

Technical Memorandum

To:Alex Smith, Enbridge EnergyFrom:Ryan EricksonSubject:Superior Terminal Field Booster 23 Historical ContaminationBRRTS #:01-16-579604Date:January 13, 2017Project:49161286Coordinates:46° 41' 01.65" N, 92° 03' 45.15" W

This document summarizes the field screening, analytical sampling, and waste management assistance performed by Barr in response to the discovery of historically contaminated soil near Field Booster 23 (Figure 1) at the Enbridge Superior Terminal in Superior, Wisconsin.

Background

Excavation and pipeline replacement activities were conducted near Field Booster 23 as part of the Superior Terminal Enhancement Project (Project) in 2015. On November 24, 2015, contractors reported encountering a small localized pocket of product, less than 1-cup, near the foundation of a valve located just north of the Field Booster. Enbridge was notified and the nearby infrastructure was assessed for an active release. No active release was identified; therefore, Enbridge inferred that the contamination was historical. The contractors then continued their excavation activities and all excavated soil with evidence of hydrocarbon contamination was transported to the Terminal soil management area for characterization and off-site management.

Barr assisted Enbridge with environmental assessment and waste management tasks, as summarized below.

Given the historical nature of the observed impacts and the size and duration of the Project, Enbridge provided general notification to the Wisconsin Department of Natural Resources (WDNR) that historical impacts would be encountered during the work and that site-specific summary reports would be submitted to upon completion of Project.

Investigation Activities and Results

Barr was onsite on November 24 and 30 of 2015 to document environmental site conditions and field screen the final excavation extents. Barr identified contamination by field screening soil from the excavation for the presence of organic vapors using a photoionization detector (PID) or by identifying other potential indicators of contamination such as odor, discoloration, and sheen. Soil was classified as contaminated if PID headspace readings were greater than 10 parts per million (ppm), or other physical observations of oil impacts were observed, as outlined in the pending Wisconsin Department of Natural Resources (WDNR) Site Investigation and Response Action Plan (SI/RAP) (2014). Field screening sample locations and results were documented on Site Investigation Field Sampling and Screening Logs that are

presented in Attachment A. Excavated soil identified as contaminated was segregated and stockpiled in the contaminated SMA until off-site disposal was approved. Contaminated soil characterization and management activities are discussed below in the *Waste Management* section of this memo.

If residual impacts were identified, analytical soil samples were typically collected from the contaminated location to document residual soil impacts. Soil samples were submitted to ALS Environmental in Holland, Michigan for analysis of petroleum volatile organic compounds (PVOCs) minus methyl tertiary butyl ether (MTBE) plus naphthalene. Laboratory results were compared to WDNR industrial direct contact residual contaminant levels (RCLs), WDNR groundwater RCLs, and were input into the WDNR Web Calculator to determine whether the soil passed the Cumulative Hazard Index criteria described in WDNR guidance document PUB-RR-890. Lab reports and analytical results for specific sites are provided in the site specific attachments.

The final project excavation was located along the northern side of Field Booster 23 and was approximately 55 feet long by 55 feet wide by 6 feet deep (Photos 1 and 2). Soil in the final excavation extents consisted predominately of clay with some sand fill. Headspace readings from soil samples collected from the final excavation sidewalls and base did not exceed 0.5 parts per million (ppm) and no other evidence of residual soil contamination, such as odor, discoloration, sheen, or product, were observed. The excavation extents are shown on Figure 1 and in the field screening log in Attachment A.

Barr collected one analytical sidewall sample (*FB-23-S-1*) from near the valve foundation on November 30, 2015 to document the soil condition near the location of the previously observed contaminated soil (Photos 3 and 4; Figure 1; Attachment A). The sample was sent to ALS Environmental in Holland, Michigan for laboratory analysis of petroleum volatile organic compounds (PVOC) and naphthalene. Analytical sampling results are summarized in Table 1 and the laboratory report is included in Attachment B.

Concentrations of 1,2,4-trimethylbenzne and naphthalene were detected in sample *FB-23-S-1;* however, the concentrations were below Wisconsin Department of Natural Resources (WDNR) industrial direct contact residual contaminant levels (RCLs) and WDNR groundwater RCLs (Table 1) and passed the Cumulative Hazard Index criteria.

The excavation was backfilled with soil or fill with no identified contamination upon completion of the Project work.

Historical Release Information

Barr reviewed the WDNR Bureau of Remediation and Redevelopment Tracking System (BRRTS) database for historical releases in the vicinity of the Field Booster 23 excavation. No historical release source was identified. Based on the location of contaminated soil beneath a Terminal pipeline valve and the limited extent of the contamination, it is likely that contaminated soil is associated with an unreported historical valve release or historical field booster maintenance activities.

Waste Management

Approximately 100 tons of soil from the Field Booster excavation was managed with the Superior Terminal Pipeline Enhancement Project contaminated soil waste stream. A total of 10,638.71 tons of contaminated soil from the overall Project was managed at both the Shamrock Landfill in Cloquet, Minnesota (waste profile# CL14-0029) and the VONCO V landfill in Duluth, Minnesota (waste profile# 16-007-I). Waste profile documentation associated with the Project is provided in Attachment C and includes: profile approval documents; landfill summary reports; and, waste characterization sample laboratory reports.

Receptor Survey

The closest groundwater monitoring wells are wells *MW-6* and *MW-6B* located approximately 190 feet to the east. In 2016, analyte concentrations for PVOC and naphthalene in these wells were below method detection limits as shown in *Groundwater Monitoring Program Report, Superior WI Report* (December 2016).

No residual contamination above WDNR groundwater RCLs was identified, therefore no direct contact or surface water receptors are at risk.

The closest structure is Tank 22, which has no human occupancy. No other vapor receptors were identified within 100 feet of the excavation.

Conclusion

Contaminated soil excavated from around Field Booster 23 was managed at an approved landfill. No residual soil contamination was identified in the final excavation extents through field screening. An analytical sample collected from the final excavation had minor analyte detections that were below the WDNR Groundwater and WDNR Industrial Direct Contact RCLs and passed the WDNR Cumulative Hazard Index criteria. No receptors appear to be at risk from the residual contamination.

No active release was identified at the site and no historical release was identified for this site on the WDNR BRRTS website. Impacted soil was likely associated with a historical valve release based on the location and characteristics of the contamination. Because no residual contamination was identified in the final excavation, Barr recommends that Enbridge request site closure under NR 708. Barr believes that no further remedial or investigative actions will be requested by the WDNR for this site at this time.

References

Barr, 2014. "Site Investigation and Response Action Plan, Enbridge Energy Superior Terminal (Facility-wide)". July 2014.

Barr, 2016. "Groundwater Monitoring Program Report, Superior WI Report". December 2016.

Attachments:

Site Photos	1 through 4
Table 1	Analytical Soil Sample Results
Figure 1	Site Layout
Attachment A	Enbridge Site Investigation Field Sampling and Screening Log
Attachment B	Excavation Sample Laboratory Report
Attachment C	Waste Management Documentation

Site Photos

Photo 1

Photo 2

Photo 1: Final Field Booster 23 Pipeline Enhancement excavation. Field booster 23 is visible in center of the photo just beyond the excavation. Photo taken facing east on November 30, 2015. **Photo 2:** Field Booster 23 Pipeline Enhancement excavation. Hydrocarbon contaminated soil was encountered near the valve foundation shown in the top-center of the photo. Field Booster 23 is shown in the top-right of the photo. Photo taken facing northeast on November 30, 2015.

Photo 3

Photo 4

Photo 3: Valve foundation where hydrocarbon contamination was encountered. Photo taken facing southeast on November 30, 2015.

Photo 4: Excavation sidewall where hydrocarbon contamination was encountered. Photo taken facing northeast on November 30, 2015.

Sample ID	Sample Date	Sample Depth (feet)	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Benzene	Ethyl benzene	Toluene	Total Xylenes	Naphthalene
Groundwater RCLs			1.3821	1.3821	0.0051	1.57	1.1072	3.96	0.6582
Industrial DC RCLs			219	182	7.41	37	818	260	26
FB-23-S-1	11/30/2015	6	0.06	< 0.019	< 0.010	< 0.010	< 0.015	< 0.034	0.036

TABLE 1: Analytical Soil Sample Results (all analyte concentrations in mg/kg)

BOLD = Analyte detections

Attachment A

Site Investigation Field Sampling and Screening Log

Attachment B

Excavation Sample Laboratory Report

20-Apr-2016

Ryan Erickson Barr Engineering 325 S. Lake Avenue Suite 700 Duluth, MN 55802-2323

Re: Field Booster 23 Response (49161286.00)

Work Order: 1512177

Dear Ryan,

Revision: 1

ALS Environmental received 2 samples on 03-Dec-2015 for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

Sample results are compliant with NELAP standard requirements and QC results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 12.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Domaine B. Bucan Electronically approved by: Tom Beamish

Tom Beamish Client Services Coordinator

Certificate No: WI: 399084510

Report of Laboratory Analysis

ADDRESS 3352 128th Avenue Holland, Michigan 49424-9263 | PHONE (616) 399-6070 | FAX (616) 399-6185 ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Client: Barr Engineering **Project:** Field Booster 23 Response (49161286.00) Work Order: 1512177

Work Order Sample Summary

Lab Samp ID	<u>Client Sample ID</u>	<u>Matrix</u>	Tag Number	Collection Date	Date Received	<u>Hold</u>
1512177-01	FB-23-S-1	Soil		11/30/15 13:00	12/03/15 09:30	
1512177-02	Trip Blank	Soil		11/30/15	12/03/15 09:30	

Date: 20-Apr-16

_

Client:	Barr Engineering	OUALIFIERS
Project:	Field Booster 23 Response (49161286.00)	A CDONVMS LINITS
WorkOrder:	1512177	ACRONTINS, UNITS

Qualifier	Description
*	Value exceeds Regulatory Limit
a	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
Е	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
Р	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Х	Analyte was detected in the Method Blank between the MDL and PQL, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate

LOD	Limit of Detection (see MDL)

LOQ	Limit of Quantitation (see PQL)
-----	---------------------------------

MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
А	APHA Standard Methods

А	APHA Standard Metl
D	ASTM
Е	EPA

SW SW-846 Update III

Units Reported Description

% of sample	Percent of Sample
µg/Kg	Micrograms per Kilogram

Client:	Barr Engineering
Project:	Field Booster 23 Response (49161286.00)
Work Order:	1512177

Date: 20-Apr-16

Case Narrative

Samples for the above noted Work Order were received on 12/03/15. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting.

With the following exceptions, all sample analyses achieved analytical criteria.

Volatile Organics: No deviations or anomalies were noted.

Wet Chemistry: No deviations or anomalies were noted.

Client:Barr EngineeringProject:Field Booster 23 Response (49161286.00)Sample ID:FB-23-S-1Collection Date:11/30/15 01:00 PM

Work Order: 1512177 Lab ID: 1512177-01 Matrix: SOIL

Analyses	Result	Qual	MDL	PQL	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	nod: SW8260B		Prep: SW503	5 / 12/4/15	Analyst: AK
1,2,4-Trimethylbenzene	60		6.0	30	µg/Kg	1	12/05/15 12:06
1,3,5-Trimethylbenzene	U		13	30	µg/Kg	1	12/05/15 12:06
Benzene	U		6.8	30	µg/Kg	1	12/05/15 12:06
Ethylbenzene	U		7.0	30	µg/Kg	1	12/05/15 12:06
m,p-Xylene	U		13	60	µg/Kg	1	12/05/15 12:06
Naphthalene	36	J	5.1	100	µg/Kg	1	12/05/15 12:06
o-Xylene	U		9.7	30	µg/Kg	1	12/05/15 12:06
Toluene	U		9.9	30	µg/Kg	1	12/05/15 12:06
Xylenes, Total	U		23	90	µg/Kg	1	12/05/15 12:06
Surr: 1,2-Dichloroethane-d4	102			70-130	%REC	1	12/05/15 12:06
Surr: 4-Bromofluorobenzene	101			70-130	%REC	1	12/05/15 12:06
Surr: Dibromofluoromethane	99.0			70-130	%REC	1	12/05/15 12:06
Surr: Toluene-d8	98.5			70-130	%REC	1	12/05/15 12:06
MOISTURE		Meth	nod: SW3550C				Analyst: ED
Moisture	32		0.025	0.050	% of sample	1	12/03/15 20:25

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client:Barr EngineeringProject:Field Booster 23 Response (49161286.00)Sample ID:Trip BlankCollection Date:11/30/15

Work Order: 1512177 Lab ID: 1512177-02 Matrix: SOIL

Analyses	Result	Qual	MDL	PQL	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Met	hod: SW8260B		Prep: SW5	035 / 12/4/15	Analyst: AK
1,2,4-Trimethylbenzene	U		6.0	30	µg/Kg	1	12/04/15 23:41
1,3,5-Trimethylbenzene	U		13	30	µg/Kg	1	12/04/15 23:41
Benzene	U		6.8	30	µg/Kg	1	12/04/15 23:41
Ethylbenzene	U		7.0	30	µg/Kg	1	12/04/15 23:41
m,p-Xylene	U		13	60	µg/Kg	1	12/04/15 23:41
Naphthalene	15	J	5.1	100	µg/Kg	1	12/04/15 23:41
o-Xylene	U		9.7	30	µg/Kg	1	12/04/15 23:41
Toluene	U		9.9	30	µg/Kg	1	12/04/15 23:41
Xylenes, Total	U		23	90	µg/Kg	1	12/04/15 23:41
Surr: 1,2-Dichloroethane-d4	102			70-130	%REC	1	12/04/15 23:41
Surr: 4-Bromofluorobenzene	99.0			70-130	%REC	1	12/04/15 23:41
Surr: Dibromofluoromethane	98.8			70-130	%REC	1	12/04/15 23:41
Surr: Toluene-d8	99.3			70-130	%REC	1	12/04/15 23:41

Note: See Qualifiers page for a list of qualifiers and their definitions.

QC BATCH REPORT

Client:Barr EngineeringWork Order:1512177Project:Field Booster 23 Response (49161286.00)

Batch ID: 79807	Instrument ID VMS9			Method:	SW8260B						
MBLK Sam	ole ID: MBLK-79807-	79807			Ur	nits: µg/K	g	Analysis	s Date: 12	2/04/15 01	:33 PM
Client ID:		Run ID: VMS9	_1512	04A	Seq	No: 3605	576	Prep Date: 12/0	4/15	DF: 1	
Analyte	Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,2,4-Trimethylbenzene	U	6	30								
1,3,5-Trimethylbenzene	U	13	30								
Benzene	U	6.8	30								
Ethylbenzene	U	7	30								
m,p-Xylene	U	13	60								
Naphthalene	U	5.1	100								
o-Xylene	U	9.7	30								
Toluene	U	9.9	30								
Xylenes, Total	U	23	90								
Surr: 1,2-Dichloroethane-	-d4 952.5	0	0	1000	0	95.2	70-130	0			
Surr: 4-Bromofluorobenze	en: 904	0	0	1000	0	90.4	70-130	0			
Surr: Dibromofluoromethe	anı 923	0	0	1000	0	92.3	70-130	0			
Surr: Toluene-d8	952.5	0	0	1000	0	95.2	70-130	0			
LCS Sam	ole ID: LCS-79807-79	807			Ur	nits: µg/K	g	Analysis	s Date: 12	2/04/15 11	:24 AM
Client ID:		Run ID: VMS9	_1512	04A	Seq	No: 3605	575	Prep Date: 12/0	4/15	DF: 1	
Analyte	Result	MDI	POI	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1.2.4-Trimethylbenzene	994	6	30	1000	0	99.4	65-135	0	, or a D		Quui
1.3.5-Trimethylbenzene	1008	13	30	1000	0	101	65-135	0			
Benzene	990.5	6.8	30	1000	0	99	75-125	0			
Ethylbenzene	968	7	30	1000	0	96.8	75-125	0			
m,p-Xylene	1964	13	60	2000	0	98.2	80-125	0			
Naphthalene	825	5.1	100	1000	0	82.5	40-140	0			
o-Xylene	959.5	9.7	30	1000	0	96	75-125	0			
Toluene	1034	9.9	30	1000	0	103	70-125	0			
Xylenes, Total	2923	23	90	3000	0	97.4	75-125	0			
Surr: 1,2-Dichloroethane	-d4 927.5	0	0	1000	0	92.8	70-130	0			

1050

932.5

1002

0

0

0

0

0

0

1000

1000

1000

0

0

0

105

93.2

100

70-130

70-130

70-1<u>30</u>

0

0

0

Surr: 4-Bromofluorobenzene

Surr: Dibromofluoromethane

Surr: Toluene-d8

Batch ID: 79807

Instrument ID VMS9

Method: SW8260B

MS Sample ID: 1512208-02B MS						its: µg/K	g	Analys	is Date:	12/04/15 07	':42 PM
Client ID:		Run ID: VM	S9_1512	04A	Seq	No: 3605	584	Prep Date: 12/0	DF: 1		
Analyte	Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPE	RPD Limit	Qual
1,2,4-Trimethylbenzer	ne 1040	6	30	1000	163.4	87.7	65-135	0			
1,3,5-Trimethylbenzer	ne 1086	13	30	1000	83.59	100	65-135	0			
Benzene	1046	6.8	30	1000	0	105	75-125	0			
Ethylbenzene	970.5	7	30	1000	79.79	89.1	75-125	0			
m,p-Xylene	2032	13	60	2000	281.9	87.5	80-125	0			
Naphthalene	882.5	5.1	100	1000	383.7	49.9	40-140	0			
o-Xylene	987	9.7	30	1000	180.9	80.6	75-125	0			
Toluene	1073	9.9	30	1000	145.9	92.7	70-125	0			
Xylenes, Total	3018	23	90	3000	460	85.3	75-125	0			
Surr: 1,2-Dichloroe	thane-d4 969.5	0	0	1000	0	97	70-130	0			
Surr: 4-Bromofluoro	benzene 1018	0	0	1000	0	102	70-130	0			
Surr: Dibromofluoro	omethane 955	0	0	1000	0	95.5	70-130	0			
Surr: Toluene-d8	986	0	0	1000	0	98.6	70-130	0			

MSD Sample ID:			Ur	nits: µg/K	g	Analysi	Analysis Date: 12/04/15 08:08 PM				
Client ID:		Run ID: VM	S9_1512	04A	Seq	No: 3605	585	Prep Date: 12/0	4/15	DF: 1	
Analyte	Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
1,2,4-Trimethylbenzene	1194	6	30	1000	163.4	103	65-135	1040	13.7	30	
1,3,5-Trimethylbenzene	1202	13	30	1000	83.59	112	65-135	1086	10.2	30	
Benzene	1148	6.8	30	1000	0	115	75-125	1046	9.35	30	
Ethylbenzene	1092	7	30	1000	79.79	101	75-125	970.5	11.7	30	
m,p-Xylene	2275	13	60	2000	281.9	99.7	80-125	2032	11.3	30	
Naphthalene	1035	5.1	100	1000	383.7	65.1	40-140	882.5	15.9	30	
o-Xylene	1088	9.7	30	1000	180.9	90.8	75-125	987	9.78	30	
Toluene	1179	9.9	30	1000	145.9	103	70-125	1073	9.41	30	
Xylenes, Total	3364	23	90	3000	460	96.8	75-125	3018	10.8	30	
Surr: 1,2-Dichloroethane-d4	977	0	0	1000	0	97.7	70-130	969.5	0.771	30	
Surr: 4-Bromofluorobenzene	1035	0	0	1000	0	104	70-130	1018	1.71	30	
Surr: Dibromofluoromethane	960	0	0	1000	0	96	70-130	955	0.522	30	
Surr: Toluene-d8	1008	0	0	1000	0	101	70-130	986	2.26	30	
he following samples were analyzed in this batch:			151217	77-01A	151217	7-02A					

Client: Work Order: Project:	Barr Engineering 1512177 Field Booster 23 Respo	onse (4916128	36.00)					QC H	BATC	H REI	PORT
Batch ID: R177558	Instrument ID MOIS	ST	Meth	od:	SW3550C						
MBLK	Sample ID: WBLKS-R17	7558			Ur	nits: % of	sample	Analysi	s Date: 12	2/03/15 08	:25 PM
Client ID:		Run ID: MOI	ST_151203B		Seq	No: 3603 2	251	Prep Date:		DF: 1	
Analyte Moisture	Result U	MDL 0.025	PQL SPK 0.050	Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
LCS	Sample ID: LCS-R17755	8			Ur	nits: % of	sample	Analysi	s Date: 12	2/03/15 08	:25 PM
Client ID:		Run ID: MOI	ST_151203B		Seq	No: 3603 2	250	Prep Date:		DF: 1	
Analyte	Result	MDL	PQL SPK	Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	100	0.025	0.050 1	00	0	100 9	9.5-100	.5 0			
DUP	Sample ID: 1512131-17E	DUP			Ur	nits: % of	sample	Analysi	s Date: 12	2/03/15 08	:25 PM
Client ID:		Run ID: MOI	ST_151203B		Seq	No: 3603	235	Prep Date:		DF: 1	
Analyte	Result	MDL	PQL SPK	Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	12.05	0.025	0.050	0	0	0		11.26	6.78	20	
DUP	Sample ID: 1512177-01E	DUP			Ur	nits: % of	sample	Analysi	s Date: 12	2/03/15 08	:25 PM
Client ID: FB-23-S-1		Run ID: MOI	ST_151203B		Seq	No: 3603 2	240	Prep Date:		DF: 1	
Analyte	Result	MDL	PQL SPK	Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	32.15	0.025	0.050	0	0	0		32.36	0.651	20	

The following samples were analyzed in this batch:

1512177-01B

1512177

Barr Engineering Co. C	hain	of (C ust (ody ^{Samp} □ KS □ MI	le Origination	State: XWI Dther:			An Water	alysis I	Reques	ted Soil			r: NG	49	9477
ARR Bismarck Li Hibbing		Minnea	pous -		<u></u>		4				臣			<u>Matrix C</u>	ode:	Preserva	tive Code:
REPORT TO		-	0		<u> </u>		- -				ê-			GW = Groun SW = Surfac	idwater ce Water	A = i $B = i$	ici
company: Bar Ensineering	5	Compa	my: L	arr Engl	nenz	<u> </u>	z je				対			WW = Waste	Water	C = D =	HNO3
Address:		Addres	5:				늰턭				加			5 = Soll/S	olid	E = 1	NaOH
Name: KEE Nygn Fricks	<u>א</u>	Name:				!	10				119			SD = Sedin O = Other	1681	G =	NaHSO4
email: REE abar.com		emair				<u> </u>	- Slo				F						Na ₂ S ₂ O ₃ Ascorbic Acid
Copy to: datamgt@bar.com		H.O.		161612	6 m all	- 051	1S/N				Я		멸			J =	NH4Cl
Project Name: Ticle BOOSter 2.3	5	Barr P	n roject i	No: 4710120	au 015						И	ľ	2			К = . О = !	Other
hcsponse.	241	pie De	Unit	Collection Date	Collection	Matrix		$\left \right $	┼┼		F	┼╌┼──	A	Preservative	Code		
Locaton	Start	Stop	(m./ft. or in.)	(mm/dd/yyyy)	(hh:mm)	Code	Per				Ń		K	Field Filtered	Y/N		
¹ FB-23-5-1	-	-	6	12/1/#5	1300	\$	NE	3			2		1	PVOC-	MTBE	+Naj	ohtnalene
² Trip Blank		<u> </u>		(
JEMO BIGAK				V-		1	}				•						
4.				4/30/15													
5.				163													
⁶ .					1 ÷												
7.						<u> </u>						_					
8,										<u> </u> .				<u>50</u>	y TA	T	
9.						4			. 								
10.					1	, L									I	Date	Time
BARR USE ONLY		Reling	shed	My las	in l		Date	5	400	Re	ceived F-C	by:-	<u></u> .				THATE
Sampled by: NKS2		Relinc	Mel uished	by:	<u> </u>	In Ice?	Date	╧┼	Time	Re	ceived	By.		1		Date	Time
Barr Proj. Manager: hpp			-	<u> </u>		Y N 1/2	2/3/1	<u>s </u>	0930	> /A1+	BILLIN	timber	L	2-1	Reói	uested D	ue Date:
Barr DQ Manager: JET		_ Samp	les Shìj	pped VIA:	iounier 🗔 Other:	Federal E	xpress	<u> </u>	ampier		, 118 L	; jā j j j j j j j j j j j j				land Turn	Around Time
Lab Iname: ALD HOIGON		lah V	NO:		Temperature	on Receip	it (°C):		Cust	ody Si	eal Inte	ct? 🛛		I 🗆 None	12 Rush	(mm/dd/y	
Distribution - White-Original: Accompan	ies Ship	ment to	Labor	atory; Yellów Cop	y: Include in	Field Doc	uments	Pink	Сору;	Send	to Dat	a Man	igeme	nt Administral	tors.		TB

Lage I of 1

Sample Receipt Checklist

Client Name: BARRENG-DULUTH		Date/Time Received: 03-Dec-15 09:30					
Work Order: 1512177		Received by	:	KRW			
Checklist completed by Keith Wierenga	03-Dec-15 Date	Reviewed by:	Tom Beam eSignature	ich	03-Dec-15 Date		
Matrices: <u>Soil</u> Carrier name: <u>FedEx</u>					I		
Shipping container/cooler in good condition?	Yes 🗸	No 🗌	Not Prese	nt 🗌			
Custody seals intact on shipping container/cooler?	Yes 🗸	No 🗌	Not Prese	nt 🗌			
Custody seals intact on sample bottles?	Yes	No 🗌	Not Prese	nt 🔽			
Chain of custody present?	Yes 🗸	No 🗌					
Chain of custody signed when relinquished and received?	Yes 🗸	No					
Chain of custody agrees with sample labels?	Yes 🗸	No 🗌					
Samples in proper container/bottle?	Yes 🗸	No 🗌					
Sample containers intact?	Yes 🗸	No 🗌					
Sufficient sample volume for indicated test?	Yes 🖌	No					
All samples received within holding time?	Yes 🗸	No 🗌					
Container/Temp Blank temperature in compliance?	Yes 🖌	No 🗌					
Sample(s) received on ice? Temperature(s)/Thermometer(s):	Yes ✓ 5.2/5.2 C	No 🗌	SR2				
Cooler(s)/Kit(s):							
Date/Time sample(s) sent to storage:	12/3/2015 ·	11:11:26 AM		submitted			
vvater - vOA vials nave zero neadspace?				Sabinited			
Water - pH acceptable upon receipt?	Yes 🛄		N/A ⊻				
pH adjusted? pH adjusted by:	Yes 🗌	No	N/A 🗹				

Login Notes:

Client Contacted:	Date Contacted:	Person Contacted:	
Contacted By:	Regarding:		
Comments:			
CorrectiveAction:			Revision: 1
			SRC Page 1 of 1

Attachment C

Waste Management Documentation

VONCO V, LLC 1100 West Gary Street Duluth, MN 55808 VONCOUSA.com Office: 218.626.3830 Fax: 218.626.4874

March 4, 2016

Enbridge Energy Attention: Alex Smith 1100 Louisiana Ave Ste 3300 Houston TX 77002

RE: 16-007-I SUP Terminal Enhancement Historical Soil

Dear Alex,

Please be advised that the above described waste material is acceptable for disposal at the Vonco V Waste Management Campus Facility in Duluth, MN. The waste material is acceptable per Vonco V (SW-560) Minnesota Pollution Control Agency Industrial Solid Waste Management Plan. This profile has been approved for a total of 6000 **CY** for disposal and will expire on 04/03/2018.

The referenced waste must maintain consistency with what was originally submitted on the waste profile. Vonco V Waste Management Campus must be contacted immediately for any changes in material composition or process generation as further testing and analysis may apply.

Additionally, acceptance is subject to the following conditions:

- The material will be absent of free liquids and must meet the paint filter test.
- A signed waste manifest with the correct profile number shall accompany each load delivered to Vonco V Waste Management Campus.
- All hauling will be in compliance with the Federal and State D.O.T regulations.

Thank you for choosing Vonco V Waste Management Campus. We appreciate your business. If you have any questions or concerns please feel free to contact myself @ (651) 319-7013 or Joe Pesante @ (218) 730-6361.

Have a great day,

Nettie Kuhn Vonco V, LLC Industrial Waste Manager

July 16, 2014

Alex Smith Enbridge Pipelines Limited Partnership, LLC Accounts Payable 1100 Louisiana Ave, Ste 3300 Houston, TX 77002

RE: Cl14-0029 Crude contaminated soil-Pipeline Enhancement Project

Dear Mr. Smith,

This agreement will confirm the price and length of service for disposal and /or transportation of your non-hazardous industrial material at our facility. This agreement is for the term of the Waste Approval granted by Shamrock Landfill and is for all services ordered and performance initiated within such period and does include the disposal surcharge fees which you are obligated to pay as of the date of this agreement. Shamrock Landfill may incur additional costs including but not limited to increases in state and local taxes. Shamrock Landfill may pass these costs on to the customer only after notification to the Customer. This agreement grants Shamrock Landfill the exclusive right to dispose of the referenced waste for the term of this agreement. This agreement shall automatically renew thereafter for an additional term of 24 months "Renewal Term" unless either party gives the other party written notification of termination at least 90 days prior to the termination of the then-existing term. Shamrock Landfill will notify the customer prior to the expiration of the agreement of any rate changes prior to the start of the Renewal Term

Payment and terms are net thirty (30) days. Interest will be charged at a rate of 1 1/2% per month (18% annually) on any unpaid balance 30 days after the date of the invoice. In the event Customer terminates this Agreement prior to its expiration other than as a result of a breach by Shamrock Landfill or Shamrock Landfill terminates this agreement for Customer's breach (including nonpayment) Customer agrees to pay to Shamrock Landfill as liquidated damages a sum calculated as follows: (1) if the remaining term under this agreement is six or more months Customer shall pay its average monthly charges multiplied by six: or (2) if the remaining term under this agreement is less than six months Customer shall pay its average monthly charge multiplied by the number of months remaining in the term. Customer expressly acknowledges that in the event of an unauthorized termination of this agreement the anticipated loss to Shamrock Landfill in such event is estimated to be the amount set forth in the foregoing liquidated damages provision and such estimated value is reasonable and is not imposed as a penalty.

These prices are based on an approved waste stream composition. In the event that a non-conforming waste is received, you will be notified of additional charges, when applicable.

To accept this agreement, please sign one copy and return it to our St. Paul, MN office at Shamrock Landfill, 251 Starkey St., St. Paul, MN 55107 or Via Fax at 651-223-8197 or email to jonp@shamrocklandfill.com.

Shamrock Landfill Jon Penheiter

Customer ACCEPTED BY: (name, position) Alex Smith Encourse La (Analy of

DATE: 15 July 2014 11/2016 WASTE APPROVAL Period: 7/17/2014 to 7/17/2016

P.O. Box 338 · Esko, MN 55733-0338 Main: 218.878.0112 . Fax: 218.879.2120

Bill To Customer

Enbridge Pipelines Limited Partnership, LLC Accounts Payable 1100 Louisiana Ave, Ste 3300 Houston, TX 77002

Service For Generator

Enbridge Pipelines Limited Partnership, LLC 1320 Grand Ave Pipeline Enhancement Project Superior, W1 54880

Disposal

Waste Description: Crude contaminated soil-Pipeline Enhancement Project

Estimated Volume: 50 YARDS / ONE TIME ONLY

Disposal Method: Secure Non-Hazardous Landfill

Treatment Method: None Expected For Conforming Waste

Pricing

Disposal

\$16.00 Per Ton

Crude contaminated soil-Pipeline

Notification of Waste Acceptance

PAGE 1 of 2 7/16/2014

CUSTOMER INFORMATION

EPA ID#: WID981092133 Enbridge Pipelines Limited Partnership, Enbridge Superior Terminal

1320 Grand Ave Pipeline Enhancement Project Superior, WI 54880 Contact: Alex Smith Phone: (715) 398-4795

INVOICE INFORMATION

Bill #: 2133 Enbridge Pipelines Limited Partnership, Abcounts Payable

1100 Louisiana Ave, Ste 3300 Houston, TX 77002 Contact: Alex Smith Phone: (715) 398-4795

Profile Sheet #: Waste Stream #: C114-0029 Waste Name: Crude contaminated soil-Pipeline Enhancement Pr

Thank you for selecting SHAMROCK LANDFILL for your waste management requirements. Your waste stream has been reviewed and is acceptable for management at our facility based on the information provided in the profile sheet number listed above and conditions below. Our facility has the necessary permits to allow the storage, treatment, or disposal of this waste. The above referenced acceptance number should be listed on all shipping documents and correspondence. Please retain these documents for your records and future reference.

To schedule a shipment, or should you have any questions, please contact the facility at (218) 878-0112.

ACCEPTANCE INFORMATION

The waste stream identified by the reference above is acceptable for disposal. The anticipated frequency of shipment is 50 YARDS / ONE TIME ONLY

This waste is acceptable for delivery beginning on 7/17/2014 thru 7/17/2016 at which time the material will need to be reanalyzed and recertified.

PCB Statement: The Minnesota Pollution Control Agency encourages generators of non-hazardous PCB waste to voluntarily manage the waste as hazardous waste or to seek an alternative to land disposal such as incineration

Spill Reporting Reminder: Proper County and MPCA spill reporting procedures must be followed.

Empty Container Statement: Each shipment containing empty containers must be accompanied with a completed 'EMPTY CONTAINER CERTIFICATION FORM'.

Free Liquid Statement: Free liquids will not be placed in cells at Shamrock Landfill. Free liquids must be solidified either prior to shipment to Shamrock Landfill or at Shamrock Landfill.

Shipping Requirements A NON-HAZARDOUS certificate is required to be on file, certifying the waste is non-hazardous as specified per 40 CFR 261.4. The shipment must be accompanied with an Shamrock Landfill manifest.

PAGE 2 of 2 7/16/2014

WASTE STREAM ANALYSIS INFORMATION

Waste Name:Crude contaminated soil-Pipeline Enhancement ProjePhysical State:SolidProcess Producing Waste:Pipeline Terminal Activities

PRE-ACCEPTANCE SAMPLE RESULTS

	Physical State:
0	Free Liquids: 0
0	Odor:
	Density:
0	Water Reactivity: 0
	React to Acid: 0
0	% Moisture:
	Sulfide:
0	Cyanide:
0	
	0 0 0 0 0

This analysis is solely for use by Shamrock Landfill employees for the purpose of determining waste acceptability. No other claims are made or implied.

COMMENTS

AUTHORIZATION

Approval:

Date:

Waste Profile Sheet

01

P.O. Number	Customer Code		SKB Represe	ntative		UL			
I. Generator Informatio	on								
Generator Name: Enbridge Pipe Partnership, LLC	lines Limited	Generator	EPA ID Num	ber			SIC Code		
Generator Location: Enbridge Superior Terminal - Pipeline	County: Douglas	Generator	Contact: Ale	ex Smith			224		
Enhancement Project	L	Phone: 7	15-398-479	95	Fax: 83	2-325-551	1		
Generator Mailing Address (if differer Superior, WI 54880	nt: 1320 Grand Ave,	Generator	Email Addres	s: alex.smith@e	enbridge.	com			
Bill To Name & Address: Enbridge	e Bill To #:	Billing Cor	ntact: Alex S	Smith					
Energy, 1100 Louisiana Ave, \$ 3300, Houston, TX 77002	STE.	Phone: 7	715-398-479	95	Fax: 83	2-325-551	1		
		Billing Em	ail Address:	alex.smith@enb	ridge.con	า			
Invoice Contact:					-				
II. Waste Generation In	formation								
Waste Name: Crude contamina Project	ited soil - Pipeline Enha	ancement	Estimat	ed rate of waste gen os. ☐ tons ⊠ c	eration: <u>5</u> y 🗌 drur	<u>0</u> ms	⊠ one □ yea	e time arly	
Generator Facility Operations and/or	Site History: Enbridge Pi	peline Term	ninal				·		
Describe the generating process or s	source of contaminated soil/c	lebris and/or	waste: Pipe	eline Terminal Act	ivities				
III. Waste Composition	and Constituents (list all k	nown)					Actual Rang	ge ppm	
Crude contaminated soil							100		
IV. Waste Properties									
Physical state: F Solid Liquid Sludge Gas	iree Liquids: pH F] Yes ⊠ No □ Content %	Range: <2	-4	point: 140ºF 140ºF to < 200ºF 200ºF	Brov	r: wn	Odor (de petrole odor	scribe): um	
V. Waste Classification	1								
Waste stream properties (answe	r ALL questions)			Does this waste	contain ab	sorbents?	🗌 Yes	🛛 No	
Does this waste stream contain a hazardous waste, either in pure to	any D, F, K, U or P listed form, as a mixture, or	as Ve	es 🛛 No	Is this waste leth 7045.0131 Subp	al (by Minı . 6)?	n. Rules	☐ Yes	🛛 No	
treatment residue?			57				—	57	
Does this waste stream contain	PCB material	∐ Y∈	es 🖾 No	Is this waste recy	clable?				
If yes, concentration:	ppm fuming opide2			Is this waste exp	ctious?				
Does this waste contain asbesto				Is this putrescible	waste?			No	
Does this waste contain asbeste	s?		s No	Is this waste den	nolition del	bris?	☐ Yes	No	
Does this waste contain radioact	ive material?	🗌 Ye	es 🖾 No	Is this waste sew	/er sludge'	?	🗌 Yes	🛛 No	
Please attach any available inf	ormation or analytical test	results that	have previou	usly been performe	d on this w	aste that si	ubstantiates	these	
determir	nations. Include MSDS's a	nd any infor	rmation from	other agencies (i.e	., MPCA, L	JSEPA)			
Proper DOT Shipping Name (per CF	R 172.101) where applicable)							
Reportable Quantity	DOT Hazard Class	UN/NA	Number		Pac	king Group			
Method of packaging: drums (size)	ze)	Method	of shipment	nd dump 🔲 Rail	☐ Othe	r (Specify)			
Bulk Solids Doxes (siz	ze)								
VII. Certification of Non I hereby certify and warrant, on beha and true and that the waste is nonha and/or any rules adopted by the Minn I understand that any approval is no of the waste. Therefore, if the compor notify SKB Environmental. I, on beha of this certification being inaccurate of	Hazardous Waste & Appro If of the generator and myse zardous as defined in Title 4 nesota Pollution Control Age longer valid if there are any o sition of the waste stream cl alf of the generator, hereby a or untrue.	val Condition If that, to the 2, Unites Sta ncy under M changes in the hanges or poor gree to fully	bons a best of my kr ates Code Sec innesota Statu he process ge btentially chan indemnify SKI	nowledge and belief, ction 6903, Minnesot ute Section 116.07. nerating the waste o ges, I or someone re B Environmental for	the informa a Statute S r there have presenting any damage	ation contain ection 116.0 e been chan the generato es and/or co	ed herein is a 6, Subdivision ges in the con or, will immed sts incurred a	ccurate, n 13, nposition iately s a result	
ay sta	Alex Sm	ith		Environme	ntal Analy	<u>/st</u>	16 July	12014	
Signature	Printed N	ame		Title			Date		

 REPORT NAME:
 Tons Each Load By WSID

 DESCRIPTION:
 Tonnage for EACH LOAD, grouped by customer

 DATE RANGE:
 01/01/2014 to 12/06/2016

 PRINTED ON (DATE):
 Tuesday, December 06, 2016

ENB14

Enbridge Pipelines Limited Partnership

1320 Grand Ave Superior

perior WI 54880

LOAD #	MANIFEST	ARRIVED	WASTE STREAM	WASTE NAME	CELL	SPOT.	LIFT	TONS
22630 (A)	52059	8/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.29
22636 (A)	52060	8/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.20
22640 (A)	52061	8/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.25
22643 (A)	52062	8/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.44
22659 (A)	52089	8/19/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.34
22666 (A)	52087	8/19/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	16.99
22668 (A)	52088	8/19/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.45
22792 (A)	52085-A	8/22/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	9.87
23267 (A)	52006	9/8/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	17.19
23278 (A)	52028	9/8/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.87
23650 (A)	52029	9/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	17.92
24039 (A)	52041	9/29/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	23.52
24041 (A)	52040	9/29/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	1 8.94
24051 (A)	52039	9/29/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.30
24361 (A)	52463	10/6/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.38
24366 (A)	52464	10/6/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.83
24429 (A)	52471	10/8/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.55
24435 (A)	52472	10/8/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.79
24506 (A)	52473	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	17.26
24507 (A)	52474	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	16.24
24517 (A)	52478	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.07
24519 (A)	52477	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.67
24526 (A)	52479	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.06
24527 (A)	52480	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.87
24537 (A)	52475	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.88
24538 (A)	52476	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.62
24543 (A)	52481	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.09
24544 (A)	52482	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	16.32
24575 (A)	52483	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	16.64
24580 (A)	52484	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	17.02
24588 (A)	52488	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21 .77
24590 (A)	52487	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.80
24594 (A)	52486	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.38
24596 (A)	52485	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.42
24604 (A)	52489	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.52
24605 (A)	52490	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.99
24613 (A)	52491	10/13/2014	CL14-0029	Crude Contaminated Soll-Pipeline E	2A	P44	1190	25.94
24614 (A)	52492	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.54
24629 (A)	52493	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.74
24639 (A)	52496	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.60
24641 (A)	52495	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.35
24656 (A)	52498	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.33
24658 (A)	52499	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.60
24675 (A)	52497	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.09
24676 (A)	52494	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.16
24698 (A)	52505	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.30
24699 (A)	52506	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.95
24708 (A)	52501	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.46
24715 (A)	52502	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.22
24732 (A)	52504	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.56

04700 (4)								
24739 (A)	52500	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.24
24749 (A)	52503	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22,85
24751 (A)	50115	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.84
24762 (A)	50114	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.06
24763 (A)	50113	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.39
24785 (A)	50116	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	23.71
24786 (A)	50117	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.36
24798 (A)	50119	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.86
24800 (A)	50118	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	P44	1190	22.11
24822 (A)	50120	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1	P44	1190	19 27
24823 (A)	50121	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	P44	1190	20.02
24833 (A)	50123	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline F	14	таа	1190	20.02
24836 (A)	50122	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1Δ	TAA	1190	24.04
24846 (A)	50124	10/17/2014	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	T44	1190	21.21
24863 (A)	50127	10/17/2014	CL14-0020	Crude Contaminated Soil Pipeline E	10	T44	1190	22.99
24873 (A)	50128	10/17/2014	CL 14-0029	Crude Contaminated Soil-Fipeline E	14	144	1190	19.97
24874 (A)	50120	10/17/2014	CL14-0029	Crude Contaminated Soil-Fipeline E		144	1190	21.95
24889 (4)	50125	10/17/2014	CL14-0029	Crude Contaminated Soll-Pipeline E	1A	144	1190	19.31
24003 (A)	50130	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	T43	1190	18.81
24082 (A)	50151	10/17/2014	GE14-0029	Crude Contaminated Soil-Pipeline E	1 A	T43	1190	20.54
24912 (A)	50132	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	19.37
24914 (A)	50133	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	18.44
24924 (A)	50134	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	Z33	1170	20.41
24929 (A)	50135	10/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	T43	1190	19.82
24944 (A)	50136	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	T43	1190	14.60
24946 (A)	50137	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	21.94
24952 (A)	50138	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	14.43
24953 (A)	50139	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	22.74
24962 (A)	50140	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	14.86
24965 (A)	50141	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	T43	1190	21.91
24979 (A)	50142	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	T43	1190	14.51
24984 (A)	50143	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	T43	1190	23.69
24994 (A)	50144	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	14	T43	1190	16.26
24999 (A)	50145	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	14	T43	1100	24.02
25017 (A)	50146	10/21/2014	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	T43	1100	24.02
25685 (A)	50147	11/6/2014	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	V42	1190	14.40
25702 (A)	50148	11/6/2014	CL 14-0029	Crude Contaminated Soll-Pipeline E	24	143	1190	10.07
25714 (A)	50140	11/6/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	24	140 V44	1190	18.79
25731 (A)	50150	11/0/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	28	141	1190	13.95
25731 (A)	50150	11/0/2014	CL14-0029	Crude Contaminated Soli-Pipeline E	2A	¥45	1190	17.00
25772 (A)	50151	11/0/2014	CL14-0029	Crude Contaminated Soli-Pipeline E	2A	¥45	1190	15.50
25775 (A)	50152	11///2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	14.57
25780 (A)	50155	11///2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	13.41
25785 (A)	50153	11/7/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	14.53
25/93 (A)	50154	11/7/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	17.12
25899 (A)	50163	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	119 0	21.71
25907 (A)	50162	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	18.54
25916 (A)	50161	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	19.09
25917 (A)	50160	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	19.44
25920 (A)	50157	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	19.98
25923 (A)	50159	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	20.43
25929 (A)	007705	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	14.76
29123 (A)	51006	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	11.60
29124 (A)	51007	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	11.46
29126 (A)	50950	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	15.25
29129 (A)	50911	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	1A	R36	1190	16.58
29130 (A)	51003	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	1A	R36	1190	15.13
29131 (A)	51004	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	1A	R36	1190	15 39
29136 (A)	51005	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	14	R36	1190	14 95
29139 (A)	50910	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline	14	R36	1190	19.60
29140 (A)	51002	3/4/2015	CI 14_0020	Crude Contaminated Soil-Pipeline E	14	Rae	1100	16 50
29141 (A)	50909	3/ <i>1/</i> 2013	CI 14-0020	Crude Contaminated Soil Displine	14	Pae	1100	16.55
20142 (A)	50051	0/4/2010 2///2014 =	CL 14 0020	Crude Contaminated Soll-Pipeline E	4.4	R30	1190	10.00
	30301	3/4/2013	VL 14-0029	Grude Containinated Soll-Pipeline E	IA I	L90	1190	10.40

29146 (A)	50999	3/4/2015	CI 14-0029	Crude Contaminated Soil-Dipeline E	1 4	D26	1100	1475
20147 (A)	51001	2/4/2015	CL14-0023	Crude Contaminated Coll-Pipeline E		000	1190	14.75
20140 (A)	51001	3/4/2015	GL 14-0029	Crude Contaminated Soil-Pipeline E	18	R36	1190	16.14
29146 (A)	51000	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	13.96
29149 (A)	50998	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	13.33
29164 (A)	50996	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	18.51
29165 (A)	50997	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	14.06
29168 (A)	50995	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	18.07
29169 (A)	50994	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	12.83
29173 (A)	50992	3/5/2015	CI 14-0029	Crude Contaminated Soil-Ripeline E	1.0	Dae	1100	19.50
29175 (A)	50993	3/5/2015	CL 14 0020	Crude Contaminated Soli-Tipeline E	4.6	Dae	1190	10.00
20170 (A)	50010	3/3/2013	CL14-0029	Crude Contaminated Soli-Pipeline E		RJD	1190	13.71
20100 (A)	50312	3/5/2015	CL14-0029	Crude Contaminated Soli-Pipeline E	1A	R36	1190	17.54
29160 (A)	50913	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	11.13
29166 (A)	50952	3/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	20.18
29189 (A)	50953	3/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	11.49
29193 (A)	50990	3/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	19.03
29194 (A)	50991	3/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	11.72
29200 (A)	50989	3/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17,76
29201 (A)	50988	3/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	12.16
29221 (A)	50 979	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.51
29222 (A)	50981	3/9/2015	CL14-0029	Crude Contaminated Soil-Pineline E	1A	R36	1190	16 18
29223 (A)	50980	3/9/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	P36	1100	19.50
29224 (A)	50982	3/0/2015	CL14 0020	Crude Contaminated Coll-1 ipeline E	4.4	Dae	1190	17.00
20226 (A)	50002	3/9/2013	CL14-0029	Crude Contaminated Soli-Pipeline E		R30	1190	17.43
202220 (A)	50976	3/9/2015	GL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17,15
29227 (A)	50977	3/9/2015	GL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	16.12
29228 (A)	50976	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.13
29229 (A)	50975	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	16.46
29230 (A)	50974	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	16.78
29231 (A)	50973	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	15.52
29232 (A)	50972	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	16.42
29233 (A)	50971	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.02
29248 (A)	50968	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	15.95
29249 (A)	50965	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	1A	R36	1190	19.66
29255 (A)	50954	3/10/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	R36	1190	16.41
29256 (A)	50967	3/10/2015	CI 14-0020	Crude Contaminated Soil-Pipeline E	10	Dae	1100	16 30
29257 (A)	50964	3/10/2015	CL14 0020	Crude Contaminated Soil-Pipeline E	1.4	D26	1190	40.33
20263 (A)	50066	3/10/2013	CL14-0029	Crude Contaminated Soll-Pipeline E		R30	1190	10.73
29203 (A)	50040	3/10/2015	GL14-0029	Crude Contaminated Soll-Pipeline E	1A	R36	1190	18.09
29203 (A)	50916	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.08
29266 (A)	50917	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	18.50
29274 (A)	50955	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	16.58
29276 (A)	50962	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	13.03
29279 (A)	50961	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	13.93
29281 (A)	50960	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	17.22
29282 (A)	50963	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	15.55
29288 (A)	50959	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	15.43
29326 (A)	50920	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	17.46
29327 (A)	50919	3/13/2015	CI 14-0029	Crude Contaminated Soil-Pipeline F	1A	X35	1190	13 58
29328 (A)	50918	3/13/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	10	¥35	1100	21.64
29334 (A)	50924	3/13/2015	CL 14-0020	Crude Contaminated Soil-Pipeline E	14	V35	1190	14 10
20335 (4)	50022	3/12/2015	CL14-0025	Crude Contaminated Soil-Pipeline E	1.0	X35	1100	16.00
2000 (A)	50922	3/13/2015	CL14-0029	Crude Contaminated Soli-Pipeline E	IA IA	X35	1190	10.20
29337 (A)	50921	3/13/2015	CL14-0029		18	X35	1190	17.77
29338 (A)	50923	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	25.08
29342 (A)	51013	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	20.81
29345 (A)	51010	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	16.15
29346 (A)	51009	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	15. 4 9
29347 (A)	51011	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	19.60
29395 (A)	51022	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	14.60
29396 (A)	51021	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	18.22
29397 (A)	50958	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	16.97
29398 (A)	50957	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	15.29
29403 (A)	51012	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	16.86
29404 (A)	51008	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	1A	X35	1190	16 05
v 7					** *			

29405 (A)	51023	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	13.65
29407 (A)	51024	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	1A	X35	1190	19.89
29412 (A)	51017	3/17/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	¥35	1100	20.30
29413 (A)	51018	3/17/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	¥35	1100	16.00
29414 (A)	51019	3/17/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	X35	1100	14.77
29415 (A)	51020	3/17/2015	CI 14-0020	Crude Contaminated Soil-Pipeline E	14	X35	1100	12.05
29416 (A)	51028	3/17/2015	CL14-0020	Crude Contaminated Soil Pipeline E	1.0	X25	1190	14.01
29417 (A)	51030	3/17/2015	CL14-0029	Crude Contaminated Soil-Fipeline E	1.4	X35 X25	1190	14.91
20419 (A)	51030	3/17/2015	CL14-0029	Crude Contaminated Soli-Fipeline E	14	A00	1190	15.19
20441 (A)	51020	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	AI A	X30	1190	14.07
29441 (A)	51040	3/19/2015	GL14-0029	Crude Contaminated Soli-Pipeline E	18	X35	1190	22.96
29442 (A)	51031	3/19/2015	GL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	15.30
29444 (A)	51014	3/19/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	22.52
29446 (A)	51034	3/19/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	14.94
29451 (A)	51016	3/19/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	18.84
29453 (A)	51033	3/19/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	19.63
29464 (A)	51040	3/20/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	18.54
29465 (A)	51036	3/20/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	22.33
29472 (A)	51035	3/20/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	18.04
29615 (A)	51050	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	13.76
29616 (A)	51059	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.21
29620 (A)	51051	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.45
29625 (A)	51058	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.91
29628 (A)	51052	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.26
29630 (A)	51054	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.06
29632 (A)	51053	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	15.93
29633 (A)	51055	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17 29
29635 (A)	51057	3/31/2015	CI 14-0029	Crude Contaminated Soil-Pineline E	1A	S36	1190	16.03
29664 (A)	51060	4/1/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	536	1190	15.00
29665 (A)	51061	4/1/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	536	1190	15.11
29666 (A)	51063	4/1/2015	CI 14-0020	Crude Contaminated Soil-Pipeline E	14	536	1190	17 12
29667 (A)	51062	4/1/2015	CL 14-0029	Crude Contaminated Soil-Pipeline E	10	636	1190	10.70
29685 (A)	51064	4/1/2015	CL 14-0029	Crude Contaminated Soil-Fipeline E	14	000	1190	14.50
20686 (A)	51080	4/2/2015	CL 14-0029	Crude Contaminated Soil-Pipeline	4.0	000	1190	14.00
20605 (A)	51091	4/2/2015	CL 14-0029	Crude Contaminated Soil-Fipeline	14	000	1190	10.13
29095 (A)	51061	4/2/2015	GL14-0029	Crude Contaminated Soil-Pipeline E	14	536	1190	15.55
29090 (A)	51062	4/2/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	\$36	1190	17.45
29699 (A)	51083	4/2/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	\$36	1190	12.24
29730 (A)	51065	4/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	16.02
29734 (A)	51038	4/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.94
29738 (A)	51067	4/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.73
29741 (A)	51066	4/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	16.76
29745 (A)	51029	4/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	16.09
29770 (A)	7719	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S 36	1190	17.04
29771 (A)	51079	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.69
29773 (A)	7716	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.05
29774 (A)	7718	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.15
29777 (A)	51044	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.50
29778 (A)	7717	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.07
29779 (A)	7742	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.09
29780 (A)	51045	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17.43
29784 (A)	51042	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.05
29785 (A)	7743	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.79
29786 (A)	7746	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	23.11
29787 (A)	51041	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	14.68
29792 (A)	51043	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	23.11
29793 (A)	7747	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	1A	S36	1190	16.76
29794 (A)	7745	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	1A	\$36	1190	21.36
29795 (A)	7740	4/8/2015	CI 14-0029	Crude Contaminated Soil-Pipeline F	1 A	S36	1190	16 78
29800 (A)	7734	4/8/2015	CL 14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21 18
29801 (A)	7741	4/8/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	536	1190	15 56
29802 (A)	7737	4/8/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	S36	1190	15.00
29803 (A)	7744	4/8/2015	CI 14-0020	Crude Contaminated Soil-Pipeline E	14	536	1190	22 02
// //		-10/2010	0214 0020	Shado Contantinatou Con-ripolitic E	1/3	000		

29809 (A)	7726	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	1A	\$36	1100	17.60
29812 (A)	7724	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	14	\$36	1100	21 54
29813 (A)	7723	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	14	536	1190	21.01
29814 (A)	7729	4/9/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	10	636	1190	20.91
29815 (A)	7730	4/9/2015	CI 14-0029	Crude Contaminated Soil Pipeline E	14	000	1190	19.25
29816 (A)	7727	4/9/2015	CL 14-0020	Crude Contaminated Soil-Pipeline E	- 18	000	1190	18.17
29817 (A)	7722	4/0/2015	CL14-0029	Crude Contaminated Soli-Pipeline E	14	530	1190	17.33
29819 (A)	7725	4/9/2015	CL 14-0029	Crude Contaminated Soll-Pipeline E	1A	\$36	1190	21.61
29821 (A)	7720	4/9/2013	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	19.91
20822 (A)	7720	4/9/2013	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.77
20022 (A)	7720	4/9/2015	GL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	19.22
29023 (A)	7733	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	17.28
29020 (A)	//30	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.88
29627 (A)	//21	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.34
29828 (A)	160284	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	20.49
29829 (A)	160286	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.36
29832 (A)	7738	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.08
29833 (A)	7732	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	13.03
29836 (A)	7739	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.43
29837 (A)	160288	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17.43
29838 (A)	160285	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21 49
29839 (A)	160287	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	23.85
29840 (A)	7735	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	14	536	1190	18.00
29841 (A)	7731	4/9/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	636	1190	10.05
29844 (A)	160289	4/9/2015	CI 14-0029	Crude Contaminated Soil-Ripeline E	1.0	626	1190	10.05
29853 (A)	160268	4/10/2015	CI 14-0020	Crude Contaminated Soil-Pipeline E	14	000	1190	17.06
29854 (A)	160269	4/10/2015	CL 14-0029	Crude Contaminated Soil-Pipeinie E		330	1190	24.07
29855 (A)	160295	4/10/2015	CL 14 0029	Crude Contaminated Soil-Pipeline E		535	1190	23.75
29856 (A)	160299	4/10/2015	CL 14-0029	Crude Contaminated Soil-Pipeline E	1A	535	1190	18,20
29858 (A)	160206	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	18	\$36	1190	20.45
20859 (A)	160290	4/10/2015	CL14-0029	Crude Contaminated Soll-Pipeline E	1A	\$36	1190	16.56
29009 (A)	160296	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17.33
20001 (A)	100270	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	21.42
29003 (A)	160271	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	21,17
29864 (A)	160301	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	12.86
29865 (A)	160294	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	13.62
29866 (A)	160297	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	14.53
29867 (A)	160300	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	14.56
29869 (A)	160272	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	20.39
29870 (A)	160273	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.03
29874 (A)	160277	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	20.09
29875 (A)	160276	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.44
29876 (A)	160279	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.22
29877 (A)	160281	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.96
29881 (A)	160282	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	19.58
29882 (A)	160274	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.94
29883 (A)	160280	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.50
29884 (A)	160278	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.49
29885 (A)	160275	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	14	S36	1190	16.84
29888 (A)	160290	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	14	S36	1100	16.40
29892 (A)	160292	4/10/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	14	536	1100	17.95
29894 (A)	160293	4/10/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	10	000	1190	10.20
29931 (A)	160060	4/13/2015	CL 14,0029	Crude Contaminated Soil-Fipeline E	16	000	1190	10.33
29933 (A)	160057	4/13/2015	CL14 0029	Crude Contaminated Soll-Fipeline E	14	330	1190	12.70
29939 (A)	160061	4/13/2015	CL14-0029	Crude Contaminated Soli-Pipeline E	1A 1A	530	1190	14.61
29940 (4)	160056	4/10/2010	OL 14-0029	Crude Contaminated Soll-Pipeline E	1A	536	1190	18.14
29985 //)	160050	4/13/2015	GL14-0029	Orude Contaminated Soil-Pipeline E	1A	\$36	1190	16.75
20000 (A)	160050	4/16/2015	GL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.44
20000 (A)	160406	4/16/2015	GL14-0029	Grude Contaminated Soil-Pipeline E	1 A	S36	1190	21.52
31090 (A)	160100	6/29/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.13
31091 (A)	100109	6/29/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.39
31093 (A)	100110	6/29/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16.46
31094 (A)	160111	6/29/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.47
31098 (A)	160114	6/29/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	14.89

21000 (A)	160110	0/00/00/5	0144.0000					
31099 (A)	100112	6/29/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.20
31100 (A)	160108	6/29/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	19.33
31122 (A)	160113	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	9.87
31123 (A)	160121	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	9.74
31127 (A)	160107	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	14.44
31129 (A)	160120	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	2A	R42	1190	13.62
31136 (A)	160105	7/1/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	842	1100	10.02
31138 (A)	160118	7/1/2015	CL 14-0020	Crude Contaminated Coll-Pipeline E	27	D42	1190	12.70
31143 (4)	160110	7/1/2015	CL14-0029	Crude Contaminated Soli-Pipeline E	24	R42	1190	15.10
21144 (A)	100115	7/1/2015	GL14-0029	Crude Contaminated Soll-Pipeline E	2A	R42	1190	13.76
31144 (A)	100115	//1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	11.98
31149 (A)	160117	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.96
31195 (A)	160305	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16. 22
31196 (A)	160302	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.58
31199 (A)	160126	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	10.69
31203 (A)	160304	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	2A	R42	1190	12 12
31204 (A)	160303	7/6/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	D/2	1100	10.20
31205 (A)	160306	7/6/2015	CL 14-0020	Crude Contaminated Soil Pipeline E	20	D42	1190	12.39
31208 (A)	160127	7/0/2015	CL 14-0029	Crude Contaminated Soli-Pipeline E	24	R42	1190	10.87
31200 (A)	100127	7/0/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.70
31209 (A)	160128	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.08
31210 (A)	160267	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	11.64
31213 (A)	160129	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.96
31214 (A)	160122	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.20
31217 (A)	160125	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	11.76
31218 (A)	160124	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.97
31219 (A)	160123	7/6/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	RA2	1100	14.20
31223 (A)	160116	7/7/2015	CL 14-0020	Crude Contaminated Soil-Tipeline E	27	D42	1190	14.50
31224 (A)	160138	7/7/2015	CL14-0020	Crude Contaminated Son-Fipeline E	24	R42	1190	10.93
31230 (A)	160130	7/7/2015	CL14-0029	Crude Contaminated Soll-Pipeline E	2A	R42	1190	16.45
31230 (A)	100139	////2015	GL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	12.22
31231 (A)	160137	//7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.21
31234 (A)	160145	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.41
31237 (A)	160140	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.97
31238 (A)	160136	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.13
31241 (A)	160143	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	17.78
31242 (A)	1601 41	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	12.28
31243 (A)	160135	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	24	R42	1190	15 38
31500 (A)	160316	7/23/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	R42	1100	17.02
31501 (A)	160321	7/23/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	20	D42	1190	10.24
31502 (A)	160323	7/20/2015	CL14-0029	Crude Contaminated Sull-Pipeline E	28	R42	1190	19.21
31504 (A)	100323	7/20/2015	GL 14-0029	Crude Contaminated Soli-Pipeline E	ZA	R42	1190	16.83
31504 (A)	160314	//23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	18.07
31506 (A)	160320	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	19.60
31507 (A)	160326	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16.36
31510 (A)	160315	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	19.53
31513 (A)	160319	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	20.22
31514 (A)	160325	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16.84
31517 (A)	160313	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	18.08
31518 (A)	160317	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	19.36
31520 (A)	160324	7/23/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	DA2	1100	12.00
31521 (A)	160318	7/23/2015	CI 14-0020	Crude Contaminated Soil-Pipeline E	27	D42	1100	12.10
31522 (A)	160312	7/22/2015	CL 14-0029	Crude Contaminated Soil-Pipeline E	24	R42	1190	19.42
31522 (A)	100312	7/23/2015	CE14-0029	Crude Contaminated Soll-Pipeline E	ZA	R42	1190	17.58
31524 (A)	100322	//23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16.78
31529 (A)	160346	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	18.61
31530 (A)	160340	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	17.21
31531 (A)	160338	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.40
31534 (A)	160308	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	12.50
31535 (A)	160311	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	11.12
31538 (A)	160345	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	2A	R42	1190	11 52
31541 (A)	160337	7/24/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	RA2	1100	12 02
31543 (Δ)	160329	7/27/2010	CL 14 0020	Crude Contaminated Soll-Fipeline E	20	D42	1100	12.02
21544 (A)	160320	7/24/2010	0144.0029	Orude Contaminated Soll-Pipeline E	28	K42	1190	10.32
01044 (A) 24547 (A)	100329	//24/2015	UL14-0029	Grude Contaminated Soil-Pipeline E	2A	K42	1190	13.36
31047 (A)	100344	7/24/2015	CL14-0029	Urude Contaminated Soil-Pipeline E	2A	R42	1190	15.17
31549 (A)	160336	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	14.30

31551 (A)	160330	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	2A	R42	1190	13 30
31553 (A)	160327	7/24/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	R42	1100	13.94
31555 (A)	160341	7/24/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	D/2	1100	15.04
31556 (A)	160335	7/24/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	20	D42	1190	10.10
31557 (A)	160331	7/24/2015	CL14-0029	Crude Conteminated Soil-Pipeline E	24	R42	1190	15,11
31550 (A)	160310	7/24/2015	CL14-0029	Crude Contaminated Soli-Pipeline E	24	R42	1190	14.63
21562 (A)	100010	7/24/2010	CL14-0029	Crude Contaminated Soil-Pipeline E	ZA	R42	1190	14.45
31503 (A)	160334	7/24/2015	CL14-0029	Grude Contaminated Soil-Pipeline E	2A	R42	1190	15.20
31564 (A)	160342	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.87
31729 (A)	160010	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1 210	14.58
31730 (A)	160009	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.46
31731 (A)	160309	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.21
31732 (A)	160332	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10 78
31736 (A)	160003	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.60
31738 (A)	16000 1	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	24	744	1210	12.00
31739 (A)	160350	8/3/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	744	1210	12.04
31740 (A)	160348	8/3/2015	CL 14-0029	Crude Contaminated Soil Pipelino E	20	744	1210	12.74
31744 (A)	160004	8/3/2015	CL 14 0020	Crude Contaminated Soil-Pipeline E	25	244	1210	10.03
31745 (A)	160002	0/0/2010	CL14-0029	Crude Contaminated Soil-Pipeline E	24	244	1210	13.89
31745 (A)	100002	0/3/2015	CL14-0029	Crude Contaminated Soll-Pipeline E	2A	Z44	1210	12.76
31740 (A)	100349	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.74
31748 (A)	160347	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.10
31753 (A)	160014	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.90
31754 (A)	160013	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.01
31757 (A)	160011	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.33
31758 (A)	160012	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.92
31759 (A)	160007	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	9.91
31761 (A)	160008	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10.32
31825 (A)	160023	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	24	744	1210	13.00
31827 (A)	160018	8/7/2015	CI 14-0029	Crude Contaminated Soil-Pineline E	24	744	1210	13.66
31829 (A)	160029	8/7/2015	CI 14 0020	Crude Contaminated Soil-Pipeline E	20	744	1210	13.30
31830 (A)	160010	9/7/2015	CL14-0029	Crude Contaminated Soil-Fipeline E	24	244	1210	17.27
31834 (A)	160074	0/7/2015	CL 14-0029	Crude Contaminated Soli-Pipeline E	28	244	1210	15.61
31034 (A)	160024	0/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z 44	1210	13.28
31635 (A)	160025	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.27
31836 (A)	160022	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1 210	15.40
31837 (A)	160026	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	15.15
31840 (A)	160017	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.05
31841 (A)	160016	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.63
31843 (A)	160015	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.22
31844 (A)	160027	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.55
31849 (A)	160030	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.30
31850 (A)	160021	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	744	1210	13.81
31857 (A)	160020	8/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	2A	744	1210	14.80
31858 (A)	160031	8/10/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	7//	1210	9.34
31863 (A)	160033	8/10/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	20	744	1210	11.25
31883 (A)	160032	8/11/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	20	711	1210	12.02
31884 (A)	160028	9/11/2015	CL14-0029	Crude Contaminated Soil-Fipeline E	24	244	1210	13.02
31800 (A)	160120	0/11/2015	CL14-0029	Crude Contaminated Soli-Pipeline E	28	Z44	1210	12.93
31030 (A)	100172	0/11/2015	GL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.51
31092 (A)	100104	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.22
31894 (A)	160171	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.10
31897 (A)	160036	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.40
31899 (A)	160165	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.19
31900 (A)	160035	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.59
31902 (A)	160034	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.13
31903 (A)	160166	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.24
31918 (A)	160169	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.94
31919 (A)	160307	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.32
31920 (A)	160199	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	2A	Z44	1210	11 72
31935 (A)	160168	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline F	24	744	1210	13.47
31936 (A)	160167	8/12/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	744	1210	1/ 02
31937 (A)	160198	8/12/2015	CL 14-0020	Crude Contaminated Soil Displice E	20	744	1210	10.00
31938 (4)	160107	9/10/2013 9/10/2016	CL 14 0029	Crude Contaminated Soil Direline E	211	2,44 7 / /	1210	10.99
31030 (A)	160044	0/12/2010	0114-0029	Crude Contaminated Soll-Pipeline E	28	244	1210	12.41
01909 (A)	100044	0/12/2015	UL 14-0029	Grude Contaminated Soil-Pipeline E	ZA	244	1210	15.59
31940 (A)	160040	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.24
-----------	--------	-----------	------------	------------------------------------	----	-------------	------	-------
31949 (A)	160041	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.97
31950 (A)	160196	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	744	1210	13 50
31951 (A)	160043	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	744	1210	13.48
31956 (A)	160202	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	744	1210	14.93
31957 (A)	160195	8/12/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	744	1210	12 00
31958 (A)	160042	8/12/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	744	1210	14 70
31963 (A)	160191	8/13/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	20	744	1210	19.70
31965 (A)	160200	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	20	744	1210	10.01
31971 (A)	160104	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	20	744	1210	14.41
31076 (A)	160201	9/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	20	Z44 744	1210	13.32
31077 (A)	160100	0/13/2015	CL 14-0029	Crude Contaminated Soil-Pipeline E	28	244	1210	10.44
31977 (A)	160190	0/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	28	244	1210	17.38
31960 (A)	100210	0/13/2015	GL14-0029	Crude Contaminated Soil-Pipeline E	24	Z44	1210	14.15
31900 (A)	100193	8/13/2015	CL14-0029	Crude Contaminated Soll-Pipeline E	ZA	244	1210	13.67
31987 (A)	100188	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.39
31989 (A)	160217	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.96
31995 (A)	160189	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.83
31997 (A)	160216	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.17
32003 (A)	160192	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	16.28
32004 (A)	160214	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.29
32005 (A)	160215	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.34
32009 (A)	160209	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	13.85
32010 (A)	160213	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	14.74
32012 (A)	160245	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.22
32020 (A)	160208	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.82
32021 (A)	160210	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.89
32022 (A)	160244	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.45
32028 (A)	160236	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.37
32030 (A)	160211	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.10
32031 (A)	160221	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.06
32037 (A)	160235	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.68
32038 (A)	160212	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.10
32039 (A)	160229	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	9.74
32040 (A)	160261	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.39
32044 (A)	160223	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.33
32045 (A)	160222	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	744	1210	14 04
32046 (A)	160234	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	744	1210	14.75
32047 (A)	160219	8/14/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	744	1210	16 21
32049 (A)	160228	8/14/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	2A	744	1210	13 79
32050 (A)	160242	8/14/2015	CI 14-0029	Crude Contaminated Soil-Pipeline E	24	744	1210	13 48
32054 (A)	160224	8/14/2015	CL 14-0029	Crude Contaminated Soil-Pipeline E	20	7//	1210	14 80
32055 (A)	160230	8/14/2015	CI 14-0020	Crude Contaminated Soil-Pipeline E	20	7//	1210	15.66
32056 (A)	160233	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	20	744	1210	17 37
32058 (A)	160240	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	20	744	1210	16.0/
32059 (A)	160227	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	20	711	1210	14 97
32061 (A)	160243	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	20	711	1210	14.07
32062 (A)	160245	0/14/2015	GL14-0029	Crude Contaminated Soil-Pipeline E	24	244	1210	10.00
32063 (A)	160223	0/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	20	714	1210	10.10
32003 (A)	100232	0/14/2015	GL 14-0029	Crude Contaminated Soil-Pipeline E	28	244	1210	10.01
32004 (A)	100231	0/14/2015	CL14-0029	Crude Contaminated Soll-Pipeline E	28	244	1210	10.09
32000 (A)	160241	8/14/2015	GL14-0029		ZA	244	1210	13.92
32000 (A)	100202	0/14/2015	GL14-0029	Crude Contaminated Soll-Pipeline E	ZA	244	1210	12.62
32085 (A)	100220	8/1//2015	GL14-0029	Crude Contaminated Soil-Pipeline E	ZA	244	1210	14.87
32086 (A)	100351	8/1//2015	GL14-0029	Crude Contaminated Soil-Pipeline E	2A	244	1210	13.64
32088 (A)	160263	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	ZA	Z44	1210	16.26
32094 (A)	160220	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.47
32095 (A)	160264	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.25
32096 (A)	160361	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.62
32100 (A)	160260	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.60
32101 (A)	160265	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.81
32102 (A)	160360	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.73
32104 (A)	160359	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.90

				Total # of Loads: 499		То	tal Tons:	8,174.74
32430 (A)	160456	9/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.76
32371 (A)	160404	9/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.30
32368 (A)	160402	9/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	17.40
32365 (A)	160403	9/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.54
32363 (A)	160368	9/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	16.57
32362 (A)	160405	9/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.87
32248 (A)	160370	8/25/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10.95
32232 (A)	160382	8/25/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.03
32230 (A)	160367	8/25/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.61
32227 (A)	160381	8/25/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.91
32226 (A)	160376	8/25/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.46
32224 (A)	160377	8/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10.42
32223 (A)	160375	8/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	8.45
32219 (A)	160380	8/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10.32
32218 (A)	160352	8/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.37
32129 (A)	160163	8/18/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.96
32126 (A)	160369	8/18/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.74
32114 (A)	160357	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.51
32113 (A)	160371	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.41
32110 (A)	160358	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	744	1210	16.55
32106 (A)	160266	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	744	1210	13 95
32105 (A)	160259	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	744	1210	13.66

ENBS8 Enbridge Pipelines Limited Partnership,

1320 Grand Ave

Superior WI 54880

				Total # of Loads. 2		70.	(1 m	38.44
22263 (A)	52057	8/6/2014	CI14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.41
21689 (A)	52054	7/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	17.00
LOAD #	MANIFEST	ARRIVED	WASTE STREAM	WASTE NAME	CELL	SPOT.	LIFT	TONS

Total # of Loads: 2

Total Tons: 37.41

Grand Total (Tons): 8,212.15 Grand Total (Loads): **50**1

BILL TO ACCOUNT 2133 ENBRIDGE PIPELINES LIMITE

Enbridge Pipelines Limited Par

1320 Grand Ave

Superior. WI 54880

TICKET	Manifest	DATE	Waste Stream	Waste Name	TONS
614	160400	10/20/15	14-0029	Crude Contaminated Soil-Pipeline	11.35
623	160401	10/20/15	14-0029	Crude Contaminated Soil-Pipeline	11.27
630	160399	10/20/15	14-0029	Crude Contaminated Soil-Pipeline	11.93
633	160395	10/20/15	14-0029	Crude Contaminated Soil-Pipeline	13.76
643	160398	10/21/15	14-0029	Crude Contaminated Soil-Pipeline	11.26
644	160394	10/21/15	14-0029	Crude Contaminated Soil-Pipeline	12.42
652		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	14.57
657		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	15.16
659		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	14.14
664		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	15.22
665		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	13.34
673		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	14.45
678		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	13.38
689	160468	10/22/15	14-0029	Crude Contaminated Soil-Pipeline	15.25
690		10/22/15	14-0029	Crude Contaminated Soil-Pipeline	16.44
699		10/22/15	14-0029	Crude Contaminated Soil-Pipeline	14.04
700		10/22/15	14-0029	Crude Contaminated Soil-Pipeline	14.58
704	160470	10/22/15	14-0029	Crude Contaminated Soil-Pipeline	15.64
706	160466	10/22/15	14-0029	Crude Contaminated Soil-Pipeline	15.16
716		10/22/15	14-0029	Crude Contaminated Soil-Pipeline	14.63
718		10/22/15	14-0029	Crude Contaminated Soil-Pipeline	14.10
737		10/23/15	14-0029	Crude Contaminated Soil-Pipeline	13.22
738		10/23/15	14-0029	Crude Contaminated Soil-Pipeline	11.75
742		10/23/15	14-0029	Crude Contaminated Soil-Pipeline	13.99
746		10/23/15	14-0029	Crude Contaminated Soil-Pipeline	12.69
750		10/23/15	14-0029	Crude Contaminated Soil-Pipeline	13.06
753		10/23/15	14-0029	Crude Contaminated Soil-Pipeline	13.61
757	160474	10/23/15	14-0029	Crude Contaminated Soil-Pipeline	12.75
758	160459	10/23/15	14-0029	Crude Contaminated Soil-Pipeline	11.54
759	160479	10/23/15	14-0029	Crude Contaminated Soil-Pipeline	9.81
760	160478	10/23/15	14-0029	Crude Contaminated Soil-Pipeline	10.60

Start Date: 1/1/2014 Stop Date: 12/5/2016

BILL TO ACCOUNT

	ACCOUNT			
764		10/23/15 14-0029	Crude Contaminated Soil-Pipeline	13.75
765		10/23/15 14-0029	Crude Contaminated Soil-Pipeline	10.74
777	160476	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	13.69
778	160477	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	13.27
784	160480	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	16.72
786	160482	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	17.59
797	160481	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	15.32
798	160483	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	17.37
814	160504	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	18.12
816	160496	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	14.02
825	160503	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	13.11
827	160497	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	16.21
839	160502	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	14.01
840	16049 8	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	11.77
848	160499	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	12.22
850	160501	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	11.49
856	160500	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	1 3.91
857	160506	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	16.07
869	160505	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	16.41
870	160507	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	12.94
873	160511	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	15.41
874	160510	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	16.04
882	160489	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	16.19
883	160486	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	15.51
884	160487	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	19.60
885	160485	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.84
886	160488	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	18.55
887	160484	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.76
889	160516	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.55
890	160517	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	15.74
891	160515	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	13.69
898	160495	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	17.05
899	160493	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	15.34
901	160494	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	17.30
902	160519	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.64
903	160518	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.13

Start Date: 1/1/2014

Stop Date: 12/5/2016

BILL TO	ACCOUNT			
908	160522	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	18.20
909	160490	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	16. 79
910	160491	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	13.24
914		10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.46
915		10/28/15 14-0029	Crude Contaminated Soil-Pipeline	13.88
916		10/28/15 14-0029	Crude Contaminated Soil-Pipeline	13.86
918	160514	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	16.00
920	160521	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	15.47
922	160513	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.02
923	160512	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	16.96
924	160565	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	15.30
925	160568	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	16.88
956	160509	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	15.91
957	160508	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	13.80
958	160577	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	11.83
965	160759	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	14.52
966	160579	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	15.20
972	160758	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	16.70
973	160582	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	16.72
977		10/29/15 14-0029	Crude Contaminated Soil-Pipeline	15.49
978		10/29/15 14-0029	Crude Contaminated Soil-Pipeline	15.82
986	160757	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	16.76
987	160753	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	15.24
1000	160760	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	17.16
1001	160761	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.65
1004	160762	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	15.73
1005	160763	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.70
1009	160755	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.77
1012	160775	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	1 8.7 1
1013	160771	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.02
1017	160580	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	15.42
1020	160765	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.16
1022	160764	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.92
1023	160777	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	17.17
1026	160529	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	15.91
1028	160774	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.91

BILL TO	ACCOUNT			
1032	160779	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	10.95
1033	160778	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.89
1034	160769	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.02
1035	160766	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	14.93
1036	160773	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	11.50
1041	160780	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.02
1043	160776	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	16.08
1044	160768	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.45
1045	160767	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	14.38
1047	160772	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.54
1050	160531	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.05
1062	160538	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	13.74
1063	160528	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	12.09
1065	160754	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	12.30
1068	160537	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	13.07
1069	160527	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	13.05
1070	160523	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	14.06
1071	160525	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	13.39
1076	160536	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	13.53
1082	160535	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	10.73
1615	160599	11/24/15 14-0029	Crude Contaminated Soil-Pipeline	12.39
1617	160598	11/24/15 14-0029	Crude Contaminated Soil-Pipeline	13.22
1618	160597	11/24/15 14-0029	Crude Contaminated Soil-Pipeline	14.60
1619	160600	11/24/15 14-0029	Crude Contaminated Soil-Pipeline	14.73
2026	160591	12/15/15 14-0029	Crude Contaminated Soil-Pipeline	17.30
2027	160601	12/15/15 14-0029	Crude Contaminated Soil-Pipeline	16.27
2031	160587	12/15/15 14-0029	Crude Contaminated Soil-Pipeline	20.14
2032	160386	12/15/15 14-0029	Crude Contaminated Soil-Pipeline	15.15
2517	160795	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	13.99
2518	160797	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	13.57
2523	160794	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	14.05
2524	160796	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	11.61
2526	160793	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	11.87
2528	160799	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	11.93
2533	160798	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	11.73
2660	160814	1/21/16 14-0029	Crude Contaminated Soil-Pipeline	11.85

Print Date: 12/6/2016

Start Date: 1/1/2014

Stop Date: 12/5/2016

	GRAND TOTALS							
	# of L	oads: 155	SU	BTOTAL FORWaste Stream	2,199.52			
3426	161026	3/10/16	14-0029	Crude Contaminated Soil-Pipeline	13.29			
3421	161025	3/10/16	14-0029	Crude Contaminated Soil-Pipeline	13.19			
2694	160818	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	12.94			
2692	160827	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.91			
2691	160823	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	12.09			
2689	160819	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	12.32			
2687	160828	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.20			
2684	160824	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.31			
2678	160820	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.98			
2675	160815	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.41			
2674	160816	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.10			
2668	160821	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	12.86			
2667	160825	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	14.98			
2666	160817	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	12.33			
2662	160836	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.49			
2661	160837	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.49			
BILL TO A	CCOUNT							

Vonco V Waste Management Campus 100 West Garv Street Duluth, MN 55808 Permit: SW 536

		<u> 16-007-I SUP Termir</u>	<u>nal Historica</u>	a/	
Date	Ticket	Customer	Truck	Material	Tons
03/10/2016	271978	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	9.66
03/10/2016	271981	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	10.21
03/10/2016	271990	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	11.57
03/10/2016	271993	001342 - Enbridge Pipelines LLC	S19589X	Contaminated Soil Tons	8.73
03/10/2016	271996	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	9.10
03/10/2016	271998	001342 - Enbridge Pipelines LLC	S19589X	Contaminated Soil Tons	11.14
03/11/2016	272004	001342 - Enbridge Pipelines LLC	T53690W	Contaminated Soil Tons	17.64
03/11/2016	272009	001342 - Enbridge Pipelines LLC	T53690W	Contaminated Soil Tons	13.24
03/11/2016	272014	001342 - Enbridge Pipelines LLC	T53690W	Contaminated Soil Tons	5.69
03/30/2016	272432	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	12.26
03/30/2016	272440	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	12.93
03/30/2016	272442	001342 - Enbridge Pipelines LLC	S39449X	Contaminated Soil Tons	11.65
03/30/2016	272462	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	15.53
03/30/2016	272463	001342 - Enbridge Pipelines LLC	S36746W	Contaminated Soil Tons	14.21
06/16/2016	275529	001342 - Enbridge Pipelines LLC	T53691W	Contaminated Soil Tons	20.83
06/16/2016	275530	001342 - Enbridge Pipelines LLC	T53691W	Contaminated Soil Tons	20.98
06/16/2016	275531	001342 - Enbridge Pipelines LLC	T53691W	Contaminated Soil Tons	21.67
				Total Tons	227.04
				Total Loads	17

July 15, 2014

Ms. Andrea Nord Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1403025 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 07/11/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Sunto Anule

Samantha Jaworski Manager, Organics sjaworski@legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Barr Engineering Co.	Project:	49161286							
4700 W 77th St	Project Number:	49161286 001 001		Work Or	der #: 1403025				
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord		Date Re	ported: 07/15/14				
	ANALYTICAL REPORT FOR SAMPLES								
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received				
SUP Enhancement Stockpile-01		1403025-01	Soil	07/10/14 11:00	07/11/14 09:35				
Shipping Container Informati	on								
Default Cooler	Temperature (°C): 2.4								
Received on ice: Yes Received on melt water: No Custody seals: Yes	Temperature blank v Ambient: No	was present	Receive Acceptal	d on ice pack: No ble (IH/ISO only): No)				

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

The DRO chromatogram for the sample is attached.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #:	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	07/15/14

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement Stockpile-01 (14030	25-01) Soil	Sam	pled: 07/10	/14 11:00	Received:	07/11/14 9	9:35			
Diesel Range Organics	950	70	11	mg/kg dry	5	B4G1403	07/14/14	07/15/14	WI(95) DRO	L1
Surrogate: Triacontane (C-30)	84.6			70-130 %		"	"	"	"	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #: 1	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported: 0	07/15/14
	WI(9	95) GRO/8015D		

Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement Stockpile-01 (1403	8025-01) So	oil Sam	npled: 07/10	/14 11:00	Received:	07/11/14	9:35			
Benzene	<0.0067	0.058	0.0067	mg/kg dry	1	B4G1406	07/14/14	07/14/14	WI(95) GRO	
Ethylbenzene	0.044	0.058	0.015	mg/kg dry	1	"	"	"		B-01, J
Toluene	<0.0095	0.058	0.0095	mg/kg dry	1	"	"	"		
Xylenes (total)	0.083	0.17	0.033	mg/kg dry	1	"	"	"		J
Surrogate: 4-Fluorochlorobenzene	94.7			80-150 %		"	"	"	"	

Barr Engineering Co.		Proje	ect:	4916128	6							
4700 W 77th St		Proje	ect Number:	4916128	6 001 001			Wo	rk Order #:	1403025		
Minneapolis, MN 55435		Project Manager: Ms. Andrea Nord Date Reported: 07/15/14										
PERCENT SOLIDS Legend Technical Services, Inc.												
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
SUP Enhancement Stockpile-01 (1403025-01) Soil Sampled: 07/10/14 11:00 Received: 07/11/14 9:35												
% Solids	43			%	1	B4G1428	07/14/14	07/15/14	% calculation	n		

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #:	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	07/15/14

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4G1403 - Sonication (Wisc DRO)											
Blank (B4G1403-BLK1)				F	Prepared	& Analyze	ed: 07/14/1	4			
Diesel Range Organics	< 1.3	8.0	1.3	mg/kg wet							
Surrogate: Triacontane (C-30)	15.1			mg/kg wet	16.0		94.2	70-130			
LCS (B4G1403-BS1)				F	Prepared	& Analyze	ed: 07/14/1	4			
Diesel Range Organics	69.8	8.0	1.3	mg/kg wet	64.0		109	70-120			
Surrogate: Triacontane (C-30)	13.8			mg/kg wet	16.0		86.3	70-130			
LCS Dup (B4G1403-BSD1)				F	repared	: 07/14/14	Analyzed	: 07/15/14			
Diesel Range Organics	70.4	8.0	1.3	mg/kg wet	64.0		110	70-120	0.888	20	
Surrogate: Triacontane (C-30)	15.9			mg/kg wet	16.0		99.2	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #:	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	07/15/14

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4G1406 - EPA 5035 Soil (Purge	and Trap)									
Blank (B4G1406-BLK1)		-			Prepared	& Analyze	ed: 07/14/1	14			
Benzene	< 0.0029	0.025	0.0029	mg/kg wet	•	,					
Ethylbenzene	0.00699	0.025	0.0064	mg/kg wet							B-02, J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	22.9			ug/L	25.0		91.8	80-150			
LCS (B4G1406-BS1)					Preparec	& Analyze	ed: 07/14/1	14			
Benzene	99.2			ug/L	100		99.2	80-120			
Ethylbenzene	97.5			ug/L	100		97.5	80-120			
Toluene	99.5			ug/L	100		99.5	80-120			
Xylenes (total)	284			ug/L	300		94.7	80-120			
Surrogate: 4-Fluorochlorobenzene	23.3			ug/L	25.0		93.0	80-150			
LCS Dup (B4G1406-BSD1)					Preparec	1: 07/14/14	Analyzed	1: 07/15/14	Ļ		
Benzene	96.9			ug/L	100		96.9	80-120	2.33	20	
Ethylbenzene	94.1			ug/L	100		94.1	80-120	3.47	20	
Toluene	96.5			ug/L	100		96.5	80-120	3.11	20	
Xylenes (total)	276			ug/L	300		92.1	80-120	2.83	20	
Surrogate: 4-Fluorochlorobenzene	23.2			ug/L	25.0		92.9	80-150			
Matrix Spike (B4G1406-MS1)	S	ource: 1	403026-	02	Preparec	1: 07/14/14	Analyzed	1: 07/15/14	ļ		
Benzene	94.9			ug/L	100	<	94.9	80-120			
Ethylbenzene	92.3			ug/L	100	0.245	92.0	80-120			
Toluene	95.1			ug/L	100	<	95.1	80-120			
Xylenes (total)	271			ug/L	300	<	90.3	80-120			
Surrogate: 4-Fluorochlorobenzene	23.3			ug/L	25.0		93.1	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #:	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	07/15/14

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4G1428 - General Preparation											
Duplicate (B4G1428-DUP1)	S	ource: 14	03001-02	2	Prepared:	07/14/14	Analyzed:	07/15/14			
% Solids	81.0			%		78.0			3.77	20	
Duplicate (B4G1428-DUP2)	S	ource: 14	103045-0 1		Prepared:	07/14/14	Analyzed:	07/15/14			
% Solids	84.0			%		84.0			0.00	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #:	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	07/15/14

Notes and Definitions

L1 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.

J Parameter was present between the MDL and RL and should be considered an estimated value

B-02 Target analyte was present in the method blank between the MDL and RL.

- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

	Chain of	Custo	ody										Num	iber o	f Conta	iners	Pre	serva	tive			,	
	4700 West 77th	Street				iun	201	15	-	1			Wate	T				So	il		CO	of _/_	
BA	Minneapolis, MN (952) 832-2600	55433	5-4803			1-100		1							4						Proje Man	ager: R	EE
Proj	ect Number: 49161	2.8	6	001	- 001							-											
Proj	iect Name: Tank 17	7 E	nvin	onme	ntal As	sistanc	e				#2	(03)	6#1	s (HCI)		1.0	(H) #1		#2 npres.)	ontainer	Proje QC	ct Contact:	AN
Sam	ple Origination State	use two	letter j	postal sta	ate abbreviation)						(paul	(HI)	(Enved	gunic a #4		(HO	MeO	(pav	Ved).	or co			
CO	C Number:					N	0	41	23	1	C(I) #1	Metals	unprese	(H2SO		red Me	X (tared ed unp	upreset	plastic v	mber C	Samp	aled by: 7	15
	, Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Mater Juse Road	rix	Comp. Comp.	00	SVOCs (H	Dissolved	General (Diesel Ra Nutrients		VOCs (ta	DRO (1ar	Metali (u	4 Solids (Total Nu	Labo	ratory:	geno
1.	SUP ENHANCEMEN STOCKPILE-01	Γ.	-	1	7/10/20M	11:00	X		X								11		۱	3	ſ	STEX,	Dro,
2.	~		1																			·/ Sol.	ols
3,	i de la composición de									T		T	T			T		Π			1	12.0	
4.			+-1									T				T		Ħ			4	ASAP	
5.																T	T	T			7	AT	
6,				•								Ħ				T	1	Ħ					1
7.		-							1		T	Ħ	T			t		Ħ					
8.									1			Ħ				T	T	Ħ					
9,												T				T	T	Ħ			-		
10.											-	Ħ				1	T						
Con	nmon Parameter/Container	Preser	vation l	Key R	telinquished By:	to	-1	On I	lce?	D	ate	T	Time		Received	d by:	-					Date	Time
#1 - 1 #2 - 5 F	Volatile Organics = BTEX, GRQ Semivolatile Organics = PAHs, P 'ull List, Herbicide/Pesticide/PCB	TPH, 82 CP, Diosi s	160 Full I ins, 8270	List F	clinquished By:	Ber	5	2 ml	çe?	D	ate		Tim	P	Received	hby:						HILLY	735
#3-0 T	Seneral = pH, Chloride, Fluoride DS, TS, Sulfate	Alkalin	ity, TSS,	S	amples Shipped V	/IA: 🗌 Air F	reight	4	edera	d Ex	press		Samp	let	Air Bill	Num	berg						

0

П

G

Ш

Z

0

Technical

Services,

Inc.

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

www.legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 10 of 11

www.legend-group.com

Technical

Services,

Inc.

П

G

П

Z

August 07, 2014

Ms. Andrea Nord Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1403432 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 08/05/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Kelly French Chemist III/Department Manager kfrench@legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Barr Engineering Co.	Project:	49161286							
4700 W 77th St	Project Number:	49161286.00 003 001		Work Ore	der #: 1403432				
Minneapolis, MN 55435	Project Manager:	er: Ms. Andrea Nord Date Reported: 08/07/							
	ANALYTICAL F	REPORT FOR SAM	PLES						
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received				
SUP-Enhancement-Stockpile-2		1403432-01	Soil	08/04/14 13:45	08/05/14 09:05				
Shipping Container Information	on								
Default Cooler	Temperature (°C): 3.9								
Received on ice: Yes Received on melt water: No Custody seals: No	Temperature blank v Ambient: No	vas present	Received Acceptal	d on ice pack: No ble (IH/ISO only): No					

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

DRO surrogate recovery was not available due to sample dilution from high analyte concentration for the sample. The DRO chromatogram for the sample is attached.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 003 001	Work Order #:	1403432
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/07/14

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP-Enhancement-Stockpile-2 (140343	2-01) Soil	Sampl	ed: 08/04	/14 13:45 I	Received: (08/05/14 9	:05			
Diesel Range Organics	3200	1000	170	mg/kg dry	100	B4H0605	08/06/14	08/07/14	WI(95) DRO	L1
Surrogate: Triacontane (C-30)				70-130 %		"	"	"	"	D-1

Barr Engineering Co.	Project:	49161286								
4700 W 77th St	Project Number:	49161286.00 003 001	Work Order #:	1403432						
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/07/14						
WI(95) GRO/8015D Legend Technical Services, Inc.										

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP-Enhancement-Stockpile-2 (14	03432-01) Soi	I Sam	pled: 08/04/	14 13:45	Received:	08/05/14 9	:05			
Benzene	<0.0037	0.032	0.0037	mg/kg dry	1	B4H0608	08/06/14	08/06/14	WI(95) GRO	
Ethylbenzene	0.052	0.032	0.0082	mg/kg dry	1	"	"	"	"	B-01
Toluene	0.016	0.032	0.0053	mg/kg dry	1	"	"	"	"	J
Xylenes (total)	0.063	0.096	0.018	mg/kg dry	1		"	"	"	J
Surrogate: 4-Fluorochlorobenzene	96.4			80-150 %		"	"	"	"	

Barr Engineering Co.		Project:	4916128	36								
4700 W 77th St		Project Number:	4916128	36.00 003 00	1		Wo	rk Order #:	1403432			
Minneapolis, MN 55435		Project Manager:	Ms. And	lrea Nord			Dat	e Reported:	08/07/14			
PERCENT SOLIDS Legend Technical Services, Inc.												
Analyte	Result	RL MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
SUP-Enhancement-Stockpile-2 (1403	432-01) Soil	Sampled: 08/04/1	4 13:45	Received:	08/05/14 9	9:05						
% Solids	78		%	1	B4H0611	08/06/14	08/06/14	% calculation	n			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 003 001	Work Order #:	1403432
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/07/14

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4H0605 - Sonication (Wisc DRO))										
Blank (B4H0605-BLK1)				F	Prepared	08/06/14	Analyzed:	08/07/14			
Diesel Range Organics	< 8.0	8.0	1.3	mg/kg wet							
Surrogate: Triacontane (C-30)	14.2			mg/kg wet	16.0		88.9	70-130			
LCS (B4H0605-BS1)				F	Prepared	08/06/14	Analyzed:	08/07/14			
Diesel Range Organics	56.3	8.0	1.3	mg/kg wet	64.0		87.9	70-120			
Surrogate: Triacontane (C-30)	13.9			mg/kg wet	16.0		86.9	70-130			
LCS Dup (B4H0605-BSD1)				F	Prepared	08/06/14	Analyzed:	08/07/14			
Diesel Range Organics	52.5	8.0	1.3	mg/kg wet	64.0		82.0	70-120	6.93	20	
Surrogate: Triacontane (C-30)	13.1			mg/kg wet	16.0		82.2	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 003 001	Work Order #:	1403432
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/07/14

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4H0608 - EPA 5035 Soil (Pu	Irge and Tran)									
Blank (B4H0608-BI K1)		,			Prenareo	& Analyz	ed: 08/06/1	4			
Benzene	< 0.0029	0.025	0.0029	ma/ka wet	i iopuiot	/					
Ethylbenzene	0.00744	0.025	0.0064	ma/ka wet							B-02. J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							- / -
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	22.2			ug/L	25.0		88.8	80-150			
LCS (B4H0608-BS1)					Prepared	& Analyze	ed: 08/06/1	4			
Benzene	91.8			ug/L	100	2	91.8	80-120			
Ethylbenzene	92.7			ug/L	100		92.7	80-120			
Toluene	91.4			ug/L	100		91.4	80-120			
Xylenes (total)	266			ug/L	300		88.8	80-120			
Surrogate: 4-Fluorochlorobenzene	22.1			ug/L	25.0		88.4	80-150			
LCS Dup (B4H0608-BSD1)					Prepared	& Analyze	ed: 08/06/1	14			
Benzene	97.9			ug/L	100	-	97.9	80-120	6.53	20	
Ethylbenzene	96.2			ug/L	100		96.2	80-120	3.70	20	
Toluene	97.7			ug/L	100		97.7	80-120	6.64	20	
Xylenes (total)	277			ug/L	300		92.4	80-120	4.02	20	
Surrogate: 4-Fluorochlorobenzene	22.7			ug/L	25.0		90.8	80-150			
Matrix Spike (B4H0608-MS1)	S	ource: 1	403407-	05	Prepared	& Analyze	ed: 08/06/1	14			
Benzene	91.0			ug/L	100	<	91.0	80-120			
Ethylbenzene	88.7			ug/L	100	0.266	88.4	80-120			
Toluene	90.9			ug/L	100	<	90.9	80-120			
Xylenes (total)	260			ug/L	300	0.179	86.7	80-120			
Surrogate: 4-Fluorochlorobenzene	22.9			ug/L	25.0		91.5	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 003 001	Work Order #:	1403432
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/07/14

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4H0611 - General Preparation											
Duplicate (B4H0611-DUP1)	S	ource: 14	03416-04	Ļ	Prepared	& Analyze	ed: 08/06/1	4			
% Solids	87.0			%		88.0			1.14	20	
Duplicate (B4H0611-DUP2)	S	ource: 14	03432-01		Prepared	& Analyze	ed: 08/06/1	4			
% Solids	77.0			%		78.0			1.29	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 003 001	Work Order #:	1403432
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/07/14

Notes and Definitions

- L1 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- J Parameter was present between the MDL and RL and should be considered an estimated value
- D-1 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
- B-02 Target analyte was present in the method blank between the MDL and RL.
- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Chain of	Cust	ody						Γ		Nu	mber of Co	ntainers/Preservative			1	1
4700 West 77th	Street	5 1001			140	343	2			Wa	iter	Soil			coc	_ of <u>/</u>
(952) 832-2600	N 3343	5-4843		1.							1.14				Project R	44
Project Number: 4916	1286	, 00	0	03 001					-					20		
Project Name: Entrilly	MP	En	hang	emet Sta	Fritz				#2 0.1		(HCI)	1 (1) #1 ed) (2 (pres.)		ntainer	Project QC Contact:	AAN
Sample Origination State \underbrace{V} $\underline{1}$	(use two	letter j	oostal sta	ate abbreviation)					(bour	(EON	(1) #4	OH) # I McOH reserv vvd) rved)	2/0	DI CO		i.
COC Number:					N	0 4	1340	3	Metals	als (H	nge 01	ed Me ((tared d, unp teset npreset	2	aber 6	Sampled by:	JG2
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Matri Jawa	Comp. X	VOCA (HC	SVOCs (u Dissolved	Total Men	Diesel Ra Natricats	VOCS (tur BRO (ture DRO (ture Metals (ur SVOCs (ur SVOCs (ur SVOCs (ur SVOCs (ur SVOCs (ur SVOCs (ur SVOCs (ture SVOCs (ture	Extre de	Total Nun	Laboratory:	es-l
SUP-Enhancement-	Stocky	Je-R	2	8/4/14	.1345	X	X					11 12	Z .	5	BTEX, DE	20, Z.
£. ~															Extra Jars	- Ho 12
3.			1													
4.														T		
5.							1	1		4				Ť	ASAP	TAT
6.			1				T							T		
7.	1						1			tt				t		
8.							1									
9,									-					+		
10.					٨		1							-		
Common Parameter/Container	- Preser	L vation I	Key F	telinentifier By:	4	10	n Ice?	Dati		Tit	ne Rece	ived by:		1	Date	Time
 Volatile Organics = BTEX, GRO 92 - Semivolatile Organics = PAHs, i Fall List, Herbicide/Pesticide/PC 	Q TPH, 8. PCP, Dias Bs	260 Full 1 ins, 8270	.ist F	telinquished By:	\bigcirc	000	n lcc?	Date	4	Tir	nc Rece	Mufre b	er		8/5/14	Time 1905
TDS, TS, Sulfate	e, Aikalin	ndy, 133,	\$	amples Shipped V	VIA: Air F	reight	Federal	Espre	155	Sam	pler Air I	Bill Number:	00	5		

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Coordinator

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

www.legend-group.com

Technical

Services,

Inc.

-

П

G

П

Z

Technical

Services,

Inc.

П

G

П

Z

August 25, 2014

Ms. Andrea Nord Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1403769 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 08/20/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Barr Engineering Co.	Project:	49161286								
4700 W 77th St	V 77th St Project Number: 49161286.00 006 001 Work Order #: 140									
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported: 08/25/14							
	ANALYTICAL F	REPORT FOR SAM	PLES							
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received					
SUP Enhancement-Stockpile-03		1403769-01	Soil	08/19/14 10:00	08/20/14 09:15					
Shipping Container Informat	ion									
Default Cooler	Temperature (°C):									
Received on ice: Yes Received on melt water: No Custody seals: No	Temperature blank v Ambient: No	vas not present	Receive Accepta	d on ice pack: No ble (IH/ISO only): No)					

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

The DRO chromatogram for the sample is attached.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/25/14

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement-Stockpile-03 (14037	′69-01) Soi	I San	npled: 08/19	9/14 10:00	Received:	08/20/14	9:15			
Diesel Range Organics	150	12	2.0	mg/kg dry	1	B4H2002	08/20/14	08/21/14	WI(95) DRO	L1
Surrogate: Triacontane (C-30)	75.5			70-130 %		"	"	"	"	

Barr Engineering Co.	Project:	49161286							
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769					
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/25/14					

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement-Stockpile-03 (1403	769-01) So	oil Sam	npled: 08/19	/14 10:00	Received:	08/20/14	9:15			
Benzene	<0.0048	0.041	0.0048	mg/kg dry	1	B4H2211	08/22/14	08/23/14	WI(95) GRO	
Ethylbenzene	0.017	0.041	0.011	mg/kg dry	1	"	"	"	н	B-01, J
Toluene	0.0090	0.041	0.0068	mg/kg dry	1	"	"	"		J
Xylenes (total)	<0.024	0.12	0.024	mg/kg dry	1		"	"		
Surrogate: 4-Fluorochlorobenzene	92.3			80-150 %		"	"	"	"	

Barr Engineering Co.		Proje	ect:	4916128	6							
4700 W 77th St		Proje	ect Number:	4916128	6.00 006 00	1		Wo	rk Order #:	1403769		
Minneapolis, MN 55435		Proje	ect Manager:	Ms. And	ea Nord			Dat	e Reported:	08/25/14		
PERCENT SOLIDS Legend Technical Services, Inc.												
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
SUP Enhancement-Stockpile-03 (1403769-01) Soil Sampled: 08/19/14 10:00 Received: 08/20/14 9:15												
% Solids	66			%	1	B4H2012	08/20/14	08/20/14	% calculation	n		

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/25/14

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4H2002 - Sonication (Wisc DR	D)										
Blank (B4H2002-BLK1)				F	Prepared	& Analyze	ed: 08/20/	14			
Diesel Range Organics	< 8.0	8.0	1.3	mg/kg wet							
Surrogate: Triacontane (C-30)	13.4			mg/kg wet	16.0		83.6	70-130			
LCS (B4H2002-BS1)				F	Prepared	& Analyze	ed: 08/20/	14			
Diesel Range Organics	62.9	8.0	1.3	mg/kg wet	64.0		98.2	70-120			
Surrogate: Triacontane (C-30)	13.8			mg/kg wet	16.0		86.4	70-130			
LCS Dup (B4H2002-BSD1)				F	Prepared	1: 08/20/14	Analyzed	1: 08/21/14	ļ		
Diesel Range Organics	59.8	8.0	1.3	mg/kg wet	64.0		93.4	70-120	4.98	20	
Surrogate: Triacontane (C-30)	13.1			mg/kg wet	16.0		81.6	70-130			
Barr Engineering Co.	Project:	49161286									
-----------------------	------------------	---------------------	----------------	----------							
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769							
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/25/14							

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4H2211 - EPA 5035 Soil (Purge	and Trap)									
Blank (B4H2211-BLK1)				F	Prepared	: 08/22/14	Analyzed	: 08/23/14			
Benzene	< 0.0029	0.025	0.0029	mg/kg wet			-				
Ethylbenzene	0.0108	0.025	0.0064	mg/kg wet							B-02, J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	23.5			ug/L	25.0		94.0	80-150			
LCS (B4H2211-BS1)				ŀ	Prepared	& Analyze	d: 08/22/1	4			
Benzene	97.9			ug/L	100	-	97.9	80-120			
Ethylbenzene	101			ug/L	100		101	80-120			
Toluene	98.5			ug/L	100		98.5	80-120			
Xylenes (total)	293			ug/L	300		97.8	80-120			
Surrogate: 4-Fluorochlorobenzene	23.6			ug/L	25.0		94.4	80-150			
LCS Dup (B4H2211-BSD1)				ŀ	Prepared	: 08/22/14	Analyzed	: 08/23/14			
Benzene	96.2			ug/L	100		96.2	80-120	1.85	20	
Ethylbenzene	98.9			ug/L	100		98.9	80-120	2.61	20	
Toluene	95.7			ug/L	100		95.7	80-120	2.82	20	
Xylenes (total)	289			ug/L	300		96.4	80-120	1.50	20	
Surrogate: 4-Fluorochlorobenzene	23.1			ug/L	25.0		92.2	80-150			
Matrix Spike (B4H2211-MS1)	S	ource: 1	403769-	01 I	Prepared	: 08/22/14	Analyzed	: 08/23/14			
Benzene	95.4			ug/L	100	<	95.4	80-120			
Ethylbenzene	99.0			ug/L	100	0.211	98.8	80-120			
Toluene	95.3			ug/L	100	0.109	95.2	80-120			
Xylenes (total)	288			ug/L	300	0.115	95.8	80-120			
Surrogate: 4-Fluorochlorobenzene	22.1			ug/L	25.0		88.5	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/25/14

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4H2012 - General Preparation											
Duplicate (B4H2012-DUP1)	Sc	ource: 14	03773-01		Prepared	& Analyze	d: 08/20/1	4			
% Solids	88.0			%		87.0			1.14	20	

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/25/14

Notes and Definitions

L1 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.

J Parameter was present between the MDL and RL and should be considered an estimated value

B-02 Target analyte was present in the method blank between the MDL and RL.

- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Chain of	Cust	ody										1	lumb	er of	Conta	liners	Pro	serva	tive			1	1
4700 West 77th	Street	5.4802			140	03	70	99		F		1	Vater			1		So	i	_		coc _1	of
(952) 832-2600	5545	5-4005						/	1											11		Project RE	E
Project Number: 49/6/2	86.0	00	00	6 001																	8		
Project Name: Enbridge	Pipeli	ne E	han	cement - I	B ZZ	7					5	(2)	93 (HCI				1.01		bres.)		taine	Project QC Contact: Af	HN.
Sample Origination State L	(use two	letter	postal st	ate abbreviation)		-		1		1	ved) #	(HNG)	rved) i	741		\$ (HO	McOH	(pav	inl. nu		f. Con		
COC Number:					N	0	4	34	16	1.00 (1	preser	Metals 18 (H)	aprese	H ₂ 50.		Mol Mol	Mtared d unpr	preserv	astic v		ber O	Sampled by: E	J
Internation the			Depth	Collection	Collection	M	atrix	1	ype	(HC	s (un	Mesa	al (u	nts (H	(tare	(Inre)	un)	dis (p)		Num		
Location	Depth	Depth	(m./ft. or in.)	Date (mm/dd/yyyy)	Time (hh:mm)	Water	Soil	Grab	Comp.	VOCE	SVOC	Total	Gener	Nutric		VOCs	DRO.	Metal	% Soll		Total	Laboratory: K	Byenc
1. SUP ENHANCEMENT- STOCKPILE - 03	_		-	08/19/2014	1000		X	X									11		1	4	4	DRO, BTEX	
2.																					-	2	
3.			1													Π	T				1		
4.						T	1		T	t					T	Ħ	T		tt	1	1	1.1	4
5.						Ħ			T	ľ		4			T	Ħ			tt	T	1	ASAP T	AT
6.			4			t			T	T	-				T	Ħ	T		tt		1	110/11/1/	31
7.						Ħ	T		T	t		T			Ħ	Ħ	T	tt	tt	T	1		
8.						Ħ	T		T	t		T			T	T	T	Ħ	tt	Ħ	1		
9.						T	T		T			1			Ħ	Ħ	T	Ħ			1		
10.							t		t	1				+	Ħ	Ħ	t			1	+	4	
Common Parameter/Container	Preser	vation I	Key F	Relinquished By:	1.		On	lee?	L	Date		1	Time	R	eceive	d by:	-				1	Date	Time
Volatile Organics = BTEX, GRQ, TPH, 8260 Full List Constraintile Organics = PAHs, PCP Diaxins, 8270 Full List, Herbicide/Pesticide/PCBs			Sem)	On (Y	Ice?	8	Date	19	10	Fime	Re	ceive	1 by:	1)	10	N	ha	~	S 2010	Time		
13 - General = pH, Chloride, Fluoride, Alkalinity, TSS, TDS, TS, Sulfate #4 - Nutrients = COD, TOC, Phenols Ammonia			10 VIA: Air Freight Federal Express Sampler					mpler Air Bill Number:															

0

-

Ш

G

Ш

Z

www.legend-group.com

Technical Services,

Inc.

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

1

Page 10 of 11

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Technical

Services,

Inc.

П

G

П

Z

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

October 28, 2014

Mr. James E. Taraldsen Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1404767 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 10/16/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Barr Engineering Co.	Project:	49161286			
4700 W 77th St	Project Number:	49161286 008 001		Work Or	der #: 1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldse	n	Date Re	ported: 10/28/14
	ANALYTICAL F		1PLES		
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
Sup Enhancement-Stockpile-05		1404767-01	Soil	10/15/14 14:45	10/16/14 09:10
Shipping Container Informati	ion				
Default Cooler	Temperature (°C): 1.3				
Received on ice: Yes Received on melt water: No Custody seals: No	Temperature blank v Ambient: No	vas present	Received Acceptat	d on ice pack: No ole (IH/ISO only): Nc)

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	10/28/14

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Sup Enhancement-Stockpile-05 (140476	67-01) Soil	Sam	pled: 10/15	6/14 14:45	Received:	10/16/14	9:10			
Diesel Range Organics	400	8.9	1.5	mg/kg dry	1	B4J2102	10/21/14	10/22/14	WI(95) DRO	
Surrogate: Triacontane (C-30)	93.0			70-130 %		"	"	"	"	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	10/28/14

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Sup Enhancement-Stockpile-05 (1404	767-01) So	il Sam	pled: 10/15/	/14 14:45	Received:	10/16/14	9:10			
Benzene	<0.0037	0.032	0.0037	mg/kg dry	1	B4J1717	10/17/14	10/18/14	WI(95) GRO	
Ethylbenzene	0.057	0.032	0.0082	mg/kg dry	1		"	"	"	B-01
Toluene	0.011	0.032	0.0053	mg/kg dry	1	"	"	"		J
Xylenes (total)	0.091	0.096	0.018	mg/kg dry	1		"	"		J
Surrogate: 4-Fluorochlorobenzene	100			80-150 %		"	"	"	"	

Barr Engineering Co.		Project:		4916128	6					
4700 W 77th St		Project	Number:	4916128	6 008 001			Wo	rk Order #:	1404767
Minneapolis, MN 55435		Project	Manager:	Mr. Jame	es E. Taralds	en		Dat	e Reported:	10/28/14
Minneapolis, MN 55435 Project Manager: Mr. James E. Taraldsen Date Reported: 10/28/1 PERCENT SOLIDS Legend Technical Services, Inc. Analyte Result RL MDL Units Dilution Batch Prepared Analyzed Method No.										
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Sup Enhancement-Stockpile-05 (14	Sample	ed: 10/15/	14 14:45	Received:	10/16/14	9:10				
% Solids	78			%	1	B4J2304	10/23/14	10/23/14	% calculation	ı

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	10/28/14

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4J2102 - Sonication (Wisc DRO)											
Blank (B4J2102-BLK1)				F	repared	& Analyze	ed: 10/21/1	4			
Diesel Range Organics	< 8.0	8.0	1.3	mg/kg wet							
Surrogate: Triacontane (C-30)	13.6			mg/kg wet	16.0		85.3	70-130			
LCS (B4J2102-BS1)				F	repared	& Analyze	ed: 10/21/1	4			
Diesel Range Organics	64.7	8.0	1.3	mg/kg wet	64.0		101	70-120			
Surrogate: Triacontane (C-30)	16.9			mg/kg wet	16.0		105	70-130			
LCS Dup (B4J2102-BSD1)				F	repared	: 10/21/14	Analyzed	: 10/22/14			
Diesel Range Organics	61.0	8.0	1.3	mg/kg wet	64.0		95.2	70-120	5.90	20	
Surrogate: Triacontane (C-30)	16.2			mg/kg wet	16.0		101	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	10/28/14

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4J1717 - EPA 5035 Soil (Pu	rge and Trap)									
Blank (B4J1717-BLK1)	·			1	Prepared	& Analyze	d: 10/17/1	4			
Benzene	< 0.0029	0.025	0.0029	mg/kg wet	-	-					
Ethylbenzene	0.00806	0.025	0.0064	mg/kg wet							B-02, J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	24.0			ug/L	25.0		96.1	80-150			
LCS (B4J1717-BS1)					Prepared	& Analyze	d: 10/17/1	4			
Benzene	89.7			ug/L	100	-	89.7	80-120			
Ethylbenzene	95.4			ug/L	100		95.4	80-120			
Toluene	92.3			ug/L	100		92.3	80-120			
Xylenes (total)	282			ug/L	300		93.9	80-120			
Surrogate: 4-Fluorochlorobenzene	24.3			ug/L	25.0		97.4	80-150			
LCS Dup (B4J1717-BSD1)				1	Prepared	: 10/17/14	Analyzed	: 10/18/14			
Benzene	94.3			ug/L	100		94.3	80-120	5.05	20	
Ethylbenzene	99.1			ug/L	100		99.1	80-120	3.81	20	
Toluene	96.3			ug/L	100		96.3	80-120	4.29	20	
Xylenes (total)	291			ug/L	300		97.1	80-120	3.38	20	
Surrogate: 4-Fluorochlorobenzene	24.7			ug/L	25.0		98.8	80-150			
Matrix Spike (B4J1717-MS1)	S	ource: 1	404783-	01 1	Prepared	: 10/17/14	Analyzed	: 10/18/14			
Benzene	92.0			ug/L	100	<	92.0	80-120			
Ethylbenzene	95.8			ug/L	100	0.268	95.5	80-120			
Toluene	93.0			ug/L	100	<	93.0	80-120			
Xylenes (total)	278			ug/L	300	0.140	92.7	80-120			
Surrogate: 4-Fluorochlorobenzene	24.5			ug/L	25.0		98.0	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	10/28/14

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4J2304 - General Preparation											
Duplicate (B4J2304-DUP1)	S	ource: '	1404774-09)	Prepared	& Analyze	ed: 10/23/1	4			
% Solids	90.0			%		88.0			2.25	20	
Duplicate (B4J2304-DUP2)	S	ource: '	1404798-04	ļ	Prepared	& Analyze	ed: 10/23/1	4			
% Solids	96.0			%		95.0			1.05	20	
Duplicate (B4J2304-DUP3)	S	ource: '	1404798-05	5	Prepared	& Analyze	ed: 10/23/1	4			
% Solids	97.0			%		92.0			5.29	20	

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	10/28/14

Notes and Definitions

J Parameter was present between the MDL and RL and should be considered an estimated value

B-02 Target analyte was present in the method blank between the MDL and RL.

- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Chain of	Custo	ody							N	lumber of	f Cont	ainers/P	reserva	ative		1	1		\$
4700 West 77th	Street				4	047	67	< [W	/ater			Sc	nil.			of	-	× v
BARR Minneapolis, M. (952) 832-2600	V 5543;	5-4803														Project	99		< .
Project Number: Jan 12	X	NR	. /	201				-								Manager:	c		e g e
	1	000		Day	Tou	iL	1			HCI)		2		18		Project	IST		no
Project Name: Pipeline	Zali	ION E I	nent	Mojet	Ime	#	/	-	() #2 (NO ₃	tics ()		1#1(HO3	erved)	Z# (p	7	QC Contact:	JCI	1	- 9
Sample Origination State WZ	(use two	letter j	oostal sta	te abbreviation)					server als (1 HNO	Organ SO4) 4		Me Da	npres	served	1	5 Formalist has a	IFT		70
COC Number:			_		N	0 4	1353	0	unpre I Met tals ((unpr ange (H25		X (ta	red u	(plasts	- Ale	Sampled by:	JU		u p
Location	Start	Stop	Unit (m./ft.	Collection Date	Collection Time	Matri	x Ty	C SC	OCs (ssolved tal Me	neral esei R tricots		6. NT	tals ()	Solas (Ba	Laboratory:	egend		C O
1 - 10/5/4	Depin	Depth	or in.)	(mm/dd/yyyy)	(hh:mm)	8 8	e e	8	5V Di	o R		> #	Me	SV A	04	OTEN D	Q 1	- 61	3
Tonk 1 Soit	-	-	-	19/15/14	14:45	X	X					1	1	1	1	() (X) (U)	· · · · ·	nostwept	
2. Sup Enhancement - Stackpilk -05																(1902)	pr-nol	a).	
3.																			
4,	1							t							T	1		-1/	
5.					1			1	9		+	+		-	t				
<u>6</u>	-	-						++			-	++-					10 m 10	-	
			_		_			1								Dtand	ord		
1.																TAT!		00100	
8.																		Rune O	
9,				•								1						OB RLO	
10.	10	-		-				-			-				-			Farm 20	
				()	1													untody	
Common Parameter/Container	- Preser	vation I	Key R	elinquished By:	1 mal	AM	N N	N/2	Sty 1	inc is	Receive	ed by:				Date	Tin	ne oto un	
 Volatile Organics = BTEX, GR0 12 - Semivolatile Organics = PAHs, Full List, Herbicide/Perticide/PC), TPH, 8, PCP, Diax Bs	260 Full ins, 8270	list R	etinguished By:	- CAR # 100	18	S nee?	Dat	211 12	ime 1	Rection	1 by:				IS Pate	(4 9/D	ne ofensoon	
3 - General = pH, Chloride, Fluorid	le, Alkalin	uty, TSS,		Paralar Chinad Y	TAN TO AN A		Central	. Pass	170	V.	- M	Numbe			_	toliat	4140	TDe	

Ш

G

Ш

Z

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

June 23, 2015

Mr. James E. Taraldsen Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1502376 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 06/19/15. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

> Bach Pham Client Manager II bpham@legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Barr Engineering Co.	Project:	49161286			
4700 W 77th St	Project Number:	49161286 014 001		Work Or	der #: 1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldse	n	Date Re	ported: 06/23/15
	ANALYTICAL F	REPORT FOR SAN	1PLES		
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
SUP Enhancement-Stockpile-06		1502376-01	Soil	06/18/15 09:30	06/19/15 09:10
Shipping Container Information	ì <u>on</u>				
Default Cooler	Temperature (°C): 0.9				
Received on ice: Yes Received on melt water: No Custody seals: No	Temperature blank v Ambient: No	vas present	Received Acceptat	d on ice pack: No ble (IH/ISO only): Nc)

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	06/23/15

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement-Stockpile-06 (15023	876-01) Soi	I Sam	pled: 06/18	8/15 09:30	Received:	06/19/15	9:10			
Diesel Range Organics	17	9.4	2.0	mg/kg dry	1	B5F2205	06/22/15	06/23/15	WI(95) DRO	
Surrogate: Triacontane (C-30)	90.6			70-130 %		"	"	"	"	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	06/23/15

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	It RL MDL Units		Dilution	Batch	Prepared	Analyzed	Method	Notes			
SUP Enhancement-Stockpile-06 (15023	376-01) Sc	oil Sam	npled: 06/18	3/15 09:30	0 Received: 06/19/15 9:10							
Benzene	0.22	0.033	0.0011	mg/kg dry	1	B5F1918	06/19/15	06/20/15	WI(95) GRO			
Ethylbenzene	0.31	0.033	0.0047	mg/kg dry	1	"	"	"	"			
Toluene	0.10	0.033	0.0054	mg/kg dry	1	"	"	"	"			
Xylenes (total)	9.6	0.10	0.019	mg/kg dry	1	"	"	"	"			
Surrogate: 4-Fluorochlorobenzene	118			80-150 %		"	"	"	"			

Barr Engineering Co.		Proje	ect:	4916128	6							
4700 W 77th St		Proje	ect Number:	4916128	6 014 001			Wo	rk Order #:	1502376		
Minneapolis, MN 55435		Proje	ect Manager	: Mr. Jame	es E. Taralds	sen		Dat	e Reported:	06/23/15		
PERCENT SOLIDS Legend Technical Services, Inc.												
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
SUP Enhancement-Stockpile-06 (1	502376-01) So	il Sam	npled: 06/18	8/15 09:30	Received:	06/19/15	9:10					
% Solids	75			%	1	B5F2304	06/23/15	06/23/15	% calculation	ı		

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	06/23/15

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5F2205 - Sonication (Wisc DRO)											
Blank (B5F2205-BLK1)				F	repared	: 06/22/15	Analyzed	06/23/15			
Diesel Range Organics	< 8.0	8.0	1.7	mg/kg wet							
Surrogate: Triacontane (C-30)	15.7			mg/kg wet	16.0		97.8	70-130			
LCS (B5F2205-BS1)				F	repared	: 06/22/15	Analyzed	06/23/15			
Diesel Range Organics	62.6	8.0	1.7	mg/kg wet	64.0		97.8	70-120			
Surrogate: Triacontane (C-30)	16.6			mg/kg wet	16.0		104	70-130			
LCS Dup (B5F2205-BSD1)				F	repared	: 06/22/15	Analyzed	06/23/15			
Diesel Range Organics	56.0	8.0	1.7	mg/kg wet	64.0		87.5	70-120	11.1	20	
Surrogate: Triacontane (C-30)	15.8			mg/kg wet	16.0		99.0	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	06/23/15

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5F1918 - EPA 5035 Soil (Purge and Trap)									
Blank (B5F1918-BLK1)		•			Prepared	d & Analyze	ed: 06/19/ [,]	15			
Benzene	< 0.00082	0.025	0.00082	mg/kg wet							
Ethylbenzene	0.0144	0.025	0.0035	mg/kg wet							J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	23.1			ug/L	25.0		92.5	80-150			
LCS (B5F1918-BS1)					Prepared	d & Analyze	ed: 06/19/ [,]	15			
Benzene	96.5			ug/L	100		96.5	80-120			
Ethylbenzene	97.1			ug/L	100		97.1	80-120			
Toluene	98.9			ug/L	100		98.9	80-120			
Xylenes (total)	302			ug/L	300		101	80-120			
Surrogate: 4-Fluorochlorobenzene	25.6			ug/L	25.0		102	80-150			
LCS Dup (B5F1918-BSD1)					Prepared	d: 06/19/15	Analyzed	1: 06/20/15	5		
Benzene	95.5			ug/L	100		95.5	80-120	1.07	20	
Ethylbenzene	95.4			ug/L	100		95.4	80-120	1.74	20	
Toluene	97.0			ug/L	100		97.0	80-120	1.85	20	
Xylenes (total)	293			ug/L	300		97.6	80-120	3.21	20	
Surrogate: 4-Fluorochlorobenzene	24.9			ug/L	25.0		99.6	80-150			
Matrix Spike (B5F1918-MS1)	S	ource:	1502347-	01	Prepared	d: 06/19/15	Analyzed	1: 06/20/15	5		
Benzene	93.9			ug/L	100	<	93.9	80-120			
Ethylbenzene	95.2			ug/L	100	0.239	94.9	80-120			
Toluene	96.5			ug/L	100	<	96.5	80-120			
Xylenes (total)	293			ug/L	300	0.146	97.7	80-120			
Surrogate: 4-Fluorochlorobenzene	25.1			ug/L	25.0		100	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	06/23/15

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5F2304 - General Preparation											
Duplicate (B5F2304-DUP1)	Source: 1502397-02				Prepared	& Analyze	ed: 06/23/1	5			
% Solids	95.0			%		95.0			0.00	20	

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	06/23/15

Notes and Definitions

- J Parameter was present between the MDL and RL and should be considered an estimated value
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

LEGEND Technical Services, Inc.

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Chain of	Custo	ody		///04-2							1	Num	ber o	of Conta	iners	Pres	ervat	ive			a and a second	1	Η.	1	
4700 West 77th	Street	1000		15	0237	4						Water	n)			1	Soil				co	с	-	of	
BARR (952) 832-2600	3343	-4805																			Proje	er f	2RT	5	
Project Number: 491617	36	0	4	-01					-				×	7		Į.					Maga	ger: 1	-00	-	
	r.d.	P.C.	polino	Enhowowe	+ - T	1.4 -	0	Ĩ			(2)	5	(HCI)		. WI	. (9		(was		Inines?	Proje QC (et. Contact	de	T	
Sample Origination State W 1 (use two	letter	postal st	ate abbreviation)	11 1-	10-6	U			e (pas	ONH)	rved) #	gantes () #4		1# (HO	CESCEVE	(bad) #2	al, and		f Con					
COC Number:					N	0	45	04	6	() #1	Metals In CHN	aprose	BS OU		Med Med	den p	preserv	lastic wi		ber O	Samp	ded by:	RE	Ē	
	USESTVOIT	Laster	Depth	Collection	Collection	Ma	rix	Ty	pe	(HC	Ved	al (a	Nau ats		(lary	ture	nu) -	a)-Bri	-	Num				1	
Location	Start Depth	Stop Depth	(m/ft. or in.)	Date (mm/dd/yyyy)	Time (hh:mm)	Water		Gonto -	00	VOC: SVOC	Dissol	Cioner	Nutrie		VOCs GRO 6	DRO	SVOIC SVOIC	A. Solli	Hall	Total	Labor	atory:	Leg	end	
1. SUP ENHANCEMENT- TOCK	PILE-	06	_	06/18/15	930		(X				1			12	21		1	1		BTE	x, D	·RO,	Moistur	4
2.	1215-11				1																				
3.																					A	SAI	ρ-	TAT	
4.								1												Π					
5.						T					ł	T			Ħ	T				Ħ					
6.		1		1		T						T			Ħ					Ħ					
7.						1		1	T			Ħ			Ħ					Ħ	-				
8.												t												•	
9.						T									$\left \right $					-			_		_
10.						1						+													
Common Parameter/Container	Preser	vation I	Key 1	Relinquished (By:	/		28	Ice?	E	Date		Time	-	Received	by:	-	-		-			Da	ite	Tim	se.
 Volatile Organics = BTEX, GRQ, Semivolatile Organics = PAHs, P Full 1 in Mathical Properties (2010) 	TPH, 82 CP: Diau	60 Full I ns, 8270	List A	Relinquisted by:	~	-	Y BR	N lce?	Gli	8/15 hate	1	Time)	Received	M					-		Da Lo lu		Tim	N N
13 General = pH, Chloride, Fluoride TDS, TS, Sulfate	Alkalin	ity, 735,	5	iamples Shipped	VIA: 🗌 Air F	reight	X	Føder	al Ex	press		Sample	cr i	Air Bill	Numb	er:				2	(414	45	910	2

25-Aug-2015

Ryan Erickson Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803

Re: Enbridge - Tank 21 (49161253.30)

Work Order: 15081052

Dear Ryan,

ALS Environmental received 2 samples on 20-Aug-2015 for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

Sample results are compliant with NELAP standard requirements and QC results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 13.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Domaine B. Bucan Electronically approved by: Tom Beamish

Tom Beamish Client Services Coordinator

Certificate No: WI: 399084510

Report of Laboratory Analysis

ADDRESS 3352 128th Avenue Holland, Michigan 49424-9263 | PHONE (616) 399-6070 | FAX (616) 399-6185 ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Client:	Barr Engineering Company
Project:	Enbridge - Tank 21 (49161253.30)
Work Order:	15081052

Work Order Sample Summary

Lab Samp ID	<u>Client Sample ID</u>	<u>Matrix</u>	Tag Number	Collection Date	Date Received	<u>Hold</u>
15081052-01	Tank 21 - Stockpile-1	Soil		08/17/15 16:00	08/20/15 09:00	
15081052-02	Trip Blank	Soil		08/17/15	08/20/15 09:00	

Date: 25-Aug-15

µg/Kg-dry

mg/Kg-dry

Client:	Barr Engineering Company	OUALIFIERS
Project:	Enbridge - Tank 21 (49161253.30)	ACDONVMS LINITS
WorkOrder:	15081052	ACRONTINIS, UNITS

Qualifier	Description
*	Value exceeds Regulatory Limit
а	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
Е	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Not offered for accreditation
ND	Not Detected at the Reporting Limit
0	Sample amount is > 4 times amount spiked
Р	Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL Analyzed but not detected in the Method Blank between the MDL and BOL seemale results may avhibit besteround or response
А	contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
А	APHA Standard Methods
D	ASTM
Е	EPA
SW	SW-846 Update III
Units Reported	Description
% of sample	Percent of Sample
µg/Kg	Micrograms per Kilogram

Client:	Barr Engineering Company	
Project:	Enbridge - Tank 21 (49161253.30)	Case Narrative
Work Order:	15081052	

Samples for the above noted Work Order were received on 08/20/15. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting.

With the following exceptions, all sample analyses achieved analytical criteria.

Volatile Organics: No deviations or anomalies were noted.

Extractable Organics: No deviations or anomalies were noted.

Wet Chemistry: No deviations or anomalies were noted. Date: 25-Aug-15

Client:Barr Engineering CompanyProject:Enbridge - Tank 21 (49161253.30)Sample ID:Tank 21 - Stockpile-1Collection Date:08/17/15 04:00 PM

Work Order: 15081052 Lab ID: 15081052-01 Matrix: SOIL

Analyses	Result	Qual	MDL	PQL	Units	Dilution Factor	Date Analyzed
DIESEL RANGE ORGANICS BY GC-FID		Metho	d:PUBL-SW-	141	Prep: PUBL-	SW-141 / 8/2	1/15 Analyst: IT
DRO (C10-C28)	380		4.2	10	mg/Kg-dry	1	08/24/15 11:12
VOLATILE ORGANIC COMPOUNDS		Metho	d:SW8260B		Prep: SW50	35 / 8/20/15	Analyst: BG
Benzene	ND		25	63	µg/Kg-dry	1	08/23/15 18:55
Ethylbenzene	ND		23	63	µg/Kg-dry	1	08/23/15 18:55
m,p-Xylene	ND		47	130	µg/Kg-dry	1	08/23/15 18:55
o-Xylene	ND		27	63	µg/Kg-dry	1	08/23/15 18:55
Toluene	ND		23	63	µg/Kg-dry	1	08/23/15 18:55
Xylenes, Total	ND		74	190	µg/Kg-dry	1	08/23/15 18:55
Surr: 1,2-Dichloroethane-d4	102			70-130	%REC	1	08/23/15 18:55
Surr: 4-Bromofluorobenzene	99.8			70-130	%REC	1	08/23/15 18:55
Surr: Dibromofluoromethane	99.8			70-130	%REC	1	08/23/15 18:55
Surr: Toluene-d8	98.0			70-130	%REC	1	08/23/15 18:55
MOISTURE		Metho	d:E160.3M				Analyst: EVB
Moisture	52		0.025	0.050	% of sample	e 1	08/21/15 14:45

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client:Barr Engineering CompanyProject:Enbridge - Tank 21 (49161253.30)Sample ID:Trip BlankCollection Date:08/17/15

Work Order: 15081052 Lab ID: 15081052-02 Matrix: SOIL

Analyses	Result	Qual	MDL	PQL	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	od:SW8260B		Prep: SW5	035 / 8/20/15	Analyst: AK
Benzene	ND		12	30	µg/Kg	1	08/21/15 20:53
Ethylbenzene	ND		11	30	µg/Kg	1	08/21/15 20:53
m,p-Xylene	ND		23	60	µg/Kg	1	08/21/15 20:53
o-Xylene	ND		13	30	µg/Kg	1	08/21/15 20:53
Toluene	ND		11	30	µg/Kg	1	08/21/15 20:53
Xylenes, Total	ND		35	90	µg/Kg	1	08/21/15 20:53
Surr: 1,2-Dichloroethane-d4	96.6			70-130	%REC	1	08/21/15 20:53
Surr: 4-Bromofluorobenzene	94.3			70-130	%REC	1	08/21/15 20:53
Surr: Dibromofluoromethane	95.5			70-130	%REC	1	08/21/15 20:53
Surr: Toluene-d8	98.0			70-130	%REC	1	08/21/15 20:53

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client:	Barr Engineering Company
Work Order:	15081052
Project:	Enbridge - Tank 21 (49161253.30)

QC BATCH REPORT

Batch ID: 75077	Instrument ID GC8		Method	PUBL	SW-1	41						
MBLK	Sample ID: DBLKS1-750	77-75077			Units: mg/Kg				Analysi	s Date: 08	3/24/15 10	:42 AM
Client ID:		Run ID: GC8	8_150824A		Seq	No: 3429	147	Prep Da	ate: 08/2	1/15	DF: 1	
Analyte	Result	MDL	PQL SPK V	SPł al Va	(Ref alue	%REC	Control Limit	RF	PD Ref /alue	%RPD	RPD Limit	Qual
DRO (C10-C28)	ND	2	5.0									
LCS	Sample ID: DLCSS1-750	77-75077			Ur	nits: mg/k	٢g		Analysi	s Date: 08	3/24/15 10	:12 AM
Client ID:		Run ID: GC8	8_150824A		Seq	No: 3429	146	Prep Da	ate: 08/2	1/15	DF: 1	
Analyte	Result	MDL	PQL SPK V	SPł al Va	(Ref alue	%REC	Control Limit	RF	PD Ref /alue	%RPD	RPD Limit	Qual
DRO (C10-C28)	179.2	2	5.0 200		0	89.6	70-120		0			
LCSD	Sample ID: DLCSDS1-75	077-75077			Ur	nits: mg/k	٢g		Analysi	s Date: 08	3/24/15 12	:41 PM
Client ID:		Run ID: GC8	8_150824A		Seq	No: 3429	151	Prep Da	ate: 08/2	1/15	DF: 1	
Analyte	Result	MDL	PQL SPK V	SPł al Va	(Ref alue	%REC	Control Limit	RF	PD Ref /alue	%RPD	RPD Limit	Qual
DRO (C10-C28)	191.4	2	5.0 200		0	95.7	70-120		179.2	6.61	20	
The following sam	15081052- 01C											

QC BATCH REPORT

Batch ID: 75058

Instrument ID VMS9

Method: SW8260B

MBLK S	ample ID: MBLK-75058	-75058			U	Units: µg/Kg				is Date: 0	8/20/15 04:43 PM	
Client ID:		Run ID: VMS	9_15082	0A	Sec	qNo: 3426	777	Prep Da	te: 08/2	0/15	DF: 1	
					SPK Ref		Control	RP	D Ref		RPD	
Analyte	Result	MDL	PQL	SPK Val	Value	%REC	Limit	V	alue	%RPD	Limit	Qual
Benzene	ND	12	30									
Ethylbenzene	ND	11	30									
m,p-Xylene	ND	23	60									
o-Xylene	ND	13	30									
Toluene	ND	11	30									
Xylenes, Total	ND	35	90									
Surr: 1,2-Dichloroetha	ane-d4 933	0	0	1000	0	93.3	70-130		0			
Surr: 4-Bromofluorob	enzen: 914.5	0	0	1000	0	91.4	70-130		0			
Surr: Dibromofluorom	ethan 907.5	0	0	1000	0	90.8	70-130		0			
Surr: Toluene-d8	975.5	0	0	1000	0	97.6	70-130		0			

LCS	LCS Sample ID: LCS-75058-75058					nits: µg/K	g	Analysi	Analysis Date: 08/20/15 03:01 PM			
Client ID:		Run ID: VMS	9_15082	0A	Seq	No: 3426	775	Prep Date: 08/20	0/15	DF: 1		
Analyte	Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Benzene	993.5	12	30	1000	0	99.4	75-125	0				
Ethylbenzene	992	11	30	1000	0	99.2	75-125	0				
m,p-Xylene	2036	23	60	2000	0	102	80-125	0				
o-Xylene	992.5	13	30	1000	0	99.2	75-125	0				
Toluene	1016	11	30	1000	0	102	70-125	0				
Xylenes, Total	3029	35	90	3000	0	101	75-125	0				
Surr: 1,2-Dichloroeth	ane-d4 924	0	0	1000	0	92.4	70-130	0				
Surr: 4-Bromofluorob	enzene 1059	0	0	1000	0	106	70-130	0				
Surr: Dibromofluoron	nethan: 917.5	0	0	1000	0	91.8	70-130	0				
Surr: Toluene-d8	1010	0	0	1000	0	101	70-130	0				

MS S	Sample ID: 15081076-09A MS						g	Analysis	Analysis Date: 08/25/15 12:06 PM			
Client ID:		Run ID: VMS	Run ID: VMS9_150824A			No: 3430	710	Prep Date: 08/20	DF: 1			
Analyte	Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Benzene	1145	14	34	1132	0	101	75-125	0				
Ethylbenzene	1175	13	34	1132	0	104	75-125	0				
m,p-Xylene	2299	26	68	2264	0	102	80-125	0				
o-Xylene	1121	14	34	1132	0	99	75-125	0				
Toluene	1146	13	34	1132	0	101	70-125	0				
Xylenes, Total	3420	40	100	3397	0	101	75-125	0				
Surr: 1,2-Dichloroeth	ane-d4 1104	0	0	1132	0	97.5	70-130	0				
Surr: 4-Bromofluorob	enzene 1213	0	0	1132	0	107	70-130	0				
Surr: Dibromofluorom	nethan 1082	0	0	1132	0	95.6	70-130	0				
Surr: Toluene-d8	1151	0	0	1132	0	102	70-130	0				

Batch ID: 75058 Ir

Instrument ID VMS9

Method: SW8260B

MSD S	Cample ID: 15081076-0	9A MSD			Ur	its: µg/K	g	Analysi	Analysis Date: 08/25/15 12:32 PM			
Client ID:		Run ID: VM	S9_1508	24A	Seq	No: 3430	711	Prep Date: 08/20	0/15	DF: 1		
Analyte	Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Benzene	1094	14	34	1132	0	96.6	75-125	1145	4.5	30		
Ethylbenzene	1115	13	34	1132	0	98.5	75-125	1175	5.19	30		
m,p-Xylene	2265	26	68	2264	0	100	80-125	2299	1.51	30		
o-Xylene	1094	14	34	1132	0	96.6	75-125	1121	2.4	30		
Toluene	1132	13	34	1132	0	100	70-125	1146	1.19	30		
Xylenes, Total	3359	40	100	3397	0	98.9	75-125	3420	1.8	30		
Surr: 1,2-Dichloroeth	ane-d4 1104	0	0	1132	0	97.6	70-130	1104	0.0513	30		
Surr: 4-Bromofluorob	enzen 1201	0	0	1132	0	106	70-130	1213	0.985	30		
Surr: Dibromofluoron	nethan 1097	0	0	1132	0	96.8	70-130	1082	1.3	30		
Surr: Toluene-d8	1157	· 0	0	1132	0	102	70-130	1151	0.491	30		

The following samples were analyzed in this batch:

15081052-01A

2- 15081052-02A

Client:	Barr Engineering Company
Work Order:	15081052
Project:	Enbridge - Tank 21 (49161253.30)

QC BATCH REPORT

Batch ID: R170180 Instrument ID MOIST Method: E160.3M

MBLK	Sample ID: WBLKS-R170180			Units: % of sample Ana			Analysi	ysis Date: 08/21/15 02:45 PM		
Client ID:		Run ID: MO	SeqNo: 3428821		Prep Date:		DF: 1			
Analyte	Result	MDL	PQL SPK Val	SPK R Value	ef %RE	Control C ^{Limit}	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	ND	0.025	0.050							
LCS	Sample ID: LCS-R170180)			Units: %	of sample	Analysi	s Date: 08	3/21/15 02	:45 PM
Client ID:		Run ID: MO	:	SeqNo: 34	28820	Prep Date:		DF: 1		
Analyte	Result	MDL	PQL SPK Val	SPK R Value	ef ⁹ %RE	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	100	0.025	0.050 100		0 10	99.5-100	0.5 0			
DUP	Sample ID: 15081099-01	D: 15081099-01B DUP			Units: % of sample Analysis Date: 08/21/15 02:4					::45 PM
Client ID:		Run ID: MOIST_150821A		:	SeqNo: 34	28807	Prep Date:		DF: 1	
Analyte	Result	MDL	PQL SPK Val	SPK R Value	ef %RE	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qual
MOISTURE	6.58	0.025	0.050 0		0)	6.17	6.43	20	
DUP	Sample ID: 15081123-01	J81123-01A DUP			Units: %	of sample	Analysi	3/21/15 02	::45 PM	
Client ID:		Run ID: MOIST_150821A		:	SeqNo: 3428814		Prep Date:		DF: 1	
Analyte	Result	MDL	PQL SPK Val	SPK R Value	ef %RE	Control C Limit	RPD Ref Value	%RPD	RPD Limit	Qual
woisture	7.1	0.025	0.050 0		U	J	7.08	0.282	20	
The following s	samples were analyzed in this	15081052- 01B								

15081052

Chain of Custody		Number o	of Containers/Preservative			
4700 West 77th Street		Water	Soil			
BARR Minneapolis, MN 55435-4803 (952) 832-2600		ξ			Project Manager: <u>REE</u>	
Project Number: 4 49161253.30 001	001		ers -			
Project Name: EnDrodsz-Tank-202	0	() #2 NO ₃)	#1 DH)#1 rved) .#2 .mpres.)	QC Contact: JET		
Sample Origination State MI (use two letter postal state	abbreviation)	erved) Is (H) HNO ₃ HNO ₃ Served Drgani	ed Mel breset vial, vial,	NIRSO		
COC Number:	45051	CI) #J CI) #J Meta Meta Inpre (unpre (H2S (H2S	X tar ced un npres plastic plastic	Sampled by: NNOZ		
Location Start Depth Unit Depth Depth Depth (m./ft. or in.) (Collection Date Collection Time mm/dd/yyyy) (hh:mm)	Matrix Type Soil Grap OC Comp.	VOCs (H SVOCs (I Dissolved Total Met General (Diesel Re Nutrients	VOCs (ta GRC; (a GRC; (a DRO (ta Metals (u SVOCs (t SVOCs (t SVOCs (ta Nu Datal Nu	Laboratory: ALS Holknel	
1. Tank 21-STOCKPILE-1 - 0	8/17/15 1600	XX		211	BTEX, DRO	
2.						
Temp Blenk		×			and the second	
Thip Blank						
					، در به در ۲۰۰۰ بالار بالار	
d.						
					ASAR TAT	
8.						
9.						
10.						
Common Parameter/Container - Preservation Key Reli	nquished By:	On Ice?	Date Time	Received by:	Date Time	
#1 - Volatile Organics = BTEX, GRQ, TPH, 8260 Full List #2 - Semivolatile Organics = PAHs, PCP, Dioxins, 8270 Full List, Herbicide/Pesticide/PCBs	On Ice?	16:30 Date Time	Received by:	Date Time		
#3 - General = pH, Chloride, Fluoride, Alkalinity, TSS, TDS, TS, Sulfate #4 - Nutrients = COD, TOC, Phenols Ammonia	ples Shipped VIA: Air Fr	reight Federal E	Express 🗌 Sampler	Air Bill Number:		
Nitrogen, TKN Distri	bution: White-Original Accor	to Lab; Yellow - Field	1 Copy; Pink - Lab Coordinator	_ 00		
			• • • • • • • • • • • • • • • • • • • •		12-0 12	

2

т оЯр т

https://www.fedex.com/shipping/html/en//PrintIFrame.html

8/18/2015

ALS Group USA, Corp

Sample Receipt Checklist

Client Name: BARRENG-MN		Date/Time Received: 20-Aug-15 09:00						
Work Order: 15081052		Received b	y: <u>NML</u>					
Checklist completed by Diane Shaw 2 eSignature	20-Aug-15 Date	Reviewed by:	Tom Beamish eSignature		20-Aug-15 Date			
Matrices: Soil Carrier name: FedEx				Ĭ				
Shipping container/cooler in good condition?	Yes	No 🗌	Not Present					
Custody seals intact on shipping container/cooler?	Yes	No 🗆	Not Present	\checkmark				
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	\checkmark				
Chain of custody present?	Yes	No 🗌						
Chain of custody signed when relinquished and received?	Yes	No 🗌						
Chain of custody agrees with sample labels?	Yes	No 🗌						
Samples in proper container/bottle?	Yes	No 🗌						
Sample containers intact?	Yes	No 🗌						
Sufficient sample volume for indicated test?	Yes	No 🗌						
All samples received within holding time?	Yes	No 🗌						
Container/Temp Blank temperature in compliance?	Yes	No 🗌						
Sample(s) received on ice? Temperature(s)/Thermometer(s):	Yes 1.2/1.2 c	No 🗌	SR2					
Cooler(s)/Kit(s):								
Date/Time sample(s) sent to storage:	8/20/201	5 11:10:38 AM						
Water - VOA vials have zero headspace?	Yes	No	No VOA vials subm	iitted 🔽				
Water - pH acceptable upon receipt?	Yes	No 🗌	N/A					
pH adjusted? pH adjusted by:	Yes	No 🗌	N/A					

Login Notes:

Client Contacted:	Date Contacted:	Person Contacted:
Contacted By:	Regarding:	
Comments:		
CorrectiveAction:		
		S

December 01, 2015

Mr. James E. Taraldsen Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1505276 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 11/25/15. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

> Bach Pham Client Manager II bpham@legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Barr Engineering Co.	Project:	49161286							
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276					
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15					

ANALYTICAL REPORT FOR SAMPLES

Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
FB 23 Stockpile-1		1505276-01	Soil	11/24/15 13:45	11/25/15 09:30
Shipping Container Informat	ion Temperature (°C): 1.4				
Received on ice: Yes Received on melt water: No Custody seals: Yes	Temperature blank wa Ambient: No	as present	Received Acceptab	on ice pack: No le (IH/ISO only): No	

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
FB 23 Stockpile-1 (1505276-01) Soil	Sampled: 1	1/24/15	13:45 R	Received: 11/2	5/15 9:30					
Diesel Range Organics	7.2	7.7	2.3	mg/kg dry	1	B5L0107	12/01/15	12/01/15	WI(95) DRO	J
Surrogate: Triacontane (C-30)	110			70-130 %		"	"	"	"	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
FB 23 Stockpile-1 (1505276-01) Soil	Sampled:	11/24/15	13:45 Re	eceived: 11/2	5/15 9:30					
Benzene	<0.0011	0.0037	0.0011	mg/kg dry	1	B5K2508	11/25/15	11/25/15	WI(95) GRO	
Ethylbenzene	0.019	0.016	0.0048	mg/kg dry	1	"	"	"		B-01
Toluene	<0.0056	0.018	0.0056	mg/kg dry	1	"	"	"		
Xylenes (total)	<0.019	0.065	0.019	mg/kg dry	1		"	"		
Surrogate: 4-Fluorochlorobenzene	103			80-150 %		"	"	"	"	

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435		Projec Projec Projec	xt: xt Number: xt Manager	49161286 49161286 : Mr. Jame	5 5 015 001 F s E. Taralds	ield Booste sen	er 23	Wor Dat	rk Order #: e Reported:	1505276 12/01/15
Minneapolis, MN 55435 Project Manager: Mr. James E. Taraldsen Date Reported: 12/01/15 PERCENT SOLIDS Legend Technical Services, Inc. Analyte Result RL MDL Units Dilution Batch Prepared Analyzed Method Notes										
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
FB 23 Stockpile-1 (1505276-01) Soil	Sampled: 1	1/24/15 1	3:45 Re	ceived: 11/2	25/15 9:30					
% Solids	73			%	1	B5L0112	12/01/15	12/01/15	% calculation	ı

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5L0107 - Sonication (Wisc DRO)											
Blank (B5L0107-BLK1)				F	Prepared	& Analyze	ed: 12/01/1	15			
Diesel Range Organics	< 1.7	5.6	1.7	mg/kg wet							
Surrogate: Triacontane (C-30)	18.2			mg/kg wet	16.0		114	70-130			
LCS (B5L0107-BS1)	Prepared & Analyzed: 12/01/15										
Diesel Range Organics	66.8	5.6	1.7	mg/kg wet	64.0		104	70-120			
Surrogate: Triacontane (C-30)	17.1			mg/kg wet	16.0		107	70-130			
LCS Dup (B5L0107-BSD1)				F	Prepared	& Analyze	ed: 12/01/1	15			
Diesel Range Organics	67.4	5.6	1.7	mg/kg wet	64.0		105	70-120	0.832	20	
Surrogate: Triacontane (C-30)	17.7			mg/kg wet	16.0		111	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5K2508 - EPA 5035 Soil (Purge and Trap))									
Blank (B5K2508-BLK1)					Prepared	d & Analyz	ed: 11/25/1	5			
Benzene	< 0.00082	0.0027	0.00082	mg/kg wet		-					
Ethylbenzene	0.00951	0.012	0.0035	mg/kg wet							B-02, J
Toluene	< 0.0041	0.014	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.047	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	19.9			ug/L	20.0		99.3	80-150			
LCS (B5K2508-BS1)					Prepared	d & Analyz	ed: 11/25/1	5			
Benzene	106			ug/L	100		106	80-120			
Ethylbenzene	109			ug/L	100		109	80-120			
Toluene	110			ug/L	100		110	80-120			
Xylenes (total)	338			ug/L	300		113	80-120			
Surrogate: 4-Fluorochlorobenzene	21.6			ug/L	20.0		108	80-150			
LCS Dup (B5K2508-BSD1)					Prepared	1: 11/25/15	Analyzed	: 11/26/15			
Benzene	104			ug/L	100		104	80-120	2.26	20	
Ethylbenzene	106			ug/L	100		106	80-120	3.10	20	
Toluene	108			ug/L	100		108	80-120	2.14	20	
Xylenes (total)	328			ug/L	300		109	80-120	2.74	20	
Surrogate: 4-Fluorochlorobenzene	21.6			ug/L	20.0		108	80-150			
Matrix Spike (B5K2508-MS1)	5	Source:	1505276-	01	Prepared	d & Analyz	ed: 11/25/1	5			
Benzene	106			ug/L	100	<	106	80-120			
Ethylbenzene	110			ug/L	100	0.277	110	80-120			
Toluene	111			ug/L	100	<	111	80-120			
Xylenes (total)	343			ug/L	300	0.129	114	80-120			
Surrogate: 4-Fluorochlorobenzene	21.8			ug/L	20.0		109	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5L0112 - General Preparation											
Duplicate (B5L0112-DUP1)	S	ource:	1505198-02	2	Prepared	& Analyze	ed: 12/01/1	5			
% Solids	86.0			%		86.0			0.00	20	
Duplicate (B5L0112-DUP2)	S	ource:	1505274-01		Prepared	& Analyze	ed: 12/01/1	5			
% Solids	54.0			%		51.0			5.71	20	
Duplicate (B5L0112-DUP3)	S	ource:	1505276-01		Prepared	& Analyze	ed: 12/01/1	5			
% Solids	74.0			%		73.0			1.36	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

Notes and Definitions

J Parameter was present between the MDL and RL and should be considered an estimated value

B-02 Target analyte was present in the method blank between the MDL and RL.

- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit; Equivalent to the method LOD (Limit of Detection)
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Chain of	Cust	ody		1005124							Num	ber of Ca	of Containers Preservative									. a
4700 West 77th	Street N 3543	S-MAD3		1	5051	the	7		-	ÌT	Water	; 	-	_		Suil	-	-	C0	¢_/_	_ of/	_
(952) 832-2600	2.011			1.0									ł				1		Proje Mara	a R	29	
reject Number 4916	132	8	pev	BP 11/2	5/15 K	R							1	××/				2			2	
roject Nime: FB 23	St	YYO	18-1						2	100	14	11950	4	2	4))		ores.)	1 N P P P	Proje QC (et Contact:	JET	
ample Congination State WT	Time two	i letter j	postal su	itz übbrevlation)			1		(pa)	(HNG	rical a	1.84		140)=14	No. CVE	ced 5 #	Die un	t Con				
W. Number					N	0 4	540	7	1 #1	fotals.	ibroser.	1,50		(turned)	adus:	10+011	NOTINE VI	ter O	Samp	led by	ET, P	L
ALE CONTRACT			Depth	Collection	Collection	Matris	T	pø	(HCI	Word &	Al (64	mta (1		BTBX	(Inted	tuni a	at the	Num		ĵ.		
Location	Start Depth	Stop Depth	(m.ft. or m.)	Date (mm/dd/wyw)	Time (litemn)	Witter Sold	Cenali	OC.	NOC!	Diskol	Genter	Nuote	1	CHO.	010	SVOC	HC =	Total	Labe	unone He	"pond -"	10
0.00 51-11-0-1				11/21/-	12.115	X	V							r	1		11	1	BR	X, DR	9.1.1	Na
225 Marphile-1				1041S	IS:45		1										-	f	3	hold	Somy	2
	-		-					-	ł		+		+	+	-	+		+	-		-	_
1	_	-		_	_					-		+		-			-	1		-	-	_
	-						1		d													1
			-																			
100														T				T		~	~	
134		1		1.1														t	1	da l		1
		-	-									+++	+	+		+	+	+	\mathbb{H}	(M)	K	ŀ
				1									4					-	4	1X	11/1	_
14				1	1															/	/	
1				0																		
ommon Parameter/Container	- Preser	vation I	Ley K	clingaphed By:	1 1	0	Bleen	L	12	ľ	Time	Roo	cived a	7						Date	Tin	HC .
- Volante Organics = BTEX, GRI, Semovolatile Organics = PAHs, I Full List, Hertwicke/Pesticide/PCI) TIH, 8. PCP, Dhar By	360 Fall I ins, 8270	AR R	Inquished by	Anla	en o	1 10"	6	24/1	5/	D-C Time	Reo	cheat 1	Y	/		1	T		11125	5 93	1
 General = pH, Chloride, Fluerid TDS, TS, Sulfate Nutrients = COD, TOC, Physical 	e, Alkalin Anunca	44, TSS.	s	amples Shipped		reight	Leder	al Ex	DICCHN		Sample	at Au	BUL N	umbe	r:	Be			14	2	-	

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy: Pink - Lab Coordinator

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.