

Technical Memorandum

To:Alex Smith, Enbridge EnergyFrom:Ryan Erickson and Noelle ScelinaSubject:Superior Terminal Tank 2 Historical ContaminationBRRTS #:01-16-579607Date:January 13, 2017Project:49161286Coordinates:46° 41' 02.09" N, 92° 03' 24.27" W

This document summarizes the environmental assessment and waste management assistance performed by Barr Engineering (Barr) in response to the discovery of historical soil contamination near Tank 2 at the Enbridge Energy (Enbridge) Superior Terminal in Superior, Wisconsin (Figure 1).

Background

Superior Terminal Enhancement Project (Project) excavation and pipeline replacement activities were conducted near the south side of Tank 2 in 2015. Contaminated soil with a hydrocarbon odor and dark discoloration were encountered by excavation contractors in in two locations (*Excavation 1, Excavation 2*) during this Project (Figure 1). Enbridge was notified and the nearby infrastructure was assessed for an active release. No active release was identified; therefore, Enbridge inferred that the contamination was historical. The contractors continued their excavation activities and excavated soil with evidence of hydrocarbon contamination was transported to the Terminal soil management area for characterization and off-site management.

Barr assisted Enbridge with environmental assessment and waste management tasks, as summarized below.

Given the historical nature of the observed impacts and the size and duration of the Project, Enbridge provided general notification to the Wisconsin Department of Natural Resources (WDNR) that historical impacts would be encountered during the work and that site-specific summary reports would be submitted to upon completion of Project.

Investigation Activities and Results

Barr was on-site multiple times during the Project to document site conditions. Barr documented that presence of contamination by field screening soil from the excavation for organic vapors using a photoionization detector (PID) or by identifying other potential indicators of contamination such as odor, discoloration, and sheen. Soil was classified as contaminated if PID headspace readings were greater than 10 parts per million (ppm), or other physical observations of oil impacts were observed, as outlined in the pending Wisconsin Department of Natural Resources (WDNR) Site Investigation and Response Action

Plan (SI/RAP) (2014). Field screening sample locations and results were documented on Site Investigation Field Sampling and Screening Logs that are presented in Attachment A. Excavated soil identified as contaminated was segregated and stockpiled in the contaminated SMA until off-site disposal was approved. Contaminated soil characterization and management activities are discussed below in the *Waste Management* section of this memo.

Excavation 1

Contaminated soil with a hydrocarbon odor and dark discoloration was identified in a pipeline installation trench (*Excavation 1*) by the excavation contractors and the soil in the final excavation extents was field screened and documented by Barr on February 26 of 2015. The pipeline installation trench ran between Tank 1 and Tank 2 and was approximately 30 feet across and 10 feet deep near Tank 2 (Photo 1; Figure 1). Clay soil was observed in the trench sidewalls and some gravel road fill was present at the ground surface.

The contaminated soil in the final trench excavation was located along approximately 15 feet of the northern sidewall at 2.5 to 3 feet below the ground surface (bgs) (Photo 2). Screening sample *S*-6 was collected from the contaminated soil and had a strong hydrocarbon odor, black and yellow discoloration, and a photo-ionization detector (PID) headspace readings of 13.6 parts per million (ppm) (Attachment A). The lateral and horizontal extents of the contamination were defined by screening samples *S*-1 through *S*-5; which had no identified hydrocarbon contamination.

An analytical soil sample was not collected because the excavation contractors planned to remove the minor volume of soil with residual contamination once the work in the trench completed. No residual impacts were reported to Barr after that work was completed. The excavation was then backfilled with clean fill and gravel roadbed material.

Excavation 2

Excavation 2 was a shallow infrastructure installation excavation on the southeast side of Tank 2 (Figure 1). Contaminated soil with a hydrocarbon odor and dark discoloration were identified in *Excavation 2* by contractors and the soil in the final excavation extents was field screened and documented by Barr on April 15 of 2015. The final excavation was approximately 28 feet long by 15 feet wide by 1 to 3 feet deep (Photos 3 and 4; Attachment A). Clay soil was observed in the excavation extents and some gravel roadbed material was present on the surrounding ground surface.

The soil in the excavation sidewalls and base had headspace detections of 0.0 ppm and no evidence of hydrocarbon contamination such as odor, discoloration, or sheen with the exception of soil from screening point *S*-*11* and *S*-*12*. Soil from those screening locations had a faint to moderate hydrocarbon odor and dark discoloration (Photos 5 and 6); however, headspace readings were still below 10 ppm.

Analytical sampling was not conducted because the soil headspace readings in the final excavation extents were below 10 ppm.

The excavation was backfilled with soil or fill with no identified contamination upon completion of the Project work.

Historical Release Information

Barr reviewed the Wisconsin Department of Natural Resources (WDNR) Bureau of Remediation and Redevelopment Tracking System (BRRTS) database for historical releases in the vicinity of the Tank 2 excavations. No historical release source was identified. Based on the location of the identified contaminated soil and its proximity to Tank 2 pipeline infrastructure, it is likely that the contamination is associated with unreported Tank 2 historical releases.

Waste Management

Approximately 150 tons of soil from the Tank 2 excavations were managed with the Superior Terminal Pipeline Enhancement Project contaminated soil waste stream. A total of 10,638.71 tons of contaminated soil from the overall Project was managed at both the Shamrock Landfill in Cloquet, Minnesota (waste profile# CL14-0029) and the VONCO V landfill in Duluth, Minnesota (waste profile# 16-007-I). Waste profile documentation associated with the Project is provided in Attachment C and includes: profile approval documents; landfill summary reports; and, waste characterization sample laboratory reports.

Receptor Survey

The closest groundwater monitoring wells are *MW-22B*, located approximately 875 feet to the southeast, and *MW-10*, located approximately 900 feet to the south. In 2016, analyte concentrations for PVOC and naphthalene in these wells were below method detection limits as shown in *Groundwater Monitoring Program Report, Superior WI Report* (December 2016).

Potential risk from unidentified residual impacts to direct contact or surface water receptors is limited based by the presence of clean backfill, employee awareness, required personal protective equipment, and the site location within the Tank 2 containment basin.

The closest structure is Tank 2, which has no human occupancy. No other vapor receptors were identified within 100 feet of the excavation.

Conclusion

Soil with evidence of historical hydrocarbon contamination was encountered in two excavations within the Tank 2 containment basin during Pipeline Enhancement project activity and was removed during Project work. The excavated contaminated soil was managed at an approved off-site landfill facility. Field

screening of soil in the final excavation extents identified that soil with headspace detections greater than 10 ppm had been excavated. Based on this information and employee-awareness, there is little risk of direct contact exposure to residual contamination.

Because the contaminated soil associated with this site was removed during Project excavations, Barr recommends that Enbridge request site closure under NR 708. Barr believes that no further remedial or investigative actions will be requested by the WDNR for this site at this time.

References

Barr, 2014. "Site Investigation and Response Action Plan, Enbridge Energy Superior Terminal (Facility-wide)". July 2014.

Barr, 2016. "Groundwater Monitoring Program Report, Superior WI Report". December 2016.

Attachments

Site Photos	1 through 6
Figure 1	Site Layout
Attachment A	Site Investigation Field Sampling and Screening Logs
Attachment B	Waste Management Documentation

Site Photos

Excavation 1

Photo 2

Photo 1: Pipeline trench excavation. The northern sidewall with hydrocarbon contaminated soil is in the right-center of the photo. Tank 1 is visible in the background. Photo taken facing southwest on February 26, 2015.

Photo 2: Northern sidewall with hydrocarbon impacted soil with dark discoloration (center of photo). Photo taken facing southwest on February 26, 2015.

DIRECTION 66 deg (T) 92.056759 ACCURACY 10 m DATUMI WGS84 Tank 2 excavation 2015-04-15 13:41: 04-05:00

Excavation 2

Photo 3

Photo 4

Photo 3: Infrastructure installation excavation. Photo taken facing south on April 15, 2015. **Photo 4**: Infrastructure installation excavation. Photo taken facing northeast on April 15, 2015.

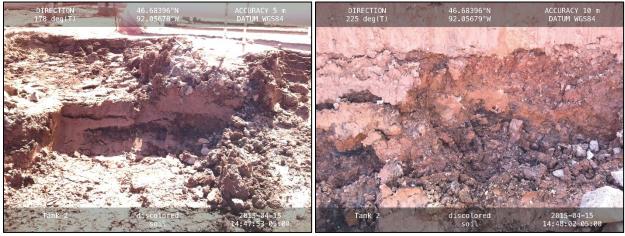
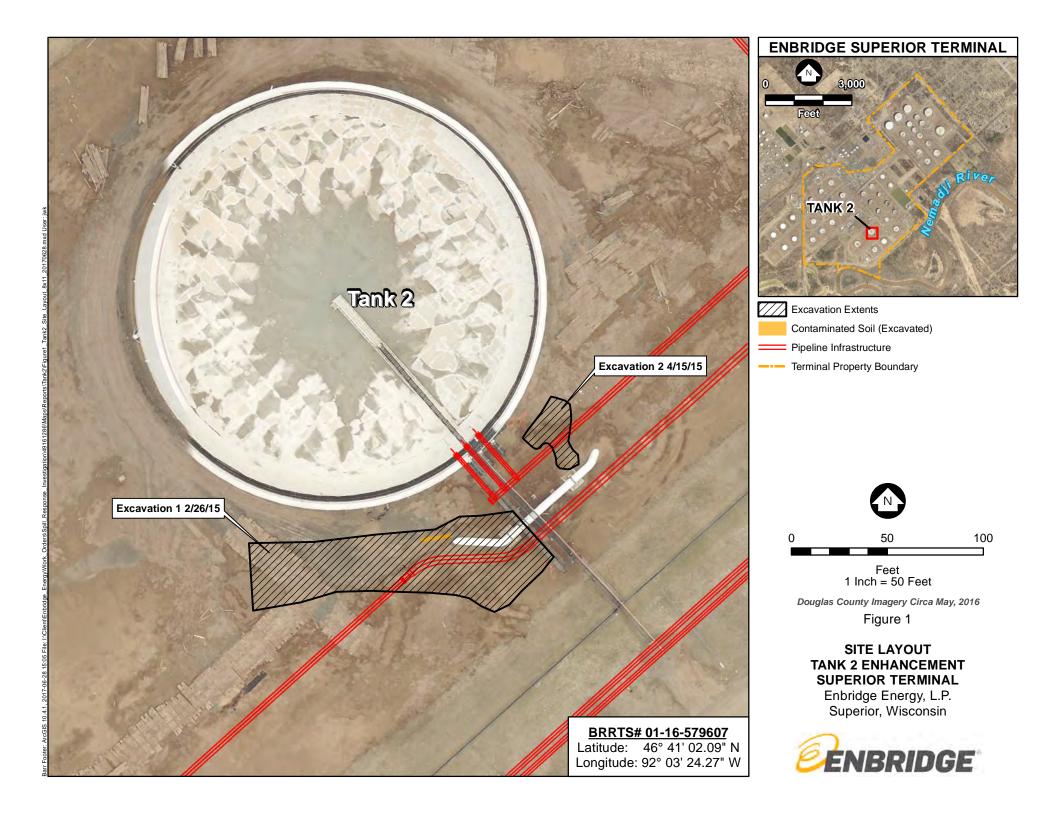



Photo 5

Photo 6

Photo 5: Sidewall with discolored soil and a hydrocarbon odor near screening points S-11 and S-12. Photo taken facing south on April 15, 2015.

Photo 6: Zoomed in view of the sidewall with discolored soil and a hydrocarbon odor near screening points S-11 and S-12. Photo taken facing southwest on April 15, 2015.

Attachment A

Site Investigation Field Sampling and Screening Logs

Equipment used: Sample Nomenclat Soil Sample Types: R	ure (Loc	ation - sai	mple typ	e - #):		 Sample ; Stoc l	Background Headspace: O-O ppm Date: 7-26-15 Sampler: NR52 BAI kpile = Stockpile Sample Calibration Time: 1100
Sample ID	Depth (FT)	Time (military)	Soil Type (USCS)	Color/ Discolor	Odor/ Sheen	Headspace Reading (ppm)	SITE SKETCH: north is up; excavation extents & depths, impacted areas, sample locations, borings, wells, structures, utilities, natural features 1 inch/grid = 400 FEET 30 FEET
Example: TK99-S-1	<u>4</u>	<u>16:30</u>	<u>CL</u>	Reddish brown	<u>Petroleum/</u> <u>Rainbow</u>	<u>275</u>	p.d. TN - Zoonal out view
5-1	35	1135	CL	Realism	Rainbow none/none	0.0	TN
5-2	4		CL	Redaissi	none/non	0.1	Conteninated TK Suit (TK) 10105
5-3	2.8					0.0	Sul 2 pipins
5-4	1.5					0-1	exceivent i
5-5	28				· 1	0.2	Rd.
5-6	2.8			BIGCK +	Odor *	13.6	
							4
							TGAK 2 (Not to scate)
							(Not to scale)
	7	3					rexequation extent
							rexcavation extent
							5-3-27-211-5-5
							342
							- 5-6
							excavation extent
	ļ						THE = Contan inuted Soil

SITE INVESTIGAT						1	-	age 1 of 1
Location: <u>Enbroo</u> Equipment used: <u>F</u>	Photo iou	Superior dization d	etector w	<u>inel. /a</u> vith 11.7 eV	n k C	CKER ration	Background Headspace: 00 ppm Date: 4,15,2015	
Sample Nomenclat	ure (Loc	ation - sa	mple typ	e - #):			Sampler: 771 S	BARR
Soil Sample Types: R	= Remov	ed Sample		wall Sample ; B	s = Bottom S			
	Depth	Time	Soil Type	Color/	Odor/	Headspace Reading	Site Sketch	
Sample ID	(FT)	(military)	(USCS)	Discolor	Sheen	(ppm)		
Example: Stockpile-1	4	<u>16:30</u>	<u>CL</u>	Reddish brown	<u>Petroleum/</u> <u>Rainbow</u>	<u>275</u>	Tank Z	
5-1	0.5	.1355	CH	Reddish bry	NN	0.0		-
5-2	1.0		SP	1	Ĺ	0.0		
5-3	1.0		CH			0.0		
5-4	1.0		CH			0.0	Cahalk Lelipes	
5-5	0.8	4	CH			0.0		
5-6	1.2	1400	CH			0.0	301-4-720 301-4-200 -5-1 -5-2 5-3	
5-7	0.7	1	CH		elle anno 19	0.0	SOI-V-(20) 301-V-200 11 5-14 5-4	
5-8	0.5		SP			0.0	3-1	Personal Control of Co
5-9	0,8	2	SP			0.0	5-12 B-4 B-3 5-6 5-5	
5-10	0.3	V	C1.1			0.0	5-12 5-6 5-5	/
5-11	0.5	1415	CH		V	0.0	5-11 5-13 5-7	
5-12	1.5)	CH	Black	Faintho	2.6	5-10	
5-13	2.0		CH	/Black	Mod No	7.0	B-5 /8	
5-14	1.8	L	CH	13hact	N/N	0.0		
B-1	1.0	1420	CH		1	0.0	5-9	
B-2	1.5	1	1			0.0		
B-3	2.5			1	The second se	0.0		
B-4	3.0			- Y	AL CONTRACTOR	0.0	. Excavition extent.	
B-5	1.0	1	1	Dk.	V	0.0	$V_{ij} = S = \frac{4}{15.2015}$	
9- 7	110			- bin		0.0		
							10 71	9
								N
							5	

Attachment B

Waste Management Documentation

VONCO V, LLC 1100 West Gary Street Duluth, MN 55808 VONCOUSA.com Office: 218.626.3830 Fax: 218.626.4874

March 4, 2016

Enbridge Energy Attention: Alex Smith 1100 Louisiana Ave Ste 3300 Houston TX 77002

RE: 16-007-I SUP Terminal Enhancement Historical Soil

Dear Alex,

Please be advised that the above described waste material is acceptable for disposal at the Vonco V Waste Management Campus Facility in Duluth, MN. The waste material is acceptable per Vonco V (SW-560) Minnesota Pollution Control Agency Industrial Solid Waste Management Plan. This profile has been approved for a total of 6000 **CY** for disposal and will expire on 04/03/2018.

The referenced waste must maintain consistency with what was originally submitted on the waste profile. Vonco V Waste Management Campus must be contacted immediately for any changes in material composition or process generation as further testing and analysis may apply.

Additionally, acceptance is subject to the following conditions:

- The material will be absent of free liquids and must meet the paint filter test.
- A signed waste manifest with the correct profile number shall accompany each load delivered to Vonco V Waste Management Campus.
- All hauling will be in compliance with the Federal and State D.O.T regulations.

Thank you for choosing Vonco V Waste Management Campus. We appreciate your business. If you have any questions or concerns please feel free to contact myself @ (651) 319-7013 or Joe Pesante @ (218) 730-6361.

Have a great day,

Nettie Kuhn Vonco V, LLC Industrial Waste Manager

July 16, 2014

Alex Smith Enbridge Pipelines Limited Partnership, LLC Accounts Payable 1100 Louisiana Ave, Ste 3300 Houston, TX 77002

RE: Cl14-0029 Crude contaminated soil-Pipeline Enhancement Project

Dear Mr. Smith,

This agreement will confirm the price and length of service for disposal and /or transportation of your non-hazardous industrial material at our facility. This agreement is for the term of the Waste Approval granted by Shamrock Landfill and is for all services ordered and performance initiated within such period and does include the disposal surcharge fees which you are obligated to pay as of the date of this agreement. Shamrock Landfill may incur additional costs including but not limited to increases in state and local taxes. Shamrock Landfill may pass these costs on to the customer only after notification to the Customer. This agreement grants Shamrock Landfill the exclusive right to dispose of the referenced waste for the term of this agreement. This agreement shall automatically renew thereafter for an additional term of 24 months "Renewal Term" unless either party gives the other party written notification of termination at least 90 days prior to the termination of the then-existing term. Shamrock Landfill will notify the customer prior to the expiration of the agreement of any rate changes prior to the start of the Renewal Term

Payment and terms are net thirty (30) days. Interest will be charged at a rate of 1 1/2% per month (18% annually) on any unpaid balance 30 days after the date of the invoice. In the event Customer terminates this Agreement prior to its expiration other than as a result of a breach by Shamrock Landfill or Shamrock Landfill terminates this agreement for Customer's breach (including nonpayment) Customer agrees to pay to Shamrock Landfill as liquidated damages a sum calculated as follows: (1) if the remaining term under this agreement is six or more months Customer shall pay its average monthly charges multiplied by six: or (2) if the remaining term under this agreement is less than six months Customer shall pay its average monthly charge multiplied by the number of months remaining in the term. Customer expressly acknowledges that in the event of an unauthorized termination of this agreement the anticipated loss to Shamrock Landfill in such event is estimated to be the amount set forth in the foregoing liquidated damages provision and such estimated value is reasonable and is not imposed as a penalty.

These prices are based on an approved waste stream composition. In the event that a non-conforming waste is received, you will be notified of additional charges, when applicable.

To accept this agreement, please sign one copy and return it to our St. Paul, MN office at Shamrock Landfill, 251 Starkey St., St. Paul, MN 55107 or Via Fax at 651-223-8197 or email to jonp@shamrocklandfill.com.

Shamrock Landfill Jon Penheiter

Customer ACCEPTED BY: (name, position) Alex Smith Encourse La (Analy of

DATE: 15 July 2014 11/2016 WASTE APPROVAL Period: 7/17/2014 to 7/17/2016

P.O. Box 338 · Esko, MN 55733-0338 Main: 218.878.0112 . Fax: 218.879.2120

Bill To Customer

Enbridge Pipelines Limited Partnership, LLC Accounts Payable 1100 Louisiana Ave, Ste 3300 Houston, TX 77002

Service For Generator

Enbridge Pipelines Limited Partnership, LLC 1320 Grand Ave Pipeline Enhancement Project Superior, W1 54880

Disposal

Waste Description: Crude contaminated soil-Pipeline Enhancement Project

Estimated Volume: 50 YARDS / ONE TIME ONLY

Disposal Method: Secure Non-Hazardous Landfill

Treatment Method: None Expected For Conforming Waste

Pricing

Disposal

\$16.00 Per Ton

Crude contaminated soil-Pipeline

Notification of Waste Acceptance

PAGE 1 of 2 7/16/2014

CUSTOMER INFORMATION

EPA ID#: WID981092133 Enbridge Pipelines Limited Partnership, Enbridge Superior Terminal

1320 Grand Ave Pipeline Enhancement Project Superior, WI 54880 Contact: Alex Smith Phone: (715) 398-4795

INVOICE INFORMATION

Bill #: 2133 Enbridge Pipelines Limited Partnership, Abcounts Payable

1100 Louisiana Ave, Ste 3300 Houston, TX 77002 Contact: Alex Smith Phone: (715) 398-4795

Profile Sheet #: Waste Stream #: C114-0029 Waste Name: Crude contaminated soil-Pipeline Enhancement Pr

Thank you for selecting SHAMROCK LANDFILL for your waste management requirements. Your waste stream has been reviewed and is acceptable for management at our facility based on the information provided in the profile sheet number listed above and conditions below. Our facility has the necessary permits to allow the storage, treatment, or disposal of this waste. The above referenced acceptance number should be listed on all shipping documents and correspondence. Please retain these documents for your records and future reference.

To schedule a shipment, or should you have any questions, please contact the facility at (218) 878-0112.

ACCEPTANCE INFORMATION

The waste stream identified by the reference above is acceptable for disposal. The anticipated frequency of shipment is 50 YARDS / ONE TIME ONLY

This waste is acceptable for delivery beginning on 7/17/2014 thru 7/17/2016 at which time the material will need to be reanalyzed and recertified.

PCB Statement: The Minnesota Pollution Control Agency encourages generators of non-hazardous PCB waste to voluntarily manage the waste as hazardous waste or to seek an alternative to land disposal such as incineration

Spill Reporting Reminder: Proper County and MPCA spill reporting procedures must be followed.

Empty Container Statement: Each shipment containing empty containers must be accompanied with a completed 'EMPTY CONTAINER CERTIFICATION FORM'.

Free Liquid Statement: Free liquids will not be placed in cells at Shamrock Landfill. Free liquids must be solidified either prior to shipment to Shamrock Landfill or at Shamrock Landfill.

Shipping Requirements A NON-HAZARDOUS certificate is required to be on file, certifying the waste is non-hazardous as specified per 40 CFR 261.4. The shipment must be accompanied with an Shamrock Landfill manifest.

PAGE 2 of 2 7/16/2014

WASTE STREAM ANALYSIS INFORMATION

Waste Name:Crude contaminated soil-Pipeline Enhancement ProjePhysical State:SolidProcess Producing Waste:Pipeline Terminal Activities

PRE-ACCEPTANCE SAMPLE RESULTS

Color:		Physical State:
Dust Present:	0	Free Liquids: 0
Paint Filter Test:	0	Odor:
Flash Point Range:		Density:
Radioactive?:	0	Water Reactivity: 0
pH Range:		React to Acid: 0
React to Base:	0	% Moisture:
OVM Sniff:		Sulfide:
Oxidizers:	0	Cyanide:
Reacts with Air:	0	

This analysis is solely for use by Shamrock Landfill employees for the purpose of determining waste acceptability. No other claims are made or implied.

COMMENTS

AUTHORIZATION

Approval:

Date:

Waste Profile Sheet

P.O. Number	Customer Code		SKB Represe	ntative		UL		
I. Generator Informatio	on							
Generator Name: Enbridge Pipe Partnership, LLC		Generato	Generator EPA ID Number					
Generator Location: Enbridge Superior Terminal - Pipeline	County: Douglas	Generato	or Contact: Ale	ex Smith				
Enhancement Project		Phone:	715-398-47	-398-4795 Fax: 832-325-5511				
Generator Mailing Address (if differen Superior, WI 54880	nt: 1320 Grand Ave,	Generato	or Email Addres	ss: alex.smith@e	enbridge.	com		
Bill To Name & Address: Enbridge Energy, 1100 Louisiana Ave, S		Billing Co	ontact: Alex	Smith				
3300, Houston, TX 77002	2	Phone:	715-398-47	95	Fax: 83	2-325-551	1	
Invoice Contact:		Billing Er	mail Address:	alex.smith@enb	ridge.con	า		
II. Waste Generation In	formation							
Waste Name: Crude contaminated soil - Pipeline Enhancement Estimated rate of waste generation: 50 Project Lbs. tons Cy						⊠ one □ yea	e time arly	
Generator Facility Operations and/or	Site History: Enbridge Pi	peline Teri	minal					
Describe the generating process or s			or waste: Pip	eline Terminal Acti	ivities			
III. Waste Composition	and Constituents (list all k	nown)					Actual Rang %	je ppm
Crude contaminated soil							100	
Solid Liquid [☐ Yes ⊠ No □		3-12.4 2 >	point: 140°F 140°F to < 200°F 200°F	Colo Brov		Odor (des petroleu odor	
V. Waste Classification								
Waste stream properties (answe		~~		Does this waste Is this waste leth			🗌 Yes	🛛 No
Does this waste stream contain a hazardous waste, either in pure		as \Box Y	′es 🛛 No	7045.0131 Subp		n. Kules	☐ Yes	🛛 No
treatment residue?		<u> </u>						
Does this waste stream contain I	PCB material	🗆 Y	′es 🛛 No	Is this waste recy	clable?		🗌 Yes	🛛 No
If yes, concentration:	ppm	_		Is this waste exp				⊠ No
Does this waste stream contain f			′es ⊠ No ′es ⊠ No	Is this waste infe Is this putrescible			∐ Yes ☐ Yes	⊠ No ⊠ No
Does this waste contain asbesto Does this waste contain oxidizers			′es ⊠ No ′es ⊠ No	Is this waste den		hris?		No
Does this waste contain oxidizer		1000 A		Is this waste sew			☐ Yes	No
Please attach any available info	ormation or analytical test	results that	t have previou	usly been performe	d on this w	aste that su		these
	nations. Include MSDS's a	nd any info	ormation from	other agencies (i.e	., MPCA, l	JSEPA)		
VI. Shipping Informatio Proper DOT Shipping Name (per CF		•						
Reportable Quantity	DOT Hazard Class	UN/NA	Number		Pac	king Group		
Method of packaging: 🗌 drums (si		Metho Ro	d of shipment	nd dump 🔲 Rail	☐ Othe	r (Specify)		
Bulk Solids Doxes (siz								
VII. Certification of Non Hazardous Waste & Approval Conditions I hereby certify and warrant, on behalf of the generator and myself that, to the best of my knowledge and belief, the information contained herein is accurate, and true and that the waste is nonhazardous as defined in Title 42, Unites States Code Section 6903, Minnesota Statute Section 116.06, Subdivision 13, and/or any rules adopted by the Minnesota Pollution Control Agency under Minnesota Statute Section 116.07. I understand that any approval is no longer valid if there are any changes in the process generating the waste or there have been changes in the composition of the waste. Therefore, if the composition of the waste stream changes or potentially changes, I or someone representing the generator, will immediately notify SKB Environmental. I, on behalf of the generator, hereby agree to fully indemnify SKB Environmental for any damages and/or costs incurred as a result of this certification being inaccurate or untrue.								
all te	Alex Sm	ith		Environme	ntal Analy	<u>/st</u>	16) 14	2014
Signature	Printed N			Title			Date	- /

 REPORT NAME:
 Tons Each Load By WSID

 DESCRIPTION:
 Tonnage for EACH LOAD, grouped by customer

 DATE RANGE:
 01/01/2014 to 12/06/2016

 PRINTED ON (DATE):
 Tuesday, December 06, 2016

ENB14

Enbridge Pipelines Limited Partnership

1320 Grand Ave Superior

perior WI 54880

LOAD #	MANIFEST	ARRIVED	WASTE STREAM	WASTE NAME	CELL	SPOT.	LIFT	TONS
22630 (A)	52059	8/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.29
22636 (A)	52060	8/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.20
22640 (A)	52061	8/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.25
22643 (A)	52062	8/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20,44
22659 (A)	52089	8/19/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.34
22666 (A)	52087	8/19/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	16.99
22668 (A)	52088	8/19/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.45
22792 (A)	52085-A	8/22/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	9.87
23267 (A)	52006	9/8/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	17.19
23278 (A)	52028	9/8/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.87
23650 (A)	52029	9/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	17.92
24039 (A)	52041	9/29/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	23.52
24041 (A)	52040	9/29/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.94
24051 (A)	52039	9/29/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.30
24361 (A)	52463	10/6/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.38
24366 (A)	52464	10/6/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.83
24429 (A)	52471	10/8/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.55
24435 (A)	52472	10/8/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.79
24506 (A)	52473	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	17.26
24507 (A)	52474	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	16.24
24517 (A)	52478	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.07
24519 (A)	52477	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.67
24526 (A)	52479	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.06
24527 (A)	52480	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.87
24537 (A)	52475	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.88
24538 (A)	52476	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.62
24543 (A)	52481	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.09
24544 (A)	52482	10/10/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	16.32
24575 (A)	52483	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	16.64
24580 (A)	52484	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	17.02
24588 (A)	52488	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	2 1.77
24590 (A)	52487	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	P44	1190	20.80
24594 (A)	52486	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.80
24596 (A)	52485	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.38
24604 (A)	52489	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.52
24605 (A)	52490	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.99
24613 (A)	52491	10/13/2014	CL14-0029	Crude Contaminated Soli-Pipeline E	2A	P44		
24614 (A)	52492	10/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	P44 P44	1190	25.94
24629 (A)	52493	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	P44 P44	1190	21.54 21.74
24639 (A)	52496	10/14/2014	CL14-0029	-			1190	
24641 (A)	52495	10/14/2014		Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.60
24656 (A)	52498	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.35
24658 (A)	52499	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.33
24675 (A)	52497		CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	18.60
24075 (A) 24676 (A)	52497 52494	10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.09
24678 (A) 24698 (A)		10/14/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.16
	52505	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.30
24699 (A)	52506	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	19.95
24708 (A)	52501	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.46
24715 (A)	52502	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.22
24732 (A)	52504	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.56

24739 (A)	52500	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.24
24749 (A)	52503	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22.85
24751 (A)	50115	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.84
24762 (A)	50114	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	22,06
24763 (A)	50113	10/15/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.39
24785 (A)	50116	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	23.71
24786 (A)	50117	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	21.36
24798 (A)	50119	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.86
24800 (A)	50118	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	P44	1190	22.11
24822 (A)	50120	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1	P44	1190	19.27
24823 (A)	50121	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	P44	1190	20.02
24833 (A)	50123	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T44	1190	20.54
24836 (A)	50122	10/16/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	T44	1190	21.21
24846 (A)	50124	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	T44	1190	22.99
24863 (A)	50127	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T44	1190	19.97
24873 (A)	50128	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T44	1190	21.95
24874 (A)	50129	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T44	1190	19.31
24889 (A)	50130	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	18.81
24892 (A)	50131	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	20.54
24912 (A)	50132	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	19.37
24914 (A)	50133	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	18.44
24924 (A)	50134	10/17/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	Z33	1170	20.41
24929 (A)	50135	10/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	T43	1190	19.82
24944 (A)	50136	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	13.62
24946 (A)	50137	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	21.94
24952 (A)	50138	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	14.43
24953 (A)	50139	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	22.74
24962 (A)	50140	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	14.86
24965 (A)	50141	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	21.91
24979 (A)	50142	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	14.51
24984 (A)	50143	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	23.69
24994 (A)	50144	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	16.26
24999 (A)	50145	10/20/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	24.02
25017 (A)	50146	10/21/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	T43	1190	14.45
25685 (A)	50147	11/6/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	15.07
25702 (A)	50148	11/6/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y45	1190	18.79
25714 (A)	50149	11/6/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y41	1190	13.95
25731 (A)	50150	11/6/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y45	1190	17.00
25744 (A)	50151	11/6/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y45	1190	15.50
25773 (A)	50152	11/7/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	14.57
25780 (A)	50155	11/7/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	13.41
25785 (A)	50153	11/7/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	14.53
25793 (A)	50154	11/7/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	17.12
25899 (A)	50163	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	21.71
25907 (A)	50162	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	18.54
25916 (A)	50161	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	19.09
25917 (A)	50160	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	19.44
25920 (A)	50157	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	19.98
25923 (A)	50159	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	20.43
25929 (A)	007705	11/13/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Y43	1190	14.76
29123 (A)	51006	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	11.60
29124 (A)	51007	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	11.46
29126 (A)	50950	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	15.25
29129 (A)	50911	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	16.58
29130 (A)	51003	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	15.13
29131 (A)	51004	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	15.39
29136 (A)	51005	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	14.95
29139 (A)	50910	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	19.69
29140 (A)	51002	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	16.59
29141 (A)	50909	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	16.65
29142 (A)	50951	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	15.48
				•				

29146 (A)	50999	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	14,75
29147 (A)	51001	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	16.14
29148 (A)	51000	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	13.96
29149 (A)	50998	3/4/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	13.33
29164 (A)	50996	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	18.51
29165 (A)	50997	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	14.06
29168 (A)	50995	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	18.07
29169 (A)	50994	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	12.83
29173 (A)	50992	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	18.50
29175 (A)	50993	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	13.71
29179 (A)	50912	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.54
29180 (A)	50913	3/5/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	11.13
29188 (A)	50952	3/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	20.18
29189 (A)	50953	3/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	
29193 (A)	50990	3/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E				11.49
29194 (A)	50991	3/6/2015	CL14-0029 CL14-0029	•	1A	R36	1190	19.03
29200 (A)	50989	3/6/2015		Crude Contaminated Soil-Pipeline E	1A	R36	1190	11.72
29200 (A) 29201 (A)	50988		CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.76
29221 (A)	50979	3/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	12.16
29221 (A) 29222 (A)	50979 50981	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.51
		3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	16.18
29223 (A)	50980	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	18.56
29224 (A)	50982	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.43
29226 (A)	50978	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17,15
29227 (A)	50977	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	16.12
29228 (A)	50976	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.13
29229 (A)	50975	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	16.46
29230 (A)	50974	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	16.78
29231 (A)	50973	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	15.52
29232 (A)	50972	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	16.42
29233 (A)	50971	3/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.02
29248 (A)	50968	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	15.95
29249 (A)	50965	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	19.66
29255 (A)	50954	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	16.41
29256 (A)	50967	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	16.39
29257 (A)	50964	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	18.73
29263 (A)	50966	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	R36	1190	18.09
29265 (A)	50916	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	17.08
29266 (A)	50917	3/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	R36	1190	18.50
29274 (A)	50955	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	16.58
29276 (A)	50962	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	13.03
29279 (A)	50961	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	13.93
29281 (A)	50960	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	17.22
29282 (A)	50963	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	15.55
29288 (A)	50959	3/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	15.43
29326 (A)	50920	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	17.46
29327 (A)	50919	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	13.58
29328 (A)	50918	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	21.64
29334 (A)	50924	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	14.10
29335 (A)	50922	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	16.20
29337 (A)	50921	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	17.77
29338 (A)	50923	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	25.08
29342 (A)	51013	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	20.81
29345 (A)	51010	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	16.15
29346 (A)	51009	3/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	15.49
29347 (A)	51011	3/13/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A 1A	X35	1190	19.60
29395 (A)	51022	3/13/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E		X35	1190	19.60
29396 (A)	51021	3/17/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1 A 1 A	X35	1190	14.60
29397 (A)	50958	3/17/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	16.97
29398 (A)	50957	3/17/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A 1A	X35	1190	15.29
29403 (A)	51012	3/17/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E		X35		16.86
29404 (A)	51008	3/17/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A 1A	X35 X35	1190 1190	16.05
	01000	5/17/2015	0114-0028	Grade Contaminated Soli-Fipelifie E		730	1130	10.00

29405 (A)	51023	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	13.65
29407 (A)	51024	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	19.89
29412 (A)	51017	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	20.30
29413 (A)	51018	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	16.00
29414 (A)	51019	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	14.77
29415 (A)	51020	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	12.05
29416 (A)	51028	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	14.91
29417 (A)	51030	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	X35	1190	15.19
29418 (A)	51026	3/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	14.07
29441 (A)	51046	3/19/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	22.96
29442 (A)	51031	3/19/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	15.30
29444 (A)	51014	3/19/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	22.52
29446 (A)	51034	3/19/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	14.94
29451 (A)	51016	3/19/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	18.84
29453 (A)	51033	3/19/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	19.63
29464 (A)	51040	3/20/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	18.54
29465 (A)	51036	3/20/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	22.33
29472 (A)	51035	3/20/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	X35	1190	18.04
29615 (A)	51050	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	13.76
29616 (A)	51059	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.21
29620 (A)	51051	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.45
29625 (A)	51058	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.91
29628 (A)	51052	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.26
29630 (A)	51054	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.06
29632 (A)	51053	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	15.93
29633 (A)	51055	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17.29
29635 (A)	51057	3/31/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	16.03
29664 (A)	51060	4/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.10
29665 (A)	51061	4/1/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36		
29666 (A)	51063	4/1/2015	CL14-0029 CL14-0029				1190	15.11
29667 (A)	51062	4/1/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E Crude Contaminated Soil-Pipeline E	1A 1 A	S36 S36	1190	17.13
29685 (A)	51064	4/2/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	19.70
29686 (A)	51080	4/2/2015	CL14-0029 CL14-0029	•	1A		1190	14.50
29695 (A)	51081	4/2/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36 S36	1190	18.13
29698 (A)	51082	4/2/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E Crude Contaminated Soil-Pipeline E	1A		1190	15.55
29699 (A)	51083	4/2/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36 S36	1190	17.45
29730 (A)	51065	4/2/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	12.24
29734 (A)	51038	4/6/2015	CL14-0029 CL14-0029		1A		1190	16.02
29738 (A)	51067	4/6/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E Crude Contaminated Soil-Pipeline E	1A	S36 S36	1190	15.94
29741 (A)	51066	4/6/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A		1190	15.73
29745 (A)	51029			•	1A	S36	1190	16.76
29770 (A)	7719	4/6/2015 4/8/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.09
29770 (A) 29771 (A)	51079			Crude Contaminated Soil-Pipeline E Crude Contaminated Soil-Pipeline E	1A	\$36	1190	17.04
29773 (A)	7716	4/8/2015 4/8/2015	CL14-0029		1A 1 A	S36	1190	21.69
29774 (A)	7718	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.05
29777 (A)	51044	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.15
29778 (A)		4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.50
29779 (A)	7717 7742	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.07
• •		4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.09
29780 (A) 29784 (A)	51045	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	\$36	1190	17.43
	51042	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.05
29785 (A)	7743	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.79
29786 (A) 29787 (A)	7746 51041	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	23.11
29787 (A) 29792 (A)	51041 51043	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A 1 A	S36	1190 1190	14.68
29792 (A) 29793 (A)	51043 7747	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	23.11
29793 (A)	7747	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.76
29794 (A)	7745	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.36
29795 (A)	7740	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.78
29800 (A)	7734	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.18
29801 (A)	7741	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.56
29802 (A)	7737	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.47
29803 (A)	7744	4/8/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	22,02

29809 (A)	7726	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17.69
29812 (A)	7724	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.51
29813 (A)	7723	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	20.91
29814 (A)	7729	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	19.25
29815 (A)	7730	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	18.17
29816 (A)	7727	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17.33
29817 (A)	7722	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.61
29819 (A)	7725	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	19.91
29821 (A)	7720	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21,77
29822 (A)	7728	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	19.22
29823 (A)	7733	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	17.28
29826 (A)	7736	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.88
29827 (A)	7721	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.34
29828 (A)	160284	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	20.49
29829 (A)	160286	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.36
29832 (A)	7738	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	15.08
29833 (A)	7732	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	13.03
29836 (A)	7739	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	14.43
29837 (A)	160288	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17.43
29838 (A)	160285	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.49
29839 (A)	160287	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	23.85
29840 (A)	7735	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.09
29841 (A)	7731	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.05
29844 (A)	160289	4/9/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17.06
29853 (A)	160268	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	24.07
29854 (A)	160269	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	23.75
29855 (A) 29856 (A)	160295	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	18,20
29858 (A)	160299	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	20.45
29859 (A)	160296 160298	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.56
29861 (A)	160298	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17.33
29863 (A)	160270	4/10/2015 4/10/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	21.42
29864 (A)	160301	4/10/2015		Crude Contaminated Soil-Pipeline E	1A	S36	1190	21,17
29865 (A)	160294	4/10/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	12.86
29866 (A)	160297	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E Crude Contaminated Soil-Pipeline E	1A	S36	1190	13.62
29867 (A)	160300	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.53
29869 (A)	160272	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A 1A	S36 S36	1190	14.56
29870 (A)	160273	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190 1190	20.39
29874 (A)	160277	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	21.03 20.09
29875 (A)	160276	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.44
29876 (A)	160279	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.22
29877 (A)	160281	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.96
29881 (A)	160282	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	19.58
29882 (A)	160274	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	21.94
29883 (A)	160280	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.50
29884 (A)	160278	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.49
29885 (A)	160275	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	16.84
29888 (A)	160290	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.49
29892 (A)	160292	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	17,95
29894 (A)	160293	4/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.33
29931 (A)	160060	4/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	12.70
29933 (A)	160057	4/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	14.6 1
29939 (A) 20040 (A)	160061	4/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	18.14
29940 (A) 29985 (A)	160056	4/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	16.75
29985 (A) 29986 (A)	160058	4/16/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1A	S36	1190	14.44
29986 (A) 31090 (A)	160059	4/16/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	1 A	S36	1190	21.52
31090 (A) 31091 (A)	160106 160109		CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.13
31091 (A) 31093 (A)	160109		CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.39
31093 (A) 31094 (A)	160110		CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16.46
31098 (A)	160114		CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.47
	100114	0/20/2013	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	14.89

31099 (A)	160112	6/29/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.20
31100 (A)	160108	6/29/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	19.33
31122 (A)	160113	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	9.87
31123 (A)	160121	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	9.74
31127 (A)	160107	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	14.44
31129 (A)	160120	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.62
31136 (A)	160105	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	12.76
31138 (A)	160118	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.10
31143 (A)	160119	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	R42	1190	13.76
31144 (A)	160115	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	R42		
31149 (A)	160117	7/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A		1190	11.98
31195 (A)	160305	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E		R42	1190	13.96
31196 (A)	160302	7/6/2015	CL14-0029	Crude Contaminated Soll-Pipeline E	2A	R42	1190	16.22
31199 (A)	160126	7/6/2015	CL14-0029		2A	R42	1190	15.58
31203 (A)	160304	7/6/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	10.69
31204 (A)	160303			Crude Contaminated Soil-Pipeline E	2A	R42	1190	12.12
31205 (A)	160306	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	12.39
31203 (A) 31208 (A)		7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	10.87
	160127	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.70
31209 (A)	160128	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.08
31210 (A)	160267	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	11.64
31213 (A)	160129	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.96
31214 (A)	160122	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.20
31217 (A)	160125	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	1 1.76
31218 (A)	160124	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.97
31219 (A)	160123	7/6/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	14.30
31223 (A)	160116	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	10.93
31224 (A)	160138	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16.45
31230 (A)	160139	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	12.22
31231 (A)	160137	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.21
31234 (A)	160145	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.41
31237 (A)	160140	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.97
31238 (A)	160136	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.13
31241 (A)	160143	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	17.78
31242 (A)	1601 41	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	12.28
31243 (A)	160135	7/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.38
31500 (A)	160316	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	17.92
31501 (A)	160321	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	19.21
31502 (A)	160323	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16.83
31504 (A)	160314	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	18.07
31506 (A)	160320	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	19.60
31507 (A)	160326	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16.36
31510 (A)	160315	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	19.53
31513 (A)	160319	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	20.22
31514 (A)	160325	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16.84
31517 (A)	160313	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	18.08
31518 (A)	160317	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	19.36
31520 (A)	160324	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	12.10
31521 (A)	160318	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	19.42
31522 (A)	160312	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	17.58
31524 (A)	160322	7/23/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	16.78
31529 (A)	160346	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	18.61
31530 (A)	160340	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	17.21
31531 (A)	160338	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.40
31534 (A)	160308	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	12.50
31535 (A)	160311	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	R42	1190	
31538 (A)	160345	7/24/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	R42	1190	11.12 11.52
31541 (A)	160337	7/24/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E		R42 R42		
31543 (A)	160328	7/24/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	2A 24		1190	12.02
31544 (A)	160328	7/24/2015		•	2A 2A	R42	1190	15.32
31547 (A)	160329	7/24/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E Crude Contaminated Soil-Pipeline E	2A 24	R42	1190	13.36 15.17
31549 (A)	160336	7/24/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	2A 24	R42	1190	15.17
2.44 V.V		1124/2010	JL14-0023		2A	R42	1190	14.30

31551 (A)	160330	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.30
31553 (A)	160327	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.84
31555 (A)	160341	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.15
31556 (A)	160335	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.11
31557 (A)	160331	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	14.63
31559 (A)	160310	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	14.45
31563 (A)	160334	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	15.20
31564 (A)	160342	7/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	R42	1190	13.87
31729 (A)	160010	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.58
31730 (A)	160009	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.46
31731 (A)	160309	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.21
31732 (A)	160332	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10.78
31736 (A)	160003	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.60
31738 (A)	160001	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	12.84
31739 (A)	160350	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.74
31740 (A)	160348	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10.83
31744 (A)	160004	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.89
31745 (A)	160002	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.76
31746 (A)	160349	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.74
31748 (A)	160347	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.10
31753 (A)	160014	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	13.90
31754 (A)	160013	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.01
31757 (A)	160011	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.33
31758 (A)	160012	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.92
31759 (A)	160007	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	9.91
31761 (A)	160008	8/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	10.32
31825 (A)	160023	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2 A	Z4 4	1210	13.00
31827 (A)	160018	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.56
31829 (A)	160029	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	17.27
31830 (A)	160019	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.61
31834 (A)	160024	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.28
31835 (A)	160025	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.27
31836 (A)	160022	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	15.40
31837 (A)	160026	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	15.15
31840 (A)	160017	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.05
31841 (A)	160016	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.63
31843 (A)	160015	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.22
31844 (A) 31840 (A)	160027	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.55
31849 (A) 31850 (A)	160030 160021	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.30
31857 (A)	160021	8/7/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.81
31858 (A)	160020	8/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.80
31863 (A)	160033	8/10/2015 8/10/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	8.34
31883 (A)	160032	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.25
31884 (A)	160028	8/11/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E Crude Contaminated Soil-Pipeline E	2A	Z44 Z44	1210	13.02
31890 (A)	160172	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44 Z44	1210	12.93
31892 (A)	160164	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	Z44 Z44	1210 1210	13.51 14.22
31894 (A)	160171	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	Z44 Z44	1210	14.22
31897 (A)	160036	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.40
31899 (A)	160165	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.19
31900 (A)	160035	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.59
31902 (A)	160034	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	Z44 Z44	1210	13.13
31903 (A)	160166	8/11/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.24
31918 (A)	160169	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.94
31919 (A)	160307	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.32
31920 (A)	160199	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.72
31935 (A)	160168	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.47
31936 (A)	160167	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.93
31937 (A)	160198	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10.99
31938 (A)	160197	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.41
31939 (A)	160044		CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.59
				-				

31940 (A)	160040	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.24
31949 (A)	160041	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.97
31950 (A)	160196	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.50
31951 (A)	160043	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.48
31956 (A)	160202	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.93
31957 (A)	160195	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.90
31958 (A)	160042	8/12/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.70
31963 (A)	160191	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.61
31965 (A)	160200	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.41
31971 (A)	160194	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.32
31976 (A)	160201	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	16.44
31977 (A)	160190	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	17.38
31980 (A)	160218	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.15
31986 (A)	160193	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.67
31987 (A)	160188	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.39
31989 (A)	160217	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.96
31995 (A)	160189	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.83
31997 (A)	160216	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.17
32003 (A)	160192	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	16.28
32004 (A)	160214	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.29
32005 (A)	160215	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.34
32009 (A)	160209	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.85
32010 (A)	160213	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z 44	1210	14.74
32012 (A)	160245	8/13/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.22
32020 (A)	160208	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.82
32021 (A)	160210	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.89
32022 (A)	160244	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.45
32028 (A)	160236	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.37
32030 (A)	160211	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.10
32031 (A)	160221	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.06
32037 (A)	160235	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.68
32038 (A)	160212	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.10
32039 (A)	160229	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	9.74
32040 (A)	160261	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.39
32044 (A)	160223	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.33
32045 (A)	160222	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.04
32046 (A)	160234	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.75
32047 (A)	160219	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	16.21
32049 (A) 32050 (A)	160228 160242	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.79
32050 (A) 32054 (A)	160242	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.48
32054 (A) 32055 (A)	160224	8/14/2015 8/14/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44 Z44	1210	14.80
32055 (A) 32056 (A)	160233	8/14/2015	CL14-0029 CL14-0029	Crude Contaminated Soil-Pipeline E Crude Contaminated Soil-Pipeline E	2A 2A	Z44 Z44	1210 1210	15.66 17.37
32058 (A)	160240	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A	Z44 Z44	1210	16.94
32059 (A)	160227	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.87
32061 (A)	160243	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.06
32062 (A)	160225	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	18.16
32063 (A)	160232	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	18.51
32064 (A)	160231	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.89
32066 (A)	160241	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.92
32068 (A)	160262	8/14/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.62
32085 (A)	160226	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.87
32086 (A)	160351	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.64
32088 (A)	160263	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	16.26
32094 (A)	160220	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12,47
32095 (A)	160264	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.25
32096 (A)	160361	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.62
32100 (A)	160260	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.60
32101 (A)	160265	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.81
32102 (A)	160360	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z 44	1210	14.73
32104 (A)	160359	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.90
				-				

				Total # of Loads: 499		То	tal Tons:	8,174.74
32430 (A)	160456	9/3/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.76
32371 (A)	160404	9/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.30
32368 (A)	160402	9/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	17.40
32365 (A)	160403	9/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	12.54
32363 (A)	160368	9/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	16.57
32362 (A)	160405	9/1/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.87
32248 (A)	160370	8/25/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10.95
32232 (A)	160382	8/25/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	15.03
32230 (A)	160367	8/25/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.61
32227 (A)	160381	8/25/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z4 4	1210	15.91
32226 (A)	160376	8/25/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	14.46
32224 (A)	160377	8/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10.42
32223 (A)	160375	8/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	8.45
32219 (A)	160380	8/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	10.32
32218 (A)	160352	8/24/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	11.37
32129 (A)	160163	8/18/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1210	13.96
32126 (A)	160369	8/18/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44 Z44	1210	15.51
32114 (A)	160357	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44 Z44	1210	15.51
32113 (A)	160371	8/17/2015	CL14-0029	Crude Contaminated Soll-Pipeline E	2A	Z44 Z44	1210	16.66 13.41
32110 (A)	160358	8/17/2015	CL14-0029	Crude Contaminated Soll-Pipeline E	2A 2A	Z44 Z44	1210 1210	13.95
32106 (A)	160266	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A 2A		1210	13.66
32105 (A)	160259	8/17/2015	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	Z44	1010	40.00

ENBS8 Enbridge Pipelines Limited Partnership,

1320 Grand Ave

Superior WI 54880

				Total # of Loada 2			1 7	27 41
22263 (A)	52057	8/6/2014	CI14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	20.41
21689 (A)	52054	7/18/2014	CL14-0029	Crude Contaminated Soil-Pipeline E	2A	P44	1190	17.00
LOAD #	MANIFEST	ARRIVED	WASTE STREAM	WASTE NAME	CELL	SPOT.	LIFT	TONS

Total # of Loads: 2

Total Tons: 37.41

Grand Total (Tons): 8,212.15 Grand Total (Loads): **50**1

BILL TO ACCOUNT 2133 ENBRIDGE PIPELINES LIMITE

Enbridge Pipelines Limited Par

1320 Grand Ave

Superior. WI 54880

TICKET	Manifest	DATE	Waste Stream	Waste Name	TONS
614	160400		14-0029	Crude Contaminated Soil-Pipeline	11.35
623	160401	10/20/15	14-0029	Crude Contaminated Soil-Pipeline	11.27
630	160399	10/20/15	14-0029	Crude Contaminated Soil-Pipeline	11.93
633	160395	10/20/15	14-0029	Crude Contaminated Soil-Pipeline	13.76
643	160398	10/21/15	14-0029	Crude Contaminated Soil-Pipeline	11.26
644	160394	10/21/15	14-0029	Crude Contaminated Soil-Pipeline	12.42
652		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	14.57
657		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	15.16
659		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	14.14
664		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	15.22
665		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	13.34
673		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	14.45
678		10/21/15	14-0029	Crude Contaminated Soil-Pipeline	13.38
689	160468	10/22/15	14-0029	Crude Contaminated Soil-Pipeline	15.25
690		10/22/15	14-0029	Crude Contaminated Soil-Pipeline	16.44
699		10/22/15	14-0029	Crude Contaminated Soil-Pipeline	14.04
700		10/22/15	14-0029	Crude Contaminated Soil-Pipeline	14.58
704	160470	10/22/15	14-0029	Crude Contaminated Soil-Pipeline	15.64
706	160466	10/22/15	14-0029	Crude Contaminated Soil-Pipeline	15.16
716		10/22/15	14-0029	Crude Contaminated Soil-Pipeline	14.63
718		10/22/15	14-0029	Crude Contaminated Soil-Pipeline	14.10
737		10/23/15	14-0029	Crude Contaminated Soil-Pipeline	13.22
738		10/23/15	14-0029	Crude Contaminated Soil-Pipeline	11.75
742		10/23/15	14-0029	Crude Contaminated Soil-Pipeline	13.99
746		10/23/15	i 14-0029	Crude Contaminated Soil-Pipeline	12.69
750		10/23/15	14-0029	Crude Contaminated Soil-Pipeline	13.06
753		10/23/15	5 14-0029	Crude Contaminated Soil-Pipeline	13.61
757	160474	10/23/15	5 14-0029	Crude Contaminated Soil-Pipeline	12.75
758	160459	10/23/15	5 14 -0029	Crude Contaminated Soil-Pipeline	11.54
759	160479	10/23/15	5 14-0029	Crude Contaminated Soil-Pipeline	9.81
760	160478	10/23/15	5 14-0029	Crude Contaminated Soil-Pipeline	10.60

Start Date: 1/1/2014 Stop Date: 12/5/2016

BILL TO ACCOUNT

BILL TO	ACCOUNT			
764		10/23/15 14-0029	Crude Contaminated Soil-Pipeline	13.75
765		10/23/15 14-0029	Crude Contaminated Soil-Pipeline	10.74
777	160476	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	13.69
778	160477	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	13.27
784	160480	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	16.72
786	160482	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	17.59
797	160481	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	15.32
798	160483	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	17.37
814	160504	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	18.12
816	160496	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	14.02
825	160503	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	13.11
827	160497	10/26/15 14-0029	Crude Contaminated Soil-Pipeline	16.21
839	160502	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	14.01
840	160498	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	11.77
848	160499	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	12.22
850	160501	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	11.49
856	160500	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	13.91
857	160506	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	16.07
869	160505	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	16.41
870	160507	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	12.94
873	160511	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	15.41
874	160510	10/27/15 14-0029	Crude Contaminated Soil-Pipeline	16.04
882	160489	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	16.19
883	160486	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	15.51
884	160487	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	19.60
885	160485	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.84
886	160488	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	18.55
887	160484	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.76
889	160516	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.55
890	160517	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	15.74
891	160515	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	13.69
898	160495	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	17.05
899	160493	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	15.34
901	160494	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	17.30
902	160519	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.64
903	160518	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.13

Start Date: 1/1/2014

Stop Date: 12/5/2016

BILL TO	ACCOUNT			
908	160522	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	18.20
909	160490	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	16.79
910	160491	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	13.24
914		10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.46
915		10/28/15 14-0029	Crude Contaminated Soil-Pipeline	13.88
916		10/28/15 14-0029	Crude Contaminated Soil-Pipeline	13.86
918	160514	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	16.00
920	160521	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	15.47
922	160513	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	14.02
923	160512	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	16.96
924	160565	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	15.30
925	160568	10/28/15 14-0029	Crude Contaminated Soil-Pipeline	16.88
956	160509	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	15.91
957	160508	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	13.80
958	160577	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	11.83
965	160759	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	14.52
966	160579	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	15.20
972	160758	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	16.70
973	160582	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	16.72
977		10/29/15 14-0029	Crude Contaminated Soil-Pipeline	15.49
978		10/29/15 14-0029	Crude Contaminated Soil-Pipeline	15.82
986	160757	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	16.76
987	160753	10/29/15 14-0029	Crude Contaminated Soil-Pipeline	15.24
1000	160760	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	17.16
1001	160761	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.65
1004	160762	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	15.73
1005	160763	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.70
1009	160755	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.77
1012	160775	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	18.71
1013	160771	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.02
1017	160580	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	15.42
1020	160765	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.16
1022	160764	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.92
1023	160777	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	17.17
1026	160529	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	15.91
1028	160774	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.91

BILL TO	ACCOUNT			
1032	160779	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	10.95
1033	160778	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.89
1034	160769	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.02
1035	160766	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	14.93
1036	160773	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	11.50
1041	160780	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.02
1043	160776	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	16.08
1044	160768	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.45
1045	160767	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	14.38
1047	160772	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	13.54
1050	160531	10/30/15 14-0029	Crude Contaminated Soil-Pipeline	12.05
1062	160538	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	13.74
1063	160528	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	12.09
1065	160754	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	12.30
1068	160537	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	13.07
1069	160527	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	13.05
1070	160523	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	14.06
1071	160525	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	13.39
1076	160536	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	13.53
1082	160535	11/2/15 14-0029	Crude Contaminated Soil-Pipeline	10.73
1615	160599	11/24/15 14-0029	Crude Contaminated Soil-Pipeline	12.39
1617	160598	11/24/15 14-0029	Crude Contaminated Soil-Pipeline	13.22
1618	160597	11/24/15 14-0029	Crude Contaminated Soil-Pipeline	14.60
1619	160600	11/24/15 14-0029	Crude Contaminated Soil-Pipeline	14.73
2026	160591	12/15/15 14-0029	Crude Contaminated Soil-Pipeline	17.30
2027	160601	12/15/15 14-0029	Crude Contaminated Soil-Pipeline	16.27
2031	160587	12/15/15 14-0029	Crude Contaminated Soil-Pipeline	20.14
2032	160386	12/15/15 14-0029	Crude Contaminated Soil-Pipeline	15.15
2517	160795	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	13.99
2518	160797	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	13.57
2523	160794	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	14.05
2524	160796	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	11.61
2526	160793	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	11.87
2528	160799	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	11.93
2533	160798	1/13/16 14-0029	Crude Contaminated Soil-Pipeline	11.73
2660	160814	1/21/16 14-0029	Crude Contaminated Soil-Pipeline	11.85

Print Date: 12/6/2016

Start Date: 1/1/2014

Stop Date: 12/5/2016

BILL TO AG	CCOUNT				
2661	160837	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.49
2662	160836	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.49
2666	160817	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	12.33
2667	160825	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	14.98
2668	160821	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	12.86
2674	160816	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.10
2675	160815	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.41
2678	160820	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.98
2684	160824	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.31
2687	160828	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.20
2689	160819	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	12.32
2691	160823	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	12.09
2692	160827	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	13.91
2694	160818	1/21/16	14-0029	Crude Contaminated Soil-Pipeline	12.94
3421	161025	3/10/16	14-0029	Crude Contaminated Soil-Pipeline	13.19
3426	161026	3/10/16	14-0029	Crude Contaminated Soil-Pipeline	13.29
	# of 1	Loads: 155	SU	BTOTAL FORWaste Stream	2,199.52
		GRAND TO	OTALS		2,199.52

Vonco V Waste Management Campus 100 West Garv Street Duluth, MN 55808 Permit: SW 536

	16-007-I SUP Terminal Historical							
Date	Ticket	Customer	Truck	Material	Tons			
03/10/2016	271978	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	9.66			
03/10/2016	271981	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	10.21			
03/10/2016	271990	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	11.57			
03/10/2016	271993	001342 - Enbridge Pipelines LLC	S19589X	Contaminated Soil Tons	8.73			
03/10/2016	271996	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	9.10			
03/10/2016	271998	001342 - Enbridge Pipelines LLC	S19589X	Contaminated Soil Tons	11.14			
03/11/2016	272004	001342 - Enbridge Pipelines LLC	T53690W	Contaminated Soil Tons	17.64			
03/11/2016	272009	001342 - Enbridge Pipelines LLC	T53690W	Contaminated Soil Tons	13.24			
03/11/2016	272014	001342 - Enbridge Pipelines LLC	T53690W	Contaminated Soil Tons	5.69			
03/30/2016	272432	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	12.26			
03/30/2016	272440	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	12.93			
03/30/2016	272442	001342 - Enbridge Pipelines LLC	S39449X	Contaminated Soil Tons	11.65			
03/30/2016	272462	001342 - Enbridge Pipelines LLC	S38099W	Contaminated Soil Tons	15.53			
03/30/2016	272463	001342 - Enbridge Pipelines LLC	S36746W	Contaminated Soil Tons	14.21			
06/16/2016	275529	001342 - Enbridge Pipelines LLC	T53691W	Contaminated Soil Tons	20.83			
06/16/2016	275530	001342 - Enbridge Pipelines LLC	T53691W	Contaminated Soil Tons	20.98			
06/16/2016	275531	001342 - Enbridge Pipelines LLC	T53691W	Contaminated Soil Tons	21.67			
				Total Tons	227.04			
				Total Loads	17			

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

July 15, 2014

Ms. Andrea Nord Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1403025 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 07/11/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Sunto Anule

Samantha Jaworski Manager, Organics sjaworski@legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project:	49161286			
Project Number:	49161286 001 001		Work Or	der #: 1403025
Project Manager:	Ms. Andrea Nord		Date Re	ported: 07/15/14
ANALYTICAL F	REPORT FOR SAM	IPLES		
	Laboratory ID	Matrix	Date Sampled	Date Received
	1403025-01	Soil	07/10/14 11:00	07/11/14 09:35
ion				
ion Temperature (°C): 2.4				
	Project Number: Project Manager:	Project Number: 49161286 001 001 Project Manager: Ms. Andrea Nord ANALYTICAL REPORT FOR SAN Laboratory ID	Project Number: 49161286 001 001 Project Manager: Ms. Andrea Nord ANALYTICAL REPORT FOR SAMPLES Laboratory ID Matrix	Project Number: 49161286 001 001 Work Or Project Manager: Ms. Andrea Nord Date Re ANALYTICAL REPORT FOR SAMPLES Laboratory ID Matrix Date Sampled

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

The DRO chromatogram for the sample is attached.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #:	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	07/15/14

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement Stockpile-01 (140	3025-01) Soi	I Sam	pled: 07/10)/14 11:00	Received:	07/11/14	9:35			
Diesel Range Organics	950	70	11	mg/kg dry	5	B4G1403	07/14/14	07/15/14	WI(95) DRO	L1
Surrogate: Triacontane (C-30)	84.6			70-130 %		"	"	"	"	

Barr Engineering Co. 4700 W 77th St	Project: 49161286 Project Number: 49161286 001 001	Work Order #: 1403025							
Minneapolis, MN 55435	Project Manager: Ms. Andrea Nord	Date Reported: 07/15/14							
WI(95) GRO/8015D									

Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement Stockpile-01 (1403025-01) Soil Sampled: 07/10/14 11:00 Received: 07/11/14 9:35										
Benzene	<0.0067	0.058	0.0067	mg/kg dry	1	B4G1406	07/14/14	07/14/14	WI(95) GRO	
Ethylbenzene	0.044	0.058	0.015	mg/kg dry	1	"	"	"	"	B-01, J
Toluene	<0.0095	0.058	0.0095	mg/kg dry	1	"	"	"	"	
Xylenes (total)	0.083	0.17	0.033	mg/kg dry	1	"	"	"	"	J
Surrogate: 4-Fluorochlorobenzene	94.7			80-150 %		"	"	"	"	

Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435		,	ect: ect Number: ect Manager		6 001 001				rk Order #: e Reported:	1403025 07/15/14
		,	PEI	RCENT		, Inc.				
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement Stockpile-07	1 (1403025-01) So	il Sam	pled: 07/10)/14 11:00	Received:	07/11/14	9:35			
% Solids	43			%	1	B4G1428	07/14/14	07/15/14	% calculation	1

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #:	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	07/15/14

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4G1403 - Sonication (Wisc DF	RO)										
Blank (B4G1403-BLK1)				I	Prepared	& Analyze	ed: 07/14/1	14			
Diesel Range Organics	< 1.3	8.0	1.3	mg/kg wet							
Surrogate: Triacontane (C-30)	15.1			mg/kg wet	16.0		94.2	70-130			
LCS (B4G1403-BS1)				I	Prepared	& Analyze	ed: 07/14/1	14			
Diesel Range Organics	69.8	8.0	1.3	mg/kg wet	64.0		109	70-120			
Surrogate: Triacontane (C-30)	13.8			mg/kg wet	16.0		86.3	70-130			
LCS Dup (B4G1403-BSD1)				I	Prepared	1: 07/14/14	Analyzed	1: 07/15/14			
Diesel Range Organics	70.4	8.0	1.3	mg/kg wet	64.0		110	70-120	0.888	20	
Surrogate: Triacontane (C-30)	15.9			mg/kg wet	16.0		99.2	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #:	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	07/15/14

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
,				Units	Level	Nesul	/01/20	LIIIIII3	/0111 D	LIIIII	110163
Batch B4G1406 - EPA 5035 Soil (Purge and Trap))									
Blank (B4G1406-BLK1)					Prepared	d & Analyze	ed: 07/14/	14			
Benzene	< 0.0029	0.025	0.0029	mg/kg wet							
Ethylbenzene	0.00699	0.025	0.0064	mg/kg wet							B-02, J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	22.9			ug/L	25.0		91.8	80-150			
LCS (B4G1406-BS1)					Prepared	d & Analyze	ed: 07/14/*	14			
Benzene	99.2			ug/L	100		99.2	80-120			
Ethylbenzene	97.5			ug/L	100		97.5	80-120			
Toluene	99.5			ug/L	100		99.5	80-120			
Xylenes (total)	284			ug/L	300		94.7	80-120			
Surrogate: 4-Fluorochlorobenzene	23.3			ug/L	25.0		93.0	80-150			
LCS Dup (B4G1406-BSD1)					Prepared	d: 07/14/14	Analyzed	1: 07/15/14	Ļ		
Benzene	96.9			ug/L	100		96.9	80-120	2.33	20	
Ethylbenzene	94.1			ug/L	100		94.1	80-120	3.47	20	
Toluene	96.5			ug/L	100		96.5	80-120	3.11	20	
Xylenes (total)	276			ug/L	300		92.1	80-120	2.83	20	
Surrogate: 4-Fluorochlorobenzene	23.2			ug/L	25.0		92.9	80-150			
Matrix Spike (B4G1406-MS1)	S	ource: 1	403026-	02	Prepared	d: 07/14/14	Analyzed	d: 07/15/14	ļ		
Benzene	94.9			ug/L	100	<	94.9	80-120			
Ethylbenzene	92.3			ug/L	100	0.245	92.0	80-120			
Toluene	95.1			ug/L	100	<	95.1	80-120			
Xylenes (total)	271			ug/L	300	<	90.3	80-120			
Surrogate: 4-Fluorochlorobenzene	23.3			ug/L	25.0		93.1	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #:	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	07/15/14

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4G1428 - General Preparation											
Duplicate (B4G1428-DUP1)	S	ource: '	1403001-0	2	Prepared	1: 07/14/14	Analyzed	: 07/15/14			
% Solids	81.0			%		78.0			3.77	20	
Duplicate (B4G1428-DUP2)	S	ource: '	1403045-0	1	Prepared	: 07/14/14	Analyzed	: 07/15/14			
% Solids	84.0			%		84.0			0.00	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 001 001	Work Order #:	1403025
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	07/15/14

Notes and Definitions

L1 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.

J Parameter was present between the MDL and RL and should be considered an estimated value

B-02 Target analyte was present in the method blank between the MDL and RL.

- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

	Chain of (Custo	ody										No	mber	of Conta	iners	Pre	serva	tive				
	4700 West 77th	Street				140	201	15	-				Wa	Her				So	il		CO	c	of _/_
	Minneapolis, MN (952) 832-2600					1-100									4						Proje Man	et R	EE
Proj	ject Number: 49161	2.8	6	001	- 001							-											
	ject Name: Tank 17					sistanc	e				69	(6.0)		(HCI)		MeOH) #1	(H) #1		upres.)	ontainer	Proje QC	ct Contact:	AN
Sam	pple Origination State	use two	letter j	postal sta	ate abbreviation)						'they	(HIN	NO3)	paula piung		(HO	unpreserved)	(pan	fall, 0	Of Co			
co	C Number:					N	0	41	23	1	CI) #1	Metals	ats (HI)	(H2SO4)		red Me	A (tared ed unpri		(unpreserveu) #2	Vumber C	Samp	iled by: 7	15
	e ^e Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Mater Nater		Typ Ountro O		VOCs (HCI) #1 SVOCs (unnesso	Dissolved	Total Met	Denerat (unpresenced)#5 Diesel Range Organics (HCI) Nutrients (H2SO4) #4		VOCs (tared	DRO (lared	120	리험	Total Nu	Labo	ratory:	geno
1.	SUP ENHANCEMEN STOCKPILE-01	Γ.	-	1	7/10/20M	11:00	X		χ								11		1	3	[STEX,	Dro,
2.	~		1																			1. Sol.	ds
3,								Ħ				T	T			T	T	T			1		
4.			+-1									Π	T			T	T				4	ISAP	
5.						-		Π					1			T	T	T			7	AT	
6.	1 1 1 1 1		-	۰.							1	Ħ	t	T		t	T	Ħ				41	
7.							Ħ				T	Ħ	t	1		t	T	Ħ					
8.							1					Ħ	1	+		t	t	Ħ			-		
9,			-					H					-				+						
10.								H		-		Ħ	1	+		Ħ	t						
Cor	nmon Parameter/Container	Preser	vation l	Key R	telinquished By:	to	- 1		lce?	E)ate	T	Ti	me	Receive	d by:	-					Date	Time
#2-3	Volatile Organics = BTEX, GRQ Semivolatile Organics = PAHs, P Full List, Herbicide/Pesticide/PCB	CP; Dioxi s	ins, 8270	1	clinquished By:	Ber		Q V	-	D	late		Ti	me	Receive	daby:						7	735
7	General = pH, Chloride, Fluoride DS, TS, Sulfate Nutrients = COD, TOC, Phenols,		1000 1100 10	S	amples Shipped V	/IA: 🗌 Air F	reight	4	edera	al Es	press		San	npler	Air Bill	Num	berg	2		est			

0

П

G

Ш

Z

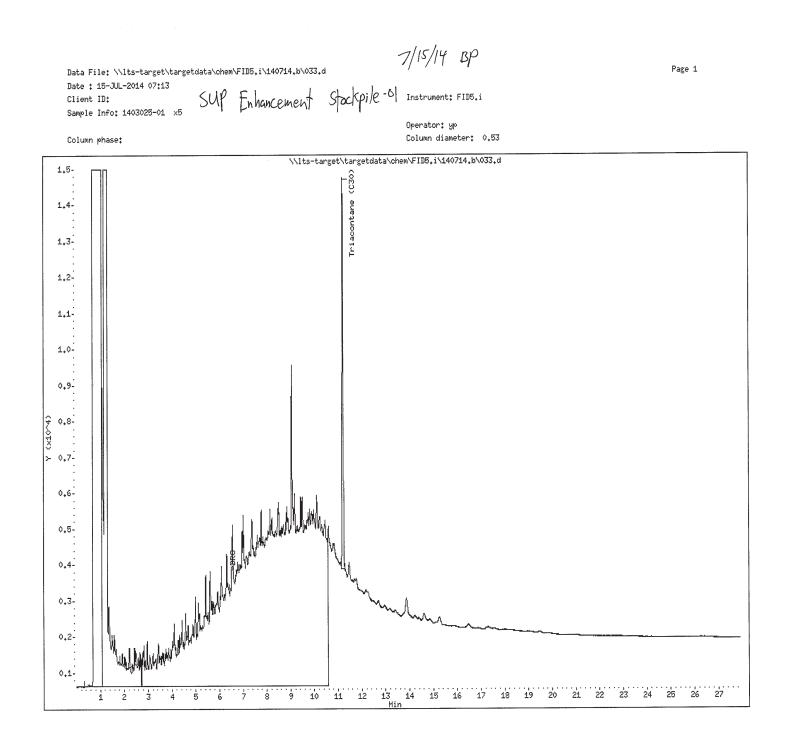
0

Technical

Services,

Inc.

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239


www.legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Page 10 of 11

www.legend-group.com

Technical

Services,

Inc.

П

G

П

Z

August 07, 2014

Ms. Andrea Nord Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1403432 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 08/05/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Kelly French Chemist III/Department Manager kfrench@legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Barr Engineering Co.	Project:	49161286			
4700 W 77th St	Project Number:	49161286.00 003 001		Work Or	der #: 1403432
Minneapolis, MN 55435		Date Re	ported: 08/07/14		
	ANALYTICAL F	REPORT FOR SAM	IPLES		
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
SUP-Enhancement-Stockpile-2		1403432-01	Soil	08/04/14 13:45	08/05/14 09:05
SUP-Enhancement-Stockpile-2 Shipping Container Informa	tion	1403432-01	Soil	08/04/14 13:45	08/05/14 09:05
	<u>tion</u> Temperature (°C): 3.9	1403432-01	Soil	08/04/14 13:45	08/05/14 09:05

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

DRO surrogate recovery was not available due to sample dilution from high analyte concentration for the sample. The DRO chromatogram for the sample is attached.

Barr Engineering Co.	Project: 49161286	
4700 W 77th St	Project Number: 49161286.00 0	03 001 Work Order #: 1403432
Minneapolis, MN 55435	Project Manager: Ms. Andrea No	Date Reported: 08/07/14

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP-Enhancement-Stockpile-2 (14034	I Samp	led: 08/04	/14 13:45 F	Received:	08/05/14 9	:05				
Diesel Range Organics	3200	1000	170	mg/kg dry	100	B4H0605	08/06/14	08/07/14	WI(95) DRO	L1
Surrogate: Triacontane (C-30)				70-130 %		"	"	"	"	D-1

Barr Engineering Co.	Project: 49161286	
4700 W 77th St	Project Number: 49161286.00 003 001	Work Order #: 1403432
Minneapolis, MN 55435	Project Manager: Ms. Andrea Nord	Date Reported: 08/07/14
	WI(95) GRO/8015D Legend Technical Services, Inc.	

			-							
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP-Enhancement-Stockpile-2 (14	03432-01) Soi	I Samp	led: 08/04/	/14 13:45 I	Received:	08/05/14 9	:05			
Benzene	< 0.0037	0.032	0.0037	mg/kg dry	1	B4H0608	08/06/14	08/06/14	WI(95) GRO	
Ethylbenzene	0.052	0.032	0.0082	mg/kg dry	1		"	"	"	B-01
Toluene	0.016	0.032	0.0053	mg/kg dry	1		"		"	J
Xylenes (total)	0.063	0.096	0.018	mg/kg dry	1		"	"	"	J
Surrogate: 4-Fluorochlorobenzene	96.4			80-150 %		"	"	"	"	

Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435		,			6.00 003 00	1			rk Order #: e Reported:	1403432 08/07/14	
PERCENT SOLIDS Legend Technical Services, Inc.											
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
SUP-Enhancement-Stockpile-2 (1403432-01) Soil	Samp	led: 08/04/	14 13:45	Received: (08/05/14 9):05				
% Solids	78			%	1	B4H0611	08/06/14	08/06/14	% calculation	ı	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 003 001	Work Order #:	1403432
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/07/14

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4H0605 - Sonication (Wisc D	RO)										
Blank (B4H0605-BLK1)				I	Prepared	1: 08/06/14	Analyzed	: 08/07/14			
Diesel Range Organics	< 8.0	8.0	1.3	mg/kg wet							
Surrogate: Triacontane (C-30)	14.2			mg/kg wet	16.0		88.9	70-130			
LCS (B4H0605-BS1)					Prepared	: 08/06/14	Analyzed	: 08/07/14			
Diesel Range Organics	56.3	8.0	1.3	mg/kg wet	64.0		87.9	70-120			
Surrogate: Triacontane (C-30)	13.9			mg/kg wet	16.0		86.9	70-130			
LCS Dup (B4H0605-BSD1)					Prepared	1: 08/06/14	Analyzed	: 08/07/14			
Diesel Range Organics	52.5	8.0	1.3	mg/kg wet	64.0		82.0	70-120	6.93	20	
Surrogate: Triacontane (C-30)	13.1			mg/kg wet	16.0		82.2	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 003 001	Work Order #:	1403432
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/07/14

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyta	Decult	RL	MDL	Linite	Spike	Source	%REC	%REC	%RPD	%RPD	Notos
Analyte	Result		MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B4H0608 - EPA 5035 Soil (P	urge and Trap)									
Blank (B4H0608-BLK1)					Preparec	l & Analyze	ed: 08/06/	14			
Benzene	< 0.0029	0.025	0.0029	mg/kg wet							
Ethylbenzene	0.00744	0.025	0.0064	mg/kg wet							B-02, J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	22.2			ug/L	25.0		88.8	80-150			
LCS (B4H0608-BS1)					Prepared	& Analyze	ed: 08/06/	14			
Benzene	91.8			ug/L	100		91.8	80-120			
Ethylbenzene	92.7			ug/L	100		92.7	80-120			
Toluene	91.4			ug/L	100		91.4	80-120			
Xylenes (total)	266			ug/L	300		88.8	80-120			
Surrogate: 4-Fluorochlorobenzene	22.1			ug/L	25.0		88.4	80-150			
LCS Dup (B4H0608-BSD1)					Prepared	& Analyze	ed: 08/06/	14			
Benzene	97.9			ug/L	100		97.9	80-120	6.53	20	
Ethylbenzene	96.2			ug/L	100		96.2	80-120	3.70	20	
Toluene	97.7			ug/L	100		97.7	80-120	6.64	20	
Xylenes (total)	277			ug/L	300		92.4	80-120	4.02	20	
Surrogate: 4-Fluorochlorobenzene	22.7			ug/L	25.0		90.8	80-150			
Matrix Spike (B4H0608-MS1)	S	ource: 1	403407-	05	Prepared	& Analyze	ed: 08/06/	14			
Benzene	91.0			ug/L	100	<	91.0	80-120			
Ethylbenzene	88.7			ug/L	100	0.266	88.4	80-120			
Toluene	90.9			ug/L	100	<	90.9	80-120			
Xylenes (total)	260			ug/L	300	0.179	86.7	80-120			
Surrogate: 4-Fluorochlorobenzene	22.9			ug/L	25.0		91.5	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 003 001	Work Order #:	1403432
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/07/14

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4H0611 - General Preparation											
Duplicate (B4H0611-DUP1)	S	ource:	1403416-0	4	Prepared	l & Analyze	ed: 08/06/1	4			
% Solids	87.0			%		88.0			1.14	20	
Duplicate (B4H0611-DUP2)	S	ource:	1403432-0	1	Prepared	& Analyze	ed: 08/06/1	4			
% Solids	77.0			%		78.0			1.29	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 003 001	Work Order #:	1403432
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/07/14

Notes and Definitions

- L1 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.
- J Parameter was present between the MDL and RL and should be considered an estimated value
- D-1 The surrogate recovery for this sample is not available due to sample dilution required from high analyte concentration and/or matrix interferences.
- B-02 Target analyte was present in the method blank between the MDL and RL.
- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Chain of	Cust	ody				to read				Num	ber of Co	ntainers/Pres	ervative	5			1 1
4700 West 77th		5 1001			140	343	2			Water			Soil		Γ	COC	of
BARR Minneapolis, Mi (952) 832-2600	_					-					1.12					Project Manager:	REG
Project Number: 4916	1286	, 00	0	03 001					-								
Project Name: Entrilly				emet Sta					03)	643		#1 0H)#1 ved)		bics./	Number Of Container	Project QC Contact	AAN
Sample Origination State 🖌 🛓									(HN)	(PON)	504) #4	0H) #	(pavi rved)	2/9	DI CO		
COC Number:					N	0 4	13403	3	Metals	Metals (HNO ₃) al (unpreserved	Range Orge 115 (H2SO4)	(Itared MeOH) ITEX (lared MeO tared unpreser	npreset	re h	aber (Sampled by:	6362
Location	Start Depth	Stop Depth	Depth Unit (m./ft. or in.)	Collection Date (mm/dd/yyyy)	Collection Time (hh:mm)	Matri Jangarian Matri	4 8	VOCs (HC	SVOCs (unpreserved) #2 Dissolved Metals (HNO3)	Total Metals (HNO ₃) General (unpreserved) #3	Natrients	VOCs (tared MeOH) #1 #006, ETEX (tared MeOH) #1 DRO (tared unpreserved)	Metals (unpreserved) SVOCs (unpreserved)#2	Eaton Ja	Total Nun	Laboratory:	Lesuz
SUP-Enhancement-	Stocky	Je-R		8/4/14	.1345	X	X					11	1	2	5	BTEX,	DRO, Z.
2.															Ľ	Etta Ja	rs-Hold
3.			11														
4.														T	T		
5.									4	T					T	ASA	P TAT
6.			1											T	Π		
7.									11					Ħ	t		
8.										+					\parallel		
9,															\parallel		
10.					Å									+			
Common Parameter/Container	- Preser	l vation I	Key F	elineutifier By:	A	10	n Ice?	Date	1	Time		ived by:		1	Ц	Da	ite Time
 Volatile Organics = BTEX, GRO 92 · Semivolatile Organics = PAHs, i Full List, Herbicide/Pesticide/PC 	PCP, Diax Bs	ins, 8270		telinquished By:	\bigcirc	0	n lec?	Date	2 10	Time		had me	he.	be		8/5	4e Time 1/4 905
#3 - General = pH, Chloride, Fluoria TDS, TS, Sulfate #4 - Nutrients = COD, TOC, Phenol		140.0102	\$	amples Shipped V	VIA: Air F		Federal	Espres	8	Sample	er Air I	Bill Number:	1	0	02		

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy; Pink - Lab Coordinator

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

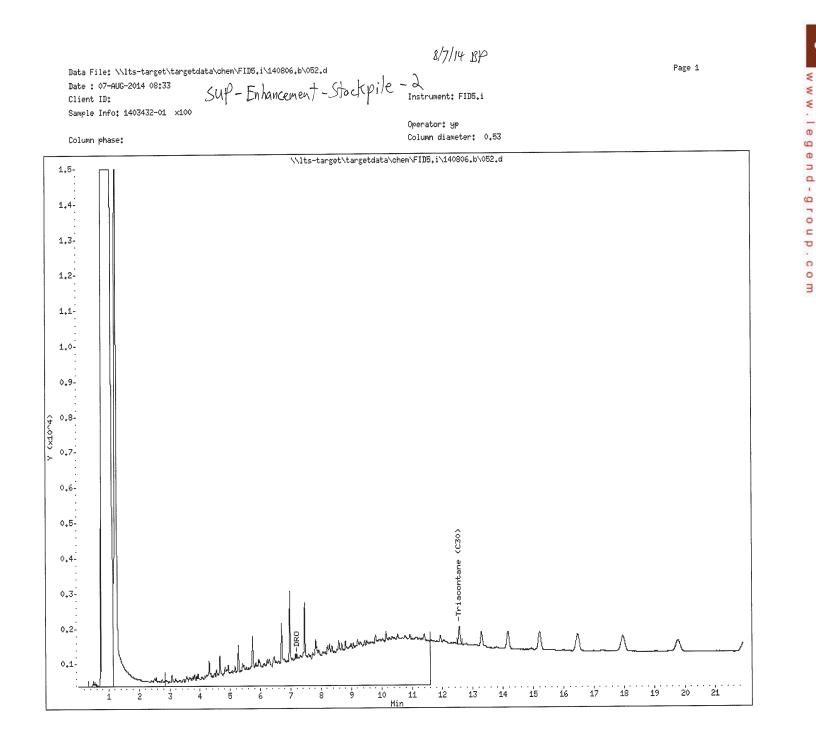
www.legend-group.com

Technical

Services,

Inc.

-


П

G

П

Z

Technical

Services,

Inc.

П

G

П

Z

August 25, 2014

Ms. Andrea Nord Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1403769 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 08/20/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Barr Engineering Co. 4700 W 77th St	Project: Project Number:	49161286 49161286.00 006 001		Work Or	der #: 1403769
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord		Date Re	ported: 08/25/14
	ANALYTICAL F	REPORT FOR SAM	PLES		
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
SUP Enhancement-Stockpile-03		1403769-01	Soil	08/19/14 10:00	08/20/14 09:15
Shipping Container Informat	ion				
Default Cooler	Temperature (°C):				
Received on ice: Yes Received on melt water: No Custody seals: No	Temperature blank v Ambient: No	vas not present		d on ice pack: No ble (IH/ISO only): No)

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

The DRO chromatogram for the sample is attached.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769
Minneapolis, MN 55435	Project Manager	Ms. Andrea Nord	Date Reported:	08/25/14

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
SUP Enhancement-Stockpile-03 (1403769-01) Soil Sampled: 08/19/14 10:00 Received: 08/20/14 9:15											
Diesel Range Organics	150	12	2.0	mg/kg dry	1	B4H2002	08/20/14	08/21/14	WI(95) DRO	L1	
Surrogate: Triacontane (C-30)	75.5			70-130 %		"	"	"	"		

Barr Engineering Co.	Project: 49161286								
4700 W 77th St	Project Number: 49161286.00 006 001	Work Order #: 1403769							
Minneapolis, MN 55435	Project Manager: Ms. Andrea Nord	Date Reported: 08/25/14							

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement-Stockpile-03 (14	Received:	08/20/14	9:15							
Benzene	<0.0048	0.041	0.0048	mg/kg dry	1	B4H2211	08/22/14	08/23/14	WI(95) GRO	
Ethylbenzene	0.017	0.041	0.011	mg/kg dry	1	"	"	"	"	B-01, J
Toluene	0.0090	0.041	0.0068	mg/kg dry	1	"	"	"		J
Xylenes (total)	<0.024	0.12	0.024	mg/kg dry	1	"	"	"		
Surrogate: 4-Fluorochlorobenzene	92.3			80-150 %		"	"	"	"	

Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435		,			6.00 006 00	1			rk Order #: e Reported:	1403769 08/25/14	
PERCENT SOLIDS Legend Technical Services, Inc.											
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
SUP Enhancement-Stockpile-03	3 (1403769-01) So	il Sam	npled: 08/19	9/14 10:00	Received:	08/20/14	9:15				
% Solids	66			%	1	B4H2012	08/20/14	08/20/14	% calculation	n	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/25/14

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4H2002 - Sonication (Wisc DRO))										
Blank (B4H2002-BLK1)				I	Preparec	& Analyze	ed: 08/20/1	14			
Diesel Range Organics	< 8.0	8.0	1.3	mg/kg wet							
Surrogate: Triacontane (C-30)	13.4			mg/kg wet	16.0		83.6	70-130			
LCS (B4H2002-BS1)					Preparec	& Analyze	ed: 08/20/1	14			
Diesel Range Organics	62.9	8.0	1.3	mg/kg wet	64.0		98.2	70-120			
Surrogate: Triacontane (C-30)	13.8			mg/kg wet	16.0		86.4	70-130			
LCS Dup (B4H2002-BSD1)					Preparec	1: 08/20/14	Analyzed	I: 08/21/14			
Diesel Range Organics	59.8	8.0	1.3	mg/kg wet	64.0		93.4	70-120	4.98	20	
Surrogate: Triacontane (C-30)	13.1			mg/kg wet	16.0		81.6	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/25/14

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

	Dec. II			L la lla	Spike	Source	W DEC	%REC	0/ DDD	%RPD	Netes
Analyte	Result	RL	MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B4H2211 - EPA 5035 Soil (Pu	irge and Trap)									
Blank (B4H2211-BLK1)					Prepared	: 08/22/14	Analyzed	l: 08/23/14	Ļ		
Benzene	< 0.0029	0.025	0.0029	mg/kg wet							
Ethylbenzene	0.0108	0.025	0.0064	mg/kg wet							B-02, J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	23.5			ug/L	25.0		94.0	80-150			
LCS (B4H2211-BS1)					Prepared	& Analyze	ed: 08/22/	14			
Benzene	97.9			ug/L	100		97.9	80-120			
Ethylbenzene	101			ug/L	100		101	80-120			
Toluene	98.5			ug/L	100		98.5	80-120			
Xylenes (total)	293			ug/L	300		97.8	80-120			
Surrogate: 4-Fluorochlorobenzene	23.6			ug/L	25.0		94.4	80-150			
LCS Dup (B4H2211-BSD1)					Prepared	: 08/22/14	Analyzed	1: 08/23/14	Ļ		
Benzene	96.2			ug/L	100		96.2	80-120	1.85	20	
Ethylbenzene	98.9			ug/L	100		98.9	80-120	2.61	20	
Toluene	95.7			ug/L	100		95.7	80-120	2.82	20	
Xylenes (total)	289			ug/L	300		96.4	80-120	1.50	20	
Surrogate: 4-Fluorochlorobenzene	23.1			ug/L	25.0		92.2	80-150			
Matrix Spike (B4H2211-MS1)	s	ource: 1	403769-	01	Prepared	: 08/22/14	Analyzed	1: 08/23/14	ļ		
Benzene	95.4			ug/L	100	<	95.4	80-120			
Ethylbenzene	99.0			ug/L	100	0.211	98.8	80-120			
Toluene	95.3			ug/L	100	0.109	95.2	80-120			
Xylenes (total)	288			ug/L	300	0.115	95.8	80-120			
Surrogate: 4-Fluorochlorobenzene	22.1			ug/L	25.0		88.5	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/25/14

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4H2012 - General Preparation											
Duplicate (B4H2012-DUP1)	S	ource: 1	403773-0	1	Prepared	& Analyze	ed: 08/20/1	4			
% Solids	88.0			%		87.0			1.14	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286.00 006 001	Work Order #:	1403769
Minneapolis, MN 55435	Project Manager:	Ms. Andrea Nord	Date Reported:	08/25/14

Notes and Definitions

L1 Results in the diesel organics range are primarily due to overlap from a heavy oil range product.

J Parameter was present between the MDL and RL and should be considered an estimated value

B-02 Target analyte was present in the method blank between the MDL and RL.

- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Chain of	Cust	ody										1	Vumt	er of	Conta	liners	Pro	serva	tive			1	1
4700 West 77th BARR Minneapolis, MN	Street	5.4802			140	03	70	9		F		1	Water		Soil				COC of		of		
BARR Minneapolis, MN (952) 832-2600	0040	5-4005						/	1											11		Project RE	E
Project Number: 49/6/2	86.0	00	00	6 001								-									20		
Project Name: Enbridge					B ZZ	7		Į			#2	(2)	93 CHCV	10/01			1.01		(res.)		taine	Project QC Contact: AA	+N.
Sample Origination State L						-				1	ved) #	(HNG)	rved) -	50.4) #4		# (HO	McOH	(pav	tic vial, unpres.)		f Con		
COC Number:					N	0	4	34	16	1.00 (1	preser	Metals 18 (H)	aprese	(H2SO4)		Mol Mol	. BIEX (tared McOH) #1) (tared unpreserved)	preserv	(plastic v		Number Of Containe	Sampled by: E	1
Later Comm			Depth	Collection	Collection	M	atrix		ype	(HC	s (un	Mesa	Raner	ients ((ture	(Inre)	un)	dis (p)		Num		
Location	Depth	Stop Depth	Unit (m./ft. or in.)	Date (mm/dd/yyyy)	Time (hh:mm)	Water	Soil	Grab	Comp.	VOC: (HCI) #1	SVOC	Dissolved Metals (HNO ₃) Total Metals (HNO ₃)	General (unprespreed)#3 Biccel Ranae Oceanics (1	Nutric		VOCs	DRO.	Metalli	% Solids	1	Total	Laboratory: K	Bgenc
1. SUP ENHANCEMENT- STOCKPILE - 03	_	-	-	08/19/2014			X	X									11	++-	1	4	-+	DRO, BTEX	
2				17416563656																		2	
3.			1													T	T			T	1		
4.						T			T	t				Ħ	T	t	T		tt	T	1	1, 1	4
5.						Ħ			T	ľ		4		T	T	t			tt	Ħ	1	ASAP T	AT
6.			4			t			T	T					T	T	T		Ħ	Ħ	t	11011 11	11
7.						Ħ	T		T	t	T	T		T	Ħ	t	T	tt	tt		t	8	
8.						Ħ	T		T	t		T			T	T	T	Ħ	1	t	t		
9.						T	1		T			1			Ħ	Ħ	T	Ħ			+		
10.							1		t	1	-			Ħ	1	t	t			H	+	4	
Common Parameter/Container	Preser	vation F	Key F	Relinquished By:	1.		On	lee?	1.00	Date		1.10	Time	8 I T	eceive	d by:	-			11	1	Date	Time
 Volatile Organics = BTEX, GRO Semivolutile Organics = PAHs, P Full List, Herbicide/Pesticide/PCF 	CP, Dien h	ins, 8270	1	Relinquished By:	Dem)	-	lee?		719 Date	-		<u>Gai</u> Time		cceive	i by:	1)	10	vel	had	^	8 20 W	Time
 General = pH, Chloride, Fluoride TDS, TS, Salfate Nutrients = COD, TOC, Phenols, 			S	iamples Shipped N	/IA: 🗌 Air F	reigh	1	Fede	and 1	Expre	85		umple	r A	ir Bill	Num	beri	1		100	1	- ELEVEN	113

0

-

Ш

G

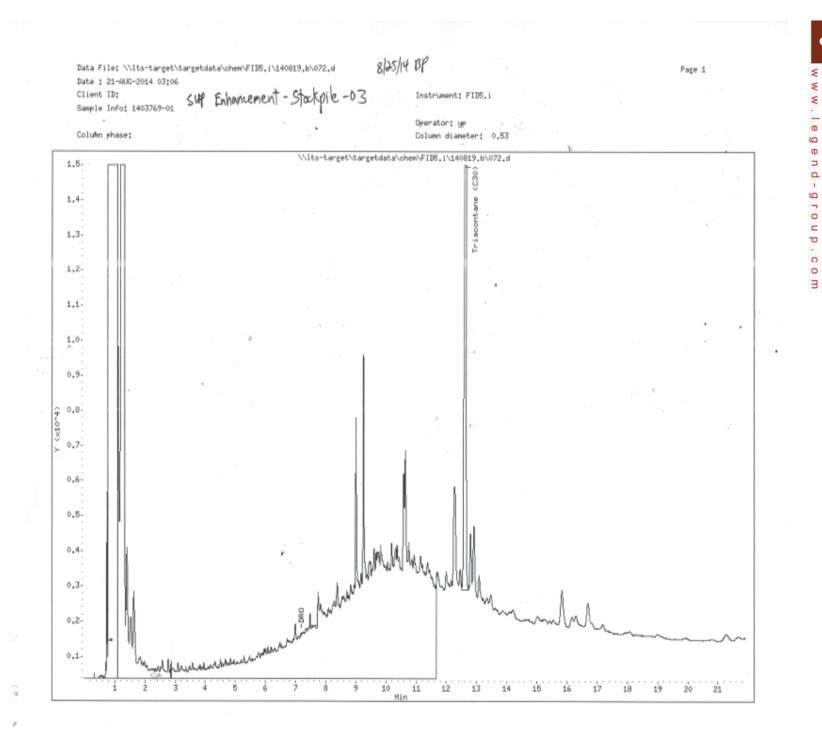
Ш

Z

www.legend-group.com

Technical Services,

Inc.


88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

1

Page 10 of 11

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Technical

Services,

Inc.

П

G

П

Z

October 28, 2014

Mr. James E. Taraldsen Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1404767 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 10/16/14. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com

Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435	,	49161286 49161286 008 001 : Mr. James E. Taraldse	n	Work Or	der #: 1404767 ported: 10/28/14
Minneapons, Min 55455	, ,	REPORT FOR SAN			poneu. 10/20/14
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
Sup Enhancement-Stockpile-05		1404767-01	Soil	10/15/14 14:45	10/16/14 09:10

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	10/28/14

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Sup Enhancement-Stockpile-05 (1404	767-01) Soi	I Sam	pled: 10/15	5/14 14:45	Received:	10/16/14	9:10			
Diesel Range Organics	400	8.9	1.5	mg/kg dry	1	B4J2102	10/21/14	10/22/14	WI(95) DRO	
Surrogate: Triacontane (C-30)	93.0			70-130 %		"	"	"	"	

Barr Engineering Co.	Project: 49161286	
4700 W 77th St	Project Number: 49161286 008 001	Work Order #: 1404767
Minneapolis, MN 55435	Project Manager: Mr. James E. Taraldsen	Date Reported: 10/28/14

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Sup Enhancement-Stockpile-05 (1404	4767-01) So	il Sam	pled: 10/15	/14 14:45	Received:	10/16/14	9:10			
Benzene	<0.0037	0.032	0.0037	mg/kg dry	1	B4J1717	10/17/14	10/18/14	WI(95) GRO	
Ethylbenzene	0.057	0.032	0.0082	mg/kg dry	1	"	"	"	"	B-01
Toluene	0.011	0.032	0.0053	mg/kg dry	1	"	"	"		J
Xylenes (total)	0.091	0.096	0.018	mg/kg dry	1	"	"	"		J
Surrogate: 4-Fluorochlorobenzene	100			80-150 %		"	"	"	"	

Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435			ct Number:			en			rk Order #: e Reported:	1404767 10/28/14		
PERCENT SOLIDS Legend Technical Services, Inc.												
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Sup Enhancement-Stockpile-0	L Sup Enhancement-Stockpile-05 (1404767-01) Soil Sampled: 10/15/14 14:45 Received: 10/16/14 9:10											
% Solids	78			%	1	B4J2304	10/23/14	10/23/14	% calculation	ı		

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	10/28/14

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4J2102 - Sonication (Wisc DRC))										
Blank (B4J2102-BLK1)				I	Preparec	& Analyze	ed: 10/21/	14			
Diesel Range Organics	< 8.0	8.0	1.3	mg/kg wet							
Surrogate: Triacontane (C-30)	13.6			mg/kg wet	16.0		85.3	70-130			
LCS (B4J2102-BS1)				I	Preparec	& Analyze	ed: 10/21/	14			
Diesel Range Organics	64.7	8.0	1.3	mg/kg wet	64.0		101	70-120			
Surrogate: Triacontane (C-30)	16.9			mg/kg wet	16.0		105	70-130			
LCS Dup (B4J2102-BSD1)				I	Preparec	1: 10/21/14	Analyzed	I: 10/22/14			
Diesel Range Organics	61.0	8.0	1.3	mg/kg wet	64.0		95.2	70-120	5.90	20	
Surrogate: Triacontane (C-30)	16.2			mg/kg wet	16.0		101	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	10/28/14

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
,			MDL	Onito	LOVOI	Result	JUILEO	Linito		Linin	10100
Batch B4J1717 - EPA 5035 Soil (I	Purge and Trap)			_						
Blank (B4J1717-BLK1)					•	& Analyze	ed: 10/17/	14			
Benzene	< 0.0029	0.025		mg/kg wet							
Ethylbenzene	0.00806	0.025		mg/kg wet							B-02, J
Toluene	< 0.0041	0.025		mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	24.0			ug/L	25.0		96.1	80-150			
LCS (B4J1717-BS1)					Prepared	& Analyze	ed: 10/17/*	14			
Benzene	89.7			ug/L	100		89.7	80-120			
Ethylbenzene	95.4			ug/L	100		95.4	80-120			
Toluene	92.3			ug/L	100		92.3	80-120			
Xylenes (total)	282			ug/L	300		93.9	80-120			
Surrogate: 4-Fluorochlorobenzene	24.3			ug/L	25.0		97.4	80-150			
LCS Dup (B4J1717-BSD1)					Prepared	1: 10/17/14	Analyzed	l: 10/18/14	Ļ		
Benzene	94.3			ug/L	100		94.3	80-120	5.05	20	
Ethylbenzene	99.1			ug/L	100		99.1	80-120	3.81	20	
Toluene	96.3			ug/L	100		96.3	80-120	4.29	20	
Xylenes (total)	291			ug/L	300		97.1	80-120	3.38	20	
Surrogate: 4-Fluorochlorobenzene	24.7			ug/L	25.0		98.8	80-150			
Matrix Spike (B4J1717-MS1)	S	ource: 1	404783-	01	Prepared	1: 10/17/14	Analyzed	I: 10/18/14	ļ		
Benzene	92.0			ug/L	100	<	92.0	80-120			
Ethylbenzene	95.8			ug/L	100	0.268	95.5	80-120			
Toluene	93.0			ug/L	100	<	93.0	80-120			
Xylenes (total)	278			ug/L	300	0.140	92.7	80-120			
Surrogate: 4-Fluorochlorobenzene	24.5			ug/L	25.0		98.0	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	10/28/14

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B4J2304 - General Preparation											
Duplicate (B4J2304-DUP1)	S	ource:	1404774-0	Ð	Prepared	& Analyze	ed: 10/23/1	14			
% Solids	90.0			%		88.0			2.25	20	
Duplicate (B4J2304-DUP2)	S	ource:	1404798-04	4	Prepared	& Analyze	ed: 10/23/1	14			
% Solids	96.0			%		95.0			1.05	20	
Duplicate (B4J2304-DUP3)	S	ource:	1404798-0	5	Prepared	& Analyze	ed: 10/23/1	14			
% Solids	97.0			%		92.0			5.29	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 008 001	Work Order #:	1404767
Minneapolis, MN 55435	Project Manager	: Mr. James E. Taraldsen	Date Reported:	10/28/14

Notes and Definitions

J Parameter was present between the MDL and RL and should be considered an estimated value

B-02 Target analyte was present in the method blank between the MDL and RL.

- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Chain of	Custo	ody							Nu	mber of (Contain	ers/Pres	ervativ	e		1	1		<
4700 West 77th	Street				4	047	67	< [Wa	ter	_		Soil			coc _/	of _/	-	W V
BARR Minneapolis, M. (952) 832-2600	N 5543;	5-4803													1	Project Ranager: R	29		< .
Project Number: 491612	or .	NR	. /	101												wanager: ACC	L	-	e g e
					T	12	1			(HCI)		ž# (2 14	iners	Project	IST		e n c
				Projet	Ime	Ħ	/	-	hpreserved) #2 Metals (HNO ₃) Is (HNO ₃) noreserved) #1	ar ()		(HIC	1) #2	S dun	Conta	QC Contact:	JCI.	-	- g
Sample Origination State WZ	(use two	letter j	oostal sta	te abbreviation)					a (unpreserved) # load Metals (HNO ₃) Metals (HNO ₃) al (unpreserved) #	Range Organ nts (H2SO4) #		MeOH) and Met	served)	DIT-	ō	Summer and the second	1ST		10
COC Number:			_		N		353	0	unpre 1 Met Tals ((unsr	ange (H2)		EX (1a red u	unpre	(plasts	mber	Sampled by:	ICI	-	u p
Location	Start	Stop Depth	Depth Unit (m./ft.	Collection Date	Collection Time	Matri		C SC	00 18	trie off	1.1.1	IN IN	ocs (No Mo	No. 1	Laboratory: le	gend		www.legend-group.com
1-2 11: 10/5/14	Depin	Depth	or in.)	(mm/dd/yyyy)	(hh:mm)	8 8	Grab	83	SV(Dis Tot	¥ Z		DRO	SV	1 47	To	. (3
Fork 1 Soit	-	-	-	19/15/14	14:45	X	X					11		11		378X, DK (7402 jo	() /- Mos:	THE	
2. Sup Enhancement - Stockpile -05																(7902.)0	r- noja		
3.																			
4.	1						T	t							H			1/	
5.					1	-		+	-			++-		+	+		18		
ú.	-		-		-									-			15	_	
			<u> </u>												E	Stands	rd		
7.															F	TAT !		001100	
8.																1111 0		Rank Od	
9,		-										++-		+				B BLO	
10.	10	-	_					++						-			_	arm 200	
KG	1			0	1											_	_	untedy 1	
Common Parameter/Container	- Preser	vation I	Key R	telinquished By:	15 mal	AM	n lee?	10/1	Les K.	Re Re	sceived I	by:				Date	Time	in Of O	
 Volatile Organics = BTEX, GR0 Semivolatile Organics = PAHs, Full List, Herbicide/Perticide/PG 	PCP, Diax	260 Full I ins, 8270	ist B	telinquished By:	1 JANA	15	STEC?	Dat	Tir	ne Re	TH	7:-				To Patel	190	OPENSICH	
General = pH, Chloride, Fluorid TDS, TS, Sulfate		uty, TSS,	I.S.	amples Shipped		right 7	Feder	al Exne	vss Sam	nlor Au	r Bill N	umber	1	0	-	Toliain	140	athe	

Ш

G

Ш

Z

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

June 23, 2015

Mr. James E. Taraldsen Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1502376 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 06/19/15. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

> Bach Pham Client Manager II bpham@legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Barr Engineering Co.	Project:	49161286			
4700 W 77th St	Project Number:	49161286 014 001		Work Or	rder #: 1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldse	n	Date Re	ported: 06/23/15
	ANALYTICAL I	REPORT FOR SAM	IPLES		
Sample ID		Laboratory ID	Matrix	Date Sampled	Date Received
SUP Enhancement-Stockpile-06		1502376-01	Soil	06/18/15 09:30	06/19/15 09:10
	ion	1502376-01	Soil	06/18/15 09:30	06/19/15 09:10
SUP Enhancement-Stockpile-06 Shipping Container Informat		1502376-01	Soil	06/18/15 09:30	06/19/15 09:10
	<u>ion</u> Temperature (°C): 0.9	1502376-01	Soil	06/18/15 09:30	06/19/15 09:10
Shipping Container Informat	Temperature (°C): 0.9 Temperature blank v		Received	d on ice pack: No	
Shipping Container Informat	Temperature (°C): 0.9		Received		

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	06/23/15

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement-Stockpile-06 (15	02376-01) Soi	il Sam	npled: 06/1	8/15 09:30	Received:	06/19/15	9:10			
Diesel Range Organics	17	9.4	2.0	mg/kg dry	1	B5F2205	06/22/15	06/23/15	WI(95) DRO	
Surrogate: Triacontane (C-30)	90.6			70-130 %		"	"	"	"	

4700 W 77th St Project Number: 49161286 014 001 Work Order #:	4500070
	1502376
Minneapolis, MN 55435 Project Manager: Mr. James E. Taraldsen Date Reported:	06/23/15

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
SUP Enhancement-Stockpile-06 (1502	376-01) Sc	oil Sam	pled: 06/18	3/15 09:30	Received:	06/19/15	9:10			
Benzene	0.22	0.033	0.0011	mg/kg dry	1	B5F1918	06/19/15	06/20/15	WI(95) GRO	
Ethylbenzene	0.31	0.033	0.0047	mg/kg dry	1	"	"	"	"	
Toluene	0.10	0.033	0.0054	mg/kg dry	1	"	"	"		
Xylenes (total)	9.6	0.10	0.019	mg/kg dry	1		"		"	
Surrogate: 4-Fluorochlorobenzene	118			80-150 %		"	"	"	"	

Barr Engineering Co. 4700 W 77th St			ect Number:		6 014 001				rk Order #:	1502376		
Minneapolis, MN 55435 Project Manager: Mr. James E. Taraldsen Date Reported: 06/23/15 PERCENT SOLIDS Legend Technical Services, Inc.												
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
SUP Enhancement-Stockpile-06	L SUP Enhancement-Stockpile-06 (1502376-01) Soil Sampled: 06/18/15 09:30 Received: 06/19/15 9:10											
% Solids	75			%	1	B5F2304	06/23/15	06/23/15	% calculation	า		

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	06/23/15

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5F2205 - Sonication (Wisc DR	0)										
Blank (B5F2205-BLK1)				F	Preparec	1: 06/22/15	Analyzed	1: 06/23/15			
Diesel Range Organics	< 8.0	8.0	1.7	mg/kg wet							
Surrogate: Triacontane (C-30)	15.7			mg/kg wet	16.0		97.8	70-130			
LCS (B5F2205-BS1)				F	Preparec	1: 06/22/15	Analyzed	1: 06/23/15			
Diesel Range Organics	62.6	8.0	1.7	mg/kg wet	64.0		97.8	70-120			
Surrogate: Triacontane (C-30)	16.6			mg/kg wet	16.0		104	70-130			
LCS Dup (B5F2205-BSD1)				F	Preparec	1: 06/22/15	Analyzed	1: 06/23/15			
Diesel Range Organics	56.0	8.0	1.7	mg/kg wet	64.0		87.5	70-120	11.1	20	
Surrogate: Triacontane (C-30)	15.8			mg/kg wet	16.0		99.0	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	06/23/15

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyta	Result	RL	MDL	Units	Spike	Source	%REC	%REC Limits	%RPD	%RPD Limit	Notoo
Analyte			MDL	Units	Level	Result	%REC	Limits	%RPD	Limit	Notes
Batch B5F1918 - EPA 5035 Soil (Purge and Trap)									
Blank (B5F1918-BLK1)					Preparec	& Analyze	ed: 06/19/	15			
Benzene	< 0.00082	0.025	0.00082	mg/kg wet							
Ethylbenzene	0.0144	0.025	0.0035	mg/kg wet							J
Toluene	< 0.0041	0.025	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.075	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	23.1			ug/L	25.0		92.5	80-150			
LCS (B5F1918-BS1)					Preparec	& Analyze	ed: 06/19/	15			
Benzene	96.5			ug/L	100		96.5	80-120			
Ethylbenzene	97.1			ug/L	100		97.1	80-120			
Toluene	98.9			ug/L	100		98.9	80-120			
Xylenes (total)	302			ug/L	300		101	80-120			
Surrogate: 4-Fluorochlorobenzene	25.6			ug/L	25.0		102	80-150			
LCS Dup (B5F1918-BSD1)					Preparec	1: 06/19/15	Analyzed	1: 06/20/15	;		
Benzene	95.5			ug/L	100		95.5	80-120	1.07	20	
Ethylbenzene	95.4			ug/L	100		95.4	80-120	1.74	20	
Toluene	97.0			ug/L	100		97.0	80-120	1.85	20	
Xylenes (total)	293			ug/L	300		97.6	80-120	3.21	20	
Surrogate: 4-Fluorochlorobenzene	24.9			ug/L	25.0		99.6	80-150			
Matrix Spike (B5F1918-MS1)	S	ource:	1502347-	01	Preparec	1: 06/19/15	Analyzed	1: 06/20/15	5		
Benzene	93.9			ug/L	100	<	93.9	80-120			
Ethylbenzene	95.2			ug/L	100	0.239	94.9	80-120			
Toluene	96.5			ug/L	100	<	96.5	80-120			
Xylenes (total)	293			ug/L	300	0.146	97.7	80-120			
Surrogate: 4-Fluorochlorobenzene	25.1			ug/L	25.0		100	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	06/23/15

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5F2304 - General Preparation											
Duplicate (B5F2304-DUP1)	Source: 1502397-02				Prepared & Analyzed: 06/23/15						
% Solids	95.0			%		95.0			0.00	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 014 001	Work Order #:	1502376
Minneapolis, MN 55435	Project Manager	Mr. James E. Taraldsen	Date Reported:	06/23/15

Notes and Definitions

- J Parameter was present between the MDL and RL and should be considered an estimated value
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

LEGEND Technical Services, Inc.

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Chain of	Custo	ody		///04-2								Nu	mber	of Con	taine	rs/Pr	eser	vativ	e		1	0940	Ĩ.	1	
4700 West 77th	Street	1000		15	0237	4						Wa	ter			1	1	Soil			C	OC	+	of	
BARR Minneapolis, MN (952) 832-2600	2343	-4805																			Proj	ject nager:	RE	F	
Project Number: 491612	36	0	4	-01					-			0	ľ	2		l					Mat	tager:	1-01		Ì
Project Name: Referre En					+ - T	.43	a	Ĩ		5	(2)		(HCI)			1.41	(9	2	amprov.)	Containers	Proj	ject Contac	ed.	51	
Sample Origination State W (10-6	5			& (pas	(HNO	(LOA)	ganics		OHD #1	McOH	unpresurved)	wed) and	vial, sh						
COC Number:					N	0	45	04	6	HCI) #1 (unpreserved) #2	Dissolved Metals (HNO ₃)	Total Metals (HNO _T) General (unpreserved)	Diesel Range Organics (I Nutriums (H SOL) &4		od Med	(HEX yared McOH) #1	fungeoscry	unpreserved) #2	s (plastic v	Vamber Of	Sam	npled by	RI	5E	_
100 m	USESTICI-T	Lasani	Depth	Collection	Collection	Ma	rix	Ty	pe	(HC	Ved	Meta	Ran		(tar	(III)		171	5	Num				1	
Location	Start Depth	Stop Depth	Unit (m/ft. or in.)	Date (mm/dd/yyyy)	Time (hh:mm)	Water		Greek.	OC DC	VOCA (Disso	Total Genei	Diese) R.		VOCs	080.	Mends	SVOC	HG	Total	Labo	oratory:	Leg	end	
1. SUP ENHANCEMENT- TOCK	PILE-	06	_	06/18/15	930		4	X								Z	1		11		BTE	5X, [720,	Moistur	4
2.	1015-11																						1		
3.						Π									T					T	1	45A	p-	TAT	
4.								1											T	T			-		
5,												ł	T		T	T		T	T	t					Ī
6.		0		1		1			T						t			T	T	t					
7.						1		Ť	T			t	T		t	Ħ		Ħ	1	t			_		Ī
8.												1			+		-			1				•	
9.						T						+			+		+	Ħ		t					_
10.						+						+			+		+								
Common Parameter/Container	Preser	vation I	Key 1	Relinquished (By:	/		08	Ice?		Date	H	Tin	20 A M	Receiv	ed by	<u>к.</u>	-	Ц		_		D	ate	Tim	ic.
 Volatile Organics = BTEX, GRQ Semivolatile Organics = PAHs, P 	TPH, 82 CP. Diau	60 Full)	Lin H	Relinquisted by:		-	Y) Carly		Gli	8/15 Nate		/40 Tin	-	Receiv	al h	1		-				2		Tim	100
Full List, Herbickle/Pesticide/PGBs #3 · General = pH. Chloride, Fluoride, Alkalinity, TSS, TDS, TS, Sulfate #4 · Nutrients = COD, TOC, Phenols, Ammonia				iamples Shipped	VIA: 🗌 Air F		X	eder	al Es	al Express Sampler Air Bill Number:						1910	2								

25-Aug-2015

Ryan Erickson Barr Engineering Company 4700 West 77th Street Minneapolis, MN 55435-4803

Re: Enbridge - Tank 21 (49161253.30)

Work Order: 15081052

Dear Ryan,

ALS Environmental received 2 samples on 20-Aug-2015 for the analyses presented in the following report.

The analytical data provided relates directly to the samples received by ALS Environmental and for only the analyses requested.

Sample results are compliant with NELAP standard requirements and QC results achieved laboratory specifications. Any exceptions are noted in the Case Narrative, or noted with qualifiers in the report or QC batch information. Should this laboratory report need to be reproduced, it should be reproduced in full unless written approval has been obtained from ALS Environmental. Samples will be disposed in 30 days unless storage arrangements are made.

The total number of pages in this report is 13.

If you have any questions regarding this report, please feel free to contact me.

Sincerely,

Domaine B. Bucan Electronically approved by: Tom Beamish

Tom Beamish Client Services Coordinator

Certificate No: WI: 399084510

Report of Laboratory Analysis

ADDRESS 3352 128th Avenue Holland, Michigan 49424-9263 | PHONE (616) 399-6070 | FAX (616) 399-6185 ALS GROUP USA, CORP Part of the ALS Laboratory Group A Campbell Brothers Limited Company

Environmental 💭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

Client:	Barr Engineering Company
Project:	Enbridge - Tank 21 (49161253.30)
Work Order:	15081052

Work Order Sample Summary

Lab Samp ID <u>Client Sample ID</u>	<u>Matrix</u>	Tag Number	Collection Date	Date Received	Hold
15081052-01 Tank 21 - Stockpile-1	Soil		08/17/15 16:00	08/20/15 09:00	
15081052-02 Trip Blank	Soil		08/17/15	08/20/15 09:00	

Date: 25-Aug-15

µg/Kg-dry

mg/Kg-dry

Client:	Barr Engineering Company	QUALIFIERS ,
Project:	Enbridge - Tank 21 (49161253.30)	ACRONYMS, UNITS
WorkOrder:	15081052	ACKON IMS, UNITS

Qualifier	Description
*	Value exceeds Regulatory Limit
a	Not accredited
В	Analyte detected in the associated Method Blank above the Reporting Limit
E	Value above quantitation range
Н	Analyzed outside of Holding Time
J	Analyte is present at an estimated concentration between the MDL and Report Limit
n	Not offered for accreditation
ND O	Not Detected at the Reporting Limit
P	Sample amount is > 4 times amount spiked Dual Column results percent difference > 40%
R	RPD above laboratory control limit
S	Spike Recovery outside laboratory control limits
U	Analyzed but not detected above the MDL
Х	Analyte was detected in the Method Blank between the MDL and PQL, sample results may exhibit background or reagent contamination at the observed level.
Acronym	Description
DUP	Method Duplicate
LCS	Laboratory Control Sample
LCSD	Laboratory Control Sample Duplicate
LOD	Limit of Detection (see MDL)
LOQ	Limit of Quantitation (see PQL)
MBLK	Method Blank
MDL	Method Detection Limit
MS	Matrix Spike
MSD	Matrix Spike Duplicate
PQL	Practical Quantitation Limit
RPD	Relative Percent Difference
TDL	Target Detection Limit
TNTC	Too Numerous To Count
А	APHA Standard Methods
D	ASTM
Е	EPA
SW	SW-846 Update III
Units Reported	Description
% of sample	Percent of Sample
µg/Kg	Micrograms per Kilogram
µg/Kg	Micrograms per Kilogram

Client:	Barr Engineering Company	
Project:	Enbridge - Tank 21 (49161253.30)	Case Narrative
Work Order:	15081052	

Samples for the above noted Work Order were received on 08/20/15. The attached "Sample Receipt Checklist" documents the status of custody seals, container integrity, preservation, and temperature compliance.

Samples were analyzed according to the analytical methodology previously transmitted in the "Work Order Acknowledgement". Methodologies are also documented in the "Analytical Result" section for each sample. Quality control results are listed in the "QC Report" section. Sample association for the reported quality control is located at the end of each batch summary. If applicable, results are appropriately qualified in the Analytical Result and QC Report sections. The "Qualifiers" section documents the various qualifiers, units, and acronyms utilized in reporting.

With the following exceptions, all sample analyses achieved analytical criteria.

Volatile Organics: No deviations or anomalies were noted.

Extractable Organics: No deviations or anomalies were noted.

Wet Chemistry: No deviations or anomalies were noted. Date: 25-Aug-15

Client:Barr Engineering CompanyProject:Enbridge - Tank 21 (49161253.30)Sample ID:Tank 21 - Stockpile-1Collection Date:08/17/15 04:00 PM

Work Order: 15081052 Lab ID: 15081052-01 Matrix: SOIL

Analyses	Result	Qual	MDL	PQL	Units	Dilution Factor	Date Analyzed
DIESEL RANGE ORGANICS BY GC-FID		Metho	od:PUBL-SW-	141	Prep: PUBL-	SW-141 / 8/2′	1/15 Analyst: IT
DRO (C10-C28)	380		4.2	10	mg/Kg-dry	1	08/24/15 11:12
VOLATILE ORGANIC COMPOUNDS		Metho	od:SW8260B		Prep: SW503	35 / 8/20/15	Analyst: BG
Benzene	ND		25	63	µg/Kg-dry	1	08/23/15 18:55
Ethylbenzene	ND		23	63	µg/Kg-dry	1	08/23/15 18:55
m,p-Xylene	ND		47	130	µg/Kg-dry	1	08/23/15 18:55
o-Xylene	ND		27	63	µg/Kg-dry	1	08/23/15 18:55
Toluene	ND		23	63	µg/Kg-dry	1	08/23/15 18:55
Xylenes, Total	ND		74	190	µg/Kg-dry	1	08/23/15 18:55
Surr: 1,2-Dichloroethane-d4	102			70-130	%REC	1	08/23/15 18:55
Surr: 4-Bromofluorobenzene	99.8			70-130	%REC	1	08/23/15 18:55
Surr: Dibromofluoromethane	99.8			70-130	%REC	1	08/23/15 18:55
Surr: Toluene-d8	98.0			70-130	%REC	1	08/23/15 18:55
MOISTURE		Metho	od:E160.3M				Analyst: EVB
Moisture	52		0.025	0.050	% of sample	e 1	08/21/15 14:45

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client:Barr Engineering CompanyProject:Enbridge - Tank 21 (49161253.30)Sample ID:Trip BlankCollection Date:08/17/15

Work Order: 15081052 Lab ID: 15081052-02 Matrix: SOIL

Analyses	Result	Qual	MDL	PQL	Units	Dilution Factor	Date Analyzed
VOLATILE ORGANIC COMPOUNDS		Meth	od:SW8260B		Prep: SW5	035 / 8/20/15	Analyst: AK
Benzene	ND		12	30	µg/Kg	1	08/21/15 20:53
Ethylbenzene	ND		11	30	µg/Kg	1	08/21/15 20:53
m,p-Xylene	ND		23	60	µg/Kg	1	08/21/15 20:53
o-Xylene	ND		13	30	µg/Kg	1	08/21/15 20:53
Toluene	ND		11	30	µg/Kg	1	08/21/15 20:53
Xylenes, Total	ND		35	90	µg/Kg	1	08/21/15 20:53
Surr: 1,2-Dichloroethane-d4	96.6			70-130	%REC	1	08/21/15 20:53
Surr: 4-Bromofluorobenzene	94.3			70-130	%REC	1	08/21/15 20:53
Surr: Dibromofluoromethane	95.5			70-130	%REC	1	08/21/15 20:53
Surr: Toluene-d8	98.0			70-130	%REC	1	08/21/15 20:53

Note: See Qualifiers page for a list of qualifiers and their definitions.

Client:	Barr Engineering Company
Work Order:	15081052
Project:	Enbridge - Tank 21 (49161253.30)

QC BATCH REPORT

Batch ID: 75077	Instrument ID GC8		M	lethod:	PUBL-S	W-14	1					
MBLK	Sample ID: DBLKS1-750	77-75077				Uni	its: mg/k	٢g	Analys	is Date: 08	3/24/15 10	:42 AM
Client ID:		Run ID: GC8	_150824	4	\$	SeqN	lo: 3429	147	Prep Date: 08/2	1/15	DF: 1	
Analyte	Result	MDL		SPK Val	SPK Ro Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
DRO (C10-C28)	ND	2	5.0									
LCS	Sample ID: DLCSS1-750	77-75077				Uni	its: mg/k	٢g	Analys	is Date: 0	3/24/15 10	:12 AM
Client ID:		Run ID: GC8	_1508244	4	:	SeqN	lo: 3429	146	Prep Date: 08/2	1/15	DF: 1	
Analyte	Result	MDL	PQL S	SPK Val	SPK R Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
DRO (C10-C28)	179.2	2	5.0	200		0	89.6	70-120	0			
LCSD	Sample ID: DLCSDS1-75	077-75077				Uni	its: mg/k	٢g	Analys	is Date: 08	3/24/15 12	:41 PM
Client ID:		Run ID: GC8	_1508244	4	:	SeqN	lo: 3429	151	Prep Date: 08/2	1/15	DF: 1	
Analyte	Result	MDL	PQL S	SPK Val	SPK R Value		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
	191.4	2	5.0	200		0	95.7	70-120	179.2	6.61	20	

QC BATCH REPORT

Batch ID: 75058

Instrument ID VMS9

Method: SW8260B

MBLK Sam	ple ID: MBLK-75058	-75058			Units: µg/Kg			Analysi	Analysis Date: 08/20/15 04:43 PM			
Client ID:		Run ID: VMS	9_15082	0A	Sec	qNo: 3426	777	Prep Date: 08/2	0/15	DF: 1		
					SPK Ref		Control	RPD Ref		RPD		
Analyte	Result	MDL	PQL \$	SPK Val	Value	%REC	Limit	Value	%RPD	Limit	Qual	
Benzene	ND	12	30									
Ethylbenzene	ND	11	30									
m,p-Xylene	ND	23	60									
o-Xylene	ND	13	30									
Toluene	ND	11	30									
Xylenes, Total	ND	35	90									
Surr: 1,2-Dichloroethane	-d4 933	0	0	1000	0	93.3	70-130	0				
Surr: 4-Bromofluorobenz	en 914.5	0	0	1000	0	91.4	70-130	0				
Surr: Dibromofluorometh	ant 907.5	0	0	1000	0	90.8	70-130	0				
Surr: Toluene-d8	975.5	0	0	1000	0	97.6	70-130	0				

LCS S	ample ID: LCS-75058-	75058			Ur	nits: µg/K	g	Analysi	s Date: 0	8/20/15 03	:01 PM
Client ID:		Run ID: VMS	69_15082	0A	Seq	No: 3426	775	Prep Date: 08/20	0/15	DF: 1	
Analyte	Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Benzene	993.5	12	30	1000	0	99.4	75-125	0			
Ethylbenzene	992	11	30	1000	0	99.2	75-125	0			
m,p-Xylene	2036	23	60	2000	0	102	80-125	0			
o-Xylene	992.5	13	30	1000	0	99.2	75-125	0			
Toluene	1016	11	30	1000	0	102	70-125	0			
Xylenes, Total	3029	35	90	3000	0	101	75-125	0			
Surr: 1,2-Dichloroeth	ane-d4 924	0	0	1000	0	92.4	70-130	0			
Surr: 4-Bromofluorob	enzen 1059	0	0	1000	0	106	70-130	0			
Surr: Dibromofluoron	nethan 917.5	0	0	1000	0	91.8	70-130	0			
Surr: Toluene-d8	1010	0	0	1000	0	101	70-130	0			

MS	Sample ID: 1508	1076-09/	A MS			Ur	its: µg/K	g		Analysis	Date: 08	3/25/15 12	:06 PM
Client ID:			Run ID: VMS9	_15082	4A	Seq	No: 3430	710	Prep D	Date: 08/20	/15	DF: 1	
Analyte		Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	R	PD Ref Value	%RPD	RPD Limit	Qual
Benzene		1145	14	34	1132	0	101	75-125		0			
Ethylbenzene		1175	13	34	1132	0	104	75-125		0			
m,p-Xylene		2299	26	68	2264	0	102	80-125		0			
o-Xylene		1121	14	34	1132	0	99	75-125		0			
Toluene		1146	13	34	1132	0	101	70-125		0			
Xylenes, Total		3420	40	100	3397	0	101	75-125		0			
Surr: 1,2-Dichloroet	hane-d4	1104	0	0	1132	0	97.5	70-130		0			
Surr: 4-Bromofluoro	benzene	1213	0	0	1132	0	107	70-130		0			
Surr: Dibromofluoro	methane	1082	0	0	1132	0	95.6	70-130		0			
Surr: Toluene-d8		1151	0	0	1132	0	102	70-130		0			

Batch ID: 75058 Ir

Instrument ID VMS9

Method: SW8260B

MSD Samp	le ID: 15081076-09/	A MSD			Ur	Units: µg/Kg			Analysis Date: 08/25/15 12:32 PM			
Client ID:		Run ID: VMS	9_15082	4A	Seq	No: 3430	711	Prep Date: 08/20	0/15	DF: 1		
Analyte	Result	MDL	PQL	SPK Val	SPK Ref Value	%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual	
Benzene	1094	14	34	1132	0	96.6	75-125	1145	4.5	30		
Ethylbenzene	1115	13	34	1132	0	98.5	75-125	1175	5.19	30		
m,p-Xylene	2265	26	68	2264	0	100	80-125	2299	1.51	30		
o-Xylene	1094	14	34	1132	0	96.6	75-125	1121	2.4	30		
Toluene	1132	13	34	1132	0	100	70-125	1146	1.19	30		
Xylenes, Total	3359	40	100	3397	0	98.9	75-125	3420	1.8	30		
Surr: 1,2-Dichloroethane-	d4 1104	0	0	1132	0	97.6	70-130	1104	0.0513	30		
Surr: 4-Bromofluorobenze	ene 1201	0	0	1132	0	106	70-130	1213	0.985	30		
Surr: Dibromofluorometha	ne 1097	0	0	1132	0	96.8	70-130	1082	1.3	30		
Surr: Toluene-d8	1157	0	0	1132	0	102	70-130	1151	0.491	30		

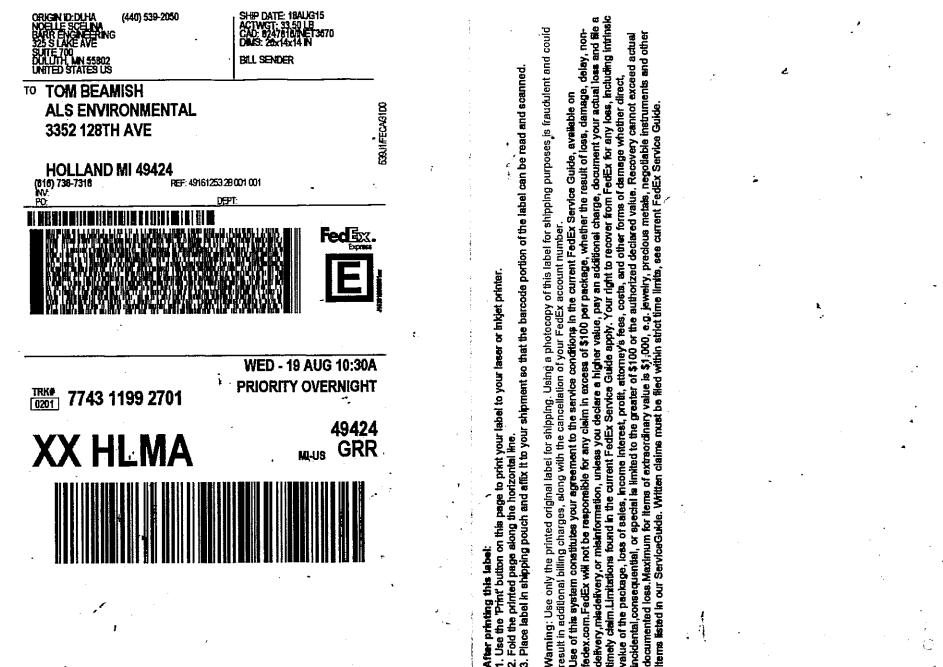
The following samples were analyzed in this batch:

15081052-01A

2- 15081052-02A

Client:	Barr Engineering Company
Work Order:	15081052
Project:	Enbridge - Tank 21 (49161253.30)

QC BATCH REPORT


Batch ID: R170180 Instrument ID MOIST Method: E160.3M

MBLK	Sample ID: WBLKS-R17	0180			Un	its: % of	sample	Analysis	s Date: 08	8/21/15 02	:45 PM
Client ID:		Run ID: MO	ST_150821A		Seq	No: 3428	821	Prep Date:		DF: 1	
Analyte	Result	MDL	POL SPK Val	SPK F Valu		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	ND	0.025	0.050								
LCS	Sample ID: LCS-R17018	0			Un	its:% of	sample	Analysis	s Date: 08	6/21/15 02	:45 PM
Client ID:		Run ID: MO	ST_150821A		Seq	No: 3428	B20	Prep Date:		DF: 1	
Analyte	Result	MDL	PQL SPK Val	SPK F Valu		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	100	0.025	0.050 100		0	100 9	9.5-100.	5 0			
DUP	Sample ID: 15081099-01	B DUP			Un	its:% of	sample	Analysis	s Date: 08	/21/15 02	:45 PM
Client ID:		Run ID: MO	ST_150821A		Seq	No: 3428	B07	Prep Date:		DF: 1	
Analyte	Result	MDL	PQL SPK Val	SPK F Valu		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	6.58	0.025	0.050 0		0	0		6.17	6.43	20	
DUP	Sample ID: 15081123-01	A DUP			Un	its:% of	sample	Analysis	s Date: 08	s/21/15 02	:45 PM
Client ID:		Run ID: MO	ST_150821A		Seq	No: 3428	814	Prep Date:		DF: 1	
Analyte	Result	MDL	PQL SPK Val	SPK F Valu		%REC	Control Limit	RPD Ref Value	%RPD	RPD Limit	Qual
Moisture	7.1	0.025	0.050 0		0	0		7.08	0.282	20	
The following s	samples were analyzed in this	batch:	15081052- 01B								

15081052

Chain of Custody			Number of	f Containers/Preservative	COCof
4700 West 77th Street			Water	Soil	COC of
BARR Minneapolis, MN 55435-4803 (952) 832-2600		۶			Project Manager: <u>REE</u>
Project Number: 4 49161253.30	201 001			ers	
Project Name: ENDrubsz -Tank-2	20	۰.	+ #2 NO ₃)) #3 cs (HCl))#1 OH)#1 rved))#2 unpres.)	QC Contact: JEI
Sample Origination State \underline{WT} (use two letter postal	state abbreviation)		HCl) #1 (unpreserved) #2 d Metals (HNO ₃) etals (HNO ₃) (unpreserved) #3 tange Organics (F s (H2SO ₄) #4	ed Me(ed Me(preset erved) vial, vial, Of C	NRSO
COC Number:		Nº 45051	(HCl) #, (unpresed Meta detals (1 detals (1 l (unpre Range (ts (H2S)	ared M EX lare unprese (plastic (plastic	Sampled by: UNC
Location Start Stop Unit Depth Depth Depth	Date Time		VOCs (HCl) #1 SVOCs (unpreserved) #2 Dissolved Metals (HNO ₃) Total Metals (HNO ₃) General (unpreserved)#3 Diesel Range Organics († Nutrients (H2SO ₄) #4	VOCs (tared McOH) #1 VOCs (tared McOH) #1 Hared McOH) #1 DRO (tared unpreserved) Metals (unpreserved) SVOCs (unpreserved) #2 % Solids (plastic vial, unpres.) % Tatal Number Of Contain.	Project QC Contact: JET Sampled by: NRS2 Laboratory: ALS Holkred
1. TGNK 21-STOCKPILE-1 -	08/17/15 1600			21 1 3	BTEX, DRO
2.					
Temp Blank		×			anti-take and the take
Trip Blank					
					م بند م بند م بند م
đ.					
					ASAP TAT
8.					
9.					ASAP TAT
10.					
Common Parameter/Container - Preservation Key	Relinquished By:			Received by:	Date Time
#1 - Volatile Organics = BTEX, GRQ, TPH, 8260 Full List #2 - Semivolatile Organics = PAHs, PCP, Dioxins, 8270 Full List, Herbicide/Pesticide/PCBs	Relinquished By:		/(8/15 16:30 Date Time	Received by:	Date Time Date Time
 #3 - General = pH, Chloride, Fluoride, Alkalinity, TSS, TDS, TS, Sulfate #4 - Nutrients = COD, TOC, Phenols, Ammonia 	Samples Shipped VIA:	ir Freight DFederal I	Express 🖾 Sampler	Air Bill Number:	1 jay 12
Nitroven TKN		Other:	to Lab: Yellow - Field	Copy; Pink - Lab Coordinator	00
			· ···· ····	• • · · · · · · · · · · · · · · · · · ·	12 - 12

2

т оЯр т

https://www.fedex.com/shipping/html/en//PrintIFrame.html

8/18/2015

Sample Receipt Checklist

Client Name: BARRENG-MN	Date/Time I	Received: <u>20-A</u>	ug-15 09:00		
Work Order: 15081052		Received b	y: <u>NML</u>		
Checklist completed by Diane Shaw 2 eSignature	20-Aug-15 Date	Reviewed by:	Tom Beamish eSignature		20-Aug-15 Date
Matrices: Soil Carrier name: FedEx				ľ	
Shipping container/cooler in good condition?	Yes	No 🗌	Not Present		
Custody seals intact on shipping container/cooler?	Yes	No 🗆	Not Present	\checkmark	
Custody seals intact on sample bottles?	Yes	No 🗌	Not Present	\checkmark	
Chain of custody present?	Yes	No 🗌			
Chain of custody signed when relinquished and received?	Yes	No 🗌			
Chain of custody agrees with sample labels?	Yes	No 🗌			
Samples in proper container/bottle?	Yes	No 🗌			
Sample containers intact?	Yes	No 🗌			
Sufficient sample volume for indicated test?	Yes	No 🗌			
All samples received within holding time?	Yes	No 🗌			
Container/Temp Blank temperature in compliance?	Yes	No 🗌			
Sample(s) received on ice? Temperature(s)/Thermometer(s):	Yes 1.2/1.2 c	No 🗌	SR2		
Cooler(s)/Kit(s):					
Date/Time sample(s) sent to storage:	8/20/201	5 11:10:38 AM			
Water - VOA vials have zero headspace?	Yes	No	No VOA vials subm	iitted 🔽	
Water - pH acceptable upon receipt?	Yes	No 🗌	N/A		
pH adjusted? pH adjusted by:	Yes	No 🗌	N/A		

Login Notes:

Client Contacted:	Date Contacted:	Person Contacted:
Contacted By:	Regarding:	
Comments:		
CorrectiveAction:		
		SI

December 01, 2015

Mr. James E. Taraldsen Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435

Work Order Number: 1505276 RE: 49161286

Enclosed are the results of analyses for samples received by the laboratory on 11/25/15. If you have any questions concerning this report, please feel free to contact me.

Results are not blank corrected unless noted within the report. Additionally, all QC results meet requirements unless noted.

All samples will be retained by Legend Technical Services, Inc., unless consumed in the analysis, at ambient conditions for 30 days from the date of this report and then discarded unless other arrangements are made. All samples were received in acceptable condition unless otherwise noted.

WI Accreditation #998022410

Prepared by, LEGEND TECHNICAL SERVICES, INC

> Bach Pham Client Manager II bpham@legend-group.com

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Barr Engineering Co.	Project: 49161286	
4700 W 77th St	Project Number: 49161286 015 001 Field Booster 23	Work Order #: 1505276
Minneapolis, MN 55435	Project Manager: Mr. James E. Taraldsen	Date Reported: 12/01/15

ANALYTICAL REPORT FOR SAMPLES

Sample ID	La	boratory ID	Matrix	Date Sampled	Date Received
FB 23 Stockpile-1	1	505276-01	Soil	11/24/15 13:45	11/25/15 09:30
Shipping Container Inform	ation				
Default Cooler	Temperature (°C): 1.4				
Received on ice: Yes Received on melt water: No Custody seals: Yes	Temperature blank was pro Ambient: No	esent		d on ice pack: No ble (IH/ISO only): No)

Case Narrative:

The dry weight correction and dilution applies to the sample result, MDL, and RL.

Ethylbenzene was present in the method blank between the MDL and RL for the BTEX analysis.

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

DRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
FB 23 Stockpile-1 (1505276-01) Soil	Sampled: 1	1/24/15	13:45 R	eceived: 11/2	5/15 9:30					
Diesel Range Organics	7.2	7.7	2.3	mg/kg dry	1	B5L0107	12/01/15	12/01/15	WI(95) DRO	J
Surrogate: Triacontane (C-30)	110			70-130 %		"	"	"	"	

ĺ	Barr Engineering Co.	Project:	49161286		
	4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
	Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

WI(95) GRO/8015D Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
FB 23 Stockpile-1 (1505276-01) Soil	Sampled:	11/24/15	13:45 Re	eceived: 11/2	5/15 9:30					
Benzene	<0.0011	0.0037	0.0011	mg/kg dry	1	B5K2508	11/25/15	11/25/15	WI(95) GRO	
Ethylbenzene	0.019	0.016	0.0048	mg/kg dry	1		"	"		B-01
Toluene	<0.0056	0.018	0.0056	mg/kg dry	1		"	"	"	
Xylenes (total)	<0.019	0.065	0.019	mg/kg dry	1		"	"	"	
Surrogate: 4-Fluorochlorobenzene	103			80-150 %		"	"	"	"	

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

Barr Engineering Co. 4700 W 77th St Minneapolis, MN 55435			ct Number:	49161286 49161286 r: Mr. Jame	6 015 001 F		er 23			1505276 12/01/15
Minneapolis, MN 55435 Project Manager: Mr. James E. Taraldsen Date Reported: 12/01/15 PERCENT SOLIDS Legend Technical Services, Inc.										
Analyte	Result	RL	MDL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
FB 23 Stockpile-1 (1505276-01) Soi	Sampled: 1	1/24/15	13:45 Re	ceived: 11/2	25/15 9:30					
% Solids	73			%	1	B5L0112	12/01/15	12/01/15	% calculation	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

DRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5L0107 - Sonication (Wisc DRO)										
Blank (B5L0107-BLK1)				I	Preparec	l & Analyze	ed: 12/01/1	5			
Diesel Range Organics	< 1.7	5.6	1.7	mg/kg wet							
Surrogate: Triacontane (C-30)	18.2			mg/kg wet	16.0		114	70-130			
LCS (B5L0107-BS1)					Preparec	I & Analyze	ed: 12/01/1	5			
Diesel Range Organics	66.8	5.6	1.7	mg/kg wet	64.0		104	70-120			
Surrogate: Triacontane (C-30)	17.1			mg/kg wet	16.0		107	70-130			
LCS Dup (B5L0107-BSD1)					Preparec	I & Analyze	ed: 12/01/1	5			
Diesel Range Organics	67.4	5.6	1.7	mg/kg wet	64.0		105	70-120	0.832	20	
Surrogate: Triacontane (C-30)	17.7			mg/kg wet	16.0		111	70-130			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

WI(95) GRO/8015D - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5K2508 - EPA 5035 Soil ())					-				
Blank (B5K2508-BLK1)		,			Prepared	I & Analyze	ed: 11/25/1	15			
Benzene	< 0.00082	0.0027	0.00082	mg/kg wet	•	,					
Ethylbenzene	0.00951	0.012	0.0035	mg/kg wet							B-02, J
Toluene	< 0.0041	0.014	0.0041	mg/kg wet							
Xylenes (total)	< 0.014	0.047	0.014	mg/kg wet							
Surrogate: 4-Fluorochlorobenzene	19.9			ug/L	20.0		99.3	80-150			
LCS (B5K2508-BS1)					Prepared	I & Analyze	ed: 11/25/1	15			
Benzene	106			ug/L	100	-	106	80-120			
Ethylbenzene	109			ug/L	100		109	80-120			
Toluene	110			ug/L	100		110	80-120			
Xylenes (total)	338			ug/L	300		113	80-120			
Surrogate: 4-Fluorochlorobenzene	21.6			ug/L	20.0		108	80-150			
LCS Dup (B5K2508-BSD1)					Prepared	I: 11/25/15	Analyzed	I: 11/26/15			
Benzene	104			ug/L	100		104	80-120	2.26	20	
Ethylbenzene	106			ug/L	100		106	80-120	3.10	20	
Toluene	108			ug/L	100		108	80-120	2.14	20	
Xylenes (total)	328			ug/L	300		109	80-120	2.74	20	
Surrogate: 4-Fluorochlorobenzene	21.6			ug/L	20.0		108	80-150			
Matrix Spike (B5K2508-MS1)	5	Source: 1	1505276-	01	Prepared	I & Analyze	ed: 11/25/1	15			
Benzene	106			ug/L	100	<	106	80-120			
Ethylbenzene	110			ug/L	100	0.277	110	80-120			
Toluene	111			ug/L	100	<	111	80-120			
Xylenes (total)	343			ug/L	300	0.129	114	80-120			
Surrogate: 4-Fluorochlorobenzene	21.8			ug/L	20.0		109	80-150			

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

PERCENT SOLIDS - Quality Control Legend Technical Services, Inc.

Analyte	Result	RL	MDL	Units	Spike Level	Source Result	%REC	%REC Limits	%RPD	%RPD Limit	Notes
Batch B5L0112 - General Preparation											
Duplicate (B5L0112-DUP1)	S	ource: '	1505198-0	2	Prepared	& Analyze	ed: 12/01/1	5			
% Solids	86.0			%		86.0			0.00	20	
Duplicate (B5L0112-DUP2)	S	ource: '	1505274-0	1	Prepared	& Analyze	ed: 12/01/1	5			
% Solids	54.0			%		51.0			5.71	20	
Duplicate (B5L0112-DUP3)	S	ource: '	1505276-0	1	Prepared	& Analyze	ed: 12/01/1	5			
% Solids	74.0			%		73.0			1.36	20	

Barr Engineering Co.	Project:	49161286		
4700 W 77th St	Project Number:	49161286 015 001 Field Booster 23	Work Order #:	1505276
Minneapolis, MN 55435	Project Manager:	Mr. James E. Taraldsen	Date Reported:	12/01/15

Notes and Definitions

J Parameter was present between the MDL and RL and should be considered an estimated value

B-02 Target analyte was present in the method blank between the MDL and RL.

- B-01 Analyte was present in the method blank. Sample result is less than or equal to 10 times the blank concentration.
- < Less than value listed
- dry Sample results reported on a dry weight basis
- NA Not applicable. The %RPD is not calculated from values less than the reporting limit.
- MDL Method Detection Limit; Equivalent to the method LOD (Limit of Detection)
- RL Reporting Limit
- RPD Relative Percent Difference
- LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)
- MS Matrix Spike = Laboratory Fortified Matrix (LFM)

Chain of Custody 4700 West 77th Street Screet						-			Number of Containers/Preservative								coc_/_of_/				
ARR 4700 West 77th Minneupolis, M.	Street N 3543	EGAND3		1	5051	the		F	-	Wa	iter		-		-	Soil	-	-	-	coc _/_	of
(932) 832-2690		<u></u>					1								1		I		Pr	oject R	29
reject Number 4910	132	8	pev	BP 11/2	5115 K	n							12751				I				
rujeet Nume: FB 23	St	WO.	16-1						N		(BCI)		110		4)		(interest		Ph Q	oject C Contact: 🔍	JET
ample Chigination State WL		1					t		2# (p>	(10	anica	The second	111.00	Mallan M	Serve:	cd) #	an in		(un		
OC Number.			11222		N	0 4	540	7 1	reserv	als (HNO ₂).	C OF	(HOSSIA)	tared MarON at	(Include MatCHI)	addus:	10101	solids tplante vial, a		i Se	oject C Contact: <u>S</u> mpled by)	ET, PL
OC Aumper.	1		Depth	Zallasta		Matria		HC B	dans.	der	Rang		Inter	BYBX	Tarred Variation	(and)	Ad A		Numbe	ŕ	100
Location	Start Depth	Stop Depth	Linit (m.ft. or m.)	Collection Date (mm/dd/yyyy)	Collection Time (fdcmm)	Water	Comp	OC VOCE	SVOC:	-	Dresel Range Organica	NULTER	VDCs	GHO, B	M(G) ((measurement)	SVOCs (unpreterved)#2	Hotel		The state of the state	theirindory: <u>LC</u>	prod - Te
2 22 Starrage 1				1/24/5	13:45	X	X						T ₁		1		11	T,	B	TEX, DRO	3. 7. ma
3 23 Starkpile-1	-			1915	10.7)		1						T.				34		1	2 hold	Somp
				-			+		+		-		+		+				+	*	1
1							+				+	+			+		+		+		-
	-	_					1			ł		+			+		+				11
	-	1		17				-			+	+	+		+	1	-		+	-	-
		Ŧ			-				+	+		+	++		-	-		-		1 0	
			_	-								4			-					(A)	1
				52																1VA	1 1
																				$\left(\right)$	/
1. 19				0			1								1						
ommon Parameter/Container	- Preser	vation I	Ley K	ellinguptied By:	1 1	0	her?	Day		Th	me	Roce	ived by	F	-	-		<u> </u>	1.	Date	Time
- Volattle Organics = BTEX, GRU Semuvolatile Organics = PAHs, t Full List, Herbicide/Pesticide/PC	1 TPH, 3. PCP, Dia	sol) Fall (44 10	James By	And	1,000	100	Gun	<i>[</i> 5	15	· AC	Rece	treat In	K	/	-				111251	5 93J
 General = pH, Chloride, Floorid TDS, TS, Sulfate Nutrients = COD, TOC, Phenols 	e, Alkalin		s	imples Shipped V	VIA: 🗔 Áŭ F	- 1.1	6. p. l.	l Expre	2968	San	oplet	Au I	3m Nu	mber	;				24	122	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Distribution: White-Original Accompanies Shipment to Lab; Yellow - Field Copy: Pink - Lab Coordinator

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.