May 15, 2017

Mr. Greg Michael Wisconsin Department of Natural Resources 2300 North Martin Luther King Jr. Drive Milwaukee, WI 53212

RE: Soil Placement Approval Request for the Proposed VA Urgent Care Addition Located at 5000 West National Avenue in Milwaukee, Wisconsin — DNR BRRTs # 02-41-563846; FEC Project No. 170402

Dear Mr. Michael:

On behalf of Progressive Construction Services, LLC (PCS), *Friess Environmental Consulting, Inc. (FEC)* submits this letter to request that the Wisconsin Department of Natural Resources (DNR) grant a ch. NR 718.12 Wisconsin Administrative Code (WAC) approval for approximately 3,400 cubic yards (CY) of soil scheduled for excavation from the above-referenced property. The soils are proposed to be disposed of at the R&R excavating site ("the "Site") located near the intersection of Highway 60 and Highway I in the Town of Cedarburg.

This letter provides a description of the generator site history and re-development plans, presents a summary of characterization data obtained to date for the generator site, and provides our conclusions and recommendations regarding the disposal of the soils. This letter will also discuss the continued protectiveness of human health and the environment through management of these soils and the low hazard risk to remove and place the soils at the R&R Excavating Site.

R&R Excavating Site

The Site is located near the intersection of Highway 60 and Highway I in the Town of Cedarburg. The Site totals approximately 39.5-acres of which 11 acres had historically been quarried and subsequently filled as part of the quarry reclamation plan. The property is bordered by vacant agricultural land to the south and east, former quarries to the north and west, and Highway I farther to the east.

The Site meets the locational criteria outlined in ch. NR 718.12(1)(c) WAC. The soils placed at the R&R Excavating site have not been and will not be located within a floodplain; within 100 feet of any wetland or critical habitat area; within 300 feet of any navigable river, stream, lake, pond or flowage; or within 100 feet of any on-site water supply well or 300 feet of any off-site water supply well. In addition, soils have not been placed and will not be placed within 3 feet of the groundwater table. Information related to the Site as it relates to the ch. NR 718.12 locational criteria has been provided to and approved by the DNR.

The soils proposed to be placed at the Site as part of this ch. NR 718.12 and/or LHE approval request will be placed at a depth of approximately 20 feet below the proposed finished grade and at a distance greater than 3 feet above the groundwater table at the Site. Based on the relatively insoluble and/or highly immobile nature of the contaminants, the planned capping of the Site, and the increased distance from the groundwater table at the disposal site versus the generator site, we request an exemption to the locational criteria of ch. NR 718.12(1)(c)6 to allow placement of the contaminated soil at a depth greater than the depth of the original excavation from which it was removed.

Although it is not a condition of the approved reclamation plan, nor does the Site have groundwater quality exceedances, the owner of the Site will accept placement of the Site on the DNR GIS registry following completion of the reclamation plan as part of the ch. NR 718.12 approval to accept soils at the Site. The GIS registry would prohibit construction of a potable well on the Site without prior DNR approval, document soil conditions on the Site, and implement a cap maintenance plan (CMP) for the Site. No development is planned as part of the reclamation.

Response Action (Generator) Site Description

The development project is located at 5000 West National Avenue in Milwaukee, Wisconsin. Several environmental studies have been conducted at the Site including Phase I and II Environmental Site Assessments and soil management sampling.

Geotechnical and environmental site assessments have also been conducted in the area of the proposed Urgent Care addition. Based on information obtained during the installation of geotechnical soil borings, the geology beneath the site generally consists of reworked silty clay and silty sand with few sand layers to a maximum depth of approximately 15 feet bgs. Native gray clay was encountered beneath the fill soils. Groundwater was encountered at a depth of about 20 feet bgs. Perched water may be present; however groundwater will not be encountered during construction.

The results of soil sampling conducted in other areas (parking structures) did indicate concentrations of polynuclear aromatic hydrocarbons (PAHs) and lead. Based on a review of the geotechnical study, the soils in the area of the Urgent Care addition are similar. As such the soils will likely require soils management during construction. As discussed above, additional sampling was conducted to evaluate the soils in the vicinity of the proposed Urgent Care addition and confirm that soil impacts are not a significant risk to groundwater.

On May 3, 2017, FEC conducted six (6) soil probes to assist with the evaluation of soils to be removed during the development. The total depth of the excavation is approximately 5 feet bgs along the footing lines and will extend deeper at locations of pilings. Sixteen (16) soil samples were collected along the footing lines and piling locations in the area of the proposed addition and submitted for

analytical testing of PAHs, PVOCs, and/or lead. The soil samples collected are considered representative of the soils to be disposed of at the R&R Excavating site. In addition, a soil sample with concentrations of PAHs above the DNR residual contaminant levels (RCLs) for the protection of groundwater were submitted for water leach testing to confirm the soils are not a significant risk to groundwater. The sampling locations are shown on Figure 2. The results of the previous soil analytical testing conducted by FEC in October 2016 (parking structure) and the results of the recent evaluation conducted by FEC for the Urgent Care generator site are attached.

We believe that the soil sampling conducted for the geotechnical and environmental assessments has sufficiently characterized the soils to be removed for disposal. In addition, we believe that a soil sample was collected for analysis for each 100 cubic yards of contaminated soil for the first 600 yards and an additional sample was collected for analysis for each additional 300 cubic yards to be removed thus meeting the requirements of NR 718.12 (e), WAC.

The soil proposed for placement is excess soil to be generated during excavation for building construction as part of redevelopment. The development will involve the construction of the addition to the VA Urgent Care facility. Reworked fill is present on the site. Information regarding the development plans is included with this request.

Based on the remedial actions already completed on the site and the results of the recent subsurface explorations, there are no suspected or significant sources of impact to the soil. Although the intent is to minimize any off-site transport, approximately 3,400 CY of soil are anticipated to require off-site management. The fill soils can be managed with a ch. NR 718.12 approval for disposal at the R&R Excavating site. Based on a review of the analytical data from the generator site, the concentrations are less, as compared to those soils placed at the R&R Excavating Site under previous disposal approvals.

Development Plans

The Clement J. Zablocki Veterans Affairs Urgent Care Center intends to erect a two story addition to be located to the south of their existing facility. Construction is anticipated to begin in June 2017 and be completed by January 2018. The site plan for the proposed development is attached.

It is anticipated that approximately 3,400 CY of material will be generated during construction of the parking lot, foundations, utility construction and site grading that is geotechnically unsuitable to be reused at the site. These soils will be disposed of at the R&R Excavating site. The surplus fill soils that cannot be reused at the site will require export. The historic fill soils are proposed for disposal through a ch. NR 718.12 exemption.

The earthmoving activities will be monitored for unanticipated environmental conditions (such as a buried tank or barrel, strong unidentifiable odors,

discolored soil, or volatile vapors) and to manage the materials appropriately, if necessary.

Conclusions

Approximately 3,400 CY of soils would originate from the generator site. The soils contain impacts that are likely attributable to the fill soils. The soils to be removed are associated with footing, foundation, and utility excavation related to the construction of the addition to the VA urgent care facility. The soils cannot be transported off-site as clean fill.

We request that the DNR grant the ch. NR 718.12 exemption approval, as well as an exemption to ch. NR 718.12(1) (c) 6, for the disposal of soil from the proposed development at the R&R Excavating Site.

We appreciate your assistance with this request. If you have any questions or comments regarding this submittal, please contact us at (414) 228-9815.

Respectfully,

Friess Environmental Consulting, Inc.

/wat

Trenton J. Ott Project Manager

Richard W. Frieseke

Richard W. Frieseke, P.E. President

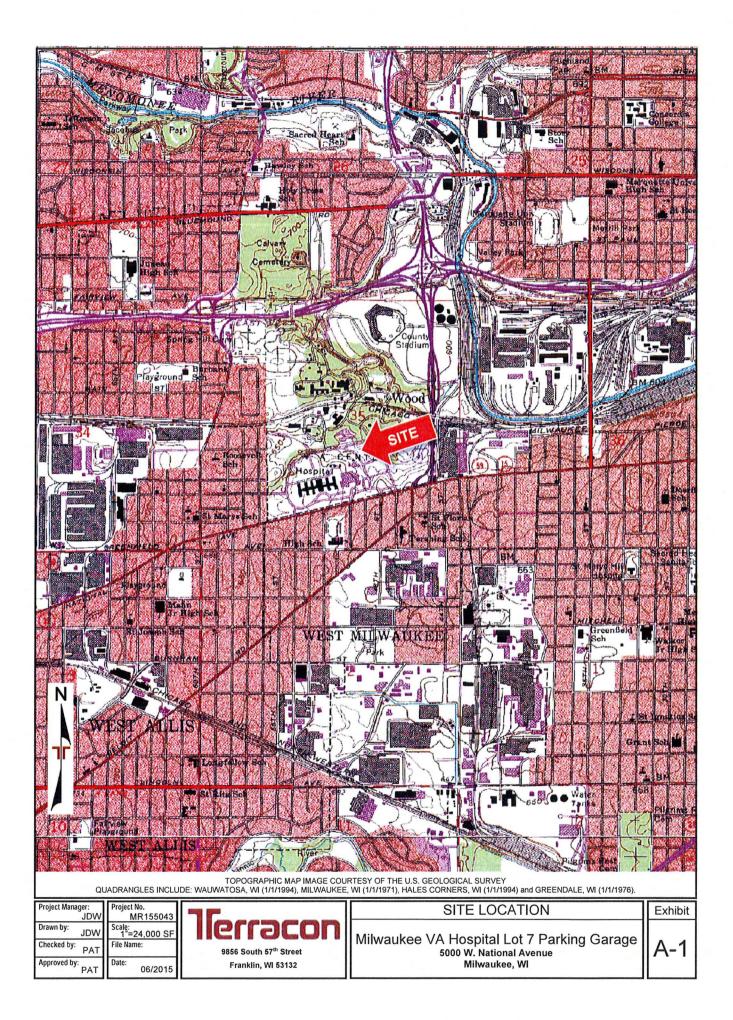
170402a

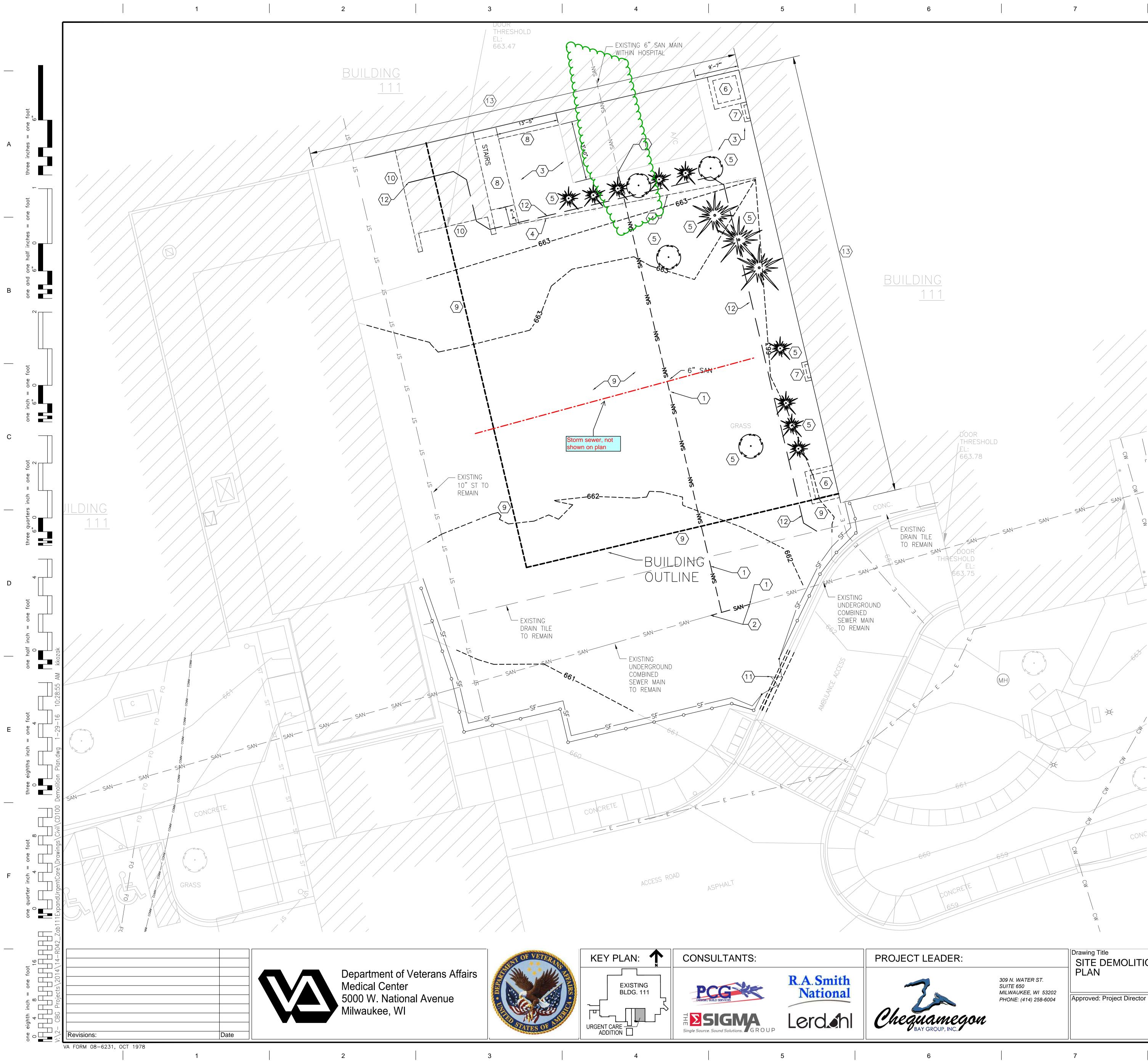
Project Contacts

Disposal Site

R&R Excavating Site County Road I Cedarburg, WI 53012 SE ¼ of the NE ¼, Section 22, Township 10 N, Range 21 E WTM Coordinates: 683133, 318082; 43.317884 Latitude, -87.988200 Longitude

Charmoli Holdings, LLC Mr. Dick and Maxine Charmoli 320 Douglas Lane Cedarburg, WI 53012 (262) 377-5736


Friess Environmental Consulting, Inc. Mr. Rick Frieseke 6637 North Sidney Place Milwaukee, WI 53209 (414) 228-9815


Generator Site

Proposed VA Parking Structure CLEMENT J. ZABLOCKI VA MEDICAL CENTER Mr. Jim Beier Attn: Facility Management Division 5000 W. National Avenue Building 70, Room 250E Milwaukee, Wisconsin 53295 Phone: (414) 384-2000 Southwest ¼ Southwest ¼ Section 20, Township 7 North, Range 22

Progressive Construction Services, LLC Mr. Ken Wasemiller 944 North Parker Drive Janesville, WI 53545 (608) 295-8841 **Generator Site Information**

- 1. Site Diagrams
- 2. Giles Geotechnical Study July 2015
- 3. VA Sampling Data December 2016
- 4. FEC Sampling Data May 2017
- 5. Construction Plans

KEYED NOTES

- 1 REMOVE SANITARY/STORM PIPING ONLY AFTER PER PLUMBING PLANS. PROTECT EXISTING PIP RECONNECTION. CONTRACTOR TO NOTIFY VA P
- $\langle 2 \rangle$ modify existing san main for installation
- $\overline{3}$ REMOVE EXISTING CONCRETE EQUIPMENT PAD
- $\langle 4 \rangle$ REMOVE EXISTING FENCE AND SUPPORT.
- 5 REMOVE TREES AND BUSHES
- 6 MODIFY ACCESS/AREA WELL STRUCTURE TO 6 FLOOR ELEVATION. PROVIDE NEW STEEL GRATE
- $\langle 7 \rangle$ remove concrete air vent well. Protec $\langle 8 \rangle$ REMOVE EXISTING STAIRWELL AND CONCRETE
- 9 REMOVE GRADE TO BELOW TOS 647.5'+/-. STRUCTURAL DRAWINGS FOR ELEVATIONS. S SPECIFICATION FOR INSTRUCTIONS OF WASTE
- $\langle 10 \rangle$ REMOVE REMAINING STRUCTURE FOR ENTRY, AND ACCESSORIES.
- (11) REMOVE CURB AND GUTTER FOR JOB SITE EP PROTECT. PROVIDE TEMPORARY RAMP FOR V ENTRY.
- (12) REMOVE DRAIN TILE PIPING. PROTECT EXISTING TO REMAIN FOR RECONNECTION.
- $\langle 13 \rangle$ PROTECT EXISTING BUILDING WINDOWS WALLS DURING DEMOLITION.

UTILITY NOTES

- 1. UTILITIES SHOWN ARE AS REPORTED TO DESIGN EXISTING UTILITY BASE PLAN. NO ATTEMPTS HAV UNCOVER, OR EXPOSE UNDERGROUND UTILITIES DEPTH, CONDITION, OR EXACT LOCATION.
- 2. CONTRACTOR IS SOLELY RESPONSIBLE TO PROVI DIGGER'S HOTLINE AND PAY FOR PRIVATE UTILITY LESS THAN THREE WORKING DAYS PRIOR TO COM

UTILITY ISSUES

1. IF UNDOCUMENTED BURIED UTILITIES ARE ENCOU IMMEDIATELY CALL GRAPHICS AND COR: VA GRAPHICS CENTER ZABLOCKI VA

PHONE: 414-384-2000 EXT. 41010

PRIVATE UTILITY COMPA FAMILIAR WITH VA GROU

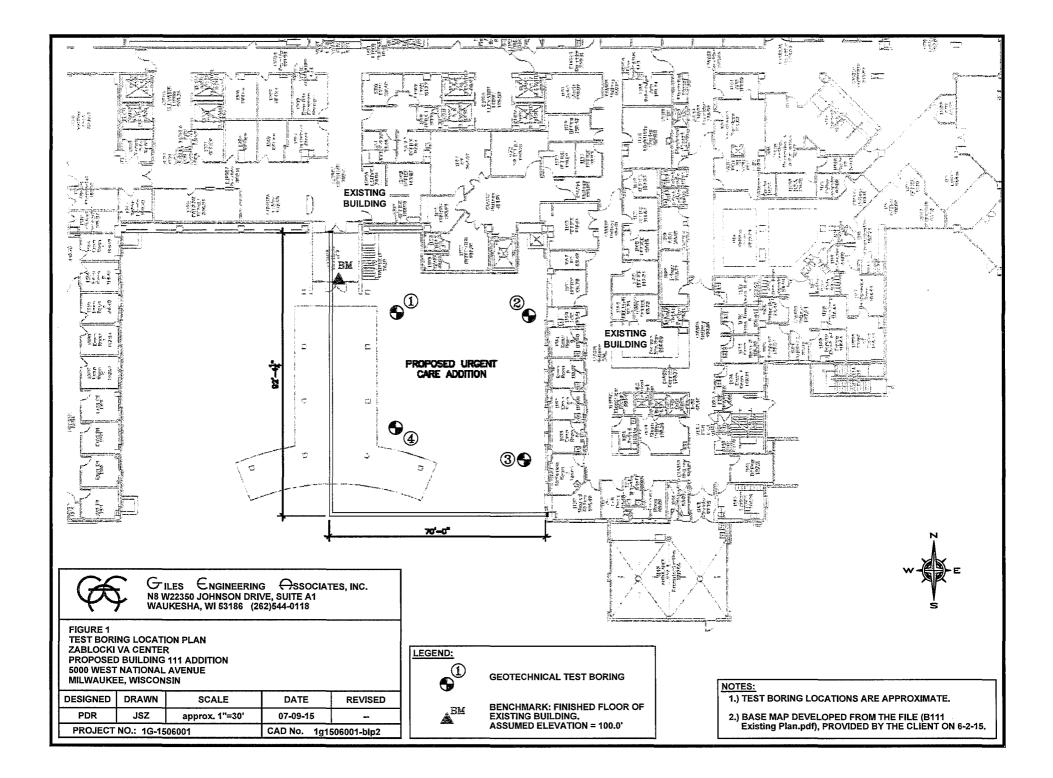
ALL LINES UTILITY SERVICES 414-302-9750 OR PRIVATE LINES INC. 888-246-0220

GENERAL NOTES

- 1. MAINTAIN ACCOUNTABILITY FOR ALL TOOLS ON J REMAIN IN CONTRACTOR'S POSSESSION OR WITHIN ALL TIMES DUE TO THE ENVIRONMENT OF THE J
- 2. CONTRACTOR SHALL REFERENCE PHASING PLANS CONSTRUCTION.

TO OBTAIN LOCATION PARTICIPANTS' UNDERG FACILITIES BEFORE DIG IN WISCONSI

CALL DIGGERS H 1-800-242-85 TOLL FREE TELEFAX 1-800-338 TDD (FOR HEARING IMPAIRED)


WISCONSIN STATUTE 182.0 REQUIRES MINIMUM OF 3 NOTICE BEFORE YOU E

SITE PLA / 1/8" = 1'-0"

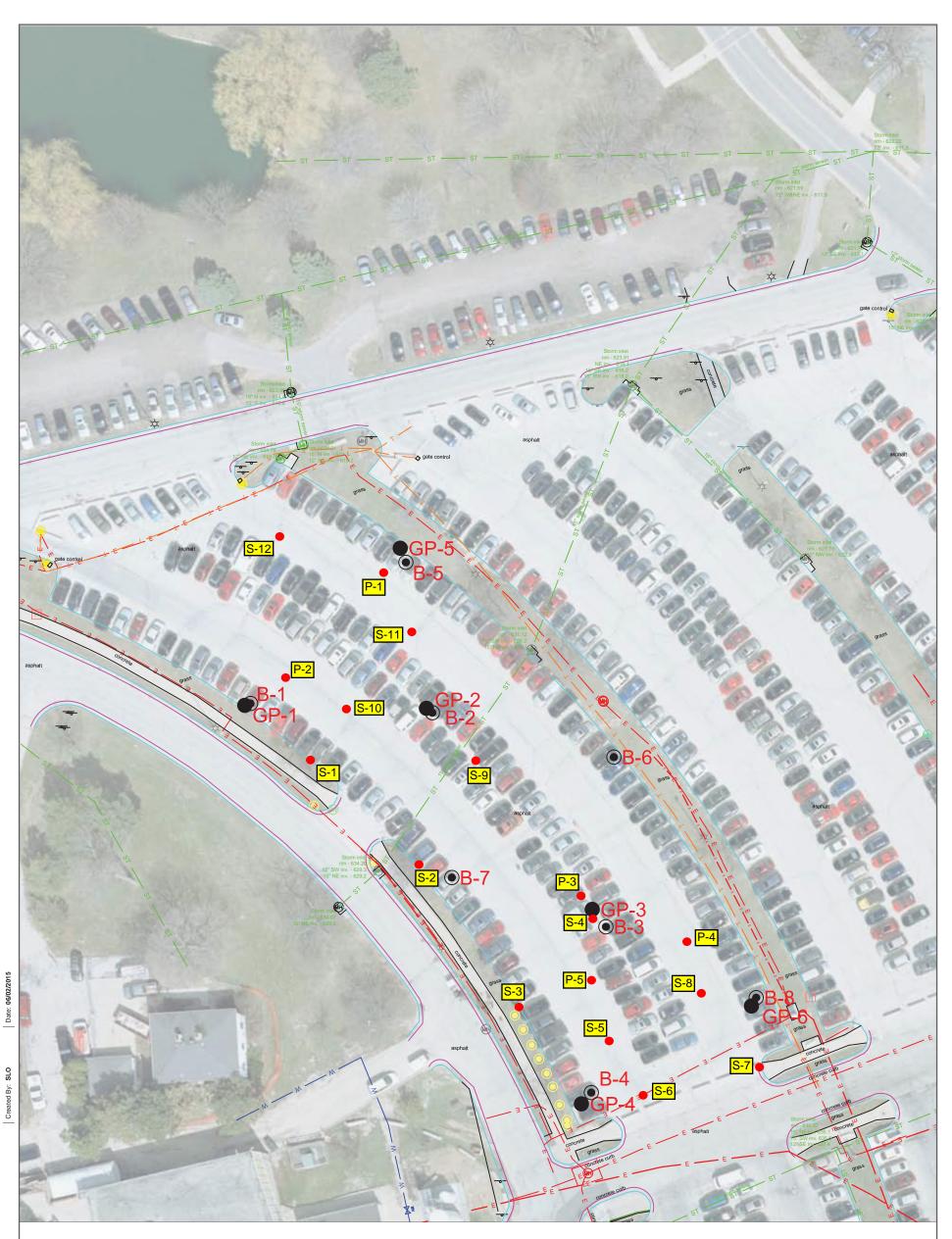
				E
Drawing Title	Project Title			Project Numb
SITE DEMOLITION	111 EXPAND U	RGENT CA	ARE	695-402
PLAN				Building Num
				111
Approved: Project Director	VA Medical Cer	nter Milwau	ikee WI	Drawing Num
	Date	·		CD1
	January 28th, 2016			
		HFB	ELO	
				_
7	8			9

R NEW PIPING HAS BEEN INSTALLED	
PIPING TO REMAIN FOR FOR OUTAGE. N OF NEW 48" MANHOLE.	
O COMPLETE	
	A
6" ABOVE UNFINISHED SPACE FINISHED	
TE. SIMILAR TO DETAIL 5 ON SHEET C501. CT AIR VENT TO BE REUSED.	
STRUCTURE.	
COORDINATE WITH ARCHITECTURAL AND EE CONSTRUCTION WASTE SOIL REMOVAL.	
INCLUDING FOUNDATION, FRAMING,	
ENTRANCE TO VEHICLE	В
NG PIPING	
AND	
TEAM AND INDICATED ON /E BEEN MADE TO EXCAVATE, TO VERIFY THEIR SIZE,	
IDE ADVANCED NOTICE TO	С
OMMENCEMENT OF EXCAVATION.	
UNTERED DURING EXCAVATION,	
ANIES	D
UNDS	
JOBSITE. TOOLS SHALL	
HIN SECURED CONTAINER AT JOB SITE.	E
S FOR COORDINATION OF	E
ON OF RGROUND	
E YOU SIN	
HOTLINE	
8-3860 1-800-542-2289 0175 (1974) WORK DAYS	
EXCAVATE.	F
	•
AN FULLY SPRINKLERED	
BID DOCUMENTS	
0-402 Office of	
111 Facilities Management	
D100 Department of	
Veterans Affairs	

BORING NO. & LOCATION: 1	T	EST	BOI	RING	LO	G		1			
SURFACE ELEVATION: 662.5 feet	ZABLOCKI	VA CEN	TER	BUILDIN	IG 111	ADDÍ	TION		$\left(\right)$	\neq	$\widehat{\mathbf{x}}$
COMPLETION DATE: 07/01/15	Ę	5000 W. MILWAU				Ξ		1			
FIELD REP: KEITH FLOWERS		PROJEC	CT NC): 1G-15	06001			<u> </u>	1550	CIATE	es, INC.
MATERIAL DESCRIPTI	ON	Depth (ft)	Elevation	Sample No. & Type	N	Q _u (tsf)	Q _p (tsf)	Q _s (tsf)	W (%)	PID	NOTES
9"± Dark Brown Silty Clay, little Sand a Organic Matter (Topsoil Fill) - Moist	and J	-	F	1-SS	6						
Brown and Dark Brown Silty Clay, little			- 660	2-SS	11		1.3		12		
Sand and Gravel, trace Organic Matter	r (Fill) -		<u>}</u>	3-SS	13				11		
		-		4-SS	12				12		
-		10 -		5-88	8	2.1	2.6		20		
Black Silty Clay, trace Sand and Orgar (Fill) - Moist	nic Matter		- 650	6-SS	13		2.0		16		
Brown and Gray Silty Clay, some Sand Gravel (Fill) - Moist	d and	-		7-SS	10				11		
- Black and Dark Brown Silty Clay, trace and Organic Matter (Buried Topsoil) - I	Sand Moist	- -	Ļ	8-SS	11		3.0		29		LOI= 7%
Gray and Yellow-Brown mottled Silty C Sand - Moist	Clay, trace	20 -		9-SS	11	2.3	2.0		29		
 Brown to Gray-Brown Silty fine to med Moist 	ium Sand		- 640	10-SS	12				14		
Gray Silty fine to medium Sand with Si lenses - Moist to Wet	Ity Clay	- ⊻ 30 -		11-SS	15				14		
- Gray Clayey Silt, little to some Sand w fine to medium Sand lenses - Moist to -	ith Silty Wet		- 630 -	12-SS	17	1.8	2.3		18		
		40 -	- 620	13-SS	17	1.0	1.0		20		
5 - Gray Slity Clay, trace Sand and Grave	I - Moist		- 020	14-SS	9	2.0	1.9		15		
Boring Terminated at about 46 feet (EL	616.5')		I			L	1.3			L	
Water Observ	vation Data						Rer	narks:			
Gray Slity Clay, trace Sand and Grave Boring Terminated at about 46 feet (EL Boring Terminated at about 46 feet (EL Water Observ Y Water Encountered During Drill Y Water Level At End of Drilling: Cave Depth At End of Drilling: Y Water Level After Hours: Cave Depth After Hours:	None 46 ft. _ft.			LOI= Loss	-on-Igni	tion	,		(1997) - 199 - 199 - 1		

Changes in strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between test borings. Location of test boring is shown on the Boring Location Plan.

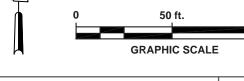
BORING NO. & LOCATION: 2	Т	EST	BOF	RING	LO	G	· · · ·				
SURFACE ELEVATION:	ZABLOCKI						TION	-	(\sum	
662.6 feet COMPLETION DATE:	,	-000 \W			/ [] N 11 1 [_				$ \mathcal{P} $	γ
07/01/15		5000 W. I MILWAU				=					NEERING
FIELD REP: KEITH FLOWERS								4	ASSO	CIATE	ES, INC.
		PROJEC	<u> </u>		06001						· · · · · · · · · · · · · · · · · · ·
MATERIAL DESCRIPT	ON	Depth (ft)	Elevation	Sample No. & Type	N	Q _u (tsf)	Q _p (tsf)	Q _s (tsf)	W (%)	PID	NOTES
8"± Dark Brown Silty Clay, little Sand, Organic Matter (Topsoil Fill) - Moist	trace	-	ŀ	1-SS	6				12		
Brown, Gray-Brown and Dark Brown S little to some Sand and Gravel (Fill) - I	Silty Clay, Moist		- 660	2-SS	7	1.8	2.0		19		
		5-	-	3-SS	9	2.5	2.4		20		
-			- 655 -	4-SŞ	10		4.5+		17		
-		10 -	-	5-SS	13		2.2		18		
Dark Brown to Black Silty Clay, trace Gravel and Organic Matter (Fill) - Mois	Sand,		- - 650	6-SS	14	3.6	3.7		20		
		- 15 -	-	7-SS	12		3.4		20		
-			- - 645	8-SS	13		3.1		24		LOI= 5%
Black Silty Clay, trace Sand and Orga (Buried Topsoil) - Moist		- 20 -		9-SS	11						(a)
Gray-Brown and Yellow-Brown mottlee Clay, little Sand - Moist	d Silty	-	-		•••						
		-	- 640 -								
		25 -	_	10-SS	11		4.0		22		-
_ Boring Terminated at about 26 feet (E	L. 636.6')										
2.2											
			<u> </u>	<u> </u>		.,					
Water Observ				(a) No Sar	nola De	0	Rer	marks:			
$\frac{1}{2}$ Water Level At End of Drilling:	None			LOI= Loss							
Water Observ Water Observ Water Encountered During Drill Water Level At End of Drilling: Cave Depth At End of Drilling: Water Level After Hours: Cave Depth After Hours:	_ft.				5,7 igill						
Cave Depth After Hours:	<u>_ft.</u>										


Changes in strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between test borings. Location of test boring is shown on the Boring Location Plan.

BORING NO. & LOCATION: 3		TES	ТІ	30	RING	LO	G					
SURFACE ELEVATION:	ZABLOC							TION	-	(\sum	$\widehat{}$
662.2 feet											乙	L
COMPLETION DATE: 07/01/15					ONAL A\ , WISCC		=		1			T NEERING
FIELD REP: KEITH FLOWERS		PRO	JEC	T NC): 1G-15	06001				1880	CIATE	ES, INC.
			t)	ç	/pe							
MATERIAL DESCRIPTI	ON		Depth (ft)	Elevation	Sample No. & Type	N	Q _u (tsf)	Q _p (tsf)	Q _s (tsf)	W (%)	Pid	NOTES
12"± Dark Brown Silty Clay, little Sanc Organic Matter (Topsoil Fill) - Moist	land			-	1-SS	6	2.5	3.0		16		
Brown and Gray-Brown Silty Clay, little	e Sand			- 660	2-SS	10	3.5	3.5		18		
and Gravel (Fill) - Moist			1	-	3-SS	11		3.3		17		
_			-	-	4-SS	9	2.1	2.2		17		
			10 —	-	5-SS	7		1.8		20		
Dark Gray-Brown to Black Sandy Clay Gravel, trace Organic Matter (Fill) - Da	r, some amp			- 650	6-SS	32	- 	4.5+		9		
			_	-	7-SS	36	3.5	4.4		19		
Dark Gray Silty Clay, trace Sand and Matter (Buried Topsoil) - Moist	Organic		-	-	8-SS	12	3.3	3.5		28		
 Gray and Yellow-Brown mottled Silty 0 Sand with Calcareous Deposits - Dam 	Clay, trace p to Moist		20 – -	- 640	9-88	17		4.5+		20		
 Gray-Brown Silty Clay, trace to little Si Moist 	and -		-	-	10-SS	17		2.2		17		
Gray Silty fine to medium Sand with S – lenses - Moist to Wet	ilty Clay	₹	- 30 	- - - 630	11-SS	16	2.0	1.5		16		
 Gray to Gray-Brown Clayey Silt, little S Silty fine to medium Sand lenses - Mo 	Sand with ist to Wet	~~~~	-	-	12-SS	11						(a)
8/15 			40 -	- - - 620	13-SS	15				23		
Gray Silty Clay, trace Sand - Moist			-	-	14-SS	15		1.3		14		
Boring Terminated at about 46 feet (El	616.2')	I			17-00	10		1.0		177		
8 Water Observ	ation Data							Rei	narks:			
Gray Silty Clay, trace Sand - Moist Boring Terminated at about 46 feet (El Water Obsern ✓ Water Encountered During Dril Water Level At End of Drilling: Cave Depth At End of Drilling: ✓ Water Level After Hours: Cave Depth After Hours:	None				(a) No Sar	nple Re	covery					
Water Level After Hours:	_ft. _ft.											

Changes In strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between test borings. Location of test boring is shown on the Boring Location Plan.

BORING NO. & LOCATION: 4	Т	ESTI	BOF	RING	LO	G					
SURFACE ELEVATION: 662.1 feet	ZABLOCKI	VA CEN	TER	BUILDIN	IG 111	ADDI	TION		($ \neq $	$\overline{\mathbf{x}}$
COMPLETION DATE: 07/01/15		000 W. I MILWAU						1			VEERING ES, INC.
FIELD REP: KEITH FLOWERS	I	PROJEC	T NO	: 1G-15	06001				1000	GAT	
MATERIAL DESCRIPTI	ON	Depth (ft)	Elevation	Sample No. & Type	N	Q _u (tsf)	Q _p (tsf)	Q _s (tsf)	W (%)	PID	NOTES
14"± Dark Brown Silty Clay, trace to lit Organic Matter (Topsoil Fill) - Moist	tle Sand,	-	-	1-SS	8	5.0	4.5+		15		
Brown and Dark Brown Silty Clay, little Sand and Gravel, trace Organic Matte Damp to Moist	to some r (Fill) -	-	- 660 - -	2-SS	10	3.9	3.9		20		
		5-	-	3-SS	10	2.0	2.1		18		
-		-	- 655 -	4-SS	8		2.8		21		
		10	-	5-SS	8	1.9	3.2		20		
Black and Gray Silty Clay, trace Sand	(Fill) -		- 650 -	6-SS	7		1.3		29		
Dark Gray-Brown Silty fine to coarse S Gravel (Fill) - Moist	Sand, little	15	→	7-SS	9						
Gray Silty fine Sand - Moist			- 645 -	8-SS	9				14		
Brown Clayey Silt, little fine Sand - Mo	ist	20 -	-	9-SS	8	1.2	1.5		16		
-		-	- 640 -								
-		- 25 -	-	10-SS	10	2.2	2.1		23		
Boring Terminated at about 26 feet (El	<i></i> 636.1')										
-											
-											
-											
 - -											
Water Observ	ation Data						Rei	marks:			
Water Observ ✓ Water Encountered During Dril ✓ Water Level At End of Drilling: ✓ Cave Depth At End of Drilling: ✓ Water Level After Hours: ✓ Cave Depth After Hours:	None 19 ft.										
Cave Depth After Hours:	ft.										


Changes in strata indicated by the lines are approximate boundary between soil types. The actual transition may be gradual and may vary considerably between test borings. Location of test boring is shown on the Boring Location Plan.

Environmental Geoprobe Soil Boring Location (April 2015)

Geotechnical Soil Boring Location (April-May 2015)

100 ft.

FIGURE

2

BOREHOLE LOCATION MAP PARKING LOT 7 AT VAMC

5000 W. NATIONAL AVENUE MILWAUKEE, WISCONSIN

Single Source. Sound Solutions. GROUP

Friess Environmental Consulting, Inc. Guide to Abbreviations in Laboratory Data Tables

< = Less than the specified detection limit. DO = Dissolved Oxygen ES = Enforcement Standard DRO = Diesel range organics GRO = Gasoline range organics iu = instrument units MTBE = Methyl-tert butyl ether mV = Millivolts NA = Not analyzed for indicated parameter NM = Not measured for indicated parameter NR = No recovery at this interval. NR 140 ES = Wisconsin Administrative Code NR 140 Groundwater Quality Enforcement Standard NR 140 PAL = Wisconsin Administrative Code NR 140 Groundwater Quality **Preventive Action Limit** NR 720 Groundwater RCL = Wisconsin Administrative Code NR 720 Residual Contaminant Level for the protection of groundwater via the U.S. EPA's Regional Screening Level Web-Calculator per DNR draft document RR-890 NR 720 Non-Industrial DC RCL = Wisconsin Administrative Code NR 720 Non-Industrial Residual Contaminant Level for direct contact via the U.S. EPA's Regional Screening Level Web-Calculator per DNR draft document RR-890 Note: NR 720 values are calculated utilizing the U.S. EPA's Regional Screening Level Web-Calculator per DNR draft document RR-890. NS = No NR 140 ES/PAL or NR 720 RCL standard has been established. ORP = Oxidation-reduction potential PAL = Preventive Action Limit

PID = Photoionization detector

ppb = parts per billion

ppm = parts per million

RCL = Residual contaminant level as established in WAC Chapter NR 720

TMBs = Trimethylbenzenes (combined 1,2,4- and 1,3,5-trimethylbenzene)

umhos = Micromhos

Table 1 Analytical Results - Soil Samples VA Parking Structure (5000 W. National) Milwaukee, Wisconsin

			Acena-	Acena-		Benzo (a) anthra-	Benzo (a)	Benzo (b) fluor-	Benzo (g,h,i)	Benzo (k) fluor-		Dibenzo (a,h) anthra-	Fluor-	_	Indeno (1,2,3-cd)	1-Methyl Naph-	2-Methyl Naph-	Naph-	Phen-	
Sample Location	Sampling Date	Lead (ppm)	phthene (ppb)	phthylene (ppb)	Anthracene (ppb)	cene (ppb)	pyrene (ppb)	anthene (ppb)	perylene (ppb)	anthene (ppb)	Chrysene (ppb)	cene (ppb)	anthene (ppb)	Fluorene (ppb)	pyrene (ppb)	thalene (ppb)	thalene (ppb)	thalene (ppb)	anthrene (ppb)	Pyrene (ppb)
P-1 (0-2)	10/10/2016	<0.52	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-1 (4-6)	10/10/2016	NA	65.0	42.0	300	1,010	1,000	1,280	550	460	940	139	2,160	49.0	53	<14	<11	<12	500	1,820
P-1 (6-8)	10/10/2016	NA	<13	288.0	360	1,400	1,140	1,450	430	520	1,090	154	2,340	86.0	490	<14	19.3J	41	600	1,960
P-1 (8-10)	10/10/2016	23.6	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-2 (0-2)	10/10/2016	5.15	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-2 (4-6)	10/10/2016	NA	410	<12	430	490	490	<u>690</u>	298	234	490	71.0	1,360	410	2856	19.7J	13.7J	12.2	1,170	1,030
P-2 (8-10)	10/10/2016	NA	118	177	440.0	1,530	1800.0	2,400	1,150	840.0	1680.0	289	3,050	172	1,060	54	51	66	1,480	2,630
P-3 (0-2)	10/10/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-3 (4-6)	10/10/2016	8.39	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-3 (6-8)	10/10/2016	NA	14.8J	13J	14.7J	48	51	76	39	24.7J	48	<14.2	101	<13.5	32J	65	21.4J	137	45	86
P-3 (8-10)	10/10/2016	NA	<13.5	<12	<12.4	13.3J	<11.3	<13	<11.4	<11.7	<13.8	<14.2	14.2J	<13.5	<15	<14.3	<11.9	<12.2	18.7J	13.6J
P-4 (0-2)	10/10/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-4 (2-4)	10/10/2016	6.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-4 (8-10)	10/10/2016	NA	249	570	640	1,140	1,700	1,710	1,010	560	1,090	229	1,660	212.0	880	126	96	249	1,120	2,160
P-5 (0-2)	10/10/2016	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-5 (4-6)	10/10/2016	8.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-5 (6-8)	10/10/2016	NA	106	28.4J	57	86	101	135	71	45	91	14.6J	197	59	59	59	18.7J	19.8J	148	193
P-5 (8-10)	10/10/2016	NA	<13.5	<12	<12.4	<11.6	<11.3	<13	<11.4	<11.7	<13.8	<14.2	<13.1	<13.5	<15	<14.3	<11.9	<12.2	<10.9	<12.6
NR 720 Groundwat	ite <i>r R</i> CL	27	*38,000	*700	196,744	*17,000	470	480	*6,800,000	*870,000	145	*38,000	88,818	14,815	*68,000	*23,000	*20,000	659	*1,800	54,473
NR 720 Non-indust		400	3,440,000	487,000	17,200,000	148	15	148	*1,800	1,480	14,800	15	2,290,000	2,290,000	148	15,600	229,000	5,150	115,000	1,720,000
NR 720 Industrial E	DC RCL	800	33,000,000	487,000	100,000,000	2,110	211	2,110	*39,000	21,100	211,000	211	22,000,000	22,000,000	2,110	53,100	368,000	26,000	115,000	16,500,000

* indicates a suggested value.

Note: Concentrations that exceed their respective RCLs for the protection of groundwater are in blue italics. Note: Concentrations that exceed their respective non-industrial RCLs for direct contact within the top 4 feet are in **red bold**.

Note: "J" indicates estimated value above the level of detection but less than the level of quantification.

Table 1 Additional Analytical Results - Soil Samples VA Parking Structure (5000 W. National) Milwaukee, Wisconsin

		Acena-	Acena-		Benzo (a) anthra-	Benzo (a)	Benzo (b) fluor-	Benzo (g,h,i)	Benzo (k) fluor-		Dibenzo (a,h) anthra-	Fluor-		Indeno (1,2,3-cd)	1-Methyl Naph-	2-Methyl Naph-	Naph-	Phen-	
Sample	Sampling	phthene	phthylene	Anthracene	cene	pyrene	anthene	perylene	anthene	Chrysene	cene	anthene	Fluorene	pyrene	thalene	thalene	thalene	anthrene	Pyrene
Location	Date	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)
S-1 (4 ft)	12/14/2016	<13.5	<12	<12.4	12.1J	<11.3	<13	<11.4	<11.7	<13.8	<14.2	13.6J	<13.5	<15	<14.3	<11.9	<12.2	<10.1	13.6J
S-2 (4 ft)	12/14/2016	<13.5	<12	14.2J	19.1J	<11.3	17.1J	<11.4	<11.7	18.4J	<14.2	39J	<13.5	<15	<14.3	<11.9	<12.2	43	29.3J
S-3 (4 ft)	12/14/2016	<13.5	<12	<12.4	<11.6	<11.3	<13	<11.4	<11.7	<13.8	<14.2	13.4J	<13.5	<15	<14.3	<11.9	<12.2	<10.1	<12.6
S-4 (2 ft)	12/14/2016	<13.5	<12	<12.4	<11.6	<11.3	<13	<11.4	<11.7	<13.8	<14.2	13.4J	<13.5	<15	<14.3	<11.9	<12.2	<10.1	<12.6
S-5 (2 ft)	12/14/2016	<13.5	<12	<12.4	22.2J	21J	33J	19.6J	<11.7	25.1J	<14.2	25.8J	<13.5	15.2J	<14.3	<11.9	<12.2	12.2J	27.7J
S-6 (4 ft)	12/14/2016	<13.5	<12	<12.4	18.5J	14J	26.2J	14.2J	<11.7	<13.8	<14.2	34J	<13.5	<15	<14.3	<11.9	<12.2	14.6J	30.1J
S-7 (4 ft)	12/14/2016	<13.5	<12	29.1J	71	65	103	54	22.5J	81	<14.2	177	<13.5	40J	<14.3	<11.9	<12.2	81	138
S-8 (2 ft)	12/14/2016	21.7J	13J	58	119	109	164	96	56	129	15.7J	270	<13.5	73	<14.3	<11.9	<12.2	122	239
S-9 (2 ft)	12/14/2016	60	49	93	228	219	320	169	102	249	34J	440	29.6J	135	20.2J	17.9J	43	221	400
S-10 (2 ft)	12/14/2016	57	82	123	273	294	410	225	119	311	43J	510	25.9J	172	27.9	29.5J	43	190	520
S-11 (2 ft)	12/14/2016	70	33J	88	203	203	290	148	95	217	31.2J	390	19J	117	<14.3	<11.9	28.9J	170	350
S-12 (2 ft)	12/14/2016	86	31.1J	590	690	640	840	480	274	690	88	1,560	84	38	<14.3	<11.9	16.9J	1,290	1,330
NR 720 Groundwat	ter RCL	*38,000	*700	196,744	*17,000	470	480	*6,800,000	*870,000	145	*38,000	88,818	14,815	*68,000	*23,000	*20,000	659	*1,800	54,473
NR 720 Non-indust	rial DC RCL	3,440,000	487,000	17,200,000	148	15	148	*1,800	1,480	14,800	15	2,290,000	2,290,000	148	15,600	229,000	5,150	115,000	1,720,000
NR 720 Industrial D	DC RCL	33,000,000	487,000	100,000,000	2,110	211	2,110	*39,000	21,100	211,000	211	22,000,000	22,000,000	2,110	53,100	368,000	26,000	115,000	16,500,000

* indicates a suggested value.

Note: Concentrations that exceed their respective RCLs for the protection of groundwater are in blue italics.

Note: Concentrations that exceed their respective non-industrial RCLs for direct contact within the top 4 feet are in red bold.

Note: "J" indicates estimated value above the level of detection but less than the level of quantification.

Table 3 Analytical Results - Soil Leach Test VA Parking Structure (5000 W. National) Milwaukee, Wisconsin

Sample Location	Sampling Date	Lead (ppb)	Acena- phthene (ppb)	Acena- phthylene (ppb)	Anthracene (ppb)	Benzo (a) anthra- cene (ppb)	Benzo (a) pyrene (ppb)	Benzo (b) fluor- anthene (ppb)	Benzo (g,h,i) perylene (ppb)	Benzo (k) fluor- anthene (ppb)	Chrysene (ppb)	Dibenzo (a,h) anthra- cene (ppb)	Fluor- anthene (ppb)	Fluorene (ppb)	Indeno (1,2,3-cd) pyrene (ppb)	Naph- thalene (ppb)	Phen- anthrene (ppb)	Pyrene (ppb)
P-1 (4-6)	10/10/2016	NA	<0.033	<0.0233	<0267	<0.0277	<0.0527	<0.0071	<0.0066	<0.085	<0.048	<0.0151	<0.055	0.030	<0.0246	0.042	<0.067	<0.0517
P-1 (8-10)	10/10/2016	<3.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-3 (4-6)	10/10/2016	<3.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
P-3 (6-8)	10/10/2016	NA	<0.033	<0.0233	<0267	<0.0277	<0.0527	<0.019	<0.0205	<0.085	<0.048	0.019J	<0.055	0.030	<0.0246	0.042	<0.067	<0.0517
NR 140 ES		15	NS	NS	3,000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
NR 140 PAL		1.5	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50

Notes:

1. Only the detected compounds are presented.

2. Concentrations in *blue italics* exceed their respective NR 140 preventive action limits (PALs).

3. Concentrations in red bold exceed their respective NR 140 enforcement standards (ESs).

Table 4 Analytical Results - Soil Samples VA Parking Structure (5000 W. National) Milwaukee, Wisconsin

Sample Location	Sampling Date	Lead (ppm)	Acena- phthene (ppb)	Acena- phthylene (ppb)	Anthracene (ppb)	Benzo (a) anthra- cene (ppb)	Benzo (a) pyrene (ppb)	Benzo (b) fluor- anthene (ppb)	Benzo (g,h,i) perylene (ppb)	Benzo (k) fluor- anthene (ppb)	Chrysene (ppb)	Dibenzo (a,h) anthra- cene (ppb)	Fluor- anthene (ppb)	Fluorene (ppb)	Indeno (1,2,3-cd) pyrene (ppb)	1-Methyl Naph- thalene (ppb)	2-Methyl Naph- thalene (ppb)	Naph- thalene (ppb)	Phen- anthrene (ppb)	Pyrene (ppb)
GP-5 (4-6)	4/27/2015	78.0	<180	206J	500J	1,690	1,430	2,140	910	810	1,450	229J	3,800	<180	870	<180	<180	<180	1,900	2,550
P-1 (4-6)	10/10/2016	NA	65.0	42.0	300	1,010	1,000	1,280	550	460	940	139	2,160	49.0	53	<14	<11	<12	500	1,820
P-1 (4-6) Leach	10/10/2016	<0.0038	<0.033	<0.0233	<0267	<0.0277	<0.0527	<0.0071	<0.0066	<0.085	<0.048	<0.0151	<0.055	0.030	<0.0246	Ν	N	0.042	<0.067	<0.0517
GP-3 (2-8)	4/27/2015	32.0	<36	141.0	237	490	500	640	278	252	410	70J	1,190	70J	251	38J	44J	80J	670	910
P-3 (4-6)	10/10/2016	8.39	65.0	42.0	300	1,010	1,000	1,280	550	460	940	139	2,160	49.0	53	<14	<11	<12	500	1,820
P-3 (4-6) Leach	10/10/2016	<0.0038	<0.033	<0.0233	<0267	<0.0277	<0.0527	<0.019	<0.0205	<0.085	<0.048	0.019J	<0.055	0.030	<0.0246	NA	NA	<0.067	<0.067	<0.0517
NR 720 Groundwate	er RCL	27	*38,000	*700	196,744	*17,000	470	480	*6,800,000	*870,000	145	*38,000	88,818	14,815	*68,000	*23,000	*20,000	659	*1,800	54,473
NR 720 Non-indust	rial DC RCL	400	3,440,000	487,000	17,200,000	148	15	148	*1,800	1,480	14,800	15	2,290,000	2,290,000	148	15,600	229,000	5,150	115,000	1,720,000
NR 720 Industrial D	DC RCL	800	33,000,000	487,000	100,000,000	2,110	211	2,110	*39,000	21,100	211,000	211	22,000,000	22,000,000	2,110	53,100	368,000	26,000	115,000	16,500,000
NR 140 ES		0.015	NS	NS	3,000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	NS	NS	100	NS	250
NR 140 PAL		0.0015	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	NS	NS	10	NS	50

* indicates a suggested value.

Note: Concentrations that exceed their respective RCLs for the protection of groundwater are in blue italics.

Note: Concentrations that exceed their respective non-industrial RCLs for direct contact within the top 4 feet are in red bold.

Note: "J" indicates estimated value above the level of detection but less than the level of quantification.

Note: Concentrations in green italics exceed their respective NR 140 preventive action limits (PALs).

Note: Concentrations in orange bold exceed their respective NR 140 enforcement standards (ESs).

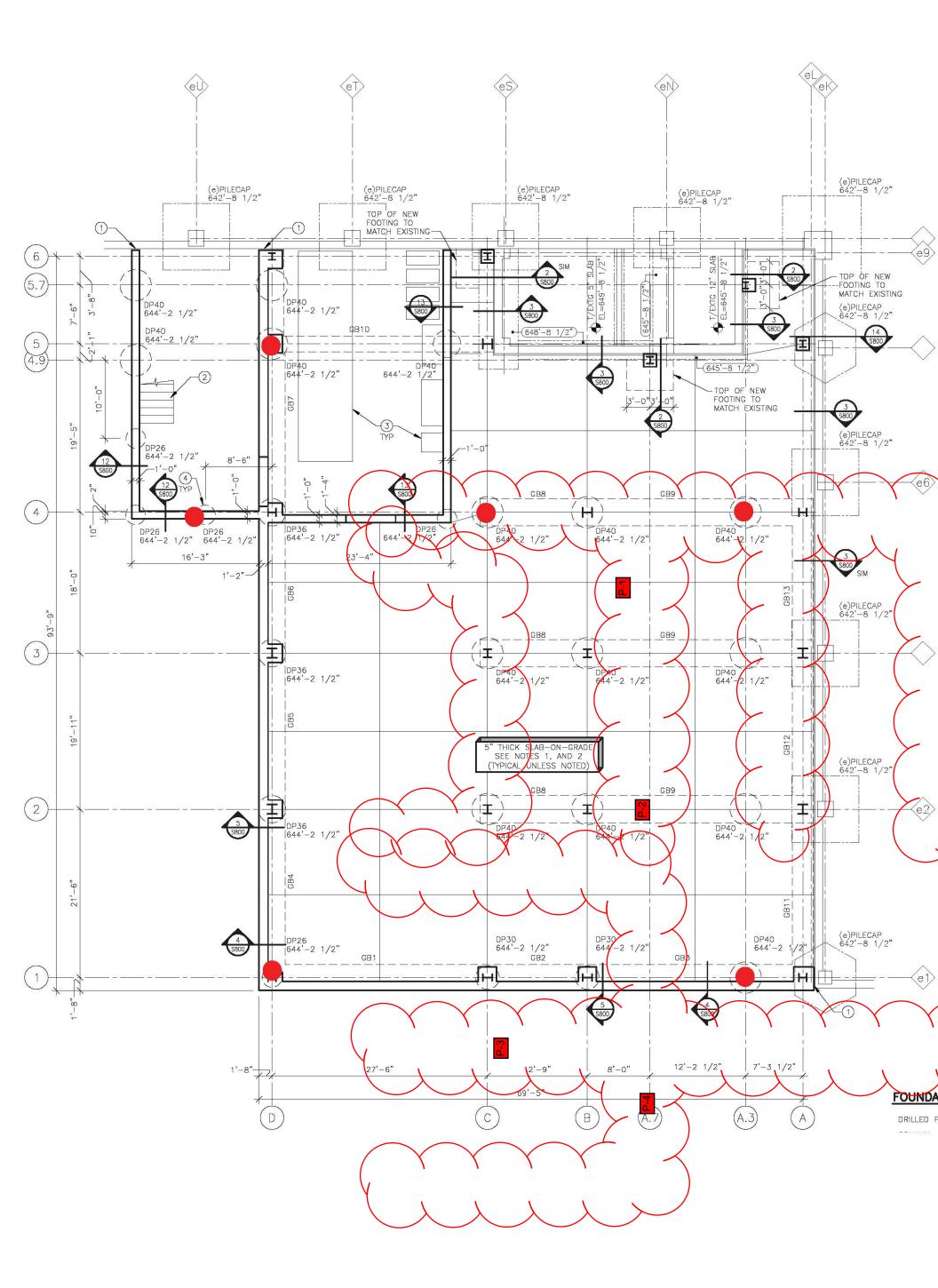
Note: NR 720 values are calculated utilizing the U.S. EPA's Regional Screening Level Web-Calculator per DNR draft document RR-890.

Table 2 Analytical Results - Soil Samples VA Parking Structure (5000 W. National) Milwaukee, Wisconsin

Sample Location GP-5 (4-6)	Sampling Date 4/27/2015	Benzene (ppb) <25	Ethyl- benzene (ppb) <25	MTBE (ppb) <25	Naph- thalene (ppb) <25	Toluene (ppb) 25.4J	Combined TMBs (ppb) <50	Total Xylenes (ppb) <50
GP-3 (2-8)	4/27/2015	48.00	33J	<25	80J	26.8J	41	42J
P-3 (0-2)	10/10/2016	<25	<25	<25	<25	<25	<50	<75
P-4 (0-2)	10/10/2016	<25	<25	<25	<25	<25	<50	<75
P-5 (0-2)	10/10/2016	<25	<25	<25	<25	<25	<50	<75
P-3 (0-2) Leach	10/10/2016	0.25	<0.4	<0.84	<0.737	0.32	2.50	1.30
S-4 (2 ft)	12/14/2016	<25	<25	<25	<25	<25	<50	<75
NR 720 Groundwat	er RCL	5.1	1,570	27	659	1,107	1,382	3,940
NR 720 Non-indust	rial DC RCL	1,490	7,470	59,400	5,150	818,000	90K/182K	258,000
NR 720 Industrial D	DC RCL	7,410	37,000	293,000	26,000	818,000	219K/182K	258,000
NR 140 ES		5	700	60	100	1,000	480	10,000
NR 140 PAL		0.5	140	12	10	200	96	1,000

* indicates a suggested value.

Note: Concentrations that exceed their respective RCLs for the protection of groundwater are in blue italics .


Note: Concentrations that exceed their respective non-industrial RCLs for direct contact within the top 4 feet are in red bold.

Note: "J" indicates estimated value above the level of detection but less than the level of quantification.

Note: Concentrations in green italics exceed their respective NR 140 preventive action limits (PALs).

Note: Concentrations in orange bold exceed their respective NR 140 enforcement standards (ESs).

Note: NR 720 values are calculated utilizing the U.S. EPA's Regional Screening Level Web-Calculator per DNR draft document RR-&

Friess Environmental Consulting, Inc. Guide to Abbreviations in Laboratory Data Tables

< = Less than the specified detection limit. DO = Dissolved Oxygen ES = Enforcement Standard DRO = Diesel range organics GRO = Gasoline range organics iu = instrument units MTBE = Methyl-tert butyl ether mV = Millivolts NA = Not analyzed for indicated parameter NM = Not measured for indicated parameter NR = No recovery at this interval. NR 140 ES = Wisconsin Administrative Code NR 140 Groundwater Quality Enforcement Standard NR 140 PAL = Wisconsin Administrative Code NR 140 Groundwater Quality **Preventive Action Limit** NR 720 Groundwater RCL = Wisconsin Administrative Code NR 720 Residual Contaminant Level for the protection of groundwater via the U.S. EPA's Regional Screening Level Web-Calculator per DNR draft document RR-890 NR 720 Non-Industrial DC RCL = Wisconsin Administrative Code NR 720 Non-Industrial Residual Contaminant Level for direct contact via the U.S. EPA's Regional Screening Level Web-Calculator per DNR draft document RR-890 Note: NR 720 values are calculated utilizing the U.S. EPA's Regional Screening Level Web-Calculator per DNR draft document RR-890. NS = No NR 140 ES/PAL or NR 720 RCL standard has been established. ORP = Oxidation-reduction potential PAL = Preventive Action Limit

PID = Photoionization detector

ppb = parts per billion

ppm = parts per million

RCL = Residual contaminant level as established in WAC Chapter NR 720

TMBs = Trimethylbenzenes (combined 1,2,4- and 1,3,5-trimethylbenzene)

umhos = Micromhos

Table 1 Analytical Results - Soil Samples VA Urgent Care (5000 W. National) Milwaukee, Wisconsin

Sample Location	Sampling Date	Lead (ppm)	Acena- phthene (ppb)	Acena- phthylene (ppb)	Anthracene (ppb)	Benzo (a) anthra- cene (ppb)	Benzo (a) pyrene (ppb)	Benzo (b) fluor- anthene (ppb)	Benzo (g,h,i) perylene (ppb)	Benzo (k) fluor- anthene (ppb)	Chrysene (ppb)	Dibenzo (a,h) anthra- cene (ppb)	Fluor- anthene (ppb)	Fluorene (ppb)	Indeno (1,2,3-cd) pyrene (ppb)	1-Methyl Naph- thalene (ppb)	2-Methyl Naph- thalene (ppb)	Naph- thalene (ppb)	Phen- anthrene (ppb)	Pyrene (ppb)
P-1 (0-2)	5/3/2017	13.5	<15.1	<15.9	18.9 J	95.0	114	171	87.0	51.0	103	19.3 J	219	<17.9	81.0	<20.3	<11.3	<15.3	52.0	187
P-1 (2-4)	5/3/2017	NA	<15.1	<15.9	19.5 J	67.0	94.0	129	63.0	45.0 J	77.0	14.4 J	132	<17.9	60.0	<20.3	<11.3	<15.3	49.0	125
P-1 (6-8)	5/3/2017	NA	<15.1	<15.9	27.7 J	132	<u>155</u>	220	117	65.0	<u>148</u>	26.9	253	<17.9	107	<20.3	<11.3	<15.3	74.0	233
P-2 (0-2)	5/3/2017	14.9	<15.1	<15.9	36.0	98.0	108	155	74.0	52.0	111	18.4 J	231	<17.9	68.0	<20.3	<11.3	<15.3	116	189
P-2 (2-4)	5/3/2017	11.7	92.0	<15.9	262	340	<u>310</u>	420	192	146	360	51.0	810	151	187	<20.3	19.0 J	<15.3	730	640
P-3 (0-2)	5/3/2017	13.8	<15.1	<15.9	11.6 J	63.0	82.0	118	67.0	39.0 J	70.0	14.3 J	126	<17.9	59.0	<20.3	<11.3	<15.3	33.0 J	114
P-3 (2-4)	5/3/2017	10.1	<15.1	<15.9	<10.9	15.4 J	17.4 J	22.2 J	24.0 J	<14.7	12.9 J	<7.80	19.1 J	<17.9	13.3 J	<20.3	<11.3	<15.3	<11.1	19.6 J
P-3 (6-8)	5/3/2017	NA	<15.1	<15.9	18.7 J	67.0	80.0	121	61.0	37.0 J	73.0	13.0 J	129	<17.9	57.0	<20.3	<11.3	<15.3	59.0	113
P-4 (0-2)	5/3/2017	29.5	<15.1	<15.9	73.0	291	<u>380</u>	<mark>550</mark>	300	163	350	64.0	600	19.3 J	270	<20.3	<11.3	<15.3	211	520
P-4 (2-4)	5/3/2017	NA	<15.1	<15.9	<10.9	15.9 J	18.5 J	23.1 J	25.6 J	<14.7	13.1 J	<7.80	17.0 J	<17.9	13.4 J	<20.3	<11.3	<15.3	<11.1	20.0 J
P-5 (0-2)	5/3/2017	20.4	120	51.0	320	600	<u>490</u>	730	297	259	750	78.0	2,010	144	298	<20.3	15.0 J	<15.3	1,650	1,690
P-5 (2-4)	5/3/2017	NA	195	79.0	590	990	<u>1,080</u>	<u>1.500</u>	720	500	1,230	<u>180</u>	2,510	350	680	80.0	99.0	169	1,870	2,120
P-5 (4-6)	5/3/2017	NA	277	155	710	920	<u>1,040</u>	<u>1.440</u>	660	480	1,130	<u>165</u>	2,470	510	640	165	240	<mark>670</mark>	2,400	2,040
P-6 (0-2)	5/3/2017	NA	36.0 J	21.9 J	118	340	<u>410</u>	580	264	195	400	67.0	750	42.0 J	260	<20.3	<11.3	<15.3	380	630
P-6 (2-4)	5/3/2017	21.0	<15.1	<15.9	21.5 J	68.0	80.0	118	53.0	40.0 J	77.0	12.6 J	151	<17.9	51.0	<20.3	<11.3	<15.3	67.0	127
P-6 (6-8)	5/3/2017	NA	<15.1	<15.9	11.1 J	46.0	50.0	80.0	34.0 J	26.6 J	52.0	7.90 J	99.0	<17.9	33.0 J	<20.3	<11.3	<15.3	42.0	83.0
NR 720 Groundwa	strial DC RCL	27	*38,000	*700	196,744	*17,000	470	480	*6,800,000	*870,000	145	*38,000	88,818	14,815	*68,000	*23,000	*20,000	659	*1,800	54,473
NR 720 Non-indus		400	3,590,000	NS	17,900,000	1,140	115	1,150	NS	11,500	115,000	115	2,390,000	2,390,000	1,150	17,600	239,000	5,520	NS	1,790,000
NR 720 Industrial I		800	45,200,000	NS	100,000,000	20,800	2,110	21,100	NS	211,000	2,110,000	2,110	30,100,000	30,100,000	21,100	72,700	3,010,000	24,100	NS	22,600,000

* indicates a suggested value.
 Note: Concentrations that exceed their respective RCLs for the protection of groundwater are in blue italics.
 Note: Concentrations that exceed their respective non-industrial RCLs for direct contact are <u>underlined</u>.

Table 3Analytical Results - Soil Leach TestVA Urgent Care (5000 W. National)Milwaukee, Wisconsin

Sample Location	Sampling Date	Lead (ppb)	Acena- phthene (ppb)	Acena- phthylene (ppb)	Anthracene (ppb)	Benzo (a) anthra- cene (ppb)	Benzo (a) pyrene (ppb)	Benzo (b) fluor- anthene (ppb)	Benzo (g,h,i) perylene (ppb)	Benzo (k) fluor- anthene (ppb)	Chrysene (ppb)	Dibenzo (a,h) anthra- cene (ppb)	Fluor- anthene (ppb)	Fluorene (ppb)	Indeno (1,2,3-cd) pyrene (ppb)	Naph- thalene (ppb)	Phen- anthrene (ppb)	Pyrene (ppb)
P-5 (2-6)	5/3/2017	NA	<0.033	<0.0233	<0267	<0.0277	<0.0527	<0.0071	<0.0066	<0.085	<0.048	<0.0151	<0.055	0.030	<0.0246	0.042	<0.067	<0.0517
NR 140 ES NR 140 PAL		15 1.5	NS NS	NS NS	3,000 600	NS NS	0.2 0.02	0.2 0.02	NS NS	NS NS	0.2 0.02	NS NS	400 80	400 80	NS NS	100 10	NS NS	250 50

Notes:

1. Only the detected compounds are presented.

2. Concentrations in *blue italics* exceed their respective NR 140 preventive action limits (PALs).

3. Concentrations in red bold exceed their respective NR 140 enforcement standards (ESs).

Table 4 Analytical Results - Soil Samples VA Urgent Care (5000 W. National) Milwaukee, Wisconsin

Sample Location	Sampling Date	Lead (ppm)	Acena- phthene (ppb)	Acena- phthylene (ppb)	Anthracene (ppb)	Benzo (a) anthra- cene (ppb)	Benzo (a) pyrene (ppb)	Benzo (b) fluor- anthene (ppb)	Benzo (g,h,i) perylene (ppb)	Benzo (k) fluor- anthene (ppb)	Chrysene (ppb)	Dibenzo (a,h) anthra- cene (ppb)	Fluor- anthene (ppb)	Fluorene (ppb)	Indeno (1,2,3-cd) pyrene (ppb)	1-Methyl Naph- thalene (ppb)	2-Methyl Naph- thalene (ppb)	Naph- thalene (ppb)	Phen- anthrene (ppb)	Pyrene (ppb)
P-5 (2-4)	5/3/2017	NA	195	79.0	590	990	<u>1,080</u>	<u>1,500</u>	720	500	1,230	<u>180</u>	2,510	350	680	80.0	99.0	169	1,870	2,120
P-5 (4-6)	5/3/2017	NA	277	155	710	920	<u>1,040</u>	<u>1,440</u>	660	480	1,130	<u>165</u>	2,470	510	640	165	240	670	2,400	2,040
P-5 (2-6) Leach	5/3/2017	<0.0038	<0.033	<0.0233	<0267	<0.0277	<0.0527	<0.0071	<0.0066	<0.085	<0.048	<0.0151	<0.055	0.030	<0.0246	Ν	Ν	0.042	<0.067	<0.0517
NR 720 Groundwat	ter RCL	27	*38,000	*700	196,744	*17,000	470	480	*6,800,000	*870,000	145	*38,000	88,818	14,815	*68,000	*23,000	*20,000	659	*1,800	54,473
NR 720 Non-indust	trial DC RCL	400	3,590,000	NS	17,900,000	1,140	115	1,150	NS	11,500	115,000	115	2,390,000	2,390,000	1,150	17,600	239,000	5,520	NS	1,790,000
NR 720 Industrial D	DC RCL	800	45,200,000	NS	100,000,000	20,800	2,110	21,100	NS	211,000	2,110,000	2,110	30,100,000	30,100,000	21,100	72,700	3,010,000	24,100	NS	22,600,000
NR 140 ES		0.015	NS	NS	3,000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	NS	NS	100	NS	250
NR 140 PAL		0.0015	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	NS	NS	10	NS	50

* indicates a suggested value.

Note: Concentrations that exceed their respective RCLs for the protection of groundwater are in blue italics.

Note: Concentrations that exceed their respective non-industrial RCLs for direct contact are <u>underlined</u>.

Note: Concentrations that exceed their respective industrial RCLs for direct contact are in [brackets].

Note: Concentrations in green italics exceed their respective NR 140 preventive action limits (PALs).

Note: Concentrations in orange bold exceed their respective NR 140 enforcement standards (ESs).

Note: NR 720 values are calculated utilizing the U.S. EPA's Regional Screening Level Web-Calculator per DNR draft document RR-890.

Table 2 Analytical Results - Soil Samples VA Urgent Care (5000 W. National) Milwaukee, Wisconsin

Sample Location	Sampling Date	Benzene (ppb)	Ethyl- benzene (ppb)	MTBE (ppb)	Toluene (ppb)	Combined TMBs (ppb)	Total Xylenes (ppb)
P-2 (2-4)	5/3/2017	<25.0	<25.0	<25.0	<25.0	<50.0	<75.0
P-3 (2-4)	5/3/2017	<25.0	<25.0	<25.0	<25.0	<50.0	<75.0
P-6 (2-4)	5/3/2017	<25.0	<25.0	<25.0	<25.0	<50.0	<75.0
NR 720 Groundwat NR 720 Non-indust NR 720 Industrial D	rial DC RCL	5.1 1,600 7,070	1,570 8,020 35,400	27 63,800 282,000	1,107 818,000 818,000	1,382 219K/182K 219K/182K	3,940 260,000 260,000

Note: Concentrations that exceed their respective RCLs for the protection of groundwater are in blue italics.

Note: Concentrations that exceed their respective non-industrial RCLs for direct contact are underlined.

Note: Concentrations that exceed their respective industrial RCLs for direct contact are in [brackets].

Note: "J" indicates estimated value above the level of detection but less than the level of quantification.

Synergy Environmental Lab, INC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

TRENTON OTT FEC. INC. 6637 N. SIDNEY PLACE MILWAUKEE, WI 53209

Report Date 15-May-17

J	VA URGEN 170402	ΓCARE					Invoid	ce # E3280	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869A P-1 0-2 Soil 5/3/2017										
_		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		86.0	%			1	5021		5/5/2017	NJC	1
Inorganic											
Metals											
Lead, Total		13.5	mg/Kg	0.17	0.58	1	6010B		5/10/2017	CWT	1
,		15.5	1119/119	0.17	0.50	1	00101		5/10/2017	0.01	1
Organic PAH SIM											
		0.0151	/1	0.0151	0.0401	1	100700	5/0/2017	5/0/2017	NIC	
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/8/2017	NJC	1
Acenaphthylene Anthracene		< 0.0159 0.0189 "J"	mg/kg	0.0159	0.0508 0.0345	1	M8270C M8270C	5/8/2017 5/8/2017	5/8/2017 5/8/2017	NJC NJC	1
Benzo(a)anthracene	-	0.0189 J	mg/kg	0.0109 0.0116	0.0343	1 1	M8270C M8270C	5/8/2017	5/8/2017	NJC	1 1
Benzo(a)pyrene	e	0.093	mg/kg mg/kg	0.0118	0.037	1	M8270C M8270C	5/8/2017	5/8/2017	NJC	1
Benzo(b)fluoranthe		0.171	mg/kg	0.0113	0.0339	1	M8270C M8270C	5/8/2017	5/8/2017	NJC	1
Benzo(g,h,i)peryler		0.087	mg/kg	0.013	0.041	1	M8270C M8270C	5/8/2017	5/8/2017	NJC	1
Benzo(k)fluoranthe		0.051	mg/kg	0.0114	0.0469	1	M8270C M8270C	5/8/2017	5/8/2017	NJC	1
Chrysene	lite	0.103	mg/kg	0.0147	0.0402	1	M8270C	5/8/2017	5/8/2017	NJC	1
Dibenzo(a,h)anthra	icene	0.0195 "J"	mg/kg	0.0078	0.0365	1	M8270C	5/8/2017	5/8/2017	NJC	1
Fluoranthene	lecine	0.219	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/8/2017	NJC	1
Fluorene		< 0.0179	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/8/2017	NJC	1
Indeno(1,2,3-cd)py	rene	0.081	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/8/2017	NJC	1
1-Methyl naphthale		< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/8/2017	NJC	1
2-Methyl naphthale		< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/8/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/8/2017	NJC	1
Phenanthrene		0.052	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/8/2017	NJC	1
Pyrene		0.187	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/8/2017	NJC	1

Project Name Proiect #	VA URGEN 170402	Γ CARE					Invoie	ce # E3280	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869B P-1 2-4 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		86.0	%			1	5021		5/5/2017	NJC	1
Organic											
PAH SIM											
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		< 0.0159	mg/kg	0.0159	0.0508	1	M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.0195 "J"	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthracer	ne	0.067	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		0.094	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranth	iene	0.129	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryle	ene	0.063	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranth	iene	0.045 "J"	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.077	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anthr	acene	0.0144 "J"	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.132	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		< 0.0179	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	yrene	0.06	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	lene	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	lene	< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		0.049	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.125	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

Project Name Proiect #	VA URGEN 170402	Г CARE					Invoi	ce # E3280	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869C P-1 6-8 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		86.0	%			1	5021		5/5/2017	NJC	1
Organic											
PAH SIM											
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		< 0.0159	mg/kg	0.0159	0.0508	1	M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.0277 "J"	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthracer	ne	0.132	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		0.155	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranth	iene	0.22	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryle	ene	0.117	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranth	iene	0.065	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.148	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anthr	acene	0.0269	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.253	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	2 75
Fluorene		< 0.0179	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	yrene	0.107	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	lene	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	lene	< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		0.074	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.233	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

Project Name Proiect #	VA URGEN 170402	ΓCARE					Invoi	ce # E3286	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869D P-2 0-2 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		80.4	%			1	5021		5/5/2017	NJC	1
Inorganic											
Metals											
Lead. Total		14.9	mg/Kg	0.17	0.58	1	6010B		5/10/2017	CWT	1
Organic			88			-					-
PAH SIM											
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.036	mg/kg	0.0109	0.0345	1	M8270C M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthrace	ne	0.098	mg/kg	0.0109	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene	lie	0.106	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranth	nene	0.155	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryle		0.074	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranth		0.052	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.111	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anth	racene	0.0184 "J"	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.231	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		< 0.0179	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	yrene	0.068	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	lene	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	lene	< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		0.116	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.189	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

0	VA URGEN 170402	ΓCARE					Invoi	ce# E3280	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869E P-2 2-4 Soil 5/3/2017	Result	Unit	LOD	LOQ I		Method	Ext Date	Run Date	Analyst	Code
Carranal		Result	Omt	LOD	LUQI	JI	Methou	Ext Date	Kull Date	Analysi	Coue
General											
General											
Solids Percent		90.7	%			1	5021		5/5/2017	NJC	1
Inorganic											
Metals											
Lead, Total		11.7	mg/Kg	0.17	0.58	1	6010B		5/10/2017	CWT	1
Organic											
PAH SIM											
Acenaphthene		0.092	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		< 0.0159	mg/kg	0.0159	0.0508		M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.262	mg/kg	0.0109	0.0345		M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthracen	e	0.34	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		0.31	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranthe	ene	0.42	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryler	ne	0.192	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranthe	ene	0.146	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.36	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anthra	acene	0.051	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.81	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		0.151	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)py	vrene	0.187	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphthale	ene	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphthale	ene	0.019 "J"	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		0.73	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.64	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1
PVOC											
Benzene		< 0.025	mg/kg	0.019	0.06	1	GRO95/8021		5/12/2017	TCC	1
Ethylbenzene		< 0.025	mg/kg	0.01	0.032	1	GRO95/8021		5/12/2017	TCC	1
Methyl tert-butyl et	ther (MTBE)	< 0.025	mg/kg	0.0079	0.025	1	GRO95/8021		5/12/2017	TCC	1
Toluene		< 0.025	mg/kg	0.014	0.046	1	GRO95/8021		5/12/2017	TCC	1
1,2,4-Trimethylben	nzene	< 0.025	mg/kg	0.01	0.032	1	GRO95/8021		5/12/2017	TCC	1
1,3,5-Trimethylben	izene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8021		5/12/2017	TCC	1
m&p-Xylene		< 0.05	mg/kg	0.012	0.037		GRO95/8021		5/12/2017	TCC	1
o-Xylene		< 0.025	mg/kg	0.015	0.047	1	GRO95/8021		5/12/2017	TCC	1

Project Name Proiect #	VA URGEN 170402	T CARE					Invo	ice # E3286	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869F P-3 0-2 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		80.6	%			1	5021		5/5/2017	NJC	1
Inorganic											
Metals											
Lead, Total		13.8	mg/Kg	0.17	0.58	1	6010B		5/10/2017	CWT	1
Organic		1010		0117	0100		00102		0,10,201,	0.111	-
PAH SIM											
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.0116 "J"	mg/kg	0.0109	0.0345	1	M8270C M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthrace	me	0.063	mg/kg	0.0105	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene	ine in the second se	0.082	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluorant	hene	0.118	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryl		0.067	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluorant		0.039 "J"	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.07	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anth	racene	0.0143 "J"	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.126	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		< 0.0179	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	oyrene	0.059	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	alene	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	alene	< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		0.033 "J"	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.114	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

U	VA URGEN 70402	ΓCARE					Invoid	e# E328	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869G P-3 2-4 Soil 5/3/2017	Descrit	T	LOD			Mathad	Est Data	Due Doto	Amolaust	Cada
a 1		Result	Unit	LOD	LOQ D	11	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		82.8	%			1	5021		5/5/2017	NJC	1
Inorganic											
Metals											
Lead, Total		10.1	mg/Kg	0.17	0.58	1	6010B		5/10/2017	CWT	1
Organic											
PAH SIM											
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		< 0.0151	mg/kg	0.0151	0.0508	1	M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		< 0.0109	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthracene	2	0.0154 "J"	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		0.0174 "J"	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranthe	ne	0.0222 "J"	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)perylen	ie	0.024 "J"	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranthe	ne	< 0.0147	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.0129 "J"	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anthrae	cene	< 0.0078	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.0191 "J"	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		< 0.0179	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)pyr	rene	0.0133 "J"	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphthale	ne	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphthale	ne	< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		< 0.0111	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.0196 "J"	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1
PVOC											
Benzene		< 0.025	mg/kg	0.019	0.06	1	GRO95/8021		5/12/2017	TCC	1
Ethylbenzene		< 0.025	mg/kg	0.01	0.032	1	GRO95/8021		5/12/2017	TCC	1
Methyl tert-butyl eth	her (MTBE)	< 0.025	mg/kg	0.0079	0.025	1	GRO95/8021		5/12/2017	TCC	1
Toluene		< 0.025	mg/kg	0.014	0.046	1	GRO95/8021		5/12/2017	TCC	1
1,2,4-Trimethylbenz		< 0.025	mg/kg	0.01	0.032	1	GRO95/8021		5/12/2017	TCC	1
1,3,5-Trimethylbenz	zene	< 0.025	mg/kg	0.011	0.036	1	GRO95/8021		5/12/2017	TCC	1
m&p-Xylene		< 0.05	mg/kg	0.012	0.037	1	GRO95/8021		5/12/2017	TCC	1
o-Xylene		< 0.025	mg/kg	0.015	0.047	1	GRO95/8021		5/12/2017	TCC	1

Project Name Proiect #	VA URGEN 170402	Γ CARE					Invoie	ce # E3280	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869H P-3 6-8 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		83.7	%			1	5021		5/5/2017	NJC	1
Organic											
PAH SIM											
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		< 0.0159	mg/kg	0.0159	0.0508	1	M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.0187 "J"	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthracen	ne	0.067	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		0.08	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranth	iene	0.121	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryle	ene	0.061	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranth	iene	0.037 "J"	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.073	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anthr	acene	0.013 "J"	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.129	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		< 0.0179	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	yrene	0.057	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	lene	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	lene	< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		0.059	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.113	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

Project Name Proiect #	VA URGEN' 170402	T CARE					Invoi	ice # E3286	59		
Lab Code Sample ID Sample Matriz Sample Date	5032869I P-4 0-2 x Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		81.0	%			1	5021		5/5/2017	NJC	1
Inorganic											
Metals											
Lead, Total		29.5	mg/Kg	0.17	0.58	1	6010B		5/10/2017	CWT	1
Organic											
PAH SIM											
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		< 0.0159	mg/kg	0.0159	0.0508	1	M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.073	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthrace	ene	0.291	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		0.38	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluorant	hene	0.55	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryl	ene	0.30	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluorant	hene	0.163	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.35	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anth	racene	0.064	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.60	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		0.0193 "J"	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	oyrene	0.27	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	alene	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	alene	< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		0.211	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.52	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

Project NameVA URGENT CAREProject #170402			Invoice # E32869								
Lab Code Sample ID Sample Matrix Sample Date	5032869J P-4 2-4 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		82.7	%			1	5021		5/5/2017	NJC	1
Organic											
PAH SIM											
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		< 0.0159	mg/kg	0.0159	0.0508	1	M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		< 0.0109	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthracene		0.0159 "J"	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		0.0185 "J"	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranthene		0.0231 "J"	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)perylene		0.0256 "J"	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranthene		< 0.0147	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.0131 "J"	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anthracene		< 0.0078	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.017 "J"	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		< 0.0179	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)pyrene		0.0134 "J"	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphthalene		< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphthalene		< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		< 0.0111	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.02 "J"	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

Project Name Project #	VA URGEN' 170402	T CARE					Invoi	ce# E3280	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869K P-5 0-2 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		81.5	%			1	5021		5/5/2017	NJC	1
Inorganic											
Metals											
Lead, Total		20.4	mg/Kg	0.17	0.58	1	6010B		5/10/2017	CWT	1
Organic			00								
PAH SIM											
Acenaphthene		0.12	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		0.051	mg/kg	0.0151	0.0508	1	M8270C M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.32	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthrace	ne	0.60	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		0.49	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranth	nene	0.73	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryl	ene	0.297	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranth	iene	0.259	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.75	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anth	racene	0.078	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		2.01	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		0.144	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	yrene	0.298	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	lene	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	lene	0.015 "J"	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		1.65	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		1.69	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

Project Name Proiect #	VA URGEN 170402	T CARE					Invoi	ce # E3286	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869L P-5 2-4 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		87.4	%			1	5021		5/5/2017	NJC	1
Organic											
PAH SIM											
Acenaphthene		0.195	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		0.079	mg/kg	0.0159	0.0508	1	M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.59	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthracer	ne	0.99	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		1.08	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranth	iene	1.50	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryle	ene	0.72	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranth	iene	0.50	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		1.23	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anthr	acene	0.18	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		2.51	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		0.35	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	yrene	0.68	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	lene	0.08	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	lene	0.099	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		0.169	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		1.87	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		2.12	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

Project Name Proiect #	VA URGEN' 170402	Г CARE					Invoic	e# E3280	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869M P-5 4-6 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		86.6	%			1	5021		5/5/2017	NJC	1
Organic											
PAH SIM											
Acenaphthene		0.277	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		0.155	mg/kg	0.0159	0.0508	1	M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.71	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthrace	ne	0.92	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		1.04	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluorant	nene	1.44	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryl	ene	0.66	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluorantl	nene	0.48	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		1.13	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anth	racene	0.165	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		2.47	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		0.51	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	yrene	0.64	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	lene	0.165	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	lene	0.24	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		0.67	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		2.40	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		2.04	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

Project Name Project #	VA URGEN' 170402	T CARE					Invoid	e# E3280	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869N P-6 0-2 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		73.2	%			1	5021		5/5/2017	NJC	1
Organic											
PAH SIM											
Acenaphthene		0.036 "J"	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		0.0219 "J"	mg/kg	0.0159	0.0508	1	M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.118	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthracen	ne	0.34	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		0.41	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranth	iene	0.58	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryle	ene	0.264	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranth	iene	0.195	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.40	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anthr	racene	0.067	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.75	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		0.042 "J"	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	yrene	0.26	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	lene	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	lene	< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		0.38	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.63	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

0	VA URGEN 170402	ΓCARE					Invoid	e# E328	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869O P-6 2-4 Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	l	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		81.9	%			1	5021		5/5/2017	NJC	1
Inorganic											
Metals											
Lead, Total		21.0	mg/Kg	0.17	0.58	1	6010B		5/10/2017	CWT	1
Organic			8			-					-
PAH SIM											
		0.0151	a	0.0151	0.0401		100705	5/0/2015	5 10 1001 5	NIG	
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene Anthracene		< 0.0159 0.0215 "J"	mg/kg	0.0159	0.0508 0.0345	1	M8270C M8270C	5/8/2017 5/8/2017	5/9/2017 5/9/2017	NJC NJC	1
Benzo(a)anthracene		0.0213 J 0.068	mg/kg mg/kg	0.0109 0.0116	0.0343	1	M8270C M8270C	5/8/2017	5/9/2017 5/9/2017	NJC	1 1
Benzo(a)pyrene	2	0.08	mg/kg	0.0110	0.037	1	M8270C M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluoranthe	na	0.118	mg/kg	0.0113	0.0339	1	M8270C M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)perylen		0.053	mg/kg	0.013	0.041	1	M8270C M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluoranthe		0.033 0.04 "J"	mg/kg	0.0114	0.0469	1	M8270C M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene	lie	0.077	mg/kg	0.0147	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anthra	cene	0.0126 "J"	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene	cene	0.151	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		< 0.0179	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)py	rene	0.051	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphthale		< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphthale		< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		0.067	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.127	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1
PVOC			00								
Benzene		< 0.025	mg/kg	0.019	0.06	1	GRO95/8021		5/12/2017	TCC	1
Ethylbenzene		< 0.025	mg/kg	0.01	0.032	1	GRO95/8021		5/12/2017	TCC	1
Methyl tert-butyl et	her (MTBE)	< 0.025	mg/kg	0.0079	0.025	1	GRO95/8021		5/12/2017	TCC	1
Toluene		< 0.025	mg/kg	0.014	0.046	1	GRO95/8021		5/12/2017	TCC	1
1,2,4-Trimethylben	zene	< 0.025	mg/kg	0.01	0.032	1	GRO95/8021		5/12/2017	TCC	1
1,3,5-Trimethylben		< 0.025	mg/kg	0.011	0.036	1	GRO95/8021		5/12/2017	TCC	1
m&p-Xylene		< 0.05	mg/kg	0.012	0.037	1	GRO95/8021		5/12/2017	TCC	1
o-Xylene		< 0.025	mg/kg	0.015	0.047	1	GRO95/8021		5/12/2017	TCC	1
2			6 0								

Project Name Proiect #	VA URGEN 170402	T CARE					Invo	ice # E3286	59		
Lab Code Sample ID Sample Matrix Sample Date	5032869P P-6 6-8 K Soil 5/3/2017										
		Result	Unit	LOD	LOQ D	il	Method	Ext Date	Run Date	Analyst	Code
General											
General											
Solids Percent		85.2	%			1	5021		5/5/2017	NJC	1
Organic											
PAH SIM											
Acenaphthene		< 0.0151	mg/kg	0.0151	0.0481	1	M8270C	5/8/2017	5/9/2017	NJC	1
Acenaphthylene		< 0.0159	mg/kg	0.0159	0.0508	1	M8270C	5/8/2017	5/9/2017	NJC	1
Anthracene		0.0111 "J"	mg/kg	0.0109	0.0345	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)anthrace	ne	0.046	mg/kg	0.0116	0.037	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(a)pyrene		0.05	mg/kg	0.0113	0.0359	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(b)fluorantl	hene	0.08	mg/kg	0.013	0.041	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(g,h,i)peryl	ene	0.034 "J"	mg/kg	0.0114	0.036	1	M8270C	5/8/2017	5/9/2017	NJC	1
Benzo(k)fluorantl	hene	0.0266 "J"	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Chrysene		0.052	mg/kg	0.0121	0.0383	1	M8270C	5/8/2017	5/9/2017	NJC	1
Dibenzo(a,h)anth	racene	0.0079 "J"	mg/kg	0.0078	0.0251	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluoranthene		0.099	mg/kg	0.0147	0.0469	1	M8270C	5/8/2017	5/9/2017	NJC	1
Fluorene		< 0.0179	mg/kg	0.0179	0.057	1	M8270C	5/8/2017	5/9/2017	NJC	1
Indeno(1,2,3-cd)p	byrene	0.033 "J"	mg/kg	0.0114	0.0362	1	M8270C	5/8/2017	5/9/2017	NJC	1
1-Methyl naphtha	llene	< 0.0203	mg/kg	0.0203	0.0645	1	M8270C	5/8/2017	5/9/2017	NJC	1
2-Methyl naphtha	llene	< 0.0113	mg/kg	0.0113	0.0358	1	M8270C	5/8/2017	5/9/2017	NJC	1
Naphthalene		< 0.0153	mg/kg	0.0153	0.0486	1	M8270C	5/8/2017	5/9/2017	NJC	1
Phenanthrene		0.042	mg/kg	0.0111	0.0352	1	M8270C	5/8/2017	5/9/2017	NJC	1
Pyrene		0.083	mg/kg	0.0153	0.0487	1	M8270C	5/8/2017	5/9/2017	NJC	1

"J" Flag: Analyte detected between LOD and LOQ

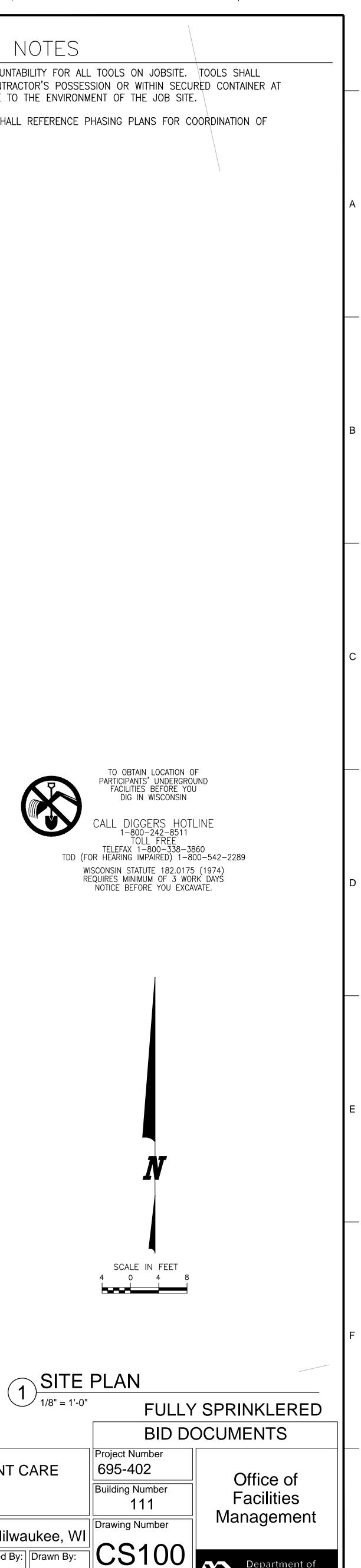
LOD Limit of Detection

LOQ Limit of Quantitation

Code Comment


1	Laboratory QC within limits.
2	Relative percent difference failed for laboratory spiked samples.
75	RPD failed due to matrix interference.

CWT denotes sub contract lab - Certification #445126660


All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

Michaelplul

	6		7			8		
- \	ed note	S				G	eneral	NOTES
\rangle	NEW MECHANICAL		SEE ARCHITECTURAL	DRAWINGS FOR	STAIRCASE	1.	MAINTAIN ACCO	OUNTABILITY FOR ALL TO NTRACTOR'S POSSESSIO
\rangle	INFORMATION. SEE STRUCTURAL	DRAWINGS FOF	R AREA WELL DETAILS	S AND INFORMAT	ION.	2.		E TO THE ENVIRONMENT
\rangle	NEW DECORATIVE	FENCING. SEE	ARCHITECTURAL DRA	AWINGS FOR INF	ORMATION.	2.	CONSTRUCTION	
))	SEE PLUMBING DI	RAWINGS FOR (CONTINUATION OF NE	w sanitary pipi	NG SYSTEM.			
>			OMBINED SEWER. SI M WATER PIPING AND		RAWINGS FOR			
\rangle	SANITARY LATERAL	_S AND FINAL () VERIFY INVERT AND CONNECTION FOR NEV S ASSUME PIPING IS	W SAN PIPING T	O NEW MANHOLE			
>	BUILD UP GRADE	WITH ENGINEE	RED FILL TO ACHIEVE S FOR COMPACTION #	FINAL CRAWL S	SPACE FLOOR			
\rangle	NEW 48" SAN MA INFORMATION.	NHOLE MH-1.	SEE DETAIL 4 ON	SHEET C502 FO	R FURTHER			
\rangle	CONTRACTOR SHA AND FINAL CONNI) VERIFY INVERT OF W 8" ST PIPING.	EXISTING 10" S	FORM LATERAL			
\rangle	NEW 60"x48" ARE	EA WELL. SEE I	DETAIL 5 ON SHEET	C501.				
\rangle			FOUNDATION. SEE AR ORDINATION INFORMAT		D			
\rangle	NEW 24x24 CATC		1 WATER INLET. SEE		9 ON			
$\langle \rangle$	SHEET C501. PROTECT EXISTING	BUILDING WIN	DOWS AND WALLS DU		CTION.			
/								
		/						
) OR IRESHOLD							
EL			2 m					
	/				SAN			
			2 SATN	SAN SAN				
		SAT	SAN					P/
/		SAN SAN						
	SAN SAN				ASPHALT			CA
200 10	OR I D	. /	2	m .	S			TDD (FOR H
E 53,	EL: 75 , , / /		6					WISCO REQUI NO
/								NO
				CE m				
F								
	4			Ê				
	A	zaz	663					
		•		D C				
	(MH)							
				667				
			× /					
			GRA	ASS 661				
			S S		\ \			
		×		660	J			
61			C. C.		659			
T								
			Å.	FE WALK				
			CONCRET					4
	659	Ê						
T								
RET	E							
								SITE PI

ECT LEADER:		Drawing Title SITE PLAN	Project Title 111 EXPAND	JRGENT C	ARE	Project I 695-4
7.2	309 N. WATER ST. SUITE 650 MILWAUKEE, WI 53202 PHONE: (414) 258-6004	Approved: Project Director	Location: VA Medical Ce	ntor Milwa		Building
BAY GROUP, INC.			Date January 28th, 2016			CS

Department of Veterans Affairs

Grittner, Paul V - DNR

From:Rick Frieseke <rfrieseke@fecinc.us>Sent:Friday, June 16, 2017 10:38 AMTo:Grittner, Paul V - DNR; Ken WasemillerSubject:Fwd: RE: DNR Response to Questions Urgent CareAttachments:Urgent Care Map showing Location.pdf; Project Contacts.pdf

Paul

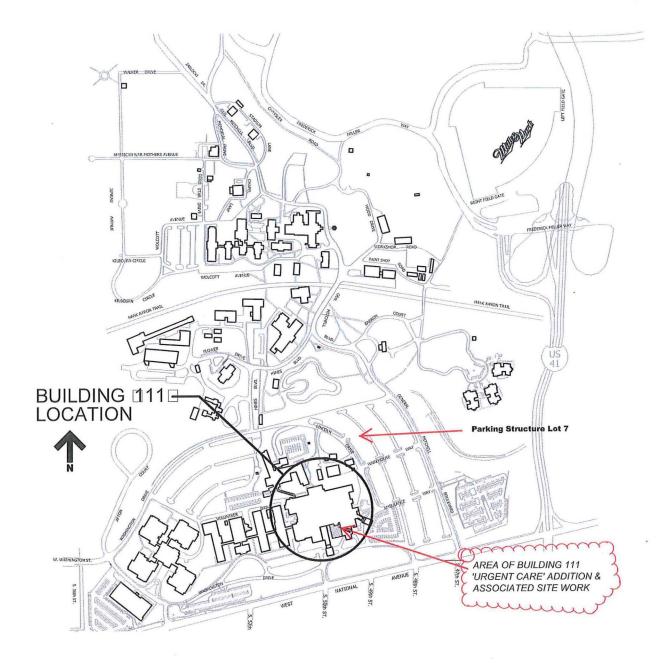
Thank you for your quick response.

attached is the revised contact page and the map of the area of the project.

Approximately 200 cubic yards will be reused as backfill adjacent to the exterior foundation walls within the footprint of the original excavation. Soils will not be relocated to a different area of the site.

As you are aware, the receiving site has been approved to receive these types of soils on numerous projects.

Please let us know if there are additional questions or comments.


Rick

------ Forwarded Message ------Subject:RE: DNR Response to Questions Urgent Care Date:Thu, 15 Jun 2017 20:21:53 +0000 From:Ken Wasemiller To:Rick Frieseke To:Rick Frieseke

It's attached, do you see it? Ken Wasemiller | PCS main 608.563.1361 | cell 608.295.8841 -----Original Message-----From: Rick Frieseke [mailto:rfrieseke@fecinc.us] Sent: Thursday, June 15, 2017 3:20 PM To: Ken Wasemiller <ken@pcsgov.com> Subject: Re: DNR Response to Questions Urgent Care can you send as a pdf.

It is coming over as a winmail.dat

```
On 6/15/2017 3:16 PM, Ken Wasemiller wrote:
> Can you see this it now, below and attached? Thanks
>
> Provide the email address for the contact person for the responsible party (who I
presume is Jim Beier).
> Jim Beier is the Project Manager from the VA. Casey Schimek is the GEMS Coordinator,
she's also in charge of the Soil Tracking, Disposal etc.
>
> Jim Beier, PE
                                                                   Casey Schimek
> General Engineer
                                                              Green Environmental
Management System (GEMS) Coordinator
> Facilities Management Division
                                                  Clement J. Zablocki VA Medical Center
> Clement J. Zablocki VAMC
Cassandra.Schimek@va.gov<mailto:Cassandra.Schimek@va.gov>
> 5000 West National Ave
                                                                      Phone: 414-384-2000
x45891
> Milwaukee, WI 53295
                                                         Fax: 414-382-5366
> James.Beier@va.gov<mailto:James.Beier@va.gov>
> Ofc: 414.384.2000 x47297
> Cell: 414-484-7331
>
> Map below and attached:
>
> [cid:image001.png@01D2E5EA.D81E2D50]
>
> Ken Wasemiller | PCS
> main 608.563.1361 | cell 608.295.8841
>
____
Rick Frieseke
Friess Environmental Consulting, Inc.
6637 North sidney Place
Milwaukee, WI 53209
414 228-9815 work ph
414 228-9816 work fax
414 731-9875 cell
```


. '

Project Contacts

Disposal Site

R&R Excavating Site County Road I Cedarburg, WI 53012 SE ¹⁄₄ of the NE ¹⁄₄, Section 22, Township 10 N, Range 21 E WTM Coordinates: 683133, 318082; 43.317884 Latitude, -87.988200 Longitude

Charmoli Holdings, LLC Mr. Dick and Maxine Charmoli 320 Douglas Lane Cedarburg, WI 53012 (262) 377-5736

Ponfil Trust 224 Aspen Drive Grafton, WI 53024

Friess Environmental Consulting, Inc. Mr. Rick Frieseke 6637 North Sidney Place Milwaukee, WI 53209 (414) 228-9815

Generator Site

Proposed VA Parking Structure CLEMENT J. ZABLOCKI VA MEDICAL CENTER Mr. Jim Beier Attn: Facility Management Division 5000 W. National Avenue Building 70, Room 250E Milwaukee, Wisconsin 53295 Phone: (414) 384-2000 James.Beier@va.gov Southwest ¼ Southwest ¼ Section 20, Township 7 North, Range 22 WTM Coordinates: 684925, 285102; 43.02071 Latitude, -87.97953 Longitude;

Progressive Construction Services, LLC Mr. Ken Wasemiller 944 North Parker Drive Janesville, WI 53545 (608) 295-8841 ken@pcsgov.com

Grittner, Paul V - DNR

From:	Rick Frieseke <rfrieseke@fecinc.us></rfrieseke@fecinc.us>
Sent:	Monday, July 31, 2017 12:38 PM
То:	Grittner, Paul V - DNR
Cc:	Ken Wasemiller (ken@pcsgov.com)
Subject:	Re: Urgent Care Addition at VA Center, BRRTS # 02-41-563846
Attachments:	170402 notification1.pdf; Charmoli Signature - VA Urgent Care Addition.pdf; Ponfil
	Signature.pdf

Paul As discussed.

Attached is the notification letter sent in June and the signatures from owners and myself on Section 12.

I will drop off additional fees today.

Again appreciate your quick response to finalize the approval.

Rick

On 6/19/2017 2:21 PM, Grittner, Paul V - DNR wrote:

Subject: Urgent Care Addition located at the Clement J Zablocki VA Medical Center 5000 W. National Avenue, Milwaukee WI BRRTS# 02-41-563846 FID# 341041470

Rick,

The following items will be required before the DNR can approve the 718.12 exemption request made for the site identified above:

- The attached DNR Publication RR-072, "Recommended Format for Exemption Request Wis. Admin. Code § NR 718.12 or § NR 718.15" outlines the fees required for review and approval of a 718.12 exemption request. This includes a \$700 technical review fee for the generating site and the receiving site. It appears that only one of these fees was paid. The other \$700 review fee must be submitted to the DNR. In addition, as residual soil contamination will be present on the R&R excavating site, a \$300 soil database fee will need to be submitted as well.
- 2) To comply with the requirements of Wis. Admin. Code § NR 718.12(2)(d), the responsible party (Clement J. Zablocki VA Medical Center Jim Beier) must notify all owners of the R&R Excavating site that contaminated soil will be brought onto their property and that this will impose a continuing obligation with certain responsibilities and future liabilities. The responsible party may either:
 - a. Provide notice to the owners of the R&R Excavating Site that a continuing obligation will be imposed on their property, a copy of the exemption request to document the work

that is being proposed, and a completed 'Section 8' of the attached form. Section 8 must indicate that "Residual Soil Contamination" will remain at their facility. These documents must be sent certified mail, return receipt requested, or priority mail with signature confirmation. The DNR will need to provide the owners with 30 days after receipt to review the notification and provide comments. If R&R does not reject accepting the material within 30 days, and all applicable fees have been paid, the DNR would be able to approve this exemption request.

Or

b. Provide notice to the owners of the R&R Excavating Site that a continuing obligation will be imposed on their property, a copy of the exemption request to document the work that is being proposed, a completed 'Section 8' indicating that "Residual Soil Contamination" will remain at their facility, and a blank 'Section 12' of the form. Section 12 must be completed by all owners of the R&R Excavating site and then returned to the DNR. Once the completed 'Section 12' is received by the DNR, and all applicable fees have been paid, this exemption request can be approved.

Similar requirements as those listed above will be required for all future requests to bring contaminated soil to a different site or facility from which the material was generated.

Please contact me at the number or email below if you have any questions regarding these requirements.

We are committed to service excellence. Visit our survey at <u>http://dnr.wi.gov/customersurvey</u> to evaluate how I did.

Paul Grittner Contaminated Material Management Specialist - Remediation and Redevelopment Program Wisconsin Department of Natural Resources Phone: (608) 266-0941 paul.grittner@wisconsin.gov

Rick Frieseke

_ _

Friess Environmental Consulting, Inc. 6637 North sidney Place Milwaukee, WI 53209

414 228-9815 work ph 414 228-9816 work fax 414 731-9875 cell NOTIFICATION OF RESIDUAL CONTAMINATION AND/OR CONTINUING OBLIGATIONS

KEEP THIS DOCUMENT WITH YOUR PROPERTY RECORDS

FRIESS ENVIRONMENTAL CONSULTING, INC.

Charmoli Holdings, LLC Mr. Dick and Maxine Charmoli 320 Douglas Lane Cedarburg, WI 53012 Ponfil Trust Ms. Jean Ponfil 224 Aspen Drive Grafton, WI 53024

Dear Mr. Charmoli & Ms. Ponfil:

On behalf of Ms. Casey Schimek of the Clement J. Zablocki VA Medical Center, the responsible party (RP) for the above referenced site, *Friess Environmental Consulting, Inc (FEC)* provides this letter to inform you of certain long term responsibilities (continuing obligations) for which you may become responsible. The RP has requested that the Wisconsin Department of Natural Resources (DNR) approve a NR 718.12 soil management request to dispose of contaminated material at your property. However, continuing obligations may be imposed as a condition of approval.

Under s. 292.12, Wis. Stats., current and future owners and occupants of your property are responsible for complying with continuing obligations imposed as part of the soil management approval. The responsibility for maintaining all necessary continuing obligations for your property will fall on to you or any subsequent property owners, unless another person has a legally enforceable responsibility to comply with the requirements of the final approval letter.

Soils impacted with polycyclic aromatic hydrocarbons (PAHs) and lead at levels which exceed the soil standards found in ch. NR 720, Wis. Adm. Code, are proposed to be transported and disposed of on your property. As part of the soil management approval, we are proposing that the following continuing obligations be used at your property to address future exposure to the residual contamination. If the soil management request is approved, you will be responsible for the following continuing obligations.

To construct a new well or to reconstruct an existing well, the property owner at the time of construction or reconstruction will need to obtain prior approval from the DNR (see below). Typically, this results in casing off a portion of the aquifer during drilling, when needed, to protect the water supply.

If soil is excavated from the area with residual soil contamination, the property owner at the time of excavation will be responsible for the following:

- Determine if contamination is present
- Determine whether the material would be considered solid or hazardous waste
- Ensure that any storage, treatment, or disposal is in compliance with applicable statutes and rules

Contaminated soil may be managed in-place, in accordance with ch. 718, Wis. Adm. Code, with prior DNR approval. In addition, all current and future property owners and occupants of the property and right-of-way holders need to be aware that excavation of the contaminated soil may pose an inhalation or other direct contact hazard and as a result special precautions may need to be taken during excavation activities to prevent a health treat to humans.

Depending on the site-specific conditions, construction over contaminated soil or groundwater may result in vapor migration of contaminants into enclosed structures or migration along underground utility lines. The potential for vapor inhalation and means of migration should be evaluated when planning any future redevelopment, and measures should be taken to ensure the continued protestion of public health, saftely, welfare, and the environment at the site.

If compliance with a maintenance plan is required as part fo a continuing obligation, an inspection log will need to be filled out periodically, and kept available for inspection by the DNR. Submittal of the inspection log may also be required. You will also need to notify and future owners and occupants of this property of the need to maintain the continuing obligations and to document that maintenance on the inspection log. Periodic audits of these continuing obligations may be conducted by the DNR, to ensure that potential exposure to residual contamination is being addressed. The DNR provides notification before conducting site visits as part of the audit.

If the soil management request is approved, all properties within the site boundaries where contamination remains, or where a continuing obligation is applied, will be listed on the Bureau for Remediation and Redevelopment Tracking System (BRRTS) the Web at the web site on http://dnr.wi.gov/topic/Brownfields/clean.html. Inclusion on this database provides public notice of remaining contamination and of any continuing obligations. Documents can be viewed on this database, and include final closure letters, site maps, and any applicable maintenance plans. The location of the site may also be viewed on the Remediation and Redevelopment Sites Map (RR Sites Map), on the "GIS Registry" layer, at the same internet address listed above.

DNR approval prior to well construction or reconstruction is required for all sites included in the GIS registry, in accordance with s. NR 812.09 (4)(w), Wis. Adm. Code. This requirement applies to private drinking water wells and high capacity wells. Special Well construction standards may be necessary to protect the well from the remaining contamination. Well drillers need to first obtain approval from a regional water supply specialist in the DNR's Drinking Water and Groundwater Program. The well construction application, form 3300-254, is on the internet at http://dnr.wi.gov/topic/wells/documents/3300254.pdf.

If the DNR grants approval, you will receive a letter which defines the specific continuing obligations on your property. The final approval letter will contain a description of the continuing obligation, any prohibitions on activities, and will include any applicable maintenance plan.

If you need more information, you may contact us at (414) 228-9815 or you may contact the DNR project manager Paul Grittner at <u>paul.grittner@wisconsin.gov</u> or (608) 266-0941. Attached is the signature page of the soil disposal exemption request. Please sign and date the form and return to FEC.

Respectfully,

Friess Environmental Consulting, Inc.

Inut

Trenton J. Ott Project Manager

Richard W. Frieseke

Richard W. Frieseke, P.E. President

170402 notification

Note: The following certification must be attached to confirm the Wis. Admin. Code § NR 718 exemption request was prepare by or under the supervision of a professional engineer under Wis. Admin. Code § NR 712.07.

Professional Engineer Information	
Last Name	First Name
Frieseke	Richard W.
Mailing Address	City State ZIP Code
6637 North Sidner Place	Milwaukee wI 53209
Phone No. (include area code)	Email
(414) 22-8-9815	rfrieseke@fecinc.us
accordance with the Rules of Professional Conduct i my knowledge, all information contained in this doc compliance with all applicable requirements in chs.	Adm. Code; that this document has been prepared in n ch. $A-E$ 8, Wis. Adm. Code; and that, to the best of iment is correct and the document was prepared in NR 700 to 726, Wis. Adm. Code.
It is my professional opinion that the proposed soil r pollution nor cause any other significant risk to publ	
Signature Date	Wisconsin Registration Number
Reverel 613	0/17 29877-006

Section 12 - Signatures

Each receiving site or facility property owner's signature must be included as part of this request. Attach additional copies of the signature page, if needed. If one of the owners of the receiving site or facility is acting on behalf of other owners, a power of attorney form or statement must be signed and attached to this agreement clearly granting the agent the authority to accept the contaminated soils on behalf of all other owners of the receiving site or facility whose signatures are not included on this agreement.

Owner(s) of Property Where Material is Placed							
Signature	Date						
Signature	Date						
Signature	Date						
Signature	Date						
-	Signature Signature Signature						

Note: The following certification must be attached to confirm the Wis. Admin. Code § NR 718 exemption request was prepare by or under the supervision of a professional engineer under Wis. Admin. Code § NR 712.07.

Professional Engineer Information						
Last Name Frieseke	First Name Richard W.					
Mailing Address 6637 North Sidner Place	City Milwaukee wI 53209					
Phone No. (include area code) (414) 22-8-9815	Email rfrieseke Cfecinc.us					
"I hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.						

It is my professional opinion that the proposed soil management activity will not cause environmental pollution nor cause any other significant risk to public health, safely or welfare."

Signature Wisconsin Registration Number Date Revende Friesik 6130/17 29877-006

Section 12 - Signatures

Each receiving site or facility property owner's signature must be included as part of this request. Attach additional copies of the signature page, if needed. If one of the owners of the receiving site or facility is acting on behalf of other owners, a power of attorney form or statement must be signed and attached to this agreement clearly granting the agent the authority to accept the contaminated soils on behalf of all other owners of the receiving site or facility whose signatures are not included on this agreement.

Owner(s) of Property Where Material is Placed				
Print Name	Signatura	Date		
KICHARD CHARMON	- Verland Karmoti	7.10.2017		
Print Name	Signature	Date		
Print Name	Signature	Date		
Print Name	Signature	Date		

Note: The following certification must be attached to confirm the Wis. Admin. Code § NR 718 exemption request was prepare by or under the supervision of a professional engineer under Wis. Admin. Code § NR 712.07.

Professional Engineer Information								
Last Name	First Na	amo						
Frieseke		Rich	and "	W,				
Mailing Address	City	; [State	ZIP Code			
6637 North Sidner Place		milwa	uKee	WI	53209			
Phone No. (Include area code)	Email	<u> </u>	1	<u> </u>				
(414) 22-8-9815		rtr.	eseke	Cter	cinc.us			
"I hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. $A-E$ 4, WIs. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. $A-E$ 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.								
It is my professional opinion that the proposed soil management activity will not cause environmental pollution nor cause any other significant risk to public health, safely or welfare."								
Signature Date			Wisconsin R	egistratio	n Number			
Consider friesder 613	F11 0	-	2987	17-00	6			

Section 12 - Signatures

2

1

Each receiving site or facility property owner's signature must be included as part of this request. Attach additional copies of the signature page, if needed. If one of the owners of the receiving site or facility is acting on behalf of other owners, a power of attorney form or statement must be signed and attached to this agreement clearly granting the agent the authority to accept the contaminated soils on behalf of all other owners of the receiving site or facility whose signatures are not included on this agreement.

Owner(s) of Property Where Material is Placed				
Print Name South C. Pow Fill Print Name	Signature State Pull 143 Lo TRUSTERS OF Signature Gree PROJ. #	Date FAUL PONFIL TILUST 7/12/17 170402) Date		
Print Name	Signature	Date		
Print Name	Signature	Date		