

Consulting Engineers and Scientists

Phase 2.5 Subsurface Investigation

US 2/53 – 31st Ave East to 53rd Ave East City of Superior, Douglas County, Wisconsin WisDOT Project ID No. 1198-03-78

Submitted to:

Wisconsin Department of Transportation- BTS-ESS P.O. Box 7965, Room 451 Madison, Wisconsin 53707-7965

Submitted by:

GEI Consultants, Inc. 3159 Voyager Drive Green Bay, Wisconsin 54311 rmiller@geiconsultants.com 920.455.8200 fax: 920.455.8225

August 12, 2019 Project 1902429

Michael De Brashe

Michael L. DeBraske, P.E. Senior Project Engineer

Roger A. Miller, P.G., C.P.G. Senior Hydrogeologist

Table of Contents

Executive	e Summary	i
1. Backgi		1
1.1	Scope and Application	1
1.2		
1.3	Local Geology and Hydrogeology	
<u>2. Investi</u>	gative Procedures	3
2.1	Soil Borings	3
2.2	Soil Sample Collection and Preservation	
2.3	Groundwater Monitoring Wells	4
2.4	Groundwater Sample Collection and Preservation	4
2.5	Monitoring Well and Borehole Abandonment	
2.6	Decontamination Procedures	
3. Result	8	6
3.1	Field Screening Results	6
3.2	Laboratory Analytical Results	6
	3.2.1 Regulatory Framework	
	3.2.2 Soil Sample Analytical Results	
<u>4. Conclu</u>	sions and Recommendations	9
4.1	Conclusions	
4.2	Recommendations	9
5. Genera	al Qualifications	11

<u>Tables</u>

1. Soil Analytical Summary

Figures

- 1. Regional Setting Diagram
- 2. Local Setting Diagram
- 3. Sample Location Diagram
- 4. Soil Management Zone Diagram

Appendices

- A. Site Background Information
- B. Photographic Log
- C. Soil Boring Logs and Abandonment Forms
- D. Laboratory Analytical Report
- E. Contract Special Provisions

Executive Summary

The Wisconsin Department of Transportation (WisDOT) is planning to improve United States Highway 2/53 (East 2nd Street) between 31st Avenue East and 53rd Avenue East in the City of Superior, Douglas County, Wisconsin. The improvement project is currently scheduled for 2020 and is anticipated to include spot locations of concrete pavement repair, roadway resurfacing consisting of a course grind and overlay, rehabilitation of a bridge, upgrading and/or installation of curb ramps at pedestrian crossings, updates or replacements of traffic signals and street lights, and repairs to existing utility manholes and inlets.

GEI Consultants, Inc. (GEI) was retained by WisDOT to complete a Phase 2.5 Subsurface Investigation (Phase 2.5 SI) within the existing right-of-way (ROW) adjacent to an unoccupied commercial property (203 39th Avenue East) located in the south quadrant of the intersection of East 2nd Street and 39th Avenue East (the "site"). The site was identified by WisDOT as a candidate for Phase 2.5 assessment based on a review of a historical WisDOT plan set dated 1948 which identified the site as being developed as a gasoline station at that time, a review of historical aerial photographs dated 1968 and 1983 which appeared to show pump islands near the ROW at those times, and the anticipated ground disturbances required near the site for updates and replacements of traffic signals and street lights, which may require spot excavations up to 15 feet deep for traffic signal pole foundations, 10 feet deep for street light pole foundations, and 7 feet deep for installation of electrical pull boxes. The objective of the Phase 2.5 SI was to assess the potential for impacted media (soil and/or groundwater) to be encountered during the planned project (WisDOT ID 1198-03-78).

The Phase 2.5 SI included completing subsurface exploration by advancing soil probes and installing a temporary groundwater monitoring well near the anticipated locations of spot excavations. GEI and a subcontract environmental probe firm completed subsurface exploration on June 5 and 6, 2019. Soil samples were collected for chemical analysis of contaminants of potential concern and additional landfill waste characterization analytes. Sufficient water for sampling was not encountered in the monitoring well installed during the Phase 2.5 SI.

Results of the Phase 2.5 SI indicate that concentrations of petroleum volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and lead above the Wisconsin Administrative Code, Chapter NR 720 Residual Contaminant Levels (RCLs) were detected in the ROW adjacent to the site. The detected concentrations of lead and several PAHs and petroleum VOCs, including benzene, ethylbenzene, naphthalene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene, and chrysene, exceed the NR 720 RCLs for the groundwater pathway, and the detected concentration of one PAH analyte, benzo(a)pyrene, exceeds the NR 720 RCL for the non-industrial direct contact pathway. The volatile and semi-volatile analytes detected in the ROW suggest that a release of gasoline from the historical operation of an underground storage tank (UST) system may have occurred at the site. Although the lead detections may also be associated with a former leaded gasoline UST system, subsurface conditions encountered during the Phase 2.5 SI and the distribution of lead detections suggest

that it is possible for elevated concentrations of lead to be associated with soil fill historically deposited within the ROW.

Based on Phase 2.5 SI results, we anticipate that lead-, PAH-, and petroleum VOC-impacted soil with concentrations above NR 720 RCLs will be encountered during construction adjacent to this site and therefore, we recommended that excavations adjacent to the site be field-screened by an environmental consultant. Laboratory analytical results and visual, olfactory, and photoionization detector (PID) field-screening conducted during the Phase 2.5 SI suggest that impacts may be encountered from the ground surface to a depth of approximately 10 feet below existing grades. Because concentrations exceed the NR 720 RCL for the groundwater pathway, we anticipate that impacted soil excavated during construction will be considered environmentally-unsuitable for reuse as backfill on the project and therefore, will require disposal at a licensed bioremediation/landfill facility. Existing pavement, sidewalk, and base course within the ROW adjacent to this site are not anticipated to be impacted; therefore, those materials should be able to be managed as common excavation. Existing traffic signal, lighting, and signage structures, including associated foundations (assuming soil adhered to those structures is brushed off or otherwise removed to the extent practicable) are also anticipated to be considered non-impacted.

Groundwater infiltration into the open boreholes and well casing installed at the site was not evident during the field exploration; therefore, sufficient groundwater for sampling was not encountered during the Phase 2.5 SI. Based on these observations, local topography, and information presented in Wisconsin Department of Natural Resources (WDNR) case files for nearby properties, we anticipate the depth to groundwater being deeper (at least 20 feet below existing ROW grade) than the maximum depths of excavation planned for the project near this site. Should water levels rise in the future, significant dewatering may not be necessary due to the low permeability of the natural silty clay deposits. Nevertheless, if dewatering is necessary to facilitate construction near this site (e.g., to remove storm water that may have accumulated in an open excavation), water generated during those activities should not be discharged to the surface, storm sewer, or sanitary sewer unless such discharge is approved and/or permitted by the WDNR and/or the City of Superior. Sampling and testing of water would likely be required prior to obtaining such approval.

Further subsurface investigation for the purposes of preparing for the improvement project near this site does not appear warranted at this time. However, we recommended that the WDNR and site owner be notified of these assessment results.

Contract special provisions for management of impacted soil that may be encountered during construction activities near this site were prepared and are appended to this report.

1. Background

1.1 Scope and Application

GEI Consultants, Inc. (GEI) was retained by the Wisconsin Department of Transportation (WisDOT) to complete a Phase 2.5 Subsurface Investigation (Phase 2.5 SI) within the existing right-of-way (ROW) adjacent to an unoccupied commercial property (203 39th Avenue East) located in the south quadrant of the intersection of East 2nd Street and 39th Avenue East (the "site"). The site was identified by WisDOT as a candidate for Phase 2.5 assessment based on a review of a historical WisDOT plan set dated 1948 which identified the site as being developed as a gasoline station at that time, a review of historical aerial photographs dated 1968 and 1983 which appeared to show pump islands near the ROW at those times, and the anticipated ground disturbances required near the site. The objective of the Phase 2.5 SI was to assess the potential for impacted media (soil and/or groundwater) to be encountered during the planned project (WisDOT ID 1198-03-78).

Background information associated with the site is included in Appendix A. The regional and local settings of the project are shown on the Regional Setting Diagram and Local Setting Diagram, presented as Figures 1 and 2, respectively.

1.2 WisDOT Project Description

WisDOT is planning to improve United States Highway 2/53 (East 2nd Street) between 31st Avenue East and 53rd Avenue East in the City of Superior. The improvement project is currently scheduled for 2020 and is anticipated to include spot locations of concrete pavement repair, roadway resurfacing consisting of a course grind and overlay, rehabilitation of a bridge, upgrading and/or installation of curb ramps at pedestrian crossings, updates or replacements of traffic signals and street lights, and repairs to existing utility manholes and inlets.

Based on information provided by WisDOT, construction activities that may disturb soil near the site in the south quadrant of the East 2nd Street and 39th Avenue East intersection are limited to updates and replacements of traffic signals, which may require spot excavations up to 15 feet deep for traffic signal pole foundations, 10 feet deep for street light pole foundations, and 7 feet deep for installation of electrical pull boxes.

1.3 Local Geology and Hydrogeology

The Department of the Interior United States Geological Survey publication *Water Resources* of *Wisconsin, Lake Superior Basin, Hydrologic Investigations Atlas HA-524, 1974*, indicates the site is in an area of glacial deposits (lake clay) overlying Precambrian-age bedrock consisting of sandstone, shale, and conglomerate. The thickness of glacial deposits over bedrock is anticipated to be 200 to 300 feet near the site.

The U.S. Department of Agriculture, Natural Resource Conservation Service (NRCS) Web Soil Survey indicates that Amnicon-Cuttre complex, 0% to 4% slopes, is the predominant soil series at the site. The Amnicon-Cuttre complex is described as moderately well drained soils located on the summit of till plains, having a depth to a restrictive feature of more than 80 inches, having a depth to water table as shallow as 12 inches, and generally consisting of silty clay loam to a depth of approximately 10 inches overlying clay to a depth of at least 67 inches.

Regional groundwater flow direction is toward Lake Superior (*Water Resources of Wisconsin, Lake Superior Basin, Hydrologic Investigations Atlas HA-524, 1974*), which is located north to northeast of the project. Local groundwater flow direction is also anticipated to be generally north to northeast toward Lake Superior; however, existing ditches, underground utilities, and other natural and manmade features may influence local groundwater flow. Based on local topography, observations completed during the field exploration, and information presented in WDNR files for nearby properties, we anticipate the depth to groundwater to be at least 20 feet below existing ROW grades near this site.

Refer to Section 3.1 for further description of site-specific conditions encountered during the Phase 2.5 SI field exploration.

2. Investigative Procedures

2.1 Soil Borings

GEI and a subcontract environmental probe firm (Probe Technologies, Inc. of West Bend, Wisconsin) accessed the project corridor on June 5 and 6, 2019, to complete the Phase 2.5 SI field exploration. Two soil probes (FGS-1 and FGS-2) were advanced using hydraulic direct-push (i.e., Geoprobe) technology within the existing ROW adjacent to the site, near areas of planned excavation for traffic signal foundations and electrical pull boxes. Soil probes were advanced to a depth of approximately 16 feet below ground surface (bgs).

The locations of soil probes advanced during the Phase 2.5 SI are illustrated on the Sample Location Diagram, presented as Figure 3. A photographic log of the soil probe locations is included in Appendix B.

2.2 Soil Sample Collection and Preservation

Soil samples were collected by advancing a 4-foot-long, 2-inch-diameter Macrocore sampler. As the sampler was retrieved, soils were preliminarily classified in the field and sub-samples were retained for field screening and laboratory analyses. Soil samples were field-screened by visual and olfactory observations, and using a photoionization detector (PID) equipped with a 10.6-electron volt lamp to qualitatively assess the presence of volatile organic compounds (VOCs). Information regarding soil types, drilling conditions, field-screening results, apparent depth to water (if evident) and approximate locations of stratigraphic changes were noted at the time of sampling and documented on the field logs. Soil classifications were based upon the texture and plasticity of the soil, in general accordance with the Unified Soil Classification System (USCS).

Soil samples selected for laboratory analysis were placed in appropriate containers provided by the laboratory and immediately placed into a cooler with ice for temporary field storage. Each soil sample container was labeled with the sample location, sample depth, sample preservative (if applicable), sample date and time, and project number. The samples were maintained in a cooler with ice during the fieldwork and until they could be delivered to the analytical laboratory.

Soil samples for laboratory analysis were submitted under chain-of-custody control to Pace Analytical Services, Inc. (Pace) in Green Bay, Wisconsin, for analysis of contaminants of potential concern specific to the site and additional landfill waste characterization analytes, as appropriate. Assessed parameters included diesel range organics (DRO), gasoline range organics (GRO), polycyclic aromatic hydrocarbons (PAHs), VOCs, and lead. A summary of parameters assessed in soil at each probe location is provided below.

Soil Parameters & Method	Probe Locations & Depths
DRO	FGS-1 (2'-4') (4.5'-6.5') (12'-14')
WI Modified Method	FGS-2 (0'-3') (6'-8') (12'-14')
GRO	FGS-1 (2'-4') (4.5'-6.5') (12'-14')
WI Modified Method	FGS-2 (0'-3') (6'-8') (12'-14')
VOCs	FGS-1 (2'-4') (4.5'-6.5') (12'-14')
EPA Methods 8260 &5035/5030B	FGS-2 (0'-3') (6'-8') (12'-14')
PAHs	FGS-1 (2'-4') (4.5'-6.5') (12'-14')
EPA Methods 8270 by SIM & 3546	FGS-2 (0'-3') (6'-8') (12'-14')
Lead	FGS-1 (2'-4') (4.5'-6.5') (12'-14')
EPA Methods 6010 & 3050	FGS-2 (0'-3') (6'-8') (12'-14')

Soil samples for VOC and GRO analyses were preserved in the field at the time of collection by placing a 10-gram portion of soil into a pre-tared, laboratory-provided, 40-milliliter (ml) vial containing 10 ml of laboratory grade methanol. Soil samples for DRO analysis were unpreserved and prepared by placing an approximately 25-gram portion of soil into a pre-tared, laboratory-provided, 4-ounce glass container. Soil samples for PAH and lead analyses were unpreserved and prepared by packing laboratory-provided, 4-ounce glass and/or plastic containers full or nearly-full with soil.

Soil Boring Logs prepared based on soil types, field-screening results, and other notes recorded on field logs at the time of fieldwork, document the sampling and are included in Appendix C.

2.3 Groundwater Monitoring Well

Following the collection of soil samples, a small-diameter ("temporary") groundwater monitoring well was installed at probe location FGS-2 to facilitate collection of a groundwater sample for evaluation of shallow groundwater quality. The temporary well was constructed of a 5-foot section of 3/4-inch inside diameter, polyvinyl chloride (PVC), slotted well screen attached to a solid PVC riser pipe. The temporary well included a sand filter pack and bentonite surface seal and was allowed to remain installed for approximately 24 hours prior to observation for sampling.

2.4 Groundwater Sample Collection and Preservation

Groundwater infiltration into the well casing installed at FGS-2 was not evident during the field exploration; therefore, sufficient groundwater for sampling was not encountered during the Phase 2.5 SI.

2.5 Monitoring Well and Borehole Abandonment

Following the collection of soil samples and observation of the temporary well for possible groundwater sampling, well materials were removed from FGS-2, and the boreholes and well were abandoned in accordance with the procedures outlined in Chapter NR 141, Wisconsin Administrative Code. The borehole located in an unpaved area (FGS-2) was backfilled with bentonite chips from the bottom of the boring to the ground surface. The borehole located in a paved area (FGS-1) was also backfilled with bentonite chips, but then finished with an asphalt patch to match the existing surface.

A GEI representative was present in the field during abandonment procedures and completed a WDNR Form 3300-5B, *Borehole Abandonment Form* for each sample location. Copies of the abandonment forms are included in Appendix C.

2.6 Decontamination Procedures

Down-hole soil sampling equipment was decontaminated before arriving to the site, prior to its initial use, and between probe locations to reduce the potential for cross-contamination between sample locations. Sample tools (Macrocore sampler, fittings, etc.) were decontaminated prior to arriving to the site and between sample intervals using an Alconox[®] or equivalent detergent wash, followed by a potable water rinse. Water generated during decontamination was contained by the probe contractor and transported off site for disposal. Equipment used for groundwater sampling was disposable and was replaced prior to the collection of each sample. The disposable equipment, including soil sampling acetate liners, tubing, and sampling gloves, were contained by GEI in a plastic bag after being used and transported off site for disposal.

3. Results

3.1 Field Screening Results

Subsurface conditions encountered during the Phase 2.5 SI were generally consistent at each probe location and described by the following: soil fill consisting of silty sand, clayey sand, and gravelly sand from the ground surface (FGS-2) or just beneath the asphalt-paved ground surface (FGS-1) to a depth of approximately 2 to 3 feet, underlain by reddish-brown silty clay with trace sand to the probe termination depth.

PID field screening results are presented on the boring logs (Appendix C). The PID was calibrated prior to initial operation using a calibration gas standard of 100 parts per million (ppm) isobutylene. The PID was used for qualitative assessment of a wide range of volatile analytes that may have been encountered during sampling, rather than a quantitative assessment of a specific analyte. Therefore, the PID was not programmed with an analyte-specific correction factor prior to initial operation. PID readings for soil samples collected from the probe locations ranged from less than 0.1 ppm, which is considered representative of background conditions, to 232 ppm. Readings less than 0.1 ppm were generally encountered shallower than 2 feet bgs and deeper than 7 feet bgs, and the most elevated PID readings were generally encountered at location FGS-1 at a depth between approximately 4 and 6 feet bgs and at FGS-2 between approximately 6 and 11 feet bgs.

Groundwater infiltration into the open boreholes and well casing was not evident during the field exploration; therefore, the current depth to groundwater at the site is uncertain. However, based on field observations, local topography, and information presented in WDNR files for nearby properties, we anticipate groundwater currently being deeper (at least 20 feet bgs) than the maximum depths of excavation planned for the project near this site. The depth to groundwater encountered during future construction activities could be shallower or deeper due to annual and/or seasonal variations in local precipitation.

3.2 Laboratory Analytical Results

3.2.1 Regulatory Framework

Wisconsin regulates soil conditions through several environmental rules and regulations. Chapter NR 720 of the Wisconsin Administrative Code presents the approved methodology to establish cleanup standards for soil impacts that will result in the restoration of the environment to the extent practicable. Under NR 720, methodologies are presented for establishing soil cleanup standards (i.e., Residual Contaminant Levels [RCLs]) for the protection of groundwater quality and protection of human health from direct contact (inhalation, ingestion, or dermal). Three general soil cleanup standards can be calculated using this methodology and the exposure and toxicity assumptions recommended by the WDNR and/or Environmental Protection Agency (EPA):

- <u>Non-Industrial Direct Contact Pathway</u> concentration of a particular chemical which, if present in the soil, represents a potential risk to human health as a result of inhalation or ingestion under exposure conditions characteristic of a non-industrial land use.
- <u>Industrial Direct Contact Pathway</u> concentration of a particular chemical which, if present in the soil, represents a potential risk to human health as a result of inhalation or ingestion under exposure conditions characteristic of an industrial land use.
- <u>Groundwater Pathway</u> concentration of a particular chemical which, if present in the soil, represents a potential risk to groundwater quality. Groundwater quality standards used to establish the Groundwater Pathway RCL generally correspond to federal drinking water standards or Wisconsin Enforcement Standards for groundwater.

Wisconsin has also established Background Threshold Values (BTVs) for particular substances by completing a statistical evaluation of soil samples collected from across the state in areas considered to be undisturbed and/or devoid of obvious anthropogenic influences. BTVs are summarized in the WDNR's R&R Program RCL Spreadsheet (RR-052e), which was last updated in December 2018. A BTV is considered to be the concentration of a substance that is categorically accepted as not exceeding naturally-occurring background levels. Per WDNR guidance and NR 720.07(3), Wisconsin Administrative Code, a substance detected in soil at a concentration above the RCL, but below the BTV, is not considered to be an exceedance of the RCL and does not need to be identified as such on summary tables or figures.

The general soil cleanup standards presented in NR 720 should not be interpreted as mandatory compliance standards. Rather, these limits are based on general toxicity values and exposure conditions and are intended to be used to evaluate the general environmental risk related to a property. Wisconsin regulations allow parties to meet soil cleanup standards by using protections (i.e. performance standards) that can be incorporated into development plans. A soil performance standard implemented to reduce the risk of direct contact typically consists of capping the surface where contaminants are present within four feet of the ground surface. Capping material may consist of a surface barrier such as soil, geomembrane, asphalt, or concrete and does not necessarily need to be impermeable if contaminants are not likely to leach. If contaminants exceeding direct contact RCLs are present at depths greater than 4 feet, a performance standard to limit direct contact exposure is imposed by listing the site on the WDNR database and requiring proper management of contaminated material if excavated in the future.

A soil performance standard can also be implemented where soil contamination threatens groundwater quality. If contaminants exceeding groundwater pathway RCLs are present, an impermeable barrier may be an effective performance standard remedy to reduce contaminant leaching through the soil and into groundwater. If soil contamination and groundwater contamination above ES levels are both present, natural attenuation of groundwater contaminants can also serve as a soil performance standard, provided naturally occurring processes are containing and reducing the mass and concentration of groundwater contaminants, and groundwater contaminant concentrations will be reduced to below ES levels within a reasonable time period.

3.2.2 Soil Sample Analytical Results

Soil sample analytical results are presented on Table 1, with only parameters detected above laboratory minimum detection limits (MDLs) being summarized. Complete lists of assessed parameters and associated results are provided in the laboratory report included in Appendix D. A summary of the analytical results is presented below.

Laboratory analytical results indicate that DRO, GRO, lead, PAHs, and/or VOCs were detected above MDLs in each soil sample submitted for analysis. DRO was detected in five of six soil samples submitted for analysis, with reported concentrations ranging between 1.5 milligrams per kilogram (mg/kg) and 110 mg/kg. GRO was detected in four of six soil samples submitted for analysis, with reported concentrations ranging between 23.8 and 892 mg/kg. DRO and GRO are considered to be indicator parameters, and as such, RCLs have not been established for DRO or GRO. However, concentrations of DRO and GRO above 100 mg/kg generally represent soil conditions with a high probability of containing other contaminants of potential concern (e.g., VOCs or PAHs) at concentrations above a RCL. DRO at FGS-1 (2'-4') and GRO at FGS-1 (2'-4' and 4.5'-6.5') and FGS-2 (6'-8') were detected at concentrations above 100 mg/kg.

Lead was detected above the laboratory MDL in all six samples submitted for analysis; however, except at FGS-2 (0'-3'), the reported concentrations are below the BTV. Lead was detected at a concentration (142 mg/kg) above the BTV (52 mg/kg) at FGS-2 (0'-3'), which is also above the Groundwater Pathway RCL (27 mg/kg).

PAHs and VOCs were detected above the laboratory MDLs in four of six soil samples submitted for analysis; only the deepest samples at FGS-1 (12'-14') and FGS-2 (12'-14') did not contain PAHs or VOCs above the MDLs. Except for naphthalene at FGS-1 (4.5'-6.5') and benzo(a)pyrene and chrysene at FGS-2 (0'-3'), the reported concentrations of PAHs are below the most restrictive RCLs. The detected concentrations of naphthalene at FGS-1 (4.5'-6.5') and chrysene at FGS-2 (0'-3') are above the applicable Groundwater Pathway RCLs and the detected concentration of benzo(a)pyrene at FGS-2 (0'-3') is above the Non-Industrial Direct Contact Pathway RCL. VOCs detected above RCLs include benzene at FGS-2 (0'-3' and 6'-8'), ethylbenzene at FGS-1 (4.5'-6.5'), naphthalene at FGS-1 (2'-4' and 4.5'-6.5'), and total trimethylbenzenes (1,2,4- and/or 1,3,5-) at FGS-1 (2'-4' and 4.5'-6.5') and FGS-2 (0'-3' and 6'-8'); these petroleum VOCs (PVOCs) exceed the applicable Groundwater Pathway RCLs.

The volatile and semi-volatile analytes detected in the ROW suggest that a release of gasoline from the historical operation of an underground storage tank (UST) system may have occurred at the site. Although the lead detections may also be associated with a former leaded gasoline UST system, subsurface conditions encountered during the Phase 2.5 SI and the distribution of lead detections suggest that it is possible for elevated concentrations of lead to be associated with soil fill historically deposited within the ROW.

4. Conclusions and Recommendations

4.1 Conclusions

The results of this Phase 2.5 SI suggest that lead-, PAH-, and petroleum VOC-impacted soil is present within the ROW adjacent to this site and likely to be encountered during planned construction activities. Most notably, several PAH and petroleum VOC analytes were detected in surface, near-surface, and deeper soil at concentrations representing a potential risk to groundwater quality, and one PAH analyte (benzo[a]pyrene) was detected in surface soil at a concentration representing a potential risk to human health through direct contact. Considering results of visual, olfactory, and PID field-screening conducted during the Phase 2.5 SI, impacted soil may be encountered to a depth of at least 10 feet below existing grades.

The anticipated limits of impacted soil within the existing ROW near this site, based on soil samples analyzed as part of the Phase 2.5 SI, are illustrated on the Soil Management Zone Diagram, presented as Figure 4. Contract special provisions for management of impacted soil that may be encountered during construction activities near this site were prepared and are included in Appendix E.

4.2 Recommendations

Further subsurface investigation for the purposes of preparing for the improvement project near this site does not appear warranted at this time. However, we recommended that the WDNR and site owner be notified of these assessment results.

We recommended that excavations adjacent to this site be field-screened by an environmental consultant during construction. We anticipate that impacted soil excavated during construction will be considered environmentally-unsuitable for reuse as backfill on the project and therefore, will require disposal at a licensed bioremediation/landfill facility. Existing pavement, sidewalk, and base course within the ROW adjacent to this site are not anticipated to be impacted; therefore, those materials should be able to be managed as common excavation. Existing traffic signal, lighting, and signage structures, including associated foundations (assuming soil adhered to those structures is brushed off or otherwise removed to the extent practicable) are also anticipated to be considered non-impacted.

Based on observations during field exploration, local topography, and information presented in WDNR files for nearby properties, we anticipate the depth to groundwater being deeper (at least 20 feet below existing ROW grade) than the maximum depths of excavation planned for the project near this site. Should water levels rise in the future, significant dewatering may not be necessary due to the low permeability of the natural silty clay deposits. Nevertheless, if dewatering is necessary to facilitate construction near this site (e.g., to remove storm water that may have accumulated in an open excavation), water generated during those activities should not be discharged to the surface, storm sewer, or sanitary sewer unless such discharge is approved and/or permitted by the WDNR and/or the City of Superior. Sampling and testing of water would likely be required prior to obtaining such approval.

If evidence of potential environmental impairment is encountered during construction beyond the limits of this Phase 2.5 SI, we recommended that excavations be terminated in the area and the engineer be notified for field screening or sampling.

5. General Qualifications

Conclusions presented herein are based on our professional interpretation of information collected during the Phase 2.5 SI. Our conclusions are limited by the accuracy and completeness of information provided by others. Therefore, if additional information is disclosed or an alteration of the information occurs, the conclusions presented in this report may need to be revised.

Conclusions presented herein are also based on subsurface conditions as revealed in the probes completed during the Phase 2.5 SI. Stratification lines shown on the boring logs represent the approximate boundaries between soil/material types. Variations in subsurface conditions may exist both in the horizontal and vertical directions away from the probes locations.

This report was prepared on behalf of WisDOT to evaluate the potential for subsurface impacts to be encountered during the planned construction project. We recommend that this report be used only for the purposes intended by GEI and WisDOT at the time of issuance. This report may be unsuitable for other uses, and reliance on this report by anyone other than WisDOT, is done at the sole risk of the user.

Tables

Table 1 Soil Analytical Summary

Table 1.

Soil Analytical Summary WisDOT - Project 1198-03-08/78 1902429 US2-US53 31st to 53rd Superior

	•					Location	Г	FGS-1	FGS-1	FGS-1	FGS-2		FGS-2		FGS-2
			Wisconsin Regula	atory Standard	s ^{1,2}	Date		6/5/19	6/5/19	6/5/19	6/5/19		6/5/19	<u> </u>	6/5/19
			Non-Industrial	story standard.	,									1	
	CAC #	BTV	DC	Industrial DC	GW	Depth (ft)	H	2.0-4.0	4.5-6.5	12.0-14.0	0.0-3.0	_	6.0-8.0	<u> </u>	12.0-14.0
	CAS #		50			% Moisture		18.7	24.0	27.7	17.6		25.6	<u> </u>	27.8
Indicator Parameters (mg/kg) ³		1	-			r	-			-	1	-			
Photoionization Detector (PID)		NE	NE	NE	NE		_	3.5	232.0	< 0.1	< 0.1		7.1	<	0.1
GRO (Gasoline Range Organics)		NE	NE	NE	NE		_	892	660	< 3.5	23.8		460	<	3.5
DRO (Diesel Range Organics)		NE	NE	NE	NE			110	66.2	1.5 J	61.2		27.6	<	1.4
METALS (detected analytes) ^{3,4} (mg/kg)															
Lead	7439-92-1	52	400	800	27			10.3	10.3	9.4	<u>142</u> ³	*	9.5		10.2
PAHs (detected analytes) ³ (µg/kg)															
Acenaphthene	83-32-9	NE	3,590,000	45,200,000	NE		<	4.8	< 10.2	< 5.4	14.8	J <	5.2	<	5.4
Acenaphthylene	208-96-8	NE	NE	NE	NE		<	4.1	< 8.7	< 4.6	19.6	J <	4.4	<	4.6
Anthracene	120-12-7	NE	17,900,000	100,000,000	196,949		<	7.0	< 15	< 7.9	68.2	<	7.7	<	7.9
Benzo(a)anthracene	56-55-3	NE	1,140	20,800	NE		<	3.9	< 8.3	< 4.4	143	<	4.3	<	4.4
Benzo(a)pyrene	50-32-8	NE	115	2,110	470		<	3.1	< 6.6	< 3.5	125	<	3.4	<	3.5
Benzo(b)fluoranthene	205-99-2	NE	1,150	21,100	478.1		<	3.5	< 7.4	< 3.9	135	<	3.8	<	3.9
Benzo(g,h,i)perylene	191-24-2	NE	NE	NE	NE		<	2.5	< 5.3	< 2.8	93.0	<	2.7	<	2.8
Benzo(k)fluoranthene	207-08-9	NE	11,500	211,000	NE		<	3.1	< 6.6	< 3.5	135	<	3.4	<	3.5
Chrysene	218-01-9	NE	115,000	21,110,000	144.2		<	4.1	< 8.9	< 4.7	<u>199</u>	<	4.5	<	4.7
Dibenzo(a,h)anthracene	53-70-3	NE	115	2,110	NE		<	2.7	< 5.9	< 3.1	34.1	<	3.0	<	3.1
Fluoranthene	206-44-0	NE	2,390,000	30,100,000	88,877.8		<	6.4	< 13.7	< 7.2	261	<	7.0	<	7.2
Fluorene	86-73-7	NE	2,390,000	30,100,000	14,829.9		<	5.1	< 10.9	< 5.7	28.4	J <	5.6	<	5.7
Indeno(1,2,3-cd)pyrene	193-39-5	NE	1,150	21,100	NE		<	2.7	< 5.8	< 3.0	65.5	<	3.0	<	3.0
1-Methylnaphthalene	90-12-0	NE	17,600	72,700	NE			160	184	< 5.6	794		48.9	<	5.6
2-Methylnaphthalene	91-57-6	NE	239,000	3,010,000	NE			462	453	< 6.9	1030		118	<	6.9
Naphthalene	91-20-3	NE	5,520	24,100	658.2			617	<u>1160</u>	< 11.6	607		253	<	11.7
Phenanthrene	85-01-8	NE	NE	NE	NE		<	14.3	< 30.6	< 16.1	549	<	15.6	<	16.1
Pyrene	129-00-0	NE	1,790,000	22,600,000	54,545.5		<	5.5	< 11.9	< 6.2	195	<	6.1	<	6.2
VOCs (detected analytes) ³ (μ g/kg)															
Benzene	71-43-2	NE	1,600	7,070	5.1		<	100	< 50.0	< 25.0	254		<u>38.3</u> J	<	25.0
n-Butylbenzene	104-51-8	NE	108,000	108,000	NE			2360	2110	< 25.0	< 25.0		690	<	25.0
sec-Butylbenzene	135-98-8	NE	145,000	145,000	NE			956	780	< 25.0	< 25.0		253	<	25.0
Ethylbenzene	100-41-4	NE	8,020	35,400	1,570.0			1570	3150	< 25.0	< 25.0		389	<	25.0
Isopropylbenzene (Cumene)	98-82-8	NE	268,000	268,000	NE			1140	1330	< 25.0	< 25.0		421	<	25.0
p-Isopropyltoluene	99-87-6	NE	162,000	162,000	NE			1650	1340	< 25.0	< 25.0		449	<	25.0
Naphthalene	91-20-3	NE	5,520	24,100	658.2			<u>1170</u> J	2010	< 40.0	54.4	J	540	<	40.0
n-Propylbenzene	103-65-1	NE	264,000	264,000	NE			2070	2280	< 25.0	< 25.0		738	<	25.0
Toluene	108-88-3	NE	818,000	818,000	1,107.2		<	100	< 50.0	< 25.0		J <	25.0	<	25.0
1,2,4-Trimethylbenzene	95-63-6	NE	219,000	219,000	,			1690	1200	< 25.0	51.2	J	2890	<	25.0
1,3,5-Trimethylbenzene	108-67-8	NE	182,000	182,000	1,322.0			3300	3190	< 25.0	< 25.0		997	<	25.0
m&p-Xylene			,000		_,=_			1350	2120	< 50.0	64.7	1	1120	<	50.0
o-Xylene	1330-20-7	NE	260,000	260,000	3,960.0		<	100	66.4 J	< 25.0		, J <	25.0	<	25.0
•			200,000	200,000	3,300.0		,	200	0011 3	2010	00.0		20.0	<u> </u>	_0.0

<u>Notes</u>

(mg/kg) = milligrams per kilogram;

< = not detected above method detection limit;

(µg/kg) = micrograms per kilogram; -- = not analyzed; J = concentration between detection limit and reporting limit;

DC = Direct Contact; PAHs = Polycyclic Aromatic Hydrocarbons;

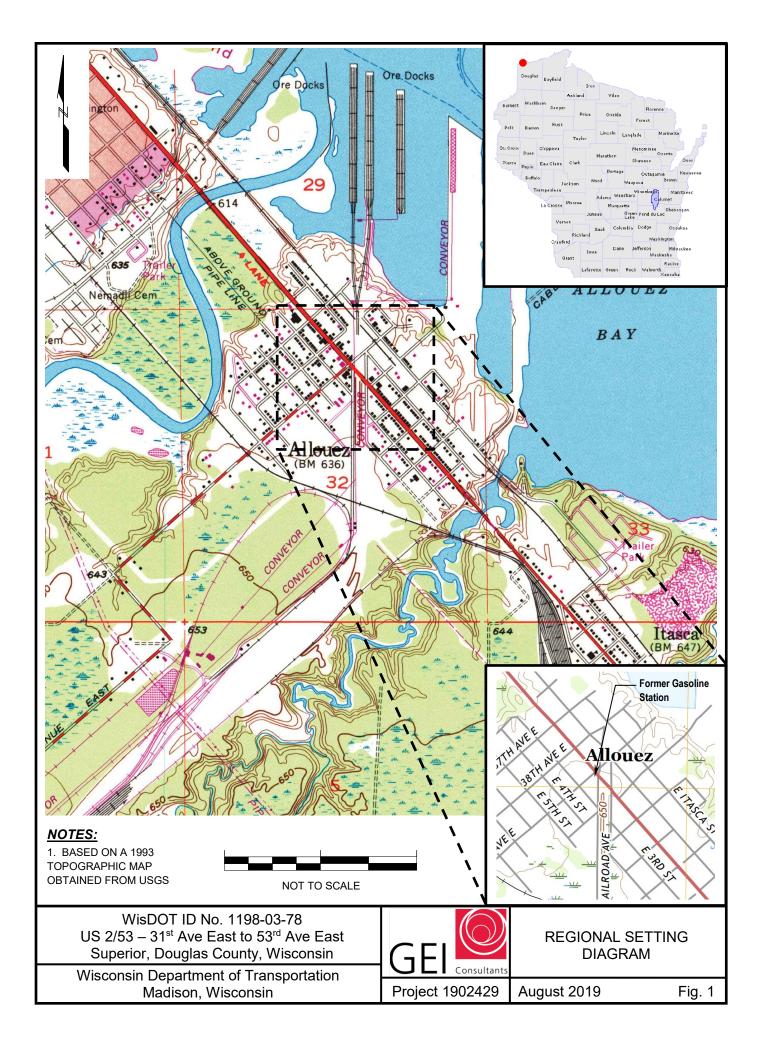
GW = Groundwater WT = Sample below observable water table VOCs = Volatile Organic Compounds;

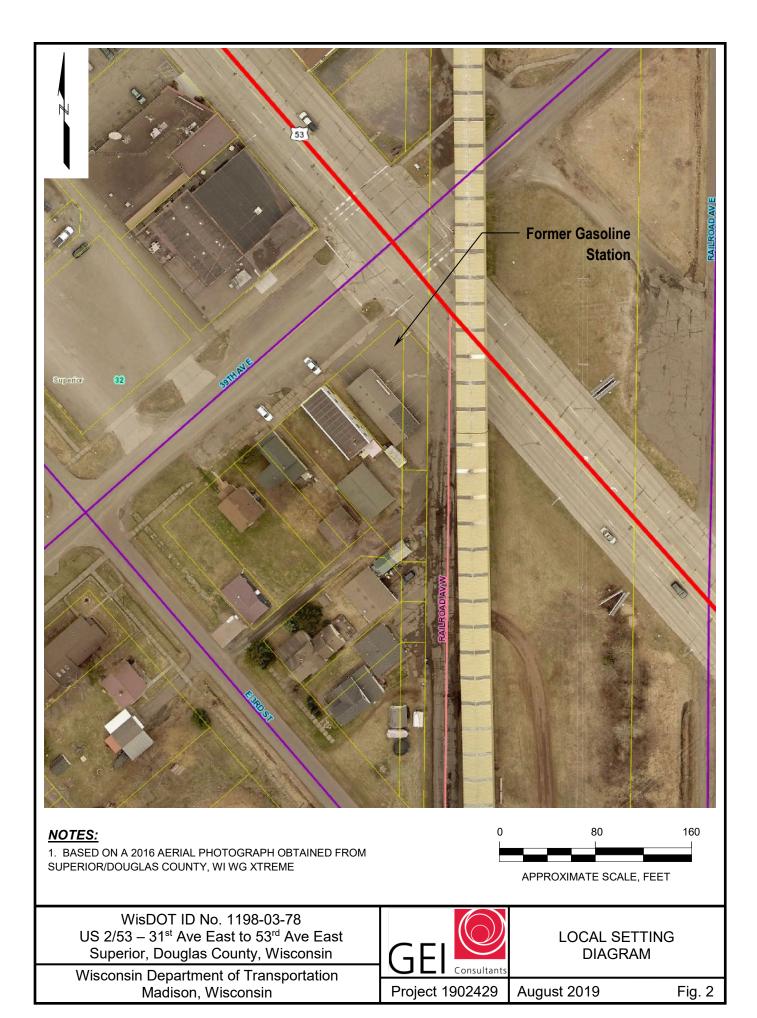
¹ NR 720 RCL = Chapter NR 720, Wisconsin Administrative Code, Residual Contaminant Level

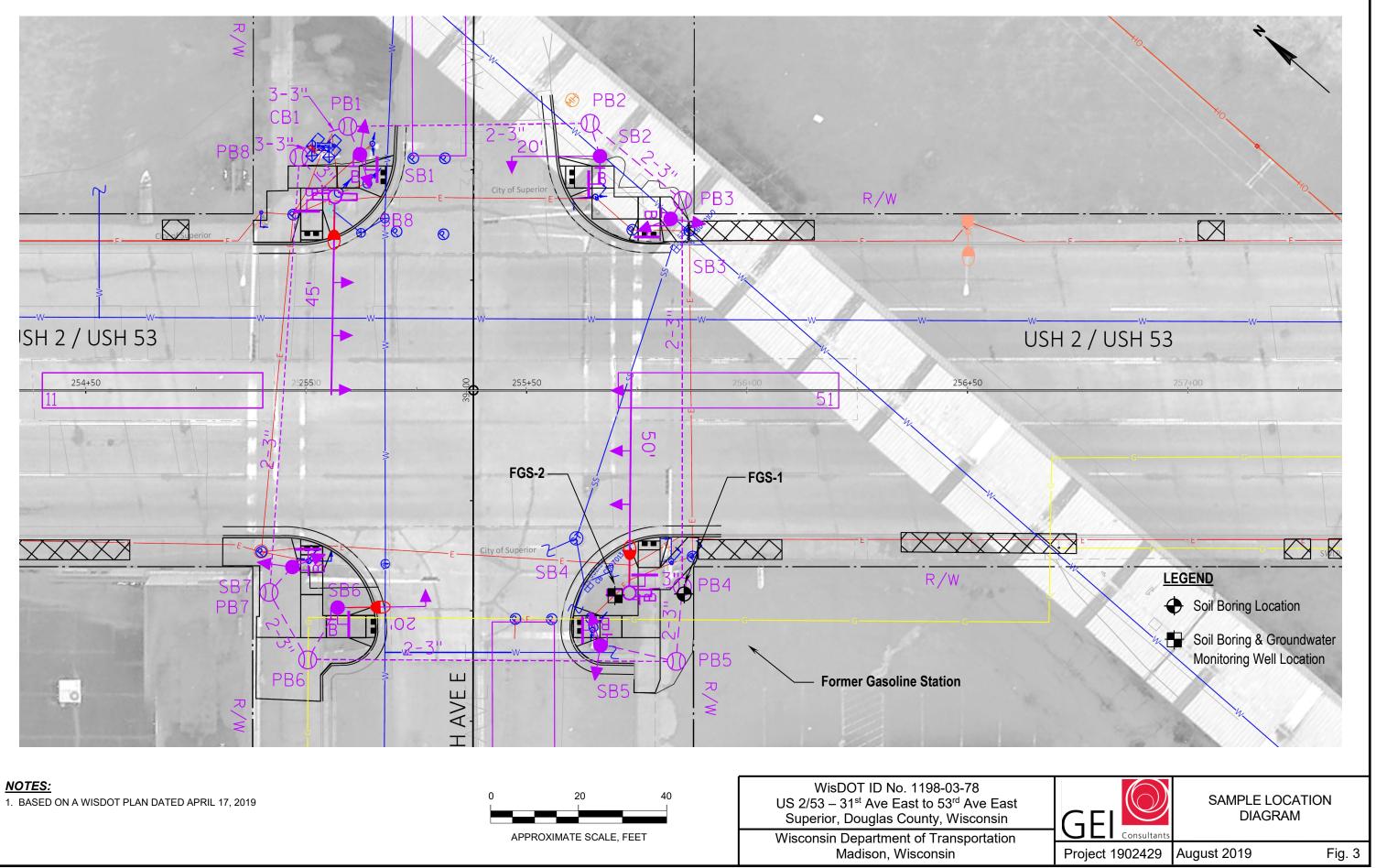
²RCLs & BTVs, PAHs, and VOCs are based on USEPA methodology; presented in WDNR Guidance, Soil RCL Determinations using USEPA Regional Screening Level Web Calculator (RR-890) and summarized in the WDNR's R&R Program RCE Spreadsheet (June 2018). ³Only detected analytes are listed; refer to the laboratory analytical report for a full list of assessed analytes

⁴ Metal concentrations above an RCL, but not noted as such on this table, are considered to be representative of background conditions in Wisconsin soils.

Exceeds the NR 720 Non-Industrial Direct Contact RCL: 100 Exceeds the NR 720 Industrial Direct Contact RCL: 100

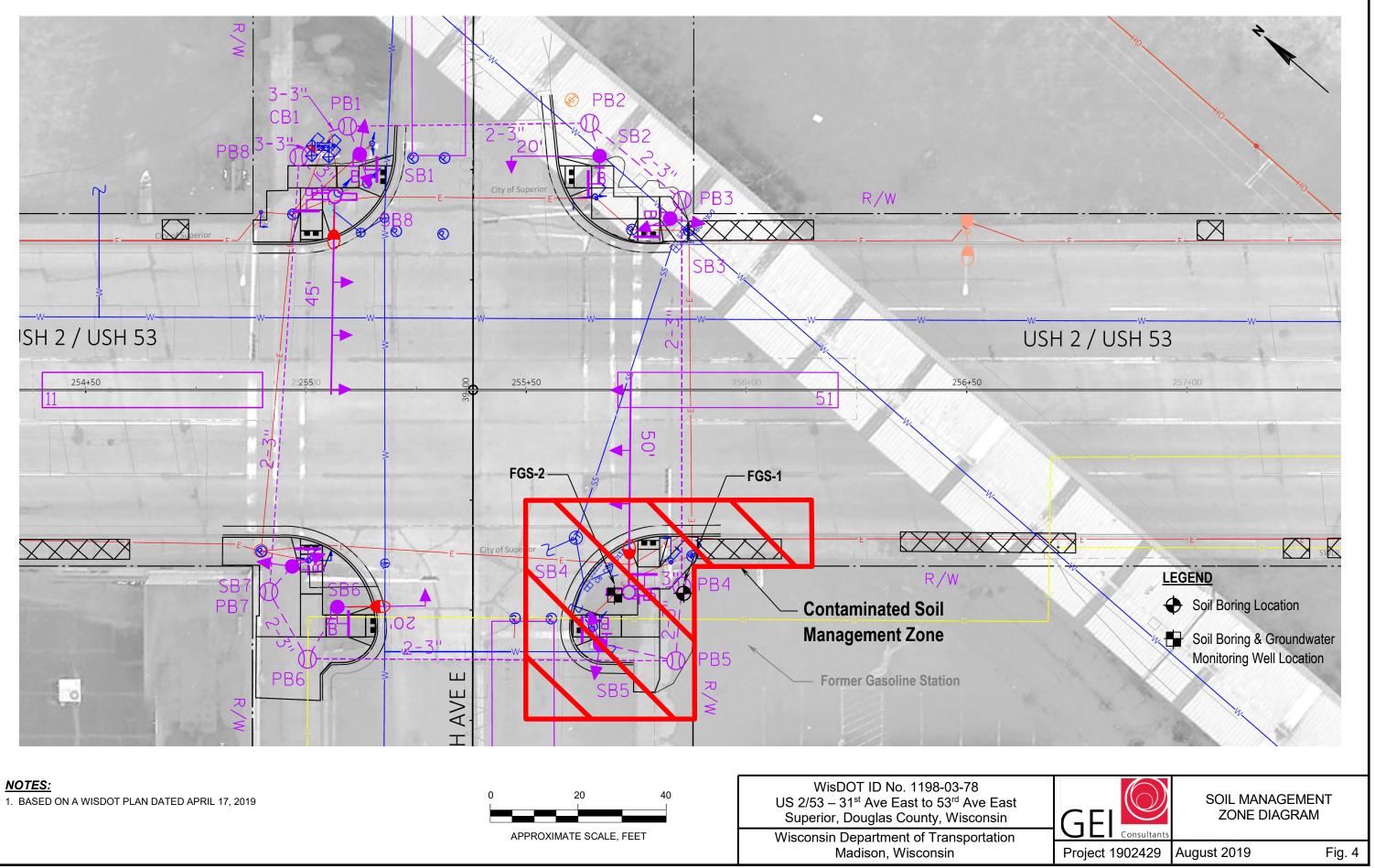

Exceeds the NR 720 Groundwater Pathway RCL: 100

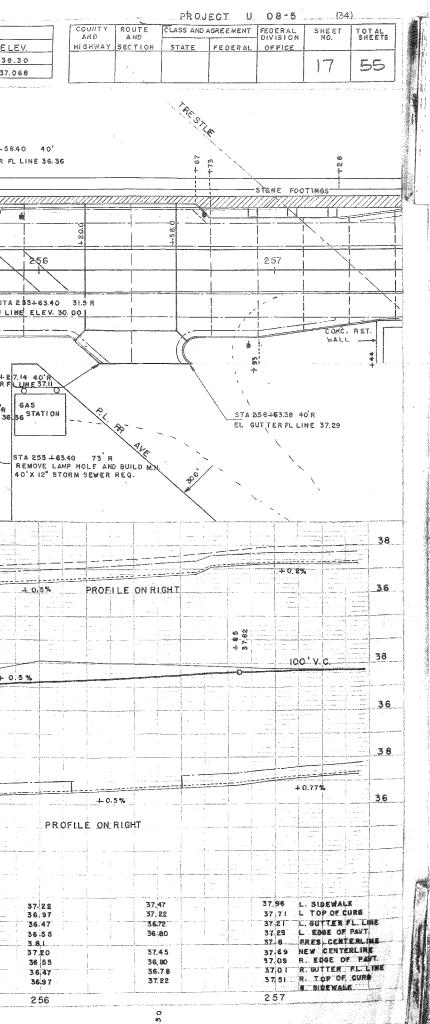

Exceeds the BTV: 100*

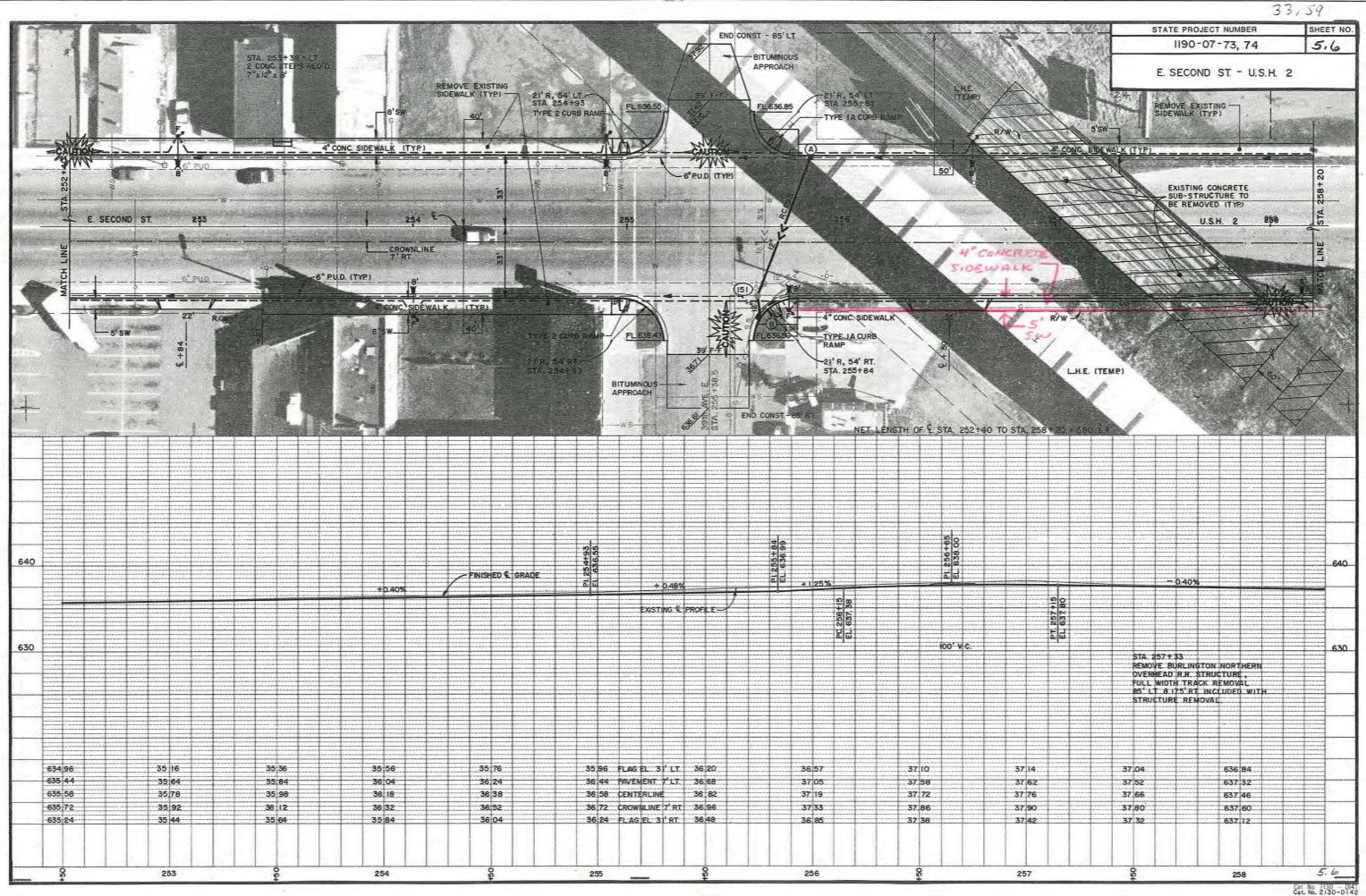

NE = Not Established BTV = Background Threshold Value

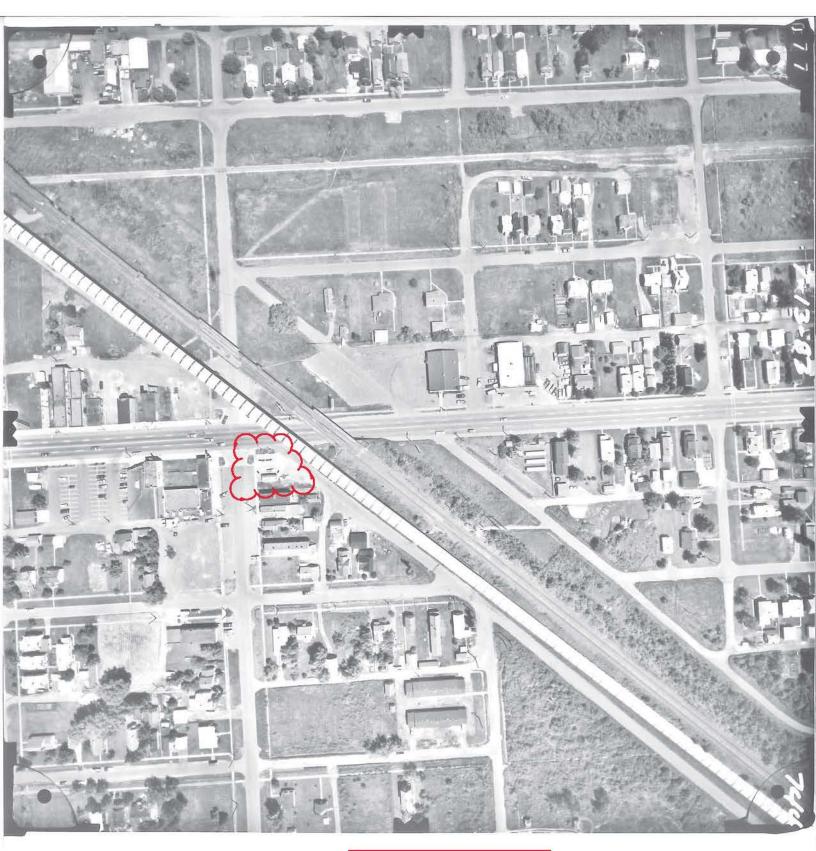
Figures

- Figure 1 Regional Setting Diagram
- Figure 2 Local Setting Diagram
- Figure 3 Sample Location Diagram
- Figure 4 Soil & Groundwater Management Zone Diagram






Appendix A


Site Background Information

L. TOP L. BUTT L. EDG PRES. C	36	34	<u>38</u> 36						/conc/	2		An order to the state of the st	an and a sub-state of the	-
EWALK OF CURB TER FL LINI DE OF PAVT. CENTERLINE ENTERLINE						NET Q L			//5%////////	51	VIII (1)	-		• ,
					N	ENGTH S			,					
35 18 34 93 34 43 34 51 35 16 34 51						TA. 251+								
						0 TO 257								
						+0 = 6					8			
35 4 35 15 34 63 34-73 35 3 55 38 34 7 3						SOO LIN.				252				
						. FT.		<u>5' CONG. 1</u>			5' CONC.			ee
	SIDE VAL		TOP OF			· · · · · · · · · · · · · · · · · · ·		<u>sw.</u>			S.W. 7777			
35.62 35.37 34,87 34,95 35.80 34,93			EIN. GRADI										×	
	GUTTER													and a state of a state of a state of a
	FLLINE											¢¢.		
3 5 84 35 59 3 5 09 3 5 17 35 5 35 82 3 5 17	OF CURB									253	0			an 1949, an ann Ann
										 				o oo aan ah addaaday . Yaana
	4-044% ED6E													
36.06 35 81 35 35 35 39 36.04	OF PAVT.								。 ////////////////////////////////////	<u>41° 17'</u>				÷.
													e j	s ve ~ s
· · · · · · · · · · · · · · · · · · ·					LEFT 635				· ·	£., /			# 11	ra, ÷
					92 50	P					777			235
36 28 36 03 35 53 35 61 35 8 36 26 35 61		····· ·			1	PROFIL				254			ana ang	5 - F - S F - E
		N CEN	PRES		0 9 m m 50 0	E ON					0		y Y	in sta A se f
		ERLIN	PROFILE			3971							Ċ,	
36,5 36,2 35,7 35,8 35,8 36,4 35,8					ກ ຍ ອີອີ ກ ກ	AVE 1								
5 5 3 8													\searrow	
			1			· · · · · · · · · · · · · · · · · · ·	5			i	6			
							TA 255-		-			20.40 FL. L INE	5 + 83	STA.
36.72 36.47 35.97 36.05 36.1 36.70 36.05			+ n	-00 -1 -00 -1 -00 -1 -00 -1 -00 -1 -00 -1 -00 -1 -00 -1 -00 -1 -00 -1-0			-20.40 ER FL.L			255		40 <u>H</u> 36 20		
							40' R LINE 36.29 EL. FI 40		X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0		. MON	DESCR
369						0 18'C PAVIT	IN. GRAD	iu /		ST. (40 H 0* 86 +	3293-4 FIN. GRAD	MARKS RIPTION
						owc	E		7	* 10N, →		36.70		
37.03 3678 36.28 36.36 36.36 37.01 36.36						12" SEWE	TA 255+5 L GUTITEI	SE			GE C	_	' LT.	4' LT.
						-	56.40 40 RFL.LINE	STA 256 L GUTTE			0. MON \$	TA 255 4 L GUTTEI		
			+ 0.			4	R 36	4 2 7 R F 1		2			37.0	ELE 30,

......

1983 Aerial Photograph

Appendix B

Photographic Log

PHOTOGRAPHIC LOG

PHOTOGRAPH NO: 1	DATE: June 5, 2019	PROJECT NO: 1902429	CLIENT: WisDOT
DIRECTION: SE			39 th Avenue East Intersection, WI (WisDOT Project ID #1198-03-78)
DESCRIPTION: Probe locations FGS-1 (cone at right) and FGS-2 (cone at left).			

PHOTOGRAPH NO: 2	DATE: June 5, 2019	PROJECT NO: 1902429	CLIENT: WisDOT
DIRECTION: NW			39 th Avenue East Intersection, WI (WisDOT Project ID #1198-03-78)
DESCRIPTION: Probe location FGS-1 (cone in foreground) and FGS-2 (cone in background).			

Appendix C

Soil Boring Logs and Abandonment Forms

- And	4802 \$	Shebo	Transport bygan Ave /I 53705	., Rm 45	1	WISDOT STRUCTURE ID:		1198-03				AGE NO:	RING	10.	•	GS-
ISDOT PR		ME:			c	ONSULTANT:		CONSULTANT PROJEC	T NO:			ATITUDE	:	L	ONGITUDE:	1 of
OADWAY	NAME:	F	ormer Ga	s Statio		GEI Consult RILLING CONTRACTOR:		DRILLING CONTRACTO	R PROJECT	19024 NO:		ORTHING		E	ASTING:	
ATE STAR					C	Probe Technolo REW CHIEF:	ogies, Inc	DRILL RIG:			c		1667 ATE SYSTE	98.9	2	9381
				6/05/1	9		Bendorf	HOLE SIZE:		Geopro	be			ouglas	CO. COO	rdina
OUNTY:				6/05/1	9		ngl-Wiese	HAMMER TYPE:		2	in		ED ELEVAT			
ATION			OFFSET	Dougla	S	OWNSHIP: RANGE:	Sandmire	1/4 SECTION		core - 4' lo	ng					
ATION	1		OFFSET			49 49 13	3	32	NE	N	w "			v.	T	
SAMPLE TYPE NUMBER	RECOVERY (in) (RQD)	Moisture	BLOW COUNTS (N VALUE)	Depth (ft)	Graphic	and Ge	Rock Dese eological C jor Unit / C			USCS / AASHTO	Strength Qp (tsf)	PID	Boulders	Drilling Method	Not	tes
CS 1	48			- 1 -		0.3 Asphalt Fill: Dark brown silty san 2.0 Reddish brown silty clay	nd with trace	organics		SM		<0.1				
				- 3 -		Dark streak with more sa Odor from 3-4 feet 4.0 Reddish brown silty clay				CL-ML		3.5			Environ San 2-4	nple
CS 2	48			- 5-		Odor from 4-6 feet		_		CL-ML		232.0 10.0 <0.1			Environ San 4.5-6.	nple
CS 3	48			- 9 -		Reddish brown silty clay				CL-ML		<0.1 <0.1 <0.1				
CS 4	48			- 12 - 13 - 14 - 15		Reddish brown silty clay	- moist			CL-ML					Environ San 12-14	nple
L				⊥ <u>16</u>		16.0 End of boring at 16 feet Boring advanced from 0. sampler Borehole backfilled with 3 WATER LEVEL &	3/8-inch ber	itonite chips							1	
			UNTERED	יאיפווח נ												WE
-								CAVE - IN DEP				NMR				WE DR WE
⊈ w	AIER	_EVE	L AT COM	FLEIION	N:			CAVE - IN DEP			S:	NMR				WE DR

- And	4802 S Madis	pt. of Shebo on, W	oygan Áve /I 53705		151	WISDO	OT PROJECT ID:):	1198-03				BOR GE NO:	111			r	
/ISDOT PRI		ME:	ormer Ga	e Stat	ion	CONSULTANT:	GEI Con	sultants, Inc	CONSULTANT PROJEC	T NO:	19024		TITUDE:			LO	NGITUDE:	1 of
OADWAY N	NAME:		Uniter Ga	s sidi		DRILLING CONTR	ACTOR:	nologies, Inc	DRILLING CONTRACTO	R PROJEC		-	RTHING		6789		STING:	9381
ATE STAR	TED:			6/05/	/10	CREW CHIEF:		Dan Bendorf	DRILL RIG:		Geopro		ORDINA		STEM:		Co. Coc	
ATE COMP	LETED:			6/05/	-	LOGGED BY:			HOLE SIZE:		•		RIZONT	AL DA	TUM:		RTICAL DAT	JM:
OUNTY:				Doug		LOG QC BY:		Zangl-Wiese de Sandmire	HAMMER TYPE:	Macro	core - 4' lo	STE	REAMBE	ED ELE	VATION	:		
TATION			OFFSET	Dougi		TOWNSHIP:	RANGE:	13 SECTION:	1/4 SECTIO		1/4 1/4 SECTION:		RFACE I	ELEVA	TION:			
								10	52									
SAMPLE TYPE NUMBER	RECOVERY (in) (RQD)	Moisture	BLOW COUNTS (N VALUE)	Depth (ft)	Graphic		and	il / Rock Des Geological (Major Unit / (Drigin for		USCS / AASHTO	Strength Qp (tsf)	PID		Boulders	Drilling Method	No	tes
						Fill: Da	ark brown clay	ey sand / topso	il with trace roots		sc							
cs	24			- 2 -		2.0					30		<0.1					
1				- 3 -		3.0		lack sand with	-	iot	SP							nment nple feet
				4 -		4.0		slay with trace s	ith trace sand - mo	iət	CL-ML							
CS 2	24			- 5-			odor from 6-7 f		and - moloc		CL-ML		7.1					
				- 7 -		8.0 Reddis	h brown silty c	clay - moist										nmen nple feet
				- 9 -									<0.1					
CS 3	48			-10-			odor from 10-1	1 feet			CL-ML		<0.1					
				- 12 - - 13 -		12.0 Reddis	h brown silty c	clay - moist									Environm Samp 12-14 f	mple
CS 4	48			- 14 - 15		16.0					CL-ML		<0.1					
L	1			<u> 16 </u>	<u>r</u> ¥	Boring sample Installe Remov	er ed temporary w ed temporary		9	ısh					1			
						WA	TER LEVEI	& CAVE-I	OBSERVATI	ON DA	TA							
-	ATER	ENCC		DURI	NG	ORILLING:		廢	CAVE - IN DEP	TH AT C		N: I	NMR					WE DF
V w	ATERI	EVE	L AT COM	PLETIC	DN:				CAVE - IN DEP	TH AFT	ER 0 HOUR	S: N	MR					WE DR

WISDOT PROJECT INFORMATION	
WisDOT Project ID: 1198-03-08/78	WisDOT Project Name: Former Gas Station
(1) GENERAL INFORMATION	(2) FACILITY /OWNER INFORMATION
Unique Well No. Well ID No. County Douglas	Facility Name Former Gas Station
Common Well Name FGS-1 Gov't Lot (if applicable)	Facility ID License/Permit/Monitoring No.
$\frac{SW}{Grid \ Location} \xrightarrow{1/4 \ of \ Sec.} \xrightarrow{13} ; T. \xrightarrow{49} N; R. \xrightarrow{13} W$	Street Address of Well 203 39th Ave E
ft. \[N. \[S.,ft. \[E. \[W.	City, Village, or Town Superior
Local Grid Origin (estimated:) or Well Location	Present Well Owner Original Owner
Lat $\underline{}^{\circ} \underline{}^{\prime} \underline{}^{\prime}$ Long $\underline{}^{\circ} \underline{}^{\prime} \underline{}^{\prime}$ or	WisDOT Street Address or Route of Owner
State Plane 166798.93 ft. N. 293811.41 ft. E. $\overset{S}{\square}$ $\overset{C}{\boxtimes}$ ZoneReason For AbandonmentUnique Well No.	4802 Sheboygan Ave. City, State, Zip Code
Boring only of Replacement Well	Madison, WI 53705
(3) WELL/DRILLHOLE/BOREHOLE INFORMATION	(4) PUMP, LINER, SCREEN, CASING, & SEALING MATERIAL
Original Construction Date 06/05/2019 Monitoring Well Water Well Drillhole / Borehole Construction Type: Drilled Driven (Sandpoint) Dug Voter (Specify) Hydraulic push	Pump & Piping Removed? Yes No Not Applicable Liner(s) Removed? Yes No Not Applicable Screen Removed? Yes No Not Applicable Casing Left in Place? Yes No Not Applicable Was Casing Cut Off Below Surface? Yes No No Did Sealing Material Rise to Surface? Yes No Did Material Settle After 24 Hours? Yes No If Yes, Was Hole Retopped? Yes No
Image: With the second seco	Required Method of Placing Sealing Material
Unconsolidated Formation Bedrock	Conductor Pipe - Gravity Conductor Pipe - Pumped Screened & Poured Other (Explain) (Bentonite Chips)
Total Well Depth (ft) 16 Casing Diameter (in.) NA (From ground surface) Casing Depth (ft.)	Sealing Materials For monitoring wells and Neat Cement Grout monitoring well boreholes only Sand-Cement (Concrete) Grout Bentonite Chips Clay-Sand Slurry Granular Bentonite Bentonite-Sand Slurry Bentonite-Cement Grout Chipped Bentonite Bentonite - Sand Slurry
(5) Sealing Material Used	From (Ft.) To (Ft.) Sacks Sealant Mix Ratio or Mud Weight
3/8" bentonite chips	Surface 16 1/2 bag
(6) Comments	
(7) Name of Person or Firm Doing Sealing Work Date of Abandon Probe Technologies 6/5/2019 Signature of Person Doing Work Date Signed 6/13/2019 6/13/2019	ment
Street or RouteTelephone Number7781 Pathfinder Lane262-470-4768	
City, State, Zip Code West Bend, WI 53090	

WISDOT PROJECT INFORMAT	TION				
WisDOT Project ID: 1198-03-08	/78	WisDOT Proj	ject Name: F	Former Gas Station	
(1) GENERAL INFORMATION				R INFORMATION	
Unique Well No. Well ID No.	County Douglas	Facility Nam Former Gas			
	Gov't Lot (if applicable)	Facility ID		License/Permit/Moni	toring No.
$\frac{SW}{Grid \ Location} \frac{1/4 \ of}{E} \frac{SE}{1/4 \ of \ Sec.} \frac{13}{1/4}$		Street Addre 203 39th Av			
	ft. E. W.	City, Village Superior	e, or Town		
- · ·) or Well Location	Present Well	Owner	Original Ow	mer
Lat Long		WisDOT Street Addre	ss or Route of C	Dwner	
State Plane <u>166789.61</u> ft. N. 2938		4802 Shebo	ygan Ave.		
D 1	Unique Well No. of Replacement Well	City, State, 2 Madison, W			
(3) WELL/DRILLHOLE/BOREH		(4) PUMP , 1	LINER, SCR	EEN, CASING, & SE	ALING MATERIAL
Original Construction Date 06/05/2 Monitoring Well Water Well Drillhole / Borehole Construction Type: Drilled Drive Tornation Type: Unconsolidated Formation Total Well Depth (ft) 16 (From ground surface) Lower Drillhole Diameter (in.) 2.0 Was Well Annular Space Grouted?	If a Well Construction Report is available, please attach. en (Sandpoint) Dug push Dug Bedrock	Liner(s) Screen I Casing Was Ca Did Sea Did Ma If Yes Require Co X Scr (E Sealing Ne Sai	 Piping Removed? Removed? Removed? Left in Place? sing Cut Off Be ling Material Riterial Settle Afte Was Hole Reteriat d Method of Pla nductor Pipe - C Genend & Pource Bentonite Chips) Materials at Cement Ground nd-Cement (Commerce 	Yes Y	No Not Applicable No Not Applicable No Not Applicable No Yes No Yes No Y
If Yes, To What Depth?			y-Sand Slurry ntonite-Sand Slu		Granular Bentonite Bentonite-Cement Grout
Depth to Water (Feet)			ipped Bentonite	·	Bentonite - Sand Slurry
(5) Sealing Ma	terial Used	From (Ft.)	To (Ft.)	Sacks Sealant	Mix Ratio or Mud Weight
3/8" bento	nite chips	Surface	16	1/2 bag	
(6) Comments					
(7) Name of Person or Firm Doing Sealing Probe Technologies Signature of Person Doing Work	6/6/2019	ment			
Street or Route 7781 Pathfinder Lane City, State, Zip Code	Telephone Number 262-470-4768				
West Bend, WI 53090					

Appendix D

Laboratory Analytical Report

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

June 17, 2019

Roger Miller GEI Consultants, Inc. 3159 Voyager Drive Green Bay, WI 54311

RE: Project: 1902429 FMR GAS STATION-ADLER Pace Project No.: 40188973

Dear Roger Miller:

Enclosed are the analytical results for sample(s) received by the laboratory on June 06, 2019. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Chuskpher Hyska

Christopher Hyska christopher.hyska@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Kyle Sandmire, GEI Consultants, Inc

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

CERTIFICATIONS

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40188973001	FGS-1 2'-4'	Solid	06/05/19 16:55	06/06/19 13:24
40188973002	FGS-1 4.5'-6.5'	Solid	06/05/19 17:00	06/06/19 13:24
40188973003	FGS-1 12'-14'	Solid	06/05/19 17:10	06/06/19 13:24
40188973004	FGS-2 0'-3'	Solid	06/05/19 16:15	06/06/19 13:24
40188973005	FGS-2 6'-8'	Solid	06/05/19 16:20	06/06/19 13:24
40188973006	FGS-2 12'-14'	Solid	06/05/19 16:40	06/06/19 13:24

SAMPLE ANALYTE COUNT

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40188973001	FGS-1 2'-4'	WI MOD DRO	MRN	1	PASI-G
		WI MOD GRO	ALD	1	PASI-G
		EPA 6010	TXW	1	PASI-G
		EPA 8270 by SIM	ARO	20	PASI-G
		EPA 8260	MDS	64	PASI-G
		ASTM D2974-87	PCG	1	PASI-G
40188973002	FGS-1 4.5'-6.5'	WI MOD DRO	MRN	1	PASI-G
		WI MOD GRO	ALD	1	PASI-G
		EPA 6010	TXW	1	PASI-G
		EPA 8270 by SIM	ARO	20	PASI-G
		EPA 8260	MDS	64	PASI-G
		ASTM D2974-87	PCG	1	PASI-G
40188973003	FGS-1 12'-14'	WI MOD DRO	MRN	1	PASI-G
		WI MOD GRO	ALD	1	PASI-G
		EPA 6010	TXW	1	PASI-G
		EPA 8270 by SIM	ARO	20	PASI-G
		EPA 8260	MDS	64	PASI-G
		ASTM D2974-87	PCG	1	PASI-G
40188973004	FGS-2 0'-3'	WI MOD DRO	MRN	1	PASI-G
		WI MOD GRO	ALD	1	PASI-G
		EPA 6010	TXW	1	PASI-G
		EPA 8270 by SIM	ARO	20	PASI-G
		EPA 8260	MDS	64	PASI-G
		ASTM D2974-87	PCG	1	PASI-G
40188973005	FGS-2 6'-8'	WI MOD DRO	MRN	1	PASI-G
		WI MOD GRO	ALD	1	PASI-G
		EPA 6010	TXW	1	PASI-G
		EPA 8270 by SIM	ARO	20	PASI-G
		EPA 8260	MDS	64	PASI-G
		ASTM D2974-87	PCG	1	PASI-G
40188973006	FGS-2 12'-14'	WI MOD DRO	MRN	1	PASI-G
		WI MOD GRO	ALD	1	PASI-G
		EPA 6010	TXW	1	PASI-G
		EPA 8270 by SIM	ARO	20	PASI-G
		EPA 8260	MDS	64	PASI-G
		ASTM D2974-87	PCG	1	PASI-G

SUMMARY OF DETECTION

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

Lab Sample ID Client Sample ID Method Parameters Qualifiers Result Units Report Limit Analyzed 40188973001 FGS-1 2'-4' WI MOD DRO **Diesel Range Organics** 110 mg/kg 8.7 06/13/19 12:29 DC WI MOD GRO Gasoline Range Organics 892 mg/kg 24.6 06/10/19 17:49 G+ EPA 6010 10.3 06/13/19 16:47 I ead mg/kg 4.9 EPA 8270 by SIM 1-Methylnaphthalene 160 ug/kg 16.5 06/12/19 15:57 EPA 8270 by SIM 2-Methylnaphthalene 462 ug/kg 20.5 06/12/19 15:57 617 06/12/19 15:57 EPA 8270 by SIM Naphthalene ug/kg 34.5 EPA 8260 n-Butylbenzene 2360 295 06/07/19 17:43 ug/kg EPA 8260 sec-Butylbenzene 956 ug/kg 295 06/07/19 17:43 295 EPA 8260 Ethylbenzene 1570 06/07/19 17:43 ug/kg Isopropylbenzene (Cumene) EPA 8260 1140 ug/kg 295 06/07/19 17:43 EPA 8260 p-Isopropyltoluene 1650 ug/kg 295 06/07/19 17:43 EPA 8260 Naphthalene 1170J ug/kg 1230 06/07/19 17:43 EPA 8260 n-Propylbenzene 2070 ug/kg 295 06/07/19 17:43 EPA 8260 1,2,4-Trimethylbenzene 1690 ug/kg 295 06/07/19 17:43 EPA 8260 1,3,5-Trimethylbenzene 3300 ug/kg 295 06/07/19 17:43 EPA 8260 1350 590 06/07/19 17:43 m&p-Xylene ug/kg ASTM D2974-87 Percent Moisture 18.7 06/11/19 14:00 % 0.10 FGS-1 4.5'-6.5' 40188973002 WI MOD DRO **Diesel Range Organics** 66.2 mg/kg 4.8 06/13/19 10:49 DC WI MOD GRO Gasoline Range Organics 660 26.3 06/10/19 16:06 G+ mg/kg EPA 6010 Lead 10.3 5.0 06/13/19 17:00 mg/kg EPA 8270 by SIM 1-Methylnaphthalene 184 ug/kg 35.2 06/13/19 12:29 R1 2-Methylnaphthalene EPA 8270 by SIM 453 ug/kg 43.9 06/13/19 12:29 M1.R1 EPA 8270 by SIM Naphthalene 1160 M1.R1 ug/kg 73.9 06/13/19 12:29 EPA 8260 n-Butylbenzene 2110 ug/kg 158 06/07/19 18:06 EPA 8260 sec-Butylbenzene 780 ug/kg 158 06/07/19 18:06 EPA 8260 Ethylbenzene 3150 06/07/19 18:06 ug/kg 158 Isopropylbenzene (Cumene) 1330 EPA 8260 ug/kg 158 06/07/19 18:06 EPA 8260 p-Isopropyltoluene 1340 ug/kg 158 06/07/19 18:06 EPA 8260 Naphthalene 2010 ug/kg 657 06/07/19 18:06 EPA 8260 2280 06/07/19 18:06 n-Propylbenzene ug/kg 158 1,2,4-Trimethylbenzene 1200 158 06/07/19 18:06 EPA 8260 ug/kg 1,3,5-Trimethylbenzene 3190 158 EPA 8260 06/07/19 18:06 ug/kg EPA 8260 m&p-Xylene 2120 316 06/07/19 18:06 ug/kg o-Xylene EPA 8260 66.4J ug/kg 158 06/07/19 18:06 ASTM D2974-87 Percent Moisture 24.0 % 0.10 06/11/19 10:49 FGS-1 12'-14' 40188973003 WI MOD DRO **Diesel Range Organics** 1.5J mg/kg 4.5 06/13/19 10:58 DC EPA 6010 Lead 9.4 mg/kg 2.6 06/12/19 15:54 ASTM D2974-87 Percent Moisture 27.7 % 0.10 06/11/19 14:55 FGS-2 0'-3' 40188973004 WI MOD DRO **Diesel Range Organics** 61.2 mg/kg 4.2 06/17/19 08:45 DC WI MOD GRO **Gasoline Range Organics** 23.8 mg/kg 6.1 06/10/19 14:23 GO EPA 6010 Lead 06/12/19 15:56 142 mg/kg 2.4 EPA 8270 by SIM Acenaphthene 14.8J ug/kg 31.2 06/12/19 17:23 EPA 8270 by SIM Acenaphthylene 19.6J ug/kg 26.6 06/12/19 17:23

SUMMARY OF DETECTION

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 4018

No.: 40188973

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40188973004	FGS-2 0'-3'					
EPA 8270 by SIM	Anthracene	68.2	ug/kg	46.0	06/12/19 17:23	
EPA 8270 by SIM	Benzo(a)anthracene	143	ug/kg	25.7	06/12/19 17:23	
EPA 8270 by SIM	Benzo(a)pyrene	125	ug/kg	20.3	06/12/19 17:23	
EPA 8270 by SIM	Benzo(b)fluoranthene	135	ug/kg	22.8	06/12/19 17:23	
EPA 8270 by SIM	Benzo(g,h,i)perylene	93.0	ug/kg	16.4	06/12/19 17:23	
EPA 8270 by SIM	Benzo(k)fluoranthene	135	ug/kg	20.2	06/12/19 17:23	
EPA 8270 by SIM	Chrysene	199	ug/kg	27.1	06/12/19 17:23	
EPA 8270 by SIM	Dibenz(a,h)anthracene	34.1	ug/kg	18.0	06/12/19 17:23	
EPA 8270 by SIM	Fluoranthene	261	ug/kg	42.1	06/12/19 17:23	
EPA 8270 by SIM	Fluorene	28.4J	ug/kg	33.4	06/12/19 17:23	
EPA 8270 by SIM	Indeno(1,2,3-cd)pyrene	65.5	ug/kg	17.8	06/12/19 17:23	
EPA 8270 by SIM	1-Methylnaphthalene	794	ug/kg	32.5	06/12/19 17:23	
EPA 8270 by SIM	2-Methylnaphthalene	1030	ug/kg	40.4	06/12/19 17:23	
EPA 8270 by SIM	Naphthalene	607	ug/kg	68.1	06/12/19 17:23	
EPA 8270 by SIM	Phenanthrene	549	ug/kg	94.0	06/12/19 17:23	
EPA 8270 by SIM	Pyrene	195	ug/kg	36.3	06/12/19 17:23	
EPA 8260	Benzene	254	ug/kg	72.8	06/07/19 15:24	
EPA 8260	Naphthalene	54.4J	ug/kg	303	06/07/19 15:24	
EPA 8260	Toluene	48.8J	ug/kg	72.8	06/07/19 15:24	
EPA 8260	1,2,4-Trimethylbenzene	51.2J	ug/kg	72.8	06/07/19 15:24	
EPA 8260	m&p-Xylene	64.7J	ug/kg	146	06/07/19 15:24	
EPA 8260	o-Xylene	60.5J	ug/kg	72.8	06/07/19 15:24	
ASTM D2974-87	Percent Moisture	17.6	%	0.10	06/11/19 10:49	
40188973005	FGS-2 6'-8'					
WI MOD DRO	Diesel Range Organics	27.6	mg/kg	4.9	06/17/19 08:54	DC
WI MOD GRO	Gasoline Range Organics	460	mg/kg	53.7	06/11/19 09:03	GO
EPA 6010	Lead	9.5	mg/kg	2.6	06/12/19 15:58	
EPA 8270 by SIM	1-Methylnaphthalene	48.9	ug/kg	18.0	06/13/19 19:27	
EPA 8270 by SIM	2-Methylnaphthalene	118	ug/kg	22.4	06/13/19 19:27	
EPA 8270 by SIM	Naphthalene	253	ug/kg	37.7	06/13/19 19:27	
EPA 8260	Benzene	38.3J	ug/kg	80.6	06/07/19 17:20	
EPA 8260	n-Butylbenzene	690	ug/kg	80.6	06/07/19 17:20	
EPA 8260	sec-Butylbenzene	253	ug/kg	80.6	06/07/19 17:20	
EPA 8260	Ethylbenzene	389	ug/kg	80.6	06/07/19 17:20	
EPA 8260	Isopropylbenzene (Cumene)	421	ug/kg	80.6	06/07/19 17:20	
EPA 8260	p-Isopropyltoluene	449	ug/kg	80.6	06/07/19 17:20	
EPA 8260	Naphthalene	540	ug/kg	336	06/07/19 17:20	
EPA 8260	n-Propylbenzene	738	ug/kg	80.6	06/07/19 17:20	
EPA 8260	1,2,4-Trimethylbenzene	2890	ug/kg	80.6		
EPA 8260	1,3,5-Trimethylbenzene	997	ug/kg	80.6		
EPA 8260	m&p-Xylene	1120	ug/kg	161	06/07/19 17:20	
ASTM D2974-87	Percent Moisture	25.6	%	0.10		
40188973006	FGS-2 12'-14'					
EPA 6010	Lead	10.2	mg/kg	2.8	06/12/19 16:01	
	Percent Moisture			0.10		
EPA 6010 ASTM D2974-87		10.2 27.8	mg/kg %			

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

Sample: FGS-1 2'-4'	Lab ID:	4018897300	1 Collected:	06/05/19	9 16:55	Received: 06/	06/19 13:24 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	or percent moi	sture, san	nple s	ize and any dilut	ions.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI	MOD DRO Pre	eparation N	/lethod	: WI MOD DRO			
Diesel Range Organics	110	mg/kg	8.7	2.6	2	06/12/19 08:48	06/13/19 12:29		DC
WIGRO GCV	Analytical	Method: WI	MOD GRO Pre	eparation N	/lethod	I: TPH GRO/PVO	C WI ext.		
Gasoline Range Organics	892	mg/kg	24.6	12.3	4	06/10/19 09:00	06/10/19 17:49		G+
6010 MET ICP	Analytical	Method: EPA	6010 Prepara	ation Metho	od: EP	A 3050			
Lead	10.3	mg/kg	4.9	1.5	2	06/12/19 09:00	06/13/19 16:47	7439-92-1	
8270 MSSV PAH by SIM	Analytical		8270 by SIM	Preparatio	n Metl	hod: EPA 3546			
Acenaphthene	<4.8	ug/kg	15.9	4.8	1	06/12/19 08:21	06/12/19 15:57	83-32-9	
Acenaphthylene	<4.1	ug/kg	13.5	4.1	1	06/12/19 08:21	06/12/19 15:57		
Anthracene	<7.0	ug/kg	23.4	7.0	1	06/12/19 08:21			
Benzo(a)anthracene	<3.9	ug/kg	13.0	3.9	1	06/12/19 08:21			
Benzo(a)pyrene	<3.1	ug/kg	10.3	3.1	1	06/12/19 08:21			
Benzo(b)fluoranthene	<3.5	ug/kg	11.6	3.5	1	06/12/19 08:21			
	<2.5		8.3	2.5	1	06/12/19 08:21			
Benzo(g,h,i)perylene		ug/kg							
Benzo(k)fluoranthene	<3.1	ug/kg	10.3	3.1	1	06/12/19 08:21			
Chrysene	<4.1	ug/kg	13.8	4.1	1	06/12/19 08:21			
Dibenz(a,h)anthracene	<2.7	ug/kg	9.2	2.7	1	06/12/19 08:21			
Fluoranthene	<6.4	ug/kg	21.4	6.4	1	06/12/19 08:21	06/12/19 15:57		
Fluorene	<5.1	ug/kg	17.0	5.1	1	06/12/19 08:21	06/12/19 15:57		
Indeno(1,2,3-cd)pyrene	<2.7	ug/kg	9.0	2.7	1	06/12/19 08:21			
1-Methylnaphthalene	160	ug/kg	16.5	4.9	1	06/12/19 08:21	06/12/19 15:57	90-12-0	
2-Methylnaphthalene	462	ug/kg	20.5	6.1	1	06/12/19 08:21	06/12/19 15:57	91-57-6	
Naphthalene	617	ug/kg	34.5	10.4	1	06/12/19 08:21	06/12/19 15:57	91-20-3	
Phenanthrene	<14.3	ug/kg	47.7	14.3	1	06/12/19 08:21	06/12/19 15:57	85-01-8	
Pyrene	<5.5	ug/kg	18.4	5.5	1	06/12/19 08:21	06/12/19 15:57	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	66	%	28-99		1	06/12/19 08:21	06/12/19 15:57	321-60-8	
Terphenyl-d14 (S)	61	%	10-107		1	06/12/19 08:21	06/12/19 15:57	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepara	ation Metho	od: EP	A 5035/5030B			
Benzene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	71-43-2	W
Bromobenzene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	108-86-1	W
Bromochloromethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	74-97-5	W
Bromodichloromethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43		W
Bromoform	<100	ug/kg	240	100	4		06/07/19 17:43		L1,W
Bromomethane	<280	ug/kg	1000	280	4		06/07/19 17:43		W
n-Butylbenzene	2360	ug/kg	295	123	4		06/07/19 17:43		
sec-Butylbenzene	956	ug/kg	295	123	4	06/07/19 07:45			
tert-Butylbenzene	<100	ug/kg ug/kg	235	123	4	06/07/19 07:45	06/07/19 17:43		W
Carbon tetrachloride	<100	ug/kg ug/kg	240	100	4		06/07/19 17:43		W
						06/07/19 07:45			
Chlorobenzene	<100	ug/kg	240	100	4				W
Chloroethane	<268	ug/kg	1000	268	4		06/07/19 17:43		W
Chloroform	<186	ug/kg	1000	186	4	06/07/19 07:45	06/07/19 17:43	67-66-3	W

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample: FGS-1 2'-4'
 Lab ID: 40188973001
 Collected: 06/05/19 16:55
 Received: 06/06/19 13:24
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
Chloromethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	74-87-3	W
2-Chlorotoluene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	95-49-8	W
4-Chlorotoluene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	106-43-4	W
1,2-Dibromo-3-chloropropane	<365	ug/kg	1000	365	4	06/07/19 07:45	06/07/19 17:43	96-12-8	W
Dibromochloromethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	124-48-1	W
1,2-Dibromoethane (EDB)	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	106-93-4	W
Dibromomethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	74-95-3	W
1,2-Dichlorobenzene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	95-50-1	W
1,3-Dichlorobenzene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	541-73-1	W
1,4-Dichlorobenzene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	106-46-7	W
Dichlorodifluoromethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	75-71-8	W
1,1-Dichloroethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	75-34-3	W
1,2-Dichloroethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	107-06-2	W
1,1-Dichloroethene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	75-35-4	W
cis-1,2-Dichloroethene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	156-59-2	W
trans-1,2-Dichloroethene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	156-60-5	W
1,2-Dichloropropane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	78-87-5	W
1,3-Dichloropropane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	142-28-9	W
2,2-Dichloropropane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	594-20-7	W
1,1-Dichloropropene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	563-58-6	W
cis-1,3-Dichloropropene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	10061-01-5	W
trans-1,3-Dichloropropene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	10061-02-6	W
Diisopropyl ether	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	108-20-3	W
Ethylbenzene	1570	ug/kg	295	123	4	06/07/19 07:45	06/07/19 17:43	100-41-4	
Hexachloro-1,3-butadiene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	87-68-3	W
Isopropylbenzene (Cumene)	1140	ug/kg	295	123	4	06/07/19 07:45	06/07/19 17:43	98-82-8	
p-Isopropyltoluene	1650	ug/kg	295	123	4	06/07/19 07:45	06/07/19 17:43	99-87-6	
Methylene Chloride	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	75-09-2	W
Methyl-tert-butyl ether	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	1634-04-4	W
Naphthalene	1170J	ug/kg	1230	197	4	06/07/19 07:45	06/07/19 17:43	91-20-3	
n-Propylbenzene	2070	ug/kg	295	123	4	06/07/19 07:45	06/07/19 17:43	103-65-1	
Styrene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	100-42-5	W
1,1,1,2-Tetrachloroethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	630-20-6	W
1,1,2,2-Tetrachloroethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	79-34-5	W
Tetrachloroethene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	127-18-4	W
Toluene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	108-88-3	W
1,2,3-Trichlorobenzene	<100	ug/kg	240	100	4		06/07/19 17:43		W
1,2,4-Trichlorobenzene	<190	ug/kg	1000	190	4	06/07/19 07:45	06/07/19 17:43	120-82-1	W
1,1,1-Trichloroethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	71-55-6	W
1,1,2-Trichloroethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	79-00-5	W
Trichloroethene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	79-01-6	W
Trichlorofluoromethane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	75-69-4	W
1,2,3-Trichloropropane	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	96-18-4	W
1,2,4-Trimethylbenzene	1690	ug/kg	295	123	4	06/07/19 07:45	06/07/19 17:43	95-63-6	
1,3,5-Trimethylbenzene	3300	ug/kg	295	123	4	06/07/19 07:45	06/07/19 17:43	108-67-8	

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample:
 FGS-1 2'-4'
 Lab ID: 40188973001
 Collected:
 06/05/19 16:55
 Received:
 06/06/19 13:24
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepai	ration Metho	od: EP	A 5035/5030B			
Vinyl chloride	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	75-01-4	W
m&p-Xylene	1350	ug/kg	590	246	4	06/07/19 07:45	06/07/19 17:43	179601-23-1	
o-Xylene	<100	ug/kg	240	100	4	06/07/19 07:45	06/07/19 17:43	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	100	%	57-146		4	06/07/19 07:45	06/07/19 17:43	1868-53-7	D3
Toluene-d8 (S)	82	%	64-134		4	06/07/19 07:45	06/07/19 17:43	2037-26-5	
4-Bromofluorobenzene (S)	111	%	54-126		4	06/07/19 07:45	06/07/19 17:43	460-00-4	
Percent Moisture	Analytical	Method: AS	FM D2974-87						
Percent Moisture	18.7	%	0.10	0.10	1		06/11/19 14:00		

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units LOQ LOD DF Prepared Analyzed CAS No. WIDRO GCS Analytical Method: WI MOD DRO Preparation Method: WI MOD DRO Preparation Analytical Method: WI MOD GRO Preparation Method: WI MOD DRO WI MOD GRO Off/1/19 08-08 Off/1/19 08-08 Off/1/19 08-08 Off/1/19 08-08 Off/1/19 08-08 Off/1/19 08-09 Off/1/19 08-10 Off/1/19 08-11 Off/1/19 08-11		atrix: Solid				d: 06/05/19		40188973002		Sample: FGS-1 4.5'-6.5'
Desel Range Organics 6.2. mg/kg 4.8 1.4 1 06/12/19 08:48 06/13/19 10:49 WIGRO GCV Analytical Method: WI MOD GRO Preparation Without Without 06/10/19 09:00 06/10/19 16:06 G010 MET ICP Analytical Method: EPA 6010 Preparation EFA 305 Lead 10.3 mg/kg 5.0 1.5 2 06/12/19 08:21 06/13/19 12:29 83-29 Accnaphthene <10.2	Qual	CAS No.		-	-		-			
WiGRO GCV Analytical Method: WI MOD GRO Preparation Method: WI ethod: ETH GRO/PVOC WI ext. Gasoline Range Organics 660 mg/kg 26.3 13.1 4 06/10/19 09:00 06/11/19 16:06 6010 MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3550 Lead 10.3 mg/kg 5.0 1.5 2 06/12/19 09:00 06/13/19 17:00 7439-92-1 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthylene				WI MOD DRO	lethod:	eparation N	OD DRO Pr		Analytical I	WIDRO GCS
WiGRO GV Analytical Method: WI MOD GRO Preparation Method: TPH GRO/PVOC Wiext. Gasoline Range Organics 660 mg/kg 26.3 13.1 4 06/10/19 09:00 06/11/19 16:06 6010 MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3550 Lead 10.3 mg/kg 5.0 1.5 2 06/12/19 09:00 06/13/19 12:29 83-32-9 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthyne	DC		06/13/19 10:49	06/12/19 08:48	1	1.4	4.8	mg/kg	66.2	Diesel Range Organics
Gasoline Range Organics 660 mg/kg 26.3 13.1 4 06/10/19 09:00 06/10/19 16:06 6010 MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3050 Lead 10.3 mg/kg 5.0 1.5 2 06/12/19 09:00 06/13/19 12:29 2433-99 Acenaphthene <10.2 ug/kg 33.9 10.2 2 06/12/19 08:21 06/13/19 12:29 208-96-8 Acenaphthylene <4.7 ug/kg 28.9 8.7 2 06/12/19 08:21 06/13/19 12:29 208-96-8 Acenaphthylene <4.5 ug/kg 27.9 8.3 2 06/12/19 08:21 06/13/19 12:29 208-96-8 Benzo(a)anthracene <6.6 ug/kg 27.9 8.3 2 06/12/19 08:21 06/13/19 12:29 208-96-92 Benzo(b)Ilvoranthene <5.3 ug/kg 27.0 6.6 2 06/12/19 08:21 06/13/19 12:29 205-96-2 Benzo(b)Ilvoranthene <5.3 ug/kg 27.8 2 06/12/1			: WI ext		lethod.	enaration N			Analytical I	
Goto MET ICP Analytical Method: EPA 6010 Preparation Method: EPA 3050 Lead 10.3 mg/kg 5.0 1.5 2 06/12/19 09:00 06/13/19 17:00 7439-92-1 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Wethod: EPA 3546 Acenaphthene <10.2	0								-	
Lead 10.3 mg/kg 5.0 1.5 2 06/12/19 08:00 06/13/19 17:00 7439-921 8270 MSSV PAH by SIM Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene <10.2 ug/kg 33.9 10.2 2 06/12/19 08:21 06/13/19 12:29 208-96-8 Anthracene <15.0 ug/kg 25.0 06/12/19 08:21 06/13/19 12:29 208-96-8 Benzo(a)anthracene <3.3 ug/kg 27.9 8.3 2 06/12/19 08:21 06/13/19 12:29 205-92 Benzo(b)fluoranthene <5.3 ug/kg 24.7 7.4 2 06/12/19 08:21 06/13/19 12:29 207-92 Benzo(b)fluoranthene <5.3 ug/kg 27.8 5.3 2 06/12/19 08:21 06/13/19 12:29 207-08-92 Dibenz(a,h)anthracene <6.6 ug/kg 22.0 6.6 2 06/12/19 08:21 06/13/19 12:29 207-03-92 Dibenz(a,h)anthracene <5.9 ug/kg 3.5.8 2 06/12/19 08:21	G+		06/10/19 16:06	06/10/19 09:00	4	13.1	26.3	mg/kg	660	Gasoline Range Organics
Analytical Method: EPA 8270 by SIM Preparation Method: EPA 3546 Acenaphthene <10.2 ug/kg 33.9 10.2 2 06/12/19 08:21 06/13/19 12:29 283:32-9 Acenaphthylene <3.7 ug/kg 20.0 06/12/19 08:21 06/13/19 12:29 208:96:8 Anthracene <15.0 ug/kg 50.0 15.0 2 06/12/19 08:21 06/13/19 12:29 208:96:8 Benzo(a)pyrene <4.6 ug/kg 20.0 66.6 2 06/12/19 08:21 06/13/19 12:29 20:53:8 Benzo(a)pyrene <4.6 ug/kg 24.7 7.4 2 06/12/19 08:21 06/13/19 12:29 20:5-92:2 Benzo(k)[fuoranthene <<1.4 ug/kg 24.7 7.4 2 06/12/19 08:21 06/13/19 12:29 20:5-32:8 Benzo(k)[fuoranthene <1.3 ug/kg 24.8 9 2 06/12/19 08:21 06/13/19 12:29 20:5-32:8 Dibbenz(a,h)anthracene <1.9 ug/kg 35.3 10.9 06/12/19 08:21 06/13/19 12:29 20:6-13/19				3050	od: EPA	ation Metho	6010 Prepar	Method: EPA 6	Analytical I	6010 MET ICP
Acenaphthene <10.2 ug/kg 33.9 10.2 2 06/12/19 08:21 06/13/19 12:29 83.32 Acenaphthylene <8.7		7439-92-1	06/13/19 17:00	06/12/19 09:00	2	1.5	5.0	mg/kg	10.3	Lead
Acenaphthylene <8.7				od: EPA 3546	n Metho	Preparatio	3270 by SIM	Method: EPA 82	Analytical I	8270 MSSV PAH by SIM
Anthracene <15.0		83-32-9	06/13/19 12:29	06/12/19 08:21	2	10.2	33.9	ug/kg	<10.2	Acenaphthene
Anthracene <15.0		208-96-8	06/13/19 12:29	06/12/19 08:21	2	8.7	28.9	ug/kg	<8.7	Acenaphthylene
Benzo(a)pyrene <6.6 ug/kg 22.0 6.6 2 06/12/19 08:21 06/13/19 12:29 50-32-8 Benzo(b)[fluoranthene <7.4		120-12-7	06/13/19 12:29	06/12/19 08:21	2	15.0	50.0		<15.0	Anthracene
Benzo(a)pyrene <6.6 ug/kg 22.0 6.6 2 06/12/19 08:21 06/13/19 12:29 20-32-8 Benzo(b)fluoranthene <7.4		56-55-3	06/13/19 12:29	06/12/19 08:21	2	8.3	27.9	ug/kg	<8.3	Benzo(a)anthracene
Benzo(b)fluoranthene <7.4 ug/kg 24.7 7.4 2 06/12/19 08:21 06/13/19 12:29 205-99-2 Benzo(b)fluoranthene <5.3		50-32-8	06/13/19 12:29	06/12/19 08:21	2	6.6	22.0		<6.6	
Benzo(g,h,i)perylene <5.3										
Benzo(k)fluoranthene <6.6 ug/kg 22.0 6.6 2 06/12/19 08:21 06/13/19 12:29 207.08-9 Chrysene <8.9										
Chrysene <8.9 ug/kg 29.4 8.9 2 06/12/19 08:21 06/13/19 12:29 218-01-9 Dibenz(a,h)anthracene <5.9										
Dibenz(a,h)anthracene <5.9 ug/kg 19.6 5.9 2 06/12/19 08:21 06/13/19 12:29 53-70-3 Fluoranthene <13.7										
Fluoranthene <13.7 ug/kg 45.7 13.7 2 06/12/19 08:21 06/13/19 12:29 206-44-0 Fluorene <10.9										-
Fluorene <10.9 ug/kg 36.3 10.9 2 06/12/19 08:21 06/13/19 12:29 86-73-7 Indeno(1,2,3-cd)pyrene <5.8										
Indeno(1,2,3-cd)pyrene <5.8										
1-Methylnaphthalene 184 ug/kg 35.2 10.6 2 06/12/19 08:21 06/13/19 12:29 90-12-0 2-Methylnaphthalene 453 ug/kg 43.9 13.2 2 06/12/19 08:21 06/13/19 12:29 91-57-6 Naphthalene 1160 ug/kg 73.9 22.1 2 06/12/19 08:21 06/13/19 12:29 91-20-3 Phenanthrene <30.6										
2-Methylnaphthalene 453 ug/kg 43.9 13.2 2 06/12/19 08:21 06/13/19 12:29 91-57-6 Naphthalene 1160 ug/kg 73.9 22.1 2 06/12/19 08:21 06/13/19 12:29 91-57-6 Naphthalene 430.6 ug/kg 102 30.6 2 06/12/19 08:21 06/13/19 12:29 85-01-8 Pyrene <11.9										
Naphthalene 1160 ug/kg 73.9 22.1 2 06/12/19 08:21 06/13/19 12:29 91-20-3 Phenanthrene <30.6	R1									
Phenanthrene <30.6 ug/kg 102 30.6 2 06/12/19 08:21 06/13/19 12:29 85-01-8 Pyrene <11.9	M1,R1									
Pyrene<11.9ug/kg39.411.9206/12/19 08:2106/13/19 12:29129-00-0Surrogates2-Fluorobiphenyl (S)45%28-99206/12/19 08:2106/13/19 12:29321-60-8Terphenyl-d14 (S)44%10-107206/12/19 08:2106/13/19 12:29321-60-88260 MSV Med Level Normal ListAnalytical Method: EPA 8260Preparation Method: EPA 5035/5030B06/07/19 18:0671-43-2Benzene<50.0	M1,R1									
Surrogates2-Fluorobiphenyl (S)45%28-99206/12/19 08:2106/13/19 12:29321-60-8Terphenyl-d14 (S)44%10-107206/12/19 08:2106/13/19 12:291718-51-08260 MSV Med Level Normal ListAnalytical Method: EPA 8260Preparation Method: EPA 5035/5030BBenzene<50.0		85-01-8	06/13/19 12:29	06/12/19 08:21	2	30.6	102	ug/kg	<30.6	Phenanthrene
2-Fluorobiphenyl (S) 45 % 28-99 2 06/12/19 08:21 06/13/19 12:29 321-60-8 Terphenyl-d14 (S) 44 % 10-107 2 06/12/19 08:21 06/13/19 12:29 1718-51-0 8260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B Benzene <50.0		129-00-0	06/13/19 12:29	06/12/19 08:21	2	11.9	39.4	ug/kg	<11.9	
Terphenyl-d14 (S)44%10-107206/12/19 08:2106/13/19 12:291718-51-08260 MSV Med Level Normal ListAnalytical Method: EPA 8260Preparation Method: EPA 5035/5030BBenzene<50.0ug/kg12050.0206/07/19 07:4506/07/19 18:0671-43-2Bromobenzene<50.0ug/kg12050.0206/07/19 07:4506/07/19 18:0671-43-2Bromochloromethane<50.0ug/kg12050.0206/07/19 07:4506/07/19 18:0674-97-5Bromodichloromethane<50.0ug/kg12050.0206/07/19 07:4506/07/19 18:0675-27-4Bromoform<50.0ug/kg12050.0206/07/19 07:4506/07/19 18:0675-27-4Bromomethane<50.0ug/kg12050.0206/07/19 07:4506/07/19 18:0675-25-2Bromomethane<140ug/kg500140206/07/19 07:4506/07/19 18:0674-83-9N-Butylbenzene<110ug/kg15865.7206/07/19 07:4506/07/19 18:06104-51-8sec-Butylbenzene780ug/kg15865.7206/07/19 07:4506/07/19 18:06135-98-8tert-Butylbenzene<50.0ug/kg12050.0206/07/19 07:4506/07/19 18:06135-98-8tert-Butylbenzene<50.0ug/kg12050.0206/07/19 07:4506/07/19 18:06135-98-8tert-Butylbenzene<50.0<										•
8260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B Benzene <50.0									45	
Benzene <50.0		1718-51-0	06/13/19 12:29	06/12/19 08:21	2		10-107	%	44	Terphenyl-d14 (S)
Bromobenzene<50.0ug/kg12050.0206/07/19 07:4506/07/19 18:06108-86-1Bromochloromethane<50.0				5035/5030B	od: EPA	ation Metho	3260 Prepai	Method: EPA 82	Analytical I	8260 MSV Med Level Normal List
Bromochloromethane <50.0 ug/kg 120 50.0 2 06/07/19 07:45 06/07/19 18:06 74-97-5 Bromodichloromethane <50.0	W	71-43-2	06/07/19 18:06	06/07/19 07:45	2	50.0	120	ug/kg	<50.0	Benzene
Bromochloromethane <50.0 ug/kg 120 50.0 2 06/07/19 07:45 06/07/19 18:06 74-97-5 Bromodichloromethane <50.0	W	108-86-1	06/07/19 18:06	06/07/19 07:45	2	50.0	120	ug/kg	<50.0	Bromobenzene
Bromodichloromethane <50.0 ug/kg 120 50.0 2 06/07/19 07:45 06/07/19 18:06 75-27-4 Bromoform <50.0	W	74-97-5	06/07/19 18:06	06/07/19 07:45	2					Bromochloromethane
Bromoform<50.0ug/kg12050.0206/07/19 07:4506/07/19 18:0675-25-2Bromomethane<140	W									Bromodichloromethane
Bromomethane <140 ug/kg 500 140 2 06/07/19 07:45 06/07/19 18:06 74-83-9 n-Butylbenzene 2110 ug/kg 158 65.7 2 06/07/19 07:45 06/07/19 18:06 104-51-8 sec-Butylbenzene 780 ug/kg 158 65.7 2 06/07/19 07:45 06/07/19 18:06 104-51-8 tert-Butylbenzene 780 ug/kg 158 65.7 2 06/07/19 07:45 06/07/19 18:06 135-98-8 tert-Butylbenzene <50.0	L1,W									Bromoform
n-Butylbenzene 2110 ug/kg 158 65.7 2 06/07/19 07:45 06/07/19 18:06 104-51-8 sec-Butylbenzene 780 ug/kg 158 65.7 2 06/07/19 07:45 06/07/19 18:06 104-51-8 tert-Butylbenzene 780 ug/kg 158 65.7 2 06/07/19 07:45 06/07/19 18:06 135-98-8 tert-Butylbenzene <50.0	W									
sec-Butylbenzene 780 ug/kg 158 65.7 2 06/07/19 07:45 06/07/19 135-98-8 tert-Butylbenzene <50.0										
tert-Butylbenzene <50.0 ug/kg 120 50.0 2 06/07/19 07:45 06/07/19 18:06 98-06-6										•
	W									,
Carbon torationation void aging 120 00.0 2 00/07/13/07.40 00/07/13/10.00 00-20-30	W									-
Chlorobenzene <50.0 ug/kg 120 50.0 2 06/07/19 07:45 06/07/19 18:06 108-90-7	W									
	W									
Chloroethane <134 ug/kg 500 134 2 06/07/19 07:45 06/07/19 18:06 75-00-3 Chloroform <92.9	W									

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample:
 FGS-1
 4.5'-6.5'
 Lab ID:
 40188973002
 Collected:
 06/05/19
 17:00
 Received:
 06/06/19
 13:24
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepar	ation Metho	od: EP	A 5035/5030B			
Chloromethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	74-87-3	W
2-Chlorotoluene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	95-49-8	W
4-Chlorotoluene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	106-43-4	W
1,2-Dibromo-3-chloropropane	<182	ug/kg	500	182	2	06/07/19 07:45	06/07/19 18:06	96-12-8	W
Dibromochloromethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	124-48-1	W
1,2-Dibromoethane (EDB)	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	106-93-4	W
Dibromomethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	74-95-3	W
1,2-Dichlorobenzene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	95-50-1	W
1,3-Dichlorobenzene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	541-73-1	W
1,4-Dichlorobenzene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	106-46-7	W
Dichlorodifluoromethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	75-71-8	W
1,1-Dichloroethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	75-34-3	W
1,2-Dichloroethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	107-06-2	W
1,1-Dichloroethene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	75-35-4	W
cis-1,2-Dichloroethene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	156-59-2	W
trans-1,2-Dichloroethene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	156-60-5	W
1,2-Dichloropropane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	78-87-5	W
1,3-Dichloropropane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	142-28-9	W
2,2-Dichloropropane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	594-20-7	W
1,1-Dichloropropene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	563-58-6	W
cis-1,3-Dichloropropene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	10061-01-5	W
trans-1,3-Dichloropropene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	10061-02-6	W
Diisopropyl ether	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	108-20-3	W
Ethylbenzene	3150	ug/kg	158	65.7	2	06/07/19 07:45	06/07/19 18:06		
Hexachloro-1,3-butadiene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	87-68-3	W
Isopropylbenzene (Cumene)	1330	ug/kg	158	65.7	2	06/07/19 07:45	06/07/19 18:06	98-82-8	
p-lsopropyltoluene	1340	ug/kg	158	65.7	2	06/07/19 07:45	06/07/19 18:06	99-87-6	
Methylene Chloride	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	75-09-2	W
Methyl-tert-butyl ether	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	1634-04-4	W
Naphthalene	2010	ug/kg	657	105	2	06/07/19 07:45	06/07/19 18:06	91-20-3	
n-Propylbenzene	2280	ug/kg	158	65.7	2	06/07/19 07:45	06/07/19 18:06	103-65-1	
Styrene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	100-42-5	W
1,1,1,2-Tetrachloroethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	630-20-6	W
1,1,2,2-Tetrachloroethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06		W
Tetrachloroethene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06		W
Toluene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	108-88-3	W
1,2,3-Trichlorobenzene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	87-61-6	W
1,2,4-Trichlorobenzene	<95.1	ug/kg	500	95.1	2	06/07/19 07:45	06/07/19 18:06	120-82-1	W
1,1,1-Trichloroethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06		W
1,1,2-Trichloroethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45			W
Trichloroethene	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	79-01-6	W
Trichlorofluoromethane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45			W
1,2,3-Trichloropropane	<50.0	ug/kg	120	50.0	2	06/07/19 07:45			W
1,2,4-Trimethylbenzene	1200	ug/kg	158	65.7	2	06/07/19 07:45	06/07/19 18:06		
1,3,5-Trimethylbenzene	3190	ug/kg	158	65.7	2	06/07/19 07:45			
		-							

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample: FGS-1 4.5'-6.5'
 Lab ID: 40188973002
 Collected: 06/05/19 17:00
 Received: 06/06/19 13:24
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
Vinyl chloride	<50.0	ug/kg	120	50.0	2	06/07/19 07:45	06/07/19 18:06	75-01-4	W
m&p-Xylene	2120	ug/kg	316	131	2	06/07/19 07:45	06/07/19 18:06	179601-23-1	
o-Xylene	66.4J	ug/kg	158	65.7	2	06/07/19 07:45	06/07/19 18:06	95-47-6	
Surrogates									
Dibromofluoromethane (S)	102	%	57-146		2	06/07/19 07:45	06/07/19 18:06	1868-53-7	D3
Toluene-d8 (S)	94	%	64-134		2	06/07/19 07:45	06/07/19 18:06	2037-26-5	
4-Bromofluorobenzene (S)	119	%	54-126		2	06/07/19 07:45	06/07/19 18:06	460-00-4	
Percent Moisture	Analytical	Method: AST	FM D2974-87						
Percent Moisture	24.0	%	0.10	0.10	1		06/11/19 10:49		

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

Sample: FGS-1 12'-14'	Lab ID:	4018897300	3 Collected	d: 06/05/19) 17:10	Received: 06/	06/19 13:24 Ma	atrix: Solid	
Results reported on a "dry weight"	" basis and are	e adjusted fo	or percent mo	oisture, sar	nple s	ize and any diluti	ions.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI		reparation N	/lethod	: WI MOD DRO		_	
Diesel Range Organics	1.5J	mg/kg	4.5	1.4	1	06/12/19 08:48	06/13/19 10:58		DC
WIGRO GCV	Analytical	Method: WI	MOD GRO P	reparation N	/lethod	: TPH GRO/PVO	C WI ext.		
Gasoline Range Organics	<3.5	mg/kg	6.9	3.5	1	06/10/19 09:00	06/10/19 13:57		
6010 MET ICP	Analytical	Method: EPA	6010 Prepa	ration Methe	od: EP	A 3050			
Lead	9.4	mg/kg	2.6	0.79	1	06/12/19 09:00	06/12/19 15:54	7439-92-1	
8270 MSSV PAH by SIM	Analytical	Method: EPA	8270 by SIM	Preparatio	on Meth	nod: EPA 3546			
Acenaphthene	<5.4	ug/kg	17.8	5.4	1	06/12/19 08:21	06/12/19 16:14	83-32-9	
Acenaphthylene	<4.6	ug/kg	15.2	4.6	1	06/12/19 08:21	06/12/19 16:14	208-96-8	
Anthracene	<7.9	ug/kg	26.2	7.9	1	06/12/19 08:21	06/12/19 16:14	120-12-7	
Benzo(a)anthracene	<4.4	ug/kg	14.6	4.4	1	06/12/19 08:21	06/12/19 16:14	56-55-3	
Benzo(a)pyrene	<3.5	ug/kg	11.6	3.5	1	06/12/19 08:21	06/12/19 16:14	50-32-8	
Benzo(b)fluoranthene	<3.9	ug/kg	13.0	3.9	1	06/12/19 08:21	06/12/19 16:14	205-99-2	
Benzo(g,h,i)perylene	<2.8	ug/kg	9.3	2.8	1	06/12/19 08:21	06/12/19 16:14		
Benzo(k)fluoranthene	<3.5	ug/kg	11.5	3.5	1	06/12/19 08:21	06/12/19 16:14		
Chrysene	<4.7	ug/kg	15.5	4.7	1	06/12/19 08:21	06/12/19 16:14		
Dibenz(a,h)anthracene	<3.1	ug/kg	10.3	3.1	1	06/12/19 08:21	06/12/19 16:14		
Fluoranthene	<7.2	ug/kg	24.0	7.2	1	06/12/19 08:21	06/12/19 16:14		
Fluorene	<5.7	ug/kg ug/kg	19.1	5.7	1	06/12/19 08:21	06/12/19 16:14		
	<3.0	00	10.1	3.0	1	06/12/19 08:21	06/12/19 16:14		
ndeno(1,2,3-cd)pyrene	<3.0 <5.6	ug/kg	10.1	5.6			06/12/19 16:14		
-Methylnaphthalene		ug/kg			1	06/12/19 08:21			
2-Methylnaphthalene	<6.9	ug/kg	23.1	6.9	1	06/12/19 08:21	06/12/19 16:14		
Naphthalene	<11.6	ug/kg	38.8	11.6	1	06/12/19 08:21	06/12/19 16:14		
Phenanthrene	<16.1	ug/kg	53.6	16.1	1	06/12/19 08:21	06/12/19 16:14		
Pyrene	<6.2	ug/kg	20.7	6.2	1	06/12/19 08:21	06/12/19 16:14	129-00-0	
Surrogates	50	0/	20.00			00/40/40 00:04	00/40/40 40:44	224 02 0	
2-Fluorobiphenyl (S)	56	%	28-99		1	06/12/19 08:21	06/12/19 16:14		
Ferphenyl-d14 (S)	55	%	10-107		1	06/12/19 08:21	06/12/19 16:14	1718-51-0	
3260 MSV Med Level Normal List	-					A 5035/5030B	00/07/40 45 04	74.40.0	
Benzene	<25.0	ug/kg	60.0	25.0	1		06/07/19 15:01		W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1		06/07/19 15:01		W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01		W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01		W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01		L1,W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/07/19 07:45	06/07/19 15:01		W
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01		W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01		W
ert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	98-06-6	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/07/19 07:45	06/07/19 15:01	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/07/19 07:45	06/07/19 15:01	67 66 0	W

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample: FGS-1 12'-14'
 Lab ID: 40188973003
 Collected: 06/05/19 17:10
 Received: 06/06/19 13:24
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	8260 Prepar	ation Metho	od: EP/	A 5035/5030B			
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	74-87-3	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	106-43-4	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	06/07/19 07:45	06/07/19 15:01	96-12-8	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	124-48-1	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	74-95-3	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	95-50-1	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	541-73-1	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	106-46-7	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	75-71-8	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	75-34-3	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	107-06-2	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	75-35-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	156-59-2	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	156-60-5	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	78-87-5	W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	142-28-9	W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	594-20-7	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	563-58-6	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	10061-01-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	10061-02-6	W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	108-20-3	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	100-41-4	W
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	98-82-8	W
p-lsopropyltoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	1634-04-4	W
Naphthalene	<40.0	ug/kg	250	40.0	1	06/07/19 07:45	06/07/19 15:01	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	108-88-3	W
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	06/07/19 07:45	06/07/19 15:01	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	71-55-6	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45			W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	96-18-4	W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01		W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	108-67-8	W

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample: FGS-1 12'-14'
 Lab ID: 40188973003
 Collected: 06/05/19 17:10
 Received: 06/06/19 13:24
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepar	ation Metho	od: EP	A 5035/5030B			
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	75-01-4	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/07/19 07:45	06/07/19 15:01	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:01	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	108	%	57-146		1	06/07/19 07:45	06/07/19 15:01	1868-53-7	
Toluene-d8 (S)	94	%	64-134		1	06/07/19 07:45	06/07/19 15:01	2037-26-5	
4-Bromofluorobenzene (S)	92	%	54-126		1	06/07/19 07:45	06/07/19 15:01	460-00-4	
Percent Moisture	Analytical	Method: AST	FM D2974-87						
Percent Moisture	27.7	%	0.10	0.10	1		06/11/19 14:55		

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

Sample: FGS-2 0'-3'	Lab ID:	4018897300	4 Collected:	: 06/05/19	9 16:15	Received: 06/	06/19 13:24 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	adjusted fo	r percent moi	isture, sar	nple s	ize and any dilut	ions.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
				·					
WIDRO GCS	Analytical	Method: WI N	10D DRO Pre	eparation N	Nethod	: WI MOD DRO			
Diesel Range Organics	61.2	mg/kg	4.2	1.2	1	06/14/19 08:42	06/17/19 08:45		DC
WIGRO GCV	Analytical	Method: WI N	10D GRO Pre	eparation N	Nethod	: TPH GRO/PVO	C WI ext.		
Gasoline Range Organics	23.8	mg/kg	6.1	3.0	1	06/10/19 09:00	06/10/19 14:23		GO
6010 MET ICP	Analytical	Method: EPA	6010 Prepara	ation Meth	od: EP	A 3050			
Lead	142	mg/kg	2.4	0.71	1	06/12/19 09:00	06/12/19 15:56	7439-92-1	
8270 MSSV PAH by SIM	Analytical	Method: EPA	8270 by SIM	Preparatio	on Meth	nod: EPA 3546			
Acenaphthene	14.8J	ug/kg	31.2	9.4	2	06/12/19 08:21	06/12/19 17:23	83-32-9	
Acenaphthylene	19.6J	ug/kg	26.6	8.0	2	06/12/19 08:21	06/12/19 17:23	208-96-8	
Anthracene	68.2	ug/kg	46.0	13.8	2	06/12/19 08:21			
Benzo(a)anthracene	143	ug/kg	25.7	7.7	2	06/12/19 08:21		-	
Benzo(a)pyrene	125	ug/kg	20.3	6.1	2	06/12/19 08:21			
Benzo(b)fluoranthene	135	ug/kg	20.5	6.8	2	06/12/19 08:21			
. ,									
Benzo(g,h,i)perylene	93.0	ug/kg	16.4	4.9	2	06/12/19 08:21			
Benzo(k)fluoranthene	135	ug/kg	20.2	6.1	2	06/12/19 08:21			
Chrysene	199	ug/kg	27.1	8.2	2	06/12/19 08:21			
Dibenz(a,h)anthracene	34.1	ug/kg	18.0	5.4	2	06/12/19 08:21			
Fluoranthene	261	ug/kg	42.1	12.6	2	06/12/19 08:21			
Fluorene	28.4J	ug/kg	33.4	10.0	2	06/12/19 08:21	06/12/19 17:23	86-73-7	
Indeno(1,2,3-cd)pyrene	65.5	ug/kg	17.8	5.3	2	06/12/19 08:21	06/12/19 17:23	193-39-5	
1-Methylnaphthalene	794	ug/kg	32.5	9.7	2	06/12/19 08:21	06/12/19 17:23	90-12-0	
2-Methylnaphthalene	1030	ug/kg	40.4	12.1	2	06/12/19 08:21	06/12/19 17:23	91-57-6	
Naphthalene	607	ug/kg	68.1	20.4	2	06/12/19 08:21	06/12/19 17:23	91-20-3	
Phenanthrene	549	ug/kg	94.0	28.2	2	06/12/19 08:21	06/12/19 17:23	85-01-8	
Pyrene	195	ug/kg	36.3	10.9	2	06/12/19 08:21			
Surrogates		-9.19							
2-Fluorobiphenyl (S)	61	%	28-99		2	06/12/19 08:21	06/12/19 17:23	321-60-8	
Terphenyl-d14 (S)	55	%	10-107		2	06/12/19 08:21	06/12/19 17:23	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepara	ation Meth	od: EP	A 5035/5030B			
Benzene	254	ug/kg	72.8	30.3	1	06/07/19 07:45	06/07/19 15:24	71-43-2	
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1		06/07/19 15:24		W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24		W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45			L1,W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/07/19 07:45			W
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45			Ŵ
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45			Ŵ
tert-Butylbenzene	<25.0 <25.0	ug/kg ug/kg	60.0	25.0 25.0	1	06/07/19 07:45			W
•	<25.0 <25.0			25.0 25.0	1	06/07/19 07:45			W
Carbon tetrachloride		ug/kg	60.0						
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45			W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/07/19 07:45			W
Chloroform	<46.4	ug/kg	250	46.4	1	06/07/19 07:45	06/07/19 15:24	67-66-3	W

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample: FGS-2 0'-3'
 Lab ID: 40188973004
 Collected: 06/05/19 16:15
 Received: 06/06/19 13:24
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepa	ration Metho	od: EP	A 5035/5030B			
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	74-87-3	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	106-43-4	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	06/07/19 07:45	06/07/19 15:24	96-12-8	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	124-48-1	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	74-95-3	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	95-50-1	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	541-73-1	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	106-46-7	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	75-71-8	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	75-34-3	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	107-06-2	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	75-35-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	156-59-2	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	156-60-5	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	78-87-5	W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	142-28-9	W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	594-20-7	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	563-58-6	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	10061-01-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24		W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	108-20-3	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24		W
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	98-82-8	W
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	99-87-6	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	1634-04-4	W
Naphthalene	54.4J	ug/kg	303	48.6	1	06/07/19 07:45	06/07/19 15:24	91-20-3	
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	127-18-4	W
Toluene	48.8J	ug/kg	72.8	30.3	1	06/07/19 07:45	06/07/19 15:24	108-88-3	
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	06/07/19 07:45	06/07/19 15:24	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24		W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45			W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45			W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45			W
1,2,4-Trimethylbenzene	51.2J	ug/kg	72.8	30.3	1	06/07/19 07:45	06/07/19 15:24		
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45			W

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample: FGS-2 0'-3'
 Lab ID: 40188973004
 Collected: 06/05/19 16:15
 Received: 06/06/19 13:24
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepa	ration Metho	od: EP	A 5035/5030B			
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:24	75-01-4	W
m&p-Xylene	64.7J	ug/kg	146	60.6	1	06/07/19 07:45	06/07/19 15:24	179601-23-1	
o-Xylene	60.5J	ug/kg	72.8	30.3	1	06/07/19 07:45	06/07/19 15:24	95-47-6	
Surrogates									
Dibromofluoromethane (S)	99	%	57-146		1	06/07/19 07:45	06/07/19 15:24	1868-53-7	
Toluene-d8 (S)	88	%	64-134		1	06/07/19 07:45	06/07/19 15:24	2037-26-5	
4-Bromofluorobenzene (S)	86	%	54-126		1	06/07/19 07:45	06/07/19 15:24	460-00-4	
Percent Moisture	Analytical	Method: AST	FM D2974-87						
Percent Moisture	17.6	%	0.10	0.10	1		06/11/19 10:49		

Project: 1902429 FMR GAS STATION-ADLER

Tioject

Pace Project No.: 40188973

Sample: FGS-2 6'-8'	Lab ID:	4018897300	5 Collected	: 06/05/19	9 16:20	Received: 06/	06/19 13:24 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	r percent mo	isture, sar	nple si	ze and any dilut	ions.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical	Method: WI N		eparation N	/lethod:	WI MOD DRO			
Diesel Range Organics	27.6	mg/kg	4.9	1.5	1	06/14/19 08:42	06/17/19 08:54		DC
WIGRO GCV	Analytical	Method: WI	IOD GRO Pre	eparation N	lethod	TPH GRO/PVO	C WI ext.		
Gasoline Range Organics	460	mg/kg	53.7	26.9	8	06/10/19 09:00	06/11/19 09:03		GO
6010 MET ICP	Analytical	Method: EPA	6010 Prepara	ation Meth	od: EP/	A 3050			
Lead	9.5	mg/kg	2.6	0.78	1	06/12/19 09:00	06/12/19 15:58	7439-92-1	
3270 MSSV PAH by SIM	Analytical	Method: EPA	8270 by SIM	Preparatio	on Meth	od: EPA 3546			
Acenaphthene	<5.2	ug/kg	17.3	5.2	1	06/13/19 09:43	06/13/19 19:27	83-32-9	
Acenaphthylene	<4.4	ug/kg	14.8	4.4	1	06/13/19 09:43	06/13/19 19:27	208-96-8	
Anthracene	<7.7	ug/kg	25.5	7.7	1		06/13/19 19:27		
Benzo(a)anthracene	<4.3	ug/kg	14.2	4.3	1	06/13/19 09:43	06/13/19 19:27	56-55-3	
Benzo(a)pyrene	<3.4	ug/kg	11.2	3.4	1		06/13/19 19:27		
Benzo(b)fluoranthene	<3.8	ug/kg	12.6	3.8	1		06/13/19 19:27		
Benzo(g,h,i)perylene	<2.7	ug/kg	9.1	2.7	1		06/13/19 19:27		
	<3.4		11.2	3.4	1		06/13/19 19:27	-	
Benzo(k)fluoranthene		ug/kg							
	<4.5	ug/kg	15.0	4.5	1		06/13/19 19:27		
Dibenz(a,h)anthracene	<3.0	ug/kg	10	3.0	1		06/13/19 19:27		
luoranthene	<7.0	ug/kg	23.3	7.0	1		06/13/19 19:27		
luorene	<5.6	ug/kg	18.5	5.6	1		06/13/19 19:27		
ndeno(1,2,3-cd)pyrene	<3.0	ug/kg	9.8	3.0	1		06/13/19 19:27		
-Methylnaphthalene	48.9	ug/kg	18.0	5.4	1		06/13/19 19:27		
2-Methylnaphthalene	118	ug/kg	22.4	6.7	1	06/13/19 09:43	06/13/19 19:27	91-57-6	
Naphthalene	253	ug/kg	37.7	11.3	1	06/13/19 09:43	06/13/19 19:27	91-20-3	
Phenanthrene	<15.6	ug/kg	52.1	15.6	1	06/13/19 09:43	06/13/19 19:27	85-01-8	
Pyrene	<6.1	ug/kg	20.1	6.1	1	06/13/19 09:43	06/13/19 19:27	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	53	%	28-99		1	06/13/19 09:43	06/13/19 19:27	321-60-8	
Ferphenyl-d14 (S)	50	%	10-107		1	06/13/19 09:43	06/13/19 19:27	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepara	ation Meth	od: EPA	A 5035/5030B			
Benzene	38.3J	ug/kg	80.6	33.6	1	06/07/19 07:45	06/07/19 17:20	71-43-2	
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1		06/07/19 17:20		W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20		W
Bromoform	<25.0	ug/kg	60.0	25.0	1		06/07/19 17:20		L1,W
Bromomethane	<69.9	ug/kg	250	69.9	1		06/07/19 17:20		W
n-Butylbenzene	690	ug/kg	80.6	33.6	1		06/07/19 17:20		
sec-Butylbenzene	253	ug/kg	80.6	33.6	1		06/07/19 17:20		
ert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1		06/07/19 17:20		W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0 25.0	1		06/07/19 17:20		W
Chlorobenzene	<25.0 <25.0			25.0 25.0			06/07/19 17:20		W
		ug/kg	60.0		1				
Chloroethane	<67.0	ug/kg	250	67.0	1		06/07/19 17:20		W
Chloroform	<46.4	ug/kg	250	46.4	1	06/07/19 07:45	06/07/19 17:20	67-66-3	W

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample: FGS-2 6'-8'
 Lab ID: 40188973005
 Collected: 06/05/19 16:20
 Received: 06/06/19 13:24
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	74-87-3	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	106-43-4	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	06/07/19 07:45	06/07/19 17:20	96-12-8	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	124-48-1	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	74-95-3	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	95-50-1	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	541-73-1	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	106-46-7	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	75-71-8	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	75-34-3	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	107-06-2	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	75-35-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	156-59-2	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	156-60-5	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	78-87-5	W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	142-28-9	W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	594-20-7	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20		W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	10061-01-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	10061-02-6	W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	108-20-3	W
Ethylbenzene	389	ug/kg	80.6	33.6	1	06/07/19 07:45	06/07/19 17:20	100-41-4	
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	87-68-3	W
Isopropylbenzene (Cumene)	421	ug/kg	80.6	33.6	1	06/07/19 07:45	06/07/19 17:20	98-82-8	
p-Isopropyltoluene	449	ug/kg	80.6	33.6	1	06/07/19 07:45	06/07/19 17:20	99-87-6	
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	1634-04-4	W
Naphthalene	540	ug/kg	336	53.8	1	06/07/19 07:45	06/07/19 17:20	91-20-3	
n-Propylbenzene	738	ug/kg	80.6	33.6	1	06/07/19 07:45	06/07/19 17:20	103-65-1	
Styrene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	100-42-5	W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	108-88-3	W
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	87-61-6	W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	06/07/19 07:45	06/07/19 17:20	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20		W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	79-00-5	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	79-01-6	W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	75-69-4	W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20		W
1,2,4-Trimethylbenzene	2890	ug/kg	80.6	33.6	1	06/07/19 07:45	06/07/19 17:20		
1,3,5-Trimethylbenzene	997	ug/kg	80.6	33.6	1	06/07/19 07:45			

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample: FGS-2 6'-8'
 Lab ID: 40188973005
 Collected: 06/05/19 16:20
 Received: 06/06/19 13:24
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix: Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepa	ration Metho	od: EP	A 5035/5030B			
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	75-01-4	W
m&p-Xylene	1120	ug/kg	161	67.2	1	06/07/19 07:45	06/07/19 17:20	179601-23-1	
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 17:20	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	104	%	57-146		1	06/07/19 07:45	06/07/19 17:20	1868-53-7	
Toluene-d8 (S)	92	%	64-134		1	06/07/19 07:45	06/07/19 17:20	2037-26-5	
4-Bromofluorobenzene (S)	107	%	54-126		1	06/07/19 07:45	06/07/19 17:20	460-00-4	
Percent Moisture	Analytical	Method: AST	M D2974-87						
Percent Moisture	25.6	%	0.10	0.10	1		06/11/19 10:49		

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

Sample: FGS-2 12'-14'	Lab ID:	4018897300	6 Collected	d: 06/05/19	9 16:40	Received: 06/	06/19 13:24 Ma	atrix: Solid	
Results reported on a "dry weight	" basis and are	e adjusted fo	or percent mo	oisture, sar	nple si	ze and any diluti	ions.		
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
WIDRO GCS	Analytical	Method: WI I		reparation N	/lethod	WI MOD DRO			_
Diesel Range Organics	<1.4	mg/kg	4.7	1.4	1	06/14/19 08:42	06/17/19 09:03		
WIGRO GCV	Analytical	Method: WI	MOD GRO P	reparation N	/lethod	: TPH GRO/PVO	C WI ext.		
Gasoline Range Organics	<3.5	mg/kg	6.9	3.5	1	06/10/19 09:00	06/10/19 14:49		
6010 MET ICP	Analytical	Method: EPA	6010 Prepa	ration Methe	od: EP/	A 3050			
Lead	10.2	mg/kg	2.8	0.83	1	06/12/19 09:00	06/12/19 16:01	7439-92-1	
3270 MSSV PAH by SIM	Analytical	Method: EPA	8270 by SIM	Preparatio	on Meth	nod: EPA 3546			
Acenaphthene	<5.4	ug/kg	17.9	5.4	1	06/13/19 09:43	06/13/19 19:44	83-32-9	
Acenaphthylene	<4.6	ug/kg	15.2	4.6	1	06/13/19 09:43	06/13/19 19:44	208-96-8	
Anthracene	<7.9	ug/kg	26.3	7.9	1	06/13/19 09:43	06/13/19 19:44	120-12-7	
Benzo(a)anthracene	<4.4	ug/kg	14.7	4.4	1	06/13/19 09:43			
Benzo(a)pyrene	<3.5	ug/kg	11.6	3.5	1	06/13/19 09:43			
Benzo(b)fluoranthene	<3.9	ug/kg	13.0	3.9	1	06/13/19 09:43			
Benzo(g,h,i)perylene	<2.8	ug/kg	9.4	2.8	1		06/13/19 19:44		
Benzo(k)fluoranthene	<3.5		5.4 11.6	2.0 3.5	1	06/13/19 09:43			
		ug/kg		3.5 4.7					
	<4.7	ug/kg	15.5		1	06/13/19 09:43			
Dibenz(a,h)anthracene	<3.1	ug/kg	10.3	3.1	1	06/13/19 09:43			
luoranthene	<7.2	ug/kg	24.1	7.2	1	06/13/19 09:43			
luorene	<5.7	ug/kg	19.1	5.7	1		06/13/19 19:44		
ndeno(1,2,3-cd)pyrene	<3.0	ug/kg	10.1	3.0	1	06/13/19 09:43			
-Methylnaphthalene	<5.6	ug/kg	18.6	5.6	1	06/13/19 09:43	06/13/19 19:44	90-12-0	
2-Methylnaphthalene	<6.9	ug/kg	23.1	6.9	1	06/13/19 09:43	06/13/19 19:44	91-57-6	
Naphthalene	<11.7	ug/kg	38.9	11.7	1	06/13/19 09:43	06/13/19 19:44	91-20-3	
Phenanthrene	<16.1	ug/kg	53.7	16.1	1	06/13/19 09:43	06/13/19 19:44	85-01-8	
Pyrene	<6.2	ug/kg	20.8	6.2	1	06/13/19 09:43	06/13/19 19:44	129-00-0	
Surrogates		00							
2-Fluorobiphenyl (S)	51	%	28-99		1	06/13/19 09:43	06/13/19 19:44	321-60-8	
Ferphenyl-d14 (S)	48	%	10-107		1	06/13/19 09:43	06/13/19 19:44	1718-51-0	
3260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepa	ration Methe	od: EP/	A 5035/5030B			
Benzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	71-43-2	W
Bromobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	108-86-1	W
Bromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	74-97-5	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		L1,W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/07/19 07:45	06/07/19 15:47		Ŵ
n-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
sec-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
ert-Butylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
Chlorobenzene	<25.0 <25.0		60.0	25.0 25.0	1	06/07/19 07:45	06/07/19 15:47		W
		ug/kg				06/07/19 07:45			
Chloroethane	<67.0	ug/kg	250	67.0	1		06/07/19 15:47		W
Chloroform	<46.4	ug/kg	250	46.4	1	06/07/19 07:45	06/07/19 15:47	67-66-3	W

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample:
 FGS-2
 12'-14'
 Lab ID:
 40188973006
 Collected:
 06/05/19
 16:40
 Received:
 06/06/19
 13:24
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepar	ration Metho	od: EP	A 5035/5030B			
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	74-87-3	W
2-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	95-49-8	W
4-Chlorotoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	106-43-4	W
1,2-Dibromo-3-chloropropane	<91.2	ug/kg	250	91.2	1	06/07/19 07:45	06/07/19 15:47	96-12-8	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	124-48-1	W
1,2-Dibromoethane (EDB)	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	106-93-4	W
Dibromomethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	74-95-3	W
1,2-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	95-50-1	W
1,3-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	541-73-1	W
1,4-Dichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	106-46-7	W
Dichlorodifluoromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	75-71-8	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	75-34-3	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	107-06-2	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	75-35-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	156-59-2	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	156-60-5	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	78-87-5	W
1,3-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	142-28-9	W
2,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	594-20-7	W
1,1-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	563-58-6	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	10061-01-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
Diisopropyl ether	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	108-20-3	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	100-41-4	W
Hexachloro-1,3-butadiene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	87-68-3	W
Isopropylbenzene (Cumene)	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	98-82-8	W
p-Isopropyltoluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	75-09-2	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	1634-04-4	W
Naphthalene	<40.0	ug/kg	250	40.0	1	06/07/19 07:45	06/07/19 15:47	91-20-3	W
n-Propylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	103-65-1	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
1,1,1,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	630-20-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	79-34-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	108-88-3	W
1,2,3-Trichlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
1,2,4-Trichlorobenzene	<47.6	ug/kg	250	47.6	1	06/07/19 07:45	06/07/19 15:47	120-82-1	W
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
Trichlorofluoromethane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
1,2,3-Trichloropropane	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45			W
1,2,4-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47		W
1,3,5-Trimethylbenzene	<25.0	ug/kg	60.0	25.0	1		06/07/19 15:47		W

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 Sample: FGS-2 12'-14'
 Lab ID: 40188973006
 Collected: 06/05/19 16:40
 Received: 06/06/19 13:24
 Matrix: Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Metho	od: EP/	A 5035/5030B			
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	75-01-4	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/07/19 07:45	06/07/19 15:47	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/07/19 07:45	06/07/19 15:47	95-47-6	W
Surrogates									
Dibromofluoromethane (S)	110	%	57-146		1	06/07/19 07:45	06/07/19 15:47	1868-53-7	
Toluene-d8 (S)	95	%	64-134		1	06/07/19 07:45	06/07/19 15:47	2037-26-5	
4-Bromofluorobenzene (S)	92	%	54-126		1	06/07/19 07:45	06/07/19 15:47	460-00-4	
Percent Moisture	Analytical	Method: AST	FM D2974-87						
Percent Moisture	27.8	%	0.10	0.10	1		06/11/19 10:49		

Project:	1902429 FMR GAS	STATION-ADLER									
Pace Project No .:	40188973										
QC Batch:	323819		Analysi	s Method:	W	I MOD G	RO				
QC Batch Method:	TPH GRO/PVOC	WI ext.	Analysi	s Description	on: W	IGRO So	olid GCV				
Associated Lab Sar	nples: 4018897300	01, 40188973002,	401889730	003, 40188	973004, 4	0188973	005, 401	88973006			
METHOD BLANK:	1880651		M	latrix: Solic	ł						
Associated Lab Sar	nples: 401889730	01, 40188973002,	401889730	003, 40188	973004, 4	0188973	005, 401	88973006			
		, ,									
			Blank		porting						
Parar	neter	Units	Blank Result		porting Limit	Ana	lyzed	Qualifi	ers		
Paran Gasoline Range Org		Units mg/kg	Result				lyzed 19 10:06	Qualifi	ers		
			Result		Limit			Qualifi	ers		
Gasoline Range Or		mg/kg	Result	<1.6	Limit			Qualifi	ers		
Gasoline Range Or	ganics	mg/kg	Result	<1.6	Limit 5.0			Qualifi	ers	Max	
Gasoline Range Or	ganics	mg/kg	Result	<1.6	Limit 5.0	06/10/	19 10:06		ers	Max RPD	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: Pace Project No.:	1902429 FMR GAS 40188973	STATION-ADLE	R									
QC Batch:	323958		Analy	sis Method	: E	PA 6010						
QC Batch Method:	EPA 3050		Analy	sis Descrip	tion: 6	010 MET						
Associated Lab San	nples: 401889730	01, 40188973002	2, 4018897	3003, 4018	8973004, 4	0188973	005, 4018	8973006				
METHOD BLANK:	1881095			Matrix: Sol	id							
Associated Lab San	nples: 401889730	01, 40188973002	2, 4018897	3003, 4018	8973004, 4	0188973	005, 4018	8973006				
			Blar	nk R	Reporting							
Paran	neter	Units	Res	ult	Limit	Ana	lyzed	Qualifier	rs			
Lead		mg/kg		<0.60	2.0	06/12/	19 15:31					
LABORATORY CON	ITROL SAMPLE & L	.CSD: 188109	6		1881097							
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max		
Paran	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua	alifiers
Lead		mg/kg	5	9 48.1	47.	1 96	94	80-120	2	20		
MATRIX SPIKE & M	ATRIX SPIKE DUPL	ICATE: 18810)98		1881099							
			MS	MSD								
		40188973001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Lead	mg/kg	10.3	61.4	61.2	64.2	65.3	8	90	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

QC Batch:	3237	37	Analysis Method:	EPA 8260
QC Batch Method:	EPA :	5035/5030B	Analysis Description:	8260 MSV Med Level Normal List
Associated Lab Sam	ples:	40188973001, 40188973002, 4	0188973003, 40188973004	l, 40188973005, 40188973006

Associated Lab Samples: 40188973001, 40188973002, 40188973003, 40188973004, 40188973005, 40188973006 Parameter Units Result Limit Analyzed Qualifiers 1,1,1,7:Detrachioroethane ug/kg <13.7 50.0 06/07/19 09:35 1,1,2.2-Tetrachioroethane ug/kg <17.5 50.0 06/07/19 09:35 1,1.2.2-Tetrachioroethane ug/kg <17.6 50.0 06/07/19 09:35 1,1.2.Trichioroethane ug/kg <17.6 50.0 06/07/19 09:35 1,1-Dichioroethane ug/kg <17.6 50.0 06/07/19 09:35 <	METHOD BLANK: 1879662		Matrix:	Solid		
Parameter Units Result Limit Analyzed Qualifiers 1,1,1.2-Tetrachloroethane ug/kg <13.7 50.0 06/07/19 09:35 1,1,1.Trichloroethane ug/kg <17.5 50.0 06/07/19 09:35 1,1.2.2-Tetrachloroethane ug/kg <17.6 50.0 06/07/19 09:35 1,1.Dichloroethane ug/kg <17.6 50.0 06/07/19 09:35 1,1-Dichloroethane ug/kg <17.6 50.0 06/07/19 09:35 1,2.3-Trichloroethane ug/kg <17.0 50.0 06/07/19 09:35 1,2.3-Trichloroethane ug/kg <22.3 50.0 06/07/19 09:35 1,2.4-Trimethylberzene ug/kg <22.0 06/07/19 09:35 1,2.4-Trimethylberzene ug/kg <16.2 50.0 06/07/19 09:35 1,2-Dichlorobenzene ug/kg <16.2 50.0 06/07/19 09:35 1,2-Dichlorobenzene ug/kg <15.0 50.0 06/07/19 09:35 1,2-Dichlorobenzene ug/kg <15.0 50.0 06/07/19 09:35	Associated Lab Samples: 40	188973001, 40188973002,	40188973003, 40	0188973004, 40	188973005, 40188	973006
1,1,2-Tetrachloroethane ug/kg <13.7 50.0 06/07/19 09:35 1,1,1-Trichloroethane ug/kg <17.5			Blank	Reporting		
1,1.1-Trichloroethane ug/kg <14.4	Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,2,2-Tetrachloroethane ug/kg <17.5	1,1,1,2-Tetrachloroethane	ug/kg	<13.7	50.0	06/07/19 09:35	
1,1.2-Trichloroethane ug/kg <17.6	1,1,1-Trichloroethane	ug/kg	<14.4	50.0	06/07/19 09:35	
1,1.2-Trichloroethane ug/kg <17.6	1,1,2,2-Tetrachloroethane	ug/kg	<17.5	50.0	06/07/19 09:35	
1.1-Dichloropropene ug/kg <17.6		ug/kg	<20.2	50.0	06/07/19 09:35	
1,1-Dichloropropene ug/kg <14.0	1,1-Dichloroethane	ug/kg	<17.6	50.0	06/07/19 09:35	
1,2,3-Trichlorobenzene ug/kg <17.0	1,1-Dichloroethene	ug/kg	<17.6	50.0	06/07/19 09:35	
1,2,3-Trichloropropane ug/kg <22.3	1,1-Dichloropropene	ug/kg	<14.0	50.0	06/07/19 09:35	
1,2,4-Trinchlorobenzene ug/kg <47.6	1,2,3-Trichlorobenzene	ug/kg	<17.0	50.0	06/07/19 09:35	
1,2,4-Trimethylbenzene ug/kg <12.2	1,2,3-Trichloropropane	ug/kg	<22.3	50.0	06/07/19 09:35	
1,2-Dibromo-3-chloropropane ug/kg <91.2	1,2,4-Trichlorobenzene	ug/kg	<47.6	250	06/07/19 09:35	
1,2-Dibromoethane (EDB) ug/kg <14.7	1,2,4-Trimethylbenzene	ug/kg	<12.2	50.0	06/07/19 09:35	
1,2-Dichlorobenzene ug/kg <16.2	1,2-Dibromo-3-chloropropane	ug/kg	<91.2	250	06/07/19 09:35	
1,2-Dichloroethane ug/kg <15.0	1,2-Dibromoethane (EDB)	ug/kg	<14.7	50.0	06/07/19 09:35	
1,2-Dichloropropane ug/kg <16.8	1,2-Dichlorobenzene	ug/kg	<16.2	50.0	06/07/19 09:35	
1,3,5-Trimethylbenzene ug/kg <14.5	1,2-Dichloroethane	ug/kg	<15.0	50.0	06/07/19 09:35	
1,3-Dichlorobenzene ug/kg <13.2	1,2-Dichloropropane	ug/kg	<16.8	50.0	06/07/19 09:35	
1,3-Dichloropropaneug/kg<12.050.006/07/19 09:351,4-Dichlorobenzeneug/kg<15.9	1,3,5-Trimethylbenzene	ug/kg	<14.5	50.0	06/07/19 09:35	
1,4-Dichlorobenzeneug/kg<15.950.006/07/1909:352,2-Dichloropropaneug/kg<12.6	1,3-Dichlorobenzene	ug/kg	<13.2	50.0	06/07/19 09:35	
2,2-Dichloropropaneug/kg<12.650.006/07/1909:352-Chlorotolueneug/kg<15.8	1,3-Dichloropropane	ug/kg	<12.0	50.0	06/07/19 09:35	
2-Chlorotolueneug/kg<15.850.006/07/1909:354-Chlorotolueneug/kg<13.0	1,4-Dichlorobenzene	ug/kg	<15.9	50.0	06/07/19 09:35	
4-Chlorotolueneug/kg<13.050.006/07/19 09:35Benzeneug/kg<9.2	2,2-Dichloropropane	ug/kg	<12.6	50.0	06/07/19 09:35	
Benzeneug/kg<9.220.006/07/1909:35Bromobenzeneug/kg<20.6	2-Chlorotoluene	ug/kg	<15.8	50.0	06/07/19 09:35	
Bromobenzeneug/kg<20.650.006/07/1909:35Bromochloromethaneug/kg<21.4	4-Chlorotoluene	ug/kg	<13.0	50.0	06/07/19 09:35	
Bromochloromethaneug/kg<21.450.006/07/1909:35Bromodichloromethaneug/kg<9.8	Benzene	ug/kg	<9.2	20.0	06/07/19 09:35	
Bromodichloromethaneug/kg<9.850.006/07/1909:35Bromoformug/kg<19.8	Bromobenzene	ug/kg	<20.6	50.0	06/07/19 09:35	
Bromoformug/kg<19.850.006/07/1909:35Bromomethaneug/kg<69.9	Bromochloromethane	ug/kg	<21.4	50.0	06/07/19 09:35	
Bromomethaneug/kg<69.925006/07/1909:35Carbon tetrachlorideug/kg<12.1	Bromodichloromethane	ug/kg	<9.8	50.0	06/07/19 09:35	
Carbon tetrachlorideug/kg<12.150.006/07/1909:35Chlorobenzeneug/kg<14.8	Bromoform	ug/kg	<19.8	50.0	06/07/19 09:35	
Chlorobenzeneug/kg<14.850.006/07/1909:35Chloroethaneug/kg<67.0	Bromomethane	ug/kg	<69.9	250	06/07/19 09:35	
Chloroethaneug/kg<67.025006/07/1909:35Chloroformug/kg<46.4	Carbon tetrachloride	ug/kg	<12.1	50.0	06/07/19 09:35	
Chloroformug/kg<46.425006/07/1909:35Chloromethaneug/kg<20.4	Chlorobenzene	ug/kg	<14.8	50.0	06/07/19 09:35	
Chloromethaneug/kg<20.450.006/07/1909:35cis-1,2-Dichloroetheneug/kg<16.6	Chloroethane	ug/kg	<67.0	250	06/07/19 09:35	
cis-1,2-Dichloroetheneug/kg<16.650.006/07/1909:35cis-1,3-Dichloropropeneug/kg<16.6	Chloroform	ug/kg	<46.4	250	06/07/19 09:35	
cis-1,3-Dichloropropeneug/kg<16.650.006/07/1909:35Dibromochloromethaneug/kg<17.9	Chloromethane	00	<20.4	50.0	06/07/19 09:35	
Dibromochloromethane ug/kg <17.9 50.0 06/07/19 09:35 Dibromomethane ug/kg <19.3	cis-1,2-Dichloroethene	ug/kg	<16.6	50.0	06/07/19 09:35	
Dibromomethane ug/kg <19.3 50.0 06/07/19 09:35 Dichlorodifluoromethane ug/kg <12.3		00		50.0		
Dichlorodifluoromethane ug/kg <12.3 50.0 06/07/19 09:35 Disopropyl ether ug/kg <17.7	Dibromochloromethane	ug/kg	<17.9	50.0	06/07/19 09:35	
Diisopropyl ether ug/kg <17.7 50.0 06/07/19 09:35	Dibromomethane	ug/kg	<19.3	50.0	06/07/19 09:35	
	Dichlorodifluoromethane	ug/kg	<12.3	50.0	06/07/19 09:35	
Ethylbenzene ug/kg <12.4 50.0 06/07/19 09:35	Diisopropyl ether	ug/kg			06/07/19 09:35	
	Ethylbenzene	ug/kg	<12.4	50.0	06/07/19 09:35	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

METHOD BLANK: 1879662 Matrix: Solid Associated Lab Samples: 40188973001, 40188973002, 40188973003, 40188973004, 40188973005, 40188973006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Hexachloro-1,3-butadiene	ug/kg	<24.5	50.0	06/07/19 09:35	
Isopropylbenzene (Cumene)	ug/kg	<12.6	50.0	06/07/19 09:35	
m&p-Xylene	ug/kg	<34.4	100	06/07/19 09:35	
Methyl-tert-butyl ether	ug/kg	<12.7	50.0	06/07/19 09:35	
Methylene Chloride	ug/kg	<16.2	50.0	06/07/19 09:35	
n-Butylbenzene	ug/kg	<10.5	50.0	06/07/19 09:35	
n-Propylbenzene	ug/kg	<11.6	50.0	06/07/19 09:35	
Naphthalene	ug/kg	<40.0	250	06/07/19 09:35	
o-Xylene	ug/kg	<14.0	50.0	06/07/19 09:35	
p-Isopropyltoluene	ug/kg	<12.0	50.0	06/07/19 09:35	
sec-Butylbenzene	ug/kg	<11.9	50.0	06/07/19 09:35	
Styrene	ug/kg	<9.0	50.0	06/07/19 09:35	
tert-Butylbenzene	ug/kg	<9.5	50.0	06/07/19 09:35	
Tetrachloroethene	ug/kg	<12.9	50.0	06/07/19 09:35	
Toluene	ug/kg	<11.2	50.0	06/07/19 09:35	
trans-1,2-Dichloroethene	ug/kg	<16.5	50.0	06/07/19 09:35	
trans-1,3-Dichloropropene	ug/kg	<14.4	50.0	06/07/19 09:35	
Trichloroethene	ug/kg	<23.6	50.0	06/07/19 09:35	
Trichlorofluoromethane	ug/kg	<24.7	50.0	06/07/19 09:35	
Vinyl chloride	ug/kg	<21.1	50.0	06/07/19 09:35	
4-Bromofluorobenzene (S)	%	96	54-126	06/07/19 09:35	
Dibromofluoromethane (S)	%	106	57-146	06/07/19 09:35	
Toluene-d8 (S)	%	90	64-134	06/07/19 09:35	

LABORATORY CONTROL SAMPLE: 1879663

LABORATORT CONTROL SAMFLE.	1079003					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2310	92	70-132	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2960	119	70-130	
1,1,2-Trichloroethane	ug/kg	2500	2640	106	70-130	
1,1-Dichloroethane	ug/kg	2500	2420	97	70-130	
1,1-Dichloroethene	ug/kg	2500	2460	98	77-126	
1,2,4-Trichlorobenzene	ug/kg	2500	1870	75	66-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2330	93	54-129	
1,2-Dibromoethane (EDB)	ug/kg	2500	2630	105	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2430	97	70-130	
1,2-Dichloroethane	ug/kg	2500	2810	113	70-134	
1,2-Dichloropropane	ug/kg	2500	2550	102	74-124	
1,3-Dichlorobenzene	ug/kg	2500	2490	100	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2600	104	70-130	
Benzene	ug/kg	2500	2500	100	70-130	
Bromodichloromethane	ug/kg	2500	2660	106	70-130	
Bromoform	ug/kg	2500	3050	122	47-115 L	.1
Bromomethane	ug/kg	2500	2980	119	64-165	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

LABORATORY CONTROL SAMPLE: 1879663

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Carbon tetrachloride	ug/kg	2500	2260	91	70-131	
Chlorobenzene	ug/kg	2500	2570	103	70-130	
Chloroethane	ug/kg	2500	2500	100	28-197	
Chloroform	ug/kg	2500	2460	99	80-131	
Chloromethane	ug/kg	2500	1660	66	45-118	
cis-1,2-Dichloroethene	ug/kg	2500	2350	94	70-130	
cis-1,3-Dichloropropene	ug/kg	2500	2480	99	70-130	
Dibromochloromethane	ug/kg	2500	2720	109	70-130	
Dichlorodifluoromethane	ug/kg	2500	1430	57	38-108	
Ethylbenzene	ug/kg	2500	2430	97	82-122	
Isopropylbenzene (Cumene)	ug/kg	2500	2490	100	70-130	
m&p-Xylene	ug/kg	5000	5110	102	70-130	
Methyl-tert-butyl ether	ug/kg	2500	2800	112	70-130	
Methylene Chloride	ug/kg	2500	2840	113	70-130	
o-Xylene	ug/kg	2500	2490	99	70-130	
Styrene	ug/kg	2500	2750	110	70-130	
Tetrachloroethene	ug/kg	2500	2150	86	70-130	
Toluene	ug/kg	2500	2350	94	80-121	
trans-1,2-Dichloroethene	ug/kg	2500	2430	97	70-130	
trans-1,3-Dichloropropene	ug/kg	2500	2440	98	70-130	
Trichloroethene	ug/kg	2500	2510	100	70-130	
Trichlorofluoromethane	ug/kg	2500	2560	102	81-141	
Vinyl chloride	ug/kg	2500	1990	80	68-121	
4-Bromofluorobenzene (S)	%			112	54-126	
Dibromofluoromethane (S)	%			107	57-146	
Toluene-d8 (S)	%			97	64-134	

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 1879	664		1879665							
			MS	MSD								
		40188975005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/kg	<25.0	1780	1780	1530	1500	86	84	64-132	2	20	
1,1,2,2-Tetrachloroethane	ug/kg	<25.0	1780	1780	2100	2040	118	115	70-132	3	20	
1,1,2-Trichloroethane	ug/kg	<25.0	1780	1780	1810	1830	102	103	70-130	1	20	
1,1-Dichloroethane	ug/kg	<25.0	1780	1780	1650	1700	93	95	70-130	3	20	
1,1-Dichloroethene	ug/kg	<25.0	1780	1780	1590	1600	90	90	65-126	1	21	
1,2,4-Trichlorobenzene	ug/kg	<47.6	1780	1780	1400	1380	79	78	66-139	2	20	
1,2-Dibromo-3- chloropropane	ug/kg	<91.2	1780	1780	1430	1450	80	82	47-146	2	23	
1,2-Dibromoethane (EDB)	ug/kg	<25.0	1780	1780	1780	1840	100	104	70-130	3	20	
1,2-Dichlorobenzene	ug/kg	<25.0	1780	1780	1820	1870	102	105	70-130	3	20	
1,2-Dichloroethane	ug/kg	<25.0	1780	1780	1970	1940	111	109	70-136	2	20	
1,2-Dichloropropane	ug/kg	<25.0	1780	1780	1780	1830	100	103	74-124	3	20	
1,3-Dichlorobenzene	ug/kg	<25.0	1780	1780	1710	1730	97	97	70-130	1	20	
1,4-Dichlorobenzene	ug/kg	<25.0	1780	1780	1850	1880	104	106	70-130	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

		CATE: 1879	664		1879665							
			MS	MSD								
		40188975005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/kg	<25.0	1780	1780	1710	1740	96	98	70-130	2	20	
Bromodichloromethane	ug/kg	<25.0	1780	1780	1830	1810	103	102	70-130	1	20	
Bromoform	ug/kg	<25.0	1780	1780	1980	1930	112	109	47-129	3	20	
Bromomethane	ug/kg	<69.9	1780	1780	2030	1780	114	100	41-180	13	20	
Carbon tetrachloride	ug/kg	<25.0	1780	1780	1470	1390	83	78	58-133	6	20	
Chlorobenzene	ug/kg	<25.0	1780	1780	1780	1790	100	101	70-130	0	20	
Chloroethane	ug/kg	<67.0	1780	1780	1820	1710	102	96	28-197	6	20	
Chloroform	ug/kg	<46.4	1780	1780	1760	1770	99	100	80-131	1	20	
Chloromethane	ug/kg	<25.0	1780	1780	1540	1510	87	85	26-118	2	20	
cis-1,2-Dichloroethene	ug/kg	<25.0	1780	1780	1630	1650	92	93	70-130	1	20	
cis-1,3-Dichloropropene	ug/kg	<25.0	1780	1780	1600	1620	90	91	70-130	2	20	
Dibromochloromethane	ug/kg	<25.0	1780	1780	1810	1830	102	103	67-130	1	20	
Dichlorodifluoromethane	ug/kg	<25.0	1780	1780	1340	1270	75	71	12-108	5	29	
Ethylbenzene	ug/kg	<25.0	1780	1780	1540	1550	87	87	80-122	0	20	
Isopropylbenzene	ug/kg	<25.0	1780	1780	1540	1560	87	88	70-130	1	20	
(Cumene)												
m&p-Xylene	ug/kg	<50.0	3550	3550	3290	3340	92	94	70-130	2		
Methyl-tert-butyl ether	ug/kg	<25.0	1780	1780	1860	1890	105	106	70-130	2		
Methylene Chloride	ug/kg	<25.0	1780	1780	1970	2000	111	113	70-130	2		
o-Xylene	ug/kg	<25.0	1780	1780	1600	1620	90	91	70-130	1	20	
Styrene	ug/kg	<25.0	1780	1780	1780	1870	100	105	70-130	5	20	
Tetrachloroethene	ug/kg	<25.0	1780	1780	1440	1430	81	80	70-130	1	20	
Toluene	ug/kg	<25.0	1780	1780	1570	1580	89	89	80-121	1	20	
trans-1,2-Dichloroethene	ug/kg	<25.0	1780	1780	1670	1690	94	95	70-130	1	20	
trans-1,3-Dichloropropene	ug/kg	<25.0	1780	1780	1580	1540	89	86	70-130	3	20	
Trichloroethene	ug/kg	<25.0	1780	1780	1680	1680	95	95	70-130	0	20	
Trichlorofluoromethane	ug/kg	<25.0	1780	1780	1740	1700	98	96	60-141	2	26	
Vinyl chloride	ug/kg	<25.0	1780	1780	1480	1410	83	79	46-121	5	20	
4-Bromofluorobenzene (S)	%						105	105	54-126			
Dibromofluoromethane (S)	%						104	102	57-146			
Toluene-d8 (S)	%						91	91	64-134			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

QC Batch:	324127	7	Analysis Method:	EPA 8270 by SIM
QC Batch Method:	EPA 35	546	Analysis Description:	8270/3546 MSSV PAH by SIM
Associated Lab Sam	ples: 4	40188973001, 40188973002, 4	40188973003, 40188973004	4

METHOD BLANK: 18820	01	Matrix: Solid
Associated Lab Samples:	40188973001, 4018897300	2, 40188973003, 40188973004

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	<4.0	13.4	06/12/19 11:02	
2-Methylnaphthalene	ug/kg	<5.0	16.7	06/12/19 11:02	
Acenaphthene	ug/kg	<3.9	12.9	06/12/19 11:02	
Acenaphthylene	ug/kg	<3.3	11.0	06/12/19 11:02	
Anthracene	ug/kg	<5.7	19.0	06/12/19 11:02	
Benzo(a)anthracene	ug/kg	<3.2	10.6	06/12/19 11:02	
Benzo(a)pyrene	ug/kg	<2.5	8.4	06/12/19 11:02	
Benzo(b)fluoranthene	ug/kg	<2.8	9.4	06/12/19 11:02	
Benzo(g,h,i)perylene	ug/kg	<2.0	6.8	06/12/19 11:02	
Benzo(k)fluoranthene	ug/kg	<2.5	8.4	06/12/19 11:02	
Chrysene	ug/kg	<3.4	11.2	06/12/19 11:02	
Dibenz(a,h)anthracene	ug/kg	<2.2	7.4	06/12/19 11:02	
Fluoranthene	ug/kg	<5.2	17.4	06/12/19 11:02	
Fluorene	ug/kg	<4.1	13.8	06/12/19 11:02	
Indeno(1,2,3-cd)pyrene	ug/kg	<2.2	7.3	06/12/19 11:02	
Naphthalene	ug/kg	<8.4	28.1	06/12/19 11:02	
Phenanthrene	ug/kg	<11.6	38.8	06/12/19 11:02	
Pyrene	ug/kg	<4.5	15.0	06/12/19 11:02	
2-Fluorobiphenyl (S)	%	64	28-99	06/12/19 11:02	
Terphenyl-d14 (S)	%	68	10-107	06/12/19 11:02	

LABORATORY CONTROL SAMPLE: 1882002

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	333	240	72	47-104	
2-Methylnaphthalene	ug/kg	333	227	68	50-100	
Acenaphthene	ug/kg	333	267	80	56-113	
Acenaphthylene	ug/kg	333	257	77	55-113	
Anthracene	ug/kg	333	299	90	59-103	
Benzo(a)anthracene	ug/kg	333	251	75	55-102	
Benzo(a)pyrene	ug/kg	333	291	87	59-114	
Benzo(b)fluoranthene	ug/kg	333	309	93	53-124	
Benzo(g,h,i)perylene	ug/kg	333	276	83	48-114	
Benzo(k)fluoranthene	ug/kg	333	265	79	61-118	
Chrysene	ug/kg	333	289	87	62-108	
Dibenz(a,h)anthracene	ug/kg	333	269	81	51-114	
Fluoranthene	ug/kg	333	287	86	59-113	
Fluorene	ug/kg	333	274	82	56-117	
Indeno(1,2,3-cd)pyrene	ug/kg	333	267	80	52-115	
Naphthalene	ug/kg	333	233	70	54-95	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

LABORATORY CONTROL SAMPLE:	1882002					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/kg	333	273	82	58-101	
Pyrene	ug/kg	333	249	75	56-105	
2-Fluorobiphenyl (S)	%			67	28-99	
Terphenyl-d14 (S)	%			70	10-107	

MATRIX SPIKE & MATRIX S	ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1882003				1882004							
			MS	MSD								
	4	0188973002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/kg	184	439	438	638	427	103	55	39-104	40	29	R1
2-Methylnaphthalene	ug/kg	453	439	438	970	636	118	42	40-100	42	32	M1,R1
Acenaphthene	ug/kg	<10.2	439	438	286	318	65	73	50-113	11	21	
Acenaphthylene	ug/kg	<8.7	439	438	300	304	68	69	42-114	1	27	
Anthracene	ug/kg	<15.0	439	438	322	344	73	79	33-105	7	21	
Benzo(a)anthracene	ug/kg	<8.3	439	438	266	262	61	60	43-102	2	21	
Benzo(a)pyrene	ug/kg	<6.6	439	438	278	289	63	66	34-117	4	22	
Benzo(b)fluoranthene	ug/kg	<7.4	439	438	265	259	60	59	35-124	2	35	
Benzo(g,h,i)perylene	ug/kg	<5.3	439	438	309	285	70	65	10-120	8	30	
Benzo(k)fluoranthene	ug/kg	<6.6	439	438	332	315	76	72	31-128	5	27	
Chrysene	ug/kg	<8.9	439	438	353	327	80	75	39-108	7	20	
Dibenz(a,h)anthracene	ug/kg	<5.9	439	438	280	284	64	65	19-114	1	28	
Fluoranthene	ug/kg	<13.7	439	438	307	310	70	71	45-113	1	22	
Fluorene	ug/kg	<10.9	439	438	304	301	69	69	48-117	1	21	
Indeno(1,2,3-cd)pyrene	ug/kg	<5.8	439	438	280	284	64	65	10-123	2	28	
Naphthalene	ug/kg	1160	439	438	1990	1100	190	-13	32-101	58	27	M1,R1
Phenanthrene	ug/kg	<30.6	439	438	294	297	67	68	40-101	1	20	
Pyrene	ug/kg	<11.9	439	438	274	266	62	61	35-105	3	26	
2-Fluorobiphenyl (S)	%						56	60	28-99			
Terphenyl-d14 (S)	%						53	54	10-107			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

 QC Batch:
 324322
 Analysis Method:
 EPA 8270 by SIM

 QC Batch Method:
 EPA 3546
 Analysis Description:
 8270/3546 MSSV PAH by SIM

 Associated Lab Samples:
 40188973005, 40188973006
 Matrix: Solid

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	<4.0	13.4	06/13/19 13:38	
2-Methylnaphthalene	ug/kg	<5.0	16.7	06/13/19 13:38	
Acenaphthene	ug/kg	<3.9	12.9	06/13/19 13:38	
Acenaphthylene	ug/kg	<3.3	11.0	06/13/19 13:38	
Anthracene	ug/kg	<5.7	19.0	06/13/19 13:38	
Benzo(a)anthracene	ug/kg	<3.2	10.6	06/13/19 13:38	
Benzo(a)pyrene	ug/kg	<2.5	8.4	06/13/19 13:38	
Benzo(b)fluoranthene	ug/kg	<2.8	9.4	06/13/19 13:38	
Benzo(g,h,i)perylene	ug/kg	<2.0	6.8	06/13/19 13:38	
Benzo(k)fluoranthene	ug/kg	<2.5	8.4	06/13/19 13:38	
Chrysene	ug/kg	<3.4	11.2	06/13/19 13:38	
Dibenz(a,h)anthracene	ug/kg	<2.2	7.4	06/13/19 13:38	
Fluoranthene	ug/kg	<5.2	17.4	06/13/19 13:38	
Fluorene	ug/kg	<4.1	13.8	06/13/19 13:38	
Indeno(1,2,3-cd)pyrene	ug/kg	<2.2	7.3	06/13/19 13:38	
Naphthalene	ug/kg	<8.4	28.1	06/13/19 13:38	
Phenanthrene	ug/kg	<11.6	38.8	06/13/19 13:38	
Pyrene	ug/kg	<4.5	15.0	06/13/19 13:38	
2-Fluorobiphenyl (S)	%	60	28-99	06/13/19 13:38	
Terphenyl-d14 (S)	%	61	10-107	06/13/19 13:38	

LABORATORY CONTROL SAMPLE: 1883097

	E. 1003037					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
I-Methylnaphthalene	ug/kg	333	259	78	47-104	
-Methylnaphthalene	ug/kg	333	263	79	50-100	
cenaphthene	ug/kg	333	260	78	56-113	
cenaphthylene	ug/kg	333	252	76	55-113	
Inthracene	ug/kg	333	287	86	59-103	
Benzo(a)anthracene	ug/kg	333	233	70	55-102	
Senzo(a)pyrene	ug/kg	333	258	77	59-114	
Benzo(b)fluoranthene	ug/kg	333	279	84	53-124	
enzo(g,h,i)perylene	ug/kg	333	269	81	48-114	
enzo(k)fluoranthene	ug/kg	333	262	79	61-118	
Chrysene	ug/kg	333	285	86	62-108	
Dibenz(a,h)anthracene	ug/kg	333	255	76	51-114	
luoranthene	ug/kg	333	265	80	59-113	
luorene	ug/kg	333	251	76	56-117	
ndeno(1,2,3-cd)pyrene	ug/kg	333	255	77	52-115	
laphthalene	ug/kg	333	233	70	54-95	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

LABORATORY CONTROL SAMPLE:	1883097					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Phenanthrene	ug/kg	333	236	71	58-101	
Pyrene	ug/kg	333	240	72	56-105	
2-Fluorobiphenyl (S)	%			68	28-99	
Terphenyl-d14 (S)	%			64	10-107	

MATRIX SPIKE & MATRIX S		CATE: 1883	098		1883099							
			MS	MSD								
	4	0188975001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/kg	7.5J	453	453	285	328	61	71	39-104	14	29	
2-Methylnaphthalene	ug/kg	8.6J	453	453	294	333	63	72	40-100	13	32	
Acenaphthene	ug/kg	<5.3	453	453	301	317	66	69	50-113	5	21	
Acenaphthylene	ug/kg	<4.5	453	453	290	340	63	75	42-114	16	27	
Anthracene	ug/kg	<7.8	453	453	336	348	72	75	33-105	3	21	
Benzo(a)anthracene	ug/kg	20.1	453	453	309	335	64	70	43-102	8	21	
Benzo(a)pyrene	ug/kg	18.5	453	453	350	377	73	79	34-117	8	22	
Benzo(b)fluoranthene	ug/kg	17.7	453	453	342	360	72	76	35-124	5	35	
Benzo(g,h,i)perylene	ug/kg	11.4	453	453	314	326	67	70	10-120	4	30	
Benzo(k)fluoranthene	ug/kg	18.3	453	453	329	352	69	74	31-128	6	27	
Chrysene	ug/kg	24.0	453	453	340	362	70	75	39-108	6	20	
Dibenz(a,h)anthracene	ug/kg	3.5J	453	453	295	311	64	68	19-114	5	28	
Fluoranthene	ug/kg	42.5	453	453	383	423	75	84	45-113	10	22	
Fluorene	ug/kg	<5.6	453	453	297	336	65	74	48-117	12	21	
Indeno(1,2,3-cd)pyrene	ug/kg	10.2	453	453	309	319	66	68	10-123	3	28	
Naphthalene	ug/kg	<11.5	453	453	253	309	54	66	32-101	20	27	
Phenanthrene	ug/kg	28.5J	453	453	326	348	66	71	40-101	7	20	
Pyrene	ug/kg	31.7	453	453	327	378	65	77	35-105	15	26	
2-Fluorobiphenyl (S)	%						54	65	28-99			
Terphenyl-d14 (S)	%						52	55	10-107			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	1902429 FMR GA	S STATION-ADLER									
Pace Project No .:	40188973										
QC Batch:	323974		Analysi	s Method:	W	I MOD D	RO				
QC Batch Method:	WI MOD DRO		Analysi	s Descriptio	on: W	IDRO G	CS				
Associated Lab San	nples: 401889730	001, 40188973002,	401889730	003							
METHOD BLANK:	1881154		М	atrix: Solid							
Associated Lab San	nples: 401889730	001, 40188973002,	401889730	003							
			Blank		porting						
Paran	neter	Units	Result	I	_imit	Ana	lyzed	Qualif	iers		
Diesel Range Orgar	nics	mg/kg		<1.3	4.4	06/13/	19 08:34				
LABORATORY CON	ITROL SAMPLE &	LCSD: 1881155		18	881156						
			Spike	LCS	881156 LCSD	LCS	LCSD	% Rec		Max	
LABORATORY COM		LCSD: 1881155 Units	Spike Conc.					% Rec Limits	RPD	Max RPD	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	1902429 FMR GA	S STATION-ADLER									
Pace Project No .:	40188973										
QC Batch:	324469		Analysi	s Method:	W		RO				
QC Batch Method:	WI MOD DRO		Analysi	s Descripti	on: W	IDRO G	CS				
Associated Lab San	nples: 40188973	004, 40188973005,	401889730	006							
METHOD BLANK:	1883765		М	atrix: Solid	ł						
Associated Lab San	nples: 40188973	004, 40188973005,	401889730	006							
			Blank	Re	porting						
Paran	neter	Units	Result		Limit	Ana	lyzed	Qualif	iers		
Paran Diesel Range Organ		Units mg/kg		<1.3	Limit 4.4		lyzed 19 08:36	Qualif	iers		
	nics	mg/kg		<1.3				_ Qualif	iers		
Diesel Range Organ	nics	mg/kg		<1.3	4.4			Qualif	iers	Max	
Diesel Range Organ	NTROL SAMPLE &	mg/kg		<1.3	4.4	06/17/	19 08:36		RPD	Max RPD	Qualifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

QC Batch:	324006	Analysis Method:	ASTM D2974-87
QC Batch Method:	ASTM D2974-87	Analysis Description:	Dry Weight/Percent Moisture
Associated Lab Sam	ples: 40188973002, 40188973004, 4	40188973005, 4018897300	6

	E DUPLICATE:	100121/
SAIVIF LL		1001014

Parameter	Units	40188973006 Result	Dup Result	RPD	Max RPD	Qualifiers
Percent Moisture	%	27.8	27.8	0	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

QC Batch:	324034		Analysis Method:		ASTM D2974-8			
QC Batch Method:	ASTM D2974-87		Analysis Description:		Dry Weight/Perc			
Associated Lab Samp	ples: 40188973001							
SAMPLE DUPLICATI	E: 1881516							
			40188973001	Dup		Max		
Parame	eter	Units	Result	Result	RPD	RPD	Qua	alifiers

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

QC Batch:	324068	Analysis Meth	od:	ASTM D2974-87		
QC Batch Method:	ASTM D2974-87	Analysis Desc	ription:	Dry Weight/Perce	nt Moisture	
Associated Lab Sa	mples: 40188973003					
SAMPLE DUPLICA	TE: 1881647					
SAMPLE DUPLICA	TE: 1881647	40188973003	Dup		Max	

Percent Moisture	%	27.7	27.0	2	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G Pace Analytical Services - Green Bay

ANALYTE QUALIFIERS

- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- DC Chromatographic pattern inconsistent with typical Diesel Fuel.
- G+ Late peaks present outside the GRO window.
- GO Early and late peaks present outside the GRO window.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.
- W Non-detect results are reported on a wet weight basis.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 1902429 FMR GAS STATION-ADLER

Pace Project No.: 40188973

Analytical QC Batch Method QC Batch Batch Lab ID Sample ID **Analytical Method** 40188973001 FGS-1 2'-4' WI MOD DRO 323974 WI MOD DRO 324247 40188973002 FGS-1 4.5'-6.5' WI MOD DRO 323974 WI MOD DRO 324247 40188973003 FGS-1 12'-14' WI MOD DRO 323974 WI MOD DRO 324247 FGS-2 0'-3' 40188973004 WI MOD DRO 324469 WI MOD DRO 324543 FGS-2 6'-8' WI MOD DRO 40188973005 WI MOD DRO 324469 324543 FGS-2 12'-14' 40188973006 WI MOD DRO 324469 WI MOD DRO 324543 40188973001 FGS-1 2'-4' TPH GRO/PVOC WI ext. 323819 WI MOD GRO 323914 40188973002 FGS-1 4.5'-6.5' TPH GRO/PVOC WI ext. 323819 WI MOD GRO 323914 40188973003 FGS-1 12'-14' TPH GRO/PVOC WI ext. 323819 WI MOD GRO 323914 FGS-2 0'-3' TPH GRO/PVOC WI ext. WI MOD GRO 40188973004 323819 323914 40188973005 FGS-2 6'-8' TPH GRO/PVOC WI ext. 323819 WI MOD GRO 323914 40188973006 FGS-2 12'-14' TPH GRO/PVOC WI ext. 323819 WI MOD GRO 323914 40188973001 FGS-1 2'-4' EPA 3050 323958 EPA 6010 324250 40188973002 FGS-1 4.5'-6.5' EPA 3050 323958 EPA 6010 324250 40188973003 FGS-1 12'-14' EPA 3050 323958 EPA 6010 324250 40188973004 FGS-2 0'-3' EPA 3050 323958 EPA 6010 324250 40188973005 FGS-2 6'-8' EPA 3050 323958 EPA 6010 324250 40188973006 FGS-2 12'-14' EPA 3050 323958 EPA 6010 324250 40188973001 FGS-1 2'-4' EPA 3546 324127 EPA 8270 by SIM 324155 40188973002 FGS-1 4.5'-6.5' EPA 3546 324127 EPA 8270 by SIM 324155 40188973003 FGS-1 12'-14' EPA 3546 324127 EPA 8270 by SIM 324155 EPA 8270 by SIM 40188973004 FGS-2 0'-3' 324127 324155 EPA 3546 40188973005 FGS-2 6'-8' EPA 3546 324322 EPA 8270 by SIM 324390 40188973006 FGS-2 12'-14' EPA 3546 324322 EPA 8270 by SIM 324390 40188973001 FGS-1 2'-4' EPA 5035/5030B 323737 EPA 8260 323738 40188973002 FGS-1 4.5'-6.5' EPA 5035/5030B 323737 EPA 8260 323738 40188973003 FGS-1 12'-14' EPA 5035/5030B 323737 EPA 8260 323738 40188973004 FGS-2 0'-3' EPA 5035/5030B 323737 EPA 8260 323738 FGS-2 6'-8' 323737 EPA 8260 40188973005 EPA 5035/5030B 323738 40188973006 FGS-2 12'-14' EPA 5035/5030B 323737 EPA 8260 323738 40188973001 FGS-1 2'-4' ASTM D2974-87 324034 40188973002 FGS-1 4.5'-6.5' ASTM D2974-87 324006 40188973003 FGS-1 12'-14' 324068 ASTM D2974-87 40188973004 FGS-2 0'-3' ASTM D2974-87 324006 40188973005 FGS-2 6'-8' 324006 ASTM D2974-87 40188973006 FGS-2 12'-14' ASTM D2974-87 324006

REPORT OF LABORATORY ANALYSIS

	(Please Pr	int Clearly)				\frown						UPPE		NEST I	<u>REGION</u>	Page	1 of (
Company Nan	me: GE	F Lonsultan	<i>t</i> 5-]	P	1			,0			MN: (612-607	7-1700	WI: 920-469-2436	401889-)3
Branch/Locat		in Bay, wF			1	Pace										721889)3
Project Conta	ct: lo	ac Willic		-1			www.p	ocelebs.	.00m						Quote #:		
Phone:	97	<u>gir Millir</u> 0-455-865	7			CH/	AIN	OF	= C	US	то	DY			Mail To Contact:		
Project Numb)2429		Т Г.		=HCL C:			ation Co	des]	Mail To Company:		
Project Name:		strad a de la tradición de tradición	12 AU	- I II-e		HCL C			m Thiosu		F=Metha =Other	no4 G=n	NaOH		Mail To Address:		
roject State:	estas triba esciencia de consta	<u>mirbas Stai</u> NI	1)1m-4010	FILT	ERED? S/NO)	YIN	N	N	IN	N	N	IN	Γ¥			21	.
ampled By (F				PRESE	RVATION	Pick Letter	Δ		F	F	A	ß	to-		Invoice To Contact:	m	5
ampled By (S		Shadmir L	7.		DDE)*	1.41.001		14		1		$ \Psi $			Invoice To Company:	$ $ \mathcal{E}	
°O #:	- 7		Regulator Program:			sted									Invoice To Address:		
Data Packag (billat		MS/MSD		atrix Code W = Water	8	Reque	PAHS	PRO	6RO	VOLS	Pb	VOLS	Pb				
	Level III	On your sample (billable)	A = Air B = Biota C = Charcoal O = Oil	W = Water DW ≃ Drink GW = Grou SW = Surfa	nd Water	888					only		only		Invoice To Phone:		
		NOT needed on your sample	IS = Soll SI = Sludge	WW = Was WP = Wipe LLECTION	te Water	Analy									CLIENT COMMENTS	LAB COMMENTS (Lab Use Only)	Profile #
100	F65-	1 2-4	6/5/1	and the englance	15	1	X	X	X	X	χ					PG"	1
202	FG 5-1	4.5-6.5		ente la consectione			X	$\frac{1}{\sqrt{2}}$		X	X						
203	FGS-1	12-14'	6/5/19				X	X	$\frac{1}{x}$	X	X						
004	FG 5-2	0-3		7 16:15	3		X	$\frac{1}{\chi}$	$\frac{1}{\chi}$	X	X						
005	FG5-2		45/19	en andere en endere	5		X	X	V	v	X						
204		• •	and the second		5		X		X	$\frac{1}{X}$	$\frac{\pi}{\chi}$						
	F65-2	12-14	<u>4/s/19</u>	16:00	1.1		<u> </u>			<u>/`</u>	/\	V	X				
	765				161							1	11-	211	6/6/2019		
		, ,			GW							$\overline{\mathbf{A}}$	\mathbf{x}	UCS	6612		
MEC	trip blan	en an an tha a state i a s			-w-					N		∇					
Slow hig	<u>Tcip - Vo</u>	ls								X							
Rush Turr	naround Time R	equested - Preli	ms Ipai	inguished By:			-	Dat	te/Time:			Received	Bv	7	Date/Time:		roject No.
(Rush TA		proval/surcharge	e)	Inquished By:		Z	616	1201	P te/Time:	13:	24	Received	Dar	X.	Mho Golf g	1324 40188	2972
		complete what you v		пционец ру.								n cocived	<i>.</i> у.			Boosint Taxaa	DATE
nail #1:			Reli	inquished By:				Dat	te/Time:			Received	By:		Date/Time:	Receipt Temp =	
nall #2: lephone:			Reli	nguished By:				Dat	e/Time:			Received	By:		Date/Time:		Recelpt pH djusted
x:																Cooler Cu	stody Seal
	nples on HOLD are s al pricing and release	승규가 많은 것이 아파를 모두는 것이 같았다.	Reli	nquished By:				Dat	e/Time:			Received	By:		Date/Time:	양성 지난 것 같은 것은 것을 것 것 않는 것을 것 같은 것	lot Intact

Cli	ent				<u>E</u>								_	mpl	Pro	ojec	t #	tior	n Re	eceij	pt F	orn §G	n つ	3							Pace A 1241 I	3ellevue	I Services, LLQ Street, Suite & Bay, WI 54302 Bay, WI 543020
		A	ll cont	ainers	needin	g prese	ervatio	on hav	e been				below:		⊡No	2N/A		Lab S	td #ID	of pre	servatio	on (if r	oH adji	usted):					Initial comp	when when		Date/ Time:	Ъа
		Manafiniteseyteetteet		Glas	5				Management and a second		Plast							als				Jars			enera	h	(>6mm) *	6	Act pH ≥9	212	۲J	justed	Volume
Pace Lab #	AG1U	AG1H	AG4S	AG4U	AGSU	AG2S	BG3U	BP1U	BP2N	BP2Z	BP3U	BP3B	BP3N	BP3S	DG9A	DG9T	VG9U	NG9H	VG9M	VG9D	JGFU	WGFU	WPFU	SP5T	ZPLC	GN	VOA Vials (>6mm)	H2SO4 pH ≤2	NaOH+Zn Act	NaOH pH ≥12	HNO3 pH ≤2	pH after adjusted	(mL)
001		199													0404150001605				3	i.	1000	1	1										2.5 / 5 / 10
002																			3		18	1	1										2.5 / 5 / 10
003																			9	: :	Ser 1	1	<u> </u>	38-6 m 8 m 8 m 8	Assertedada			200620053					2.5 / 5 / 10
004													<u> </u>						9		12	<u> </u>	1										2.5 / 5 / 10
005															10000000				3		12	<u> </u>	1										2.5/5/10
006													<u> </u>						a		12	<u> </u>											2.5/5/10
007 008																									$ \ \ \ \ \ \ \ \ \ \ \ \ \ $								2.5 / 5 / 10
009																																	2.5/5/10
010																					$\mathbf{>}$												2.5/5/10
011										Ī		9 - 129-2007 					ou	19						80,99328									2.5 / 5 / 10
012																00											5.6762						2.5/5/10
013	1012-2012		2000000								ŀ			n.		$ \vdash $								1									2.5/5/10
014																																	2.5/5/10
015				1									ſ																				2.5 / 5 / 10
016										\sim	r																						2.5/5/10
017					Γ	[F		Ι	T				ſ																l i	2.5/5/10
018							P																										2.5/5/10
019	and states																																2.5/5/10
020		-	-																														2.5/5/10
E	ceptic	ons to j	preserv	vation	check:	VOA	Colif	orm, T	FOC, 1	TOX, T	юн, с)&G, V	VI DR(O, Phei	nolics,	Other				He	adspac	e in V	OA V	als (> 6	(mm)	□Yes	⊡No	en/A	*If yes	s look i	n heads	pace col	ump
AG1U AG1H AG4S	1 lite 125 1	er amb mL an	er gla nber g	ass HO glass H	-12SO4			BP BP	P1U P2N P2Z	500 r 500 r	nL pla nL pla		INO3 NaOH,		t	DC VC	59T 59U	40 m 40 m		er Na r vial	Thio unpres	5		1.1	FU	4 oz	amber clear j plastic	ar unj	ores				
AG4U AG5U AG2S BG3U	100 i 500 i	mL an mL an	nber g nber g	glass u glass H	inpres 12SO4			BP BP	3N	250 r 250 r	nL pla nL pla	astic l astic l	inpres √aOH 4NO3 42SO4			VG9H40 mL clear vial HCLVG9M40 mL clear vial MeOHVG9D40 mL clear vial DIVG9D40 mL clear vial DIZPLCziploc bagGN:						c Na Thiosulfate											

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

Page <u>1</u> of **2**

Pace Analytical	Sample Conditio	ment Name: n Upon Receipt (SCUR) ument No.:		evised: 25Apr2018 ng Authority:
1241 Bellevue Street, Green Bay, WI 54302		C-031-Rev.07	1	Bay Quality Office
		n Receipt Form (S	CUR)	· · · · · · · · · · · · · · · · · · ·
Client Name: GEI			1# · 40	188973
Courier: CS Logistics Fed Ex Speede			/#· 70	
Client Pace Other:				
Tracking #:		401	88973	
Custody Seal on Cooler/Box Present: 🦵 yes		r yes r no	a an	· · · · · · · · · · · · · · · · · · ·
Custody Seal on Samples Present: 🔽 yes 🗹		: 🔽 yes 🔽 no		
Packing Material: T Bubble Wrap J Bubb			Consulta on inc	
Thermometer Used SR - N/A Cooler Temperature Uncorr: ROI	Type of Ice: Wet	Blue Dry None	Samples on Ice	e, cooling process has begun
Temp Blank Present: Tyes 7 no	Biological	Tissue is Frozen: 🧮 ye		Person examining contents:
Temp should be above freezing to 6°C.	-			Date: <u>06/06/Ĭ9</u> Initials: <u>MSC</u>
Biota Samples may be received at $\leq 0^{\circ}$ C.		Τ		
Chain of Custody Present:		1.		
Chain of Custody Filled Out:		2		
Chain of Custody Relinquished:		3.		
Sampler Name & Signature on COC:		4		
Samples Arrived within Hold Time:	Yes No	5.		
- VOA Samples frozen upon receipt		Date/Time:		
Short Hold Time Analysis (<72hr):	□Yes IINo	6.	·····	
Rush Turn Around Time Requested:		7		N_N
Sufficient Volume:	ĩ	8.		
For Analysis: ⊠yes □No MS/MSD	: Yes No N/A			
Correct Containers Used:	DYes INO	9.		
-Pace Containers Used:	IZYes □No □N/A			
-Pace IR Containers Used:	□Yes □No □N/A		·····	
Containers Intact:	Yes INO	10.		· · · · · · · · · · · · · · · · · · ·
Filtered volume received for Dissolved tests		11.		
Sample Labels match COC:	Yes No N/A	12.		
-Includes date/time/ID/Analysis Matrix:	5			
Trip Blank Present:	□Yes IINO □N/A	13. Trip Blank on	coc, Noto	Hes Recieved
Trip Blank Custody Seals Present	□Yes □No □N/A		۲	
Pace Trip Blank Lot # (if purchased):				msc ouloul
Client Notification/ Resolution: Person Contacted:Kyle_Sam Comments/ Resolution:	Date	Time: <u><i>L</i>/</u> 4 / <u>14</u>	ed, see attached	form for additional comments
Proceed without supple	to per ky	h = 6/7/19 CH	4	
Project Manager Review:	Ú#		Date:	6/7/19
				Page_2_ of of

Phase 2.5 Subsurface Investigation US 2/53 – 31st Ave East to 53rd Ave East City of Superior, Douglas County, Wisconsin WisDOT Project ID No. 1198-03-78 August 12, 2019

Appendix E

Contract Special Provisions

Special Provisions for the Excavation, Hauling, and Disposal of Petroleum-Contaminated Soil

Project Design I.D. #1198-03-78 US 2/53 (31st Avenue East to 53rd Avenue East) City of Superior, Douglas County, WI

> Prepared by GEI Consultants, Inc., Green Bay, WI

> > August 2019

1. Excavation, Hauling, and Disposal of Petroleum-Contaminated Soil, Item 205.0501.S

A Description

A.1 General

This special provision describes excavating, loading, hauling, and disposing of petroleum-contaminated soil at a licensed bioremediation/disposal facility. The closest licensed facilities are:

Waste Management Timberline Trail RDF N4581 Hutchinson Road Weyerhaeuser, WI 54895 (715) 868-7000

Vonco V Waste Campus 1100 West Gary Street Duluth, Minnesota 55808 (218) 336-5100

Waste Management Voyager Landfill 6830 US-53 Canyon, Minnesota 55717 (218) 345-6302

Perform this work in accordance to standard spec 205 and with pertinent parts of Chapters NR 700-754 of the Wisconsin Administrative Code, as supplemented herein. Per NR 718.07, a solid waste collection and transportation service-operating license is required under NR 502.06 for each vehicle used to transport contaminated soil. If a Minnesota bioremediation/disposal facility is utilized, perform hauling and disposal in accordance with equivalent State of Minnesota requirements.

A.2 Notice to the Contractor – Contaminated Soil Locations

The department completed testing for soil contamination within this project where excavation is required. Testing indicated that petroleum-contaminated soil is present or likely to be present at the following location as shown on the plans:

1. Station 255+50 to 260+15, from 25 feet RT of reference line to construction limits RT, from the ground surface to a depth of approximately 10 feet below existing grades.

If contaminated soil is encountered at other locations, terminate excavations in that area and notify the engineer. The excavation management plan for this project has been designed to minimize the off-site disposal of contaminated material. These special provisions, which outline the excavation management plan, have been developed in cooperation with the WDNR. The WDNR's concurrence is on file at the department. For further information regarding previous investigation and remediation activities at these locations, contact:

Contact:	Mr. Aaron Gustafson, WisDOT Northwest Region
Address:	1701 North 4 th Street, Superior, WI 54880
Phone:	(715) 919-3051
Fax:	(715) 392-7863
Email:	aaron.gustafson@dot.wi.gov

A.3 Coordination

Coordinate work under this contract with the environmental consultant:

Name:	GEI Consultants, Inc., Mr. Roger Miller or Mr. Michael DeBraske
Address:	3159 Voyager Drive, Green Bay, WI 54311
Phone:	(920) 455-8657 / (920) 455-8655
Fax:	(920) 455-8225
E-mail:	rmiller@geiconsultants.com, mdebraske@geiconsultants.com

The role of the environmental consultant will be limited to:

- 1. Determining the locations and limits of contaminated material to be excavated based on analytical results from previous investigations, visual observations, and field-screening of material that is excavated;
- 2. Identifying contaminated material to be hauled to the bioremediation/disposal facility;
- 3. Documenting that activities associated with management of contaminated material are in conformance with state regulations;
- 4. Obtaining the necessary approvals for treatment and disposal of contaminated material.

Provide at least a 14-calendar day notice of the preconstruction conference date to the environmental consultant. At the preconstruction conference, provide a schedule for all excavation activities in the contaminated areas specified above to the environmental consultant. Also notify the environmental consultant at least three calendar days prior to commencement of excavation activities in each of the contaminated areas.

Coordinate with the environmental consultant to ensure that the environmental consultant is present during excavation in contaminated areas. Perform excavation work in these areas on a continuous basis until excavation work is completed.

Identify the licensed bioremediation/disposal facility that will be used for disposal of contaminated material, and provide this information to the environmental consultant no later than 30 calendar days prior to commencement of excavation activities in the contaminated areas or at the preconstruction conference, whichever comes first. The environmental consultant will be responsible for obtaining the necessary approvals for disposal of contaminated soils from the bioremediation/disposal facility. Do not transport contaminated

soil offsite without prior approval from the environmental consultant.

A.4 Health and Safety Requirements

Supplement subsection 107.1 of the standard specifications with the following:

During excavation activities, expect to encounter soil contaminated with gasoline, diesel fuel, or other petroleum related products. Site workers taking part in activities that will result in the reasonable probability of exposure to safety and health hazards associated with hazardous materials shall have completed health and safety training that meets the Occupational Safety and Health Administration (OSHA) requirements for Hazardous Waste Operations and Emergency Response (HAZWOPER), as provided in 29 CFR 1910.120.

Prepare a site-specific Health and Safety Plan, and develop, delineate and enforce the health and safety exclusion zones for each contaminated site location as required by 29 CFR 1910.120. Submit the site-specific health and safety plan and written documentation of up-to-date OSHA training to the engineer prior to the start of work.

B (Vacant)

C Construction

Supplement subsection 205.3 of the standard specification with the following:

Control operations in the contaminated areas to minimize the quantity of contaminated material excavated.

The environmental consultant will periodically evaluate material excavated from the contaminated areas. The environmental consultant will evaluate excavated material based on field-screening results, visual observations, and analytical results from previous environmental investigations. Assist the environmental consultant in collecting samples for evaluation using excavation equipment. The sampling frequency shall be a maximum of one sample for every 15 cubic yards excavated.

On the basis of the results of such field-screening, the material will be designated as follows:

- Excavation Common consisting of clean soil and/or clean construction and demolition fill (such as boulders, concrete, reinforced concrete, bituminous pavement, bricks, building stone, and unpainted or untreated wood), which under NR 500.08 are exempt materials, or
- Petroleum-contaminated soil for bioremediation/disposal at the selected licensed bioremediation/disposal facility.

Directly load and haul material designated by the environmental consultant for offsite treatment and disposal at the licensed facility. Use loading and hauling practices that are appropriate to prevent any spills or releases of contaminated material or residues. Prior to transport, sufficiently dewater material designated for off-site treatment and disposal so

as not to contain free liquids.

Excavations may extend near or slightly beyond the depths to groundwater; however, due to the low permeability of subsurface materials, significant dewatering is not anticipated. Control activities in the contaminated area to minimize the amount of dewatering required. Allow contaminated water encountered, but not requiring removal as a standard course of construction, to remain in-place. If dewatering is necessary, notify the engineer and obtain any permits necessary prior to discharge or offsite transport of water.

D Measurement

The Department will measure Excavation, Hauling, and Disposal of Petroleum-Contaminated Soil in tons of contaminated soil accepted by the bioremediation/disposal facility as documented by weight tickets generated by the bioremediation/disposal facility. The management of contaminated groundwater shall be considered incidental to the project.

E Payment

The Department will pay for measured quantities at the contract unit price under the following bid items:

ITEM NUMBER	DESCRIPTION	UNIT
205.0501.S	Excavation, Hauling, and Disposal of Petroleum-	Ton
	Contaminated Soil	

Payment is full compensation for excavating, segregating, loading, hauling, and treatment via bioremediation or direct landfilling of contaminated soil; obtaining solid waste collection and transportation service operating licenses; assisting in the collection of soil samples for field evaluation; management of contaminated groundwater, if necessary; dewatering of soils prior to transport, if necessary; and for furnishing all labor, tools, equipment, and incidentals necessary to complete the work.