

December 07, 2017

Alina Satkoski Madison Kipp Corp 201 Waubesa Street Madison, WI 53704

RE: Madison Kipp - Madison, WI

Enclosed are the analytical results for the samples received by the laboratory on 12/05/2017.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. These results are in compliance with the 2009 NELAC Standards and the appropriate agencies listed below, unless otherwise noted in the case narrative. This analytical report should be reproduced in its entirety.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Jessica Esser

Project Manager

Certification	List		Expires
ADEQ	Arkansas Department of Environmental Quality	17-065-0	09/26/2018
DODELAP	DOD ELAP Accreditation (A2LA)	3269.01	03/31/2018
ILEPA	Illinois Secondary NELAP Accreditation	003174	04/30/2018
KDHE	Kansas Secondary NELAP Accreditation	E-10384	04/30/2018
LELAP	Louisiana Primary NELAP Accreditation	04165	06/30/2018
NCDEQ	North Carolina Dept. of Environmental Quality Accreditation	688	12/31/2017
NJDEP	New Jersey Secondary NELAP Accreditation	WI004	06/30/2018
ODEQ	Oklahoma Department of Environmental Quality Accreditation	2017-154	08/31/2018
TCEQ	Texas Secondary NELAP Accreditation	T104704504-16-7	11/30/2018
WDNR	Wisconsin Certification under NR 149	113289110	08/31/2018

2525 Advance Road Madison, WI 53718 608.221.8700 Phone 608.221.4889 Fax

Madison Kipp Corp Project: Madison Kipp - Madison, WI

201 Waubesa Street Project Number: Floor DCM 6
Madison WI, 53704 Project Manager: Alina Satkoski

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Main Aisle DCM #6	A174906-01	Soil	12/05/2017	12/05/2017

CASE NARRATIVE

Sample Receipt Information:

1 sample was received on 12/05/2017. Sample was received on ice. Sample was received in acceptable condition.

TCLP RCRA metals analysis was subcontracted to Pace Analytical in Green Bay, WI. Those results will be provided in a separate report.

Please see the chain of custody (COC) document at the end of this report for additional information.

201 Waubesa StreetProject Number: Floor DCM 6Madison WI, 53704Project Manager: Alina Satkoski

Main Aisle DCM #6

Date Sampled

A174906-01 (Soil)

12/05/2017 12:00

Analyte	Result	Limit of Detection	Limit of Quantitation	Units	Dilution	Prepared	Analyzed	Method	Qualifiers
			Pace Analy	tical - Madis	on				
Polychlorinated Biphenyls by EPA	Polychlorinated Biphenyls by EPA Method 8082 Preparation Batch: A712007								
PCB-1016	ND	0.0076	0.10	mg/kg dry	1	12/05/2017	12/05/2017 20:58	EPA 8082A	
PCB-1221	ND	0.0042	0.10	mg/kg dry	1	12/05/2017	12/05/2017 20:58	EPA 8082A	
PCB-1232	ND	0.0029	0.10	mg/kg dry	1	12/05/2017	12/05/2017 20:58	EPA 8082A	
PCB-1242	ND	0.0045	0.10	mg/kg dry	1	12/05/2017	12/05/2017 20:58	EPA 8082A	
PCB-1248	0.79	0.0054	0.10	mg/kg dry	1	12/05/2017	12/05/2017 20:58	EPA 8082A	
PCB-1254	ND	0.0045	0.10	mg/kg dry	1	12/05/2017	12/05/2017 20:58	EPA 8082A	
PCB-1260	ND	0.0025	0.10	mg/kg dry	1	12/05/2017	12/05/2017 20:58	EPA 8082A	
Total PCBs	0.79	0.0076	0.10	mg/kg dry	1	12/05/2017	12/05/2017 20:58	EPA 8082A	
Surrogate: Decachlorobiphenyl			89.6 %	56.6-128		12/05/2017	12/05/2017 20:58	EPA 8082A	
Surrogate: Tetrachloro-meta-xylene			91.3 %	69.6-121		12/05/2017	12/05/2017 20:58	EPA 8082A	
Classical Chemistry Parameters Preparation Batch: A712005									

Preparation Batch: A71200512/05/2017 12/07/2017 11:34 SM 2540B

Weight

201 Waubesa Street Project Number: Floor DCM 6
Madison WI, 53704 Project Manager: Alina Satkoski

Polychlorinated Biphenyls by EPA Method 8082 - Quality Control Pace Analytical - Madison

		Limit of		Spike	Source		%REC		RPD	
Analyte	Result	Quantitation	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch A712007 - EPA 3570										
Blank (A712007-BLK1)			Prep	pared: 12/05	5/2017 An	alyzed: 12/0	05/2017 20:3	33		
PCB-1016	ND	0.10	mg/kg wet							
PCB-1221	ND	0.10	mg/kg wet							
PCB-1232	ND	0.10	mg/kg wet							
PCB-1242	ND	0.10	mg/kg wet							
PCB-1248	ND	0.10	mg/kg wet							
PCB-1254	ND	0.10	mg/kg wet							
PCB-1260	ND	0.10	mg/kg wet							
Total PCBs	ND	0.10	mg/kg wet							
Surrogate: Decachlorobiphenyl	0.254		mg/kg wet	0.2400		106	56.6-128			
Surrogate: Tetrachloro-meta-xylene	0.234		mg/kg wet	0.2400		97.5	69.6-121			
LCS (A712007-BS1)			Prep	pared: 12/05	5/2017 An	alyzed: 12/0	05/2017 20:0	08		
PCB-1254	2.03	0.10	mg/kg wet	2.000		102	79.1-109			
Surrogate: Decachlorobiphenyl	0.274		mg/kg wet	0.2400		114	56.6-128			
Surrogate: Tetrachloro-meta-xylene	0.235		mg/kg wet	0.2400		98.0	69.6-121			
Matrix Spike (A712007-MS1)	Source: A	A174906-01	Prep	pared: 12/05	5/2017 An	alyzed: 12/0	05/2017 21:2	23		
PCB-1254	1.88	0.10	mg/kg dry	2.045	ND	91.9	66.7-124			
Surrogate: Decachlorobiphenyl	0.206		mg/kg dry	0.2455		84.1	56.6-128			
Surrogate: Tetrachloro-meta-xylene	0.224		mg/kg dry	0.2455		91.1	69.6-121			
Matrix Spike Dup (A712007-MSD1)	Source: A	A174906-01	Prep	pared: 12/05	5/2017 An	alyzed: 12/0	05/2017 21:4	48		
PCB-1254	2.00	0.10	mg/kg dry	2.045	ND	97.8	66.7-124	6.23	20	
Surrogate: Decachlorobiphenyl	0.227		mg/kg dry	0.2455		92.6	56.6-128			
Surrogate: Tetrachloro-meta-xylene	0.228		mg/kg dry	0.2455		92.8	69.6-121			

201 Waubesa Street Project Number: Floor DCM 6
Madison WI, 53704 Project Manager: Alina Satkoski

Classical Chemistry Parameters - Quality Control

Pace Analytical - Madison

		Limit of		Spike	Source		%REC		RPD	
Analyte	Result	Quantitation	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch A712005 - % Solids

Duplicate (A712005-DUP1)	Source: A17490	07-05 Prepared: 12/05/	2017 Analyzed: 12/07/2017 11:3	4	
% Solids	91.4	0.00 % by Weight	91.3	0.114	20

201 Waubesa Street Project Number: Floor DCM 6
Madison WI, 53704 Project Manager: Alina Satkoski

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis. If the word 'dry' does not appear after the units, results are reported on an as-is basis.

RPD Relative Percent Difference

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2417 Bond Street, University Park, IL 60484 Phone: 708.534.5200 Fax: 708.534.5211

	(optional)	(optional)
nerica	Report To	Bill To
ICIICO	Contact: Allna Satteski	Contact: Accounts Payable
ONMENTAL TESTING	Company: Mark Snoppara.	Company: ap@madison-kipp
	Address: USatkoski 6	Address: COM
ersity Park, IL 60484 Fax: 708.534.5211	Address: <u>Madism-Tapp Cons</u>	Address:
<u> </u>	Phone: MSNUppara 0	Phone:
A17491/2	Fax: Madison - Kipp. COM	Fax:
	F-Mail:	PO#/Reference# 126044

Chain of	Custody	Record
----------	---------	--------

Lab Job #: A 17 4906
Chain of Custody Number:
Page of
Temperature °C of Cooler

			<u>- </u>						1 0#/11010101	10011							
Client	KC	Client Project #			Preserva	ative										1. HCL,	servative Key Cool to 4°
Project Nan	100 KILL				Parame	eter										3. HNO3 4. NaOH	14, Cool to 4° 3, Cool to 4° 1, Cool to 4°
Project Loca	ation/State	Lab Project #						73								5. NaOH 6. NaHS 7. Cool	
Sampler,	any tones	Lab PM SS CC	ESSE	r			3	12 ta								8. None 9. Other	
Lab ID MS/MSD	Sample ID			pling Time	# of Containers	Matrix	J.	2								Comme	ante
	Main Aisk [CM#6	12/5/17	12:00	2	0	χ	χ								01	THO .
						-			aleredo e escala de la constanta de la constan								
Turnaround 1 Day	Time Required (Business Days) 2 Days 5 Days 7 Da Due Date 7	iys 10 Days	15 Days	Other	Sample	•	sal to Client	Dis	posal by Lab	Archi	ve for	Months	(A fee may	be assessed if	samples are r	etained longer than 1 mo	nth)
							Redeived By			Company							isi q
	By Company Company Ocompany	UC 12	Date 7.5/17	13	Time OD Time		Received By	BOND	29 p	Na	12	Date Date	17_	1300 Time)	Lab Courier	
inciii iquisi ieu	Dy Company		Date *		11000		I Resceived BV		- (omoanv		Date		ume	1	F	

WW - Wastewater W - Water

Relinquished By

A - Air

SE - Sediment SO - Soil S - Soil L - Leachate SL - Sludge WI - Wipe MS - Miscellaneous DW - Drinking Water OL - Oil O - Other

Matrix Key

Company

Client Comments

Date

Received By

Lab Comments: Rec on ice Shipped

Hand Delivered

Company

December 12, 2017

Jessica Esser Pace Analytical Madison 2525 Advance Road Madison, WI 53718

RE: Project: A174906 MADISON KIPP- MADISON

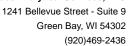
Pace Project No.: 40161909

Dear Jessica Esser:

Enclosed are the analytical results for sample(s) received by the laboratory on December 06, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,


Dan Milewsky dan.milewsky@pacelabs.com (920)469-2436

Day Mileny

Project Manager

Enclosures

CERTIFICATIONS

Project: A174906 MADISON KIPP- MADISON

Pace Project No.: 40161909

Green Bay Certification IDs

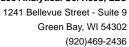
1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064

North Dakota Certification #: R-150

Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

(920)469-2436



SAMPLE SUMMARY

Project: A174906 MADISON KIPP- MADISON

Pace Project No.: 40161909

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40161909001	A174906-01 Main Aisle DCM #6	Solid	12/05/17 12:00	12/06/17 09:45

SAMPLE ANALYTE COUNT

Project: A174906 MADISON KIPP- MADISON

Pace Project No.: 40161909

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40161909001	A174906-01 Main Aisle DCM #6	EPA 6010	JLD	7
		EPA 7470	AJT	1

ANALYTICAL RESULTS

Project: A174906 MADISON KIPP- MADISON

Pace Project No.: 40161909

DCM #6

Date: 12/12/2017 04:16 PM

Results reported on a "wet-weight" basis

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010 MET ICP, TCLP	•		6010 Prepar			A 3010			
	Leachate I	Method/Date	: EPA 1311; 12	2/07/17 15: <i>′</i>	14				
Arsenic	<0.042	mg/L	0.12	0.042	1	12/11/17 09:15	12/11/17 16:52	7440-38-2	
Barium	0.22	mg/L	0.075	0.025	1	12/11/17 09:15	12/12/17 11:35	7440-39-3	
Cadmium	< 0.0066	mg/L	0.025	0.0066	1	12/11/17 09:15	12/11/17 16:52	7440-43-9	
Chromium	0.048J	mg/L	0.050	0.013	1	12/11/17 09:15	12/11/17 16:52	7440-47-3	
Lead	<0.022	mg/L	0.065	0.022	1	12/11/17 09:15	12/11/17 16:52	7439-92-1	
Selenium	< 0.083	mg/L	0.25	0.083	1	12/11/17 09:15	12/11/17 16:52	7782-49-2	
Silver	<0.017	mg/L	0.050	0.017	1	12/11/17 09:15	12/11/17 16:52	7440-22-4	
7470 Mercury, TCLP	Analytical	Method: EPA	7470 Prepar	ration Metho	od: EP	A 7470			
	Leachate Method/Date: EPA 1311; 12/07/17 15:14								
Mercury	<0.13	ug/L	0.42	0.13	1	12/11/17 07:25	12/11/17 12:41	7439-97-6	

A174906 MADISON KIPP- MADISON Project:

Pace Project No.: 40161909

QC Batch: 276698 Analysis Method: EPA 7470

QC Batch Method: EPA 7470 Analysis Description: 7470 Mercury TCLP

Associated Lab Samples: 40161909001

METHOD BLANK: 1627255 Matrix: Water

Associated Lab Samples: 40161909001

Reporting Parameter Result Limit Qualifiers Units Analyzed

Blank

< 0.13 0.42 12/11/17 12:36 Mercury ug/L

METHOD BLANK: 1624588 Matrix: Water

Associated Lab Samples: 40161909001

Blank Reporting Limit Parameter Units Result Analyzed Qualifiers

12/11/17 13:25 Mercury < 0.13 0.42 ug/L

METHOD BLANK: Matrix: Water

Associated Lab Samples: 40161909001

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Mercury < 0.13 0.42 12/11/17 13:20 ug/L

METHOD BLANK: 1625750 Matrix: Water

Associated Lab Samples: 40161909001

Blank Reporting Limit Parameter Units Result Analyzed Qualifiers < 0.13 0.42 12/11/17 12:50 Mercury ug/L

METHOD BLANK: 1626126 Matrix: Water

Associated Lab Samples: 40161909001

Blank Reporting Parameter Units Result Limit Analyzed Qualifiers Mercury < 0.13 0.42 12/11/17 13:09 ug/L

METHOD BLANK: Matrix: Water

Associated Lab Samples: 40161909001

Date: 12/12/2017 04:16 PM

Blank Reporting Qualifiers Parameter Units Result Limit Analyzed Mercury < 0.13 0.42 12/11/17 13:11 ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: A174906 MADISON KIPP- MADISON

Pace Project No.: 40161909

Date: 12/12/2017 04:16 PM

LABORATORY CONTROL SAM	/IPLE: 16	27256										
			Spike	LCS	S	LCS	% Red	;				
Parameter		Units	Conc.	Resi	ult	% Rec	Limits	Qı	ualifiers			
Mercury		ug/L		5	5.0	101	85	5-115		-		
MATRIX SPIKE & MATRIX SPI	KE DUPLIC	ATE: 16272	-		1627258							
			MS	MSD								
	•	40161909001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury	ug/L	<0.13	5	5	5.3	5.2	106	104	85-115	1	20	
MATRIX SPIKE SAMPLE:	16:	27259										
			401617	737001	Spike	MS	M	IS	% Rec			
			.0.0									
Parameter		Units	Res	sult	Conc.	Result	% F	Rec	Limits		Qualif	iers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: A174906 MADISON KIPP- MADISON

Pace Project No.: 40161909

QC Batch: 276726 Analysis Method: EPA 6010
QC Batch Method: EPA 3010 Analysis Description: 6010 MET TCLP

Associated Lab Samples: 40161909001

METHOD BLANK: 1627337 Matrix: Water

Associated Lab Samples: 40161909001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.0083	0.025	12/11/17 16:07	
Barium	mg/L	< 0.0050	0.015	12/11/17 16:07	
Cadmium	mg/L	< 0.0013	0.0050	12/11/17 16:07	
Chromium	mg/L	< 0.0025	0.010	12/11/17 16:07	
Lead	mg/L	< 0.0043	0.013	12/11/17 16:07	
Selenium	mg/L	< 0.017	0.050	12/11/17 16:07	
Silver	mg/L	< 0.0033	0.010	12/11/17 16:07	

METHOD BLANK: 1625749 Matrix: Solid

Associated Lab Samples: 40161909001

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.042	0.12	12/11/17 16:42	
Barium	mg/L	< 0.025	0.075	12/11/17 16:42	
Cadmium	mg/L	< 0.0066	0.025	12/11/17 16:42	
Chromium	mg/L	< 0.013	0.050	12/11/17 16:42	
Lead	mg/L	< 0.022	0.065	12/11/17 16:42	
Selenium	mg/L	< 0.083	0.25	12/11/17 16:42	
Silver	mg/L	<0.017	0.050	12/11/17 16:42	

METHOD BLANK: 1626123 Matrix: Solid

Associated Lab Samples: 40161909001

Date: 12/12/2017 04:16 PM

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.042	0.12	12/11/17 17:01	
Barium	mg/L	< 0.025	0.075	12/11/17 17:01	
Cadmium	mg/L	<0.0066	0.025	12/11/17 17:01	
Chromium	mg/L	<0.013	0.050	12/11/17 17:01	
Lead	mg/L	< 0.022	0.065	12/11/17 17:01	
Selenium	mg/L	<0.083	0.25	12/11/17 17:01	
Silver	mg/L	< 0.017	0.050	12/11/17 17:01	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: A174906 MADISON KIPP- MADISON

Pace Project No.: 40161909

Date: 12/12/2017 04:16 PM

METHOD BLANK: 1626335 Matrix: Solid

Associated Lab Samples: 40161909001

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/L	<0.042	0.12	12/11/17 16:49	
Barium	mg/L	< 0.025	0.075	12/11/17 16:49	
Cadmium	mg/L	< 0.0066	0.025	12/11/17 16:49	
Chromium	mg/L	< 0.013	0.050	12/11/17 16:49	
Lead	mg/L	< 0.022	0.065	12/11/17 16:49	
Selenium	mg/L	< 0.083	0.25	12/11/17 16:49	
Silver	mg/L	< 0.017	0.050	12/11/17 16:49	

LABORATORY CONTROL SAMPLE:	1627338					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	.5	0.49	98	80-120	
Barium	mg/L	.5	0.51	102	80-120	
Cadmium	mg/L	.5	0.51	102	80-120	
Chromium	mg/L	.5	0.51	101	80-120	
Lead	mg/L	.5	0.51	101	80-120	
Selenium	mg/L	.5	0.50	99	80-120	
Silver	mg/L	.25	0.26	102	80-120	

MATRIX SPIKE & MATRIX S	SPIKE DUPLICA	ATE: 16273	39		1627340							
Parameter	4 Units	0160528001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/L	<0.042	2.5	2.5	2.5	2.5	99	98	75-125	1	20	
Barium	mg/L	0.54	2.5	2.5	3.1	3.1	103	101	75-125	2	20	
Cadmium	mg/L	< 0.0066	2.5	2.5	2.6	2.6	105	103	75-125	2	20	
Chromium	mg/L	< 0.013	2.5	2.5	2.5	2.5	101	99	75-125	2	20	
Lead	mg/L	< 0.022	2.5	2.5	2.6	2.5	103	101	75-125	2	20	
Selenium	mg/L	< 0.083	2.5	2.5	2.5	2.5	100	98	75-125	2	20	
Silver	mg/L	< 0.017	1.2	1.2	1.3	1.3	104	101	75-125	3	20	

MATRIX SPIKE SAMPLE:	1627341						
		40161737001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	 mg/L	<0.042	2.5	2.4	98	75-125	
Barium	mg/L	0.41	2.5	2.9	101	75-125	
Cadmium	mg/L	0.26	2.5	2.8	101	75-125	
Chromium	mg/L	0.087	2.5	2.6	99	75-125	
Lead	mg/L	0.072	2.5	2.6	100	75-125	
Selenium	mg/L	<0.083	2.5	2.5	98	75-125	
Silver	mg/L	< 0.017	1.2	1.3	101	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project: A174906 MADISON KIPP- MADISON

Pace Project No.: 40161909

Date: 12/12/2017 04:16 PM

MATRIX SPIKE SAMPLE:	1627342						
		40161788002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/L	<0.042	2.5	2.4	98	75-125	
Barium	mg/L	0.45	2.5	3.0	100	75-125	
Cadmium	mg/L	<0.0066	2.5	2.5	102	75-125	
Chromium	mg/L	< 0.013	2.5	2.5	99	75-125	
Lead	mg/L	0.032J	2.5	2.5	100	75-125	
Selenium	mg/L	<0.083	2.5	2.4	97	75-125	
Silver	mg/L	< 0.017	1.2	1.3	103	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALIFIERS

Project: A174906 MADISON KIPP- MADISON

Pace Project No.: 40161909

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

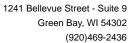
MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up


U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 12/12/2017 04:16 PM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: A174906 MADISON KIPP- MADISON

Pace Project No.: 40161909

Date: 12/12/2017 04:16 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40161909001	A174906-01 Main Aisle DCM #6	EPA 3010	276726	EPA 6010	276805
40161909001	A174906-01 Main Aisle DCM #6	EPA 7470	276698	EPA 7470	276737

SUBCONTRACT ORDER

Pace Analytical - Madison A174906

319

SENDING LABORATORY:

Pace Analytical - Madison

2525 Advance Road

Madison, WI 53718

Phone: 608.221.8700

Fax: 608,221,4889

Project Manager:

Jessica Esser

RECEIVING LABORATORY:

Pace Analytical

1241 Bellevue Street, Suite 9

Green Bay, WI 54302

Phone: (920) 469-2436

Fax: (920) 469-8827

Turn around Time:

Normal

Project Name: Madison Kipp - Madison, WI

X Rush

Analysis Due **Expires** Laboratory ID Comments OO\ Main Aisle DCM #6 Lab ID: A174906-01 Sampled: 12/05/2017 12:00 Soil RCRA Metals 12/12/2017 00:00 06/03/2018 12:00 1311 TCLP Extraction 12/12/2017 00:00 12/19/2017 12:00 Containers Supplied: 03 4oz WM Amber Glass

Kari-An-Kjeli 200 1500 je Rejeased By Date

12/6/17 0945

1/winketshe face Received By

Received By

12/6/17 0945

Date

LOHOLOL

Sample Condition Upon Receipt

Pace Analytical Services, LLC. - Green Bay WI 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Client Name: Pace Ma		Project #		40161909
Courier: Fed Ex UPS Client Pa Tracking #: 10000 1170 8142		Suppose, Strategy,	40161909	
Custody Seal on Cooler/Box Present: yes Custody Seal on Samples Present: yes yes		et: yes no		
Packing Material: Bubble Wrap Bu				
Thermometer Used A/A		Blue Dry None	☑ Samples of	on ice, cooling process has begun
Cooler Temperature Uncorr: Ro / /Corr:		ogical Tissue is Fr	,	, , , , , , , , , , , , , , , , , , ,
Temp Blank Present: yes / no			no	Person examining contents:
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C.		Comments:		Date: 12-6-17 Initials: UR
Chain of Custody Present:	ZYes □No □N/	A 1.		
Chain of Custody Filled Out:	ZYes □No □N/	A 2.		
Chain of Custody Relinquished:	ŽÎYes □No □N//	A 3.		
Sampler Name & Signature on COC: 12-6-17	Y OYes ANO ON	1. IRWO		12-6-1742
Samples Arrived within Hold Time:	ØYes □No □N//	A 5.		
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes ØNo □N//	A 6.		
Rush Turn Around Time Requested:		(5/17		
Sufficient Volume:		8. No MS/1	15D vol	12-6-17 KR
Correct Containers Used:	✓Yes □No □N//			
-Pace Containers Used:	□Yes ØNo □N//	A		
-Pace IR Containers Used:	ØYes □No □N//	,		
Containers Intact:	ØYes □No □N/A	10.		
Filtered volume received for Dissolved tests	□Yes □No ØN/	111.		
Sample Labels match COC:	□Yes ZÎNo □N/A	12. No times	Ŝ	
-Includes date/time/ID/Analysis Matrix	s [']			12-6-17KR
All containers needing preservation have been checked (Non-Compliance noted in 13.)	i. □Yes □No ☑N/A	13. HNO:	3 H2SO4	□ NaOH □ NaOH +ZnAct
All containers needing preservation are found to be in compliance with EPA recommendation. (HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)	□Yes □No ØN/	A		
exceptions: VOA, coliform, TOC, TOX, TOH, O&G, WIDROW, Phenolics, OTHER:	□Yes ZNo	Initial when completed	Lab Std #ID of preservative	Date/ Time:
Headspace in VOA Vials (>6mm):	□Yes □No ØN/A	14.		
Trip Blank Present:	□Yes □No ØN/A	15.		
Trip Blank Custody Seals Present	□Yes □No ÅN/A			
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:	Date	/Time:	checked, see attac	hed form for additional comments
Project Manager Review:	for pm		Date:	12/6/17

Michael Schmoller Wisconsin Department of Natural Resources South Central Region 3911 Fish Hatchery Road Fitchburg, WI 53711

Subject:

Interior Building Maintenance, Madison-Kipp Corporation, 201 Waubesa Street, Madison, Wisconsin. Facility ID No. 113125320, BRRTS No. 02-13-001569

Dear Mr. Schmoller:

On December 11, 2017, a representative of Madison-Kipp spoke with you regarding the interior building maintenance required for repairing the floor within the facility located at 201 Waubesa Street in Madison, Wisconsin. As part of this work, there is an 15 x 12 area of concrete that was removed and replaced. No soil was removed. This letter documents the initial sampling activities and material handling of the soil and concrete.

One composite concrete sample (Main Aisle DCM #6) was collected by Madison-Kipp on December 5, 2017 and submitted to Pace Analytical for PCB and TCLP metals analysis to characterize the materials for disposal. Polychlorinated biphenyls (PCBs) from the sample was 0.79 mg/kg. Copies of the laboratory report are attached for reference. Based on the results, 10 tons of concrete was profiled and disposed of as non hazardous waste.

Should building maintenance be required within the Madison-Kipp building in the future, similar methods will be used for appropriate characterization and disposal of materials. Documentation will be provided to the WDNR.

Madison Kipp Corporation

Mark Sheppard

Environmental, Health & Safety Manager

Copies:

Andrew Stehn - TRC

Attachments:

Figure

Laboratory reports