Lauridsen, Keld B - DNR

From:	Patrick Patterson <patrick.patterson@intertek.com></patrick.patterson@intertek.com>
Sent:	Wednesday, August 14, 2024 3:49 PM
То:	Lauridsen, Keld B - DNR
Subject:	RE: Groundwater monitoring update - BMO Harris Bank Branch (BRRTS # 02-05-585287)

CAUTION: This email originated from outside the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Keld,

I have forwarded your email to BMO (Joaquin Camacho and Peter Helming) and told them that I'll get them a proposal tomorrow for closure. If they give approval ASAP, I should be able to complete and submit by end of September. I'll be going parttime in October and not doing environmental services anymore. So, once closure is approved, you'll need to go through Larry Raether for anything else additional. Thanks Pat

Patrick J. Patterson, P.G.

Senior Geologist Building & Construction Intertek-PSI

 Office
 262-521-2125

 Email
 patrick.patterson@intertek.com

 www.intertek.com/building [nam04.safelinks.protection.outlook.com] [nam10.safelinks.protection.outlook.com]

Intertek-PSI, 821 Corporate Court, Waukesha, WI 53189

From: Lauridsen, Keld B - DNR <Keld.Lauridsen@wisconsin.gov>

Sent: Wednesday, August 14, 2024 3:26 PM

To: Patrick Patterson <patrick.patterson@intertek.com>

Cc: Nate Smith <nate.smith@badgerlandbadge.com>; Rebecca Finco <Rebecca.Finco@greenbaywi.gov>; Matthew Buchanan <Matthew.Buchanan@greenbaywi.gov>; Schultz, Josie M - DNR <josie.schultz@wisconsin.gov> **Subject:** [External] Groundwater monitoring update - BMO Harris Bank Branch (BRRTS # 02-05-585287)

Hi Patrick,

Thank you for submitting the groundwater monitoring update received on July 2, 2024, for the above site.

DNR has reviewed the available analytical results for this site and would recommend that a closure request be prepared for review.

Based on the future development plans for the current property owner, it is recommended that the closure request be prepared as soon as possible so the proposed site work involving potential cap modifications and monitoring well abandonment can proceed in late October, if at all possible.

Let me know if you would like to discuss anything in more detail.

Thanks,

-Keld

We are committed to service excellence. Visit our survey at http://dnr.wi.gov/customersurvey [dnr.wi.gov] to evaluate how I did.

Keld B. Lauridsen Phone: (920) 510-8294 Keld.Lauridsen@Wisconsin.gov

From: no-reply@wisconsin.gov <no-reply@wisconsin.gov> Sent: Tuesday, July 2, 2024 2:27 PM To: DNR RR NER <<u>DNRRRNER@wisconsin.gov</u>> Cc: Lauridsen, Keld B - DNR <<u>Keld.Lauridsen@wisconsin.gov</u>> Subject: 0205585287: Status Update Report

Please do not reply to this email.

BRRTS #: 0205585287 Site Name: BMO HARRIS BANK BRANCH Type of Report: Status Update Report Confirmation Number: 44738 File Name: <u>KELD_LAURIDSEN_0205585287_20240702_Status_Rpt_44738.pdf</u> Fee: No Amount: 0.00 Form Included: No Does submittal include NR 712 certification? : Yes Project Manager: KELD LAURIDSEN File Contact: DENISE DANELSKI Other DNR RR Contact: NA PFAS - This submittal contains:

• None, PFAS is not mentioned in this submittal.

Vapor Intrusion - This submittal contains:

• None, submittal does not include new vapor data or Vapor Mitigation System Inspection Log.

Additional Information: NA

From: Patrick Patterson Email: <u>patrick.patterson@intertek.com</u>

CONFIDENTIALITY NOTICE

This email may contain confidential or privileged information, if you are not the intended recipient, or the person responsible for delivering the message to the intended recipient then please notify us by return email immediately. Should you have received this email in error then you should not copy this for any purpose nor disclose its contents to any other person.

http://www.intertek.com

Professional Service Industries, Inc. 821 Corporate Court Waukesha, WI 53189 Phone: (262) 521-2125 Fax: (262) 521-2471

June 27, 2024

BMO Harris Bank NA c/o Jones Lang LaSalle Americas, Inc. 111 W. Monroe-115 S. LaSalle Chicago, IL 60603

Attn: Mr. Joaquin Camacho Regional Engineering Manager Joaquin.Camacho@bmo.com

Subject: Status Update Report-Additional Site Investigation Activities-May 2024 **BMO Harris Bank Branch** 117 S. Chestnut Avenue Green Bay, Wisconsin 54303 PSI Project No. 00542978 **BRRTS No. 02-05-585287**

Dear Mr. Camacho,

Professional Service Industries, Inc. (PSI), an Intertek Company, performed additional site investigative activities for the Subject Property as described above. These additional activities were discussed in an April 22, 2024, WDNR email following WDNR's initial review of data, and a subsequent Status Update Report submitted in March 2024. The results, including pertinent observations and a summary of the findings, can be found in the accompanying report.

If you have any questions or comments, please call us at (262) 521-2125.

Respectfully Submitted, **PROFESSIONAL SERVICE INDUSTRIES, INC.**

Patrick J. Patterson, P.E., P.G. Senior Engineer Environmental Services

Larry Raether, P.E. Principal Consultant Environmental Services

Status Update Report-May 2024

Site:

BMO Harris Bank Branch 117 S. Chestnut Avenue Green Bay, Wisconsin 54303

Prepared for:

BMO Harris Bank NA c/o Jones Lang LaSalle Americas, Inc. 111 W. Monroe-115 S. LaSalle Chicago, IL 60603

Prepared by:

Professional Service Industries, Inc. 821 Corporate Court Waukesha, WI 53189 (262) 521-2125 (262) 521-2471

BRRTS No. 02-05-585287

PSI Report Number: 00542978

June 27, 2024

After

Patrick J. Patterson, P.E., P.G. Senior Engineer Environmental Services

Rf

Larry Raether, P.E. Principal Consultant Environmental Services

EXECUTIVE SUMMARY	1
INTRODUCTION	4
GENERAL INFORMATION	4
PURPOSE	5
Scope	5
SITE LOCATION, SITE FEATURES, AND BACKGROUND	5
Site Location	5
Site Features	6
BACKGROUND INFORMATION	6
FIELD EXPLORATION	
SCOPE SUMMARY	
FIELD EXPLORATION	58
METHODS OF INVESTIGATION	
QUALITY ASSURANCE/QUALITY CONTROL MEASURES	8
Monitoring Well Purging and Sampling Procedures	9
LABORATORY ANALYSIS	10
DESCRIPTION OF SUBSURFACE CONDITIONS	
GENERAL	
Soil Conditions	10
GROUNDWATER CONDITIONS	10
DISCUSSION OF RESULTS	
GROUNDWATER QUALITY STANDARDS	
LABORATORY GROUNDWATER RESULTS	
CONCLUSIONS AND RECOMMENDATIONS	
Findings and Conclusions	13
RECOMMENDATIONS	14
REPRESENTATIONS	
WARRANTY	15
THIRD PARTY USE	15

APPENDICES

Appendix A

Site Location Map Site Features Diagram Monitoring Well Location Diagram Vapor Point and Vapor Sample Location Diagram

Appendix B

Groundwater Analytical Results Table Groundwater Elevations Table Vapor Analytical Table

Appendix C

Laboratory Analytical Reports and Chain of Custody Forms

EXECUTIVE SUMMARY

The Subject Property consists of an approximate 0.5-acre parcel in the City of Green Bay, Wisconsin and has addresses of 117 and 125 S. Chestnut Avenue. A rectangular commercial structure is situated on the 117 S. Chestnut Avenue parcel, which is in the northern quarter of the Subject Property. A dry cleaner formerly occupied a portion of this building and former buildings that were situated in the eastern half of this parcel and have been razed. Asphalt parking areas are present south of the existing building and a fenced-in area is present to the east of the building. Landscaped areas are located along the property lines.

From July 2020 to July 2022, PSI completed site investigative activities. These activities consisted of the placement of seven soil probes, the installation of thirteen groundwater monitoring and one piezometer, the installation of three temporary soil vapor points and one sub-slab vapor point, and the collection of three ambient sewer main vapor samples. The collected samples were tested for the presence of Volatile Organic Compounds (VOCs), Polynuclear Aromatic Hydrocarbons (PAHs), and RCRA metals. Most recent samples were tested for the presence of chlorinated VOCs only.

Because of the previous soil analytical test results, which indicate that only a few PAHs were detected in one of the submitted soil samples and the extent had been defined, it was PSI's opinion that no additional soil analytical testing was warranted. In addition, the previous and recent analytical test results of the groundwater associated with the wells with detected chlorinated compounds above NR140 standards indicate that these levels are generally stable and/or decreasing in concentrations; thus, it was PSI's opinion that no additional groundwater sampling is warranted. In addition, it was PSI's opinion that these sampling events defined the horizontal and vertical extent of the chlorinated contamination within the groundwater associated with the Subject Property and the northern adjoining parcel.

Based upon the investigative activities completed to date, PSI prepared a Site Investigation Report in general accordance with NR716.15. Following client approval, on March 23, 2023, PSI submitted the report along with the appropriate review fee to the WDNR for their review and concurrence.

In a May 15, 2023, WDNR Response Letter, they determined that the site investigation report was incomplete and additional investigative activities would be required to be completed prior to their future concurrence and approval.

In September 2023, a sub-slab vapor point was installed in the northern restroom of the existing building, while a passive air sampler was placed in the southern restroom. A sample was collected following the installation of the vapor point for testing for the presence of VOCs, while the air sampler was collected following a 10-day period and tested for the presence of TCE, PCE, 1,1-DCE, cis-1,2-DCE and trans-1,2-DCE. In October 2023, an additional groundwater monitoring well (MW-15) was installed near the northwestern building corner. A groundwater sample was collected for MW-15 and tested for VOCs, while samples from ten of the existing wells were collected and tested for the presence of TCE, PCE, trans-1,2-DCE and VC. Further, one additional soil probe was (SP-13A) placed on the parcel near existing well MW-8. A soil sample collected from 2 to 4 feet was tested for VOCs.

The analytical test results of the soil sample indicated that Benzene and TCE were at levels above their respective NR720 GW RCLs, but below their respective NR720 non-industrial DC RCLs. The analytical test results of the sub-slab vapor sample and the passive air sample indicated detected chlorinated VOCs. However, none of the concentrations were above current established WDNR and/or EPA vapor quality

standards for commercial or residential parcels. The analytical test results of the groundwater samples did not indicate the presence of VOCs in the sample collected from MW-15 while the test results of the groundwater samples collected from the previously existing wells were consistent with previous test results associated with these wells.

This data was submitted to the WDNR and presented in a Status Update Report. In a December 22, 2023, email from the WDNR, they indicated that additional site investigation activities will need to be completed prior to their approval of the completion of the site investigation per NR716 requirements. These requested services would need to include additional groundwater sampling of the new well and nine of the existing wells for testing for the presence of specific chlorinated VOCs, collection of an additional sub-slab vapor sample and a passive air sample to test for the presence of specific chlorinated VOCs, defining the extent of soil contamination encountered near monitoring well MW-8, and further evaluation of the potential for vapor migration onto adjoining properties.

In February and March 2024, PSI completed additional groundwater sampling of ten wells for the presence of chlorinated compounds, the placement of five soil probes to collect soil sample for testing for the presence of VOCs, the collection and testing of an additional passive ambient air sample and an additional sub-slab vapor sample within the existing building for the presence of chlorinated compounds, and the evaluation of the potential need to perform additional investigative work for potential vapor migration issues.

The results of the groundwater sampling indicated similar concentrations with the numerous previous sampling events. PSI believes that the extent of the chlorinated-impacted groundwater contamination is generally defined on the Subject Property and the northern adjoining parcel and along the eastern adjoining alley and further groundwater sampling events are not warranted. The results of the soil analytical testing for the presence of volatile compounds along the north side of the existing building have indicated that shallow soil contamination exists in this area of the Subject Property and is present on the northern adjoining parcel. These results also indicated that the concentrations are not above direct contact levels but only groundwater protection levels and additional soil investigative activities are not warranted. The results of the sub-slab vapor sampling and the ambient air sampling indicated that Tetrachloroethene (PCE) was the only chlorinated compound detected in the vapor sample. These test results and the previous test results showed that the detected compound levels are well below the current WDNR VRSLs for PCE and TCE and the PCE levels are well below the Indoor Air VAL, and PSI believes that additional sub-slab and ambient air sampling events are not warranted.

This data was submitted to the WDNR and presented in a Status Update Report. In an April 22, 2024, email from the WDNR, they indicated that additional site investigation activities will need to be completed prior to their approval of the completion of the site investigation per NR716 requirements. These requested services would need to include additional groundwater sampling of seven of the existing wells for testing for the presence of specific chlorinated VOCs, to further evaluate the existing subsoil and sub-slab vapor conditions on the Subject Property, and further discussion of the potential for vapor migration onto adjoining properties.

In May 2024, PSI completed additional groundwater sampling of seven wells for the presence of specific chlorinated compounds, and further evaluation of vapor migration issues.

The results of the groundwater sampling indicated similar concentrations as with the numerous previous sampling events with the highest CVOC concentrations in wells along the northern building line and lesser CVOC concentrations in surrounding wells. PSI believes that the extent of the chlorinated-impacted groundwater contamination is generally defined on the Subject Property and the northern adjoining parcel and along the eastern adjoining alley and since the encountered contamination is isolated to the shallow groundwater within a highly urbanized area further groundwater sampling events are not warranted. The Subject Property is in the City of Green Bay and, it and the surrounding properties are connected to municipal and commercial urban utility services. No water supply wells are present on the Subject Property, and none are known to be present within 1,200 feet of the Subject Property.

The results of the previous soil analytical testing for the presence of volatile compounds along the north side of the existing building have indicated that shallow soil contamination exists in this area of the Subject Property and is present on the northern adjoining parcel. These results also indicated that the concentrations are not above direct contact levels but only groundwater protection levels. Since it is known that chlorinated groundwater contamination is present in this area, PSI believes that additional soil investigative activities are not warranted. The previous results of the sub-slab vapor sampling showed that the detected compound levels are well below the current WDNR VRSLs for PCE and TCE, and PSI believes that additional sub-slab sampling events are not warranted. The test results of the passive ambient air sampling events indicated that though PCE has been detected in the samples, the concentrations are well below the WDNR Indoor Air VAL for PCE. As such, PSI believes that additional ambient air sampling events are not warranted.

In review of the results of the vapor analyses of the collected sub-slab samples, which indicate that no detected CVOCs are above WDNR VRSLs, the results of the passive ambient air samples, which indicate that no detected CVOCs are above WDNR Indoor Air VALs, and the results of the sampling of the ambient air within the sanitary sewer line in the alleyway and the soil vapors within the trench backfill of this line indicate that no detected CVOCs are above WDNR VALs or VRSLs, the known CVOCs within the groundwater and a limited area of soil has not migrated into the existing structure associated with the Subject Property or the sanitary sewer line within the alleyway. In addition, most of the subsurface soils consist of fine grain soils (ie. clays, silts) and these types of soils generally inhibit the migration of vapors into onsite and adjoining structures. As such, PSI believes that because of the recent and previous sampling activities of the soil, groundwater, subsurface soil vapors beneath and around the existing building, and the ambient air within the building indicates that known CVOC contamination has not migrated into the existing onsite building, additional site investigative activities associated with evaluating of the eastern/northeastern adjoining structure referenced as the "Tarlton Theatre", for the presence of CVOC vapors are not warranted. It is also recommended that the previously submitted NR716 Site Investigation Report along with the additional site investigation data and information be reviewed and approval of the completion of the site investigation be granted.

It is recommended that a site case closure documentation with continuing obligations regarding the residual soil and groundwater contamination be prepared and submitted to the WDNR for review and approval.

This summary is not to be used alone. The report must be read in its entirety.

NR712.09 SUBMITTAL CERTIFICATION

"I, Patrick J. Patterson, hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of Ch. <u>A-E 4</u>, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in Ch. <u>A-E 8</u>, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. <u>NR 700</u> to <u>726</u>, Wis. Adm. Code."

Alte

Signature and Title

June 27, 2024

Date

INTRODUCTION

GENERAL INFORMATION

Professional Service Industries, Inc. (PSI) has prepared this Status Update Report for the BMO Harris Bank Branch parcel located in Green Bay, Wisconsin, referred herein as the "Subject Property". General site information is included under this section.

Site Name:	BMO Harris Bank Branch
Site Address:	117 S. Chestnut Avenue Green Bay, Wisconsin 54303
WDNR BRRTS No:	02-05-585287
WDNR FID No:	NA
Responsible Party:	BMO Harris Bank NA (Former Owner) 111 W. Monroe Street Chicago, Illinois 60603
RP Representative:	June Evans VP Sr. Mgr. CRE US Facility Management 111 W. Monroe Street Chicago, Illinois 60603 june.evans@bmo.com
RP Contact:	Jones Lang LaSalle Americas, Inc. Joaquin (JC) Camacho Regional Engineering Manager/EHS Manager 111 W. Monroe-115 S. LaSalle Chicago, Illinois 60603 Telephone: (847) 878-3419 E-mail address: Joaquin. Camacho@bmo.com
Consultant:	Patrick J. Patterson, P.E., P.G. Project Manager Professional Service Industries, Inc. 821 Corporate Court Waukesha, WI 53189 Telephone: (262) 521-2125 Email address: patrick.patterson@intertek.com
Property Owner:	Badgerland Management, LLC. 412 Howard Street Green Bay, WI 54303

PURPOSE

The purpose of the additional site investigative activities presented in this report was to further evaluate the degree of chlorinated VOCs contamination encountered within the groundwater associated with several of the wells on the Subject Property. Also, these activities included the further evaluation of the potential for the necessity of evaluation of vapors migration onto the adjoining properties. These services address the WDNR listed issues expressed in an April 2024 response email. The activities were not intended to be an all-inclusive search for hazardous substances and did not necessarily preclude the presence of other compounds or contaminants in these or other areas of the site.

SCOPE

As described below, chlorinated VOC contamination from a former drycleaning facility was encountered during site investigative activities at a former BMO Harris Bank Branch property. This contaminant was assumed to have the potential to affect media including soil, groundwater, and air (vapors) that may be present in the subsurface on-site and within the building. The Subject Property is in the City of Green Bay and, it and the surrounding properties are connected to municipal and commercial urban utility services. No water supply wells are present on the Subject Property, and none are known to be present within 1,200 feet of the Subject Property. No sensitive species, habitat or ecosystems, wetlands, resource waters, or sites of historical or archeological significance are known to be present. Potential receptors include the on-site building and utility corridors on the Subject Property and surrounding parcels.

The scope of services for these additional field site investigative activities included groundwater sample collection of seven (7) groundwater monitoring wells; an evaluation of the data obtained; and the preparation of this status update report. The laboratory analyses included testing for the presence of specific chlorinated VOCs, Ethane and Ethene.

SITE LOCATION, SITE FEATURES, AND BACKGROUND

SITE LOCATION

The Subject Property consists of an approximate 0.5-acre parcel in the City of Green Bay, Wisconsin. This parcel is zoned as commercial and has addresses of 117 and 125 S. Chestnut Avenue. It is in the Northeast ¼ of the Northwest ¼ of Section 36, Township 24 North, Range 20 East and at Latitude 44.5159218 and Longitude -88.0230731, in Brown County, State of Wisconsin. The Wisconsin Transverse Mercator Projection (WTM91) of the Subject Property is X-677119.5 and Y-451077.6. In review of the Brown County Property Information Website, the Property Tax Key Number is 3-101 and the parcel is currently owned by "Badgerland Management, LLC.", who purchased the parcel from BMO Harris Bank, NA. A rectangular commercial structure is situated in the northern quarter of the Subject Property and a dry cleaner formerly occupied a portion of the building. An asphalt parking area is present south of the building and a fenced-in storage area is present to the east of the building.

The surrounding properties are generally occupied by commercial and residential properties and a school building. The Fox River is situated about 700 feet to the east of the Subject Property and flows to the north into Green Bay. The general location of the Subject Property is shown on the Site Location Map in Appendix A. A diagram showing the general site features is also included in Appendix A.

SITE FEATURES

According to the contour lines on the Brown County GIS Website, the Subject Property is at an approximate elevation of 588 feet above mean sea level (MSL). The contour lines around the Project Area indicate the area is generally flat with a slight slope to the south. The nearest water body is the Fox River, about 700 feet to the southeast.

A rectangular commercial structure, which has the address of 117 S. Chestnut Avenue, is situated in the northern quarter of the Subject Property and a dry cleaner formerly occupied a portion of this building and former buildings that were situated in the eastern half of this parcel. A parking area is present to the south of the building and a fenced-in storage area is present to the east of the building.

BACKGROUND INFORMATION

It is understood that in April 2019, Tetra Tech completed a Phase I ESA of the Subject Property. According to their Phase I ESA report, prior to BMO's ownership, multiple small commercial businesses operated on the Property from the 1890s to 1986. These businesses included a dry cleaner and post office. Results of the Phase I ESA identified recognized environmental conditions (RECs) associated with the Property. The RECs consisted of the historical use of the Subject Property as a dry cleaner over 30 years.

During May and June 2019, Stantec Consulting Services Inc. (Stantec) completed a Phase II ESA on behalf of the City of Green Bay. During their Phase II ESA, nine soil borings (B-100 through B-900) were advanced at the Site with temporary groundwater monitoring wells constructed in four of the borings (TW-100, TW-600 TW-700 and TW-800). Eight of these borings were performed in the northeastern portion of the Subject Property, generally around the area of the dry cleaner. The other boring (B-700) was placed on a separate parcel formerly owned by BMO Harris Bank, which is considered as a separate release. In addition, two subslab vapor monitoring points were also installed within the Site building at 117 South Chestnut Avenue where the dry cleaner was located. Soil, groundwater, and vapor samples were collected and tested for the presence of VOCs, PAHs, and RCRA Metals.

Stantec's laboratory analysis of soil samples detected multiple PAHs, Silver, and Tetrachloroethene (PCE) exceeding the NR720 residual contaminant levels (RCLs) for groundwater protection and/or non-industrial direct contact. Stantec indicated that the PCE detections on the Site are likely related to the former drycleaner which historically operated on the Property identified in Tetra Tech's Phase I ESA. Stantec's laboratory analysis of groundwater samples collected from their temporary wells detected multiple RCRA Metals and PCE exceeding their respective NR140 Preventive Action Limits (PALs). Vinyl chloride (VC) was also detected exceeding its NR140 Enforcement Standard (ES). Sub-slab soil vapor analysis was performed on samples collected from the interior vapor points. PCE was detected in both samples but below the target limit for sub-slab vapor concentrations. No other VOCs were detected above target limits for sub-slab vapor concentrations. Stantec indicated that the Phase II findings needed to be reported to the WDNR and additional site investigation would be required.

PSI was retained to perform additional site investigative services and notify the WDNR of the encountered contamination on February 7, 2020, and the WDNR assigned BRRTS No. 02-05-585287 to the Subject Property.

From July 2020 to July 2022, PSI completed site investigative activities. These activities consisted of the placement of seven soil probes, the installation of thirteen groundwater monitoring wells and one piezometer, the installation of three temporary soil vapor points and one sub-slab vapor point, and the collection of three ambient sewer main vapor samples. The collected samples were tested for the presence of Volatile Organic Compounds (VOCs), Polynuclear Aromatic Hydrocarbons (PAHs), and RCRA metals. Most recent samples were tested for the presence of chlorinated VOCs only.

Based upon the completed investigative activities, PSI prepared a Site Investigation Report in general accordance with NR716.15. Following client approval, on March 23, 2023, PSI submitted the report along with the appropriate review fee to the WDNR for your review and concurrence.

In a May 15, 2023, WDNR Response Letter, they determined that the site investigation report was incomplete and additional investigative activities would be required to be completed prior to their future concurrence and approval.

In September and October 2023, PSI installed an additional groundwater monitoring well, a sub-slab vapor sampling point, one soil probe and one passive air sampling device, and collected eleven groundwater samples, one sub-slab vapor sample, one soil sample, and one passive air sample. Ten groundwater samples were tested for PCE, TCE, cis and trans-DCE, VC, ethane, and ethene, one groundwater sample and the soil sample were tested for VOCs, one sub-slab vapor sample was tested for TCE, PCE, VC, and cis and trans DCE, and one ambient air sample was tested for PCE, TCE and cis and trans DCE.

The analytical test results of the soil sample indicated that Benzene and TCE were at levels above their respective NR720 GW RCLs, but below their respective NR720 non-industrial DC RCLs. The analytical test results of the sub-slab vapor sample and the passive air sample indicated detected chlorinated VOCs. However, none of the concentrations were above current established WDNR and/or EPA vapor quality standards for commercial or residential parcels. The analytical test results of the groundwater samples did not indicate the presence of VOCs in the sample collected from MW-15 while the test results of the groundwater samples collected from the previously existing wells were consistence with previous test results associated with these wells.

This data was submitted to the WDNR and presented in a Status Update Report. In a December 22, 2023, email from the WDNR, they indicated that additional site investigation activities will need to be completed prior to their approval of the completion of the site investigation per NR716 requirements.

In February and March 2024, PSI completed additional groundwater sampling of ten wells for the presence of chlorinated compounds, the placement of five soil probes to collect soil samples for testing for the presence of VOCs and to define the extent of soil contamination, the collection and testing of an additional passive ambient air sample and an additional sub-slab vapor sample with the existing building for the presence of chlorinated compounds, and the evaluation of the potential need to perform additional investigative work for potential vapor migration issues.

This data was submitted to the WDNR and presented in a Status Update Report. In an April 22, 2024, email from the WDNR, they indicated that additional site investigation activities will need to be completed prior to their approval of the completion of the site investigation per NR716 requirements.

Based upon the WDNR response email, additional investigative services were performed in accordance

with Chapter NR716 on the Subject Property and are discussed in more detail in the following paragraphs.

FIELD EXPLORATION

SCOPE SUMMARY

The additional investigative activities were performed in accordance with requirements expressed in Chapter NR 716.11 and, based on additional services required by the WDNR, to further evaluate the subsurface conditions associated with the encountered chlorinated VOC contamination from the dry cleaner that formerly occupied the existing building on the Subject Property. These additional activities included the performance of a groundwater sampling event of seven (7) of the existing wells impacted with chlorinated compounds. The groundwater samples were submitted for the presence of specific chlorinated VOCs and ethane and ethene.

FIELD EXPLORATION

On May 21, 2024, seven of the existing wells impacted with chlorinated compounds were sampled. The collected water samples were tested for the presence of TCE, PCE, VC, DCE, ethene and ethane. The general locations of the wells are shown on the Monitoring Well Location Diagram, which is included in Appendix A.

METHODS OF INVESTIGATION

QUALITY ASSURANCE/QUALITY CONTROL MEASURES

All equipment decontamination, sample collection, sample custody records, and analysis were performed in general accordance with methods prescribed by the United States EPA and the WDNR (NR716.13). The probe sampling equipment and tools were cleaned with an Alconox and potable water wash and rinsed with potable water between each location. New disposable bailers were used to collect water samples from the wells. The soil and groundwater samples were handled with disposable latex gloves during initial collection and when placed into laboratory jars. These procedures were performed to reduce the potential for cross-contamination between sample locations. Teflon sample collection tubing was utilized to collect the sub-slab vapor sample and, the provided sampling instructions were used to collect the ambient air sample.

MONITORING WELL PURGING AND SAMPLING PROCEDURES

The purging of the wells was performed in general accordance with requirements expressed in Chapter NR141. The wells on the Subject Property, northern adjoining property and within the alleyway were able to be bailed dry. Following purging and well recovery, the wells were sampled.

LABORATORY ANALYSIS

The groundwater samples were collected using new disposable bailers and disposable gloves and were placed into hydrochloric acid preserved glass vials to be tested for chlorinated VOC analysis (EPA Method 8260) and ethene and ethane analysis (EPA Method 8015B Modified). The water samples were placed on

ice, chain of custody procedures initiated, and the samples were submitted to Pace Analytical Services, LLC (Pace) of Green Bay, Wisconsin. The analytical reports and chain of custody forms are included in Appendix D.

DESCRIPTION OF SUBSURFACE CONDITIONS

GENERAL

A description of the subsurface conditions encountered at the probe locations is shown on the logs in Appendix C. The lines of demarcation shown on the logs represent an approximate boundary between the various soil classifications, but the transition is likely to be more gradual. It must be recognized that the soil descriptions are considered representative for the specific location, and that variations may occur between and beyond the sampling intervals and locations. A summary of the major soil profile components is described in the following paragraphs.

SOIL CONDITIONS

The surface material at the probes associated with the investigation consists of about 4 to 8 inches of asphalt pavement. The material beneath the pavement consists of brown clayey silt, silty clay to sandy silt to silt fill material to depths of about 2 to 8 feet below grade. Potentially buried clayey silt topsoil was encountered in soil probes north of the existing building at a depth of about 2.5 feet below grade. Natural reddish-brown silty clay to clay soils were encountered beneath the fill material and potential topsoil to the maximum depths explored of about 5 to 16 feet below grade.

GROUNDWATER CONDITIONS

The elevations of the top of the PVC riser pipe of each of the wells were previously determined by PSI personnel using conventional leveling techniques. The elevations were referenced to the bonnet flange of the fire hydrant at the northwest corner of Howard Street and Chestnut Avenue with an assigned elevation of EL. 590.53±.

On May 21, 2024, groundwater levels of wells MW-2, MW-3, MW-6, MW-8, MW-10, MW-12, and MW-15 were measured at depths ranging from about 3.92 feet to about 5.01 feet below top of casing (EL 583.88± to EL 584.97±). The depths to groundwater were not collected from MW-4, MW-5, MW-7, MW-9, MW-11, MW-13, and MW-14, and PZ-1 during this most recent sampling event. However, the water levels were collected during past groundwater sampling events and are indicated on the groundwater elevation table. The groundwater flow direction generally trends towards the southeast in the direction of the Fox River. These elevations are shown on the Groundwater Elevation Table included in the Appendix B.

It should be noted that groundwater levels and gradients can fluctuate with seasonal precipitation and changes in lateral drainage patterns.

DISCUSSION OF RESULTS

GROUNDWATER QUALITY STANDARDS

The Enforcement Standards (ESs) and Preventive Action Limits (PALs) are Groundwater Quality Standards which have been established in NR140 of the Wisconsin Administrative Code. These Standards are referenced when evaluating the need for further study or remedial activities. The PAL is the more stringent guideline, in terms of being lesser in magnitude than the ES but will typically require less response action when exceeded. The required action is determined by WDNR regulations, based on various site-specific considerations.

LABORATORY GROUNDWATER RESULTS

The May 2024 groundwater test results indicated the presence of several chlorinated VOCs in the collected samples from the wells. Vinyl Chloride was detected in the samples collected from MW-2, MW-3, and MW-6 at levels of 0.54J ug/l, 0.94J ug/l, and 0.33J ug/l, respectively, and is above its NR 140 ES of 0.2 ug/l. However, the detected concentrations were indicated as laboratory estimated levels and are not considered accurate values by the WDNR.

TCE was detected in the samples collected from MW-6, and MW-15 at levels of 0.66J ug/l, and 1.1 ug/l, respectively, which are above its NR 140 PAL of 0.5 ug/l and detected in the samples collected from MW-8, MW-10, and MW-12 at levels of 24.6 ug/l, 8.1 ug/l and 37 ug/l, respectively, which are above its NR 140 ES of 5.0 ug/l. The concentration detected in the sample from MW-6 was indicated as a laboratory estimated level and is not considered an accurate value by the WDNR.

PCE was detected in the samples collected from MW-6, and MW-15 at levels of 0.97J ug/l, and 1.1 ug/l, respectively, which are above its NR 140 PAL of 0.5 ug/l. PCE was detected in the samples collected from MW-8, MW-10, and MW-12 at levels of 1,190 ug/l, 170 ug/l, and 297 ug/l, respectively, which are above its NR 140 ES of 5.0 ug/l. The concentration detected in the sample from MW-6 was indicated as a laboratory estimated level and is not considered an accurate value by the WDNR. Other chlorinated VOCs were detected but were at concentrations below current NR140 groundwater quality standards.

Ethane was detected in the samples collected from MW-2, and MW-3 at levels of 2.6J ug/l, and 0.67J ug/l, respectively. Ethene was detected in the sample collected from MW-2 at a level of 0.46J ug/l. The detected concentrations were indicated as laboratory estimated levels and are not considered an accurate values by the WDNR.

The results of the laboratory analyses of the collected water samples and their respective NR140 standards are summarized on the groundwater analytical table included in the Appendix. The analytical laboratory test report and chain of custody form are included in Appendix B.

VAPOR INTRUSION ASSESSMENT

In review of the January 2018, guidance document, entitled "Addressing Vapor Intrusion at Remediation and Redevelopment Sites in Wisconsin" and scenarios where vapor sampling may be recommended (Figure 3a), the western most corner of the eastern/northeastern adjoining structure referenced as the

"Tarlton Theatre" is partially within 100 feet from the encountered CVOC-impacted soils encountered within the soil probe placed to the north of the northern building line of the onsite structure. Because of the existing surrounding features, PSI evaluated the potential need to complete additional vapor sampling activities for the Tarlton Theatre building.

In review of the results of the previous vapor analyses of the sub-slab samples and the previous passive ambient air samples both collected within the onsite building, which indicate that no detected CVOCs are above WDNR VRSLs or above WDNR Indoor Air VALs, respectively, and the results of the sampling of the ambient air within the sanitary sewer line in the alleyway and the soil vapors within the trench backfill of this line indicate that no detected CVOCs are above WDNR VALs or VRSLs, respectively, there is no obvious evidence that the known CVOCs within the shallow groundwater and the soils located north of the existing building has migrated off the Subject Property and into the existing structure associated with the Subject Property or the sanitary sewer line within the alleyway. In addition, most of the subsurface soils consist of fine grain soils (ie. clays, silts) and these types of soils generally inhibit or reduce the potential of the migration of vapors into onsite and adjoining structures. As such, PSI believes that because of the recent and previous sampling activities of the soil, groundwater, subsurface soil vapors beneath and around the existing building, and the ambient air samples collected within the building indicates that known CVOC contamination has not migrated into the existing onsite building, and migration of CVOC vapors into the adjoining buildings is an unlikely scenario.

CONCLUSIONS AND RECOMMENDATIONS

FINDINGS AND CONCLUSIONS

Based upon a WDNR email, dated April 22, 2024, and following their review of the March 2024 groundwater analytical test results, additional samples were collected from MW-2, MW-3, MW-6, MW-8, MW-10, MW-12, and MW-15 and tested for the presence of contaminants prior to their approval of the site investigation. The May 2024 groundwater results indicate that the chlorinated compounds present within the wells sampled are at concentrations that are similar to previous results and have generally stable concentrations, and the extent of groundwater concentration above NR140 ESs has been defined in accordance with NR716 requirements.

RECOMMENDATIONS

The results of the recent groundwater sampling indicated similar concentrations with the numerous previous sampling events. PSI believes that the extent of the chlorinated-impacted groundwater contamination above NR140 ESs is generally defined on the Subject Property and the northern adjoining parcel and along the eastern adjoining alley. Since the encountered contamination is isolated to the shallow groundwater within a highly urbanized area, further groundwater sampling events are not warranted. The Subject Property is in the City of Green Bay and, it and the surrounding properties are connected to municipal and commercial urban utility services. No water supply wells are present on the Subject Property, and none are known to be present within 1,200 feet of the Subject Property. As part of the closure procedures, the northern adjoining property owner and the City of Green Bay will be notified of the presence of groundwater contamination on their parcels.

The results of the past soil analytical testing for the presence of volatile compounds along the north side

of the existing building have indicated that shallow soil contamination exists in this area of the Subject Property and is also present on the northern adjoining parcel and is isolated to this area. These results also indicate that the concentrations are not above direct contact levels but only groundwater protection levels. Since it is known that chlorinated groundwater contamination is present in these areas, PSI believes that additional soil investigative activities are not warranted. As part of the closure procedures, the northern adjoining property owner will be notified of the potential residual soil contamination on their parcel.

Based upon the previous indoor air sampling results with levels well below WDNR VALs, additional sampling of the indoor air within the building on the Subject Property is not warranted. Further and because of the analytical test results, sampling of the indoor air of the surrounding commercial buildings is not warranted.

Based upon the sub-slab vapor sampling test results with levels below WDNR VRSLs, additional sampling of the sub-slab vapors beneath the building on the Subject Property is not warranted. Further and because of the analytical test results, sampling of the sub-slab vapor beneath the surrounding commercial buildings is not warranted.

In review of the January 2018, guidance document, entitled "Addressing Vapor Intrusion at Remediation and Redevelopment Sites in Wisconsin" and scenarios where vapor sampling may be recommended (Figure 3a), PSI evaluated the surrounding features around the Subject Property and the western most corner of the eastern/northeastern adjoining structure referenced as the "Tarlton Theatre", which is partially within 100 feet from the encountered CVOC-impacted soils encountered within the soil probe placed to the north of the northern building line of the onsite structure. Because of the existing surrounding features, PSI evaluated the potential need to complete additional vapor sampling activities for the Tarlton Theatre building.

In review of the results of the previous vapor analyses of the sub-slab samples and the previous passive ambient air samples both collected within the onsite building, which indicate that no detected CVOCs are above WDNR VRSLs or above WDNR Indoor Air VALs, and the results of the sampling of the ambient air within the sanitary sewer line in the alleyway and the soil vapors within the trench backfill of this line indicate that no detected CVOCs are above WDNR VALs or VRSLs, there is no obvious evidence that the known CVOCs within the shallow groundwater and the soils located north of the existing building has migrated off the Subject Property and into the existing structure associated with the Subject Property or the sanitary sewer line within the alleyway. In addition, most of the subsurface soils consist of fine grain soils (ie. clays, silts) and these types of soils generally inhibit or reduce the potential of the migration of vapors into onsite and adjoining structures. As such, PSI believes that because of the recent and previous sampling activities of the soil, groundwater, subsurface soil vapors beneath and around the existing building, and the ambient air samples collected within the building indicates that known CVOC contamination has not migrated into the existing onsite building, migration of CVOC vapors into the adjoining buildings is an unlikely scenario.

It is PSI' opinion that additional site investigative activities associated with evaluating the eastern/northeastern adjoining structure referenced as the "Tarlton Theatre", for the presence of CVOC vapors are not warranted. It is also recommended that the previously submitted NR716 Site Investigation Report along with the additional site investigation data and information be reviewed and approval of the completion of the site investigation be granted.

PSI believes that because of the recent and previous sampling activities, additional site investigative activities are not warranted and the previously submitted NR716 Site Investigation Report along with the additional site investigation data and information be review and approval of the completion of the site investigation be received.

It is recommended that following WDNR approval of the SIR, a site case closure documentation with continuing obligations regarding the residual soil and groundwater contamination be prepared and submitted to the WDNR for review and approval.

REPRESENTATIONS

WARRANTY

The field observations, measurements, and research reported herein are considered sufficient in detail and scope to form a reasonable basis for the work performed at this site. The assessment, conclusions, and recommendations presented herein are based upon the subjective evaluation of limited data. They may not represent all conditions at the Subject Property as they reflect the information gathered from specific locations. PSI warrants that the findings and conclusions contained herein have been promulgated in accordance with generally accepted environmental investigation methodology and only for the site described in this report.

The Site Investigation of this site has been developed to provide the client with information regarding apparent indications of environmental concerns relating to the Subject Property. It is necessarily limited to the conditions observed and to the information available at the time of the work.

Due to the limited nature of the work, there is a possibility that there may exist conditions which could not be identified within the scope of the assessment, or which were not apparent at the time of report preparation. It is also possible that the testing methods employed at the time of the report may later be superseded by other methods. The description, type, and composition of what are commonly referred to as "hazardous materials or conditions" can also change over time. PSI does not accept responsibility for changes in the state of the art, nor for changes in the scope of various lists of hazardous materials or conditions. PSI believes that the findings and conclusions provided in this report are reasonable.

THIRD PARTY USE

This report was prepared pursuant to the contract PSI has with BMO Harris Bank NA. Because of the importance of the communication between PSI and its client, reliance or any use of this report by anyone other than BMO Harris Bank NA, and their respective affiliates, successors and assigns can reply on the report, under the same conditions as if it had been prepared for them, is prohibited and therefore not foreseeable to PSI.

Reliance or use by any such third party without explicit authorization in the report does not make said third party a third-party beneficiary to PSI's contract with BMO Harris Bank NA. Any such unauthorized reliance on or use of this report, including any of its information or conclusions, will be at third party's risk. For the same reasons, no warranties or representations, expressed or implied in this report, are made

to any such party.

APPENDICES

APPENDIX A

Site Location Map Site Features Diagram Probe and Boring Location Map Monitoring Well Location Diagram Vapor Point and Vapor Sample Location Diagram

SITE FEATURES DIAGRAM BRRTS No. 02-05-585287

1:990

0

Note: Not all sites are mapped.

WELL LOCATION DIAGRAM BRRTS No. 02-05-585287

NAD_1983_HARN_Wisconsin_TM

1:990

0

VAPOR POINT AND VAPOR SAMPLE LOCATION DIAGRAM BRRTS No. 02-05-585287

Note: Not all sites are mapped.

navigation, nor are these maps an authoritative source of information about legal land

APPENDIX B

Groundwater Analytical Results Table Groundwater Elevations Table Vapor Analytical Table

Groundwater Analytical Results Table (page 1 of 4) BMO Harris Bank - Green Bay 2 Green Bay, Wisconsin BRRTS No. 02-05-585287

	Location					MW-2								. M	N-3				NR	140
	Date	7/17/20	12/3/20	3/3/21	7/28/21	10/12/21	2/9/22	10/3/23	2/19/24	5/21/24	7/17/20	12/3/20	3/3/21	7/28/21	10/12/21	2/9/22	10/3/23	5/21/24	ES	PAL
Analytical Parameter	Units																			
Ethane	ug/l							<0.39	5.4J	2.6J							< 0.39	0.67J		
Ethene	ug/l							0.36J	5.4J	0.46J							<0.25	<0.25		
Detected VOCs																				
Benzene	ug/l	<u>0.58J</u>	0.38J	0.31J	0.36J	0.36J	<0.3			-	<0.25	<0.25	<0.25	<0.3	<0.3	<0.3	-		5	<u>0.5</u>
n-Butylbenzene	ug/I	6.1	1.7J	2.4	1.5	1.5	<0.71				1.2J	<0.71	<0.71	<0.71	<0.71	<0.71				
sec-Butylbenzene	ug/l	19.4	7.4	9.3	9.6	9.3	8.5				6.9	5J	2.9J	<0.85	2.8	1.6				
tert-Butylbenzene	ug/l	3.4	1.9	2	2.1	2.2	1.9	-		-	1.1	0.77J	0.40J	<0.3	<0.3	<0.3	-			
1,2-Dichlorobenzene	ug/I	1.5J	<0.71	<0.71	1.0	0.98J	<0.71				<0.71	<0.71	<0.71	<0.71	<0.71	<0.71			600	<u>60</u>
cis-1,2-Dichloroethene	ug/	0.88J	4	2.5	1.3	1.7	1.7	1.0	2.3	0.59J	<u>55.9</u>	9	<u>11.7</u>	0.53J	3.7	5.2	0.65J	1.1	70	<u>Z</u>
trans-1,2-Dichloroethene	ug/l	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46	<0.53	<0.53	<0.53	3.7	0.73J	<0.46	<0.46	<0.46	<0.46	<0.53	<0.53	100	<u>20</u>
1,2-Dichloropropane	ug/l	0.38J	0.43J	<0.28	<0.28	<0.28	<0.28			-	<u>1.1</u>	0.39J	0.39J	<0.28	<0.28	<0.28			5	<u>8</u>
Isopropylbenzene	ug/	17	5.1J	8.5	8.3	8.1	8.7				3.2J	<1.7	<1.7	<1.7	<1.7	<1.7				
p-IsopropyItoluene	ug/l	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8				<0.8	<0.8	<0.8	<0.8	<0.8	<0.8				
n-Propylbenzene	ug/l	17.7	4.5J	7.8	4.2	4.7	6.1	-		-	0.95J	<0.81	<0.81	<0.81	<0.81	<0.81	-			
Tetrachloroethene	ug/l	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.41	<0.41	<0.41	<0.33	<0.33	<0.33	<0.33	<0.33	<0.33	<0.41	<0.41	5	<u>0.5</u>
Trichloroethene	ug/	<0.26	<0.26	<0.26	<0.26	<0.26	<0.26	<0.32	<0.32	<0.32	<u>0.90J</u>	0.28J	<0.26	<0.26	<0.26	<0.26	<0.32	<0.32	5	<u>0.5</u>
Total Tirmethylbenzenes	ug/l	<1.71	<1.71	<1.71	<1.71	<1.71	6.8	-			<1.71	<1.71	<1.71	<1.71	<1.71	<1.71			480	<u>96</u>
Vinyl Chloride	ug/I	0.78J	2	1.1	0.74J	1.1	1.3	<0.17	2.1	0.54J	19.8	3.6	2.2	<0.17	3.5	3.8	<0.17	0.94J	0.2	<u>0.02</u>
Detected PAHs																				
Acenaphthene	ug/l	0.013J	-							-	0.021J									
Acenaphthylene	ug/I	0.14									0.039									
Anthracene	ug/I	<0.01								-	0.020J		-		-				3000	<u>600</u>
Benzo(a)anthracene	ug/	<0.0075								-	<0.0073									
Benzo(b)fluoranthene	ug/l	<0.0057		-	-	-	-	-		-	0.0056J	-				1	1		0.2	<u>0.02</u>
Benzo(k)fluoranthene	ug/l	<0.0075		-	-	-	-	-		-	<0.0073	-				-	-			
Benzo(a)pyrene	ug/	<0.010								-	<0.010								0.2	<u>0.02</u>
Benzo(ghi)perylene	ug/	<0.0067	-	-						-	<0.0066					-	-			
Chrysene	ug/l	<0.013	1	1	-	-	-	-		-	0.017J	-				1	-		0.2	<u>0.02</u>
Fluoranthene	ug/l	0.014J	-	-			-				0.015J								400	<u>80</u>
Fluorene	ug/	<0.0079	-	1			-				0.011J								400	<u>80</u>
1-Methylnaphthalene	ug/l	0.051		-	-	-	-	-		-	0.027J	-				-	-			
2-Methylnaphthalene	ug/I	0.022J									0.04									
Naphthalene	ug/I	0.68									0.1								100	<u>10</u>
Phenanthrene	ug/I	0.031J									0.061J									
Pyrene	ug/l	0.012J									0.012J								250	<u>50</u>
Detected RCRA Metals																				
Barium	ug/	523	334	262							339	121							2000	<u>400</u>

Notes:

Groundwater Analytical Results Table (page 2 of 4) BMO Harris Bank - Green Bay 117 and 125 S. Chestnut Avenue Green Bay, Wisconsin BRRTS No. 02-05-585287

	Location					MW-4								M	W-5								. M\	V-6					NR	140
Analytical Paramotor	Date	7/29/20	12/3/20	3/3/21	7/28/21	10/12/21	2/9/22	10/26/22	10/3/23	2/19/24	7/17/20	12/3/20	3/3/21	7/28/21	10/12/21	2/9/22	10/3/23	2/19/24	7/17/20	12/3/20	3/3/21	7/28/21	10/12/21	2/9/22	7/26/22	10/26/22	10/3/23	5/21/24	ES	PAL
Detected Ethane/Ethene	Unita				1												1													<u> </u>
Ethane	ug/l								<0.39	<0.39							1.0J	0.73J	- 1								<0.39	< 0.39		
Ethene	ug/l								<0.25	<0.25			-				<0.25	<0.25									0.51J	<0.25	-	
Detected VOCs																														
Benzene	ug/I	0.30J	0.32J	<0.25	<0.3	<0.3	0.36J				<0.25	<0.25	<0.25	<0.3	<0.3	<0.3			<0.25	<0.25	<0.25	<0.3	<0.3	<0.3					5	<u>0.5</u>
n-Butylbenzene	ug/l	2.2J	<0.71	<0.71	<0.71	<0.71	<0.71				<0.71	<0.71	<0.71	<0.71	<0.71	<0.71	-		<0.71	<0.71	<0.71	<0.71	<0.71	<0.71			-			
sec-Butylbenzene	ug/I	5.2	2.6J	1.8J	<0.85	<0.85	<0.85				3.1J	4.1J	2.4J	3.4	4.2	8.9			<0.85	<0.85	<0.85	<0.85	<0.85	<0.85						
tert-Butylbenzene	ug/I	0.43J	0.67J	0.57J	<0.3	<0.3	<0.3				<0.3	0.43J	0.32J	<0.3	<0.3	0.98J			<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	-					
1,2-Dichlorobenzene	ug/l	<0.71	<0.71	<0.71	<0.71	<0.71	<0.71	-			<0.71	<0.71	<0.71	<0.71	<0.71	<0.71			<0.71	<0.71	<0.71	<0.71	<0.71	<0.71			-	-	600	<u>60</u>
Dichlorodifluoromethane	ug/I	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50				<0.50	<0.50	<0.50	<0.50	<0.50	<0.50			<0.50	0.53J	<0.50	<0.50	0.48J	<0.50	-	-			1000	200
cis-1,2-Dichloroethene	ug/l	0.90J	1.3	0.85J	<0.27	<0.27	1.0		<0.47	<0.47	0.65J	1.4	0.91J	1.1	1.5	1.0	1.0	0.57J	1.2	1.7	1.6	0.76J	0.48J	0.53J	-		2.2	0.61J	70	Z
trans-1,2-Dichloroethene	ug/I	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46		<0.53	<0.53	<0.46	0.65J	<0.46	0.61J	1.2	0.99J	<0.53	<0.53	1.2J	1.5J	1.3J	0.63J	<0.46	<0.46			2.5	0.69J	100	<u>20</u>
1,2-Dichloropropane	ug/I	<0.28	<u>0.73J</u>	<u>0.66J</u>	<0.28	<0.28	<u>0.62J</u>				<0.28	<0.28	<0.28	<0.28	<0.28	<0.28			<0.28	<0.28	<0.28	<0.28	<0.28	<0.28	-				5	<u>0.5</u>
Isopropylbenzene	ug/l	2.9J	<1.7	<1.7	<1.7	<1.7	<1.7				<1.7	<1.7	<1.7	<1.8	<1.8	2.7J			<1.7	<1.7	<1.7	<1.7	<1.7	<1.7	-					
p-Isopropy i toluene	ug/I	2.6J	1.1J	<0.80	<0.80	<0.80	<0.80				<0.8	<0.8	<0.8	<0.8	<0.8	<0.8			<0.8	<0.8	<0.8	<0.8	<0.8	<0.8						
n-Propylbenzene	ug/I	3.7J	<0.81	<0.81	<0.81	<0.81	<0.81				<0.81	<0.81	<0.81	0.38J	0.64J	1.9			<0.81	<0.81	<0.81	<0.81	<0.81	<0.81	-					-
Tetrachloroethene	ug/I	<0.33	<0.33	<0.33	<u>0.79J</u>	<u>1.1</u>	<u>1.1</u>	<0.41	<0.41	0.48J	<u>0.85J</u>	<u>1.1</u>	<u>0.58J</u>	<u>1.7</u>	<u>1.3</u>	<u>1.7</u>	<u>0.60J</u>	<0.41	7.4	5.7	<u>3.9</u>	<u>2.8</u>	7.3	15.1	6	<u>3.9</u>	<u>0.71J</u>	<u>0.97J</u>	5	<u>0.5</u>
Trichloroethene	ug/I	<0.26	<0.26	<0.26	<0.32	<0.32	<0.32	<0.32	<0.32	<0.32	<u>1.9</u>	<u>2.7</u>	<u>1.6</u>	<u>2.5</u>	<u>3.5</u>	<u>3.5</u>	<u>2.4</u>	<u>1.2</u>	<u>3.3</u>	<u>1.8</u>	<u>1.3</u>	<0.32	<u>1.4</u>	<u>1.8</u>	0.33J	<u>1.9</u>	<u>0.68J</u>	<u>0.66J</u>	5	<u>0.5</u>
Total Tirmethylbenzenes	ug/l	<1.71	<1.71	<1.71	<1.71	<1.71	<1.71				1.1J	1.1J	0.95J	1.1	<1.71	7.1			<1.71	<1.71	<1.71	<1.71	<1.71	<1.71	-				480	<u>96</u>
Vinyl Chloride	ug/I	1.2	1.4	0.77J	<0.17	<0.17	1.3	1.1	<0.17	<0.17	<0.17	<0.17	<0.17	0.26J	0.61J	0.54J	<0.17	<0.17	0.37J	0.37J	0.25J	0.25J	<0.17	<0.17	<0.17	0.30J	0.77J	0.33J	0.2	0.02
Detected PAHs																														
Acenaphthene	ug/	0.14									0.010J								0.018J											
Acenaphthylene	ug/I	0.043									<0.0047								<0.0048											
Anthracene	ug/I	0.027J									0.030J								0.010J										3000	600
Benzo(a)anthracene	ug/l	0.011J									<0.0072								0.011J											
Benzo(b)fluoranthene	ug/I	0.0089J									0.0062J								0.018J										0.2	0.02
Benzo(k)fluoranthene	ug/	0.0086J									<0.0072								0.012J											<u> </u>
Benzo(a)pyrene	ug/I	<0.010					-				<0.010								0.012J										0.2	0.02
Benzo(ghi)perylene	ug/l	0.0063J				-					<0.0065								0.013J						-					-
Chrysene	ug/I	0.016J									0.014J								0.028J										0.2	0.02
Fluoranthene	ug/I	0.035J									0.020J								0.076										400	<u>80</u>
Fluorene	ug/	0.042									0.018J								0.031J										400	<u>80</u>
1-Methylnaphthalene	ug/I	0.094									0.021J								0.010J											
2-Methylnaphthalene	ug/l	0.11									0.020J								0.0095J											
Naphthalene	ug/I	0.27					-				0.082J		-						0.033J						-				100	<u>10</u>
Phenanthrene	ug/l	0.14				-	-				0.042J		- 1						0.062J						-	-				
Pyrene	ug/	0.026J									0.017J		L						0.041										250	<u>50</u>
Detected RCRA Metals																														
Barium	ug/l	<u>771</u>	<u>482</u>	<u>501</u>	<u>557</u>						201	77.8							114	64					-				2000	400

Notes:

Bold concentrations exceed NR 140 Enforcement Standards

Look concentrations exceed Nr 140 Entrovement standards Halicze/underlined concentrations exceed NR 140 Preventive Action Limits — Not analyzed/Not Established ugit-micrograms per fiter J - laboratory estimated concentration detected between the laboratory Limit of Detection and the Limit of Quantitation

Groundwater Analytical Results Table (page 3 of 4) BMO Harris Bank - Green Bay 117 and 125 S. Chestnut Avenue Green Bay, Wisconsin BRRTS No. 02-05-585287

	Location		M	W-7						M	N-8								M\	N-9					PZ-1			NR	140
Analytical Parameter	Date Units	12/3/20	3/3/21	7/28/21	10/12/21	12/3/20	3/3/21	7/28/21	10/12/21	2/9/22	7/26/22	11/26/22	10/3/23	2/19/24	5/21/24	12/14/20	3/3/21	7/28/21	10/12/21	2/9/22	11/26/22	10/3/23	2/19/24	12/3/20	3/3/21	7/28/21	10/12/21	ES	PAL
Detected Ethane/Ethene	-		•					•										•											
Ethane	ug/l	-											<0.39	<0.39	< 0.39				-			<0.39	0.73J	-	-				
Ethene	ug/l												<0.25	<0.25	<0.25							<0.25	<0.25	-	-				<u> </u>
Detected VOCs							· · · · ·												· · · · ·										
Benzene	ug/l	<0.25	<0.25	<0.3	<0.3	<0.25	<4.9	<0.3	<0.3	<0.3						<0.25	<0.25	<0.3	<0.3	<0.3				<0.25	<0.25	<0.3	<0.3	5	<u>0.5</u>
n-Butylbenzene	ug/I	<0.71	<0.71	<0.71	<0.71	6.1	<14.2	<0.86	<0.86	<0.86						<0.71	<0.71	<0.71	<0.71	<0.71				<0.71	<0.71	<0.71	<0.71		
sec-Butylbenzene	ug/	0.90J	<0.85	<0.85	<0.85	19.4	<17	<0.42	<0.42	<0.42						<0.85	<0.85	<0.85	<0.85	<0.85				<0.85	<0.85	<0.85	<0.85	-	
tert-Butylbenzene	ug/I	0.65J	0.47J	<0.3	<0.3	3.4	<6.1	<0.59	<0.59	<0.59	-					<0.3	<0.3	<0.3	<0.3	<0.3				<0.3	<0.3	<0.3	< 0.3	-	
1,2-Dichlorobenzene	ug/	<0.71	<0.71	<0.71	<0.71	1.5J	<14.1	<0.33	<0.33	<0.33						<0.71	<0.71	<0.71	<0.71	<0.71				<0.71	<0.71	<0.71	<0.71	600	<u>60</u>
cis-1,2-Dichloroethene	ug/l	<0.27	<0.27	<0.27	<0.27	4.5	<5.4	<u>15.3</u>	5.4	5.4			2.0	1.9	<9.4	0.34J	0.32J	<0.27	<0.27	<0.27		0.81J	<0.47	<0.27	<0.27	<0.27	<0.27	70	<u>7</u>
trans-1,2-Dichloroethene	ug/I	<0.46	<0.46	<0.46	<0.46	3.1	<9.3	<2.6	1.9	1.9			1.3	0.78J	<10.6	<0.46	<0.46	<0.46	<0.46	<0.46		<0.53	<0.53	<0.46	<0.46	<0.46	<0.46	100	20
1,2-Dichloropropane	ug/I	<0.28	<0.28	<0.28	<0.28	0.38J	<5.7	<0.44	<0.45	<0.45						<0.28	<0.28	<0.28	<0.28	<0.28				<0.28	<0.28	<0.28	<0.28	5	0.5
Ethylbenzene	ug/I	1.2	<0.32	<0.32	<0.32	1.2	<6.4	<0.32	<0.33	<0.33						<0.32	<0.32	<0.32	<0.32	<0.32				<0.32	<0.32	<0.32	<0.32	700	<u>140</u>
lsopropylbenzene	ug/l	<1.7	<1.7	<1.7	<1.7	17	<33.7	<1.0	<1.0	<1.0						<1.7	<1.7	<1.7	<1.7	<1.7				<1.8	<1.8	<1.8	<1.8		
p-Isopropyltoluene	ug/I	1.0J	<0.80	<0.80	<0.80	1.0J	<16	<1.0	<1.0	<1.0						<0.8	<0.8	<0.8	<0.8	<0.8				<0.8	<0.8	<0.8	<0.8		
n-Propylbenzene	ug/I	0.91J	<0.81	<0.81	<0.81	<0.81	<16.2	<0.35	<0.35	<0.35						<0.81	<0.81	<0.81	<0.81	<0.81	-		-	<0.81	<0.81	<0.81	<0.81	-	
Tetrachloroethene	ug/I	<u>1.4</u>	<0.33	<0.33	<0.33	1570	1010	528	1300	1070	768	1220	966	1080	1190	<u>1.0J</u>	0.35J	<u>2.1</u>	<u>4.1</u>	<u>0.58J</u>	<0.41	<u>1.2</u>	<0.41	<u>0.62J</u>	<0.33	<0.33	<0.33	5	0.5
Toluene	ug/I	1.7	<0.27	<0.27	<0.27	2.1	<5.4	<0.29	<0.29	<0.29						0.44J	<0.27	<0.27	<0.27	<0.27				0.31J	<0.27	<0.27	<0.27	800	<u>160</u>
Trichloroethene	ug/I	<0.26	<0.26	<0.26	<0.26	39.7	17.7J	22.4	22.4	19.5J	17.6J	17.6J	24.9	20.8	24.6	<0.26	<0.26	<0.26	<0.26	0.2J	<u>0.77J</u>	<u>1.5</u>	0.38J	<0.26	<0.26	<0.26	<0.26	5	<u>0.5</u>
Total Tirmethylbenzenes	ug/I	2.4J	<1.17	<1.17	<1.17	1.8J	<34.3	<0.81	<0.81	<0.81					-	<1.71	<1.71	<1.71	<1.71	<1.71				<1.71	<1.71	<1.71	<1.71	480	<u>96</u>
Vinyl Chloride	ug/	0.21J	<0.17	<0.17	<0.17	0.57J	<3.5	<0.87	0.54J	0.54J	<3.5	<3.5	<0.17	<0.17	<3.5	2.3	<0.17	<0.17	<0.17	<0.17	0.41J	<0.17	<0.17	<0.17	<0.17	<0.17	<0.18	0.2	0.02
Total Xylenes	ug/I	5.1	<0.73	<1.05	<1.05	4.6	<14.5	<1.05	<1.05	<1.05						0.51J	<1.05	<1.05	<1.05	<1.05				<0.73	<0.73	<1.05	<1.05	2000	<u>400</u>
Detected RCRA Metals																													
Barium	ug/I	<u>563</u>	375	260		327										<u>430</u>	327	370					-	199				2000	<u>400</u>
Notes: Bold concentrations exceed NR Italicized/under ined concentrat Not analyzed/Not Establish ug/l -micrograms per liter J - laboratory estimated concer	R 140 Enforcer tions exceed N ned ntration detecte	ment Standard R 140 Prever ed between th	ds ntive Action Lin e l aboratory L	mits imit of Detect	ion and the Lir	nit of Quantita	tion																						

Groundwater Analytical Results Table (page 4 of 4) BMO Harris Bank - Green Bay 117 and 125 S. Chesthut Avenue Green Bay, Wisconsin BRRTS No. 02-05-585287

	Location				M	W-10				<u> </u>			MW-11							M	N_12				M	N_13	MV	1-14		MW-15		NE	140
	Location		1	1	1	i i	1	1	I I		1	I I		1	1	I I		l I		1	1	I I	I I	I							1 '		140
	Date	8/3/21	10/12/21	2/9/22	7/26/22	10/26/22	10/3/23	2/19/24	5/21/24	8/3/21	10/12/21	2/9/22	7/26/22	10/26/22	10/3/23	2/19/24	8/3/21	10/12/21	2/9/22	7/26/22	10/26/22	10/3/23	2/19/24	5/21/24	7/26/22	10/26/22	7/26/22	10/26/22	10/6/23	2/19/24	5/21/24	ES	PAL
Analytical Parameter	Units																																
Detected Ethane/Ethene						-																											
Ethane	ug/l						<0.39	<0.39	<0.39						<0.39	<0.39						<0.39	<0.39	<0.39					<0.39	<0.39	<0.39		
Ethene	ug/l						<0.25	<0.25	<0,25						<0.25	<0.25						<0.25	<0.25	<0.25					<0,25	<0.25	<0.25		
Detected VOCs																																	
Benzene	ug/l	<0.3	<0.3	<0.3						<0.3	<0.3	<0.3		-		-	<0.3	<0.3	<0.3						<0.3	-	<0.3	-			-	5	<u>0.5</u>
Chloroform	ug/l	<1.2	<1.2	<1.2						<1.2	<1.2	<1.2	-	-	-	-	<1.2	<1.2	<1.2			-	-		<1.2	-	<u>1.7J</u>					6	<u>0.6</u>
n-Butylbenzene	ug/l	<0.86	<0.86	<0.86						<0.86	<0.86	<0.86					<0.86	<0.86	<0.86						<0.86		<0.86						
sec-Butylbenzene	ug/l	<0.42	<0.42	<0.42						<0.42	<0.42	<0.42					<0.42	<0.42	<0.42						<0.42		<0.42						
tert-Butylbenzene	ug/l	<0.59	<0.59	<0.59						<0.59	<0.59	<0.59					<0.59	<0.59	<0.59						<0.59		<0.59						
1,2 Dichlorobenzene	ug/l	<0.33	< 0.33	< 0.33						<0.33	< 0.33	<0.33					< 0.33	< 0.33	<0.33						< 0.33		<0.33					600	<u>60</u>
Dichlorodifluoromethane	ug/l	<0.46	<0.46	<0.46						<0.46	<0.46	<0.46					<0.46	<0.46	<0.46						<0.46		<0.46				1	1000	200
cis-1,2-Dichloroethene	ug/l	<0.47	<0.47	<0.47			0.59J	<0.47	0.65J	<0.47	<0.47	<0.47			<0.47	<0.47	3.2	1.7	1.7			<2.4	1.5J	<2.4	<0.47		<0.47		<0.47	<0.47	<0.47	70	Z
trans-1,2-Dichloroethene	ug/l	<0.53	<0.53	<0.53			<0.53	<0.53	<0.53	<0.53	<0.53	<0.53			<0.53	<0.53	<0.53	<0.53	<0.53			<2.6	1.5	<2.6	<0.53		<0.53		<0.53	<0.53	<0.53	100	20
1,2-Dichloropropane	ug/l	<0.45	<0.45	<0.45						<0.45	<0.45	<0.45					<0.45	<0.45	<0.45						<0.45		<0.45					5	<u>0.5</u>
Isopropylbenzene	ug/l	<1.0	<1.0	<1.0						<1.0	<1.0	<1.0					<1.0	<1.0	<1.0						<1.0		<1.0				- '		
p-Isopropytoluene	ug/l	<1.0	<1.0	<1.0						<1.0	<1.0	<1.0					<1.0	<1.0	<1.0						<1.0		<1.0				1		
n-Propylbenzene	ug/I	<0.35	<0.35	<0.35						<0.35	<0.35	<0.35					<0.35	<0.35	<0.35						<0.36		<0.36						
Tetrachloroethene	ug/l	13.4	39.3	12.8	72.6	53.7	207	158	170	7.9	36	17	23.1	4	44.7	18.7	138	378	234	341	175	391	293	297	<0.41	<0.41	<0.41	<0.41	<0.41	0.76J	1.1	5	0.5
Trichloroethene	ug/l	<u>1.1</u>	2.9	1.0	3.9	4.3	11.2	7.2	8.1	0.56J	1.5	0.93J	2.5	0.66J	3.5	<u>1.7</u>	27.2	44.9	36.5	43.7	50.2	50.2	42.1	37	<0.32	<0.32	<0.32	<0.32	<0.32	0.94J	<u>1.1</u>	5	<u>0.5</u>
Total Tirmethylbenzenes	ug/l	<0.81	<0.81	<0.81						<0.81	<0.81	<0.81				-	<0.81	<0.81	<0.81						<0.81		<0.81					480	<u>96</u>
Vinyl Chloride	ug/l	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.7	<0.7	<0.87	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	<0.17	0.2	0.02

Notes: Bold concentrations exceed NR 140 Enforcement Standards Eakized/undefined concentrations exceed NR 140 Preventive Action Limits --- Not makgread/Not Established ug/I-micrograms per Ber

J - laboratory estimated concentration detected between the Jaboratory Limit of Detection and the Limit of Quantitation

Groundwater Elevations Table

BMO Harris Bank Branch 117-125 S. Chestnut Avenue Green Bay, Wisconsin BRRTS No. 02-05-585287

ELEVATIONS	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9	P-1	MW-10	MW-11	MW-12	MW-13	MW-14	MW-15
Surface	588.40	588.76	589.47	589.45	589.34	588.17	589.46	588.87	589.18	589.39	588.78	589.22	589.38	588.87	588.91
Top of Casing	587.98	588.41	589.12	589.10	588.99	587.67	589.11	588.48	588.83	589.07	588.40	588.94	588.96	588.45	588.60
Top of Screen	584.8	585.7	586.0	585.1	585.0	584.6	585.7	585.3	564.7	585.2	584.7	585.1	585.0	584.5	584.7
Bottom of Screen	574.8	575.7	576.0	575.1	575.0	574.6	575.7	575.3	559.7	575.2	574.7	575.1	575.0	574.5	574.7
Groundwater Elevations															
8/3/2020	584.14	584.83	583.70	584.89	584.92										
12/14/2020	584.04	584.47	583.32	584.72	584.75	583.89	584.80	581.15	582.19						
3/3/2021	583.42	583.50	582.67	583.95	583.98	583.67	584.21	581.06	581.49						
8/3/2021	584.08	585.90	584.21	585.54	585.64	584.68	585.66	581.87	582.73	584.94	582.77	584.14			
10/12/2021	584.67	586.16	584.42	585.68	585.82	585.11	585.83	581.64	583.47	585.13	585.44	586.12			
2/9/2022	583.51	584.28	582.92	584.60	584.67	583.74	584.86	581.16		583.97	585.00	585.42			
7/26/2022	584.95	585.80		585.78	585.95	585.11	586.07		582.75	585.05	584.86	584.83	584.98	585.47	585.47
10/26/2022			584.12		584.92		584.81	581.39		584.41	584.73	585.69	584.43	585.21	585.21
10/3/2023	583.99	584.36	583.81	584.59	584.62		584.44	581.08		584.17	584.27	584.74			577.8*
2/19/2024	584.03		583.77	584.88			584.69	582.01		584.04	584.54	584.43			584.05
5/21/2024	583.88	584.49			584.97		584.70			584.06		584.83			584.32

Notes: Benchmark - hydrant bonnet flange located on NVV corner of Howard and Chestnut (EL. 590.53) * water level measured on 10/6/2023

VAPOR ANALYTICAL TABLE

BMO Harris Bank-Green Bay 117 and 125 S. Chestnut Street Green Bay, Wisconsin BRRTS No. 02-05-585287

Analytical Parameter	Sample Depth Date Units	VP-1 6' 12/2/20	VP-2 4' 12/2/20	VP-3 3' 12/2/20	VF 12/2/20	P-4 10/19/21	VP-5 ⁽¹⁾ 10/13/21	VP-6 ⁽²⁾ 10/13/21	VP-7 ⁽³⁾ 10/13/21	SS 9/26/23	2/16/24	AA 10/6/23	-1 ⁽⁴⁾ 2/28/24	WDNR Indoor Air VALs (Non- residential) Ug/m³	WDNR VRSLs (Small Commercial Building) Ug/m ³	WDNR VRSLs (Residential Building) Ug/m ³
Chlorinated VOCs																
Chloroform	ug/m ³					0.83J	0.54J	<0.3	88					5.3	180	41
1,2-Dichloroethane	ug/m ³				1	0.283J	0.283J	0.32J	0.49J			-		4.7	160	36
cis 1,2-Dichloroethene	ug/m ³	0.79	0.32J	<0.197	<0.197	<0.197	<0.197	<0.197	20.8	<0.197	<1.97	<0.11	<0.11			
trans 1,2-Dichloroethene	ug/m ³	0.59J	<0.231	<0.231	<0.231	<0.231	<0.231	<0.231	0.52J	0.52J	<2.31	<0.23	<0.23			
Tetrachloroethene	ug/m ³	102	77	67	103	360	2.65	2.38	86	201	320	8.2	1.4	180	6,000	1,400
Trichloroethene	ug/m ³	2.73	0.8	0.59J	0.59J	12.7	3.05	2.89	29.6	4.0	<2.37	<0.10	<0.10	8.8	290	70
Vinyl chloride	ug/m ³	<0.148	<0.148	<0.148	<0.148	<0.148	<0.148	<0.148	1.3	<0.148	<1.48			440	930	57

Notes:

Bold concentrations exceed WDNR Vapor Risk Screening Levels (Industrial Building)

-- Not Established/Not Analyzed

ug/m³ = micrograms per cubic meter

WDNR Indoor Air Vapor Action Levels (VALs) used to evaluate indoor air concentrations

WDNR Vapor Risk Screening Levels (VRSLs) used to evaluate sub-slab and groundwater concentrations

VP-1, VP-2, VP-3 soil vapor samples collected within backfill along existing utility lines

VP-4: sub-slab vapor sample collected in eastern end of building

1 - VP-5 sample collected in manhole located upgradient of sanitary lateral

2 - VP-6 sample collected in manhole located immediately downgradient of sanitary lateral

3 - VP-7 sample collected in manhole located in Howard Street

SS-1: sub-slab vapor sample collected from vapor point installed in employee bathroom (north)

AA-1: passive vapor sample collected from employer bathroom (south)

4 - lab indicated they could not test for VC with the test method used

APPENDIX C

Laboratory Analytical Reports and Chain of Custody Forms

May 30, 2024

Patrick Patterson PSI 821 Corporate Ct. Suite 100 Waukesha, WI 53189

RE: Project: 00542978 FORMER BMO-GREEN BAY Pace Project No.: 40278573

Dear Patrick Patterson:

Enclosed are the analytical results for sample(s) received by the laboratory on May 21, 2024. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

mJe

Angela Lane angela.lane@pacelabs.com (920)469-2436 Project Manager

Enclosures

CERTIFICATIONS

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-21-8 Virginia VELAP Certification ID: 11873 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-21-00008 Federal Fish & Wildlife Permit #: 51774A

Pace Analytical Services, LLC 1241 Bellevue Street - Suite 9 Green Bay, WI 54302 (920)469-2436

SAMPLE SUMMARY

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40278573001	MW-2	Water	05/21/24 11:00	05/21/24 12:26
40278573002	MW-3	Water	05/21/24 11:05	05/21/24 12:26
40278573003	MW-6	Water	05/21/24 11:15	05/21/24 12:26
40278573004	MW-8	Water	05/21/24 11:30	05/21/24 12:26
40278573005	MW-10	Water	05/21/24 11:20	05/21/24 12:26
40278573006	MW-12	Water	05/21/24 11:25	05/21/24 12:26
40278573007	MW-15	Water	05/21/24 11:10	05/21/24 12:26

SAMPLE ANALYTE COUNT

Project:	00542978 FORMER BMO-GREEN BAY
Pace Project No.:	40278573

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40278573001	MW-2	EPA 8015B Modified	KHB	2	PASI-G
		EPA 8260	CXJ	13	PASI-G
40278573002	MW-3	EPA 8015B Modified	KHB	2	PASI-G
		EPA 8260	CXJ	13	PASI-G
40278573003	MW-6	EPA 8015B Modified	KHB	2	PASI-G
		EPA 8260	CXJ	13	PASI-G
40278573004	MW-8	EPA 8015B Modified	KHB	2	PASI-G
		EPA 8260	CXJ	13	PASI-G
40278573005	MW-10	EPA 8015B Modified	KHB	2	PASI-G
		EPA 8260	CXJ	13	PASI-G
40278573006	MW-12	EPA 8015B Modified	KHB	2	PASI-G
		EPA 8260	CXJ	13	PASI-G
40278573007	MW-15	EPA 8015B Modified	KHB	2	PASI-G
		EPA 8260	CXJ	13	PASI-G

PASI-G = Pace Analytical Services - Green Bay

SUMMARY OF DETECTION

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40278573001	MW-2					
EPA 8015B Modified	Ethane	2.6J	ug/L	5.6	05/29/24 11:03	
EPA 8015B Modified	Ethene	0.46J	ug/L	5.0	05/29/24 11:03	
EPA 8260	cis-1,2-Dichloroethene	0.59J	ug/L	1.0	05/24/24 13:19	
EPA 8260	Vinyl chloride	0.54J	ug/L	1.0	05/24/24 13:19	
40278573002	MW-3					
EPA 8015B Modified	Ethane	0.67J	ug/L	5.6	05/29/24 11:10	
EPA 8260	cis-1,2-Dichloroethene	1.1	ug/L	1.0	05/24/24 13:36	
EPA 8260	Vinyl chloride	0.94J	ug/L	1.0	05/24/24 13:36	
40278573003	MW-6					
EPA 8260	cis-1,2-Dichloroethene	0.61J	ug/L	1.0	05/24/24 13:54	
EPA 8260	trans-1,2-Dichloroethene	0.69J	ug/L	1.0	05/24/24 13:54	
EPA 8260	Tetrachloroethene	0.97J	ug/L	1.0	05/24/24 13:54	
EPA 8260	Trichloroethene	0.66J	ug/L	1.0	05/24/24 13:54	
EPA 8260	Vinyl chloride	0.33J	ug/L	1.0	05/24/24 13:54	
40278573004	MW-8					
EPA 8260	Tetrachloroethene	1190	ug/L	20.0	05/23/24 23:43	
EPA 8260	Trichloroethene	24.6	ug/L	20.0	05/23/24 23:43	
40278573005	MW-10					
EPA 8260	cis-1,2-Dichloroethene	0.65J	ug/L	1.0	05/23/24 23:25	
EPA 8260	Tetrachloroethene	170	ug/L	1.0	05/23/24 23:25	
EPA 8260	Trichloroethene	8.1	ug/L	1.0	05/23/24 23:25	
40278573006	MW-12					
EPA 8260	Tetrachloroethene	297	ug/L	4.0	05/24/24 00:01	
EPA 8260	Trichloroethene	37.0	ug/L	4.0	05/24/24 00:01	
40278573007	MW-15					
EPA 8260	Tetrachloroethene	1.1	ug/L	1.0	05/28/24 14:13	
EPA 8260	Trichloroethene	1.1	ug/L	1.0	05/28/24 14:13	

PROJECT NARRATIVE

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

Method: EPA 8015B Modified

Description:Methane, Ethane, Ethene GCVClient:PSI - WaukeshaDate:May 30, 2024

General Information:

7 samples were analyzed for EPA 8015B Modified by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

Method:EPA 8260Description:8260 MSVClient:PSI - WaukeshaDate:May 30, 2024

General Information:

7 samples were analyzed for EPA 8260 by Pace Analytical Services Green Bay. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No .: 40278573

Sample: MW-2	Lab ID:	40278573001	Collected	d: 05/21/24	11:00	Received: 05	5/21/24 12:26 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical I	Method: EPA 8	015B Modif	ied					
	Pace Analy	tical Services	- Green Bay	y					
Ethane	2.6J	ug/L	5.6	0.39	1		05/29/24 11:03	74-84-0	
Ethene	0.46J	ug/L	5.0	0.25	1		05/29/24 11:03	74-85-1	
8260 MSV	Analytical I	Method: EPA 8	260						
	Pace Analy	tical Services	- Green Bay	y					
1,1-Dichloroethane	<0.30	ug/L	1.0	0.30	1		05/24/24 13:19	75-34-3	
1,2-Dichloroethane	<0.29	ug/L	1.0	0.29	1		05/24/24 13:19	107-06-2	
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		05/24/24 13:19	75-35-4	
cis-1,2-Dichloroethene	0.59J	ug/L	1.0	0.47	1		05/24/24 13:19	156-59-2	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		05/24/24 13:19	156-60-5	
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		05/24/24 13:19	127-18-4	
1,1,1-Trichloroethane	<0.30	ug/L	1.0	0.30	1		05/24/24 13:19	71-55-6	
1,1,2-Trichloroethane	<0.34	ug/L	1.0	0.34	1		05/24/24 13:19	79-00-5	
Trichloroethene	<0.32	ug/L	1.0	0.32	1		05/24/24 13:19	79-01-6	
Vinyl chloride	0.54J	ug/L	1.0	0.17	1		05/24/24 13:19	75-01-4	
Surrogates		-							
1,2-Dichlorobenzene-d4 (S)	102	%	70-130		1		05/24/24 13:19	2199-69-1	
4-Bromofluorobenzene (S)	105	%	70-130		1		05/24/24 13:19	460-00-4	
Toluene-d8 (S)	104	%	70-130		1		05/24/24 13:19	2037-26-5	

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

Sample: MW-3	Lab ID:	40278573002	Collected	d: 05/21/24	11:05	Received: 05	5/21/24 12:26 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modif	ied					
	Pace Analy	ytical Services	- Green Ba	y					
Ethane	0.67J	ug/L	5.6	0.39	1		05/29/24 11:10	74-84-0	
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 11:10	74-85-1	
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Analy	ytical Services	- Green Ba	y					
1,1-Dichloroethane	<0.30	ug/L	1.0	0.30	1		05/24/24 13:36	75-34-3	
1,2-Dichloroethane	<0.29	ug/L	1.0	0.29	1		05/24/24 13:36	107-06-2	
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		05/24/24 13:36	75-35-4	
cis-1,2-Dichloroethene	1.1	ug/L	1.0	0.47	1		05/24/24 13:36	156-59-2	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		05/24/24 13:36	156-60-5	
Tetrachloroethene	<0.41	ug/L	1.0	0.41	1		05/24/24 13:36	127-18-4	
1,1,1-Trichloroethane	<0.30	ug/L	1.0	0.30	1		05/24/24 13:36	71-55-6	
1,1,2-Trichloroethane	<0.34	ug/L	1.0	0.34	1		05/24/24 13:36	79-00-5	
Trichloroethene	<0.32	ug/L	1.0	0.32	1		05/24/24 13:36	79-01-6	
Vinyl chloride	0.94J	ug/L	1.0	0.17	1		05/24/24 13:36	75-01-4	
Surrogates		-							
1,2-Dichlorobenzene-d4 (S)	98	%	70-130		1		05/24/24 13:36	2199-69-1	
4-Bromofluorobenzene (S)	103	%	70-130		1		05/24/24 13:36	460-00-4	
Toluene-d8 (S)	106	%	70-130		1		05/24/24 13:36	2037-26-5	

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No .: 40278573

Sample: MW-6	Lab ID:	40278573003	Collected	d: 05/21/24	11:15	Received: 05	5/21/24 12:26 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modif	ied					
	Pace Analy	ytical Services	- Green Bay	y					
Ethane	<0.39	ug/L	5.6	0.39	1		05/29/24 11:17	74-84-0	
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 11:17	74-85-1	
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Analy	ytical Services	- Green Bay	y					
1,1-Dichloroethane	<0.30	ug/L	1.0	0.30	1		05/24/24 13:54	75-34-3	
1,2-Dichloroethane	<0.29	ug/L	1.0	0.29	1		05/24/24 13:54	107-06-2	
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		05/24/24 13:54	75-35-4	
cis-1,2-Dichloroethene	0.61J	ug/L	1.0	0.47	1		05/24/24 13:54	156-59-2	
trans-1,2-Dichloroethene	0.69J	ug/L	1.0	0.53	1		05/24/24 13:54	156-60-5	
Tetrachloroethene	0.97J	ug/L	1.0	0.41	1		05/24/24 13:54	127-18-4	
1,1,1-Trichloroethane	<0.30	ug/L	1.0	0.30	1		05/24/24 13:54	71-55-6	
1,1,2-Trichloroethane	<0.34	ug/L	1.0	0.34	1		05/24/24 13:54	79-00-5	
Trichloroethene	0.66J	ug/L	1.0	0.32	1		05/24/24 13:54	79-01-6	
Vinyl chloride	0.33J	ug/L	1.0	0.17	1		05/24/24 13:54	75-01-4	
Surrogates		0							
1,2-Dichlorobenzene-d4 (S)	98	%	70-130		1		05/24/24 13:54	2199-69-1	
4-Bromofluorobenzene (S)	100	%	70-130		1		05/24/24 13:54	460-00-4	
Toluene-d8 (S)	103	%	70-130		1		05/24/24 13:54	2037-26-5	

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No .: 40278573

Sample: MW-8	Lab ID:	40278573004	Collected	d: 05/21/24	11:30	Received: 05	5/21/24 12:26 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modif	ied					
	Pace Analy	ytical Services	- Green Bay	y					
Ethane	<0.39	ug/L	5.6	0.39	1		05/29/24 11:24	74-84-0	
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 11:24	74-85-1	
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Analy	ytical Services	- Green Bay	y					
1,1-Dichloroethane	<5.9	ug/L	20.0	5.9	20		05/23/24 23:43	75-34-3	
1,2-Dichloroethane	<5.8	ug/L	20.0	5.8	20		05/23/24 23:43	107-06-2	
1,1-Dichloroethene	<11.6	ug/L	20.0	11.6	20		05/23/24 23:43	75-35-4	
cis-1,2-Dichloroethene	<9.4	ug/L	20.0	9.4	20		05/23/24 23:43	156-59-2	
trans-1,2-Dichloroethene	<10.6	ug/L	20.0	10.6	20		05/23/24 23:43	156-60-5	
Tetrachloroethene	1190	ug/L	20.0	8.2	20		05/23/24 23:43	127-18-4	
1,1,1-Trichloroethane	<6.1	ug/L	20.0	6.1	20		05/23/24 23:43	71-55-6	
1,1,2-Trichloroethane	<6.9	ug/L	20.0	6.9	20		05/23/24 23:43	79-00-5	
Trichloroethene	24.6	ug/L	20.0	6.4	20		05/23/24 23:43	79-01-6	
Vinyl chloride	<3.5	ug/L	20.0	3.5	20		05/23/24 23:43	75-01-4	
Surrogates		-							
1,2-Dichlorobenzene-d4 (S)	102	%	70-130		20		05/23/24 23:43	2199-69-1	
4-Bromofluorobenzene (S)	101	%	70-130		20		05/23/24 23:43	460-00-4	
Toluene-d8 (S)	107	%	70-130		20		05/23/24 23:43	2037-26-5	

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No .: 40278573

Sample: MW-10	Lab ID:	40278573005	Collected	d: 05/21/24	11:20	Received: 05	5/21/24 12:26 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modif	ïed					
	Pace Anal	ytical Services	- Green Bay	y					
Ethane	<0.39	ug/L	5.6	0.39	1		05/29/24 11:32	74-84-0	
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 11:32	74-85-1	
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Ba	y					
1,1-Dichloroethane	<0.30	ug/L	1.0	0.30	1		05/23/24 23:25	75-34-3	
1,2-Dichloroethane	<0.29	ug/L	1.0	0.29	1		05/23/24 23:25	107-06-2	
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		05/23/24 23:25	75-35-4	
cis-1,2-Dichloroethene	0.65J	ug/L	1.0	0.47	1		05/23/24 23:25	156-59-2	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		05/23/24 23:25	156-60-5	
Tetrachloroethene	170	ug/L	1.0	0.41	1		05/23/24 23:25	127-18-4	
1,1,1-Trichloroethane	<0.30	ug/L	1.0	0.30	1		05/23/24 23:25	71-55-6	
1,1,2-Trichloroethane	<0.34	ug/L	1.0	0.34	1		05/23/24 23:25	79-00-5	
Trichloroethene	8.1	ug/L	1.0	0.32	1		05/23/24 23:25	79-01-6	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/23/24 23:25	75-01-4	
Surrogates		-							
1,2-Dichlorobenzene-d4 (S)	99	%	70-130		1		05/23/24 23:25	2199-69-1	
4-Bromofluorobenzene (S)	103	%	70-130		1		05/23/24 23:25	460-00-4	
Toluene-d8 (S)	105	%	70-130		1		05/23/24 23:25	2037-26-5	

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No .: 40278573

Sample: MW-12	Lab ID:	40278573006	Collected	d: 05/21/24	11:25	Received: 05	5/21/24 12:26 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modif	ied					
	Pace Anal	ytical Services	- Green Ba	y					
Ethane	<0.39	ug/L	5.6	0.39	1		05/29/24 11:39	74-84-0	
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 11:39	74-85-1	
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	ytical Services	- Green Ba	y					
1,1-Dichloroethane	<1.2	ug/L	4.0	1.2	4		05/24/24 00:01	75-34-3	
1,2-Dichloroethane	<1.2	ug/L	4.0	1.2	4		05/24/24 00:01	107-06-2	
1,1-Dichloroethene	<2.3	ug/L	4.0	2.3	4		05/24/24 00:01	75-35-4	
cis-1,2-Dichloroethene	<1.9	ug/L	4.0	1.9	4		05/24/24 00:01	156-59-2	
trans-1,2-Dichloroethene	<2.1	ug/L	4.0	2.1	4		05/24/24 00:01	156-60-5	
Tetrachloroethene	297	ug/L	4.0	1.6	4		05/24/24 00:01	127-18-4	
1,1,1-Trichloroethane	<1.2	ug/L	4.0	1.2	4		05/24/24 00:01	71-55-6	
1,1,2-Trichloroethane	<1.4	ug/L	4.0	1.4	4		05/24/24 00:01	79-00-5	
Trichloroethene	37.0	ug/L	4.0	1.3	4		05/24/24 00:01	79-01-6	
Vinyl chloride	<0.70	ug/L	4.0	0.70	4		05/24/24 00:01	75-01-4	
Surrogates		0							
1,2-Dichlorobenzene-d4 (S)	101	%	70-130		4		05/24/24 00:01	2199-69-1	
4-Bromofluorobenzene (S)	104	%	70-130		4		05/24/24 00:01	460-00-4	
Toluene-d8 (S)	104	%	70-130		4		05/24/24 00:01	2037-26-5	

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No .: 40278573

Sample: MW-15	Lab ID:	40278573007	Collected	d: 05/21/24	11:10	Received: 05	5/21/24 12:26 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
Methane, Ethane, Ethene GCV	Analytical	Method: EPA 8	015B Modif	ied					
	Pace Anal	tical Services	- Green Ba	y					
Ethane	<0.39	ug/L	5.6	0.39	1		05/29/24 11:46	74-84-0	
Ethene	<0.25	ug/L	5.0	0.25	1		05/29/24 11:46	74-85-1	
8260 MSV	Analytical	Method: EPA 8	260						
	Pace Anal	tical Services	- Green Ba	y					
1,1-Dichloroethane	<0.30	ug/L	1.0	0.30	1		05/28/24 14:13	75-34-3	
1,2-Dichloroethane	<0.29	ug/L	1.0	0.29	1		05/28/24 14:13	107-06-2	
1,1-Dichloroethene	<0.58	ug/L	1.0	0.58	1		05/28/24 14:13	75-35-4	
cis-1,2-Dichloroethene	<0.47	ug/L	1.0	0.47	1		05/28/24 14:13	156-59-2	
trans-1,2-Dichloroethene	<0.53	ug/L	1.0	0.53	1		05/28/24 14:13	156-60-5	
Tetrachloroethene	1.1	ug/L	1.0	0.41	1		05/28/24 14:13	127-18-4	
1,1,1-Trichloroethane	<0.30	ug/L	1.0	0.30	1		05/28/24 14:13	71-55-6	
1,1,2-Trichloroethane	<0.34	ug/L	1.0	0.34	1		05/28/24 14:13	79-00-5	
Trichloroethene	1.1	ug/L	1.0	0.32	1		05/28/24 14:13	79-01-6	
Vinyl chloride	<0.17	ug/L	1.0	0.17	1		05/28/24 14:13	75-01-4	
Surrogates		0							
1,2-Dichlorobenzene-d4 (S)	100	%	70-130		1		05/28/24 14:13	2199-69-1	
4-Bromofluorobenzene (S)	103	%	70-130		1		05/28/24 14:13	460-00-4	
Toluene-d8 (S)	102	%	70-130		1		05/28/24 14:13	2037-26-5	

Project:	00542978 FORME	R BMO-GREEN I	BAY									
Pace Project No.:	40278573											
QC Batch:	475449		Analy	sis Method:	: E	EPA 8015E	3 Modified					
QC Batch Method:	EPA 8015B Modif	ïed	Analy	sis Descrip	tion: N	Vethane, I	Ethane, Et	thene GCV				
			Labor	atory:	F	Pace Analy	ytical Serv	rices - Green	Bay			
Associated Lab Sar	mples: 402785730	001, 40278573002	2, 40278573	3003, 4027	8573004, 4	40278573	005, 4027	8573006, 40	27857300	7		
METHOD BLANK:	2723195			Matrix: Wa	ter							
Associated Lab Sar	nples: 402785730	01, 40278573002	2, 40278573	3003, 4027	8573004, 4	40278573	005, 4027	8573006, 40	27857300	7		
			Blan	k R	eporting							
Parar	neter	Units	Resu	ılt	Limit	Ana	lyzed	Qualifier	s			
Ethane		ug/L		<0.39	5.6	6 05/29/2	24 10:28					
Ethene		ug/L		<0.25	5.0	05/29/2	24 10:28					
		CSD: 272310	6		723107							
LABORATORT CO	NTROL SAMPLE &	_030. 272319	Snike	LCS		LCS	LCSD	% Rec		Max		
Parar	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua	alifiers
Ethane		ug/L	53.6	5 51.9	56.	6 97	106	74-122	9	20		
Ethene		ug/L	50) 48.1	52.	3 96	105	74-121	8	20		
MATRIX SPIKE & N	ATRIX SPIKE DUP	LICATE: 2723	198		2723199							
			MS	MSD								
		40278807003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Ethane	ug/L	<0.39	53.6	53.6	53.8	54.6	10	102	71-120) 2	20	
Ethene	ug/L	<0.25	50	50	49.7	50.4	. g	9 101	69-120) 1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.:	40278573
-------------------	----------

QC Batch:	475027	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV
		Laboratory:	Pace Analytical Services - Green Bay
Associated Lab Sam	ples: 40278573007		
METHOD BLANK:	2720728	Matrix: Water	

Associated Lab Samples: 40278573007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	<0.30	1.0	05/28/24 09:44	
1,1,2-Trichloroethane	ug/L	< 0.34	1.0	05/28/24 09:44	
1,1-Dichloroethane	ug/L	< 0.30	1.0	05/28/24 09:44	
1,1-Dichloroethene	ug/L	<0.58	1.0	05/28/24 09:44	
1,2-Dichloroethane	ug/L	<0.29	1.0	05/28/24 09:44	
cis-1,2-Dichloroethene	ug/L	<0.47	1.0	05/28/24 09:44	
Tetrachloroethene	ug/L	<0.41	1.0	05/28/24 09:44	
trans-1,2-Dichloroethene	ug/L	<0.53	1.0	05/28/24 09:44	
Trichloroethene	ug/L	< 0.32	1.0	05/28/24 09:44	
Vinyl chloride	ug/L	<0.17	1.0	05/28/24 09:44	
1,2-Dichlorobenzene-d4 (S)	%	100	70-130	05/28/24 09:44	
4-Bromofluorobenzene (S)	%	105	70-130	05/28/24 09:44	
Toluene-d8 (S)	%	105	70-130	05/28/24 09:44	

LABORATORY CONTROL SAMPLE: 2720729

	% Rec	
Parameter Units Conc. Result % Rec	Limits	Qualifiers
1,1,1-Trichloroethane ug/L 50 50.9 102	70-132	
1,1,2-Trichloroethane ug/L 50 52.4 105	70-130	
1,1-Dichloroethane ug/L 50 48.6 97	70-130	
1,1-Dichloroethene ug/L 50 45.0 90	73-140	
1,2-Dichloroethane ug/L 50 54.7 109	70-130	
cis-1,2-Dichloroethene ug/L 50 46.9 94	70-130	
Tetrachloroethene ug/L 50 52.1 104	70-130	
trans-1,2-Dichloroethene ug/L 50 52.0 104	70-131	
Trichloroethene ug/L 50 50.5 101	70-130	
Vinyl chloride ug/L 50 45.0 90	51-145	
1,2-Dichlorobenzene-d4 (S) % 96	70-130	
4-Bromofluorobenzene (S) % 101	70-130	
Toluene-d8 (S) % 103	70-130	

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 2720	730		2720731							
Parameter	Units	40278574001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1,1-Trichloroethane	uq/L	<7.6	1250	1250	1290	1310	103	105	70-132	1	20	
1,1,2-Trichloroethane	ug/L	<8.6	1250	1250	1340	1330	107	107	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2720	730 MS	MOD	2720731							
Parameter	Units	40278574001 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1-Dichloroethane	ug/L	<7.4	1250	1250	1270	1290	102	103	70-131	1	20	
1,1-Dichloroethene	ug/L	<14.6	1250	1250	1160	1170	93	93	69-146	1	20	
1,2-Dichloroethane	ug/L	<7.3	1250	1250	1510	1450	121	116	70-130	4	20	
cis-1,2-Dichloroethene	ug/L	<11.8	1250	1250	1220	1220	98	98	70-130	0	20	
Tetrachloroethene	ug/L	<10.2	1250	1250	1360	1320	109	106	70-131	3	20	
trans-1,2-Dichloroethene	ug/L	<13.2	1250	1250	1150	1180	92	94	70-135	2	20	
Trichloroethene	ug/L	<8.0	1250	1250	1320	1300	105	104	70-130	1	20	
Vinyl chloride	ug/L	<4.4	1250	1250	1120	1110	90	89	45-147	1	20	
1,2-Dichlorobenzene-d4 (S)	%						102	100	70-130			
4-Bromofluorobenzene (S)	%						107	104	70-130			
Toluene-d8 (S)	%						103	101	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.:	40278573
-------------------	----------

QC Batch:	475028	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV
		Laboratory:	Pace Analytical Services - Green Bay
Associated Lab Samp	les: 40278573004, 40278573005, 40	278573006	

METHOD BLANK: 2720732		Matrix:	Water		
Associated Lab Samples: 4027	8573004, 40278573005, 4	0278573006			
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	<0.30	1.0	05/23/24 14:45	
1,1,2-Trichloroethane	ug/L	<0.34	1.0	05/23/24 14:45	
1,1-Dichloroethane	ug/L	<0.30	1.0	05/23/24 14:45	
1,1-Dichloroethene	ug/L	<0.58	1.0	05/23/24 14:45	
1,2-Dichloroethane	ug/L	<0.29	1.0	05/23/24 14:45	
cis-1,2-Dichloroethene	ug/L	<0.47	1.0	05/23/24 14:45	
Tetrachloroethene	ug/L	<0.41	1.0	05/23/24 14:45	
trans-1,2-Dichloroethene	ug/L	<0.53	1.0	05/23/24 14:45	
Trichloroethene	ug/L	<0.32	1.0	05/23/24 14:45	
Vinyl chloride	ug/L	<0.17	1.0	05/23/24 14:45	
1,2-Dichlorobenzene-d4 (S)	%	100	70-130	05/23/24 14:45	
4-Bromofluorobenzene (S)	%	104	70-130	05/23/24 14:45	
Toluene-d8 (S)	%	104	70-130	05/23/24 14:45	

LABORATORY CONTROL SAMPLE: 2720733

	2.20.00					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		49.2	98	70-132	
1,1,2-Trichloroethane	ug/L	50	50.9	102	70-130	
1,1-Dichloroethane	ug/L	50	51.4	103	70-130	
1,1-Dichloroethene	ug/L	50	44.4	89	73-140	
1,2-Dichloroethane	ug/L	50	55.8	112	70-130	
cis-1,2-Dichloroethene	ug/L	50	46.6	93	70-130	
Tetrachloroethene	ug/L	50	50.2	100	70-130	
trans-1,2-Dichloroethene	ug/L	50	48.0	96	70-131	
Trichloroethene	ug/L	50	49.3	99	70-130	
Vinyl chloride	ug/L	50	45.6	91	51-145	
1,2-Dichlorobenzene-d4 (S)	%			97	70-130	
4-Bromofluorobenzene (S)	%			106	70-130	
Toluene-d8 (S)	%			105	70-130	

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 2721	669		2721670							
Describer	1.1	40278579003	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	Qual
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane 1,1,2-Trichloroethane	ug/L ug/L	<0.30 <0.34	50 50	50 50	49.2 52.0	48.8 51.1	98 104	98 102	70-132 70-130	1 2	20 20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2721	669 MS	MSD	2721670							
		40278579003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1-Dichloroethane	ug/L	<0.30	50	50	50.3	50.4	101	101	70-131	0	20	
1,1-Dichloroethene	ug/L	<0.58	50	50	45.7	44.6	91	89	69-146	2	20	
1,2-Dichloroethane	ug/L	<0.29	50	50	56.8	55.9	114	112	70-130	2	20	
cis-1,2-Dichloroethene	ug/L	<0.47	50	50	46.5	46.0	93	92	70-130	1	20	
Tetrachloroethene	ug/L	<0.41	50	50	49.7	50.9	99	102	70-131	2	20	
trans-1,2-Dichloroethene	ug/L	<0.53	50	50	41.5	50.6	83	101	70-135	20	20	
Trichloroethene	ug/L	<0.32	50	50	50.6	49.3	101	99	70-130	3	20	
Vinyl chloride	ug/L	<0.17	50	50	44.5	43.5	89	87	45-147	2	20	
1,2-Dichlorobenzene-d4 (S)	%						99	98	70-130			
4-Bromofluorobenzene (S)	%						107	106	70-130			
Toluene-d8 (S)	%						105	105	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

QC Batch:	475147	Analysis Method:	EPA 8260
QC Batch Method:	EPA 8260	Analysis Description:	8260 MSV
		Laboratory:	Pace Analytical Services - Green Bay
Associated Lab Samp	les: 40278573001, 40278573002, 40	278573003	

METHOD BLANK: 2721190		Matrix:	Water		
Associated Lab Samples: 40278	573001, 40278573002,	40278573003			
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/L	<0.30	1.0	05/24/24 10:56	
1,1,2-Trichloroethane	ug/L	< 0.34	1.0	05/24/24 10:56	
1,1-Dichloroethane	ug/L	< 0.30	1.0	05/24/24 10:56	
1,1-Dichloroethene	ug/L	<0.58	1.0	05/24/24 10:56	
1,2-Dichloroethane	ug/L	<0.29	1.0	05/24/24 10:56	
cis-1,2-Dichloroethene	ug/L	<0.47	1.0	05/24/24 10:56	
Tetrachloroethene	ug/L	<0.41	1.0	05/24/24 10:56	
trans-1,2-Dichloroethene	ug/L	<0.53	1.0	05/24/24 10:56	
Trichloroethene	ug/L	< 0.32	1.0	05/24/24 10:56	
Vinyl chloride	ug/L	<0.17	1.0	05/24/24 10:56	
1,2-Dichlorobenzene-d4 (S)	%	99	70-130	05/24/24 10:56	
4-Bromofluorobenzene (S)	%	103	70-130	05/24/24 10:56	
Toluene-d8 (S)	%	103	70-130	05/24/24 10:56	

LABORATORY CONTROL SAMPLE: 2721191

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/L		46.4	93	70-132	
1,1,2-Trichloroethane	ug/L	50	49.7	99	70-130	
1,1-Dichloroethane	ug/L	50	48.6	97	70-130	
1,1-Dichloroethene	ug/L	50	43.5	87	73-140	
1,2-Dichloroethane	ug/L	50	53.3	107	70-130	
cis-1,2-Dichloroethene	ug/L	50	44.2	88	70-130	
Tetrachloroethene	ug/L	50	48.4	97	70-130	
trans-1,2-Dichloroethene	ug/L	50	51.4	103	70-131	
Trichloroethene	ug/L	50	48.0	96	70-130	
Vinyl chloride	ug/L	50	34.9	70	51-145	
1,2-Dichlorobenzene-d4 (S)	%			98	70-130	
4-Bromofluorobenzene (S)	%			106	70-130	
Toluene-d8 (S)	%			104	70-130	

MATRIX SPIKE & MATRIX SP	IKE DUPL	ICATE: 2722	092	2722093										
			MS	MSD										
		40278616001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max			
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual		
1,1,1-Trichloroethane	ug/L		50	50	48.1	50.2	96	100	70-132	4	20			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

MATRIX SPIKE & MATRIX SP	VIKE DUPL	LICATE: 2722	092	2722093									
			MS	MSD									
		40278616001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual	
1,1,2-Trichloroethane	ug/L	<0.00034 mg/L	50	50	51.4	53.0	103	106	70-130	3	20		
1,1-Dichloroethane	ug/L	<0.00030 mg/L	50	50	49.4	50.8	99	102	70-131	3	20		
1,1-Dichloroethene	ug/L	<0.00058 mg/L	50	50	42.5	45.0	85	90	69-146	6	20		
1,2-Dichloroethane	ug/L	<0.00029 mg/L	50	50	56.0	58.1	112	116	70-130	4	20		
cis-1,2-Dichloroethene	ug/L	0.0012 mg/L	50	50	47.8	48.8	93	95	70-130	2	20		
Tetrachloroethene	ug/L	<0.00041 mg/L	50	50	48.1	49.1	96	98	70-131	2	20		
trans-1,2-Dichloroethene	ug/L	<0.00053 mg/L	50	50	51.2	52.5	102	105	70-135	2	20		
Trichloroethene	ug/L	0.0013 mg/L	50	50	49.6	51.2	97	100	70-130	3	20		
Vinyl chloride	ug/L	0.00017mg/L	50	50	34.8	35.9	70	72	45-147	3	20		
1,2-Dichlorobenzene-d4 (S)	%						97	98	70-130				
4-Bromofluorobenzene (S)	%						103	105	70-130				
Toluene-d8 (S)	%						106	104	70-130				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALIFIERS

Project: 00542978 FORMER BMO-GREEN BAY

Pace Project No.: 40278573

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - The reported result is an estimated value.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

DL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Analyte was not detected and is reported as less than the LOD or as defined by the customer.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 00542978 FORMER BMO-GREEN BAY

 Pace Project No.:
 40278573

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40278573001	 MW-2	EPA 8015B Modified	475449		
40278573002	MW-3	EPA 8015B Modified	475449		
40278573003	MW-6	EPA 8015B Modified	475449		
40278573004	MW-8	EPA 8015B Modified	475449		
40278573005	MW-10	EPA 8015B Modified	475449		
40278573006	MW-12	EPA 8015B Modified	475449		
40278573007	MW-15	EPA 8015B Modified	475449		
40278573001	MW-2	EPA 8260	475147		
40278573002	MW-3	EPA 8260	475147		
40278573003	MW-6	EPA 8260	475147		
40278573004	MW-8	EPA 8260	475028		
40278573005	MW-10	EPA 8260	475028		
40278573006	MW-12	EPA 8260	475028		
40278573007	MW-15	EPA 8260	475027		

Pace Analytical*	Analyti	cal Req	LAB USE ONLY- Affix Workorder/Login Label Here or List Pace Workorder Number or MTJL Log-in Number Here																		
	Chain-c	of-Custody	is a LEGAL Billing Inf	DOCUMEN	T - Complet	te all releve	ent fields		-							90210313					
PSI, Inc			Sc	ime							,	4	ALL S	HADE	D AREAS	are for LAB USE ONLY					
Address: 821 Corporate	orate Ct, Waukesha											Jab Project Manager:									
Report To: Pat Patterson	n		Email To:	4 ** P 1 (6)	Preserv	vative Ty nol, (7) s	pes (1 odium) nitric acid, bisulfate, (8	, (2) sulfurio B) sodium t	c acıd, (3) hydro hiosulfate, (9) h	chloric acid, (4) sodium hydroxide, (5) zinc acetate, nexane, (A) ascorbic acid, (B) ammonium sulfate,										
Сору То:		Forme	Site Colle	ction Info/A	ddress: 2.en Ba	v			(c) a	ammor	nium hy	droxide	e, (D) TSP, (l	J) Unprese	rved, (O) Other	Lab Profile // ine					
Customer Project Name/Number: 00542978			State: WI	•	ЛИЮ	alan .			- 3 	đ	Lab Hondy Ene. Lab Sample Receipt Checklist: Custody Seals Present/Intact Y N NA										
Phone:262-521-2125 Email:	Site/Facility ID	#:			Complian [] Yes	ce Monitor [] No	ing?			E S						Custody Signatures Present Y N NA Collector Signature Present Y N NA Bottles Intact Y N NA					
Collected By (print): Kuy Herpel	Purchase Orde Quote #:	er #:			DW PWS DW Locat	ID #: ion Code:		•	"See	Thom				Г 6	T MG	Correct Bottles Y N NA Sufficient Volume Y N NA Samples Received on Ice Y N NA					
Collected By (signature):	Turnaround D	ate Require	ed:		[] Yes	ely Packed	on ice:		, , , , , ,	KC V		5	5 L 19	n neres est	the sec	VOA - Headspace Acceptable Y N DA USDA Regulated Soils Y N NA Samples in Holding Time Y N NA					
Sample Disposal: 7 [] Dispose as appropriate [] Return [] Archive: [] Hold:	[]] Rush: []] Sa []] 2 Day [(E	me Day] 3 Day xpedite Cha	[] Next D [] 4 Day rges Apply)	ay [] 5 Day	, 4 2 4	DCF			4.6	et f	e A	Cl Strips: Sample pH Acceptable Y N NA pH Strips: Sulfide Present Y N NA									
* Matrix Codes (Insert in Matrix bo Product (P), Soıl/Solıd (SL), Oil (Ol	* Matrix Codes (Insert in Matrix box below): Drinking Water (DW), Ground Water (GW), Wastewater (WW), Product (P), Soil/Solid (SL), Oil (OL), Wipe (WP), Air (AR), Tissue (TS), Bioassay (B), Vapor (V), Other (OT)															Lead Acetero Strips:					
Customer Sample ID	Matrix *	Comp / Grab	Collec Compo	s ^r	L L L L	, ¹			d sign he h	1	(ab) Sample # / Comments										
Mul-Z	GW		5/21	11 OD	Date		3	1.2	X	- - 			115		001						
MW-3	1		1	1105	+			1		TT	the sta		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	*9	b	COS SCIENCE SCIENCE					
. MW-6				1115											-	(U)]					
MW-8				1130		ļ			1. S. S.		d'à à		" Ariq	× 425	63	CONTRACT AND					
MW-10			\square	1120	<u> </u>	ļ	-		- ·	_	<u> </u>			_							
MW-12				1125		1			115 1	$\downarrow\downarrow\downarrow$		<u> </u>		e data	-						
MW-15	<u> </u>			1110			-	<u> Y</u>	e ant	11	-	-	dite ca	2,	÷	COL . IL MELLE . ICO DESERVACION PORT . LA COLORIZACIÓN					
								+	·	ygu	r 8°			at te	1.29	to all all a contraction and the					
										•	·		к. ,	5		and the second sec					
Customer Remarks / Special Condit	tions / Possible I	Hazards:	Type of lo	e Used:	Wet	Blue D	ry N	one		SH	ORT H	OLDS I	PRESENT (<72 hours): Y N I	N/A Lab Sample Temperature Info:					
Packing Material Used: Radchem sample(s) screened (<500 cpm): Y N N											o Track	ing#:	28	873	59	Therm ID#:					
											nples r	eceive	ed via: UPS – Cl	ient C	ourier Pa	cooler 1 Therm Corr. Factor: 0.50 cooler 1 Corrected Temp: 1.000					
Relinquished by/Company: (Signature) Date/Time: Received by/Company									<u></u>	0	Date,	/Time:	10 - 1 - 10	γ Tab	MTJL LAB U	ISE ONLY Comments:					
Reling(ished by//christopy (kignature)										د	Date		89 100	Acct	num:						
incliniquisiteory, company, orginato		Date	.,				Ú.				Date/ IIme:				plate: 🧖 🦈 ogin:	Trip Blank Received X N NA					
Relinquished by/Company: (Signatu	ıre)	Date	te/Time: Received by/Company: (Signature)							Date/Time: PM: PB:						Non Conformance(s): Page: Page 24 YES / NO of:					

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form Effective Date: 8/16/2022

C All c	Client Name: PS1 Sample Preservation Receipt Form Project # Project # Initial when Date/ All containers needing preservation have been checked and noted below: Lab Lot# of pH paper: Lab Std #ID of preservation (if pH adjusted): Initial when Date/																																	
Pace	31U	31U	31H	Glass StS	55U	32S	33U	10	30	Plast	tic NE	3S	2Z	300	ЭТ	vi Nes	als H6;	Mea	100 063	FU	ا با	ars DHC	PFU	57	Gen C	eral	12	۸ Vials (>6mm) *	3O4 pH ≤2	H+Zn Act pH ≥9	OH pH ≥12	03 pH ≤2	after adjusted	Volume (mL)
Lab #	A	ă	ĕ	Ă	Ă	Ă	ğ	B	<u><u> </u></u>	8	8	B	8	18	<u> </u>	2	2	2	2	5	<u> </u>	Š	Ī	SF	<u></u>	<u>ច</u>	ΰ	∕0∧	H2S H	NaO	Nac	Ž I	Ha	
001														ļ	ļ		3																	2.5/5
002	· , ,			и . 1 р. – Б.	1 1	, iii	14 4		6 1	·		с. С. с.,	· · ·	1.1	111	÷ , :	3	1 10 1	1. 1			- 44-	120		$\mathcal{F}_{\mathcal{F}}$	1 .	1 2	-	ه د در 	34 4 4	1.1	ini a Cart	1	2.5/5
003						<u> </u>							6			1.10	3				Later select	6		. 6 M			- IMI	. h. i	1 h h h h		June 1		10	2.5/5
004		ί.,		ч. , а	0 j - 1			hi n	p.Bat.P	14.67	hy		a hard	141 31-10 - 198 1- 199	And the second		3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	P	a fike a	· [1] · · · · · ·	he a	$\boldsymbol{g}^{\boldsymbol{q}^{\boldsymbol{\beta}}\boldsymbol{Q}^{\boldsymbol{\beta}_{1}}},\boldsymbol{g}^{\boldsymbol{\beta}_{1}}_{\boldsymbol{\beta}_{2}}$			植作用	1, SM (1	in the state	3 ^k 3	in a start	4. 84		han da	2.5/5
005	,					1		<u> </u>		ļ	ļ						5	ļ		<u> </u>		, , ,			16.					ļ		81 × 1		2.5/5
006			<u></u>	· · · ·	r 4	1.2		ļ, ,			Galler.	i dai	<i></i>				3		no Se		1. 1	1 1 1 1 1 1 1 1 1 1 1	9 (C.).	110	1.1.1.1	n] ¹ 1 1 1 ³ 10	1.1	i it	1.75.4	· ' ,	5.5		1414 1	2.5/5
007		ŧ					,			4 16	<u> </u>			· .			S	1964 - A	1.115	121	100,00		<u> </u>	1 1 1 1 1 1			<u> </u>			<u> </u>	100.4.7			2.5/5
008	\rightarrow		-	15.		· · · ·	<u>'</u>		4 a a	<u> </u>	(<u>, , '</u>		4	5 9		'		а 1	13 13	1 14	Ver V	1. 1	5 - 6a	5.5	1.17		1.11	, <u>}</u>	111	и	<u> </u>	1.1.1	а Г. ра	2.5/5
009		9 š				for 1	254	i E di fi	20121	1.16			1	<u> </u>		1. 11	1 10	1 . Ja	Back		الم الم الم			50.5	1	1.6.1		Itun ^T		1.1 1.	1 2 114	ر. بل دارج	i. Katala	2.5/5
010	1 1	40.00	inga si ly	4 ¹ 1, 11 1				1 10 T	d ar ha	1 1	N	n /	<u>i</u>			1.1.11	61	14.1	194 A	l to je si	1 a 1	ні — — — — — — — — — — — — — — — — — — —	41.0	<u> </u>	1. P	377	. ₁₀ . 3		fa jer	1.1.4	49 ¹¹	ht of the	bi si sali L	2.5/5
012		,	,					\vdash			an a		e	1	56		1.1.5	4 i	도 역	1947 - 8	1 a 1	<u> </u>		1.40° e	1.1.1.	ar i e	100	1.1	· .	1.1.	н ¹ 7	. <u>1</u> 5		2.575
012							· · ·		16.9							'		1	1 14	<u> </u>								·····		111				2.575
014	7.3						6 5			1	1.1.			eren er			-	h	2 7 1		. ,	1		,		r				1.1	5.7	н, , н		25/5
015		1 4 4 1	··· 6	с.			-1.	Π.	a taas			[\leftarrow			1 1 1 1 1					<u>. 1. 11.</u>		1			<u> </u>		· · · · · · · · · · · · · · · · · · ·	25/5
016				н	N	th i	\$p	ł۴	1	1	1	ье 1,3 тр	8° , •	- 1 <u>-</u> 1	1	1 1	da a	1.0			1. 1.		1.1.3	1.1	11.05	1 P.1			101 F	90 - 11 ⁵⁰		1. j. či 1. j. či	1.5.80	2.5/5
017								,			11														1.1.1		<u> </u>			<u> </u>				2.5/5
018	er []	инн 1 - 1	1. 		, ¹ 4	, j	. h.	125		14, 11 a 11 - 1	1,14	17 , d 8 4	中门,	1911 10 10 10 11 1 10 10	5 19 19 19 19 19 19	ر الأرورية. 14 من الأو	6.9.5		10 JU 9 10 JU 9	i i si ak		5. 5 Jr.	t the pro-	in the second	1.1.4	β^{2} $\beta_{0}\beta^{2}$	رين ماريل يان		10 - 11 11 - 11 11 - 11	1. 11.	, n ⁴ j i	r h. h		2.5/5
019										1				1				ľ								\square								2.5/5
020	` .	·	۰.	κ.,	5	1	1.	11.) N	1.1		· .		1.1	·	· · · · ;	40° 20		1.		96" 1 15 11 ¹¹	1		a - 14		Part of	1. 1			· .	1 . P	1.16	1 - 1 - 1 - 1 - 1 - 1		2.5/5
Excepti	ons to	preser	vation	check	VOA	Colif	form,	тос	, TOX,	ТОН,	O&G	, WI D	RO, F	henol	ics, Ot	h <u>er:</u>				_	Hea	dspac	e in V	'OA V	als (>	6mm) :	⊡Ye	s ZI	No 🗆	N/A	*lf ye	es look	in hea	dspace column
AG1U1 liter amber glassBP1U1 liter plastic unpresVG9C40 mL clear ascorbic w/ HClJGFU4 oz amber jar unpresBG1U1 liter clear glassBP3U250 mL plastic unpresDG9T40 mL clear ascorbic w/ HClJG9U9 oz amber jar unpresAG1H1 liter amber glass HCLBP3B250 mL plastic NaOHVG9U40 mL clear vial unpresVG9U4 oz clear jar unpresAG4S125 mL amber glass H2SO4BP3N250 mL plastic HNO3VG9H40 mL clear vial HCLWFU4 oz plastic jar unpresAG5U100 mL amber glass unpresBP3S250 mL plastic H2SO4VG9M40 mL clear vial MeOHSP5T120 mL plastic Na ThiosulfateBG3U250 mL clear glass unpresBP2Z500 mL plastic NaOH + ZnVG9D40 mL clear vial DIZPLCziploc bagGN 1ContC																																		

.

Sample Condition Upon Receipt Form (SCUR)

	Project #:										
Client Name: PS	LIO#: 40278573										
Courier: CS Logistics Fed Ex Speedee UPS V											
Flient Pace Other:											
Tracking #:	40278573										
Custody Seal on Cooler/Box Present: yes - no Seals intac	:: 🗍 yes 🗗 no										
Custody Seal on Samples Present: 🔲 yes 🗁 no 🛛 Seals intac	t: 🔲 yes 📶 no										
Packing Material: Bubble Wrap Bubble Bags	e 🗍 Other										
Thermometer Used $SR - 15^{\circ}$ Type of Ice: (Wet	Blue Dry None Meltwater Only										
Cooler Temperature Uncorr: U.S. /Corr: J.O											
Temp Blank Present: ges fin Biological	Tissue is Frozen: [_] yes [_] no Date: 2104 /Initials 0										
Temp should be above freezing to 6° C. Biota Samples may be received at $\leq 0^{\circ}$ C if shipped on Dry Ice.	Labeled By Initials:										
Chain of Custody Present:Yes □N₀ □N//	1.										
Chain of Custody Filled Out:	2.										
Chain of Custody Relinquished: -₽¶es □N₀ □N//	3.										
Sampler Name & Signature on COC:	4.										
Samples Arrived within Hold Time:	5.										
- DI VOA Samples frozen upon receipt 🛛 🖓 Yes 🕬 No	Date/Time.										
Short Hold Time Analysis (<72hr):	6.										
Rush Turn Around Time Requested:	7.										
Sufficient Volume:	8.										
For Analysis: Tyes DNo MS/MSD: Dyes DN/											
Correct Containers Used:	9.										
Correct Type: Pace Green Bay, Pace IR, Non-Pace											
Containers Intact:	10.										
Filtered volume received for Dissolved tests	11.										
Sample Labels match COC:	12.										
-Includes date/time/ID/Analysis Matrix:	Whimes mH5121hy										
Trip Blank Present:	13.										
Trip Blank Custody Seals Present □Yes □No ≁AN//											
Pace Trip Blank Lot # (if purchased):											
Client Notification/ Resolution: Person Contacted: Date Comments/ Resolution:	If checked, see attached form for additional comments										

Page 1 of 2