
Tony Evers, Governor Preston D. Cole, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

April 12, 2021

Steve Peotter One Community Bank 733 North Main Street Oregon WI 53575

E. David Locke FH of McFarland, Inc. 5990 Highway 51 McFarland WI 53558

SENT BY ELECTRONIC MAIL 4/12/2021

KEEP THIS LEGAL DOCUMENT WITH YOUR PROPERTY RECORDS

SUBJECT: Case Closure with Continuing Obligations Best Way Cleaners, 5914 Highway 51, McFarland, WI 53558 BRRTS #: 02-13-583171

Dear Mr. Peotter and Mr. Locke:

The Wisconsin Department of Natural Resources (DNR) is pleased to inform you that the Best Way Cleaners case met the requirements of Wisconsin Administrative (Wis. Admin.) Code chapters NR 725-727 for case closure with continuing obligations (COs). COs are legal requirements to address potential exposure to remaining contamination. No further investigation or remediation is required at this time for the reported hazardous substance discharge and/or environmental pollution.

However, you, future property owners, and occupants of the property must comply with the COs explained in this letter, which may include maintaining certain features and notifying the DNR and obtaining approval before taking specific actions. You must provide this letter and all enclosures to anyone who purchases, rents, or leases this property from you.

This case closure decision is issued under Wis. Admin. Code chs. NR 725-727 and based on information received by the DNR to date. The DNR reviewed the case closure request for compliance with state laws and standards and determined the case closure request met the notification requirements of Wis. Admin. Code ch. NR 725, the response action goals of Wis. Admin. Code § NR 726.05(4), and the case closure criteria of Wis. Admin. Code §§ NR 726.05, 726.09 and 726.11, and Wis. Admin. Code ch. NR 140.

Best Way Cleaners operated in a tenant space in the Stonefield Square shopping center from 1985 – 2018. The dry-cleaning operations used tetrachloroethene (a chlorinated solvent also known as PCE), and although there were no known spills at the site, chlorinated solvent contamination was discovered during an environmental site assessment in 2018. Because PCE in sub-slab vapor sampling exceeded the vapor risk screening level for small commercial sites, the responsible party had a vapor mitigation system installed for the former Best Way tenant space.

The Best Way Cleaners site was investigated for a discharge of hazardous substances from dry-cleaning operations in one tenant space of the Stonefield Square shopping center. Case closure is granted for the volatile organic compound contaminants analyzed during the site investigation, as documented in the case file. The site investigation addressed soil, groundwater, and subsurface vapor. Actions taken for vapor intrusion included removal of the dry-cleaning equipment and solvents and installation of a vapor mitigation system for the former Best Way Cleaners tenant space. Contamination remains in soil, groundwater, and subsurface vapor beneath the former Best Way Cleaners tenant space.

The case closure decision and COs required are based on the site being used for commercial purposes. The site is currently zoned General Commercial, which is non-industrial use under Wis. Admin. Code § NR 720.05(5) for determining residual contaminant levels in soil.

SUMMARY OF CONTINUING OBLIGATIONS

The following locations have COs applied:

Address (City, WI)	COs Applied	Date of Maintenance
		<u>Plan(s)</u>
5914 US Highway 51	-Residual Soil Contamination	- Cap maintenance
McFarland WI 53558	-Groundwater Contamination Equals or	plan, December 2020
(Source Property)	Exceeds Enforcement Standards	
	-Cover	- Vapor mitigation
	-Structural Impediment	system maintenance
	-Vapor Mitigation System	plan, December 2020
	-Commercial/Industrial Use	_
	-Future Vapor Intrusion Concern	

CLOSURE CONDITIONS

Closure conditions are legally required conditions which include both COs and other requirements for case closure (Wis. Stat. § 292.12(2)). Under Wis. Stat. § 292.12(5). You, any subsequent property owners and occupants of the property must comply with the closure conditions in this letter. The property owner must notify occupants for any condition specified in this letter under Wis. Admin. Code §§ NR 726.15(1)(b) and NR 727.05(2). If an occupant is responsible for maintenance of any closure condition specified in this letter, you and any subsequent property owner must include the condition in the lease agreement under Wis. Admin. Code § NR 727.05(3) and provide the maintenance plan to any occupant that is responsible.

DNR staff may conduct periodic pre-arranged inspections to ensure that the conditions in this letter and the December 2020 maintenance plans are met (Wis. Stat. § 292.11(8)). If these requirements are not followed, the DNR may take enforcement action under Wis. Stat. ch. 292 to ensure compliance with the closure conditions.

SOIL

Continuing Obligations to Address Soil Contamination

Residual Soil Contamination (Wis. Admin. Code chs. NR 718, NR 500-599, and § NR 726.15(2)(b), and Wis. Stat. ch. 289)

Soil contamination remains in the B-5, GB-2, and GPZ-1 areas, as indicated on the enclosed map (Fig. B.2.b., Residual Soil Contamination Map, 3/30/2021). If soil in the locations shown on the map is excavated in the future, the property owner or right-of-way holder at the time of excavation must sample and analyze the excavated soil. If sampling confirms that contamination is present, the property owner or right-of-way holder at the time of excavation will need to determine if the material is considered solid waste and ensure that any storage, treatment, or disposal complies with applicable standards and rules. Contaminated soil may be managed under Wis. Admin. Code ch. NR 718 with prior DNR approval.

In addition, all current and future property owners, occupants, and right-of-way holders need to be aware that excavation of the contaminated soil may pose an inhalation and direct contact hazard; special precautions may be needed to prevent a threat to human health.

Cover (Wis. Stat. § 292.12 (2) (a), Wis. Admin. Code §§ NR 724.13(1) and (2), NR 726.15(2)(d) and/or (e), NR 727.07(1))

The building, as shown on the enclosed map (Fig. D.2, Location Map (Cap Maintenance Plan), 1/6/2021) must be maintained in compliance with the enclosed cap maintenance plan, dated December 2020. The purpose of the cover is to minimize the infiltration of water through contaminated soil. The building is also considered a structural impediment; additional investigation and response requirements apply as described in the section of this letter titled Structural Impediments.

The cover approved for this closure was designed to be protective for commercial or industrial land uses. Before using the property for residential purposes and before taking an action, the property owner must notify the DNR to determine if additional response actions are needed. A cover intended for industrial land uses or certain types of commercial land uses may not be protective if the property changes to a residential use. This may include, but is not limited to, single or multiple family residences, a school, day care, senior center, hospital or similar settings.

To modify or replace a cover, the property owner must submit a request to the DNR under Wis. Admin. Code ch. NR 727. The DNR must approve the request in advance of the work. The replacement or modified cover must be a structure of similar permeability or be protective of the revised use of the property until contaminant levels no longer exceed Wis. Admin. Code ch. NR 720 groundwater pathway residual contaminant levels (RCLs).

Structural Impediment (Wis. Stat. § 292.12 (2) (b), Wis. Admin. Code §§ NR 726.15 (2) (f), NR 727.07 (2)) The remaining building as shown on the enclosed map (Fig. B.2.b., Residual Soil Contamination Map, 3/30/2021) made complete site investigation and remediation of the contamination on this property impracticable. Upon removal of the structural impediment, the property owner must investigate the degree and extent of volatile organic compound contamination obstructed by the structural impediment. If contamination is found at that time, the property owner must remediate the contamination in accordance with Wis. Admin. Code chs. NR 700–799.

GROUNDWATER

Continuing Obligations to Address Groundwater Contamination and/or Monitoring Wells

Groundwater Contamination Equals or Exceeds Enforcement Standards (Wis. Admin. Code ch. NR 140 and § NR 812.09(4)(w))

Groundwater contamination which equals or exceeds the enforcement standards for tetrachloroethene is present under the former Best Way Cleaners tenant space, as shown on the enclosed map (Fig. B.3.b., Groundwater Isoconcentration Map, 1/6/2021). To construct a new well or reconstruct an existing well, the property owner must obtain prior DNR approval. Additional casing may be necessary to prevent contamination of the well.

VAPOR

Continuing Obligations to Address Vapor Contamination

Vapor intrusion is the movement of vapors from volatile chemicals in the soil or groundwater or within preferential pathways into buildings where people may breathe air contaminated by the vapors.

Vapor Mitigation Systems and/or Vapor Barriers: (Wis. Stat. § 292.12(2), Wis. Admin. Code § NR 726.15(2)(h), (i), (j) or (m))

Vapor mitigation systems, which may include vapor barriers, are used to interrupt the vapor pathway, thereby reducing or preventing vapors from moving into the building. Soil vapor beneath the former Best Way Cleaners tenant space contains chlorinated volatile organic compounds at levels that would pose a risk to human health, if allowed to migrate into an occupied building on the property.

Vapor is mitigated with a sub-slab depressurization system installed in the west end of the former Best Way Cleaners tenant space; the system uses a blower to move collected vapors through connective piping to a roof-mounted vent pipe. The property owner must maintain, operate, and inspect the vapor mitigation system, installed in December 2018, in accordance with the enclosed maintenance plan, dated December 2020. System components must be repaired or replaced immediately upon discovery of a malfunction. The property owner must document inspections on the VMS inspection log (Form 4400-321). See the <u>Other Closure Requirements</u> section of this letter for more details.

<u>Commercial/Industrial Use</u>: (Wis. Stat. § 292.12(2), Wis. Admin. Code § NR 726.15(2)(k) or (m)) Soil vapor beneath the former Best Way Cleaners tenant space in the Stonefield Square shopping center contains contamination at concentrations that pose a long-term risk to human health if allowed to migrate into an occupied building. See the enclosed map (Fig. B.4.a, Vapor Intrusion Map, 1/6/2021). Case closure is based on the following site-specific exposure assumptions: commercial use, vapor mitigation, and continued existence of the building floor as a cap. Use of this property is restricted to industrial or commercial uses. If changes in property or land use are planned, the property owner must evaluate whether the closure is protective for the proposed use. The DNR may require additional response actions. The property owner must maintain the cap and vapor mitigation system in accordance with the enclosed maintenance plans dated December 2020.

Future Vapor Intrusion Concern: (Wis. Stat. § 292.12(2), Wis. Admin. Code § NR 726.15(2)(L) or (m), as applicable.

Chlorinated volatile organic compounds remain in soil vapor beneath the former Best Way Cleaners tenant space, as shown on the enclosed map, (Fig. B.4.a., Vapor Intrusion Map, 1/6/2021), at concentrations that may be of concern for vapor intrusion in the future, if a building is constructed, renovated or expanded in an area where no building currently exists or if an existing building is remodeled.

Vapor control technologies are required for new construction or for modification of occupied buildings on the property unless the property owner assesses the vapor pathway and the DNR agrees that vapor control technologies are not needed. The property owner must maintain the current building use and layout.

See the Other Closure Requirements section for more details.

OTHER CLOSURE REQUIREMENTS

Maintenance Plan and Inspection Log (Wis. Admin. Code § NR 726.11(2), NR 726.15(1)(d), NR 727.05(1)(b) 3.)

Case Closure of Best Way Cleaners BRRTS #: 02-13-583171 April 12, 2021

The property owner is required to comply with the enclosed maintenance plans dated December 2020 for the cover and vapor mitigation system, to conduct inspections annually, and to use the inspection logs (DNR Form 4400-305 and Form 4400-321) to document the required inspections. The maintenance plans and inspection logs are to be kept up-to-date and either on-site or at the property owner's office. The property owner will submit the inspection log to the DNR when requested.

Limitations on Activities, Prior Approval Needed (Wis. Admin. Code §§ NR 724.13(2)(h), NR 726.15(2)) Certain activities are limited at closed sites to:

- ensure that the cover will function as intended to prevent contact with any remaining contamination,
- ensure that the VMS will function as intended to prevent or limit vapor intrusion into an occupied building, and
- reduce the risk of exposure to residual contamination via vapor intrusion.

The limitations on activities are identified in the enclosed maintenance plan(s). The following activities are prohibited on any portion of this property where the cover and vapor mitigation system control are required, unless prior approval is given by DNR:

- removal of the existing cap
- replacement with another cap
- excavating or grading of the land surface
- filling on capped areas
- plowing for agricultural cultivation; or
- construction or placement of a building or other structure.

Pre-Approval Required for Well Construction (Wis. Admin. Code § NR 812.09(4)(w))

DNR approval is required before well construction or reconstruction for all sites identified as having residual contamination and COs. This requirement applies to private drinking water wells and high capacity wells. To obtain approval, complete Form 3300-254 (Continuing Obligations/Residual Contamination Well Approval Application) and submit to the DNR Drinking and Groundwater program's regional water supply specialist. A well driller can help complete this form. The form is available at dnr.wi.gov (search "3300-254"). Additional casing may be necessary to help prevent contamination of the well.

DNR NOTIFICATION REQUIREMENTS

DNR Notification (Wis. Admin. Code §§ NR 727.07, NR 726.15(2))

The property owner is required to notify the DNR at least 45 days before taking the following actions. The DNR may require additional investigation and/or cleanup actions if necessary, to be protective of human health and the environment.

- Before removing a cover or any portion of a cover
- Before removing a structural impediment
- Before deciding to no longer use the vapor mitigation system, to shut off the fan or disrupt or abandon the vapor mitigation system, or before making any change to the vapor mitigation system or to a vapor barrier
- Before changing the land use for sites where commercial or industrial exposure settings were used to determine vapor risk screening levels.
- Before constructing a building and/or modifying the construction of an existing building or changing property use

Send written notifications to the DNR using the RR Program Submittal Portal on DNR's website at <u>https://dnr.wi.gov/topic/Brownfields/Submittal.html</u>. Questions on using this portal can be directed to the contact below or to the environmental program associate (EPA) for the regional DNR office. Visit dnr.wi.gov, search "RR contacts," and select the EPA tab (<u>https://dnr.wi.gov/topic/Brownfields/Contact.html</u>).

Case Closure of Best Way Cleaners BRRTS #: 02-13-583171 April 12, 2021

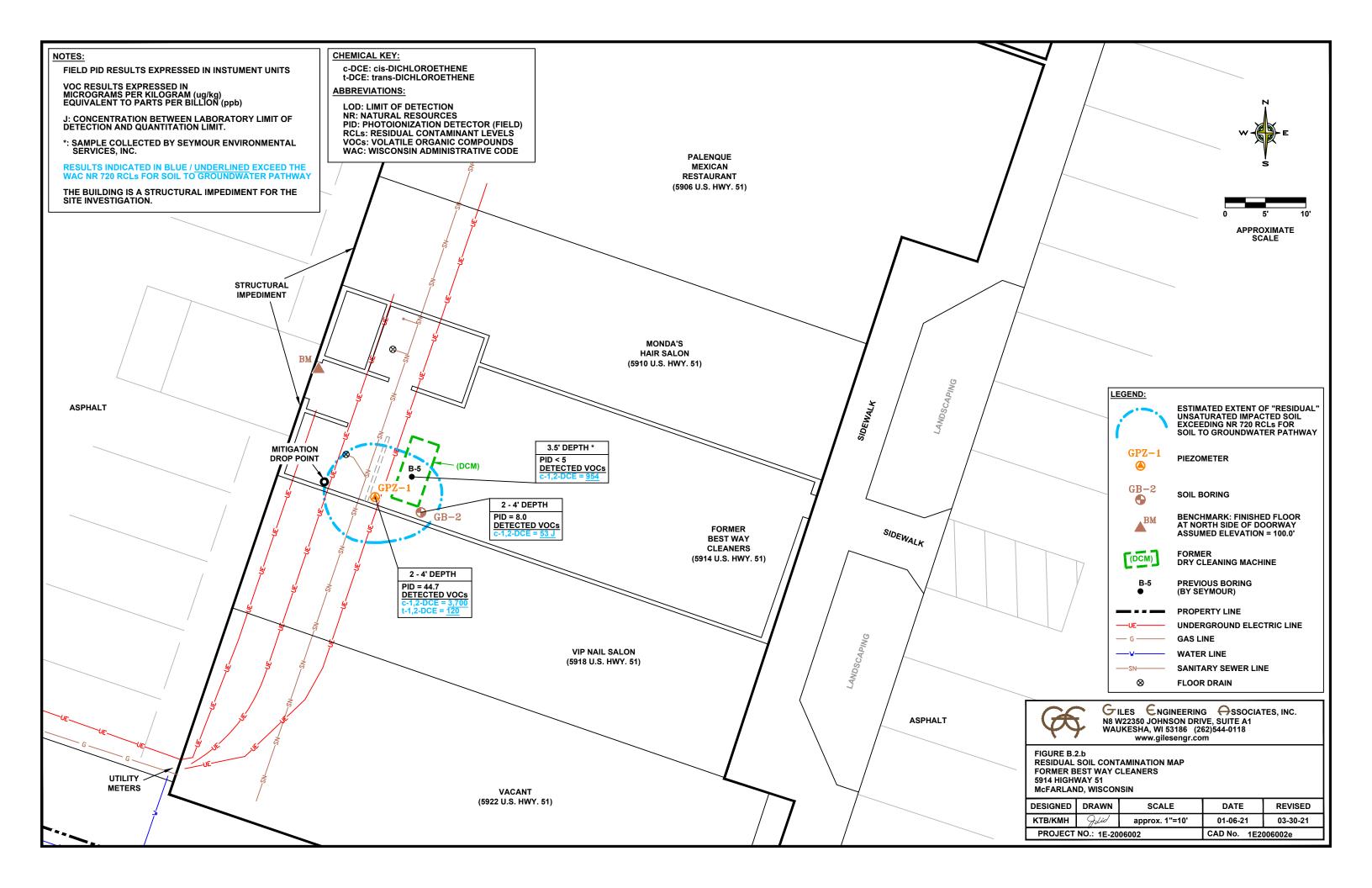
CLOSING

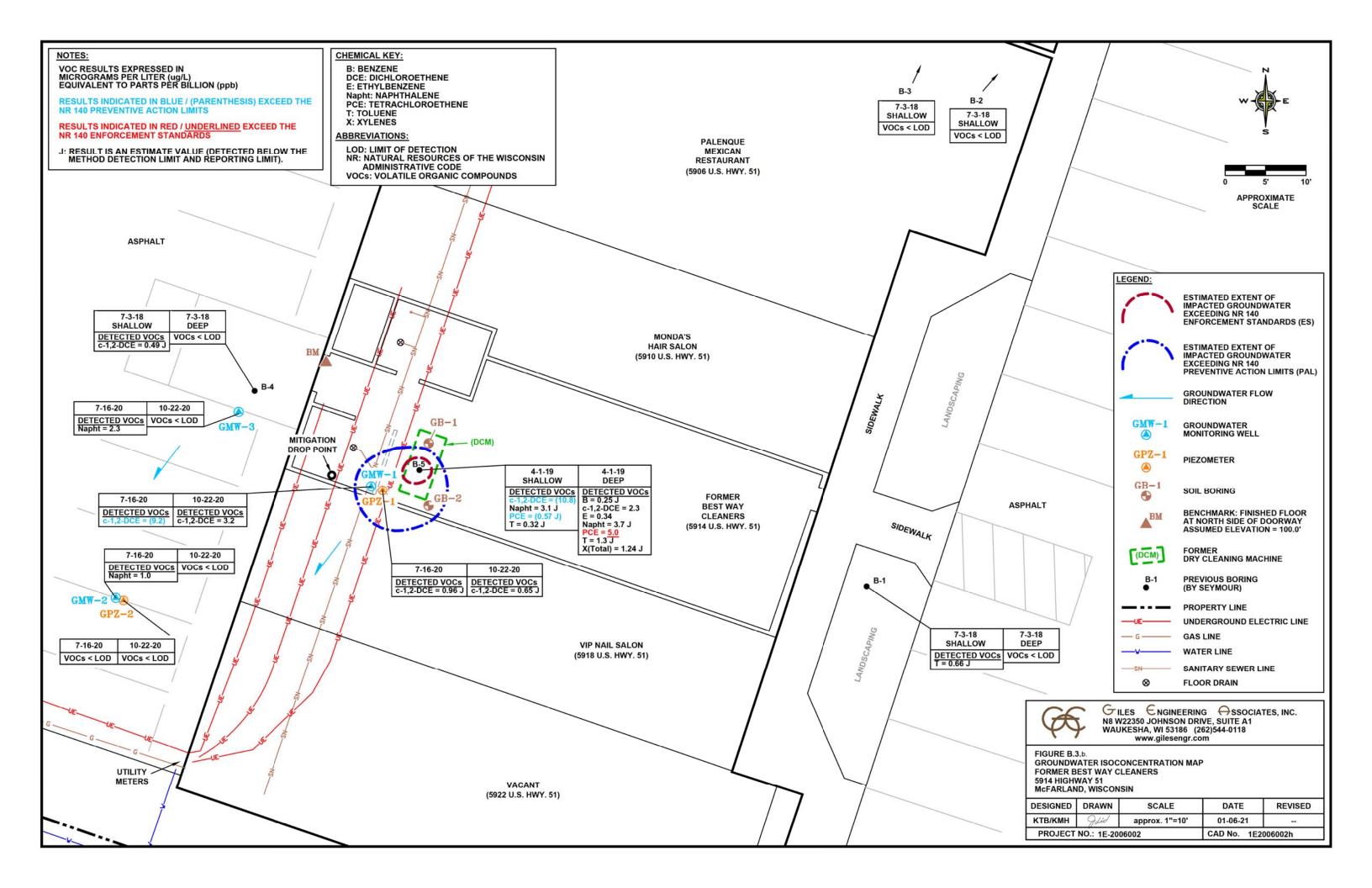
Site and case closure-related information can be found in the Bureau for Remediation and Redevelopment Tracking System (BRRTS) on the Web (BOTW); go to <u>dnr.wi.gov</u> and search "BOTW." Use the BRRTS ID # found at the top of this letter. The site can also be found on the Remediation and Redevelopment Sites Map by searching "RRSM."

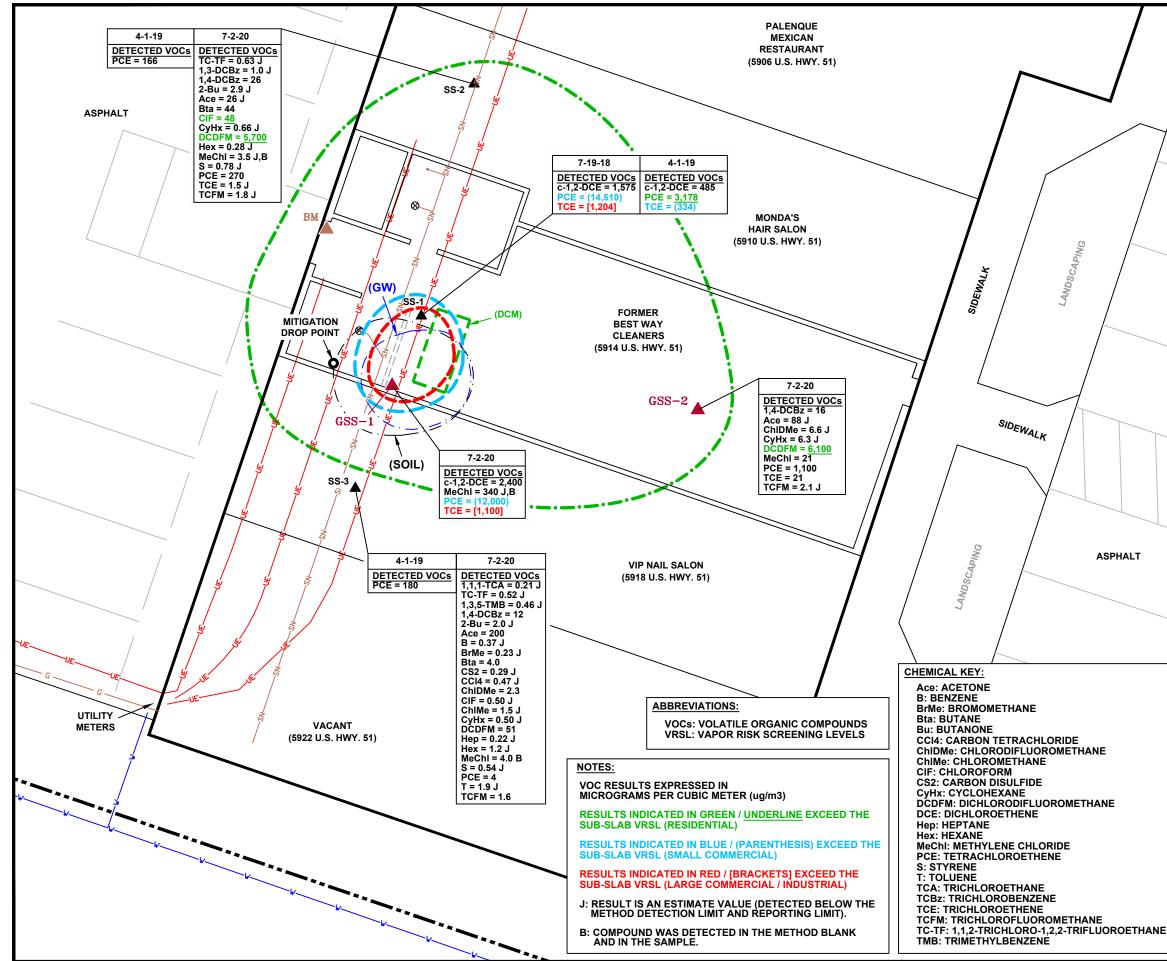
Please be aware that the case may be reopened under Wis. Admin. Code § NR 727.13 if additional information indicates that contamination on or from the site poses a threat, or for a lack of compliance with a CO or closure requirement. Compliance with maintenance plans is considered when evaluating the reopening criteria.

The DNR appreciates your efforts to restore the environment at this site. If you have any questions regarding this closure decision or anything stated in this letter, please contact DNR Project Manager, Cindy Koepke at 608-219-2181 or cynthia.koepke@wisconsin.gov. If the project manager is not available, go to dnr.wi.gov and search "RR contacts."

Sincerely,


It 2 mg


Steven L. Martin, P.G. South Central Region Team Supervisor Remediation & Redevelopment Program


Copies to: K. Bugel, Giles Engineering (by email) T. Giles (by email) C. Sweeney (by email) Chad Beyler, 5472 Alan Drive, Oregon WI 53575

Attachments:

- Fig. B.3.b, Groundwater Isoconcentration Map, 1/6/2021
- Fig. B.2.b., Residual Soil Contamination Map, 3/30/2021
- Fig. B.4.a., Vapor Intrusion Map, 1/6/2021
- Fig. D.2, Location Map (Cap Maintenance Plan), 1/6/2021
- Attachment D, Cap Maintenance Plan, December 2020
 - o Inspection Log (DNR Form 4400-305)
 - Attachment D, Vapor Mitigation Maintenance Plan, December 2020
 - Inspection Log (DNR Form 4400-321: Vapor Mitigation System Inspection Log)

			0 5 APPRO) SCA	KIMATE	I0' ₩-	Z E S	
		LEG	SEND:	SUB-SL/	TED EXTENT OF AB SOIL GAS EX ARGE COMMER RIAL)	CEEDING	
		1		SUB-SL	TED EXTENT OF AB SOIL GAS EX MALL COMMER	CEEDING	
_		ļ		SUB-SL/	TED EXTENT OF AB SOIL GAS EX ESIDENTIAL)		
				UNSATU EXCEED	TED EXTENT OF RATED IMPACT ING NR 720 RCL GROUNDWATE NY	ED SOIL s FOR	
		Ć	(GW)	IMPACT EXCEED PREVEN	TED EXTENT OF ED GROUNDWA ING NR 140 TIVE ACTION LI DRCEMENT STA	TER MITS (PAL)	
_			GSS-1	SOIL GA	S POINT		
			BM	AT NOR	IARK: FINISHED TH SIDE OF DOC D ELEVATION =	DRWAY	
_			(DCM)	FORMER DRY CLI	R EANING MACHIN	IE	
٦			SS-1 ▲	PREVIO	JS BORINGS MOUR)		
		-	-UE		TY LINE		
				GAS LIN			
		_	-v	WATER			
			SN	SANITAI	RY SEWER LINE		
			8	FLOOR	DRAIN		
GILES ENGINEERING ASSOCIATES, INC. N8 W22350 JOHNSON DRIVE, SUITE A1 WAUKESHA, WI 53186 (262)544-0118 www.gilesengr.com							
	FIGURE B.4.a VAPOR INTRUSION MAP FORMER BEST WAY CLEANERS 5914 HIGHWAY 51 McFARLAND, WISCONSIN						
	DESIGNED	DRAWN	SCAL	.E	DATE	REVISED	
	KTB/KMH	Jdid					
	PROJECT NO.: 1E-2006002 CAD No. 1E2006002k						

02-13-583171 BRRTS #

Attachment D: Maintenance Plans and Photographs

Engineered Cap

D.1(1) Cap Maintenance Plan Included

D.2(1) Location Map Included

D.3(1) Photographs Included

D.4(1) Inspection Log Included

Vapor Mitigation System

D.1(2) Vapor Mitigation System Maintenance Plan Included

D.2(2) Location Map Included

D.3(2) Photographs Included

D.4(2) Inspection Log Included

D.1(1) Description of Cap Maintenance Plan For:

Best Way Cleaners 5914 U.S. Highway 51 McFarland, Wisconsin

WDNR BRRTS # 02-13-583171 December 2020

Legal Description:

SW ¹/₄ of the NW ¹/₄ of Section 3, Township 6 North, Range 10 East, in the Village of McFarland, Dane County, Wisconsin. Tax Key No. 154/0610-032-4510-1.

Introduction

This document is the maintenance plan for an integrated cap at the above-referenced property (the Site) in accordance with the requirements of s. NR 724.13 (2), Wis. Adm. Code. The maintenance activities relate to the existing concrete floor slab which occupies the area over the residual contaminated soil and groundwater.

More site-specific information about this Site may be found:

- In the case file in the Wisconsin Department of Natural Resources (WDNR) South Central office.
- From the WDNR project manager for Dane County.
- BRRTS on the Web (WDNR's internet-based database of contaminated sites) and the RR Sites Map (map view of the Site and surrounding properties) at the link: <u>http://dnr.wi.gov/topic/Brownfields/wrrd.html</u>. Both BRRTs on the Web and the RR Sties Map provide PDFs of site-specific information and details regarding continuing obligations for the Site.

Description of Contamination

Residual dry cleaning-related volatile organic compound (VOC)-impacted soil remains on Site near the former Best Way Cleaners former dry cleaning machine (DCM). The residual VOC soil impacts exceed the NR 720 Residual Contaminant Levels (RCLs) for groundwater protection. Soil impacts are present from beneath the building slab to the water table, approximately 5 feet below ground surface (bgs). Additionally, limited VOC-impacted groundwater is present beneath the footprint of the former DCM. When last sampled in 2019, the concentration of one VOC was at the NR 140 Enforcement Standard (ES). The extent of soil and groundwater impacts are shown on the attached Figure D.2(1).

Cap Description and Purpose

The contamination is limited to the vicinity of the former DCM that had been located within the Best Way Cleaners lease space. Therefore, the cap consists of the concrete floor slab of the existing shopping center building that overlies the contaminated soil. The floor slab over the area of residual VOC contamination is approximately 6-inch thick and will act as a cap to protect against direct contact with the contaminated soil, and act as an infiltration barrier. Based on the current commercial use of the property, the cap should function as intended unless disturbed.

Annual Inspection

The cap overlying the impacted soil as shown on Attachment D.2(1) must be inspected once a year for deterioration, cracks, and other potential problems that can cause additional surface water infiltration. The inspections will be performed by the property owner or their designated representative. The inspections will be performed to evaluate damage due to settling, wear from traffic, increasing age, and other factors. Any area where contaminated soil has become or is likely to become exposed will be documented.

A log of the inspections and any repairs will be maintained by the property owner. The Continuing Obligations Inspection and Maintenance Log (Form 4400-305) is included as Case Closure Attachment D.4(1). The log will include recommendations for necessary repair of any areas where infiltration from the surface will not be effectively minimized. Completed repairs will be documented in the inspection log. A copy of the maintenance plan and inspection log will be kept at the Site or, if there is no acceptable place to keep it at the Site, at the address of the property owner. The log must be available for submittal or inspection by WDNR representatives upon request. If required in the case closure letter, a copy of the inspection log must be submitted electronically to the WDNR after every inspection, at least annually.

Maintenance Activities

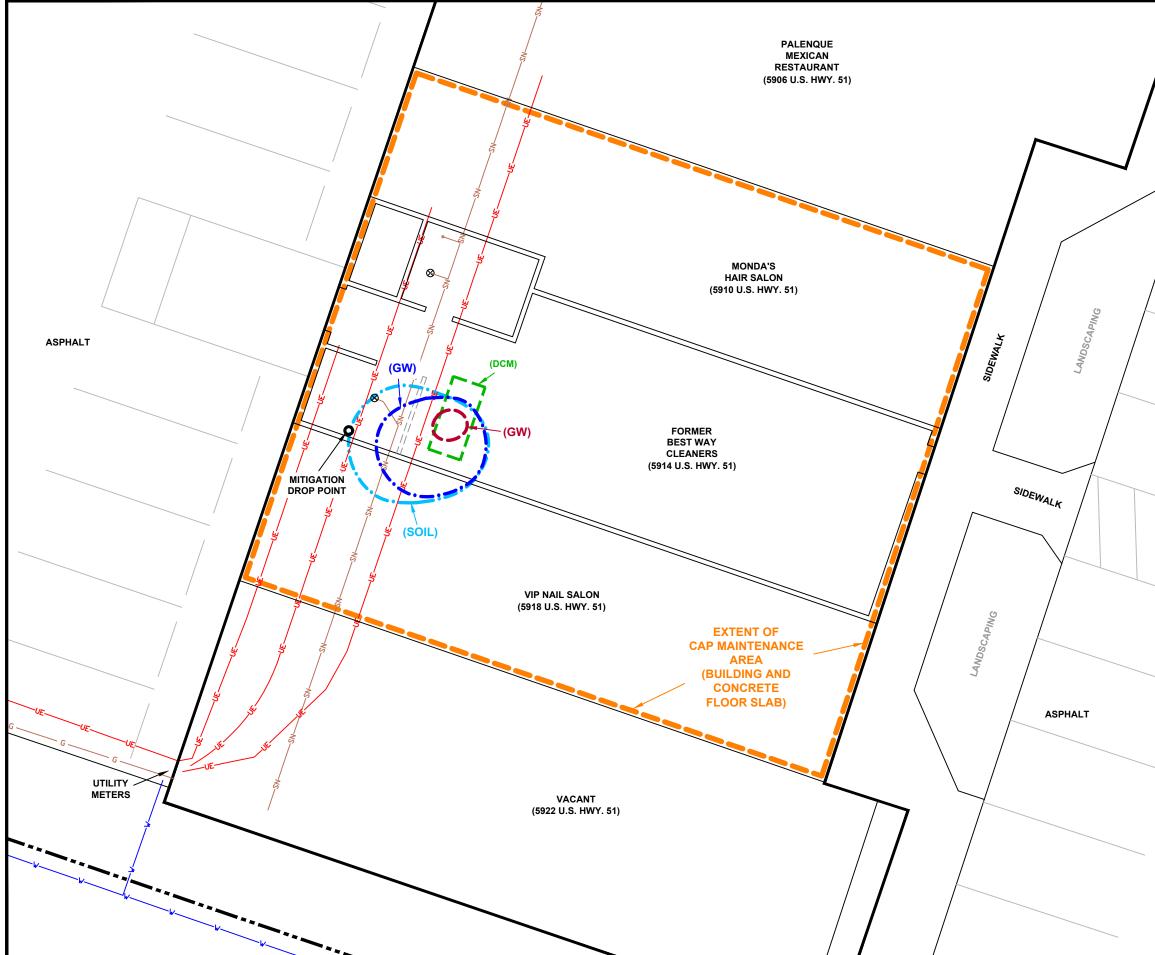
If problems in the cap are noted during the annual inspections, or at any other time during the year, repairs will be scheduled and completed as soon as practicable. Repairs can include patching and filling, larger resurfacing, or construction operations. The owner must also sample/laboratory analyze soil that is generated from below the cap to properly characterize the soil for off-site disposal or placement in another area of the Site. The soil must be treated, stored, and disposed of by the property owner in accordance with applicable local, state, and federal law.

In the event the floor slab overlying the contaminated soil is removed or replaced, the replacement cap must be equally impervious. Any replacement cap will be subject to the same maintenance and inspection guidelines as outlined in this maintenance plan unless indicated otherwise by the WDNR or its successor.

Prohibition of Activities and Notification of DNR Prior to Actions Affecting the Cap

The following activities are prohibited on any portion of the property where the cap is required as shown on the attached Figure D.2(1), unless prior written approval has been obtained from the WDNR: 1) removal of the existing cap; 2) replacement with another cap; 3) excavating or grading of the land surface; 4) filling on capped areas; 5) plowing for agricultural cultivation; or 6) construction or placement of a building or other structure.

If removal, replacement or other changes to the cap are considered, the property owner will contact the WDNR at least 45 days before taking such an action, to determine whether further action may be necessary to protect human health, safety, or welfare or the environment, in accordance with s. NR 727.07, Wis. Adm. Code.


Amendment or Withdrawal of Maintenance Plan

This Maintenance Plan can be amended or withdrawn by the property owner and its successors with the written approval of WDNR.

D.1(1) Cap Maintenance Plan Best Way Cleaners BRRTS No. 02-13-583171

Contact Information (as of December 2020)

Site Owner and Operator:	E. David Locke FH of McFarland, Inc. 5990 U.S. Highway 51 McFarland, WI 53558
<u>Consultants</u> :	Giles Engineering Associates, Inc. N8 W 22350 Johnson Road Waukesha, WI 53186 Attention: Mr. Kevin T. Bugel (262) 544-0118
<u>WDNR</u> :	Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Madison, Wisconsin 53711 Attention: Cynthia Koepke (608) 219-2181

/ /						
' /						
/						
/						
\sim						
/						
/						
				<u>.</u>		
	LEGEND:					
		EXTENT	OF AREA TO BE			
	ii		SLAB = EXISTIN			
			ED EXTENT OF			
	(SOIL)		RATED IMPACT ING NR 720 RCL			
		SOIL TO	GROUNDWATE	R PATHWAY		
	<u></u>		ED EXTENT OF			
	(GW)		ED GROUNDWA [.] ING NR 140	TER		
	•		EMENT STAND	ARDS (ES)		
	1	ESTIMAT				
	(GW)	IMPACTI	ED EXTENT OF			
			ING NR 140 TIVE ACTION LI	MITS (PAL)		
		FORMER	2			
	(DCM)		ANING MACHIN	IE		
		PROPER				
	— G ———					
		WATER				
	SN		RY SEWER LINE			
	8	FLOOR I				
	GILES EN	GINEERIN		TES, INC.		
	N8 W22350 JOH WAUKESHA, WI	53186 (20	62)544-0118			
		esengr.co				
FIGURE D.2(1) LOCATION MAP (0						
FORMER BEST WAY CLEANERS						
	5914 HIGHWAY 51 McFARLAND, WISCONSIN					
DESIGNED DRAV			DATE	REVISED		
ктв/кмн 9д.	-		01-06-21			
PROJECT NO.: 1	E-2006002		CAD No. 1E2	0060021		

D.1(2) Description of Vapor Mitigation System Maintenance Plan For:

Best Way Cleaners 5914 U.S. Highway 51 McFarland, Wisconsin

WDNR BRRTS # 02-13-583171 December 2020

Legal Description:

SW ¹/₄ of the NW ¹/₄ of Section 3, Township 6 North, Range 10 East, in the Village of McFarland, Dane County, Wisconsin. Tax Key No. 154/0610-032-4510-1.

Introduction

This document is the maintenance plan for a sub-slab depressurization system at the abovereferenced property (the Site) in accordance with the requirements of s. NR 724.13 (2), Wis. Adm. Code. The maintenance activities relate to the existing system installed within the former Best Way Cleaners lease space.

More site-specific information about this site may be found:

- In the case file in the Wisconsin Department of Natural Resources (WDNR) South Central office.
- From the WDNR project manager for Dane County.
- BRRTS on the Web (WDNR's internet-based database of contaminated sites) and the RR Sites Map (map view of the Site and surrounding properties) at the link: <u>http://dnr.wi.gov/topic/Brownfields/wrrd.html</u>. Both BRRTs on the Web and the RR Sties Map provide PDFs of site-specific information and details regarding continuing obligations for the Site.

Description of Contamination

Dry cleaning-related volatile organic compound (VOC)-impacted soil gas remains on Site near the former Best Way Cleaners former dry cleaning machine (DCM). The residual VOC soil gas impacts exceed the Sub-Slab Vapor Risk Screening Levels (VRSL) for small commercial properties. The extent of sub-slab soil gas impact is shown on the attached Figure D.2(2). A sub-slab depressurization system was installed in December 2018 to mitigate the vapor intrusion risk posed by the presence of the VOC-impacted soil gas beneath the building slab.

Vapor mitigation System Description and Purpose

The sub-slab depressurization system consists of a roof-mounted ventilation blower, a drop point within the source unit (former Best Way Cleaners), and connective piping. The drop point is located near the source of the impacted soil gas, the former DCM. The point penetrates the building's approximately 6-inch thick floor slab and terminates within the underlying base course material. The blower creates a negative pressure beneath the floor slab to reduce the potential for sub-slab vapors to infiltrate the building. Vapors extracted by the system are vented to the atmosphere through stacks located on the roof of the existing building.

D.1(2) Vapor Mitigation System Maintenance Plan Best Way Cleaners BRRTS No. 02-13-583171

Vapor Mitigation System Design and Construction

The sub-slab depressurization system was designed to create a negative pressure beneath the floor slab near the source area, the former DCM. The ventilation blower is a RadonAway Model GP-501 with the capacity to create a vacuum of up to 4 inches of water. The system was designed with an inlet vacuum of 3.5 inches of water and vents approximately 27 cubic feet per minute (cfm) of air from beneath the slab. The rooftop exhaust vent is located at least 20 feet from the roof-mounted HVAC equipment.

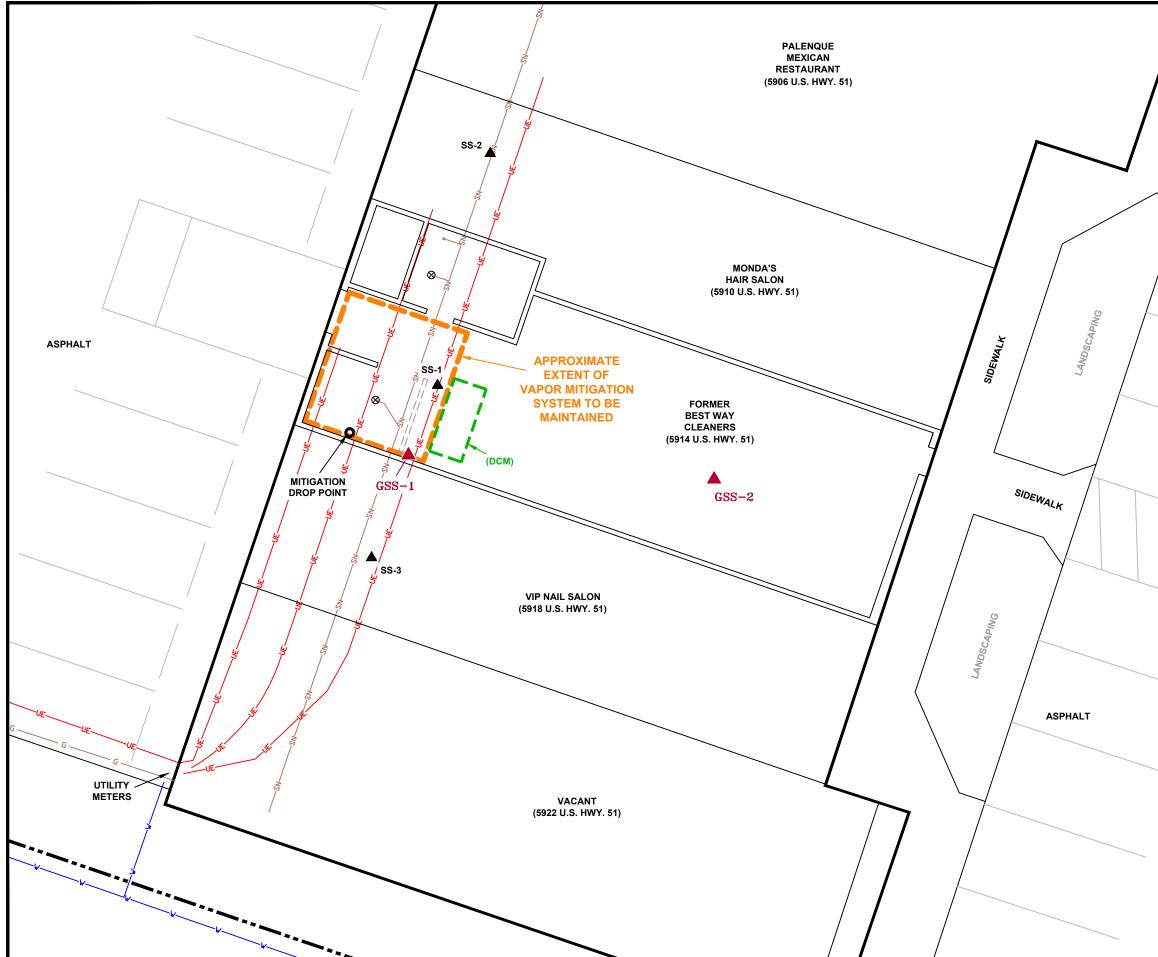
System Maintenance

The sub-slab depressurization system requires minimal maintenance. The system's thermal overload protection is equipped with an automatic reset, and the system has a design life cycle of 15 years.

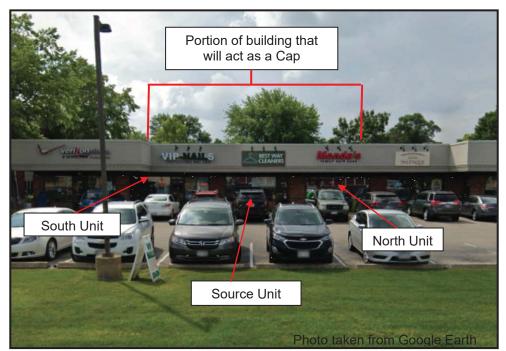
Annual Inspection

The sub-slab depressurization system will be inspected once a year. Inspections will be performed in the late fall or early winter when the HVAC system is switched between heating to cooling operations. The inspection will be performed by the property owner or their designated representative. The inspections will be performed to evaluate the induced negative pressure from the mitigation system. Specifically, the vacuum at the drop point on the manometer should be checked. The exterior venting system should be checked for damage due exposure to the weather, increasing age and other factors. A log of the inspections and any repairs will be maintained by the property owner and is attached. The log will include recommendations for necessary repairs made during annual inspections. Once repairs are completed, they will be documented in the inspection log. A copy of the inspection log will be kept at the address of the property owner and made available for submittal or inspection by the Wisconsin Department of Natural Resources (WDNR) representatives upon their request.

Maintenance Activities


If problems are noted during the annual inspections or at any other time during the year, repairs will be scheduled as soon as practicable. Repairs can include normal maintenance of the drop point floor seal, piping, or replacement of the ventilation blower unit. If replacement of the ventilation blower is required, the replacement unit must be able to provide similar air flow rates as the existing unit (~27 cfm at 3.5-inch water vacuum). Any replacement system equipment will be subject to the same maintenance and inspection guidelines as outlined in this Maintenance Plan unless indicated otherwise by WDNR or its successor. The property owner, in order to maintain the integrity of the sub-slab depressurization system, will maintain a copy of this Maintenance Plan on-site and make it available to all interested parties (i.e. on-site employees, contractors, future property owners, etc.) for viewing.

Amendment or Withdrawal of Maintenance Plan


This Maintenance Plan can be amended or withdrawn by the property owner and its successors with the written approval of WDNR.

Contact Information (as of December 2020)

Site Owner and Operator:	E. David Locke FH of McFarland, Inc. 5990 U.S. Highway 51 McFarland, WI 53558
<u>Consultants</u> :	Giles Engineering Associates, Inc. N8 W 22350 Johnson Road Waukesha, WI 53186 Attention: Mr. Kevin T. Bugel (262) 544-0118
<u>WDNR</u> :	Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Madison, Wisconsin 53711 Attention: Cynthia Koepke (608) 219-2181

	/						
APPROXIMATE SCALE					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Z E	
VAPOR MITIGATION SYSTEM GSS-1 SOIL GAS POINT SS-1 PREVIOUS BORINGS PREVIOUS BORINGS PROPERTY LINE SANITARY SEWER LINE SANITARY SEWER LINE NULCESTON DRIVE, SUITE A1 WAUKESHA, WI 53186 (262)544-0118 WAUKESHA, WI 53186 (262)544-0118 WAUKESHA, WI 53186 (262)544-0118<					APPRO	DXIMATE	
VAPOR MITIGATION SYSTEM GSS-1 SOIL GAS POINT SS-1 PREVIOUS BORINGS PREVIOUS BORINGS PROPERTY LINE SANITARY SEWER LINE SANITARY SEWER LINE NULCESTON DRIVE, SUITE A1 WAUKESHA, WI 53186 (262)544-0118 WAUKESHA, WI 53186 (262)544-0118 WAUKESHA, WI 53186 (262)544-0118<							
VAPOR MITIGATION SYSTEM GSS-1 SOIL GAS POINT SS-1 PREVIOUS BORINGS PREVIOUS BORINGS PROPERTY LINE SANITARY SEWER LINE SANITARY SEWER LINE NULCESTON DRIVE, SUITE A1 WAUKESHA, WI 53186 (262)544-0118 WAUKESHA, WI 53186 (262)544-0118 WAUKESHA, WI 53186 (262)544-0118<							
SOIL GAS POINT SOIL GAS POINT SS-1 PREVIOUS BORINGS (BY SEYMOUR) FORMER DRY CLEANING MACHINE PROPERTY LINE UNDERGROUND ELECTRIC LINE G GAS LINE V WATER LINE SN SANITARY SEWER LINE SN SANITARY SEWER LINE SFLOOR DRAIN FLOOR DRAIN FIGURE D.2(2) LOCATION MAP (VAPOR MITIGATION SYSTEM MAINTENANCE PLAN) FORMER BEST WAY CLEANERS S914 HIGHWAY 51 MCFARLAND, WISCONSIN DESIGNED DRAWN SCALE DATE REVISED KTB/KMH W approx. 1"=10' 01-06-21			$\overline{\mathbf{V}}$	ř.			
▲ (BY SEYMOUR) Image: Construction of the system of the syste			/		OIL GAS POINT		
Image: Construction of the image: constructined of the image: construction of the image: construct						iS	
UE UNDERGROUND ELECTRIC LINE G GAS LINE V WATER LINE SN SANITARY SEWER LINE Ø FLOOR DRAIN FLOOR DRAIN SSOCIATES, INC. NB W22350 JOHNSON DRIVE, SUITE A1 WAUKESHA, WI 53186 (262)544-0118 WAUKESHA, WI 53186 (262)544-0118 WWW.gilesengr.com FIGURE D.2(2) LOCATION MAP (VAPOR MITIGATION SYSTEM MAINTENANCE PLAN) FORMER BEST WAY CLEANERS 5914 HIGHWAY 51 MCFARLAND, WISCONSIN DESIGNED DRAWN DESIGNED DRAWN SCALE DATE KTB/KMH WM approx. 1"=10' 01-06-21						CHINE	
G GAS LINE V WATER LINE SN SANITARY SEWER LINE Ø FLOOR DRAIN FILES ENGINEERING MULTION SSOCIATES, INC. N8 W22350 JOHNSON DRIVE, SUITE A1 WAUKESHA, WI 53186 (262)544-0118 WWW.gilesengr.com FIGURE D.2(2) LOCATION MAP (VAPOR MITIGATION SYSTEM MAINTENANCE PLAN) FORMER BEST WAY CLEANERS S914 HIGHWAY 51 MCFARLAND, WISCONSIN DESIGNED DRAWN SCALE DATE KTB/KMH JMM approx. 1"=10' 01-06-21							
Image: Second State Image: Second State Image: Second State Image: Second State <td></td> <td></td> <td></td> <td></td> <td></td> <td>ECTRIC LINE</td>						ECTRIC LINE	
SN SANITARY SEWER LINE SN FLOOR DRAIN FLOOR DRAIN SSOCIATES, INC. N8 W22350 JOHNSON DRIVE, SUITE A1 N8 W22350 JOHNSON DRIVE, SUITE A1 WAUKESHA, WI 53186 (262)544-0118 WWW.gilesengr.com FIGURE D.2(2) LOCATION MAP (VAPOR MITIGATION SYSTEM MAINTENANCE PLAN) FORMER BEST WAY CLEANERS 5914 HIGHWAY 51 McFARLAND, WISCONSIN DESIGNED DRAWN SSCALE DATE REVISED KTB/KMH WM approx. 1"=10' 01-06-21							
Giles Engineering Ssociates, inc. N8 W22350 JOHNSON DRIVE, SUITE A1 WAUKESHA, WI 53186 (262)544-0118 www.gilesengr.com FIGURE D.2(2) LOCATION MAP (VAPOR MITIGATION SYSTEM MAINTENANCE PLAN) FORMER BEST WAY CLEANERS 5914 HIGHWAY 51 McFARLAND, WISCONSIN DESIGNED DRAWN SCALE DATE REVISED KTB/KMH JW approx. 1"=10' 01-06-21						LINE	
N8 W22350 JOHNSON DRIVE, SUITE A1 WAUKESHA, WI 53186 (262)544-0118 www.gilesengr.com FIGURE D.2(2) LOCATION MAP (VAPOR MITIGATION SYSTEM MAINTENANCE PLAN) FORMER BEST WAY CLEANERS 5914 HIGHWAY 51 McFARLAND, WISCONSIN DESIGNED DRAWN SCALE DATE KTB/KMH Juid approx. 1"=10' 01-06-21				⊗ F			
LOCATION MAP (VAPOR MITIGATION SYSTEM MAINTENANCE PLAN) FORMER BEST WAY CLEANERS 5914 HIGHWAY 51 McFARLAND, WISCONSIN DESIGNED DRAWN SCALE DATE KTB/KMH Juid approx. 1"=10' 01-06-21		N8 W22350 JOHNSON DRIVE, SUITE A1 WAUKESHA, WI 53186 (262)544-0118 www.gilesengr.com					
КТВ/КМН <i>Jdid</i> approx. 1"=10' 01-06-21		LOCATION MAP (VAPOR MITIGATION SYSTEM MAINTENANCE PLAN) FORMER BEST WAY CLEANERS 5914 HIGHWAY 51					
			11-				
					1 1EZ		

View of the front of the shopping center building along U.S. Highway 51, facing west.

View of the back of the shopping center building, facing southwest.

D.3(1) CAP PHOTOGRAPHS October 22, 2020

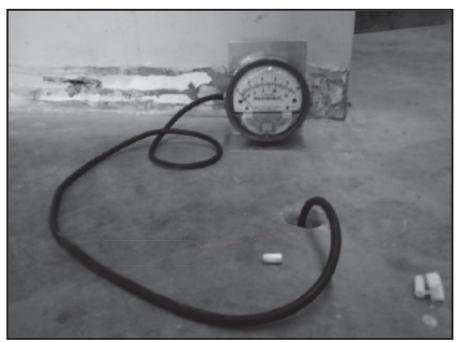
View of the interior of source unit and typical concrete floor to be maintained, facing east.

View of the interior of source unit and typical concrete floor to be maintained, facing west.

D.3(1) CAP PHOTOGRAPHS October 22, 2020

View of the roof-mounted ventilation blower.

View of the mitigation system piping penetrating the concrete floor slab.


D.3(2) PHOTOGRAPHS

December 14, 2018 Photographs taken from Seymour Environmental Services, Inc. Vapor Mitigation System Inspection Log

View of the manometer reading 4 inches of water.

View of a manometer reading at SS-1 showing negative pressure of 0.2 inches of water.

D.3(2) PHOTOGRAPHS

December 14, 2018 Photographs taken from Seymour Environmental Services, Inc. Vapor Mitigation System Inspection Log

Continuing Obligations Inspection and Maintenance Log

Page 1 of 2

Directions: In accordance with s. NR 727.05 (1) (b) 3., Wis. Adm. Code, use of this form for documenting the inspections and maintenance of certain continuing obligations is required. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Iaw [ss. 19.31-19.39, Wis. Stats.]. When using this form, identify the condition that is being inspected. See the closure approval letter for this site for requirements regarding the submittal of this form to the Department of Natural Resources. A copy of this inspection log is required to be maintained either on the property, or at a location specified in the closure approval letter. Do NOT delete previous inspection results. This form was developed to provide a continuous history of site inspection results. The Department of Natural Resources project manager is identified in the closure letter. The project manager may also be identified from the database, BRRTS on the Web, at http://dnr.wi.gov/botw/SetUpBasicSearchForm.do, by searching for the site using the BRRTS ID number, and then looking in the "Who" section.

Form 4400-305 (2/14)

Activity (Site	e) Name			BRRTS No.				
Best Way	Cleaners			02-13-583171				
			pproval letter):	When submittal of this form is required, submit the form el manager. An electronic version of this filled out form, or a the following email address (see closure approval letter):	ectronically to the E scanned version ma	ONR project ay be sent to		
Inspection Date	Inspector Name	ltem	Describe the condition of the item that is being inspected	Recommendations for repair or maintenance	Previous recommendations implemented?	Photographs taken and attached?		
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N		
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N		
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N		
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N		
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N		
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N		

02-13-583171 BRRTS No.	Best Way Cleaner Activity (Site) Nam			Continuing Obligation Form 4400-305 (2/14)	tions Inspection and Ma	Page 2 of 2
{Click to Add/E	Edit Image}	Date added:	{Click	to Add/Edit Image}	Date added:	
Title:			Title:			

State of Wisconsin Department of Natural Resources <u>dnr.wi.gov</u>

Form 4400-321 (R 09/20)

Page 1 of 5

Notice: In accordance with s. NR 727.05 (1) (b) 3., Wis. Adm. Code, use of this form for documenting the inspections and maintenance of certain vapor-related continuing obligations is required. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Public Records law [ss. 19.31-19.39, Wis. Stats.].

Directions: This form was developed to provide the results of a site inspection of a vapor related continuing obligation, typically a vapor mitigation system. See the closure approval letter for this site for requirements regarding the submittal of this form to the Department of Natural Resources. A copy of this inspection log is required to be maintained either on the property, or at a location specified in the closure approval letter. The closure letter may be found in the database, <u>BRRTS on the Web</u>, by searching for the site using the BRRTS ID number, and then looking in the "Action" section, for code 56.

Activity (Site) Name: Best Way Cleaners

BRRTS No. 02-13-583171

Date of Inspection:

When submittal of this form is required, submit an electronic version or a scanned copy of this completed form to the RR Submittal Portal.

SYSTEM COMPONENT				DATE:
NAME	WHAT DOES IT DO?	WHAT DO I CHECK?	WHAT SHOULD I SEE?	WHAT TO FIX?
Manometer or Differential Pressure Gauge	Measures differential pressure between vacuum side of vent pipe and indoor space. This measurement confirms there is a vacuum being pulled by the fan.	Liquid Level on Manometer or Gauge	Liquid level in manometer should be offset (not level with each other).	A change in liquid level indicates a change in the vacuum below foundation. This could be caused by failure of fan, blockage of vent pipe, change in water level below building, or other conditions. Hire a professional to identify cause and repair if needed.
РНОТО			NOTES: (Record the reading	on the gauge. Identify specific building and location description:)
Optionals Click on photogo upload your over			Not Applicable	

Site Name: Best Way Cleaners

Vapor Mitigation System Inspection LogForm 4400-321 (R 09/20)Page 2 of 5

SYSTEM COMPONENT				DATE:
NAME	WHAT DOES IT DO?	WHAT DO I CHECK?	WHAT SHOULD I SEE?	WHAT TO FIX?
Fan	Fan creates a vacuum and lowers pressure below foundation. The fan also removes soil gases from below foundation for discharge to atmosphere.	Fan Operation Fan Location Motor Noise	Fan is on. Fan mounted outside & secure. Fan motor is quiet (loud motor may indicate problem).	Replace the fan immediately once the fan stops running. Fans typically run for 10-20 years, but it may be less. Replacement fan to have similar specifications as original with respect to flow and vacuum. After a fan is replaced, the system should be evaluated by a mitigation professional to verify effectiveness, which includes pressure readings.
				Original Fan Make and Model:
PHOTO Optional: Click on photo to upload your own.			Not Applicable	ilding and location description:)

Vapor Mitigation System Inspection LogForm 4400-321 (R 09/20)Page 3 of 5

Site Name: Best Way	Cleaners	-		Form 4400-321 (R 09/20) Page 3 of 5
SYSTEM COMPONENT				DATE:
NAME	WHAT DOES IT DO?	WHAT DO I CHECK?	WHAT SHOULD I SEE?	WHAT TO FIX?
	Suction Point : Soil gases are collected in a void space below the foundation, and tight seal prevents	Suction Point Seal	Seal is air tight around pipe penetration.	Suction point seal or vent pipe may need to be sealed or replaced if cracks or leaks appear.
Suction Drop Point w/ Vent Pipe	soil gas from getting inside the home. Vent Pipe: Pipe conveys the vacuum from the fan, and collects soil gases for discharge to the atmosphere.	Vent Pipe Condition	Vent pipe is connected to fan, has not cracked.	If any piping or sealing of the system is altered or replaced, the system should be evaluated by a mitigation professional to verify effectiveness, which includes pressure readings.
РНОТО			NOTES: (Identify specific bui	Iding and location description:)
Optional: Click on photo to upload your own.			Not Applicable	
Sealed Sump w/Vent Pipe	Sump Cover: Soil gases are collected in sump and the cover prevents soil gas from getting inside home. Vent Pipe: Pipe transports the soil gas from the sump for discharge to the atmosphere.	Suction Point Seal Vent Pipe Seal Condition	Seal is airtight to floor. Vent pipe is connected to the sump cover and is not cracked.	Sump cover or vent pipe may need to be sealed or replaced if cracks or leaks appear. If any piping or sealing of the system is altered or replaced, the system should be evaluated by a plumber or a mitigation professional to verify effectiveness, which includes pressure readings.
РНОТО			NOTES: (Identify specific bui	lding and location description:)
Optional: Click on photo to upload your own.			Not Applicable	

Site Name: Best Way Cleaners

Vapor Mitigation System Inspection LogForm 4400-321 (R 09/20)Page 4 of 5

Site Name: Dest way				
SYSTEM COMPONENT				DATE:
NAME	WHAT DOES IT DO?	WHAT DO I CHECK?	WHAT SHOULD I SEE?	WHAT TO FIX?
Outdoor Vent Pipe	Pipe transports the soil gas from beneath the foundation for discharge to the atmosphere.	Vent Pipe Condition	Vent pipe remains connected to fan. End of pipe free from	Vent pipe may require replacement, or cleaning to remove ice or debris.
		Vent Pipe Location	obstructions. The exhaust is more than 15 feet from windows or air intakes.	If any piping or sealing of the system is altered or replaced, the system should be evaluated by a mitigation professional to verify effectiveness, which includes pressure readings.
РНОТО			NOTES: (Identify specific bui	Iding and location description:)
Option al: Click on photo to up your o'n.	load		Not Applicable	
Foundation Floor	Foundation is a barrier that minimizes soil gas entry into building, and helps fan to work efficiently.	Foundation Condition Foundation Footprint	No penetrating cracks or holes in foundation. Check if there have been alterations or additions to building or footprint.	Seal cracks or other penetrations as you would to prevent water from entering. If building floor plan has changed, notify DNR and contact a mitigation professional to evaluate if modifications to the vapor mitigation system are necessary.
РНОТО				Iding and location description:)
File Contract			Not Applicable	
Optional: Click on photo to up your own.	bload			

Vapor Mitigation System Inspection LogForm 4400-321 (R 09/20)Page 5 of 5

Site Name: Best Way	Cleaners	_		Form 4400-321 (R 09/20) Page 5 of 5
SYSTEM COMPONENT				DATE:
NAME	WHAT DOES IT DO?	WHAT DO I CHECK?	WHAT SHOULD I SEE?	WHAT TO FIX?
Sub Slab Vapor Port	This is a sample port to measure vacuum or take sample of soil gas if needed. It needs to remain sealed when not in use to prevent soil gas entry into the home.	Port Seal/Cap	If able to measure the vacuum with a micromano- meter, the pressure differen- tial should be at least 0.004 inches of H_2O or at least one Pascal.	Repair or replace the seal and cover as needed.
		Port Condition	Port is sealed and capped when not in use.	Permanently seal hole if sample port is ever removed.
PHOTO Optional: Click on photo to up your own.	bload		NOTES: (If taken, record the description:)	pressure differential reading. Identify specific building and location

Foellmi, Thomas J - DNR

From:	Koepke, Cynthia L - DNR
Sent:	Tuesday, March 30, 2021 8:35 AM
То:	E. David Locke; speotter@oregoncommunitybank.com; Kevin Bugel; Kelly Hayden
Cc:	Troy E. Giles; Charles V. Sweeney
Subject:	Remaining Actions Needed for Best Way Cleaners project closure, 02-13-583171

On March 12, 2021, the Department of Natural Resources (DNR) reviewed your request for closure of the case described above. DNR reviews environmental remediation cases for compliance with applicable local, state, and federal laws. The following actions are required before DNR can grant you case closure in compliance with Wis. Stat. ch. 292 and Wis. Adm. Code chs. NR 700-754. Pursuant to Wis. Adm. Code § NR 726.09(2)(g), you are required to provide this information to the DNR within 120 days of the date of this letter.

Remaining Actions Needed

Monitoring Well Filling and Sealing

DNR received documentation on March 16, 2021 that the monitoring wells had been sealed according to Wis. Adm. Code ch. NR 141. Thank you for attending to this so promptly.

Purge Water, Waste and/or Soil Pile Removal (if applicable)

Any remaining purge water, solid waste and/or contaminated soil piles generated as part of site investigation or remediation activities must be removed from the site and properly managed in accordance with the applicable local, state, and federal laws. Once that work is complete, send documentation to the DNR indicating the methods used for appropriate treatment or disposal of the remaining purge water, solid waste and/or contaminated soil.

Closure Packet Revisions

- 1. Structural impediment should be included on Figures B.2.a and B.2.b.
- 2. F.4. should have the new owner's signature.

Documentation

When the required actions are completed, submit the appropriate documentation within 120 days of the date of this letter, to verify completion. At that point, your closure request can be approved and DNR will send you a final closure letter.

If any changes to the closure request are still outstanding, submit all changes to the original closure request. Only revisions or updates need to be submitted. The submittal of both an electronic and paper copy are required in accordance with Wis. Adm. Code s. NR 726.09 (1). Because of the pandemic, the requirement to submit a paper copy is currently waived. For more information on electronic submittals, see *Guidance for Electronic Submittals for the Remediation and Redevelopment Program, RR- 690*. To view or download the document, go to dnr.wi.gov and search "RR 690".

Listing on Database

This site will be listed on the DNR's Bureau for Remediation and Redevelopment Tracking System on the Web (BOTW) and RR Sites Map to provide public notice of remaining contamination and continuing obligations. The continuing obligations will be specified in the final case closure approval letter. Information submitted with your closure request application will be included on BOTW, located at dnr.wi.gov (search "BOTW").

In Conclusion

We appreciate your efforts to restore the environment at this site. This remedial action project is nearing completion. I look forward to working with you to complete all remaining actions that are necessary to achieve case closure. As always, let me know if you have any questions.

We are committed to service excellence.

Visit our survey at <u>http://dnr.wi.gov/customersurvey</u> to evaluate how I did.

Cindy Koepke, P.G.

[she/her/hers] Hydrogeologist – Remediation & Redevelopment Program Wisconsin Department of Natural Resources South Central Region 3911 Fish Hatchery Road Fitchburg WI 53711 Phone: **608-219-2181** Email: **cynthia.koepke@wisconsin.gov**

SUBMIT AS UNBOUND PACKAGE IN THE ORDER SHOWN

Notice: Pursuant to ch. 292, Wis. Stats., and chs. NR 726 and 746, Wis. Adm. Code, this form is required to be completed for case closure requests. The closure of a case means that the Department of Natural Resources (DNR) has determined that no further response is required at that time based on the information that has been submitted to the DNR. All sections of this form must be completed unless otherwise directed by the Department. DNR will consider your request administratively complete when the form and all sections are completed, all attachments are included, and the applicable fees required under ch. NR 749, Wis. Adm. Code, are included, and sent to the proper destinations. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Law (ss. 19.31 - 19.39, Wis. Stats.). Incomplete forms will be considered "administratively incomplete" and processing of the request will stop until required information is provided.

Site Information					
BRRTS No.	VPLE No.				
02-13-583171					
Parcel ID No.	•				
154/0610-032-4510-1					
FID No.	WTM Coordinates				
	X 576796 Y 28		28263	282637	
BRRTS Activity (Site) Name	WTM Coordinates Represent:				
Best Way Cleaners	Source Area	Parcel	Center	r	
Site Address	City		State	ZIP Code	
5914 U.S. Highway 51	McFarland		WI	53558	
Acres Ready For Use					
	1				
Responsible Party (RP) Name					
Steve Peotter					
Company Name					
One Community Bank					
Mailing Address	City		State	ZIP Code	
733 North Main Street	Oregon		WI	53575	
Phone Number	Email				
(608) 835-3168	speotter@oregoncommunitybank.c	com			
\boxtimes Check here if the RP is the owner of the source property.					
Environmental Consultant Name					
Kevin T. Bugel					
Consulting Firm					
Giles Engineering Associates, Inc.	Cit.		Ctata		
Mailing Address	City			ZIP Code	
N8W22350 Johnson Drive, Suite A1	Waukesha		WI	53186	
Phone Number	Email				
(262) 544-0118	kbugel@gilesengr.com				
 Fees and Mailing of Closure Request Send a copy of page one of this form and the applicable ch. N (Environmental Program Associate) at http://dnr.wi.gov/topic 					
\$1,050 Closure Fee	S300 Database Fee for So	oil			
\$350 Database Fee for Groundwater or	Total Amount of Payment \$				
Monitoring Wells (Not Abandoned)	🔀 Resubmittal, Fees Previou	usly Paid			
2. Send one paper copy and one e-copy on compact disk of assigned to your site. Submit as <u>unbound</u> , separate document					

electronic document submittal requirements, see http://dnr.wi.gov/files/PDF/pubs/rr/RR690.pdf.

02-13-583171	Best Way Cleaners	Case Closure
BRRTS No.	Activity (Site) Name	Form 4400-202 (R 8/16) Page 2 of 14

Site Summary

If any portion of the Site Summary Section is not relevant to the case closure request, you must fully explain the reasons why in the relevant section of the form. All information submitted shall be legible. Providing illegible information will result in a submittal being considered incomplete until corrected.

1. General Site Information and Site History

- A. Site Location: Describe the physical location of the site, both generally and specific to its immediate surroundings. The former Best Way Cleaners lease space is located within a single-story, multi-tenant shopping center. A hair salon is located in the lease space to the north of the former dry cleaner unit, and a nail salon operates in the unit to the south. The shopping center is located in an area of mixed commercial and residential land use. US Highway 51 right-of-way (ROW) forms the property's east boundary with a commercial restaurant beyond, a bank building is located to the south, a furniture store is located to the adjoining north, and residential properties are located to the west. Lake Waubesa is located approximately 420 feet west of the Site, and a waterway connected to the lake is located approximately 240 feet to the south and southwest.
- B. Prior and current site usage: Specifically describe the current and historic occupancy and types of <u>use</u>. According to the Case Closure previously prepared by Seymour Environmental Services, Inc. (Seymour, Inc.) and submitted to the Wisconsin Department of Natural Resources (WDNR) on November 8, 2019, the property was vacant land until the 1950's when an auto repair facility was constructed on the northeast portion of the property. The auto repair building was razed in 1984 during redevelopment of the property as a shopping center.
- C. Current zoning (e.g., industrial, commercial, residential) for the site and for neighboring properties, and how verified (Provide documentation in Attachment G).

According to the Village of McFarland Zoning Map, the Site and adjoining properties to the north, south, and east are zoned as C-G, or General Commercial. The property to the northeast of the Site is zoned as C-L, or Limited Commercial, and the properties to the adjoining west are zoned as R-2, or Single & Two-Family Residence.

- D. Describe how and when site contamination was discovered. Contamination at the Site was discovered when Seymour, Inc. performed a Phase II Environmental Site Assessment (ESA) for the property in July 2018 in advance of a property transaction.
- E. Describe the type(s) and source(s) or suspected source(s) of contamination. Low-levels of common dry cleaning solvents, including tetrachloroethene (PCE) and its degradation products, were identified at the Site near the former Best Way Cleaners lease space. The likely source of the contamination is the former dry cleaning machine (DCM) that was located in the west portion of the Best Way Cleaners lease space.
- F. Other relevant site description information (or enter Not Applicable). To address the possibility of the presence of emerging contaminants such as PFAS at the Site, an interview was conducted with the former owner/operator of the Best Way Cleaners regarding the former business's operations. The operator has stated that the facility provided garment dry cleaning services, but waterproofing services or cleaning of materials such as leather and carpets were not part of their operation. To the best of the former operator's knowledge, PFAS-containing chemicals were not used or stored at the Site. Based on the business operation history provided by the former owner, it was determined a the time of the investigation that PFAS were not likely to be a concern at the Site.
- G. List BRRTS activity/site name and number for BRRTS activities at this source property, including closed cases. 02-12-583171 Best Way Cleaners - open ERP site 07-13-583141 Stonefield Square Shopping Center - General Liability Clarification
- H. List BRRTS activity/site name(s) and number(s) for all properties immediately adjacent to (abutting) this source property. 03-13-000413 McFarland Motors closed LUST site. Located east of the Site, across U.S. Highway 51.

2. General Site Conditions

- A. Soil/Geology
 - i. Describe soil type(s) and relevant physical properties, thickness of soil column across the site, vertical and lateral variations in soil types.

Subsurface materials encountered during Giles Engineering Associates, Inc.'s (Giles) supplemental environmental investigation were consistent with the findings of Seymour, Inc. The borings completed within the building were surfaced with an approximately 6-inch concrete slab underlain by approximately 3.5 feet of sand and gravel granular fill material and approximately 1 foot of clayey silt fill. Exterior borings were surfaced with 3 inches of asphalt underlain by 4 to 5 feet of sand and gravel fill. Native soil consisting of clayey silt and silty clay was observed to approximately 6 to 7.5 feet below ground surface (bgs). Coarse sand was observed between 7.5 and 16 feet bgs, the maximum depth of Giles' borings, with a 1 to 2 foot lens of silty clay at approximately 10 feet bgs.

Describe the composition, location and lateral extent, and depth of fill or waste deposits on the site.
 Fill material primarily consisted of coarse to fine sand and coarse to fine gravel, and was observed to approximately 3.5 feet bgs beneath the building footprint and 5 to 6 feet bgs within the parking lot west of the building. Additionally, 1 to

Best Way Cleaners Activity (Site) Name

2 feet of clayey silt with trace coarse to fine gravel was observed from 3.5 to 4.5 feet bgs in borings completed inside the existing building.

- iii. Describe the depth to bedrock, bedrock type, competency and whether or not it was encountered during the investigation. According to the map titled Preliminary Bedrock Geology of Dane County, Wisconsin, dated 2013, the bedrock beneath the Site consists of the Tunnel City Group sandstone, and the Site is located near the contact with the Trempealeau Group sandstone. The Tunnel City Group is a quartz sandstone and includes the Lone Rock Formation, a feldspathic sandstone, and the Mazomaine Formation, a fine to medium grained sandstone. According to historic well construction reports obtained from the WDNR Well Construction Information System, the depth to bedrock in the vicinity of the site ranges between approximately 30 and 40 feet bgs. Bedrock was not encountered during the environmental investigations at the Site.
- iv. Describe the nature and locations of current surface cover(s) across the site (e.g., natural vegetation, landscaped areas, gravel, hard surfaces, and buildings).

The overall Site consists of a single story multi-tenant shopping center. Asphalt parking lots are located to the east and west of the building. Landscaped areas with grass, shrubs, and/or small trees are located to the north and south of the building and along the east property line. The former Best Way Cleaners lease space was located in a central unit in the south half of the building. According to boring logs from direct-push borings completed with the building, the building's floor slab within the former Best Way Cleaners unit consists of approximately 6 inches of concrete.

B. Groundwater

i. Discuss depth to groundwater and piezometric elevations. Describe and explain depth variations, including high and low water table elevation and whether free product affects measurement of water table elevation. Describe the stratigraphic unit(s) where water table was found or which were measured for piezometric levels.

Water table elevations were measured three times in NR 141-variance groundwater monitoring wells GMW-1, GMW-2 and GMW-3; twice in July and once in October 2020. Stable groundwater elevations varied between approximately 4 and 5 feet bgs in July, and approximately 4.5 and 5.5 feet bgs in October. The piezometric surface was also measured three times in NR 14-variance piezometers GPZ-1 and GPZ-2. Gauged elevations ranged from approximately 3.5 and 5 feet bgs in July and approximately 4.5 and 5.5 feet bgs in October. The decrease in elevation of the water table and piezometric surface between July and October reflects seasonal changes in precipitation. The high watertable/ pizeometric surface is within the sand and gravel fill material or clayey silt fill material identified in the boring logs. The low water table/piezometric surface was within the native clayey silt which underlies the fill material.

ii. Discuss groundwater flow direction(s), shallow and deep. Describe and explain flow variations, including fracture flow if present.

The direction of groundwater flow for the shallow groundwater was established based on elevations gauged in the groundwater monitoring wells between July and October 2020. Based on these measurements, the direction of groundwater flow is to the southwest, towards a waterway that connects to Lake Waubesa. It is expected that the deep groundwater flow direction would be to the west, towards the lake, which is located approximately 420 feet west of the Site.

iii. Discuss groundwater flow characteristics: hydraulic conductivity, flow rate and permeability, or state why this information was not obtained.

Two-inch wells were not installed during the environmental investigation of the Site, therefore the hydraulic conductivity, flow rate, and permeability were not obtained.

iv. Identify and describe locations/distance of potable and/or municipal wells within 1200 feet of the site. Include general summary of well construction (geology, depth of casing, depth of screened or open interval).

Review of records on the WDNR Well Construction Information System shows that there were multiple wells within 1,200 feet of the Site. However, the construction forms indicate they were installed between 1939 and 1958. Currently, municipal water is supplied in the Village of McFarland. According to a representative of the Village of McFarland utility services, the occupied buildings within 500 feet of the Site are supplied with municipal water. Therefore given the age of the wells and availability of municipal water, it unlikely that the documented wells are still in use as potable water sources.

3. Site Investigation Summary

- A. General
 - i. Provide a brief summary of the site investigation history. Reference previous submittals by name and date. Describe site investigation activities undertaken since the last submittal for this project and attach the appropriate documentation in Attachment C, if not previously provided.

Seymour, Inc. completed a Phase II ESA for the property in July 2018. The Phase II included an evaluation of the former Best Way Cleaners lease space and the former auto repair facility that had been located on the north end of the property prior to the construction of the shopping center. Dry cleaning solvent was identified in the environment during the investigation, but no petroleum compounds were detected near the former auto repair facility. Seymour, Inc. notified the WDNR of the release on February 15, 2019, and a responsible party letter was issued. To define the degree and extent of contamination from the dry cleaners, Seymour, Inc. completed a site investigation (SI) for the property. The findings were summarized in the Site Investigation Report submitted to the WDNR June 11, 2019. The SI identified soil, groundwater, and soil gas impacts above their respective state standards in samples collected within the footprint of

Save...

02-13-583171	Best Way Cleaners
BRRTS No.	Activity (Site) Name

Case Closure Form 4400-202 (R 8/16) Page 4 of 14

the former dry cleaning machine (DCM) within the former Best Way Cleaners lease space. Seymour, Inc. then collected sub-slab soil gas samples from the units to the north and south of the dry cleaning facility, and oversaw the installation of a sub-slab depressurization system. Seymour, Inc. prepared a Case Closure and submitted it to the WNDR November 8, 2019. However, the WDNR determined that additional investigation was necessary to define the degree and extent of impacts.

Giles was retained to continue the supplemental SI regarding the identified soil, soil gas, and groundwater impacts. Giles installed three NR 141-variance groundwater wells, two NR 141-variance piezometers, and collected several soil, groundwater, and sub-slab soil gas samples. Giles' investigation concurred with Seymour Inc.'s findings in that the soil samples contained degradation products of PCE but did not contain PCE itself. Also, groundwater samples collected downgradient from the former DCM showed little to no impact from dry cleaning solvent. Despite not being present in the soil or groundwater, sub-slab soil gas samples contained PCE and trichloroethene (TCE) above their respective Vapor Risk Screening Levels (VRSLs). Giles summarized the findings of the supplemental investigation in an e-mail to the WDNR sent on August 19, 2020 (included as Attachment C.6).

- ii. Identify whether contamination extends beyond the source property boundary, and if so describe the media affected (e.g., soil, groundwater, vapors and/or sediment, etc.), and the vertical and horizontal extent of impacts. Based on the results of the soil, groundwater, and soil gas samples collected during the SI and supplemental investigation, it was determined that the contamination does not extend beyond the source property and is limited to the area under the building beneath the former DCM.
- iii. Identify any structural impediments to the completion of site investigation and/or remediation and whether these impediments are on the source property or off the source property. Identify the type and location of any structural impediment (e.g., structure) that also serves as the performance standard barrier for protection of the direct contact or the groundwater pathway.

The presence of the shopping center building poses a structural impediment to remediation. The extent of contamination is limited to an area within the building footprint. Due to the limitations of the interior space and the presence of subgrade utilities, remediation of the residually impacted soil, groundwater, or soil gas is impeded. The building structure and concrete floor slab however, will act as a cap and impermeable barrier over the residual soil and groundwater impacts that will remain at the Site.

B. Soil

i. Describe degree and extent of soil contamination. Relate this to known or suspected sources and known or potential receptors/migration pathways.

Shallow and deep soil samples collected by Seymour, Inc. from boring B-5 (within the footprint of the former DCM) at 3.5 and 7 feet bgs and Giles sample from boring GB-2 (southeast of the former DCM) at 2-4 feet bgs contained cis-1,2-dichloroethene (DCE) above the NR 720 RCL for groundwater protection. Giles soil samples from GPZ-1 (southwest of the former DCM) at 2-4 and 4-6 feet bgs also contained cis-1,2-DCE and trans-1,2-DCE above the NR 720 RCL for groundwater protection. Soil samples collected outside the building did not contain soil impacts above their respective RCLs. Based on these findings, it was determined that the area of soil impacts is limited to the vicinity of the former DCM and extends from just beneath the floor slab to the water table, approximately 5 feet bgs.

Groundwater is a potential receptor for the soil contamination. However, groundwater samples show that concentrations of cis- and trans-1,2-DCE are below the NR 140 Enforcement Standard (ES).

- ii. Describe the concentration(s) and types of soil contaminants found in the upper four feet of the soil column. Concentrations of cis- and trans-1,2-DCE above the NR 720 RCL for groundwater protection were identified in shallow samples (between 2 and 4 feet bgs) from B-5, GB-2, and GPZ-1. These borings were located within the footprint of the former DCM and immediately to the southeast and southwest of the machine, respectively.
- iii. Identify the ch. NR 720, Wis. Adm. Code, method used to establish the soil cleanup standards for this site. This includes a soil performance standard established in accordance with s. NR 720.08, a Residual Contaminant Level (RCL) established in accordance with s. NR 720.10 that is protective of groundwater quality, or an RCL established in accordance with s. NR 720.12 that is protective of human health from direct contact with contaminated soil. Identify the land use classification that was used to establish cleanup standards. Provide a copy of the supporting calculations/ information in Attachment C.

The Wisconsin Administrative Code Chapter NR 720 Soil to Groundwater Pathway and Direct Contact Pathway (Non-Industrial and Industrial) RCLs were applied.

C. Groundwater

i. Describe degree and extent of groundwater contamination. Relate this to known or suspected sources and known or potential receptors/migration pathways. Specifically address any potential or existing impacts to water supply wells or interception with building foundation drain systems.

Seymour, Inc. collected shallow and deep groundwater samples from temporary wells B-1 through B-5 during their investigation. Cis-1,2-DCE and PCE were detected above their respective NR 140 PAL in Seymour, Inc.'s shallow groundwater sample collected from B-5 (within the footprint of the DCM) during their initial sampling event in April 2019. In addition, the deep sample collected from B-5 contained PCE at the ES. Giles' July 2020 groundwater sample from NR 141-variance well GMW-1, installed just southwest of the former DCM and downgradient from B-5,

Save...

02-13-583171		
BRRTS No.		

Best Way Cleaners Activity (Site) Name

contained cis-1,2-DCE above the PAL, however no PCE was detected. Furthermore, the concentration of cis-1,2-DCE was below the PAL in GMW-1 during Giles' second groundwater sampling event in October 2020. Based on the results of Seymour, Inc.'s initial sampling and Giles' subsequent sampling, the PCE contamination in groundwater appears to have a limited extent and does not extend beyond the footprint of the former DCM.

Utilities located beneath the building slab are a potential migration pathway for groundwater contamination. With the aid of a private utility locating service, Giles determined that underground electric and sanitary sewer utilities run parallel beneath the west portion of the shopping center building. The closest utility, and potential migration pathway, to the former DCM is an underground electric line located approximately two feet west of the former DCM. However, the depth of the utilities under the building slab are likely above the measured groundwater table elevation of approximately 5 feet bgs, and well above Seymour, Inc.'s "deep" sample interval that contained PCE at the ES. Therefore, although the utilities are in close proximity to the source area, they are unlikely to intercept the contaminated groundwater to act as a migration pathway.

ii. Describe the presence of free product at the site, including the thickness, depth, and locations. Identify the depth and location of the smear zone.

Free product was not encountered at the Site.

D. Vapor

Describe how the vapor migration pathway was assessed, including locations where vapor, soil gas, or indoor air samples were collected. If the vapor pathway was not assessed, explain reasons why.
 Sub-slab soil gas samples were collected within the former Best Way Cleaners lease space, and within the adjoining north and south units. Seymour, Inc. installed sub-slab vapor points SS-1/1A (Best Way), SS-2 (north unit), and SS-3 (south unit) during their investigation. Giles installed two additional vapor points in July 2020, one just southwest of the former DCM (GSS-1) and one in the east portion of the Best Way unit (GSS-2).

Seymour, Inc.'s initial sample from SS-1 contained PCE above the WNDR sub-slab VRSL for small commercial properties and TCE above the large commercial VRSL. Seymour, Inc. oversaw the installation of a sub-slab depressurization system in December 2018. The post-system sub-slab soil gas sample collected from the source area (SS-1A) showed a 70% decrease in PCE and TCE concentrations, and samples from the neighboring units did not contain PCE or TCE above their respective VRSLs.

The PCE and TCE identified in the soil gas were not identified in significant quantities in the soil or groundwater samples collected during the investigation. Based on the findings of the investigation, it is inferred that the sub-slab vapors are the result of dry cleaning solvent contained within the basecourse material immediately beneath the building floor slab.

Giles collected sub-slab soil gas samples from vapor points SS-2, SS-3, GSS-1, and GSS-2 in July 2020. The sub-slab depressurization system was turned off for 7 days prior to the collection of the samples. The detected concentrations of PCE and TCE in the sample from GSS-1 were comparable to concentrations detected by Seymour, Inc. in July 2018, which had been collected prior to the installation of the system. Dichlorodiflouromethane and chloroform were also detected above their respective VRSL for residential properties in samples from GSS-2 and SS-2. However it should be noted that the building is zoned as/used for commercial and not residential use, therefore the "small commercial" VRSLs are the most applicable. In addition, the lack of PCE and TCE in soil gas samples from the neighboring units indicates that the sub-slab utilities are not acting as a significant migration pathway for soil gas contamination.

ii. Identify the applicable DNR action levels and the land use classification used to establish them. Describe where the DNR action levels were reached or exceeded (e.g., sub slab, indoor air or both).
 Results were compared to WDNR Vapor Risk Screening Levels for sub-slab soil gas for residential, small commercial, and large commercial/industrial land use. VRSLs for the three land use types were exceeded in samples from SS-1/1A and GSS-1, and residential land use standards were exceeded in GSS-2 and SS-2. It should be noted that the property is considered small commercial.

E. Surface Water and Sediment

i. Identify whether surface water and/or sediment was assessed and describe the impacts found. If this pathway was not assessed, explain why.

Surface water and sediment are not present at the Site, therefore the pathway was not assessed.

 ii. Identify any surface water and/or sediment action levels used to assess the impacts for this pathway and how these were derived. Describe where the DNR action levels were reached or exceeded.
 Surface water and sediment are not present at the Site, therefore the pathway was not assessed.

4. Remedial Actions Implemented and Residual Levels at Closure

02-13-583171	Best Way Cleaners
BRRTS No.	Activity (Site) Name

A. General: Provide a brief summary of the remedial action history. List previous remedial action report submittals by name and date. Identify remedial actions undertaken since the last submittal for this project and provide the appropriate documentation in Attachment C.

Based on Seymour, Inc.'s initial sub-slab soil gas results, a sub-slab depressurization system was installed on December 15, 2018 within the former Best Way Cleaners lease space. The system was installed to create a negative pressure field beneath the building slab to mitigate the risk posed by the detected sub-slab vapors. The system consists of a single drop point located near the source area, a Radon Away ventilation blower (model GP-501), and connecting PVC piping. The ventilation blower and discharge stacks are located on the roof of the building, above the former Best Way Cleaners lease space. Additional details of the depressurization system were included within Seymour Inc.'s No Action Required request dated January 2019.

Giles completed a pressure field test of the system in July 2020 which showed that the system's radius of influence included the entire Best Way Cleaners lease space, but did not extend to the north and south units. Though the system was determined to be adequate to mitigate the risk from the sub-slab vapors, Giles is aware that the WDNR does not consider the installation of such a system a form of remediation.

- B. Describe any immediate or interim actions taken at the site under ch NR 708, Wis. Adm. Code. No immediate or interim actions were taken under NR 708.
- C. Describe the *active* remedial actions taken at the source property, including: type of remedial system(s) used for each media affected; the size and location of any excavation or in-situ treatment; the effectiveness of the systems to address the contaminated media and substances; operational history of the systems; and summarize the performance of the active remedial actions. Provide any system performance documentation in Attachment A.7.

The sub-slab depressurization system was installed to mitigate the risk for vapor intrusion based on the presence of sub-slab vapors above their respective VRSL for small commercial properties. However, the mitigation system is not considered remediation by the WDNR. Therefore, no active remedial actions were taken at the source property.

- D. Describe the alternatives considered during the Green and Sustainable Remediation evaluation in accordance with NR 722.09 and any practices implemented as a result of the evaluation. Not applicable.
- E. Describe the nature, degree and extent of residual contamination that will remain at the source property or on other affected properties after case <u>closure</u>.

Residual groundwater, soil, and soil gas contamination at the Site are limited to the footprint of the former DCM and its immediate vicinity. A groundwater sample collected from within the DCM footprint (B-5) contained PCE at the ES when it was last sampled in April 2019. Subsequent downgradient samples from 2020 did not contain PCE, indicating that the extent of impacted groundwater is limited to the vicinity of the former DCM. Concentrations of cis-1,2-DCE detected in groundwater samples decreased to below the PAL over the course of the investigation, indicating natural attenuation may be occurring.

Residual soil impacts will remain near the former DCM. Concentrations of cis- and trans-1,2-DCE were detected above their respective NR 720 RCL for groundwater protection in five shallow and deep soil samples collected from within or just outside of the DCM footprint. The possibility also exists for PCE and TCE-contaminated basecourse material to remain immediately beneath the building slab in the vicinity of the former DCM.

Sub-slab soil gas samples collected from vapor points within the immediate vicinity of the former DCM contained PCE and TCE above their respective small commercial VRSL. Although a sub-slab depressurization system was installed to mitigate the vapor intrusion risk, the system does not remediate the condition.

- F. Describe the residual soil contamination within four feet of ground surface (direct contact zone) that attains or exceeds RCLs established under s. NR 720.12, Wis. Adm. Code, for protection of human health from direct contact. Shallow soil samples collected from the Site within four feet of ground surface did not contain VOCs above their respective direct contact RCLs. Shallow samples were collected within the former DCM footprint, immediately to the southeast, east, and southwest of the former DCM.
- G. Describe the residual soil contamination that is above the observed low water table that attains or exceeds the soil standard(s) for the groundwater pathway.

Unsaturated soil samples collected from borings B-5, GB-2, and GPZ-1 contained cis-1,2-DCE above the groundwater pathway RCL. Additionally, the sample from GPZ-1 contained trans-1,2-DCE above the groundwater pathway RCL. These samples were collected within the footprint of the former DCM and immediately to the southeast and southwest, respectively. Soil intervals that contained the cis- and trans-1,2-DCE were collected between 2 and 7 feet bgs.

H. Describe how the residual contamination will be addressed, including but not limited to details concerning: covers, engineering controls or other barrier features; use of natural attenuation of groundwater; and vapor mitigation systems or measures.

The residual vapor intrusion risk will continue to be addressed with the sub-slab depressurization system that was installed within the former Best Way Cleaners lease space in December 2018. Due to the low-levels of residual contamination in the

Save...

Form 4400-202 (R 8/16) Page 7 of 14

soil and groundwater at the Site, residual soil and groundwater contamination will be addressed through a cap, consisting of the existing shopping center building, and through natural attenuation.

- If using natural attenuation as a groundwater remedy, describe how the data collected supports the conclusion that natural attenuation is effective in reducing contaminant mass and concentration (e.g., stable or receding groundwater plume). Concentrations of contaminants in groundwater have shown a decreasing trend over the course of the investigation. A groundwater grab sample collected from temporary well B-5 by Seymour, Inc. in 2019 contained PCE at the ES and cis-1,2-DCE above the PAL. Samples collected from Giles' groundwater monitoring well GMW-1, installed approximately five feet southwest (downgradient) from B-5, did not contain PCE, and the concentration of cis-1,2-DCE decreased to below the PAL during the most recent groundwater sampling event (October 2020).
- J. Identify how all exposure pathways (soil, groundwater, vapor) were removed and/or adequately addressed by immediate, interim and/or remedial action(s).
 Residual soil and groundwater contamination will be addressed through natural attenuation and by an engineered cap consisting of the aviating channing control building. The structure and concrete floor also will prevent direct contact with

consisting of the existing shopping center building. The structure and concrete floor slab will prevent direct contact with contaminated soil beneath the building and provide an impermeable barrier. The sub-slab vapor condition was addressed by the sub-slab depressurization system installed near the source area.

- K. Identify any system hardware anticipated to be left in place after site closure, and explain the reasons why it will remain. The sub-slab depressurization system hardware will remain in place after closure to create a negative pressure field beneath the building slab and to extract and vent vapors from beneath the building's floor slab.
- L. Identify the need for a ch. NR 140, Wis. Adm. Code, groundwater Preventive Action Limit (PAL) or Enforcement Standard (ES) exemption, and identify the affected monitoring points and applicable substances. An ES exemption is needed for sampling point B-5. The boring was completed within the footprint of the former DCM and the groundwater grab sample collected from the boring in 2019 contained PCE at the ES.
- M. If a DNR action level for vapor intrusion was exceeded (for indoor air, sub slab, or both) describe where it was exceeded and how the pathway was addressed.
 The VRSL for sub-slab soil gas at small commercial properties was exceeded in sub-slab soil gas points SS-1/-1A and GSS-1. The exposure pathway from the soil gas was addressed through the installation of a sub-slab depressurization system.
- N. Describe the surface water and/or sediment contaminant concentrations and areas after remediation. If a DNR action level was exceeded, describe where it was exceeded and how the pathway was addressed. Not applicable, no surface water or sediment is present at the Site.

02-13-583171 BRRTS No.

Best Way Cleaners Activity (Site) Name Case Closure

Form 4400-202 (R 8/16) Page 8 of 14

5. Continuing Obligations: Includes all affected properties and rights-of-way (ROWs). In certain situations, maintenance plans are also required, and must be included in Attachment D. Directions: For each of the 3 property types below, check all situations that apply to this closure request.

(NOTE: Monitoring wells to be transferred to another site are addressed in Attachment E.)

		n applies to t r Right of Wa			
	Property Typ	e:		Case Closure Situation - Continuing Obligation (database fees will apply, ii xiv.)	Maintenance Plan
	Source Property	Affected Property (Off-Source)	ROW	(Required
i.		\boxtimes	\boxtimes	None of the following situations apply to this case closure request.	NA
ii.	\boxtimes			Residual groundwater contamination exceeds ch. NR 140 ESs.	NA
iii.	\boxtimes			Residual soil contamination exceeds ch. NR 720 RCLs.	NA
iv.				Monitoring Wells Remain:	
				Not Abandoned (filled and sealed)	NA
				Continued Monitoring (requested or required)	Yes
V.				Cover/Barrier/Engineered Cover or Control for (soil) direct contact pathways (includes vapor barriers)	Yes
vi.	\boxtimes			Cover/Barrier/Engineered Cover or Control for (soil) groundwater infiltration pathway	Yes
vii.	\boxtimes			Structural Impediment: impedes completion of investigation or remedial action (not as a performance standard cover)	NA
viii.				Residual soil contamination meets NR 720 industrial soil RCLs, land use is classified as industrial	NA
ix.	\boxtimes		NA	Vapor Mitigation System (VMS) required due to exceedances of vapor risk screening levels or other health based concern	Yes
x.			NA	Vapor: Dewatering System needed for VMS to work effectively	Yes
xi.			NA	Vapor: Compounds of Concern in use: full vapor assessment could not be completed	NA
xii	\boxtimes		NA	Vapor: Commercial/industrial exposure assumptions used.	NA
xiii.	\boxtimes			Vapor: Residual volatile contamination poses future risk of vapor intrusion	NA
xiv.				Site-specific situation: (e.g., fencing, methane monitoring, other) (<i>discuss</i> with project manager before submitting the closure request)	Site specific

Underground Storage Tanks 6.

Α.	Were any tanks, piping or other associated tank system components removed as part of the investigation or remedial action?	⊖ Yes	No
В.	Do any upgraded tanks meeting the requirements of ch. ATCP 93, Wis. Adm. Code, exist on the property?	⊖ Yes	No
C.	If the answer to question 6.B. is yes, is the leak detection system currently being monitored?	⊖ Yes	🔿 No
Ο.	in the driswer to question o.b. is yes, is the reak detection system currently being monitored:		

Save...

Best Way Cleaners Activity (Site) Name

Page 9 of 14

General Instructions

All information shall be legible. Providing illegible information will result in a submittal being considered incomplete until corrected. For each attachment (A-G), provide a Table of Contents page, listing all 'applicable' and 'not applicable' items by Closure Form titles (e.g., A.1. Groundwater Analytical Table, A.2. Soil Analytical Results Table, etc.). If any item is 'not applicable' to the case closure request, you must fully explain the reasons why.

Data Tables (Attachment A)

Directions for Data Tables:

- Use **bold** and italics font for information of importance on tables and figures. Use **bold** font for ch. NR 140, Wis. Adm. Code ES attainments or exceedances, and *italicized font* for ch. NR 140, Wis. Adm. Code, PAL attainments or exceedances.
- Use **bold** font to identify individual ch. NR 720 Wis. Adm. Code RCL exceedances. Tables should also include the corresponding groundwater pathway and direct contact pathway RCLs for comparison purposes. Cumulative hazard index and cumulative cancer risk exceedances should also be tabulated and identified on Tables A.2 and A.3.
- Do not use shading or highlighting on the analytical tables.
- Include on Data Tables the level of detection for results which are below the detection level (i.e., do not just list as no detect (ND)).
- Include the units on data tables.
- Summaries of all data <u>must</u> include information collected by previous consultants.
- Do not submit lab data sheets unless these have not been submitted in a previous report. Tabulate all data required in s. NR 716.15 (3)(c), Wis. Adm. Code, in the format required in s. NR 716.15(4)(e), Wis. Adm. Code.
- Include in Attachment A all of the following tables, in the order prescribed below, with the specific Closure Form titles noted on the separate attachments (e.g., Title: A.1. Groundwater Analytical Table; A.2. Soil Analytical Results Table, etc.).
- For required documents, each table (e.g., A.1., A.2., etc.) should be a separate Portable Document Format (PDF).

A. Data Tables

- A.1. **Groundwater Analytical Table(s):** Table(s) showing the analytical results and collection dates for all groundwater sampling points (e.g., monitoring wells, temporary wells, sumps, extraction wells, potable wells) for which samples have been collected.
- A.2. **Soil Analytical Results Table(s):** Table(s) showing **all** soil analytical results and collection dates. Indicate if sample was collected above or below the observed low water table (unsaturated versus saturated).
- A.3. **Residual Soil Contamination Table(s):** Table(s) showing the analytical results of only the residual soil contamination at the time of closure. This table shall be a subset of table A.2 and should include only the soil sample locations that exceed an RCL. Indicate if sample was collected above or below the observed low water table (unsaturated versus saturated). Table A.3 is optional only if a total of fewer than 15 soil samples have been collected at the site.
- A.4. **Vapor Analytical Table(s)**: Table(s) showing type(s) of samples, sample collection methods, analytical method, sample results, date of sample collection, time period for sample collection, method and results of leak detection, and date, method and results of communication testing.
- A.5. Other Media of Concern (e.g., sediment or surface water): Table(s) showing type(s) of sample, sample collection method, analytical method, sample results, date of sample collection, and time period for sample collection.
- A.6. Water Level Elevations: Table(s) showing all water level elevation measurements and dates from all monitoring wells. If present, free product should be noted on the table.
- A.7. **Other:** This attachment should include: 1) any available tabulated natural attenuation data; 2) data tables pertaining to engineered remedial systems that document operational history, demonstrate system performance and effectiveness, and display emissions data; and (3) any other data tables relevant to case closure not otherwise noted above. If this section is not applicable, please explain the reasons why.

Maps, Figures and Photos (Attachment B)

Directions for Maps, Figures and Photos:

- Provide on paper no larger than 11 x 17 inches, unless otherwise directed by the Department. Maps and figures may be submitted in a larger electronic size than 11 x 17 inches, in a PDF readable by the Adobe Acrobat Reader. However, those larger-size documents must be legible when printed.
- Prepare visual aids, including maps, plans, drawings, fence diagrams, tables and photographs according to the applicable portions of ss. NR 716.15(4), 726.09(2) and 726.11(3), (5) and (6), Wis. Adm. Code.
- Include <u>all</u> sample locations.
- Contour lines should be clearly labeled and defined.
- Include in Attachment B all of the following maps and figures, in the order prescribed below, with the specific Closure Form titles noted on the separate attachments (e.g., Title: B.1. Location Map; B.2. Detailed Site Map, etc).
- For the electronic copies that are required, each map (e.g., B.1.a., B.2.a, etc.,) should be a separate PDF.
- Maps, figures and photos should be dated to reflect the most recent revision.

B.1. Location Maps

- B.1.a. Location Map: A map outlining all properties within the contaminated site boundaries on a United States Geological Survey (U.S.G.S.) topographic map or plat map in sufficient detail to permit easy location of all affected and/or adjacent parcels. If groundwater standards are exceeded, include the location of all potable wells, including municipal wells, within 1200 feet of the area of contamination.
- B.1.b. **Detailed Site Map:** A map that shows all relevant features (buildings, roads, current ground surface cover, individual property boundaries for all affected properties, contaminant sources, utility lines, monitoring wells and potable wells) within the contaminated area. This map is to show the location of all contaminated public streets, and highway and railroad rights-of-way in relation to the source property and in relation to the boundaries of groundwater contamination attaining or exceeding a ch. NR 140 ES, and/or in relation to the boundaries of soil contamination attaining or exceeding a RCL. Provide parcel identification numbers for all affected properties.
- B.1.c. **RR Sites Map:** From RR Sites Map (<u>http://dnrmaps.wi.gov/sl/?Viewer=RR Sites</u>) attach a map depicting the source property, and all open and closed BRRTS sites within a half-mile radius or less of the property.

Activity (Site) Name

B.2. Soil Figures

- B.2.a. **Soil Contamination:** Figure(s) showing the location of <u>all</u> identified unsaturated soil contamination. Use a single contour to show the horizontal extent of each area of contiguous soil contamination that exceeds a soil to groundwater pathway RCL as determined under ch. NR 720.Wis. Adm. Code. A separate contour line should be used to indicate the horizontal extent of each area of contiguous soil contamination that exceeds a direct contact RCL exceedances (0-4 foot depth).
- B.2.b. Residual Soil Contamination: Figure(s) showing only the locations of soil samples where unsaturated soil contamination remains at the time of closure (locations represented in Table A.3). Use a single contour to show the horizontal extent of each area of contiguous soil contamination that exceeds a soil to groundwater pathway RCL as determined under ch. NR 720 Wis. Adm. Code. A separate contour line should be used to indicate the horizontal extent of each area of contiguous soil contamination that exceeds a direct contact RCL exceedence (0-4 foot depth).

B.3. Groundwater Figures

- B.3.a. **Geologic Cross-Section Figure(s):** One or more cross-section diagrams showing soil types and correlations across the site, water table and piezometric elevations, and locations and elevations of geologic rock units, if encountered. Display on one or more figures all of the following:
 - Source location(s) and vertical extent of residual soil contamination exceeding an RCL. Distinguish between direct contact and the groundwater pathway RCLs.
 - Source location(s) and lateral and vertical extent if groundwater contamination exceeds ch. NR 140 ES.
 - Surface features, including buildings and basements, and show surface elevation changes.
 - Any areas of active remediation within the cross section path, such as excavations or treatment zones.
 - Include a map displaying the cross-section location(s), if they are not displayed on the Detailed Site Map (Map B.1.b.)
- B.3.b. **Groundwater Isoconcentration:** Figure(s) showing the horizontal extent of the post-remedial groundwater contamination exceeding a ch. NR 140, Wis. Adm. Code, PAL and/or an ES. Indicate the date and direction of groundwater flow based on the most recent sampling data.
- B.3.c. **Groundwater Flow Direction:** Figure(s) representing groundwater movement at the site. If the flow direction varies by more than 20° over the history of the site, submit two groundwater flow maps showing the maximum variation in flow direction.
- B.3.d. **Monitoring Wells:** Figure(s) showing all monitoring wells, with well identification number. Clearly designate any wells that: (1) are proposed to be abandoned; (2) cannot be located; (3) are being transferred; (4) will be retained for further sampling, or (5) have been abandoned.

B.4. Vapor Maps and Other Media

- B.4.a. Vapor Intrusion Map: Map(s) showing all locations and results for samples taken to investigate the vapor intrusion pathway in relation to residual soil and groundwater contamination, including sub-slab, indoor air, soil vapor, soil gas, ambient air, and communication testing. Show locations and footprints of affected structures and utility corridors, and/or where residual contamination poses a future risk of vapor intrusion.
- B.4.b. Other media of concern (e.g., sediment or surface water): Map(s) showing all sampling locations and results for other media investigation. Include the date of sample collection and identify where any standards are exceeded.
 B.4.c. Other: Include any other relevant maps and figures not otherwise noted above. (This section may remain blank).
- B.5. Structural Impediment Photos: One or more photographs documenting the structural impediment feature(s) which precluded a complete site investigation or remediation at the time of the closure request. The photographs should document the area that could not be investigated or remediated due to a structural impediment. The structural impediment should be indicated on Figures B.2.a and B.2.b.

Documentation of Remedial Action (Attachment C)

Directions for Documentation of Remedial Action:

- Include in Attachment C all of the following documentation, in the order prescribed below, with the specific Closure Form titles noted on the separate attachments (e.g., Title: C.1. Site Investigation Documentation; C.2. Investigative Waste, etc.).
- If the documentation requested below has already been submitted to the DNR, please note the title and date of the report for that
 particular document requested.
 - C.1. Site investigation documentation, that has not otherwise been submitted with the Site Investigation Report.
 - C.2. Investigative waste disposal documentation.
 - C.3. Provide a **description of the methodology** used along with all supporting documentation if the RCLs are different than those contained in the Department's RCL Spreadsheet available at: http://dnr.wi.gov/topic/Brownfields/Professionals.html.
 - C.4. **Construction documentation** or as-built report for any constructed remedial action or portion of, or interim action specified in s. NR 724.02(1), Wis. Adm. Code.
 - C.5. Decommissioning of Remedial Systems. Include plans to properly abandon any systems or equipment.
 - C.6. Other. Include any other relevant documentation not otherwise noted above (This section may remain blank).

Maintenance Plan(s) and Photographs (Attachment D)

Directions for Maintenance Plans and Photographs:

Attach a maintenance plan for each affected property (source property, each off-source affected property) with continuing obligations requiring future maintenance (e.g., direct contact, groundwater protection, vapor intrusion). See Site Summary section 5 for all affected property(s) requiring a maintenance plan. Maintenance plan guidance and/or templates for: 1) Cover/barrier systems; 2) Vapor intrusion; and 3) Monitoring wells, can be found at: http://dnr.wi.gov/topic/Brownfields/Professionals.html#tabx3

- D.1. Descriptions of maintenance action(s) required for maximizing effectiveness of the engineered control, vapor mitigation system, feature or other action for which maintenance is required:
 - Provide brief descriptions of the type, depth and location of residual contamination.

Save...

02-13-583171	Best Wa
BRRTS No	Activi

- Provide a description of the system/cover/barrier/monitoring well(s) to be maintained.
- Provide a description of the maintenance actions required for maximizing effectiveness of the engineered control, vapor • mitigation system, feature or other action for which maintenance is required.
- Provide contact information, including the name, address and phone number of the individual or facility who will be conducting the maintenance.
- D.2. Location map(s) which show(s): (1) the feature that requires maintenance; (2) the location of the feature(s) that require(s) maintenance - on and off the source property; (3) the extent of the structure or feature(s) to be maintained, in relation to other structures or features on the site; (4) the extent and type of residual contamination; and (5) all property boundaries.
- D.3. **Photographs** for site or facilities with a cover or other performance standard, a structural impediment or a vapor mitigation system, include one or more photographs documenting the condition and extent of the feature at the time of the closure request. Pertinent features shall be visible and discernible. Photographs shall be submitted with a title related to the site name and location, and the date on which it was taken.
- D.4. Inspection log, to be maintained on site, or at a location specified in the maintenance plan or approval letter. The inspection and maintenance log is found at: http://dnr.wi.gov/files/PDF/forms/4400/4400-305.pdf.

Monitoring Well Information (Attachment E)

Directions for Monitoring Well Information:

For all wells that will remain in use, be transferred to another party, or that could not be located; attach monitoring well construction and development forms (DNR Form 4400-113 A and B: http://dnr.wi.gov/topic/groundwater/documents/forms/4400 113 1 2.pdf)

Select One:

No monitoring wells were installed as part of this response action.

All monitoring wells have been located and will be properly abandoned upon the DNR granting conditional closure to the site

Select One or More: \bigcirc

- Not all monitoring wells can be located, despite good faith efforts. Attachment E must include a description of efforts made to locate the wells.
- One or more wells will remain in use at the site after this closure. Attachment E must include documentation as to the reason (s) the well(s) will remain in use. When one or more monitoring wells will remain in use this is considered a continuing obligation and a maintenance plan will be required and must be included in Attachment D.
- One or more monitoring wells will be transferred to another owner upon case closure being granted. Attachment E should include documentation identifying the name, address and email for the new owner(s). Provide documentation from the party accepting future responsibility for monitoring well(s).

Source Legal Documents (Attachment F)

Directions for Source Legal Documents:

Label documents with the specific closure form titles (e.g., F.1. Deed, F.2. Certified Survey Map, etc.). Include all of the following documents, in the order listed:

Deed: The most recent deed with legal description clearly listed. F 1

Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.

- Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those F.2. properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. In cases where the certified survey map or recorded plat map are not legible or are unavailable, a copy of a parcel map from a county land information office may be substituted. A copy of a parcel map from a county land information office shall be legible, and the parcels identified in the legal description shall be clearly identified and labeled with the applicable parcel identification number.
- F.3. Verification of Zoning: Documentation (e.g., official zoning map or letter from municipality) of the property's or properties' current zoning status.
- Signed Statement: A statement signed by the Responsible Party (RP), which states that he or she believes that the F.4. attached legal description(s) accurately describe(s) the correct contaminated property or properties. This section applies to the source property only. Signed statements for Other Affected Properties should be included in Attachment G.

02-13-583171 BRRTS No. Best Way Cleaners Activity (Site) Name

Page 12 of 14

Notifications to Owners of Affected Properties (Attachment G)

Directions for Notifications to Owners of Affected Properties:

Complete the table on the following page for sites which require notification to owners of affected properties pursuant to ch. 292, Wis. Stats. and ch. NR 725 and 726, Wis. Adm. Code. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records law [ss. 19.31- 19.39,Wis. Stats.]. The DNR's "Guidance on Case Closure and the Requirements for Managing Continuing Obligations" (PUB-RR-606) lists specific notification requirements http://dnr.wi.gov/files/PDF/pubs/rr/RR606.pdf.

State law requires that the responsible party provide a 30-day, written advance notification to certain persons prior to applying for case closure. This requirement applies if: (1) the person conducting the response action does not own the source property; (2) the contamination has migrated onto another property; and/or (3) one or more monitoring wells will not be abandoned. Use form 4400-286, Notification of Continuing Obligations and Residual Contamination, at http://dnr.wi.gov/files/PDF/forms/4400/4400-286.pdf

Include a copy of each notification sent and accompanying proof of delivery, i.e., return receipt or signature confirmation.

Include the following documents for each property, keeping each property's documents grouped together and labeled with the letter G and the corresponding ID number from the table on the following page. (Source Property documents should only be included in Attachment F):

- Deed: The most recent deed with legal descriptions clearly listed for all affected properties.
- Note: If a property has been purchased with a land contract and the purchaser has not yet received a deed, a copy of the land contract which includes the legal description shall be submitted instead of the most recent deed. If the property has been inherited, written documentation of the property transfer should be submitted along with the most recent deed.
- Certified Survey Map: A copy of the certified survey map or the relevant section of the recorded plat map for those properties where the legal description in the most recent deed refers to a certified survey map or a recorded plat map. In cases where the certified survey map or recorded plat map are not legible or are unavailable, a copy of a parcel map from a county land information office may be substituted. A copy of a parcel map from a county land information office shall be legible, and the parcels identified in the legal description shall be clearly identified and labeled with the applicable parcel identification number.
- Verification of Zoning: Documentation (e.g., official zoning map or letter from municipality) of the property's or properties' current zoning status.
- Signed Statement: A statement signed by the Responsible Party (RP), which states that he or she believes the attached legal description(s) accurately describe(s) the correct contaminated property or properties.

02-13-583171 BRRTS No.

-

-

-

-

Best Way Cleaners Activity (Site) Name Case Closure

Form 4400-202 (R 8/16)

Page 13 of 14

-	Notifications to Owners of Affected Properties Press the space bar or click in the box to check a box		-	sons Letter Se	ent" columns.			1	l	Reas	ons	Not	ifica	tion	Lett	er S	ent:			
ID	Address of Affected	Parcel ID No.	Date of Receipt of Letter	Type of Propert	WTMX	WTMY	Residual Groundwater Contamination = or > ES	Residual Soil Contamination Exceeds RCLs	Monitoring Wells: Not Abandoned	Monitoring Wells: Continued Monitoring	Cover/Barrier/Engineered Control	Structural Impediment	Industrial RCLs Met/Applied	Vapor Mitigation System(VMS)	Dewatering System Needed for VMS	Compounds of Concern in Use	Commercial/Industrial Vapor Exposure Assumptions Applied	Residual Volatile Contamination Poses Future Risk of Vapor Intrusion	5pe	
A				VOWNer																
В																				-
С																				
D																				+

BRRTS No.	Best Way Cleaners Activity (Site) Name	Form 4400-202 (R 8/	
Signatures and F	indings for Closure Determination		
This page has beel	n updated as of February 2019 to comply with the rec	uirements of Wis. Admin. Code ch. NR 712.	
demonstrate that th	box for this case closure request and complete the co ne requirements of Wis. Admin. Code ch. NR 712 hav er Wis. Admin. Code § NR 712.09 (1). Per Wis. Admi person certifying.	e been met. The responsibility for signing th	e certification may
	ation and/or response action(s) for this site evaluated Both a professional engineer and a hydrogeologist mu		
	ation and the response action(s) for this site did not e cument per Wis. Admin. Code ch. NR 712.	evaluate or address groundwater. A profession	onal engineer must
Engineering Certi	ification		
prepared in accorda	David M. Cornale , he , registered in accordance with the requirements of ch ance with the Rules of Professional Conduct in ch. A- ained in this document is correct and the document w b, Wis. Adm. Code.	E 8, Wis. Adm. Code; and that, to the best over a prepared in compliance with all applicable and the second	(Mas been /// Min knowledge // e requirements in
Signature	20 m. Comle	P.E.#	E-43336 REENFIELD
Title Senior Geote	echnical Consultant	P.E. Stamp	ONAL ENGLIS
	and the second		1.41141391937.44"
Contraction of the Alice	ertification		
Hydrogeologist C			

	1		R	$\langle \rangle$	
Signature	1	-7	1		2
		0	0	7	
itle Environ	mental Division	n Manager	\bigcirc		

Date 01/05/2021

02-13-583171 BRRTS #

Attachment A: Data Tables

Data Table A.1: Groundwater Analytical Table Included

Data Table A.2: Soil Analytical Results Table Included

Data Table A.3: Residual Soil Contamination Table Included

Data Table A.4: Vapor Analytical Table Included

<u>Data Table A.5: Other Media of Concern</u> Not included. No other media of concern (e.g. surface water or sediment) were present at the Site.

Data Table A.6: Water Level Elevations Included

Data Table A.7: Other

Not included. No natural attenuation data was obtained and remediation systems were not installed.

Table A.1Groundwater Analytical ResultsFormer Bestway Cleaners5914 Highway 51McFarland, WisconsinBRRTS Number 02-13-583171Project Number 1E-2006002

Sample Location	* B (E of	-	* B-2 (NE of building)	* B-3 (NE of building)	*B (W of		*B (DCM fo	-		W-1 f DCM)	GP (SW o	2 -1 f DCM)		W-2 of unit)	GP (SW c		_	W-3 f unit)	NR 140	¹ (μg/L)
	Shallow	Deep	Shallow	Shallow	Shallow	Deep	Shallow	Deep	WT	Well	Piezo	meter	WT	Well	Piezo	meter	WT	Well		
Sample Date	7/3/2018	7/3/2018	7/3/2018	7/3/2018	7/3/2018	7/3/2018	4/1/2019	4/1/2019	7/16/2020	10/22/2020	7/16/2020	10/22/2020	7/16/2020	10/22/2020	7/16/2020	10/22/2020	7/16/2020	10/22/2020	PAL	ES
Depth to Water (Ft below TOC)	NA	NA	NA	NA	NA	NA	NA	NA	4.81	5.67	4.79	5.67	3.78	4.64	3.66	4.55	3.98	4.87		
Detected VOCs (µg/L)			-											•						
Benzene	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.25	0.25 J	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	0.5	5
cis-1,2-Dichloroethene	<0.26	<0.26	<0.26	<0.26	0.49 J	<0.26	(10.8)	2.3	(9.2)	3.2	0.96 J	0.65 J	<0.41	<0.41	<0.41	<0.41	<0.41	<0.41	7	70
Ethylbenzene	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.22	0.34	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	<0.18	140	700
Naphthalene	<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	3.1 J	3.7 J	<0.34	<0.34	<0.34	< 0.34	1.0	<0.34	<0.34	<0.34	2.3	<0.34	10	100
Tetrachloroethene (PCE)	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	(0.57 J)	<u>5.0</u>	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	<0.37	0.5	5
Toluene	0.66 J	<0.50	<0.57	<0.50	<0.50	<0.50	0.32 J	1.3 J	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	<0.15	160	800
Xylenes, Total	<1.5	<1.5	<1.5	<1.5	<1.5	<1.5	<0.73	1.24 J	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	400	2,000

Notes:

¹Wisconsin Administrative Code Natural Resources Chapter (NR) 140 Public Health Groundwater Quality Standards, updated January 2020

*Samples collected by Seymour Environmental Services, Inc.

PAL: Preventive Action Limit

ES: Enforcement Standard

DCM: Dry Cleaning Machine (former)

WT: Watertable

TOC: Top of casing

VOCs: Volatile Organic Compounds

µg/L: Micrograms per Liter; equivalent to parts per billion (ppb)

J: Result is an estimate value (detected between the laboratory method detection limit and reporting limit)

NA: Not Available

<xx.x: Result concentration was detected below the method detection limit of x

(xx.x): Italic/parenthesized results exceed the NR 140 Preventive Action Limit

xx.x: Bold/underlined results exceed the NR 140 Enforcement Standard

Table A.2Soil Analytical ResultsFormer Bestway Cleaners5914 Highway 51McFarland, WisconsinBRRTS Number 02-13-583171Project Number 1E-2006002

Sample Location	* B-1 (E of unit)	* B-2 (NE of building)	* B-3 (NE of building)	* B-4 (W of unit)		3-5 ootprint)	GB-1 (DMC footprint)	GB-2 (SE of DMC)	GP (SW o		GMW-2 (SW of unit)		NR 720 RCLs ¹		
Sample Depth (feet bgs)	4	7	5	5	3.5	7	2-4	2-4	2-4	4-6	2-4		Direct Conta	ct Pathway ²	
Sample Date	7/3/2018	7/3/2018	7/3/2018	7/3/2018	4/1/2019	4/1/2019	6/23/2020	6/23/2020	6/23/2020	6/23/2020	6/23/2020	Soil to			
Saturated/Unsaturated (S or U)	U	S	U	U	U	S	U	U	U	S	U	Groundwater	Non-Industrial	Industrial	
Fill/Native (F or N)	N	N	N	N	F	N	F	F	F	N	F	Pathway	Land Use	Land Use	
PID (instrument units)	0	0	0	0	0	0	2.6	8.0	44.7	32.2	2.6				
Detected VOCs (µg/kg)						•				•					
cis-1,2-Dichloroethene	<25	<25	<25	<25	<u>954</u>	<u>269</u>	<26	<u>53 J</u>	<u>3,700</u>	<u>2,500</u>	<23	41	156,000	2,340,000	
Naphthalene	71.8 J	<40	<40	250 J	<40	<40	<21	<19	290	450	27 J	658	5,520	24,100	
Toluene	<25	<25	<25	<25	<25	<25	<9.3	<8.4	<9.0	31 J	<8.3	1,107	818,000	818,000	
trans-1,2-Dichloroethene	<25	<25	<25	<25	<25	<25	<22	<20	<u>120</u>	78 J	<20	63	1,560,000	1,850,000	

Notes:

¹Wisconsin Administrative Code Natural Resources Chapter (NR) 720 Residual Contaminant Levels (**RCLs**) obtained from the Wisconsin Department of Natural Resources (WDNR) "RCL spreadsheet", last updated December 2018.

²Direct Contact RCLs only apply to soil samples collected within four feet of the ground surface

*Samples collected by Seymour Environmental Services, Inc.

DCM: Dry Cleaning Machine (former)

bgs: Below ground surface

PID: Photoionization Detector

VOCs: Volatile Organic Compounds

µg/kg: Micrograms per kilogram; equivalent to parts per billion (ppb)

J: Result is an estimate value (detected between the laboratory method detection limit and reporting limit)

<xx.x: Result detected below the method detection limit of x

xx.x: Underlined results exceed the Soil to Groundwater Pathway RCL

Table A.3 **Residual Soil Analytical Results** Former Bestway Cleaners

5914 Highway 51 McFarland, Wisconsin BRRTS Number 02-13-583171 Project Number 1E-2006002

Sample Location		3-5 ootprint)	GB-2 (SE of DMC)	•	Z-1 f DCM)	NR 720 RCLs ¹					
Sample Depth (feet bgs)	3.5	7	2-4	2-4	4-6		Direct Conta	ct Pathway ²			
Sample Date	4/1/2019	4/1/2019	6/23/2020	6/23/2020	6/23/2020	Soil to					
Saturated/Unsaturated (S or U)	U	S	U	U	S	Groundwater	Non-Industrial	Industrial			
Fill/Native (F or N)	F	N	F	F	N	Pathway	Land Use	Land Use			
PID (instrument units)	0	0	8.0	44.7	32.2						
Detected VOCs (µg/kg)	•	•	•		•						
cis-1,2-Dichloroethene	<u>954</u>	<u>269</u>	<u>53 J</u>	<u>3,700</u>	<u>2,500</u>	41	156,000	2,340,000			
Naphthalene	<40	<40	<19	290	450	658	5,520	24,100			
Toluene	<25	<25	<8.4	<9.0	31 J	1,107	818,000	818,000			
trans-1,2-Dichloroethene	<25	<25	<20	<u>120</u>	<u>78 J</u>	63	1,560,000	1,850,000			

Notes: 'Wisconsin Administrative Code Natural Resources Chapter

(NR) 720 Residual Contaminant Levels (RCLs) obtained from

the Wisconsin Department of Natural Resources (WDNR) ²Direct Contact RCLs only apply to soil samples collected within four feet of the ground surface

*Samples collected by Seymour Environmental Services, Inc.

DCM: Dry Cleaning Machine (former)

bgs: Below ground surface

PID: Photoionization Detector

VOCs: Volatile Organic Compounds

µg/kg: Micrograms per kilogram; equivalent to parts per billion (ppb)

J: Result is an estimate value (detected between the laboratory method detection limit and reporting limit)

<xx.x: Result detected below the method detection limit of x

xx.x: Underlined results exceed the Soil to Groundwater Pathway RCL

Table A.4Soil Gas Analyitical ResultsFormer Bestway Cleaners5914 Highway 51McFarland, WisconsinBRRTS Number 02-13-583171Project Number 1E-2006002

Sample Leastion	SS-1/	SS-1A	GSS-1	GSS-2	SS	6-2	SS	6-3		Sub-Slab VRSL ¹ (µg/m ³)					
Sample Location	(NW of	f DCM)	(SW of DCM)	(east portion of unit)	(adjoining	north unit)	(adjoining	south unit)		Land Use					
Sample Date	7/19/2018*	4/1/2019*	7/2/2020	7/2/2020	4/1/2019*	7/2/2020	4/1/2019*	7/2/2020	Residential	Small Commercial	Large Commercial /				
² Pressure Field Readings ("wc)	-0.2	230	-0.163	-0.004	0.0	000	0.0	000	Residential	Nesidential Sinai Commercial					
Detected VOCs (µg/m ³) Method TO-15	5														
1,1,1-Trichloroethane			<36	<2.2		<0.33		0.21 J	170,000	730,000	2,200,000				
1,1,2-Trichoro-1,2,2-trifluoroethane			<53	<3.2		0.63 J		0.52 J	170,000	730,000	2,200,000				
1,3,5- Trimethylbenzene			<71	<4.3		<0.64		0.46 J	2,100	8,700	26,000				
1,3-Dichlorobenzene			<87	<5.2		1.0 J		<0.39	NS	NS	NS				
1,4-Dichlorobenzene			<86	16		26		12	87	370	1,100				
2-Butanone (MEK)			<130	<7.9		2.9 J		2.0 J	170,000	730,000	2,200,000				
Acetone			<740	88 J		26 J		200	1,100,000	4,700,000	14,000,000				
Benzene			<40	<2.4		<0.36		0.37 J	120	530	1,600				
Bromomethane			<28	<1.7		<0.25		0.23 J	170	730	2,200				
Butane			<39	<2.3		44		4.0	NS	NS	NS				
Carbon disulfide			<21	<1.3		<0.19		0.29 J	24,000	100,000	310,000				
Carbon tetrachloride			<53	<3.2		<0.48		0.47 J	160	670	2,000				
Chlorodifluoromethane			<29	6.6 J		<0.26		2.3	1,700,000	7,300,000	22,000,000				
Chloroform			<41	<2.5		<u>48</u>		0.50 J	40	180	530				
Chloromethane			<73	<4.4		<0.66		1.5 J	3,100	13,000	39,000				
cis-1,2-Dichloroethene	1,575	485	2,400	<3.2	<8	<0.48	<8	<0.24	NS	NS	NS				
Cyclohexane			<31	6.3 J		0.66 J		0.50 J	210,000	870,000	2,600,000				
Dichlorodifluoromethane			<75	<u>6,100</u>		<u>5,700</u>		51	3,300	15,000	44,000				
Heptane			<43	<2.6		<0.39		0.22 J	14,000	60,000	180,000				
Hexane			<25	<1.5		0.28 J		1.2 J	24,000	100,000	310,000				
Methylene chloride (dichloromethane)			340 J B	21		3.5 J B		4.0 B	21,000	87,000	260,000				
Styrene			<55	<3.3		0.78 J		0.54 J	33,000	150,000	440,000				
Tetrachloroethene (PCE)	(14,510)	<u>3,178</u>	(12,000)	1,100	166	270	180	4.0	1,400	6,000	18,000				
Toluene			<100	<6.0		<0.90		1.9 J	170,000	730,000	2,200,000				
Trichloroethene (TCE)	[1,204]	(334)	[1,100]	21	<0.13	1.5 J	<0.13	<0.19	70	290	880				
Trichlorofluoromethane			<31	2.1 J		1.8 J		1.6	NS	NS	NS				

Notes:

¹Vapor Risk Screening Levels (**VRSLs**) obtained/calculated from the Wisconsin Vapor Quick Look-Up Table based on the November 2017 US EPA Regional ²Pressure Field readings were taken on July 16, 2020 using Infiltec D1 Manometer. Mitigation system was in operation for at least 14 days prior to taking readings. **VOCs**: Volatile Organic Compounds

DCM: Dry Cleaning Machine (former)

"wc: Inches of water column

µg/m³: Micrograms per cubic meter

--: Not Analyzed

NS: No Established Standard

J: Result is an estimate value (detected between the laboratory method detection limit and reporting limit)

B: Compound was detected in the method blank and in the sample

xx.x: Underlined result exceed the sub-slab VRSL for Residential land use

(xx.x): Parenthesized results exceed the sub-slab VRSL for both Residential and Small Commercial land use

[xx.x]: Bracketed results exceed the sub-slab VRSL for Residential, Small Commercial, and Large Commercial/Industrial land uses

*Sample points SS-1/SS-1A, SS-2 and SS-3 were installed by Seymour Environmental Services, Inc. Initial samples from these locations were collected by Seymour, Inc.. Sample SS-1 7/19/2018 was collected prior to the installation of the vapor mitigation system on 12/14/2018.

The vapor mitigation system was shut off seven days prior to the collection of Seymour Inc.'s 4/1/19 soil gas samples and Giles' 7/2/20 soil gas samples. Samples were collected for 30 minutes using 6-L summa canister with 200 ml/min flow regulator and a water dam for leak detection.

Table A.6Groundwater ElevationsFormer Bestway Cleaners5914 Highway 51McFarland, WisconsinBRRTS Number 02-13-583171Project Number 1E-2006002

	Well El	evation	Well Cor	nstruction		Groun	dwater
Well ID	тос	Ground Surface	Depth to Bottom	Screen Length	Date Groundwater Measured	Depth (TOC)	Calculated Elevation
					7/2/2020	5.02	94.90
GMW-1	99.92	99.85	9.52	5	7/16/2020	4.81	95.11
					10/22/2020	5.67	94.25
					7/2/2020	3.91	94.78
GMW-2	98.69	99.13	9.71	5	7/16/2020	3.78	94.91
					10/22/2020	4.64	94.05
					7/2/2020	4.11	95.01
GMW-3	99.12	99.48	9.82	5	7/16/2020	3.98	95.14
					10/22/2020	4.87	94.25
					7/2/2020	5.02	94.96
GPZ-1	99.98	99.94	12.74	5	7/16/2020	4.79	95.19
					10/22/2020	5.67	94.31
					7/2/2020	3.81	95.05
GPZ-2	98.86	99.06	17.17	5	7/16/2020	3.66	95.20
					10/22/2020	4.55	95.20

Notes:

TOC: Top of casing

All measurements are recorded in feet.

Elevations of the wells were surveyed on 6/23/2020. Survey measurements were tied to a local benchmark, the rear entrance of the northern center door sill, which was assigned an elevation of 100 feet.

02-13-583171 BRRTS #

Attachment B: Figures

Figure B.1.a Location Map Included

Figure B.1.b (1), (2) Detailed Site Map Included

Figure B.1.c RR Sites Map Included

Figure B.2.a Soil Contamination Included

Figure B.2.b Residual Soil Contamination Included

Figure B.3.a (1), (2) Geologic Cross-Sections Included

Figure B.3.b Groundwater Isoconcentration Included

Figure B.3.c Groundwater Flow Direction Included

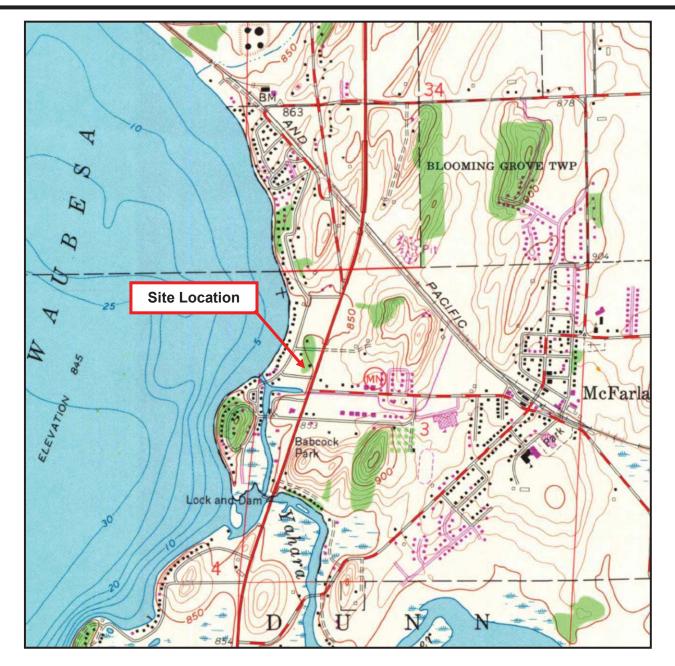

Figure B.3.d Monitoring Wells Included

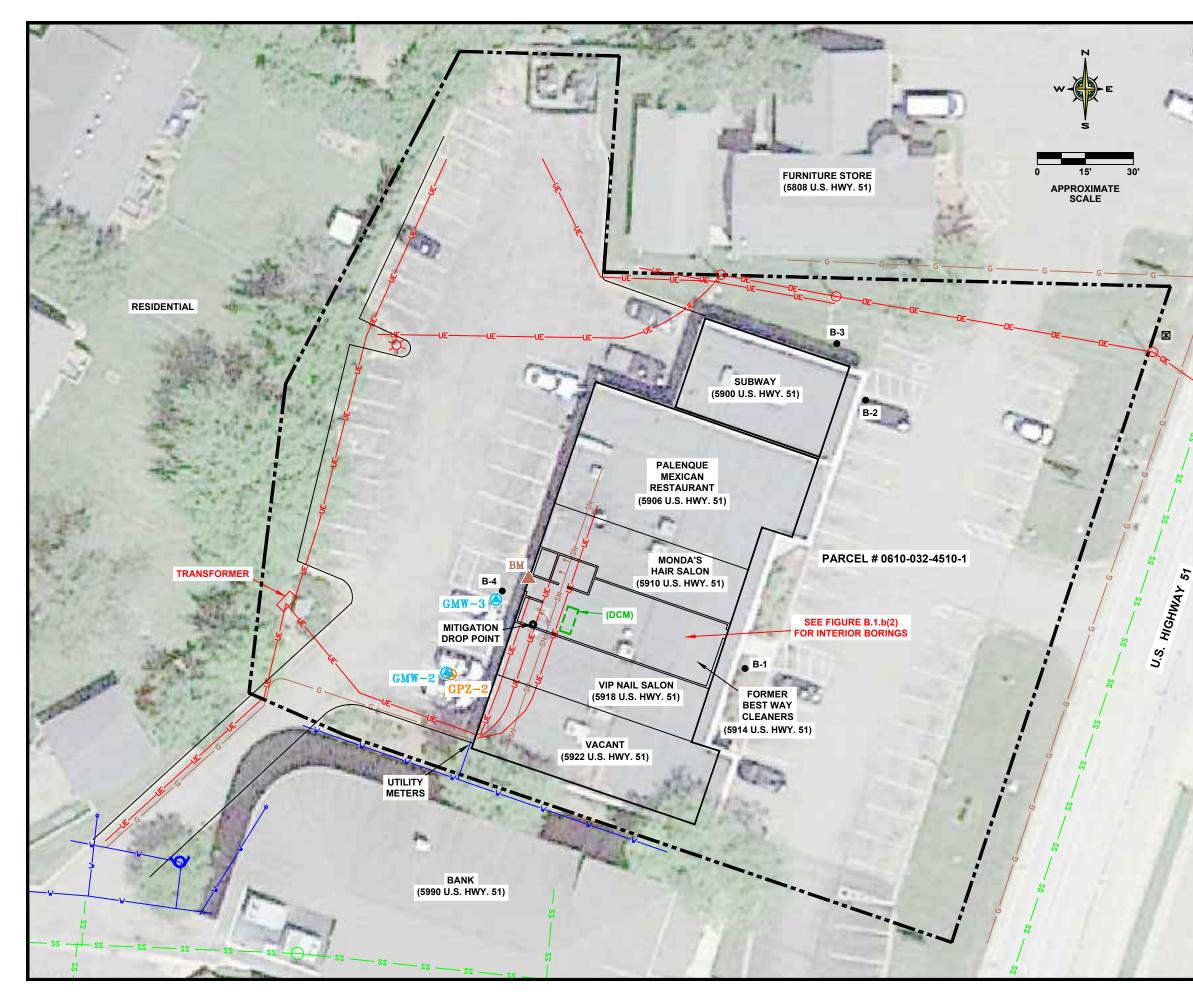
Figure B.4.a Vapor Intrusion Map Included

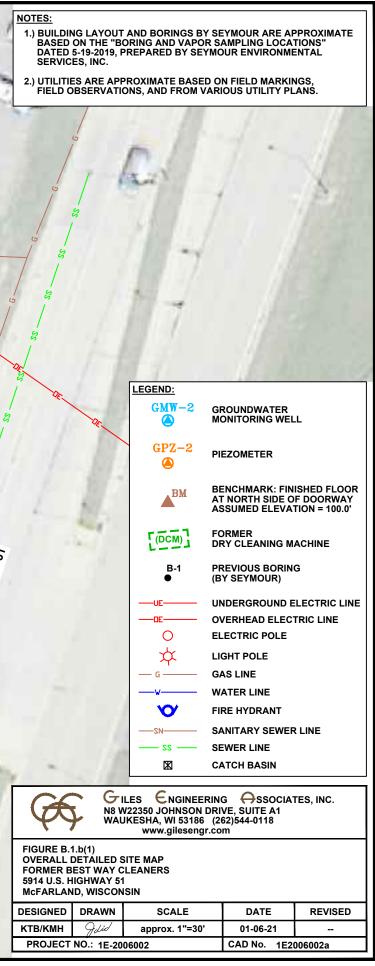
<u>Figure B.4.b Other Media of Concern</u> Not included. No other media of concern (e.g. sediment or surface water) were present at the Site.

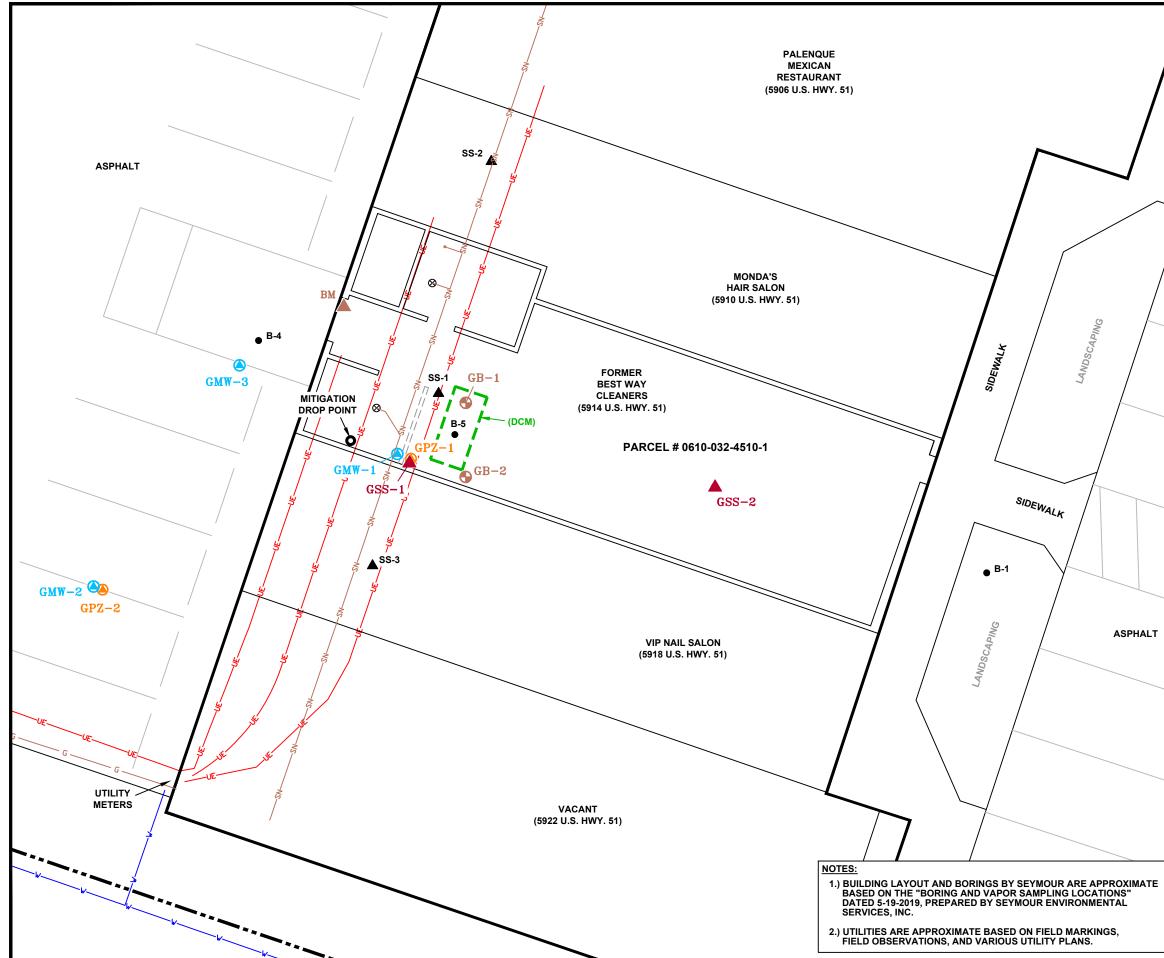
<u>Figure B.4.c Other</u> Not included. No other relevant figures were generated.

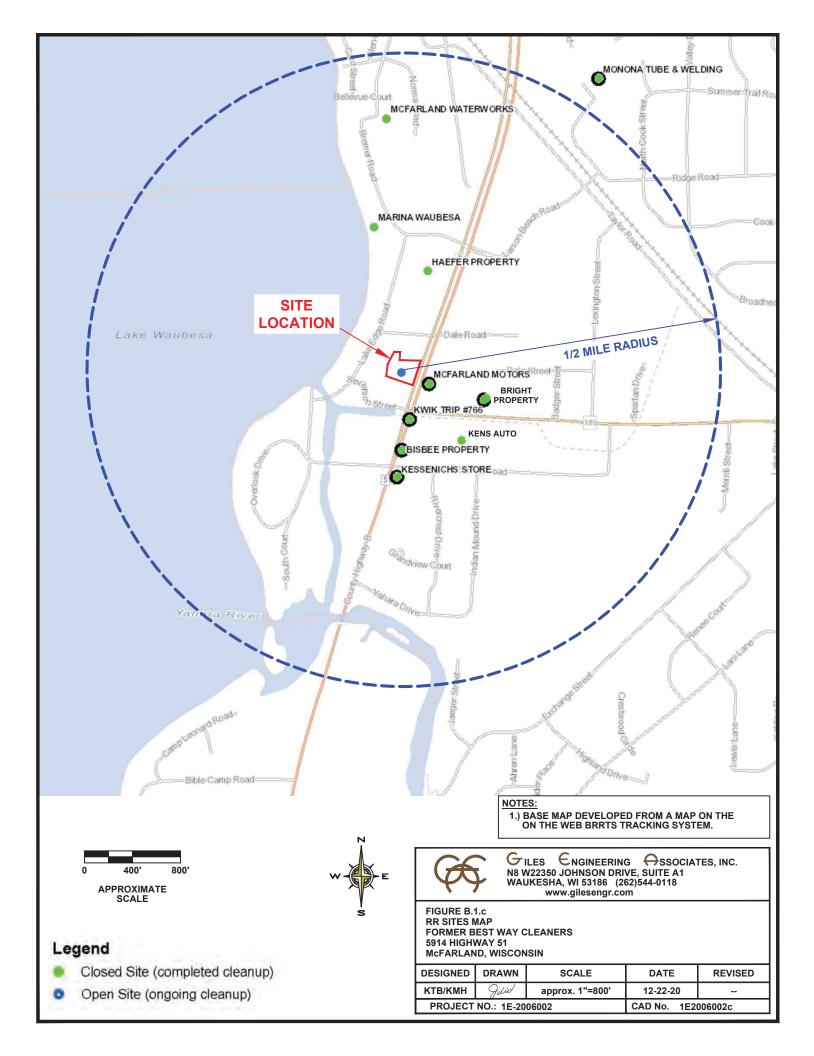
<u>Figure B.5 Structural Impediment Photos</u> Included. The building structure is an impediment to remediation, however it will act as a performance cap/barrier.

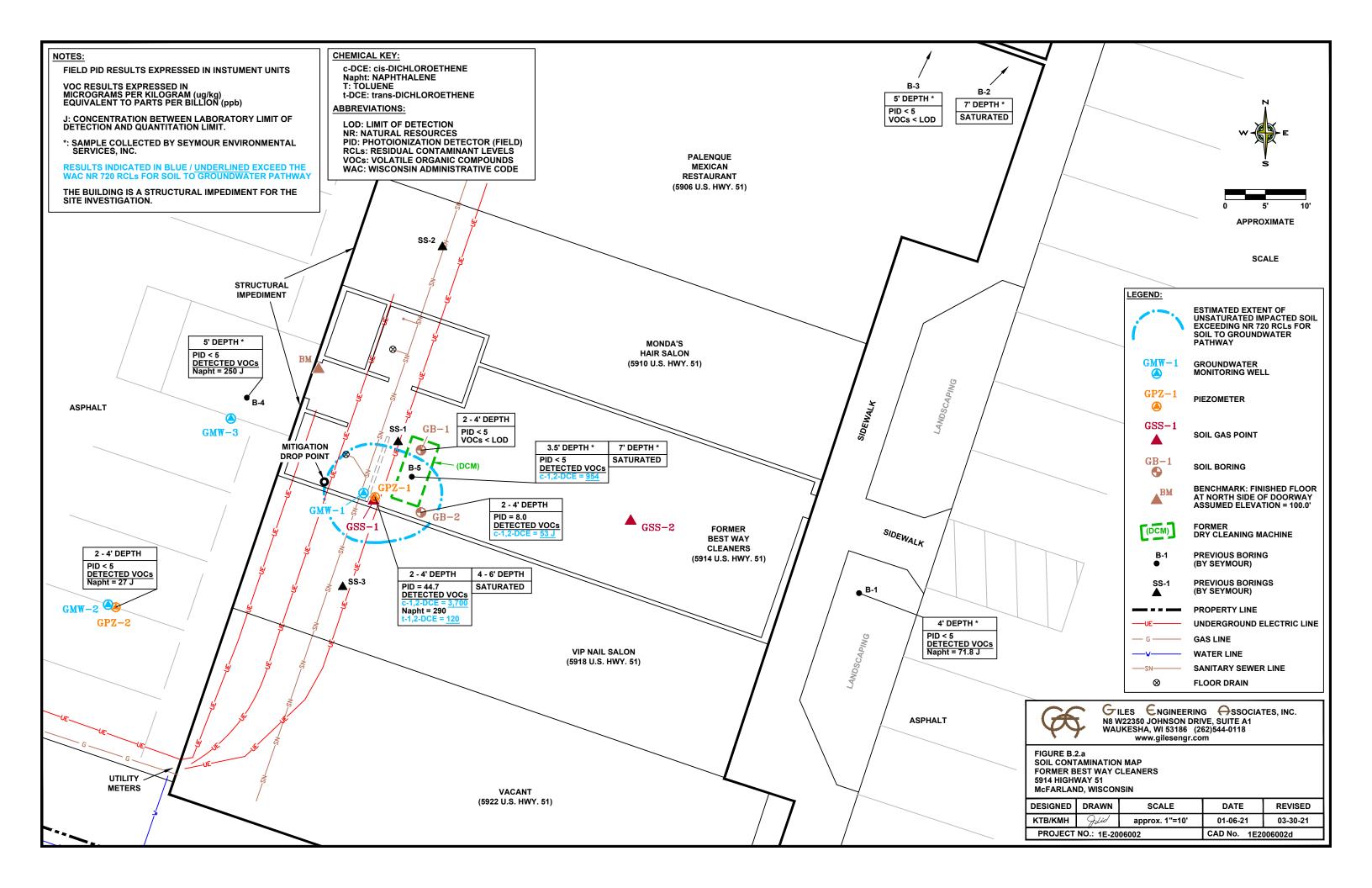
Source: USGS *Madison East, Wisconsin* 7.5-Minute Series (topographic) Quadrangle Map (1959, revised 1969)

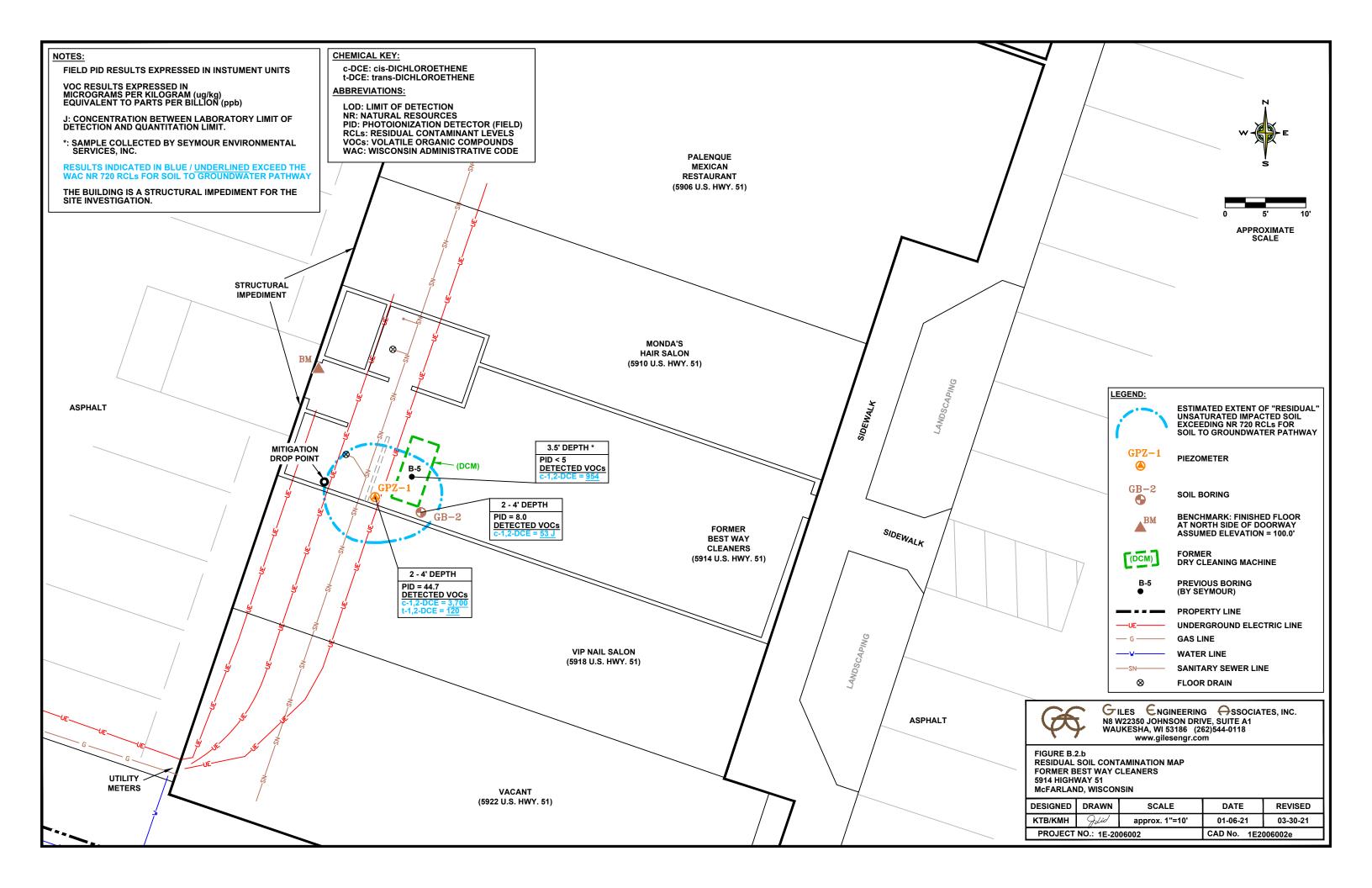

Scale: 1:24,000 Contour Interval: 10 Feet

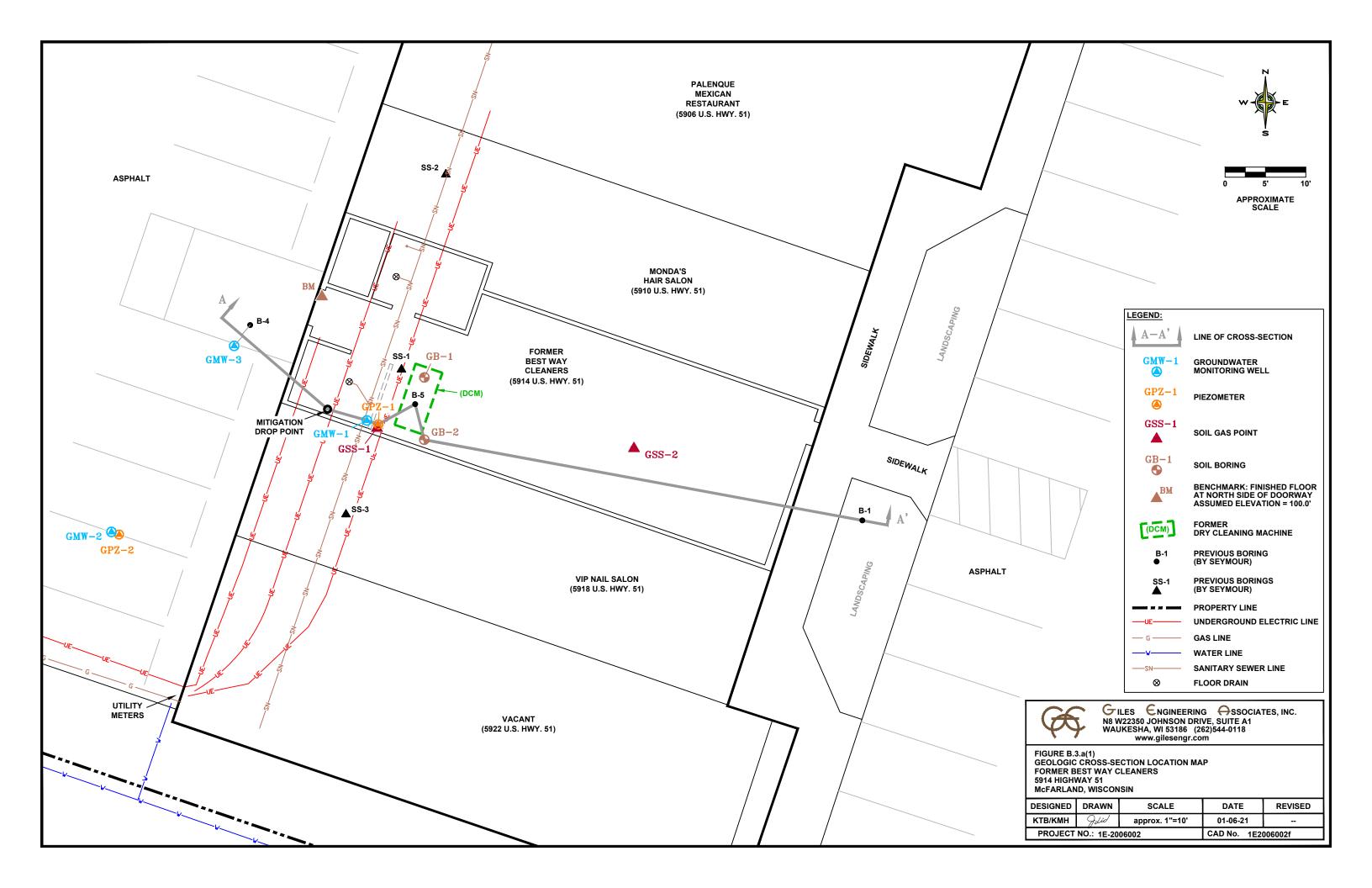

FIGURE B.1.a SITE LOCATION

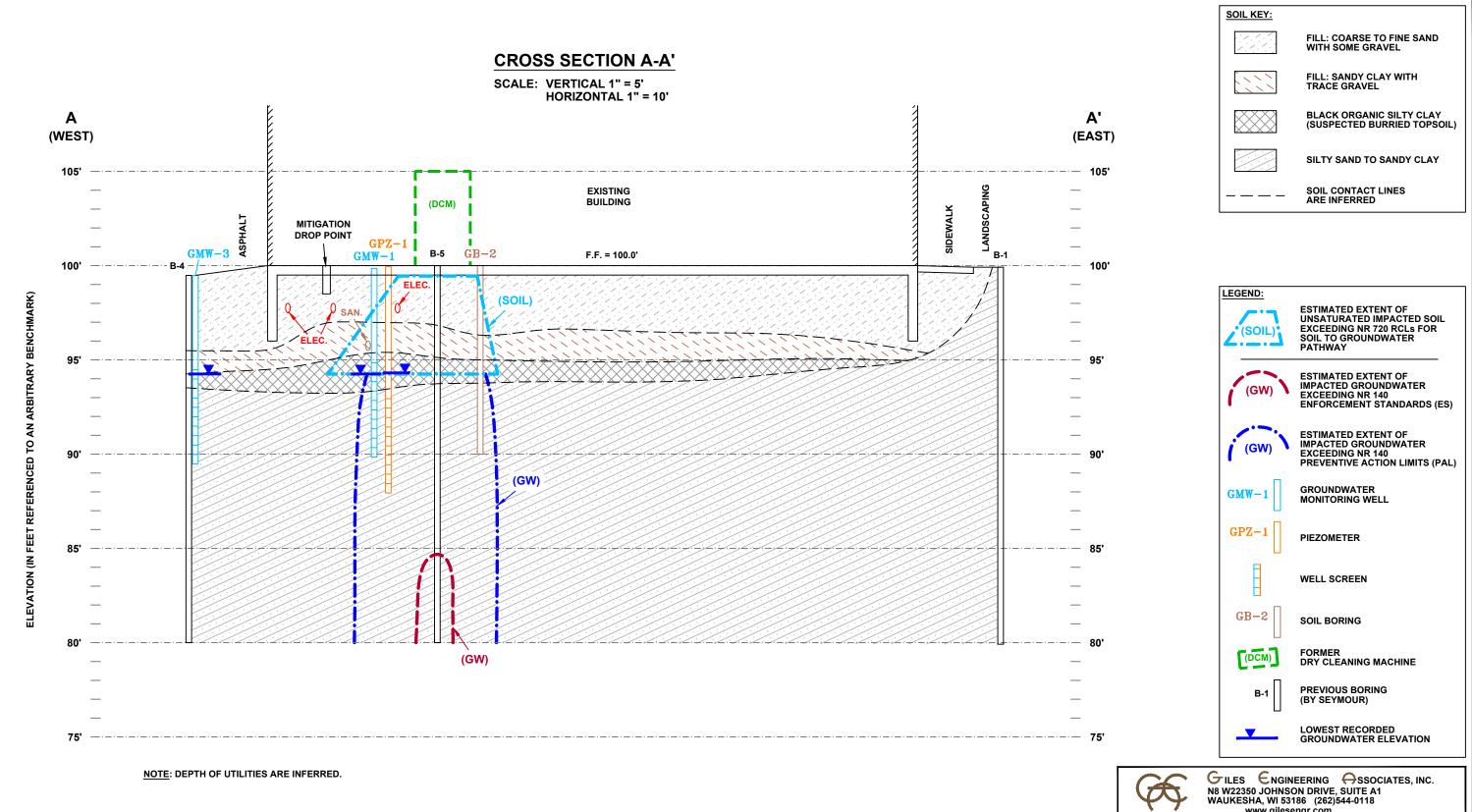

Best Way Cleaners 5914 State Highway 51 McFarland, Wisconsin Project No. 1E-2060002 BRRTS No. 02-13-583171

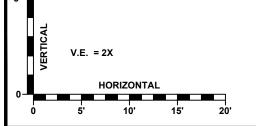


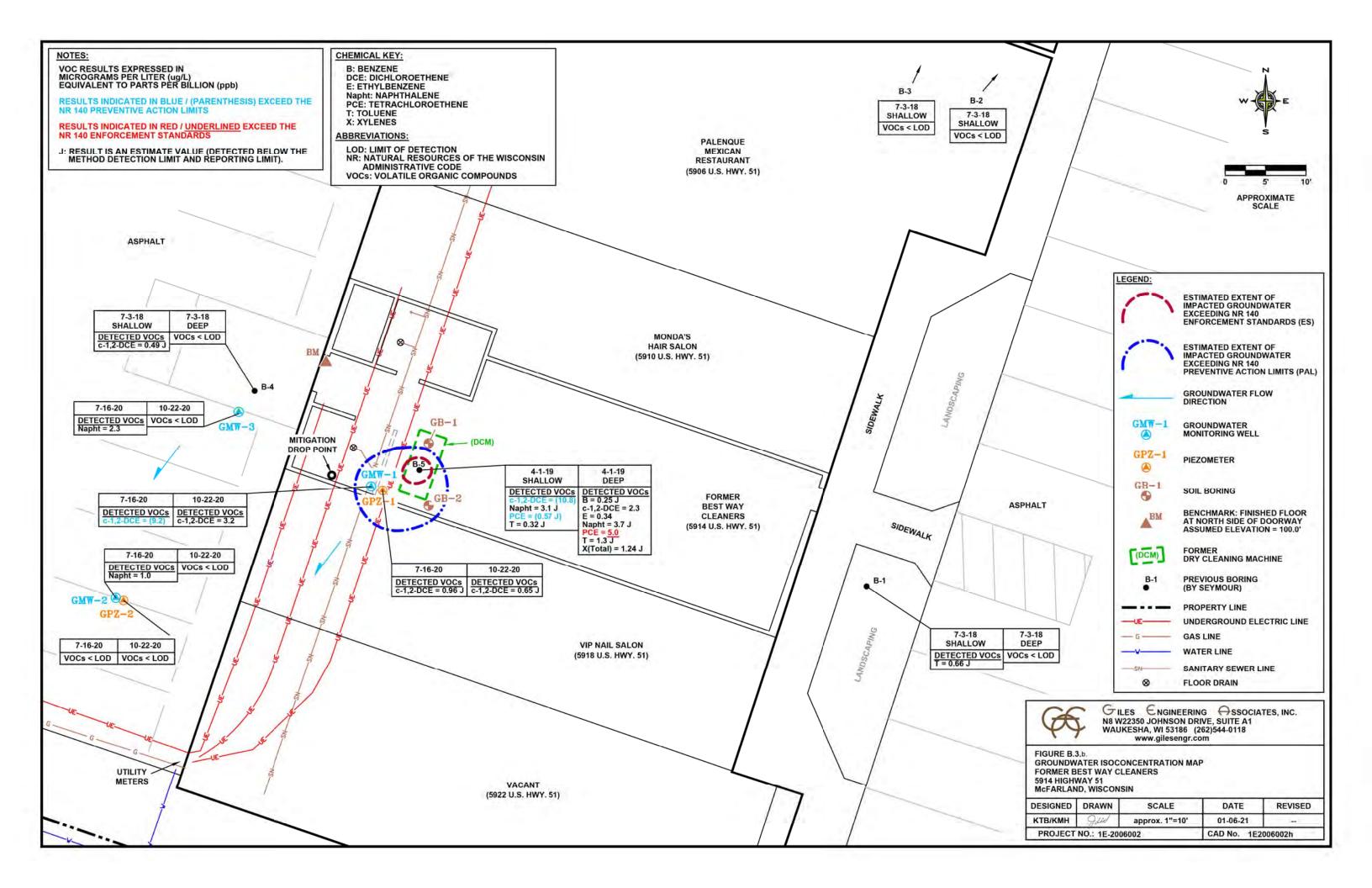


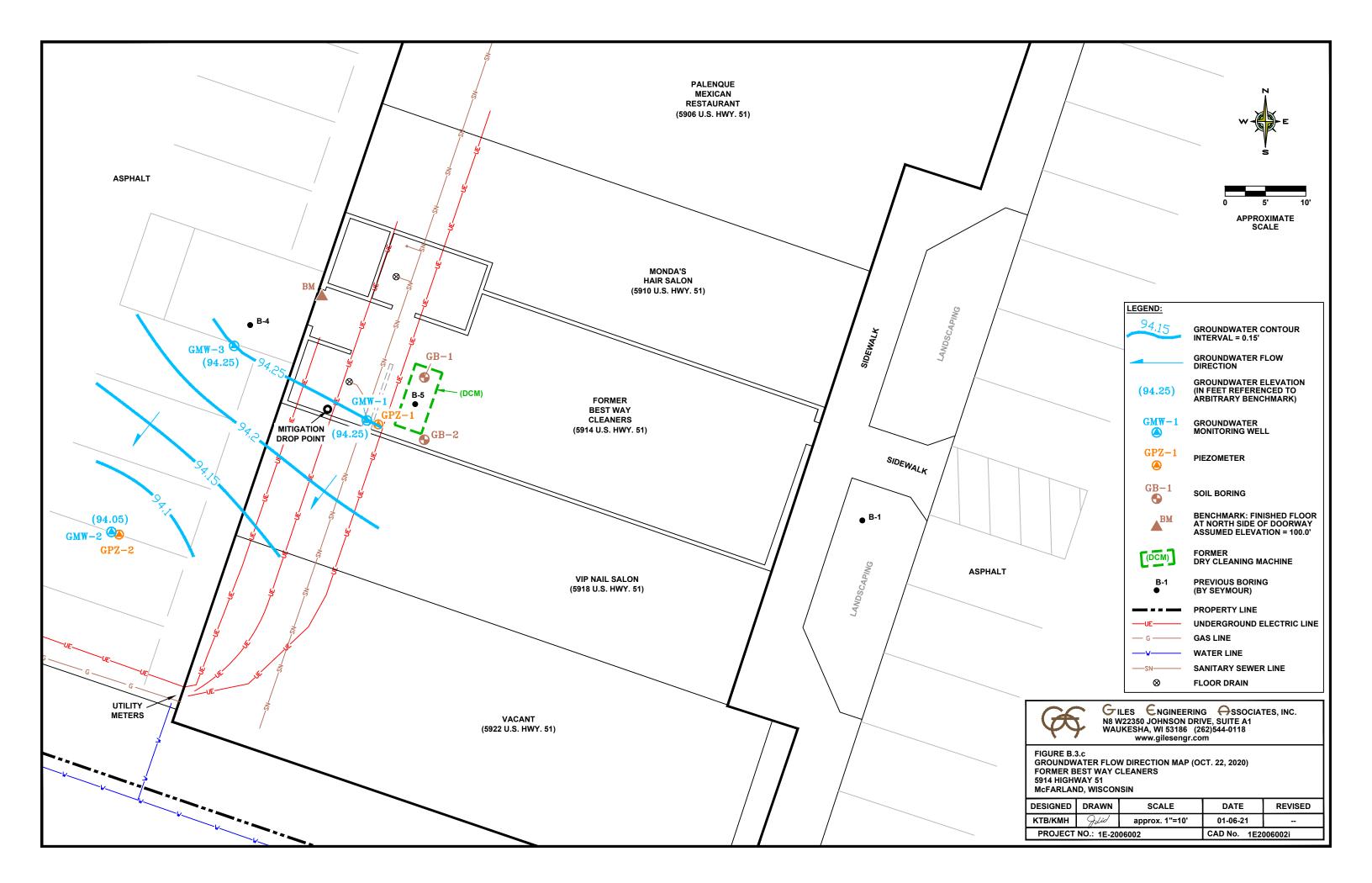


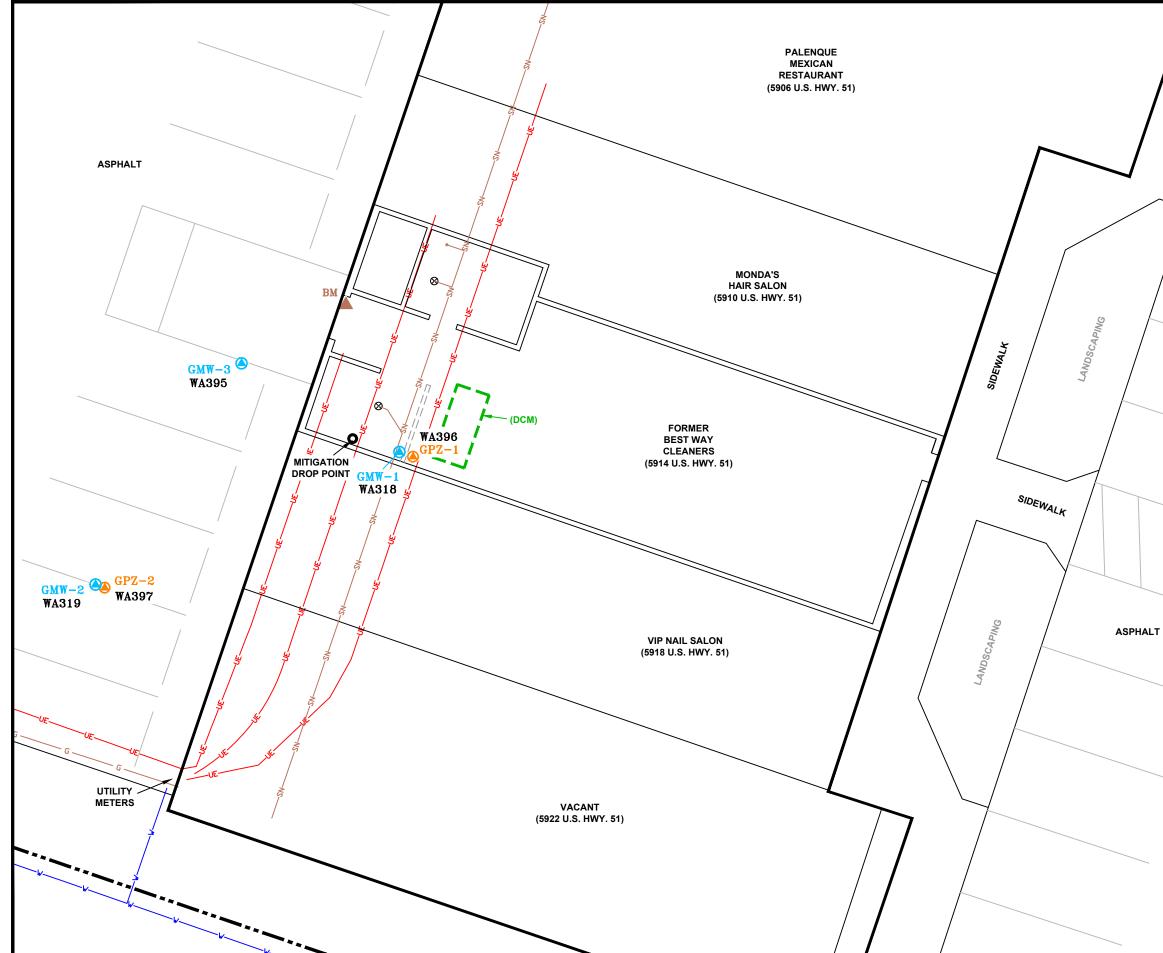



7	/			
/ /	/			
		~		7
			~-~	E
				s
7			APPRO	5' 10' DXIMATE
			SC	ALE
		LEGEND:]
			ROUNDWATER ONITORING WEL	L
		GPZ-1 PI	EZOMETER	
		GSS-1	DIL GAS POINT	
		GB-1 so	DIL BORING	
	$\overline{\mathbf{V}}$	A DM	ENCHMARK: FIN T NORTH SIDE O SSUMED ELEVA	F DOORWAY
	/		DRMER RY CLEANING M	ACHINE
			REVIOUS BORIN Y SEYMOUR)	G
			REVIOUS BORIN Y SEYMOUR)	GS
			ROPERTY LINE NDERGROUND E	
		_	AS LINE ATER LINE	
			ANITARY SEWER	
		⊗ Fl	OOR DRAIN	
(¢	🕻 🛛 N8 V	LES ENGINEERIN V22350 JOHNSON DRI JKESHA, WI 53186 (2 www.gilesengr.cc	VE, SUITE A1 62)544-0118	TES, INC.
FIGURE B. DETAILED FORMER B 5914 HIGH	SITE MAP			
McFARLAN	ID, WISCON			
DESIGNED KTB/KMH	DRAWN Gdid	SCALE approx. 1"=10'	DATE 01-06-21	REVISED
	<i>//</i> ·			 006002b
	NO.: 1E-20		CAD No. 1E2	

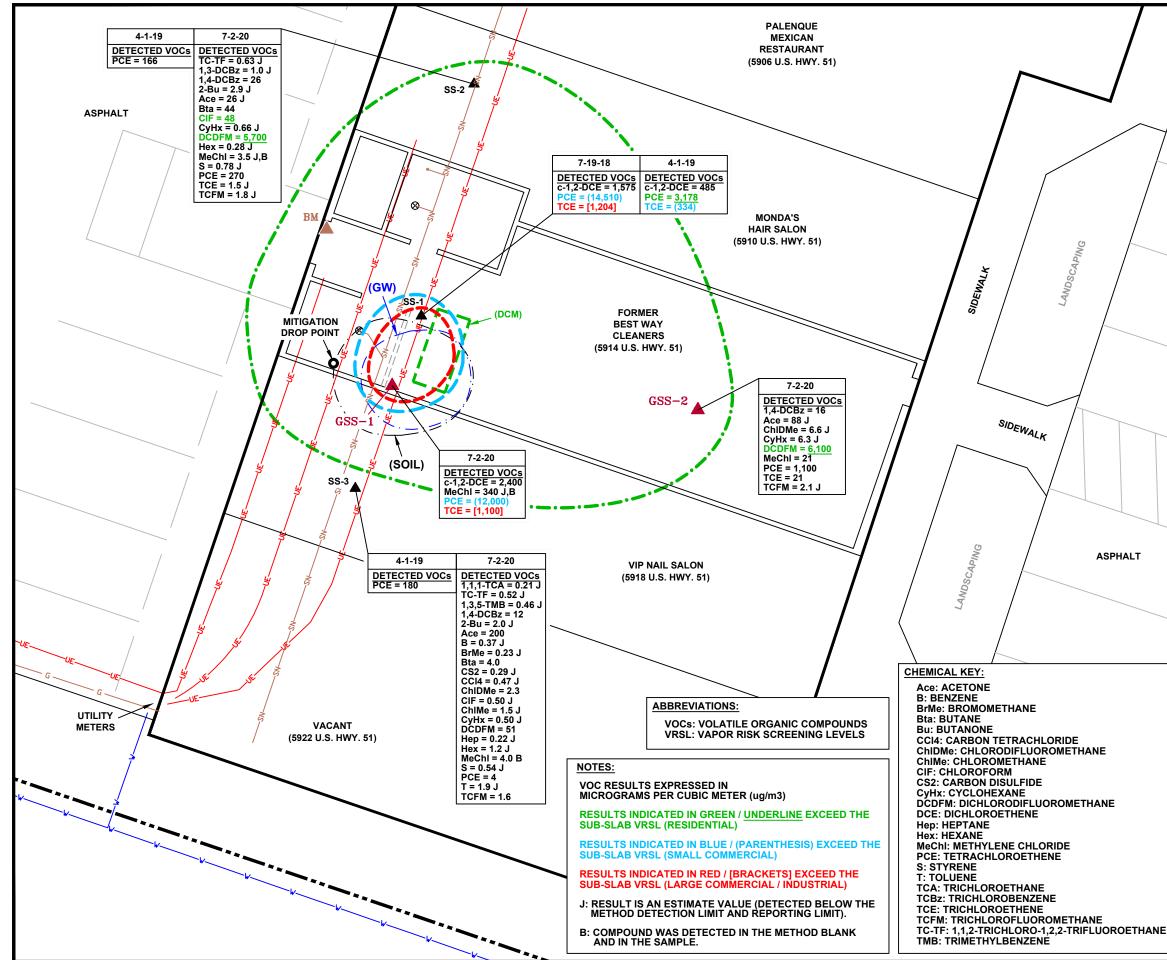








	LEGEND:			
95'	(SOIL)	UNSA EXCE	IATED EXTENT TURATED IMPA EDING NR 720 F TO GROUNDWA WAY	CTED SOIL CLs FOR
	(GW)	IMPA EXCE	IATED EXTENT CTED GROUNDV EDING NR 140 RCEMENT STAI	VATER
90'	(GW)	IMPA EXCE	IATED EXTENT CTED GROUNDV EDING NR 140 ENTIVE ACTION	NATER
	GMW-1		INDWATER TORING WELL	
35'	GPZ-1	PIEZO	DMETER	
		WELL	SCREEN	
	GB-2	SOIL	BORING	
30'	(DCM)	FORM DRY (IER CLEANING MAC	HINE
	В-1		IOUS BORING EYMOUR)	
75'	_		ST RECORDED	
N8	LES ENGIN W22350 JOHNSC AUKESHA, WI 531 www.gilese	ON DRIV 186 (26	/E, SUITE A1 2)544-0118	TES, INC.
FIGURE B.3.a(2) GEOLOGIC CROSS-5 FORMER BEST WAY 5914 HIGHWAY 51 McFARLAND, WISCO	CLEANERS			
	00415		DATE	DE1//05D


DESIGNED	DRAWN	SCALE	DATE	REVISED
KTB/KMH	Idid	SEE TITLE	01-06-20	
PROJECT	NO.: 1E-20	06002	CAD No. 1E2	006002g

/	/	/		_		
/						7
/					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	E
				_	×	
						S
						_
_					-	5' 10'
/	1					OXIMATE ALE
\int						
/						
			-			
			LEGEND:			
	_			MC	ISTING GROUN DNITORING WEL D BE ABANDON	L
		$\overline{\mathbf{D}}$	GPZ-1		ISTING PIEZOM D BE ABANDON	
		Y	WA396	w	ELL IDENTIFICA	TION NO.
			▲ ^{BM}	AT	NCHMARK: FIN NORTH SIDE O SUMED ELEVA	F DOORWAY
			(DCM)		ORMER RY CLEANING M	ACHINE
-			UE G		IDERGROUND E AS LINE	
					ATER LINE	
			SN	SA	NITARY SEWER	
			8	FL	OOR DRAIN	
	¢¢,	N8 V	LES ENGINEEF V22350 JOHNSON I JKESHA, WI 53186 www.gilesengr	20 (20	VE, SUITE A1 52)544-0118	TES, INC.
	5914 HIGH	NG WELLS				
	DESIGNED	DRAWN	SCALE		DATE	REVISED
	КТВ/КМН	Jdid	approx. 1"=10'		01-06-21	
	PROJECT	NO.: 1E-20	06002		CAD No. 1E2	006002j

			0 5' APPROX SCA	IMATE	∎ ^{10'} ₩ -	Z
			BEND:	SUB-SL/	TED EXTENT OF AB SOIL GAS EX ARGE COMMER RIAL)	CEEDING
			~~~~	SUB-SL/ VRSL (S ESTIMA ⁻	TED EXTENT OF AB SOIL GAS EX MALL COMMER	(CEEDING CIAL)
			(SOIL)	VRSL (R ESTIMA UNSATU EXCEED	AB SOIL GAS EX ESIDENTIAL) TED EXTENT OF IRATED IMPACT ING NR 720 RCI GROUNDWATE AY	ED SOIL
		Ċ	(GW)	ESTIMA IMPACT EXCEED PREVEN	TED EXTENT OF ED GROUNDWA ING NR 140 TIVE ACTION LI DRCEMENT STA	TER MITS (PAL)
			GSS-1	SOIL GA	S POINT	
			▲ ^{BM}	AT NOR ASSUME	MARK: FINISHED TH SIDE OF DOC ED ELEVATION =	DRWAY
<u> </u>			(DCM)		EANING MACHIN	ίΕ
٦			SS-1	(BY SEY	JS BORINGS MOUR)	
		-   -				
			-UE	GAS LIN	ROUND ELECT	
		_		WATER		
		_		SANITA	RY SEWER LINE	
			8	FLOOR	ORAIN	
	¢¢,	N8 V	ILES ENG V22350 JOHN JKESHA, WI 5 www.gile	3186 (20	VE, SUITE A1 52)544-0118	TES, INC.
	FIGURE B.4 VAPOR INT FORMER B 5914 HIGHV McFARLAN	RUSION MA EST WAY C NAY 51	LEANERS			
	DESIGNED	DRAWN	SCAL	E	DATE	REVISED
	KTB/KMH	Idid	approx. 1	"=10'	01-06-21	
1	PROJECT	NO.: 1E-20	06002		CAD No. 1E2	006002k



View of the front of the shopping center building, facing west.



View of the interior of source unit and concrete floor that will act as a performance cap, facing west.

### **B.5 STRUCTURAL IMPEDIMENT PHOTOGRAPHS** October 22, 2020

Best Way Cleaners 5914 U.S. Highway 51 McFarland, Wisconsin Project No. 1E-2006002



### **Attachment C: Remedial Action**

### C.1 Site Investigation Documentation

Included:

- Soil Boring Log Forms (4400-122)
- Monitoring Well Construction and Development Forms (4400-113A&B)
- Borehole Filling & Sealing Report Forms (3300-005)
- Laboratory reports from Giles' soil, groundwater, and soil gas sampling
- Summary of Supplemental Investigation

### C.2 Investigative Waste Documentation

Not included. Investigative soil waste from direct-push borings was disposed of in Giles' dumpster as *de minimis* waste, and purge/development water was discharged to the sanitary sewer due to its low level of contamination.

<u>C.3 Alternate RCL Methodology</u> Not included. Wisc. Adm. Code NR 720 generic RCLs were used to assess data.

<u>C.4 Construction Documentation</u> Does not apply. No constructed remedial action was taken at the Site.

C.5 Decommissioning of Remedial Systems

Does not apply. No active remediation system was constructed at the Site.

C.6 Other

Included. WDNR approval to install NR 141-variance wells.

Route To:

Watershed/Wastewater 
Remediation/Redevelopment

Waste Management 
Other

Form 4400-122

Rev. 5-97

															of	1
	ty/Proje			eaners: 5914 Hwy	51	License	e/Permi	t/Moni	toring N	lumber	кт с. — С. С.	Boring	g Numl		0 1	
Boring	g Drille	d By (	Firm na	me and name of crew chi	51 ief)	Date D	rilling	Started		ID:	ate Dril	ling Co	moleter		3-1	ling Method
	0				,	Duit D		Juntoo				ing co	mpietes			and Method
	20060		Jim J	Blair, Giles Enginee				3/202				6/23/	2020		D	irect Push
WI UI	nique W	/ell No	).	DNR Well ID No.	Common Well Name	Final S				Surfac	e Eleva			B		Diameter
Boring	r Locati	ion or	Local G	rid Origin (Check	if estimated: 🔲 )	L	Feet	MSL		1		et MS		0.6 1		Inches
12 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Plane		LUCAIO	nd Origin (Check	S/C/N	Lat.		•	·	"	Local	Grid Lo	cation	0 C.C.	(icable)	
SW	1/4	of N	W 1	/4 of Section 3,	T 6 N, R 10 E	Lon	g.	0		u		Fee				□ E Feet □ W
Facilit	-			County		County C		Civil	Town/C	City/ or	Village		<u> </u>			
	35831	71		Dane		13		McI	Farlan	1						
San	nple											Soil	Prop	erties		
	& (ii)	ts	set		ock Description						o					
r pe	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		ologic Origin For		s				sssiv h	<u>ہ</u>		à		nts
Number and Type	ngth	MO MO	pth	Eacl	h Major Unit		sce	Graphic Log	Well Diagram	PID/FID	npre	Moisture Content	Liquid	Plasticity Index	00	D/ D/
and	Lei Re	Ble	De				n	Gra	We	PIL	Compressive Strength	Mo Cor	Liquic Limit	Pla: Ind	P 200	RQD/ Comments
			F	Concrete		(	Concret	te								
			E,		arse to fine Sand ar				1							
			F. 1	some coarse to fin	e Gravel (Fill)-Moi	ist				1.8						
111111111111111			E_2													
DP-1	48/36						SW									
			F, I													
			-3							2.6						
			F, I	Gray Clayey Silt v	with trace fine Grav	el.		-								
			$E^4$	thin seam of Black	c fine Sand and roun	nded	CL-MI	ł								
			E F		4.4 Feet (Fill)-We	/										
			-5	Black to Dark Bro	wn Silty Clay, buri nics(Native)-Moist	ed	OL			2.5						
			E	ropson with orga	1103(1441140)-1410131		0.5									
DP-2	48/24		<b>-6</b>	Gray coarse Sand	with little coarse to	fine										
			E	Gravel (Native)-W	/et											
			-7							1.6		1				
			-													
1			-8				SW									
			-					, i			1	1				
DP-3	24/24		-9							1.2						
			=							1,2				- 1		
			-10	End of Doring at 1	0 Feet Below Grou	nd l										
				Surface	o reet below Grou	nu										
										-						

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature

Firm Giles Engineering Associates, Inc. N8 W22350 Johnson Drive, Suite A1 Waukesha, WI 53186

Tel: 262-544-0118 Fax: 262-549-5868

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Route To:

Watershed/Wastewater Remediation/Redevelopment Waste Management Other 🗌

SOIL BORING LOG INFORMATION Form 4400-122

Rev. 5-97

17. 11															age l	of	1
	ty/Proj			~1-	501411	<b>5</b> 1	Licens	e/Perm	it/Mon	itoring	Numb	er	Borin	g Num			
					aners: 5914 Hwy e and name of crew chi		Date D	rilling	Startec	1		Date Dri	lling Co	mplete		B-2	illing Method
1E-	-2006	002	Jin	ı B	lair, Giles Enginee	ering Associates		6/2	3/202	20			6/23	/2020		1	Direct Push
	nique \		0.		DNR Well ID No.	Common Well Name	Final S				Sur	ace Elev		2020	B		le Diameter
								Feet	MSL			Fe	et MS	SL			' Inches
		tion or	Local	Gri	d Origin (Check	if estimated: 🔲 )	1.		0	,		Local	Grid L	ocation	(If app		
State SW	Plane	lof N	JW	1/4	of Section 3,	S/C/N T6 N, R 10 E	Lat.		0	,		-	P				D E
Facili		FOLI	• ••	1/4	County		Lon County C		Civil	Town	City/ o	-   or Village			5	191 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194 - 194	Feet 🗌 W
	3583	171			Dane		13			Farla							
Sar	nple			8									Soi	l Prop	erties		_
	s (ii	ts	set			ock Description						o					
гg	Att.	oun	n Fe			ologic Origin For						ssiv	a		2		nts
Number and Type	igth	Blow Counts	Depth In Feet		Each	h Major Unit		CS	phic		PID/FID	npre	stur	it it	ticit	0	D/ D/
Nul	Length Att. & Recovered (in)	Blo	Del					US	Graphic Los	Well	DID DI	Compressive Strength	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
			F		Concrete		1	¢oncre	te								
			E1			parse to fine Sand v				1							
			Ę		little coarse to fine	e Gravel (Fill)-Moi	st				4.4						
			E_2														
DP-1	48/36	1	Ę ź					SW		1							
			F.														
			<u>–</u> 3								8.0						
			È.		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~												
			-4			with trace coarse to eam of Black Sand											
			Ē,		rounded Gravel (F		and	CL-MI	ł								
			E ⁵		Fat Black to Dark	Brown Silty Clay				1	4.1						
			F.		buried Topsoil wit	th Organics		OL			1						
DP-2	48/36		E ⁻⁶		(Native)-Moist	with little coarse to	fina			-	1						
			E		Gravel (Native)-W	/et	me		1								
			F7		( , , , , , , , , , , , , , , ,						1.6						
			E					sw									
			-8										6				
			F														
DP-3	24/24		E9						ń.		2.5						
			È.		Gray to Brown Sar Gravel (Native)-M	ndy Clay with trace loist	fine	CL			2.5						
			-10			0 Feet Below Grou	ind			1							
					Surface												

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	Firm Giles Engineering Associates, Inc.	
	Ones Engineering Associates, Inc.	Tel: 262-544-0118
_ ~ ~ ~	N8 W22350 Johnson Drive, Suite A1 Waukesha, WI 53186	Fax: 262-549-5868

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Route To:

Watershed/Wastewater Remediation/Redevelopment Waste Management Other 🗌

SOIL BORING LOG INFORMATION Form 4400-122

Rev. 5-97

																		of	1
Facilit				مان	aners: 591	11 11111	51		License	e/Permi	t/Moni	toring	Numbe	r	Borin	g Numl			1
					e and name o				Date D	rilling S	Started		D	ate Dril	ling Co	mpleted		MW-	Iling Method
*******	• • • • • • • • • • • • • • • • • • •	•								0						proto	-		ining intentiou
	20060						ering Assoc				3/202	S			6/23/	2020		and the states	irect Push
WI Ur	nique V				DNR Well II	D No.	Common W	ell Name	Final S	tatic Wa			Surfa	ce Eleva			B		Diameter
Boring		A318		Gric	d Origin	(Check	if estimated:			reet	MSL		1		et MS		(If app		Inches
State		ion or	Livear	0	1 ongin	(eneer	S/C/		Lat.		0	<u> </u>	"	Local				incable,	Ε
SW	1/4	of N	W	1/4	of Section	3,	т6 N, I	r 10 e	Lon	ıg	0	'			Fee	t 🗆 S			Feet 🗌 W
Facilit	and the second second				Count				County C					Village					
-	3583	171		-	Dane	e			13		McI	Farlar	nd						
San	nple	1				0.11/0	1.0								Soil	Prop	erties	,	
	t. & I (in)	nts	eet				ock Descriptio					1		ve					
er /pe	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				ologic Origin h Major Unit			s	.9	6		Compressive Strength	ut c		ity		RQD/ Comments
Number and Type	cov	MO	epth			Eac	n wajor Onit			sc	Graphic Log	Well	PID/FID	eng	Moisture Content	Liquid	Plasticity Index	P 200	D/Q
an	J X	BI	Ă	-	Constants					D		à ĉ	Id	Str Co	Σΰ	Lii	Pla Inc	P2	<u> </u>
			E		Concrete			0.1		Concret	e								
			E1				arse to fine e Gravel (1												
			Ē		come com		ie orarier (i	) 2.1		SW			2.6						
DD 1			<b>L</b> 2																
DP-1	48/36		E		Gray fat C	layey S	ilt with tra	ce fine (	Gravel										
			<b>L</b> 3	1	(Fill)-Wet								1.0.1.0						
			F							CL-MI			4.3						
			E4																
1			Ę	L	Diask to D	Deals Das	6-4 C'14	CI											
			E_5	-	Topsoil wi	ith Orga	wn fat Silt	y Clay ve)-Mois	st		2								
			F		- opeon			() 1/10/12					5.6						
			E_6							OL			1						
DP-2	48/24		Ę									目							
			E,									¦∙∃:	1			-			
			E'									+ + .	8.0						
			E_8		Gray coars Gravel (Na	se Sand	with little o	coarse to	o fine							1			
1			E°				Cl					目							
			È,							SW		· E			3				
DP-3	24/24		<u>–</u> 9									E	0.5						
1			-10																
			-10			ring at 1	0 Feet Belo	ow Grou	ind			<u></u>	1						
				S	Surface														

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	Firm Giles Engineering Associates, Inc.	Tel: 262-544-0118
will	N8 W22350 Johnson Drive, Suite A1 Waukesha, WI 53186	Fax: 262-549-5868

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION

Form 4400-122

Rev. 5-97

Route To: Watershed/Wastewater

Watershed/Wastewater  $\Box$  Wa Remediation/Redevelopment  $\boxtimes$  Oth

Waste Management 
Other

1.															Pa		of	1
	ty/Proje					- 1		Licen	se/Perm	t/Moni	toring 1	Number		Boring	g Numł		017	2
				eaners: 591 me and name of				Data	)	Chantad			ate Dril	line Ca			AW-	
Boring	g Drine	u by (	rinn na	me and name o	of crew chi	el)		Date	Drilling	Starteo			ale Drif	nng Co	mpieteo	1	Dri	ling Method
1E-	20060	002	Jim	Blair, Giles	Enginee	ring A	ssociates		6/2	3/202	0			6/23/	2020		D	irect Push
	nique W			DNR Well I			on Well Name	Final	Static W			Surfa	ce Eleva			Bo		Diameter
		4319							Feet	MSL				et MS				Inches
Boring	-	ion or	Local G	rid Origin	(Check i		nted: 🗌 )	La		0	,	"	Local	Grid Lo			icable)	
State	2.0000000	of N	1337	/4 of Section	3,	тб	s/c/n n, r 10 e			0	,			<b>P</b>				□ E Feet □ W
Facilit		01 1		Count	and the second se	10	N, K IU E	County		Civil	Town/(	City/ or	Village			,		Feet 🔟 w
	3583	171		Dan				13			Farlan		, mug					
San	nple	<u> </u>	1						1	1	Τ	T	1	Soil	Prop	erties		1
	1	1	1 -		Soil/Ro	ock Des	cription							Τ	<b>.</b>			1
0	cd (i	unts	Fee		And Geo	ologic O	rigin For						sive					ts.
lype	th A	°,	h In		Each	n Major	Unit		CS	hic	ram	FID	pres	ture	t id	icity <	-	// men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet						U S U	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
			-	Asphalt					Aspha				0.01	20		<u>H I</u>		H 0
		-	E	Tan to Br	own coa	rse to	fine Sand w	vith										
			-1	some coar	rse to fin	e Grav	vel (Fill)-Dr	У				1.8						
			F															
			E-2															
DP-1	60/42		E						sw									
Dr-1	00/42		-3															
			F									2.6						
			E ₄							1					į			
			È.															
			E_5	∖Wet at 4.8	Feet			Į.	/									
			E			wn fat	Silty Clay,		OL		E	3.4						
			F	, buried Top	psoil wit	h Org	anics		,	ļ		1						
			E	(Native)-N							E							
			E	Gray coars Gravel (N			ttle coarse t	to fine			目							
			-7	Olavel (IN	ative)- w	ci					目	2.8						
DP-2	60/36		Ē															
19463-193			-8						SW		日に						8	
			F								[目:							
			-9									2.2						
			-									2.2						
			-10	End of D		0.0	Dalaria											
				End of Bo Surface	ring at 1	0 Feet	Below Gro	ound										
				Surrace														

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature

Giles Engineering Associates, Inc. N8 W22350 Johnson Drive, Suite A1 Waukesha, WI 53186

Tel: 262-544-0118 Fax: 262-549-5868

This form is authorized by chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Firm

SOIL BORING LOG INFORMATION Form 4400-122

Rev. 5-97

Route To:

Watershed/Wastewater Remediation/Redevelopment Waste Management 🗌 Other 🗌

			ne			License	e/Permi	t/Moni	toring	Numbe	r	Borin	Pa g Num	ber		1
A constant on 1				leaners: 5914 Hwy					Ũ				-	GI	MW-	
Soring	Drille	d By (I	Firm na	ame and name of crew cl	hief)	Date D	rilling S	Started	5 at 1	D	ate Dril	ling Co	mplete	d	Dril	lling Method
	20060		Jim	Blair, Giles Engine	ering Associates		6/2	3/202	0			6/23/	2020		D	irect Push
WI Unio	- C			DNR Well ID No.	Common Well Name	Final S	tatic W		vel	Surfa	ce Eleva		1.0	В	orehole	e Diameter
Boring		1395	local C	Grid Origin (Check	if estimated: 🔲 )	1	Feet	MSL		1		et MS		(If appl		Inches
State Pl		011 01 1	Locar c	ind origin (Cheek	S/C/N	Lat.		°	'	"	Local			- 8 S - 8 S -	licable)	, ПЕ
SW		of N	W 1	1/4 of Section 3,	T 6 N, R 10 E	Lon		o		11		Fee	t 🗆 s			Feet W
Facility 0213		71		County		County C	Code				Village	,				
Sam		/1	T	Dane		13	1	Mcl	Farlar	d	T	Sal	Duom	aution		T
				Soil/F	Rock Description							T	Prop	ernes	<u> </u>	
	Att. 8 ed (ii	unts	Feel		eologic Origin For						sive					s
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Ea	ch Major Unit		CS	ohic	Well Diagram	FID	Compressive Strength	Moisture Content	t id	Plasticity Index	0	RQD/ Comments
and .	Rec	Blov	Dep				U S (	Graphic Log	Well	PID/FID	Com	Mois	Liquid Limit	Plastic Index	P 200	RQD
			-	Asphalt			Asphal									
					coarse to fine Sand											
			E 1	some coarse to m	ne Gravel (Fill)-Dry	·				2.0						
		1														
			-				SW									
P-1 6	50/52															
	- 1		Ę							5.2						
			-4													
		1	-	Gray Clayey Silt	with thin seam of B from 4 to 4.1 Feet	lack	CL-ML									
			-5	(Fill)-Moist	1011 4 10 4.1 1 001	~										
			=	Fat Black to Dar	k Brown Silty Clay		OL			2.4			8			
			-6	buried Topsoil wi (Native)-Moist	th Organics	Г			- H.							
		Ē	-		with little coarse to	fine										
		E	-7	Gravel (Native)-V				ġ	目	2.2						
P-2 60	0/48	F	-				1		目	2.2						
-2 0	0/ 10	Ē	-8				SW									
		F	-													
		Ē	-9							1.6						
		F	:	0 + P = 0	1 01 11	~				1.0		8				
		F	-10	Gravel (Native)-M	ndy Clay with trace	fine /	CL		. <u>E</u> .,							
				End of Boring at		/										
				5												
									1							

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	Firm (	Giles Engineering Associates, Inc.	Tel: 262-544-0118	
	1	N8 W22350 Johnson Drive, Suite A1 Waukesha, WI 53186	Fax: 262-549-5868	
	Constant Constant Constant		And a second	

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

SOIL BORING LOG INFORMATION Form 4400-122

Rev. 5-97

Route To:

Watershed/Wastewater Remediation/Redevelopment

Waste Management Other 🗌

	ty/Proje					Licens	e/Permi	t/Moni	toring 1	Number		Borin	Pa g Numl	ber	of	2	
Former Best Way Cleaners: 5914 Hwy 51									GPZ-1								
Boring Drilled By (Firm name and name of crew chief)				Date I	Date Drilling Started Date D					Drilling Completed			Dril	ling Method			
1E-2006002 Jim Blair, Giles Engineering Associates					6/23/2020					6/23/2020				irect Push			
	nique W			DNR Well ID No.	Common Well Name	Final S	Static W			Surfac	ce Eleva					orehole Diameter	
		1396					Feet MSL				Feet MSL				2" Inches		
	Boring Location or Local Grid Origin (Check if estimated: )				Lat ""					Local Grid Location (If applicable).							
State Plane         S/C/N           SW         1/4 of NW         1/4 of Section         3,         T 6         N, R 10 E					Long			n	Feet S F				□ E Feet □ V				
Facili		01 14		County		County (		Civil	Town/0	City/ or	l Village			<u>,</u>	***	reet 🗆 v	
				13 McFarland					U								
Sai	nple									T	Soil Properties					1	
	& (ii)	ts	et	Soil/Ro			1			U					]		
г S	Number and Type and Type Aud Geologic Origin Fo Recovered (ii) Blow Counts Each Major Unit			ologic Origin For				_		ssiv	0		2		ots		
Number and Type Length At Recovered Blow Cou		oth I	Each Major Unit			CS	Graphic Log	ll gran	PID/FID	Compressive Strength	Moisture Content	uid it	Plasticity Index	8	RQD/ Comments		
Nu and	Ler Rec	Blo	Del				US	Gral Log	Well Diagram	DID	Con	Moi	Liquid Limit	Plastic Index	P 200	RQI	
		F	F	Concrete			Concret	e									
			E,	Yellow-Brown co													
			-	some coarse to fin	у				12.8								
			F,														
DP-1	48/42		2			SW											
			-														
			<u>-</u> 3	6						44.2							
			E	Grav Clavev Silt v	with trace fine Grav	/el	+										
			-4	and seam of Black	oarse												
		1	2	rounded Gravel at	4.4 feet (Fill)-Moi	st	CL-MI	Ì.									
			-5					32.2									
			E	Black to Dark Bro buried Topsoil wit	wh fat Silty Clay,		OL										
DP-2	48/48	$F^{6}$ (Native)-Moist															
			E	Gray coarse Sand	fine												
			-7	Gravel (Native)-W	/et					4.9							
			-														
			-8				SW		8 - 6								
			-						E								
-9		-9					1		3.0								
DP-3 48/24	=						E	5.0									
	48/24	ŀ	-10	Gray to Brown Silt Gravel (Native)-M	ine				12	. 1							
1-5	40/24	E	-	Glaver (Ivalive)-ivi	oist				E	1.2							
			-11				CL										
										2.3							
		ŀ	-12														
harah	v cortifu	that the	ne infor	mation on this form is tru	e and correct to the har	tofmul	in operational										

eby certify that the information on this form is true and correct to the best of my knowledge.

Signature		Giles Engineering Associates, Inc.	Tel: 262-544-0118		
		N8 W22350 Johnson Drive, Suite A1 Waukesha, WI 53186	Fax: 262-549-5868		

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

the second se	g Num	ber	GP2	Z-1 Use only as an attachment to Form 4400	-122.				concernants.		Pa	age 2	of	2
San	nple			0.10 1.0						Soi	l Prop	perties		
	t. & I (in)	nts	feet	Soil/Rock Description And Geologic Origin For					ve					
ber ype	h At rered	Cou	InF	Each Major Unit	s	.2		9	ressi	at te		ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Baon Major Onte	SC	Graphic	Well	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	200	RQD/ Comments
7.8	JW	B	-	Tannish Yellow well sorted fine Sand	Þ	0 -		B	0.2	ZŬ		E E	Р	<u> ŽŬ</u>
			Ē	over weathered Sandstone at 15 Feet										
			-13				<u> </u>	2.6						6
			Ε											
DP-4	48/12		-14		SP	1								
			E 											
1			E					1.3						5
			-16	Probe Refusal at 16 Feet Below Ground			4							
				Surface									1	
									5					
						8								
							8				1			
				54										
	ł.													
												1		
,	3		,	1	1		1	1	1	1	1	1	1	

Route To:

Watershed/Wastewater Remediation/Redevelopment Waste Management 🗌 Other 🗌

Rev. 5-97

															of	2
Facility/Project Name Former Best Way Cleaners: 5914 Hwy 51				License/Permit/Monitoring Number Boring Number GPZ-2												
Boring Drilled By (Firm name and name of crew chief)										ling Method						
					0											
	20060		Jim I	Blair, Giles Enginee				3/202				6/23/	2020			irect Push
WIU	nique W	4397	).	DNR Well ID No.	Common Well Name	Final S			vel	Surfac	e Eleva		T	Bo		Diameter
Borin			Local G	rid Origin (Check	if estimated: 🔲 )	1	Feet	MSL				et MS		(If appl		Inches
12120-0010-001	Plane			5 (	S/C/N	Lat.		o 	<u>'</u>	"	Local	ond D			ieaoie)	ПЕ
SW		of N	W 1/	4 of Section 3,	T 6 N, R 10 E	Lon	g	°	<u> </u>	"			t 🗆 s			Feet 🗍 W
Facilit	·	71		County		County C	ode			'City/ or	Village					
	35831 nple		1 1	Dane		13		McF	arla	nd						
Sai	1			Soil/D	ock Description							Soil	Prop	erties		
	tt. & d (in)	ints	Feet		ologic Origin For						ve					
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		n Major Unit		s	E.			Compressive Strength	ut e		ity		RQD/ Comments
fuml T pu	engt	low	ept		i ingoi eini		sc	Graphic Log	'ell	PID/FID	omp	Moisture Content	Liquid Limit	Plasticity Index	P 200	D/D/
28	JR	B		Asphalt			⊃ Asphal		30		S S	ΣŬ	Li Li	PI L	4	<u> </u>
			F		to fine Sand with	some	rspilai						į.			
			-1	coarse to fine Grav		onic				1.7						
			E							1.7						
			-2													
DP-1	60/60		Εl													
DI-I	00/00		-3				SW								1	
			E							1.8						
			-4			1										
			E													
			-5													
			E	Black to Dark Bro burried Topsoil wi	wn fat Silty Clay		OL			2.9						
		1		(Native)-Moist	in Organics	Л										
			=	Gray coarse Sand	with little coarse to	fine										
			-7	Gravel (Native)-W	'et											
			=							2.8						
DP-2	60/42		-8				sw									
			-													
			- 9							2.2						
			-	Create to Dreamer Co	4. 01. 14.	~										
		E	-10	Gray to Brown Sar Gravel (Native)-W	et	nne										
				(			CL									
		E	-11				CD			1.5						
<u> </u>		t	-12													

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	Firm Giles Engineering Associates, Inc.	Tel: 262-544-0118
- wh	N8 W22350 Johnson Drive, Suite A1 Waukesha, WI 53186	Fax: 262-549-5868

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completions of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

	ig Num	ber	GPZ	Z-2 Use only as an attachment to Form 4400-	-122.						P	age 2	of	2
Sar	nple									Soi	l Prop	perties		_
	t. & l (in)	nts	eet	Soil/Rock Description And Geologic Origin For					ve					
er ype	h At ered	Cou	InF	Each Major Unit	s	.e			ressit	er e		ţi		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Luci mujor emit	ISC	Graphic	Well	PID/FID	Compressive Strength	Moisture Content	Limit	Plasticity Index	P 200	RQD/ Comments
				Tannish-Yellow well sorted fine Sand	D	0.	1 > 4		0 S	20			P	22
DP-3	60/24		Ē.	over weathered Sandstone at 15 Feet				1.2						
			-13 E			1		2.7						
			E-14				目							
			- 14											
			E-15											
			Ē					3.1						
			-16		SP									
			Ē											
			-17					2.6						
DP-4	60/60		- 10											
							- bead							
			-19											
			-					2.3						
			-20	End of Boring at 20 Feet Below Ground			-							
				Surface										
							5							
									1					
											3			
			1											
		7.2	1.55						20			,		

	Watershed/Wastewater	Waste Management	MONITORING WELL C Form 4400-113A	CONSTRUCTION Rev. 7-98
Facility/Project Name 1E-2006002 Former Best Way Cleaners - 5914 Hwy 51	Local Grid Location of Well		Well Name GMW-1	
Facility License, Permit or Monitoring No.	Local Grid Origin 🔲 (estima	ated:  ) or Well Location  Long.  'or	Wis. Unique Well No. Di WA318	NR Well ID No.
Facility ID0213583171	St. Plane fL N Section Location of Waste/Sou	ft. E. S/C/N		<u>3 / 2020</u>
Type of Well Well Code/_mw	SW1/4 of NW 1/4 of Sec_	3_,T. 6_N,R. 10 W		(first, last) and Firm
Distance from Waste/ Enf. Stds. Sourceft. Apply	u 🗆 Upgradient s 🗆 d 🗆 Downgradient n 🗖	Sidegradient	Giles Engineering	and the second
A. Protective pipe, top elevation B. Well casing, top elevation C. Land surface elevation D. Surface seal, bottom ft. MS	ft. MSL ft. MSL ft. MSL ft. MSL	1. Cap and lock? 2. Protective cover a. Inside diamete b. Length: c. Material:		$\begin{array}{c c} \hline \textbf{X} & \textbf{Yes} \ \square & \textbf{No} \\ \hline & -4 & -\text{in.} \\ & -1 & -6. \\ \textbf{Steel} & \boxed{\textbf{X}} & 04 \\ \hline \end{array}$
12. USCS classification of soil near scree	\$ -30 C	d. Additional pro	alection?	Other D
GP GM GC GW S SM SC ML MH G Bedrock		If yes, describ 3. Surface scal:	B	entonite 🗆 30 Concrete 🖾 01
	Yes 🖾 No tary 🗆 50	4. Material between	n well casing and protective	Other 🗆 🦾
Hollow Stem Av	1000		B	entonite 🖾 30 Other 🗖 🛄
	Air □ 01 None ⊠ 99 Yes ⊠ No	cLbs/gal r d% Bentor eFt f. How installed 6. Bentonite scal:	mud weight Bentonite-sa mud weight Bentonite hite Bentonite-cemu volume added for any of the retrie	and slurry     35       te slurry     31       ent grout     50       he above     50       Tremie     01       pumped     02       Gravity     08       granules     33
E. Bentonite seal, top ft. MS	L or 1 fl.	b. □1/4 in. ⊠ c		ite chips 🖾 32 Other 🗆 🚑
F. Fine sand, top ft. MS		7. Fine sand materia	al: Manufacturer, product n	ame & mesh size
G. Filter pack, top	Lor_5A.	b. Volume addee		
	L or _ 5 ft.	8. Filter pack mater	rial: Manufacturer, product r e-pak 20 x 40 silica san d 0.02 ft ³	
	Lor10ft.	9. Well casing:	Flush threaded PVC sched Flush threaded PVC sched	
an a	L orfl.	10. Screen material:	PVC	Other
	L or ft.	a. Screen type:	Fac	tory cut 🖾 11 ous slot 🗖 01
<b>L</b> Borehole, diameter $-\frac{3}{-}$ - in.	NE2	b. Manufacturer	Monoflex	Other 🗆 🗾
M. O.D. well casing $-\frac{1.7}{2}$ in.		c. Slot size: d. Slotted length		0.01_in. 10 ft.
N. I.D. well casing $-\frac{1.0}{2}$ in.		11, Backfill material		None 🖾 14 Other 🗖 📲
I hereby certify that the information on this	the second se	oest of my knowledge.		
Signature Q. A	Firm Giles	Engineering Associates, In	ic.	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by cfs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with cfs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

n

....

MONITORING	WELL DEVELOPMENT
Form 4400-113B	Rev. 7-98

Form 4400-113B

Koule to: Watershed	Watershed/Wastewater				
Remediatio	on/Redevelopment X	Other 🕅			
t <b>Name</b> 1E-2006002 Vay Cleaners - 5914 Hwy 51	County Name Dane				

.... 14 ment 🗌

Facility/Project Name1E-2006002 Former Best Way Cleaners - 5914 Hwy 51	County Name Dane		Well Name GMW-	1
Facility License, Permit or Monitoring Number	County Code 13	Wis. Unique Well N		ill ID Number
1. Can this well be purged dry?	Yes 🗆 No	11. Depth to Water	Before Development	After Development
surged with bailer and pumped     Image: Surged with block and bailed       surged with block and pumped     Image: Surged with block, bailed and pumped	4 1 6 1 4 2 6 2 7 0 2 0	(from top of well casing) Date	a5,02ft. b. $\frac{07}{m m} / \frac{02}{d d} / \frac{2020}{y y y}$ c12:10 🛛 p.m.	$\frac{0}{y} = \frac{07}{m} \frac{02}{d} \frac{02}{y} \frac{2020}{y}$
bailed only       □         pumped only       □         pumped slowly       □         Other       □         3. Time spent developing well          4. Depth of well (from top of well casisng)	10 51 50 <u>min.</u> 10, <u>ft.</u> 75 <u>in.</u>	<ul><li>12. Sediment in well bottom</li><li>13. Water clarity</li></ul>	4,32 inches Clear □ 10 Turbid ⊠ 15	0 inches 0 inches Clear ⊠ 2 0 Turbid □ 2 5 (Describe) 
	gal. 1.5 gal.	-	ds were used and well is a	
<ol> <li>8. Volume of water added (if any)</li> <li>9. Source of water added</li> </ol>	) gal.	solids	mg/l	
10. Analysis performed on water added?	Zes □ No	First Name: Kelly	y: Name (first, last) and Firm Last Name neering Associates, I	e: Hayden

17. Additional comments on development:

-

Name and Address of Facility Contact /Owner/Responsible Party First Last Name:Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: FH of McFarland LLC	Signature: Ky Hy
Street: 733 N Main Street	Print Name: Kelly Hayden
City/State/Zip:Oregon, WI 53575	Firm:Giles Engineering Associates, Inc

NOTE: See instructions for more information including a list of county codes and well type codes.

	Watershed/Wastewater 🔲 Remediation/Redevelopment	Waste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name 1E-2006002 Former Best Way Cleaners - 5914 Hwy 51	1 10111		Well Name GMW-2
Facility License, Permit or Monitoring No.	Local Grid Origin 🔲 (estin	hated: ) or Well Location Long or	Wis. Unique Well No. DNR Well ID No. WA319
Facility ID 0213583171		N,ft. E. S/C/N	Date Well Installed 06 / 23 / 2020
Type of Well Well Code <u>11</u> / <u>mw</u>	SW1/4 of NW 1/4 of Sec Location of Well Relative to	<u>.3., t. 6 n. r. 10</u>	
Distance from Waste/ Enf. Stds. Sourceft. Apply	u 🗆 Upgradient s [ d 🗆 Downgradient n [	Sidegradient	Giles Engineering Associates, Inc
A. Protective pipe, top elevation	fr. MSL	1. Cap and lock?	🛛 Yes 🗆 No
B. Well casing, top elevation	ft. MSL	a. Inside diamete	
C. Land surface elevation	I.O n	b. Length: c. Material:	Steel 🔯 04
12. USCS classification of soil near screet	R	d. Additional pro	Other Decision?  Yes  X No
GP GM GM GC GW G S		If yes, describ	e:
Bedrock		3. Surface scal:	Bentonite 30 Concrete 30
13. Sieve analysis performed?	Yes 🖾 No		Other 🗆 👘
	tary D 50	3. Surface scal: 4. Material betweer 5. Annular space sc bLbs/gal r cLbs/gal r d% Bentor cFt f. How installed 6. Bentonite scal: b1/4 in. @ c7. Fine sand material	n well casing and protective pipe: Bentonite 23 30
Hollow Stem Av Direct-Push O	ther 🖾 📖		Other 🗆 🛄
and the second sec		5. Annular space se	
15. Drilling fluid used: Water 🗆 0 2	Air 🗆 01	bLbs/gal r	nud weight Bentonite-sand slurry 35
Drilling Mud 🗆 0 3 1	None 2 99	cLbs/gal r	nud weight Bentonite slurry 🛛 31
16. Drilling additives used?	Yes 🗵 No	d % Bentor	ite Bentonite-cement grout 🛛 50
		f. How installed	³ volume added for any of the above Tremie □ 01
Describe		f. How installed	Tremie pumped 🔲 02
17. Source of water (attach analysis, if requ	iired):		Gravity 🖾 08
Contractor of the second second second		6. Bentonite scal:	a. Bentonite granules 🔲 33
E. Bentonite seal, topft. MS	Lor ¹ ft.	b. □1/4 in. ⊠	3/8 in. □1/2 in. Bentonite chips ⊠ 3 2 Other □
		7. Fine sand materia	al: Manufacturer, product name & mesh size
		/ a	
G. Filter pack, top ft. MS	Lor A.	b. Volume addee	
H. Screen joint, top	L or _ 5 fl.	Monoflex pre	ial: Manufacturer, product name & mesh size -pak 20 x 40 silica sand
I. Well bottomft. MS	L or ft.	b. Volume addee 9. Well casing:	d 0.02 ft ³ Flush threaded PVC schedule 40 $\boxtimes$ 2.3 Flush threaded PVC schedule 80 $\square$ 2.4
J. Filter pack, bottomft. MS	L or ft.		Other 🗆 🕌
K. Borehole, bottom	L or ft.	10. Screen material: a. Screen type:	Factory cut 🖾 11
L. Borehole, diameter $-3$ - in.			Continuous slot  0 1 Other  0
M. O.D. well easing $-1.7$ in.		b. Manufacturer c. Slot size:	
N. I.D. well casing $1.0$ in.		d. Slotted length 11. Backfill material	(below filter pack): None 🖾 1.4
I hereby certify that the information on this	form is true and correct to the	best of my knowledge.	Other 🛛 📰
Signature	Firm		
- Jy with	Giles	Engineering Associates, In	ic

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

MONITORING	WELL	DEVELOPMENT
Form 4400-113B		Rev. 7-98

Form 4400-113B

Route to: Watershed/Wa	stewater	Waste Management
Remediation/R	edevelopment X	Other
Facility/Project Name1E-2006002 Former Best Way Cleaners - 5914 Hwy 51	County Name Dane	Well Name GMW-2
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Number DNR Well ID Number
1. Can this well be purged dry?	Yes 🛛 No	11. Depth to Water Before Development After Development
surged with bailer and pumped       Image: Constraint of the surged with block and bailed         surged with block and pumped       Image: Constraint of the surged with block, bailed and pumped         surged with block, bailed and pumped       Image: Constraint of the surged with block, bailed and pumped         compressed air       Image: Constraint of the surged with block         bailed only       Image: Constraint of the surged with block	4 1 6 1 4 2 6 2 7 0 2 0 1 0 5 1 5 0	(from top of well casing) a3.91ft9.71ft. Date b. $\frac{07}{m m} / \frac{02}{d d} / \frac{2020}{y y y y} \frac{07}{m m} / \frac{02}{d d} / \frac{2020}{y y y}$ Time c10:30 p.m11:00 p.m. 12. Sediment in well inches 0 inches bottom 13. Water clarity Clear 10 Clear 20
4. Depth of well (from top of well casisng)	0min. 10ft. 75in.	Turbid ☑     1.5     Turbid □     2.5       (Describe)     (Describe)       translucent brown     clear
	gal. _5 gal.	Fill in if drilling fluids were used and well is at solid waste facility:
8. Volume of water added (if any)	0 gal.	14. Total suspended mg/l mg/l mg/l solids
9. Source of water added		15. COD mg/l mg/l
(If yes, attach results)	Yes 🗆 No	16. Well developed by: Name (first, last) and Firm         First Name: Kelly       Last Name: Hayden         Firm: Giles Engineering Associates, Inc.
17. Additional comments on development:		

Name and Address of Facility Contact /Owner/Responsible Party First Last Name:Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: FH of McFarland LLC	Signature: Ky H-1
Street: 733 N Main Street	Print Name: Kelly Hayden
City/State/Zip:Oregon, WI 53575	Firm: Giles Engineering Associates, Inc.

NOTE: See instructions for more information including a list of county codes and well type codes.

	Watershed/Wastewater	Waste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name 1E-2006002 Former Best Way Cleaners - 5914 Hwy 51	Remediation/Redevelopment X Local Grid Location of Well	Other	Well Name GMW-3
Facility License, Permit or Monitoring No.	Local Grid Origin 🛛 (estima	ated:  ) or Well Location  Long.	Wis, Unique Well No. DNR Well ID No. WA395
Facility ID0213583171	St. Plane ft. N Section Location of Waste/Sou	ft. E. S/C/N	Date Well Installed 6 / 23 / 2020
Type of Well Well Code <u>11</u> / <u>mw</u>	SW1/4 of NW 1/4 of Sec.	3_,T. 6_N,R. 10 W	Well Installed By: Name (first, last) and FirmJames Blair
Distance from Waste/ Enf. Stds. Sourceft. Apply	u 🗆 Upgradient s 🗆	Sidegradient Not Known	Giles Engineering Associates, Inc
B. Well casing, top elevation	RESERVATION OF T	1. Cap and lock? 2. Protective cover a. Inside diamete b. Length; c. Material: d. Additional pro If yes, describ 3, Surface scal:	r:4in. _1_fi. Steel ⊠ 0.4 Other □_1 Otection? □ Yes ⊠ No
13. Sieve analysis performed?	658	×	Other 🗆 🔡
Hollow Stem Au Direct-Push O 15. Drilling fluid used: Water □ 0 2	Air 🗆 01	5. Annular space se	a well casing and protective pipe: Bentonite 23 0 Other 2 al: a. Granular/Chipped Bentonite 23 3 nud weight Bentonite-sand slurry 23 5
	None IZI 99 Yes IZI No hired):	d% Bentor eFt f. How installed 6. Bentonite scal:	Tremie pumped D 02 Gravity D 08 a. Bentonite granules D 33
E. Bentonite seal, topft. MS	L or	/ c	3/8 in. □1/2 in. Bentonite chips ⊠ 3 2 Other □
F. Fine sand, topft. MS	Lor_4f.	X/ a	al: Manufacturer, product name & mesh size
H. Screen joint, top	L or _ 5 ft.		ial: Manufacturer, product name & mesh size -pak 20 x 40 silica sand
	Lor_10_ft.	9. Well casing:	Flush threaded PVC schedule 40 🖾 23 Flush threaded PVC schedule 80 🗆 24
	L or ft.	10. Screen material:	Other
	L or 10 ft.	a. Screen type:	Factory cut 🖾 11 Continuous slot 🗖 01
L Borehole, diameter $-\frac{3}{}$ in.		b. Manufacturer	Monoflex Other
M. O.D. well casing $-\frac{1.7}{2}$ in.		c. Slot size:	0.01_ in.
N. I.D. well casing $-\frac{1.0}{2}$ in.		d. Slotted length 11. Backfill material	
I hereby certify that the information on this	form is true and correct to the b	est of my knowledge.	
Signature	Pirm Giles I	Engineering Associates, In	С.

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

MONITORING	WELL DEVELOPMENT
Form 4400-113B	Rev. 7-98

Form 4400-113B

Route to:	Watershed/Wastewater	
-----------	----------------------	--

Waste Management

Remediation/Re	development X	Other
Facility/Project Name1E-2006002 Former Best Way Cleaners - 5914 Hwy 51	County Name Dane	Well Name GMW-3
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Number WA395 DNR Well ID Number
1. Can this well be purged dry?	Yes 🗆 No	11. Depth to Water
2. Well development method          surged with bailer and bailed       □         surged with bailer and pumped       □         surged with block and bailed       □         surged with block and pumped       □         surged with block, bailed and pumped       □         compressed air       □         bailed only       □         pumped only       □         Other       □	4 1 6 1 4 2 6 2 7 0 2 0 1 0 5 1 5 0	(from top of well casing) a4.11ft9.82ft. Date b. $\frac{07}{m m} / \frac{02}{d d} / \frac{2020}{y y y y} \frac{07}{m m} / \frac{02}{d d} / \frac{2020}{y y y y}$ Time c11:10p.m11:25p.m. 12. Sediment in well bottom 13. Water clarity Clear10 Clear20
<ul> <li>4. Depth of well (from top of well casisng)</li> <li>5. Inside diameter of well</li></ul>	5min. 10ft. 75in.	Turbid □ 1 5       Turbid □ 2 5         (Describe)       (Describe)         opaque gray       clear
	gal. <u>2.5_</u> gal.	Fill in if drilling fluids were used and well is at solid waste facility:
8. Volume of water added (if any)	) gal.	14. Total suspended mg/l mg/l mg/l solids
9. Source of water added		15. CODmg/lmg/l
10. Analysis performed on water added?	Tes 🗆 No	16. Well developed by: Name (first, last) and Firm         First Name:       Kelly         Last Name:       Hayden         Firm:       Giles Engineering Associates, Inc.

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party         First       Last         Name:       Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: FH of McFarland LLC	Signature: Ky Hg
Street: 733 N Main St	Print Name: Kelly Hayden
City/State/Zip:Oregon, WI 53575	Firm: Giles Engineering Associates, Inc.

NOTE: See instructions for more information including a list of county codes and well type codes.

Facility ID         O213553171         State         n.         n.         n.         E.         State           Type of Woll         Section Location of Water/Source         State State         N.         N.         N.         N.         N.         Date Woll Installed By Name (first, Lay and Firm James Blair         Date Woll Installed By Name (first, Lay and Firm James Blair         Date State State         Date State State         Well Installed By Name (first, Lay and Firm James Blair         Glies Engineering Associates, Int           A. Protective cover pipe:         A.         A.         A.         A.         State State         State State         State State         Glies Engineering Associates, Int           B. Well exiting, top elevation         -         f.         MSL         -         A.         Free Blair         Glies Engineering Associates, Int           D. Surface stal, bottom         -         f.         MSL         -         f.         State         Baterial:         State         S		Watershed/Wastewater	Waste Management	MONITORING WELL CONSTRU Form 4400-113A Rev. 7-98	CTION
Facility License, Permit or Monitoring No. Local Grid Origin [       (=stimatel: []) or Woll Location [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] Wis. Unajoue No. [] NR Woll 10 No. [] No. [	Facility/Project Name 1E-2006002	Local Grid Location of Well		Well Name GPZ-1	
Facility ID       0213583171       Sceedin Lossion of Water/Source       International Construction of Water/Source         Type of Well       Secedin Lossion of Water/Source       Swith 4 of NW. 14 of Sec. 3       6 N. R. 10       Well Installed By Name (frint law) of Firm         Justace sch, how match and the provide frame water/Source       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source         Justace sch, how match and the provide frame water/Source       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source         Justace sch, how match and the provide frame       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source         Justace sch, how match and the provide frame       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source         Justace sch, how match and provide frame       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source         Justace sch, how match and provide frame       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source       Construction of Water/Source         Justace sch, how match and provide frame water/Source	Facility License, Permit or Monitoring No.	Local Grid Origin 🔲 (estima	ated:  ) or Well Location	WA396	) No.
Type of Wall       Will 4 of NW 1/4 of Sec. 3 T. 6 N. R. 10 20 K       Well find by Name (fint, has) and Firm James Blair         Joint colspan="2">Observe that the integration: $s = stategration: s = n = n = n = n = n = n = n = n = n =$	Facility ID0213583171	St. Plane ft. N	ft. E. S/C/N		
Distance from Waste' Ent. Stds. u $\Box$ Operation $s \Box$ Sidegradient $\Box$ Giles Engineering Associates, inc A. Protective pips, top clevation $\Box$ f. MSL A. Protective pips, top clevation $\Box$ f. MSL B. Well easing, top clevation $\Box$ f. MSL C. Land surface clevation $\Box$ f. MSL C. Land surface clevation $\Box$ f. MSL D. Surface calls bottom for a surface calls bottom for a surface call for a surface call for a surface calls bottom for a surface calls for any of the above f. How installed: Termine for a surface call for any of the above f. How installed: Termine for any first bottom for a surface call for any of the above f. How installed: Termine for a surface call for any of the above f. How installed: Termine for any of the above f. How installed: Manufacturer, product name & meth size a. b. Ult/4 in \$\mathbf{N}_3 (fin \operator I) in the above for any of the above f. How installed: Termine for any of the above f. How installed: Manufacturer, product name & meth size a. b. Volume added for any of the above f. How installed: Manufacturer, product name & meth size a. b. Volume added for any of the above f. How installed: Manufacturer, product name & meth size a. b. Volume added for any of the abo	1104 COGO1	SW1/4 of NW 1/4 of Sec.	<u>3 . t. 6 n. r. 10 </u>	Well Installed By: Name (first, last) a	
A. Protective pipe up elevation		u 🗆 Upgradient 🛛 s 🗖	Sidegradient		
Describe       Trenuic pumped       0.2         17. Source of water (attach analysis, if required):       Gravity       0.2         17. Source of water (attach analysis, if required):       Source of water (attach analysis, if required):       Trenuic pumped       0.2         17. Source of water (attach analysis, if required):       Source of the source, roduct name & mesh size         G. Filter pack, top       ft. MSL or       ft. MSL or       ft. MSL or       ft. ft. MSL or	12. USCS classification of soil near screet         GP       GM       GC       GW       S         SM       SC       ML       MH       G         Bedrock       I       II.       Sieve analysis performed?       II.         13. Sieve analysis performed?       II.       II.       HH       G         Id. Drilling method used:       Ro       Hollow Stem Au       O         Direct-Push       O       O       IS. Drilling fluid used:       Water       0.2         Drilling Mud       0.3       II	ft. MSL $r_{1.0}$ ft. $r_{1.0}$ f	2. Protective cover ( a. Inside diamete b. Length: c. Material: d. Additional pro If yes, describ 3. Surface scal: 4. Material between 5. Annular space se bLbs/gal n cEt 8. Material between 5. Annular space se bLbs/gal n cEt	pipe: r:	in. f. 0 4 0 30 1 30 1 30 1 30 1 30 1 30 1 33 1 33
G. Filter pack, top       ft. MSL or       8       ft.         H. Screen joint, top       ft. MSL or       8       ft.         H. Screen joint, top       ft. MSL or       8       ft.         I. Well bottom       ft. MSL or       13       ft.         J. Filter pack, bottom       ft. MSL or       13       ft.         J. Filter pack, bottom       ft. MSL or       13       ft.         M. O.D. well casing       1.7       in.       0.01       in.         M. O.D. well casing       1.7       in.       0.01       in.         M. O.D. well casing       1.0       in.       11. Backfill material (below filter pack):       0.01         N. I.D. well casing       1.0       in.       11. Backfill material (below filter pack):       None II 4         Other       12       14.       14.       14.       0.01       14.	<ul> <li>17. Source of water (attach analysis, if required in the second state of the</li></ul>	sL or	6. Bentonite scal: b. □1/4 in. ⊠ c	Tremie pumped Gravity 12 a. Bentunite granules 3/8 in. 1/2 in. Bentonite chips 12 Other 12	08 33 32
I. Well boutomft. MSL or13ft. J. Filter pack, bottomft. MSL or13ft. J. Filter pack, bottomft. MSL or13ft. K. Borehole, bottomft. MSL or13ft. L. Borehole, diameter3in. M. O.D. well casing1.7in. M. I.D. well casing1.0in. M. I.D. well casingin. M. I.	G. Filter pack, top	iL or _ 8 fl.	8. Filter pack mater	ial: Manufacturer, product name & me -pak 20 x 40 silica sand	Transform.
I. Filter pack, bottom       ft. MSL or       13       ft.       10, Screen material:       PVC       11         K. Borehole, bottom       ft. MSL or       13       ft.       10, Screen material:       PVC       11         a. Screen type:       Factory cut [X] 11       Continuous slot [] 01       01         L. Borehole, diameter       -3       in.       6.       Manufacturer       Monoflex       0.01       in.         M. O.D. well casing       -1.7       in.       6.       Manufacturer       Monoflex       0.01       in.         N. I.D. well casing       -1.0       in.       11, Backfill material (below filter pack):       None [X] 14         Other       -10 ft.         I. Hereby certify that the information on this form is true and correct to the best of my knowledge.       Other       0         Signature       Pfirm	I. Well bottom	Lor13_ft.		Flush threaded PVC schedule 40	23
K. Borehole, bottom      ft. MSL or13ft.       a. Screen type:       Factory cut [X] 11         L. Borehole, diameter	J. Filter pack, boltom ft_ MS	L or fl.		Other	
M. O.D. well casing $-\frac{1.7}{-}$ in. N. I.D. well casing $-\frac{1.0}{-}$ in. I hereby certify that the information on this form is true and correct to the best of my knowledge. Bignature Prim		L or ft.		Factory cut 🛛 Continuous slot	01
M. O.D. well casing       1.0       in.       11, Backfill material (below filter pack);       None II 4         N. I.D. well casing       1.0       in.       11, Backfill material (below filter pack);       None II 4         I hereby certify that the information on this form is true and correct to the best of my knowledge.       Other II       III	4.7			Monoflex	- 1.a.
I hereby certify that the information on this form is true and correct to the best of my knowledge.			d. Slotted length	: (below filter pack): None 🖾	10 n.   14
Lillog Engineering Accosition Inc	I hereby certify that the information on this Signature	Firm	Contraction of the second second		

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

Route to: Watershed/Wastewater

MONITORING	WELL DEVELOPMEN'	Г
Form 4400-113B	Rev. 7-98	

Form 4400-113B

Remediation/Red	levelopment X	Other
Facility/Project Name1E-2006002 Former Best Way Cleaners - 5914 Hwy 51	County Name Dane	Well Name GPZ-1
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Number WA396 DNR Well ID Number
1. Can this well be purged dry?	es 🗆 No	11. Depth to Water
surged with bailer and pumped	4 1 6 1 4 2 6 2 7 0 2 0 1 0 5 1 5 0	(from top of well casing) a5.02ft11.86 ft. Date b. $\frac{07}{m m} / \frac{02}{d d} / \frac{2020}{y y y} \frac{07}{m m} / \frac{02}{d d} / \frac{2020}{y y y} \frac{2020}{y y y}$ Time c11:40 p.m12:05 a.m. 12. Sediment in well10.56 inches0 inches bottom 13. Water clarity Clear 10 Clear 20
<ul> <li>3. Time spent developing well25</li> <li>4. Depth of well (from top of well casisng)1</li> <li>5. Inside diameter of well0.7</li> </ul>	min. 3ft.	Turbid ☑ 1 5       Turbid □ 2 5         (Describe)       (Describe)         opaque brown       clear
	gal. 1.5 gal.	Fill in if drilling fluids were used and well is at solid waste facility:
8. Volume of water added (if any)0	gal.	14. Total suspended mg/l mg/l mg/l solids
9. Source of water added		15. CODmg/lmg/l
10. Analysis performed on water added? (If yes, attach results)	es 🗆 No	16. Well developed by: Name (first, last) and Firm         First Name:       Kelly         Last Name:       Hayden         Firm:       Giles Engineering Associates, Inc.

Waste Management

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Last Name:Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm: FH of McFarland LLC	Signature: Ky Hy-
Street:733 N Main St	Print Name: Kelly Hayden
City/State/Zip: Oregon, WI 53575	Firm: Giles Engineering Associates, Inc.

NOTE: See instructions for more information including a list of county codes and well type codes.

	Watershed/Wastewater 🛄 Remediation/Redevelopment 🔀	Waste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name 1E-2006002 Former Best Way Cleaners - 5914 Hwy 51	Remediation/Redevelopment	S:	Well Name GPZ-2
Facility License, Permit or Monitoring No.	Local Grid Origin 🔲 (estim	ated:  ) or Well Location  Long.	Wis. Unique Well No. DNR Well ID No. WA397
Facility ID0213583171	St. Plane ft. N Section Location of Waste/Sou	1 ft. E. S/C/N	Date Well Installed 06 / 23 / 2020 m m d d y y y y
Type of Well Well Code <u>11</u> / <u>mw</u>	SW1/4 of NW 1/4 of Sec.	<u>3 . T. 6 N. R. 10 8</u>	Well Installed By: Name (first, last) and Firm James Blair
Distance from Waste/ Enf. Stds. Sourceft. Apply	u 🗆 Upgradient s 🗆	] Sidegradient ] Not Known	Giles Engineering Associates, Inc
A. Protective pipe, top clevation	ft.MSL	1. Cap and lock?	Dipe:
B. Well casing, top elevation	ft. MSL	a. Inside diamete	
C. Land surface elevation	t. MSL	b. Length:	_ 1 _ n.
D. Surface seal, bottom ft. MS	1.0 ,	c. Material:	Steel D 04
	\$452CO.141		Other 🗆 🔛
		d. Additional pro If yes, describ	e;
Bedrock		3. Surface scal:	Bentonite 🗆 30 Concrete 🖾 01
13. Sieve analysis performed?	Yes 🖾 No		Other 🗆 👘
14. Drilling method used: Rot	tary 🗆 50	4. Material between	well casing and protective pipe:
Hollow Stem Au	1ger 🗆 4 1		Bentonite 🖾 30
Direct-Push 0	ther 🛛 📖 🛛 🎆	×	Other 🗆 🎆
at the transition of the state of		5. Annular space se	al: a. Granular/Chipped Bentonite 🖾 3 3
15. Drilling fluid used: Water D 0 2	Air 🗆 01	bLbs/gal a	nud weight Bentonite-sand slurry 35
Drilling Mud 🗆 0 3 N	Vone IX 99		nud weight Bentonite slurry 🛛 3 1
16. Drilling additives used?	Yes 🖾 No		ite Bentonite-cement grout 🛛 50
		KOO	volume added for any of the above
Describe		f, How installed	
17. Source of water (attach analysis, if requ	uired):		Tremie pumped D 02 Gravity Ø 08
A CONTRACTOR OF A CARD		6. Bentonite seal:	Gravity 🖾 08 a. Beniumite granules 🔲 33
	🕅	K001	3/8 in. 1/2 in. Bentonite chips 🖾 32
E. Bentonite seal, top ft. MS	Lorft.	c	Other D
F. Fine sand, top ft. MS	Lor10ft.	7. Fine sand materi	al: Manufacturer, product name & mesh size
G. Filter pack, top ft. MS	Lor_11_A.	b. Volume addee	
H. Screen joint, top ft. MS.	Lor_11_0.		ial: Manufacturer, product name & mosh size -pak 20 x 40 silica sand
I. Well bottom	Lor_16_ft.	b. Volume adde 9. Well casing:	
			Flush threaded PVC schedule 80 🔲 24
	L orft.	10. Screen material:	Other
K. Borchole, bottom	L or16ft.	R. Screen type:	Factory cut 🖾 11 Continuous slot 🗆 01
L. Borehole, diameter $-\frac{3}{-}$ in.			Monoflex
M. O.D. well casing $-\frac{1.7}{2}$ in.		b. Manufacturer c. Slot size: d. Slotted length	0.01 _ in.
N. 1.D. well casing $-\frac{1.0}{2}$ in.		d. Slotted length 11. Backfill material	
I hereby certify that the information on this	form is true and correct to the	hest of my knowledge	
Signature	Firm	over of my knowledge.	
- Ca	Giles	Engineering Associates, In	C

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

MONITORING	WELL DEVELOPMENT	ſ
Form 4400-113B	Rev. 7-98	

Form 4400-113B

Route to: Watershed/Wastewater

Waste Management

Remediation/Re	development X	Other
Facility/Project Name1E-2006002 Former Best Way Cleaners - 5914 Hwy 51	County Name Dane	Well Name GPZ-2
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Number WA397 DNR Well ID Number
1. Can this well be purged dry?	Yes 🖾 No	11. Depth to Water
	41 61 42 62 70 20 10 51 50	(from top of well casing) a3.81ft3.84ft. Date b. $\frac{07}{m} / \frac{02}{d} / \frac{2020}{y \ y \ y \ y} \frac{07}{m \ m} / \frac{02}{d} / \frac{2020}{y \ y \ y} \frac{2020}{y \ y \ y} \frac{10}{y} \frac{10}{y \ y \ y} \frac{10}{y \ y} \frac{10}{y} \frac{10}{y \ y} \frac{10}{y} \frac$
5. Inside diameter of well $-0$ ,	0min. 16ft. 75in.	Turbid ☑ 1 5       Turbid □ 2 5         (Describe)       (Describe)         opaque brown       clear
	gal. _4 gal.	Fill in if drilling fluids were used and well is at solid waste facility:
	) gal.	14. Total suspended mg/l mg/l mg/l solids
9. Source of water added		15. CODmg/lmg/l
10. Analysis performed on water added?	les 🗆 No	16. Well developed by: Name (first, last) and Firm         First Name: Kelly       Last Name: Hayden         Firm: Giles Engineering Associates, Inc.

17. Additional comments on development:

I hereby certify that the above information is true and correct to the best of my knowledge.
Signature: KAH
Print Name: Kelly Hayden
Firm:Giles Engineering Associates, Inc

NOTE: See instructions for more information including a list of county codes and well type codes.

State of Wis., Dept. of Natural Resources dnr.wi.gov

#### Well / Drillhole / Borehole Filling & Sealing Report Page 1 of 2

Form 3300-005 (R 4/2015)

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

		Route to	DNR Bureau:					
Verification Only of Fill	and Seal	Dri	nking Water		Watershed/V	Vastewater	X Remediat	tion/Redevelopment
		Wa	iste Managemer	nt 🗌	Other:	المستعربين والمقاد والقرور	lan an a	
1. Well Location Information	<b>保护性的</b> 的			2. Facility	/ Owner In	formation		
		licap #		Facility Nam	ne De	at Mars Cl		
Dane Remove	ed VVell					st Way Cl	eaners	
Latitude / Longitude (see instruction	ns) Format	Code I	Method Code	Facility ID (F	ID or PWS)	GB-1		
Landad / Longhado (oco monucio			GPS008					
		DM	SCR002	License/Per	mit/Monitoring	<b>;</b> #		
14/4 SW 14 NW	Section Tow	nship F	Range 🕅 E	Original We				
or Gov't Lot #	3 6	N	10 🗍 W	FH	of McFa	irland LLC	]	10.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0.000-0
Well Street Address				Present We				
5914 HWY	51					irland LLC	]	
Well City, Village or Town	2		IP Code	a minera a serie de la competition	ress of Preser			
McFarla	nd		53558			Street		
Subdivision Name		Lot #		City of Pres Orec			State Z WI	ZIP Code 53575
				-		en, Casing & Se		
Reason for Removal from Service	WI Unique Well	# of Repl	acement Well		d piping remo			lanear lanear
Completed Samplin				Liner(s) re			∏ Ye	
3. Filled & Sealed Well / Drill	hole / Borehole Driginal Constructio				erforated?		□ Ye	
Monitoring Well	6/23/20		ini/dd/yyyy)	Screen re			□ Ye	
Water Well				Casing le	ft in place?		Ye	= =
	If a Well Construction please attach.	n Report	is available,	· Was casi	ng cut off belo	w surface?	 Ye	
Construction Type:				Did sealin	g material ris	e to surface?	X Ye	
Drilled Driven (S	andpoint)	Dug		Did mater	ial settle after	24 hours?	🗌 Ye	es No XN/A
	t Push			If yes	, was hole ret	opped?	🗌 Ye	es 🗌 No 🔀 N/A
Formation Type:		in the second				used, were they hy n safe source?	ydrated X Ye	s No N/A
X Unconsolidated Formation	Bedro	k				ng Sealing Materia		
Total Well Depth From Ground Surf	face (ft.) Casing D	iameter (	in.)	Condu	ctor Pipe-Gra	vity Conducto	or Pipe-Pumped	1
10			,		ned & Poured nite Chips)	Other (E)	xplain):	
Lower Drillhole Diameter (in.)	Casing D	epth (ft.)		Sealing Mat				
2				Neat C	ement Grout		Concrete	
		_		Sand-0	Cement (Cond	rete) Grout	X Bentonite Cl	nips
Was well annular space grouted?	Yes	X No	Unknown	For Monitori	ng Wells and	Monitoring Well Bo	preholes Only:	
If yes, to what depth (feet)?	Depth to Wate	(feet)		Bentor	ite Chips	🗌 Ben	tonite - Cement	Grout
				Granul	ar Bentonite	Ben	tonite - Sand SI	iurry
5. Material Used to Fill Well /	Drillhole			From (ft.)	To (ft.)	No. Yards, Sacks Volume (circ		Mix Ratio or Mud Weight
Concrete	an an and the second second second second	-404 - 24 - 4°		Surface	0.5	Contraction Carlo	anglesser aller summ	
Chipped Be	entonite			0.5	10			
6. Comments		家沿著加						

7. Supervision of Work				加速站器			DN	R Use Only
Name of Person or Firm Doing Filling & Sealing	Licen	ise #	Date of		Sealing or Verific		Date Received	Noted By
GILES ENGINEERING ASSOC.			(mm/dd	/уууу)	6/23/202	0		
Street or Route				Telepho	one Number		Comments	
N8 W22350 JOHNSON DRIVE SUIT	E Al			(262	) 544-0118			
City	State	ZIP Code		Sign	ature of Person D	Doing W	lork	Date Signed
WAUKESHA	WI	5318	6	$\langle \langle \rangle$		2	DA	6/24/2020
				/	//			
WAUKESHA	WI	5318	6		$\rightarrow \neq$	2	- A	

State of Wis., Dept. of Natural Resources dnr.wi.gov

#### Well / Drillhole / Borehole Filling & Sealing Report Page 1 of 2

Form 3300-005 (R 4/2015)

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

	F	Route to DNR Bureau:	
Verification Only of Fill a	nd Seal	Drinking Water	Watershed/Wastewater X Remediation/Redevelopment
-		Waste Manageme	nt Other:
1. Well Location Information	<b>制的系统和实际的</b>		2. Facility / Owner Information
County WI Uniqu Removed		icap #	Facility Name Best Way Cleaners
Dane			
Latitude / Longitude (see instructions	) Format C	ode Method Code	-Facility ID (FID or PWS) GB-2
		GPS008	Lineary (Dennik Marsharing H
		M OTH001	License/Permit/Monitoring #
1/4/1/4 SW 1/4 NW	Section Towns	ship Range X E	Original Well Owner
or Gov't Lot #	3 6	N 10 🗌 W	FH of McFarland LLC
Well Street Address			Present Well Owner
5914 HWY 5	1		FH of McFarland LLC
Well City, Village or Town	2	Well ZIP Code	Mailing Address of Present Owner
McFarlan	a	53558	733 N Main Street       City of Present Owner       State   ZIP Code
Subdivision Name		Lot #	Oregon WI 53575
	h		4. Pump, Liner, Screen, Casing & Sealing Material
Reason for Removal from Service		of Replacement Well	Pump and piping removed? Yes No X N/A
Completed Sampling			Liner(s) removed?
3. Filled & Sealed Well / Drillho		Date (mm/dd/yyyy)	Liner(s) perforated?
Monitoring Well	6/23/202	1	Screen removed?
Water Well			Casing left in place?
	a Well Constructior ease attach.	n Report is available,	Was casing cut off below surface?
Construction Type:			Did sealing material rise to surface?
Drilled Driven (Sa	ndpoint)	Dug	Did material settle after 24 hours?
X Other (specify):			If yes, was hole retopped?
Formation Type:			If bentonite chips were used, were they hydrated with water from a known safe source?
X Unconsolidated Formation	Bedrock	¢	Required Method of Placing Sealing Material
Total Well Depth From Ground Surfac		ameter (in.)	Conductor Pipe-Gravity Conductor Pipe-Pumped
10			Screened & Poured Chips) Other (Explain):
Lower Drillhole Diameter (in.)	Casing De	pth (ft.)	Sealing Materials
2			Neat Cement Grout Concrete
		No Unknown	Sand-Cement (Concrete) Grout X Bentonite Chips
Was well annular space grouted?			For Monitoring Wells and Monitoring Well Boreholes Only:
If yes, to what depth (feet)?	Depth to Water	(feet)	Bentonite Chips Bentonite - Cement Grout
			Granular Bentonite Bentonite - Sand Slurry
5. Material Used to Fill Well / D	rillhole		From (ft.) To (ft.) No. Yards, Sacks Sealant or Mix Ratio or Volume (circle one) Mud Weight
Concrete			Surface 0.5
Chipped Ber	ntonite		0.5 10
C. Commonto			
6. Comments			

			DNI	R Use Only
ng Licer			Date Received	Noted By
	(mi	m/dd/yyyy) 6/23/2020		
		Telephone Number	Comments	
TE Al		(262) 544-0118		
State	ZIP Code	Signature of Persent Doing V	Vork	Date Signed
WI	53186	A C	JA	6/24/2020
			y	
	TE A1	TE A1 State ZIP Code	(mm/dd/yyyy)     6/23/2020       TE A1     (262)       State     ZIP Code   Signature of Person Doing W	Ing     License #     Date of Filling & Sealing or Verification (mm/dd/yyyy)     Date Received       TE     A1     Telephone Number (262)     Comments       State     ZIP Code     Signature of Persent Doing Work

# 🛟 eurofins

# Environment Testing America

# **ANALYTICAL REPORT**

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

# Laboratory Job ID: 500-184070-1

Client Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

# For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Giles Engineering Associates N8 W 22350 Johnson Road Waukesha, Wisconsin 53186

Attn: Mr. Kevin Bugel

Sanda Jreduch

Authorized for release by: 7/7/2020 4:52:07 PM

Sandie Fredrick, Project Manager II (920)261-1660 sandie.fredrick@testamericainc.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Definitions	17
QC Association	18
Surrogate Summary	19
QC Sample Results	20
Chronicle	32
Certification Summary	34
Chain of Custody	35
Receipt Checklists	36

#### Job ID: 500-184070-1

#### Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-184070-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 6/25/2020 9:40 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

#### GC/MS VOA

Method 8260B: The method blank for analytical batch 550710 contained 1,2,4-Trichlorobenzene above the Method dectection limit (MDL) but below reporting limit (RL). 1,2,4-Trichlorobenzene was non-dectect in the samples: therefore, re-analysis was not performed and the data have been reported. GB-1 (2-4) (500-184070-1), GB-2 (2-4) (500-184070-2), GPZ-1 (2-4) (500-184070-3) and (MB 500-550710/6)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

# **Detection Summary**

#### Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

### Client Sample ID: GB-1 (2-4)

#### No Detections.

Client Sample ID: GB-2	(2-4)					Lab Sa	amp	ple ID: 5	00-184070-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DI	Method	Prep Type
cis-1,2-Dichloroethene	53	J	57	23	ug/Kg	50	₽ 8	3260B	Total/NA
Client Sample ID: GPZ-	1 (2-4)					Lab Sa	amp	ple ID: 5	00-184070-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	Method	Prep Type
cis-1,2-Dichloroethene	3700		61	25	ug/Kg	50	₫ 8	3260B	Total/NA
Naphthalene	290		61	21	ug/Kg	50	⇒ ε	3260B	Total/NA
trans-1,2-Dichloroethene	120		61	22	ug/Kg	50	₿ \$	3260B	Total/NA
Client Sample ID: GPZ-	1 (4-6)					Lab Sa	amp	ple ID: 5	00-184070-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DI	Method	Prep Type
cis-1,2-Dichloroethene	2500		140	58	ug/Kg	50	₫ 🕅	3260B	Total/NA
Naphthalene	450		140	47	ug/Kg	50	⇒ ε	3260B	Total/NA
Toluene	31	J	35	21	ug/Kg	50	⇒ ε	3260B	Total/NA
trans-1,2-Dichloroethene	78	J	140	50	ug/Kg	50	₿ \$	3260B	Total/NA
lient Sample ID: GMW	-2 (2-4)					Lab Sa	amp	ple ID: 5	00-184070-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	DN	Method	Prep Type

This Detection Summary does not include radiochemical test results.

 Lab Sample ID: 500-184070-1
 3

Job ID: 500-184070-1

# **Method Summary**

#### Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
Moisture	Percent Moisture	EPA	TAL CHI
5035	Closed System Purge and Trap	SW846	TAL CHI

#### **Protocol References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

# Sample Summary

Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002 Job ID: 500-184070-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-184070-1	GB-1 (2-4)	Solid	06/23/20 12:06	06/25/20 09:40
500-184070-2	GB-2 (2-4)	Solid	06/23/20 11:28	06/25/20 09:40
500-184070-3	GPZ-1 (2-4)	Solid	06/23/20 12:52	06/25/20 09:40
500-184070-4	GPZ-1 (4-6)	Solid	06/23/20 16:30	06/25/20 09:40
500-184070-5	GMW-2 (2-4)	Solid	06/23/20 10:09	06/25/20 09:40

**Client: Giles Engineering Associates** Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Client Sample ID: GB-1 (2-4) Date Collected: 06/23/20 12:06 Date Received: 06/25/20 09:40

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<9.2	16	9.2	ug/Kg	<u> </u>	06/25/20 12:06	07/06/20 17:12	50
Bromobenzene	<22	63	22	ug/Kg	☆	06/25/20 12:06	07/06/20 17:12	50
Bromochloromethane	<27	63	27	ug/Kg	☆	06/25/20 12:06	07/06/20 17:12	50
Bromodichloromethane	<23	63	23	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Bromoform	<30	63	30	ug/Kg	☆	06/25/20 12:06	07/06/20 17:12	50
Bromomethane	<50	190	50	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Carbon tetrachloride	<24	63	24	ug/Kg	¢.	06/25/20 12:06	07/06/20 17:12	50
Chlorobenzene	<24	63	24	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Chloroethane	<32	63	32	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Chloroform	<23	130	23	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Chloromethane	<20	63	20	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
2-Chlorotoluene	<20	63	20	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
4-Chlorotoluene	<22	63	22	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
cis-1,2-Dichloroethene	<26	63	26	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
cis-1,3-Dichloropropene	<26	63	26	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Dibromochloromethane	<31	63	31	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,2-Dibromo-3-Chloropropane	<130	310	130	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,2-Dibromoethane	<24	63	24	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Dibromomethane	<17	63	17	ug/Kg	¢.	06/25/20 12:06	07/06/20 17:12	50
1,2-Dichlorobenzene	<21	63	21	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,3-Dichlorobenzene	<25	63	25	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,4-Dichlorobenzene	<23	63	23	ug/Kg	¢.	06/25/20 12:06	07/06/20 17:12	50
Dichlorodifluoromethane	<42	190	42	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,1-Dichloroethane	<26	63	26	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,2-Dichloroethane	<25	63	25	ug/Kg		06/25/20 12:06	07/06/20 17:12	50
1,1-Dichloroethene	<25	63	25	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,2-Dichloropropane	<27	63	27	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,3-Dichloropropane	<23	63	23	ug/Kg	¢.	06/25/20 12:06	07/06/20 17:12	50
2,2-Dichloropropane	<28	63	28	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,1-Dichloropropene	<19	63	19	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Ethylbenzene	<12	16	12	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Hexachlorobutadiene	<28	63	28	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Isopropylbenzene	<24	63	24	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Isopropyl ether	<17	63			¢.	06/25/20 12:06	07/06/20 17:12	50
Methylene Chloride	<100	310		ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Methyl tert-butyl ether	<25	63	25	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Naphthalene	<21	63		ug/Kg		06/25/20 12:06		50
n-Butylbenzene	<24	63		ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
N-Propylbenzene	<26	63		ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
p-Isopropyltoluene	<23	63		ug/Kg		06/25/20 12:06		50
sec-Butylbenzene	<25	63		ug/Kg	¢	06/25/20 12:06		50
Styrene	<24	63		ug/Kg	¢	06/25/20 12:06		50
tert-Butylbenzene	<25	63		ug/Kg		06/25/20 12:06		50
1,1,1,2-Tetrachloroethane	<29	63		ug/Kg	¢	06/25/20 12:06		50
1,1,2,2-Tetrachloroethane	<25	63		ug/Kg	☆	06/25/20 12:06		50
Tetrachloroethene	<23	63		ug/Kg	¢	06/25/20 12:06		50
Toluene	<9.3	16		ug/Kg	☆	06/25/20 12:06		50
trans-1,2-Dichloroethene	<22	63		ug/Kg	☆	06/25/20 12:06		50
trans-1,3-Dichloropropene	<23	63		ug/Kg		06/25/20 12:06		50

Job ID: 500-184070-1

Percent Solids: 87.8

Matrix: Solid

5

7

Lab Sample ID: 500-184070-1

Eurofins TestAmerica, Chicago

Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Client Sample ID: GB-1 (2-4) Date Collected: 06/23/20 12:06 Date Received: 06/25/20 09:40

Job ID: 500-184070-1

# Lab Sample ID: 500-184070-1 Matrix: Solid

Percent Solids: 87.8

5

6 7 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	<29		63	29	ug/Kg	<u>\$</u>	06/25/20 12:06	07/06/20 17:12	50
1,2,4-Trichlorobenzene	<22		63	22	ug/Kg	⇔	06/25/20 12:06	07/06/20 17:12	50
1,1,1-Trichloroethane	<24		63	24	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,1,2-Trichloroethane	<22		63	22	ug/Kg	⇔	06/25/20 12:06	07/06/20 17:12	50
Trichloroethene	<10		31	10	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Trichlorofluoromethane	<27		63	27	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
1,2,3-Trichloropropane	<26		130	26	ug/Kg	⇔	06/25/20 12:06	07/06/20 17:12	50
1,2,4-Trimethylbenzene	<23		63	23	ug/Kg	₽	06/25/20 12:06	07/06/20 17:12	50
1,3,5-Trimethylbenzene	<24		63	24	ug/Kg	¢	06/25/20 12:06	07/06/20 17:12	50
Vinyl chloride	<16		63	16	ug/Kg	⇔	06/25/20 12:06	07/06/20 17:12	50
Xylenes, Total	<14		31	14	ug/Kg	☆	06/25/20 12:06	07/06/20 17:12	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		72 - 124				06/25/20 12:06	07/06/20 17:12	50
Dibromofluoromethane (Surr)	105		75 - 120				06/25/20 12:06	07/06/20 17:12	50
1,2-Dichloroethane-d4 (Surr)	109		75 - 126				06/25/20 12:06	07/06/20 17:12	50
Toluene-d8 (Surr)	102		75 - 120				06/25/20 12:06	07/06/20 17:12	50

Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Client Sample ID: GB-2 (2-4) Date Collected: 06/23/20 11:28 Date Received: 06/25/20 09:40

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<8.4	14	8.4	ug/Kg	₩ Ţ	06/23/20 11:28	07/06/20 17:38	50
Bromobenzene	<20	57	20	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Bromochloromethane	<25	57	25	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Bromodichloromethane	<21	57	21	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Bromoform	<28	57	28	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Bromomethane	<46	170	46	ug/Kg	☆	06/23/20 11:28	07/06/20 17:38	50
Carbon tetrachloride	<22	57	22	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Chlorobenzene	<22	57	22	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Chloroethane	<29	57	29	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Chloroform	<21	110	21	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Chloromethane	<18	57	18	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
2-Chlorotoluene	<18	57	18	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
4-Chlorotoluene	<20	57	20	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
cis-1,2-Dichloroethene	53 J	57	23	ug/Kg	₽	06/23/20 11:28	07/06/20 17:38	50
cis-1,3-Dichloropropene	<24	57	24	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Dibromochloromethane	<28	57	28	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
1,2-Dibromo-3-Chloropropane	<110	290	110	ug/Kg	☆	06/23/20 11:28	07/06/20 17:38	50
1,2-Dibromoethane	<22	57	22	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Dibromomethane	<15	57	15	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
1,2-Dichlorobenzene	<19	57	19	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
1,3-Dichlorobenzene	<23	57	23	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
I,4-Dichlorobenzene	<21	57	21	ug/Kg	à.	06/23/20 11:28	07/06/20 17:38	50
Dichlorodifluoromethane	<39	170	39	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
1,1-Dichloroethane	<23	57	23	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
1,2-Dichloroethane	<22	57	22	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
1,1-Dichloroethene	<22	57	22	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
I,2-Dichloropropane	<25	57	25	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
1,3-Dichloropropane	<21	57	21	ug/Kg	¢.	06/23/20 11:28	07/06/20 17:38	50
2,2-Dichloropropane	<25	57	25	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
1,1-Dichloropropene	<17	57	17	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Ethylbenzene	<10	14	10	ug/Kg	¢.	06/23/20 11:28	07/06/20 17:38	50
Hexachlorobutadiene	<26	57	26	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
sopropylbenzene	<22	57	22	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
sopropyl ether	<16	57		ug/Kg	¢.	06/23/20 11:28	07/06/20 17:38	50
Methylene Chloride	<93	290		ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Methyl tert-butyl ether	<23	57	23	ug/Kg	¢	06/23/20 11:28	07/06/20 17:38	50
Naphthalene	<19	57		ug/Kg		06/23/20 11:28		50
n-Butylbenzene	<22	57		ug/Kg	☆	06/23/20 11:28		50
N-Propylbenzene	<24	57		ug/Kg	¢	06/23/20 11:28		50
p-Isopropyltoluene	<21	57		ug/Kg	¢.		07/06/20 17:38	50
ec-Butylbenzene	<23	57		ug/Kg	¢		07/06/20 17:38	50
Styrene	<22	57		ug/Kg	¢		07/06/20 17:38	50
ert-Butylbenzene	<23	57		ug/Kg	÷.		07/06/20 17:38	50
1,1,2-Tetrachloroethane	<26	57		ug/Kg	¢		07/06/20 17:38	50
I,1,2,2-Tetrachloroethane	<23	57		ug/Kg	☆	06/23/20 11:28		50
Fetrachloroethene	<21	57		ug/Kg	¢.	06/23/20 11:28		50
Foluene	<8.4	14		ug/Kg ug/Kg	¢		07/06/20 17:38	50
rans-1,2-Dichloroethene	<20	57			¢	06/23/20 11:28		50
rans-1,2-Dichloroptopene	<20	57 57		ug/Kg ug/Kg		06/23/20 11:28		50

Eurofins TestAmerica, Chicago

Job ID: 500-184070-1

Percent Solids: 92.7

Matrix: Solid

Lab Sample ID: 500-184070-2

12

110

57

57

57

29

Limits

72 - 124

75 - 120

75 - 126

75 - 120

24 ug/Kg

21 ug/Kg

22

ug/Kg

15 ug/Kg

13 ug/Kg

**Client: Giles Engineering Associates** Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

<24

<21

<22

<15

<13

90

106

109

100

%Recovery

Qualifier

#### Client Sample ID: GB-2 (2-4) Date Collected: 06/23/20 11:28 Date Received: 06/25/20 09:40

Analyte

1,2,3-Trichlorobenzene

1,2,4-Trichlorobenzene

1,1,1-Trichloroethane

1,1,2-Trichloroethane

Trichlorofluoromethane

1,2,3-Trichloropropane

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

1,2-Dichloroethane-d4 (Surr)

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

Job ID: 500-184070-1

# Lab Sample ID: 500-184070-2 Matrix: Solid

06/23/20 11:28 07/06/20 17:38

06/23/20 11:28 07/06/20 17:38

06/23/20 11:28 07/06/20 17:38

06/23/20 11:28 07/06/20 17:38

06/23/20 11:28 07/06/20 17:38

06/23/20 11:28 07/06/20 17:38

06/23/20 11:28 07/06/20 17:38

06/23/20 11:28 07/06/20 17:38

06/23/20 11:28 07/06/20 17:38

Analyzed

Prepared

Percent Solids: 92.7 Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) MDL Unit **Result Qualifier** Dil Fac RL D Prepared Analyzed 57 ₩. <26 26 ug/Kg 06/23/20 11:28 07/06/20 17:38 50 <20 57 ug/Kg ₽ 06/23/20 11:28 07/06/20 17:38 50 20 57 ¢ <22 06/23/20 11:28 07/06/20 17:38 50 22 ug/Kg ug/Kg <20 57 20 ₽ 06/23/20 11:28 07/06/20 17:38 50 <9.4 29 ug/Kg Ċ. 06/23/20 11:28 07/06/20 17:38 50 9.4 57 ¢ <25 25 ug/Kg 06/23/20 11:28 07/06/20 17:38 50

₽

ά

\$

₽

₽

6
7
8
9
13

50

50

50

50

50

50

50

50

50

Dil Fac

Eurofins TestAmerica, Chicago

Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Client Sample ID: GPZ-1 (2-4) Date Collected: 06/23/20 12:52 Date Received: 06/25/20 09:40

Method: 8260B - Volatile Org Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<9.0	15	9.0	ug/Kg	- <del>\\\</del>	06/23/20 12:52	07/06/20 18:04	50
Bromobenzene	<22	61	22	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Bromochloromethane	<26	61	26	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Bromodichloromethane	<23	61	23	ug/Kg	¢.	06/23/20 12:52	07/06/20 18:04	50
Bromoform	<30	61	30	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Bromomethane	<49	180	49	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Carbon tetrachloride	<24	61	24	ug/Kg	¢.	06/23/20 12:52	07/06/20 18:04	50
Chlorobenzene	<24	61	24	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Chloroethane	<31	61	31	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Chloroform	<23	120		ug/Kg	¢.	06/23/20 12:52	07/06/20 18:04	50
Chloromethane	<20	61	20	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
2-Chlorotoluene	<19	61		ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
4-Chlorotoluene	<22	61	22	ug/Kg	¢.	06/23/20 12:52	07/06/20 18:04	50
cis-1,2-Dichloroethene	3700	61		ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
cis-1,3-Dichloropropene	<26	61		ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Dibromochloromethane	<30	61		ug/Kg	¢.	06/23/20 12:52	07/06/20 18:04	50
1,2-Dibromo-3-Chloropropane	<120	310	120	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
1,2-Dibromoethane	<24	61		ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Dibromomethane	<17	61	17		¢.	06/23/20 12:52	07/06/20 18:04	50
1,2-Dichlorobenzene	<21	61	21	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
1,3-Dichlorobenzene	<25	61		ug/Kg	¢		07/06/20 18:04	50
1.4-Dichlorobenzene	<22	61		ug/Kg		06/23/20 12:52		50
Dichlorodifluoromethane	<41	180			¢	06/23/20 12:52		50
1,1-Dichloroethane	<25	61		ug/Kg	¢		07/06/20 18:04	50
1.2-Dichloroethane	<24	61		ug/Kg	¢.		07/06/20 18:04	50
1,1-Dichloroethene	<24	61			¢		07/06/20 18:04	50
1,2-Dichloropropane	<26	61		ug/Kg	¢		07/06/20 18:04	50
1,3-Dichloropropane	<22	61		ug/Kg			07/06/20 18:04	50
2,2-Dichloropropane	<27	61	27	ug/Kg	¢		07/06/20 18:04	50
1,1-Dichloropropene	<18	61		ug/Kg	¢		07/06/20 18:04	50
Ethylbenzene	<11	15	11	ug/Kg	¢.		07/06/20 18:04	50
Hexachlorobutadiene	<27	61	27	ug/Kg	¢		07/06/20 18:04	50
Isopropylbenzene	<24	61		ug/Kg	¢		07/06/20 18:04	50
Isopropyl ether	<17	61		ug/Kg	<del>.</del>		07/06/20 18:04	50
Methylene Chloride	<100	310		ug/Kg	¢		07/06/20 18:04	50
Methyl tert-butyl ether	<24	61		ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Naphthalene	290	61		ug/Kg		06/23/20 12:52		50
n-Butylbenzene	<24	61		ug/Kg	¢		07/06/20 18:04	50
N-Propylbenzene	<25	61		ug/Kg	¢	06/23/20 12:52		50
p-Isopropyltoluene	<22	61		ug/Kg	¢.		07/06/20 18:04	50
sec-Butylbenzene	<24	61		ug/Kg	¢		07/06/20 18:04	50
Styrene	<24	61		ug/Kg	⇔	06/23/20 12:52		50
tert-Butylbenzene	<24	61		ug/Kg		06/23/20 12:52		50
1,1,1,2-Tetrachloroethane	<28	61		ug/Kg	☆	06/23/20 12:52		50
1,1,2,2-Tetrachloroethane	<24	61		ug/Kg		06/23/20 12:52		50 50
Tetrachloroethene	<23	61		ug/Kg		06/23/20 12:52		50
Toluene	<9.0	15		ug/Kg ug/Kg			07/06/20 18:04	50 50
trans-1,2-Dichloroethene	120	61		ug/Kg		06/23/20 12:52		50 50
trans-1,3-Dichloropropene	<22	61		ug/Kg			07/06/20 18:04	50

Job ID: 500-184070-1

Percent Solids: 89.3

Matrix: Solid

Lab Sample ID: 500-184070-3

13

Eurofins TestAmerica, Chicago

Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Client Sample ID: GPZ-1 (2-4) Date Collected: 06/23/20 12:52 Date Received: 06/25/20 09:40

### Lab Sample ID: 500-184070-3 Matrix: Solid

Percent Solids: 89.3

5

6 7 8

Method: 8260B - Volatile O	-								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	<28		61	28	ug/Kg	₩ Ţ	06/23/20 12:52	07/06/20 18:04	50
1,2,4-Trichlorobenzene	<21		61	21	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
1,1,1-Trichloroethane	<23		61	23	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
1,1,2-Trichloroethane	<22		61	22	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Trichloroethene	<10		31	10	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Trichlorofluoromethane	<26		61	26	ug/Kg	¢.	06/23/20 12:52	07/06/20 18:04	50
1,2,3-Trichloropropane	<25		120	25	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
1,2,4-Trimethylbenzene	<22		61	22	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
1,3,5-Trimethylbenzene	<23		61	23	ug/Kg	ф.	06/23/20 12:52	07/06/20 18:04	50
Vinyl chloride	<16		61	16	ug/Kg	¢	06/23/20 12:52	07/06/20 18:04	50
Xylenes, Total	<14		31	14	ug/Kg	₽	06/23/20 12:52	07/06/20 18:04	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		72 - 124				06/23/20 12:52	07/06/20 18:04	50
Dibromofluoromethane (Surr)	106		75 - 120				06/23/20 12:52	07/06/20 18:04	50
1,2-Dichloroethane-d4 (Surr)	108		75 - 126				06/23/20 12:52	07/06/20 18:04	50
Toluene-d8 (Surr)	100		75 - 120				06/23/20 12:52	07/06/20 18:04	50

Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Client Sample ID: GPZ-1 (4-6) Date Collected: 06/23/20 16:30 Date Received: 06/25/20 09:40

Job	ID:	500-184070-1
000	·D.	000 104010 1

#### Lab Sample ID: 500-184070-4 Matrix: Solid

Percent Solids: 52.4

5

7

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<21	35	21	ug/Kg	<u> </u>	06/23/20 16:30	07/07/20 11:43	50
Bromobenzene	<50	140	50	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Bromochloromethane	<61	140	61	ug/Kg	☆	06/23/20 16:30	07/07/20 11:43	50
Bromodichloromethane	<53	140	53	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Bromoform	<69	140	69	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Bromomethane	<110	430	110	ug/Kg	☆	06/23/20 16:30	07/07/20 11:43	50
Carbon tetrachloride	<54	140	54	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Chlorobenzene	<55	140	55	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Chloroethane	<71	140	71	ug/Kg	☆	06/23/20 16:30	07/07/20 11:43	50
Chloroform	<52	280	52	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Chloromethane	<45	140	45	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
2-Chlorotoluene	<45	140	45	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
4-Chlorotoluene	<50	140	50	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
cis-1,2-Dichloroethene	2500	140	58	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
cis-1,3-Dichloropropene	<59	140	59	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Dibromochloromethane	<69	140	69	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
1,2-Dibromo-3-Chloropropane	<280	710	280	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
1,2-Dibromoethane	<55	140	55	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Dibromomethane	<38	140	38	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
1,2-Dichlorobenzene	<47	140	47	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
1,3-Dichlorobenzene	<57	140	57	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
1,4-Dichlorobenzene	<52	140	52	ug/Kg	¢.	06/23/20 16:30	07/07/20 11:43	50
Dichlorodifluoromethane	<96	430	96	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
1,1-Dichloroethane	<58	140	58	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
1,2-Dichloroethane	<56	140	56	ug/Kg	¢.	06/23/20 16:30	07/07/20 11:43	50
1,1-Dichloroethene	<55	140	55	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
1,2-Dichloropropane	<61	140	61	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
1,3-Dichloropropane	<51	140	51	ug/Kg	¢.	06/23/20 16:30	07/07/20 11:43	50
2,2-Dichloropropane	<63	140	63	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
1,1-Dichloropropene	<42	140	42	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Ethylbenzene	<26	35	26	ug/Kg	¢.	06/23/20 16:30	07/07/20 11:43	50
Hexachlorobutadiene	<63	140	63	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
lsopropylbenzene	<54	140	54	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Isopropyl ether	<39	140	39	ug/Kg	÷ · · · · · · · · · · · · · · · · · · ·	06/23/20 16:30	07/07/20 11:43	50
Methylene Chloride	<230	710	230		¢	06/23/20 16:30	07/07/20 11:43	50
Methyl tert-butyl ether	<56	140	56	ug/Kg	¢	06/23/20 16:30	07/07/20 11:43	50
Naphthalene	450	140	47	ug/Kg	ф	06/23/20 16:30	07/07/20 11:43	50
n-Butylbenzene	<55	140		ug/Kg	¢		07/07/20 11:43	50
N-Propylbenzene	<59	140		ug/Kg	¢		07/07/20 11:43	50
o-Isopropyltoluene	<51	140		ug/Kg			07/07/20 11:43	50
sec-Butylbenzene	<56	140		ug/Kg	¢		07/07/20 11:43	50
Styrene	<55	140		ug/Kg	¢		07/07/20 11:43	50
ert-Butylbenzene	<56	140		ug/Kg	¢.		07/07/20 11:43	50
1,1,1,2-Tetrachloroethane	<66	140		ug/Kg	₽		07/07/20 11:43	50
1,1,2,2-Tetrachloroethane	<56	140		ug/Kg	¢		07/07/20 11:43	50
Tetrachloroethene	<52	140		ug/Kg			07/07/20 11:43	50
Toluene	31 J	35	21		¢		07/07/20 11:43	50
trans-1,2-Dichloroethene	78 J	140		ug/Kg	☆		07/07/20 11:43	50
trans-1,3-Dichloropropene	<51	140		ug/Kg		06/23/20 16:30		50

Eurofins TestAmerica, Chicago

Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Client Sample ID: GPZ-1 (4-6) Date Collected: 06/23/20 16:30 Date Received: 06/25/20 09:40

Job ID: 500-184070-1

#### Lab Sample ID: 500-184070-4 Matrix: Solid Percent Solids: 52.4

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) **Result Qualifier** Analyte RL MDL Unit D Prepared Analyzed **Dil Fac** ₩. 1,2,3-Trichlorobenzene <65 140 65 ug/Kg 06/23/20 16:30 07/07/20 11:43 50 1,2,4-Trichlorobenzene <49 140 49 ug/Kg ₽ 06/23/20 16:30 07/07/20 11:43 50 ¢ 1,1,1-Trichloroethane <54 06/23/20 16:30 07/07/20 11:43 50 140 54 ug/Kg 1,1,2-Trichloroethane <50 140 50 ug/Kg ₽ 06/23/20 16:30 07/07/20 11:43 50 Trichloroethene <23 71 ug/Kg Ċ. 06/23/20 16:30 07/07/20 11:43 50 23 ¢ Trichlorofluoromethane <61 140 61 ug/Kg 06/23/20 16:30 07/07/20 11:43 50 ₽ 1,2,3-Trichloropropane <59 280 59 ug/Kg 06/23/20 16:30 07/07/20 11:43 50 1,2,4-Trimethylbenzene <51 140 ug/Kg ÷Ċ 06/23/20 16:30 07/07/20 11:43 50 51 \$ 1,3,5-Trimethylbenzene <54 140 06/23/20 16:30 07/07/20 11:43 50 54 ug/Kg Vinyl chloride <37 140 37 ug/Kg ₽ 06/23/20 16:30 07/07/20 11:43 50 Xylenes, Total <31 71 31 ug/Kg ₽ 06/23/20 16:30 07/07/20 11:43 50 Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 72 - 124 06/23/20 16:30 07/07/20 11:43 4-Bromofluorobenzene (Surr) 89 50 97 50 Dibromofluoromethane (Surr) 75 - 120 06/23/20 16:30 07/07/20 11:43 1,2-Dichloroethane-d4 (Surr) 109 75 - 126 50 06/23/20 16:30 07/07/20 11:43 Toluene-d8 (Surr) 97 75 - 120 06/23/20 16:30 07/07/20 11:43 50

Eurofins TestAmerica, Chicago

**Client: Giles Engineering Associates** Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Client Sample ID: GMW-2 (2-4) Date Collected: 06/23/20 10:09 Date Received: 06/25/20 09:40

Analyte	Result Qualifier		MDL		D	Prepared	Analyzed	Dil Fac
Benzene	<8.3	14	8.3	ug/Kg		06/23/20 10:09		50
Bromobenzene	<20	57	20	ug/Kg	¢.		07/07/20 12:12	50
Bromochloromethane	<24	57	24		÷		07/07/20 12:12	50
Bromodichloromethane	<21	57	21	ug/Kg	¢.		07/07/20 12:12	50
Bromoform	<27	57	27	ug/Kg	¢.		07/07/20 12:12	50
Bromomethane	<45	170		ug/Kg	¢.	06/23/20 10:09	07/07/20 12:12	50
Carbon tetrachloride	<22	57		ug/Kg	¢.		07/07/20 12:12	50
Chlorobenzene	<22	57		ug/Kg	¢.		07/07/20 12:12	50
Chloroethane	<28	57		ug/Kg	¢.		07/07/20 12:12	50
Chloroform	<21	110	21	ug/Kg	÷.		07/07/20 12:12	50
Chloromethane	<18	57	18	ug/Kg	₽	06/23/20 10:09	07/07/20 12:12	50
2-Chlorotoluene	<18	57	18	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
4-Chlorotoluene	<20	57	20	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
cis-1,2-Dichloroethene	<23	57	23	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
cis-1,3-Dichloropropene	<24	57	24	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
Dibromochloromethane	<28	57	28	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
1,2-Dibromo-3-Chloropropane	<110	280	110	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
1,2-Dibromoethane	<22	57	22	ug/Kg	₽	06/23/20 10:09	07/07/20 12:12	50
Dibromomethane	<15	57	15	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
1,2-Dichlorobenzene	<19	57	19	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
1,3-Dichlorobenzene	<23	57	23	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
I,4-Dichlorobenzene	<21	57	21	ug/Kg	¢.	06/23/20 10:09	07/07/20 12:12	50
Dichlorodifluoromethane	<38	170	38	ug/Kg	☆	06/23/20 10:09	07/07/20 12:12	50
,1-Dichloroethane	<23	57	23	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
1,2-Dichloroethane	<22	57	22	ug/Kg	¢.	06/23/20 10:09	07/07/20 12:12	50
1,1-Dichloroethene	<22	57	22		₽	06/23/20 10:09	07/07/20 12:12	50
1,2-Dichloropropane	<24	57	24		₽	06/23/20 10:09	07/07/20 12:12	50
1,3-Dichloropropane	<20	57	20	ug/Kg	¢.	06/23/20 10:09	07/07/20 12:12	50
2,2-Dichloropropane	<25	57	25	ug/Kg	¢	06/23/20 10:09		50
I,1-Dichloropropene	<17	57	17	ug/Kg	¢	06/23/20 10:09		50
Ethylbenzene	<10	14	10	ug/Kg	÷		07/07/20 12:12	50
Hexachlorobutadiene	<25	57	25	ug/Kg	¢		07/07/20 12:12	50
sopropylbenzene	<22	57		ug/Kg	₽		07/07/20 12:12	50
sopropyl ether	<16	57		ug/Kg	¢.		07/07/20 12:12	50
Methylene Chloride	<92	280		ug/Kg	₽		07/07/20 12:12	50
Methyl tert-butyl ether	<22	57		ug/Kg		06/23/20 10:09		50
Naphthalene	27 J	57		ug/Kg	¢.	06/23/20 10:09		50
n-Butylbenzene	<22	57		ug/Kg	¢		07/07/20 12:12	50
N-Propylbenzene	<23	57		ug/Kg	¢	06/23/20 10:09		50
p-Isopropyltoluene	<20	57		ug/Kg ug/Kg			07/07/20 12:12	50
	<23	57			¢		07/07/20 12:12	50
ec-Butylbenzene				ug/Kg				
Styrene	<22	57		ug/Kg	ф. 		07/07/20 12:12	50
ert-Butylbenzene	<23	57		ug/Kg	¢ ×		07/07/20 12:12	50
I,1,1,2-Tetrachloroethane	<26	57		ug/Kg	¢ ×		07/07/20 12:12	50
I,1,2,2-Tetrachloroethane	<23	57		ug/Kg			07/07/20 12:12	50
Fetrachloroethene	<21	57		ug/Kg	¢ ×		07/07/20 12:12	50
Foluene	<8.3	14		ug/Kg	ţ.		07/07/20 12:12	50
rans-1,2-Dichloroethene	<20	57	20	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50

Eurofins TestAmerica, Chicago

Job ID: 500-184070-1

Percent Solids: 90.7

Lab Sample ID: 500-184070-5 Matrix: Solid 5 7 9 10 11 12 13

Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Client Sample ID: GMW-2 (2-4) Date Collected: 06/23/20 10:09 Date Received: 06/25/20 09:40

Job ID: 500-184070-1

### Lab Sample ID: 500-184070-5 Matrix: Solid

Percent Solids: 90.7

5

7

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,3-Trichlorobenzene	<26		57	26	ug/Kg	<u> </u>	06/23/20 10:09	07/07/20 12:12	50
1,2,4-Trichlorobenzene	<19		57	19	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
1,1,1-Trichloroethane	<21		57	21	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
1,1,2-Trichloroethane	<20		57	20	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
Trichloroethene	<9.3		28	9.3	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
Trichlorofluoromethane	<24		57	24	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
1,2,3-Trichloropropane	<23		110	23	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
1,2,4-Trimethylbenzene	<20		57	20	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
1,3,5-Trimethylbenzene	<21		57	21	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
Vinyl chloride	<15		57	15	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
Xylenes, Total	<12		28	12	ug/Kg	¢	06/23/20 10:09	07/07/20 12:12	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		72 - 124				06/23/20 10:09	07/07/20 12:12	50
Dibromofluoromethane (Surr)	96		75 - 120				06/23/20 10:09	07/07/20 12:12	50
1,2-Dichloroethane-d4 (Surr)	111		75 - 126				06/23/20 10:09	07/07/20 12:12	50
Toluene-d8 (Surr)	97		75 - 120				06/23/20 10:09	07/07/20 12:12	50

#### Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

# Qualifiers

**GC/MS VOA** 

Qualifier J

 Qualifier Description

 Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		- 5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	- 0
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	8
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	10
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	11
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	12
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	14
ML	Minimum Level (Dioxin)	14
MPN	Most Probable Number	15
MQL	Method Quantitation Limit	15
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

# **QC Association Summary**

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Solid

Solid

Solid

Solid

Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

**Client Sample ID** 

GB-1 (2-4)

GB-2 (2-4)

GPZ-1 (2-4)

GPZ-1 (4-6)

GMW-2 (2-4)

Method Blank

Lab Control Sample

**Client Sample ID** 

GB-1 (2-4)

GB-2 (2-4)

GPZ-1 (2-4)

Method Blank

Lab Control Sample

#### Job ID: 500-184070-1

Prep Batch

Prep Batch

550223

550223

550223

Method

5035

5035

5035

5035

5035

5035

5035

Method 8260B

8260B

8260B

8260B

8260B

8	
9	

13 14

#### Analysis Batch: 550913

**GC/MS VOA** 

Lab Sample ID

500-184070-1

500-184070-2

500-184070-3

500-184070-4 500-184070-5

Lab Sample ID

500-184070-1

500-184070-2

500-184070-3

MB 500-550710/6

LCS 500-550710/4

LB3 500-550223/19-A

LCS 500-550223/20-A

Analysis Batch: 550710

Prep Batch: 550223

Lab Sample ID LB3 500-550223/19-A	Client Sample ID	Prep Type	Matrix	Method 8260B	Prep Batch 550223	
MB 500-550913/6	Method Blank	Total/NA	Solid	8260B	000220	
LCS 500-550223/20-A	Lab Control Sample	Total/NA	Solid	8260B	550223	
LCS 500-550913/4	Lab Control Sample	Total/NA	Solid	8260B		

#### Analysis Batch: 550933

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-184070-4	GPZ-1 (4-6)	Total/NA	Solid	8260B	550223
500-184070-5	GMW-2 (2-4)	Total/NA	Solid	8260B	550223
MB 500-550933/7	Method Blank	Total/NA	Solid	8260B	
LCS 500-550933/5	Lab Control Sample	Total/NA	Solid	8260B	

#### **General Chemistry**

#### Analysis Batch: 549554

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
500-184070-1	GB-1 (2-4)	Total/NA	Solid	Moisture
500-184070-2	GB-2 (2-4)	Total/NA	Solid	Moisture
500-184070-3	GPZ-1 (2-4)	Total/NA	Solid	Moisture
500-184070-4	GPZ-1 (4-6)	Total/NA	Solid	Moisture
500-184070-5	GMW-2 (2-4)	Total/NA	Solid	Moisture

# **Surrogate Summary**

#### Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Solid

			Percent Surroga				
		BFB	DBFM	DCA	TOL		
Lab Sample ID	Client Sample ID	(72-124)	(75-120)	(75-126)	(75-120)		
500-184070-1	GB-1 (2-4)	91	105	109	102		
500-184070-2	GB-2 (2-4)	90	106	109	100		
500-184070-3	GPZ-1 (2-4)	87	106	108	100		
500-184070-4	GPZ-1 (4-6)	89	97	109	97		
500-184070-5	GMW-2 (2-4)	91	96	111	97		
LB3 500-550223/19-A	Method Blank	90	85	100	96		
LCS 500-550223/20-A	Lab Control Sample	88	94	108	94		
LCS 500-550710/4	Lab Control Sample	91	106	105	102		
LCS 500-550913/4	Lab Control Sample	90	91	101	97		
LCS 500-550933/5	Lab Control Sample	95	100	105	99		
MB 500-550710/6	Method Blank	89	105	106	101		
MB 500-550913/6	Method Blank	91	89	103	95		
MB 500-550933/7	Method Blank	95	98	110	97		

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

#### Prep Type: Total/NA

5 6 7

10

13

Eurofins TestAmerica, Chicago

# Method: 8260B - Volatile Organic Compounds (GC/MS)

#### Lab Sample ID: LB3 500-550223/19-A Matrix: Solid Analysis Batch: 550913

Analysis Batch. 550515	LB3	LB3						Fiep Datch.	JJ022J
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<7.u		1u	7.u	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Bromobenzene	<18		50		Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Bromochloromethane	<21		50		Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Bromodichloromethane	<19		50		Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Bromoform	<24		50		Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Bromomethane	<40		150		Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Carbon tetrachloride	<19		50		Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Chlorobenzene	<19		50	19	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Chloroethane	<25		50	25	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Chloroform	<19		100		Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Chloromethane	<16		50	16	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
2-ChlorotolKene	<16		50	16	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
4-ChlorotolKene	<18		50	18	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
cis-1,2-Dichloroethene	<20		50	20	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
cis-1,u-Dichloropropene	<21		50	21	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Dibromochloromethane	<24		50	24	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,2-Dibromo-u-Chloropropane	<100		250	100	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,2-Dibromoethane	<19		50	19	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Dibromomethane	<14		50	14	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,2-Dichlorobenzene	<17		50	17	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,u-Dichlorobenzene	<20		50	20	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,4-Dichlorobenzene	<18		50	18	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
DichlorodiflKoromethane	<u4< td=""><td></td><td>150</td><td>u4</td><td>Kg/3g</td><td></td><td>06/u0/20 2u:55</td><td>07/07/20 10:52</td><td>50</td></u4<>		150	u4	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,1-Dichloroethane	<21		50	21	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,2-Dichloroethane	<20		50	20	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,1-Dichloroethene	<20		50	20	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,2-Dichloropropane	<21		50	21	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,u-Dichloropropane	<18		50	18	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
2,2-Dichloropropane	<22		50	22	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,1-Dichloropropene	<15		50	15	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Ethylbenzene	<9.2		1u	9.2	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
HexachlorobKtadiene	<22		50	22	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Isopropylbenzene	<19		50	19	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Isopropyl ether	<14		50	14	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Methylene Chloride	<82		250	82	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Methyl tert-bKtyl ether	<20		50	20	Kg/3g			07/07/20 10:52	50
Naphthalene	<17		50	17	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
n-BKtylbenzene	<19		50		Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
N-Propylbenzene	<21		50		Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
p-IsopropyltolKene	<18		50		Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
sec-BKtylbenzene	<20		50		Kg/3g			07/07/20 10:52	50
Styrene	<19		50		Kg/3g			07/07/20 10:52	50
tert-BKtylbenzene	<20		50		Kg/3g			07/07/20 10:52	50
1,1,1,2-Tetrachloroethane	<2u		50		Kg/3g			07/07/20 10:52	50
1,1,2,2-Tetrachloroethane	<20		50		Kg/3g			07/07/20 10:52	50
Tetrachloroethene	<19		50		Kg/3g			07/07/20 10:52	50
TolKene	<7.4		1u		Kg/3g			07/07/20 10:52	50
trans-1,2-Dichloroethene	<18		50	18	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50

EKrofins TestAmerica, Chicago

 
 Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 550223
 4

 5
 5

 06/u0/20 2u:55
 07/07/20 10:52
 50

 06/u0/20 2u:55
 07/07/20 10:52
 50

> 11 12

# **QC Sample Results**

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

#### Lab Sample ID: LB3 500-550223/19-A Matrix: Solid Analysis Batch: 550913

	LB3	LB3							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,u-Dichloropropene	<18		50	18	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,2,u-Trichlorobenzene	<2u		50	2u	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,2,4-Trichlorobenzene	<17		50	17	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,1,1-Trichloroethane	<19		50	19	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,1,2-Trichloroethane	<18		50	18	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Trichloroethene	<8.2		25	8.2	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
TrichloroflKoromethane	<21		50	21	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,2,u-Trichloropropane	<21		100	21	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,2,4-Trimethylbenzene	<18		50	18	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
1,u,5-Trimethylbenzene	<19		50	19	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Vinyl chloride	<1u		50	1u	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
Xylenes, Total	<11		25	11	Kg/3g		06/u0/20 2u:55	07/07/20 10:52	50
	LB3	LB3							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		72 - 124				06/30/20 23:55	07/07/20 10:52	50
Dibromofluoromethane (Surr)	85		75 - 120				06/30/20 23:55	07/07/20 10:52	50
1,2-Dichloroethane-d4 (Surr)	100		75 - 126				06/30/20 23:55	07/07/20 10:52	50
Toluene-d8 (Surr)	96		75 - 120				06/30/20 23:55	07/07/20 10:52	50

#### Lab Sample ID: LCS 500-550223/20-A Matrix: Solid Analysis Batch: 550913

Analysis Batch: 550913					Prep Batch: 550223
Annahula	Spike	LCS LCS	11		%Rec.
Analyte	Added	Result Qualifier	Unit	D %Rec	Limits
Benzene	2500	2700	Kg/3g	108	70 - 120
Bromobenzene	2500	2400	Kg/3g	96	70 - 122
Bromochloromethane	2500	2590	Kg/3g	10u	65 - 122
Bromodichloromethane	2500	2580	Kg/3g	10u	69 - 120
Bromoform	2500	2210	Kg/3g	88	56 - 1u2
Bromomethane	2500	2780	Kg/3g	111	40 - 152
Carbon tetrachloride	2500	2510	Kg/3g	100	59 - 1uu
Chlorobenzene	2500	2640	Kg/3g	106	70 - 120
Chloroethane	2500	27u0	Kg/3g	109	48 - 1u6
Chloroform	2500	2600	Kg/3g	104	70 - 120
Chloromethane	2500	1740	Kg/3g	69	56 - 152
2-ChlorotolKene	2500	2480	Kg/3g	99	70 - 125
4-ChlorotolKene	2500	2550	Kg/3g	102	68 - 124
cis-1,2-Dichloroethene	2500	2590	Kg/3g	104	70 - 125
cis-1,u-Dichloropropene	2500	2410	Kg/3g	96	64 - 127
Dibromochloromethane	2500	2u00	Kg/3g	92	68 - 125
1,2-Dibromo-u-Chloropropane	2500	1850	Kg/3g	74	56 - 12u
1,2-Dibromoethane	2500	2540	Kg/3g	102	70 - 125
Dibromomethane	2500	2820	Kg/3g	11u	70 - 120
1,2-Dichlorobenzene	2500	2540	Kg/3g	101	70 - 125
1,u-Dichlorobenzene	2500	2570	Kg/3g	10u	70 - 125
1,4-Dichlorobenzene	2500	2570	Kg/3g	10u	70 - 120
DichlorodiflKoromethane	2500	1uu0	Kg/3g	5u	40 - 159
1,1-Dichloroethane	2500	2600	Kg/3g	104	70 - 125

EKrofins TestAmerica, Chicago

Prep Type: Total/NA

Prep Batch: 550223

**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

## **QC Sample Results**

#### **Client: Giles Engineering Associates** Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Job ID: 500-184070-1

### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Lab Sample ID: 1 CS 500 550222/20 A

Lab Sample ID: LCS 500-550223/20-A Matrix: Solid Analysis Batch: 550913				Clier	nt Sar	nple ID	: Lab Control Samp Prep Type: Total/N Prep Batch: 5502	NA
	Spike		LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,2-Dichloroethane	2500	u050		Kg/3g		122	68 - 127	
1,1-Dichloroethene	2500	2400		Kg/3g		96	67 - 122	
1,2-Dichloropropane	2500	28u0		Kg/3g		11u	67 ₋ 1u0	
1,u-Dichloropropane	2500	2620		Kg/3g		105	62 - 1u6	
2,2-Dichloropropane	2500	2460		Kg/3g		99	58 ₋ 1u9	
1,1-Dichloropropene	2500	2600		Kg/3g		104	70 - 121	
Ethylbenzene	2500	2770		Kg/3g		111	70 - 12u	
HexachlorobKtadiene	2500	u170		Kg/3g		127	51 ₋ 150	
Isopropylbenzene	2500	2420		Kg/3g		97	70 - 126	
Methylene Chloride	2500	2500		Kg/3g		100	69 - 125	
Methyl tert-bKtyl ether	2500	u020		Kg/3g		121	55 ₋ 12u	
Naphthalene	2500	2420		Kg/3g		97	5u - 144	
n-BKtylbenzene	2500	2860		Kg/3g		114	68 - 125	
N-Propylbenzene	2500	2580		Kg/3g		10u	69 - 127	
p-IsopropyItolKene	2500	2710		Kg/3g		109	70 - 125	
sec-BKtylbenzene	2500	26u0		Kg/3g		105	70 ₋ 12u	
Styrene	2500	2700		Kg/3g		108	70 - 120	
tert-BKtylbenzene	2500	2520		Kg/3g		101	70 - 121	
1,1,1,2-Tetrachloroethane	2500	2490		Kg/3g		99	70 - 125	
1,1,2,2-Tetrachloroethane	2500	2210		Kg/3g		88	62 - 140	
Tetrachloroethene	2500	2750		Kg/3g		110	70 - 128	
TolKene	2500	2670		Kg/3g		107	70 - 125	
trans-1,2-Dichloroethene	2500	25u0		Kg/3g		101	70 - 125	
trans-1,u-Dichloropropene	2500	2420		Kg/3g		97	62 - 128	
1,2,u-Trichlorobenzene	2500	2700		Kg/3g		108	51 ₋ 145	
1,2,4-Trichlorobenzene	2500	2720		Kg/3g		109	57 ₋ 1u7	
1,1,1-Trichloroethane	2500	2610		Kg/3g		105	70 - 125	
1,1,2-Trichloroethane	2500	26u0		Kg/3g		105	71 - 1u0	
Trichloroethene	2500	2660		Kg/3g		106	70 - 125	
TrichloroflKoromethane	2500	2u10		Kg/3g		92	55 - 128	
1,2,u-Trichloropropane	2500	2280		Kg/3g		91	50 ₋ 1uu	
1,2,4-Trimethylbenzene	2500	2560		Kg/3g		102	70 - 12u	
1,u,5-Trimethylbenzene	2500	2520		Kg/3g		101	70 ₋ 12u	
Vinyl chloride	2500	2070		Kg/3g		8u	64 - 126	
Xylenes, Total	5000	5760		Kg/3g		115	70 - 125	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	88		72 - 124
Dibromofluoromethane (Surr)	94		75 - 120
1,2-Dichloroethane-d4 (Surr)	108		75 - 126
Toluene-d8 (Surr)	94		75 - 120

#### Lab Sample ID: MB 500-550710/6

#### Matrix: Solid Analysis Batch: 550710

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.15		0.25	0.15	Kg/3g			07/06/20 09:49	1

5

EKrofins TestAmerica, Chicago

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

## **QC Sample Results**

### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

#### Lab Sample ID: MB 500-550710/6 Matrix: Solid

Analysis Batch: 550710

	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromobenzene	<0.u6		1.0	0.u6	Kg/3g			07/06/20 09:49	1
Bromochloromethane	<0.4u		1.0	0.4u	Kg/3g			07/06/20 09:49	1
Bromodichloromethane	<0.u7		1.0	0.u7	Kg/3g			07/06/20 09:49	1
Bromoform	<0.48		1.0	0.48	Kg/3g			07/06/20 09:49	1
Bromomethane	<0.80		u.0	0.80	Kg/3g			07/06/20 09:49	1
Carbon tetrachloride	<0.u8		1.0	0.u8	Kg/3g			07/06/20 09:49	1
Chlorobenzene	<0.u9		1.0	0.u9	Kg/3g			07/06/20 09:49	1
Chloroethane	<0.50		1.0	0.50	Kg/3g			07/06/20 09:49	1
Chloroform	<0.u7		2.0	0.u7	Kg/3g			07/06/20 09:49	1
Chloromethane	<0.u2		1.0	0.u2	Kg/3g			07/06/20 09:49	1
2-ChlorotolKene	<0.u1		1.0	0.u1	Kg/3g			07/06/20 09:49	1
4-ChlorotolKene	<0.u5		1.0	0.u5	Kg/3g			07/06/20 09:49	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	Kg/3g			07/06/20 09:49	1
cis-1,u-Dichloropropene	<0.42		1.0	0.42	Kg/3g			07/06/20 09:49	1
Dibromochloromethane	<0.49		1.0	0.49	Kg/3g			07/06/20 09:49	1
1,2-Dibromo-u-Chloropropane	<2.0		5.0		Kg/3g			07/06/20 09:49	1
1,2-Dibromoethane	<0.u9		1.0		Kg/3g			07/06/20 09:49	1
Dibromomethane	<0.27		1.0		Kg/3g			07/06/20 09:49	1
1,2-Dichlorobenzene	<0.uu		1.0		Kg/3g			07/06/20 09:49	1
1,u-Dichlorobenzene	<0.40		1.0		Kg/3g			07/06/20 09:49	1
1,4-Dichlorobenzene	<0.u6		1.0		Kg/3g			07/06/20 09:49	1
DichlorodiflKoromethane	<0.67		u.0		Kg/3g			07/06/20 09:49	1
1.1-Dichloroethane	<0.41		1.0		Kg/3g			07/06/20 09:49	1
1,2-Dichloroethane	<0.u9		1.0		Kg/3g			07/06/20 09:49	1
1,1-Dichloroethene	<0.u9		1.0		Kg/3g			07/06/20 09:49	1
1,2-Dichloropropane	<0.4u		1.0		Kg/3g			07/06/20 09:49	1
1,u-Dichloropropane	<0.u6		1.0		Kg/3g			07/06/20 09:49	
2,2-Dichloropropane	<0.44		1.0					07/06/20 09:49	1
1,1-Dichloropropene	<0.u0		1.0		Kg/3g			07/06/20 09:49	1
Ethylbenzene	<0.18		0.25		Kg/3g			07/06/20 09:49	
HexachlorobKtadiene	<0.45		1.0		Kg/3g			07/06/20 09:49	1
Isopropylbenzene	<0.u8		1.0		Kg/3g			07/06/20 09:49	1
Isopropyl ether	<0.28		1.0	0.28	Kg/3g			07/06/20 09:49	
Methylene Chloride	<1.6		5.0		Kg/3g			07/06/20 09:49	1
Methyl tert-bKtyl ether	<0.u9		1.0		Kg/3g			07/06/20 09:49	1
Naphthalene	<0.uu		1.0		Kg/3g			07/06/20 09:49	
n-BKtylbenzene	<0.uu		1.0		Kg/3g			07/06/20 09:49	1
N-Propylbenzene	<0.41		1.0		Kg/3g			07/06/20 09:49	1
p-IsopropyItolKene	<0.u6		1.0		Kg/3g			07/06/20 09:49	
sec-BKtylbenzene	<0.40		1.0		Kg/3g			07/06/20 09:49	1
Styrene	<0.40 <0.u9		1.0		Kg/3g			07/06/20 09:49	1
tert-BKtylbenzene	<0.40 <0.46		1.0 1.0		Kg/3g			07/06/20 09:49	1
1,1,1,2-Tetrachloroethane					Kg/3g			07/06/20 09:49	1
1,1,2,2-Tetrachloroethane	<0.40		1.0		Kg/3g			07/06/20 09:49	ا ۲
Tetrachloroethene	<0.u7		1.0		Kg/3g			07/06/20 09:49	1
TolKene	<0.15		0.25		Kg/3g			07/06/20 09:49	T A
trans-1,2-Dichloroethene	<0.u5		1.0		Kg/3g			07/06/20 09:49	۲ ۲
trans-1,u-Dichloropropene	<0.u6		1.0		Kg/3g			07/06/20 09:49	1
1,2,u-Trichlorobenzene	<0.46		1.0	0.46	Kg/3g			07/06/20 09:49	1

EKrofins TestAmerica, Chicago

Job ID: 500-184070-1

**Prep Type: Total/NA** 

**Client Sample ID: Method Blank** 

### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

101

#### Lab Sample ID: MB 500-550710/6 Matrix: Solid Analysis Batch: 550710

#### Client Sample ID: Method Blank Prep Type: Total/NA

,	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	0.4u8	J	1.0	0.u4	Kg/3g			07/06/20 09:49	1
1,1,1-Trichloroethane	<0.u8		1.0	0.u8	Kg/3g			07/06/20 09:49	1
1,1,2-Trichloroethane	<0.u5		1.0	0.u5	Kg/3g			07/06/20 09:49	1
Trichloroethene	<0.16		0.50	0.16	Kg/3g			07/06/20 09:49	1
TrichloroflKoromethane	<0.4u		1.0	0.4u	Kg/3g			07/06/20 09:49	1
1,2,u-Trichloropropane	<0.41		2.0	0.41	Kg/3g			07/06/20 09:49	1
1,2,4-Trimethylbenzene	<0.u6		1.0	0.u6	Kg/3g			07/06/20 09:49	1
1,u,5-Trimethylbenzene	<0.u8		1.0	0.u8	Kg/3g			07/06/20 09:49	1
Vinyl chloride	<0.26		1.0	0.26	Kg/3g			07/06/20 09:49	1
Xylenes, Total	<0.22		0.50	0.22	Kg/3g			07/06/20 09:49	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		72 - 124			-		07/06/20 09:49	1
Dibromofluoromethane (Surr)	105		75 - 120					07/06/20 09:49	1
1,2-Dichloroethane-d4 (Surr)	106		75 - 126					07/06/20 09:49	1

75 - 120

#### Lab Sample ID: LCS 500-550710/4 Matrix: Solid Analysis Batch: 550710

Toluene-d8 (Surr)

Analysis Baton. ooor to	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Benzene	50.0	49.5	Kg/3g	99	70 - 120
Bromobenzene	50.0	46.0	Kg/3 g	92	70 - 122
Bromochloromethane	50.0	48.4	Kg/3 g	97	65 - 122
Bromodichloromethane	50.0	48.2	Kg/3 g	96	69 - 120
Bromoform	50.0	50.4	Kg/3 g	101	56 - 1u2
Bromomethane	50.0	68.8	Kg/3 g	1u8	40 - 152
Carbon tetrachloride	50.0	51.0	Kg/3g	102	59 - 1uu
Chlorobenzene	50.0	49.8	Kg/3 g	100	70 - 120
Chloroethane	50.0	49.5	Kg/3g	99	48 - 1u6
Chloroform	50.0	48.5	Kg/3 g	97	70 - 120
Chloromethane	50.0	u2.u	Kg/3g	65	56 - 152
2-ChlorotolKene	50.0	45.8	Kg/3 g	92	70 - 125
4-ChlorotolKene	50.0	46.u	Kg/3g	9u	68 - 124
cis-1,2-Dichloroethene	50.0	49.9	Kg/3g	100	70 - 125
cis-1,u-Dichloropropene	50.0	47.8	Kg/3g	96	64 - 127
Dibromochloromethane	50.0	48.7	Kg/3g	97	68 - 125
1,2-Dibromo-u-Chloropropane	50.0	4u.1	Kg/3g	86	56 - 12u
1,2-Dibromoethane	50.0	48.9	Kg/3g	98	70 - 125
Dibromomethane	50.0	49.2	Kg/3g	98	70 - 120
1,2-Dichlorobenzene	50.0	49.0	Kg/3g	98	70 - 125
1,u-Dichlorobenzene	50.0	48.4	Kg/3g	97	70 - 125
1,4-Dichlorobenzene	50.0	48.0	Kg/3g	96	70 - 120
DichlorodiflKoromethane	50.0	u4.2	Kg/3g	68	40 - 159
1,1-Dichloroethane	50.0	47.u	Kg/3 g	95	70 - 125
1,2-Dichloroethane	50.0	49.4	Kg/3 g	99	68 - 127
1,1-Dichloroethene	50.0	51.8	Kg/3 g	104	67 - 122

EKrofins TestAmerica, Chicago

Job ID: 500-184070-1

1

#### Client Sample ID: Lab Control Sample Prep Type: Total/NA

07/06/20 09:49

## **QC Sample Results**

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

#### Job ID: 500-184070-1

## 2 3 4 5 6 7 8 9 10 11 12 13

·	
Client Sample ID: Lab Control Sample	_
the second se	
Prep Type: Total/NA	

#### Lab Sample ID: LCS 500-550710/4 Matrix: Solid

Analysis Batch: 550710							Frep Type. Total/NF	<b>`</b>
Analysis Datch. 5507 To	Spike	LCS	LCS				%Rec.	
Analyte	Added		Qualifier	Unit	D %	%Rec	Limits	
1,2-Dichloropropane	50.0	46.5		Kg/3g		9u	67 <u>-</u> 1u0	-
1,u-Dichloropropane	50.0	47.4		Kg/3g		95	62 - 1u6	
2,2-Dichloropropane	50.0	48.5		Kg/3g		97	58 ₋ 1u9	
1,1-Dichloropropene	50.0	50.u		Kg/3g		101	70 - 121	
Ethylbenzene	50.0	49.6		Kg/3g		99	70 ₋ 12u	
HexachlorobKtadiene	50.0	47.8		Kg/3g		96	51 - 150	
Isopropylbenzene	50.0	46.u		Kg/3g		9u	70 - 126	
Methylene Chloride	50.0	47.7		Kg/3g		95	69 - 125	
Methyl tert-bKtyl ether	50.0	47.8		Kg/3g		96	55 ₋ 12u	- 1
Naphthalene	50.0	4u.4		Kg/3g		87	5u ₋ 144	
n-BKtylbenzene	50.0	49.u		Kg/3g		99	68 - 125	- 1
N-Propylbenzene	50.0	47.4		Kg/3g		95	69 - 127	
p-IsopropyItolKene	50.0	46.7		Kg/3g		9u	70 - 125	- 2
sec-BKtylbenzene	50.0	47.8		Kg/3g		96	70 ₋ 12u	
Styrene	50.0	47.8		Kg/3g		96	70 - 120	- 5
tert-BKtylbenzene	50.0	46.u		Kg/3g		9u	70 - 121	
1,1,1,2-Tetrachloroethane	50.0	48.7		Kg/3g		97	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	42.9		Kg/3g		86	62 - 140	
Tetrachloroethene	50.0	52.9		Kg/3g		106	70 - 128	
TolKene	50.0	49.u		Kg/3g		99	70 - 125	
trans-1,2-Dichloroethene	50.0	51.4		Kg/3g		10u	70 - 125	
trans-1,u-Dichloropropene	50.0	46.6		Kg/3g		9u	62 - 128	
1,2,u-Trichlorobenzene	50.0	47.0		Kg/3g		94	51 ₋ 145	
1,2,4-Trichlorobenzene	50.0	47.9		Kg/3g		96	57 ₋ 1u7	
1,1,1-Trichloroethane	50.0	50.2		Kg/3g		100	70 - 125	
1,1,2-Trichloroethane	50.0	46.7		Kg/3g		9u	71 ₋ 1u0	
Trichloroethene	50.0	50.6		Kg/3g		101	70 - 125	
TrichloroflKoromethane	50.0	49.7		Kg/3g		99	55 - 128	
1,2,u-Trichloropropane	50.0	42.2		Kg/3g		84	50 - 1uu	
1,2,4-Trimethylbenzene	50.0	46.2		Kg/3g		92	70 ₋ 12u	
1,u,5-Trimethylbenzene	50.0	46.4		Kg/3g		9u	70 ₋ 12u	
Vinyl chloride	50.0	u9.0		Kg/3g		78	64 - 126	
Xylenes, Total	100	98.6		Kg/3g		99	70 - 125	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	91		72 - 124
Dibromofluoromethane (Surr)	106		75 - 120
1,2-Dichloroethane-d4 (Surr)	105		75 - 126
Toluene-d8 (Surr)	102		75 - 120

#### Lab Sample ID: MB 500-550913/6 Matrix: Solid Analysis Batch: 550913

#### MB MB Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac 0.15 Kg/3g Benzene <0.15 0.25 07/07/20 10:25 1 1.0 07/07/20 10:25 Bromobenzene <0.u6 0.u6 Kg/3g 1 Bromochloromethane <0.4u 1.0 0.4u Kg/3g 07/07/20 10:25 1

EKrofins TestAmerica, Chicago

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

## **QC Sample Results**

## Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

#### Lab Sample ID: MB 500-550913/6 Matrix: Solid

Analysis Batch: 550913

Analyte	Result	Qualifier	RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
Bromodichloromethane	<0.u7		1.0	0.u7	Kg/3g		07/07/20 10:25	1
Bromoform	<0.48		1.0	0.48	Kg/3g		07/07/20 10:25	1
Bromomethane	<0.80		u.0		Kg/3g		07/07/20 10:25	1
Carbon tetrachloride	<0.u8		1.0	0.u8	Kg/3g		07/07/20 10:25	1
Chlorobenzene	<0.u9		1.0	0.u9	Kg/3g		07/07/20 10:25	1
Chloroethane	<0.50		1.0	0.50	Kg/3g		07/07/20 10:25	1
Chloroform	<0.u7		2.0	0.u7	Kg/3g		07/07/20 10:25	1
Chloromethane	<0.u2		1.0	0.u2	Kg/3g		07/07/20 10:25	1
2-ChlorotolKene	<0.u1		1.0	0.u1	Kg/3g		07/07/20 10:25	1
4-ChlorotolKene	<0.u5		1.0	0.u5	Kg/3g		07/07/20 10:25	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	Kg/3g		07/07/20 10:25	1
cis-1,u-Dichloropropene	<0.42		1.0	0.42	Kg/3g		07/07/20 10:25	1
Dibromochloromethane	<0.49		1.0	0.49	Kg/3g		07/07/20 10:25	1
1,2-Dibromo-u-Chloropropane	<2.0		5.0	2.0	Kg/3g		07/07/20 10:25	1
1,2-Dibromoethane	<0.u9		1.0	0.u9	Kg/3g		07/07/20 10:25	1
Dibromomethane	<0.27		1.0	0.27	Kg/3g		07/07/20 10:25	1
1,2-Dichlorobenzene	<0.uu		1.0	0.uu	Kg/3g		07/07/20 10:25	1
1,u-Dichlorobenzene	<0.40		1.0	0.40	Kg/3g		07/07/20 10:25	1
1,4-Dichlorobenzene	<0.u6		1.0	0.u6	Kg/3g		07/07/20 10:25	1
DichlorodiflKoromethane	<0.67		u.0	0.67	Kg/3g		07/07/20 10:25	1
1,1-Dichloroethane	<0.41		1.0	0.41	Kg/3g		07/07/20 10:25	1
1,2-Dichloroethane	<0.u9		1.0	0.u9	Kg/3g		07/07/20 10:25	1
1,1-Dichloroethene	<0.u9		1.0	0.u9	Kg/3g		07/07/20 10:25	1
1,2-Dichloropropane	<0.4u		1.0	0.4u	Kg/3g		07/07/20 10:25	1
1,u-Dichloropropane	<0.u6		1.0	0.u6	Kg/3g		07/07/20 10:25	1
2,2-Dichloropropane	<0.44		1.0	0.44	Kg/3g		07/07/20 10:25	1
1,1-Dichloropropene	<0.u0		1.0	0.u0	Kg/3g		07/07/20 10:25	1
Ethylbenzene	<0.18		0.25	0.18	Kg/3g		07/07/20 10:25	1
HexachlorobKtadiene	<0.45		1.0		Kg/3g		07/07/20 10:25	1
Isopropylbenzene	<0.u8		1.0	0.u8	Kg/3g		07/07/20 10:25	1
Isopropyl ether	<0.28		1.0	0.28	Kg/3g		07/07/20 10:25	1
Methylene Chloride	<1.6		5.0		0 0		07/07/20 10:25	1
Methyl tert-bKtyl ether	<0.u9		1.0	0.u9	Kg/3g		07/07/20 10:25	1
Naphthalene	<0.uu		1.0		Kg/3g		07/07/20 10:25	1
n-BKtylbenzene	<0.u9		1.0		Kg/3g		07/07/20 10:25	1
N-Propylbenzene	<0.41		1.0	0.41	Kg/3g		07/07/20 10:25	1
p-IsopropyltolKene	<0.u6		1.0		Kg/3g		07/07/20 10:25	1
sec-BKtylbenzene	<0.40		1.0		Kg/3g		07/07/20 10:25	1
Styrene	<0.u9		1.0		Kg/3g		07/07/20 10:25	1
tert-BKtylbenzene	<0.40		1.0		Kg/3g		07/07/20 10:25	1
1,1,1,2-Tetrachloroethane	<0.46		1.0		Kg/3g		07/07/20 10:25	1
1,1,2,2-Tetrachloroethane	<0.40		1.0		Kg/3g		07/07/20 10:25	1
Tetrachloroethene	<0.u7		1.0		Kg/3g		07/07/20 10:25	1
TolKene	<0.15		0.25		Kg/3g		07/07/20 10:25	1
trans-1,2-Dichloroethene	<0.u5		1.0		Kg/3g		07/07/20 10:25	1
trans-1,u-Dichloropropene	<0.u6		1.0		Kg/3g		07/07/20 10:25	1
1,2,u-Trichlorobenzene	<0.46		1.0		Kg/3g		07/07/20 10:25	1
1,2,4-Trichlorobenzene	<0.u4		1.0		Kg/3g		07/07/20 10:25	1
1,1,1-Trichloroethane	<0.u8		1.0	0.u8	Kg/3g		07/07/20 10:25	1

EKrofins TestAmerica, Chicago

**Prep Type: Total/NA** 

**Client Sample ID: Method Blank** 

### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

#### Lab Sample ID: MB 500-550913/6 Matrix: Solid

#### Client Sample ID: Method Blank Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

Analysis Batch: 550913

, malyere Batem cocore	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2-Trichloroethane	<0.u5		1.0	0.u5	Kg/3g			07/07/20 10:25	1
Trichloroethene	<0.16		0.50	0.16	Kg/3g			07/07/20 10:25	1
TrichloroflKoromethane	<0.4u		1.0	0.4u	Kg/3g			07/07/20 10:25	1
1,2,u-Trichloropropane	<0.41		2.0	0.41	Kg/3g			07/07/20 10:25	1
1,2,4-Trimethylbenzene	<0.u6		1.0	0.u6	Kg/3g			07/07/20 10:25	1
1,u,5-Trimethylbenzene	<0.u8		1.0	0.u8	Kg/3g			07/07/20 10:25	1
Vinyl chloride	<0.26		1.0	0.26	Kg/3g			07/07/20 10:25	1
Xylenes, Total	<0.22		0.50	0.22	Kg/3g			07/07/20 10:25	1

	MB	MB					
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	91		72 - 124		07/07/20 10:25	1	
Dibromofluoromethane (Surr)	89		75 - 120		07/07/20 10:25	1	
1,2-Dichloroethane-d4 (Surr)	103		75 - 126		07/07/20 10:25	1	
Toluene-d8 (Surr)	95		75 - 120		07/07/20 10:25	1	

#### Lab Sample ID: LCS 500-550913/4 Matrix: Solid Analysis Batch: 550913

Analysis Batch: 550913	Spike	LCS	LCS		%Rec.
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits
Benzene	50.0	49.4	Kg/3g	99	70 - 120
Bromobenzene	50.0	45.1	Kg/3g	90	70 - 122
Bromochloromethane	50.0	46.1	Kg/3g	92	65 - 122
Bromodichloromethane	50.0	45.9	Kg/3g	92	69 - 120
Bromoform	50.0	u9.6	Kg/3g	79	56 - 1u2
Bromomethane	50.0	5u.4	Kg/3 g	107	40 - 152
Carbon tetrachloride	50.0	47.9	Kg/3g	96	59 ₋ 1uu
Chlorobenzene	50.0	48.4	Kg/3 g	97	70 - 120
Chloroethane	50.0	52.u	Kg/3g	105	48 - 1u6
Chloroform	50.0	47.8	Kg/3g	96	70 - 120
Chloromethane	50.0	44.0	Kg/3 g	88	56 - 152
2-ChlorotolKene	50.0	48.2	Kg/3 g	96	70 - 125
4-ChlorotolKene	50.0	48.9	Kg/3g	98	68 - 124
cis-1,2-Dichloroethene	50.0	47.8	Kg/3g	96	70 - 125
cis-1,u-Dichloropropene	50.0	44.5	Kg/3 g	89	64 - 127
Dibromochloromethane	50.0	41.7	Kg/3g	8u	68 - 125
1,2-Dibromo-u-Chloropropane	50.0	u1.9	Kg/3 g	64	56 ₋ 12u
1,2-Dibromoethane	50.0	44.2	Kg/3 g	88	70 - 125
Dibromomethane	50.0	48.6	Kg/3g	97	70 - 120
1,2-Dichlorobenzene	50.0	47.2	Kg/3 g	94	70 - 125
1,u-Dichlorobenzene	50.0	48.4	Kg/3 g	97	70 - 125
1,4-Dichlorobenzene	50.0	47.9	Kg/3g	96	70 - 120
DichlorodiflKoromethane	50.0	54.0	Kg/3 g	108	40 - 159
1,1-Dichloroethane	50.0	48.1	Kg/3g	96	70 - 125
1,2-Dichloroethane	50.0	5u.u	Kg/3g	107	68 - 127
1,1-Dichloroethene	50.0	47.1	Kg/3g	94	67 - 122
1,2-Dichloropropane	50.0	49.2	Kg/3g	98	67 ₋ 1u0
1,u-Dichloropropane	50.0	45.8	Kg/3g	92	62 - 1u6

## **QC Sample Results**

#### Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

#### Lab Sample ID: LCS 500-550913/4 Matrix: Solid

Analysia	Databy	EE0042
Analysis	Datch.	550915

Analysis Batch: 550913	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,2-Dichloropropane	50.0	52.5		Kg/3g		105	58 - 1u9
1,1-Dichloropropene	50.0	50.1		Kg/3g		100	70 - 121
Ethylbenzene	50.0	52.0		Kg/3g		104	70 ₋ 12u
HexachlorobKtadiene	50.0	58.9		Kg/3g		118	51 ₋ 150
sopropylbenzene	50.0	48.8		Kg/3g		98	70 - 126
Methylene Chloride	50.0	4u.8		Kg/3g		88	69 - 125
Methyl tert-bKtyl ether	50.0	50.7		Kg/3g		101	55 - 12u
Naphthalene	50.0	42.1		Kg/3g		84	5u ₋ 144
n-BKtylbenzene	50.0	55.7		Kg/3g		111	68 - 125
N-Propylbenzene	50.0	50.9		Kg/3g		102	69 - 127
o-IsopropyItolKene	50.0	5u.u		Kg/3g		107	70 - 125
sec-BKtylbenzene	50.0	51.9		Kg/3g		104	70 - 12u
Styrene	50.0	48.1		Kg/3g		96	70 - 120
ert-BKtylbenzene	50.0	50.5		Kg/3g		101	70 - 121
1,1,1,2-Tetrachloroethane	50.0	45.6		Kg/3g		91	70 - 125
1,1,2,2-Tetrachloroethane	50.0	u9.4		Kg/3g		79	62 - 140
Tetrachloroethene	50.0	5u.9		Kg/3g		108	70 - 128
FolKene	50.0	50.4		Kg/3g		101	70 - 125
rans-1,2-Dichloroethene	50.0	48.7		Kg/3g		97	70 - 125
rans-1,u-Dichloropropene	50.0	4u.1		Kg/3g		86	62 - 128
I,2,u-Trichlorobenzene	50.0	47.5		Kg/3g		95	51 - 145
1,2,4-Trichlorobenzene	50.0	49.0		Kg/3g		98	57 - 1u7
1,1,1-Trichloroethane	50.0	49.u		Kg/3g		99	70 - 125
1,1,2-Trichloroethane	50.0	46.2		Kg/3g		92	71 - 1u0
Trichloroethene	50.0	49.u		Kg/3g		99	70 - 125
FrichloroflKoromethane	50.0	44.9		Kg/3g		90	55 - 128
1,2,u-Trichloropropane	50.0	40.9		Kg/3g		82	50 - 1uu
1,2,4-Trimethylbenzene	50.0	49.0		Kg/3g		98	70 ₋ 12u
1,u,5-Trimethylbenzene	50.0	49.9		Kg/3g		100	70 ₋ 12u
Vinyl chloride	50.0	47.7		Kg/3g		95	64 - 126
Xylenes, Total	100	107		Kg/3g		107	70 - 125

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	90		72 - 124
Dibromofluoromethane (Surr)	91		75 - 120
1,2-Dichloroethane-d4 (Surr)	101		75 - 126
Toluene-d8 (Surr)	97		75 - 120

#### Lab Sample ID: MB 500-550933/7 Matrix: Solid Analysis Batch: 550933

MB	MB						
Analyte Result	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene <0.15	0.25	0.15	Kg/3g			07/07/20 10:46	1
Bromobenzene <0.u6	5 1.0	0.u6	Kg/3g			07/07/20 10:46	1
Bromochloromethane <0.4u	ı 1.0	0.4u	Kg/3g			07/07/20 10:46	1
Bromodichloromethane <0.u7	1.0	0.u7	Kg/3g			07/07/20 10:46	1
Bromoform <0.48	1.0	0.48	Kg/3g			07/07/20 10:46	1

## Job ID: 500-184070-1

**Prep Type: Total/NA** 

**Client Sample ID: Lab Control Sample** 

EKrofins TestAmerica, Chicago

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

## QC Sample Results

### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

#### Lab Sample ID: MB 500-550933/7 Matrix: Solid

Analysis Batch: 550933

Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane	<0.80		u.0					07/07/20 10:46	1
Carbon tetrachloride	<0.u8		1.0		Kg/3g			07/07/20 10:46	
Chlorobenzene	<0.u9		1.0		Kg/3g			07/07/20 10:46	1
Chloroethane	<0.50		1.0		Kg/3g			07/07/20 10:46	1
Chloroform	<0.u7		2.0		Kg/3g			07/07/20 10:46	
Chloromethane	<0.u2		1.0		Kg/3g			07/07/20 10:46	1
2-ChlorotolKene	<0.u1		1.0		Kg/3g			07/07/20 10:46	1
4-ChlorotolKene	<0.u5		1.0		Kg/3g			07/07/20 10:46	
cis-1,2-Dichloroethene	<0.41		1.0		Kg/3g			07/07/20 10:46	1
cis-1,u-Dichloropropene	<0.42		1.0		Kg/3g			07/07/20 10:46	1
Dibromochloromethane	<0.49		1.0		Kg/3g			07/07/20 10:46	
1,2-Dibromo-u-Chloropropane	<2.0		5.0		Kg/3g			07/07/20 10:46	1
1,2-Dibromoethane	<0.u9		1.0		Kg/3g			07/07/20 10:46	1
Dibromomethane	<0.27		1.0		Kg/3g			07/07/20 10:46	
1,2-Dichlorobenzene	<0.uu		1.0		Kg/3g			07/07/20 10:46	1
1,u-Dichlorobenzene	<0.40		1.0		Kg/3g			07/07/20 10:46	1
1,4-Dichlorobenzene	<0.u6		1.0		Kg/3g			07/07/20 10:46	
DichlorodiflKoromethane	<0.67		u.0		Kg/3g			07/07/20 10:46	1
1.1-Dichloroethane	<0.41		1.0		Kg/3g			07/07/20 10:46	1
1,2-Dichloroethane	<0.u9		1.0		Kg/3g			07/07/20 10:46	
1,1-Dichloroethene	<0.u9		1.0		Kg/3g			07/07/20 10:46	1
1,2-Dichloropropane	<0.4u		1.0		Kg/3g			07/07/20 10:46	1
1,u-Dichloropropane	<0.u6		1.0		Kg/3g			07/07/20 10:46	
2,2-Dichloropropane	<0.44		1.0		Kg/3g			07/07/20 10:46	1
1,1-Dichloropropene	<0.u0		1.0		Kg/3g			07/07/20 10:46	1
Ethylbenzene	<0.18		0.25		Kg/3g			07/07/20 10:46	
HexachlorobKtadiene	<0.45		1.0		Kg/3g			07/07/20 10:46	1
Isopropylbenzene	<0.u8		1.0		Kg/3g			07/07/20 10:46	1
Isopropyl ether	<0.28		1.0		Kg/3g			07/07/20 10:46	
Methylene Chloride	<1.6		5.0		Kg/3g			07/07/20 10:46	1
Methyl tert-bKtyl ether	<0.u9		1.0		Kg/3g			07/07/20 10:46	1
Naphthalene	<0.uu		1.0		Kg/3g			07/07/20 10:46	
n-BKtylbenzene	<0.u9		1.0		Kg/3g			07/07/20 10:46	1
N-Propylbenzene	<0.41		1.0		Kg/3g			07/07/20 10:46	1
p-IsopropyItolKene	<0.u6		1.0		Kg/3g			07/07/20 10:46	
sec-BKtylbenzene	<0.40		1.0		Kg/3g			07/07/20 10:46	1
Styrene	<0.u9		1.0		Kg/3g			07/07/20 10:46	1
tert-BKtylbenzene	<0.40		1.0		Kg/3g			07/07/20 10:46	
1,1,1,2-Tetrachloroethane	<0.46		1.0		Kg/3g			07/07/20 10:46	1
1,1,2,2-Tetrachloroethane	<0.40		1.0		Kg/3g			07/07/20 10:46	1
Tetrachloroethene	<0.u7		1.0		Kg/3g			07/07/20 10:46	
TolKene	<0.15		0.25		Kg/3g			07/07/20 10:46	1
trans-1,2-Dichloroethene	<0.10		1.0		Kg/3g			07/07/20 10:46	1
trans-1,u-Dichloropropene	<0.u6		1.0		Kg/3g			07/07/20 10:46	
1.2.u-Trichlorobenzene	<0.46		1.0		Kg/3g			07/07/20 10:46	1
1,2,4-Trichlorobenzene	<0.u4		1.0		Kg/3g			07/07/20 10:46	1
1,1,1-Trichloroethane	<0.u4		1.0		Kg/3g			07/07/20 10:46	
1,1,2-Trichloroethane	<0.uo		1.0		Kg/3g			07/07/20 10:46	1
Trichloroethene	<0.16		0.50		Kg/3g			07/07/20 10:46	1

#### EKrofins TestAmerica, Chicago

**Prep Type: Total/NA** 

**Client Sample ID: Method Blank** 

Page 29 of 36

## Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

#### Lab Sample ID: MB 500-550933/7 Matrix: Solid

### Analysis Batch: 550933

Analysis Batom secore	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
TrichloroflKoromethane	<0.4u		1.0	0.4u	Kg/3g			07/07/20 10:46	1
1,2,u-Trichloropropane	<0.41		2.0	0.41	Kg/3g			07/07/20 10:46	1
1,2,4-Trimethylbenzene	<0.u6		1.0	0.u6	Kg/3g			07/07/20 10:46	1
1,u,5-Trimethylbenzene	<0.u8		1.0	0.u8	Kg/3g			07/07/20 10:46	1
Vinyl chloride	<0.26		1.0	0.26	Kg/3g			07/07/20 10:46	1
Xylenes, Total	<0.22		0.50	0.22	Kg/3g			07/07/20 10:46	1
	MB	МВ							

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		72 - 124		07/07/20 10:46	1
Dibromofluoromethane (Surr)	98		75 - 120		07/07/20 10:46	1
1,2-Dichloroethane-d4 (Surr)	110		75 - 126		07/07/20 10:46	1
Toluene-d8 (Surr)	97		75 - 120		07/07/20 10:46	1

#### Lab Sample ID: LCS 500-550933/5 Matrix: Solid Analysis Batch: 550933

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	44.2		Kg/3g		88	70 - 120	
Bromobenzene	50.0	45.0		Kg/3g		90	70 - 122	
Bromochloromethane	50.0	47.u		Kg/3g		95	65 - 122	
Bromodichloromethane	50.0	4u.8		Kg/3g		88	69 - 120	
Bromoform	50.0	42.u		Kg/3g		85	56 ₋ 1u2	
Bromomethane	50.0	54.8		Kg/3g		110	40 - 152	
Carbon tetrachloride	50.0	45.0		Kg/3g		90	59 ₋ 1uu	
Chlorobenzene	50.0	44.7		Kg/3g		89	70 - 120	
Chloroethane	50.0	54.5		Kg/3g		109	48 ₋ 1u6	
Chloroform	50.0	41.2		Kg/3g		82	70 - 120	
Chloromethane	50.0	u7.7		Kg/3g		75	56 - 152	
2-ChlorotolKene	50.0	42.u		Kg/3g		85	70 - 125	
4-ChlorotolKene	50.0	42.u		Kg/3g		85	68 - 124	
cis-1,2-Dichloroethene	50.0	45.0		Kg/3g		90	70 - 125	
cis-1,u-Dichloropropene	50.0	42.9		Kg/3g		86	64 - 127	
Dibromochloromethane	50.0	4u.5		Kg/3g		87	68 - 125	
1,2-Dibromo-u-Chloropropane	50.0	u6.8		Kg/3g		74	56 ₋ 12u	
1,2-Dibromoethane	50.0	46.1		Kg/3g		92	70 - 125	
Dibromomethane	50.0	46.7		Kg/3g		9u	70 - 120	
1,2-Dichlorobenzene	50.0	44.9		Kg/3g		90	70 - 125	
1,u-Dichlorobenzene	50.0	44.u		Kg/3g		89	70 - 125	
1,4-Dichlorobenzene	50.0	44.1		Kg/3g		88	70 - 120	
DichlorodiflKoromethane	50.0	u5.2		Kg/3g		70	40 - 159	
1,1-Dichloroethane	50.0	49.4		Kg/3g		99	70 - 125	
1,2-Dichloroethane	50.0	48.1		Kg/3g		96	68 - 127	
1,1-Dichloroethene	50.0	4u.9		Kg/3g		88	67 _ 122	
1,2-Dichloropropane	50.0	52.5		Kg/3g		105	67 ₋ 1u0	
1,u-Dichloropropane	50.0	44.9		Kg/3g		90	62 - 1u6	
2,2-Dichloropropane	50.0	42.5		Kg/3g		85	58 - 1u9	
1,1-Dichloropropene	50.0	4u.u		Kg/3g		87	70 - 121	

7/7/2020

**Prep Type: Total/NA** 

Prep Type: Total/NA

**Client Sample ID: Method Blank** 

**Client Sample ID: Lab Control Sample** 

## **QC Sample Results**

#### Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

#### Lab Sample ID: LCS 500-550933/5 Matrix: Solid

#### Analysis Batch: 550933

	Spike	LCS			%Rec.	
Analyte	Added	Result	Qualifier Unit	D %Rec	Limits	
Ethylbenzene	50.0	44.2	Kg/3 g	88	70 - 12u	
HexachlorobKtadiene	50.0	4u.2	Kg/3 g	86	51 - 150	
sopropylbenzene	50.0	4u.5	Kg/3g	87	70 - 126	
Methylene Chloride	50.0	44.6	Kg/3g	89	69 - 125	
Methyl tert-bKtyl ether	50.0	u6.8	Kg/3 g	74	55 ₋ 12u	
Naphthalene	50.0	44.7	Kg/3 g	89	5u ₋ 144	
n-BKtylbenzene	50.0	40.5	Kg/3 g	81	68 - 125	
I-Propylbenzene	50.0	42.9	Kg/3 g	86	69 - 127	
IsopropyltolKene	50.0	41.6	Kg/3 g	8u	70 - 125	
ec-BKtylbenzene	50.0	41.7	Kg/3 g	8u	70 ₋ 12u	
Styrene	50.0	4u.4	Kg/3g	87	70 - 120	
ert-BKtylbenzene	50.0	41.9	Kg/3g	84	70 - 121	
,1,1,2-Tetrachloroethane	50.0	4u.u	Kg/3 g	87	70 - 125	
,1,2,2-Tetrachloroethane	50.0	46.u	Kg/3g	9u	62 - 140	
etrachloroethene	50.0	47.0	Kg/3g	94	70 - 128	
olKene	50.0	44.9	Kg/3g	90	70 - 125	
ans-1,2-Dichloroethene	50.0	44.2	Kg/3g	88	70 - 125	
ans-1,u-Dichloropropene	50.0	42.8	Kg/3g	86	62 - 128	
,2,u-Trichlorobenzene	50.0	48.u	Kg/3g	97	51 - 145	
,2,4-Trichlorobenzene	50.0	45.u	Kg/3g	91	57 ₋ 1u7	
,1,1-Trichloroethane	50.0	44.7	Kg/3 g	89	70 - 125	
,1,2-Trichloroethane	50.0	46.5	Kg/3g	9u	71 - 1u0	
richloroethene	50.0	46.5	Kg/3g	9u	70 - 125	
richloroflKoromethane	50.0	47.0	Kg/3g	94	55 - 128	
,2,u-Trichloropropane	50.0	45.4	Kg/3g	91	50 ₋ 1uu	
,2,4-Trimethylbenzene	50.0	42.0	Kg/3g	84	70 ₋ 12u	
,u,5-Trimethylbenzene	50.0	42.u	Kg/3g	85	70 - 12u	
/inyl chloride	50.0	49.5	Kg/3g	99	64 - 126	
Xylenes, Total	100	85.8	Kg/3g	86	70 - 125	
10	CS LCS					

	LUS	LC3	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	95		72 - 124
Dibromofluoromethane (Surr)	100		75 - 120
1,2-Dichloroethane-d4 (Surr)	105		75 - 126
Toluene-d8 (Surr)	99		75 - 120

Client Samp Date Collected Date Received		2:06					Lab Sa	imple ID:	500-184070- Matrix: Soli
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture			549554	06/26/20 08:03		TAL CHI	
_ Client Samp		1 (2 1)					Lab Sa		500 194070
Date Collecter							Lau Ja	imple iD.	500-184070- Matrix: Soli
Date Received								Per	cent Solids: 87.
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	- 5035			550223	06/25/20 12:06	WRE	TAL CHI	
Total/NA	Analysis	8260B		50		07/06/20 17:12		TAL CHI	
- Client Semr		2(2 4)					Lob So		500 494070
Client Samp							Lan 29	imple iD:	500-184070-2 Matrix: Soli
Date Collected									Wall 1X. 3011
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture			549554	06/26/20 08:03		TAL CHI	
_		<b>•</b> ( <b>•</b> ( <b>•</b> )							
	MA ID: CB	.2 (2.4)					Lab Sa	imple ID:	500-184070-
Client Samp									
Date Collected	d: 06/23/20 1	1:28						Por	
	d: 06/23/20 1 d: 06/25/20 0	1:28 9:40						Per	
Date Collected Date Received	d: 06/23/20 1 1: 06/25/20 0 Batch	1:28 9:40 Batch		Dilution	Batch	Prepared			
Date Collected Date Received Prep Type	d: 06/23/20 1 d: 06/25/20 0 Batch Type	1:28 9:40 Batch Method	Run	Dilution Factor	Number	or Analyzed	Analyst	Lab	
Date Collected Date Received Prep Type Total/NA	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep	1:28 9:40 Batch Method 5035	Run	Factor	Number 550223	or Analyzed 06/23/20 11:28	WRE	Lab TAL CHI	
Date Collected Date Received Prep Type	d: 06/23/20 1 d: 06/25/20 0 Batch Type	1:28 9:40 Batch Method	Run		Number 550223	or Analyzed	WRE	Lab	
Date Collected Date Received Prep Type Total/NA	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis	1:28 9:40 Batch <u>Method</u> 5035 8260B	Run	Factor	Number 550223	or Analyzed 06/23/20 11:28 07/06/20 17:38	WRE PMF	Lab TAL CHI TAL CHI	cent Solids: 92
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis Die ID: GP2 d: 06/23/20 1	1:28 9:40 Batch Method 5035 8260B 2-1 (2-4) 2:52	Run	Factor	Number 550223	or Analyzed 06/23/20 11:28 07/06/20 17:38	WRE PMF	Lab TAL CHI TAL CHI	cent Solids: 92. 500-184070-
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis Die ID: GP2 d: 06/23/20 1	1:28 9:40 Batch Method 5035 8260B 2-1 (2-4) 2:52	Run	Factor	Number 550223	or Analyzed 06/23/20 11:28 07/06/20 17:38	WRE PMF	Lab TAL CHI TAL CHI	cent Solids: 92 500-184070-
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis Die ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch		- Factor 50 Dilution	Number 550223 550710 Batch	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared	WRE PMF	Lab TAL CHI TAL CHI IMPIE ID:	cent Solids: 92. 500-184070-
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type	1:28 9:40 Batch <u>Method</u> 5035 8260B 2-1 (2-4) 2:52 9:40 Batch Method	Run	Factor         50         Dilution         Factor	Number 550223 550710 Batch Number	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed	WRE PMF Lab Sa Analyst	Lab TAL CHI TAL CHI Imple ID: Lab	cent Solids: 92. 500-184070-
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis Die ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch		- Factor 50 Dilution	Number 550223 550710 Batch	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared	WRE PMF Lab Sa Analyst	Lab TAL CHI TAL CHI IMPIE ID:	cent Solids: 92. 500-184070-
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Analysis	1:28 9:40 Batch Method 5035 8260B 2-1 (2-4) 2:52 9:40 Batch Method Moisture		Factor         50         Dilution         Factor	Number 550223 550710 Batch Number	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03	WRE PMF Lab Sa Analyst LWN	Lab TAL CHI TAL CHI Imple ID:	cent Solids: 92. 500-184070- Matrix: Soli
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/23/20 0 Batch Type Analysis DIE ID: GP2	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch Method Moisture Z-1 (2-4)		Factor         50         Dilution         Factor	Number 550223 550710 Batch Number	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03	WRE PMF Lab Sa Analyst LWN	Lab TAL CHI TAL CHI Imple ID:	cent Solids: 92 500-184070- Matrix: Soli 500-184070-
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Analysis DIE ID: GP2 d: 06/23/20 1	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch Method Moisture Z-1 (2-4) 2:52		Factor         50         Dilution         Factor	Number 550223 550710 Batch Number	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03	WRE PMF Lab Sa Analyst LWN	Lab TAL CHI TAL CHI Imple ID: Lab TAL CHI	cent Solids: 92 500-184070- Matrix: Soli 500-184070- Matrix: Soli
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Analysis DIE ID: GP2 d: 06/23/20 1	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch Method Moisture Z-1 (2-4) 2:52		Factor         50         Dilution         Factor	Number 550223 550710 Batch Number	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03	WRE PMF Lab Sa Analyst LWN	Lab TAL CHI TAL CHI Imple ID: Lab TAL CHI	cent Solids: 92. 500-184070- Matrix: Soli 500-184070- Matrix: Soli
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch Method Moisture Z-1 (2-4) 2:52 9:40		 50  Dilution Factor 1	Number           550223           550710           Batch           Number           549554	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03	WRE PMF Lab Sa Analyst LWN	Lab TAL CHI TAL CHI Imple ID: Lab TAL CHI	cent Solids: 92. 500-184070- Matrix: Soli 500-184070- Matrix: Soli
Date Collected Date Received Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Total/NA Client Samp Date Collected Date Collected Date Received	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/25/20 0 Batch Type Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/23/20 1 d: 06/23/20 0 Batch	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch Method Moisture Z-1 (2-4) 2:52 9:40 Batch Batch	Run	Factor	Number           550223           550710           Batch           Number           549554           Batch	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03 Prepared or Analyzed	WRE PMF Lab Sa Analyst LWN Lab Sa	Lab TAL CHI TAL CHI Imple ID: Lab TAL CHI Imple ID: Pere	cent Solids: 92. 500-184070- Matrix: Soli 500-184070- Matrix: Soli
Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Collected Date Collected Date Collected Date Collected Date Received	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/23/20 1 d: 06/25/20 0 Batch Type	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch Moisture Z-1 (2-4) 2:52 9:40 Batch Moisture Z-1 (2-4) 2:52 9:40	Run	Factor	Number           550223           550710           Batch           Number           549554           Batch           Number           550223	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03 Prepared or Analyzed	WRE PMF Lab Sa Analyst LWN Lab Sa Analyst WRE	Lab TAL CHI TAL CHI Imple ID: TAL CHI Imple ID: Pero Lab	Matrix: Soli cent Solids: 92. 500-184070- Matrix: Soli 500-184070- Matrix: Soli cent Solids: 89.
Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Collected Date Received Prep Type Total/NA	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/23/20 1 d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch Method Z-1 (2-4) 2:52 9:40 Z-1 (2-4) 2:52 9:40 Batch Method 5035 8260B	Run	Factor         50         Dilution         Factor         1         Dilution         Factor         Factor	Number           550223           550710           Batch           Number           549554           Batch           Number           550223	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03 Prepared 06/23/20 12:52 07/06/20 18:04	WRE PMF Lab Sa Analyst LWN Lab Sa Analyst WRE PMF	Lab TAL CHI TAL CHI Imple ID: TAL CHI TAL CHI Pero Lab TAL CHI TAL CHI TAL CHI	cent Solids: 92. 500-184070- Matrix: Soli 500-184070- Matrix: Soli cent Solids: 89.
Date Collected Date Received Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/23/20 1 d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch Method C-1 (2-4) 2:52 9:40 Z-1 (2-4) 2:52 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Z-1 (4-6)	Run	Factor         50         Dilution         Factor         1         Dilution         Factor         Factor	Number           550223           550710           Batch           Number           549554           Batch           Number           550223	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03 Prepared 06/23/20 12:52 07/06/20 18:04	WRE PMF Lab Sa Analyst LWN Lab Sa Analyst WRE PMF	Lab TAL CHI TAL CHI Imple ID: TAL CHI TAL CHI Pero Lab TAL CHI TAL CHI TAL CHI	cent Solids: 92 500-184070- Matrix: Soli 500-184070- Matrix: Soli cent Solids: 89
Date Collected Date Received Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1	1:28 9:40 Batch Method 5035 8260B 2-1 (2-4) 2:52 9:40 Batch Method C-1 (2-4) 2:52 9:40 2:52 9:40 Batch Method 5035 8260B 2-1 (2-4) 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:53 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:560B 2:57 8:57 8:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B 2:570B	Run	Factor         50         Dilution         Factor         1         Dilution         Factor         Factor	Number           550223           550710           Batch           Number           549554           Batch           Number           550223	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03 Prepared 06/23/20 12:52 07/06/20 18:04	WRE PMF Lab Sa Analyst LWN Lab Sa Analyst WRE PMF	Lab TAL CHI TAL CHI Imple ID: TAL CHI TAL CHI Pero Lab TAL CHI TAL CHI TAL CHI	cent Solids: 92 500-184070- Matrix: Soli 500-184070- Matrix: Soli cent Solids: 89
Date Collected Date Received Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Received	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/23/20 1	1:28 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Batch Method C-1 (2-4) 2:52 9:40 Z-1 (2-4) 2:52 9:40 Batch Method 5035 8260B Z-1 (2-4) 2:52 9:40 Z-1 (4-6) 6:30 9:40	Run	Factor 50 Dilution Factor Dilution Factor 50	Number           550223           550710           Batch           Number           549554           Batch           Number           550223           550710	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03 Prepared 06/23/20 12:52 07/06/20 18:04	WRE PMF Lab Sa Analyst LWN Lab Sa Analyst WRE PMF	Lab TAL CHI TAL CHI Imple ID: TAL CHI TAL CHI Pero Lab TAL CHI TAL CHI TAL CHI	cent Solids: 92. 500-184070- Matrix: Soli 500-184070- Matrix: Soli
Prep Type Total/NA Total/NA Client Samp Date Collected Date Received Prep Type Total/NA Client Samp Date Collected Date Collected Date Received Prep Type Total/NA	d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Analysis DIE ID: GP2 d: 06/23/20 1 d: 06/25/20 0 Batch Type Prep Analysis DIE ID: GP2 d: 06/23/20 1	1:28 9:40 Batch Method 5035 8260B 2-1 (2-4) 2:52 9:40 Batch Method C-1 (2-4) 2:52 9:40 2:52 9:40 Batch Method 5035 8260B 2-1 (2-4) 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:53 8:260B 2:51 2:53 8:260B 2:51 2:53 8:260B 2:51 2:53 8:260B 2:53 8:260B 2:53 8:260B 2:51 2:51 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:40 2:52 9:55 2:52 9:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:55 2:555 2:555 2:555 2:555 2:555 2:555 2:555 2:555 2:	Run	Factor         50         Dilution         Factor         1         Dilution         Factor         Factor	Number           550223           550710           Batch           Number           549554           Batch           Number           550223	or Analyzed 06/23/20 11:28 07/06/20 17:38 Prepared or Analyzed 06/26/20 08:03 Prepared 06/23/20 12:52 07/06/20 18:04	WRE PMF Lab Sa Analyst LWN Lab Sa Analyst WRE PMF	Lab TAL CHI TAL CHI Imple ID: TAL CHI TAL CHI Pero Lab TAL CHI TAL CHI TAL CHI	cent Solids: 92 500-184070- Matrix: Soli 500-184070- Matrix: Soli cent Solids: 89

Lab Chronicle

**Client: Giles Engineering Associates** 

Job ID: 500-184070-1

Client Sam	d: 06/23/20 1	6:30					Lab Sa	- C	500-184070-4 Matrix: Solid
Date Receive	a: 06/25/20 0	9:40						Per	cent Solids: 52.4
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			550223	06/23/20 16:30	WRE	TAL CHI	
Total/NA	Analysis	8260B		50	550933	07/07/20 11:43	STW	TAL CHI	
Client Sam	ple ID: GM	W-2 (2-4)					Lab Sa	mple ID:	500-184070-5
Date Collecte	•								Matrix: Solid
Date Receive	d: 06/25/20 0	9:40							
-									
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture		1	549554	06/26/20 08:03	LWN	TAL CHI	
Client Sam	ple ID: GM	W-2 (2-4)					Lab Sa	mple ID:	500-184070-5
Date Collecte									Matrix: Solid
Date Receive								Per	cent Solids: 90.7
-									
	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	5035			550223	06/23/20 10:09	WRE	TAL CHI	
Total/NA	Analysis	8260B		50	550033	07/07/20 12:12	STW	TAL CHI	

Lab Chronicle

#### Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

12 13

7/7/2020

#### 2.4

Job ID: 500-184070-1

**Client: Giles Engineering Associates** Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

## Accreditation/Certification Summary

Client: Giles Engineering Associates Project/Site: Best Way Cleaners 5914 Hwy 51 1E-2006002

### Laboratory: Eurofins TestAmerica, Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	999580010	08-31-20

Job ID: 500-184070-1

Eurofins TestAmerica, Chicago 2417 Bond Street

**Chain of Custody Record** 

Second the Encount of Testing

2.445	TestAmerica
141.00	Eurofins
	d/b/a
	Inc.
	atories,

University Park, IL 60484-3101 phone 708.534.5200 fax 708.534.521	Regulatory Program:	ONPDES CRA Other:	TestAmerica Labo	TestAmerica Laboratories, inc. d/b/a Eurofins TestAmerica
	Project Manager: Kevin Bugel			
Client Contact	Email: kbugel@gilesengr.com	Site Contact: Joey Wolske	Date: 6/23/2020	1 of1 COCs
Giles Engineering Associates	Tel/Fax: (262)544-0118	Lab Contact: Sandie Fredrick	k Carrier:	TALS Project #:
N8 W 22350 Johnson Road 500-184070 COC	Analysis Turnaround Time	e		Sampler:
Waukesha, WI 53186	CALENDAR DAYS	DAYS		For Lab Use Only:
(262)544-0118 Phone	TAT if different from Below 7 Working Days	1		Walk-in Client:
(xxx) xxx-xxxx FAX	2 weeks	<u>N /</u>		Lab Sampling:
Project Name: Best Way Cleaners - 5914 Hwy 51		λ) ( N / λ		
P 0 # 1E-2006002		OSW ) əld		NA - 1500 N
		June		4
Sample Identification	Sample Matrix Sample Sample (C=Comp. Or	rrix maaa. Perform M Cont. # of Cont. Cont. arsio.		Sample Specific Notes:
	Prese			
(2-2) (2-2)	6/24/2 1206 6 5	- 2 W X		
2 (2-2)	112 8	Xar		
(2-2) (2-4)	1252	XXX		
( CP3-1 (4-C)	1630	XMA		
		12		
シート	1001			
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6=	3; 5=NaOH; 6= Other			
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? PI Comments Section if the lab is to dispose of the sample.	Please List any EPA Waste Codes for the sample in the		Sample Disposal ( A fee may be assessed if samples are retained longer than 1 month)	ined longer than 1 month)
3 Non-Hazard Bammable Skin Irritant	Poison B     Daknown	Return to Client	C Disposal by Lab	Months
Special Instructions/QCTkequirements & Comments: Email results to: kbugel@gilesengr.com and jwolske@gilesengr.com	Email results to: kbugel@gilesengr.co	ım and jwolske@gilesengr.com		
			23	
Custody Seals Intact:	eal No.:	Cooler Temp.	(C): Obs'd: / / Corr'd:	Therm ID No.:
Relinquished by:	Company: GILES ENGR Date/	Date/Time: //00 6/2420 //00	Company:	Date/Time: Du . JU IVCT
Relinquished by:	6-24-20	Date/Time: Received by:	Company:	
Relinquished by:	Company: Date	Date/Time: Received/id/aboratory by	The company with	Date/Thee/20/20/20/00
			1	Form No. CA-C-WI-002, Rev. 4.26, dated 7/25/2019

Client: Giles Engineering Associates

#### Login Number: 184070 List Number: 1 Creator: Scott, Sherri L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.3
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins TestAmerica, Chicago

# 🛟 eurofins

# Environment Testing America

## **ANALYTICAL REPORT**

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

### Laboratory Job ID: 500-185078-1

Client Project/Site: Fmr Best Way Cleaners - 1E-2006002

### For:

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Giles Engineering Associates N8 W 22350 Johnson Road Waukesha, Wisconsin 53186

Attn: Mr. Kevin Bugel

and he heder

Authorized for release by: 7/22/2020 2:00:55 PM Sandie Fredrick, Project Manager II (920)261-1660 sandie.fredrick@testamericainc.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Definitions	19
QC Association	20
Surrogate Summary	21
QC Sample Results	22
Chronicle	25
Certification Summary	26
Chain of Custody	27
Receipt Checklists	28

#### Job ID: 500-185078-1

#### Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-185078-1

**Case Narrative** 

#### Comments

No additional comments.

#### Receipt

The samples were received on 7/17/2020 9:30 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.1° C.

#### GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

## **Detection Summary**

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

Job ID: 500-185078-1

Client Sample ID: GMW-	1					Lab Sa	mple ID: 5	00-185078-1
	<u>.</u>							
Analyte	Result	Qualifier	RL		Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	9.2		1.0	0.41	ug/L	1	8260B	Total/NA
Client Sample ID: GMW-	2					Lab Sa	mple ID: 5	00-185078-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Naphthalene	1.0		1.0	0.34	ug/L	1	8260B	Total/NA
Client Sample ID: GMW-	3					Lab Sa	mple ID: 5	00-185078-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Naphthalene	2.3		1.0	0.34	ug/L	1	8260B	Total/NA
Client Sample ID: GPZ-1						Lab Sa	mple ID: 5	00-185078-4
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	0.96	J	1.0	0.41	ug/L	1	8260B	Total/NA
Client Sample ID: GPZ-2						Lab Sa	mple ID: 5	00-185078-5
No Detections.								
Client Sample ID: TRIP E	<b>3LANK</b>					Lab Sa	mple ID: 5	00-185078-6
No Detections.								

This Detection Summary does not include radiochemical test results.

## **Method Summary**

#### Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

4
5
6
8
9
13

MethodMethod DescriptionProtocolLaboratory8260BVolatile Organic Compounds (GC/MS)SW846TAL CHI5030BPurge and TrapSW846TAL CHI

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

## Sample Summary

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002 Job ID: 500-185078-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-185078-1	GMW-1	Water	07/16/20 12:20	07/17/20 09:30
500-185078-2	GMW-2	Water	07/16/20 11:35	07/17/20 09:30
500-185078-3	GMW-3	Water	07/16/20 10:45	07/17/20 09:30
500-185078-4	GPZ-1	Water	07/16/20 12:00	07/17/20 09:30
500-185078-5	GPZ-2	Water	07/16/20 11:20	07/17/20 09:30
500-185078-6	TRIP BLANK	Water	07/16/20 00:00	07/17/20 09:30

RL

MDL Unit

D

Prepared

**Client: Giles Engineering Associates** Project/Site: Fmr Best Way Cleaners - 1E-2006002

Method: 8260B - Volatile Organic Compounds (GC/MS)

Result Qualifier

#### **Client Sample ID: GMW-1** Date Collected: 07/16/20 12:20 Date Received: 07/17/20 09:30

Analyte

loh	ID.	500-1	85078-1
300	ID.	JUU-1	00010-1

Analyzed

Matrix: Water

Dil Fac

Lab Sample ID: 500-185078-1

L	Analyte	Result	Quaimer	RL	IVIDL	Unit	U	Prepared	Analyzed	DIFAC	
	1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			07/21/20 11:10	1	
	1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			07/21/20 11:10	1	6
	1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			07/21/20 11:10	1	-
	1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			07/21/20 11:10	1	7
	1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			07/21/20 11:10	1	_
	1,1-Dichloroethene	<0.39		1.0		ug/L			07/21/20 11:10	1	8
	1,1-Dichloropropene	<0.30		1.0	0.30	ug/L			07/21/20 11:10	1	
	1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			07/21/20 11:10	1	0
	1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/L			07/21/20 11:10	1	J
	1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			07/21/20 11:10	1	
	1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			07/21/20 11:10	1	
	1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			07/21/20 11:10	1	
	1,2-Dibromoethane	<0.39		1.0	0.39	ug/L			07/21/20 11:10	1	
	1,2-Dichlorobenzene	<0.33		1.0	0.33	ug/L			07/21/20 11:10	1	
	1,2-Dichloroethane	<0.39		1.0	0.39	ug/L			07/21/20 11:10	1	
	1,2-Dichloropropane	<0.43		1.0	0.43	ug/L			07/21/20 11:10	1	
	1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			07/21/20 11:10	1	1
	1,3-Dichlorobenzene	<0.40		1.0	0.40	ug/L			07/21/20 11:10	1	
	1,3-Dichloropropane	<0.36		1.0	0.36	ug/L			07/21/20 11:10	1	
	1,4-Dichlorobenzene	<0.36		1.0	0.36	ug/L			07/21/20 11:10	1	
	2,2-Dichloropropane	<0.44		1.0	0.44	ug/L			07/21/20 11:10	1	
	2-Chlorotoluene	<0.31		1.0	0.31	ug/L			07/21/20 11:10	1	
	4-Chlorotoluene	<0.35		1.0	0.35	ug/L			07/21/20 11:10	1	
	Benzene	<0.15		0.50	0.15	ug/L			07/21/20 11:10	1	
	Bromobenzene	<0.36		1.0	0.36	ug/L			07/21/20 11:10	1	
	Bromochloromethane	<0.43		1.0	0.43	ug/L			07/21/20 11:10	1	
	Bromodichloromethane	<0.37		1.0	0.37	ug/L			07/21/20 11:10	1	
	Bromoform	<0.48		1.0	0.48	ug/L			07/21/20 11:10	1	
	Bromomethane	<0.80		3.0	0.80	ug/L			07/21/20 11:10	1	
	Carbon tetrachloride	<0.38		1.0	0.38	ug/L			07/21/20 11:10	1	
	Chlorobenzene	<0.39		1.0	0.39	ug/L			07/21/20 11:10	1	
	Chloroethane	<0.51		1.0	0.51	ug/L			07/21/20 11:10	1	
	Chloroform	<0.37		2.0	0.37	ug/L			07/21/20 11:10	1	
	Chloromethane	<0.32		1.0	0.32	ug/L			07/21/20 11:10	1	
	cis-1,2-Dichloroethene	9.2		1.0	0.41	ug/L			07/21/20 11:10	1	
	cis-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			07/21/20 11:10	1	
	Dibromochloromethane	<0.49		1.0	0.49	ug/L			07/21/20 11:10	1	
	Dibromomethane	<0.27		1.0	0.27	ug/L			07/21/20 11:10	1	
	Dichlorodifluoromethane	<0.67		3.0	0.67	ug/L			07/21/20 11:10	1	
	Ethylbenzene	<0.18		0.50	0.18	ug/L			07/21/20 11:10	1	
	Hexachlorobutadiene	<0.45		1.0	0.45	ug/L			07/21/20 11:10	1	
	Isopropyl ether	<0.28		1.0	0.28	ug/L			07/21/20 11:10	1	
	Isopropylbenzene	<0.39		1.0	0.39	ug/L			07/21/20 11:10	1	
	Methyl tert-butyl ether	<0.39		1.0	0.39	ug/L			07/21/20 11:10	1	
	Methylene Chloride	<1.6		5.0	1.6	ug/L			07/21/20 11:10	1	
	Naphthalene	<0.34		1.0	0.34	ug/L			07/21/20 11:10	1	
	n-Butylbenzene	<0.39		1.0		ug/L			07/21/20 11:10	1	
	N-Propylbenzene	<0.41		1.0	0.41	ug/L			07/21/20 11:10	1	
	p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			07/21/20 11:10	1	
1											

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

#### Client Sample ID: GMW-1 Date Collected: 07/16/20 12:20 Date Received: 07/17/20 09:30

Job ID: 500-185078-1

## Lab Sample ID: 500-185078-1

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 11:10	1
Styrene	<0.39		1.0	0.39	ug/L			07/21/20 11:10	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 11:10	1
Tetrachloroethene	< 0.37		1.0	0.37	ug/L			07/21/20 11:10	1
Toluene	<0.15		0.50	0.15	ug/L			07/21/20 11:10	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			07/21/20 11:10	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			07/21/20 11:10	1
Trichloroethene	<0.16		0.50	0.16	ug/L			07/21/20 11:10	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			07/21/20 11:10	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			07/21/20 11:10	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			07/21/20 11:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bronfil ubebnzl (nrS) 907 2ee1			: 5 r 4B6			-		/:3B43B/94484/	4
)rDebi btu2bebhn(an(n9072ee1	,)		: Br 4B)					/:3B43B/94484/	4
omlebibtu2bebinzl (n99072æ1	4/ c		:5r4B/					/:3B43B/94484/	4
dbv2n(nrST9072æ1	4/6		:5r4B/					/:3B43B/94484/	4

5

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

Method: 8260B - Volatile Organic Compounds (GC/MS)

#### Client Sample ID: GMW-2 Date Collected: 07/16/20 11:35 Date Received: 07/17/20 09:30

13

Lab Sample I	D:	500-185078-2
		Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46			Tiopulou	07/21/20 11:37	1
1,1,1-Trichloroethane	<0.38	1.0	0.38				07/21/20 11:37	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	-			07/21/20 11:37	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	-			07/21/20 11:37	
1,1-Dichloroethane	<0.41	1.0	0.41	-			07/21/20 11:37	1
1,1-Dichloroethene	<0.39	1.0	0.39	-			07/21/20 11:37	1
1,1-Dichloropropene	<0.30	1.0	0.30	-			07/21/20 11:37	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	-			07/21/20 11:37	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	-			07/21/20 11:37	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	-			07/21/20 11:37	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	-			07/21/20 11:37	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			07/21/20 11:37	1
1,2-Dibromoethane	<0.39	1.0	0.39	-			07/21/20 11:37	
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			07/21/20 11:37	1
1,2-Dichloroethane	<0.39	1.0	0.39	-			07/21/20 11:37	1
1,2-Dichloropropane	<0.43	1.0	0.43	-			07/21/20 11:37	
1,3,5-Trimethylbenzene	<0.25	1.0	0.25				07/21/20 11:37	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	-			07/21/20 11:37	1
1,3-Dichloropropane	<0.36	1.0	0.36	-			07/21/20 11:37	
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			07/21/20 11:37	1
2,2-Dichloropropane	<0.44	1.0	0.44	-			07/21/20 11:37	1
2-Chlorotoluene	<0.31	1.0	0.31	-			07/21/20 11:37	
4-Chlorotoluene	<0.35	1.0	0.35	-			07/21/20 11:37	1
Benzene	<0.15	0.50	0.15	-			07/21/20 11:37	1
Bromobenzene	<0.36	1.0	0.36	-			07/21/20 11:37	
Bromochloromethane	<0.43	1.0	0.43	-			07/21/20 11:37	1
Bromodichloromethane	<0.37	1.0	0.37	-			07/21/20 11:37	1
Bromoform	<0.48	1.0	0.48	-			07/21/20 11:37	1
Bromomethane	<0.80	3.0	0.80	-			07/21/20 11:37	1
Carbon tetrachloride	<0.38	1.0	0.38	-			07/21/20 11:37	1
Chlorobenzene	<0.39	1.0	0.39	-			07/21/20 11:37	
Chloroethane	<0.51	1.0	0.51	-			07/21/20 11:37	1
Chloroform	<0.37	2.0	0.37	-			07/21/20 11:37	1
Chloromethane	<0.32	1.0	0.32	-			07/21/20 11:37	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41				07/21/20 11:37	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	-			07/21/20 11:37	1
Dibromochloromethane	<0.49	1.0	0.49				07/21/20 11:37	1
Dibromomethane	<0.27	1.0	0.27	ug/L			07/21/20 11:37	1
Dichlorodifluoromethane	<0.67	3.0	0.67	-			07/21/20 11:37	1
Ethylbenzene	<0.18	0.50	0.18	-			07/21/20 11:37	1
Hexachlorobutadiene	<0.45	1.0	0.45				07/21/20 11:37	1
Isopropyl ether	<0.28	1.0	0.28	ug/L			07/21/20 11:37	1
Isopropylbenzene	<0.39	1.0	0.39				07/21/20 11:37	1
Methyl tert-butyl ether	<0.39	1.0	0.39	ug/L			07/21/20 11:37	1
Methylene Chloride	<1.6	5.0		ug/L			07/21/20 11:37	1
Naphthalene	1.0	1.0	0.34	ug/L			07/21/20 11:37	1
n-Butylbenzene	<0.39	1.0	0.39	-			07/21/20 11:37	1
N-Propylbenzene	<0.41	1.0	0.41	-			07/21/20 11:37	1
p-Isopropyltoluene	<0.36	1.0	0.36	-			07/21/20 11:37	1
				-				

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

#### Client Sample ID: GMW-2 Date Collected: 07/16/20 11:35 Date Received: 07/17/20 09:30

Job ID: 500-185078-1

## Lab Sample ID: 500-185078-2

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 11:37	1
Styrene	<0.39		1.0	0.39	ug/L			07/21/20 11:37	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 11:37	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			07/21/20 11:37	1
Toluene	<0.15		0.50	0.15	ug/L			07/21/20 11:37	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			07/21/20 11:37	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			07/21/20 11:37	1
Trichloroethene	<0.16		0.50	0.16	ug/L			07/21/20 11:37	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			07/21/20 11:37	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			07/21/20 11:37	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			07/21/20 11:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromflubebnzl (nrS)9072ee1			: 5 r 4B6			-		/:3B43B/944&:	4
)rDebi btı2bebhn(an(n9072æ1	,)		:Br4B)					/:3B43B/944&:	4
omlebibtu2bebinzl (n99072ee1	4/4		:5r4B/					/:3B43B/944&:	4
dbı2n(nrST9072æ1	4/6		:5r4B/					/:38438/944&:	4

9 10 11 12 13 14

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

#### **Client Sample ID: GMW-3** Date Collected: 07/16/20 10:45 Date Received: 07/17/20 09:30

.loh	ID.	500-1	85078-1
000	· D .	000 1	000101

13

## Lab Sample ID: 500-185078-3

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			07/21/20 12:04	
,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			07/21/20 12:04	
,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			07/21/20 12:04	
,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			07/21/20 12:04	
,1-Dichloroethane	<0.41	1.0	0.41	ug/L			07/21/20 12:04	
,1-Dichloroethene	<0.39	1.0		ug/L			07/21/20 12:04	
,1-Dichloropropene	<0.30	1.0		ug/L			07/21/20 12:04	
,2,3-Trichlorobenzene	<0.46	1.0		ug/L			07/21/20 12:04	
,2,3-Trichloropropane	<0.41	2.0		ug/L			07/21/20 12:04	
,2,4-Trichlorobenzene	<0.34	1.0		ug/L			07/21/20 12:04	
I,2,4-Trimethylbenzene	<0.36	1.0		ug/L			07/21/20 12:04	
,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	-			07/21/20 12:04	
,2-Dibromoethane	<0.39	1.0		ug/L			07/21/20 12:04	
,2-Dichlorobenzene	<0.33	1.0		ug/L			07/21/20 12:04	
.2-Dichloroethane	<0.39	1.0	0.39	-			07/21/20 12:04	
,2-Dichloropropane	<0.43	1.0		ug/L			07/21/20 12:04	
,3,5-Trimethylbenzene	<0.25	1.0		ug/L			07/21/20 12:04	
.3-Dichlorobenzene	<0.23	1.0		ug/L			07/21/20 12:04	
*	<0.40	1.0		ug/L			07/21/20 12:04	
,3-Dichloropropane ,4-Dichlorobenzene	<0.36	1.0		-			07/21/20 12:04	
,				ug/L				
,2-Dichloropropane	<0.44	1.0		ug/L			07/21/20 12:04	
-Chlorotoluene	<0.31	1.0		ug/L			07/21/20 12:04	
-Chlorotoluene	< 0.35	1.0		ug/L			07/21/20 12:04	
Benzene	<0.15	0.50	0.15	-			07/21/20 12:04	
Bromobenzene	<0.36	1.0	0.36	-			07/21/20 12:04	
Bromochloromethane	< 0.43	1.0	0.43	-			07/21/20 12:04	
Bromodichloromethane	<0.37	1.0	0.37	-			07/21/20 12:04	
Bromoform	<0.48	1.0	0.48	-			07/21/20 12:04	
Bromomethane	<0.80	3.0		ug/L			07/21/20 12:04	
Carbon tetrachloride	<0.38	1.0	0.38	-			07/21/20 12:04	
Chlorobenzene	<0.39	1.0	0.39	-			07/21/20 12:04	
Chloroethane	<0.51	1.0	0.51	ug/L			07/21/20 12:04	
Chloroform	<0.37	2.0		ug/L			07/21/20 12:04	
Chloromethane	<0.32	1.0	0.32	ug/L			07/21/20 12:04	
cis-1,2-Dichloroethene	<0.41	1.0	0.41	ug/L			07/21/20 12:04	
sis-1,3-Dichloropropene	<0.42	1.0	0.42	ug/L			07/21/20 12:04	
Dibromochloromethane	<0.49	1.0	0.49	ug/L			07/21/20 12:04	
Dibromomethane	<0.27	1.0	0.27	ug/L			07/21/20 12:04	
Dichlorodifluoromethane	<0.67	3.0	0.67	ug/L			07/21/20 12:04	
thylbenzene	<0.18	0.50	0.18	ug/L			07/21/20 12:04	
lexachlorobutadiene	<0.45	1.0	0.45	ug/L			07/21/20 12:04	
sopropyl ether	<0.28	1.0	0.28	ug/L			07/21/20 12:04	
sopropylbenzene	<0.39	1.0		ug/L			07/21/20 12:04	
lethyl tert-butyl ether	<0.39	1.0		ug/L			07/21/20 12:04	
/lethylene Chloride	<1.6	5.0		ug/L			07/21/20 12:04	
laphthalene	2.3	1.0		ug/L			07/21/20 12:04	
-Butylbenzene	<0.39	1.0		ug/L			07/21/20 12:04	
N-Propylbenzene	<0.41	1.0		ug/L			07/21/20 12:04	
p-Isopropyltoluene	<0.41	1.0		ug/L			07/21/20 12:04	

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

#### Client Sample ID: GMW-3 Date Collected: 07/16/20 10:45 Date Received: 07/17/20 09:30

Job ID: 500-185078-1

#### Lab Sample ID: 500-185078-3 Matrix: Water

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 12:04	1
Styrene	<0.39		1.0	0.39	ug/L			07/21/20 12:04	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 12:04	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			07/21/20 12:04	1
Toluene	<0.15		0.50	0.15	ug/L			07/21/20 12:04	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			07/21/20 12:04	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			07/21/20 12:04	1
Trichloroethene	<0.16		0.50	0.16	ug/L			07/21/20 12:04	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			07/21/20 12:04	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			07/21/20 12:04	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			07/21/20 12:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bronfnlubebnzl (nrS)9072ee1	4/6		: 5 r 4B6			-		/:3B43B/94B8)	4
rDebi btu2bebhn(an(n9072æ1	, C		: Br 4B)					/:3B43B/94B8/)	4
omlebibtu2bebinzl (n99072ee1	4/5		:5r4B/					/:3B43B/94B8/)	4
dbu2n(nrST9072æ1	4/6		:5r4B/					/:3B43B/94B8)	4

9 10 11 12 13 14

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

#### Client Sample ID: GPZ-1 Date Collected: 07/16/20 12:00 Date Received: 07/17/20 09:30

.loh	ID.	500-1	85078-1
000	· D .	000 1	000101

3

## Lab Sample ID: 500-185078-4

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	-			07/21/20 12:31	1
,1,1-Trichloroethane	<0.38	1.0	0.38	0			07/21/20 12:31	1
,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	-			07/21/20 12:31	1
,1,2-Trichloroethane	<0.35	1.0	0.35	-			07/21/20 12:31	
,1-Dichloroethane	<0.41	1.0	0.41	ug/L			07/21/20 12:31	
,1-Dichloroethene	<0.39	1.0	0.39	0			07/21/20 12:31	
,1-Dichloropropene	<0.30	1.0	0.30	ug/L			07/21/20 12:31	
,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			07/21/20 12:31	
,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			07/21/20 12:31	
,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			07/21/20 12:31	
I,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			07/21/20 12:31	
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			07/21/20 12:31	
,2-Dibromoethane	<0.39	1.0	0.39	ug/L			07/21/20 12:31	
,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L			07/21/20 12:31	
,2-Dichloroethane	<0.39	1.0	0.39	ug/L			07/21/20 12:31	
,2-Dichloropropane	<0.43	1.0	0.43	-			07/21/20 12:31	
,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			07/21/20 12:31	
,3-Dichlorobenzene	<0.40	1.0	0.40	-			07/21/20 12:31	
,3-Dichloropropane	<0.36	1.0	0.36	-			07/21/20 12:31	
,4-Dichlorobenzene	<0.36	1.0	0.36	-			07/21/20 12:31	
,2-Dichloropropane	<0.44	1.0	0.44	-			07/21/20 12:31	
-Chlorotoluene	<0.31	1.0	0.31	-			07/21/20 12:31	
-Chlorotoluene	<0.35	1.0	0.35	-			07/21/20 12:31	
Benzene	<0.15	0.50	0.15	-			07/21/20 12:31	
Bromobenzene	<0.36	1.0	0.36	-			07/21/20 12:31	
Bromochloromethane	<0.43	1.0	0.43	-			07/21/20 12:31	
Bromodichloromethane	<0.37	1.0	0.37	-			07/21/20 12:31	
Bromoform	<0.48	1.0	0.48	-			07/21/20 12:31	
Bromomethane	<0.80	3.0	0.80	-			07/21/20 12:31	
Carbon tetrachloride	<0.38	1.0	0.38	-			07/21/20 12:31	
Chlorobenzene	<0.39	1.0	0.39	-			07/21/20 12:31	
Chloroethane	<0.53	1.0	0.53	-			07/21/20 12:31	
Chloroform	<0.37	2.0	0.37	-			07/21/20 12:31	
Chloromethane	<0.37		0.37	-			07/21/20 12:31	
		1.0 1.0	0.32	-			07/21/20 12:31	
cis-1,2-Dichloroethene	<b>0.96 J</b>			-				
is-1,3-Dichloropropene	<0.42	1.0	0.42				07/21/20 12:31	
Dibromochloromethane	<0.49	1.0	0.49				07/21/20 12:31	
Dibromomethane	<0.27	1.0	0.27				07/21/20 12:31	
Dichlorodifluoromethane	<0.67	3.0	0.67	-			07/21/20 12:31	
Ethylbenzene	<0.18	0.50	0.18				07/21/20 12:31	
lexachlorobutadiene	<0.45	1.0	0.45	-			07/21/20 12:31	
sopropyl ether	<0.28	1.0	0.28				07/21/20 12:31	
sopropylbenzene	<0.39	1.0	0.39	-			07/21/20 12:31	
Aethyl tert-butyl ether	<0.39	1.0	0.39	-			07/21/20 12:31	
lethylene Chloride	<1.6	5.0		ug/L			07/21/20 12:31	
laphthalene	<0.34	1.0	0.34	-			07/21/20 12:31	
n-Butylbenzene	<0.39	1.0	0.39	-			07/21/20 12:31	
N-Propylbenzene	<0.41	1.0	0.41	ug/L			07/21/20 12:31	

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

#### Client Sample ID: GPZ-1 Date Collected: 07/16/20 12:00 Date Received: 07/17/20 09:30

Job ID: 500-185078-1

## Lab Sample ID: 500-185078-4

Matrix: Water

5

6 7 8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 12:31	1
Styrene	<0.39		1.0	0.39	ug/L			07/21/20 12:31	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 12:31	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			07/21/20 12:31	1
Toluene	<0.15		0.50	0.15	ug/L			07/21/20 12:31	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			07/21/20 12:31	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			07/21/20 12:31	1
Trichloroethene	<0.16		0.50	0.16	ug/L			07/21/20 12:31	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			07/21/20 12:31	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			07/21/20 12:31	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			07/21/20 12:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromflubebnzl (nrS)9072ee1			: 5 r 4B6			-		/:3B43B/94B&4	4
)rDebi btı2bebhn(an(n9072ee1	, B		:Br4B)					/:3B43B/94B&4	4
omlebibtu2bebinzl (n99072ee1	4/5		:5r4B/					/:3B43B/94B&4	4
dbu2n(nrST9072æ1	4/ B		:5r4B/					/:3B43B/94B&c4	4

**Client: Giles Engineering Associates** Project/Site: Fmr Best Way Cleaners - 1E-2006002

#### **Client Sample ID: GPZ-2** Date Collected: 07/16/20 11:20 Date Received: 07/17/20 09:30

loh	ID.	500-1	85078-1
300	ID.	JUU-1	00010-1

7

## Lab Sample ID: 500-185078-5

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			07/21/20 12:58	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			07/21/20 12:58	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			07/21/20 12:58	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			07/21/20 12:58	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			07/21/20 12:58	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			07/21/20 12:58	1
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			07/21/20 12:58	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			07/21/20 12:58	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			07/21/20 12:58	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			07/21/20 12:58	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			07/21/20 12:58	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			07/21/20 12:58	1
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			07/21/20 12:58	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L			07/21/20 12:58	1
1,2-Dichloroethane	<0.39	1.0	0.39	ug/L			07/21/20 12:58	1
1,2-Dichloropropane	<0.43	1.0	0.43	ug/L			07/21/20 12:58	1
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			07/21/20 12:58	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	ug/L			07/21/20 12:58	1
1,3-Dichloropropane	<0.36	1.0	0.36	ug/L			07/21/20 12:58	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	ug/L			07/21/20 12:58	1
2,2-Dichloropropane	<0.44	1.0	0.44	ug/L			07/21/20 12:58	1
2-Chlorotoluene	<0.31	1.0	0.31	ug/L			07/21/20 12:58	1
4-Chlorotoluene	<0.35	1.0	0.35	ug/L			07/21/20 12:58	1
Benzene	<0.15	0.50		ug/L			07/21/20 12:58	1
Bromobenzene	<0.36	1.0		ug/L			07/21/20 12:58	1
Bromochloromethane	<0.43	1.0		ug/L			07/21/20 12:58	1
Bromodichloromethane	<0.37	1.0		ug/L			07/21/20 12:58	1
Bromoform	<0.48	1.0	0.48	ug/L			07/21/20 12:58	1
Bromomethane	<0.80	3.0		ug/L			07/21/20 12:58	1
Carbon tetrachloride	<0.38	1.0		ug/L			07/21/20 12:58	1
Chlorobenzene	<0.39	1.0	0.39	ug/L			07/21/20 12:58	1
Chloroethane	<0.51	1.0		ug/L			07/21/20 12:58	1
Chloroform	<0.37	2.0		ug/L			07/21/20 12:58	1
Chloromethane	<0.32	1.0	0.32	-			07/21/20 12:58	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			07/21/20 12:58	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	-			07/21/20 12:58	1
Dibromochloromethane	<0.49	1.0		ug/L			07/21/20 12:58	1
Dibromomethane	<0.27	1.0		ug/L			07/21/20 12:58	1
Dichlorodifluoromethane	<0.67	3.0		ug/L			07/21/20 12:58	1
Ethylbenzene	<0.18	0.50		ug/L			07/21/20 12:58	1
Hexachlorobutadiene	<0.45	1.0		ug/L			07/21/20 12:58	1
Isopropyl ether	<0.28	1.0		ug/L			07/21/20 12:58	1
Isopropylbenzene	<0.39	1.0		ug/L			07/21/20 12:58	1
Methyl tert-butyl ether	<0.39	1.0		ug/L			07/21/20 12:58	1
Methylene Chloride	<1.6	5.0		ug/L			07/21/20 12:58	1
Naphthalene	<0.34	1.0		ug/L			07/21/20 12:58	
n-Butylbenzene	<0.39	1.0		ug/L			07/21/20 12:58	1
N-Propylbenzene	<0.41	1.0		ug/L			07/21/20 12:58	1
p-Isopropyltoluene	<0.36	1.0		ug/L			07/21/20 12:58	

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

#### Client Sample ID: GPZ-2 Date Collected: 07/16/20 11:20 Date Received: 07/17/20 09:30

Job ID: 500-185078-1

## Lab Sample ID: 500-185078-5

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 12:58	1
Styrene	<0.39		1.0	0.39	ug/L			07/21/20 12:58	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 12:58	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			07/21/20 12:58	1
Toluene	<0.15		0.50	0.15	ug/L			07/21/20 12:58	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			07/21/20 12:58	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			07/21/20 12:58	1
Trichloroethene	<0.16		0.50	0.16	ug/L			07/21/20 12:58	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			07/21/20 12:58	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			07/21/20 12:58	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			07/21/20 12:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bronfil ubebnzl (nrS) 907 2ee1			: 5 r 4B6					/:3B43B/94B85T	4
)rDebi btu2bebhn(an(n9072ee1	, 6		:Br4B)					/:3B43B/94B85T	4
omlebibtu2bebinzl (n99072ee1	4/5		:5r4B/					/:3B43B/94B85T	4
dbu2n(nrST9072æ1	4/)		:5r4B/					/:3B43B/94B85T	4

5

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

#### Client Sample ID: TRIP BLANK Date Collected: 07/16/20 00:00 Date Received: 07/17/20 09:30

Analyte	Result Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fac
I,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	-			07/21/20 10:44	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	-			07/21/20 10:44	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	-			07/21/20 10:44	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			07/21/20 10:44	1
I,1-Dichloroethane	<0.41	1.0	0.41	ug/L			07/21/20 10:44	1
,1-Dichloroethene	<0.39	1.0	0.39	ug/L			07/21/20 10:44	1
,1-Dichloropropene	<0.30	1.0	0.30	ug/L			07/21/20 10:44	1
,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			07/21/20 10:44	1
,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			07/21/20 10:44	1
,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			07/21/20 10:44	1
I,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			07/21/20 10:44	1
I,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			07/21/20 10:44	1
,2-Dibromoethane	<0.39	1.0	0.39	ug/L			07/21/20 10:44	1
,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L			07/21/20 10:44	1
,2-Dichloroethane	<0.39	1.0	0.39	ug/L			07/21/20 10:44	1
1,2-Dichloropropane	<0.43	1.0	0.43	ug/L			07/21/20 10:44	1
,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			07/21/20 10:44	1
,3-Dichlorobenzene	<0.40	1.0	0.40	-			07/21/20 10:44	1
,3-Dichloropropane	<0.36	1.0	0.36	-			07/21/20 10:44	1
,4-Dichlorobenzene	<0.36	1.0	0.36	-			07/21/20 10:44	1
, 2-Dichloropropane	<0.44	1.0	0.44	-			07/21/20 10:44	1
2-Chlorotoluene	<0.31	1.0	0.31	-			07/21/20 10:44	
-Chlorotoluene	<0.35	1.0	0.35	-			07/21/20 10:44	1
Benzene	<0.15	0.50	0.00	-			07/21/20 10:44	1
Bromobenzene	<0.36	1.0	0.36	0			07/21/20 10:44	
Bromochloromethane	<0.43	1.0	0.43	-			07/21/20 10:44	1
Bromodichloromethane	<0.43	1.0	0.43	-			07/21/20 10:44	1
Bromoform	<0.48	1.0	0.48	-			07/21/20 10:44	
Bromomethane	<0.40	3.0	0.40	-			07/21/20 10:44	1
Carbon tetrachloride	<0.38	1.0	0.38	-			07/21/20 10:44	1
Chlorobenzene	<0.39	1.0	0.30	-			07/21/20 10:44	۱ ۱
Chloroethane	<0.59	1.0	0.59	-			07/21/20 10:44	1
	<0.37			-				-
Chloroform		2.0	0.37	-			07/21/20 10:44	1
Chloromethane	<0.32 <0.41	1.0 1.0	0.32	-			07/21/20 10:44 07/21/20 10:44	1
is-1,2-Dichloroethene			0.41	-				1
is-1,3-Dichloropropene	<0.42	1.0	0.42				07/21/20 10:44	1
Dibromochloromethane	<0.49	1.0	0.49				07/21/20 10:44	1
Dibromomethane	<0.27	1.0	0.27	•			07/21/20 10:44	1
Dichlorodifluoromethane	<0.67	3.0	0.67				07/21/20 10:44	1
thylbenzene	<0.18	0.50	0.18	-			07/21/20 10:44	1
lexachlorobutadiene	<0.45	1.0	0.45	-			07/21/20 10:44	1
sopropyl ether	<0.28	1.0	0.28				07/21/20 10:44	1
sopropylbenzene	<0.39	1.0	0.39	-			07/21/20 10:44	1
Nethyl tert-butyl ether	<0.39	1.0	0.39				07/21/20 10:44	1
lethylene Chloride	<1.6	5.0		ug/L			07/21/20 10:44	1
laphthalene	<0.34	1.0	0.34	ug/L			07/21/20 10:44	1
Butylbenzene	<0.39	1.0	0.39				07/21/20 10:44	1
J-Propylbenzene	<0.41	1.0	0.41	ug/L			07/21/20 10:44	1

Job ID: 500-185078-1

## Lab Sample ID: 500-185078-6

Matrix: Water

5

7

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

#### Client Sample ID: TRIP BLANK Date Collected: 07/16/20 00:00 Date Received: 07/17/20 09:30

Job ID: 500-185078-1

#### Lab Sample ID: 500-185078-6 Matrix: Water

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 10:44	1
Styrene	<0.39		1.0	0.39	ug/L			07/21/20 10:44	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 10:44	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			07/21/20 10:44	1
Toluene	<0.15		0.50	0.15	ug/L			07/21/20 10:44	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			07/21/20 10:44	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			07/21/20 10:44	1
Trichloroethene	<0.16		0.50	0.16	ug/L			07/21/20 10:44	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			07/21/20 10:44	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			07/21/20 10:44	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			07/21/20 10:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromfil ubebnzl (nrS) 907 2ee1	4/6		: 5 r 4B6			-		/:3B43B/94/8)	4
)rDebi btu2bebhn(an(n9072ee1	,/		:Br4B)					/:3B43B/94/8))	4
omlebibtu2bebinzl (n99072æ1	4/)		:5r4B/					/:3B43B/94/8))	4
dbu2n(nrST9072æ1	4/ c		:5r4B/					/:3B43B/94/8)	4

5

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

## Qualifiers

GC/MS VOA

Qualifier J

 Qualifier Description

 Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		_ 5
Abbreviation	These commonly used abbreviations may or may not be present in this report.	6
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	7
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	0
CNF	Contains No Free Liquid	8
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	9
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	10
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	11
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	12
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	13
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	14
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	15
MQL	Method Quantitation Limit	15
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

## **QC** Association Summary

Client: Giles Engineering Associates Project/Site: Fmr Best Way Cleaners - 1E-2006002

### Job ID: 500-185078-1

## GC/MS VOA

### Analysis Batch: 552990

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-185078-1	GMW-1	Total/NA	Water	8260B	
500-185078-2	GMW-2	Total/NA	Water	8260B	
500-185078-3	GMW-3	Total/NA	Water	8260B	
500-185078-4	GPZ-1	Total/NA	Water	8260B	
500-185078-5	GPZ-2	Total/NA	Water	8260B	
500-185078-6	TRIP BLANK	Total/NA	Water	8260B	
MB 500-552990/6	Method Blank	Total/NA	Water	8260B	
LCS 500-552990/4	Lab Control Sample	Total/NA	Water	8260B	

## **Surrogate Summary**

### Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Water

Matrix: Water						Prep Type: Total/NA
			Pe	ercent Surro	ogate Recovery (A	Acceptance Limits)
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)	
500-185078-1	GMW-1	104	94	103	106	
500-185078-2	GMW-2	102	94	101	106	
500-185078-3	GMW-3	106	93	105	106	
500-185078-4	GPZ-1	102	92	105	102	
500-185078-5	GPZ-2	104	96	105	104	
500-185078-6	TRIP BLANK	106	90	104	103	
LCS 500-552990/4	Lab Control Sample	101	95	103	104	
MB 500-552990/6	Method Blank	107	91	104	104	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

#### **QC Sample Results**

Method: 8260B - Volatile Organic Compounds (GC/MS)

#### Lab Sample ID: MB 500-552990/6 Matrix: Water

Analysis Batch: 552990

Analysis Batch. 552550	МВ	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			07/21/20 10:17	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			07/21/20 10:17	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			07/21/20 10:17	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			07/21/20 10:17	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			07/21/20 10:17	1
1,1-Dichloroethene	<0.39		1.0	0.39	ug/L			07/21/20 10:17	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L			07/21/20 10:17	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			07/21/20 10:17	1
1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/L			07/21/20 10:17	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			07/21/20 10:17	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			07/21/20 10:17	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			07/21/20 10:17	1
1,2-Dibromoethane	<0.39		1.0	0.39	ug/L			07/21/20 10:17	1
1,2-Dichlorobenzene	<0.33		1.0	0.33	ug/L			07/21/20 10:17	1
1,2-Dichloroethane	<0.39		1.0	0.39	ug/L			07/21/20 10:17	1
1,2-Dichloropropane	<0.43		1.0	0.43	ug/L			07/21/20 10:17	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			07/21/20 10:17	1
1,3-Dichlorobenzene	<0.40		1.0	0.40	ug/L			07/21/20 10:17	1
1,3-Dichloropropane	<0.36		1.0	0.36	ug/L			07/21/20 10:17	1
1,4-Dichlorobenzene	<0.36		1.0	0.36	ug/L			07/21/20 10:17	1
2,2-Dichloropropane	<0.44		1.0	0.44	ug/L			07/21/20 10:17	1
2-Chlorotoluene	<0.31		1.0	0.31	ug/L			07/21/20 10:17	1
4-Chlorotoluene	<0.35		1.0	0.35	ug/L			07/21/20 10:17	1
Benzene	<0.15		0.50	0.15	ug/L			07/21/20 10:17	1
Bromobenzene	<0.36		1.0	0.36	ug/L			07/21/20 10:17	1
Bromochloromethane	<0.43		1.0	0.43	ug/L			07/21/20 10:17	1
Bromodichloromethane	<0.37		1.0	0.37	ug/L			07/21/20 10:17	1
Bromoform	<0.48		1.0	0.48	ug/L			07/21/20 10:17	1
Bromomethane	<0.80		3.0	0.80	ug/L			07/21/20 10:17	1
Carbon tetrachloride	<0.38		1.0	0.38	ug/L			07/21/20 10:17	1
Chlorobenzene	<0.39		1.0	0.39	ug/L			07/21/20 10:17	1
Chloroethane	<0.51		1.0	0.51	ug/L			07/21/20 10:17	1
Chloroform	<0.37		2.0	0.37	ug/L			07/21/20 10:17	1
Chloromethane	<0.32		1.0	0.32	ug/L			07/21/20 10:17	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			07/21/20 10:17	1
cis-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			07/21/20 10:17	1
Dibromochloromethane	<0.49		1.0		ug/L			07/21/20 10:17	1
Dibromomethane	<0.27		1.0	0.27	ug/L			07/21/20 10:17	1
Dichlorodifluoromethane	<0.67		3.0		ug/L			07/21/20 10:17	1
Ethylbenzene	<0.18		0.50	0.18	ug/L			07/21/20 10:17	1
Hexachlorobutadiene	<0.45		1.0	0.45	ug/L			07/21/20 10:17	1
Isopropyl ether	<0.28		1.0	0.28	ug/L			07/21/20 10:17	1
Isopropylbenzene	<0.39		1.0		ug/L			07/21/20 10:17	1
Methyl tert-butyl ether	<0.39		1.0		ug/L			07/21/20 10:17	1
Methylene Chloride	<1.6		5.0		ug/L			07/21/20 10:17	1
Naphthalene	<0.34		1.0		ug/L			07/21/20 10:17	1
n-Butylbenzene	<0.39		1.0		ug/L			07/21/20 10:17	1
N-Propylbenzene	<0.41		1.0	0.41	ug/L			07/21/20 10:17	1

11 12

#### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

104

#### Lab Sample ID: MB 500-552990/6 Matrix: Water

Analysis Batch: 552990

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	< 0.36		1.0	0.36	ug/L			07/21/20 10:17	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 10:17	1
Styrene	<0.39		1.0	0.39	ug/L			07/21/20 10:17	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			07/21/20 10:17	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			07/21/20 10:17	1
Toluene	<0.15		0.50	0.15	ug/L			07/21/20 10:17	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			07/21/20 10:17	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			07/21/20 10:17	1
Trichloroethene	<0.16		0.50	0.16	ug/L			07/21/20 10:17	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			07/21/20 10:17	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			07/21/20 10:17	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			07/21/20 10:17	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		75 - 126			-		07/21/20 10:17	1
4-Bromofluorobenzene (Surr)	91		72 - 124					07/21/20 10:17	1
Dibromofluoromethane (Surr)	104		75 - 120					07/21/20 10:17	1

75 - 120

QC Sample Results

#### Lab Sample ID: LCS 500-552990/4 **Matrix: Water** Analysis Batch: 552990

Toluene-d8 (Surr)

#### LCS LCS Spike %Rec. Analyte Added **Result Qualifier** Unit D %Rec Limits 1,1,1,2-Tetrachloroethane 50.0 47.1 94 70 - 125 ug/L 1,1,1-Trichloroethane 50.0 47.9 96 70 - 125 ug/L 1,1,2,2-Tetrachloroethane 50.0 44 4 ug/L 89 62 - 140 1,1,2-Trichloroethane 50.0 44.9 ug/L 90 71 - 130 50.0 45.0 90 70 - 125 1,1-Dichloroethane ug/L 1,1-Dichloroethene 50.0 48.6 ug/L 97 67 - 122 1,1-Dichloropropene 50.0 47.0 ug/L 94 70 - 121 50.0 100 1,2,3-Trichlorobenzene 50.1 ug/L 51 - 145 1,2,3-Trichloropropane 50.0 43.1 ug/L 86 50 - 133 1,2,4-Trichlorobenzene 50.0 50.0 ug/L 100 57 - 137 1,2,4-Trimethylbenzene 50.0 46.8 ug/L 94 70 - 123 89 1,2-Dibromo-3-Chloropropane 50.0 44.7 ug/L 56 - 123 1,2-Dibromoethane 50.0 46.7 93 70 - 125 ug/L 50.0 ug/L 70 - 125 1,2-Dichlorobenzene 45.9 92 1,2-Dichloroethane 50.0 48.7 97 68 - 127 ug/L 67 - 130 1,2-Dichloropropane 50.0 45.1 90 ug/L 1,3,5-Trimethylbenzene 50.0 47.4 ug/L 95 70 - 123 1,3-Dichlorobenzene 50.0 45.9 92 70 - 125 ug/L 93 1,3-Dichloropropane 50.0 46.6 ug/L 62 - 136 1,4-Dichlorobenzene 50.0 45.1 90 70 - 120 ug/L ug/L 2,2-Dichloropropane 50.0 45.7 91 58 - 139 2-Chlorotoluene 50.0 46.4 ug/L 93 70 - 125 68 - 124 4-Chlorotoluene 50.0 46.6 93 ug/L Benzene 50.0 46.9 ug/L 94 70 - 120

Job ID: 500-185078-1

#### **Client Sample ID: Method Blank** Prep Type: Total/NA

07/21/20 10:17

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

## **QC Sample Results**

**Prep Type: Total/NA** 

**Client Sample ID: Lab Control Sample** 

#### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

103

104

#### Lab Sample ID: LCS 500-552990/4

#### **Matrix: Water** Analysis Batch: 552990

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Analysis Batch: 552990			Spike	LCS	LCS				%Rec.	
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	
Bromobenzene			50.0	44.0		ug/L		88	70 - 122	_
Bromochloromethane			50.0	45.3		ug/L		91	65 - 122	
Bromodichloromethane			50.0	46.7		ug/L		93	69 - 120	
Bromoform			50.0	44.7		ug/L		89	56 - 132	
Bromomethane			50.0	60.0		ug/L		120	40 - 152	
Carbon tetrachloride			50.0	48.3		ug/L		97	59 - 133	
Chlorobenzene			50.0	48.6		ug/L		97	70 - 120	
Chloroethane			50.0	53.3		ug/L		107	48 - 136	
Chloroform			50.0	45.0		ug/L		90	70 - 120	
Chloromethane			50.0	36.3		ug/L		73	56 - 152	
cis-1,2-Dichloroethene			50.0	45.8		ug/L		92	70 - 125	
cis-1,3-Dichloropropene			50.0	46.2		ug/L		92	64 - 127	
Dibromochloromethane			50.0	47.6		ug/L		95	68 - 125	
Dibromomethane			50.0	47.9		ug/L		96	70 - 120	
Dichlorodifluoromethane			50.0	42.9		ug/L		86	40 - 159	
Ethylbenzene			50.0	49.9		ug/L		100	70 - 123	
Hexachlorobutadiene			50.0	49.1		ug/L		98	51 - 150	
Isopropylbenzene			50.0	47.3		ug/L		95	70 - 126	
Methyl tert-butyl ether			50.0	47.6		ug/L		95	55 - 123	
Methylene Chloride			50.0	47.6		ug/L		95	69 - 125	
Naphthalene			50.0	46.2		ug/L		92	53 - 144	
n-Butylbenzene			50.0	49.3		ug/L		99	68 - 125	
N-Propylbenzene			50.0	47.3		ug/L		95	69 - 127	
p-Isopropyltoluene			50.0	47.7		ug/L		95	70 - 125	
sec-Butylbenzene			50.0	48.3		ug/L		97	70 ₋ 123	
Styrene			50.0	45.6		ug/L		91	70 ₋ 120	
tert-Butylbenzene			50.0	47.2		ug/L		94	70 - 121	
Tetrachloroethene			50.0	47.5		ug/L		95	70 ₋ 128	
Toluene			50.0	48.4		ug/L		97	70 - 125	
trans-1,2-Dichloroethene			50.0	48.8		ug/L		98	70 - 125	
trans-1,3-Dichloropropene			50.0	45.2		ug/L		90	62 - 128	
Trichloroethene			50.0	49.1		ug/L		98	70 - 125	
Trichlorofluoromethane			50.0	49.7		ug/L		99	55 - 128	
Vinyl chloride			50.0	42.1		ug/L		84	64 - 126	
Xylenes, Total			100	94.9		ug/L		95	70 - 125	
	100	1.00				-				
0		LCS	1 500 11 -							
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	101		75 - 126							
4-Bromofluorobenzene (Surr)	95		72 - 124							

75 - 120

75 - 120

Client: Giles Engineering Associates <u>∼+ \Ň</u> 

5078-1 :: Water 5078-2 :: Water 5078-3 :: Water
:: Water 5078-2 :: Water 5078-3
: Water 5078-3
: Water 5078-3
: Water 5078-3
: Water 5078-3
: Water 5078-3
: Water 5078-3
5070 A
5078-4
: Water
5078-5
: Water
5078-6
: Water
. mater

Lab Chronicle

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

7/22/2020

#### Page 26 of 28

Client: Giles Engineering Associates
Project/Site: Fmr Best Way Cleaners - 1E-2006002

# Laboratory: Eurofins TestAmerica, Chicago The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date		
Wisconsin	State	999580010	08-31-20		

**Accreditation/Certification Summary** 

	1
Job ID: 500-185078-1	
te	4
	5
	6
	7
	8
	9
	12
	13

Eurofins TestAmerica, Chicago

2417 Bond Street

## Chain of Custody Record



seurofins

ne 708.534.5200 fax 708.534.5211	Project Manager: 4	gram: Dw Dw C			CRA Other:	······		COC No:	
Client Contact	Email: Eburela	ailesengr.com	7 Si	ite Con	tact: J. Wolske	Date: 7/167	ino	of	COCs
es Engineering Associates	Tel/Fax:	00	La		tact: Sandie Trede	Carrier:		TALS Project #:	
W 22350 Johnson Road	Analysis	Turnaround Time		П				Sampler:	
ukesha, WI 53186	CALENDAR DAYS	WORKING DAYS						For Lab Use Only:	
2)544-0118 Phone	TAT if different	from Below						Walk-in Client	
x) xxx-xxxx FAX		2 weeks		z				Lab Sampling.	
ject Name: Former Best they cleaned		1 week	Z	E					
McFarland, WI. 5914 Hwy 51		2 days	2	MSD				Job / SDG No.	1000
# 1E-2006002		1 day	ple (	N N				500-18	5078
		Dente Matrix	Sampl	SW C				U	
		Sample Matrix Type Small	pared 8	EC				1	
	Sample Sample	(C=Comp, O=waste/oil.	# of 9	5 2	$\mathbf{b}$				
Sample Identification	Date Time	G=Grab) A=ait)	Cont I	ď				Sample Spe	cific Notes:
		Preservation Code:							
Gmw-1	Thickor 1220	G (4)	3h	WX					
			T	11					
GMW-Z	1135		In	14X					
GMW-I	1045		a	1 AV					
	1043		+ [	1 M					
GPZ-1	1200		1 p	AX					
	1/20		VIA	they.					
GPZ-2				MX			+ + + +		
TRIP BLANK				X					
				++-					
				$\square$			+		
									11101-011-011-011-011
servation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH: 6= Other		-				+++++		
ssible Hazard Identification:	J-Maon, J- Other			Samp	le Disposal ( A fee may	be assessed if sam	oles are retain	ed longer than 1 mon	th)
any samples from a listed EPA Hazardous Waste? Pleas	se List any EPA Waste	Codes for the sample	in the	Camp	ie Disposal (A lee ling)		pico are retain	cu longer than i mon	
mments Section if the lab is to dispose of the sample.	•								
Non-Hazard   Flammable   Skin Irritant	Poison B	Unknown			Return to Client	C Disposal by Lab	Archive for	Months	
ecial Instructions/QC Requirements & Comments:				4				,	
- 10	11 .		/	″ ) <i>-</i>	/ .		26		
Email Re	esitt to	: K. Rea	. 01	K	Handans	a ( )	20/31	P	
		·	fer,	10	110.40 11	×		There ID All	
Custody Seals Intact:YesNo	Custody Seal No.:			10	Cooler Temp. (°C): (	Obsid:Co	rr'd:	_ Therm ID No	
inquished by:	Company:	es 7/16/2	170	Receiv	991°96 ( 10em	U Company	Tel	1112/20	0930
inquished by:	Company.	Date/Time	1.500	Real	AM A	Company		Dater	0100
	LOOIIIDally.	Daterine		I YELDI)	cupy. v	Company	h - 1	Dolor Pille	
inquisited by				100	V				

#### Client: Giles Engineering Associates

#### Login Number: 185078 List Number: 1 Creator: James, Jeff A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

#### Job Number: 500-185078-1

List Source: Eurofins TestAmerica, Chicago

# 🛟 eurofins

# Environment Testing America

# **ANALYTICAL REPORT**

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

#### Laboratory Job ID: 500-189985-1

Client Project/Site: Best Way Cleaners - 1E-2006002

#### For:

Giles Engineering Associates N8 W 22350 Johnson Road Waukesha, Wisconsin 53186

Attn: Mr. Kevin Bugel

and meduch

Authorized for release by: 11/2/2020 11:17:42 AM Sandie Fredrick, Project Manager II (920)261-1660 sandra.fredrick@eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS **Review your project** results through Total Access Have a Question? Ask-The Expert Visit us at: www.eurofinsus.com/Env

# **Table of Contents**

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	5
Sample Summary	6
Client Sample Results	7
Definitions	19
QC Association	20
Surrogate Summary	21
QC Sample Results	22
Chronicle	25
Certification Summary	26
Chain of Custody	27
Receipt Checklists	28

#### Job ID: 500-189985-1

#### Laboratory: Eurofins TestAmerica, Chicago

#### Narrative

Job Narrative 500-189985-1

**Case Narrative** 

#### Comments

No additional comments.

#### Receipt

The samples were received on 10/23/2020 10:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.2° C.

#### GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### **Detection Summary**

Client: Giles Engineering Associates Project/Site: Best Way Cleaners - 1E-2006002 Job ID: 500-189985-1

Client Sample ID: GMW-1						Lab Sample ID: 500-189985-	1 3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method Prep Type	
cis-1,2-Dichloroethene	3.2		1.0	0.41	ug/L	1 8260B Total/NA	- 4
Client Sample ID: GPZ-1						Lab Sample ID: 500-189985-2	2 5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D Method Prep Type	6
cis-1,2-Dichloroethene	0.65	J	1.0	0.41	ug/L	1 8260B Total/NA	- 0
Client Sample ID: GMW-2						Lab Sample ID: 500-189985-	3 7
No Detections.							8
Client Sample ID: GPZ-2						Lab Sample ID: 500-189985-4	4
No Detections.							9
Client Sample ID: GMW-3						Lab Sample ID: 500-189985-	5 10
No Detections.							
Client Sample ID: TRIP BL	ANK					Lab Sample ID: 500-189985-	6
No Detections.							12
							13
							14

This Detection Summary does not include radiochemical test results.

#### Client: Giles Engineering Associates Project/Site: Best Way Cleaners - 1E-2006002

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
5030B	Purge and Trap	SW846	TAL CHI

#### **Protocol References:**

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

## Sample Summary

#### Client: Giles Engineering Associates Project/Site: Best Way Cleaners - 1E-2006002

Job ID: 500-189985-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Ass
500-189985-1	GMW-1	Water	10/22/20 12:10	10/23/20 10:00	
500-189985-2	GPZ-1	Water	10/22/20 12:45	10/23/20 10:00	
500-189985-3	GMW-2	Water	10/22/20 10:55	10/23/20 10:00	
500-189985-4	GPZ-2	Water	10/22/20 11:15	10/23/20 10:00	
500-189985-5	GMW-3	Water	10/22/20 11:40	10/23/20 10:00	
500-189985-6	TRIP BLANK	Water	10/22/20 00:00	10/23/20 10:00	

Client: Giles Engineering Associates Project/Site: Best Way Cleaners - 1E-2006002 Job ID: 500-189985-1

Matrix: Water

5

7

Lab Sample ID: 500-189985-1

#### Client Sample ID: GMW-1 Date Collected: 10/22/20 12:10 Date Received: 10/23/20 10:00

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			10/31/20 12:18	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			10/31/20 12:18	1
I,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			10/31/20 12:18	1
,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			10/31/20 12:18	1
,1-Dichloroethane	<0.41		1.0	0.41	ug/L			10/31/20 12:18	1
,1-Dichloroethene	<0.39		1.0	0.39	ug/L			10/31/20 12:18	1
,1-Dichloropropene	<0.30		1.0	0.30	ug/L			10/31/20 12:18	1
,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			10/31/20 12:18	1
,2,3-Trichloropropane	<0.41		2.0	0.41	ug/L			10/31/20 12:18	1
,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			10/31/20 12:18	1
,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			10/31/20 12:18	1
,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			10/31/20 12:18	1
,2-Dibromoethane	<0.39		1.0	0.39	ug/L			10/31/20 12:18	1
,2-Dichlorobenzene	< 0.33		1.0	0.33	ug/L			10/31/20 12:18	1
,2-Dichloroethane	<0.39		1.0		ug/L			10/31/20 12:18	1
,2-Dichloropropane	<0.43		1.0		ug/L			10/31/20 12:18	1
,3,5-Trimethylbenzene	<0.25		1.0	0.25	-			10/31/20 12:18	1
,3-Dichlorobenzene	<0.40		1.0	0.40	-			10/31/20 12:18	1
,3-Dichloropropane	<0.36		1.0	0.36				10/31/20 12:18	
,4-Dichlorobenzene	<0.36		1.0	0.36	-			10/31/20 12:18	1
,2-Dichloropropane	<0.44		1.0		ug/L			10/31/20 12:18	1
-Chlorotoluene	<0.31		1.0		ug/L			10/31/20 12:18	
-Chlorotoluene	< 0.35		1.0	0.35	-			10/31/20 12:18	1
lenzene	<0.15		0.50	0.15	-			10/31/20 12:18	1
romobenzene	<0.36		1.0		ug/L			10/31/20 12:18	
romochloromethane	<0.43		1.0	0.43				10/31/20 12:18	1
romodichloromethane	< 0.37		1.0	0.37	-			10/31/20 12:18	1
Bromoform	<0.48		1.0	0.48				10/31/20 12:18	
Bromomethane	<0.80		3.0	0.80	-			10/31/20 12:18	1
Carbon tetrachloride	<0.38		1.0	0.38	-			10/31/20 12:18	
Chlorobenzene	<0.39		1.0	0.39				10/31/20 12:18	
Chloroethane	<0.59		1.0	0.53	-			10/31/20 12:18	1
Chloroform	< 0.37		2.0		-			10/31/20 12:18	1
Chloromethane	< 0.37			0.37 0.32				10/31/20 12:18	1
			1.0 1.0	0.32	-			10/31/20 12:18	1
is-1,2-Dichloroethene	<b>3.2</b>				-				
is-1,3-Dichloropropene	<0.42		1.0	0.42				10/31/20 12:18	1
)ibromochloromethane	< 0.49		1.0		ug/L			10/31/20 12:18	1
)ibromomethane	<0.27		1.0		ug/L			10/31/20 12:18	1
Dichlorodifluoromethane	< 0.67		3.0		ug/L			10/31/20 12:18	
thylbenzene	<0.18		0.50		ug/L			10/31/20 12:18	1
exachlorobutadiene	< 0.45		1.0		ug/L			10/31/20 12:18	1
opropyl ether	<0.28		1.0		ug/L			10/31/20 12:18	1
opropylbenzene	<0.39		1.0		ug/L			10/31/20 12:18	1
1ethyl tert-butyl ether	< 0.39		1.0		ug/L			10/31/20 12:18	1
lethylene Chloride	<1.6		5.0		ug/L			10/31/20 12:18	1
laphthalene	< 0.34		1.0		ug/L			10/31/20 12:18	1
-Butylbenzene	<0.39		1.0		ug/L			10/31/20 12:18	1
N-Propylbenzene	<0.41		1.0	0.41	ug/L			10/31/20 12:18	1

**Client: Giles Engineering Associates** Project/Site: Best Way Cleaners - 1E-2006002 Job ID: 500-189985-1

#### Client Sample ID: GMW-1 Date Collected: 10/22/20 12:10 Date Received: 10/23/20 10:00

#### Lab Sample ID: 500-189985-1 **Matrix: Water**

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued) Result Qualifier MDL Unit D Dil Fac Analyte RL Prepared Analyzed sec-Butylbenzene <0.40 1.0 0.40 ug/L 10/31/20 12:18 Styrene <0.39 1.0 0.39 ug/L 10/31/20 12:18 tert-Butylbenzene < 0.40 1.0 0.40 ug/L 10/31/20 12:18 Tetrachloroethene 0.37 ug/L < 0.37 1.0 10/31/20 12:18 Toluene <0.15 0.50 0.15 ug/L 10/31/20 12:18 trans-1,2-Dichloroethene < 0.35 1.0 0.35 ug/L 10/31/20 12:18 trans-1,3-Dichloropropene < 0.36 1.0 0.36 ug/L 10/31/20 12:18 Trichloroethene <0.16 0.50 0.16 ug/L 10/31/20 12:18 Trichlorofluoromethane <0.43 1.0 0.43 ug/L 10/31/20 12:18 Vinyl chloride <0.20 1.0 0.20 ug/L 10/31/20 12:18 Xylenes, Total <0.22 1.0 0.22 ug/L 10/31/20 12:18 %Recovery Qualifier Prepared Dil Fac Surrogate Limits Analyzed 1,2-Dichloroethane-d4 (Surr) 117 75 - 126 10/31/20 12:18 4-Bromofluorobenzene (Surr) 106 72 - 124 10/31/20 12:18 Dibromofluoromethane (Surr) 103 75 - 120 10/31/20 12:18 Toluene-d8 (Surr) 98 75 - 120 10/31/20 12:18

5

7

#### Lab Sample ID: 500-189985-2 Matrix: Water

Date Collected: 10/22/20 12:45 Date Received: 10/23/20 10:00

**Client Sample ID: GPZ-1** 

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			10/31/20 12:45	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			10/31/20 12:45	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			10/31/20 12:45	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			10/31/20 12:45	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			10/31/20 12:45	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			10/31/20 12:45	1
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			10/31/20 12:45	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			10/31/20 12:45	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			10/31/20 12:45	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			10/31/20 12:45	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			10/31/20 12:45	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			10/31/20 12:45	1
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			10/31/20 12:45	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	ug/L			10/31/20 12:45	1
1,2-Dichloroethane	<0.39	1.0	0.39	ug/L			10/31/20 12:45	1
1,2-Dichloropropane	<0.43	1.0	0.43	ug/L			10/31/20 12:45	1
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			10/31/20 12:45	1
I,3-Dichlorobenzene	<0.40	1.0	0.40	ug/L			10/31/20 12:45	1
1,3-Dichloropropane	<0.36	1.0		ug/L			10/31/20 12:45	1
1,4-Dichlorobenzene	<0.36	1.0		ug/L			10/31/20 12:45	1
2,2-Dichloropropane	<0.44	1.0		ug/L			10/31/20 12:45	1
2-Chlorotoluene	<0.31	1.0		ug/L			10/31/20 12:45	1
-Chlorotoluene	< 0.35	1.0		ug/L			10/31/20 12:45	1
Benzene	<0.15	0.50		ug/L			10/31/20 12:45	1
Bromobenzene	<0.36	1.0		ug/L			10/31/20 12:45	1
Bromochloromethane	<0.43	1.0		ug/L			10/31/20 12:45	1
Bromodichloromethane	<0.37	1.0		ug/L			10/31/20 12:45	1
Bromoform	<0.48	1.0		ug/L			10/31/20 12:45	1
Bromomethane	<0.80	3.0		ug/L			10/31/20 12:45	1
Carbon tetrachloride	<0.38	1.0		ug/L			10/31/20 12:45	1
Chlorobenzene	<0.39	1.0		ug/L			10/31/20 12:45	
Chloroethane	<0.51	1.0		ug/L			10/31/20 12:45	1
Chloroform	<0.37	2.0		ug/L			10/31/20 12:45	1
Chloromethane	<0.32	1.0		ug/L			10/31/20 12:45	
cis-1,2-Dichloroethene	0.65 J	1.0		ug/L			10/31/20 12:45	1
sis-1,3-Dichloropropene	<0.42	1.0		ug/L			10/31/20 12:45	1
Dibromochloromethane	<0.49	1.0		ug/L			10/31/20 12:45	
Dibromomethane	<0.27	1.0		ug/L			10/31/20 12:45	. 1
Dichlorodifluoromethane	<0.67	3.0		ug/L			10/31/20 12:45	1
Ethylbenzene	<0.18	0.50		ug/L			10/31/20 12:45	
lexachlorobutadiene	<0.45	1.0		ug/L			10/31/20 12:45	1
sopropyl ether	<0.28	1.0		ug/L			10/31/20 12:45	1
sopropylbenzene	<0.39	1.0		ug/L			10/31/20 12:45	
Methyl tert-butyl ether	<0.39	1.0		ug/L			10/31/20 12:45	1
Methylene Chloride	<1.6	5.0		ug/L			10/31/20 12:45	1
Japhthalene	<0.34	1.0		ug/L			10/31/20 12:45	· · · · · · · · · · · · · · · · · · ·
n-Butylbenzene	<0.34	1.0		ug/L			10/31/20 12:45	1
N-Propylbenzene	<0.39	1.0		ug/L			10/31/20 12:45	1
p-Isopropyltoluene	<0.36	1.0		ug/L ug/L			10/31/20 12:45	1

Job ID: 500-189985-1

#### Client Sample ID: GPZ-1 Date Collected: 10/22/20 12:45 Date Received: 10/23/20 10:00

#### Lab Sample ID: 500-189985-2 Matrix: Water

trix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			10/31/20 12:45	1
Styrene	<0.39		1.0	0.39	ug/L			10/31/20 12:45	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			10/31/20 12:45	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			10/31/20 12:45	1
Toluene	<0.15		0.50	0.15	ug/L			10/31/20 12:45	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			10/31/20 12:45	1
trans-1,3-Dichloropropene	< 0.36		1.0	0.36	ug/L			10/31/20 12:45	1
Trichloroethene	<0.16		0.50	0.16	ug/L			10/31/20 12:45	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			10/31/20 12:45	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/31/20 12:45	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			10/31/20 12:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 126					10/31/20 12:45	1
4-Bromofluorobenzene (Surr)	110		72 - 124					10/31/20 12:45	1
Dibromofluoromethane (Surr)	102		75 - 120					10/31/20 12:45	1
Toluene-d8 (Surr)	97		75 - 120					10/31/20 12:45	1

5

Client: Giles Engineering Associates Project/Site: Best Way Cleaners - 1E-2006002

#### **Client Sample ID: GMW-2** Date Collected: 10/22/20 10:55 Date Received: 10/23/20 10:00

loh	יחו	500-189985-1	
JOD	ID.	200-109902-1	

# Lab Sample ID: 500-189985-3

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
,1,1,2-Tetrachloroethane	<0.46	1.0		ug/L			10/31/20 13:11	1
,1,1-Trichloroethane	<0.38	1.0		ug/L			10/31/20 13:11	1
I,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			10/31/20 13:11	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			10/31/20 13:11	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			10/31/20 13:11	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			10/31/20 13:11	1
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			10/31/20 13:11	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			10/31/20 13:11	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			10/31/20 13:11	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			10/31/20 13:11	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			10/31/20 13:11	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			10/31/20 13:11	1
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			10/31/20 13:11	1
1,2-Dichlorobenzene	<0.33	1.0		ug/L			10/31/20 13:11	1
1,2-Dichloroethane	<0.39	1.0		ug/L			10/31/20 13:11	1
1,2-Dichloropropane	<0.43	1.0		ug/L			10/31/20 13:11	1
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			10/31/20 13:11	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	-			10/31/20 13:11	1
1,3-Dichloropropane	<0.36	1.0		ug/L			10/31/20 13:11	1
1,4-Dichlorobenzene	<0.36	1.0		ug/L			10/31/20 13:11	1
2,2-Dichloropropane	<0.44	1.0	0.44	-			10/31/20 13:11	1
2-Chlorotoluene	<0.31	1.0		ug/L			10/31/20 13:11	1
4-Chlorotoluene	<0.35	1.0		ug/L			10/31/20 13:11	1
Benzene	<0.15	0.50	0.15	-			10/31/20 13:11	1
Bromobenzene	<0.36	1.0		ug/L			10/31/20 13:11	1
Bromochloromethane	<0.43	1.0		ug/L			10/31/20 13:11	1
Bromodichloromethane	<0.37	1.0		ug/L			10/31/20 13:11	1
Bromoform	<0.48	1.0		ug/L			10/31/20 13:11	1
Bromomethane	<0.80	3.0		ug/L			10/31/20 13:11	1
Carbon tetrachloride	<0.38	1.0		ug/L			10/31/20 13:11	1
Chlorobenzene	<0.39	1.0		ug/L			10/31/20 13:11	1
Chloroethane	<0.51	1.0		ug/L			10/31/20 13:11	1
Chloroform	<0.37	2.0		ug/L			10/31/20 13:11	1
Chloromethane	<0.32	1.0		ug/L			10/31/20 13:11	1
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			10/31/20 13:11	1
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			10/31/20 13:11	1
Dibromochloromethane	<0.49	1.0		ug/L			10/31/20 13:11	
Dibromomethane	<0.27	1.0		ug/L			10/31/20 13:11	1
Dichlorodifluoromethane	<0.67	3.0		ug/L			10/31/20 13:11	1
Ethylbenzene	<0.18	0.50	0.18				10/31/20 13:11	1
Hexachlorobutadiene	<0.45	1.0	0.45				10/31/20 13:11	1
sopropyl ether	<0.28	1.0		ug/L			10/31/20 13:11	1
sopropylbenzene	<0.39	1.0		ug/L			10/31/20 13:11	
Methyl tert-butyl ether	<0.39	1.0	0.39	-			10/31/20 13:11	1
Methylene Chloride	<1.6	5.0		ug/L			10/31/20 13:11	1
Naphthalene	<0.34	1.0		ug/L			10/31/20 13:11	· · · · · · · · · · · · · · · · · · ·
n-Butylbenzene	<0.39	1.0	0.39				10/31/20 13:11	1
N-Propylbenzene	<0.33	1.0	0.41				10/31/20 13:11	1
p-lsopropyltoluene	<0.36	1.0		ug/L			10/31/20 13:11	

**Client: Giles Engineering Associates** Project/Site: Best Way Cleaners - 1E-2006002

# Lab Sample ID: 500-189985-3

Date Collected: 10/22/20 10:55 Date Received: 10/23/20 10:00

**Client Sample ID: GMW-2** 

Method: 8260B - Volatile Or	ganic Compounds (GC/M	S) (Continu	ed)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
sec-Butylbenzene	<0.40	1.0	0.40	ug/L			10/31/20 13:11	1	
Styrene	<0.39	1.0	0.39	ug/L			10/31/20 13:11	1	
tert-Butylbenzene	<0.40	1.0	0.40	ug/L			10/31/20 13:11	1	-
Tetrachloroethene	<0.37	1.0	0.37	ug/L			10/31/20 13:11	1	5
Toluene	<0.15	0.50	0.15	ug/L			10/31/20 13:11	1	
trans-1,2-Dichloroethene	<0.35	1.0	0.35	ug/L			10/31/20 13:11	1	5
trans-1,3-Dichloropropene	<0.36	1.0	0.36	ug/L			10/31/20 13:11	1	
Trichloroethene	<0.16	0.50	0.16	ug/L			10/31/20 13:11	1	6
Trichlorofluoromethane	<0.43	1.0	0.43	ug/L			10/31/20 13:11	1	
Vinyl chloride	<0.20	1.0	0.20	ug/L			10/31/20 13:11	1	
Xylenes, Total	<0.22	1.0	0.22	ug/L			10/31/20 13:11	1	

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	117		75 - 126		10/31/20 13:11	1	
4-Bromofluorobenzene (Surr)	107		72 - 124		10/31/20 13:11	1	
Dibromofluoromethane (Surr)	101		75 - 120		10/31/20 13:11	1	
Toluene-d8 (Surr)	100		75 - 120		10/31/20 13:11	1	1

Job ID: 500-189985-1

Matrix: Water

RL

MDL Unit

D

Prepared

Client: Giles Engineering Associates Project/Site: Best Way Cleaners - 1E-2006002

Method: 8260B - Volatile Organic Compounds (GC/MS)

**Result Qualifier** 

Job ID: 500-189985-1

Matrix: Water

Dil Fac

7

Lab Sample ID: 500-189985-4

Analyzed

#### Client Sample ID: GPZ-2 Date Collected: 10/22/20 11:15 Date Received: 10/23/20 10:00

Analyte

Analyte	Result Qualifier	RL		nit	D Prepared	Analyzeu	DIFAC
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46 ug	g/L		10/31/20 13:38	1
1,1,1-Trichloroethane	<0.38	1.0	0.38 ug	g/L		10/31/20 13:38	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40 ug	g/L		10/31/20 13:38	1
1,1,2-Trichloroethane	<0.35	1.0	0.35 ug	g/L		10/31/20 13:38	1
1,1-Dichloroethane	<0.41	1.0	0.41 ug	g/L		10/31/20 13:38	1
1,1-Dichloroethene	<0.39	1.0	0.39 ug	g/L		10/31/20 13:38	1
1,1-Dichloropropene	<0.30	1.0	0.30 ug	g/L		10/31/20 13:38	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46 ug	g/L		10/31/20 13:38	1
1,2,3-Trichloropropane	<0.41	2.0	0.41 ug	g/L		10/31/20 13:38	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34 ug	g/L		10/31/20 13:38	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36 ug	g/L		10/31/20 13:38	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0 ug	g/L		10/31/20 13:38	1
1,2-Dibromoethane	<0.39	1.0	0.39 ug	g/L		10/31/20 13:38	1
1,2-Dichlorobenzene	<0.33	1.0	0.33 ug	g/L		10/31/20 13:38	1
1,2-Dichloroethane	<0.39	1.0	0.39 ug	g/L		10/31/20 13:38	1
1,2-Dichloropropane	<0.43	1.0	0.43 ug	g/L		10/31/20 13:38	1
1,3,5-Trimethylbenzene	<0.25	1.0	0.25 ug	g/L		10/31/20 13:38	1
1,3-Dichlorobenzene	<0.40	1.0	0.40 ug	-		10/31/20 13:38	1
1,3-Dichloropropane	<0.36	1.0	0.36 ug	-		10/31/20 13:38	1
1,4-Dichlorobenzene	<0.36	1.0	0.36 ug	-		10/31/20 13:38	1
2,2-Dichloropropane	<0.44	1.0	0.44 ug	-		10/31/20 13:38	1
2-Chlorotoluene	<0.31	1.0	0.31 ug	-		10/31/20 13:38	1
4-Chlorotoluene	<0.35	1.0	0.35 ug	-		10/31/20 13:38	1
Benzene	<0.15	0.50	0.15 ug	-		10/31/20 13:38	1
Bromobenzene	<0.36	1.0	0.36 ug	-		10/31/20 13:38	1
Bromochloromethane	<0.43	1.0	0.43 ug			10/31/20 13:38	1
Bromodichloromethane	<0.37	1.0	0.37 ug	-		10/31/20 13:38	1
Bromoform	<0.48	1.0	0.48 ug	-		10/31/20 13:38	1
Bromomethane	<0.80	3.0	0.80 ug	-		10/31/20 13:38	1
Carbon tetrachloride	<0.38	1.0	0.38 ug	-		10/31/20 13:38	1
Chlorobenzene	<0.39	1.0	0.39 ug	-		10/31/20 13:38	1
Chloroethane	<0.51	1.0	0.51 ug	-		10/31/20 13:38	1
Chloroform	<0.37	2.0	0.37 ug	-		10/31/20 13:38	1
Chloromethane	<0.32	1.0	0.32 ug	-		10/31/20 13:38	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41 ug			10/31/20 13:38	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42 ug	-		10/31/20 13:38	1
Dibromochloromethane	<0.49	1.0	0.49 ug	-		10/31/20 13:38	1
Dibromomethane	<0.27	1.0	0.27 ug	-		10/31/20 13:38	1
Dichlorodifluoromethane	<0.67	3.0	0.67 ug			10/31/20 13:38	1
Ethylbenzene	<0.18	0.50	0.18 ug			10/31/20 13:38	1
Hexachlorobutadiene	<0.45	1.0	0.45 ug			10/31/20 13:38	1
Isopropyl ether	<0.28	1.0	0.28 ug			10/31/20 13:38	1
Isopropylbenzene	<0.39	1.0	0.39 ug			10/31/20 13:38	
Methyl tert-butyl ether	<0.39	1.0	0.39 ug			10/31/20 13:38	1
Methylene Chloride	<1.6	5.0	1.6 uç			10/31/20 13:38	1
Naphthalene	<0.34	1.0	0.34 ug			10/31/20 13:38	
n-Butylbenzene	<0.34	1.0	0.34 uç 0.39 uç	-		10/31/20 13:38	1
N-Propylbenzene	<0.41	1.0	0.39 ug 0.41 ug			10/31/20 13:38	1
p-Isopropyltoluene	<0.41	1.0	0.41 ug			10/31/20 13:38	· · · · · · · 1

RL

1.0

1.0

1.0

1.0

1.0

1.0

0.50

1.0

1.0

1.0

Limits

75 - 126

72 - 124

75 - 120

75 - 120

0.50

MDL Unit

0.40 ug/L

0.39 ug/L

0.40 ug/L

0.37 ug/L

0.15 ug/L

0.35 ug/L

0.36 ug/L

0.16 ug/L

0.43 ug/L

0.20 ug/L

0.22 ug/L

D

Prepared

Prepared

Client: Giles Engineering Associates Project/Site: Best Way Cleaners - 1E-2006002

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Result Qualifier

<0.40

<0.39

< 0.40

< 0.37

<0.15

< 0.35

< 0.36

<0.16

<0.43

<0.20

<0.22

%Recovery Qualifier

120

108

103

96

# Job ID: 500-189985-1

Analyzed

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

Analyzed

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

10/31/20 13:38

#### Client Sample ID: GPZ-2 Date Collected: 10/22/20 11:15 Date Received: 10/23/20 10:00

Analyte

Styrene

Toluene

sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Toluene-d8 (Surr)

Surrogate

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Trichlorofluoromethane

#### Lab Sample ID: 500-189985-4 Matrix: Water

Dil Fac

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

Dil Fac

		6	

**Client: Giles Engineering Associates** Project/Site: Best Way Cleaners - 1E-2006002 Job ID: 500-189985-1

#### **Client Sample ID: GMW-3** Date Collected: 10/22/20 11:40 Date Received: 10/23/20 10:00

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			10/31/20 14:05	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			10/31/20 14:05	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			10/31/20 14:05	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			10/31/20 14:05	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			10/31/20 14:05	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			10/31/20 14:05	1
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			10/31/20 14:05	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			10/31/20 14:05	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			10/31/20 14:05	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			10/31/20 14:05	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			10/31/20 14:05	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			10/31/20 14:05	1
1,2-Dibromoethane	<0.39	1.0		ug/L			10/31/20 14:05	1
1,2-Dichlorobenzene	< 0.33	1.0	0.33	-			10/31/20 14:05	1
1,2-Dichloroethane	<0.39	1.0	0.39	-			10/31/20 14:05	1
1,2-Dichloropropane	<0.43	1.0	0.43				10/31/20 14:05	
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			10/31/20 14:05	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	-			10/31/20 14:05	1
1,3-Dichloropropane	<0.36	1.0		ug/L			10/31/20 14:05	1
1,4-Dichlorobenzene	< 0.36	1.0		ug/L			10/31/20 14:05	1
2,2-Dichloropropane	<0.44	1.0		ug/L			10/31/20 14:05	1
2-Chlorotoluene	<0.31	1.0	0.31				10/31/20 14:05	1
4-Chlorotoluene	<0.35	1.0	0.35	-			10/31/20 14:05	1
Benzene	<0.15	0.50	0.15	-			10/31/20 14:05	1
Bromobenzene	<0.36	1.0		ug/L			10/31/20 14:05	1
Bromochloromethane	<0.43	1.0		ug/L			10/31/20 14:05	1
Bromodichloromethane	< 0.37	1.0	0.37	-			10/31/20 14:05	1
Bromoform	<0.48	1.0		ug/L			10/31/20 14:05	
Bromomethane	<0.80	3.0		ug/L			10/31/20 14:05	1
Carbon tetrachloride	<0.38	1.0	0.38	-			10/31/20 14:05	1
Chlorobenzene	<0.39	1.0	0.39				10/31/20 14:05	
Chloroethane	<0.51	1.0	0.51	-			10/31/20 14:05	1
Chloroform	<0.37	2.0	0.37	-			10/31/20 14:05	1
Chloromethane	<0.32	1.0	0.32				10/31/20 14:05	
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			10/31/20 14:05	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	-			10/31/20 14:05	1
Dibromochloromethane	<0.49	1.0		ug/L			10/31/20 14:05	
Dibromomethane	<0.27	1.0		ug/L			10/31/20 14:05	1
Dichlorodifluoromethane	<0.67	3.0		ug/L			10/31/20 14:05	1
Ethylbenzene	<0.18	0.50		ug/L			10/31/20 14:05	
Hexachlorobutadiene	<0.45	1.0		ug/L			10/31/20 14:05	1
Isopropyl ether	<0.28	1.0		ug/L			10/31/20 14:05	1
Isopropylbenzene	<0.39	1.0		ug/L			10/31/20 14:05	
Methyl tert-butyl ether	<0.39	1.0		ug/L			10/31/20 14:05	1
Methylene Chloride	<1.6	5.0		ug/L			10/31/20 14:05	1
Naphthalene	<0.34	1.0		ug/L			10/31/20 14:05	
n-Butylbenzene	<0.39	1.0		ug/L			10/31/20 14:05	1
N-Propylbenzene	<0.41	1.0		ug/L			10/31/20 14:05	1
p-lsopropyltoluene	<0.41	1.0		ug/L			10/31/20 14:05	

Eurofins TestAmerica, Chicago

7

5

13

Lab Sample ID: 500-189985-5 Matrix: Water

Client: Giles Engineering Associates Project/Site: Best Way Cleaners - 1E-2006002 Job ID: 500-189985-1

#### Client Sample ID: GMW-3 Date Collected: 10/22/20 11:40 Date Received: 10/23/20 10:00

#### Lab Sample ID: 500-189985-5 Matrix: Water

Water

5

7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			10/31/20 14:05	1
Styrene	<0.39		1.0	0.39	ug/L			10/31/20 14:05	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			10/31/20 14:05	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			10/31/20 14:05	1
Toluene	<0.15		0.50	0.15	ug/L			10/31/20 14:05	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			10/31/20 14:05	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			10/31/20 14:05	1
Trichloroethene	<0.16		0.50	0.16	ug/L			10/31/20 14:05	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			10/31/20 14:05	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/31/20 14:05	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			10/31/20 14:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 126					10/31/20 14:05	1
4-Bromofluorobenzene (Surr)	109		72 - 124					10/31/20 14:05	1
Dibromofluoromethane (Surr)	103		75 - 120					10/31/20 14:05	1
Toluene-d8 (Surr)	97		75 - 120					10/31/20 14:05	1

#### **Client Sample ID: TRIP BLANK** Date Collected: 10/22/20 00:00 Date Received: 10/23/20 10:00

Job	ID:	500-1	89985-

# 1 Lab Sample ID: 500-189985-6

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			10/31/20 11:24	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	-			10/31/20 11:24	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			10/31/20 11:24	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			10/31/20 11:24	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			10/31/20 11:24	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			10/31/20 11:24	1
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			10/31/20 11:24	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			10/31/20 11:24	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			10/31/20 11:24	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			10/31/20 11:24	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			10/31/20 11:24	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			10/31/20 11:24	1
1,2-Dibromoethane	<0.39	1.0	0.39				10/31/20 11:24	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			10/31/20 11:24	1
1,2-Dichloroethane	<0.39	1.0	0.39	-			10/31/20 11:24	1
1,2-Dichloropropane	<0.43	1.0	0.43	-			10/31/20 11:24	1
1,3,5-Trimethylbenzene	<0.25	1.0	0.25				10/31/20 11:24	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	-			10/31/20 11:24	1
1,3-Dichloropropane	<0.36	1.0	0.36				10/31/20 11:24	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			10/31/20 11:24	1
2,2-Dichloropropane	<0.44	1.0	0.44	-			10/31/20 11:24	1
2-Chlorotoluene	<0.31	1.0	0.31				10/31/20 11:24	1
4-Chlorotoluene	<0.35	1.0	0.35	-			10/31/20 11:24	1
Benzene	<0.15	0.50	0.15	-			10/31/20 11:24	1
Bromobenzene	<0.36	1.0	0.36				10/31/20 11:24	
Bromochloromethane	<0.43	1.0	0.43	-			10/31/20 11:24	1
Bromodichloromethane	<0.37	1.0	0.37	-			10/31/20 11:24	1
Bromoform	<0.48	1.0	0.48				10/31/20 11:24	
Bromomethane	<0.80	3.0		ug/L			10/31/20 11:24	1
Carbon tetrachloride	<0.38	1.0	0.38	-			10/31/20 11:24	1
Chlorobenzene	<0.39	1.0	0.39				10/31/20 11:24	
Chloroethane	<0.51	1.0	0.51	-			10/31/20 11:24	1
Chloroform	<0.37	2.0	0.37	-			10/31/20 11:24	1
Chloromethane	<0.32	1.0	0.32				10/31/20 11:24	
cis-1,2-Dichloroethene	<0.41	1.0	0.02	-			10/31/20 11:24	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	-			10/31/20 11:24	1
Dibromochloromethane	<0.49	1.0		ug/L			10/31/20 11:24	
Dibromomethane	<0.27	1.0		ug/L			10/31/20 11:24	1
Dichlorodifluoromethane	<0.27	3.0		ug/L			10/31/20 11:24	1
Ethylbenzene	<0.07	0.50	0.07				10/31/20 11:24	
Hexachlorobutadiene	<0.45	1.0		ug/L			10/31/20 11:24	1
sopropyl ether	<0.28	1.0		ug/L			10/31/20 11:24	1
sopropylbenzene	<0.20	1.0		ug/L			10/31/20 11:24	
Methyl tert-butyl ether	<0.39	1.0		ug/L ug/L			10/31/20 11:24	1
Methylene Chloride	<1.6	5.0		ug/L ug/L			10/31/20 11:24	1
Naphthalene	< 0.34	1.0		ug/L			10/31/20 11:24	1
n-Butylbenzene	< 0.39	1.0		ug/L			10/31/20 11:24	1
N-Propylbenzene p-Isopropyltoluene	<0.41 <0.36	1.0 1.0		ug/L ug/L			10/31/20 11:24 10/31/20 11:24	1

#### **Client Sample ID: TRIP BLANK** Date Collected: 10/22/20 00:00 Date Received: 10/23/20 10:00

# Lab Sample ID: 500-189985-6

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			10/31/20 11:24	1
Styrene	<0.39		1.0	0.39	ug/L			10/31/20 11:24	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			10/31/20 11:24	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			10/31/20 11:24	1
Toluene	<0.15		0.50	0.15	ug/L			10/31/20 11:24	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			10/31/20 11:24	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			10/31/20 11:24	1
Trichloroethene	<0.16		0.50	0.16	ug/L			10/31/20 11:24	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			10/31/20 11:24	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/31/20 11:24	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			10/31/20 11:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	118		75 - 126					10/31/20 11:24	1
4-Bromofluorobenzene (Surr)	107		72 - 124					10/31/20 11:24	1
Dibromofluoromethane (Surr)	100		75 - 120					10/31/20 11:24	1
Toluene-d8 (Surr)	100		75 - 120					10/31/20 11:24	1

5

6 7

11/2/2020

Client: Giles Engineering Associates Project/Site: Best Way Cleaners - 1E-2006002

5

8

**Qualifiers GC/MS VOA** Qualifier **Qualifier Description** J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. Glossary Abbreviation These commonly used abbreviations may or may not be present in this report. ¤ Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL **Contains Free Liquid** CFU **Colony Forming Unit** CNF Contains No Free Liquid Duplicate Error Ratio (normalized absolute difference) DER Dil Fac **Dilution Factor** DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision Level Concentration (Radiochemistry) DLC Estimated Detection Limit (Dioxin) EDL LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN Method Quantitation Limit MQL NC Not Calculated Not Detected at the reporting limit (or MDL or EDL if shown) ND NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit PRES Presumptive QC **Quality Control** RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

## **QC Association Summary**

Client: Giles Engineering Associates Project/Site: Best Way Cleaners - 1E-2006002 Job ID: 500-189985-1

#### GC/MS VOA

#### Analysis Batch: 569588

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-189985-1	GMW-1	Total/NA	Water	8260B	
500-189985-2	GPZ-1	Total/NA	Water	8260B	
500-189985-3	GMW-2	Total/NA	Water	8260B	
500-189985-4	GPZ-2	Total/NA	Water	8260B	
500-189985-5	GMW-3	Total/NA	Water	8260B	
500-189985-6	TRIP BLANK	Total/NA	Water	8260B	
MB 500-569588/6	Method Blank	Total/NA	Water	8260B	
LCS 500-569588/4	Lab Control Sample	Total/NA	Water	8260B	

#### Method: 8260B - Volatile Organic Compounds (GC/MS) Matrix: Water

		Percent Surrogate Recovery (Acceptance Lim								
		DCA	BFB	DBFM	TOL					
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)					
500-189985-1	GMW-1	117	106	103	98					
500-189985-2	GPZ-1	119	110	102	97					
500-189985-3	GMW-2	117	107	101	100					
500-189985-4	GPZ-2	120	108	103	96					
500-189985-5	GMW-3	119	109	103	97					
500-189985-6	TRIP BLANK	118	107	100	100					
LCS 500-569588/4	Lab Control Sample	114	107	99	101					
MB 500-569588/6	Method Blank	116	112	101	99					

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Prep Type: Total/NA .imits)

MB MB **Result Qualifier** 

< 0.46

<0.38

< 0.40 < 0.35

< 0.41

<0.39

< 0.30

< 0.46

< 0.41

< 0.34

< 0.36

<2.0

< 0.39

< 0.33

< 0.39

<0.43

< 0.25

< 0.40

< 0.36 < 0.36

<0.44

< 0.31

< 0.35

<0.15

< 0.36

< 0.43

< 0.37

<0.48

<0.80

< 0.38

< 0.39

<0.51

< 0.37

< 0.32

<0.41

< 0.42

< 0.49

< 0.27

< 0.67

<0.18

<0.45

<0.28

< 0.39

< 0.39

<1.6

< 0.34

< 0.39

<0.41

#### Method: 8260B - Volatile Organic Compounds (GC/MS)

#### Lab Sample ID: MB 500-569588/6 Matrix: Water

Analysis Batch: 569588

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,1-Trichloroethane

1,1,2-Trichloroethane 1,1-Dichloroethane

1,1-Dichloroethene

1,1-Dichloropropene

1,2,3-Trichlorobenzene

1,2,3-Trichloropropane

1,2,4-Trichlorobenzene

1,2,4-Trimethylbenzene

1,2-Dibromoethane

1,2-Dichloroethane

1,2-Dichloropropane

1,3-Dichlorobenzene

1,3-Dichloropropane

1,4-Dichlorobenzene 2,2-Dichloropropane

2-Chlorotoluene

4-Chlorotoluene

Bromobenzene

Bromomethane

Chlorobenzene

Chloromethane

Dibromomethane

Ethylbenzene

Isopropyl ether

Naphthalene

n-Butylbenzene

N-Propylbenzene

Isopropylbenzene

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dibromochloromethane

Dichlorodifluoromethane

Hexachlorobutadiene

Methyl tert-butyl ether

Methylene Chloride

Chloroethane

Chloroform

Carbon tetrachloride

Bromochloromethane

Bromodichloromethane

Benzene

Bromoform

1,3,5-Trimethylbenzene

1,2-Dichlorobenzene

1,2-Dibromo-3-Chloropropane

Analyte

#### **Client Sample ID: Method Blank** Prep Type: Total/NA

	Prep Type: Total/NA						
							5
RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1.0	0.46	ug/L		-	10/31/20 10:58	1	6
1.0	0.38	ug/L			10/31/20 10:58	1	
1.0	0.40	ug/L			10/31/20 10:58	1	7
1.0	0.35	ug/L			10/31/20 10:58	1	
1.0	0.41	-			10/31/20 10:58	1	9
1.0	0.39	ug/L			10/31/20 10:58	1	0
1.0	0.30				10/31/20 10:58	1	0
1.0	0.46				10/31/20 10:58	1	3
2.0	0.41	ug/L			10/31/20 10:58	1	4.0
1.0	0.34				10/31/20 10:58	1	10
1.0	0.36	-			10/31/20 10:58	1	
5.0		ug/L			10/31/20 10:58	1	11
1.0	0.39				10/31/20 10:58	1	
1.0	0.33	-			10/31/20 10:58	1	12
1.0	0.39	ug/L			10/31/20 10:58	1	
1.0	0.43				10/31/20 10:58		13
1.0	0.25	-			10/31/20 10:58	1	
1.0	0.40	-			10/31/20 10:58	1	14
1.0	0.36				10/31/20 10:58		
1.0	0.36	-			10/31/20 10:58	1	15
1.0	0.44				10/31/20 10:58	1	
1.0	0.31				10/31/20 10:58		
1.0	0.35	-			10/31/20 10:58	1	
0.50	0.15	-			10/31/20 10:58	1	
1.0	0.36				10/31/20 10:58	1	
1.0	0.43	-			10/31/20 10:58	1	
1.0	0.37	-			10/31/20 10:58	1	
1.0	0.48				10/31/20 10:58	1	
3.0	0.80	-			10/31/20 10:58	1	
1.0	0.38				10/31/20 10:58	1	
1.0	0.39				10/31/20 10:58	1	
1.0	0.51				10/31/20 10:58	1	
2.0	0.37				10/31/20 10:58	1	
1.0	0.32				10/31/20 10:58	1	
1.0	0.41	-			10/31/20 10:58	1	
1.0	0.42				10/31/20 10:58	1	
1.0	0.49				10/31/20 10:58	1	
1.0	0.27				10/31/20 10:58	1	
3.0	0.67	-			10/31/20 10:58	1	
0.50	0.18				10/31/20 10:58	1	
1.0	0.45				10/31/20 10:58	1	
1.0	0.28	-			10/31/20 10:58	1	
1.0	0.39				10/31/20 10:58	1	
1.0	0.39	-			10/31/20 10:58	1	
5.0		ug/L			10/31/20 10:58	1	

Eurofins TestAmerica, Chicago

10/31/20 10:58

10/31/20 10:58

10/31/20 10:58

1.0

1.0

1.0

0.34 ug/L

0.39 ug/L

0.41 ug/L

1

1

Lab Sample ID: MB 500-569588/6

Matrix: Water

p-Isopropyltoluene

sec-Butylbenzene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

Surrogate

9oluene-d8 (Surr)

trans-1,2-Dichloroethene

trans-1,3-Dichloropropene

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Trichlorofluoromethane

Analyte

Styrene

Toluene

Analysis Batch: 569588

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Qualifier

Result

< 0.36

< 0.40

< 0.39

< 0.40

<0.37

<0.15

< 0.35

< 0.36

< 0.16

< 0.43

<0.20

<0.22

117

112

101

TT

%Recovery

MB MB

Qualifier

### QC Sample Results

RL

1.0

1.0

1.0

1.0

1.0

0.50

1.0

1.0

1.0

1.0

1.0

Limits

56 - 127

52 - 124

56 - 120

56 - 120

0.50

MDL

0.36 ug/L

0.40 ug/L

0.39 ug/L

0.40 ug/L

0.15 ug/L

0.35 ug/L

0.43 ug/L

0.37 ug/L

0.36 ug/L

0.16 ug/L

0.20 ug/L

0.22 ug/L

Unit

D

Prepared

Prepared

**Client Sample ID: Method Blank** 

10/31/20 10:58

10/31/20 10:58

10/31/20 10:58

10/31/20 10:58

10/31/20 10:58

10/31/20 10:58

10/31/20 10:68

**Client Sample ID: Lab Control Sample** 

# Analyzed Dil Fac 5 10/31/20 10:58 1 6

1

1

1

1

1

1

	10/31/20 10:58	1	
	10/31/20 10:58	1	
	10/31/20 10:58	1	
	10/31/20 10:58	1	
			1
1	Analyzed	Dil Fac	
	10/31/20 10:68	1	
	10/31/20 10:68	1	

Prep Type: Total/NA

# 13 14

#### Lab Sample ID: LCS 500-569588/4 Matrix: Water Analysis Batch: 569588

Spike LCS LCS %Rec. Added **Result Qualifier** Unit %Rec Limits Analyte D 50.0 42.3 70 - 125 1,1,1,2-Tetrachloroethane ug/L 85 1,1,1-Trichloroethane 50.0 43.7 ug/L 87 70 - 125 50.0 45.4 91 1,1,2,2-Tetrachloroethane ug/L 62 - 140 50.0 95 1,1,2-Trichloroethane 47.5 ug/L 71 - 130 1,1-Dichloroethane 50.0 45.5 ug/L 91 70 - 125 1,1-Dichloroethene 50.0 39.0 ug/L 78 67 - 122 1,1-Dichloropropene 50.0 46.1 92 70 - 121 ug/L 50.0 40.2 80 51 - 145 1,2,3-Trichlorobenzene ug/L 50.0 107 1,2,3-Trichloropropane 537 ug/L 50 - 133 1,2,4-Trichlorobenzene 50.0 40.2 80 57 - 137 ug/L ug/L 1,2,4-Trimethylbenzene 50.0 44.5 89 70 - 123 94 1,2-Dibromo-3-Chloropropane 50.0 47.1 ug/L 56 - 123 1,2-Dibromoethane 50.0 47.5 ug/L 95 70 - 125 42.0 70 - 125 1,2-Dichlorobenzene 50.0 ug/L 84 1.2-Dichloroethane 50.0 52.8 ug/L 106 68 - 127 1,2-Dichloropropane 50.0 51.2 ug/L 102 67 - 130 1,3,5-Trimethylbenzene 50.0 44.3 ug/L 89 70 - 123 46.0 92 1,3-Dichlorobenzene 50.0 ug/L 70 - 125 50.0 47.6 95 1,3-Dichloropropane ug/L 62 - 136 1,4-Dichlorobenzene 50.0 45.6 ug/L 91 70 - 120 2,2-Dichloropropane 50.0 44.9 ug/L 90 58 - 139 2-Chlorotoluene 50.0 44.8 ug/L 90 70 - 125 4-Chlorotoluene 50.0 46.5 ug/L 93 68 - 124 70 - 120 Benzene 50.0 43.8 ug/L 88

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

#### Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

105

ΤT

101

#### Lab Sample ID: LCS 500-569588/4

#### Matrix: Water Analysis Batch: 569588

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

9oluene-d8 (Surr)

Analysis Batch: 569588			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromobenzene			50.0	45.7		ug/L		91	70 - 122	
Bromochloromethane			50.0	44.8		ug/L		90	65 - 122	
Bromodichloromethane			50.0	45.8		ug/L		92	69 - 120	
Bromoform			50.0	47.7		ug/L		95	56 - 132	
Bromomethane			50.0	32.9		ug/L		66	40 - 152	
Carbon tetrachloride			50.0	43.0		ug/L		86	59 - 133	
Chlorobenzene			50.0	47.2		ug/L		94	70 - 120	
Chloroethane			50.0	52.2		ug/L		104	48 - 136	
Chloroform			50.0	42.6		ug/L		85	70 - 120	_
Chloromethane			50.0	52.4		ug/L		105	56 - 152	
cis-1,2-Dichloroethene			50.0	42.3		ug/L		85	70 - 125	
cis-1,3-Dichloropropene			50.0	45.7		ug/L		91	64 - 127	1
Dibromochloromethane			50.0	44.8		ug/L		90	68 - 125	
Dibromomethane			50.0	46.8		ug/L		94	70 - 120	
Dichlorodifluoromethane			50.0	52.6		ug/L		105	40 - 159	
Ethylbenzene			50.0	45.9		ug/L		92	70 - 123	1
Hexachlorobutadiene			50.0	39.9		ug/L		80	51 - 150	
Isopropylbenzene			50.0	44.9		ug/L		90	70 - 126	
Methyl tert-butyl ether			50.0	39.9		ug/L		80	55 - 123	
Methylene Chloride			50.0	41.3		ug/L		83	69 - 125	
Naphthalene			50.0	42.2		ug/L		84	53 - 144	
n-Butylbenzene			50.0	44.3		ug/L		89	68 - 125	
N-Propylbenzene			50.0	46.7		ug/L		93	69 - 127	
p-Isopropyltoluene			50.0	45.9		ug/L		92	70 - 125	
sec-Butylbenzene			50.0	44.8		ug/L		90	70 - 123	
Styrene			50.0	49.0		ug/L		98	70 - 120	
tert-Butylbenzene			50.0	45.7		ug/L		91	70 - 121	
Tetrachloroethene			50.0	45.2		ug/L		90	70 - 128	
Toluene			50.0	45.4		ug/L		91	70 - 125	
trans-1,2-Dichloroethene			50.0	40.9		ug/L		82	70 - 125	
trans-1,3-Dichloropropene			50.0	47.9		ug/L		96	62 - 128	
Trichloroethene			50.0	49.6		ug/L		99	70 - 125	
Trichlorofluoromethane			50.0	40.6		ug/L		81	55 - 128	
Vinyl chloride			50.0	49.2		ug/L		98	64 - 126	
Xylenes, Total			100	87.0		ug/L		87	70 - 125	
	LCS									
Surrogate	%Recovery	Qualifier	Limits							
1,2-Dichloroethane-d4 (Surr)	114		56 - 127							

52 - 124 56 - 120

56 - 120

Job ID: 500-189985-1

			102						
Client Sam	ple ID: GM	W-1					Lab Sa	mple ID:	500-189985-1
Date Collecte	d: 10/22/20 1	2:10							Matrix: Water
Date Receive	d: 10/23/20 1	0:00							
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	- 8260B		1	569588	10/31/20 12:18		TAL CHI	
	7 maryolo	02000		•	000000	10/01/20 12:10			
Client Sam	ple ID: GP2	Z-1					Lab Sa	mple ID:	500-189985-2
Date Collecte	d: 10/22/20 1	2:45							Matrix: Wate
Date Receive	d: 10/23/20 1	0:00							
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B		1	569588	10/31/20 12:45	-	TAL CHI	
	Analysis	02000		•	000000	10/31/20 12.43	0111		
Client Sam	ple ID: GM	W-2					Lab Sa	mple ID:	500-189985-3
Date Collecte	d: 10/22/20 1	0:55							Matrix: Wate
Date Receive	d: 10/23/20 1	0:00							
-	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	- 8260B		1	569588	10/31/20 13:11		TAL CHI	
	ple ID: GP2 d: 10/22/20 1								500-189985- Matrix: Wate
Date Received									
_									
	Batch	Batch	_	Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst		
Total/NA	Analysis	8260B		1	569588	10/31/20 13:38	STW	TAL CHI	
Client Sam	ple ID: GM	W-3					Lab Sa	mple ID:	500-189985-
Date Collecte	•								Matrix: Wate
Date Receive	d: 10/23/20 1	0:00							
-	Datah	Detah		Dilution	Detek	Duenened			
Deser Trees	Batch	Batch	Dura	Dilution	Batch	Prepared	Amahaat	Lab	
Prep Type Total/NA	Type	_ <u>Method</u> 8260B	Run	<b>Factor</b> 1	Number 569588	or Analyzed 10/31/20 14:05		- Lab TAL CHI	
	Analysis	0200D		1	209200	10/31/20 14.05	3110	TAL CHI	
Client Sam	ple ID: TRI	P BLANK					Lab Sa	mple ID:	500-189985-0
Date Collecte	d: 10/22/20 0	0:00						-	Matrix: Wate
Date Receive	d: 10/23/20 1	0:00							
_	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	8260B		$-\frac{10001}{1}$	569588			TAL CHI	

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

	s listed below are applicable to this report.			
Authority Wisconsin	Program State	Identification Number 999580010	Expiration Date 08-31-21	4
-				Ę
				·

#### Chain of Custody Record 417282 🔅 eurofins

Environment Testing TestAmerica

Ad	dress:	
Ad	dress:	

	Regu	latory Pro	ogram:	DW	NPDES	5 [	RCRA	Other:						TAL-821
Client Contact	Project N	lanager:	Kevin	Buce	/	Site	Conta	ict: J. w	lois te Da	te: /o	12.2 /2	47.0	COC No:	
Company Name: Giles Eagineering		1: Kbur				Lab	Conta	ct: Sr Fine	drick Ca	rrier:			of	COCs
Address: NO 1223505 Address Do		Analysis 1				П	TT				TT	TIT	Sampler:	
City/State/Zip: the lishe wi 53185	CALE	NDAR DAYS	× wo	RKING DA	rs	11	11	1111	111	1 1 1	11	111	For Lab Use Onl	y:
Phone: 262 544 018	T	AT if different f	rom Below	·7 4	10.	1 1				111	1.1		Walk-in Client:	
Fax:		1	2 weeks			12				- 16 B	ALC: N		Lab Sampling:	
Project Name: Bost What Cleaners			1 week			515	-							
Site: Mc Fo-land WI			2 days			e (				- R3			Job / SDG No .:	
PO# 15-2006002			1 day			Sample MS / MS	-	1111		1.0			500-1890	185
		T	Sample			Samp	U			500-189	985 COC			
	Sample	Sample	Туре			red	2			,				
Sample Identification	Date	Time	(C=Comp, G=Grab)	Matrix	# of Cont.	Filtered :				111	11	1	Sample Sr	pecific Notes:
								+++++			++	+-+-+	Campie of	
GMW-1	1=/22/20	1210	G	w	3	Ma	X							
6P2-1	i	1245	Í			ID	V				TT			
		1215			+	HH	14				++	+++		
GMW-E		1055		11			X							
		1115				III	X							
GP 2-2		1.2		++			17				++	+++		
Gmw-3	1	1140	¥.	4	4	r P	X							
TRIP BLANK						П	X							
I KIP ISLANK						$\vdash$	++					+++		
		1	1					1 1 1 1				111		
						H								
						$\vdash$	+				++-			
						H					++			
						$\vdash$		++++				+++	1	
						H		++++			++	+++		1995 - 1995 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 - 1975 -
		1	1	1		4								
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNC	03; 5=NaOH;	6= Other _				-								
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? PI			Codeofer	the comm	ala in the		ample	Disposal ( A fe	ee may be as	sessed if	samples	are retain	ed longer than 1 mo	onth)
Comments Section if the lab is to dispose of the sample.	ease List any	EPA Waste	Codes IUI	the sam	ne in tri	6								
Non-Hazard Flammable Skin Irritant	Poiso	n B	Unkn			-		turn to Client	Dispos	al hu I ah	7	Archive for_	Months	
	[] P0150	11 D	L_) UNKI	10WIT	_	_	Шке	turn to client	Dispos	ai by Lab	h -	AIGHVE IGI_	1101013	
Special Instructions/QC Requirements & Comments:	1			41.		-	-	. 6						
Emuil Kesut	ts to .	K. 1	Sugel,	May	der, a	2.3	SEI	1ste		1	.2			
Custody Seals Intact: Yes No	Custody S	Seal No.:						Cooler Temp	p. (°C): Obs'd:		Corr'd:		Therm ID No.:	
Relinquished by:	Company		1	Date/Ti	me: M	R	eceive	d by:		Com	pany:		Date/Time:	
	$\Lambda$	G.1	55	10/22	he	0		52						
Relinquished by:	Company			Date/Ti		R	eceive	d by:		Com	pany:		Date/Time:	
				Constraints				and file (		1				
Relinguished by:	Company	r:		Date/Ti	me:	R	eceive	d in Laboratory	by:	Com	pany:		Date/Time:	
nervennen menskill i dag zu 🖌 i v								pomio. H			-	A-CHI	10123120	1000
					_	-	JUL	LULIU, II	VIIVII IV	A			1010100	1000

#### Login Sample Receipt Checklist

#### Client: Giles Engineering Associates

#### Login Number: 189985 List Number: 1 Creator: Hernandez, Stephanie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

#### Job Number: 500-189985-1

List Source: Eurofins TestAmerica, Chicago

# 🛟 eurofins

# Environment Testing America

# **ANALYTICAL REPORT**

Eurofins TestAmerica, Knoxville 5815 Middlebrook Pike Knoxville, TN 37921 Tel: (865)291-3000

#### Laboratory Job ID: 140-19578-1

Client Project/Site: FORMER BEST WAY CLEANERS/McFARLAND,WI/1E

#### For:

Giles Engineering Associates N8 W 22350 Johnson Road Waukesha, Wisconsin 53186

Attn: Mr. Kevin Bugel

Mane >

Authorized for release by: 7/13/2020 12:16:01 PM Diana Lange, Project Management Assistant II Diane.Lange@Eurofinset.com

Designee for

LINKS

Review your project results through

Total Access

Have a Question?

Ask-

The

www.eurofinsus.com/Env

Visit us at:

Expert

Jamie McKinney, Senior Project Manager (865)291-3000 Jamie.McKinney@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

# **Table of Contents**

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	7
Default Detection Limits	13
Surrogate Summary	15
QC Sample Results	16
QC Association Summary	22
Lab Chronicle	23
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	30
Air Canister Dilution	31

## **Definitions/Glossary**

3

# Qualifiers

Air	- G	iC/	MS	v i	OA

Air - GC/N	IS VOA	
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	 ļ
В	Compound was found in the blank and sample.	
E	Result exceeded calibration range.	
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	

#### Glossary

Quantoro		
Air - GC/MS		4
Qualifier	Qualifier Description	
*	LCS or LCSD is outside acceptance limits.	5
B	Compound was found in the blank and sample.	
E	Result exceeded calibration range.	6
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	
Glossary		7
Abbreviation	These commonly used abbreviations may or may not be present in this report.	9
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	0
%R	Percent Recovery	
CFL	Contains Free Liquid	9
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	12
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	13
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	16
MPN	Most Probable Number	
MQL	Method Quantitation Limit	17
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

#### Job ID: 140-19578-1

#### Laboratory: Eurofins TestAmerica, Knoxville

Narrative

Job Narrative 140-19578-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 7/3/2020 9:00 AM; the samples arrived in good condition, and where required, properly preserved and on ice.

#### Air - GC/MS VOA

Methods TO 15 LL, TO-14A, TO-15: EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by TestAmerica Knoxville.

Method TO-15: The continuing calibration verification (CCV) associated with batch 140-40799 exhibited % difference of > 30% for the following analyte(s) 1,2,4-Trichlorobenzene, Naphthalene and Undecane; however, the results were within the LCS acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 30% difference from the initial calibration. According to the laboratory standard operating procedure, the continuing calibration is acceptable if it meets the laboratory control sample acceptance criteria.

Method TO-15: The following analyte(s) recovered outside control limits for the LCS associated with analytical batch 140-40799: 1,2,4-Trichlorobenzene. This is not indicative of a systematic control problem because this was random marginal exceedance. Qualified results have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

# **Detection Summary**

#### **Client Sample ID: GSS-1**

# Lab Sample ID: 140-19578-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	2400		180	53	ug/m3	27.79	TO-15	Total/NA
Methylene Chloride	340 .	JB	770	250	ug/m3	27.79	TO-15	Total/NA
Tetrachloroethene	12000		300	60	ug/m3	27.79	TO-15	Total/NA
Trichloroethene	1100		240	43	ug/m3	27.79	TO-15	Total/NA

#### **Client Sample ID: GSS-2**

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
1,4-Dichlorobenzene	16		16	5.1	ug/m3	1	TO-15	Total/NA
Acetone	88	J	240	44	ug/m3	1	TO-15	Total/NA
Chlorodifluoromethane	6.6	J	9.4	1.7	ug/m3	1	TO-15	Total/NA
Cyclohexane	6.3	J	18	1.8	ug/m3	1	TO-15	Total/NA
Dichlorodifluoromethane	9700	E	13	4.5	ug/m3	1	TO-15	Total/NA
Methylene Chloride	21	JB	46	15	ug/m3	1	TO-15	Total/NA
Tetrachloroethene	1100		18	3.6	ug/m3	1	TO-15	Total/NA
Trichloroethene	21		14	2.6	ug/m3	1	TO-15	Total/NA
Trichlorofluoromethane	2.1	J	15	1.9	ug/m3	1	TO-15	Total/NA
Dichlorodifluoromethane - DL	6100		65	22	ug/m3	3.29	TO-15	Total/NA

#### **Client Sample ID: SS-2**

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
1,1,2-Trichloro-1,2,2-trifluoroethane	0.63	J	3.1	0.48	ug/m3	1	TO-15	Total/NA
1,3-Dichlorobenzene	1.0	J	2.4	0.78	ug/m3	1	TO-15	Total/NA
1,4-Dichlorobenzene	26		2.4	0.77	ug/m3	1	TO-15	Total/NA
2-Butanone (MEK)	2.9	J	5.9	1.2	ug/m3	1	TO-15	Total/NA
Acetone	26	J	36	6.7	ug/m3	1	TO-15	Total/NA
Butane	44		4.8	0.35	ug/m3	1	TO-15	Total/NA
Chloroform	48		2.0	0.37	ug/m3	1	TO-15	Total/NA
Cyclohexane	0.66	J	2.8	0.28	ug/m3	1	TO-15	Total/NA
Dichlorodifluoromethane	3900	E	2.0	0.67	ug/m3	1	TO-15	Total/NA
Hexane	0.28	J	2.8	0.23	ug/m3	1	TO-15	Total/NA
Methylene Chloride	3.5	JB	6.9	2.2	ug/m3	1	TO-15	Total/NA
Styrene	0.78	J	1.7	0.49	ug/m3	1	TO-15	Total/NA
Tetrachloroethene	270		2.7	0.54	ug/m3	1	TO-15	Total/NA
Trichloroethene	1.5	J	2.1	0.39	ug/m3	1	TO-15	Total/NA
Trichlorofluoromethane	1.8	J	2.2	0.28	ug/m3	1	TO-15	Total/NA
Dichlorodifluoromethane - DL	5700		42	14	ug/m3	3.15	TO-15	Total/NA

#### **Client Sample ID: SS-3**

#### Lab Sample ID: 140-19578-4

Lab Sample ID: 140-19578-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,1,1-Trichloroethane	0.21	J	1.1	0.16	ug/m3	1	_	TO-15	Total/NA
1,1,2-Trichloro-1,2,2-trifluoroethane	0.52	J	1.5	0.24	ug/m3	1		TO-15	Total/NA
1,3,5-Trimethylbenzene	0.46	J	0.98	0.32	ug/m3	1		TO-15	Total/NA
1,4-Dichlorobenzene	12		1.2	0.38	ug/m3	1		TO-15	Total/NA
2-Butanone (MEK)	2.0	J	2.9	0.59	ug/m3	1		TO-15	Total/NA
Acetone	200		18	3.3	ug/m3	1		TO-15	Total/NA
Benzene	0.37	J	0.64	0.18	ug/m3	1		TO-15	Total/NA
Bromomethane	0.23	J	0.78	0.12	ug/m3	1		TO-15	Total/NA
Butane	4.0		2.4	0.17	ug/m3	1		TO-15	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Knoxville

5

#### Clier

This Detection Summary does not include radiochemical test results.

Client Sample ID: SS-3	Lab Sa	mple ID:	140-19578-					
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Carbon disulfide	0.29	J	1.2	0.097	ug/m3	1	TO-15	Total/NA
Carbon tetrachloride	0.47	J	1.3	0.24	ug/m3	1	TO-15	Total/NA
Chlorodifluoromethane	2.3		0.71	0.13	ug/m3	1	TO-15	Total/NA
Chloroform	0.50	J	0.98	0.19	ug/m3	1	TO-15	Total/NA
Chloromethane	1.5	J	2.1	0.33	ug/m3	1	TO-15	Total/NA
Cyclohexane	0.50	J	1.4	0.14	ug/m3	1	TO-15	Total/NA
Dichlorodifluoromethane	51		0.99	0.34	ug/m3	1	TO-15	Total/NA
Heptane	0.22	J	1.6	0.19	ug/m3	1	TO-15	Total/NA
Hexane	1.2	J	1.4	0.11	ug/m3	1	TO-15	Total/NA
Methylene Chloride	4.0	В	3.5	1.1	ug/m3	1	TO-15	Total/NA
Styrene	0.54	J	0.85	0.25	ug/m3	1	TO-15	Total/NA
Tetrachloroethene	4.0		1.4	0.27	ug/m3	1	TO-15	Total/NA
Toluene	1.9	J	3.8	0.45	ug/m3	1	TO-15	Total/NA
Trichlorofluoromethane	1.6		1.1	0.14	ug/m3	1	TO-15	Total/NA

Matrix: Air

6

13

Date Collected: 07/02/20 12:33 Date Received: 07/03/20 09:00 Sample Container: Summa Canister 6L

**Client Sample ID: GSS-1** 

Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
I,1,1-Trichloroethane	ND		240	36	ug/m3			07/07/20 13:05	27.79
I,1,2,2-Tetrachloroethane	ND		310	93	ug/m3			07/07/20 13:05	27.79
,1,2-Trichloro-1,2,2-trifluoroethane	ND		340	53	ug/m3			07/07/20 13:05	27.79
,1,2-Trichloroethane	ND		240	63	ug/m3			07/07/20 13:05	27.79
,1-Dichloroethane	ND		180		ug/m3			07/07/20 13:05	27.79
I,1-Dichloroethene	ND		180	30	ug/m3			07/07/20 13:05	27.79
I,2,4-Trichlorobenzene	ND	*	1600	160	ug/m3			07/07/20 13:05	27.79
I,2,4-Trimethylbenzene	ND		220	69	ug/m3			07/07/20 13:05	27.79
I,2-Dibromoethane (EDB)	ND		340	75	ug/m3			07/07/20 13:05	27.79
,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		310	50	ug/m3			07/07/20 13:05	27.79
I,2-Dichlorobenzene	ND		530	94	ug/m3			07/07/20 13:05	27.79
,2-Dichloroethane	ND		180	42	ug/m3			07/07/20 13:05	27.79
,2-Dichloropropane	ND		210	53	ug/m3			07/07/20 13:05	27.79
,3,5-Trimethylbenzene	ND		220	71	ug/m3			07/07/20 13:05	27.79
,3-Butadiene	ND		200	31	ug/m3			07/07/20 13:05	27.79
,3-Dichlorobenzene	ND		270	87	ug/m3			07/07/20 13:05	27.79
,4-Dichlorobenzene	ND		270	86	ug/m3			07/07/20 13:05	27.79
P-Butanone (MEK)	ND		660	130	ug/m3			07/07/20 13:05	27.79
2-Hexanone	ND		360	53	ug/m3			07/07/20 13:05	27.79
-Chloropropene	ND		140	33	ug/m3			07/07/20 13:05	27.79
-Methyl-2-pentanone (MIBK)	ND		910	180	ug/m3			07/07/20 13:05	27.7
cetone	ND		4000	740	ug/m3			07/07/20 13:05	27.79
Acrylonitrile	ND		970	97	ug/m3			07/07/20 13:05	27.7
Benzene	ND		140	40	ug/m3			07/07/20 13:05	27.79
Benzyl chloride	ND		460		ug/m3			07/07/20 13:05	27.79
Bromodichloromethane	ND		300		ug/m3			07/07/20 13:05	27.7
Bromoform	ND		460		ug/m3			07/07/20 13:05	27.7
Bromomethane	ND		170		ug/m3			07/07/20 13:05	27.7
Butane	ND		530		ug/m3			07/07/20 13:05	27.7
Carbon disulfide	ND		280		ug/m3			07/07/20 13:05	27.79
Carbon tetrachloride	ND		280		ug/m3			07/07/20 13:05	27.79
Chlorobenzene	ND		200		ug/m3			07/07/20 13:05	27.79
Chlorodifluoromethane	ND		160		ug/m3			07/07/20 13:05	27.79
Chloroethane	ND		120		ug/m3			07/07/20 13:05	27.79
Chloroform	ND		220		ug/m3			07/07/20 13:05	27.79
Chloromethane	ND		460		ug/m3			07/07/20 13:05	27.7
is-1,2-Dichloroethene	2400		180		ug/m3			07/07/20 13:05	27.79
is-1,3-Dichloropropene	2400 ND		400		ug/m3			07/07/20 13:05	27.7
Cyclohexane	ND		310		ug/m3			07/07/20 13:05	27.7
Dibromochloromethane	ND		380		ug/m3			07/07/20 13:05	27.7
ibromomethane	ND		630		ug/m3			07/07/20 13:05	27.79
Dichlorodifluoromethane	ND		220		ug/m3			07/07/20 13:05	27.7
thylbenzene					ug/m3			07/07/20 13:05	27.7
•	ND		190		-				
leptane	ND		360		ug/m3			07/07/20 13:05	27.79
lexachlorobutadiene	ND		2400		ug/m3			07/07/20 13:05	27.79
Hexane sopropylbenzene	ND ND		310 440		ug/m3 ug/m3			07/07/20 13:05 07/07/20 13:05	27.79 27.79

Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Result Qualifier

340 J B

ND

**Client Sample ID: GSS-1** 

Date Collected: 07/02/20 12:33

Date Received: 07/03/20 09:00

Analyte

Analyte

Acetone

Acrylonitrile

1,1,1-Trichloroethane

Methyl tert-butyl ether

**Methylene Chloride** 

# Lab Sample ID: 140-19578-1

Analyzed

07/07/20 13:05

07/07/20 13:05

Matrix: Air

Dil Fac

27.79

27.79

**Client Sample ID: GSS-2** Date Collected: 07/02/20 12:38 Date Received: 07/03/20 09:00 Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Result Qualifier

ND

88 J

ND

4-Bromofluorobenzene (Surr)	95		60 - 140				07/07/20 13:05	27.79
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Vinyl chloride	ND		230	40	ug/m3		07/07/20 13:05	27.79
Trichlorofluoromethane	ND		250	31	ug/m3		07/07/20 13:05	27.79
Trichloroethene	1100		240	43	ug/m3		07/07/20 13:05	27.79
trans-1,3-Dichloropropene	ND		200	48	ug/m3		07/07/20 13:05	27.79
trans-1,2-Dichloroethene	ND		180	44	ug/m3		07/07/20 13:05	27.79
Toluene	ND		840	100	ug/m3		07/07/20 13:05	27.79
Tetrachloroethene	12000		300	60	ug/m3		07/07/20 13:05	27.79
Styrene	ND		190	55	ug/m3		07/07/20 13:05	27.79
Propylbenzene	ND		440	61	ug/m3		07/07/20 13:05	27.79
o-Xylene	ND		190	59	ug/m3		07/07/20 13:05	27.79
Naphthalene	ND		470	100	ug/m3		07/07/20 13:05	27.79
m-Xylene & p-Xylene	ND		190	120	ug/m3		07/07/20 13:05	27.79
	040	00			agine		0	

RL

15

MDL Unit

2.2 ug/m3

44 ug/m3

5.8 ug/m3

RL 800

770

MDL Unit

140 ug/m3

250 ug/m3

D

D

Prepared

Prepared

# Lab Sample ID: 140-19578-2

Matrix: Air

Analyzed	Dil Fac	17
Analyzeu	DIFAC	
07/07/20 13:56	1	
07/07/20 13:56	1	
07/07/20 13:56	1	

1 1

> > 1

1

1

1

			8	
1,1,2,2-Tetrachloroethane	ND	18	5.6 ug/m3	07/07/20 13:56
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	20	3.2 ug/m3	07/07/20 13:56
1,1,2-Trichloroethane	ND	15	3.8 ug/m3	07/07/20 13:56
1,1-Dichloroethane	ND	11	1.4 ug/m3	07/07/20 13:56
1,1-Dichloroethene	ND	11	1.8 ug/m3	07/07/20 13:56
1,2,4-Trichlorobenzene	ND *	99	9.7 ug/m3	07/07/20 13:56
1,2,4-Trimethylbenzene	ND	13	4.1 ug/m3	07/07/20 13:56
1,2-Dibromoethane (EDB)	ND	20	4.5 ug/m3	07/07/20 13:56
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	19	3.0 ug/m3	07/07/20 13:56
1,2-Dichlorobenzene	ND	32	5.6 ug/m3	07/07/20 13:56
1,2-Dichloroethane	ND	11	2.5 ug/m3	07/07/20 13:56
1,2-Dichloropropane	ND	12	3.2 ug/m3	07/07/20 13:56
1,3,5-Trimethylbenzene	ND	13	4.3 ug/m3	07/07/20 13:56
1,3-Butadiene	ND	12	1.9 ug/m3	07/07/20 13:56
1,3-Dichlorobenzene	ND	16	5.2 ug/m3	07/07/20 13:56
1,4-Dichlorobenzene	16	16	5.1 ug/m3	07/07/20 13:56
2-Butanone (MEK)	ND	39	7.9 ug/m3	07/07/20 13:56
2-Hexanone	ND	22	3.2 ug/m3	07/07/20 13:56
3-Chloropropene	ND	8.3	2.0 ug/m3	07/07/20 13:56
4-Methyl-2-pentanone (MIBK)	ND	55	11 ug/m3	07/07/20 13:56

Eurofins TestAmerica, Knoxville

07/07/20 13:56

07/07/20 13:56

240

58

**Client Sample ID: GSS-2** 

# Lab Sample ID: 140-19578-2

Matrix: Air

6

13

Date Collected: 07/02/20 12:38 Date Received: 07/03/20 09:00 Sample Container: Summa Canister 6L

Method: TO-15 - Volatile O Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		8.5	2.4	ug/m3			07/07/20 13:56	1
Benzyl chloride	ND		28	5.4	ug/m3			07/07/20 13:56	1
Bromodichloromethane	ND		18	3.9	ug/m3			07/07/20 13:56	1
Bromoform	ND		28	6.6	ug/m3			07/07/20 13:56	1
Bromomethane	ND		10	1.7	ug/m3			07/07/20 13:56	1
Butane	ND		32	2.3	ug/m3			07/07/20 13:56	1
Carbon disulfide	ND		17	1.3	ug/m3			07/07/20 13:56	1
Carbon tetrachloride	ND		17	3.2	ug/m3			07/07/20 13:56	1
Chlorobenzene	ND		12	3.0	ug/m3			07/07/20 13:56	1
Chlorodifluoromethane	6.6	J	9.4	1.7	ug/m3			07/07/20 13:56	1
Chloroethane	ND		7.0	1.2	ug/m3			07/07/20 13:56	1
Chloroform	ND		13	2.5	ug/m3			07/07/20 13:56	1
Chloromethane	ND		28	4.4	ug/m3			07/07/20 13:56	1
cis-1,2-Dichloroethene	ND		11	3.2	ug/m3			07/07/20 13:56	1
cis-1,3-Dichloropropene	ND		24		ug/m3			07/07/20 13:56	1
Cyclohexane	6.3	J	18		ug/m3			07/07/20 13:56	1
Dibromochloromethane	ND		23		ug/m3			07/07/20 13:56	1
Dibromomethane	ND		38	3.8	ug/m3			07/07/20 13:56	1
Dichlorodifluoromethane	9700	E	13	4.5	ug/m3			07/07/20 13:56	1
Ethylbenzene	ND		12	3.9	ug/m3			07/07/20 13:56	1
Heptane	ND		22		ug/m3			07/07/20 13:56	1
Hexachlorobutadiene	ND		140	11	ug/m3			07/07/20 13:56	1
Hexane	ND		19	1.5	ug/m3			07/07/20 13:56	1
Isopropylbenzene	ND		26	3.9	ug/m3			07/07/20 13:56	1
Methyl tert-butyl ether	ND		48	8.2	ug/m3			07/07/20 13:56	1
Methylene Chloride	21	JB	46	15	ug/m3			07/07/20 13:56	1
m-Xylene & p-Xylene	ND		12	6.9	ug/m3			07/07/20 13:56	1
Naphthalene	ND		28	6.3	ug/m3			07/07/20 13:56	1
o-Xylene	ND		12	3.5	ug/m3			07/07/20 13:56	1
Propylbenzene	ND		26	3.7	ug/m3			07/07/20 13:56	1
Styrene	ND		11	3.3	ug/m3			07/07/20 13:56	1
Tetrachloroethene	1100		18	3.6	ug/m3			07/07/20 13:56	1
Toluene	ND		50	6.0	ug/m3			07/07/20 13:56	1
trans-1,2-Dichloroethene	ND		11		ug/m3			07/07/20 13:56	1
trans-1,3-Dichloropropene	ND		12		ug/m3			07/07/20 13:56	1
Trichloroethene	21		14		ug/m3			07/07/20 13:56	1
Trichlorofluoromethane	2.1	J	15		ug/m3			07/07/20 13:56	1
Vinyl chloride	ND		14		ug/m3			07/07/20 13:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		60 - 140			-		07/07/20 13:56	1
Method: TO-15 - Volatile O			mbient Air - D						
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	6100		65	22	ug/m3			07/08/20 18:32	3.29
Surrogate	%Recovery	Qualifier	Limits			-	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		60 - 140					07/08/20 18:32	3.29

Matrix: Air

6

13

Client Sample ID: SS-2 Date Collected: 07/02/20 13:25 Date Received: 07/03/20 09:00 Sample Container: Summa Canister 6L

Method: TO-15 - Volatile Organi Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		2.2	0.33	ug/m3			07/07/20 14:50	1
1,1,2,2-Tetrachloroethane	ND		2.7	0.84	ug/m3			07/07/20 14:50	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.63	J	3.1	0.48	ug/m3			07/07/20 14:50	1
1,1,2-Trichloroethane	ND		2.2	0.57	ug/m3			07/07/20 14:50	1
1,1-Dichloroethane	ND		1.6	0.21	ug/m3			07/07/20 14:50	1
1,1-Dichloroethene	ND		1.6	0.27	ug/m3			07/07/20 14:50	1
1,2,4-Trichlorobenzene	ND	*	15	1.5	ug/m3			07/07/20 14:50	1
1,2,4-Trimethylbenzene	ND		2.0	0.62	ug/m3			07/07/20 14:50	1
1,2-Dibromoethane (EDB)	ND		3.1	0.68	ug/m3			07/07/20 14:50	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		2.8	0.45	ug/m3			07/07/20 14:50	1
1,2-Dichlorobenzene	ND		4.8	0.84	ug/m3			07/07/20 14:50	1
1,2-Dichloroethane	ND		1.6	0.38	ug/m3			07/07/20 14:50	1
1,2-Dichloropropane	ND		1.8	0.48	ug/m3			07/07/20 14:50	1
1,3,5-Trimethylbenzene	ND		2.0		ug/m3			07/07/20 14:50	1
1,3-Butadiene	ND		1.8		ug/m3			07/07/20 14:50	1
1,3-Dichlorobenzene	1.0	J	2.4		ug/m3			07/07/20 14:50	1
1,4-Dichlorobenzene	26		2.4		ug/m3			07/07/20 14:50	1
2-Butanone (MEK)	2.9	J	5.9		ug/m3			07/07/20 14:50	1
2-Hexanone	ND		3.3		ug/m3			07/07/20 14:50	1
3-Chloropropene	ND		1.3		ug/m3			07/07/20 14:50	1
4-Methyl-2-pentanone (MIBK)	ND		8.2		ug/m3			07/07/20 14:50	1
Acetone	26	J	36		ug/m3			07/07/20 14:50	1
Acrylonitrile	ND		8.7		ug/m3			07/07/20 14:50	1
Benzene	ND		1.3		ug/m3			07/07/20 14:50	1
Benzyl chloride	ND		4.1		ug/m3			07/07/20 14:50	1
Bromodichloromethane	ND		2.7		ug/m3			07/07/20 14:50	1
Bromoform	ND		4.1		ug/m3			07/07/20 14:50	1
Bromomethane	ND		1.6		ug/m3			07/07/20 14:50	1
Butane	44		4.8		ug/m3			07/07/20 14:50	1
Carbon disulfide	ND		2.5		ug/m3			07/07/20 14:50	1
Carbon tetrachloride	ND		2.5		ug/m3			07/07/20 14:50	
Chlorobenzene	ND		1.8		ug/m3			07/07/20 14:50	1
Chlorodifluoromethane	ND		1.4		ug/m3			07/07/20 14:50	1
Chloroethane	ND		1.1		ug/m3			07/07/20 14:50	1
Chloroform	48		2.0		ug/m3			07/07/20 14:50	1
Chloromethane	ND		4.1		ug/m3			07/07/20 14:50	1
cis-1,2-Dichloroethene	ND		1.6		ug/m3			07/07/20 14:50	
cis-1,3-Dichloropropene	ND		3.6		ug/m3			07/07/20 14:50	1
Cyclohexane	0.66	J	2.8		ug/m3			07/07/20 14:50	1
Dibromochloromethane	ND		3.4		ug/m3			07/07/20 14:50	
Dibromomethane	ND		5.7		ug/m3			07/07/20 14:50	1
Dichlorodifluoromethane	3900	F	2.0		ug/m3			07/07/20 14:50	1
Ethylbenzene	ND		1.7		ug/m3			07/07/20 14:50	
Heptane	ND		3.3		ug/m3			07/07/20 14:50	1
Hexachlorobutadiene	ND		21		ug/m3			07/07/20 14:50	1
Hexane	0.28		2.8		ug/m3			07/07/20 14:50	
Isopropylbenzene	ND	•	3.9		ug/m3			07/07/20 14:50	1

Matrix: Air

Client Sample ID: SS-2 Date Collected: 07/02/20 13:25 Date Received: 07/03/20 09:00 Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		7.2	1.2	ug/m3			07/07/20 14:50	1
Methylene Chloride	3.5	JB	6.9	2.2	ug/m3			07/07/20 14:50	1
m-Xylene & p-Xylene	ND		1.7	1.0	ug/m3			07/07/20 14:50	1
Naphthalene	ND		4.2	0.94	ug/m3			07/07/20 14:50	1
o-Xylene	ND		1.7	0.53	ug/m3			07/07/20 14:50	1
Propylbenzene	ND		3.9	0.55	ug/m3			07/07/20 14:50	1
Styrene	0.78	J	1.7	0.49	ug/m3			07/07/20 14:50	1
Tetrachloroethene	270		2.7	0.54	ug/m3			07/07/20 14:50	1
Toluene	ND		7.5	0.90	ug/m3			07/07/20 14:50	1
trans-1,2-Dichloroethene	ND		1.6	0.40	ug/m3			07/07/20 14:50	1
trans-1,3-Dichloropropene	ND		1.8	0.44	ug/m3			07/07/20 14:50	1
Trichloroethene	1.5	J	2.1	0.39	ug/m3			07/07/20 14:50	1
Trichlorofluoromethane	1.8	J	2.2	0.28	ug/m3			07/07/20 14:50	1
Vinyl chloride	ND		2.0	0.36	ug/m3			07/07/20 14:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		60 - 140			-		07/07/20 14:50	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dichlorodifluoromethane	5700		42	14	ug/m3			07/08/20 19:24	3.15
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery 96	Qualifier	Limits 60 - 140				Prepared	Analyzed 07/08/20 19:24	<b>Dil Fac</b> 3.15

#### Client Sample ID: SS-3

Date Collected: 07/02/20 13:15 Date Received: 07/03/20 09:00 Sample Container: Summa Canister 6L

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	0.21	J	1.1	0.16	ug/m3			07/08/20 20:18	1
1,1,2,2-Tetrachloroethane	ND		1.4	0.42	ug/m3			07/08/20 20:18	1
1,1,2-Trichloro-1,2,2-trifluoroetha	0.52	J	1.5	0.24	ug/m3			07/08/20 20:18	1
ne									
1,1,2-Trichloroethane	ND		1.1	0.28	ug/m3			07/08/20 20:18	1
1,1-Dichloroethane	ND		0.81	0.11	ug/m3			07/08/20 20:18	1
1,1-Dichloroethene	ND		0.79	0.13	ug/m3			07/08/20 20:18	1
1,2,4-Trichlorobenzene	ND		7.4	0.73	ug/m3			07/08/20 20:18	1
1,2,4-Trimethylbenzene	ND		0.98	0.31	ug/m3			07/08/20 20:18	1
1,2-Dibromoethane (EDB)	ND		1.5	0.34	ug/m3			07/08/20 20:18	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.4	0.22	ug/m3			07/08/20 20:18	1
1,2-Dichlorobenzene	ND		2.4	0.42	ug/m3			07/08/20 20:18	1
1,2-Dichloroethane	ND		0.81	0.19	ug/m3			07/08/20 20:18	1
1,2-Dichloropropane	ND		0.92	0.24	ug/m3			07/08/20 20:18	1
1,3,5-Trimethylbenzene	0.46	J	0.98	0.32	ug/m3			07/08/20 20:18	1
1,3-Butadiene	ND		0.88	0.14	ug/m3			07/08/20 20:18	1
1,3-Dichlorobenzene	ND		1.2	0.39	ug/m3			07/08/20 20:18	1

Eurofins TestAmerica, Knoxville

Lab Sample ID: 140-19578-4

Matrix: Air

Matrix: Air

**Client Sample ID: SS-3** Date Collected: 07/02/20 13:15 Date Received: 07/03/20 09:00

Sample Container: Summa Canister 6L

lethod: TO-15 - Volatile Or nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
,4-Dichlorobenzene	12		1.2	0.38	ug/m3			07/08/20 20:18	1
2-Butanone (MEK)	2.0	J	2.9	0.59	ug/m3			07/08/20 20:18	1
2-Hexanone	ND		1.6	0.24	ug/m3			07/08/20 20:18	1
3-Chloropropene	ND		0.63	0.15	ug/m3			07/08/20 20:18	1
4-Methyl-2-pentanone (MIBK)	ND		4.1	0.80	ug/m3			07/08/20 20:18	1
Acetone	200		18	3.3	ug/m3			07/08/20 20:18	1
Acrylonitrile	ND		4.3	0.43	ug/m3			07/08/20 20:18	1
Benzene	0.37	J	0.64	0.18	ug/m3			07/08/20 20:18	1
Benzyl chloride	ND		2.1	0.40	ug/m3			07/08/20 20:18	1
Bromodichloromethane	ND		1.3	0.29	ug/m3			07/08/20 20:18	1
Bromoform	ND		2.1	0.50	ug/m3			07/08/20 20:18	1
Bromomethane	0.23	J	0.78	0.12	ug/m3			07/08/20 20:18	1
Butane	4.0		2.4	0.17	ug/m3			07/08/20 20:18	1
Carbon disulfide	0.29	J	1.2	0.097	ug/m3			07/08/20 20:18	1
Carbon tetrachloride	0.47	J	1.3	0.24	ug/m3			07/08/20 20:18	1
Chlorobenzene	ND		0.92	0.23	ug/m3			07/08/20 20:18	1
Chlorodifluoromethane	2.3		0.71	0.13	ug/m3			07/08/20 20:18	1
Chloroethane	ND		0.53	0.092	ug/m3			07/08/20 20:18	1
Chloroform	0.50	J	0.98	0.19	ug/m3			07/08/20 20:18	1
Chloromethane	1.5	J	2.1	0.33	ug/m3			07/08/20 20:18	1
cis-1,2-Dichloroethene	ND		0.79	0.24	ug/m3			07/08/20 20:18	1
cis-1,3-Dichloropropene	ND		1.8	0.34	ug/m3			07/08/20 20:18	1
Cyclohexane	0.50	J	1.4	0.14	ug/m3			07/08/20 20:18	1
Dibromochloromethane	ND		1.7	0.36	ug/m3			07/08/20 20:18	1
Dibromomethane	ND		2.8	0.28	ug/m3			07/08/20 20:18	1
Dichlorodifluoromethane	51		0.99	0.34	ug/m3			07/08/20 20:18	1
Ethylbenzene	ND		0.87	0.30	ug/m3			07/08/20 20:18	1
Heptane	0.22	J	1.6	0.19	ug/m3			07/08/20 20:18	1
Hexachlorobutadiene	ND		11	0.83	ug/m3			07/08/20 20:18	1
Hexane	1.2	J	1.4	0.11	ug/m3			07/08/20 20:18	1
lsopropylbenzene	ND		2.0	0.29	ug/m3			07/08/20 20:18	1
Methyl tert-butyl ether	ND		3.6	0.61	ug/m3			07/08/20 20:18	1
Methylene Chloride	4.0	В	3.5	1.1	ug/m3			07/08/20 20:18	1
m-Xylene & p-Xylene	ND		0.87	0.52	ug/m3			07/08/20 20:18	1
Naphthalene	ND		2.1	0.47	ug/m3			07/08/20 20:18	1
o-Xylene	ND		0.87	0.26	ug/m3			07/08/20 20:18	1
Propylbenzene	ND		2.0	0.28	ug/m3			07/08/20 20:18	1
Styrene	0.54	J	0.85	0.25	ug/m3			07/08/20 20:18	1
Tetrachloroethene	4.0		1.4	0.27	ug/m3			07/08/20 20:18	1
Toluene	1.9	J	3.8	0.45	ug/m3			07/08/20 20:18	1
rans-1,2-Dichloroethene	ND		0.79	0.20	ug/m3			07/08/20 20:18	1
rans-1,3-Dichloropropene	ND		0.91	0.22	ug/m3			07/08/20 20:18	1
Trichloroethene	ND		1.1	0.19	ug/m3			07/08/20 20:18	1
Trichlorofluoromethane	1.6		1.1	0.14	ug/m3			07/08/20 20:18	1
Vinyl chloride	ND		1.0	0.18	ug/m3			07/08/20 20:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			60 - 140				, . cpui cu	07/08/20 20:18	1

## **Default Detection Limits**

Propylbenzene

Analyte	RL	MDL	Units	
1,1,1-Trichloroethane	1.1	0.16	ug/m3	
1,1,2,2-Tetrachloroethane	1.4	0.42	ug/m3	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.5	0.24	ug/m3	
1,1,2-Trichloroethane	1.1	0.28	ug/m3	
1,1-Dichloroethane	0.81	0.11	ug/m3	
1,1-Dichloroethene	0.79	0.13	ug/m3	
1,2,4-Trichlorobenzene	7.4	0.73	ug/m3	
1,2,4-Trimethylbenzene	0.98	0.31	ug/m3	
1,2-Dibromoethane (EDB)	1.5	0.34	ug/m3	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	1.4	0.22	ug/m3	
1,2-Dichlorobenzene	2.4	0.42	ug/m3	
1,2-Dichloroethane	0.81	0.19	ug/m3	
1,2-Dichloropropane	0.92	0.24	ug/m3	
1,3,5-Trimethylbenzene	0.98	0.32	ug/m3	
1,3-Butadiene	0.88	0.14	ug/m3	
1,3-Dichlorobenzene	1.2	0.39	ug/m3	
1,4-Dichlorobenzene	1.2	0.38	ug/m3	
2-Butanone (MEK)	2.9	0.59	ug/m3	
2-Hexanone	1.6	0.24	ug/m3	
B-Chloropropene	0.63	0.15	ug/m3	
-Methyl-2-pentanone (MIBK)	4.1	0.80	ug/m3	
Acetone	18	3.3	ug/m3	
crylonitrile	4.3	0.43	ug/m3	
Benzene	0.64	0.18	ug/m3	
enzyl chloride	2.1	0.40	ug/m3	
romodichloromethane	1.3	0.29	ug/m3	
romoform	2.1	0.50	ug/m3	
Bromomethane	0.78	0.12	ug/m3	
Butane	2.4	0.17	ug/m3	
Carbon disulfide	1.2	0.097	ug/m3	
Carbon tetrachloride	1.3	0.24	ug/m3	
Chlorobenzene	0.92	0.23	ug/m3	
Chlorodifluoromethane	0.71	0.13	ug/m3	
Chloroethane	0.53	0.092	ug/m3	
Chloroform	0.98	0.19	ug/m3	
Chloromethane	2.1	0.33	ug/m3	
sis-1,2-Dichloroethene	0.79	0.24	ug/m3	
is-1,3-Dichloropropene	1.8	0.34	ug/m3	
Cyclohexane	1.4	0.14	ug/m3	
Dibromochloromethane	1.7	0.36	ug/m3	
Dibromomethane	2.8	0.28	ug/m3	
Dichlorodifluoromethane	0.99	0.34	ug/m3	
thylbenzene	0.87	0.30	ug/m3	
leptane	1.6	0.19	ug/m3	
Hexachlorobutadiene	11	0.83	ug/m3	
lexane	1.4	0.11	ug/m3	
Isopropylbenzene	2.0	0.29	ug/m3	
Methyl tert-butyl ether	3.6	0.61	ug/m3	
Methylene Chloride	3.5	1.1	ug/m3	
m-Xylene & p-Xylene	0.87	0.52	ug/m3	
Naphthalene	2.1	0.47	ug/m3	
	0.87	0.26	ug/m3	
		0.00		

Eurofins TestAmerica, Knoxville

2.0

0.28 ug/m3

# **Default Detection Limits**

Analyte	RL	MDL	Units	
Styrene	0.85	0.25	ug/m3	
Tetrachloroethene	1.4	0.27	ug/m3	
Toluene	3.8	0.45	ug/m3	
trans-1,2-Dichloroethene	0.79	0.20	ug/m3	
trans-1,3-Dichloropropene	0.91	0.22	ug/m3	
Trichloroethene	1.1	0.19	ug/m3	
Trichlorofluoromethane	1.1	0.14	ug/m3	
Vinyl chloride	1.0	0.18	ug/m3	

17

Job ID: 140-19578-1

#### **Surrogate Summary**

**Client: Giles Engineering Associates** Project/Site: FORMER BEST WAY CLEANERS/McFARLAND,WI/1E

Prep Type: Total/NA

# Method: TO-15 - Volatile Organic Compounds in Ambient Air

Matrix: Air

			Percent Surrogate Recovery (Acceptance Limits)	
		BFB		5
Lab Sample ID	Client Sample ID	(60-140)		
140-19578-1	GSS-1	95		6
140-19578-2	GSS-2	94		
140-19578-2 - DL	GSS-2	94		
140-19578-3	SS-2	101		
140-19578-3 - DL	SS-2	96		8
140-19578-4	SS-3	101		0
LCS 140-40799/1002	Lab Control Sample	118		0
LCS 140-40834/1002	Lab Control Sample	111		3
MB 140-40799/4	Method Blank	97		
MB 140-40834/14	Method Blank	95		
Surrogate Legend				
BFB = 4-Bromofluorob	enzene (Surr)			
				12
				13
				1

17

5

9

13

#### Method: TO-15 - Volatile Organic Compounds in Ambient Air

Matrix: Air								ple ID: Method Prep Type: Te	
Analysis Batch: 40799									
		МВ							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.1		ug/m3			07/07/20 11:17	
1,1,2,2-Tetrachloroethane	ND		1.4		ug/m3			07/07/20 11:17	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.5		ug/m3			07/07/20 11:17	
1,1,2-Trichloroethane	ND		1.1		ug/m3			07/07/20 11:17	
1,1-Dichloroethane	ND		0.81		ug/m3			07/07/20 11:17	
1,1-Dichloroethene	ND		0.79	0.13	ug/m3			07/07/20 11:17	
1,2,4-Trichlorobenzene	ND		7.4		ug/m3			07/07/20 11:17	
1,2,4-Trimethylbenzene	ND		0.98	0.31	ug/m3			07/07/20 11:17	
1,2-Dibromoethane (EDB)	ND		1.5	0.34	ug/m3			07/07/20 11:17	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.4	0.22	ug/m3			07/07/20 11:17	
1,2-Dichlorobenzene	ND		2.4	0.42	ug/m3			07/07/20 11:17	
1,2-Dichloroethane	ND		0.81	0.19	ug/m3			07/07/20 11:17	
1,2-Dichloropropane	ND		0.92	0.24	ug/m3			07/07/20 11:17	
1,3,5-Trimethylbenzene	ND		0.98	0.32	ug/m3			07/07/20 11:17	
1,3-Butadiene	ND		0.88	0.14	ug/m3			07/07/20 11:17	
1,3-Dichlorobenzene	ND		1.2	0.39	ug/m3			07/07/20 11:17	
1,4-Dichlorobenzene	ND		1.2	0.38	ug/m3			07/07/20 11:17	
2-Butanone (MEK)	ND		2.9	0.59	ug/m3			07/07/20 11:17	
2-Hexanone	ND		1.6	0.24	ug/m3			07/07/20 11:17	
3-Chloropropene	ND		0.63	0.15	ug/m3			07/07/20 11:17	
4-Methyl-2-pentanone (MIBK)	ND		4.1	0.80	ug/m3			07/07/20 11:17	
Acetone	ND		18	3.3	ug/m3			07/07/20 11:17	
Acrylonitrile	ND		4.3	0.43	ug/m3			07/07/20 11:17	
Benzene	ND		0.64	0.18	ug/m3			07/07/20 11:17	
Benzyl chloride	ND		2.1	0.40	ug/m3			07/07/20 11:17	
Bromodichloromethane	ND		1.3	0.29	ug/m3			07/07/20 11:17	
Bromoform	ND		2.1	0.50	ug/m3			07/07/20 11:17	
Bromomethane	ND		0.78	0.12	ug/m3			07/07/20 11:17	
Butane	ND		2.4		ug/m3			07/07/20 11:17	
Carbon disulfide	ND		1.2		ug/m3			07/07/20 11:17	
Carbon tetrachloride	ND		1.3		ug/m3			07/07/20 11:17	
Chlorobenzene	ND		0.92		ug/m3			07/07/20 11:17	
Chlorodifluoromethane	ND		0.71		ug/m3			07/07/20 11:17	
Chloroethane	ND		0.53		ug/m3			07/07/20 11:17	
Chloroform	ND		0.98		ug/m3			07/07/20 11:17	
Chloromethane	ND		2.1		ug/m3			07/07/20 11:17	
cis-1.2-Dichloroethene	ND		0.79		ug/m3			07/07/20 11:17	
cis-1,3-Dichloropropene	ND		1.8		ug/m3			07/07/20 11:17	
Cyclohexane	ND		1.4		ug/m3			07/07/20 11:17	
Dibromochloromethane	ND		1.7		ug/m3			07/07/20 11:17	
Dibromomethane	ND		2.8		ug/m3			07/07/20 11:17	
Dichlorodifluoromethane	ND		0.99		ug/m3			07/07/20 11:17	
Ethylbenzene	ND		0.99		ug/m3			07/07/20 11:17	
Heptane	ND		1.6					07/07/20 11:17	
•	ND		1.0		ug/m3			07/07/20 11:17	
Hexachlorobutadiene					ug/m3				
Hexane Isopropylbenzene	ND ND		1.4 2.0		ug/m3 ug/m3			07/07/20 11:17 07/07/20 11:17	

ne

Acrylonitrile

5

9

13

#### Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 140-40799 Matrix: Air Analysis Batch: 40799	9/4							Cli	ent Sam	ple ID: Method Prep Type: To	
Analysis Daten. 40755	MB	MB									
Analyte	Result	Qualifier	RL	ſ	MDL	Unit	D	D P	repared	Analyzed	Dil Fac
Methyl tert-butyl ether	ND		3.6		0.61	ug/m3				07/07/20 11:17	1
Methylene Chloride	1.81	J	3.5		1.1	ug/m3				07/07/20 11:17	1
m-Xylene & p-Xylene	ND		0.87		0.52	ug/m3				07/07/20 11:17	1
Naphthalene	ND		2.1		0.47	ug/m3				07/07/20 11:17	1
o-Xylene	ND		0.87		0.26	ug/m3				07/07/20 11:17	1
Propylbenzene	ND		2.0		0.28	ug/m3				07/07/20 11:17	1
Styrene	ND		0.85		0.25	ug/m3				07/07/20 11:17	1
Tetrachloroethene	ND		1.4		0.27	ug/m3				07/07/20 11:17	1
Toluene	ND		3.8		0.45	ug/m3				07/07/20 11:17	1
trans-1,2-Dichloroethene	ND		0.79		0.20	ug/m3				07/07/20 11:17	1
trans-1,3-Dichloropropene	ND		0.91		0.22	ug/m3				07/07/20 11:17	1
Trichloroethene	ND		1.1		0.19	ug/m3				07/07/20 11:17	1
Trichlorofluoromethane	ND		1.1		0.14	ug/m3				07/07/20 11:17	1
Vinyl chloride	ND		1.0		0.18	ug/m3				07/07/20 11:17	1
	MB	MB									
Surrogate	%Recovery	Qualifier	Limits					F	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		60 - 140							07/07/20 11:17	1
Lab Sample ID: LCS 140-4079	9/1002						Clier	nt Sa	mple ID	: Lab Control S	Sample
Matrix: Air										Prep Type: To	otal/NA
Analysis Batch: 40799											
			Spike	LCS						%Rec.	
Analyte			Added	Result	Qua	alifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane			12.0	13.1			ug/m3		109	70 - 130	
1,1,2,2-Tetrachloroethane			15.1	17.4			ug/m3		115	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha			16.9	19.5			ug/m3		116	70 - 130	

I	ne					
	1,1,2-Trichloroethane	12.0	12.6	ug/m3	105	70 - 130
	1,1-Dichloroethane	8.90	9.55	ug/m3	107	70 - 130
	1,1-Dichloroethene	8.72	9.26	ug/m3	106	70 - 130
l	1,2,4-Trichlorobenzene	16.3	23.3 *	ug/m3	143	60 - 140
	1,2,4-Trimethylbenzene	10.8	13.7	ug/m3	127	70 - 130
	1,2-Dibromoethane (EDB)	16.9	19.0	ug/m3	112	70 - 130
l	1,2-Dichloro-1,1,2,2-tetrafluoroet	15.4	14.2	ug/m3	92	60 - 140
	hane					
	1,2-Dichlorobenzene	13.2	16.7	ug/m3	126	70 - 130
	1,2-Dichloroethane	8.90	9.52	ug/m3	107	70 - 130
	1,2-Dichloropropane	10.2	10.2	ug/m3	101	70 - 130
	1,3,5-Trimethylbenzene	10.8	12.4	ug/m3	115	70 - 130
	1,3-Butadiene	4.87	5.07	ug/m3	104	60 - 140
I	1,3-Dichlorobenzene	13.2	16.7	ug/m3	126	70 - 130
	1,4-Dichlorobenzene	13.2	17.2	ug/m3	130	70 - 130
	2-Butanone (MEK)	6.49	6.86	ug/m3	106	60 - 140
I	2-Hexanone	9.02	9.58	ug/m3	106	60 - 140
	3-Chloropropene	6.89	8.86	ug/m3	129	60 - 140
	4-Methyl-2-pentanone (MIBK)	9.01	11.1	ug/m3	123	60 - 140
	Acetone	15.7	18.4	ug/m3	117	60 - 140
I						

Eurofins TestAmerica, Knoxville

60 - 140

119

5.70

ug/m3

4.78

Prep Type: Total/NA

5

9

13

**Client Sample ID: Lab Control Sample** 

#### Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 140-40799/1002
Matrix: Air

Analysis Batch: 40799							
	Spike		LCS		_	a. –	%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Benzene	7.03	6.94		ug/m3		99	70 - 130
Benzyl chloride	11.4	13.1		ug/m3		115	70 - 130
Bromodichloromethane	14.7	16.1		ug/m3		109	70 - 130
Bromoform	22.7	27.7		ug/m3		122	60 - 140
Bromomethane	8.54	8.22		ug/m3		96	70 - 130
Butane	5.23	6.11		ug/m3		117	60 - 140
Carbon disulfide	6.85	7.83		ug/m3		114	70 - 130
Carbon tetrachloride	13.8	15.5		ug/m3		112	70 - 130
Chlorobenzene	10.1	10.5		ug/m3		104	70 - 130
Chlorodifluoromethane	7.78	8.72		ug/m3		112	60 - 140
Chloroethane	5.81	5.87		ug/m3		101	70 - 130
Chloroform	10.7	11.9		ug/m3		111	70 - 130
Chloromethane	4.54	4.29		ug/m3		94	60 - 140
cis-1,2-Dichloroethene	8.72	9.47		ug/m3		109	70 - 130
cis-1,3-Dichloropropene	9.99	11.1		ug/m3		112	70 - 130
Cyclohexane	7.57	7.71		ug/m3		102	70 - 130
Dibromochloromethane	18.7	22.5		ug/m3		120	70 - 130
Dibromomethane	15.6	16.2		ug/m3		104	70 - 130
Dichlorodifluoromethane	10.9	10.8		ug/m3		99	60 - 140
Ethylbenzene	9.55	10.5		ug/m3		110	70 - 130
Heptane	9.02	9.03		ug/m3		100	70 - 130
Hexachlorobutadiene	23.5	27.2		ug/m3		116	60 - 140
Hexane	7.75	8.87		ug/m3		114	70 - 130
Isopropylbenzene	10.8	12.8		ug/m3		118	70 - 130
Methyl tert-butyl ether	7.93	8.43		ug/m3		106	60 - 140
Methylene Chloride	7.64	9.69		ug/m3		127	70 - 130
m-Xylene & p-Xylene	19.1	22.6		ug/m3		118	70 - 130
Naphthalene	11.5	16.2		ug/m3		140	60 - 140
o-Xylene	9.55	11.6		ug/m3		121	70 ₋ 130
Propylbenzene	10.8	12.8		ug/m3		119	70 - 130
Styrene	9.37	10.3		ug/m3		110	70 - 130
Tetrachloroethene	14.9	15.9		ug/m3		107	70 ₋ 130
Toluene	8.29	8.66		ug/m3		104	70 - 130
trans-1,2-Dichloroethene	8.72	9.41		ug/m3		108	70 ₋ 130
trans-1,3-Dichloropropene	9.99	11.0		ug/m3		110	70 - 130
Trichloroethene	11.8	12.1		ug/m3		103	70 - 130
Trichlorofluoromethane	12.4	14.3		ug/m3		116	60 - 140
Vinyl chloride	5.62	5.42		ug/m3		96	70 - 130
				-			
LCS LCS	1 incida						
Surrogate %Recovery Qualifier	Limits						

5

9

13

#### Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Matrix: Air								Prep Type: T	otal/N/
Analysis Batch: 40834									
		MB							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1-Trichloroethane	ND		1.1		ug/m3			07/08/20 15:54	
1,1,2,2-Tetrachloroethane	ND		1.4		ug/m3			07/08/20 15:54	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND		1.5		ug/m3			07/08/20 15:54	
1,1,2-Trichloroethane	ND		1.1		ug/m3			07/08/20 15:54	
1,1-Dichloroethane	ND		0.81		ug/m3			07/08/20 15:54	
1,1-Dichloroethene	ND		0.79		ug/m3			07/08/20 15:54	
1,2,4-Trichlorobenzene	ND		7.4		ug/m3			07/08/20 15:54	
1,2,4-Trimethylbenzene	ND		0.98		ug/m3			07/08/20 15:54	
1,2-Dibromoethane (EDB)	ND		1.5		ug/m3			07/08/20 15:54	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND		1.4	0.22	ug/m3			07/08/20 15:54	
1,2-Dichlorobenzene	ND		2.4	0.42	ug/m3			07/08/20 15:54	
1,2-Dichloroethane	ND		0.81		ug/m3			07/08/20 15:54	
1,2-Dichloropropane	ND		0.92		ug/m3			07/08/20 15:54	
1,3,5-Trimethylbenzene	ND		0.98	0.32	ug/m3			07/08/20 15:54	
1,3-Butadiene	ND		0.88	0.14	ug/m3			07/08/20 15:54	
1,3-Dichlorobenzene	ND		1.2	0.39	ug/m3			07/08/20 15:54	
1,4-Dichlorobenzene	ND		1.2	0.38	ug/m3			07/08/20 15:54	
2-Butanone (MEK)	ND		2.9	0.59	ug/m3			07/08/20 15:54	
2-Hexanone	ND		1.6	0.24	ug/m3			07/08/20 15:54	
3-Chloropropene	ND		0.63	0.15	ug/m3			07/08/20 15:54	
I-Methyl-2-pentanone (MIBK)	ND		4.1	0.80	ug/m3			07/08/20 15:54	
Acetone	ND		18	3.3	ug/m3			07/08/20 15:54	
Acrylonitrile	ND		4.3	0.43	ug/m3			07/08/20 15:54	
Benzene	ND		0.64	0.18	ug/m3			07/08/20 15:54	
Benzyl chloride	ND		2.1	0.40	ug/m3			07/08/20 15:54	
Bromodichloromethane	ND		1.3	0.29	ug/m3			07/08/20 15:54	
Bromoform	ND		2.1		ug/m3			07/08/20 15:54	
Bromomethane	ND		0.78	0.12	ug/m3			07/08/20 15:54	
Butane	ND		2.4		ug/m3			07/08/20 15:54	
Carbon disulfide	ND		1.2		ug/m3			07/08/20 15:54	
Carbon tetrachloride	ND		1.3		ug/m3			07/08/20 15:54	
Chlorobenzene	ND		0.92		ug/m3			07/08/20 15:54	
Chlorodifluoromethane	ND		0.71		ug/m3			07/08/20 15:54	
Chloroethane	ND		0.53		ug/m3			07/08/20 15:54	
Chloroform	ND		0.98		ug/m3			07/08/20 15:54	
Chloromethane	ND		2.1		ug/m3			07/08/20 15:54	
cis-1,2-Dichloroethene	ND		0.79		ug/m3			07/08/20 15:54	
cis-1,3-Dichloropropene	ND		1.8		ug/m3			07/08/20 15:54	
Cyclohexane	ND		1.0		ug/m3			07/08/20 15:54	
Dibromochloromethane	ND		1.4		ug/m3			07/08/20 15:54	
Dibromomethane	ND		2.8		ug/m3			07/08/20 15:54	
	ND		2.8 0.99						
Dichlorodifluoromethane Ethylbenzene			0.99		ug/m3			07/08/20 15:54	
,	ND ND		0.87		ug/m3 ug/m3			07/08/20 15:54	
Heptane					-			07/08/20 15:54	
Hexachlorobutadiene	ND		11		ug/m3			07/08/20 15:54	
Hexane Isopropylbenzene	ND ND		1.4 2.0		ug/m3 ug/m3			07/08/20 15:54 07/08/20 15:54	

1,3,5-Trimethylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

2-Butanone (MEK)

3-Chloropropene

4-Methyl-2-pentanone (MIBK)

1,3-Butadiene

2-Hexanone

Acetone

Acrylonitrile

#### Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Matrix: Air	34/14							Client S	Sam	ple ID: Method Prep Type: To	
Analysis Batch: 40834											
Analysis Daten. 40004	MB	MB									
Analyte		Qualifier	RL	MD	L Ur	nit	D	Prepa	red	Analyzed	Dil Fa
Methyl tert-butyl ether	ND		3.6		51 ug		_			07/08/20 15:54	
Methylene Chloride	1.53	J	3.5		.1 ug					07/08/20 15:54	
m-Xylene & p-Xylene	ND	•	0.87		52 ug	-				07/08/20 15:54	
Naphthalene	ND		2.1		 17 ug	•				07/08/20 15:54	
o-Xylene	ND		0.87		26 ug					07/08/20 15:54	
Propylbenzene	ND		2.0		28 ug	•				07/08/20 15:54	
Styrene	ND		0.85		25 ug					07/08/20 15:54	
Tetrachloroethene	ND		1.4		27 ug					07/08/20 15:54	
Toluene	ND		3.8		l5 ug	-				07/08/20 15:54	
trans-1,2-Dichloroethene	ND		0.79		20 ug					07/08/20 15:54	
trans-1,3-Dichloropropene	ND		0.91		22 ug					07/08/20 15:54	
Trichloroethene	ND		1.1		 19 ug	•				07/08/20 15:54	
Trichlorofluoromethane	ND		1.1		14 ug	•				07/08/20 15:54	
Vinyl chloride	ND		1.0		18 ug					07/08/20 15:54	
					3	,					
		MB									
Surrogate	%Recovery	Qualifier	Limits					Prepa	red	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	95		60 - 140							07/08/20 15:54	
			60 - 140			CI	ient	Sample	e ID:		Samp
4-Bromofluorobenzene (Surr) Lab Sample ID: LCS 140-408 Matrix: Air			60 - 140			CI	ient	Sample	e ID:	Lab Control S	
Lab Sample ID: LCS 140-408 Matrix: Air			60 - 140			CI	ient	Sample	e ID:		
Lab Sample ID: LCS 140-408 Matrix: Air			60 - 140	LCS L	cs	CI	ient	Sample	ə ID:	Lab Control S	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834				LCS Lo Result Q			ient	Sample		Lab Control S Prep Type: To	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 ^{Analyte}			Spike				ient	D %R		Lab Control S Prep Type: To %Rec.	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 Analyte 1,1,1-Trichloroethane			Spike Added	Result Q		er Unit	ient	<u>D</u> %R	ec	Lab Control S Prep Type: To %Rec. Limits	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane			Spike Added 12.0	Result Q		er Unit ug/m3	ient	<u>D</u> %R	<b>ec</b> 92	<b>Lab Control S</b> <b>Prep Type: To</b> %Rec. Limits 70 - 130	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha ne			<b>Spike</b> Added 12.0 15.1 16.9	Result         Q           11.0         14.3           16.0         16.0		er Unit ug/m3 ug/m3 ug/m3	ient	<u>D %R</u>	<b>ec</b> 92 95 95	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130 70 - 130	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1,2-Trichloroethane			<b>Spike</b> Added 12.0 15.1 16.9 12.0	Result         Q           11.0         14.3           16.0         10.7		er Unit ug/m3 ug/m3 ug/m3 ug/m3	ient	<u>D %R</u>	<b>ec</b> 92 95 95 89	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 Analyte 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1,2-Trichloroethane			Spike           Added           12.0           15.1           16.9           12.0           8.90	Result         Q           11.0         14.3           16.0         10.7           8.02         10.7		er Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	ient	<u>D %R</u>	<b>ec</b> 92 95 95 89 90	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1-Dichloroethane			Spike           Added           12.0           15.1           16.9           12.0           8.90           8.72	Result         Q           11.0         14.3           16.0         10.7           8.02         7.72		er Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	ient	<u>D</u> %R	<b>ec</b> 92 95 95 89 90 88	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane			Spike           Added           12.0           15.1           16.9           12.0           8.90           8.72           16.3	Result         Q           11.0         14.3           16.0         10.7           8.02         7.72           19.7         19.7		er Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	ient	<u>D</u> %R	<b>ec</b> 92 95 95 89 90 88 21	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 60 - 140	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,4-Trichlorobenzene			Spike           Added           12.0           15.1           16.9           12.0           8.90           8.72	Result         Q           11.0         14.3           16.0         10.7           8.02         7.72		er Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	ient	<u>D</u> %R	<b>ec</b> 92 95 95 89 90 88	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene			Spike           Added           12.0           15.1           16.9           12.0           8.90           8.72           16.3	Result         Q           11.0         14.3           16.0         10.7           8.02         7.72           19.7         19.7		er Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	ient	D %R	<b>ec</b> 92 95 95 89 90 88 21	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 60 - 140	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1,2-Trichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane (EDB)			Spike           Added           12.0           15.1           16.9           12.0           8.90           8.72           16.3           10.8	Result         Q           11.0         14.3           16.0         10.7           8.02         7.72           19.7         11.1		er Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	ient	D %R	<b>ec</b> 92 95 95 89 90 88 21 03	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 60 - 140 70 - 130	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 1,1,1-Trichloroethane 1,1,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1-Dichloroethane 1,1-Dichloroethane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroet hane			Spike           Added           12.0           15.1           16.9           12.0           8.90           8.72           16.3           10.8           16.9           15.4	Result         Q           11.0         14.3           16.0         10.7           8.02         7.72           19.7         11.1           15.8         11.6		er Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	ient	D %R	ec 92 95 95 90 88 21 03 93 75	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130 60 - 140 70 - 130 60 - 140	
Lab Sample ID: LCS 140-408 Matrix: Air Analysis Batch: 40834 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane 1,1,2-Trichloro-1,2,2-trifluoroetha ne 1,1,2-Trichloroethane 1,1-Dichloroethane 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene 1,2-Dibromoethane (EDB) 1,2-Dichloro-1,1,2,2-tetrafluoroet hane 1,2-Dichlorobenzene			Spike           Added           12.0           15.1           16.9           12.0           8.90           8.72           16.3           10.8           16.9           15.1	Result         Q           11.0         14.3           16.0         10.7           8.02         7.72           19.7         11.1           15.8         11.6           13.6         13.6		er Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	ient	D %R	ec 92 95 95 89 90 88 21 03 93 75 03	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130 60 - 140 70 - 130 60 - 140 70 - 130	
Lab Sample ID: LCS 140-408			Spike           Added           12.0           15.1           16.9           12.0           8.90           8.72           16.3           10.8           16.9           15.4	Result         Q           11.0         14.3           16.0         10.7           8.02         7.72           19.7         11.1           15.8         11.6		er Unit ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	ient	<u>D</u> %R	ec 92 95 95 90 88 21 03 93 75	<b>Lab Control S</b> <b>Prep Type: To</b> <b>%Rec.</b> <b>Limits</b> 70 - 130 70 - 130 60 - 140 70 - 130 60 - 140	

	Ę	
	Ś	)
		2

7/13/2020

10.8

4.87

13.2

13.2

6.49

9.02

6.89

9.01

ug/m3 15.7 15.2 ug/m3 4.78 4.78 ug/m3

10.2

4.22

13.7

13.9

5.74

8.11

7.70

9.08

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

ug/m3

94

87

104

105

88

90

112

101

97

100

70 - 130

60 - 140

70 - 130

70 - 130

60 - 140

60 - 140

60 - 140

60 - 140

60 - 140

60 - 140

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

#### Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 140-40834/1002
Matrix: Air

Analysis Batch: 40834							
	Spike		LCS				%Rec.
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Benzene	7.03	5.63		ug/m3		80	70 - 130
Benzyl chloride	11.4	10.8		ug/m3		95	70 - 130
Bromodichloromethane	14.7	13.0		ug/m3		88	70 - 130
Bromoform	22.7	23.3		ug/m3		103	60 - 140
Bromomethane	8.54	6.86		ug/m3		80	70 - 130
Butane	5.23	5.01		ug/m3		96	60 - 140
Carbon disulfide	6.85	6.37		ug/m3		93	70 - 130
Carbon tetrachloride	13.8	12.6		ug/m3		91	70 - 130
Chlorobenzene	10.1	8.84		ug/m3		87	70 - 130
Chlorodifluoromethane	7.78	7.37		ug/m3		95	60 - 140
Chloroethane	5.81	4.75		ug/m3		82	70 - 130
Chloroform	10.7	9.99		ug/m3		93	70 - 130
Chloromethane	4.54	3.63		ug/m3		80	60 - 140
cis-1,2-Dichloroethene	8.72	7.99		ug/m3		92	70 - 130
cis-1,3-Dichloropropene	9.99	8.95		ug/m3		90	70 - 130
Cyclohexane	7.57	6.37		ug/m3		84	70 - 130
Dibromochloromethane	18.7	18.9		ug/m3		101	70 - 130
Dibromomethane	15.6	13.0		ug/m3		83	70 - 130
Dichlorodifluoromethane	10.9	9.13		ug/m3		84	60 - 140
Ethylbenzene	9.55	8.80		ug/m3		92	70 - 130
Heptane	9.02	7.49		ug/m3		83	70 - 130
Hexachlorobutadiene	23.5	22.0		ug/m3		94	60 - 140
Hexane	7.75	7.44		ug/m3		96	70 - 130
Isopropylbenzene	10.8	10.4		ug/m3		97	70 - 130
Methyl tert-butyl ether	7.93	7.27		ug/m3		92	60 - 140
Methylene Chloride	7.64	8.11		ug/m3		106	70 - 130
m-Xylene & p-Xylene	19.1	18.7		ug/m3		98	70 - 130
Naphthalene	11.5	14.0		ug/m3		121	60 - 140
o-Xylene	9.55	9.60		ug/m3		101	70 - 130
Propylbenzene	10.8	10.6		ug/m3		98	70 - 130
Styrene	9.37	8.63		ug/m3		92	70 - 130
Tetrachloroethene	14.9	13.6		ug/m3		91	70 - 130
Toluene	8.29	7.31		ug/m3		88	70 - 130
trans-1,2-Dichloroethene	8.72	7.91		ug/m3		91	70 - 130
trans-1,3-Dichloropropene	9.99	9.50		ug/m3		95	70 - 130
Trichloroethene	11.8	10.0		ug/m3		85	70 - 130
Trichlorofluoromethane	12.4	12.0		ug/m3		97	60 - 140
Vinyl chloride	5.62	4.31		ug/m3		77	70 - 130
				5			
LCS							
Surrogate %Recovery	Qualifier Limits						

Surrogate	%Recovery	Qualifier	LIMIts
4-Bromofluorobenzene (Surr)	111	-	60 - 140

17

#### Air - GC/MS VOA

#### Analysis Batch: 40799

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19578-1	GSS-1	Total/NA	Air	TO-15	
140-19578-2	GSS-2	Total/NA	Air	TO-15	
140-19578-3	SS-2	Total/NA	Air	TO-15	
MB 140-40799/4	Method Blank	Total/NA	Air	TO-15	
LCS 140-40799/1002	Lab Control Sample	Total/NA	Air	TO-15	

#### Analysis Batch: 40834

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
140-19578-2 - DL	GSS-2	Total/NA	Air	TO-15	
140-19578-3 - DL	SS-2	Total/NA	Air	TO-15	
140-19578-4	SS-3	Total/NA	Air	TO-15	
MB 140-40834/14	Method Blank	Total/NA	Air	TO-15	
LCS 140-40834/1002	Lab Control Sample	Total/NA	Air	TO-15	

Job ID: 140-19578-1

Matrix: Air

Matrix: Air

Matrix: Air

Lab Sample ID: 140-19578-1

Lab Sample ID: 140-19578-2

Lab Sample ID: 140-19578-3

Lab Sample ID: MB 140-40799/4

# 13

Matrix: Air

00								
:15					L	ab Sample.		)-19578-4 Matrix: Air
TO-15 D: MH	DL	3.15	15 mL	500 mL	40834	07/08/20 19:24	S1K	TAL KNX
D: MH								

#### **Client Sample ID: GSS-1** Date Collected: 07/02/20 12:33 Date Received: 07/03/20 09:00

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Total/NA	Analysis	TO-15		27.79	25 mL	500 mL	40799	07/07/20 13:05		TAL KNX
	Instrument	t ID: MH								

#### **Client Sample ID: GSS-2** Date Collected: 07/02/20 12:38 Date Received: 07/03/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis Instrumer	TO-15 ti ID: MH		1	15 mL	500 mL	40799	07/07/20 13:56	S1K	TAL KNX
Total/NA	Analysis Instrumer	TO-15 at ID: MH	DL	3.29	10 mL	500 mL	40834	07/08/20 18:32	S1K	TAL KNX

#### **Client Sample ID: SS-2** Date Collected: 07/02/20 13:25 Date Received: 07/03/20 09:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	TO-15		1	100 mL	500 mL	40799	07/07/20 14:50	S1K	TAL KNX
	Instrumen	nt ID: MH								
Total/NA	Analysis	TO-15	DL	3.15	15 mL	500 mL	40834	07/08/20 19:24	S1K	TAL KNX
	Instrumen	t ID: MH								

#### Client Sample ID: SS-3 Date Collected: 07/02/20 13:1 Date Received: 07/03/20 09:0

Prep Type Total/NA	Batch Type Analysis	Batch Method TO-15	Run	Dil Factor	Initial Amount 200 mL	Final Amount 500 mL	Batch Number 40834	Prepared or Analyzed 07/08/20 20:18	Analyst S1K	Lab TAL KNX
	Instrument	ID: MH								

#### **Client Sample ID: Method Blank** Date Collected: N/A Date Received: N/A

Prep Type Total/NA	Batch Type Analysis	Batch Method TO-15	Run	Dil Factor	Initial Amount 200 mL	Final Amount 500 mL	Batch Number 40799	Prepared or Analyzed 07/07/20 11:17	Analyst S1K	Lab TAL KNX
	Instrumer	nt ID: MH								

lient Samp ate Collected ate Received	d: N/A	hod Blank					Lab Sa	ample ID: N		40834/14 Matrix: Air
<b>Prep Type</b> Total/NA	Batch Type Analysis Instrumen	Batch Method TO-15 ht ID: MH	Run	Dil Factor	Initial Amount 200 mL	Final Amount 500 mL	Batch Number 40834	Prepared or Analyzed 07/08/20 15:54	Analyst S1K	Lab TAL KNX
Client Samp ate Collected ate Received	d: N/A	Control Sa	ample			La	ab Samp	ole ID: LCS		799/1002 Matrix: Air
Prep Type Total/NA	Batch Type Analysis Instrumen	Batch Method TO-15 tt ID: MH	Run	Dil Factor	Initial Amount 500 mL	Final Amount 500 mL	Batch Number 40799	Prepared or Analyzed 07/07/20 08:41	Analyst S1K	Lab TAL KNX
Client Samp Date Collected Date Received	d: N/A	Control Sa	ample			La	ab Samp	ole ID: LCS		834/1002 Matrix: Air
Ргер Туре	Batch Type Analysis	Batch Method TO-15	Run	Dil Factor	Initial Amount 500 mL	Final Amount 500 mL	Batch Number 40834	Prepared or Analyzed 07/08/20 08:32	Analyst	Lab TAL KNX

# **Accreditation/Certification Summary**

**Client: Giles Engineering Associates** Project/Site: FORMER BEST WAY CLEANERS/McFARLAND,WI/1E

#### Job ID: 140-19578-1

# 5

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
	AFCEE	N/A	
ANAB	Dept. of Defense ELAP	L2311	02-13-22
ANAB	Dept. of Energy	L2311.01	02-13-22
ANAB	ISO/IEC 17025	L2311	02-13-22
ANAB	ISO/IEC 17025	L2311	02-14-22
Arkansas DEQ	State	88-0688	06-17-21
California	State	2423	06-30-21
Colorado	State	TN00009	02-28-21
Connecticut	State	PH-0223	09-30-21
Florida	NELAP	E87177	07-01-21
Georgia (DW)	State	906	12-11-22
Hawaii	State	NA	12-11-21
Kansas	NELAP	E-10349	11-01-20
Kentucky (DW)	State	90101	01-01-21
Louisiana	NELAP	LA110001	12-31-12 *
Louisiana	NELAP	83979	06-30-21
Louisiana (DW)	State	LA019	12-31-20
Maryland	State	277	03-31-21
Michigan	State	9933	12-11-22
Nevada	State	TN00009	07-31-20
New Hampshire	NELAP	299919	01-17-21
New Jersey	NELAP	TN001	07-01-21
New York	NELAP	10781	03-31-21
North Carolina (DW)	State	21705	07-31-20
North Carolina (WW/SW)	State	64	12-31-20
Ohio VAP	State	CL0059	06-02-23
Oklahoma	State	9415	09-01-20
Oregon	NELAP	TNI0189	01-02-21
Pennsylvania	NELAP	68-00576	12-31-20
Tennessee	State	02014	12-11-22
Texas	NELAP	T104704380-18-12	08-31-20
US Fish & Wildlife	US Federal Programs	058448	07-31-20
USDA	US Federal Programs	P330-19-00236	08-20-22
Utah	NELAP	TN00009	07-31-20
Virginia	NELAP	460176	09-15-20
Washington	State	C593	01-19-21
West Virginia (DW)	State	9955C	01-01-21
West Virginia DEP	State	345	05-01-21
Wisconsin	State	998044300	08-31-20

* Accreditation/Certification renewal pending - accreditation/certification considered valid.

#### Client: Giles Engineering Associates Project/Site: FORMER BEST WAY CLEANERS/McFARLAND,WI/1E

**Method Description** 

EPA = US Environmental Protection Agency

Volatile Organic Compounds in Ambient Air

TAL KNX = Eurofins TestAmerica, Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

Method

**Protocol References:** 

Laboratory References:

TO-15

Laboratory TAL KNX

Protocol

EPA

4
5
6
8
9
12
13

Collected

Received

07/02/20 12:33 07/03/20 09:00 Air Canister (6-Liter) #10269

07/02/20 13:25 07/03/20 09:00 Air Canister (6-Liter) #12100

07/02/20 13:15 07/03/20 09:00 Air Canister (6-Liter) #09757

07/02/20 12:38 07/03/20 09:00 Air Canister (6-Liter) #34000691

Asset ID

Matrix

Air

Air

Air

Air

Client: Giles Engineering Associates Project/Site: FORMER BEST WAY CLEANERS/McFARLAND,WI/1E

GSS-1

GSS-2

SS-2

SS-3

**Client Sample ID** 

Lab Sample ID

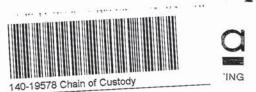
140-19578-1

140-19578-2

140-19578-3

140-19578-4

_	
-	4
	5
	6
	0
	8
	9
	13
	14
	16
	-


#### **TAL Knoxville**

1

5815 Middlebrook Pike Knoxville, TN 37921 phone 865-291-3000 fax 865-584-4315

# **Canister Samples Chain of Custody Record**

TestAmerica assumes no liability with respect to the collection and shipment of these samples.



100

Client Contact Information	Project Mar	nager: Kev	in Bugel									1	of	1	coc	s		in ti	
Company: Giles Engineering Associates	Phone:																		
Address: N8 W22350 Johnson Dr., Suite A1	Site Contac	:t:							1										
City/State/Zip: Waukesha, WI 53186	TAL Contac	ct:				2							(uo						(uo
Phone: 262.544.0118													section)						section)
FAX: 262.549.5868			N.										es se						es s
Project Name: Former Best Way Cleaners		Analysis	Turnarou	nd Time		-							note	10.00					not
Site/location: McFarland, WI	S	tandard (Sp	becify)		-	2							fy in	的制度					fy in
PO # 1E-2006002	F	Rush (Spec	ify) 7 d	6-1									speci	ø					speci
Sample Identification	Sample Date(s)	Time Start	Time Stop	Canister Vacuum in Field, "Hg (Start)	Canister Vacuum in Field, 'Hg (Stop)	Flow Controller ID	Canister ID	T0-15	TO-14A	EPA 3C	EPA 25C	ASTM D-1946	Other (Please specify in notes	Sample Type	Indoor Air	Ambient Air	Soil Gas	Landfill Gas	Other (Please specify in notes
655-1	7/2/26	1156	1233	-30	-4	10929	10269	X						語語の					
655-2		1200	1238	-30	-4	10904	3400064	IX											
55-2		12495	1325	-29-30	-4	10947	12100	X											
55-3	1	1245	1315	-29	-4	10,896	09757	X											
		1071	1.66.939			10,010		1-											
Sampled by :				Temperatur	e (Fahrenheit	:)		R	000	; 1/ <b>G</b>	do	P	du	hi	ent,	11	N		
		Interior		Ambient					ec e	10-1		~			'	, ,		, )	
	Start							Fe	ede,	xP	0,	Cu	sto	0-	50	lbe	Int	act	1
	Stop							tr	K#	iva x P 173	- 8	778	s	02	25				
				Pressure (ir	nches of Hg)			K	11	7/	13	12	~						
		Interior		Ambient				1	$\sim$	17	-,		0						
	Start						5-1)												
Special Instructions/QC Requirements & Comment	Stop						(s) - 400										_		_
email Kevin, Kelly, J																			
Canisters Shipped by:	Date/Time:	7/2/20	1449	5		Received by:	TA 7/	3/	20	0	900					4.14			
Samples Relinquished by:	Date/Time:				Received	by:				(A)									
Relinquished by:	Date/Time:				Received	by:							40	ab	5,	41	KR		
Lab Use Only 😪 Shipper Name:			194	Opened b		Condition:													

7/13/2020

#### EUROFINS/TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

Log In Nu

	Loc: 140
umber:	19578

Review Items	Yes	No	NA	If No, what was the problem?	C	omments/Action	s Taken
1. Are the shipping containers intact?	1			🗆 Containers, Broken			
2. Were ambient air containers received intact?			1	Z Checked in lab			
3. The coolers/containers custody seal if present, is it intact?	/			□ Yes □ NA			1
4. Is the cooler temperature within limits? (> freezing temp. of water to 6 °C, VOST: 10 °C) Thermometer ID : Correction factor:			/	<ul> <li>Cooler Out of Temp, Client</li> <li>Contacted, Proceed/Cancel</li> <li>Cooler Out of Temp, Same Day</li> <li>Receipt</li> </ul>		ana a	
5. Were all of the sample containers received intact?	1			Containers, Broken			
6. Were samples received in appropriate containers?	1			□ Containers, Improper; Client Contacted; Proceed/Cancel			
7. Do sample container labels match COC? (IDs, Dates, Times)	/			<ul> <li>COC &amp; Samples Do Not Match</li> <li>COC Incorrect/Incomplete</li> <li>COC Not Received</li> </ul>		1400 	) (500 - 003) - 100 C 10
8. Were all of the samples listed on the COC received?	/			<ul> <li>Sample Received, Not on COC</li> <li>Sample on COC, Not Received</li> </ul>			
9. Is the date/time of sample collection noted?	1			□ COC; No Date/Time; Client Contacted	Labeling Veri	fied by:	Date:
10. Was the sampler identified on the COC?	1			□ Sampler Not Listed on COC	Labering veri	neu by.	Date.
11. Is the client and project name/# identified?	/			COC Incorrect/Incomplete	pH test strip lo	ot number:	
12. Are tests/parameters listed for each sample?				□ COC No tests on COC			
13. Is the matrix of the samples noted?	17			COC Incorrect/Incomplete			
14. Was COC relinquished? (Signed/Dated/Timed)	1			COC Incorrect/Incomplete		Box 16A: pH Preservation	Box 18A: Residua Chlorine
15. Were samples received within holding time?	17			🗆 Holding Time - Receipt	Preservative:		
16. Were samples received with correct chemical preservative (excluding Encore)?				<ul> <li>□ pH Adjusted, pH Included</li> <li>(See box 16A)</li> <li>□ Incorrect Preservative</li> </ul>	Exp Date: Analyst:		
17. Were VOA samples received without headspace?			1	□ Headspace (VOA only)	Date:		
<ul> <li>18. Did you check for residual chlorine, if necessary?</li> <li>(e.g. 1613B, 1668)</li> <li>Chlorine test strip lot number:</li> </ul>			1	🗆 Residual Chlorine	— Time:		
19. For 1613B water samples is pH<9?			1	□ If no, notify lab to adjust			
20. For rad samples was sample activity info. Provided?			17	□ Project missing info			
Project #: 1400/840 PM Instructions:		-9759 <i>1</i>					

5

.

#### TestAmerica Knoxville - Air Canister Initial Pressure Check

Gauge ID:	G5
Date:	7/6/2020

						Pressure @		
			Cleaning		Size	Receipt		
Analyst	Sample ID	Asset #	Job	Cert	(L)	(-in Hg or +psig)	Time	Comments
BRS	140-19578-a-1	10269	19323	В	6	-3.0	10:01	
BRS		34000691	19323	В	6	-2.5	10:02	
BRS	140-19578-a-3	12100	19323	В	6	-3.0	10:03	
BRS	140-19578-a-4	09757	19333	В	6	-5.1	10:04	
							L	
	Air Can – Calve Open		)			□ Air - Can P Out -26'		
	□ Air - Can P -24 to -25 " - Flow Contr. Works (NCM#) □ Air - Can P -24 to -25 " - Flow Contr. Faulty (NCM#)							Grab Sample (NCM#)
						□ Air - Can P Low -26	o "- Grab S	Sample (NCM#)
□ Aır - Can P	Out -26" - Flow Cont	r. Works (NCI	M#	_)				

#### Summa Canister Dilution Worksheet

#### Client: Giles Engineering Associates Project/Site: FORMER BEST WAY CLEANERS/McFARLAND,WI/1E

	Canister Volume	Preadjusted Pressure	Preadjusted Pressure	Preadjusted Volume	Adjusted Pressure	Adjusted Pressure	Adjusted Volume	Initial Volume	Dilution	Final Dilution	Pressure Gauge		
Lab Sample ID	(L)	("Hg)	(atm)	(L)	(psig)	(atm)	(L)	(mL)	Factor	Factor	ID	Date	Analyst Initals
140-19578-1	6	-3.0	0.90	5.40	29.6	3.01	18.08		3.35	3.35	G5	07/06/20 12:39	BRS
140-19578-1	6	0.0	1.00	6.00	30.8	3.10	18.57		3.10	10.37	G5	07/06/20 12:53	BRS
140-19578-1	6	0.0	1.00	6.00	24.7	2.68	16.08		2.68	27.79		07/06/20 13:03	
140-19578-2	6	-2.8	0.91	5.44	29.1	2.98	17.88		3.29	3.29	G5	07/08/20 10:41	HMT
140-19578-3	6	-3.4	0.89	5.32	26.3	2.79	16.73		3.15	3.15		07/08/20 10:42	

#### Formulae:

Preadjusted Volume (L)	= ( Preadjusted Pressure ("Hg) + 29.92 "Hg * Vol L ) / 29.92 "Hg
Adjusted Volume (L)	= ( Adjusted Pressure (psig) + 14.7 psig * Vol L ) / 14.7 psig
Dilution Factor	= Adjusted Volume (L) / Preadjusted Volume (L)

#### Where:

29.92 "Hg = Standard atmospheric pressure in inches of Mercury ("Hg)

14.7 psig = Standard atmospheric pressure in pounds per square inch gauge (psig)

17

Job No.: 140-19578-1

#### **Kelly Hayden**

То:	cynthia.koepke@wisconsin.gov
Cc:	Kevin Bugel; Troy E. Giles
Subject:	RE: Former Best Way Cleaners - scope of work and N R 141 variance

From: Kelly Hayden
Sent: Wednesday, August 19, 2020 1:58 PM
To: cynthia.koepke@wisconsin.gov
Cc: Kevin Bugel; Troy E. Giles
Subject: FW: Former Best Way Cleaners - scope of work and N R 141 variance

#### Good afternoon Cindy

The following email provides a brief update of the analytical data collected to date at the former Best Way Cleaners. A reference Figure and Table set are also attached.

#### Soil

- The results from the soil sampling showed the presence of cis and trans 1,2-DCE (degradation products of PCE), but similar to the results obtained by the prior consultant (Seymour), no PCE was detected in the soil samples. Soil does exceed the RCL for groundwater protection but is below the RCL for direct contact for both cis and trans 1,2-DCE.
- Minor petroleum constituents were also detected but at levels well below their respective RCLs.

#### Groundwater

• Groundwater was sampled on July 16, 2020. Cis-1,2 DCE was detected above the PAL in GMW-1, located near the former dry cleaning machine. The detected concentration is similar to the concentration in samples collected by Seymour. Unlike the Seymour samples, Giles' water samples did not contain PCE.

#### Soil Gas

- PCE and TCE were detected at levels exceeding their respective small commercial VRSLs in the sample collected from GSS-1. The PCE and TCE results in the Giles sample GSS-1 were similar to those collected by Seymour (SS-1) in July 2018.
- Several other VOCs were detected, however the detected concentrations did not exceed their respective small commercial VRSL.

#### **Mitigation System Pressure Field Test**

• Pressure readings were measured at each sub-slab vapor point to evaluate the effective influence of the current vapor mitigation system. The system appears to be creating sufficient negative pressure beneath the slab of the Best Way tenant space but does not presently appear to create a negative pressure beneath the units to the north and south.

#### Conclusions

• PCE and TCE were found in the soil gas but not in the soil or groundwater samples collected by Giles or Seymour. Based on the lack of a clear source of the contamination, it is Giles' opinion that the contamination may be within the sand and gravel base course material immediately beneath the building slab. Giles has completed the scope of work originally proposed to continue the investigation with the exception of the second groundwater sampling event, which is scheduled for October 2020. We would appreciate the opportunity to discuss what additional sampling or remediation may be necessary to move the site towards closure. We would like to set up a conference call to discuss at your earliest convenience.

Thank you and please let me know if you need anything else before the discussion. -Kelly

Kelly Hayden Environmental Scientist II

GILES ENGINEERING. ASSOCIATES INC.

N8 W22350 Johnson Dr., Suite A1 Waukesha, WI 53186-1679 P: (262) 544-0118 F: (262) 549-5868 www.gilesengr.com

This e-mail, including its attachments, contains privileged and confidential information made with the fullest expectation of legal protection and made solely for the use of the intended recipient. As unintended recipient, you are notified that copying, distribution/dissemination, or action taken relating to the e-mail's content is prohibited and may be unlawful. If you received this e-mail in error, please notify Giles Engineering Associates, Inc. (Giles), permanently delete the original, and destroy printed copies. If representations are made herein concerning matters of a client of Giles, such representations are not those of the client and cannot purport to bind them.

#### **Kelly Hayden**

То:	Koepke, Cynthia L - DNR; Kevin Bugel
Cc:	Charles V. Sweeney; Troy E. Giles; Martin, Steven L - DNR
Subject:	RE: Former Best Way Cleaners - scope of work and NR 141 variance

From: Koepke, Cynthia L - DNR [mailto:Cynthia.Koepke@wisconsin.gov]
Sent: Monday, June 15, 2020 10:55 AM
To: Kevin Bugel; Kelly Hayden
Cc: Charles V. Sweeney; Troy E. Giles; Martin, Steven L - DNR
Subject: Former Best Way Cleaners - scope of work and NR 141 variance

I've looked over the scope of work, map, and well construction info you sent last week. The scope you've proposed addresses the items we discussed with Mr. Locke, Attorney Sweeney, and Seymour Environmental at our March 4 meeting.

DNR strongly recommends that you leave the wells and sub-slab sampling points in place until we've reviewed the data with you. In the event the results differ significantly from past sampling, additional sampling could be needed.

Also, we've found some issues at other sites with inadequate leak testing being done for sub-slab vapor sampling. This is a friendly reminder to be sure to leak-test both the probe seal and the sampling train. Happy to discuss further if you have questions.

Under section NR 141.31, Wis. Adm. Code, the Department grants Best Way Cleaners a variance to the monitoring well construction requirements of ch. NR 141 to permit monitoring well construction as described below in the June 9, 2020 email from Kelly Hayden, Giles Engineering, to Cindy Koepke, DNR. This is a one-time variance and applies only to the wells to be installed as part of the June 9, 2020 scope of work.

Thank you, and please proceed promptly. Don't hesitate to contact me with any questions or concerns.

#### We are committed to service excellence.

Visit our survey at <u>http://dnr.wi.gov/customersurvey</u> to evaluate how I did.

#### Cindy Koepke, P.G. **TEMPORARY PHONE NUMBER: 608-622-6741** Phone: 608-275-3257 voice mail only while working from home

Email: cynthia.koepke@wisconsin.gov

From: Kevin Bugel <<u>kbugel@gilesengr.com</u>>
Sent: Friday, June 12, 2020 3:53 PM
To: Koepke, Cynthia L - DNR <<u>Cynthia.Koepke@wisconsin.gov</u>>; Kelly Hayden <<u>khayden@gilesengr.com</u>>
Subject: RE: Former Best Way Cleaners - proposed scope of work

#### Hi Cindy:

After seeing Kelly's email, realized that a figure was not included, but went off the radar screen, I think it arrived as you sent out your email. Our approach to a WDNR variance water-table well is a well intersecting the water table, and consists of a 1-inch id, factory prepack PVC well screen followed by sections of 1-inch id riser piping. The prepack screen section is backfilled with filter sand to 1 foot above the screen, and the riser sections are backfilled with bentonite, and finished with a protector cover. The variance is the inside diameter of the well, and the ratio of the annular space materials where 1" direct-push well is 1:3 ratio; and a 2" HSA well is at a 2:8 ratio, equivalent to a 1:4 ratio.

# get water levels and infield groundwater quality data with a one inch well, but they do not allow for slug testing. I hope this makes sense.

This e-mail, including its attachments, contains privileged and confidential information made with the fullest expectation of legal protection and made solely for the use of the intended recipient. As unintended recipient, you are notified that copying, distribution/dissemination, or action taken relating to the e-mail's content is prohibited and may be unlawful. If you received this e-mail in error, please notify Giles Engineering Associates, Inc. (Giles), permanently delete the original, and destroy printed copies. If representations are made herein concerning matters of a client of Giles, such representations are not those of the client and cannot purport to bind them.

02-13-583171 BRRTS #

#### **Attachment D: Maintenance Plans and Photographs**

#### Engineered Cap

D.1(1) Cap Maintenance Plan Included

D.2(1) Location Map Included

D.3(1) Photographs Included

D.4(1) Inspection Log Included

#### Vapor Mitigation System

D.1(2) Vapor Mitigation System Maintenance Plan Included

D.2(2) Location Map Included

D.3(2) Photographs Included

D.4(2) Inspection Log Included

#### D.1(1) Description of Cap Maintenance Plan For:

#### Best Way Cleaners 5914 U.S. Highway 51 McFarland, Wisconsin

#### WDNR BRRTS # 02-13-583171 December 2020

#### Legal Description:

SW ¹/₄ of the NW ¹/₄ of Section 3, Township 6 North, Range 10 East, in the Village of McFarland, Dane County, Wisconsin. Tax Key No. 154/0610-032-4510-1.

#### Introduction

This document is the maintenance plan for an integrated cap at the above-referenced property (the Site) in accordance with the requirements of s. NR 724.13 (2), Wis. Adm. Code. The maintenance activities relate to the existing concrete floor slab which occupies the area over the residual contaminated soil and groundwater.

More site-specific information about this Site may be found:

- In the case file in the Wisconsin Department of Natural Resources (WDNR) South Central office.
- From the WDNR project manager for Dane County.
- BRRTS on the Web (WDNR's internet-based database of contaminated sites) and the RR Sites Map (map view of the Site and surrounding properties) at the link: <u>http://dnr.wi.gov/topic/Brownfields/wrrd.html</u>. Both BRRTs on the Web and the RR Sties Map provide PDFs of site-specific information and details regarding continuing obligations for the Site.

#### Description of Contamination

Residual dry cleaning-related volatile organic compound (VOC)-impacted soil remains on Site near the former Best Way Cleaners former dry cleaning machine (DCM). The residual VOC soil impacts exceed the NR 720 Residual Contaminant Levels (RCLs) for groundwater protection. Soil impacts are present from beneath the building slab to the water table, approximately 5 feet below ground surface (bgs). Additionally, limited VOC-impacted groundwater is present beneath the footprint of the former DCM. When last sampled in 2019, the concentration of one VOC was at the NR 140 Enforcement Standard (ES). The extent of soil and groundwater impacts are shown on the attached Figure D.2(1).

#### Cap Description and Purpose

The contamination is limited to the vicinity of the former DCM that had been located within the Best Way Cleaners lease space. Therefore, the cap consists of the concrete floor slab of the existing shopping center building that overlies the contaminated soil. The floor slab over the area of residual VOC contamination is approximately 6-inch thick and will act as a cap to protect against direct contact with the contaminated soil, and act as an infiltration barrier. Based on the current commercial use of the property, the cap should function as intended unless disturbed.

## Annual Inspection

The cap overlying the impacted soil as shown on Attachment D.2(1) must be inspected once a year for deterioration, cracks, and other potential problems that can cause additional surface water infiltration. The inspections will be performed by the property owner or their designated representative. The inspections will be performed to evaluate damage due to settling, wear from traffic, increasing age, and other factors. Any area where contaminated soil has become or is likely to become exposed will be documented.

A log of the inspections and any repairs will be maintained by the property owner. The Continuing Obligations Inspection and Maintenance Log (Form 4400-305) is included as Case Closure Attachment D.4(1). The log will include recommendations for necessary repair of any areas where infiltration from the surface will not be effectively minimized. Completed repairs will be documented in the inspection log. A copy of the maintenance plan and inspection log will be kept at the Site or, if there is no acceptable place to keep it at the Site, at the address of the property owner. The log must be available for submittal or inspection by WDNR representatives upon request. If required in the case closure letter, a copy of the inspection log must be submitted electronically to the WDNR after every inspection, at least annually.

## Maintenance Activities

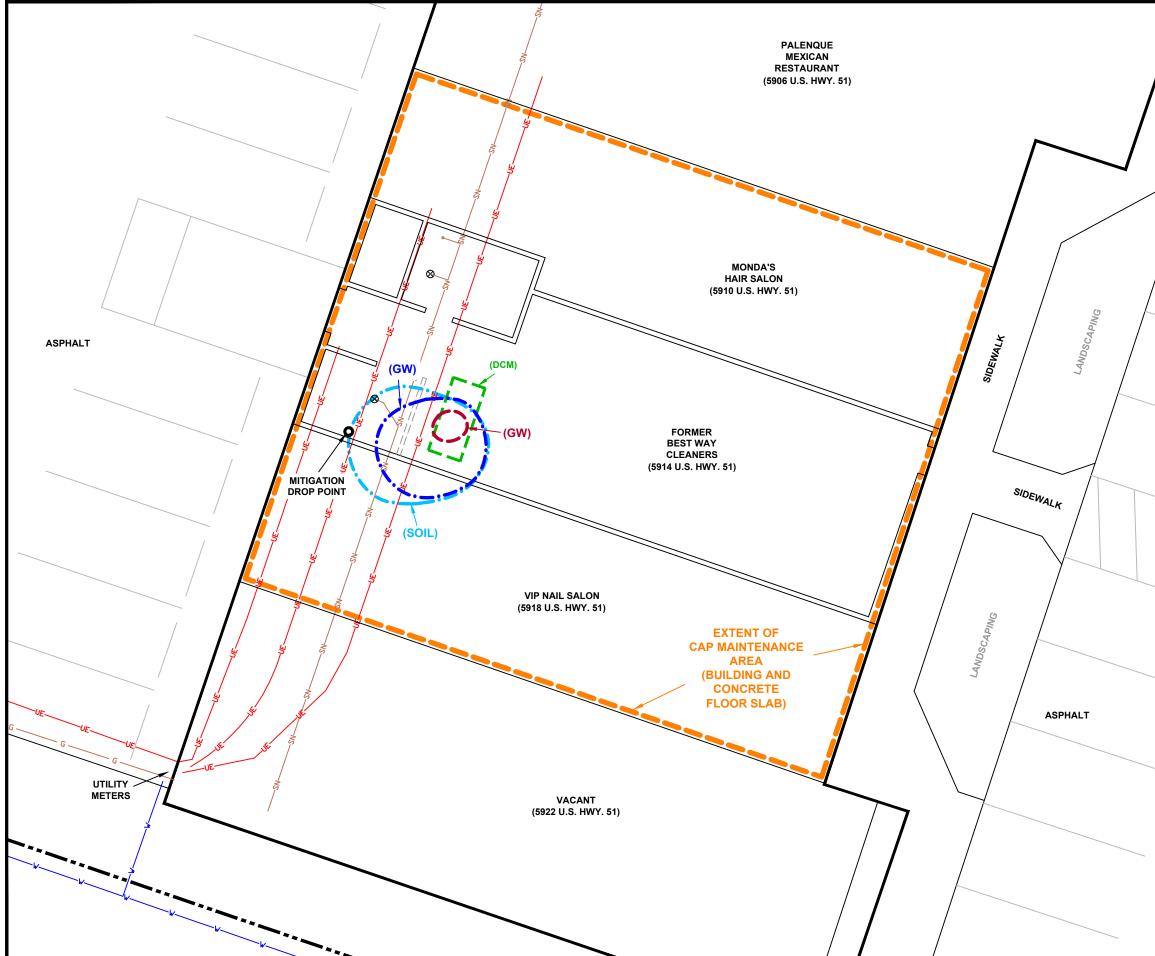
If problems in the cap are noted during the annual inspections, or at any other time during the year, repairs will be scheduled and completed as soon as practicable. Repairs can include patching and filling, larger resurfacing, or construction operations. The owner must also sample/laboratory analyze soil that is generated from below the cap to properly characterize the soil for off-site disposal or placement in another area of the Site. The soil must be treated, stored, and disposed of by the property owner in accordance with applicable local, state, and federal law.

In the event the floor slab overlying the contaminated soil is removed or replaced, the replacement cap must be equally impervious. Any replacement cap will be subject to the same maintenance and inspection guidelines as outlined in this maintenance plan unless indicated otherwise by the WDNR or its successor.

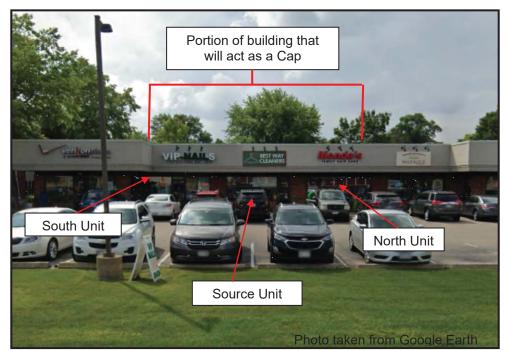
# Prohibition of Activities and Notification of DNR Prior to Actions Affecting the Cap

The following activities are prohibited on any portion of the property where the cap is required as shown on the attached Figure D.2(1), unless prior written approval has been obtained from the WDNR: 1) removal of the existing cap; 2) replacement with another cap; 3) excavating or grading of the land surface; 4) filling on capped areas; 5) plowing for agricultural cultivation; or 6) construction or placement of a building or other structure.

If removal, replacement or other changes to the cap are considered, the property owner will contact the WDNR at least 45 days before taking such an action, to determine whether further action may be necessary to protect human health, safety, or welfare or the environment, in accordance with s. NR 727.07, Wis. Adm. Code.


## Amendment or Withdrawal of Maintenance Plan

This Maintenance Plan can be amended or withdrawn by the property owner and its successors with the written approval of WDNR.


D.1(1) Cap Maintenance Plan Best Way Cleaners BRRTS No. 02-13-583171

# Contact Information (as of December 2020)

Site Owner and Operator:	One Community Bank 733 North Main Street Oregon, WI 53575 Attention: Steve Peotter (608) 835-3168
<u>Consultants</u> :	Giles Engineering Associates, Inc. N8 W 22350 Johnson Road Waukesha, WI 53186 Attention: Kevin T. Bugel (262) 544-0118
<u>WDNR</u> :	Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Madison, Wisconsin 53711 Attention: Cynthia Koepke (608) 219-2181



/ /				
' /				
/				
/				
$\sim$				
/				
/				
				<u>.</u>
	LEGEND:			
		EXTENT	OF AREA TO BE	
	ii		SLAB = EXISTIN	
			TED EXTENT OF	
	(SOIL)		RATED IMPACT	
		SOIL TO	GROUNDWATE	R PATHWAY
	<u></u>		FED EXTENT OF	
	(GW)		ED GROUNDWA [.] ING NR 140	TER
	•		EMENT STAND	ARDS (ES)
	1	ESTIMAT		
	(GW)	IMPACTI	ED GROUNDWA	
			ING NR 140 TIVE ACTION LI	MITS (PAL)
		FORMER	2	
	(DCM)		EANING MACHIN	E
		PROPER		
	— G ———			
		WATER		
	SN		RY SEWER LINE	
	8	FLOOR I		
	Giles En	GINEERIN		TES, INC.
	N8 W22350 JOH WAUKESHA, WI	53186 (20	62)544-0118	
		lesengr.co		
FIGURE D.2(1) LOCATION MAP (				
FORMER BEST W	AY CLEANERS		,	
5914 HIGHWAY 51 McFARLAND, WIS				
DESIGNED DRAM	NN SCA	LE	DATE	REVISED
ктв/кмн 9.	approx.	1"=10'	01-06-21	
PROJECT NO.: 1	E-2006002		CAD No. 1E2	0060021



View of the front of the shopping center building along U.S. Highway 51, facing west.



View of the back of the shopping center building, facing southwest.

D.3(1) CAP PHOTOGRAPHS October 22, 2020





View of the interior of source unit and typical concrete floor to be maintained, facing east.



View of the interior of source unit and typical concrete floor to be maintained, facing west.

D.3(1) CAP PHOTOGRAPHS October 22, 2020



## **Continuing Obligations Inspection and Maintenance Log**

Page 1 of 2

**Directions:** In accordance with s. NR 727.05 (1) (b) 3., Wis. Adm. Code, use of this form for documenting the inspections and maintenance of certain continuing obligations is required. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Open Records Iaw [ss. 19.31-19.39, Wis. Stats.]. When using this form, identify the condition that is being inspected. See the closure approval letter for this site for requirements regarding the submittal of this form to the Department of Natural Resources. A copy of this inspection log is required to be maintained either on the property, or at a location specified in the closure approval letter. Do NOT delete previous inspection results. This form was developed to provide a continuous history of site inspection results. The Department of Natural Resources project manager is identified in the closure letter. The project manager may also be identified from the database, BRRTS on the Web, at <a href="http://dnr.wi.gov/botw/SetUpBasicSearchForm.do">http://dnr.wi.gov/botw/SetUpBasicSearchForm.do</a>, by searching for the site using the BRRTS ID number, and then looking in the "Who" section.

Form 4400-305 (2/14)

Activity (Site	e) Name			BRRTS N	).	
Best Way	Cleaners				02-13-583171	
Inspections	● annual ○ semi-a	•	pproval letter):	When submittal of this form is required, submit the form e manager. An electronic version of this filled out form, or a the following email address (see closure approval letter):	ectronically to the D scanned version ma	DNR project ay be sent to
Inspection Date	Inspector Name	Item	Describe the condition of the item that is being inspected	Recommendations for repair or maintenance	Previous recommendations implemented?	Photographs taken and attached?
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N
		monitoring well cover/barrier vapor mitigation system other:			OY ON	O Y O N

02-13-583171 BRRTS No.	Best Way Cleaner Activity (Site) Nam			Continuing Obligation Form 4400-305 (2/14)	tions Inspection and Ma	Page 2 of 2
{Click to Add/E	Edit Image}	Date added:	{Click	to Add/Edit Image}	Date added:	
Title:			Title:			

# D.1(2) Description of Vapor Mitigation System Maintenance Plan For:

## Best Way Cleaners 5914 U.S. Highway 51 McFarland, Wisconsin

# WDNR BRRTS # 02-13-583171 December 2020

# Legal Description:

SW ¹/₄ of the NW ¹/₄ of Section 3, Township 6 North, Range 10 East, in the Village of McFarland, Dane County, Wisconsin. Tax Key No. 154/0610-032-4510-1.

# Introduction

This document is the maintenance plan for a sub-slab depressurization system at the abovereferenced property (the Site) in accordance with the requirements of s. NR 724.13 (2), Wis. Adm. Code. The maintenance activities relate to the existing system installed within the former Best Way Cleaners lease space.

More site-specific information about this site may be found:

- In the case file in the Wisconsin Department of Natural Resources (WDNR) South Central office.
- From the WDNR project manager for Dane County.
- BRRTS on the Web (WDNR's internet-based database of contaminated sites) and the RR Sites Map (map view of the Site and surrounding properties) at the link: <u>http://dnr.wi.gov/topic/Brownfields/wrrd.html</u>. Both BRRTs on the Web and the RR Sties Map provide PDFs of site-specific information and details regarding continuing obligations for the Site.

## Description of Contamination

Dry cleaning-related volatile organic compound (VOC)-impacted soil gas remains on Site near the former Best Way Cleaners former dry cleaning machine (DCM). The residual VOC soil gas impacts exceed the Sub-Slab Vapor Risk Screening Levels (VRSL) for small commercial properties. The extent of sub-slab soil gas impact is shown on the attached Figure D.2(2). A sub-slab depressurization system was installed in December 2018 to mitigate the vapor intrusion risk posed by the presence of the VOC-impacted soil gas beneath the building slab.

## Vapor mitigation System Description and Purpose

The sub-slab depressurization system consists of a roof-mounted ventilation blower, a drop point within the source unit (former Best Way Cleaners), and connective piping. The drop point is located near the source of the impacted soil gas, the former DCM. The point penetrates the building's approximately 6-inch thick floor slab and terminates within the underlying base course material. The blower creates a negative pressure beneath the floor slab to reduce the potential for sub-slab vapors to infiltrate the building. Vapors extracted by the system are vented to the atmosphere through stacks located on the roof of the existing building.

D.1(2) Vapor Mitigation System Maintenance Plan Best Way Cleaners BRRTS No. 02-13-583171

## Vapor Mitigation System Design and Construction

The sub-slab depressurization system was designed to create a negative pressure beneath the floor slab near the source area, the former DCM. The ventilation blower is a RadonAway Model GP-501 with the capacity to create a vacuum of up to 4 inches of water. The system was designed with an inlet vacuum of 3.5 inches of water and vents approximately 27 cubic feet per minute (cfm) of air from beneath the slab. The rooftop exhaust vent is located at least 20 feet from the roof-mounted HVAC equipment.

# System Maintenance

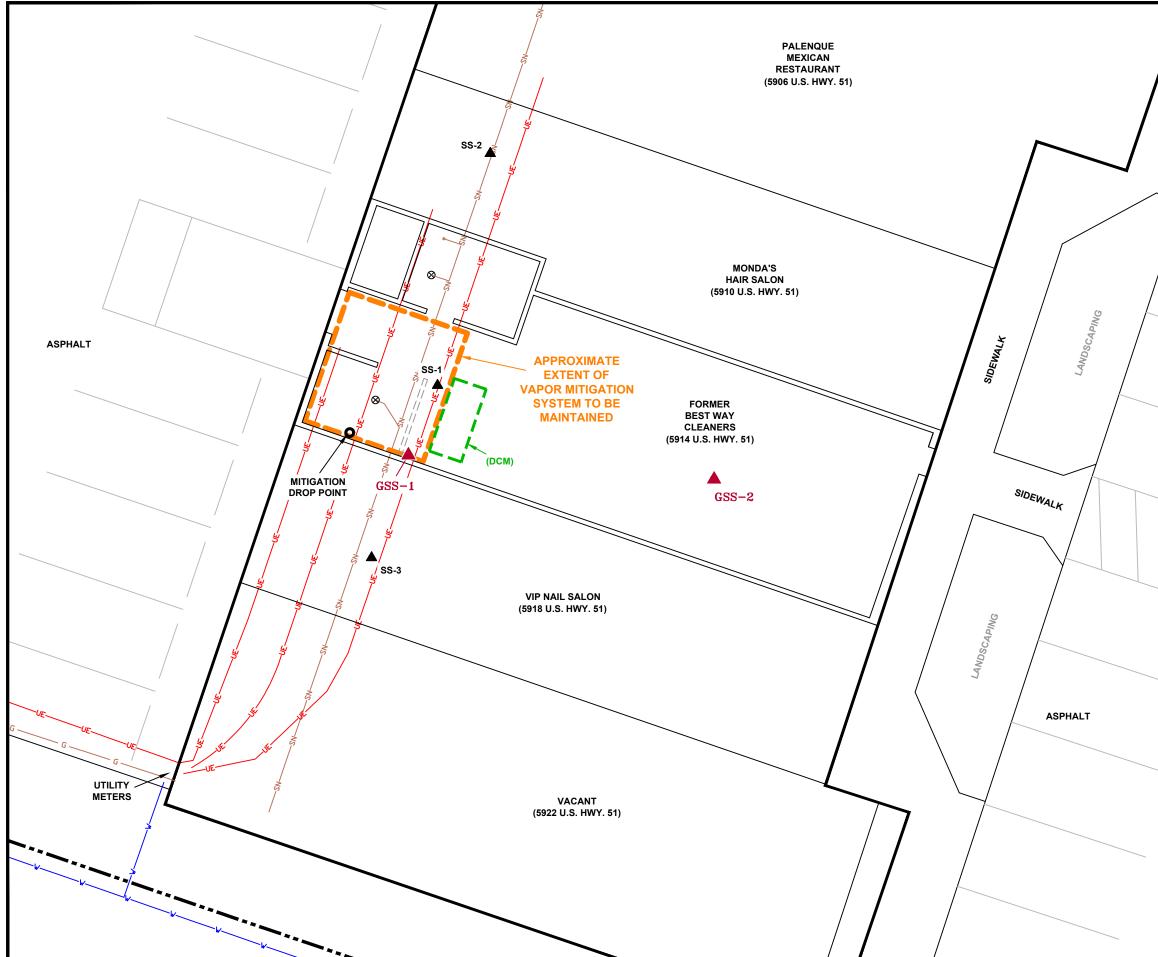
The sub-slab depressurization system requires minimal maintenance. The system's thermal overload protection is equipped with an automatic reset, and the system has a design life cycle of 15 years.

# Annual Inspection

The sub-slab depressurization system will be inspected once a year. Inspections will be performed in the late fall or early winter when the HVAC system is switched between heating to cooling operations. The inspection will be performed by the property owner or their designated representative. The inspections will be performed to evaluate the induced negative pressure from the mitigation system. Specifically, the vacuum at the drop point on the manometer should be checked. The exterior venting system should be checked for damage due exposure to the weather, increasing age and other factors. A log of the inspections and any repairs will be maintained by the property owner and is attached. The log will include recommendations for necessary repairs made during annual inspections. Once repairs are completed, they will be documented in the inspection log. A copy of the inspection log will be kept at the address of the property owner and made available for submittal or inspection by the Wisconsin Department of Natural Resources (WDNR) representatives upon their request.

## Maintenance Activities

If problems are noted during the annual inspections or at any other time during the year, repairs will be scheduled as soon as practicable. Repairs can include normal maintenance of the drop point floor seal, piping, or replacement of the ventilation blower unit. If replacement of the ventilation blower is required, the replacement unit must be able to provide similar air flow rates as the existing unit (~27 cfm at 3.5-inch water vacuum). Any replacement system equipment will be subject to the same maintenance and inspection guidelines as outlined in this Maintenance Plan unless indicated otherwise by WDNR or its successor. The property owner, in order to maintain the integrity of the sub-slab depressurization system, will maintain a copy of this Maintenance Plan on-site and make it available to all interested parties (i.e. on-site employees, contractors, future property owners, etc.) for viewing.


## Amendment or Withdrawal of Maintenance Plan

This Maintenance Plan can be amended or withdrawn by the property owner and its successors with the written approval of WDNR.

D.1(2) Vapor Mitigation System Maintenance Plan Best Way Cleaners BRRTS No. 02-13-583171

# Contact Information (as of December 2020)

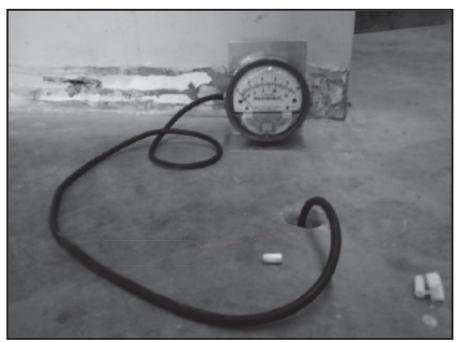
Site Owner and Operator:	One Community Bank 733 North Main Street Oregon, WI 53575 Attention: Steve Peotter (608) 835-3168
<u>Consultants</u> :	Giles Engineering Associates, Inc. N8 W 22350 Johnson Road Waukesha, WI 53186 Attention: Kevin T. Bugel (262) 544-0118
<u>WDNR</u> :	Wisconsin Department of Natural Resources 3911 Fish Hatchery Road Madison, Wisconsin 53711 Attention: Cynthia Koepke (608) 219-2181



/	/	/			
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	N E S
					5' 10' DXIMATE ALE
		$\overline{\mathbf{V}}$	С то	POR MITIGATIO BE MAINTAINEI	
		/	GSS-1	IL GAS POINT	
				EVIOUS BORING Y SEYMOUR)	s
				RMER Y CLEANING MA	CHINE
			PR	OPERTY LINE	
					ECTRIC LINE
				AS LINE	
				NITARY SEWER	LINE
_			⊗ FL	OOR DRAIN	
	¢¢,	N8 V WAL	LES ENGINEERIN V22350 JOHNSON DR JKESHA, WI 53186 (2 www.gilesengr.cd	IVE, SUITE A1 262)544-0118	TES, INC.
	FORMER B 5914 HIGH	MAP (VAPO EST WAY C		EM MAINTENAN	CE PLAN)
	DESIGNED		SCALE	DATE	REVISED
	KTB/KMH	Jolid NO.: 1E-20	approx. 1"=10'	01-06-21 CAD No. 1E2	
	FICUJEUI	NU.: 1E-20	00002	LCAD NO. 1E2	006002m

View of the roof-mounted ventilation blower.

View of the mitigation system piping penetrating the concrete floor slab.


D.3(2) PHOTOGRAPHS

December 14, 2018 Photographs taken from Seymour Environmental Services, Inc. Vapor Mitigation System Inspection Log

View of the manometer reading 4 inches of water.

View of a manometer reading at SS-1 showing negative pressure of 0.2 inches of water.

D.3(2) PHOTOGRAPHS

December 14, 2018 Photographs taken from Seymour Environmental Services, Inc. Vapor Mitigation System Inspection Log

State of Wisconsin Department of Natural Resources dnr.wi.gov

Form 4400-321 (R 09/20)

Page 1 of 5

Notice: In accordance with s. NR 727.05 (1) (b) 3., Wis. Adm. Code, use of this form for documenting the inspections and maintenance of certain vapor-related continuing obligations is required. Personal information collected will be used for administrative purposes and may be provided to requesters to the extent required by Wisconsin's Public Records law [ss. 19.31-19.39, Wis. Stats.].

Directions: This form was developed to provide the results of a site inspection of a vapor related continuing obligation, typically a vapor mitigation system. See the closure approval letter for this site for requirements regarding the submittal of this form to the Department of Natural Resources. A copy of this inspection log is required to be maintained either on the property, or at a location specified in the closure approval letter. The closure letter may be found in the database, <u>BRRTS on the Web</u>, by searching for the site using the BRRTS ID number, and then looking in the "Action" section, for code 56.

Activity (Site) Name: Best Way Cleaners

BRRTS No. 02-13-583171

Date of Inspection:

When submittal of this form is required, submit an electronic version or a scanned copy of this completed form to the RR Submittal Portal.

SYSTEM COMPONENT				DATE:
NAME	WHAT DOES IT DO?	WHAT DO I CHECK?	WHAT SHOULD I SEE?	WHAT TO FIX?
Manometer or Differential Pressure Gauge	Measures differential pressure between vacuum side of vent pipe and indoor space. This measurement confirms there is a vacuum being pulled by the fan.	Liquid Level on Manometer or Gauge	Liquid level in manometer should be offset (not level with each other).	A change in liquid level indicates a change in the vacuum below foundation. This could be caused by failure of fan, blockage of vent pipe, change in water level below building, or other conditions. Hire a professional to identify cause and repair if needed.
PHOTO			NOTES: (Record the reading	on the gauge. Identify specific building and location description:)
Optionale Click on photogo up your or the	bload		Not Applicable	

Site Name: Best Way Cleaners

Vapor Mitigation System Inspection LogForm 4400-321 (R 09/20)Page 2 of 5

SYSTEM COMPONENT				DATE:
NAME	WHAT DOES IT DO?	WHAT DO I CHECK?	WHAT SHOULD I SEE?	WHAT TO FIX?
Fan	Fan creates a vacuum and lowers pressure below foundation. The fan also removes soil gases from below foundation for discharge to atmosphere.	Fan Operation Fan Location Motor Noise	Fan is on. Fan mounted outside & secure. Fan motor is quiet (loud motor may indicate problem).	Replace the fan immediately once the fan stops running. Fans typically run for 10-20 years, but it may be less. Replacement fan to have similar specifications as original with respect to flow and vacuum. After a fan is replaced, the system should be evaluated by a mitigation professional to verify effectiveness, which includes pressure readings.
				Original Fan Make and Model:
рното			NOTES: (Identify specific bui	Iding and location description:)
Optional: Click on photo to upload your own.			Not Applicable	

Vapor Mitigation System Inspection LogForm 4400-321 (R 09/20)Page 3 of 5

Site Name: Best Way	Cleaners	-		Form 4400-321 (R 09/20) Page 3 of 5
SYSTEM COMPONENT				DATE:
NAME	WHAT DOES IT DO?	WHAT DO I CHECK?	WHAT SHOULD I SEE?	WHAT TO FIX?
	Suction Point : Soil gases are collected in a void space below the foundation, and tight seal prevents	Suction Point Seal	Seal is air tight around pipe penetration.	Suction point seal or vent pipe may need to be sealed or replaced if cracks or leaks appear.
Suction Drop Point w/ Vent Pipe	soil gas from getting inside the home. Vent Pipe: Pipe conveys the vacuum from the fan, and collects soil gases for discharge to the atmosphere.	Vent Pipe Condition	Vent pipe is connected to fan, has not cracked.	If any piping or sealing of the system is altered or replaced, the system should be evaluated by a mitigation professional to verify effectiveness, which includes pressure readings.
РНОТО		-	NOTES: (Identify specific bui	Iding and location description:)
Optional: Click on photo to upload your own.			Not Applicable	
Sealed Sump w/Vent Pipe	Sump Cover: Soil gases are collected in sump and the cover prevents soil gas from getting inside home. Vent Pipe: Pipe transports the soil gas from the sump for discharge to the atmosphere.	Suction Point Seal Vent Pipe Seal Condition	Seal is airtight to floor. Vent pipe is connected to the sump cover and is not cracked.	Sump cover or vent pipe may need to be sealed or replaced if cracks or leaks appear. If any piping or sealing of the system is altered or replaced, the system should be evaluated by a plumber or a mitigation professional to verify effectiveness, which includes pressure readings.
РНОТО			NOTES: (Identify specific bui	Iding and location description:)
Optional: Click on photo to upload your own.			Not Applicable	

Site Name: Best Way Cleaners

Vapor Mitigation System Inspection LogForm 4400-321 (R 09/20)Page 4 of 5

Site Name: Best way				
SYSTEM COMPONENT				DATE:
NAME	WHAT DOES IT DO?	WHAT DO I CHECK?	WHAT SHOULD I SEE?	WHAT TO FIX?
Outdoor Vent Pipe	Pipe transports the soil gas from beneath the foundation for discharge to the atmosphere.	Vent Pipe Condition	Vent pipe remains connected to fan. End of pipe free from obstructions. The exhaust is more than 15 feet from windows or air intakes.	Vent pipe may require replacement, or cleaning to remove ice or debris. If any piping or sealing of the system is altered or replaced, the system should be evaluated by a mitigation professional to verify effectiveness, which includes pressure readings.
РНОТО				I Iding and location description:)
Option all: Click on plions to up your of all.	load		Not Applicable	
Foundation Floor	Foundation is a barrier that minimizes soil gas entry into building, and helps fan to work efficiently.	Foundation Condition Foundation Footprint	No penetrating cracks or holes in foundation. Check if there have been alterations or additions to building or footprint.	Seal cracks or other penetrations as you would to prevent water from entering. If building floor plan has changed, notify DNR and contact a mitigation professional to evaluate if modifications to the vapor mitigation system are necessary.
DUOTO				
РНОТО				Iding and location description:)
Optional: Click on photo to up your own.	pload		Not Applicable	

Vapor Mitigation System Inspection LogForm 4400-321 (R 09/20)Page 5 of 5

Site Name: Best Way	Cleaners	_		Form 4400-321 (R 09/20) Page 5 of 5
SYSTEM COMPONENT				DATE:
NAME	WHAT DOES IT DO?	WHAT DO I CHECK?	WHAT SHOULD I SEE?	WHAT TO FIX?
Sub Slab Vapor Port	This is a sample port to measure vacuum or take sample of soil gas if needed. It needs to remain sealed when not in use to prevent soil gas entry into the home.	Port Seal/Cap	If able to measure the vacuum with a micromano- meter, the pressure differen- tial should be at least 0.004 inches of H_2O or at least one Pascal.	Repair or replace the seal and cover as needed.
1.5	T	Port Condition	Port is sealed and capped when not in use.	Permanently seal hole if sample port is ever removed.
PHOTO Optional: Click on photo to un your own.	pload		NOTES: (If taken, record the description:)	pressure differential reading. Identify specific building and location

Attachment E: Monitoring Well Information

Not included. All monitoring wells will be abandoned after Case Closure is granted.

02-13-583171 BRRTS #

Attachment F: Source Legal Documents

F.1 Deed Included

F.2 Certified Survey Map Included

F.3 Verification of Zoning Included

F.4 Signed Statement

Included. The property's legal description has not changed since the statement was signed in September 2019.

WARRANTY I		REGISTER	R OF DEEDS
Document Number		333	8317
This Deed, made between McFarland Joint Venture,	now McFarland	06-25-2	2001 2:22 PI
Joint Venture, LLP, a Wisconsin limited liability	partnership	Trans. Fe	ee 2202.9
· · · · · · · · · · · · · · · · · · ·	· _ Grantor,	Rec. Fee Pages	14.00
nd _FH of McFarland, Inc., a Wisconsin corporation		rages	0
	, Grantee.		001369
Grantor, for a valuable consideration, conveys and warrants to C escribed real estate in Dane County, S	rantee the following ate of Wisconsin;		
		" Recontiding Asisa	
Described on Exhibit A attached.		Name and Return Address FH of McFarland, Inc.	
	-	c/o E. David Locke	
		5911 Main Street McFarland, WI 53558	
			ата на на на на та
		See Exhibit A	
		Parcel Identification Number (PIN	40
		Thishomesta (is) (is not)	ead property.
		(15) (15 hot)	
Exceptions to warranties: the right-of-way to US Highwated this $\underline{ISV}_{day of} \underline{Hos} \int \mathcal{H} \mathcal{H} \mathcal{C}$	y 51. 2001		
and more from a	2001 McFARLAND JO	INT VENTURE, LLP 	(SEAL)
ated this <u>ISV</u> day of <u>Hor</u> June.	2001 McFARLAND JO	S. Neminos	(SEAL)
ated this <u>ISV</u> day of <u>Hoy June</u> (SEAL)	2001 McFARLAND JO	S. Neminos	(SEAL)
ated this <u>ISV</u> day of <u>Hoy</u> June (SEAL) (SEAL) (SEAL) AUTHENTICATION	2001 McFARLAND JO Bruce Nevil	ACKNOWLEDGMENT	(SEAL)
ated this <u>ISV</u> day of <u>May June</u> . (SEAL) (SEAL) AUTHENTICATION	2001 McFARLAND JO Bruce Nevil State o	aser, Managing Partner	(SEAL)
ated this <u>ISV</u> day of <u>Hoy</u> June (SEAL) (SEAL) (SEAL) AUTHENTICATION	2001 McFARLAND JO Bruce Nevil	ACKNOWLEDGMENT	(SEAL)
ated this <u>ISV</u> day of <u>Hor June</u> (SEAL) (SEAL) (SEAL) (SEAL) AUTHENTICATION gnature(s)	2001 McFARLAND JO Bruce Nevia Bruce Nevia	ACKNOWLEDGMENT f Wisconsin, County.	(SEAL)
ated this <u>ISV</u> day of <u>How</u> June (SEAL) (SEAL) (SEAL) AUTHENTICATION gnature(s)	2001 McFARLAND JO. • Bruce Nevia • • • State o. Dane Personally	ACKNOWLEDGMENT f Wisconsin, County.	(SEAL) (SEAL) ss, $1 \le t$ day of , the above named
ated this <u>ISV</u> day of <u>Hor June</u> (SEAL) (SEAL) (SEAL) (SEAL) AUTHENTICATION gnature(s)	2001 McFARLAND JO. • Bruce Nevia • • • State o. Dane Personally	ACKNOWLEDGMENT f Wisconsin, County. came before me this 2001	(SEAL) (SEAL) ss, $1 \le t$ day of , the above named
ated this day of (SEAL) (SEAL) (SEAL) (SEAL) authenticated this day of	2001 McFARLAND JO. • Bruce Nevia • • • State o. Dane Personally	ACKNOWLEDGMENT f Wisconsin, County. came before me this 2001	(SEAL) (SEAL) ss, $1 \le t$ day of , the above named
ated this day of (SEAL) (SEAL) (SEAL) (SEAL) authenticated this day of	2001 McFARLAND JO Bruce Nevi: Bruce Nevi: Dane Personally May Ja Bruce Nevi me known to b	ACKNOWLEDGMENT f Wisconsin, County. came before me this 2001	(SEAL) (SEAL) (SEAL) (SEAL) (SEAL) (SEAL) (SEAL) (SEAL)
ated this day of (SEAL)	2001 McFARLAND JO Bruce Nevi: Bruce Nevi: Dane Personally May Ja Bruce Nevi me known to b	ACKNOWLEDGMENT ACKNOWLEDGMENT f Wisconsin, came before me this viaser. Managing Partner	(SEAL) (SEAL) (SEAL) (SEAL) (SEAL) (SEAL) (SEAL) (SEAL)
Atted this day of (SEAL)	2001 McFARLAND JO. • Bruce Nevia • Bruce Nevia • Dane Personally Mar Ju Bruce Nevi me known to b Instrument and Atoms	ACKNOWLEDGMENT ACKNOWLEDGMENT f Wisconsin, County. came before me this wie, 2001 viaser, Managing Partner be the person who exec acknowledge the same. Janaa	(SEAL) (SEAL) (SEAL) (SEAL) (SEAL) (SEAL) (SEAL) (SEAL)
Auted this day of (SEAL)	2001 McFARLAND JO. Bruce Nev1: Bruce Nev1: Bruce Nev1: Bruce Nev1: Bruce Nev1: Bruce Nev1: Max Junce	ACKNOWLEDGMENT ACKNOWLEDGMENT f Wisconsin, County. came before me this my	(SEAL) (S
Atted this day of (SEAL)	2001 McFARLAND JO. Bruce Nev1: Bruce Nev1: Bruce Nev1: Bruce Nev1: Bruce Nev1: Bruce Nev1: Max Junce	ACKNOWLEDGMENT ACKNOWLEDGMENT f Wisconsin, County. came before me this my	(SEAL) (S

1

÷.

LEGAL DESCRIPTION Stonefield Mall (Furnished) McFarland, Wisconsin

Parcel A

Lots Five (5) and Six (6), Block One (1), Severson Subdivision, in the Village of McFarland, Dane County, Wisconsin.

And

A parcel of land located between Block 1 and Block 2, Severson Subdivision, being a part of Severson Road, Village of McFarland, Dane County, Wisconsin, more fully described as follows:

Beginning at the Southwest corner of Lot 5 of said Block 1, thence South 81°42'00" East, along the South line of said Lot 5, 51.00 feet; thence South 8°18'00" West, 14.00 feet; thence North 81°42'00" West, 51.00 feet; thence North 8°18'11" East, 14.00 feet to the point of beginning.

And

A parcel of land located between Block 1 and Block 2, Severson Subdivision, being a part of Severson Road, Village of McFarland, Dane County, Wisconsin, more fully described as follows:

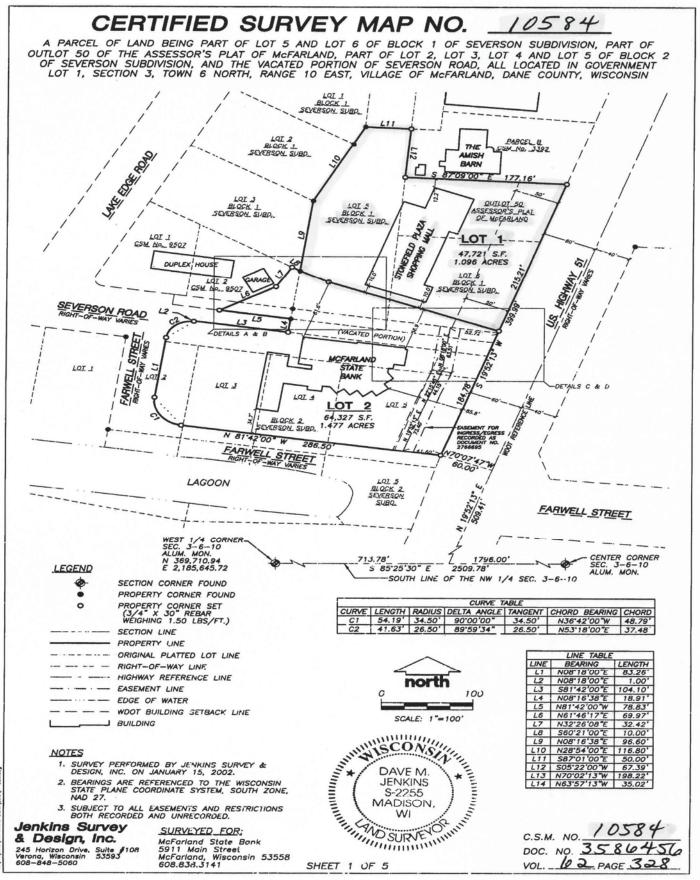
Commencing at the Southwest corner of Lot 5 of said Block 1, thence South 81°42'00" East, along the South line of said Lot 5, 51.00 feet to the point of beginning; thence continue South 81°42'00" East, along said South line and the South line of Lot 6 of said Block 1, 175.81 feet to the Westerly right-of-way of U.S. Highway 51; thence South 19°52'13" West, along said Westerly right-of-way, 33.69 feet to the former centerline of Severson Road, as platted; thence North 81°42'00" West, along said centerline, 169.05 feet; thence North 8°18'00" East, 33.00 feet to the point of beginning.

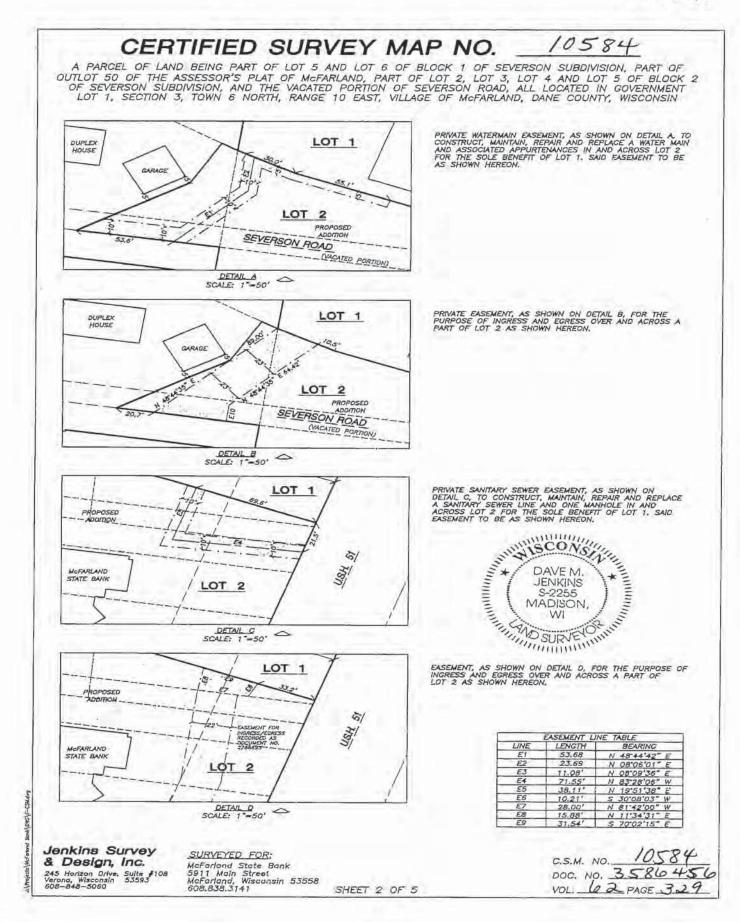
Parcel B

Part of Outlot Fifty (50), Assessor's Plat of the Village of McFarland, in the Village of McFarland, Dane County, Wisconsin, and described more fully as follows:

Beginning at the Southwest corner of said Outlot 50; thence East along the South line of said Outlot, 206.7 feet to the centerline of U.S. Highway 51; thence North 19°47" East along said centerline, 83.5 feet; thence West parallel to the South line of said Outlot 50, 226.6 feet to an iron stake on the West line of said Outlot 50; thence Southerly along said West line 80 feet to the point of beginning.

EXCEPTING from all the above land conveyed by Warranty Deed in Volume 16141 of records, Page 49, as Document No. 2270460, and EXCEPT lands conveyed by Quit Claim Deed in Volume 33034 of Records, Page 8, as Document No. 2766694.


Parcel C


Easement for ingress and egress as set forth in Easement Agreement dated November 20, 1995 and recorded May 30, 1996 in the Office of the Register of Deeds for Dane County, Wisconsin in Volume 33034 of Records, Page 9, as Document No. 2766695.

Said Parcel being more particularly described as follows:

Commencing at the northwesterly corner of Lot Two (2), Block Two (2), of said Severson Subdivision; thence along the northerly line of said Lot Two (2), S 81°42'00" E, 43.44 feet; thence N 8°18'00" E, 5.50 feet; thence 41.63 feet along the arc of a curve to the right with a radius of 26.50 feet and a chord which bears N 53°18'00" E, 37.48 feet; thence N 8°18'00" E, 1.00 feet to the centerline of partially vacated Severson Road; thence along said centerline S 81°42'00" E, 104.10 feet; thence N 8°18'00" E, 32.97 feet to the southwesterly corner of Lot Five (5), Block One (1) of said Severson Subdivision, also being the point of beginning; thence along the westerly line of said Lot Five(5), N 8° 18'00" E, 150.20 feet; thence continuing along said westerly line N 28°54'00" E, 116.80 feet to the northwesterly corner of said Lot Five (5); thence along the northerly line of said Lot Five (5), S 87°01'00" E, 50.00 feet to the northeasterly corner of said Lot Five (5); thence along the easterly line of said Lot Five (5), S 5°22"00" W, 67.39 feet; thence S 87°09'00" E. 177.16 feet to the westerly right-of-way line of State Trunk Highway Fifty-One (51); thence along said westerly right-of-way line, S 19°52'13" W, 218.12 feet to the southerly line of said Lot Six (6), Severson Subdivision; thence along the southerly line of said Lot Six (6) and said Lot Five (5), Severson Subdivision, N 81°42'00" W. 226.94 feet to the point of beginning.

Said parcel contains 53778.05 square feet, or 1.235 acres.

005146

CERTIFIED SURVEY MAP NO. 10584

A PARCEL OF LAND BEING PART OF LOT 5 AND LOT 6 OF BLOCK 1 OF SEVERSON SUBDIVISION, PART OF OUTLOT 50 OF THE ASSESSOR'S PLAT OF MCFARLAND, PART OF LOT 2, LOT 3, LOT 4 AND LOT 5 OF BLOCK 2 OF SEVERSON SUBDIVISION, AND THE VACATED PORTION OF SEVERSON ROAD, ALL LOCATED IN GOVERNMENT LOT 1, SECTION 3, TOWN 6 NORTH, RANGE 10 EAST, VILLAGE OF MCFARLAND, DANE COUNTY, WISCONSIN

LEGAL DESCRIPTION

A PARCEL OF LAND LOCATED IN THE SOUTHWEST ¼ OF THE NORTHWEST ¼ OF SECTION 3, TOWN 6 NORTH, RANGE 10 EAST, BEING PART OF LOT 5 AND LOT 6 OF BLOCK 1 OF SEVERSON SUBDIVISION, PART OF OUTLOT 50 OF THE ASSESSOR'S PLAT OF MCFARLAND, PART OF LOT 2, LOT 3, LOT 4 AND LOT 5 OF BLOCK 2 OF SEVERSON SUBDIVISION, AND THE VACATED PORTION OF SEVERSON ROAD, VILLAGE OF MCFARLAND, DANE COUNTY, WISCONSIN, MORE PARTICULARLY DESCRIBED AS FOLLOWS:

COMMENCING AT THE WEST ¼ CORNER OF SAID SECTION 3, THENCE ALONG THE SOUTH LINE OF THE NORTHWEST ¼ OF SAID SECTION 3, S 85*25'30" E, 713.78 FEET TO THE REFERENCE LINE OF U.S. HIGHWAY 51; THENCE ALONG SAID REFERENCE LINE, N 19*52'13" E, 509.41 FEET; THENCE N 70*07'47" W, 60.00 FEET TO THE WESTERLY RIGHT-OF-WAY LINE OF SAID U.S. HIGHWAY 51 AND THE NORTHERLY RIGHT-OF-WAY LINE OF FARWELL STREET, SAID POINT BEING THE POINT OF BEGINNING; THENCE ALONG SAID NORTHERLY RIGHT-OF-WAY LINE OF FARWELL STREET, N 81*42'00" W, 286.50 FEET; THENCE 54.19 FEET ALONG THE ARC OF A CURVE TO THE RIGHT WITH A RADIUS OF 34.50 FEET, WHOSE LONG CHORD BEARS N 36*42'00" W, 48.79 FEET TO THE RIGHT WITH A RADIUS OF 34.50 FEET; WHOSE LONG CHORD BEARS N 36*42'00" W, 48.79 FEET TO THE RIGHT WITH A RADIUS OF 54.50 FEET; WHOSE LONG CHORD BEARS N 53*18'00" E, 37.48 FEET; THENCE N 08*18'00" E, 1.00 FEET TO THE SOUTHERLY RIGHT-OF-WAY LINE OF FARWELL STREET; THENCE ALONG SAID EASTERLY RICHT-OF-WAY LINE, N 08*18'00" E, 83.26 FEET; THENCE 41.63 FEET ALONG THE ARC OF A CURVE TO THE RICHT WITH A RADIUS OF 26.50 FEET, WHOSE LONG CHORD BEARS N 53*18'00" E, 37.48 FEET; THENCE N 08*18'00" E, 1.00 FEET TO THE SOUTHERLY RIGHT-OF-WAY LINE OF SEVERSON ROAD; THENCE ALONG SAID SOUTHERLY RIGHT-OF-WAY LINE, S 81*42'00" E, 104.10 FEET; THENCE ALONG SAID NORTHERLY RICHT-OF-WAY LINE, N 81*42'00" W, 78.83 FEET; THENCE N 61*46'17" E, 69.97 FEET; THENCE N 32*26'08" E, 32.42 FEET TO THE NORTHERLY LINE OF LOT 3, BLOCK 1 OF SEVERSON SUBDIVISION; THENCE ALONG SAID SOUTHERLY LINE, S 60*21'00" E, 10.00 FEET TO THE SOUTHWESTERLY CORNER OF LOT 5, BLOCK 1 OF SEVERSON SUBDIVISION; THENCE ALONG THE WESTERLY LINE OF SAID LOT 5, N 08*16'38" E, 96.60 FEET; THENCE OF SAID LOT 5; THENCE ALONG THE NORTHERLY LINE OF SAID LOT 5, N 08*16'38" E, 50.00 FEET TO THE NORTHEASTERLY CORNER OF SAID LOT 5; THENCE ALONG THE EASTERLY LINE OF SAID LOT 5, S 05*22'00" W, 67.39 FEET TO THE NORTHERLY LINE OF SAID LOT 5, N 08*16'38" E, 50.00 FEET TO THE NORTHEASTERLY CORNER OF SAID LOT 5; THENCE ALONG THE EAST

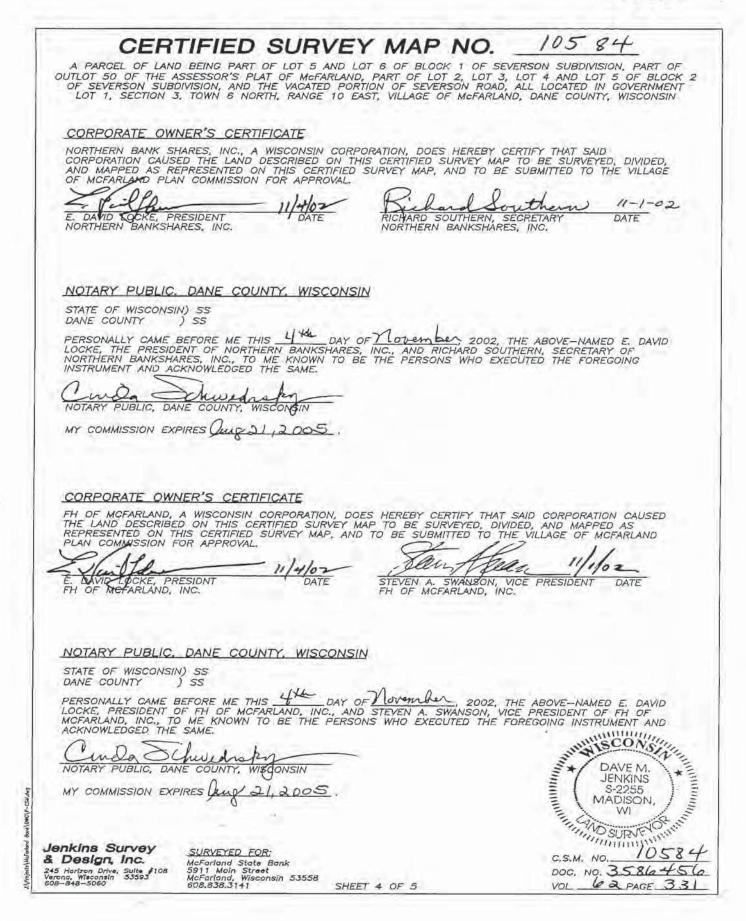
SAID PARCEL CONTAINS 112,048 SQUARE FEET OR 2.572 ACRES.

SURVEYOR'S CERTIFICATE

I, DAVE M. JENKINS, REGISTERED LAND SURVEYOR, S-2255, DO HEREBY CERTIFY THAT I HAVE SURVEYED, DIVIDED, AND MAPPED THE LANDS DESCRIBED HEREIN AND THAT THE MAP IS A CORRECT REPRESENTATION IN ACCORDANCE WITH THE INFORMATION PROVIDED. I FURTHER CERTIFY THAT THIS CERTIFIED SURVEY MAP IS IN FULL COMPLIANCE WITH CHAPTER 236.34 OF THE WISCONSIN STATUTES AND THE SUBDIVISION REGULATIONS OF THE VILLAGE OF MCFARLAND, DANE COUNTY, WISCONSIN.

DATE: 10/28/02

DAVE M. JENKINS, S-2255 REGISTERED LAND SURVEYOR

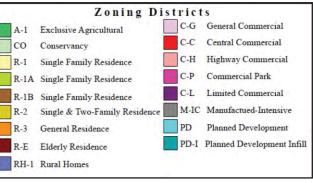


Jenkins Survey & Design, Inc. 245 Herizon Drive, Suite \$108 Verone, Wisconsin 53583 508-848-5060

Sand (CHIC) P-CSH. day

<u>SURVEYED FOR:</u> McForland State Bank 5911 Main Street McFarland, Wisconsin 53558 608.838,3141 SHEET 3 OF 5

10584 C.S.M. NO ._ DOC. NO. 3586456 VOL. 102 PAGE 3.30


A PARCEL OF LAND BEING PART OF LOT 5 AND LOT 6 OF BLOCK OUTLOT 50 OF THE ASSESSOR'S PLAT OF MCFARLAND, PART OF LOT OF SEVERSON SUBDIVISION, AND THE VACATED PORTION OF SEVER	K 1 OF SEVERSON SUBDIVISION, PART OF T 2, LOT 3, LOT 4 AND LOT 5 OF BLOCK 2 RSON ROAD, ALL LOCATED IN GOVERNMENT
LOT 1, SECTION 3, TOWN 6 NORTH, RANGE 10 EAST, VILLAGE O	F McFARLAND, DANE COUNTY, WISCONSIN
and the statement of a statement of the	4
VILLAGE OF MCFARLAND PLAN COMMISSION	20th
APPROVED FOR RECORDING PER VILLAGE OF MCFARLAND PLAN CO. May	MMISSION THIS DAY OF
DON PETERSON, VILLAGE ADMINISTATOR	
CERTIFICATE OF VILLAGE TREASURER	
STATE OF WISCONSIN) DANE COUNTY) SS	
I, DON PETERSON, BEING THE DULY ELECTED, QUALIFIED AND ACTI MCFARLAND, DO HEREBY CERTIFY THAT IN ACCORDANCE WITH THE UNPAID TAXES OR UNPAID SPECIAL ASSESSMENTS AS OF Nourmoen THIS CERTIFIED SURVEY MAP.	RECORDS IN MY DEFICE THERE ARE NO
DON PETERSON VILLAGE OF MCFARLAND TREASURER DATE:	
DANE COUNTY REGISTER OF DEEDS RECEIVED FOR RECORDING THIS B+B DAY OF NOVEM	ber 2002 AT 5: 2 30'CLOCK
P.M. AND RECORDED IN VOLUME 62 OF DANE COUNTY	CERTIFIED SURVEY MAPS ON PAGES
328 TO 332 DOCUMENT NUMBER 3584456, CERTIFIED	D SURVEY MAP NUMBER _10584
JANE C. LICHT by faith (song, deputy	
REGISTER OF DEEDS	
Jenkins Survey SURVEYED FOR: & Design, Inc. McFarland State Bank	C.S.M. NO. 10584
245 Horizon Drive, Suite 1108 5911 Moin Street Varone, Wisconsin 53593 McFarland, Wisconsin 53558 588-848-5566 SHEET 5 OF 5	DOC. NO. 3586450 VOL 62 PAGE 33

Source: Village of McFarland Zoning Map

Scale: Not Available

Figure F.3 Verification of Zoning

F.4 Signed Statement

Certification of Legal Description

Best Way Cleaners 5914 U.S. Highway 51 McFarland, Wisconsin BRRTS No. 02-13-583171

To the best of my knowledge the legal description and parcel information attached to this package are accurate.

e Signature:

Printed Name: Steve Peotter

Title:	President, One Community Bank	
Date:	4.4.2021	

Attachment G: Notifications

Not included. The residual impacts to soil and groundwater are limited to the vicinity of the former dry cleaning machine and do not extend off Site.