

GEOTECHNICAL ENVIRONMENTAL

WATER

CONSTRUCTION MANAGEMENT

17975 West Sarah Lane Suite 100 Brookfield, WI 53045 T: 262.754.2560 F: 262.923.7758

June 19, 2024 File No. 20.0156045.00

Mr. Tim Alessi, NR Region Program Manager Wisconsin Department of Natural Resources 1027 West St. Paul Avenue Milwaukee, Wisconsin 53233

Re: Notification of Groundwater Sampling Results - May 2024

Former Leather-Rich, Inc. Facility 1250 Corporate Center Drive Oconomowoc, Wisconsin BRRTS #02-68-581237

Dear Mr. Alessi:

On behalf of Leather-Rich, Inc. (Leather-Rich), GZA GeoEnvironmental, Inc. (GZA) is providing the Wisconsin Department of Natural Resources (WDNR) with the May 2024 groundwater sampling results collected at the former Leather-Rich facility located at 1250 Corporate Center Drive in Oconomowoc, Wisconsin ("Site"). This letter presents a summary of recent Site remedial and performance monitoring history, the May 2024 groundwater sampling activities, and the May 2024 groundwater analytical results. Please note that this letter is subject to the Limitations provided in **Attachment 1**.

BACKGROUND

In May 2022, GZA injected an emulsified vegetable oil (EVO) and sodium lactate solution at two select locations of the Site as an interim remedial action to evaluate the use of ERD as a groundwater remediation alternative. The injection and subsequent performance monitoring activities were conducted in accordance with the WDNR Review Fee for the Project Update, Interim Remediation Design and Specifications, and Temporary Exemption Request for Groundwater Remedial Action Report, dated February 1, 2022, and approved by the WDNR on March 21, 2022. The Remedial Implementation Report, which documented the injection activities, was previously submitted to the WDNR on September 16, 2022. The Enhanced Reductive Dechlorination Performance Monitoring Report, which documented the groundwater performance and an evaluation of ERD as a viable remedial alterative, was previously submitted to the WDNR on June 8, 2023.

¹ WDNR Review Fee for the Project Update, Interim Remediation Design and Specifications, and Temporary Exemption Request for Groundwater Remedial Action, Leather-Rich Inc., 1250 Corporate Center Drive, Oconomowoc, Wisconsin, BRRTS #02-68-581237 and #06-68-58959, dated February 1, 2022, GZA File No. 20.0156045.00.

² Remedial Implementation Report, Leather-Rich Inc., 1250 Corporate Center Drive, Oconomowoc, Wisconsin, BRRTS #02-68-581237, dated September 16, 2022, GZA File No. 20.0156045.02.

³ Enhanced Reductive Dechlorination Performance Monitoring Report, Leather-Rich Inc., 1250 Corporate Center Drive, Oconomowoc, Wisconsin, BRRTS #02-68-581237, dated June 8, 2023, GZA File No. 20.0156045.02.

GROUNDWATER INVESTIGATION

On May 22 and 23, 2024, GZA collected groundwater samples from six existing monitoring wells at the Site (MW-1, MW-6, MW-7, MW-9, MW-13, and MW-17), as shown on **Figure 1.** One monitoring well (MW-9) is located inside of the building, outside of the anticipated influence of the ERD injection area, and provides groundwater conditions near the former containment area. Three monitoring wells (MW-6, MW-7, and MW-1) are located immediately outside and north of the building in the ERD injection area, and provide groundwater conditions downgradient of the source area in the vicinity of the remedial injections. Two monitoring wells (MW-13 and MW-17) are located near the northwest perimeter of the Site and provide groundwater conditions in the vicinity of the perimeter remedial injections.

Prior to purging, the depth to groundwater relative to the top of casing was measured. The monitoring wells were purged and sampled using low-flow sampling techniques with a peristaltic pump and dedicated disposable polyethylene tubing to ensure that the groundwater in the wells was representative of aquifer conditions prior to sample collection. During purging, field parameters (temperature, pH, dissolved oxygen [DO], specific conductance, oxidation-reduction potential [ORP], and turbidity) were monitored using a flow-through cell until the parameters stabilized. The groundwater sampling activities and measurements were recorded on a groundwater sampling form.

Following purging, the tubing was disconnected prior to the flow-through cell and groundwater samples were collected in laboratory-supplied sample containers directly from the sample tube. The samples were placed on ice in an insulated cooler and shipped via overnight carrier under chain-of custody control to Pace Analytical® (Pace) in Green Bay, Wisconsin for chlorinated volatile organic compounds (cVOCs) by United States Environmental Protection Agency (USEPA) Method 8260, dissolved iron by USEPA Method 6010D, dissolved gases (ethane, ethene, and methane) by USEPA 8015B Modified, sulfate by Standard Method 300.0, and total organic carbon (TOC) by SM Method 5310C2.

GROUNDWATER ANALYTICAL RESULTS

In accordance with the requirements of Wisconsin Administrative Code (Wis. Adm. Code) NR 716.14(2), the results of the analytical testing are provided on **Table 1** and the laboratory analytical report is provided in **Attachment 2**. The analytical results are compared to the Wis. Adm. Code Enforcement Standards (ESs) and Preventive Action Limits (PALs).

The performance groundwater monitoring analytical results in monitoring wells MW-1, MW-6, MW-7, MW-13, and MW-17 continue to be one to two orders of magnitude below the original concentration in the monitoring wells prior to the injection. The greatest reduction is in monitoring well MW-6, which is on the north side of the building in the suspected source area.

During the May 2024 sampling event, monitoring well MW-9, which is inside of the building west of the containment area, was sampled. The results in this well indicate a stable concentration with a decreasing trend from July 2018 through May 2024.

CLOSING

We trust that this information meets your needs. Should you have questions regarding the attached groundwater analytical testing results, please feel free to contact Mr. Hedinger at (262) 424-1716 or via email at kevin.hedinger@gza.com.

Very truly yours,

GZA GeoEnvironmental, Inc.

Sheryl I. Stephenson, P.G. **Project Hydrogeologist**

Senior Project Manager

James F. Drought, P.H. Principal Hydrogeologist

J:\156000to156999\156045 Leather Rich\Report\May 2024 Notification\DRAFT 20.0156045.00 Notification of GW Sampling Results Oconomowoc WI 6-18-24.docx

Attachments: Table 1

Figure 1 Limitations

ams Dronger

Laboratory Analytical Report

Ms. Cheryl Chew, Leather-Rich, Inc. cc:

Ms. Delanie Bruer, Fredrickson & Bryron P.A.

TABLES

TABLE 1 GROUNDWATER ANALYTICAL RESULTS Leather-Rich, Inc. 1250 Corporate Center Drive

Oconomowoc, Wisconsin

Dorometer	ES	PAL	MW-1	Dup (MW-1)	MW-6	MW-7	MW-9	MW-13	MW-17
Parameter	(μg/l)	(μg/l)	5/22/2024	5/22/2024	5/22/2024	5/22/2024	5/22/2024	5/22/2024	5/22/2024
<u>cVOCs</u>									
Tetrachloroethene	5	0.5	<u>10.1</u>	<u>7.8</u>	< 0.41	<u>11.8</u>	<u>136</u>	<u>7.4</u>	<u>12.3</u>
Trichloroethene	5	0.5	2	1.8	< 0.32	< 0.32	<u>11.1</u>	0.82 J	<u>7.9</u>
Vinyl chloride	0.2	0.02	< 0.17	< 0.17	<u>0.27 J</u>	< 0.17	< 0.17	< 0.17	< 0.17
cis-1,2-Dichloroethene	70	7	1.9	1.7	39.5	< 0.47	< 0.47	1.7	19.1
Sulfate	NS	NS	32,800		3,800 J	26,900	18,900	30,100	15,800
Iron, Dissolved	NS	NS	1,060		8,370	< 29.6	< 29.6	< 29.6	6420
Total Organic Carbon	NS	NS	2,000		5,900	1,300	2,500	1,300	9,000
Ethane	NS	NS	< 0.39		< 0.39	< 0.39	< 0.39	< 0.39	< 0.39
Ethene	NS	NS	< 0.25		< 0.25	< 0.25	< 0.25	< 0.25	< 0.25
Methane	NS	NS	984		5,380	45.3	< 0.58	75.7	1,120

Notes:

- 1. Samples were collected by GZA GeoEnvironmental, Inc. (GZA) and submitted to Pace® Analytical Services (Pace) for analysis of chlorinated VOCs (cVOCs) by United States Environmental Protection Agency (USEPA) Method 8260, dissolved iron by USEPA Method 6010D, dissolved gases (ethane, ethene, and methane) by USEPA 8015B Modified, sulfate by Standard Method 300.0, and total organic carbon (TOC) by SM Method 5310C2.
- 2. Results are presented in micrograms per liter (µg/l).
- 3. Results are compared to Wisconsin Administrative Code (Wis. Adm. Code) Chapter NR 140 Enforcement Standards (ESs) and Preventive Action Limits (PALs). <u>Underlined Bold Redfont</u> indicates the parameter was detected above the ES and *Bold italicized font* indicates the parameter was detected above the PAL.
- 4. Only results for compounds detected during laboratory analyses are presented.
- 5. J = Estimated value. The analyte was detected at a concentration between the limit of detection (LOD) and limit of quantification (LOQ).
- 6. "--" = sample not analyzed for that parameter.
- 7. "NS" = No Standard available under Wis. Adm. Code NR 140.

FIGURES

ATTACHMENT 1

Limitations

LIMITATIONS

STANDARD OF CARE

- 1. GZA's findings and conclusions are based on the work conducted as part of the Scope of Services set forth in the Proposal for Services and/or Report and reflect our professional judgment. These findings and conclusions must be considered not as scientific or engineering certainties, but rather as our professional opinions concerning the limited data gathered during the course of our work. Conditions other than described in this Report may be found at the subject location(s).
- 2. GZA's services were performed using the degree of skill and care ordinarily exercised by qualified professionals performing the same type of services, at the same time, under similar conditions, at the same or a similar property. No warranty, expressed or implied, is made. Specifically, GZA does not and cannot represent that the Site contains no hazardous material, oil, or other latent condition beyond that observed by GZA during its study. Additionally, GZA makes no warranty that any response action or recommended action will achieve all of its objectives or that the findings of this study will be upheld by a local, state or federal agency.
- 3. In conducting our work, GZA relied upon certain information made available by public agencies, Client and/or others. GZA did not attempt to independently verify the accuracy or completeness of that information. Inconsistencies in this information which we have noted, if any, are discussed in the Report.

SUBSURFACE CONDITIONS

- 4. The generalized soil profile(s) provided in our Report are based on widely-spaced subsurface explorations and are intended only to convey trends in subsurface conditions. The boundaries between strata are approximate and idealized, and were based on our assessment of subsurface conditions. The composition of strata, and the transitions between strata, may be more variable and more complex than indicated. For more specific information on soil conditions at a specific location refer to the exploration logs. The nature and extent of variations between these explorations may not become evident until further exploration or construction. If variations or other latent conditions then become evident, it will be necessary to reevaluate the conclusions and recommendations of this Report.
- 5. Water level readings have been made, as described in this Report, in and monitoring wells at the specified times and under the stated conditions. These data have been reviewed and interpretations have been made in this Report. Fluctuations in the level of the groundwater however occur due to temporal or spatial variations in areal recharge rates, soil heterogeneities, the presence of subsurface utilities, and/or natural or artificially induced perturbations. The observed water table may be other than indicated in the Report.

COMPLIANCE WITH CODES AND REGULATIONS

6. We used reasonable care in identifying and interpreting applicable codes and regulations necessary to execute our scope of work. These codes and regulations are subject to various, and possibly contradictory, interpretations. Interpretations and compliance with codes and regulations by other parties is beyond our control.

SCREENING AND ANALYTICAL TESTING

- 7. GZA collected environmental samples at the locations identified in the Report. These samples were analyzed for the specific parameters identified in the Report. Additional constituents, for which analyses were not conducted, may be present in soil, groundwater, surface water, sediment and/or air. Future Site activities and uses may result in a requirement for additional testing.
- 8. Our interpretation of field screening and laboratory data is presented in the Report. Unless otherwise noted, we relied upon the laboratory's QA/QC program to validate these data.
- 9. Variations in the types and concentrations of contaminants observed at a given location or time may occur due to release mechanisms, disposal practices, changes in flow paths, and/or the influence of various physical, chemical, biological or radiological processes. Subsequently observed concentrations may be other than indicated in the Report.

INTERPRETATION OF DATA

10. Our opinions are based on available information as described in the Report, and on our professional judgment. Additional observations made over time, and/or space, may not support the opinions provided in the Report.

ADDITIONAL INFORMATION

11. In the event that the Client or others authorized to use this Report obtain additional information on environmental or hazardous waste issues at the Site not contained in this Report, such information shall be brought to GZA's attention forthwith. GZA will evaluate such information and, on the basis of this evaluation, may modify the conclusions stated in this Report.

ADDITIONAL SERVICES

12. GZA recommends that we be retained to provide services during any future investigations, design, implementation activities, construction, and/or property development/ redevelopment at the Site. This will allow us the opportunity to: i) observe conditions and compliance with our design concepts and opinions; ii) allow for changes in the event that conditions are other than anticipated; iii) provide modifications to our design; and iv) assess the consequences of changes in technologies and/or regulations.

ATTACHMENT 2

Laboratory Analytical Report

June 03, 2024

Sheryl Stephenson GZA GeoEnvironmental 17975 West Sarah Lane Suite 100 Brookfield, WI 53045

RE: Project: 20.0156045.00 Pace Project No.: 40278695

Dear Sheryl Stephenson:

Enclosed are the analytical results for sample(s) received by the laboratory on May 23, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Christopher Hyska christopher.hyska@pacelabs.com (920)469-2436

Chushpher Hyska

Project Manager

Enclosures

CERTIFICATIONS

Project: 20.0156045.00 Pace Project No.: 40278695

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

SAMPLE SUMMARY

Project: 20.0156045.00 Pace Project No.: 40278695

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40278695001	MW-9	Water	05/22/24 10:10	05/23/24 09:15
40278695002	MW-6	Water	05/22/24 11:30	05/23/24 09:15
40278695003	MW-7	Water	05/22/24 12:45	05/23/24 09:15
40278695004	MW-1	Water	05/22/24 13:50	05/23/24 09:15
40278695005	MW-13	Water	05/22/24 15:00	05/23/24 09:15
40278695007	DUP-1	Water	05/22/24 00:00	05/23/24 09:15
40278695008	TRIP BLANK	Water	05/22/24 00:00	05/23/24 09:15

SAMPLE ANALYTE COUNT

Project: 20.0156045.00 Pace Project No.: 40278695

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40278695001	MW-9	EPA 8015B Modified	KHB	3	PASI-G
		EPA 6010D	SIS	1	PASI-G
		EPA 8260	NB	8	PASI-G
		EPA 300.0	HMB	1	PASI-G
		SM 5310C	TJJ	1	PASI-G
40278695002	MW-6	EPA 8015B Modified	KHB	3	PASI-G
		EPA 6010D	SIS	1	PASI-G
		EPA 8260	EIB	8	PASI-G
		EPA 300.0	HMB	1	PASI-G
		SM 5310C	TJJ	1	PASI-G
40278695003	MW-7	EPA 8015B Modified	KHB	3	PASI-G
		EPA 6010D	SIS	1	PASI-G
		EPA 8260	NB	8	PASI-G
		EPA 300.0	HMB	1	PASI-G
		SM 5310C	TJJ	1	PASI-G
40278695004	MW-1	EPA 8015B Modified	KHB	3	PASI-G
		EPA 6010D	SIS	1	PASI-G
		EPA 8260	NB	8	PASI-G
		EPA 300.0	НМВ	1	PASI-G
		SM 5310C	TJJ	1	PASI-G
40278695005	MW-13	EPA 8015B Modified	KHB	3	PASI-G
		EPA 6010D	SIS	1	PASI-G
		EPA 8260	NB	8	PASI-G
		EPA 300.0	НМВ	1	PASI-G
		SM 5310C	TJJ	1	PASI-G
40278695007	DUP-1	EPA 8260	EIB	8	PASI-G
40278695008	TRIP BLANK	EPA 8260	NB	8	PASI-G

PASI-G = Pace Analytical Services - Green Bay

SUMMARY OF DETECTION

Project: 20.0156045.00 Pace Project No.: 40278695

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
10278695001	MW-9					
EPA 8260	Tetrachloroethene	136	ug/L	1.0	05/24/24 19:40	
EPA 8260	Trichloroethene	11.1	ug/L	1.0	05/24/24 19:40	
EPA 300.0	Sulfate	18.9	mg/L	2.0	05/24/24 13:15	
SM 5310C	Total Organic Carbon	2.5	mg/L	0.50	05/29/24 23:01	
0278695002	MW-6					
EPA 8015B Modified	Methane	5380	ug/L	350	05/29/24 14:23	
EPA 6010D	Iron, Dissolved	8370	ug/L	100	05/24/24 18:10	
EPA 8260	Vinyl chloride	0.27J	ug/L	1.0	05/28/24 11:06	
EPA 8260	cis-1,2-Dichloroethene	39.5	ug/L	1.0	05/28/24 11:06	
EPA 300.0	Sulfate	3.8J	mg/L	10.0	05/24/24 14:00	D3
SM 5310C	Total Organic Carbon	5.9	mg/L	3.0	05/30/24 07:22	
0278695003	MW-7					
EPA 8015B Modified	Methane	45.3	ug/L	2.8	05/30/24 14:25	
EPA 8260	Tetrachloroethene	11.8	ug/L	1.0	05/24/24 20:13	
EPA 300.0	Sulfate	26.9	mg/L	2.0	05/24/24 14:15	
SM 5310C	Total Organic Carbon	1.3	mg/L	0.50	05/29/24 23:34	
0278695004	MW-1					
EPA 8015B Modified	Methane	948	ug/L	28.0	05/29/24 14:29	
EPA 6010D	Iron, Dissolved	1060	ug/L	100	05/24/24 18:15	
EPA 8260	Tetrachloroethene	10.1	ug/L	1.0	05/24/24 20:30	
EPA 8260	Trichloroethene	2.0	ug/L	1.0	05/24/24 20:30	
EPA 8260	cis-1,2-Dichloroethene	1.9	ug/L	1.0	05/24/24 20:30	
EPA 300.0	Sulfate	32.8	mg/L	2.0	05/24/24 15:14	
SM 5310C	Total Organic Carbon	2.0	mg/L	0.50	05/29/24 23:53	
0278695005	MW-13					
EPA 8015B Modified	Methane	75.7	ug/L	2.8	05/29/24 12:51	
EPA 8260	Tetrachloroethene	7.4	ug/L	1.0	05/24/24 20:47	
EPA 8260	Trichloroethene	0.82J	ug/L	1.0	05/24/24 20:47	
EPA 8260	cis-1,2-Dichloroethene	1.7	ug/L	1.0	05/24/24 20:47	
EPA 300.0	Sulfate	30.1	mg/L	2.0	05/24/24 15:29	
SM 5310C	Total Organic Carbon	1.3	mg/L	0.50	05/30/24 00:12	
0278695007	DUP-1					
EPA 8260	Tetrachloroethene	7.8	ug/L	1.0	05/28/24 10:46	
EPA 8260	Trichloroethene	1.8	ug/L	1.0	05/28/24 10:46	
EPA 8260	cis-1,2-Dichloroethene	1.7	ug/L	1.0	05/28/24 10:46	

Project: 20.0156045.00
Pace Project No.: 40278695

Date: 06/03/2024 08:30 PM

Sample: MW-9	Lab ID:	40278695001	Collected	05/22/24	10:10	Received: 05	5/23/24 09:15	Matrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modifie	ed					
	Pace Anal	ytical Services	- Green Bay						
Ethane	<0.39	ug/L	5.6	0.39	1		05/29/24 11:5	3 74-84-0	
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 11:5	3 74-85-1	
Methane	<0.58	ug/L	2.8	0.58	1		05/29/24 11:5	53 74-82-8	
6010D MET ICP, Dissolved	Analytical	Method: EPA 6	010D						
,	•	ytical Services							
Iron, Dissolved	<29.6	ug/L	100	29.6	1		05/24/24 18:0	04 7439-89-6	
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Bay						
Tetrachloroethene	136	ug/L	1.0	0.41	1		05/24/24 19:4	10 127-18-4	
Trichloroethene	11.1	ug/L	1.0	0.32	1		05/24/24 19:4	40 79-01-6	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/24/24 19:4	10 75-01-4	
cis-1,2-Dichloroethene	<0.47	ug/L	1.0	0.47	1		05/24/24 19:4	10 156-59-2	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		05/24/24 19:4	156-60-5	
Surrogates 1,2-Dichlorobenzene-d4 (S)	97	%	70-130		1		05/24/24 10:4	10 2199-69-1	
4-Bromofluorobenzene (S)	95	% %	70-130 70-130		1		05/24/24 19:4		
Toluene-d8 (S)	97	%	70-130		1			40 2037-26-5	
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	•	ytical Services							
Sulfate	18.9	mg/L	2.0	0.44	1		05/24/24 13:	15 14808-79-8	
5310C TOC	Analytical	Method: SM 53	310C						
33.03.133	•	ytical Services							
Total Organic Carbon	2.5	mg/L	0.50	0.19	1		05/29/24 23:0	01 7440-44-0	
Sample: MW-6	Lab ID:	40278695002	Collected	: 05/22/24	4 11:30	Received: 05	5/23/24 09:15	Matrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	- ——— - Analytical	Method: EPA 8	015B Modifie	ed					
	Pace Anal	ytical Services	- Green Bay						
Ethane	<0.39	ug/L	5.6	0.39	1		05/29/24 12:0	00 74-84-0	
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 12:0		
Methane	5380	ug/L	350	72.0	125		05/29/24 14:2		
6010D MET ICP, Dissolved	Analytical	Method: EPA 6	010D						
00.05 MET 101, 513301464	•	vtical Services							
Iron, Dissolved	8370	ug/L	100	29.6	1		05/24/24 49-	10 7439-89-6	
		11(1/1	(()()	/4 h			UD/74/74 18"	/43W-XU-N	

Project: 20.0156045.00 Pace Project No.: 40278695

Date: 06/03/2024 08:30 PM

Sample: MW-6	Lab ID:	40278695002	Collected	d: 05/22/24	11:30	Received: 05	5/23/24 09:15 Ma	latrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual			
8260 MSV	Analytical	Method: EPA 8	260									
	Pace Anal	ytical Services	- Green Bay	/								
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		05/28/24 11:06	127-18-4				
Trichloroethene	<0.32	ug/L	1.0	0.32	1		05/28/24 11:06	79-01-6				
Vinyl chloride	0.27J	ug/L	1.0	0.17	1		05/28/24 11:06	75-01-4				
cis-1,2-Dichloroethene	39.5	ug/L	1.0	0.47	1		05/28/24 11:06	156-59-2				
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		05/28/24 11:06	156-60-5				
Surrogates							0=10010111					
1,2-Dichlorobenzene-d4 (S)	94	%	70-130		1		05/28/24 11:06					
4-Bromofluorobenzene (S)	89	%	70-130		1		05/28/24 11:06					
Toluene-d8 (S)	96	%	70-130		1		05/28/24 11:06	2037-26-5				
300.0 IC Anions	Analytical	Method: EPA 3	0.00									
	Pace Anal	ytical Services	- Green Bay	/								
Sulfate	3.8J	mg/L	10.0	2.2	5		05/24/24 14:00	14808-79-8	D3			
5310C TOC	Analytical	Method: SM 53	10C									
	-	ytical Services		/								
Total Organic Carbon	5.9	mg/L	3.0	1.1	6		05/30/24 07:22	7440-44-0				
Total Organic Carbon	3.3	mg/L	5.0	1.1	O		03/30/24 07.22	7440 44 0				
Sample: MW-7	Lab ID:	40278695003	Collected	d: 05/22/24	12:45	Received: 05	5/23/24 09:15 Ma	atrix: Water				
Sample: MW-7 Parameters	Lab ID:	40278695003 Units	Collected	d: 05/22/24	1 12:45 DF	Received: 05 Prepared	5/23/24 09:15 Ma	cAS No.	Qual			
Parameters	Results	Units	LOQ	LOD					Qual			
Parameters	Results Analytical	Units	LOQ 015B Modifi	LOD					Qual			
Parameters Methane, Ethane, Ethene GCV	Results Analytical Pace Analy	Units Method: EPA 8 ytical Services	LOQ 015B Modifi - Green Bay	LOD ied	DF		Analyzed	CAS No.	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane	Analytical Pace Analy <0.39	Units	LOQ 015B Modifi Green Bay 5.6	LOD ied /	DF 1		Analyzed 05/30/24 14:25	CAS No.	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene	Analytical Pace Analy <0.39 <0.25	Units — - Method: EPA 8 ytical Services ug/L ug/L	LOQ — 015B Modifi Green Bay 5.6 5.0	LOD fied / 0.39 0.25	DF 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25	CAS No. 74-84-0 74-85-1	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene	Analytical Pace Analy <0.39	Units	LOQ 015B Modifi Green Bay 5.6	LOD ied /	DF 1		Analyzed 05/30/24 14:25	CAS No. 74-84-0 74-85-1	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane	Analytical Pace Analy <0.39 <0.25 45.3	Units — - Method: EPA 8 ytical Services ug/L ug/L	D15B Modifi - Green Bay 5.6 5.0 2.8	LOD fied / 0.39 0.25	DF 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25	CAS No. 74-84-0 74-85-1	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane	Analytical Pace Analy <0.39 <0.25 45.3 Analytical	Units Method: EPA 8 ytical Services ug/L ug/L ug/L	LOQ ————————————————————————————————————	LOD fied / 0.39 0.25 0.58	DF 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25	CAS No. 74-84-0 74-85-1	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved	Analytical Pace Analy <0.39 <0.25 45.3 Analytical	Units Method: EPA 8 ytical Services ug/L ug/L ug/L ug/L	LOQ ————————————————————————————————————	LOD fied / 0.39 0.25 0.58	DF 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25	74-84-0 74-85-1 74-82-8	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved Iron, Dissolved	Analytical Pace Analytical <0.39 <0.25 45.3 Analytical Pace Analytical Company Compan	Units Method: EPA 8 ytical Services ug/L ug/L ug/L ug/L Method: EPA 6 ytical Services ug/L	LOQ — — — — — — — — — — — — — — — — — — —	LOD ied / 0.39 0.25 0.58	DF 1 1 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25	74-84-0 74-85-1 74-82-8	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved Iron, Dissolved	Analytical Pace Analytical <0.39 <0.25 45.3 Analytical Pace Analytical Analytical Analytical	Units Method: EPA 8 ytical Services ug/L ug/L ug/L Method: EPA 6 ytical Services	LOQ	LOD ied / 0.39 0.25 0.58	DF 1 1 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25	74-84-0 74-85-1 74-82-8	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved Iron, Dissolved	Analytical Pace Analytical <0.39 <0.25 45.3 Analytical Pace Analytical Analytical Analytical	Units Method: EPA 8 ytical Services ug/L ug/L ug/L Method: EPA 6 ytical Services ug/L Method: EPA 8	LOQ	LOD ied / 0.39 0.25 0.58	DF 1 1 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25	74-84-0 74-85-1 74-82-8 7439-89-6	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved Iron, Dissolved 8260 MSV Tetrachloroethene	Analytical Pace Analytical 40.39 <0.25 45.3 Analytical Pace Analytical Pace Analytical Pace Analytical	Units Method: EPA 8 ytical Services ug/L ug/L ug/L Method: EPA 6 ytical Services ug/L Method: EPA 8 ytical Services	LOQ	LOD ied / 0.39 0.25 0.58	DF 1 1 1 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25 05/24/24 18:13	CAS No. 74-84-0 74-85-1 74-82-8 7439-89-6	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved Iron, Dissolved 8260 MSV Tetrachloroethene Trichloroethene	Analytical Pace Analytical 40.39 <0.25 45.3 Analytical Pace Analytical Pace Analytical Pace Analytical	Units Method: EPA 8 ytical Services ug/L ug/L ug/L Method: EPA 6 ytical Services ug/L Method: EPA 8 ytical Services ug/L	LOQ	LOD ied 0.39 0.25 0.58	DF 1 1 1 1 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25 05/24/24 18:13	74-84-0 74-85-1 74-82-8 7439-89-6	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved Iron, Dissolved 8260 MSV Tetrachloroethene Trichloroethene Vinyl chloride	Analytical Pace Analytical 40.39 <0.25 45.3 Analytical Pace Analytical Pace Analytical Pace Analytical Pace Analytical Pace Analytical	Units Method: EPA 8 ytical Services ug/L ug/L Method: EPA 6 ytical Services ug/L Method: EPA 8 ytical Services ug/L ug/L ug/L	LOQ — — — — — — — — — — — — — — — — — — —	LOD ied 0.39 0.25 0.58 29.6	1 1 1 1 1 1 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25 05/24/24 18:13 05/24/24 20:13 05/24/24 20:13	74-84-0 74-85-1 74-82-8 7439-89-6 127-18-4 79-01-6 75-01-4	Qua			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved Iron, Dissolved 8260 MSV Tetrachloroethene Trichloroethene Vinyl chloride cis-1,2-Dichloroethene trans-1,2-Dichloroethene	Analytical Pace Analytical <0.39 <0.25 45.3 Analytical Pace Analytical	Units Method: EPA 8 ytical Services ug/L ug/L ug/L Method: EPA 6 ytical Services ug/L Method: EPA 8 ytical Services ug/L ug/L ug/L ug/L ug/L	LOQ — — — — — — — — — — — — — — — — — — —	LOD ied 0.39 0.25 0.58 29.6 0.41 0.32 0.17	1 1 1 1 1 1 1 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25 05/24/24 18:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13	74-84-0 74-85-1 74-82-8 7439-89-6 127-18-4 79-01-6 75-01-4 156-59-2	Qua			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved Iron, Dissolved 8260 MSV Tetrachloroethene Trichloroethene Vinyl chloride cis-1,2-Dichloroethene trans-1,2-Dichloroethene Surrogates	Analytical Pace Analytical	Units Method: EPA 8 ytical Services ug/L ug/L Method: EPA 6 ytical Services ug/L Method: EPA 8 ytical Services ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LOQ	LOD ied 0.39 0.25 0.58 29.6 0.41 0.32 0.17 0.47	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25 05/24/24 18:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13	74-84-0 74-85-1 74-82-8 7439-89-6 127-18-4 79-01-6 75-01-4 156-59-2 156-60-5	Qual			
Parameters Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved Iron, Dissolved 8260 MSV Tetrachloroethene Trichloroethene Vinyl chloride cis-1,2-Dichloroethene trans-1,2-Dichloroethene Surrogates 1,2-Dichlorobenzene-d4 (S)	Analytical Pace Analytical	Units Method: EPA 8 ytical Services ug/L ug/L Method: EPA 6 ytical Services ug/L Method: EPA 8 ytical Services ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LOQ — — — — — — — — — — — — — — — — — — —	LOD ied 0.39 0.25 0.58 29.6 0.41 0.32 0.17 0.47	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25 05/24/24 18:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13	74-84-0 74-85-1 74-85-1 74-82-8 7439-89-6 127-18-4 79-01-6 75-01-4 156-59-2 156-60-5 2199-69-1	Qual			
Methane, Ethane, Ethene GCV Ethane Ethene Methane 6010D MET ICP, Dissolved Iron, Dissolved 8260 MSV	Analytical Pace Analytical	Units Method: EPA 8 ytical Services ug/L ug/L Method: EPA 6 ytical Services ug/L Method: EPA 8 ytical Services ug/L ug/L ug/L ug/L ug/L ug/L ug/L	LOQ	LOD ied 0.39 0.25 0.58 29.6 0.41 0.32 0.17 0.47	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Analyzed 05/30/24 14:25 05/30/24 14:25 05/30/24 14:25 05/24/24 18:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13 05/24/24 20:13	74-84-0 74-85-1 74-85-1 74-82-8 7439-89-6 127-18-4 79-01-6 75-01-4 156-59-2 156-60-5 2199-69-1 460-00-4	Qual			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 20.0156045.00
Pace Project No.: 40278695

Date: 06/03/2024 08:30 PM

Sample: MW-7	Lab ID:	40278695003	Collected	05/22/24	1 12:45	Received: 05	5/23/24 09:15 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions		Method: EPA 3							
	Pace Analy	ytical Services	Green Bay						
Sulfate	26.9	mg/L	2.0	0.44	1		05/24/24 14:15	14808-79-8	
5310C TOC	Analytical	Method: SM 53	10C						
	Pace Analy	ytical Services	Green Bay						
Total Organic Carbon	1.3	mg/L	0.50	0.19	1		05/29/24 23:34	7440-44-0	
Sample: MW-1	Lab ID:	40278695004	Collected	: 05/22/24	4 13:50	Received: 05	5/23/24 09:15 M	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	115B Modifie	ad .				•	
wethane, Ethane, Ethene GCV		ytical Services							
Ethane	<0.39	ug/L	5.6	0.39	1		05/29/24 12:44	74-84-0	
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 12:44		
Methane	948	ug/L	28.0	5.8	10		05/29/24 14:29	74-82-8	
6010D MET ICP, Dissolved	Analytical	Method: EPA 6	010D						
	Pace Anal	ytical Services	Green Bay						
Iron, Dissolved	1060	ug/L	100	29.6	1		05/24/24 18:15	7439-89-6	
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Analy	ytical Services	Green Bay						
Tetrachloroethene	10.1	ug/L	1.0	0.41	1		05/24/24 20:30	127-18-4	
Trichloroethene	2.0	ug/L	1.0	0.32	1		05/24/24 20:30	79-01-6	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/24/24 20:30	75-01-4	
cis-1,2-Dichloroethene	1.9	ug/L	1.0	0.47	1		05/24/24 20:30	156-59-2	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		05/24/24 20:30	156-60-5	
Surrogates 1,2-Dichlorobenzene-d4 (S)	97	%	70-130		1		05/24/24 20:30	2199-69-1	
4-Bromofluorobenzene (S)	96	%	70-130		1		05/24/24 20:30		
Toluene-d8 (S)	96	%	70-130		1		05/24/24 20:30	2037-26-5	
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Analy	ytical Services	Green Bay						
Sulfate	32.8	mg/L	2.0	0.44	1		05/24/24 15:14	14808-79-8	
5310C TOC	Analytical	Method: SM 53	10C						
	•	ytical Services							
Total Organic Carbon	2.0	mg/L	0.50	0.19	1		05/29/24 23:53	7440-44-0	
		···ə –	0.00	3.10	•		35, 25, 21, 25.00		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 20.0156045.00 Pace Project No.: 40278695

Date: 06/03/2024 08:30 PM

Sample: MW-13	Lab ID:	40278695005	Collected	d: 05/22/2	4 15:00	Received: 05	5/23/24 09:15 M	Matrix: Water					
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua				
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modifi	ed									
	Pace Anal	ytical Services	- Green Bay	/									
Ethane	< 0.39	ug/L	5.6	0.39	1		05/29/24 12:51	74-84-0					
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 12:51						
Methane	75.7	ug/L	2.8	0.58	1		05/29/24 12:51						
6010D MET ICP, Dissolved	Analytical	Method: EPA 6	010D										
	Pace Anal	ytical Services	- Green Bay	′									
Iron, Dissolved	<29.6	ug/L	100	29.6	1		05/24/24 18:17	7439-89-6					
8260 MSV	Analytical	Method: EPA 8	260										
	Pace Anal	ytical Services	- Green Bay	/									
Tetrachloroethene	7.4	ug/L	1.0	0.41	1		05/24/24 20:47	127-18-4					
Trichloroethene	0.82J	ug/L	1.0	0.32	1		05/24/24 20:47	79-01-6					
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/24/24 20:47	75-01-4					
cis-1,2-Dichloroethene	1.7	ug/L	1.0	0.47	1		05/24/24 20:47	156-59-2					
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		05/24/24 20:47	156-60-5					
Surrogates		-											
1,2-Dichlorobenzene-d4 (S)	99	%	70-130		1		05/24/24 20:47	2199-69-1					
4-Bromofluorobenzene (S)	99	%	70-130		1		05/24/24 20:47	460-00-4					
Toluene-d8 (S)	97	%	70-130		1		05/24/24 20:47	2037-26-5					
300.0 IC Anions	Analytical	Method: EPA 3	0.00										
	Pace Anal	ytical Services	- Green Bay	/									
Sulfate	30.1	mg/L	2.0	0.44	1		05/24/24 15:29	14808-79-8					
5310C TOC	Analytical	Method: SM 53	10C										
	-	ytical Services		/									
Total Organic Carbon	1.3	mg/L	0.50	0.19	1		05/30/24 00:12	7440-44-0					
Sample: DUP-1	Lab ID:	40278695007	Collected	d: 05/22/2	4 00:00	Received: 05	5/23/24 09:15 M	latrix: Water					
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua				
8260 MSV	Analytical	Method: EPA 8	260					•					
	-	ytical Services		/									
Tetrachloroethene	7.8	ug/L	1.0	0.41	1		05/28/24 10:46	127-18-4					
Trichloroethene	1.8	ug/L	1.0	0.32	1		05/28/24 10:46						
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/28/24 10:46						
cis-1,2-Dichloroethene	1.7	ug/L	1.0	0.47	1		05/28/24 10:46						
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		05/28/24 10:46						
Surrogates	40.00	~ ₃ , -		0.00	•		55,25,21 10.40	.55 55 5					
1,2-Dichlorobenzene-d4 (S)	92	%	70-130		1		05/28/24 10:46	2199-69-1					
4-Bromofluorobenzene (S)	90	%	70-130		1		05/28/24 10:46						
4-DIUIIUIIUUIUDEIIZEIIE (3)													

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

ANALYTICAL RESULTS

Project: 20.0156045.00
Pace Project No.: 40278695

Date: 06/03/2024 08:30 PM

Sample: TRIP BLANK	Lab ID:	40278695008	Collecte	d: 05/22/24	00:00	Received: 05	5/23/24 09:15 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Ba	y					
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		05/24/24 16:33	127-18-4	
Trichloroethene	<0.32	ug/L	1.0	0.32	1		05/24/24 16:33	79-01-6	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/24/24 16:33	75-01-4	
cis-1,2-Dichloroethene	< 0.47	ug/L	1.0	0.47	1		05/24/24 16:33	156-59-2	
trans-1,2-Dichloroethene	< 0.53	ug/L	1.0	0.53	1		05/24/24 16:33	156-60-5	
Surrogates		•							
1,2-Dichlorobenzene-d4 (S)	94	%	70-130		1		05/24/24 16:33	2199-69-1	
4-Bromofluorobenzene (S)	95	%	70-130		1		05/24/24 16:33	460-00-4	
Toluene-d8 (S)	99	%	70-130		1		05/24/24 16:33	2037-26-5	

QUALITY CONTROL DATA

Project: 20.0156045.00 Pace Project No.: 40278695

Date: 06/03/2024 08:30 PM

QC Batch: 475449 Analysis Method: EPA 8015B Modified

QC Batch Method: EPA 8015B Modified Analysis Description: Methane, Ethane, Ethene GCV

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40278695001, 40278695002, 40278695003, 40278695004, 40278695005

METHOD BLANK: 2723195 Matrix: Water

Associated Lab Samples: 40278695001, 40278695002, 40278695003, 40278695004, 40278695005

		Blank	Reporting		
Parameter	Units	Result	sult Limit Aı		Qualifiers
Ethane	ug/L	<0.39	5.6	05/29/24 10:28	
Ethene	ug/L	< 0.25	5.0	05/29/24 10:28	
Methane	ug/L	<0.58	2.8	05/29/24 10:28	

LABORATORY CONTROL SAMPLE &		27	23197							
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Ethane	ug/L	53.6	51.9	56.6	97	106	74-122	9	20	
Ethene	ug/L	50	48.1	52.3	96	105	74-121	8	20	
Methane	ug/L	28.6	27.0	29.8	95	104	73-121	10	20	

MATRIX SPIKE & MATRIX SI	PIKE DUPLI	CATE: 2723	198		2723199							
			MS	MSD								
	4	40278807003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Ethane	ug/L	<0.39	53.6	53.6	53.8	54.6	100	102	71-120	2	20	
Ethene	ug/L	< 0.25	50	50	49.7	50.4	99	101	69-120	1	20	
Methane	ug/L	1.6J	28.6	28.6	29.9	30.5	99	101	10-184	2	33	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Matrix: Water

Project: 20.0156045.00 Pace Project No.: 40278695

METHOD BLANK: 2722542

Date: 06/03/2024 08:30 PM

QC Batch: 475310

Analysis Method: EPA 6010D

QC Batch Method: **EPA 6010D** Analysis Description: ICP Metals, Trace, Dissolved

> Laboratory: Pace Analytical Services - Green Bay

40278695001, 40278695002, 40278695003, 40278695004, 40278695005 Associated Lab Samples:

Associated Lab Samples: 40278695001, 40278695002, 40278695003, 40278695004, 40278695005

Blank Reporting

Qualifiers Parameter Units Result Limit Analyzed

Iron, Dissolved <29.6 100 05/24/24 18:00 ug/L

LABORATORY CONTROL SAMPLE: 2722543

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units

Iron, Dissolved ug/L 10000 10200 102 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2722544 2722545

> MSD MS

40278695001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Qual Result Conc. % Rec % Rec Limits Iron, Dissolved ug/L <29.6 10000 10000 9700 9700 97 97 75-125 0 20

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 20.0156045.00 Pace Project No.: 40278695

Date: 06/03/2024 08:30 PM

QC Batch: 475279 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40278695001, 40278695002, 40278695003, 40278695004, 40278695005, 40278695007, 40278695008

METHOD BLANK: 2722064 Matrix: Water

Associated Lab Samples: 40278695001, 40278695002, 40278695003, 40278695004, 40278695005, 40278695007, 40278695008

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	<0.47	1.0	05/24/24 11:13	
Tetrachloroethene	ug/L	<0.41	1.0	05/24/24 11:13	
trans-1,2-Dichloroethene	ug/L	< 0.53	1.0	05/24/24 11:13	
Trichloroethene	ug/L	< 0.32	1.0	05/24/24 11:13	
Vinyl chloride	ug/L	<0.17	1.0	05/24/24 11:13	
1,2-Dichlorobenzene-d4 (S)	%	95	70-130	05/24/24 11:13	
4-Bromofluorobenzene (S)	%	97	70-130	05/24/24 11:13	
Toluene-d8 (S)	%	98	70-130	05/24/24 11:13	

LABORATORY CONTROL SAMPLE:	2722065					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L	50	52.9	106	70-130	
Tetrachloroethene	ug/L	50	49.0	98	70-130	
trans-1,2-Dichloroethene	ug/L	50	49.6	99	70-131	
Trichloroethene	ug/L	50	52.2	104	70-130	
Vinyl chloride	ug/L	50	40.5	81	51-145	
1,2-Dichlorobenzene-d4 (S)	%			98	70-130	
4-Bromofluorobenzene (S)	%			93	70-130	
Toluene-d8 (S)	%			98	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 20.0156045.00 Pace Project No.: 40278695

QC Batch: 475224 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40278695001, 40278695002, 40278695003, 40278695004, 40278695005

METHOD BLANK: 2721790 Matrix: Water

Associated Lab Samples: 40278695001, 40278695002, 40278695003, 40278695004, 40278695005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L <0.44 2.0 05/24/24 12:01

LABORATORY CONTROL SAMPLE: 2721791

Date: 06/03/2024 08:30 PM

Spike LCS LCS % Rec Conc. Result Limits Qualifiers Parameter Units % Rec Sulfate 20 21.2 106 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2721792 2721793

MS MSD

40278695001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Result Conc. % Rec % Rec Limits Qual Sulfate mg/L 18.9 20 20 40.0 39.3 105 102 90-110 2 15

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2721794 2721795

MS MSD

40278638001 MS MSD MS MSD % Rec Spike Spike Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Sulfate 80.3 200 200 295 293 107 107 15 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 20.0156045.00 Pace Project No.: 40278695

QC Batch: 475594 Analysis Method: SM 5310C

QC Batch Method: SM 5310C Analysis Description: 5310C Total Organic Carbon

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40278695001, 40278695002, 40278695003, 40278695004, 40278695005

METHOD BLANK: 2723970 Matrix: Water

Associated Lab Samples: 40278695001, 40278695002, 40278695003, 40278695004, 40278695005

Blank Reporting

Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon mg/L <0.19 0.50 05/29/24 22:28

LABORATORY CONTROL SAMPLE: 2723971

Date: 06/03/2024 08:30 PM

Spike LCS LCS % Rec
Parameter Units Conc. Result % Rec Limits Qualifiers

Total Organic Carbon mg/L 12.5 12.1 97 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2723972 2723973

MS MSD

40278798001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result RPD Result Conc. % Rec % Rec Limits **RPD** Qual **Total Organic Carbon** 6 14.7 mg/L 9.0 6 14.9 96 99 80-120 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2723974 2723975

MS MSD 40278807003 MS MSD MS MSD % Rec Spike Spike Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Total Organic Carbon 0.97 6 6 5.7 5.8 79 2 81 80-120 10 M0 mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 20.0156045.00
Pace Project No.: 40278695

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - The reported result is an estimated value.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Analyte was not detected and is reported as less than the LOD or as defined by the customer.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 06/03/2024 08:30 PM

D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 20.0156045.00 Pace Project No.: 40278695

Date: 06/03/2024 08:30 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40278695001	MW-9	EPA 8015B Modified	475449		
40278695002	MW-6	EPA 8015B Modified	475449		
40278695003	MW-7	EPA 8015B Modified	475449		
40278695004	MW-1	EPA 8015B Modified	475449		
40278695005	MW-13	EPA 8015B Modified	475449		
40278695001	MW-9	EPA 6010D	475310		
40278695002	MW-6	EPA 6010D	475310		
40278695003	MW-7	EPA 6010D	475310		
40278695004	MW-1	EPA 6010D	475310		
40278695005	MW-13	EPA 6010D	475310		
40278695001	MW-9	EPA 8260	475279		
40278695002	MW-6	EPA 8260	475279		
40278695003	MW-7	EPA 8260	475279		
40278695004	MW-1	EPA 8260	475279		
40278695005	MW-13	EPA 8260	475279		
40278695007	DUP-1	EPA 8260	475279		
40278695008	TRIP BLANK	EPA 8260	475279		
40278695001	MW-9	EPA 300.0	475224		
10278695002	MW-6	EPA 300.0	475224		
40278695003	MW-7	EPA 300.0	475224		
40278695004	MW-1	EPA 300.0	475224		
40278695005	MW-13	EPA 300.0	475224		
40278695001	MW-9	SM 5310C	475594		
40278695002	MW-6	SM 5310C	475594		
10278695003	MW-7	SM 5310C	475594		
10278695004	MW-1	SM 5310C	475594		
40278695005	MW-13	SM 5310C	475594		

	Pace® Location Request	ed (City/State)	:	CHAIN-OF-CUSTODY Analytical Request Document Chain-of-Custody is a LEGAL DOCUMENT - Complete all relevant fields								LAB USE ONLY- Affix Workorder/Login Label Here											
	Pace Analytical Green Bay 1241 Bellevue Street, Suite 9			(-	•					(a) 1944	aut.sv						11.			
	Green Bay, WI 54302				Chain-of-Cu	istody is a LEGA	L DOCUMENT - Con	ipiete ali rele	vant fiel	us 				W.	र्हें इंट					40	27	8695	
	GZA GeoEnvironmental_V				Contact/Report 1	o: Sheryl St	ephenson							鏹								• •	
	17975 West Sarah Lane, S	uite 100		l.	Phone #	(262)754									<u> </u>								
8	Brookfield, WI 53045			- 1	E-Mail,	sheryl.st	ephenson@gza.co	om						4		Sc	an QF	R Code	for inst	truction	าร		
					Cc E-Mail:	kevin.he	adınger@gza.com	1			L												
Customer Project #: 2	20.0156045 00														Specif	Containe	er Size '	**				Size (1) 1L, (2) 500mL, (3) : 00mL, (6) 40mL vial, (7) Enc	
Project Name:				1	Invoice To:		s Payable					3		3	6	6) 90mL, (10) Other	, (,
					Invoice E-Mail:	ap@gza.	com							dentify	Conta	iner Prese	ervative	Type***				tive Types (1) None, (2) HN	
Site Collection Info/Fac	cility ID (as applicable)				Purchase Order # applicable):	(if					L	1	3	2	4	4				<u></u>		Cl, (5) NaOH, (6) Zn Acetate Sod Thiosulfate, (9) Ascorb	
				l.	Quote #:										Ana	lysis Requ	uested		- 	Т	MeOH, (11) O	Other	
7 C-ll	I LAW I LDT I L	MT ()CT	().cr		County / State or	igin of campleli	s): Wisconsi	n													Proj. Mg		for
Time Zone Collected. Data Deliverables:	[] AK [] PT [] I	MT [] CT Regulatory Progra	ET DW			Reportab	·					ŀ	1								1	opher Hyska m / Client ID:	lifed
		incharactory riogra	(511)		a, as applicable.	перопии	() ()	,					- 1		Ethene		Ì				≥ Acctivui	it / Client ib:	dent
[] Level II [] Lev	vel III [] Level IV				pproval require		DW PWSI	D # or WW Per	mit # as	applicable				ļ	=						Table #:		
[] EQUIS		[] Same Day	[] 1 Da	ау [] 2 С	ay [] 3 Day [] Other								8	Ethane,						sn e		orma ple
		Date Results					Field Filtered (if ap		\ _	[]No				D	뚭							Template:	conf
Other Matrix Codes (Insert	ın Matrıx box below): Drınkı	Requested:	round W	later (GW). Waste Water (\	VW). Product (F	Analysis: D15	101). Wine (WP). Tis	Sue (TS), Bio	passay	e e	.	6010D Dissolved Iron	ane,	_χ					6613	Bottle Ord. ID:	Preservation non-conformance identified for sample
	Water (SW),Sediment (SED),						,,		,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sulfate	700	Diss	8015 Methane	CVOCS						97196	ation
Cus	stomer Sample ID		∕latrix *	Comp/	Composi	te Start	Collected or Con	posite End	#	Res. Chlo	rine	00	5310C	8	2 ≥	0					-		Se Z
	stomer cample ib			Grab	Date	Time	Date	Time	Cont.	Results	Units	300 0	531	9	8	8260				1	Sa	mple Comment	Pre
MW.	.9	(M	Gah	—	-	15/22/24	1010	9	-,		X	X	X	χ	/					00	1	
MW-	·(I	(9W	Corry		$\overline{}$	5122194	1130	9	,	ł	X	X	X	\mathcal{Y}	X					RO	2	
MW-	ገ	1	GU	Grad		<u> </u>	5122/24	1245	9			1	7	X	X	χ					00	3	
MW-	-1		الماؤ	Cerab	, `	_	5/22/24	1350	4			3	K.	V	X	x					004	1	
MW-	13	1	(W. G)	(ray		_	5/22/24	1501	9				X	X	X	X					005)	
MW-		(ĝω,	Crab			5/21/24	· ,	9			X	X	2	X	20			ar.		col		
DUD-	-1		GW	(g/w)			5/27/20		3							X					w	1	
Trip	Blank O																				00	8	
																					00		
																	\dagger						
Additional Instructions	s from Pace*; /					Collected By.						ustom	er Rema	rks / S	pecial	Conditions	/ Poss	ıble Haza	L rds	.1			l
Orecred,	s from Pace., labadded to a	oc 5/23/2	486			(Printed Nam	e)																
MW-17 cancel	led per Sheryl S-GZA.	5/23/24 CDH			*	Signature:						# Cool	lers	T ~	hermon	eter ID.	C	orrection Fa	ctor (*C)	Obs	Temp (°C)	Corrected Temp. (*C)	On Ice
Relinquished by/Company	(Signature)	GRA		Date/Time	57221	24 18L	Received by/Company	(Signature)	25 K	Cr			` `	٠ , [ate/Tin	לבה ל	120	94 1	1815	Trackin	ng Number		
Relinquished by/Company	(Signature)	170		Date/Time	hzh.1	2911	Received by/Company	(Signatur 2)	~ .			-			Date/Tin		 	el : r	<u> </u>	Delive	red by. f 1	In- Person [] Courie	·r
Relinquished by/Company	(2) (3)			Date/Tinke	1404	V 1/2	Pacawal by Camer	4.10	ve	<u>e</u>					7//	Δ/I	90	7/5		4			
										vate/ i in						[] FedEX	([] UPS [] Ot	her					
Relinquished by/Company (Signature) Date/Time Received by/Company (Signature)						Date/Time Page: of																	

Effective Date: 8/16/2022

		t Na ners n	me: eeding	pres	ervation	2 on ha	ive be	en ch		l and r Lot# o			le	San	Pro S 0.3	Pres ject : □No		\square N/	Re YO A #ID of					sted):						tıal wh		6	Date/ Time:	
			G	Slass	}					Plast	tic					Vi	als				Ja	ars			Gen	eral		* (mm9<)	H s2	4aOH+Zn Act pH ≥9	≥12	1 < 2	after adjusted	Volume
ace ab#	AG1U	BG1U	AG1H	AG4S	AG5U	AG2S	BG3U	BP1U	BP3U	BP3B	BP3N	BP3S	BP2Z	2697	DG9T	VG9U	М€9И	VG9M	VG9D	JGFU	ეცე	WGFU	WPFU	SP5T	ZPLC	GN 1	GN 2	VOA Vials (>6mm)	H2SO4 pH ≤2	NaOH+Zn	NaOH pH ≥12	HNO3 pH ≤2	pH after a	(mL)
01				Ŧ		T -					IT						6											m				$\overline{\mathbf{x}}$		2.5 / 5
02		ı				. 1		1, 1		,	П	. 1, 4		1	4	es.	7		F 1 F			x 0 1	*****	1 1	4 17		, ,	1		4	1 11	5	1.	2.5 / 5
03																	6															X		2.5 / 5
04:	<u>, </u>	n. 4					10 H 1		\$ 1 \$ 1	$\{ \frac{1}{16}, \frac{1}{6} \}_{i}$				1 1	· · · · · · · · · · · · · · · · · · ·	1 r	6	P		1, 1, 0	N 1	L Logic	1, 10,	1 / 2	, 1 1, 18,	1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 5	h r		ng.	X	West of	· 2.5 / 5
05																	6															X		2.5 / 5
06.	, , ,	1, 1,	р (1	1	, ,	,			, ,			k ,	ţ, , , ,	14 / 10		6	J	0.5	4 ,1	li i	Opt		٠,,	1		r rage sq	1 6	$x^{i_1,\dots,i_{d}}$	1000		X	1 21 m - 14	2.5 / 5
07															l		3																	2.5 / 5
80			,		,			,						-	1		2	٤ ،	, ,	,	,	1 3			. 1			1		1 ₁	h ,)	1 30		2.5 / 5
09	/																										1							2.5 / 5
10	,	,		4 1				1, 1	1 .		1 '	١.,	11	1, 1	и, 1	, , '			17.5					- "	1		1 1 4	,	1 1	7,1,	,	1 .	í, ,	2.5 / 5
11										\vdash																								2.5 / 5
12								, ,	. :	1	1 1	4	17.7		i la F _p	St. 1 .			, ,		less, a	10 mg 1	150	100	d	100	1 .	,	3 3	list.	1 10		1 .	2.5 / 5
13														1,																				2.5 / 5
14			-					,			1 .		5	/2	5	/_	,				,			i.	'		— ,		, ' '			1 (1-1	,	2.5 / 5
15													1	0	7	04	ç	4																2.5 / 5
16			5.							-			1 1		1	1	~	5		: 1	-	i.				,	1 15 1 1					1 21		2.5 / 5
17												1																						2.5 / 5
18	77		,	, ,	11%	1,67.1	1 1 1 1	1. }		110	,		: 1	10	187		1,000	10 S. 10 P.C.			1	11 1 1	6.1 + 1 + 1	5.4	1	11 1	2.1	1				1,649	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.5 / 5
19																																		2.5 / 5
20	1.1	1)	,			A La		e i	47 41	F Park	. 4		1 p	1.7.3	1		1', ',		,		4	1 2	1	r. 1								2.5 / 5
G1U G1U G1H G4S	1 lite 1 lite 1 lite 125 100	er am er clea er am mL a mL a	per glas ar glas per glas mber g mber g	ass ass H glass glass	CL H2Se	O4 es	BI BI BI BI	P1U P3U P3B	1 lite 250 250 250 250	TOH, er plas mL pl mL pl mL pl mL pl mL pl mL pl	stic ur astic astic astic astic	npres unpre NaOH HNO3 H2SC	s I 3		ics, O	VC DC VC	59C 59T 59U 59H 59M	40 n 40 n 40 n 40 n	nL cleanL am nL cleanL clean nL cleanL cleanL clean	ber Na ar vial ar vial ar vial	orbic a Thic unpre HCL MeO	w/ HC o es		JO JO WI WI	als (>6 6FU 69U 6FU PFU PST	4 oz 9 oz 4 oz 4 oz 120	ambe ambe clear plasti	er jar i er jar i jar ur c jar i astic	unpres unpres npres unpres Na Th	; ;		s look	in hea	dspace co
			ear gl				<u> </u>		300	. pi			2011			<u>, ,,</u>		1.0	0.0	1141	<u> </u>			G	N 1 N 2	2.,5.10	- 249						Pa	age <u>1</u> o

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR

Effective Date: 8/17/2022

Sample Condition Upon Receipt Form (SCUR)

C - 1				Project #:		
Client Name: <u>(27</u>					WO# :	40278695
Courier: \(\sum_{\text{CS}} \) CS Logistics \(\sum_{\text{Fed}} \) Fed Ex \(\sum_{\text{Speede}} \) Speede	e 🗖 L	JPS [_ Wa	altco		
Client ☐ Pace Other:						
Tracking #:				_	40210090	
Custody Seal on Cooler/Box Present: yes	√no S	eals in	ntact:	☐ yes ☐ no		
Custody Seal on Samples Present: yes r				🗌 yes 🔲 no		
Packing Material: Bubble Wrap Bubbl	e Bags		None	Cother		
Thermometer Used SR - 139	Type of	Ice:(V	Wet	Blue Dry None	Meltwater C	
Cooler Temperature Uncorr: -0.5 /Corr: 0	.0					Person examining contents:
Temp Blank Present:	В	Biologi	cal Ti	issue is Frozen: 🔲	yes∏ no	Date: 5/23/24 /Initials: 85
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dry	lce.					Labeled By Initials:
Chain of Custody Present:	Yes [JNo □	JN/A	1.		
Chain of Custody Filled Out:	Yes []No □	□n/a ;	2.		
Chain of Custody Relinquished:	Yes D	JNo □	Jn/a :	3.		
Sampler Name & Signature on COC:	□Yes	No E	□n/a .	4.		
Samples Arrived within Hold Time:	Yes D	□No		5.		
- DI VOA Samples frozen upon receipt	□Yes □	JNo		Date/Time.		
Short Hold Time Analysis (<72hr):	□Yes [No _		6.		
Rush Turn Around Time Requested:	□Yes □	Νο		7.		
Sufficient Volume:	•			8.		
For Analysis: ☑Yes ☐No MS/MSD:	□Yes 5	ZNo E	Jn/a			
Correct Containers Used:	Yes [JNο]	9.		
Correct Type: Pace Green Bay, Pace IR, Non-Pace						
Containers Intact:	Yes D	JNo		10.		
Filtered volume received for Dissolved tests	Yes [JNo [JN/A	11.		
Sample Labels match COC:	Yes D	JNo [□N/A	12.		
-Includes date/time/ID/Analysis Matrix:	_در					
Trip Blank Present:	ZYes C	JNo □	□N/A	13. recrevel,	labado	led to cex
Trip Blank Custody Seals Present	Z Yes □			•		
Pace Trip Blank Lot # (if purchased): 5/7						5/23/24 86
Client Notification/ Resolution:					cked, see attacl	hed form for additional comments
Person Contacted:		D	Date/T	ime:		
Comments/ Resolution:						
PM Review is documented electronically in LIMs	. By rele	easing	the p	project, the PM ackn	owledges the	ey have reviewed the sample login

Page 2 of 2

June 03, 2024

Sheryl Stephenson GZA GeoEnvironmental 17975 West Sarah Lane Suite 100 Brookfield, WI 53045

RE: Project: 20.0156045.00 Pace Project No.: 40278798

Dear Sheryl Stephenson:

Enclosed are the analytical results for sample(s) received by the laboratory on May 24, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Cindy Varga for Christopher Hyska

Cindy K Varga

christopher.hyska@pacelabs.com (920)469-2436

Project Manager

Enclosures

CERTIFICATIONS

Project: 20.0156045.00 Pace Project No.: 40278798

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150

South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

SAMPLE SUMMARY

Project: 20.0156045.00 Pace Project No.: 40278798

Lab ID	Sample ID	Matrix	Date Collected	Date Received	
40278798001	MW-17	Water	05/23/24 11:55	05/24/24 08:00	

1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

SAMPLE ANALYTE COUNT

Project: 20.0156045.00 Pace Project No.: 40278798

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40278798001	MW-17	EPA 8015B Modified	KHB	3	PASI-G
		EPA 6010D	SIS	1	PASI-G
		EPA 8260	CXJ	8	PASI-G
		EPA 300.0	HMB	1	PASI-G
		SM 5310C	TJJ	1	PASI-G

PASI-G = Pace Analytical Services - Green Bay

Green Bay, WI 54302 (920)469-2436

SUMMARY OF DETECTION

Project: 20.0156045.00 Pace Project No.: 40278798

Lab Sample ID Method	Client Sample ID Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
			Office	_ Troport Limit		Quamero
40278798001	MW-17					
EPA 8015B Modified	Methane	1120	ug/L	28.0	05/29/24 14:36	
EPA 6010D	Iron, Dissolved	6420	ug/L	100	05/31/24 14:08	
EPA 8260	Tetrachloroethene	12.3	ug/L	1.0	05/28/24 23:41	
EPA 8260	Trichloroethene	7.9	ug/L	1.0	05/28/24 23:41	
EPA 8260	cis-1,2-Dichloroethene	19.1	ug/L	1.0	05/28/24 23:41	
EPA 300.0	Sulfate	15.8	mg/L	2.0	05/29/24 11:32	MO
SM 5310C	Total Organic Carbon	9.0	mg/L	0.50	05/30/24 01:05	

ANALYTICAL RESULTS

Project: 20.0156045.00 Pace Project No.: 40278798

Date: 06/03/2024 04:32 PM

Sample: MW-17	Lab ID:	40278798001	Collected	d: 05/23/24	11:55	Received: 05	5/24/24 08:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modifi	ied					
	Pace Anal	ytical Services	- Green Bay	/					
Ethane	<0.39	ug/L	5.6	0.39	1		05/29/24 12:58	74-84-0	
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 12:58	74-85-1	
Methane	1120	ug/L	28.0	5.8	10		05/29/24 14:36	74-82-8	
6010D MET ICP, Dissolved	Analytical	Method: EPA 6	010D						
	Pace Anal	ytical Services	- Green Bay	/					
Iron, Dissolved	6420	ug/L	100	29.6	1		05/31/24 14:08	7439-89-6	
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Bay	/					
Tetrachloroethene	12.3	ug/L	1.0	0.41	1		05/28/24 23:41	127-18-4	
Trichloroethene	7.9	ug/L	1.0	0.32	1		05/28/24 23:41	79-01-6	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/28/24 23:41	75-01-4	
cis-1,2-Dichloroethene	19.1	ug/L	1.0	0.47	1		05/28/24 23:41	156-59-2	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		05/28/24 23:41	156-60-5	
Surrogates									
1,2-Dichlorobenzene-d4 (S)	100	%	70-130		1		05/28/24 23:41	2199-69-1	
4-Bromofluorobenzene (S)	104	%	70-130		1		05/28/24 23:41	460-00-4	
Toluene-d8 (S)	102	%	70-130		1		05/28/24 23:41	2037-26-5	
300.0 IC Anions	Analytical	Method: EPA 3	0.00						
	Pace Anal	ytical Services	- Green Bay	/					
Sulfate	15.8	mg/L	2.0	0.44	1		05/29/24 11:32	14808-79-8	MO
5310C TOC	Analytical	Method: SM 53	310C						
	Pace Anal	ytical Services	- Green Bay	/					
Total Organic Carbon	9.0	mg/L	0.50	0.19	1		05/30/24 01:05	7440-44-0	

QUALITY CONTROL DATA

Project: 20.0156045.00 Pace Project No.: 40278798

QC Batch: 475449

QC Batch Method:

Ethane

Ethene

Methane

EPA 8015B Modified

Analysis Method:

Laboratory:

EPA 8015B Modified

Analysis Description: Methan

Methane, Ethane, Ethene GCV
Pace Analytical Services - Green Bay

Associated Lab Samples: 40278798001

METHOD BLANK: 2723195

Date: 06/03/2024 04:32 PM

Matrix: Water

Associated Lab Samples: 40278798001

Blank Reporting Units Limit Qualifiers Parameter Result Analyzed < 0.39 ug/L 5.6 05/29/24 10:28 ug/L < 0.25 5.0 05/29/24 10:28 ug/L <0.58 2.8 05/29/24 10:28

LABORATORY CONTROL SAMPLE &	LCSD: 2723196		27	23197						
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Ethane	ug/L	53.6	51.9	56.6	97	106	74-122	9	20	
Ethene	ug/L	50	48.1	52.3	96	105	74-121	8	20	
Methane	ug/L	28.6	27.0	29.8	95	104	73-121	10	20	

MATRIX SPIKE & MATRIX S	PIKE DUPLI	CATE: 2723	198		2723199							
			MS	MSD								
		40278807003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Ethane	ug/L	<0.39	53.6	53.6	53.8	54.6	100	102	71-120	2	20	
Ethene	ug/L	< 0.25	50	50	49.7	50.4	99	101	69-120	1	20	
Methane	ug/L	1.6J	28.6	28.6	29.9	30.5	99	101	10-184	2	33	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 20.0156045.00 40278798

Pace Project No.:

Date: 06/03/2024 04:32 PM

QC Batch: 475820 Analysis Method: EPA 6010D

QC Batch Method: **EPA 6010D** Analysis Description: ICP Metals, Trace, Dissolved

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40278798001

METHOD BLANK: 2724993 Matrix: Water

Associated Lab Samples: 40278798001

> Blank Reporting Qualifiers Parameter Units Result Limit Analyzed

Iron, Dissolved <29.6 100 05/31/24 13:59 ug/L

LABORATORY CONTROL SAMPLE: 2724994

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Iron, Dissolved ug/L 10000 10200 102 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2724995 2724996

> MSD MS

40278746001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Limits Iron, Dissolved 20 ug/L <29.6 10000 10000 9480 9440 95 94 75-125 0

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 20.0156045.00 Pace Project No.: 40278798

QC Batch: 475343 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40278798001

METHOD BLANK: 2722903 Matrix: Water

Associated Lab Samples: 40278798001

Date: 06/03/2024 04:32 PM

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	<0.47	1.0	05/28/24 15:20	
Tetrachloroethene	ug/L	<0.41	1.0	05/28/24 15:20	
trans-1,2-Dichloroethene	ug/L	< 0.53	1.0	05/28/24 15:20	
Trichloroethene	ug/L	< 0.32	1.0	05/28/24 15:20	
Vinyl chloride	ug/L	<0.17	1.0	05/28/24 15:20	
1,2-Dichlorobenzene-d4 (S)	%	99	70-130	05/28/24 15:20	
4-Bromofluorobenzene (S)	%	101	70-130	05/28/24 15:20	
Toluene-d8 (S)	%	104	70-130	05/28/24 15:20	

LABORATORY CONTROL SAMPLE:	2722904					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L	50	50.8	102	70-130	
Tetrachloroethene	ug/L	50	52.4	105	70-130	
trans-1,2-Dichloroethene	ug/L	50	56.0	112	70-131	
Trichloroethene	ug/L	50	53.5	107	70-130	
Vinyl chloride	ug/L	50	44.0	88	51-145	
1,2-Dichlorobenzene-d4 (S)	%			101	70-130	
4-Bromofluorobenzene (S)	%			105	70-130	
Toluene-d8 (S)	%			102	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	CATE: 2722	905		2722906							
			MS	MSD								
	4	0278827005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
cis-1,2-Dichloroethene	ug/L	<0.47	50	50	50.6	49.0	101	98	70-130	3	20	
Tetrachloroethene	ug/L	< 0.41	50	50	53.5	51.4	107	103	70-131	4	20	
trans-1,2-Dichloroethene	ug/L	<0.53	50	50	47.6	46.3	95	93	70-135	3	20	
Trichloroethene	ug/L	< 0.32	50	50	53.7	52.1	107	104	70-130	3	20	
Vinyl chloride	ug/L	<0.17	50	50	45.2	43.3	90	87	45-147	4	20	
1,2-Dichlorobenzene-d4 (S)	%						96	96	70-130			
4-Bromofluorobenzene (S)	%						101	103	70-130			
Toluene-d8 (S)	%						105	104	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 20.0156045.00 Pace Project No.: 40278798

QC Batch: 475309 Analysis Method:
QC Batch Method: EPA 300.0 Analysis Description:

Analysis Description: 300.0 IC Anions

Laboratory: Pace Analytical Services - Green Bay

EPA 300.0

Associated Lab Samples: 40278798001

METHOD BLANK: 2722527 Matrix: Water

Associated Lab Samples: 40278798001

Blank Reporting
Parameter Units Result Limit Analyzed Qualifiers

Sulfate mg/L <0.44 2.0 05/29/24 11:05

LABORATORY CONTROL SAMPLE: 2722528

Date: 06/03/2024 04:32 PM

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units Sulfate 20 21.6 108 90-110 mg/L

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2722529 2722530

MSD MS 40278798001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec **RPD** RPD Qual Result Conc. Limits 15 M0 Sulfate mg/L 15.8 20 20 38.1 38.3 111 112 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2722531 2722532

MS MSD 40278387002 MS MSD MS MSD % Rec Spike Spike Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Sulfate 20 20 0.73J 23.1 23.2 112 112 15 M0 mg/L 90-110

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

20.0156045.00 Project: Pace Project No.: 40278798

QC Batch: 475594 Analysis Method: SM 5310C

QC Batch Method: SM 5310C Analysis Description: 5310C Total Organic Carbon

> Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40278798001

METHOD BLANK: 2723970 Matrix: Water

Associated Lab Samples: 40278798001

> Blank Reporting Parameter Units Result Limit Analyzed Qualifiers

Total Organic Carbon < 0.19 0.50 05/29/24 22:28 mg/L

LABORATORY CONTROL SAMPLE: 2723971

Date: 06/03/2024 04:32 PM

Spike LCS LCS % Rec Conc. Result % Rec Limits Qualifiers Parameter Units

Total Organic Carbon mg/L 12.5 12.1 97 80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2723972 2723973

MSD MS 40278798001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Conc. Result Result **RPD** RPD Result Conc. % Rec % Rec Limits Qual **Total Organic Carbon** 6 14.7 mg/L 9.0 6 14.9 96 99 80-120 10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2723974 2723975

mg/L

MS MSD 40278807003 MS MSD MS MSD % Rec Spike Spike Max RPD RPD Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits Qual Total Organic Carbon 0.97 6 6 5.7 5.8 79 81 2

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

10 M0

80-120

QUALIFIERS

Project: 20.0156045.00
Pace Project No.: 40278798

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - The reported result is an estimated value.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Analyte was not detected and is reported as less than the LOD or as defined by the customer.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 06/03/2024 04:32 PM

M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 20.0156045.00 Pace Project No.: 40278798

Date: 06/03/2024 04:32 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40278798001	MW-17	EPA 8015B Modified	475449		,
40278798001	MW-17	EPA 6010D	475820		
40278798001	MW-17	EPA 8260	475343		
40278798001	MW-17	EPA 300.0	475309		
40278798001	MW-17	SM 5310C	475594		

	Pace® Location Reques	ted (City/Stat	e):													LAB U	SE ON	LY- Af	fix Wo	rkord	er/Logi	n Label Here			
Pace®	Pace Analytical Green Bay 1241 Bellevue Street, Suite Green Bay, WI 54302	9		1			Analytical F												,		-	_			
Company Name	GZA GeoEnvironmental_	Wi			Contact/Report To	: Sheryl S	tephenson							100				4	40	7	75	798			
treet Address:	17975 West Sarah Lane,	Suite 100			Phone #:	(262)75	4-2597										40278798								
	Brookfield, WI 53045				E-Mail: sheryl.stephenson@gza com										Scan QR Code for instructions										
					Cc E-Mail: kevin headinger@gza.com																				
ustomer Project #	20.0156045.00								Specify Container Size **							**Container Size (1) 1L, (2) 500mL, (3) 250mL, (4) 125mL, (5) 100mL, (6) 40mL vial, (7) EnCore, (8)									
roject Name:					Invoice To:	3	4	3	6	6						TerraCore, (9) 90mL, (10) Other									
					Invoice E-Mail:			Ident	fy Cont	ainer Pi	reservat	ive Typ	e***			*** Preservative Types (1) None, (2) HNO3, (3)									
ite Collection Info/F	acılıty ID (as applicable).				Purchase Order # applicable):	1	3	2	4 Ar	4 alysis R	equeste	ed			<u> </u>	H2SO4, (4) HCI, (5) NaOH, (6) Zn Acetate, (7) NaHSO4, (8) Sod Thiosulfate, (9) Ascorbic Acid, (10 MeOH, (11) Other									
					Quote #:												- T					Proj. Mgr:			
ime Zone Collected	[]AK []PT []	MT [] CT	[]ET		County / State on	gin of sample(s): Wiscons	ın													1 1	Christopher Hyska		od fo	
Data Deliverables		Regulatory Pro	gram (DW	, RCRA, et	c.) as applicable.	Reportab	le [] Yes [] No					:		e l						1	AcctNum / Client ID:		intilie intilie	
[] Level 11	evel III [] Level IV		D.	ob (Dro s	pproval require		DW DWS	ID # or WW Pe	rmit # ac	applicable					Ethene							Table #:		ig id	
		[] Same Da			Day [] 3 Day [10 # OI WWW.C		аррисавіс				_	ne, I							Table #:		'man le	
[] EQUIS		Date Results					Field Filtered (if an	oplicable): 🦒] Yes	[] No				<u>o</u>	Ethane,							Profile / Template:		onfo	
[] Other	rt ın Matrıx box below): Drink	Requested:					Analysis: DE	50/0	it	S				lvec		.,						6613		2-00	
Matrix Codes (Inse	rt in Matrix box below): Drink :e Water (SW),Sediment (SED	ring Water (DW), 1. Sludge (SL), Ca	Ground ۱ یالا (CK). L	Nater (GW eachate (L	/), Waste Water (W .L). Biosolid (BS). O	'W), Product (I ther (OT)	P), Soil/Solid (SS), Oi	ıl (OL), Wıpe (WP), Tis	sue (TS), I	Bioassay	0 Sulfate	8	6010D Dissolved Iron	8015 Methane,	cvocs						Prelog / Bottle Ord. ID: EZ 3097196		Preservation non-conformance identified for sample	
		// Diduge (DE/) Ga		Comp /	Composite		Collected or Con	nposite End	#	Res. Ch	lorine	0 St	5310C TOC	9	5 Me	ر ا					-			serva	
	ustomer Sample ID		Matrix *	Grab	Date	Time	Date	Time	Cont.	Results	Units	300	-			8260						Sample Comme	ent	P.	
Mu	1-17		GW	Gras	5/23/24	_	5723724	1155	9			X	K	X	X	X						00)			
															<u> </u>						\vdash			—	
																					\square				
											ŀ														
/																									
									<u> </u>																
									<u> </u>												\vdash				
				ļ				,	<u> </u>																
										ľ															
Additional Instructio	ns from Pace®:		<u> </u>	<u> </u>	<u> </u>	Collected By	- P.	1	<u> </u>	l		Custon	ner Rer	narks /	Special	Conditi	ons / Po	ssible	Hazards			····			
							e) <i>E.</i> Bo.	good	<u>I</u>																
						Signature	Ele-	Ky	-	1		# Coo	olers.		// (meter ID			ion Facto		2	remp (°C) Corrected Temp	. (°C) A	Je.	
elinquished by/Compan	y (Signardire)	A OT		Date/Time.	23/24	1300	Received by/Company	(Signature)	 5 N	~ ~					Date/Tir	ne 723	12	4	Bo	00	Tracking I	Number:			
elinquished by/Compan		<u> </u>	,	Date/jime 5/24		00	Received by/Company		10	0	D	ac	20		Date/Tir	<u>ال</u> ا	ע	08	Oi		Delivere	ed by [] In- Person	Courier		
elinquished by/Compan	y (Signature)			Date/Time	109 30		Received by/Company	((Signature)	1	τ					Date/Tii	ne T	7—					[] FedEX [] UPS [Other		
elinquished by/Compan	y (Signature)			Date/Time	. 994.		Received by/Company	(Signature)							Date/Tii	ne					Page	e: of			

Effective Date: 8/16/2022

All cont	ainei	rs ne	eding	pres	Z. ervatı	on ha	ave be	en ch				below: paper		∠7 €	s)	$\square N/$	A #ID o	•	t Fo <u>ひみ</u> ervatio			_	•					tial wh mplet	ed: {	2	Date/ Time:	
		[(Slass	.					Plast	ic					, Vi	als				Ji	ars			Gen	eral	7	>6mm) *	1≤2	ct pH ≥9	≥12	5 2	Justed	Volume
ice b#		BG1U	АС1Н	AG4S	AG5U	AG2S	BG3U	BP1U	BP3U	BP3B	BP3N	BP3S	BP2Z	2697	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	ിദ്ദാ	WGFU	WPFU	SP5T	ZPLC	GN 1	GN 2	/OA Vials (>6mm) *	12SO4 pH ≤2	VaOH+Zn Act pH ≥9	VaOH pH ≥12	HNO3 pH ≤2	oH after adjusted	(mL)
1	1			1		T	T		1		1					Γ	6	Ī														文		2.5 / 5
2	1 /2	,	7.	1,	10/10	1416	100	, j , d	1.5 11.2	1.84	1 tr	17.7	, 4, 11 th 12.	, 1,1		17. 5	, 31 <u>.</u>	1.1	114	100	4 6 7	1 14	1, 2, 4	5 17 ,	, , , , , , , , , , , , , , , , , , ,	2 17 0	100	,,		4 17 4	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	r r Val	1 6 h.	2.5 / 5
3	$\overline{}$																							1										2.5 / 5
4		4	. 1	Ź		110	12.7	19-63	4 H	الله بي الله الإيران	1 18 . 1	100	1 1 e 11	,	11/15	e de jelok majoris	e ne ne elect	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Totale An	4 / da	1 / 10/4	1 1 1 1 1 1	J. 7.	انوا عيدنا ماه ^{ام} يأديد	455.	' e'' p'	1, 0,1	1 4	. 15	115	10,000	9 3, 4	1 1 P.	2.5 / 5
5							\downarrow																											2.5/5
6.	to the	$\mathcal{L}_{i,j}$	faction.	P May 1 of	, i Kins	B-11, B. C	1,,15	7	12.7	444 1 4.	1	i (m), e, ,	level ,	in the last of the		gera gera	, , , , , , , , , , , , , , , , , , ,	Çoş Lo	S Carr	ta enta e le el	di jiri	Ly	je to je o Parko i	14	Tim resen	a laborates	all (*) Promi	11 0	er tjigt eti di	, 'ai,' ai, i t t2	10	1. 1774 Hrum	, 641 , 7 °	2.5/5
7																																		2.5 / 5
8		41			-	by I'	1 1	ιμ μι, , , , , , ,	a for the con-	$t_i = e^{\lambda f^{-\theta_0}}$	1.7	/	14. 3	1 1 1	(IJ_{j})	Ding.	130	400	d. No. 1	1, 4, 1	Balana.	<u>ក្</u> រៅបាវ	42.18	li i	g i a ja		200	y , 150	9.0	$i_i = i_j$		Sales See	4	2.5 / 5
9																																		2.5 / 5
0	*, 1	1,1	14. 1	, 11/	le par a			1	u. , ,	1.4.7	1 d 1 d 1 d 2 d	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 1 1	ا ادامان ا بدائم ا بدائم		- 0	Types	a d	197	Ун. ;	1.1	4	, 35	17 7 1 1117	1 400	1.50	1.5	5. E 4 1. A) 1	$P_{-Q}(u)$	4, 1	$\mathcal{H}_{G}(I) =$	de pertir	200	2.5 / 5
1											-1		1																					2.5 / 5
2.		, ,	in the second		, br pl , ec.	je ,	1		11/1		12	41	1		, C	6	164	1	E Grit		1	. 7	7, 1	1.15	$F_1 = \int_{\mathbb{R}^n} df_1 f_2$	d to the inflore	11 April	1	1 1 64		h e q mar h	11 1/4	1 (1)	2.5 / 5
3												11																						2.5 / 5
4	i.	_1	17 - , 11	' ,'	. "		1	. ,		£1, 1%	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Mar I	14 P			15 (60)	la per la	1818 19	1.	$r^{\lambda}, \dot{r}^{\lambda}$		11/4	77	· ·	177 19	13 14	1 2 1	3 -4	1.18.1	i, co	19.			2.5 / 5
5												ı																						2.5 / 5
6	-3 f & k	7	4.0	· 4.	14	,,,	- 1	1 1 h 1 h	1 1 1	reh s	201 52 201 59	Present to	ne jed	و از با ادار با	Strig y at	1111	"		21	1,0	2 4	11 121	1.	t pity yi	reserved.	1511		$\frac{1}{2}$	ji e kan L	14.1	, ,	100	, 1, 3	2.5 / 5
7	L																																	2.5 / 5
8	_		e, 1		1			24Z	Property of	170	uppe Vices	11 11 1 1 1 6	5 57	514	$J_{i}^{k_{i}(l_{k})}$	$\mathcal{A}_{\mathcal{Y}}$	in f	1527 4	5/17	har p. p.		n ^e n di	191	terlad or	ir Dieja	5 0,15	الله الم	" ul	1			all had	Pa 19	2.5 / 5
9	_	\perp					<u> </u>												ļ															2.5 / 5
0 1 1	h ,,		1 1		1 1	1,1 pr. r _{k,l}	1.14	** #* *********	, 3	A Park Park	14-11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	11 m	1, a 1, b	7 5 57 1 19	ed travel	ir "La	£ 1 1 1 1	ا المام ميروالد در مام د		Garage In	6 %	14. 2	, if m (3)	1004	Property.	6. 1	m. 2 3 P	30 T	100	1.31			2.5 / 5
1U 1 I 1U 1 I 1H 1 I 4S 12 5U 10	iter a iter o iter a 5 ml	amb clear amb L an L an	er glas er glas er gla nber g	ass s ass H glass glass	BP1U 1 liter plastic unpres BP3U 250 mL plastic NaOH BP3N 250 mL plastic HNO3 BP3N 250 mL plasti											in hea	uspace c																	

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR

Effective Date: 8/17/2022

Sample Condition Upon Receipt Form (SCUR)

			Project #·¹
Client Name: GZA			WO#: 40278798
Courier: CS Logistics Fed Ex Speeds	e liups	- : Пw	/ 1/ 21 22 33 33 33 33 33 33 33 33 33 33 33 33 33
☐ Client ☐ Pace Other:		-	/altco
Tracking #:			40278798
Custody Seal on Cooler/Box Present: yes	no Seal	s intact:	_
Custody Seal on Samples Present: yes	no Seal	s intact:	yes 🗌 no
Packing Material:	ole Bags	∐ None	e 🔲 Other
Thermometer Used SR - //O		: Wet	Blue Dry None
Cooler Temperature Uncorr: 2.0 /Corr. 2	20	_	Person examining contents:
Temp Blank Present:	Biol	ogical 1	Fissue is Frozen: ☐ yes ☐ no Date Szu Zu/Initials: 6
Temp should be above freezing to 6°C. Biota Samples may be received at ≤ 0°C if shipped on Dr	y Ice.		Labeled By Initials:
Chain of Custody Present:	√Yes □No	□N/A	1.
Chain of Custody Filled Out:	□Yes □No	_ □N/A	2. PA# EZ 5/24/Zy
Chain of Custody Relinquished:	ØYes □No	□N/A	
Sampler Name & Signature on COC:	Yes □No	□N/A	4.
Samples Arrived within Hold Time:	☐Yes ☐No)	5.
- DI VOA Samples frozen upon receipt	□Yes □No)	Date/Time·
Short Hold Time Analysis (<72hr):	□Yes □No	<u> </u>	6.
Rush Turn Around Time Requested:	□Yes □No)	7.
Sufficient Volume:			8.
For Analysis: ☐ Yes ☐ No MS/MSD	: □Yes ☑No	□N/A	
Correct Containers Used:	ØYes □No)	9.
Correct Type: Pace Green Bay, Pace IR, Non-Pace	<u> </u>		
Containers Intact:	D¥es □No	<u> </u>	10.
Filtered volume received for Dissolved tests	UYes □No	□N/A	11.
Sample Labels match COC:	-⊟Yes □No	□N/A	12.
-Includes date/time/ID/Analysis Matrix:	W		
Trip Blank Present:	□Yes No	□N/A	13.
Trip Blank Custody Seals Present	□Yes □No		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:			If checked, see attached form for additional comments
Person Contacted: Comments/ Resolution:		_ Date/	Time:
			
PM Review is documented electronically in LIM	s. By releas	ing the	project, the PM acknowledges they have reviewed the sample logi
			Page Zof Z