22	8.81	89.30
	(08/02/22	9.09	89.02
		04/11/22	9.27	88.84
		02/03/22	10.41	87.70
		01/24/22	10.12	87.99
		04/25/29	7.53	91.65
		01/22/24	7.78	91.40
		10/30/23	9.03	90.15
		05/09/23	8.32	90.86
MW-602	99.18	01/06/23	9.09	90.09
IVI W -002	(2022 survey)	10/03/22	9.12	90.06
		08/02/22	9.22	89.96
		04/11/22	8.36	90.82
		02/03/22	10.30	88.88
		01/24/22	10.21	88.97
		04/25/29	4.84	94.68
		01/22/24	4.88	94.64
		10/30/23	5.57	93.95
MW-603		05/09/23	5.77	93.75
	99.52	01/06/23	5.98	93.54
	(2022 survey)	10/03/22	5.51	94.01
		08/02/22	5.52	94.00
		04/11/22	5.14	94.38
		02/03/22	6.54	92.98
		01/24/22	6.42	93.10

^{*} – Relative Elevation compared to a generic 100-ft on-site datum. Static water level measurements collected prior to 2022 compared to survey data from on January 27 and March 30, 2015. Static water level measurements collected beginning in January 2022 compared to a complete resurvey performed on February 1, 2022.

APPENDIX B FIGURES

SUNRISE SHOPPING CENTER-FORMER DRY CLEANER
2410-2424 10TH AVENUE
1009 MARQUETTE AVENUE
SOUTH MILWAUKEE, WISCONSIN

FIGURE B.1.b.1
DETAILED SITE MAP WITH AERIAL VIEW
OF SITE AND SURROUNDING PROPERTY
(2019 AERIAL TAKEN FROM GOOGLE EARTH)

APPENDIX C.1.E LABORATORY ANALYTICAL REPORT (SECOND QUARTER 2024)

May 02, 2024

Chris Cailles
DAI Environmental
Polo Park Business Center
27834 Irma Lee Circle
Lake Forest, IL 60045

RE: Project: 6255 S. MILWAUKEE Pace Project No.: 40277538

Dear Chris Cailles:

Enclosed are the analytical results for sample(s) received by the laboratory on April 30, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Steven Mleczko steve.mleczko@pacelabs.com (920)469-2436

Project Manager

DVM

Enclosures

cc: Jenny Rovzar, DAI

CERTIFICATIONS

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

SAMPLE SUMMARY

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40277538001	MW-5	Water	04/25/24 14:45	04/30/24 09:00

1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

SAMPLE ANALYTE COUNT

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40277538001	MW-5	EPA 8260	CXJ	64

PASI-G = Pace Analytical Services - Green Bay

SUMMARY OF DETECTION

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40277538001	MW-5					

ANALYTICAL RESULTS

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Date: 05/02/2024 03:12 PM

Sample: MW-5 Lab ID: 40277538001 Collected: 04/25/24 14:45 Received: 04/30/24 09:00 Matrix: Water

Campie. IIIV C	Lab ib.	40211000001	Concoto	u. 0-1/20/2-1	14.40	reconved. 0-	7,0072	atrix. Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Ba	ıy					
Benzene	<0.00030	mg/L	0.0010	0.00030	1		05/01/24 15:57	71-43-2	
Bromobenzene	< 0.00036	mg/L	0.0010	0.00036	1		05/01/24 15:57	108-86-1	
Bromochloromethane	< 0.00036	mg/L	0.0010	0.00036	1		05/01/24 15:57	74-97-5	
Bromodichloromethane	<0.00021	mg/L	0.0010	0.00021	1		05/01/24 15:57	75-27-4	
Bromoform	< 0.00043	mg/L	0.0010	0.00043	1		05/01/24 15:57	75-25-2	
Bromomethane	< 0.0012	mg/L	0.0050	0.0012	1		05/01/24 15:57	74-83-9	
n-Butylbenzene	<0.00086	mg/L	0.0010	0.00086	1		05/01/24 15:57	104-51-8	
sec-Butylbenzene	< 0.00042	mg/L	0.0010	0.00042	1		05/01/24 15:57		
tert-Butylbenzene	< 0.00059	mg/L	0.0010	0.00059	1		05/01/24 15:57		
Carbon tetrachloride	< 0.00037	mg/L	0.0010	0.00037	1		05/01/24 15:57		
Chlorobenzene	<0.00086	mg/L	0.0010	0.00086	1		05/01/24 15:57		
Chloroethane	< 0.0014	mg/L	0.0050	0.0014	1		05/01/24 15:57		
Chloroform	<0.00050	mg/L	0.0050	0.00050	1		05/01/24 15:57		
Chloromethane	<0.0016	mg/L	0.0050	0.0016	1		05/01/24 15:57		
2-Chlorotoluene	<0.00089	mg/L	0.0050	0.00089	1		05/01/24 15:57		
4-Chlorotoluene	<0.00089	mg/L	0.0050	0.00089	1		05/01/24 15:57		
1,2-Dibromo-3-chloropropane	<0.00036	mg/L	0.0050	0.00036	1		05/01/24 15:57		
Dibromochloromethane	<0.0026	mg/L	0.0050	0.0036	1		05/01/24 15:57		
1,2-Dibromoethane (EDB)	<0.0020	mg/L	0.0030	0.0020	1		05/01/24 15:57	_	
Dibromomethane	<0.00099	mg/L	0.0010	0.00031	1		05/01/24 15:57		
1,2-Dichlorobenzene	<0.00099	mg/L	0.0030	0.00033	1		05/01/24 15:57		
·	<0.00035	•	0.0010	0.00035	1		05/01/24 15:57		
1,3-Dichlorobenzene	<0.00035	mg/L	0.0010	0.00035	1		05/01/24 15:57		
1,4-Dichlorobenzene		mg/L			1				
Dichlorodifluoromethane	<0.00046	mg/L	0.0050	0.00046			05/01/24 15:57		
1,1-Dichloroethane	<0.00030	mg/L	0.0010	0.00030	1		05/01/24 15:57		
1,2-Dichloroethane	<0.00029	mg/L	0.0010	0.00029	1		05/01/24 15:57		
1,1-Dichloroethene	<0.00058	mg/L	0.0010	0.00058	1		05/01/24 15:57		
cis-1,2-Dichloroethene	<0.00047	mg/L	0.0010	0.00047	1		05/01/24 15:57		
trans-1,2-Dichloroethene	<0.00053	mg/L	0.0010	0.00053	1		05/01/24 15:57		
1,2-Dichloropropane	<0.00045	mg/L	0.0010	0.00045	1		05/01/24 15:57		
1,3-Dichloropropane	<0.00030	mg/L	0.0010	0.00030	1		05/01/24 15:57		
2,2-Dichloropropane	<0.00042	mg/L	0.0010	0.00042	1		05/01/24 15:57		
1,1-Dichloropropene	<0.00041	mg/L	0.0010	0.00041	1		05/01/24 15:57		
cis-1,3-Dichloropropene	<0.00024	mg/L	0.0010	0.00024	1		05/01/24 15:57		
trans-1,3-Dichloropropene	<0.00027	mg/L	0.0010	0.00027	1		05/01/24 15:57		
Diisopropyl ether	<0.0011	mg/L	0.0050	0.0011	1		05/01/24 15:57		
Ethylbenzene	<0.00033	mg/L	0.0010	0.00033	1		05/01/24 15:57		
Hexachloro-1,3-butadiene	<0.0027	mg/L	0.0050	0.0027	1		05/01/24 15:57		
Isopropylbenzene (Cumene)	<0.0010	mg/L	0.0050	0.0010	1		05/01/24 15:57		
p-Isopropyltoluene	<0.0010	mg/L	0.0050	0.0010	1		05/01/24 15:57		
Methylene Chloride	<0.00032	mg/L	0.0050	0.00032	1		05/01/24 15:57		
Methyl-tert-butyl ether	<0.0011	mg/L	0.0050	0.0011	1		05/01/24 15:57		
Naphthalene	<0.0019	mg/L	0.0050	0.0019	1		05/01/24 15:57	91-20-3	
n-Propylbenzene	<0.00035	mg/L	0.0010	0.00035	1		05/01/24 15:57	103-65-1	
Styrene	< 0.00036	mg/L	0.0010	0.00036	1		05/01/24 15:57	100-42-5	

05/01/24 15:57 2037-26-5

(920)469-2436

Toluene-d8 (S)

Date: 05/02/2024 03:12 PM

ANALYTICAL RESULTS

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Sample: MW-5 Lab ID: 40277538001 Collected: 04/25/24 14:45 Received: 04/30/24 09:00 Matrix: Water LOQ DF Results Units LOD Prepared CAS No. **Parameters** Analyzed Qual Analytical Method: EPA 8260 8260 MSV Pace Analytical Services - Green Bay 1,1,1,2-Tetrachloroethane < 0.00036 mg/L 0.0010 0.00036 05/01/24 15:57 630-20-6 1 <0.00025 05/01/24 15:57 79-34-5 1,1,2,2-Tetrachloroethane mg/L 0.0010 0.00025 1 Tetrachloroethene 0.0099 mg/L 0.0010 0.00041 1 05/01/24 15:57 127-18-4 Toluene < 0.00029 mg/L 0.0010 0.00029 1 05/01/24 15:57 108-88-3 1,2,3-Trichlorobenzene < 0.0010 mg/L 0.0050 0.0010 05/01/24 15:57 87-61-6 1 1,2,4-Trichlorobenzene < 0.00095 mg/L 0.0050 0.00095 05/01/24 15:57 120-82-1 1 1,1,1-Trichloroethane < 0.00030 mg/L 0.0010 0.00030 05/01/24 15:57 71-55-6 1,1,2-Trichloroethane < 0.00034 mg/L 0.0010 0.00034 05/01/24 15:57 79-00-5 Trichloroethene < 0.00032 mg/L 0.0010 0.00032 05/01/24 15:57 79-01-6 Trichlorofluoromethane < 0.00042 mg/L 0.0010 0.00042 05/01/24 15:57 75-69-4 1,2,3-Trichloropropane < 0.00056 mg/L 0.0010 0.00056 05/01/24 15:57 96-18-4 1,2,4-Trimethylbenzene < 0.00045 0.0010 0.00045 05/01/24 15:57 95-63-6 mg/L 1,3,5-Trimethylbenzene < 0.00036 0.0010 05/01/24 15:57 108-67-8 mg/L 0.00036 Vinyl chloride <0.00017 mg/L 0.0010 0.00017 1 05/01/24 15:57 75-01-4 <0.00070 m&p-Xylene mg/L 0.0020 0.00070 1 05/01/24 15:57 179601-23-1 <0.00035 mg/L 0.0010 05/01/24 15:57 95-47-6 o-Xylene 0.00035 1 Surrogates 4-Bromofluorobenzene (S) 104 % 70-130 1 05/01/24 15:57 460-00-4 1,2-Dichlorobenzene-d4 (S) 102 % 70-130 1 05/01/24 15:57 2199-69-1 70-130

102

%

(920)469-2436

QUALITY CONTROL DATA

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Date: 05/02/2024 03:12 PM

QC Batch: 473145 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40277538001

METHOD BLANK: 2709943 Matrix: Water

Associated Lab Samples: 40277538001

Associated Lab Gampies. 40277536001		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	mg/L	<0.00036	0.0010	05/01/24 09:25	
1,1,1-Trichloroethane	mg/L	< 0.00030	0.0010	05/01/24 09:25	
1,1,2,2-Tetrachloroethane	mg/L	< 0.00025	0.0010	05/01/24 09:25	
1,1,2-Trichloroethane	mg/L	< 0.00034	0.0010	05/01/24 09:25	
1,1-Dichloroethane	mg/L	< 0.00030	0.0010	05/01/24 09:25	
1,1-Dichloroethene	mg/L	<0.00058	0.0010	05/01/24 09:25	
1,1-Dichloropropene	mg/L	< 0.00041	0.0010	05/01/24 09:25	
1,2,3-Trichlorobenzene	mg/L	< 0.0010	0.0050	05/01/24 09:25	
1,2,3-Trichloropropane	mg/L	< 0.00056	0.0010	05/01/24 09:25	
1,2,4-Trichlorobenzene	mg/L	< 0.00095	0.0050	05/01/24 09:25	
1,2,4-Trimethylbenzene	mg/L	< 0.00045	0.0010	05/01/24 09:25	
1,2-Dibromo-3-chloropropane	mg/L	< 0.00036	0.0050	05/01/24 09:25	
1,2-Dibromoethane (EDB)	mg/L	< 0.00031	0.0010	05/01/24 09:25	
1,2-Dichlorobenzene	mg/L	< 0.00033	0.0010	05/01/24 09:25	
1,2-Dichloroethane	mg/L	< 0.00029	0.0010	05/01/24 09:25	
1,2-Dichloropropane	mg/L	< 0.00045	0.0010	05/01/24 09:25	
1,3,5-Trimethylbenzene	mg/L	< 0.00036	0.0010	05/01/24 09:25	
1,3-Dichlorobenzene	mg/L	< 0.00035	0.0010	05/01/24 09:25	
1,3-Dichloropropane	mg/L	< 0.00030	0.0010	05/01/24 09:25	
1,4-Dichlorobenzene	mg/L	<0.00089	0.0010	05/01/24 09:25	
2,2-Dichloropropane	mg/L	< 0.00042	0.0010	05/01/24 09:25	
2-Chlorotoluene	mg/L	<0.00089	0.0050	05/01/24 09:25	
4-Chlorotoluene	mg/L	<0.00089	0.0050	05/01/24 09:25	
Benzene	mg/L	< 0.00030	0.0010	05/01/24 09:25	
Bromobenzene	mg/L	< 0.00036	0.0010	05/01/24 09:25	
Bromochloromethane	mg/L	< 0.00036	0.0010	05/01/24 09:25	
Bromodichloromethane	mg/L	<0.00021	0.0010	05/01/24 09:25	
Bromoform	mg/L	< 0.00043	0.0010	05/01/24 09:25	
Bromomethane	mg/L	<0.0012	0.0050	05/01/24 09:25	
Carbon tetrachloride	mg/L	< 0.00037	0.0010	05/01/24 09:25	
Chlorobenzene	mg/L	<0.00086	0.0010	05/01/24 09:25	
Chloroethane	mg/L	<0.0014	0.0050	05/01/24 09:25	
Chloroform	mg/L	<0.00050	0.0050	05/01/24 09:25	
Chloromethane	mg/L	<0.0016	0.0050	05/01/24 09:25	
cis-1,2-Dichloroethene	mg/L	<0.00047	0.0010	05/01/24 09:25	
cis-1,3-Dichloropropene	mg/L	<0.00024	0.0010	05/01/24 09:25	
Dibromochloromethane	mg/L	<0.0026	0.0050	05/01/24 09:25	
Dibromomethane	mg/L	<0.00099	0.0050	05/01/24 09:25	
Dichlorodifluoromethane	mg/L	<0.00046	0.0050	05/01/24 09:25	
Diisopropyl ether	mg/L	<0.0011	0.0050	05/01/24 09:25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Date: 05/02/2024 03:12 PM

METHOD BLANK: 2709943 Matrix: Water

Associated Lab Samples: 40277538001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Farameter				Allalyzeu	Qualifiers
Ethylbenzene	mg/L	< 0.00033	0.0010	05/01/24 09:25	
Hexachloro-1,3-butadiene	mg/L	< 0.0027	0.0050	05/01/24 09:25	
Isopropylbenzene (Cumene)	mg/L	<0.0010	0.0050	05/01/24 09:25	
m&p-Xylene	mg/L	< 0.00070	0.0020	05/01/24 09:25	
Methyl-tert-butyl ether	mg/L	< 0.0011	0.0050	05/01/24 09:25	
Methylene Chloride	mg/L	< 0.00032	0.0050	05/01/24 09:25	
n-Butylbenzene	mg/L	< 0.00086	0.0010	05/01/24 09:25	
n-Propylbenzene	mg/L	< 0.00035	0.0010	05/01/24 09:25	
Naphthalene	mg/L	< 0.0019	0.0050	05/01/24 09:25	
o-Xylene	mg/L	< 0.00035	0.0010	05/01/24 09:25	
p-Isopropyltoluene	mg/L	< 0.0010	0.0050	05/01/24 09:25	
sec-Butylbenzene	mg/L	< 0.00042	0.0010	05/01/24 09:25	
Styrene	mg/L	< 0.00036	0.0010	05/01/24 09:25	
tert-Butylbenzene	mg/L	< 0.00059	0.0010	05/01/24 09:25	
Tetrachloroethene	mg/L	< 0.00041	0.0010	05/01/24 09:25	
Toluene	mg/L	< 0.00029	0.0010	05/01/24 09:25	
trans-1,2-Dichloroethene	mg/L	< 0.00053	0.0010	05/01/24 09:25	
trans-1,3-Dichloropropene	mg/L	< 0.00027	0.0010	05/01/24 09:25	
Trichloroethene	mg/L	< 0.00032	0.0010	05/01/24 09:25	
Trichlorofluoromethane	mg/L	< 0.00042	0.0010	05/01/24 09:25	
Vinyl chloride	mg/L	< 0.00017	0.0010	05/01/24 09:25	
1,2-Dichlorobenzene-d4 (S)	%	98	70-130	05/01/24 09:25	
4-Bromofluorobenzene (S)	%	104	70-130	05/01/24 09:25	
Toluene-d8 (S)	%	104	70-130	05/01/24 09:25	

LABORATORY CONTROL SAMPLE:	2709944					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	mg/L	0.05	0.051	102	70-132	
1,1,2,2-Tetrachloroethane	mg/L	0.05	0.056	112	70-130	
1,1,2-Trichloroethane	mg/L	0.05	0.053	105	70-130	
1,1-Dichloroethane	mg/L	0.05	0.050	100	70-130	
1,1-Dichloroethene	mg/L	0.05	0.045	89	73-140	
1,2,4-Trichlorobenzene	mg/L	0.05	0.045	90	70-130	
1,2-Dibromo-3-chloropropane	mg/L	0.05	0.050	101	58-130	
1,2-Dibromoethane (EDB)	mg/L	0.05	0.049	99	70-130	
1,2-Dichlorobenzene	mg/L	0.05	0.050	99	70-130	
1,2-Dichloroethane	mg/L	0.05	0.052	104	70-130	
1,2-Dichloropropane	mg/L	0.05	0.054	108	77-127	
1,3-Dichlorobenzene	mg/L	0.05	0.050	100	70-130	
1,4-Dichlorobenzene	mg/L	0.05	0.050	101	70-130	
Benzene	mg/L	0.05	0.048	97	70-130	
Bromodichloromethane	mg/L	0.05	0.055	110	70-130	
Bromoform	mg/L	0.05	0.046	92	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Date: 05/02/2024 03:12 PM

LABORATORY CONTROL SAMPLE:	2709944						
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Bromomethane	mg/L	0.05	0.038	75	22-141		
Carbon tetrachloride	mg/L	0.05	0.056	112	70-135		
Chlorobenzene	mg/L	0.05	0.050	101	70-130		
hloroethane	mg/L	0.05	0.056	112	59-141		
hloroform	mg/L	0.05	0.051	103	80-124		
nloromethane	mg/L	0.05	0.029	58	29-150		
s-1,2-Dichloroethene	mg/L	0.05	0.045	90	70-130		
s-1,3-Dichloropropene	mg/L	0.05	0.053	106	70-130		
bromochloromethane	mg/L	0.05	0.046	92	70-130		
chlorodifluoromethane	mg/L	0.05	0.010	20	10-147		
nylbenzene	mg/L	0.05	0.053	106	80-125		
opropylbenzene (Cumene)	mg/L	0.05	0.053	106	70-130		
&p-Xylene	mg/L	0.1	0.10	101	70-130		
ethyl-tert-butyl ether	mg/L	0.05	0.054	109	64-131		
ethylene Chloride	mg/L	0.05	0.053	106	70-137		
Xylene	mg/L	0.05	0.050	101	70-130		
yrene	mg/L	0.05	0.053	106	70-130		
trachloroethene	mg/L	0.05	0.051	101	70-130		
oluene	mg/L	0.05	0.050	100	80-120		
ans-1,2-Dichloroethene	mg/L	0.05	0.053	105	70-131		
ans-1,3-Dichloropropene	mg/L	0.05	0.056	111	70-130		
ichloroethene	mg/L	0.05	0.050	100	70-130		
richlorofluoromethane	mg/L	0.05	0.046	91	69-141		
nyl chloride	mg/L	0.05	0.033	66	51-145		
2-Dichlorobenzene-d4 (S)	%			98	70-130		
Bromofluorobenzene (S)	%			106	70-130		
oluene-d8 (S)	%			102	70-130		

MATRIX SPIKE & MATRIX SF	PIKE DUPL	LICATE: 2710	263 MS	MSD	2710264							
		40277339014	Spike	Spike	MS	MSD	MS	MSD	% Rec	Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	mg/L	<0.30 ug/L	0.05	0.05	0.050	0.050	100	99	70-132	0	20	
1,1,2,2-Tetrachloroethane	mg/L	<0.25 ug/L	0.05	0.05	0.053	0.055	106	110	70-131	3	20	
1,1,2-Trichloroethane	mg/L	<0.34 ug/L	0.05	0.05	0.051	0.053	102	107	70-130	5	20	
1,1-Dichloroethane	mg/L	<0.30 ug/L	0.05	0.05	0.050	0.051	101	102	70-131	1	20	
1,1-Dichloroethene	mg/L	<0.58 ug/L	0.05	0.05	0.043	0.044	87	88	69-146	2	20	
1,2,4-Trichlorobenzene	mg/L	<0.95 ug/L	0.05	0.05	0.046	0.046	93	92	70-130	1	20	
1,2-Dibromo-3- chloropropane	mg/L	<0.36 ug/L	0.05	0.05	0.051	0.054	101	109	56-130	7	20	
1,2-Dibromoethane (EDB)	mg/L	<0.31 ug/L	0.05	0.05	0.048	0.050	96	100	70-130	5	20	
1,2-Dichlorobenzene	mg/L	<0.33 ug/L	0.05	0.05	0.050	0.050	100	100	70-130	0	20	
1,2-Dichloroethane	mg/L	<0.29 ug/L	0.05	0.05	0.053	0.054	105	107	70-130	2	20	
1,2-Dichloropropane	mg/L	<0.45 ug/L	0.05	0.05	0.053	0.054	105	109	77-129	3	20	
1,3-Dichlorobenzene	mg/L	<0.35 ug/L	0.05	0.05	0.050	0.051	101	101	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Date: 05/02/2024 03:12 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2710	263		2710264							
			MS	MSD								
		40277339014	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,4-Dichlorobenzene	mg/L	<0.89 ug/L	0.05	0.05	0.050	0.052	101	103	70-130	3	20	
Benzene	mg/L	<0.30 ug/L	0.05	0.05	0.049	0.049	97	97	70-130	0	20	
Bromodichloromethane	mg/L	<0.21 ug/L	0.05	0.05	0.055	0.055	110	110	70-130	0	20	
Bromoform	mg/L	<0.43 ug/L	0.05	0.05	0.045	0.047	90	94	70-130	5	20	
Bromomethane	mg/L	<1.2 ug/L	0.05	0.05	0.043	0.043	87	86	12-159	1	26	
Carbon tetrachloride	mg/L	<0.37 ug/L	0.05	0.05	0.055	0.056	110	112	70-135	2	20	
Chlorobenzene	mg/L	<0.86 ug/L	0.05	0.05	0.050	0.052	101	104	70-130	3	20	
Chloroethane	mg/L	<1.4 ug/L	0.05	0.05	0.054	0.055	107	111	56-143	3	20	
Chloroform	mg/L	<0.50 ug/L	0.05	0.05	0.051	0.052	103	105	80-126	2	20	
Chloromethane	mg/L	<1.6 ug/L	0.05	0.05	0.027	0.027	55	53	22-156	3	20	
cis-1,2-Dichloroethene	mg/L	<0.47 ug/L	0.05	0.05	0.045	0.045	91	91	70-130	0	20	
cis-1,3-Dichloropropene	mg/L	<0.24 ug/L	0.05	0.05	0.053	0.053	107	106	70-130	1	20	
Dibromochloromethane	mg/L	<2.6 ug/L	0.05	0.05	0.047	0.048	94	97	70-130	3	20	
Dichlorodifluoromethane	mg/L	<0.46 ug/L	0.05	0.05	0.010	0.0085	20	17	10-147	16	20	
Ethylbenzene	mg/L	<0.33 ug/L	0.05	0.05	0.052	0.054	104	108	80-126	4	20	
sopropylbenzene (Cumene)	mg/L	<1.0 ug/L	0.05	0.05	0.053	0.055	106	110	70-130	4	20	
m&p-Xylene	mg/L	<0.70 ug/L	0.1	0.1	0.10	0.11	103	106	70-130	3	20	
Methyl-tert-butyl ether	mg/L	<1.1 ug/L	0.05	0.05	0.054	0.053	108	107	64-136	1	20	
Methylene Chloride	mg/L	<0.32 ug/L	0.05	0.05	0.053	0.053	106	107	70-137	0	20	
o-Xylene	mg/L	<0.35 ug/L	0.05	0.05	0.049	0.051	99	103	70-130	4	20	
Styrene	mg/L	<0.36 ug/L	0.05	0.05	0.053	0.054	106	109	70-133	2	20	
Tetrachloroethene	mg/L	<0.41 ug/L	0.05	0.05	0.049	0.050	98	100	70-131	3	20	
Toluene	mg/L	<0.29 ug/L	0.05	0.05	0.049	0.051	99	102	80-121	3	20	
trans-1,2-Dichloroethene	mg/L	<0.53 ug/L	0.05	0.05	0.050	0.052	99	103	70-135	4	20	
trans-1,3-Dichloropropene	mg/L	<0.27 ug/L	0.05	0.05	0.056	0.058	113	116	70-130	3	20	
Trichloroethene	mg/L	<0.32 ug/L	0.05	0.05	0.050	0.050	100	100	70-130	0	20	
Trichlorofluoromethane	mg/L	<0.42 ug/L	0.05	0.05	0.045	0.045	90	90	67-142	1	20	
Vinyl chloride	mg/L	<0.17 ug/L	0.05	0.05	0.033	0.032	66	64	45-147	3	20	
1,2-Dichlorobenzene-d4 (S)	%	_					101	100	70-130			
4-Bromofluorobenzene (S)	%						104	106	70-130			
Toluene-d8 (S)	%						103	102	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALIFIERS

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - The reported result is an estimated value.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Analyte was not detected and is reported as less than the LOD or as defined by the customer.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 05/02/2024 03:12 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 6255 S. MILWAUKEE

Pace Project No.: 40277538

Date: 05/02/2024 03:12 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40277538001	MW-5	EPA 8260	473145		

Date/Time

Date/Time.

Received By:

Present / Not Present

Intact / NoPlatect of

Samples on HOLD are subject to

special pricing and release of liability

Relinquished By

Fax:

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form

Effective Date: 8/16/2022

			me: eedin)A ervatio	on ha	ave be	en ch	necked Lab	l and r				Sam □Ye	Proj	Pres ect ≀ □No	‡	ation ⊟N// b Std i	40	27	75	38		sted).	•					tial wh			Date/ Time:	
				Glass	5					Plast	ic					Via	als				Jä	ars			Gen	eral		(>6mm) *	H ≤2	laOH+Zn Act pH ≥9	≥12	152	ıdjusted	Volume
Pace Lab#	AG1U	BG1U	AG1H	AG4S	AG5U	AG2S	BG3U	BP1U	BP3U	BP3B	BP3N	BP3S	BP2Z	269A	DG9T	VG9U	V G9H	VG9M	VG9D	JGFU	1G9L	WGFU	WPFU	SP5T	ZPLC	GN 1	GN 2	VOA Vials (>6mm) *	H2SO4 pH <2	NaOH+Zn ,	NaOH pH≥12	HNO3 pH ≤2	pH after adjusted	(mL)
001																	3																	2.5 / 5
002	1 2	3 241 616	' n	1 (6 (4)	le i		Not	, . ,	13.	100		14/1		*	1 1	2	in a second	1 11		1	1 46	n ()	G. Line	, r , ok	2 1 E 1	1 × 1 × 1	on 14		in the state of th	le u pre	s Sirji S Sirji Mar	er than	1 11	2.5 / 5
003					<u> </u>		_	ļ																										2.5 / 5
004	1000	1,15	,* 1		1	Opt and	1, 1	V 15.	1 1 1 1 2	1 kg 10 1 ml 11	. ''	11. 11	1 1 1 1	} h. h. }	i e milacie	1377	g mosta	41	n ()	1 1 1	lands partin i tr	11,14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 5	س تاراته فید شخ	1 1 1		2 (1)	81.0) () () (1 6 1 1	è Ч	11	2.5 / 5
005								<u> </u>	ļ	ļ		ļ								ļ		,		ļ										2.5 / 5
006	1	1m 1	1,000	,,	1,					Page	I Jih i		1 - 1	, , ,)	11 13	Here of	30 10 10 30 10 10	Hall bearing	98.5	hir i physique	S. M. L.	in the transfer of the transfe	i, 11	250	4 0 3	NW 1	May b	10,1 10,1 km/s	4.70	1 2 2	a' 1 ()	ar ta al in	7466	2.5 / 5
007			,	<u></u>	<u> </u>		_	ļ		>		ļ				,				ļ					ļ		ļ							2.5 / 5
800	5 c)	rat s	1,	, ,dt	<u> </u>	1, 1,	400	61 1 10	1	1 1		- is	1	1 45	Line day	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	, 17 - 15	Ĉ.	1 1/1 16	is Luciani	A COLOR	ξ,	N . P	i, i	A real	्व र हो	јч . г		1 7 7	\$1.5.13.130P	11 14 14	100		2.5 / 5
009	,				ļ	_	ļ.,						<u> </u>							<u> </u>			<u> </u>	<u> </u>	N 2						ļ		ļ	2.5 / 5
)10			'.'			, ,42	والمسا		1.0	k 115 k	Sir .		11 1	/	15.	1.00	1	1 , .		17.	1 40	٠, ,	er 41 e	!	la "	8 (1 /1	1 1 1 de	111.	he di		100	2.5 / 5
)11					ļ	ļ	ļ	<u> </u>	<u> </u>			<u> </u>	ļ		<u> </u>				.,						ļ		ļ	<u> </u>		ļ			ļ	2.5 / 5
)12		<u> </u>	· ·	,	ļ	<u> </u>	 	11-	1	15	4	,	<u> </u>		, , ,	· 'V			100	e 1		<u></u>	ima H	1.8		7.		<u>. </u>	2	ļ	1,	1	Les	2.5 / 5
)13						m	H-	113	Dhy	 	ļ									<u> </u>							 	<u> </u>	_		-		 	2.5 / 5
114	4. 5.	.'				11		1,4		 	1,	1 21	-			12	1		1 131 1		_		1. 1		, , , , ,	,	<u> </u>	<u> </u>		71	-	, '	- '' ,	2.5 / 5
)15		<u> </u>			├			-	ļ.,	 	<u> </u>	<u> </u>	ļ.,	-			,	-			,	<u> </u>		ļ	<u> </u>	-	-						 	2.5 / 5
)16.)17		-			-		-		-	 		. 0	6., 4	ì	<u> </u>		<u> </u>	11 1 2			,,,	1 , ,			* 11 '	11 ,	k 1 9 s	, '101)	et ac		1	64 5 1	14, 14, 1	2.5 / 5
18		<u> </u>			-	 	 			-	-	 	1 ,	 ,-	<u> </u>	7	,	, ,		1 1				1 11			-	<u> </u>	11 , ,	14				2.5 / 5
)19	>	 		٠.,	-	1.		· 1	· ·	+	 	-	-	1.						 			-				\	-	 	-	-		³¹ 1 ,	2.5 / 5
020			,		 	-		-	 	h 3-			1 1					,	,		-,	-			 , 		 	ightharpoonup	\vdash				<u> </u>	2.5 / 5
	ons to	presei	vation	check	VOA	Colif	form,	TOC	TOX,	тон,	O&G	, WI D	RO, P	henoli	cs, Ot	h <u>er:</u>		*1 ; 1		-	Hea	dspac	e in V	OA VI	als (>6	imm) :	: □Ye	s Zi	V0 □	\/A	*If ye	s look	in hea	dspace colu
G1U								P1U		r plas		•					9C	40 m					Cl					•	unpres				1	
G1U				ss ass H	ICI		1 -	P3U		mL pl		•					9T	40 m							9U				unpres	3				
					H2S) 4	1	P3B P3N		mL pl mL pl							9U 9H	40 m 40 m			unpre	2 S			GFU PFU		clear		ipres Inpres	;				
					unpre			P3S		mL pl							9M				MeO	Н			25T				Na Th		ate		1	
G2S	500	mL a	mber	glass	H2S) 4		P2Z		mL pl							9D			ar vial				ZF	LC		c bag							
G3U	250	mL c	ear g	lass ι	inpres	6																			N 1 N 2								l Pa	ge <u>1</u> of

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR

Effective Date: 8/17/2022

Sample Condition Upon Receipt Form (SCUR)

_		Project #:	
Client Name: DA		 	3
Courier: ☐ CS Logistics ☐ Fed Ex ☐ Speedee ☐ UP	s 🗆 w	/altco	
☐ Client ☐ Pace Other:		altco	
Tracking #:		_	
Custody Seal on Cooler/Box Present: yes ino Sea	als intact:	☐ yes 🖅no	
Custody Seal on Samples Present: yes Sea	als intact:	☐ yes — no	
Packing Material: Bubble Wrap Bubble Bags			
	ce: (Wet)	Blue Dry None	ontonto.
Cooler Temperature Uncorr: 30 /Corr:30	.		
, , , , , , , , , , , , , , , , , , ,	ological T	issue is Frozen: ☐ yes☐ no Date: 300 /Initials	mH_
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry Ice.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Labeled By Initials:	27
Chain of Custody Present:			
Chain of Custody Filled Out: □Yes セスト	√o □N/A	2 mailing, invoice mit 4/30/14	
Chain of Custody Relinquished: ✓ Yes □N			
Sampler Name & Signature on COC:	No □N/A	4	
Samples Arrived within Hold Time:	No	5.	
- DI VOA Samples frozen upon receipt □Yes □N	No.	Date/Time:	
Short Hold Time Analysis (<72hr): □Yes 🗗	19	6.	
Rush Turn Around Time Requested:	Vo	7.	
Sufficient Volume:		8.	
For Analysis:-☐Yes ☐No MS/MSD: ☐Yes ☐N	To □N/A		
Correct Containers Used: ☐Yes □N	No	9.	
Correct Type: Pace Green Bay, Pace IR, Non-Pace			
Containers Intact: -□Yes □N	No	10.	
Filtered volume received for Dissolved tests	No -⊟N/A `	11.	
Sample Labels match COC:	No □N/A	12.	
-Includes date/time/ID/Analysis Matrix:			
Trip Blank Present: □Yes □N	No L INPA	13.	·
Trip Blank Custody Seals Present □Yes □N	No EN/A		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:		If checked, see attached form for additional con	nments
Person Contacted:Comments/ Resolution:	Date/¯	Time:	
PM Review is documented electronically in LIMs. By release	sing the	project, the PM acknowledges they have reviewed the s	ample logii
, ,	J	Page 2	<u>_</u> 2