

Concrete Segregation and Removal Plan

Madison-Kipp Corporation (MKC) Madison, Wisconsin

October 2024

WDNR BRRTS #02-13-578014

Prepared For:

Madison-Kipp Corporation 201 Waubesa Street Madison, Wisconsin 53704

Prepared By:

TRC 999 Fourier Drive, Suite 101 Madison, Wisconsin 53717

Andrew Stehn, P.E. Senior Project Engineer

Ted O'Connell

TRC Quality Assurance

TABLE OF CONTENTS

1.0	BAC	BACKGROUND1							
	1.1	Site Hi	istory	1					
	1.2		ete Improvement Preparation						
	1.3	Concre	ete Removal and Disposal	1					
	1.4								
	1.5	USEPA and WDNR Correspondence							
2.0	PUR								
3.0	CON	CRETE	SEGREGATION AND DISPOSAL PLAN	3					
	3.1		of Work						
		3.1.1	Concrete Segregation Means and Methods						
		3.1.2	Concrete Removal Confirmation	5					
		3.1.3	Waste Characterization Sampling	5					
		3.1.4	Concrete Hauling and Disposal	6					
		3.1.5	Personnel Protective Equipment						
4.0	SCH	EDULE/I	REPORTING	6					

APPENDICES

Appendix A: Notification Letter to EPA

Appendix B: Pre-removal Waste Characterization Results

Appendix C: Laboratory Analytical Reports

Appendix D: Photographic Log

1.0 Background

1.1 Site History

Madison Kipp Corporation (MKC) operates an aluminum die casting facility, located at 201 Waubesa Street, Madison, Wisconsin (Site). Historical die casting operations that involved hydraulic fluids containing polychlorinated biphenyl (PCBs), and dust suppression of the parking lot using PCB-containing oils at the facility resulted in PCB impacts at the Site. Various site investigations and remedial activities have been completed over the years at the Site.

1.2 Concrete Improvement Preparation

MKC conducts facility maintenance and makes improvements to the facility interior periodically as a result of business operations. As part of the improvements, sections of the facility floor are repaired and/or replaced. Based on the historical PCB use at the Site, floor replacement activities include waste characterization sampling prior to the removal of materials from the site. A notification letter was submitted to the United States Environmental Protection Agency (EPA) and Wisconsin Department of Natural Resources (WDNR) on February 23, 2024 (Appendix A), summarizing proposed facility floor improvements that MKC planned to complete. The letter provided details on the areas requiring improvement and discussed waste characterization, material management, and material disposal. Prior to the removal and concrete repair, TRC, on behalf of MKC, conducted waste characterization sampling of the concrete floor as outlined in the February 2024 notification letter. The identified area (Area 2024-3) measured 16-feet by 12-feet (192 square feet) in size. The area was sectioned off and sub-divided into four quadrants. Holes were drilled into the concrete floor at the corner of each quadrant as shown on Figure 1 in Appendix B. The pulverized concrete was collected from each drill hole. A total of nine individual concrete samples were collected from Area 2024-3. Four samples were composited (1 per quadrant) from the nine individual samples and submitted for laboratory analysis of PCBs and Resource Conservation and Recovery Act (RCRA) Eight Metals. The results of the composite samples are summarized in Table 1 of Appendix B and the laboratory analytical report is included in Appendix C. The results were compared to the WDNR NR 720 Direct Contact Residual Contaminant Levels (RCLs). The results from the concrete waste characterization sampling showed the presence of PCB Aroclor 1248 in the concrete. No other PCB Aroclors were detected above laboratory detection limits in the four composite samples. Concentrations were reported above the WDNR NR 720 non-industrial direct contact pathway but below the industrial direct contact pathway, and the highest concentration was reported at 0.861 milligram per kilogram.

1.3 Concrete Removal and Disposal

On March 28, 2024, MKC commenced the facility improvement work and removed and replaced the concrete within Area 2024-3. Photos of the area before and after the improvements are included in **Appendix D**. Removal of Area 2024-3 consisted of saw cutting the perimeter of the area followed by breaking of the concrete into pieces measuring approximately 2-foot by 2-foot (4 square feet (sqft)) or smaller to allow for transport from the repair location to a dump truck that was staged outside of the facility. The MKC facility concrete has a distinct black color/staining on its surface as result of years of facility die-casting operations. Additionally, some of the concrete pieces contain drill holes from the previous waste characterization sampling. The thickness of the concrete was noted by MKC personnel to be between six to eight inches. The amount of material removed was approximately 4.6 cubic yards or approximately 7 tons (assuming a density

of 1.5 tons equals 1 cubic yard). As completed historically for facility improvement work and based on the presence of PCB Aroclor 1248 in waste characterization samples, the concrete was intended to be disposed of at a WDNR-licensed disposal facility approved to accept the PCB impacted concrete. However, MKC inadvertently had the concrete hauled to an alternative disposal facility in Deforest, WI which recycles concrete material. The recycling facility takes in concrete materials and processes the materials for reuse as base course for pavement type construction projects.

MKC notified TRC of the concrete disposal on April 3, 2024, and the recycling facility was contacted shortly after to notify them of the situation. The facility blocked off the area, where the MKC concrete was placed, on April 4, 2024, to ensure no additional material was placed in the same stockpile. TRC and MKC conducted a site walk on April 5, 2024, to inspect the stockpile and to determine the concrete handling processes of the recycling facility. The recycling facility personnel showed TRC and MKC the portion of the stockpile where MKC's concrete had been placed. They stated that material is transported into the site and dumped at the top of the stockpile. The transported material is then pushed off the side of the stockpile at the end of each day. The stockpile is constructed off the side of an embankment, and it was noted that MKC's concrete had been placed along the eastern portion of the stockpile. Photos of the stockpile are included in the Photographic Log in **Appendix D**.

1.4 Concrete Stockpile Description

The concrete stockpile has the general shape of half of a triangle, which reflects the process of pushing the material off the side of the existing embankment. The eastern portion of the stockpile, where the MKC concrete was placed, measures approximately 40 feet in width (along the base of the stockpile) and the length is approximately 38 feet (measured along the stockpile slope). Based on these measurements the surface area of the stockpile where MKC concrete was placed equates to approximately 1,520 square feet. The surface volume per foot equates to 1,520 cubic feet or approximately 56 cubic yards.

The recycling facility provided details on material that was hauled into the facility between March 28, 2024, and April 4, 2024. When material is brought into the facility, customer and truck information, number of loads, and the type of imported fill is documented. However, the facility does not weight or calculate volume. Concrete, rubble, and brick materials are categorized as a Type 1 fill by the facility. The records provided by the facility indicate that a total of 41 loads of Type 1 materials were hauled into the facility between March 28, 2024, and April 4, 2024. It has been assumed that one-third of the material (14 loads) received by the recycling facility during this time was pushed into the eastern portion of the stockpile where MKC's concrete was disposed of. This is based on operational processes and the width of the unloading area at the top of the stockpile where materials were dumped. The recycling facility operator noted that between March 28, 2024, and April 4, 2024, approximately 10 tons of material per day was placed in the stockpile following the disposal of MKC's material in the eastern portion of the stockpile. Based on the stated disposal information it is estimated that approximately 50 tons of materials (5 business days at 10 tons per day) were disposed of following the placement of the MKC material.

1.5 USEPA and WDNR Correspondence

TRC reached out to the WDNR and EPA on April 5, 2024, to discuss the inadvertent hauling of concrete to the recycling facility, and a conference call between TRC, MKC, EPA, and the WDNR was conducted on April 8, 2024. Following the initial conference call, a second call was conducted

with EPA on April 18, 2024, to further discuss known details and to determine the appropriate action regarding the MKC concrete.

As a result of discussions with EPA and WDNR during the April 18, 2024, conference call, the nine individual concrete samples that had been collected from Area 2024-3 and used for composite sampling for waste characterization were submitted to the laboratory for analysis of PCBs. The results of the nine concrete samples are summarized in Table 2 of **Appendix B** and the laboratory analytical report is included in **Appendix C**. A 95 percent upper confidence limit (UCL) for the data set was calculated and is also summarized in Table 2. The 95 percent UCL calculates a mean (average) concentration for the entire data set, or in this case Area 2024-3 concrete. The analytical results for the nine individual samples, calculate that the 95 percent UCL mean concentration for Area 2024-3 concrete is less than or equal to 1.00 mg/kg. **Appendix B** includes the supporting calculations for the 95% UCL. Results from the individual samples were provided to EPA and WDNR and discussed during a phone call conducted on May 10, 2024.

Following the May 10, 2024 call MKC provided further details based on information requests from the EPA and additional calls were conducted through August 9, 2024 to discuss potential options for the MKC concrete. During the August 9, 2024 call with the EPA, segregation of the stockpile, to allow non-MKC concrete to remain onsite, was discussed. EPA provided initial concurrence to this approach on August 13, 2024 (via email), but also requested that further details and means and methods associated with the approach be provided on how concrete materials would be segregated and managed onsite. The following sections describe the proposed scope of work to segregate non-MKC materials from the identified area of the stockpile and remove MKC concrete for transport to a licensed disposal facility.

2.0 Purpose

The following approach to facilitate the removal of the MKC concrete disposed of at the recycling facility has been developed based on the discussions with the WDNR and the EPA, and information provided by the recycling facility and MKC.

3.0 Concrete Segregation and Disposal Plan

3.1 Scope of Work

The proposed scope of work under this work plan is as follows:

- Visual identification and segregation of non-MKC concrete from the face of the slope of the eastern section of the facility stockpile.
- Visual identification and removal of MKC concrete and surrounding materials that represent material transported to the facility and placed in the same area of the stockpile five days after MKC concrete was placed.
- Placement of MKC concrete and additional selected material in lined roll-off containers for waste characterization testing.
- Transport of roll-off containers to a licensed disposal facility after waste characterization sample results are received.
- Visual confirmation that no MKC concrete remains on the stockpile following removal.

 Observe and document material segregation, waste characterizing sampling, and material containerization.

3.1.1 Concrete Segregation Means and Methods

Based on the information provided by the recycling facility, MKC proposes to remove a portion of the eastern slope of the stockpile where the MKC concrete was placed. Based on the means and methods of disposal at the facility and the uneven surface of the stockpile, an additional quantity of material will be over excavated to ensure no additional MKC concrete remains in the stockpile. The amount of additional material to be removed corresponds to the estimated volume of material placed on the eastern area of the stockpile between March 28, 2024, and April 4, 2024, as discussed in Section 1.4. To segregate and inspect the concrete, and allow for waste characterization, MKC proposes to use lined roll-off containers to store the material segregated for offsite disposal. A roll-off container can accommodate approximately 15 tons or 10 cubic yards of concrete (assuming 1.5 tons of concrete equals 1 cubic yard). Based on the number of loads dumped and pushed into the eastern portion of the stockpile, MKC proposes to remove approximately 100 cubic yards (150 tons) of concrete from the eastern portion of the stockpile for disposal at a licensed landfill facility.

Due to the height of the stockpile and reach of excavating equipment, the concrete removal process will be completed in stages, addressing the top half the of stockpile first and then moving to the lower half of the stockpile. Roll-off containers will be placed adjacent to the excavator to allow for direct loading. Filled roll-off containers will be moved away from the loading areas as they are filled and new, empty containers will be placed as needed. Based on the understanding that the concrete would have been pushed off the side of the stockpile embankment, it is likely that the smaller pieces of concrete would be deposited in the upper half of the pile and larger pieces would have rolled to the lower portion. The following steps will be completed to segregate and load the concrete material into the roll-off containers.

- Material segregation for the eastern area of the upper portion of stockpile will begin by removing materials that are larger than 4 sqft with no visual indication (i.e. black color along the concrete surface) of MKC concrete and non-concrete materials (i.e. granite countertops, bricks, stones, cobbles etc.), which are known to not be MKC concrete. Small non-MKC material co-mingled with MKC concrete will be removed for offsite disposal.
- 2. Following removal of non-MKC materials, starting at the highest point of the pile, approximately 12-inches (in depth) of material will be removed from the surface of the stockpile (i.e. slope) and loaded into lined roll-off containers. As work is completed, additional segregation of identifiable non-MKC materials will be performed. Visual screening of materials for concrete pieces that could have originated at MKC's facility (see Section 1.3) will be conducted during material removal. Photos of MKC's concrete in place can be seen in **Appendix D**. As material at the top of the pile is removed, sloughing/migrating of material is expected to occur and will be managed during removal of the lower portion of the stockpile. It is anticipated that based on the surface area of the upper half of the eastern area of the stockpile, this removal process will equate to approximately 28 cubic yards or 42 tons of material being placed into roll-off containers.
- Following segregation and removal, a visual inspection of the upper half of the stockpile will be completed, if MKC concrete is identified, further removal will be completed. If no evidence of MKC concrete is observed, the operator will move the equipment to the lower portion of the stockpile.

- 4. Once the equipment has been moved, material segregation for the lower portion of the eastern area of the stockpile will be performed in the same manner as described in Step 1. Based on observations of the existing stockpile it is assumed that there will be more larger pieces of concrete at the base of slope that will require removal and segregation as non-MKC concrete.
- 5. Starting at the midpoint of point of the stockpile (where equipment could not reach from the top), approximately 18 to 24 -inches (in depth) of material will be removed from the surface of pile (i.e. slope) and loaded into lined roll-off containers. Based on the description of the recycling facility operations, it is anticipated that a larger volume of the non-MKC material (placed after the MKC concrete) would have migrated down the pile, potentially covering the MKC concrete. As such, more material will be removed from the lower portion of the stockpile to ensure all MKC concrete is removed. As work is completed, additional segregation of identifiable non-MKC concrete will be performed. Visual screening of materials for concrete pieces that could have originated at MKC's facility (see Section 1.3) will be conducted during material removal. It is anticipated that based on the surface area of the lower half of the stockpile, this removal process will equate to approximately 42 to 56 cubic yards or 63 to 84 tons.
- 6. Following segregation and removal, a visual inspection of the lower half of the stockpile will be completed, if MKC concrete is identified, further removal will be completed. If no evidence of MKC concrete is observed the removal action will be complete.
- 7. In total, it is estimated that 10 roll-off containers will be filled which equates to approximately 100 cubic yards or 150 tons which is approximately 95 percent more than the concrete generated by MKC.
- 8. Minor adjustments to the process described above may be required for safe operations along the side of the embankment. Any changes in methodology will be documented and provided in the final documentation report.

3.1.2 Concrete Removal Confirmation

Less than 5 cubic yards of concrete was removed from MKC's facility and placed at the recycling facility. Concrete materials will be visually inspected during segregation and removal for evidence of MKC concrete. However, due to the small volume of MKC concrete, visual identification of all of the MKC concrete is unlikely. By segregating large pieces of concrete (greater than 4 sqft) with no black color on the surface, removal of non-concrete materials, and removing up to 100 cubic yards (150 tons) of concrete from the eastern portion of the stockpile (where the MKC concrete was placed), it can be assumed that the PCB-containing concrete will have been removed from the stockpile. As such, a visual inspection of the stockpile following the removal process will document that the material left in place did not originate from MKC. Post-removal confirmation samples will not be collected from the remaining stockpile. The removal action will be considered complete following the inspection and no further work or sampling is recommended.

3.1.3 Waste Characterization Sampling

MKC has identified Green For Life (GFL) landfill Glacier Ridge in Horicon, WI as the receiving disposal facility. It is estimated that approximately 10 roll-off containers will be required to remove the 100 cubic yards (150 tons) of concrete. GFL requires waste characterization sampling of the material prior to acceptance. A total of three composite samples of the material will be prepared for waste characterization. GFL will collect concrete from each of the filled roll-off containers and

submit to Pace Analytical Green Bay for sample processing. After material processing the laboratory will composite the material into three samples. The composite samples will be analyzed for total PCBs using USEPA Method 8020 and toxic characteristic leaching procedure (TCLP) RCRA eight metals plus cooper and zinc using USEPA Method 6010, as required by the disposal facility. The initial sampling of the MKC concrete, prior to removal from MKC, indicates that the concrete contains low levels of PCBs. Waste characterization sample results will be provided to EPA and WDNR prior to transport and disposal.

3.1.4 Concrete Hauling and Disposal

Once filled, the lined roll-off containers will be covered and staged onsite at the concrete recycling facility until waste characterization sample results are available, and landfill disposal approval is obtained. Upon approval, the containers will be hauled to GFL's Glacier Ridge landfill for disposal.

3.1.5 Personnel Protective Equipment

Personnel that come in direct contact with potential PCB contaminated concrete for the purposes of conducting visual inspections and/or sampling, will wear nitrile gloves. Personnel protective safety equipment (i.e., safety vests, hard hats, steel-toe boots, and eye and hearing protection) will be required per the recycling facility's safety protocol.

Waste generated during the segregation and removal process may include general refuse (e.g., used personal protective equipment and trash). General refuse will be collected in trash bags and placed in a waste dumpster.

4.0 Schedule/Reporting

The segregation and removal process for this work will be completed following EPA and WDNR approval of this work plan and will be based on the availability of the disposal facility to provide roll-off containers. A letter-style report documenting the removal and inspection of the stockpile will be submitted to the WDNR and EPA within 60 days of completing the segregation, removal, and disposal of the concrete from the recycling facility. The report will include photo documentation before, during, and after the work is implemented. Waste characterization sample results and disposal documentation will be provided.

Appendix A: Notification Letter to EPA

February 23, 2024

Mr. Peter Ramanauskas
Regional PCB Coordinator
U.S. Environmental Protection Agency
77 West Jackson Boulevard
Chicago, Illinois 60604
Ramanauskas.peter@epa.gov

Via E-mail Only

Subject: Interior Manufacturing Floor Modifications

Madison-Kipp Corporation, 201 Waubesa Street, Madison, Wisconsin

Facility ID No. 113125320, WI BRRTS No. 02-13-578014

Dear Mr. Ramanauskas:

Madison-Kipp Corporation (MKC) plans to conduct concrete improvement work at their 201 Waubesa Street Facility (Site) as shown in Attachment 1. MKC is completing concrete repair work in existing sections of floor and planning to install a new furnace.

There are three sections of concrete being replaced:

- Area 2024-1 Shipping Floor: The area measures approximately 14-feet by 20-feet and is located along the eastern wall of the facility. This area will be divided into four sub-areas for sampling (approximately 7-feet by 10-feet).
- 2. Area 2024-2 Storage Floor: The area measures approximately 15-feet by 20-feet and is located along the eastern side of the facility. This area will be divided into four sub-areas for sampling (approximately 7.5-feet by 10-feet)
- 3. Area 2024-3 Furnace Footing/Floor: The area measures approximately 16-feet by 12-feet and is located near a furnace on the eastern side of the facility. This area will be divided into two sub-areas for sampling (approximately 8-feet by 12-feet).

In order to characterize the existing concrete floor for waste disposal, TRC plans to collect one composite sample from each sub-area from four holes cored in each corner of the sub-area, composited equally based on weight, and sent for laboratory analysis. The composite samples of concrete will be analyzed for PCBs (EPA Method 8082) and TCLP RCRA 8 metals (EPA Methods 6010 and 7470) for waste characterization, consistent with previous sampling and analysis completed at the facility. The analytical results for the composite samples will be provided when available.

No soil will be removed during this work because the scope is limited to concrete repair/replacement.

The concrete removed as part of this work will be disposed of at a licensed disposal facility able to accept the waste. A summary of the work and disposal documentation will be provided as part of the semi-annual report for the facility covering this period (January – June 2024).

Waste characterization sampling is tentatively scheduled for February 2024 and the work will follow once analytical data is available and based on the contractor's schedule. This letter serves as notification of the planned work in the facility. The planned work is consistent with the Cap Maintenance Plan in place at the site that requires that concrete repair/replacement within the MKC

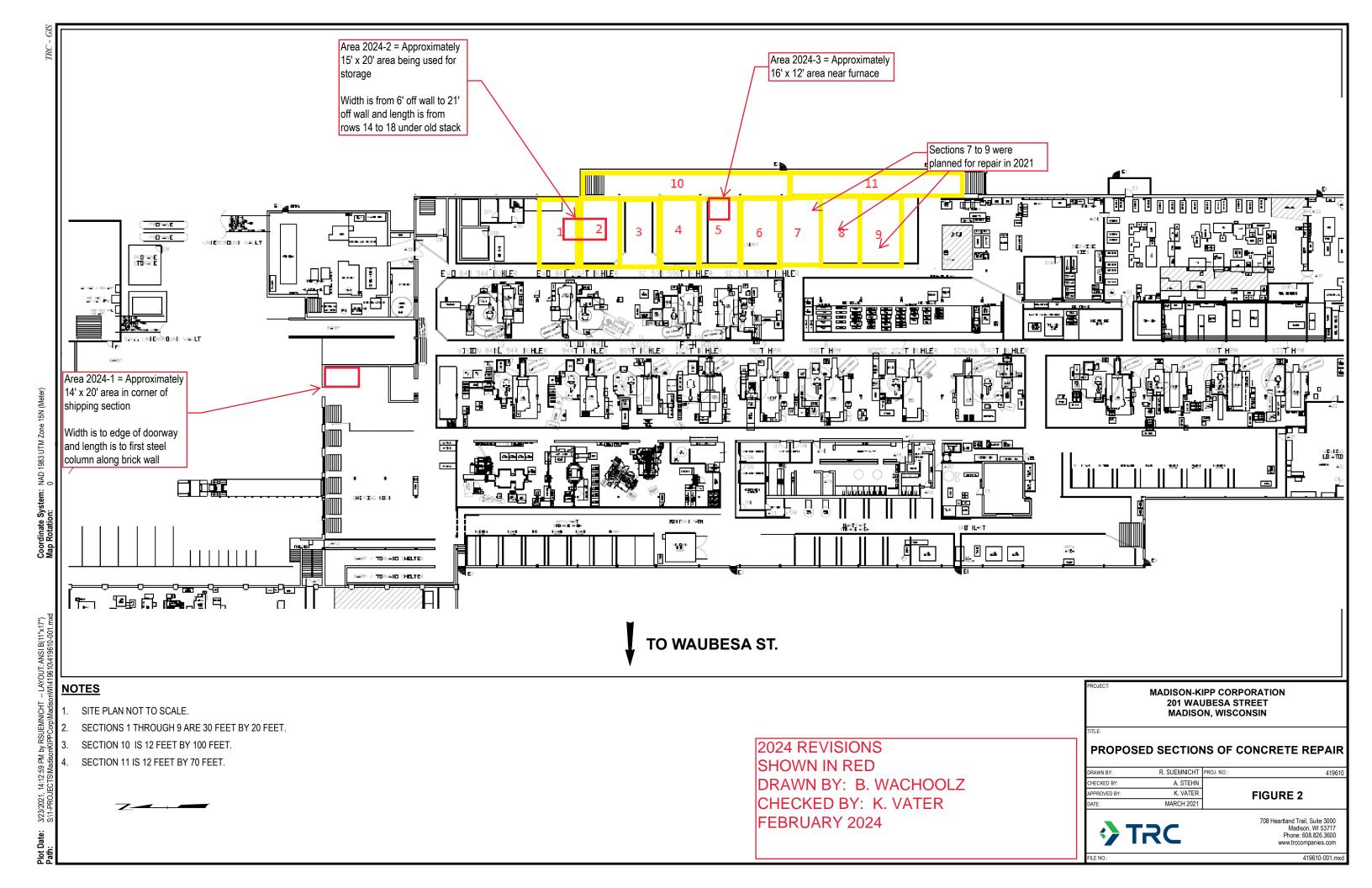
Mr. Peter Ramanauskas U.S. Environmental Protection Agency February 23, 2024 Page 2

facility will be handled with agency notification, composite sampling for waste characterization, analytical data review, and off-site disposal at a licensed facility.

If you have any questions or comments, please feel free to contact Ben Wachholz (608-354-3923) or Katherine Vater (608-826-3663).

Sincerely,

TRC


Ben Wachholz, P.E. Senior Project Engineer Katherine Vater, P.E. Senior Project Manager

Vithe Nate

Attachments: 1. Proposed Concrete Removal Area

cc: Mahlek Hamden, Madison-Kipp Corporation (electronic)
Michael Beedle, U.S. EPA (electronic)
Luke Lampo, WDNR (electronic)

Attachment 1 Proposed Concrete Removal Area

Appendix B: Pre-removal Waste Characterization Results

Tables

- Table 1: Concrete Analytical Results Area 2024-3 (Composite Samples)
- Table 2: Concrete Analytical Results Area 2024-3 (Individual Samples)

Table 1: Concrete Analytical Results - Area 2024-3 (Composite Samples) **Madison Kipp Corporation** Madison, Wisconsin TRC Project # 581184

	Sample Lo	cation ID		NR 720 Soil RCLs	(1)		2024-3-COMP-1 ⁽²⁾	2024-3-COMP-2 ⁽³⁾	2024-3-COMP-3 ⁽⁴⁾	2024-3-COMP-4 ⁽⁵⁾
Parameters	San CAS RN	nple Date Units	Soil to Groundwater Pathway	Non-Industrial Direct Contact Pathway	Industrial Direct Contact Pathway	вту	2/28/2024	2/28/2024	2/28/2024	2/28/2024
Metals	OAO INI	Office	ratiiway	1 autway	Tattiway	D14				
Arsenic	7440-38-2	mg/kg	0.584	0.677	3	8.3	4.7	2.2 J	2.6	2.5 J
Barium	7440-39-3	mg/kg	164.8	15,300	100,000	364	43.6	39.8	49.5	46.2
Cadmium	7440-43-9	mg/kg	0.752	71.1	985	1.07	<0.13	<0.13	0.30 J	0.26 J
Chromium	7440-47-3	mg/kg	360,000	-	-	43.5	15.7	11.4	13.1	12.3
Lead	7439-92-1	mg/kg	27	400	800	51.6	4.5	2.8	3.9	3.4
Mercury	7439-97-6	mg/kg	0.208	3.13	3.13	-	<0.010	<0.0098	<0.010	<0.010
Selenium	7782-49-2	mg/kg	0.52	391	5,840	-	<1.2	<1.3	<1.3	<1.3
Silver	7440-22-4	mg/kg	0.849	391	5,840	•	<0.29	<0.30	<0.31	<0.31
PCBs										
PCB-1016	12674-11-2	μg/kg	-	4,110	28,000	-	<15.6	<15.6	<15.6	<15.5
PCB-1221	11104-28-2	μg/kg	-	213	883	-	<15.6	<15.6	<15.6	<15.5
PCB-1232	11141-16-5	μg/kg	-	190	792	-	<15.6	<15.6	<15.6	<15.5
PCB-1242	53469-21-9	μg/kg	-	235	972	-	<15.6	<15.6	<15.6	<15.5
PCB-1248	12672-29-6	μg/kg	-	236	975	-	574	664	850	861
PCB-1254	11097-69-1	μg/kg	-	239	988	•	<15.6	<15.6	<15.6	<15.5
PCB-1260	11096-82-5	μg/kg	-	243	1,000	-	<15.6	<15.6	<15.6	<15.5
Total PCBs	1336-36-3	μg/kg	9.38	234	967	-	574	664	850	861
Notes:		•							Prepa	red by: M. Wagler 4/5/2024

Notes:

RCL = Wisconsin Administrative Code Chapter NR 720 residual contaminant level

BTV = background threshold value

CAS RN = Chemical Abstract Service Registry Number

PCBs = polychlorinated biphenyls

mg/kg = milligrams per kilogram

μg/kg = micrograms per kilogram

- = standard not established

Blue italics = detection equals or exceeds the NR 720 groundwater pathway RCL and BTV (if established)

Orange bold = detection equals or exceeds the non-industrial direct contact pathway RCL and BTV (if established)

Red bold = detection equals or exceeds the industrial direct contact pathway RCL and BTV (if established)

Data Qualifiers

J = Estimated concentration

Footnotes:

- (1) NR 720 RCLs and BTVs from WDNR RCL spreadsheet (December 2018 update), in which RCLs were calculated using default exposure assumptions listed in NR 720.12(3).
- (2) Composite sample 2024-COMP-1 consisted of individual samples identified as 2024-3-A, 2024-3-B, 2024-3-D, and 2024-3-E, PCB results for individual samples are summarized in Table 2.
- (3) Composite sample 2024-COMP-2 consisted of individual samples identified as 2024-3-B, 2024-3-C, 2024-3-E, and 2024-3-F, PCB results for individual samples are summarized in Table 2.
- (4) Composite sample 2024-COMP-3 consisted of individual samples identified as 2024-3-D, 2024-3-E, 2024-3-G, and 2024-3-H, PCB results for individual samples are summarized in Table 2.
- (5) Composite sample 2024-COMP-4 consisted of individual samples identified as 2024-3-E, 2024-3-F, 2024-3-H, and 2024-3-I, PCB results for individual samples are summarized in Table 2.

Page 1 of 1

Checked by: M. Holicky 4/5/2024

Table 2: Concrete Analytical Results - Area 2024-3 (Individual Samples) Madison Kipp Corporation Madison, Wisconsin TRC Project # 581184

Samp				NR 720 Soil RCLs ⁽¹⁾			2024-3-C	2024-3-D	2024-3-E	2024-3-F	2024-3-G	2024-3-H	2024-3-I
	le Date		Non-		2/28/2024	2/28/2024	2/28/2024	2/28/2024	2/28/2024	2/28/2024	2/28/2024	2/28/2024	2/28/2024
CAS RN	Units	Soil to Groundwater Pathway	Industrial Direct Contact Pathway	Direct Contact									
					l								
12674-11-2	μg/kg	-	4,110	28,000	<15.5	<15.7	<15.8	<15.6	<47.2	<15.4	<15.7	<15.6	<15.6
11104-28-2	μg/kg	-	213	883	<15.5	<15.7	<15.8	<15.6	<47.2	<15.4	<15.7	<15.6	<15.6
11141-16-5	μg/kg	-	190	792	<15.5	<15.7	<15.8	<15.6	<47.2	<15.4	<15.7	<15.6	<15.6
		-	235	972	<15.5	<15.7	<15.8	<15.6	<47.2	<15.4	<15.7	<15.6	<15.6
12672-29-6	μg/kg	-	236	975	164	122	84.5	106	2170	616	238	650	974
11097-69-1	μg/kg	-	239	988	66.6	<15.7	38.9 J	48.3 J	<47.2	<15.4	82.6	<15.6	<15.6
11096-82-5	μg/kg	-	243	1,000	<15.5	<15.7	<15.8	<15.6	<47.2	<15.4	<15.7	<15.6	<15.6
1336-36-3	μg/kg	9.38	234	967	231	122	123	155	2170	616	321	650	974
	malka								1.00				
1111	1104-28-2 1141-16-5 33469-21-9 2672-29-6 1097-69-1 1096-82-5 1336-36-3	2674-11-2 µg/kg 1104-28-2 µg/kg 1141-16-5 µg/kg 33469-21-9 µg/kg 2672-29-6 µg/kg 1097-69-1 µg/kg 1096-82-5 µg/kg 1336-36-3 µg/kg	CAS RN Units Groundwater Pathway 2674-11-2 μg/kg - 1104-28-2 μg/kg - 1141-16-5 μg/kg - 33469-21-9 μg/kg - 2672-29-6 μg/kg - 1097-69-1 μg/kg - 1096-82-5 μg/kg -	CAS RN Units Soil to Groundwater Pathway Direct Contact Pathway 2674-11-2 μg/kg - 4,110 1104-28-2 μg/kg - 213 1141-16-5 μg/kg - 190 33469-21-9 μg/kg - 235 2672-29-6 μg/kg - 236 1097-69-1 μg/kg - 239 1096-82-5 μg/kg - 243 1336-36-3 μg/kg 9.38 234	CAS RN Units Soil to Groundwater Pathway Direct Contact Pathway Direct Contact Pathway Direct Contact Pathway 2674-11-2 μg/kg - 4,110 28,000 1104-28-2 μg/kg - 213 883 1141-16-5 μg/kg - 190 792 33469-21-9 μg/kg - 235 972 2672-29-6 μg/kg - 236 975 1097-69-1 μg/kg - 239 988 1096-82-5 μg/kg - 243 1,000 1336-36-3 μg/kg 9.38 234 967	Soil to Groundwater Pathway Direct Contact Contact Pathway Direct Contact Pathway Direct Contact Pathway 2674-11-2 μg/kg - 4,110 28,000 <15.5	Soil to Groundwater Pathway Path	Soil to Groundwater Pathway	Soil to Groundwater Pathway Path	Soil to Groundwater Pathway Path	Soil to Groundwater Pathway	Soil to Groundwater Pathway	Soil to Groundwater Pathway

Notes:

RCL = Wisconsin Administrative Code Chapter NR 720 residual contaminant level

CAS RN = Chemical Abstract Service Registry Number

PCBs = polychlorinated biphenyls

μg/kg = micrograms per kilogram

- = standard not established

Blue italics = detection equals or exceeds the NR 720 groundwater pathway RCL (if established)

Orange bold = detection equals or exceeds the non-industrial direct contact pathway RCL (if established)

Red bold = detection equals or exceeds the industrial direct contact pathway RCL (if established)

Data Qualifiers

J = Estimated concentration

Footnotes:

- (1) NR 720 RCLs and BTVs from WDNR RCL spreadsheet (December 2018 update), in which RCLs were calculated using default exposure assumptions listed in NR 720.12(3).
- (2) The 95 percent UCL calculates a mean (average) concentration for the entire data set, or in this case Area 2024-3 of concrete. The analytical results for the nine samples, calculate that the 95 percent UCL mean concentration for Area 2024-3 concrete is less than or equal to 1.00 mg/kg.

Prepared by: A. Stehn 7/26/2024 Checked by: B. Wachholz 7/26/2024

95% Upper Confidence Level 5	Supporting Calculations	

UCL Statistics for Uncensored Full Data Sets

User Selected Options

Date/Time of Computation ProUCL 5.2 4/29/2024 1:45:05 PM

> From File MKC ProUCL input.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

total PCB

General Statistics

Total Number of Observations	9	Number of Distinct Observations	9
		Number of Missing Observations	0
Minimum	122	Mean	595.8
Maximum	2170	Median	321
SD	659.1	Std. Error of Mean	219.7
Coefficient of Variation	1.106	Skewness	2.014

Note: Sample size is small (e.g., <10), if data are collected using incremental sampling methodology (ISM) approach, refer also to ITRC Tech Reg Guide on ISM (ITRC 2020 and ITRC 2012) for additional guidance, but note that ITRC may recommend the t-UCL or the Chebyshev UCL for small sample sizes (n < 7). The Chebyshev UCL often results in gross overestimates of the mean.

Refer to the ProUCL 5.2 Technical Guide for a discussion of the Chebyshev UCL.

Normal GOF Test

Shapiro Wilk Test Statistic 0.752	Shapiro Wilk GOF Test
1% Shapiro Wilk Critical Value 0.764	Data Not Normal at 1% Significance Level
Lilliefors Test Statistic 0.245	Lilliefors GOF Test
1% Lilliefors Critical Value 0.316	Data appear Normal at 1% Significance Level

Data appear Approximate Normal at 1% Significance Level Note GOF tests may be unreliable for small sample sizes

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)			
95% Student's-t UCL	1004	95% Adjusted-CLT UCL (Chen-1995)	1115		
		95% Modified-t UCL (Johnson-1978)	1029		

Gamma GOF Test

Anderson-Darling Gamma GOF Test	0.403	A-D Test Statistic
Detected data appear Gamma Distributed at 5% Significance Le	0.739	5% A-D Critical Value
Kolmogorov-Smirnov Gamma GOF Test	0.174	K-S Test Statistic
Detected data appear Gamma Distributed at 5% Significance Le	0.286	5% K-S Critical Value

Detected data appear Gamma Distributed at 5% Significance Level

Note GOF tests may be unreliable for small sample sizes

UCL Statistics for Uncensored Full Data Sets

Gamma	Statistics

1.218	k star (bias corrected MLE)	0.886
488.9	Theta star (bias corrected MLE)	672.1
21.93	nu star (bias corrected)	15.96
595.8	MLE Sd (bias corrected)	632.8
	Approximate Chi Square Value (0.05)	7.931
0.0231	Adjusted Chi Square Value	6.772
	488.9 21.93 595.8	488.9 Theta star (bias corrected MLE) 21.93 nu star (bias corrected) 595.8 MLE Sd (bias corrected) Approximate Chi Square Value (0.05)

Assuming Gamma Distribution

95% Approximate Gamma UCL 1199 95% Adjusted Gamma UCL 1404

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.93	Shapiro Wilk Lognormal GOF Test
10% Shapiro Wilk Critical Value	0.859	Data appear Lognormal at 10% Significance Level
Lilliefors Test Statistic	0.143	Lilliefors Lognormal GOF Test
10% Lilliefors Critical Value	0.252	Data appear Lognormal at 10% Significance Level

Data appear Lognormal at 10% Significance Level

Note GOF tests may be unreliable for small sample sizes

Lognormal Statistics

Minimum of Logged Data	4.804	Mean of logged Data	5.926
Maximum of Logged Data	7.682	SD of logged Data	1.005

Assuming Lognormal Distribution

95% H-UCL	1973	90% Chebyshev (MVUE) UCL	1177
95% Chebyshev (MVUE) UCL	1449	97.5% Chebyshev (MVUE) UCL	1827
99% Chebyshev (MVUE) UCL	2568		

Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution

Nonparametric Distribution Free UCLs

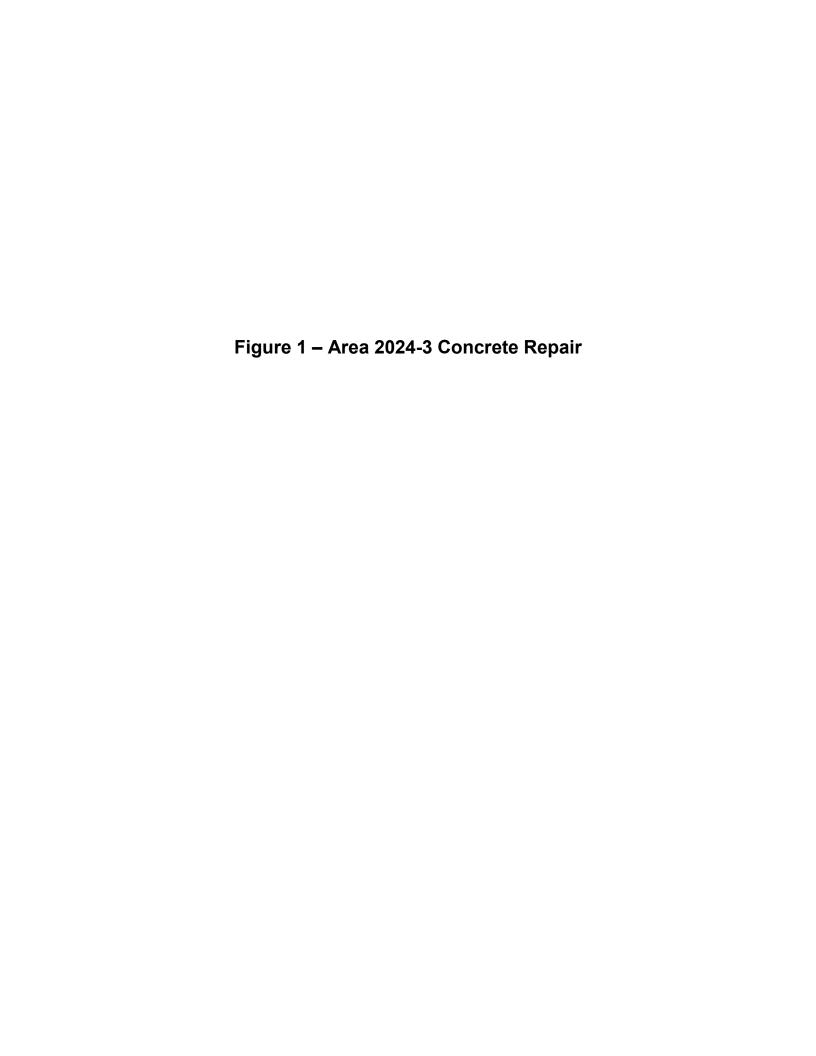
1097	95% BCA Bootstrap UCL	957.2	95% CLT UCL
1409	95% Bootstrap-t UCL	929.6	95% Standard Bootstrap UCL
954	95% Percentile Bootstrap UCL	2471	95% Hall's Bootstrap UCL
1553	95% Chebyshev(Mean, Sd) UCL	1255	90% Chebyshev(Mean, Sd) UCL
2782	99% Chebyshev(Mean, Sd) UCL	1968	97.5% Chebyshev(Mean, Sd) UCL

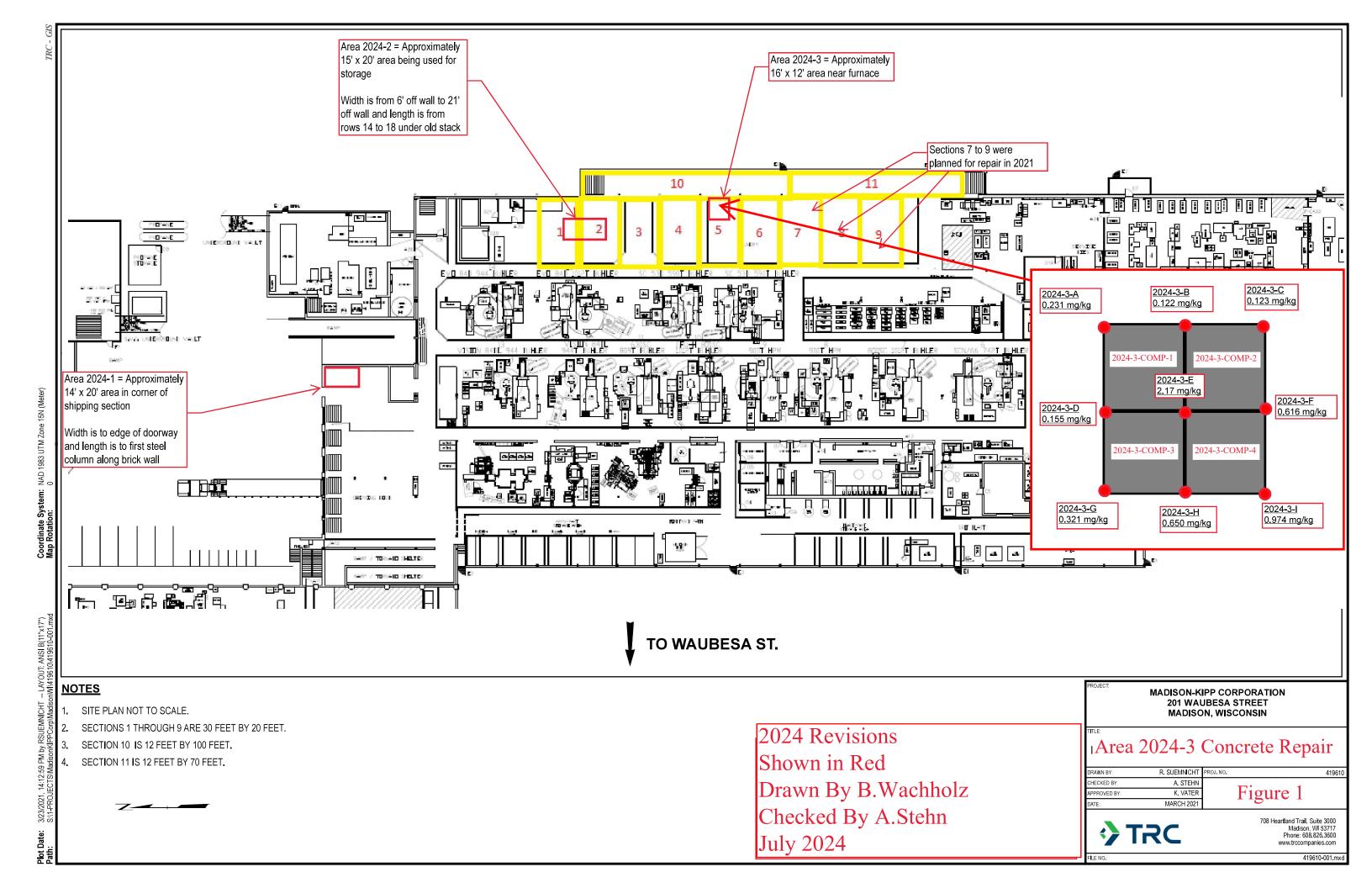
Suggested UCL to Use

95% Student's-t UCL 1004 [*1.00 mg/kg]

The calculated UCLs are based on assumptions that the data were collected in a random and unbiased manner.

Please verify the data were collected from random locations.


If the data were collected using judgmental or other non-random methods, then contact a statistician to correctly calculate UCLs.


When a data set follows an approximate distribution passing only one of the GOF tests, it is suggested to use a UCL based upon a distribution passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness using results from simulation studies.

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Appendix C: Laboratory Analytical Reports

(920)469-2436

March 11, 2024

Andrew Stehn TRC Madison 708 Heartland Trail Madison, WI 53717

RE: Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Dear Andrew Stehn:

Enclosed are the analytical results for sample(s) received by the laboratory on March 01, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

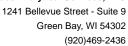
• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tod Noltemeyer tod.noltemeyer@pacelabs.com (920)469-2436

Tod holteneya


Project Manager

Enclosures

cc: Peggy Popp, TRC - Madison Katherine Vater, TRC

Ben Wachholz, TRC Madison

CERTIFICATIONS

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

SAMPLE SUMMARY

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40274898001	2024-1-COMP-1	Solid	02/28/24 16:25	03/01/24 09:35
40274898002	2024-1-COMP-2	Solid	02/28/24 16:33	03/01/24 09:35
40274898003	2024-1-COMP-3	Solid	02/28/24 16:40	03/01/24 09:35
40274898004	2024-1-COMP-4	Solid	02/28/24 16:45	03/01/24 09:35
40274898005	2024-2-COMP-1	Solid	02/28/24 10:49	03/01/24 09:35
40274898006	2024-2-COMP-2	Solid	02/28/24 11:25	03/01/24 09:35
40274898007	2024-2-COMP-3	Solid	02/28/24 11:55	03/01/24 09:35
40274898008	2024-2-COMP-4	Solid	02/28/24 15:35	03/01/24 09:35
40274898009	2024-3-COMP-1	Solid	02/28/24 15:47	03/01/24 09:35
40274898010	2024-3-COMP-2	Solid	02/28/24 15:59	03/01/24 09:35
40274898011	2024-3-COMP-3	Solid	02/28/24 16:07	03/01/24 09:35
40274898012	2024-3-COMP-4	Solid	02/28/24 16:15	03/01/24 09:35

SAMPLE ANALYTE COUNT

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40274898001	2024-1-COMP-1	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898002	2024-1-COMP-2	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898003	2024-1-COMP-3	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898004	2024-1-COMP-4	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898005	2024-2-COMP-1	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898006	2024-2-COMP-2	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898007	2024-2-COMP-3	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898008	2024-2-COMP-4	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898009	2024-3-COMP-1	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898010	2024-3-COMP-2	EPA 8082A	BLM	10

SAMPLE ANALYTE COUNT

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Lab ID	Sample ID	Method	Analysts	Analytes Reported
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898011	2024-3-COMP-3	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1
40274898012	2024-3-COMP-4	EPA 8082A	BLM	10
		EPA 6010D	SIS	8
		EPA 7471	RZA	1
		ASTM D2974-87	MJV	1

PASI-G = Pace Analytical Services - Green Bay

SUMMARY OF DETECTION

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0274898001	2024-1-COMP-1					
EPA 8082A	PCB, Total	1740	ug/kg	103	03/06/24 06:57	
EPA 8082A	PCB-1248 (Aroclor 1248)	1740	ug/kg	103	03/06/24 06:57	
EPA 6010D	Barium	29.1	mg/kg	0.99	03/04/24 15:10	
EPA 6010D	Chromium	10.4	mg/kg	2.0	03/04/24 15:10	
EPA 6010D	Lead	5.7	mg/kg	4.0	03/04/24 15:10	
EPA 6010D	Total Hardness by 2340B	567000	mg/kg		03/04/24 15:10	
ASTM D2974-87	Percent Moisture	3.2	%	0.10	03/01/24 14:26	
0274898002	2024-1-COMP-2					
PA 8082A	PCB, Total	4410	ug/kg	260	03/06/24 07:18	
EPA 8082A	PCB-1248 (Aroclor 1248)	4410	ug/kg	260	03/06/24 07:18	
EPA 6010D	Arsenic	2.4J	mg/kg	2.5	03/04/24 14:46	
PA 6010D	Barium	31.2	mg/kg	0.50	03/04/24 14:46	
PA 6010D	Chromium	11.1	mg/kg	1.0	03/04/24 14:46	
PA 6010D	Lead	3.5	mg/kg	2.0	03/04/24 14:46	
PA 6010D	Total Hardness by 2340B	689000	mg/kg		03/04/24 16:18	
ASTM D2974-87	Percent Moisture	3.9	%	0.10	03/01/24 14:26	
0274898003	2024-1-COMP-3					
PA 8082A	PCB, Total	4260	ug/kg	262	03/06/24 07:39	
EPA 8082A	PCB-1248 (Aroclor 1248)	4260	ug/kg	262	03/06/24 07:39	
PA 6010D	Arsenic	3.2	mg/kg	2.5	03/04/24 14:48	
PA 6010D	Barium	41.2	mg/kg	0.50	03/04/24 14:48	
PA 6010D	Chromium	14.9	mg/kg	1.0	03/04/24 14:48	
PA 6010D	Lead	3.5	mg/kg	2.0	03/04/24 14:48	
PA 6010D	Total Hardness by 2340B	541000	mg/kg		03/04/24 16:20	
STM D2974-87	Percent Moisture	4.7	%	0.10	03/01/24 14:26	
0274898004	2024-1-COMP-4					
PA 8082A	PCB, Total	5000	ug/kg	262	03/06/24 11:33	
PA 8082A	PCB-1248 (Aroclor 1248)	5000	ug/kg		03/06/24 11:33	
PA 6010D	Arsenic	2.7	mg/kg	2.6	03/04/24 14:50	
EPA 6010D	Barium	33.9	mg/kg	0.51	03/04/24 14:50	
EPA 6010D	Chromium	11.0	mg/kg	1.0	03/04/24 14:50	
PA 6010D	Lead	2.0J	mg/kg	2.0	03/04/24 14:50	
PA 6010D	Total Hardness by 2340B	656000	mg/kg		03/04/24 16:22	
ASTM D2974-87	Percent Moisture	4.2	%	0.10	03/01/24 14:27	
0274898005	2024-2-COMP-1					
EPA 8082A	PCB, Total	16.8J	ug/kg	50.9	03/06/24 11:54	
PA 8082A	PCB-1248 (Aroclor 1248)	16.8J	ug/kg	50.9		
PA 6010D	Arsenic	3.4	mg/kg	2.4		
PA 6010D	Barium	41.7	mg/kg	0.49		
PA 6010D	Cadmium	0.27J	mg/kg	0.49	03/04/24 14:52	
PA 6010D	Chromium	14.0	mg/kg	0.97		
EPA 6010D	Lead	4.3	mg/kg	1.9	03/04/24 14:52	
EPA 6010D	Total Hardness by 2340B	624000	mg/kg	1.0	03/04/24 16:23	
ASTM D2974-87	Percent Moisture	1.9	//////////////////////////////////////		03/01/24 14:27	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

SUMMARY OF DETECTION

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0274898006	2024-2-COMP-2					
EPA 8082A	PCB, Total	17.7J	ug/kg	51.2	03/06/24 08:43	
EPA 8082A	PCB-1248 (Aroclor 1248)	17.7J	ug/kg	51.2	03/06/24 08:43	
EPA 6010D	Arsenic	3.4J	mg/kg	4.9	03/04/24 15:14	D3
EPA 6010D	Barium	93.9	mg/kg	0.99	03/04/24 15:14	
EPA 6010D	Chromium	21.0	mg/kg	2.0	03/04/24 15:14	
EPA 6010D	Lead	3.5J	mg/kg	3.9	03/04/24 15:14	D3
EPA 6010D	Total Hardness by 2340B	591000	mg/kg		03/04/24 15:14	
ASTM D2974-87	Percent Moisture	2.6	%	0.10	03/01/24 14:27	
0274898007	2024-2-COMP-3					
EPA 8082A	PCB, Total	31.9J	ug/kg	50.7	03/06/24 09:04	
EPA 8082A	PCB-1248 (Aroclor 1248)	31.9J	ug/kg	50.7	03/06/24 09:04	
EPA 6010D	Arsenic	3.3	mg/kg	2.3	03/04/24 14:55	
EPA 6010D	Barium	33.6	mg/kg	0.47	03/04/24 14:55	
EPA 6010D	Cadmium	0.21J	mg/kg	0.47	03/04/24 14:55	
EPA 6010D	Chromium	10.3	mg/kg	0.93	03/04/24 14:55	
EPA 6010D	Lead	3.0	mg/kg	1.9	03/04/24 14:55	
EPA 6010D	Total Hardness by 2340B	722000	mg/kg		03/04/24 16:25	
ASTM D2974-87	Percent Moisture	1.1	%	0.10	03/01/24 14:27	
0274898008	2024-2-COMP-4					
EPA 6010D	Arsenic	3.0	mg/kg	2.5	03/04/24 14:57	
PA 6010D	Barium	58.6	mg/kg	0.50	03/04/24 14:57	
PA 6010D	Cadmium	0.16J	mg/kg	0.50	03/04/24 14:57	
EPA 6010D	Chromium	12.1	mg/kg	1.0	03/04/24 14:57	
EPA 6010D	Lead	3.4	mg/kg	2.0	03/04/24 14:57	
EPA 6010D	Total Hardness by 2340B	674000	mg/kg		03/04/24 16:27	
ASTM D2974-87	Percent Moisture	1.8	%	0.10	03/01/24 14:27	
0274898009	2024-3-COMP-1					
PA 8082A	PCB, Total	574	ug/kg	51.2	03/06/24 09:47	
EPA 8082A	PCB-1248 (Aroclor 1248)	574	ug/kg	51.2	03/06/24 09:47	
EPA 6010D	Arsenic	4.7	mg/kg	2.4	03/04/24 14:59	
EPA 6010D	Barium	43.6	mg/kg	0.48	03/04/24 14:59	
EPA 6010D	Chromium	15.7	mg/kg	0.95	03/04/24 14:59	
EPA 6010D	Lead	4.5	mg/kg	1.9	03/04/24 14:59	
EPA 6010D	Total Hardness by 2340B	567000	mg/kg		03/04/24 16:29	
ASTM D2974-87	Percent Moisture	2.6	%	0.10	03/01/24 14:27	
0274898010	2024-3-COMP-2					
EPA 8082A	PCB, Total	664	ug/kg	51.4	03/06/24 10:08	
EPA 8082A	PCB-1248 (Aroclor 1248)	664	ug/kg	51.4	03/06/24 10:08	
EPA 6010D	Arsenic	2.2J	mg/kg	2.5	03/04/24 15:04	
EPA 6010D	Barium	39.8	mg/kg	0.50	03/04/24 15:04	
EPA 6010D	Chromium	11.4	mg/kg	0.99	03/04/24 15:04	
EPA 6010D	Lead	2.8	mg/kg	2.0	03/04/24 15:04	
EPA 6010D	Total Hardness by 2340B	578000	mg/kg		03/04/24 16:31	
ASTM D2974-87	Percent Moisture	2.6	%	0.10	03/01/24 14:27	

(920)469-2436

SUMMARY OF DETECTION

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40274898011	2024-3-COMP-3					
EPA 8082A	PCB, Total	850	ug/kg	51.2	03/06/24 10:29	
EPA 8082A	PCB-1248 (Aroclor 1248)	850	ug/kg	51.2	03/06/24 10:29	
EPA 6010D	Arsenic	2.6	mg/kg	2.5	03/04/24 15:06	
EPA 6010D	Barium	49.5	mg/kg	0.50	03/04/24 15:06	
EPA 6010D	Cadmium	0.30J	mg/kg	0.50	03/04/24 15:06	
EPA 6010D	Chromium	13.1	mg/kg	1.0	03/04/24 15:06	
EPA 6010D	Lead	3.9	mg/kg	2.0	03/04/24 15:06	
EPA 6010D	Total Hardness by 2340B	634000	mg/kg		03/04/24 16:33	
ASTM D2974-87	Percent Moisture	2.5	%	0.10	03/01/24 14:27	
40274898012	2024-3-COMP-4					
EPA 8082A	PCB, Total	861	ug/kg	51.0	03/06/24 10:50	
EPA 8082A	PCB-1248 (Aroclor 1248)	861	ug/kg	51.0	03/06/24 10:50	
EPA 6010D	Arsenic	2.5J	mg/kg	2.5	03/04/24 15:08	
EPA 6010D	Barium	46.2	mg/kg	0.50	03/04/24 15:08	
EPA 6010D	Cadmium	0.26J	mg/kg	0.50	03/04/24 15:08	
EPA 6010D	Chromium	12.3	mg/kg	1.0	03/04/24 15:08	
EPA 6010D	Lead	3.4	mg/kg	2.0	03/04/24 15:08	
EPA 6010D	Total Hardness by 2340B	559000	mg/kg		03/04/24 16:35	
ASTM D2974-87	Percent Moisture	2.0	%	0.10	03/01/24 14:28	

1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

PROJECT NARRATIVE

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Method:EPA 8082ADescription:8082A GCS PCBClient:TRC - MADISONDate:March 11, 2024

General Information:

12 samples were analyzed for EPA 8082A by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3541 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

PROJECT NARRATIVE

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Method: EPA 6010D
Description: 6010D MET ICP
Client: TRC - MADISON
Date: March 11, 2024

General Information:

12 samples were analyzed for EPA 6010D by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050B with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

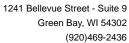
All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 468241

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 40274894001

M0: Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

- MS (Lab ID: 2682643)
 - BariumChromium
- MSD (Lab ID: 2682644)
 - Barium


Additional Comments:

Analyte Comments:

QC Batch: 468241

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- 2024-1-COMP-1 (Lab ID: 40274898001)
 - Silver
 - Arsenic
 - Cadmium

PROJECT NARRATIVE

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Method:EPA 6010DDescription:6010D MET ICPClient:TRC - MADISONDate:March 11, 2024

Analyte Comments:

QC Batch: 468241

D3: Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

- 2024-1-COMP-1 (Lab ID: 40274898001)
 - Selenium
- 2024-2-COMP-2 (Lab ID: 40274898006)
 - Silver
 - Arsenic
 - Cadmium
 - Lead
 - Selenium

PROJECT NARRATIVE

581184 PHASE 2 TASK 4 MKC CONC Project:

Pace Project No.: 40274898

Method: **EPA 7471 Description:** 7471 Mercury Client: TRC - MADISON Date: March 11, 2024

General Information:

12 samples were analyzed for EPA 7471 by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-1-COMP-1 Lab ID: 40274898001 Collected: 02/28/24 16:25 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	\ 8082A Prep	aration Met	hod: El	PA 3541			
	Pace Anal	ytical Service	es - Green Ba	y					
PCB, Total	1740	ug/kg	103	31.4	2	03/05/24 12:00	03/06/24 06:57	1336-36-3	
PCB-1016 (Aroclor 1016)	<31.4	ug/kg	103	31.4	2	03/05/24 12:00	03/06/24 06:57	12674-11-2	
PCB-1221 (Aroclor 1221)	<31.4	ug/kg	103	31.4	2	03/05/24 12:00	03/06/24 06:57	11104-28-2	
PCB-1232 (Aroclor 1232)	<31.4	ug/kg	103	31.4	2	03/05/24 12:00	03/06/24 06:57	11141-16-5	
PCB-1242 (Aroclor 1242)	<31.4	ug/kg	103	31.4	2	03/05/24 12:00	03/06/24 06:57	53469-21-9	
PCB-1248 (Aroclor 1248)	1740	ug/kg	103	31.4	2	03/05/24 12:00	03/06/24 06:57	12672-29-6	
PCB-1254 (Aroclor 1254)	<31.4	ug/kg	103	31.4	2	03/05/24 12:00	03/06/24 06:57	11097-69-1	
PCB-1260 (Aroclor 1260)	<31.4	ug/kg	103	31.4	2	03/05/24 12:00	03/06/24 06:57	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	69	%	44-120		2	03/05/24 12:00	03/06/24 06:57		
Decachlorobiphenyl (S)	61	%	34-120		2	03/05/24 12:00	03/06/24 06:57	2051-24-3	
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	y					
Arsenic	<2.9	mg/kg	5.0	2.9	2	03/04/24 06:14	03/04/24 15:10	7440-38-2	D3
Barium	29.1	mg/kg	0.99	0.30	2	03/04/24 06:14	03/04/24 15:10	7440-39-3	
Cadmium	<0.26	mg/kg	0.99	0.26	2	03/04/24 06:14	03/04/24 15:10	7440-43-9	D3
Chromium	10.4	mg/kg	2.0	0.55	2	03/04/24 06:14	03/04/24 15:10	7440-47-3	
Lead	5.7	mg/kg	4.0	1.2	2	03/04/24 06:14	03/04/24 15:10	7439-92-1	
Selenium	<2.6	mg/kg	7.9	2.6	2	03/04/24 06:14	03/04/24 15:10	7782-49-2	D3
Silver	<0.61	mg/kg	2.0	0.61	2	03/04/24 06:14	03/04/24 15:10	7440-22-4	D3
Total Hardness by 2340B	567000	mg/kg			2	03/04/24 06:14	03/04/24 15:10		
7471 Mercury	Analytical	Method: EPA	A 7471 Prepa	ration Metho	od: EP/	A 7471			
	Pace Anal	ytical Service	es - Green Ba	y					
Mercury	<0.010	mg/kg	0.036	0.010	1	03/08/24 11:05	03/11/24 10:17	7439-97-6	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	3.2	%	0.10	0.10	1		03/01/24 14:26		

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-1-COMP-2 Lab ID: 40274898002 Collected: 02/28/24 16:33 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

8082A GCS PCB	•	Method: EPA ytical Service		aration Metl									
		ytical Service	Analytical Method: EPA 8082A Preparation Method: EPA 3541										
DOD 7	4410	4410 ug/kg 260 79.3 5 03/05/24 12:00 03/06/24 07:18 1336-36-3											
PCB, Total		ug/kg	260	79.3	5	03/05/24 12:00	03/06/24 07:18	1336-36-3					
PCB-1016 (Aroclor 1016)	<79.3	ug/kg	260	79.3	5	03/05/24 12:00	03/06/24 07:18	12674-11-2					
PCB-1221 (Aroclor 1221)	<79.3	ug/kg	260	79.3	5	03/05/24 12:00	03/06/24 07:18	11104-28-2					
PCB-1232 (Aroclor 1232)	<79.3	ug/kg	260	79.3	5	03/05/24 12:00	03/06/24 07:18	11141-16-5					
PCB-1242 (Aroclor 1242)	<79.3	ug/kg	260	79.3	5	03/05/24 12:00	03/06/24 07:18	53469-21-9					
PCB-1248 (Aroclor 1248)	4410	ug/kg	260	79.3	5	03/05/24 12:00	03/06/24 07:18	12672-29-6					
PCB-1254 (Aroclor 1254)	<79.3	ug/kg	260	79.3	5	03/05/24 12:00	03/06/24 07:18	11097-69-1					
PCB-1260 (Aroclor 1260)	<79.3	ug/kg	260	79.3	5	03/05/24 12:00	03/06/24 07:18	11096-82-5					
Surrogates													
Tetrachloro-m-xylene (S)	73	%	44-120		5	03/05/24 12:00	03/06/24 07:18	877-09-8					
Decachlorobiphenyl (S)	68	%	34-120		5	03/05/24 12:00	03/06/24 07:18	2051-24-3					
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B												
	Pace Anal	ytical Service	es - Green Bay	У									
Arsenic	2.4J	mg/kg	2.5	1.5	1	03/04/24 06:14	03/04/24 14:46	7440-38-2					
Barium	31.2	mg/kg	0.50	0.15	1	03/04/24 06:14	03/04/24 14:46	7440-39-3					
Cadmium	<0.13	mg/kg	0.50	0.13	1	03/04/24 06:14	03/04/24 14:46	7440-43-9					
Chromium	11.1	mg/kg	1.0	0.28	1	03/04/24 06:14	03/04/24 14:46	7440-47-3					
Lead	3.5	mg/kg	2.0	0.60	1	03/04/24 06:14	03/04/24 14:46	7439-92-1					
Selenium	<1.3	mg/kg	4.0	1.3	1	03/04/24 06:14	03/04/24 14:46	7782-49-2					
Silver	<0.31	mg/kg	1.0	0.31	1	03/04/24 06:14	03/04/24 14:46	7440-22-4					
Total Hardness by 2340B	689000	mg/kg			2	03/04/24 06:14	03/04/24 16:18						
7471 Mercury	Analytical	Method: EPA	7471 Prepai	ration Metho	od: EP/	A 7471							
-	Pace Anal	ytical Service	es - Green Bay	y									
Mercury	<0.0093	mg/kg	0.033	0.0093	1	03/08/24 11:05	03/11/24 10:56	7439-97-6					
Percent Moisture	Analytical	Method: AST	M D2974-87										
	Pace Anal	ytical Service	s - Green Ba	У									
Percent Moisture	3.9	%	0.10	0.10	1		03/01/24 14:26						

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-1-COMP-3 Lab ID: 40274898003 Collected: 02/28/24 16:40 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	nod: El	PA 3541					
	Pace Anal	ytical Service	es - Green Bay	/							
PCB, Total	4260	ug/kg	262	79.8	5	03/05/24 12:00	03/06/24 07:39	1336-36-3			
PCB-1016 (Aroclor 1016)	<79.8	ug/kg	262	79.8	5	03/05/24 12:00	03/06/24 07:39	12674-11-2			
PCB-1221 (Aroclor 1221)	<79.8	ug/kg	262	79.8	5	03/05/24 12:00	03/06/24 07:39	11104-28-2			
PCB-1232 (Aroclor 1232)	<79.8	ug/kg	262	79.8	5	03/05/24 12:00	03/06/24 07:39	11141-16-5			
PCB-1242 (Aroclor 1242)	<79.8	ug/kg	262	79.8	5	03/05/24 12:00	03/06/24 07:39	53469-21-9			
PCB-1248 (Aroclor 1248)	4260	ug/kg	262	79.8	5	03/05/24 12:00	03/06/24 07:39	12672-29-6			
PCB-1254 (Aroclor 1254)	<79.8	ug/kg	262	79.8	5	03/05/24 12:00	03/06/24 07:39	11097-69-1			
PCB-1260 (Aroclor 1260)	<79.8	ug/kg	262	79.8	5	03/05/24 12:00	03/06/24 07:39	11096-82-5			
Surrogates											
Tetrachloro-m-xylene (S)	78	%	44-120		5	03/05/24 12:00	03/06/24 07:39	877-09-8			
Decachlorobiphenyl (S)	70	%	34-120		5	03/05/24 12:00	03/06/24 07:39	2051-24-3			
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B										
	Pace Anal	ytical Service	es - Green Bay	/							
Arsenic	3.2	mg/kg	2.5	1.5	1	03/04/24 06:14	03/04/24 14:48	7440-38-2			
Barium	41.2	mg/kg	0.50	0.15	1	03/04/24 06:14	03/04/24 14:48	7440-39-3			
Cadmium	<0.13	mg/kg	0.50	0.13	1	03/04/24 06:14	03/04/24 14:48	7440-43-9			
Chromium	14.9	mg/kg	1.0	0.28	1	03/04/24 06:14	03/04/24 14:48	7440-47-3			
Lead	3.5	mg/kg	2.0	0.60	1	03/04/24 06:14	03/04/24 14:48	7439-92-1			
Selenium	<1.3	mg/kg	4.0	1.3	1	03/04/24 06:14	03/04/24 14:48	7782-49-2			
Silver	<0.31	mg/kg	1.0	0.31	1	03/04/24 06:14	03/04/24 14:48	7440-22-4			
Total Hardness by 2340B	541000	mg/kg			2	03/04/24 06:14	03/04/24 16:20				
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ation Metho	od: EP/	A 7471					
•	Pace Anal	ytical Service	es - Green Bay	/							
Mercury	<0.010	mg/kg	0.036	0.010	1	03/08/24 11:05	03/11/24 10:58	7439-97-6			
Percent Moisture	Analytical	Method: AST	M D2974-87								
	Pace Anal	ytical Service	es - Green Bay	/							
Percent Moisture	4.7	%	0.10	0.10	1		03/01/24 14:26				

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-1-COMP-4 Lab ID: 40274898004 Collected: 02/28/24 16:45 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	nod: El	PA 3541					
	Pace Anal	ytical Service	es - Green Ba	y							
PCB, Total	5000	ug/kg	262	79.6	5	03/05/24 12:00	03/06/24 11:33	1336-36-3			
PCB-1016 (Aroclor 1016)	<79.6	ug/kg	262	79.6	5	03/05/24 12:00	03/06/24 11:33	12674-11-2			
PCB-1221 (Aroclor 1221)	<79.6	ug/kg	262	79.6	5	03/05/24 12:00	03/06/24 11:33	11104-28-2			
PCB-1232 (Aroclor 1232)	<79.6	ug/kg	262	79.6	5	03/05/24 12:00	03/06/24 11:33	11141-16-5			
PCB-1242 (Aroclor 1242)	<79.6	ug/kg	262	79.6	5	03/05/24 12:00	03/06/24 11:33	53469-21-9			
PCB-1248 (Aroclor 1248)	5000	ug/kg	262	79.6	5	03/05/24 12:00	03/06/24 11:33	12672-29-6			
PCB-1254 (Aroclor 1254)	<79.6	ug/kg	262	79.6	5	03/05/24 12:00	03/06/24 11:33	11097-69-1			
PCB-1260 (Aroclor 1260)	<79.6	ug/kg	262	79.6	5	03/05/24 12:00	03/06/24 11:33	11096-82-5			
Surrogates											
Tetrachloro-m-xylene (S)	71	%	44-120		5	03/05/24 12:00	03/06/24 11:33	877-09-8			
Decachlorobiphenyl (S)	63	%	34-120		5	03/05/24 12:00	03/06/24 11:33	2051-24-3			
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B										
	Pace Anal	ytical Service	es - Green Ba	y							
Arsenic	2.7	mg/kg	2.6	1.5	1	03/04/24 06:14	03/04/24 14:50	7440-38-2			
Barium	33.9	mg/kg	0.51	0.15	1	03/04/24 06:14	03/04/24 14:50	7440-39-3			
Cadmium	<0.14	mg/kg	0.51	0.14	1	03/04/24 06:14	03/04/24 14:50	7440-43-9			
Chromium	11.0	mg/kg	1.0	0.28	1	03/04/24 06:14	03/04/24 14:50	7440-47-3			
Lead	2.0J	mg/kg	2.0	0.61	1	03/04/24 06:14	03/04/24 14:50	7439-92-1			
Selenium	<1.3	mg/kg	4.1	1.3	1	03/04/24 06:14	03/04/24 14:50	7782-49-2			
Silver	<0.31	mg/kg	1.0	0.31	1	03/04/24 06:14	03/04/24 14:50	7440-22-4			
Total Hardness by 2340B	656000	mg/kg			2	03/04/24 06:14	03/04/24 16:22				
7471 Mercury	Analytical	Method: EPA	7471 Prepai	ration Metho	od: EP/	A 7471					
•	Pace Anal	ytical Service	es - Green Bay	y							
Mercury	<0.0093	mg/kg	0.033	0.0093	1	03/08/24 11:05	03/11/24 11:00	7439-97-6			
Percent Moisture	Analytical	Method: AST	M D2974-87								
	Pace Anal	ytical Service	es - Green Ba	у							
Percent Moisture	4.2	%	0.10	0.10	1		03/01/24 14:27				

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-2-COMP-1 Lab ID: 40274898005 Collected: 02/28/24 10:49 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8082A GCS PCB	Analytical	Method: EPA	8082A Prep	aration Met	nod: El	PA 3541					
	Pace Anal	ytical Service	s - Green Ba	y							
PCB, Total	16.8J	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 11:54	1336-36-3			
PCB-1016 (Aroclor 1016)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 11:54	12674-11-2			
PCB-1221 (Aroclor 1221)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 11:54	11104-28-2			
PCB-1232 (Aroclor 1232)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 11:54	11141-16-5			
PCB-1242 (Aroclor 1242)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 11:54	53469-21-9			
PCB-1248 (Aroclor 1248)	16.8J	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 11:54	12672-29-6			
PCB-1254 (Aroclor 1254)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 11:54	11097-69-1			
PCB-1260 (Aroclor 1260)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 11:54	11096-82-5			
Surrogates											
Tetrachloro-m-xylene (S)	77	%	44-120		1	03/05/24 12:00	03/06/24 11:54	877-09-8			
Decachlorobiphenyl (S)	62	%	34-120		1	03/05/24 12:00	03/06/24 11:54	2051-24-3			
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B										
	Pace Anal	ytical Service	es - Green Ba	y							
Arsenic	3.4	mg/kg	2.4	1.4	1	03/04/24 06:14	03/04/24 14:52	7440-38-2			
Barium	41.7	mg/kg	0.49	0.15	1	03/04/24 06:14	03/04/24 14:52	7440-39-3			
Cadmium	0.27J	mg/kg	0.49	0.13	1	03/04/24 06:14	03/04/24 14:52	7440-43-9			
Chromium	14.0	mg/kg	0.97	0.27	1	03/04/24 06:14	03/04/24 14:52	7440-47-3			
Lead	4.3	mg/kg	1.9	0.58	1	03/04/24 06:14	03/04/24 14:52	7439-92-1			
Selenium	<1.3	mg/kg	3.9	1.3	1	03/04/24 06:14	03/04/24 14:52	7782-49-2			
Silver	< 0.30	mg/kg	0.97	0.30	1	03/04/24 06:14	03/04/24 14:52	7440-22-4			
Total Hardness by 2340B	624000	mg/kg			2	03/04/24 06:14	03/04/24 16:23				
7471 Mercury	Analytical	Method: EPA	7471 Prepa	ration Metho	od: EP/	A 7471					
•	Pace Anal	ytical Service	es - Green Ba	y							
Mercury	<0.0098	mg/kg	0.034	0.0098	1	03/08/24 11:05	03/11/24 11:07	7439-97-6			
Percent Moisture	Analytical	Method: AST	M D2974-87								
	Pace Anal	ytical Service	s - Green Ba	y							
Percent Moisture	1.9	%	0.10	0.10	1		03/01/24 14:27				

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-2-COMP-2 Lab ID: 40274898006 Collected: 02/28/24 11:25 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8082A GCS PCB	•		A 8082A Prepa		nod: El	PA 3541					
	Pace Anal	ytical Service	es - Green Ba	y							
PCB, Total	17.7J	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 08:43	1336-36-3			
PCB-1016 (Aroclor 1016)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 08:43	12674-11-2			
PCB-1221 (Aroclor 1221)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 08:43	11104-28-2			
PCB-1232 (Aroclor 1232)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 08:43	11141-16-5			
PCB-1242 (Aroclor 1242)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 08:43	53469-21-9			
PCB-1248 (Aroclor 1248)	17.7J	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 08:43	12672-29-6			
PCB-1254 (Aroclor 1254)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 08:43	11097-69-1			
PCB-1260 (Aroclor 1260)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 08:43	11096-82-5			
Surrogates											
Tetrachloro-m-xylene (S)	81	%	44-120		1	03/05/24 12:00	03/06/24 08:43				
Decachlorobiphenyl (S)	68	%	34-120		1	03/05/24 12:00	03/06/24 08:43	2051-24-3			
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B										
	Pace Anal	ytical Service	es - Green Bay	y							
Arsenic	3.4J	mg/kg	4.9	2.9	2	03/04/24 06:14	03/04/24 15:14	7440-38-2	D3		
Barium	93.9	mg/kg	0.99	0.30	2	03/04/24 06:14	03/04/24 15:14	7440-39-3			
Cadmium	<0.26	mg/kg	0.99	0.26	2	03/04/24 06:14	03/04/24 15:14	7440-43-9	D3		
Chromium	21.0	mg/kg	2.0	0.55	2	03/04/24 06:14	03/04/24 15:14	7440-47-3			
Lead	3.5J	mg/kg	3.9	1.2	2	03/04/24 06:14	03/04/24 15:14	7439-92-1	D3		
Selenium	<2.6	mg/kg	7.9	2.6	2	03/04/24 06:14	03/04/24 15:14	7782-49-2	D3		
Silver	<0.61	mg/kg	2.0	0.61	2	03/04/24 06:14	03/04/24 15:14	7440-22-4	D3		
Total Hardness by 2340B	591000	mg/kg			2	03/04/24 06:14	03/04/24 15:14				
7471 Mercury	Analytical	Method: EPA	7471 Prepai	ration Metho	od: EP/	A 7471					
	Pace Anal	ytical Service	es - Green Ba	y							
Mercury	<0.010	mg/kg	0.036	0.010	1	03/08/24 11:05	03/11/24 11:10	7439-97-6			
Percent Moisture	Analytical	Method: AST	TM D2974-87								
	Pace Anal	ytical Service	es - Green Bay	y							
Percent Moisture	2.6	%	0.10	0.10	1		03/01/24 14:27				

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-2-COMP-3 Lab ID: 40274898007 Collected: 02/28/24 11:55 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8082A GCS PCB	•		A 8082A Prepa		nod: El	PA 3541					
	Pace Anal	ytical Service	es - Green Ba	y							
PCB, Total	31.9J	ug/kg	50.7	15.4	1	03/05/24 12:00	03/06/24 09:04	1336-36-3			
PCB-1016 (Aroclor 1016)	<15.4	ug/kg	50.7	15.4	1	03/05/24 12:00	03/06/24 09:04	12674-11-2			
PCB-1221 (Aroclor 1221)	<15.4	ug/kg	50.7	15.4	1	03/05/24 12:00	03/06/24 09:04	11104-28-2			
PCB-1232 (Aroclor 1232)	<15.4	ug/kg	50.7	15.4	1	03/05/24 12:00	03/06/24 09:04	11141-16-5			
PCB-1242 (Aroclor 1242)	<15.4	ug/kg	50.7	15.4	1	03/05/24 12:00	03/06/24 09:04	53469-21-9			
PCB-1248 (Aroclor 1248)	31.9J	ug/kg	50.7	15.4	1	03/05/24 12:00	03/06/24 09:04	12672-29-6			
PCB-1254 (Aroclor 1254)	<15.4	ug/kg	50.7	15.4	1	03/05/24 12:00	03/06/24 09:04	11097-69-1			
PCB-1260 (Aroclor 1260)	<15.4	ug/kg	50.7	15.4	1	03/05/24 12:00	03/06/24 09:04	11096-82-5			
Surrogates											
Tetrachloro-m-xylene (S)	77	%	44-120		1	03/05/24 12:00	03/06/24 09:04	877-09-8			
Decachlorobiphenyl (S)	65	%	34-120		1	03/05/24 12:00	03/06/24 09:04	2051-24-3			
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B										
	Pace Anal	ytical Service	es - Green Ba	y							
Arsenic	3.3	mg/kg	2.3	1.4	1	03/04/24 06:14	03/04/24 14:55	7440-38-2			
Barium	33.6	mg/kg	0.47	0.14	1	03/04/24 06:14	03/04/24 14:55	7440-39-3			
Cadmium	0.21J	mg/kg	0.47	0.12	1	03/04/24 06:14	03/04/24 14:55	7440-43-9			
Chromium	10.3	mg/kg	0.93	0.26	1	03/04/24 06:14	03/04/24 14:55	7440-47-3			
Lead	3.0	mg/kg	1.9	0.56	1	03/04/24 06:14	03/04/24 14:55	7439-92-1			
Selenium	<1.2	mg/kg	3.7	1.2	1	03/04/24 06:14	03/04/24 14:55	7782-49-2			
Silver	<0.29	mg/kg	0.93	0.29	1	03/04/24 06:14	03/04/24 14:55	7440-22-4			
Total Hardness by 2340B	722000	mg/kg			2	03/04/24 06:14	03/04/24 16:25				
7471 Mercury	Analytical	Method: EPA	7471 Prepai	ration Metho	od: EP/	A 7471					
•	Pace Anal	ytical Service	es - Green Bay	y							
Mercury	<0.0095	mg/kg	0.033	0.0095	1	03/08/24 11:05	03/11/24 11:12	7439-97-6			
Percent Moisture	Analytical	Method: AST	TM D2974-87								
	Pace Anal	ytical Service	es - Green Ba	y							
Percent Moisture	1.1	%	0.10	0.10	1		03/01/24 14:27				

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-2-COMP-4 Lab ID: 40274898008 Collected: 02/28/24 15:35 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	nod: El	PA 3541					
	Pace Anal	ytical Service	es - Green Ba	y							
PCB, Total	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 09:25	1336-36-3			
PCB-1016 (Aroclor 1016)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 09:25	12674-11-2			
PCB-1221 (Aroclor 1221)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 09:25	11104-28-2			
PCB-1232 (Aroclor 1232)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 09:25	11141-16-5			
PCB-1242 (Aroclor 1242)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 09:25	53469-21-9			
PCB-1248 (Aroclor 1248)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 09:25	12672-29-6			
PCB-1254 (Aroclor 1254)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 09:25	11097-69-1			
PCB-1260 (Aroclor 1260)	<15.5	ug/kg	50.9	15.5	1	03/05/24 12:00	03/06/24 09:25	11096-82-5			
Surrogates											
Tetrachloro-m-xylene (S)	79	%	44-120		1	03/05/24 12:00	03/06/24 09:25				
Decachlorobiphenyl (S)	66	%	34-120		1	03/05/24 12:00	03/06/24 09:25	2051-24-3			
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B										
	Pace Anal	ytical Service	es - Green Ba	y							
Arsenic	3.0	mg/kg	2.5	1.5	1	03/04/24 06:14	03/04/24 14:57	7440-38-2			
Barium	58.6	mg/kg	0.50	0.15	1	03/04/24 06:14	03/04/24 14:57	7440-39-3			
Cadmium	0.16J	mg/kg	0.50	0.13	1	03/04/24 06:14	03/04/24 14:57	7440-43-9			
Chromium	12.1	mg/kg	1.0	0.28	1	03/04/24 06:14	03/04/24 14:57	7440-47-3			
Lead	3.4	mg/kg	2.0	0.60	1	03/04/24 06:14	03/04/24 14:57	7439-92-1			
Selenium	<1.3	mg/kg	4.0	1.3	1	03/04/24 06:14	03/04/24 14:57	7782-49-2			
Silver	<0.31	mg/kg	1.0	0.31	1	03/04/24 06:14	03/04/24 14:57	7440-22-4			
Total Hardness by 2340B	674000	mg/kg			2	03/04/24 06:14	03/04/24 16:27				
7471 Mercury	Analytical	Method: EPA	7471 Prepai	ration Metho	od: EP/	A 7471					
	Pace Anal	ytical Service	es - Green Ba	y							
Mercury	<0.0099	mg/kg	0.035	0.0099	1	03/08/24 11:05	03/11/24 11:14	7439-97-6			
Percent Moisture	Analytical	Method: AST	M D2974-87								
	Pace Anal	ytical Service	es - Green Ba	y							
Percent Moisture	1.8	%	0.10	0.10	1		03/01/24 14:27				

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-3-COMP-1 Lab ID: 40274898009 Collected: 02/28/24 15:47 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8082A GCS PCB	•		8082A Prepa		nod: El	PA 3541					
	Pace Anal	ytical Service	es - Green Ba	y							
PCB, Total	574	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 09:47	1336-36-3			
PCB-1016 (Aroclor 1016)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 09:47	12674-11-2			
PCB-1221 (Aroclor 1221)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 09:47	11104-28-2			
PCB-1232 (Aroclor 1232)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 09:47	11141-16-5			
PCB-1242 (Aroclor 1242)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 09:47	53469-21-9			
PCB-1248 (Aroclor 1248)	574	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 09:47	12672-29-6			
PCB-1254 (Aroclor 1254)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 09:47	11097-69-1			
PCB-1260 (Aroclor 1260)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 09:47	11096-82-5			
Surrogates											
Tetrachloro-m-xylene (S)	77	%	44-120		1	03/05/24 12:00	03/06/24 09:47	877-09-8			
Decachlorobiphenyl (S)	64	%	34-120		1	03/05/24 12:00	03/06/24 09:47	2051-24-3			
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B										
	Pace Anal	ytical Service	es - Green Ba	y							
Arsenic	4.7	mg/kg	2.4	1.4	1	03/04/24 06:14	03/04/24 14:59	7440-38-2			
Barium	43.6	mg/kg	0.48	0.14	1	03/04/24 06:14	03/04/24 14:59	7440-39-3			
Cadmium	<0.13	mg/kg	0.48	0.13	1	03/04/24 06:14	03/04/24 14:59	7440-43-9			
Chromium	15.7	mg/kg	0.95	0.26	1	03/04/24 06:14	03/04/24 14:59	7440-47-3			
Lead	4.5	mg/kg	1.9	0.57	1	03/04/24 06:14	03/04/24 14:59	7439-92-1			
Selenium	<1.2	mg/kg	3.8	1.2	1	03/04/24 06:14	03/04/24 14:59	7782-49-2			
Silver	<0.29	mg/kg	0.95	0.29	1	03/04/24 06:14	03/04/24 14:59	7440-22-4			
Total Hardness by 2340B	567000	mg/kg			2	03/04/24 06:14	03/04/24 16:29				
7471 Mercury	Analytical	Method: EPA	7471 Prepai	ration Metho	od: EP/	A 7471					
-	Pace Anal	ytical Service	es - Green Ba	y							
Mercury	<0.010	mg/kg	0.036	0.010	1	03/08/24 11:05	03/11/24 11:17	7439-97-6			
Percent Moisture	Analytical	Method: AST	M D2974-87								
	Pace Anal	ytical Service	es - Green Ba	y							
Percent Moisture	2.6	%	0.10	0.10	1		03/01/24 14:27				

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-3-COMP-2 Lab ID: 40274898010 Collected: 02/28/24 15:59 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8082A GCS PCB	•		8082A Prepa		nod: El	PA 3541					
	Pace Anal	ytical Service	es - Green Ba	y							
PCB, Total	664	ug/kg	51.4	15.6	1	03/05/24 12:00	03/06/24 10:08	1336-36-3			
PCB-1016 (Aroclor 1016)	<15.6	ug/kg	51.4	15.6	1	03/05/24 12:00	03/06/24 10:08	12674-11-2			
PCB-1221 (Aroclor 1221)	<15.6	ug/kg	51.4	15.6	1	03/05/24 12:00	03/06/24 10:08	11104-28-2			
PCB-1232 (Aroclor 1232)	<15.6	ug/kg	51.4	15.6	1	03/05/24 12:00	03/06/24 10:08	11141-16-5			
PCB-1242 (Aroclor 1242)	<15.6	ug/kg	51.4	15.6	1	03/05/24 12:00	03/06/24 10:08	53469-21-9			
PCB-1248 (Aroclor 1248)	664	ug/kg	51.4	15.6	1	03/05/24 12:00	03/06/24 10:08	12672-29-6			
PCB-1254 (Aroclor 1254)	<15.6	ug/kg	51.4	15.6	1	03/05/24 12:00	03/06/24 10:08	11097-69-1			
PCB-1260 (Aroclor 1260)	<15.6	ug/kg	51.4	15.6	1	03/05/24 12:00	03/06/24 10:08	11096-82-5			
Surrogates											
Tetrachloro-m-xylene (S)	69	%	44-120		1	03/05/24 12:00	03/06/24 10:08				
Decachlorobiphenyl (S)	57	%	34-120		1	03/05/24 12:00	03/06/24 10:08	2051-24-3			
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B										
	Pace Anal	ytical Service	es - Green Ba	y							
Arsenic	2.2J	mg/kg	2.5	1.5	1	03/04/24 06:14	03/04/24 15:04	7440-38-2			
Barium	39.8	mg/kg	0.50	0.15	1	03/04/24 06:14	03/04/24 15:04	7440-39-3			
Cadmium	<0.13	mg/kg	0.50	0.13	1	03/04/24 06:14	03/04/24 15:04	7440-43-9			
Chromium	11.4	mg/kg	0.99	0.28	1	03/04/24 06:14	03/04/24 15:04	7440-47-3			
Lead	2.8	mg/kg	2.0	0.59	1	03/04/24 06:14	03/04/24 15:04	7439-92-1			
Selenium	<1.3	mg/kg	4.0	1.3	1	03/04/24 06:14	03/04/24 15:04	7782-49-2			
Silver	<0.30	mg/kg	0.99	0.30	1	03/04/24 06:14	03/04/24 15:04	7440-22-4			
Total Hardness by 2340B	578000	mg/kg			2	03/04/24 06:14	03/04/24 16:31				
7471 Mercury	Analytical	Method: EPA	7471 Prepai	ration Metho	od: EP/	A 7471					
	Pace Anal	ytical Service	es - Green Ba	y							
Mercury	<0.0098	mg/kg	0.034	0.0098	1	03/08/24 11:05	03/11/24 11:19	7439-97-6			
Percent Moisture	Analytical	Method: AST	M D2974-87								
	Pace Anal	ytical Service	es - Green Ba	y							
Percent Moisture	2.6	%	0.10	0.10	1		03/01/24 14:27				

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-3-COMP-3 Lab ID: 40274898011 Collected: 02/28/24 16:07 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	nod: El	PA 3541					
	Pace Anal	ytical Service	es - Green Bay	y							
PCB, Total	850	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 10:29	1336-36-3			
PCB-1016 (Aroclor 1016)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 10:29	12674-11-2			
PCB-1221 (Aroclor 1221)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 10:29	11104-28-2			
PCB-1232 (Aroclor 1232)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 10:29	11141-16-5			
PCB-1242 (Aroclor 1242)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 10:29	53469-21-9			
PCB-1248 (Aroclor 1248)	850	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 10:29	12672-29-6			
PCB-1254 (Aroclor 1254)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 10:29	11097-69-1			
PCB-1260 (Aroclor 1260)	<15.6	ug/kg	51.2	15.6	1	03/05/24 12:00	03/06/24 10:29	11096-82-5			
Surrogates											
Tetrachloro-m-xylene (S)	84	%	44-120		1	03/05/24 12:00	03/06/24 10:29				
Decachlorobiphenyl (S)	68	%	34-120		1	03/05/24 12:00	03/06/24 10:29	2051-24-3			
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B										
	Pace Anal	ytical Service	es - Green Bay	У							
Arsenic	2.6	mg/kg	2.5	1.5	1	03/04/24 06:14	03/04/24 15:06	7440-38-2			
Barium	49.5	mg/kg	0.50	0.15	1	03/04/24 06:14	03/04/24 15:06	7440-39-3			
Cadmium	0.30J	mg/kg	0.50	0.13	1	03/04/24 06:14	03/04/24 15:06	7440-43-9			
Chromium	13.1	mg/kg	1.0	0.28	1	03/04/24 06:14	03/04/24 15:06	7440-47-3			
Lead	3.9	mg/kg	2.0	0.60	1	03/04/24 06:14	03/04/24 15:06	7439-92-1			
Selenium	<1.3	mg/kg	4.0	1.3	1	03/04/24 06:14	03/04/24 15:06	7782-49-2			
Silver	<0.31	mg/kg	1.0	0.31	1	03/04/24 06:14	03/04/24 15:06	7440-22-4			
Total Hardness by 2340B	634000	mg/kg			2	03/04/24 06:14	03/04/24 16:33				
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ration Metho	od: EP/	A 7471					
•	Pace Anal	ytical Service	es - Green Bay	y							
Mercury	<0.010	mg/kg	0.036	0.010	1	03/08/24 11:05	03/11/24 11:21	7439-97-6			
Percent Moisture	Analytical	Method: AST	M D2974-87								
	Pace Anal	ytical Service	es - Green Bay	У							
Percent Moisture	2.5	%	0.10	0.10	1		03/01/24 14:27				

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Sample: 2024-3-COMP-4 Lab ID: 40274898012 Collected: 02/28/24 16:15 Received: 03/01/24 09:35 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	nod: El	PA 3541					
	Pace Anal	ytical Service	es - Green Bay	y							
PCB, Total	861	ug/kg	51.0	15.5	1	03/05/24 12:00	03/06/24 10:50	1336-36-3			
PCB-1016 (Aroclor 1016)	<15.5	ug/kg	51.0	15.5	1	03/05/24 12:00	03/06/24 10:50	12674-11-2			
PCB-1221 (Aroclor 1221)	<15.5	ug/kg	51.0	15.5	1	03/05/24 12:00	03/06/24 10:50	11104-28-2			
PCB-1232 (Aroclor 1232)	<15.5	ug/kg	51.0	15.5	1	03/05/24 12:00	03/06/24 10:50	11141-16-5			
PCB-1242 (Aroclor 1242)	<15.5	ug/kg	51.0	15.5	1	03/05/24 12:00	03/06/24 10:50	53469-21-9			
PCB-1248 (Aroclor 1248)	861	ug/kg	51.0	15.5	1	03/05/24 12:00	03/06/24 10:50	12672-29-6			
PCB-1254 (Aroclor 1254)	<15.5	ug/kg	51.0	15.5	1	03/05/24 12:00	03/06/24 10:50	11097-69-1			
PCB-1260 (Aroclor 1260)	<15.5	ug/kg	51.0	15.5	1	03/05/24 12:00	03/06/24 10:50	11096-82-5			
Surrogates											
Tetrachloro-m-xylene (S)	70	%	44-120		1	03/05/24 12:00	03/06/24 10:50	877-09-8			
Decachlorobiphenyl (S)	57	%	34-120		1	03/05/24 12:00	03/06/24 10:50	2051-24-3			
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050B										
	Pace Anal	ytical Service	es - Green Bay	У							
Arsenic	2.5J	mg/kg	2.5	1.5	1	03/04/24 06:14	03/04/24 15:08	7440-38-2			
Barium	46.2	mg/kg	0.50	0.15	1	03/04/24 06:14	03/04/24 15:08	7440-39-3			
Cadmium	0.26J	mg/kg	0.50	0.13	1	03/04/24 06:14	03/04/24 15:08	7440-43-9			
Chromium	12.3	mg/kg	1.0	0.28	1	03/04/24 06:14	03/04/24 15:08	7440-47-3			
Lead	3.4	mg/kg	2.0	0.60	1	03/04/24 06:14	03/04/24 15:08	7439-92-1			
Selenium	<1.3	mg/kg	4.0	1.3	1	03/04/24 06:14	03/04/24 15:08	7782-49-2			
Silver	<0.31	mg/kg	1.0	0.31	1	03/04/24 06:14	03/04/24 15:08	7440-22-4			
Total Hardness by 2340B	559000	mg/kg			2	03/04/24 06:14	03/04/24 16:35				
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ration Metho	od: EP/	A 7471					
-	Pace Anal	ytical Service	es - Green Bay	y							
Mercury	<0.010	mg/kg	0.036	0.010	1	03/08/24 11:05	03/11/24 11:24	7439-97-6			
Percent Moisture	Analytical	Method: AST	M D2974-87								
	Pace Anal	ytical Service	es - Green Bay	У							
Percent Moisture	2.0	%	0.10	0.10	1		03/01/24 14:28				

(920)469-2436

QUALITY CONTROL DATA

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Mercury

Date: 03/11/2024 03:25 PM

QC Batch: 468375 Analysis Method: EPA 7471

QC Batch Method: EPA 7471 Analysis Description: 7471 Mercury

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40274898001, 40274898002, 40274898003, 40274898004, 40274898005, 40274898006, 40274898007,

40274898008, 40274898009, 40274898010, 40274898011, 40274898012

METHOD BLANK: 2683060 Matrix: Solid

Associated Lab Samples: 40274898001, 40274898002, 40274898003, 40274898004, 40274898005, 40274898006, 40274898007,

40274898008, 40274898009, 40274898010, 40274898011, 40274898012

Blank Reporting

 Parameter
 Units
 Result
 Limit
 Analyzed
 Qualifiers

 mg/kg
 <0.010</td>
 0.035
 03/11/24 10:11

LABORATORY CONTROL SAMPLE: 2683061

LCS LCS % Rec Spike Units Result % Rec Limits Qualifiers Parameter Conc. 85-115 Mercury mg/kg 0.83 0.86 104

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2683062 2683063

MS MSD

40274898001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Qual 5 20 Mercury < 0.010 0.86 0.86 0.91 0.87 106 101 85-115 mg/kg

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

QC Batch: 468241 Analysis Method: EPA 6010D
QC Batch Method: EPA 3050B Analysis Description: 6010D MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40274898001, 40274898002, 40274898003, 40274898004, 40274898005, 40274898006, 40274898007,

 $40274898008,\,40274898009,\,40274898010,\,40274898011,\,40274898012$

METHOD BLANK: 2682641 Matrix: Solid

Associated Lab Samples: 40274898001, 40274898002, 40274898003, 40274898004, 40274898005, 40274898006, 40274898007,

40274898008, 40274898009, 40274898010, 40274898011, 40274898012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	<1.5	2.5	03/04/24 14:20	
Barium	mg/kg	<0.15	0.50	03/04/24 14:20	
Cadmium	mg/kg	<0.13	0.50	03/04/24 14:20	
Chromium	mg/kg	<0.28	1.0	03/04/24 14:20	
Lead	mg/kg	< 0.60	2.0	03/04/24 14:20	
Selenium	mg/kg	<1.3	4.0	03/04/24 14:20	
Silver	mg/kg	<0.31	1.0	03/04/24 14:20	
Total Hardness by 2340B	mg/kg	1.1		03/04/24 14:20	

LABORATORY CONTROL SAMPL	_E: 2682642	Cnilco	LCS	LCS	0/ Doo	
Parameter	Units	Spike Conc.	Result	% Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg		25.3	101	80-120	
Barium	mg/kg	25	26.3	105	80-120	
Cadmium	mg/kg	25	26.7	107	80-120	
Chromium	mg/kg	25	26.3	105	80-120	
Lead	mg/kg	25	26.9	107	80-120	
Selenium	mg/kg	25	27.2	109	80-120	
Silver	mg/kg	12.5	13.2	106	80-120	
Total Hardness by 2340B	mg/kg		7130			

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	ATE: 2682	643		2682644							
			MS	MSD								
	40	0274894001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic	mg/kg	3.4	31.3	31.4	35.2	35.7	102	103	75-125	1	20	
Barium	mg/kg	61.0	31.3	31.4	132	116	226	175	75-125	13	20	M0
Cadmium	mg/kg	<0.17	31.3	31.4	33.3	33.9	106	108	75-125	2	20	
Chromium	mg/kg	23.3	31.3	31.4	65.3	60.8	134	119	75-125	7	20	M0
Lead	mg/kg	9.1	31.3	31.4	41.9	43.5	105	109	75-125	4	20	
Selenium	mg/kg	<1.6	31.3	31.4	33.1	33.5	103	104	75-125	1	20	
Silver	mg/kg	<0.38	15.6	15.8	16.8	17.2	106	108	75-125	2	20	
Total Hardness by 2340B	mg/kg	431000			458000	441000				4		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

QC Batch: 468423 Analysis Method: EPA 8082A
QC Batch Method: EPA 3541 Analysis Description: 8082 GCS PCB

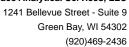
Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40274898001, 40274898002, 40274898003, 40274898004, 40274898005, 40274898006, 40274898007,

 $40274898008,\,40274898009,\,40274898010,\,40274898011,\,40274898012$

METHOD BLANK: 2683200 Matrix: Solid

Associated Lab Samples: 40274898001, 40274898002, 40274898003, 40274898004, 40274898005, 40274898006, 40274898007,

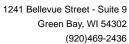

40274898008, 40274898009, 40274898010, 40274898011, 40274898012

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	<15.2	50.0	03/06/24 01:35	
PCB-1221 (Aroclor 1221)	ug/kg	<15.2	50.0	03/06/24 01:35	
PCB-1232 (Aroclor 1232)	ug/kg	<15.2	50.0	03/06/24 01:35	
PCB-1242 (Aroclor 1242)	ug/kg	<15.2	50.0	03/06/24 01:35	
PCB-1248 (Aroclor 1248)	ug/kg	<15.2	50.0	03/06/24 01:35	
PCB-1254 (Aroclor 1254)	ug/kg	<15.2	50.0	03/06/24 01:35	
PCB-1260 (Aroclor 1260)	ug/kg	<15.2	50.0	03/06/24 01:35	
Decachlorobiphenyl (S)	%	72	34-120	03/06/24 01:35	
Tetrachloro-m-xylene (S)	%	81	44-120	03/06/24 01:35	

LABORATORY CONTROL SAMPLE:	2683201					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg		<15.2			
PCB-1221 (Aroclor 1221)	ug/kg		<15.2			
PCB-1232 (Aroclor 1232)	ug/kg		<15.2			
PCB-1242 (Aroclor 1242)	ug/kg		<15.2			
PCB-1248 (Aroclor 1248)	ug/kg		<15.2			
PCB-1254 (Aroclor 1254)	ug/kg		<15.2			
PCB-1260 (Aroclor 1260)	ug/kg	500	400	80	69-120	
Decachlorobiphenyl (S)	%			74	34-120	
Tetrachloro-m-xylene (S)	%			83	44-120	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 2683	202		2683203							
Parameter	4 Units	0274891016 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
PCB-1016 (Aroclor 1016)	ug/kg	<0.019 mg/kg			<19.3	<19.4					20	
PCB-1221 (Aroclor 1221)	ug/kg	<0.019 mg/kg			<19.3	<19.4					20	
PCB-1232 (Aroclor 1232)	ug/kg	<0.019 mg/kg			<19.3	<19.4					20	
PCB-1242 (Aroclor 1242)	ug/kg	<0.019 mg/kg			<19.3	<19.4					20	
PCB-1248 (Aroclor 1248)	ug/kg	<0.019 mg/kg			<19.3	<19.4					20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

MATRIX SPIKE & MATRIX SI	FIRE DOFFIC	CATE: 2683	MS	MSD	2683203							
	4	0274891016	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
PCB-1254 (Aroclor 1254)	ug/kg	<0.019 mg/kg			<19.3	<19.4					20	
PCB-1260 (Aroclor 1260)	ug/kg	<0.019 mg/kg	635	637	448	459	70	72	51-120	3	20	
Decachlorobiphenyl (S)	%						66	67	34-120			
Tetrachloro-m-xylene (S)	%						77	80	44-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

QC Batch: 468218 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40274898001, 40274898002, 40274898003, 40274898004, 40274898005, 40274898006, 40274898007,

40274898008, 40274898009, 40274898010, 40274898011, 40274898012

SAMPLE DUPLICATE: 2682470

Date: 03/11/2024 03:25 PM

		40274887016	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	 %	22.0	22.4	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALIFIERS

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - The reported result is an estimated value.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Analyte was not detected and is reported as less than the LOD or as defined by the customer.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/11/2024 03:25 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
40274898001	2024-1-COMP-1	EPA 3541	468423	EPA 8082A	468431
40274898002	2024-1-COMP-2	EPA 3541	468423	EPA 8082A	468431
0274898003	2024-1-COMP-3	EPA 3541	468423	EPA 8082A	468431
0274898004	2024-1-COMP-4	EPA 3541	468423	EPA 8082A	468431
0274898005	2024-2-COMP-1	EPA 3541	468423	EPA 8082A	468431
0274898006	2024-2-COMP-2	EPA 3541	468423	EPA 8082A	468431
0274898007	2024-2-COMP-3	EPA 3541	468423	EPA 8082A	468431
0274898008	2024-2-COMP-4	EPA 3541	468423	EPA 8082A	468431
0274898009	2024-3-COMP-1	EPA 3541	468423	EPA 8082A	468431
0274898010	2024-3-COMP-2	EPA 3541	468423	EPA 8082A	468431
0274898011	2024-3-COMP-3	EPA 3541	468423	EPA 8082A	468431
0274898012	2024-3-COMP-4	EPA 3541	468423	EPA 8082A	468431
0274898001	2024-1-COMP-1	EPA 3050B	468241	EPA 6010D	468325
0274898002	2024-1-COMP-2	EPA 3050B	468241	EPA 6010D	468325
0274898003	2024-1-COMP-3	EPA 3050B	468241	EPA 6010D	468325
0274898004	2024-1-COMP-4	EPA 3050B	468241	EPA 6010D	468325
0274898005	2024-2-COMP-1	EPA 3050B	468241	EPA 6010D	468325
0274898006	2024-2-COMP-2	EPA 3050B	468241	EPA 6010D	468325
0274898007	2024-2-COMP-3	EPA 3050B	468241	EPA 6010D	468325
0274898008	2024-2-COMP-4	EPA 3050B	468241	EPA 6010D	468325
0274898009	2024-3-COMP-1	EPA 3050B	468241	EPA 6010D	468325
0274898010	2024-3-COMP-2	EPA 3050B	468241	EPA 6010D	468325
0274898011	2024-3-COMP-3	EPA 3050B	468241	EPA 6010D	468325
0274898012	2024-3-COMP-4	EPA 3050B	468241	EPA 6010D	468325
0274898001	2024-1-COMP-1	EPA 7471	468375	EPA 7471	468802
0274898002	2024-1-COMP-2	EPA 7471	468375	EPA 7471	468802
0274898003	2024-1-COMP-3	EPA 7471	468375	EPA 7471	468802
0274898004	2024-1-COMP-4	EPA 7471	468375	EPA 7471	468802
0274898005	2024-2-COMP-1	EPA 7471	468375	EPA 7471	468802
0274898006	2024-2-COMP-2	EPA 7471	468375	EPA 7471	468802
0274898007	2024-2-COMP-3	EPA 7471	468375	EPA 7471	468802
0274898008	2024-2-COMP-4	EPA 7471	468375	EPA 7471	468802
0274898009	2024-3-COMP-1	EPA 7471	468375	EPA 7471	468802
0274898010	2024-3-COMP-2	EPA 7471	468375	EPA 7471	468802
0274898011	2024-3-COMP-3	EPA 7471	468375	EPA 7471	468802
0274898012	2024-3-COMP-4	EPA 7471	468375	EPA 7471	468802
0274898001	2024-1-COMP-1	ASTM D2974-87	468218		
0274898002	2024-1-COMP-2	ASTM D2974-87	468218		
0274898003	2024-1-COMP-3	ASTM D2974-87	468218		
0274898004	2024-1-COMP-4	ASTM D2974-87	468218		
0274898005	2024-2-COMP-1	ASTM D2974-87	468218		
0274898006	2024-2-COMP-2	ASTM D2974-87	468218		
0274898007	2024-2-COMP-3	ASTM D2974-87	468218		
0274898008	2024-2-COMP-4	ASTM D2974-87	468218		
0274898009	2024-2-COMP-1	ASTM D2974-07 ASTM D2974-87	468218		
0274898010	2024-3-COMP-2	ASTM D2974-87	468218		
021 T0000 IU	2024-3-COMP-2 2024-3-COMP-3	ASTM D2974-87	468218		

1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40274898

Date: 03/11/2024 03:25 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40274898012	2024-3-COMP-4	ASTM D2974-87	468218		

Da	-4/02:10:	4-1.																		
Pace® Location Request	ed (City/Sta	te):		CHAIN-OF-C	USTODY	Δnal	vtical I	Request	Doci	ıment				LA	B USE ON	ILY- Affix \	Norkorder	r/Login L	abel Here	
Pace [®]					tody is a LEGA		•	•									Ur	277	4898	
Company Name: TRC				Contact/Report To	<u>. A 1</u>		· · · · ·	i						333			(C	, a v	-1000	
Street Address: 200 5 14 5 PM-1	يان م	<u>.</u>		Phone #: / A/	Andrei	اح کرا	tehn													
Street Address: 999 Fourier Briv Madison, WI	e sutte	101		E-Mail. actor	1001-01	اک ابد کار	1105 .	CKLA							Scan	QR Code	for instru	uctions		
				Contact/Report To Phone #: 608 - E-Mail. astel Cc E-Mail:	Lal	mpui	(1E) .													
Customer Project # 581184 Phase Project Name: MKC Concrete S	e 2 To	isk 4	F	KV	વન્ર ૮ હ્યા	CCOM	pani	es-com	`					Specify 0	Container S	ıze **		1250	ontainer Size (1) 1L, (2) 500mL, (3) 2: nL, (5) 100mL, (6) 40mL vial, (7) EnCo	ro (9)
Project Name: MKC CANCYSTE S	samplin	9		Invoice To.								10	10					Terra	aCore, (9) 90mL, (10) Other 4 07	AM
_	' -)		Invoice E-Mail:		*		,					Id	entify Contain	er Preserva	tive Type**	<u>*</u>	••••	Preservative Types (1) None, (2) HNo O4, (4) HCl, (5) NaOH, (6) Zn Acetate,	3, (3)
Site Collection Info/Facility ID (as applicable)	. 11	7		Purchase Order # (applicable)	ıt 5	ame		1				$\perp \perp$		Analy	eus Boarross			NaH:	SO4, (8) Sod Thiosulfate, (9) Ascorbi	
Maais	son, W	+		Quote #.	•			i						Analy	sis Reques	lea l	\top		Proj Mgr:	
Time Zone Collected [] AK [] PT []	мт Дст	[] &	T	County / State on	gin of sample(s	s): W	I	,					νĵ					. [rioj Migi.	d for
Data Deliverables:	Regulatory Pro	ogram (D\	N, RCRA, e	tc) as applicable:	Reportab		'es [] No					metal			1			AcctNum / Client ID:	identified fo
[]Level II []Level III []Level IV		Ru	sh (Pre-a	pproval required)		In	W DWSID	# or WW Peri	mit # ac	annlicable	,		Ź						Table #.	— se ide
[}EQUIS	[] Same Day		•	ay [] 3 Day [] C				1	illic # as	аррисави	•		∞					5		ırman
	Date Results	ch	200	d TAT				oplicable): [] Yes	[] No		3							Profile / Template:	confc
[] Other	Requested:			-	W). Product (F	Analysis		ıl (OL). Wine (WP) Ti	ssue (TS)	Binassav	PCB	CKA					, -	Prelog / Bottle Ord. ID:	- 1001
(B), Vapor (V), Surface Water (SW),Sediment (SED),						,, ,,,,,,,	(00), 0	(02),	,			9	$\overline{\mathcal{G}}$.	relogy bottle ord. 15.	vatio
Customer Sample ID		Matrix	Comp /	Composite				nposite End	#	Res. Cl			Q						Sample Comment	Preser
		ļ	-	Date SW	Time	 	ate	Time	Cont.	Results	Units				_					
2024-1-comp-1		OT	COMP	2/28/24		2/28	3/24	16:25	1	_	1	X	X						001	
2024 - 1 - comp -	2							16:33			١								002	
2024-1-comp-3	3							16:40	1	_	1								003	
2024 - 1 - comp-	4							16:45	1	_	1								004	
2024 - Z - comp-								10:49	1	_	1								005	
2024-2-comp-2								11:25	1)	1								006	
2024-2-comp-3								11:55	1	1	1								007	
2024-2-comp-4								15.35	1	-	-	П							008	
2024-3-comp-1								15:47	1	_	1								009	
2024-3-comp-	2	V	V			,	V	15:59		_)	1	V						010	
Additional Instructions from Pace® ·				7-7-7-7-	Collected By (Printed Nam	~ NA	all.,	11/0.6	ے دا			Custon	ner Remark	s / Special Coi	nditions / F	ossible Haza	ırds:			·
					Signature	e) [V]	2119	vay)				# Cod	lers	Thermomete	r ID	Correction Fa	actor (°C)	Obs Tem	p (°C) Corrected Temp (°C)	On Ice
^^ ^						Mol	ey	Wage	47						1		, ,			
Relinquished by/Company (Sigha ure)	RC		Date/Time	129/24	17:45		by/Company	(Signature)						Date/Time			1	Tracking Num	nber	
Relinquished by/Company (Signature))		3/0	124 09	35	Received I	by/Company	/. (Signature)		<u> </u>	par	0		Date/Time	1/24	093	35	Delivered b	y [] In- Person [] Courie	
Relinquished by/Company (Signature)			Date/Time			Received I	by/Company	y. (Signature)	8		1			Date/Time				》	FedEX []UPS []Oth	er
Relinquished by/Company (Signature)			Date/Time	2		Received I	by/Company	y. (Signature)						Date/Time				Page:	fage 25 of	36
	_	_																		

Pace® Location Requeste	ed (City/State):						_					L	AB USE	ONL	Y- Affix \	Vorkord	ler/Logi	n Label Here		
/-Pace [®]				Chain-of-Cust	ody is a LEGAI	Analytical R	plete all rele	vant fiel										4	92749	398	
Company Name. TRC				Contact/Report To	Andre	U Stehn	1											C	,		
Street Address: 999 Fourier Drive	e Suite	101		Phone #. 608-	807-8	1112	;														
Madison, WIS				E-Mail asteh Cc E-Mail.	n@trci	w Stehn 1112 companies companies	mos.							So	can Q	R Code	for inst	truction	S		
Customer Project # 581184 Phase 2	Task	4		kva	recrostic	companies	s. com			ŀ			Specif	y Contain	er Sıze	**				1L, (2) 500mL, (3) 250	
Project Name	high	·		Invoice To		1	<u>-</u>				10	10							TerraCore, (9) 90mL	6) 40mL vial, (7) EnCor , (10) Other	e, (8)
Project Name MKC Concrete So	mping			Invoice E-Mail [.]		1	(Ī		Id	entify Conta	iner Pres	ervatı	e Type**	*		*** Preservative Typ	es (1) None, (2) HNO	3, (3)
Site Collection Info/Facility ID (as applicable))			Purchase Order # (ıf	same	1			- 1	T	T								iaOH, (6) Zn Acetate, (iosulfate, (9) Ascorbic	
Mad	lison, h	工		applicable) Quote #:		Samo	}					20	An	alysis Req	uested	1		T	MeOH, (11) Other		Acid, (10,
Time Zone Collected [.] [] AK [] PT []	мт Хјст	[] ET		County / State orig	gin of sample(s	i) WI	ļ		-			a a	- \	1							d for
	Regulatory Prog			c.) as applicable	Reportab		No					metal							AcctNum / C	ient ID.	dentified
[] Level II [] Level III [] Level IV		Rus	h (Pre-ap	proval required)	:	DW PWSID	or WW Peri	mıt # as	applicable	:		00	1		İ				ပြု Table #		ance
[] EQUIS	[] Same Day [[] 1 Day	/[]2Da	y [] 3 Day [] C	Other						\sim						İ		S 0		non-conformance ic
·	Date Results	160	idar	d TAT		Field Filtered (if ap	plicable): [] Yes	[] No			RA	i l	ļ			-		Profile / Tem	plate.	san
Other * Matrix Codes (Insert in Matrix box below) Drinki				•	W). Product (I	Analysis P) Soil/Solid (SS), Oi	I (OL), Wipe (WP). Ti	ssue (TS).	Bioassav	PCB	RC		Ì			ļ		Prelog / Bott	le Ord. ID:	ا ةِ ا
(B), Vapor (V), Surface Water (SW), Sediment (SED)						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, , ,		,	-	$ \mathcal{A} $							1 110,000,000		Preservation
Customer Sample ID		Matrix *	Comp/	Composit	e Start	Collected or Con	nposite End	j #	Res. Cl	nlorine	ŀ								Compl	e Comment	lese
- Gustomer Gample 15		IVIGUIA	Grab	Date	Time	Date	Time	Cont.	Results	Units									Sample		•
2024-3-comp.	3	OT	comp			2/28/24	16:07	. 1	_	_	X	メ							0	11	
2024-3-como	-4	OT	COMP			2/28/24	16,15		-	-	X	X					1	1	1 0	12	
						7-07.	,,,,,		ļ		-									<u> </u>	
								<u> </u>	ļ		ļ		_			_					
							,				•		1		l	İ		-			
							:														
							;														
							1,														
<u> </u>																					
							í														
Additional Instructions from Pace*:		1		1	Collected By			,			Custo	mer Rema	ks / Special	Conditio	ns / Po	ssible Haz	ards				
					(Printed Nar	ne) //16/14	Wag	101	_												
					Signature	11 - 0011	Haby	Por		,	# C	oolers	Thermor	neter ID		Correction	Factor (°C)	Obs	s Temp (°C) C	orrected Temp (°C)	On Ice
Relinguished by/Comp (Schools)			Date/Time		1	Received by/Compan	v (Signature)	1			<u> </u>		Date/Ti	me				Trackir	ng Number		
Han Walded (TRI	$\langle \cdot \rangle$		Date/Time	29/24	17:45		,. (s.Batore)						Jace/II					I TOCKII			
Relinquished by/Company (Signature)	-		Date/Time		935	Received by/Compan	y (Signature)		ا نــ	mare			Date/Ti	me 01/24	1	09	 35	Delive	ered by [] In- P	erson [] Courier	
Relinquished by/Company (Signature)			Date/Time			Received by/Compan	y (Signature)	8		μιτ	•		Date/T		1	<u> </u>	_رر	_	[X] FedEX [] UPS [] Oth	er
Relinquished by/Company (Signature)			Date/Time	e		Received by/Compan	y (Signature)						Date/T	ıme				Pa	age: 2	of 2	36
Submittaling a second out the short of such that are		ladane : -		-t-use of the Doce	R Tarms and C	Conditions found at 1	attaci //waini	nacolak	s sam/ras	ouree lib				به المصادمة	/			ENV	EBM COBO O	1 age 44 01	6

Effective Date: 8/16/2022

		it Na			ervati	R (eve be	en ch	necked	d and i	noted I	below	•	Sam □Ye		Pres ject a	erva #	ation	n Re	ceip	t Fo	rm &	18	· >					Ini	tıal wh	ıen.		Date/	
0				9 1.00		011110					of pH									pres	ervatio	n (if p	H adju	sted)						mplete			Time.	
Pace	AG1U	BG1U	AG1H	AG4S	AG5U	AG2S	BG3U	BP1U	L	Plas BB3B	tic BP3N	BP3S	BP2Z	VG9C	DG9T	VG9U s	als H69A	VG9M	VG9D	JGFU	JG90	ars n49M	WPFU	5T	Gen	_		'OA Vials (>6mm) *	H2SO4 pH ≤2	laOH+Zn Act pH ≥9	VaOH pH ≥12	HNO3 pH ≤2	after adjusted	Volume (mL)
Lab#	AG	BG	AG	AG	AG	AG	BG	BP	ВР	ВР	ВР	ВР	ВР	<u> </u>	<u></u>	9	9		9 <u>/</u>	96	90	<u>×</u>	¥	SP5T	ZPLC	S S S	S S S	Λον	H2S	NaO	NaO	HNC	PH 8	
001													1																					2.5 / 5
002							12,96	. 3.				1		A Company	46			31,400	\$ M	物	\$43	1 VA	3次:			Approximation of the second	2 M	11.5	\$ 11 TO	/**` :		4.56	\$.0.	2.5 / 5
003																																		2.5 / 5
004	Λ. ε.	. 27	10.7	\$	23	- * * * *	%	· .		,		i2	7-4 7-5		\$ 1P		1 - 4	(0. • ₂ 1°	- 3			",do	Jigah .	14. 18	r	3,34		5.5	ó		: "55 v	, g	2 × × ·	2.5 / 5
005																																		2.5 / 5
006	3.			100	25.00	. 5.e.,	1		140	1			17.3	271	7 4 A		. milli	The s	5 Å.	Ş	. 3	Y .%	188		ς.δ	175	**		, 1	5 W		2 49	8407	2.5 / 5
007																				П														2.5 / 5
008				135	ė.	100	v Šr V Sast	j	794			123	100	31	346	415	734	44.	1411	水.	5 % . 6 # -	i ia	13	200	Q111		347	160		44,5%	455.35	14-38	融合.	2.5 / 5
009										1																								2.5 / 5
010		- 30	4 8	3.		2 1	18/20	ψ,		140	4,	. 3	A 400 8 1		- , .	1				1	<i></i>	ì		ž	ι.	14.5							-	2.5 / 5
011												1								П														2.5 / 5
012	11/2 11/2 11/2 11/2 11/2 11/2 11/2 11/2		3 .44		地位		- 8	57		, ,	3	3 (1	120,4	. "	傳輸	J.A.	쀎水	4,0	5 0-44 5	3.53	WA		96	486	W	2 · · ·	e green	211	B.J.	4.6	8:50	Ser c	2.5 / 5
013	/													1						- -							1							2.5 / 5
014	,	\$ Š.	1:5	Ma.	- à (1 '20'	10.1		1		1 3	: .	783	1.	d'	·		: 1		100	1	e 9. H =	x * 2			-				1.0			2.5 / 5
015										1													İ					<u> </u>						2.5 / 5
016	2.5	1.7	\$ j	118	*95,469	1 1,1	- 1793	\$ *	17.5%	i i	1			177	17.7	4 64	- 8	AN T	1,000	Ø .	- 3- 5	- }	é.		-	. Park	1. 1	15. 2	* : 1	3	1.28	* .	35.	2.5 / 5
017						IT		1		1															_	_	_			†				2.5 / 5
018	1 201, 100	24:	- 54	震社:	2	517	1	2	1/13	M	143	- 13		13.18	1. 1.	8 1	- Sa.	1 17	1559	- 47 600		v 13	Į.	- 53	2 8 E S	12,0		18	11	-		172	10	2.5 / 5
019						1	17	1	1	14																								2.5/5
020	4 .5 5	140°d	/		13		Z+ 3	100	10				13	A. C. 4862.0	1	N. C.		1 0			- "sede-	N (20)	je >	1 1	h	1	1		* . : 2	ž				2.5/5
Exception	ns to	preser	vation	check.	VOA	, Coli	form,	тос	, TOX,	тон,	O&G	, WIC	ORO, F	henol	ics, O	h <u>er:</u>				-	Hea	adspa	ce in V	OA VI	als (>6	6mm)	□Y€	s 🗆	No DX	N/A	*If ye	s lool	in hea	idspace colur
AG1Ü								P1U			tic un						9C				corbic		CI		FU				ınpres				1	
BG1U								P3U	•		astic i						9T				la Thio				9U			-	unpres	6				
AG1H AG4S						∩4		P3B P3N			astic I astic I						9U 9H				l unpri l HCL	es			SFU PFU	4 oz		-	•					
AG5U				-			1	P3S			astic i						9M				l McL l MeO	н			25T				inpres		ate		ł	
AG2S	500	mL a	mber	glass	H2S	04		P2Z					յ գ 1 + Zn				9D		ıL clea			'' '			PLC		c bag		144 111	iosuila	216		1	
BG3U	250	mL cl	ear g	lass u	inpres	3		-	4												-			G	N 1 N 2		3						P	age <u>1</u> of _

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR

Effective Date: 8/17/2022

Sample Condition Upon Receipt Form (SCUR)

		Project #:	
Client Name: TPC		MO#	: 40274898
Courier: CS Logistics Fed Ex Spe	eedee 🔲 UPS 🗀 W	/altco	
☐ Client ☐ Pace Other:			
Tracking #:	9234	402748	398
Custody Seal on Cooler/Box Present: Xye	es 🗌 no Seals intact:	⋉ yes	
Custody Seal on Samples Present:		☐ yes ☐ no	
Packing Material: 🗖 Bubble Wrap 💢 B			
Thermometer Used SR - 134	Type of Ice: Wet	Blue Dry None	ater Only
Cooler Temperature Uncorr: 2.0 /Cor			Person examining contents:
Temp Blank Present: ⊠ yes ☐ no	Biological 1	lissue is Frozen: ☐ yes ☐ n	O Date: 101/24 /Initials: NK
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped of	on Dry Ice.	T	Labeled By Initials:
Chain of Custody Present:	Maryes □No □N/A	1.	
Chain of Custody Filled Out:	¥Yes □No □N/A	2.	
Chain of Custody Relinquished:	ĭZYes □No □N/A	3.	
Sampler Name & Signature on COC:	X Yes □No □N/A	4.	
Samples Arrived within Hold Time:	⊠ Yes □No	5.	
- DI VOA Samples frozen upon receipt	□Yes □No	Date/Time:	
Short Hold Time Analysis (<72hr):	□Yes ⊠ No	6.	
Rush Turn Around Time Requested:	□Yes X No	7.	
Sufficient Volume:		8.	
For Analysis: ⊠Yes □No MS/M	MSD: □Yes MINO □N/A		
Correct Containers Used:	M Yes □No	9.	
Correct Type: Pace Green Bay Pace IR, Non-I	Pace		
Containers Intact:	1 ŽÍYes □No	10.	
Filtered volume received for Dissolved tests	□Yes □No ∑ N/A	11.	
Sample Labels match COC:	¥Yes □No □N/A	12.	
-Includes date/time/ID/Analysis Matrix:_	S		
Trip Blank Present:	□Yes □No 🗖N/A	13.	
Trip Blank Custody Seals Present	□Yes □No X N/A		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:		•	attached form for additional comments
Person Contacted: Comments/ Resolution:	Date/	Time:	_
Commenter resolution.			
PM Review is decumented electronically in	I IMa Byrologaina 45 -	project the DM salmanda to	a they have reviewed the seconds.
PM Review is documented electronically in	Livis. by releasing the	project, the PM acknowledge	
			Page <u>2</u> of <u>2</u>

(920)469-2436

April 24, 2024

Andrew Stehn TRC Madison 708 Heartland Trail Madison, WI 53717

RE: Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Dear Andrew Stehn:

Enclosed are the analytical results for sample(s) received by the laboratory on April 20, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

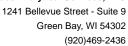
• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tod Noltemeyer tod.noltemeyer@pacelabs.com (920)469-2436

Tod holteneya


Project Manager

Enclosures

cc: Peggy Popp, TRC - Madison Katherine Vater, TRC

Ben Wachholz, TRC Madison

CERTIFICATIONS

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

SAMPLE SUMMARY

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40277152001	2024-3-A	Solid	02/28/24 11:37	04/20/24 10:00
40277152002	2024-3-B	Solid	02/28/24 11:47	04/20/24 10:00
40277152003	2024-3-C	Solid	02/28/24 11:50	04/20/24 10:00
40277152004	2024-3-D	Solid	02/28/24 12:02	04/20/24 10:00
40277152005	2024-3-E	Solid	02/28/24 12:22	04/20/24 10:00
40277152006	2024-3-F	Solid	02/28/24 12:12	04/20/24 10:00
40277152007	2024-3-G	Solid	02/28/24 12:28	04/20/24 10:00
40277152008	2024-3-H	Solid	02/28/24 12:35	04/20/24 10:00
40277152009	2024-3-I	Solid	02/28/24 12:44	04/20/24 10:00

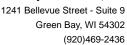
SAMPLE ANALYTE COUNT

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Lab ID	Sample ID	Method	Analysts	Analytes Reported
40277152001	2024-3-A	EPA 8082A	BLM	10
		ASTM D2974-87	EGL	1
40277152002	2024-3-B	EPA 8082A	BLM	10
		ASTM D2974-87	EGL	1
40277152003	2024-3-C	EPA 8082A	BLM	10
		ASTM D2974-87	EGL	1
40277152004	2024-3-D	EPA 8082A	BLM	10
		ASTM D2974-87	EGL	1
40277152005	2024-3-E	EPA 8082A	BLM	10
		ASTM D2974-87	EGL	1
40277152006	2024-3-F	EPA 8082A	BLM	10
		ASTM D2974-87	EGL	1
40277152007	2024-3-G	EPA 8082A	BLM	10
		ASTM D2974-87	EGL	1
40277152008	2024-3-H	EPA 8082A	BLM	10
		ASTM D2974-87	EGL	1
40277152009	2024-3-I	EPA 8082A	BLM	10
		ASTM D2974-87	EGL	1

PASI-G = Pace Analytical Services - Green Bay



SUMMARY OF DETECTION

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40277152001	2024-3-A					
EPA 8082A	PCB, Total	231	ug/kg	50.9	04/23/24 16:54	
EPA 8082A	PCB-1248 (Aroclor 1248)	164	ug/kg	50.9	04/23/24 16:54	
EPA 8082A	PCB-1254 (Aroclor 1254)	66.6	ug/kg	50.9	04/23/24 16:54	
ASTM D2974-87	Percent Moisture	1.8	%	0.10	04/22/24 17:03	
0277152002	2024-3-B					
EPA 8082A	PCB, Total	122	ug/kg	51.6	04/23/24 17:16	
EPA 8082A	PCB-1248 (Aroclor 1248)	122	ug/kg	51.6	04/23/24 17:16	
ASTM D2974-87	Percent Moisture	3.2	%	0.10	04/22/24 17:03	
0277152003	2024-3-C					
EPA 8082A	PCB, Total	123	ug/kg	51.9	04/23/24 17:37	
EPA 8082A	PCB-1248 (Aroclor 1248)	84.5	ug/kg		04/23/24 17:37	
EPA 8082A	PCB-1254 (Aroclor 1254)	38.9J	ug/kg	51.9	04/23/24 17:37	
ASTM D2974-87	Percent Moisture	3.3	%	0.10	04/22/24 17:03	
0277152004	2024-3-D					
EPA 8082A	PCB, Total	155	ug/kg	51.4	04/23/24 17:58	
EPA 8082A	PCB-1248 (Aroclor 1248)	106	ug/kg	51.4	04/23/24 17:58	
EPA 8082A	PCB-1254 (Aroclor 1254)	48.3J	ug/kg	51.4	04/23/24 17:58	
ASTM D2974-87	Percent Moisture	2.8	%	0.10	04/22/24 17:03	
0277152005	2024-3-E					
EPA 8082A	PCB, Total	2170	ug/kg	155	04/23/24 18:19	
EPA 8082A	PCB-1248 (Aroclor 1248)	2170	ug/kg	155	04/23/24 18:19	
ASTM D2974-87	Percent Moisture	3.2	%	0.10	04/22/24 17:03	
0277152006	2024-3-F					
EPA 8082A	PCB, Total	616	ug/kg	50.7	04/23/24 18:41	
EPA 8082A	PCB-1248 (Aroclor 1248)	616	ug/kg	50.7	04/23/24 18:41	
ASTM D2974-87	Percent Moisture	1.2	%		04/22/24 17:03	
0277152007	2024-3-G					
EPA 8082A	PCB, Total	321	ug/kg	51.6	04/23/24 14:46	
EPA 8082A	PCB-1248 (Aroclor 1248)	238	ug/kg	51.6	04/23/24 14:46	
EPA 8082A	PCB-1254 (Aroclor 1254)	82.6	ug/kg	51.6	04/23/24 14:46	
ASTM D2974-87	Percent Moisture	3.0	%	0.10	04/22/24 17:04	
0277152008	2024-3-H					
EPA 8082A	PCB, Total	650	ug/kg	51.2	04/23/24 15:07	
EPA 8082A	PCB-1248 (Aroclor 1248)	650	ug/kg		04/23/24 15:07	
ASTM D2974-87	Percent Moisture	2.1	%		04/22/24 17:04	
0277152009	2024-3-I					
EPA 8082A	PCB, Total	974	ug/kg	51.1	04/23/24 15:29	
EPA 8082A	PCB-1248 (Aroclor 1248)	974	ug/kg	51.1	04/23/24 15:29	
ASTM D2974-87	Percent Moisture	2.3	%	0.10	04/22/24 17:04	

PROJECT NARRATIVE

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Method:EPA 8082ADescription:8082A GCS PCBClient:TRC - MADISONDate:April 24, 2024

General Information:

9 samples were analyzed for EPA 8082A by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3541 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

Sample: 2024-3-A Lab ID: 40277152001 Collected: 02/28/24 11:37 Received: 04/20/24 10:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Meth	nod: El	PA 3541			
	Pace Anal	ytical Service	es - Green Bay	•					
PCB, Total	231	ug/kg	50.9	15.5	1	04/22/24 12:00	04/23/24 16:54	1336-36-3	
PCB-1016 (Aroclor 1016)	<15.5	ug/kg	50.9	15.5	1	04/22/24 12:00	04/23/24 16:54	12674-11-2	
PCB-1221 (Aroclor 1221)	<15.5	ug/kg	50.9	15.5	1	04/22/24 12:00	04/23/24 16:54	11104-28-2	
PCB-1232 (Aroclor 1232)	<15.5	ug/kg	50.9	15.5	1	04/22/24 12:00	04/23/24 16:54	11141-16-5	
PCB-1242 (Aroclor 1242)	<15.5	ug/kg	50.9	15.5	1	04/22/24 12:00	04/23/24 16:54	53469-21-9	
PCB-1248 (Aroclor 1248)	164	ug/kg	50.9	15.5	1	04/22/24 12:00	04/23/24 16:54	12672-29-6	
PCB-1254 (Aroclor 1254)	66.6	ug/kg	50.9	15.5	1	04/22/24 12:00	04/23/24 16:54	11097-69-1	
PCB-1260 (Aroclor 1260)	<15.5	ug/kg	50.9	15.5	1	04/22/24 12:00	04/23/24 16:54	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	89	%	44-120		1	04/22/24 12:00	04/23/24 16:54	877-09-8	
Decachlorobiphenyl (S)	74	%	34-120		1	04/22/24 12:00	04/23/24 16:54	2051-24-3	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Bay	,					
Percent Moisture	1.8	%	0.10	0.10	1		04/22/24 17:03		

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

Sample: 2024-3-B Lab ID: 40277152002 Collected: 02/28/24 11:47 Received: 04/20/24 10:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	A 8082A Prepa	ration Meth	nod: El	PA 3541			
	Pace Anal	ytical Service	es - Green Bay						
PCB, Total	122	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 17:16	1336-36-3	
PCB-1016 (Aroclor 1016)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 17:16	12674-11-2	
PCB-1221 (Aroclor 1221)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 17:16	11104-28-2	
PCB-1232 (Aroclor 1232)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 17:16	11141-16-5	
PCB-1242 (Aroclor 1242)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 17:16	53469-21-9	
PCB-1248 (Aroclor 1248)	122	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 17:16	12672-29-6	
PCB-1254 (Aroclor 1254)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 17:16	11097-69-1	
PCB-1260 (Aroclor 1260)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 17:16	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	95	%	44-120		1	04/22/24 12:00	04/23/24 17:16	877-09-8	
Decachlorobiphenyl (S)	78	%	34-120		1	04/22/24 12:00	04/23/24 17:16	2051-24-3	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	3.2	%	0.10	0.10	1		04/22/24 17:03		

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

Sample: 2024-3-C Lab ID: 40277152003 Collected: 02/28/24 11:50 Received: 04/20/24 10:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	A 8082A Prepa	aration Meth	nod: El	PA 3541			
	Pace Anal	ytical Service	es - Green Bay	•					
PCB, Total	123	ug/kg	51.9	15.8	1	04/22/24 12:00	04/23/24 17:37	1336-36-3	
PCB-1016 (Aroclor 1016)	<15.8	ug/kg	51.9	15.8	1	04/22/24 12:00	04/23/24 17:37	12674-11-2	
PCB-1221 (Aroclor 1221)	<15.8	ug/kg	51.9	15.8	1	04/22/24 12:00	04/23/24 17:37	11104-28-2	
PCB-1232 (Aroclor 1232)	<15.8	ug/kg	51.9	15.8	1	04/22/24 12:00	04/23/24 17:37	11141-16-5	
PCB-1242 (Aroclor 1242)	<15.8	ug/kg	51.9	15.8	1	04/22/24 12:00	04/23/24 17:37	53469-21-9	
PCB-1248 (Aroclor 1248)	84.5	ug/kg	51.9	15.8	1	04/22/24 12:00	04/23/24 17:37	12672-29-6	
PCB-1254 (Aroclor 1254)	38.9J	ug/kg	51.9	15.8	1	04/22/24 12:00	04/23/24 17:37	11097-69-1	
PCB-1260 (Aroclor 1260)	<15.8	ug/kg	51.9	15.8	1	04/22/24 12:00	04/23/24 17:37	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	94	%	44-120		1	04/22/24 12:00	04/23/24 17:37	877-09-8	
Decachlorobiphenyl (S)	84	%	34-120		1	04/22/24 12:00	04/23/24 17:37	2051-24-3	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Bay	,					
Percent Moisture	3.3	%	0.10	0.10	1		04/22/24 17:03		

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

Sample: 2024-3-D Lab ID: 40277152004 Collected: 02/28/24 12:02 Received: 04/20/24 10:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Meth	nod: El	PA 3541			
	Pace Anal	ytical Service	es - Green Bay	•					
PCB, Total	155	ug/kg	51.4	15.6	1	04/22/24 12:00	04/23/24 17:58	1336-36-3	
PCB-1016 (Aroclor 1016)	<15.6	ug/kg	51.4	15.6	1	04/22/24 12:00	04/23/24 17:58	12674-11-2	
PCB-1221 (Aroclor 1221)	<15.6	ug/kg	51.4	15.6	1	04/22/24 12:00	04/23/24 17:58	11104-28-2	
PCB-1232 (Aroclor 1232)	<15.6	ug/kg	51.4	15.6	1	04/22/24 12:00	04/23/24 17:58	11141-16-5	
PCB-1242 (Aroclor 1242)	<15.6	ug/kg	51.4	15.6	1	04/22/24 12:00	04/23/24 17:58	53469-21-9	
PCB-1248 (Aroclor 1248)	106	ug/kg	51.4	15.6	1	04/22/24 12:00	04/23/24 17:58	12672-29-6	
PCB-1254 (Aroclor 1254)	48.3J	ug/kg	51.4	15.6	1	04/22/24 12:00	04/23/24 17:58	11097-69-1	
PCB-1260 (Aroclor 1260)	<15.6	ug/kg	51.4	15.6	1	04/22/24 12:00	04/23/24 17:58	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	95	%	44-120		1	04/22/24 12:00	04/23/24 17:58	877-09-8	
Decachlorobiphenyl (S)	74	%	34-120		1	04/22/24 12:00	04/23/24 17:58	2051-24-3	
Percent Moisture	Analytical Method: ASTM D2974-87								
	Pace Anal	ytical Service	es - Green Bay	,					
Percent Moisture	2.8	%	0.10	0.10	1		04/22/24 17:03		

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

Sample: 2024-3-E Lab ID: 40277152005 Collected: 02/28/24 12:22 Received: 04/20/24 10:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Metl	nod: El	PA 3541			
	Pace Anal	ytical Service	es - Green Bay	•					
PCB, Total	2170	ug/kg	155	47.2	3	04/22/24 12:00	04/23/24 18:19	1336-36-3	
PCB-1016 (Aroclor 1016)	<47.2	ug/kg	155	47.2	3	04/22/24 12:00	04/23/24 18:19	12674-11-2	
PCB-1221 (Aroclor 1221)	<47.2	ug/kg	155	47.2	3	04/22/24 12:00	04/23/24 18:19	11104-28-2	
PCB-1232 (Aroclor 1232)	<47.2	ug/kg	155	47.2	3	04/22/24 12:00	04/23/24 18:19	11141-16-5	
PCB-1242 (Aroclor 1242)	<47.2	ug/kg	155	47.2	3	04/22/24 12:00	04/23/24 18:19	53469-21-9	
PCB-1248 (Aroclor 1248)	2170	ug/kg	155	47.2	3	04/22/24 12:00	04/23/24 18:19	12672-29-6	
PCB-1254 (Aroclor 1254)	<47.2	ug/kg	155	47.2	3	04/22/24 12:00	04/23/24 18:19	11097-69-1	
PCB-1260 (Aroclor 1260)	<47.2	ug/kg	155	47.2	3	04/22/24 12:00	04/23/24 18:19	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	96	%	44-120		3	04/22/24 12:00	04/23/24 18:19	877-09-8	
Decachlorobiphenyl (S)	72	%	34-120		3	04/22/24 12:00	04/23/24 18:19	2051-24-3	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Bay	,					
Percent Moisture	3.2	%	0.10	0.10	1		04/22/24 17:03		

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

Sample: 2024-3-F Lab ID: 40277152006 Collected: 02/28/24 12:12 Received: 04/20/24 10:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	ration Meth	nod: El	PA 3541			
	Pace Anal	ytical Service	s - Green Bay	,					
PCB, Total	616	ug/kg	50.7	15.4	1	04/22/24 12:00	04/23/24 18:41	1336-36-3	
PCB-1016 (Aroclor 1016)	<15.4	ug/kg	50.7	15.4	1	04/22/24 12:00	04/23/24 18:41	12674-11-2	
PCB-1221 (Aroclor 1221)	<15.4	ug/kg	50.7	15.4	1	04/22/24 12:00	04/23/24 18:41	11104-28-2	
PCB-1232 (Aroclor 1232)	<15.4	ug/kg	50.7	15.4	1	04/22/24 12:00	04/23/24 18:41	11141-16-5	
PCB-1242 (Aroclor 1242)	<15.4	ug/kg	50.7	15.4	1	04/22/24 12:00	04/23/24 18:41	53469-21-9	
PCB-1248 (Aroclor 1248)	616	ug/kg	50.7	15.4	1	04/22/24 12:00	04/23/24 18:41	12672-29-6	
PCB-1254 (Aroclor 1254)	<15.4	ug/kg	50.7	15.4	1	04/22/24 12:00	04/23/24 18:41	11097-69-1	
PCB-1260 (Aroclor 1260)	<15.4	ug/kg	50.7	15.4	1	04/22/24 12:00	04/23/24 18:41	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	82	%	44-120		1	04/22/24 12:00	04/23/24 18:41	877-09-8	
Decachlorobiphenyl (S)	77	%	34-120		1	04/22/24 12:00	04/23/24 18:41	2051-24-3	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	s - Green Bay	,					
Percent Moisture	1.2	%	0.10	0.10	1		04/22/24 17:03		

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

Sample: 2024-3-G Lab ID: 40277152007 Collected: 02/28/24 12:28 Received: 04/20/24 10:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	A 8082A Prepa	aration Meth	nod: El	PA 3541			
	Pace Anal	ytical Service	es - Green Bay	′					
PCB, Total	321	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 14:46	1336-36-3	
PCB-1016 (Aroclor 1016)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 14:46	12674-11-2	
PCB-1221 (Aroclor 1221)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 14:46	11104-28-2	
PCB-1232 (Aroclor 1232)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 14:46	11141-16-5	
PCB-1242 (Aroclor 1242)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 14:46	53469-21-9	
PCB-1248 (Aroclor 1248)	238	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 14:46	12672-29-6	
PCB-1254 (Aroclor 1254)	82.6	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 14:46	11097-69-1	
PCB-1260 (Aroclor 1260)	<15.7	ug/kg	51.6	15.7	1	04/22/24 12:00	04/23/24 14:46	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	89	%	44-120		1	04/22/24 12:00	04/23/24 14:46	877-09-8	
Decachlorobiphenyl (S)	75	%	34-120		1	04/22/24 12:00	04/23/24 14:46	2051-24-3	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Bay	,					
Percent Moisture	3.0	%	0.10	0.10	1		04/22/24 17:04		

ANALYTICAL RESULTS

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

Sample: 2024-3-H Lab ID: 40277152008 Collected: 02/28/24 12:35 Received: 04/20/24 10:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Meth	nod: El	PA 3541			
	Pace Anal	ytical Service	s - Green Bay	,					
PCB, Total	650	ug/kg	51.2	15.6	1	04/22/24 12:00	04/23/24 15:07	1336-36-3	
PCB-1016 (Aroclor 1016)	<15.6	ug/kg	51.2	15.6	1	04/22/24 12:00	04/23/24 15:07	12674-11-2	
PCB-1221 (Aroclor 1221)	<15.6	ug/kg	51.2	15.6	1	04/22/24 12:00	04/23/24 15:07	11104-28-2	
PCB-1232 (Aroclor 1232)	<15.6	ug/kg	51.2	15.6	1	04/22/24 12:00	04/23/24 15:07	11141-16-5	
PCB-1242 (Aroclor 1242)	<15.6	ug/kg	51.2	15.6	1	04/22/24 12:00	04/23/24 15:07	53469-21-9	
PCB-1248 (Aroclor 1248)	650	ug/kg	51.2	15.6	1	04/22/24 12:00	04/23/24 15:07	12672-29-6	
PCB-1254 (Aroclor 1254)	<15.6	ug/kg	51.2	15.6	1	04/22/24 12:00	04/23/24 15:07	11097-69-1	
PCB-1260 (Aroclor 1260)	<15.6	ug/kg	51.2	15.6	1	04/22/24 12:00	04/23/24 15:07	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	88	%	44-120		1	04/22/24 12:00	04/23/24 15:07	877-09-8	
Decachlorobiphenyl (S)	78	%	34-120		1	04/22/24 12:00	04/23/24 15:07	2051-24-3	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Bay	,					
Percent Moisture	2.1	%	0.10	0.10	1		04/22/24 17:04		

ANALYTICAL RESULTS

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

Sample: 2024-3-I Lab ID: 40277152009 Collected: 02/28/24 12:44 Received: 04/20/24 10:00 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	\ 8082A Prepa	aration Meth	nod: El	PA 3541			
	Pace Anal	ytical Service	es - Green Bay	/					
PCB, Total	974	ug/kg	51.1	15.6	1	04/22/24 12:00	04/23/24 15:29	1336-36-3	
PCB-1016 (Aroclor 1016)	<15.6	ug/kg	51.1	15.6	1	04/22/24 12:00	04/23/24 15:29	12674-11-2	
PCB-1221 (Aroclor 1221)	<15.6	ug/kg	51.1	15.6	1	04/22/24 12:00	04/23/24 15:29	11104-28-2	
PCB-1232 (Aroclor 1232)	<15.6	ug/kg	51.1	15.6	1	04/22/24 12:00	04/23/24 15:29	11141-16-5	
PCB-1242 (Aroclor 1242)	<15.6	ug/kg	51.1	15.6	1	04/22/24 12:00	04/23/24 15:29	53469-21-9	
PCB-1248 (Aroclor 1248)	974	ug/kg	51.1	15.6	1	04/22/24 12:00	04/23/24 15:29	12672-29-6	
PCB-1254 (Aroclor 1254)	<15.6	ug/kg	51.1	15.6	1	04/22/24 12:00	04/23/24 15:29	11097-69-1	
PCB-1260 (Aroclor 1260)	<15.6	ug/kg	51.1	15.6	1	04/22/24 12:00	04/23/24 15:29	11096-82-5	
Surrogates									
Tetrachloro-m-xylene (S)	78	%	44-120		1	04/22/24 12:00	04/23/24 15:29	877-09-8	
Decachlorobiphenyl (S)	58	%	34-120		1	04/22/24 12:00	04/23/24 15:29	2051-24-3	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Bay	/					
Percent Moisture	2.3	%	0.10	0.10	1		04/22/24 17:04		

QUALITY CONTROL DATA

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

QC Batch: 472281 Analysis Method: EPA 8082A
QC Batch Method: EPA 3541 Analysis Description: 8082 GCS PCB

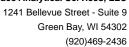
Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40277152001, 40277152002, 40277152003, 40277152004, 40277152005, 40277152006, 40277152007,

40277152008, 40277152009

METHOD BLANK: 2705158 Matrix: Solid

Associated Lab Samples: 40277152001, 40277152002, 40277152003, 40277152004, 40277152005, 40277152006, 40277152007,


40277152008, 40277152009

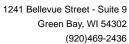
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	<15.2	50.0	04/23/24 02:52	
PCB-1221 (Aroclor 1221)	ug/kg	<15.2	50.0	04/23/24 02:52	
PCB-1232 (Aroclor 1232)	ug/kg	<15.2	50.0	04/23/24 02:52	
PCB-1242 (Aroclor 1242)	ug/kg	<15.2	50.0	04/23/24 02:52	
PCB-1248 (Aroclor 1248)	ug/kg	<15.2	50.0	04/23/24 02:52	
PCB-1254 (Aroclor 1254)	ug/kg	<15.2	50.0	04/23/24 02:52	
PCB-1260 (Aroclor 1260)	ug/kg	<15.2	50.0	04/23/24 02:52	
Decachlorobiphenyl (S)	%	95	34-120	04/23/24 02:52	
Tetrachloro-m-xylene (S)	%	93	44-120	04/23/24 02:52	

LABORATORY CONTROL SAMPLE:	2705159					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg		<15.2			
PCB-1221 (Aroclor 1221)	ug/kg		<15.2			
PCB-1232 (Aroclor 1232)	ug/kg		<15.2			
PCB-1242 (Aroclor 1242)	ug/kg		<15.2			
PCB-1248 (Aroclor 1248)	ug/kg		<15.2			
PCB-1254 (Aroclor 1254)	ug/kg		<15.2			
PCB-1260 (Aroclor 1260)	ug/kg	500	503	101	69-120	
Decachlorobiphenyl (S)	%			99	34-120	
Tetrachloro-m-xylene (S)	%			93	44-120	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 2705	160		2705161							
Parameter	4 Units	0277160001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
PCB-1016 (Aroclor 1016)	ug/kg	<0.054 mg/kg			<16.4	<16.4					20	
PCB-1221 (Aroclor 1221)	ug/kg	<0.054 mg/kg			<16.4	<16.4					20	
PCB-1232 (Aroclor 1232)	ug/kg	<0.054 mg/kg			<16.4	<16.4					20	
PCB-1242 (Aroclor 1242)	ug/kg	<0.054 mg/kg			<16.4	<16.4					20	
PCB-1248 (Aroclor 1248)	ug/kg	<0.054 mg/kg			<16.4	<16.4					20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA


Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

MATRIX SPIKE & MATRIX S			MS	MSD	2705161	1400	MO	MOD	0/ D		Maria	
Parameter	4 Units	0277160001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
PCB-1254 (Aroclor 1254)	ug/kg	<0.054 mg/kg			<16.4	<16.4					20	
PCB-1260 (Aroclor 1260)	ug/kg	<0.054 mg/kg	537	538	391	407	73	76	51-120	4	20	
Decachlorobiphenyl (S)	%	0 0					74	75	34-120			
Tetrachloro-m-xylene (S)	%						90	94	44-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

QC Batch: 472361 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40277152001, 40277152002, 40277152003, 40277152004, 40277152005, 40277152006, 40277152007,

40277152008, 40277152009

SAMPLE DUPLICATE: 2705450

Date: 04/24/2024 09:02 AM

		40277131013	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	23.6	23.4	1	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALIFIERS

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - The reported result is an estimated value.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Analyte was not detected and is reported as less than the LOD or as defined by the customer.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

Date: 04/24/2024 09:02 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 581184 PHASE 2 TASK 4 MKC CONC

Pace Project No.: 40277152

Date: 04/24/2024 09:02 AM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40277152001	2024-3-A	EPA 3541	472281	EPA 8082A	472295
40277152002	2024-3-B	EPA 3541	472281	EPA 8082A	472295
40277152003	2024-3-C	EPA 3541	472281	EPA 8082A	472295
40277152004	2024-3-D	EPA 3541	472281	EPA 8082A	472295
40277152005	2024-3-E	EPA 3541	472281	EPA 8082A	472295
40277152006	2024-3-F	EPA 3541	472281	EPA 8082A	472295
40277152007	2024-3-G	EPA 3541	472281	EPA 8082A	472295
40277152008	2024-3-H	EPA 3541	472281	EPA 8082A	472295
40277152009	2024-3-I	EPA 3541	472281	EPA 8082A	472295
40277152001	2024-3-A	ASTM D2974-87	472361		
40277152002	2024-3-B	ASTM D2974-87	472361		
40277152003	2024-3-C	ASTM D2974-87	472361		
40277152004	2024-3-D	ASTM D2974-87	472361		
40277152005	2024-3-E	ASTM D2974-87	472361		
40277152006	2024-3-F	ASTM D2974-87	472361		
40277152007	2024-3-G	ASTM D2974-87	472361		
40277152008	2024-3-H	ASTM D2974-87	472361		
40277152009	2024-3-I	ASTM D2974-87	472361		

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT All relevant fields must be completed accurately

/_	Pace Analytical											- 1																
section		Section B								Sec	ction C	: [Г	Page ·	1	of	1
<u> </u>	Client Information	Required P									oce Info	rmatio												L				
Company Address							rccompan		n	_	ntion	14			rine Va	ater				<u> </u>								
Address	999 Fourier Dr , Suite 101				nn, asten z, bwachholz		mpanies	com			npany N Iress	iame	_	RC		D			04	_		_	AGEN			D 601	IVING WATE	
Email To	Madison, WI 53717 astehn@trccompanies.com	Purchase Ord		ECITIO.	z, owednioiz	@trecompa	nes com				e Quote I	Referen		99 F	ourier	DIIVE	е, ъ	suite 1	01	□ NI			⊐ GROU ⊐ RCRA	NDWA	AIER	OTH	IKING WATEI	ζ.
	608-807-8112 Fax	Project Name		MKC	Concret	e Samol	ina			_	e Project			od N	olteme	ever					Locat				ī		777777	
	ed Due Date/TAT: 4/22/2024	Project Numb			84 Phas						e Profile			00 11	Olicini	<u>cycı</u>				1 "	STA			WI	ļ			
		•										i				T		Reque	sted	Anal			d (Y/N)	VII			
	Section D Valid Matrix	Codes							Т	Т		l _s				1	П	ΤТ		ПТ			\Box	\top	7///			
	Required Client Information MATRIX	CODE	left)	€ 		COLL	ECTED		- 1	1	1	Pre	eserva	atives	3	N.	N				-							
	DRINKING WATE WATE	R WT	codes to left)	C=COMP)					\exists_z			7					Т						\sqcap	\neg	111			
	WASTE WATE PRODU	R WW	pos	Ü	COMPO		COMPO: END/GF	SITE	[]	1		- 1	1				ı					}						
1		IL OL	valid	8	SIAN		END/GF	RAB	l iii		11	3			1 1		1					ļ			ΙΞΊ			
	0.41401 - 10	E WP R AR	(see valid	(G=GRAB					COLLECTION	ဟ္	:	(17	ı								0			
ļ	(A-Z, 0-9 / ,-)	R OT IE TS		စ္					ΑŢ	1 5	i	- 11				Test	ı	1 1	1						Ę			
	Sample IDs MUST BE UNIQUE		Ä	TYPE					TEMP	Ī	8	- K		ı			ไล			l l				- 1	붉			
	·		S	Σ					12	Z	<u> </u>	ľ	\mathbf{I}	اچ	힏	Ιŝ	၂ၕ္တ	1		1 1	1		-		a a			
*			8	7					ם	ŏ	§	៰៲៴	· ;	티양	티벌	a	8	1							릴			
ITEM			MATRIX CODE	SAMPLE	DATE	TIME	DATE	TIME	SAMPLE	# OF CONTAINERS	Unpreserved	H ₂ SO ₄	밀	NaCH Na ₂ S ₂ O ₃	Methanol Other	Analysis	PCBs (8082)	1 1						1	Residual Chlorine (Y/N)	Pace	Project N	lo./ Lab I.D.
1	2024-3-A		OT	G	DATE	THAT	02/28/24	11:3		+ 1	X		+-	- -	20	干	T _X		+	\vdash	+	\dashv	+	+	- N	00		10.7 Lab 1.D.
2	2024-3-B		ОТ	G			02/28/24	11:4		Ti	X		$\dagger \dagger$	+	\vdash	1	X		+	\vdash	\dashv	十	$\dashv \dashv$	_	N	ردي)	
3	2024-3-0		ОТ	G			02/28/24	11:5	Ó	П	X	l				1	X								N	روير		
4	2024-3-D		ОТ	G			02/28/24	12:0		L	X	<u> </u>	┷		\perp	4	X				\perp			_ _	N	92		
5 6	2024-3-E		OT OT	G			02/28/24	12:2		12	X	-1	++		├	4	X			₩	-			_	N N	_O'F		
"	2024-3-F 2024-3-6		OT	G			02/28/24	12:2		+;	 î 	- ;-	++	+	 	-	F		+	┼┼	-	+	-		N N	000	}	·
8	2024-3-H		ОТ	G			02/28/24	12:3	3	17		-11	+	┰	\vdash	1	X		\dashv	\vdash	\top	\dashv	-		N	200	<u> </u>	
9	2024-3-1		ОТ	G			02/28/24	12:4	4	\Box	X]	X								N	œ	}	
10							L	1		╄		1/	1	<u> </u>	<u> </u>	4	L	1		\sqcup		\dashv		_	\perp			
11			-				 	 		╀		-	╁┼		 	-	\vdash	╁		-	-				-			
13							 	-	┰	╁			++		 	1	H	+	╅	+		+	+		+			
14										T			\Box			1					\neg							
15										上		_ <u> i</u>	\Box			1		\Box				\Box						
16 17							ļ	ļ	_	╀	+		++	+		-	┡	++	-	\vdash	_ _							
18										╁	-	-11	++	+	┼┼	-	\vdash	++	+	+		-	-	-				
19			_							╁	_		+	┰	\vdash	1	\vdash	+	\dashv	\vdash		-	\dashv		$\dashv \dashv$			
20]												
21				_				ļ	-	-	_		$\perp \perp$		<u> </u>	4	L	44		$\perp \perp$		Ц	_ _	_ _	-			
22			_				ļ	ļ		╄	-			-	$\vdash\vdash$	-	⊩	+		+	-			_ -	-			
24					-					+	+	- 15	++			1	\vdash	+-+		╁		-+	+	+	+			
	ADDITIONAL COMMENTS		RELI	NOU		AFFILIATI	ON.	D/	ATE		TIME			AC	CEPTE	D BY	7 AI	FILIAT	ION		DATE		TIME			SAMP	LE CONDIT	IONS
		<u>K</u> an	\mathcal{J}_{h}	3	Wox	<u> – M</u>	<u> </u>	4/19	1/24	1	7:12	\tilde{z}		<u> </u>														
		Τ.			(Dec	les	4/20	10 q	14	32°	2 🗓) 	<u>-e.,</u>	7	6	20	رو	<u>- Y</u>	120/	14	000		1.0	_У_	v	
						<i>.</i>	•	<u>Ļ'</u> '		<u> </u>		- 1				_ (V			(_		_ _				
						04555	-D Me**-	 																-				
						SAMPLI	ER NAME A				0	, 1	,	11	1-									-	ပ္	5 (S	ole.	8 (2
							PRINT Nan	ne of SA	AMPLER: Kan Wachaola E SE SE SE SE SE SE SE						Samples Intact (Y/N)													
		SIGNATURE of SAMPLER:									Par	1	TAN	UZ:	*Z_		DA	TE Sig	ned	4/	19/	2	4	\neg	Terr	760. 100	eale Cr	Sa Intar
						L					1701	<u> </u>	J-V-C	+ V - 1	7		I(M	M/UU/Y	1):	/-	'/-	4	1				<u> </u>	

Effective Date: 8/16/2022

All con	ntain	ers n	me:	g pres	ervatı	on ha	ve be	en ch			oted b			□Ye	s	'□No		JZN/	4		ervatio		H adju	sted):	•					tial wh mplete			Date/ Time.	
			,	Glass	5					Plast	ic					Vi	als				J	ars			Gen	eral		(>6mm) *	152	λct pH ≥9	≥12	25	djusted	Volume
ce	AG10	BG1U	AG1H	AG4S	AG5U	AG2S	BG3U	BP1U	BP3U	врзв	BP3N	BP3S	BP2Z	7697	DG9T	VG9U	И СВН	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN 1	GN 2	VOA Vials (>6mm)	12SO4 pH ≤2	VaOH+Zn Act pH ≥9	NaOH pH ≥12	HNO3 pH <2	oH after adjusted	(mL)
)1			`.																	1														2.5 / 5
2	, ;		,			,	7		4,1		,	, ,	, 1 1	4	1,2		1 1				1 1		1 1		100	٠	.:		٠,	•	- !		, ,	2.5 / 5
3																				1														2.5 / 5
41		3 2 4 : 30 4 4 !	P17	1 1	1 (**)	1	1 2 6	1 1 1 1	de las	1	1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	in the second	وا الأخليات المراجعة المراجعة	4 1 1 1	15 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -	314	114 - 1	e 1 6 3	Har Proberty Frankling	1	1 1 2 1	ka Hippi K	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40 194 40 1954		# 15 tol	1 20	14 e k	44 4 4 54 44 4 4 4	100 d q 1 d 1 d	1 10	1 1 20 1 1 2 1 3 4 1 2 3 1 1	41.1.4	2.5 / 5
5																				2														2.5 / 5
6			;		٠,		,	- ,		1	1		'		1 1	1	n.		1	1	1.1	,						_	7					2.5 / 5
7																																		2.5 / 5
8		* 1		,										٠	- 5					1				* 1	·	,								2.5 / 5
9																																		2.5 / 5
0		-		`	1 2	2411 4	1	>	4111	1 1 17	1 / A	5.5	11.7	ci, i	San 1 i	, ,	1 ,		1 413	111	1.17	1	ed i	1.5		000	10 M	1 1 1 1	1 1 M	No. of the	,	r in t		2.5 / 5
<u> 1 </u>										_																								2.5 / 5
2"				' '	٠.	٠,				G 1					1.		1				7 1	- 1		,		6 6								2.5 / 5
3		`																_			<u> </u>						<u> </u>							2.5 / 5
4	1		' '	٠,	,					11.		· ·	<u> </u>	<u></u>	1/	<u> </u>				1, 1	_			,	1,2		1	,		1	,	11		2.5 / 5
5					<u> </u>									1	10		1/2	11							<u></u>		<u> </u>		L					2.5 / 5
6		1 192	* (1,5	3 1 1	å j	1	·	1 1 1	1 · · ·		28.		11 1	W. S.	150	10	9	$\supset \mathcal{I}$			i	15 174	1 5	7, 17 -	4871	5,01		∨ P.1 %	1 1 1 1		x 155	11.72	2.5 / 5
7															<u> </u>	<u> </u>												`	\geq					2.5 / 5
8		t	' '		' '	;	٦.		. h	, '	4.1		H 4 , , *						. '	٠.	7.1			, " , i"	1 1	1 12						1.	, '	2.5 / 5
9	\perp																			<u> </u>														2.5 / 5
0	,	·	1	1	4	, (٠,	1 ,	<u> </u>	, 5 ,	1.	1 1	1 1 1	4 1	1		.;	1814		, A., 1 - 1	500	7 s 1 3 s s s	, 1 ⁵	G ^{lea}	. '	٠. '	1	'''	, ,		1	4	2.5 / 5
1U 1 1U 1 1H 1 4S 1	liter liter liter 25 r	r amb r clea r amb mL ar mL ar	per glas per glas mber mber	ass ss ass H glass glass		O4	BF BF BF BF	91U 93U 93B 93N 93S	TOX, TOH, O&G, WI DRO, Phenolics, O 1 liter plastic unpres 250 mL plastic unpres 250 mL plastic NaOH 250 mL plastic HNO3 250 mL plastic H2SO4 500 mL plastic NaOH + Zn								39C 39T 39U 39H 39M 39D	40 m 40 m 40 m	nL am nL clea nL clea nL clea	ber N ar via ar via ar via	corbic a Thic I unpro I HCL I MeO	w/ HC o es		JG JG WF	FU 9U SFU	4 oz 9 oz 4 oz 4 oz 120 i	ambe ambe clear plasti	rjaru rjaru jarun cjaru	unpres unpres upres unpres Na Thi		s look	in hea	dspace c	

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR

Effective Date: 8/17/2022

Sample Condition Upon Receipt Form (SCUR)

		Project #:		
Client Name:			∥ WO#:	40277152
Courier: CS Logistics Fed Ex Speed	lee [] UPS []	Waltco		
Client Pace Other:				(
Tracking #: 7760 37/2 15/	7		40277152	
Custody Seal on Cooler/Box Present: 🗍 yes		ct: 🛘 yes 🗀 no		
Custody Seal on Samples Present: yes		ct: ☐ yes ☐ no		
Packing Material: Bubble Wrap Bub		<i>─</i>	ı	
Thermometer Used SR - 139	_	Blue Dry None	Meltwater	Only Person examining contents:
4	1. O	Tiesus is Farmer	F	1/ha/v/
Temp Blank Present:	Biologica	Tissue is Frozen:	j_ yesj_ no	Date: // Def /Initials: 00
Biota Samples may be received at ≤ 0°C if shipped on D				Labeled By Initials:
Chain of Custody Present:	Yes No N	A 1.		
Chain of Custody Filled Out:	□Yes □No □N/	A 2.		:
Chain of Custody Relinquished:	Yes No N	A 3.		
Sampler Name & Signature on COC:	Yes ONO ON	A 4.		
Samples Arrived within Hold Time:	ØYes □No	5.		t t
- DI VOA Samples frozen upon receipt	□Yes □No	Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes □No	6.		1
Rush Turn Around Time Requested:	ZYes □No	7.		
Sufficient Volume:	•	8.		
For Analysis: ☐res ☐No MS/MSD	: □Yes ☑No □N/	Α		
Correct Containers Used:	ØYes □No	9.		
Correct Type: Pace Green Bay, Pace IR, Non-Pace	<u>) </u>			
Containers Intact:	ZYes □No	10.		
Filtered volume received for Dissolved tests	Yes No ZN/	11.		1
Sample Labels match COC:	Yes ONO ON/	12.		ı
-Includes date/time/ID/Analysis Matrix:	36			
Trip Blank Present:	□Yes □No □Ni	13.		,
Trip Blank Custody Seals Present	□Yes □No 7N/A			
Pace Trip Blank Lot # (if purchased):				
Client Notification/ Resolution: Person Contacted:	Data		hecked, see attach	ned form for additional comments
Person Contacted: Comments/ Resolution:		/Time:		
				,
				
PM Review is documented electronically in LIMs	s. By releasing the	project, the PM acl	knowledges the	y have reviewed the sample logic
			_	Page 2 of 2

Appendix D: Photographic Log

Client Name:

Madison-Kipp Corporation (MKC)

Site Location:

201 Waubesa Street Madison, WI 53704 Project No.:

581184.0003.00000

Photo No.

Date

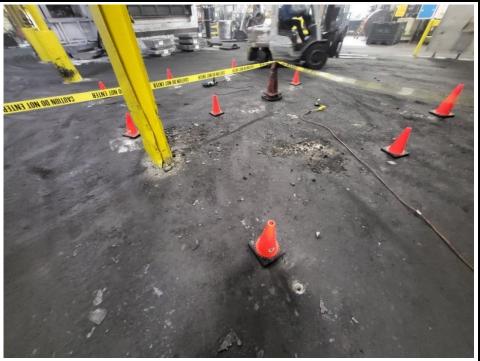
1

02/20/2024

Description

Concrete in Area 2024-3 in MKC's facility prior to waste characterization sampling and removal.

Photo No.


Date

2

02/28/2024

Description

Concrete drilling and waste characterization sampling activities taking place in Area 2024-3 in MKC's facility prior to removal.

Client Name:

Madison-Kipp Corporation (MKC)

Site Location:

201 Waubesa Street Madison, WI 53704 Project No.:

581184.0003.00000

Photo No.

Date

3

04/05/2024

Description

Area 2024-3 following concrete replacement in MKC facility.

Photo No.

Date

4

04/05/2024

Description

Unloading area located at the top of the stockpile at the recycling facility. Orange drums were used to block off the eastern portion of the pile where MKC-concrete was placed.

Client Name:

Madison-Kipp Corporation (MKC)

Site Location:

201 Waubesa Street Madison, WI 53704

Project No.:

581184.0003.00000

Photo No.

5

Date 04/05/2024

Description

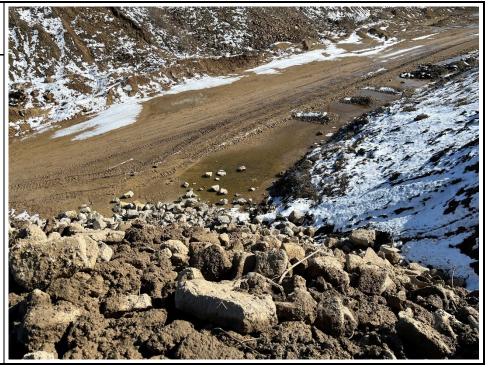

Front of concrete stockpile where at the recycling facility.

Photo No.	Date
6	04/05/2024

Description

View from top of stockpile that contains MKC's concrete at recycling facility.

Client Name:

Madison-Kipp Corporation (MKC)

Site Location:

201 Waubesa Street Madison, WI 53704 Project No.:

581184.0003.00000

Photo No.

Date

7

09/05/2024

Description

Front of concrete stockpile at the recycling facility.

Photo No.

Date

8

09/05/2024

Description

View from top of stockpile that contains MKC's concrete at recycling facility.

Madison-Kipp Corporation (MKC)

Client Name:

Site Location: 201 Waubesa Street Madison, WI 53704 **Project No.:** 581184.0003.00000

 Photo No.
 Date

 9
 09/09/2024

Description

Profile view of stockpile containing MKC's concrete at recycling facility.

Photo No. Date
10 09/09/2024

Description

Pan out view of the front of the stockpile containing MKC's concrete recycling facility. Orange drum represents the outer edge of the eastern portion where MKC concrete was placed.

