

Technical Memorandum

To: Mark Darby, Superior Refining Company, LLC (Husky Energy)
From: Lynette Carney and Martin Bevis, Barr Engineering Co.
Subject: Phase II Investigation Results – Future ALLETE Substation Site
Date: August 24, 2018
Project: 49161423.00

Project Objectives

Barr Engineering Co. (Barr) was retained by Superior Refining Company, LLC (a subsidiary of Husky Energy Inc.) to complete a Phase II investigation of a property owned by Husky Energy Inc. There is historical indication that the property was formerly used as a parking lot and equipment laydown area. Husky intends to lease the Property to ALLETE/Minnesota Power/Superior Water, Light and Power for construction of an electrical substation. The property is located in Section 36 of Township 49 North, Range 14 West in Superior, Douglas County, Wisconsin (Property). The Property location is shown on Figure 1.

In May 2018, Barr performed a Phase I Environmental Site Assessment (ESA) Report (Barr, 2018). No recognized environmental conditions (RECs) were identified, though the report included findings of nine potential sources of hazardous substances or petroleum products near the Property:

- 1. Adjacent Husky Refinery (North);
- 2. Adjacent Husky Refinery fire on April 26, 2018;
- 3. Adjacent Enbridge Energy Terminal site (South);
- 4. Adjoining Husky Refinery laboratory (East);
- 5. Adjoining and upgradient railroads (West and South);
- 6. A small amount of miscellaneous historical debris on the Property;
- 7. Existing electrical power pole transformers;
- 8. Surrounding industrial property use and equipment storage on Property; and
- 9. Various petroleum pipelines located adjacent to the Property.

The objectives of the Phase II investigation were to: characterize soil and groundwater to identify potential impacts and assess baseline conditions at the property prior to leasing.

This report summarizes the results, opinions, and conclusions of the Phase II investigation. Descriptions of the Property background, investigation approach, sample locations and analytical results are summarized below. Additional information is included in the Phase I ESA Report (Barr, 2018).

Background Information

The Property consists of approximately 5.18 acres located in an area between the operating Husky Refinery and a large Enbridge pipeline terminal facility as shown on Figure 1. The Property will be leased to ALLETE/Minnesota Power/Superior Water, Light and Power for construction of an electrical substation. Much of the following Property information was summarized from information presented in Barr's Phase I ESA Report (Barr, 2018):

Topography of the Property is relatievly flat, with a gentle slope down to the east. The property is underlain by clayey till and glaciolacustrine sediment planed by waves of proglacial Lake Duluth (Clayton, 1985). Based on groundwater monitoring at the refinery, which includes groundwater monitoring wells located on and near the Property, shallow groundwater flow direction at the Property is to the northeast towards Newton Creek, ultimately discharging into Lake Superior approximately 1.7 miles northeast of the Property. The depth to shallow groundwater in MW-14, which is located on the Property, is typically less than two feet below the ground surface (Gannett Fleming, 2017). Husky's monitoring wells on and near the Property are shown on Figure 2.

No buildings are currently located on the Property. The Property is accessible via Stinson Avenue (24th Avenue East) and an approximately 80-foot-wide gravel parking lot/equipment laydown area is located along the northwest Property boundary. No drinking water or sanitary service is provided to the Property. Historically the Property has been used as a storage/laydown area associated with the adjacent refinery. A warehouse was previously located on the Property and has since been demolished.

The current use of adjoining properties includes Husky Refinery to the north/northwest, unoccupied grassy/forested land and rail lines to the southwest, Husky Refinery laboratory building and grassy area to the east/northeast, and rail lines and Enbridge petroleum pipeline terminal facility to the south/southeast.

Investigation Approach and Summary of Activities

A Phase II Investigation was completed to assess for soil and groundwater impacts on the Property and to establish baseline environmental data. On June 22 and 23, 2018, Barr and its subcontractor, Twin Ports Testing, used a Geoprobe to advance five direct-push borings (SB-1 through SB-5) to depths of 20 feet below ground surface (bgs) at the locations shown on Figure 2. The borings locations were selected to provide representative coverage of the Property.

At each of the boring locations, one shallow soil sample was collected from depths between 0 and 3 feet bgs and one deeper sample was collected from intervals between 6 and 13 feet bgs. Soil samples were field-screened for organic vapors using headspace sample screening procedures described in our Standard Operating Procedures (included in Attachment A). Additional evidence of contamination such as staining, odor, discoloration, and sheen were evaluated and/or documented in the field. Soils were described according to ASTM D-2488, *Standard Practice for Description and Identification of Soils (Visual/Manual Method)*. Boring locations were surveyed using global positioning system (GPS) methods.

Temporary monitoring wells, with five-foot PVC well screens, were placed into three borings completed on June 21 (SB-1, SB-2, and SB-3). The wells were left in place over night to allow time for groundwater to equilibrate.

Barr submitted ten soil samples to Pace Analytical Laboratories in Minneapolis, MN. The soil samples were analyzed for the following compounds:

- Resource Conservation and Recovery Act (RCRA) list of 8 metals by methods 6010D and 7471B;
- polycyclic aromatic hydrocarbons (PAHs) by method 8270D; and
- volatile organic compounds (VOCs) by method 8260.

Due to poor recovery, only one groundwater sample (SB-3) was collected and submitted for analysis of VOCs by method 8260B and PAHs by method 8270D.

Results

Representative photographs of the boring locations and soil encountered at each location are included as Attachment B. Logs of each soil boring are included as Attachment C. Boring stratigraphy generally consisted of six inches or less of organic-rich topsoil overlying lean clay. The clay was typically of medium plasticity, stiff consistency, moist, red color, and glaciolacustrine origin. There was no staining, odor, discoloration, sheen or other indications of contamination observed in the field with the exception of SB-5, where the top six inches of soil

was composed of 70% angular shiny black sand and gravel – apparent weathered bituminous pavement. Headspace sample organic vapor screening in the field produced headspace readings less than 0.6 parts per million (ppm) across the site, with the exception of the top six inches of SB-5 (described above), where headspace results were 1.2 ppm.

The day following temporary monitoring well installation, approximately 3.5 feet of water was found in SB-1; SB-2 was dry, and SB-3 contained approximately 11 feet of water. Because SB-1 and SB-3 were located in areas of the site with shallow perched water on the ground surface while SB-2 was located in a portion of the site with dry ground, it is possible that water encountered in soil borings SB-1 and SB-3 may have been influenced by perched surface water draining into the open boring holes overnight. Although a small about of water was measured in the SB-1 borehole, an insufficient amount of water remain for sampling after purging only one well volume. Therefore, a groundwater sample was only collected from SB-3.

Tables 1 and 2 summarize the soil samples collected, analyses performed, and analytical results. Table 1 presents the analytical results for detections only or compounds detected at concentrations equal to or greater than laboratory method detection limits (MDLs). Included for comparison are the Wisconsin Department of Natural Resources (WDNR) Remediation & Redevelopment Program Residual Contaminant Levels (RCLs) developed by the WDNR according to the procedures in NR 720.10 and NR 720.12, Wis. Adm. Code. Non-industrial and industrial RCLs are included for comparison.

Table 2 presents all of the analytical results, including those results below the MDLs. Table 3 presents all of the groundwater analytical results compared to enforcement standard (ES) and Preventative Action Limit (PAL) criteria in NR 140.10 Wis. Adm. Code. Copies of the laboratory analytical reports are included in Attachment D.

Soil Analytical Results

<u>Metals Results</u> - Five of the eight RCRA metals were detected in each of the soil samples (Table 1). Arsenic was the only metal detected above the industrial RCLs; and arsenic concentrations exceeded industrial RCLs consistently in all soil samples, except SB-3_8-9 ft., where the concentration was below industrial criteria. Mercury, barium, chromium, and lead were found at concentrations below non-industrial RCLs in each sample. Cadmium, selenium and silver were not found above laboratory quantitation limits in any of the samples.

<u>PAHs</u> - Each of the PAHs were detected in SB-5_0-1 ft., but only the concentration of benzo(a)pyrene was in exceedance of non-industrial RCLs (Table 1). The only other detection of PAHs above laboratory quantitation limits was Benzo(b)fluoranthene in SB-3_8-9 ft.

<u>VOCs</u> - There were no VOCs detected above laboratory quantitation limits. Toluene was detected in SB-5_0-1 ft., but the concentration was below the quantitation limit.

<u>Cumulative</u> - The combined detections for each sample interval were also compared to the WDNR cumulative hazard index. No samples exceeded the Hazard Index or Cumulative Cancer Risk Sample standards. Sample SB-5 from 0-1 ft. was the only interval with any exceedances and had an Exceedance Count of one.

Groundwater Analytical Results

The only analyte detected in groundwater from SB-3 was toluene. This detection was below the WDNR NR 140 ES and PAL. Previous annual groundwater monitoring at wells MW-14 (located on the Property near SB-3) and MW-13/PZ-13 (located just northeast of Property) did not identify detectable concentrations of petroleum VOCs/naphthalene over the past 3 years (Gannett Fleming, 2016, 2017, 2018). As previously identified, it is possible that perched surface water observed at the time of sample collection may have migrated into SB-3.

Conclusions

Field screening at the five direct-push boring locations did not identify petroleum impacts or other concerns in soil. Soils generally consisted of lean, red, glaciolacustrine clay overlain by a few inches of organic topsoil.

Perched surface water is believed to have mixed with the groundwater encountered in SB-3. Only one VOC was detected in the groundwater sample from SB-3 (toluene), but the concentration was below the WDNR ES and PAL. This is consistent with the favorable groundwater monitoring results over the past three years from existing groundwater monitoring wells located on and near the subject Property and Refinery.

With the exception of arsenic, soil concentrations for RCRA metals and PAHs were below WDNR non-industrial RCLs. Arsenic was found at concentrations above the industrial RCLs in nine of the ten soil samples collected. However, given the documented baseline for arsenic in the Superior, Wisconsin area, the arsenic concentrations are believed to be naturally occurring and were universally below WDNR background threshold values (BTVs) as published and defined in their

RCL Spreadsheet and Publication PUB-RR-890. The three other metals detected above laboratory quantitation limits in each of the soil samples (i.e., barium, chromium, and lead) were found at concentrations below the non-industrial RCLs and below the WDNR background threshold values, with the exception of the result from SB-5 0-1 ft., where asphalt/fill soils were encountered at the surface. Metals detected in soil at the Property are therefore unlikely to be the result of past property uses.

In addition to chromium and lead concentrations above WDNR background threshold values, results from SB-5 0-1 ft. included multiple low-level concentration of PAHs, including a concentration of benzo(a)pyrene in exceedance of non-industrial RCLs; and a trace concentration of toluene. This sample contained pieces of apparent weathered asphalt. The chromium, lead, PAHs, and toluene detected at SB-5_0-1 ft. likely derive from the apparent weathered asphalt contained in the sample, not the underlying soil. No other samples at the property exhibited similar elevated analyte concentrations, including other surface samples and the deeper sample collected from the same boring (SB-5_8-9). Therefore, compounds associated with the apparent weathered asphalt do not appear to have leached into underlying soil or to have been distributed across the site.

Trace concentrations of PAHs were detected in SB-1 from 2-3 ft. and SB-3 from 8-9 ft. A trace concentration of toluene in groundwater was detected in soil boring SB-3, which was screened from 14.5-19.5 ft. bgs. The other PAH and VOC concentrations detected were below the RCLs for soil and the ES and PAL for groundwater. Based on WDNR risk-based industrial and non-industrial RCLs, the isolated low concentrations do not present a risk for human health and the environment.

Limitations

The scope of this Phase II investigation was intended to investigate the potential for the presence of specific contaminants at representative locations. Laboratory analysis was performed for those parameters which were identified as potential contaminants prior to conducting this investigation.

Attachments

- Table 1Soil Analytical Summary Detected Values Only
- Table 2 Soil Analytical Summary All Results
- Table 3Groundwater Analytical Summary

To:	Mark Darby, Superior Refining Company, LLC (Husky Energy)
From:	Lynette Carney and Martin Bevis, Barr Engineering Co.
Subject:	Phase II Investigation Results – Future ALLETE Substation Site
Date:	August 24, 2018
Page:	7

Figure 1 Figure 2	Property Location Map Soil Boring Locations
Attachment A	Standard Operating Procedures
Attachment B	Representative Photographs
Attachment C	Soil Boring Logs
Attachment D	Soil and Groundwater Laboratory Analytical Reports

References

- ASTM, 2009. *D-2488-09a, Standard Practice for Description and Identification of Soils* (*Visual/Manual Method*) ASTM International, West Conshohocken, PA; 2009.
- Barr, 2018. Phase I Environmental Site Assessment, Future ALLETE Substation Site, Superior Refining Company, LLC (Husky Energy), Superior, Wisconsin, prepared for Superior Refining Company, LLC; July 2018.
- Clayton, Lee, 1985. *Pleistocene Geology of the Superior Region, Wisconsin,* Wisconsin Geological and Natural History Survey Information Circular 46, Plate 1; 1985.
- Gannett Fleming, 2016. *Facility-Wide Groundwater Monitoring Report for 2015, Calumet Superior LLC Refinery, Superior WI*, prepared for Calumet Superior LLC; January 17, 2016.
- Gannett Fleming, 2017. *Facility-Wide Groundwater Monitoring Report for 2016, Calumet Superior LLC Refinery, Superior WI*, prepared for Calumet Superior LLC; January 10, 2017.
- Gannett Fleming, 2018. *Facility-Wide Groundwater Monitoring Report for 2017, Superior Refining Company LLC, Superior WI*, prepared for Superior Refining Company LLC; January 16, 2018.

Tables

Table 1 Soil Analytical Data Summary Detections Only Husky Energy Property- Future Substation Site Superior, WI

				1		-	-			-		-	
	Location	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-4	SB-4	SB-5	SB-5		
	6/21/2018	6/21/2018	6/21/2018	6/21/2018	6/21/2018	6/21/2018	6/22/2018	6/22/2018	6/22/2018	6/22/2018			
			Depth	2 - 3 ft	12 - 13 ft	0 - 1 ft	6 - 7 ft	0 - 2 ft	8 - 9 ft	0 - 2 ft	6 - 7 ft	0 - 1 ft	8 - 9 ft
Parameter Uni ^r	Wisconsin Not to Exceed Industrial RCLs	Wisconsin Not to Exceed Non- Industrial RCLs	WDNR Background Threshold Values										
Effective Date	06/01/2018	06/01/2018	06/01/2018										
Exceedance Key	Bold	Underline	Reference Only										
General Parameters													
Moisture %				27.6	35.3	20.3	24.5	24.5	31.6	26.7	29.4	23.3	28.1
Metals													
Mercury mg/!	g 3.13	3.13		0.023 j	0.026 j	0.022 j	0.020 j	0.026 j	0.021 j	0.023 j	0.021 j	0.10	0.017 j
Arsenic mg/!	g 3	0.677	8	3.1	3.8	3.0	3.3	3.5	2.8	3.0	3.0	<u>5.1 j</u>	3.4
Barium mg/!	g 100000	15300	364	245	193	145	150	174	176	191	160	287	173
Cadmium mg/!	g 985	71.1	1						0.11 j		0.097 j	0.56 j	
Chromium mg/!	g 100000 CR3	100000 CR3	44	49.6	42.9	37.0	39.5	41.7	42.6	48.6	39.4	1850	42.0
Lead mg/!	g 800	400	52	10.5	9.5	7.6	8.1	9.0	7.8	9.1	7.7	88.2	8.4
Selenium mg/!	g 5840	391		0.56 j									
Silver mg/!	g 5840	391										1.1 j	
Semivolatile Organic Compounds	-												
Acenaphthene ug/ł	g 45200000	3590000										6.9	
Acenaphthylene ug/ł	g											3.4	
Anthracene ug/ł	g 10000000	17900000										11.0	
Benz(a)anthracene ug/ł	g 20800	1140										77.8	
Benzo(a)pyrene ug/ł	g 2110	<u>115</u>							1.2 j			128	
Benzo(b)fluoranthene ug/ł	g 21100	1150		1.1 j					2.2			162	
Benzo(g,h,i)perylene ug/ł	g								2.3 j			116	
Benzo(k)fluoranthene ug/ł	g 211000	11500							2.2 j			55.7	
Chrysene ug/ł	g 2110000	115000										98.1	
Dibenz(a,h)anthracene ug/ł	g 2110	115							2.2 j			32.5	
Fluoranthene ug/ł	g 30100000	2390000		1.8 j					1.9 j			90.4	
Fluorene ug/ł	g 30100000	2390000										2.5	
Indeno(1,2,3-cd)pyrene ug/ł	g 21100	1150							2.2 j			94.4	
Naphthalene ug/ł	g 24100	5520										4.3	
Phenanthrene ug/ł	g											39.1	
Pyrene ug/ł	g 22600000	1790000										75.2	
Volatile Organic Compounds **													
Toluene ug/ł	g 818000	818000										38.8 j	
Barr Calculated Comparison - Non-Industrial													
Exceedance Count no u	nit O	<u>0</u>		0	0	0	0	0	0	0	0	<u>1</u>	0

Note

** Non-detect VOC compounds reported on a

wet weight basis per WIDNR requirements.

Table 2Soil Analytical Data SummaryHusky Energy Property- Future Substation SiteSuperior, WI

								-						
				Location	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-4	SB-4	SB-5	SB-5
				Date	6/21/2018	6/21/2018	6/21/2018	6/21/2018	6/21/2018	6/21/2018	6/22/2018	6/22/2018	6/22/2018	6/22/2018
				Depth	2 - 3 ft	12 - 13 ft	0 - 1 ft	6 - 7 ft	0 - 2 ft	8 - 9 ft	0 - 2 ft	6 - 7 ft	0 - 1 ft	8 - 9 ft
Parameter	Units	Wisconsin Not to Exceed Industrial RCLs	Wisconsin Not to Exceed Non- Industrial RCLs	WDNR Background Threshold Values										
Effective Date		06/01/2018	06/01/2018	06/01/2018										
Exceedance Key		Bold	Underline	Reference Only										
General Parameters														
Moisture	%				27.6	35.3	20.3	24.5	24.5	31.6	26.7	29.4	23.3	28.1
Metals														
Mercury	mg/kg	3.13	3.13		0.023 j	0.026 j	0.022 j	0.020 j	0.026 j	0.021 j	0.023 j	0.021 j	0.10	0.017 j
Arsenic	mg/kg	3	0.677	8	<u>3.1</u>	<u>3.8</u>	<u>3.0</u>	<u>3.3</u>	<u>3.5</u>	<u>2.8</u>	<u>3.0</u>	<u>3.0</u>	<u>5.1 j</u>	<u>3.4</u>
Barium	mg/kg	100000	15300	364	245	193	145	150	174	176	191	160	287	173
Cadmium	mg/kg	985	71.1	1	< 0.075	< 0.082	< 0.065	< 0.070	< 0.069	0.11 j	< 0.071	0.097 j	0.56 j	< 0.073
Chromium	mg/kg	100000 CR3	100000 CR3	44	49.6	42.9	37.0	39.5	41.7	42.6	48.6	39.4	1850	42.0
Lead	mg/kg	800	400	52	10.5	9.5	7.6	8.1	9.0	7.8	9.1	7.7	88.2	8.4
Selenium	mg/kg	5840	391		0.56 j*	< 0.61	< 0.49	< 0.52	< 0.51	< 0.58	< 0.53	< 0.56	< 5.2	< 0.54
Silver	mg/kg	5840	391		< 0.11	< 0.12	< 0.098	< 0.11	< 0.10	< 0.12	< 0.11	< 0.11	1.1 j	< 0.11
Semivolatile Organic Compounds														
Acenaphthene	ug/kg	45200000	3590000		< 0.56	< 0.63	< 0.51	< 0.54	< 0.54	< 0.60	< 0.56	< 0.58	6.9	< 0.57
Acenaphthylene	ug/kg				< 0.68	< 0.76	< 0.62	< 0.66	< 0.65	< 0.72	< 0.67	< 0.70	3.4	< 0.69
Anthracene	ug/kg	10000000	17900000		< 0.65	< 0.72	< 0.59	< 0.62	< 0.62	< 0.68	< 0.64	< 0.66	11.0	< 0.65
Benz(a)anthracene	ug/kg	20800	1140		< 1.5	< 1.7	< 1.4	< 1.4	< 1.4	< 1.6	< 1.5	< 1.5	77.8	< 1.5
Benzo(a)pyrene	ug/kg	2110	<u>115</u>		< 0.95	< 1.1	< 0.86	< 0.91	< 0.91	1.2 j	< 0.94	< 0.97	<u>128</u>	< 0.95
Benzo(b)fluoranthene	ug/kg	21100	1150		1.1 j	< 0.57	< 0.47	< 0.49	< 0.49	2.2	< 0.51	< 0.53	162	< 0.52
Benzo(g,h,i)perylene	ug/kg				< 0.87	< 0.97	< 0.79	< 0.84	< 0.83	2.3 j	< 0.86	< 0.90	116	< 0.88
Benzo(k)fluoranthene	ug/kg	211000	11500		< 1.2	< 1.3	< 1.1	< 1.1	< 1.1	2.2 j	< 1.2	< 1.2	55.7	< 1.2
Chrysene	ug/kg	2110000	115000		< 1.9	< 2.1	< 1.7	< 1.8	< 1.8	< 2.0	< 1.9	< 1.9	98.1	< 1.9
Dibenz(a,h)anthracene	ug/kg	2110	115		< 0.64	< 0.71	< 0.58	< 0.61	< 0.61	2.2 j	< 0.63	< 0.65	32.5	< 0.64
Fluoranthene	ug/kg	30100000	2390000		1.8 j	< 0.66	< 0.54	< 0.57	< 0.56	1.9 j	< 0.58	< 0.61	90.4	< 0.59
Fluorene	ug/kg	30100000	2390000		< 0.43	< 0.48	< 0.39	< 0.41	< 0.41	< 0.46	< 0.43	< 0.44	2.5	< 0.43
Indeno(1,2,3-cd)pyrene	ug/kg	21100	1150		< 0.93	< 1.0	< 0.84	< 0.89	< 0.88	2.2 j	< 0.91	< 0.95	94.4	< 0.93
Naphthalene	ug/kg	24100	5520		< 1.1	< 1.2	< 0.97	< 1.0	< 1.0	< 1.1	< 1.1	< 1.1	4.3	< 1.1
Phenanthrene	ug/kg				< 2.7	< 3.0	< 2.4	< 2.5	< 2.5	< 2.8	< 2.6	< 2.7	39.1	< 2.7
Pyrene	ug/kg	22600000	1790000		< 2.1	< 2.4	< 1.9	< 2.0	< 2.0	< 2.2	< 2.1	< 2.2	75.2	< 2.1

Table 2Soil Analytical Data SummaryHusky Energy Property- Future Substation SiteSuperior, WI

	_					-								
				Location	SB-1	SB-1	SB-2	SB-2	SB-3	SB-3	SB-4	SB-4	SB-5	SB-5
				Date	6/21/2018	6/21/2018	6/21/2018	6/21/2018	6/21/2018	6/21/2018	6/22/2018	6/22/2018	6/22/2018	6/22/2018
				Depth	2 - 3 ft	12 - 13 ft	0 - 1 ft	6 - 7 ft	0 - 2 ft	8 - 9 ft	0 - 2 ft	6 - 7 ft	0 - 1 ft	8 - 9 ft
	1			WDNR										•
		to Excood		Background										
		Industrial RCI s	Industrial RCI s	Threshold										
Parameter	Units			Values										
Effective Date		06/01/2018	06/01/2018	06/01/2018										
Exceedance Key		Bold	<u>Underline</u>	Reference Only										
Volatile Organic Compounds **														
1,1,1-Trichloroethane	ug/kg	640000	640000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
1,1,2,2-Tetrachloroethane	ug/kg	3600	810		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
1,1,2-Trichloroethane	ug/kg	7010	1590		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
1,1-Dichloroethane	ug/kg	22200	5060		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
1,1-Dichloroethylene	ug/kg	1190000	320000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
1,2-Dichloroethane	ug/kg	2870	652		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
1,2-Dichloroethylene, cis	ug/kg	2340000	156000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
1,2-Dichloroethylene, trans	ug/kg	1850000	1560000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
	ug/kg	15000	3400		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
1,3-Dichloropropene, cis	ug/kg	1210000	1210000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
1,3-Dichloropropene, trans	ug/kg	1510000	1510000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
2-Hexanone	ug/kg	1760000	237000		< 52.0	< 52.0	< 52.0	< 52.0	< 52.0	< 52.0	< 52.0	< 52.0	< 52.0	< 52.0
Acetone	ug/kg	10000000	63400000		< //.8	< //.8	< //.8	< //.8	< //.8	< //.8	< //.8	< //.8	< //.8	< //.8
Benzene	ug/kg	7070	1600		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Bromodicniorometnane	ug/kg	1830	418		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Bromomothano	ug/kg	113000	25400		< 25.0	< 20.0	< 20.0	< 20.0	< 20.0	< 25.0	< 20.0	< 20.0	< 25.0	< 20.0
	ug/kg	43000	728000		< 25.0	< 09.9	< 09.9	< 09.9	< 09.9	< 09.9	< 09.9	< 09.9	< 25.0	< 25.0
Carbon totraphlorida	ug/kg	736000	738000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Calibon tetrachionde	ug/kg	761000	370000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Chlorodibromomothano	ug/kg	38000	8280		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Chloroothana	ug/kg	2120000	2120000		< 67.0	< 67.0	< 67.0	< 67.0	< 67.0	< 67.0	< 67.0	< 67.0	< 67.0	< 67.0
Chloroform	ug/kg	1080	2120000		< 16.1	< 16.1	< 16.1	< 16.1	< 16.1	< 16.1	< 16.1	< 16.1	< 16.1	< 16.1
Chloromethane	ug/kg	669000	159000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Ethyl benzene	ug/kg	35400	8020		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Methyl ethyl ketone (2-butanone)	ug/kg	28400000	28400000		< 107	< 107	< 107	< 107	< 107	< 107	< 107	< 107	< 107	< 107
Methyl isobutyl ketone (MIBK)	ug/kg	3360000	3360000		< 41 1	< 41 1	< 41 1	< 41 1	< 41 1	< 41 1	< 41 1	< 41 1	< 41 1	< 41 1
Methyl tertiary butyl ether (MTBF)	ug/kg	282000	63800		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Methylene chloride	ug/kg	1150000	61800		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Styrene	ua/ka	867000	867000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Tetrachloroethylene	ua/ka	145000	33000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Toluene	ua/ka	818000	818000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	38.8 i	< 25.0
Trichloroethylene (TCE)	ua/ka	8410	1300		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Vinvl chloride	ua/ka	2080	67		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Xvlene, m & p	ua/ka	260000 XYL	260000 XYL		< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0	< 50.0
Xylene. o	ua/ka	434000	434000		< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0	< 25.0
Xylene, total (Barr Calculation)	ug/kg	260000	260000		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Barr Calculated Comparison - Industrial	00													
Exceedance Count	no unit	0	0		0	0	0	0	0	0	0	0	0	0
Hazard Index	no unit	≤ 1.0	≤ 1.0		0.0004	0.0004	0.0003	0.0003	0.0004	0.0003	0.0003	0.0003	0.1124	0.0011
Cumulative Cancer Risk	no unit	≤ 1E-0.5	≤ 1E-0.5		5.2E-11	0.0E+00	0.0E+00	0.0E+00	0.0E+00	1.8E-09	0.0E+00	0.0E+00	9.2E-08	0.0E+00
Barr Calculated Comparison - Non-Industrial														
Exceedance Count	no unit	0	<u>0</u>		0	0	0	0	0	0	0	0	1	0
Hazard Index	no unit	≤ 1.0	≤ <u>1</u> .0		0.0029	0.0017	0.0014	0.0013	0.0017	0.0014	0.0015	0.0013	0.2342	0.0003
Cumulative Cancer Risk	no unit	≤ 1E-0.5	≤ 1E-0.5		9.6E-10	0.0E+00	0.0E+00	0.0E+00	0.0E+00	3.4E-08	0.0E+00	0.0E+00	1.7E-06	0.0E+00

Note

** Non-detect VOC compounds reported on a wet weight basis per WIDNR requirements.

Table 3Groundwater Analytical Data SummaryHusky Energy Property- Future Substation SiteSuperior, WI

			Location	SB-3
			Date	6/22/2018
			Donth	14 E 40 E #
			Deptil	14.5 - 19.5 ft
	-		Sample Type	N
		Wisconsin	Wisconsin	
		Groundwater Public	Groundwater	
Demonster	1.1	Health Enforcement	Preventive Action	
Parameter	Units	Standards	Limits	
Effective Date		07/01/2015	07/01/2015	
Exceedance Key		NO Exceed	NO Exceed	
Acceptible to a compounds				< 0.0042
	ug/l			< 0.0043
Anthracene	ug/l	3000	600	< 0.0003
Anunacene Benz(a)anthracene	ug/l	3000	000	< 0.0003
Benzo(a)nyrene	ug/l	0.2	0.02	< 0.0053
Benzo(h)fluoranthene	ug/l	0.2	0.02	< 0.0034
Benzo(a h i)pervlene	ug/l	0.2	0.02	< 0.017
Benzo(k)fluoranthene	ug/l			< 0.010
Chrysene	ug/l	0.2	0.02	< 0.012
Dibenz(a h)anthracene	ug/l	0.2	0.02	< 0.012
Fluoranthene	ug/l	400	80	< 0.012
Fluorene	ug/l	400	80	< 0.0080
Indeno(1 2 3-cd)pyrene	ug/l			< 0.0000
Naphthalene	ug/l	100	10	< 0.0092
Phenanthrene	ua/l			< 0.014
Pvrene	ua/l	250	50	< 0.020
Volatile Organic Compounds				
1.1.1.2-Tetrachloroethane	ua/l	70	7	< 0.20
1,1,1-Trichloroethane	ug/l	200	40	< 0.14
1,1,2,2-Tetrachloroethane	ug/l	0.2	0.02	< 0.17
1,1,2-Trichloroethane	ug/l	5	0.5	< 0.18
1,1-Dichloroethane	ug/l	850	85	< 0.17
1,1-Dichloroethylene	ug/l	7	0.7	< 0.16
1,1-Dichloropropene	ug/l			< 0.20
1,2,3-Trichlorobenzene	ug/l			< 0.21
1,2,3-Trichloropropane	ug/l	60	12	< 0.26
1,2,4-Trichlorobenzene	ug/l	70	14	< 0.20
1,2,4-Trimethylbenzene	ug/l	480 c	96 c	< 0.20
1,2-Dibromo-3-chloropropane (DBCP)	ug/l	0.2	0.02	< 1.7
1,2-Dibromoethane (EDB)	ug/l	0.05	0.005	< 0.24
1,2-Dichlorobenzene	ug/l	600	60	< 0.14
1,2-Dichloroethane	ug/l	5	0.5	< 0.22
1,2-Dichloroethylene, cis	ug/l	70	7	< 0.15
1,2-Dichloroethylene, trans	ug/l	100	20	< 0.12
1,2-Dichloropropane	ug/l	5	0.5	< 0.16
1,3,5-Trimethylbenzene	ug/l	480 c	96 c	< 0.12
1,3-Dichlorobenzene	ug/l	600	120	< 0.16
1,3-Dichloropropane	ug/l			< 0.070
1,3-Dichloropropene, cis	ug/l	0.4	0.04	< 0.20
1,3-Dichloropropene, trans	ug/l	0.4	0.04	< 0.18
1,4-Dichlorobenzene	ug/l	75	15	< 0.17
2,2-Dichloropropane	ug/l			< 0.17
Acetone	ug/l	9000	1800	< 9.2
Allyl chloride	ug/l			< 0.29
Benzene	ug/l	5	0.5	< 0.10
Bromobenzene	ug/l			< 0.21
Bromochloromethane	ug/l			< 0.27
Bromodichloromethane	ug/l	0.6	0.06	< 0.22
Bromoform	ug/l	4.4	0.44	< 0.80

Table 3Groundwater Analytical Data SummaryHusky Energy Property- Future Substation SiteSuperior, WI

			Location	SB-3
			Date	6/22/2018
			Depth	14.5 - 19.5 ft
			Sample Type	N
		Wisconsin	Wisconsin	
		Groundwater Public	Groundwater	
		Health Enforcement	Preventive Action	
Parameter	Units	Standards	Limits	
Effective Date		07/01/2015	07/01/2015	
Exceedance Key		No Exceed	No Exceed	
Bromomethane	ug/l	10	1	< 1.8
Butylbenzene	ug/l			< 0.24
Butylbenzene, sec	ug/l			< 0.15
Butylbenzene, tert	ug/l			< 0.15
Carbon tetrachloride	ug/l	5	0.5	< 0.19
Chlorobenzene	ug/l	100	20	< 0.17
Chlorodibromomethane	ug/l	60	6	< 0.12
Chloroethane	ug/l	400	80	< 0.49
Chloroform	ug/l	6	0.6	< 0.45
Chloromethane	ug/l	30	3	< 0.16
Chlorotoluene, o	ug/l			< 0.16
Chlorotoluene, p	ug/l			< 0.13
Cumene (isopropyl benzene)	ug/l			< 0.18
Cymene p- (toluene isopropyl p-)	ug/l			< 0.15
Dibromomethane (methylene bromide)	ug/l			< 0.16
Dichlorodifluoromethane (Freon-12)	ug/l	1000	200	< 0.23
Dichlorofluoromethane (Freon-21)	ug/l	7000		< 0.14
Ethyl benzene	ug/l	700	140	< 0.14
Ethyl ether	ug/l	1000	100	< 0.095
Hexachlorobutadiene	ug/l			< 0.31
Methyl ethyl ketone (2-butanone)	ug/l	4000	800	< 0.99
Methyl isobutyl ketone (MIBK)	ug/l	500	50	< 0.42
Methyl tertiary butyl ether (MTBE)	ug/l	60	12	< 0.16
Methylene chloride	ug/l	5	0.5	< 0.98
Naphthalene	ug/l	100	10	< 0.48
Propylbenzene	ug/l			< 0.10
Styrene	ug/l	100	10	< 0.19
Tetrachloroethylene	ug/l	5	0.5	< 0.17
Tetrahydrofuran	ug/l	50	10	< 2.2
Toluene	ug/l	800	160	2.1
Trichloroethylene (TCE)	ug/l	5	0.5	< 0.15
Trichlorofluoromethane (Freon-11)	ug/l	3490	698	< 0.23
Trichlorotrifluoroethane (Freon 113)	ug/l			< 0.22
Vinyl chloride	ug/l	0.2	0.02	< 0.092
Xylene, total	ug/l	2000 (4)	400 (4)	< 0.31

Data Footnotes and Qualifiers

Barr Standard Footnotes and Qualifiers

	Not analyzed/Not available.
j	Estimated detected value. The reported value is less than the stated laboratory quantitation limit but greater than the laboratory method detection limit.
*	Estimated value, QA/QC criteria not met.
**	Non-detect VOC compounds reported on a wet weight basis per WIDNR requirements.

Wisconsin RCLs

CR3	Value represents the criteria for Chromium(III)
XYL	Value represents the criteria for Xylene, total (m-,o-,p- combined).

Wisconsin Groundwater Public Health Enforcement Standards

(4)	Xylene includes meta-, ortho-, and para-xylene combined.
С	Value represents the criteria for Trimethylbenzes (1,2,4- and 1,3,5- combined).

Wisconsin Preventive Action Limits

(4)	Xylene includes meta-, ortho-, and para-xylene combined.
С	Value represents the criteria for Trimethylbenzes (1,2,4- and 1,3,5- combined).

Figures

Barr Footer: ArcGIS 10.6, 2018-07-24 15:25 File: I:\Client\Husky_Energy\Duluth_Products_Terminal\Maps\PhaseII\Figure 1 Property Location Map.mxd User: EMA

Barr Footer: ArcGIS 10.6, 2018-07-20 11:01 File: I:\Client\Husky_Energy\Duluth_Products_Terminal\Maps\PhaseII\Figure 2 Boring Locations 20180622.mxd User: EMA

Attachments

Attachment A

Standard Operating Procedures

Collection of Groundwater Samples Collection of Soil Samples Decontamination of Sampling Equipment Field Screening of Soil Samples

Standard Operating Procedure

Collection of Groundwater Samples from a Temporary or Permanent Monitoring Well (Includes Well Purging and Stabilization)

Revision 1

April 5, 2016

Approved By:

Kim Johanness	en Ka	in Shan	neven	04/05/16
Print	Technical Reviewer	Signatur	e	Date
Terri Olson	ð	mi a.	allom	04/05/16
Print	QA Manager	Signature	e	Date
Review of the SC)P has been performed and	the SOP still	reflects current pra	ictice.
Initials:		Date:		_
Initials:		Date:		
Initials:		Date:		_
Initials:		Date:		

Minneapolis, MN • Hibbing, MN • Duluth, MN • Ann Arbor, MI • Jefferson City, MO • Bismarck, ND • Calgary, AB, Canada • Grand Rapids, MI • Salt Lake City, UT

Collection of Groundwater Samples from a Monitoring Well (Includes Well Purging and Stabilization)

1.0 Scope and Applicability

The purpose of this Standard Operating Procedure (SOP) is to describe the methods used for monitoring well purging, stabilization, and sampling (excluding residential/water supply systems). The SOP also provides details regarding the calculation of purge volumes and measurement of groundwater stabilization criteria and identifies the common container, preservative, and holding times for typical groundwater sample analyses.

The recommended procedures in this SOP should be followed unless conditions make it impractical or inappropriate to do so. Modifications should be noted in the applicable documentation and communicated to appropriate personnel. Significant changes may result in a revision or newly created SOP.

2.0 Limitations

- Sample collection methods can vary by project. If not specified in the project scope of work and/or documentation (e.g., Work Plan, Sampling Analysis Plan (SAP), or Quality Assurance Project Plan (QAPP)), consult with the appropriate regulatory agency for guidance.
- Collection of groundwater samples from residential/water supply systems are not discussed within this SOP.
- Dedicated sampling equipment and/or decontamination of sampling equipment is required to prevent cross-contamination.
- Low-flow sampling methods are not discussed within this SOP.
- Sample collection using 'clean hands/dirty hands' methods is not discussed within this SOP.

3.0 Responsibilities

Equipment Technicians are responsible to maintain equipment in working order and aid in troubleshooting equipment issues.

The role of the Project Health and Safety Team Leader is to oversee all aspects of on-site safety activities.

The Project Manager, in conjunction with the client, develops the site specific scope of work (e.g., Work Plan, SAP, etc.).

Experienced Field Technician(s) are responsible for the measurement of well pumping rates, calculation of well purge volume, field screening procedures, field equipment and calibration, proper sample identification, collection of samples, quality control procedures, and documentation.

Project staff are responsible for ordering sample containers prior to the sampling event.

4.0 Safety

Barr staff is responsible for conducting all aspects of the job safely. When applicable, refer to the appropriate Project Health and Safety Plan (PHASP) to understand the hazards associated with suspected

Pump (peristaltic or submersible), power source, and appropriate drive tubing Cord reel (optional)

- Graduated measuring container •
- Plastic bags
- Waterproof ink pen or pencil
- Clock or stopwatch
- Sample containers (method specific) .
- Sample labels
- Chain-of-custody (COC)

contamination, symptoms of exposure, methods to minimize exposure, personal protection equipment (PPE), and personal air monitoring required when using this SOP. Minimum protection of two pair of chemical resistant gloves (e.g., nitrile) and safety glasses with side shields should be worn to prevent sample contact with the skin and eyes. When sampling waters contaminated with corrosive materials, emergency eye flushing facilities should be available.

5.0 Equipment, Reagents, and Supplies

- Water quality meter (e.g., YSI, or equivalent)
- Polyethylene bailer and rope
- Sample tubing and fittings
- Turbidimeter (optional)
- Coolers
- Ice •
- Chemical resistant gloves (e.g., nitrile) •
- Custody seal, if applicable
- Calculator •
- Locks/keys

6.0 **Procedure**

This section describes the procedure(s) for calibrating field equipment, measuring pumping rates, calculating purge volumes, well purging, measuring well stabilization, and the sampling, handling, and delivery of groundwater samples. Best practices include setting up the purging, stabilization, and sampling equipment in an upwind direction from any potential source of contamination.

This SOP describes the groundwater collection from a bore hole, temporary well, or permanent monitoring well. Typically, a direct-push (Geoprobe[®] or equivalent) will be used to create the bore hole or temporary well by advancing the direct-push sampler to the desired sampling interval (sampling depth). When the sampling depth is reached, small diameter extension rods are inserted through the steel probe rods to hold the groundwater sampler screen in place while the rods and screen sheath are retracted, exposing the screen. The groundwater sampler screen can typically be exposed up to 41 inches, but can be exposed a shorter length depending on project requirements. Alternately, a small diameter PVC well screen and riser pipe may be installed in the bore hole for use as a temporary well. Polyethylene (or project specified) tubing is placed into the bore hole or temporary well, and a peristaltic pump (or equivalent) or project specified pump is used to draw water samples to the surface for collection. Well stabilization is not always necessary for temporary well s but if required by the project, see Section 6.2.6 of this SOP.

After each borehole or temporary well is constructed, the probe rods are decontaminated by the drilling contractor in accordance with project requirements. The polyethylene (or project specified) tubing is discarded after each sample is collected and new tubing is used for the collection of the next sample. The Printed Copy is Uncontrolled. Controlled copy is maintained on the internal Barr network. Print a new copy each time a hard copy is required

borehole and temporary well locations will be permanently sealed following applicable state and local regulations.

6.1 Calibration

The water quality meter and turbidimeter will be calibrated as per the applicable Barr SOP. The meters will undergo calibration checks, at a minimum, before and after sampling. The calibration check will be documented on a calibration form (as appropriate) and/or in the field notebook. Any significant issues found during the calibration check will be noted in the field notebook and the Equipment Technicians will be notified.

6.2 Purging/Well Stabilization/Sampling

Prior to sampling, purging of the monitoring well is performed to remove stagnant water from within the well and to stabilize the well to allow for representative groundwater sample collection. The term 'purge volume' refers to the amount of water removed from a well before groundwater sample collection occurs.

Purging well volumes and stabilizing to remove stagnant water from a temporary well may not be necessary due to the short time frame between well installation and sampling. Purging and well stabilization procedure for temporary wells may vary by project or by well. Recommended practice is to purge a temporary well until the water clears, if possible, prior to sampling; however, purging prior to sampling may not be possible at all if water is limited (as it might be in a perched water zone), or water recharge is slow (as it would be in a clayey or silty water bearing zone).

6.2.1 Purge Volume

The volume of standing water in the well is calculated to determine the purge volume that needs to be removed from the well. The water level must be measured in order to determine the volume (see applicable Barr SOP). Calculation of the purge volume is addressed in Section 6.3, Data Reduction/Calculation of this SOP and Table 1. If a well is pumped dry, this constitutes an adequate purge and the well can be sampled following recovery. Refer to project documentation for volumes required to be purged.

6.2.2 Bailer Purging

A bailer can be used for slowly recovering wells with minimal water volume and a depth to groundwater greater than 25 feet. A new disposable polyethylene bailer with a check valve can be attached to a cord reel or a downrigger and support assembly. Polyethylene bailers can be hauled using stainless steel wire or new nylon line (rope).

- Put on gloves for skin protection and to prevent sample contamination.
- Secure the bailer and lower slowly into the water column until the bailer is submerged. Avoid rapid movements of the bailer to minimize turbidity. A cord reel can be used to aid in the lowering of the bailer.
- Raise the bailer and empty the water collected from the bailer into a graduated measuring container.
- Sampling may begin once desired volume is purged and the well has stabilized (see Section 6.2.6, Well Stabilization of this SOP).

6.2.3 Peristaltic Pump Purging

A peristaltic pump is used when the water level is within suction lift (e.g., within about 25 feet of the ground surface but may be less at higher altitudes). It usually is a low-volume suction pump with low pumping rates suitable for sampling shallow, small-diameter wells.

- Put on gloves for skin protection and to prevent sample contamination.
- Lower tubing into the well water (1 to 2 feet below surface) and cut to the desired length.
- Connect the well tubing to the drive tubing entering the pump.
- Connect the drive tubing exiting the pump to the short section of tubing entering the flowthrough cell or graduated measuring container.
- Turn on pump and set the speed at the desired rate of flow.
- Sampling may begin once desired volume is purged and the well has stabilized (see Section 6.2.6, Well Stabilization of this SOP).

6.2.4 Submersible Pump Purging

A submersible pump is used when the water level is greater than the suction lift associated with a peristaltic pump. It is commonly used in conjunction with a control box to achieve the desired pumping rate (low to high). Variable rate submersible pumps are available to fit inside 2 inch or larger wells.

6.2.4.1 1.5-inch Submersible Pump

This is a type of submersible pump that can be used in 2-inch or larger diameter wells. It can purge water from depths down to 200 feet or greater, depending on pump model and manufacturer.

- Put on gloves for skin protection and to prevent sample contamination.
- Attach appropriate diameter tubing to pump intake, lower pump, and secure at desired depth.
- Cut off tubing, allowing additional tubing length for discharge.
- Plug the pump into the controller. Pump will begin pumping using the variable speed controller. There are a variety of speed controllers available, typically designed for a specific pump.
- Attach the controller to the power supply.
- Turn on the controller and dial the speed control to the desired flow rate. The controller can slow the purge rate down to the optimum rate.

Note: If the submersible pump is not running, turn off the pump and then disconnect from the power supply. Check connections and try again.

• Attach the flow-through cell for the water quality meter.

Note: If water is considerably turbid after initial pump start-up, the flow-through cell may be connected after purge water has cleared visually.

• Sampling may begin once desired volume is purged and the well has stabilized (see Section 6.2.6, Well Stabilization of this SOP).

6.2.4.2 3 or 4-inch Submersible Pump

This pump may be used to purge water samples from any depth.

• Put on gloves for skin protection and to prevent sample contamination.

- Attach purging hose to the pipe connected on the top of the submersible pump.
- Lower the submersible pump slowly into the well until it is completely submersed into the water and secure at desired depth.
- Connect the pump to the generator with an extension cord.
- Turn switch to start the generator, put choke on, pull recoil rope, and let generator idle until it is running smoothly
- Turn on power (which is located on the front of the generator).

Note: Submersible pump should be running; if not, turn off the generator and check connections.

- Adjust flow rate to desired rate with the valve and measure the flow rate with the graduated measuring container.
- Attach the flow-through cell for the water quality meter.

Note: If water is considerably turbid after initial pump start-up, the flow-through cell may be connected after purge water has cleared visually.

• Sampling may begin once desired volume is purged and the well has stabilized (see Section 6.2.6, Well Stabilization of this SOP).

6.2.5 Well Purging with In-place Plumbing

In-place plumbing consists of dedicated, submersible pumps that are permanently installed in a well.

- Put on gloves for skin protection and to prevent sample contamination.
- Turn switch to start the generator, put choke on, pull recoil rope, and let generator idle until it is running smooth.
- Connect the pump to the generator with an extension cord.
- Connect the pipe, elbow, and valve to the discharge pipe of the submersible pump (located at the top of the well) and turn on the generator.

Note: If the pump does not start, check the connection from the generator to the pump.

- When water flows from discharge of the pump, adjust the flow according to desired flow rate and measure the flow rate with the graduated measuring container.
- Attach the flow-through cell for the water quality meter.

Note: If water is considerably turbid after initial pump start-up, the flow-through cell may be connected after purge water has cleared visually.

• Sampling may begin once desired volume is purged and the well has stabilized (see Section 6.2.6, Well Stabilization of this SOP).

Note: Each dedicated pump has its own pipe, elbow, and valve. These pieces are left at each well.

6.2.6 Well Stabilization

Well stabilization is typically conducted to help verify that the groundwater sample is representative of aquifer conditions. A well is considered 'stabilized' after the well purge volume has been met and the groundwater (or well) stabilization parameter measurements are within acceptable limits for three consecutive readings. Well stabilization parameters may vary by project or regulatory agency but at a minimum typically include pH, temperature, and specific conductance (temperature corrected electrical conductivity). Dissolved oxygen (DO) and oxidation-reduction potential (ORP) may also be used as stabilization parameters.

The procedure to stabilize a well includes recording well stabilization parameter measurements collected with the water quality meter at the beginning of the well purging process and after subsequently purged well volumes. A well volume is measured as the volume of water present inside a well screen and/or casing (i.e., from the base of the well to the water level measurement) and is defined in the footnotes of Table 1. Groundwater aliquots used for stabilization parameter measurements are typically collected by either directing the purge water discharge line through a flow-through cell or by pouring groundwater from a bailer into a container holding the water quality meter probe (depending on the purging method used).

Documentation of the well stabilization process typically includes recording pertinent information such as the pump type, pumping rate, volume pumped, and well stabilization measurements on the field log data sheets or field notebook. If only the minimum parameters are used for stabilization, the DO and ORP should still be measured and recorded as they may be needed to interpret other chemical parameter results. Turbidity is measured with a standalone turbidimeter but is typically not used as a stabilization parameter. A qualitative determination of turbidity may also be noted (e.g. clear, cloudy, very cloudy, etc.).

The well may be sampled after three consecutive measurements (typically one well volume per measurement), collected at the intervals described above, are within specific project criteria or the criteria presented in Section 7.2, Measurement Criteria of this SOP.

If field parameters do not stabilize after five well volumes have been purged, then the field technician will verify that the probes and related equipment are functioning properly and that operator error is not an issue. They will also re-evaluate whether or not water is being withdrawn from the appropriate depth to effectively evacuate the well. If all the checks produce no new insight, a decision will need to be made by the project team on whether to collect samples for laboratory analysis. When samples are collected, it will be clearly documented that stabilization was not achieved; at a minimum, this fact will be reported on the field log data sheets and in the Field Sampling Report.

If the well was purged dry, it shall be allowed to recharge and the samples should then be collected. If there is insufficient sample volume for the analyses being sampled, the project team will need to decide if sampling should be carried out or if a reduced prioritized list of analyses should be collected.

6.2.7 Sampling

The project team will determine the order for sampling the wells but general guidelines are below:

- Where water quality data are available, the least contaminated wells would be sampled first, proceeding to increasingly contaminated wells.
- Where the distribution of contaminants is not known, wells considered to be up gradient from likely sources of contamination would be sampled first and downgradient wells closest to the suspected contamination would be last.
- Make certain to keep records of the order in which wells were sampled.

Similar to purging, sampling requires the use of pumps or bailers. It may be appropriate to use a different device to sample than that which was used to purge. The most common example of this is the use of a pump to purge and a bailer to sample. There are several factors to take into consideration when choosing

a sampling device. The experience of the project team will be used to determine which is appropriate and care should be taken when reviewing the advantages or disadvantages of any one device.

To prevent the possible loss of some volatile organic compounds (VOCs), samples for volatile parameters should be collected first with as little agitation and disturbance as possible, then proceed in order towards the least volatile parameter as listed in Barr's 'Water Sampling Guidelines' form. The 40 mL vials used to collect the VOC samples should be checked for air bubbles. Air bubbles may be caused by insufficient meniscus when sealing the vial, degassing after sample collection or during sample shipment, or reaction between the sample and preservative (HCl). If air bubbles > 6 mm (pea-sized) are observed during sampling, discard the vial and recollect the sample using a new vial. If air bubbles are believed to be due to the sample reacting with the preservative, the sample should be collected in an unpreserved vial if possible.

Put on new sampling gloves at each sampling site to reduce the risk of sample cross-contamination and exposure to skin. Never reuse old gloves.

Prepare sampling containers by filling out the label, using an indelible permanent pen, with the following information at a minimum:

- Sample ID
- Date and time of sample collection
- Preservative
- Sample analysis (if required by the lab)

When filling the containers, do not insert the tubing into the containers and do not overfill preserved containers. When all samples are containerized, place the filled sample containers in a sampling cooler with ice, turn off any equipment, disassemble the sampling apparatus, dispose of all one-time use (disposable) equipment, and decontaminate reusable equipment per Barr's SOP 'Decontamination of Sampling Equipment'.

6.2.7.1 Bailer Sampling

After the well has been purged and stabilized, secure the bailer and slowly lower into the top of the water column making certain not to stir up the water with the bailer, which could result in volatizing the samples. Keep the bailer in the top portion of the water column when collecting the sample.

When the bailer is filled, slowly raise the bailer out of the well. A clean tarp may be used to cover the ground to minimize the contact of the rope with the ground. Fill containers in the order listed in Barr's 'Water Sampling Guidelines' form.

6.2.7.2 Peristaltic / Submersible Pump Sampling

After the well has been purged and stabilized, disconnect the tubing exiting the pump from the flowthrough cell, if used and fill containers as listed in Barr's 'Water Sampling Guidelines' form.

6.2.7.3 Check Valve Sampling

Sampling temporary wells through tubing with a check valve may be conducted following a drilling subcontractor's procedure.

6.2.8 Preservation

Container volume, type, and preservative are important considerations in sample collection. Container volume must be adequate to meet laboratory requirements for quality control, split samples, or repeat analyses. The container type varies with the analysis required. Typically, the analytical laboratory will preserve the container before shipment. Preservation and shelf life vary; contact the laboratory to determine if an on-hand container is still useful. Barr's 'Water Sampling Guidelines' form lists the parameter, container type, container volume, and preservative for many of the most common parameters collected.

6.2.9 Handling

The samples will be bubble wrapped or bagged after collection, stored in a sample cooler, and packed on double bagged wet ice. Samples will be kept cold (≤ 6 °C, but not frozen), until receipt at the laboratory (where applicable).

Note: Samples may need to be stored indoors in winter to prevent freezing.

6.2.10 Shipment/Delivery

Once the cooler is packed to prevent breaking of bottles, the proper chain-of-custody (COC) documentation is signed and placed inside a plastic bag then added to the cooler.

All samples will be kept secured to prevent tampering. If sample coolers are left in a vehicle or field office for temporary storage, the area will be locked and secured.

Custody seals may be present, but at a minimum, the coolers must be taped shut to prevent the lid from opening during shipment.

The coolers must be delivered to the laboratory via hand or overnight delivery courier, if possible, in accordance with all Federal, State and Local transportation regulations and Barr's SOP 'Domestic Transport of Samples to the Laboratory'.

6.3 Data Reduction/Calculations

Table 1 provides the volume of water (per foot or meter of depth) based on the diameter of the casing or hole. The following are two examples of calculations used in Table 1:

Volume of Standing Water (V), cubic feet

 $V = (\pi)(r^2)(h)$

Where: π = 3.1416

r = Well radius (ft)

h = Total well depth (ft) – depth to static water (ft) = Water column height (ft)

Note: For the table calculations, 'h' is equal to one foot.

Well Volume (WV), gallons

WV = (V)(7.48)

Where: V = Volume of standing water, cubic feet

7.48 = Cubic foot to US Gallons conversion factor

Calculate the volume of water to be purged using the equation below:

6.4 Disposal

Waste generated by this process will be disposed of in accordance with Federal, State and Local regulations and Barr's SOP 'Investigative Derived Waste'. Where reasonably feasible, technological changes have been implemented to minimize the potential for environmental pollution.

7.0 Quality Control and Quality Assurance (QA/QC)

The QC activities described below allow the self-verification of the quality and consistency of the work.

7.1 QA/QC Samples

QA/QC samples are defined in Barr's SOP 'Collection of Quality Control Samples'. The sampling frequency should be performed at the frequency noted in the project scope of work and/or documentation (e.g., Work Plan, SAP, or QAPP).

7.2 Well Stabilization Criteria

Well stabilization criteria to be used if there are no project specific criteria:

- pH ± 0.1 standard units
- Temperature ± 0.5 °C
- Specific conductance ± 5%
- Optional Criteria:
 - ORP ± 10 mV
 - \circ Dissolved oxygen ± 10% (> 0.5 mg/L)

Note: Three consecutive readings \leq 0.5 mg/L can be considered stabilized.

o Turbidity ± 10% (> 5 Nephelometric Turbidity Units (NTU))
 Note: Three consecutive readings ≤ 5 NTU can be considered stabilized.

8.0 Records

The field technician will document the pumping flow rate, well volume, time purged, volume purged, water level, total well depth and stabilization test measurements on the field log data sheet and/or field notebook. They will also document the type and number of bottles on the chain-of-custody record, as appropriate. The analysis for each container and the laboratory used will be documented on the chain-of-custody record. Refer to Barr's SOP 'Documentation on a Chain-of-Custody (COC)' for further information.

Examples of common field documentation are available in Barr's "Compendium of Field Documentation". Field documentation specific to this SOP are listed below:

• Chain-of-custody (COC)

- Sample label
- Custody seal (if applicable)
- Water Level Data Sheet
- Field Log Data Sheet
- Field Log Cover Sheet
- Field Sampling Report
- Water Sampling Guidelines (includes sampling order, container, preservation, and holding time)

The field documents and COCs are provided to a Barr Data Management Administrator for storage on the internal Barr network.

Additional records information can be found in Barr's "Records Management System Manual".

Other Barr SOP subjects referenced within this SOP: water level measurement, water quality meter, turbidimeter, collection of QC samples, decontamination of sampling equipment, and documentation on a COC.

9.0 References

Environmental Protection Agency. Title 40 of the Code of Federal Regulations, Part 136.3.

Environmental Protection Agency, EPA/540/P-91/007. 1999. *Compendium of ERT Groundwater Sampling Procedures*.

Minnesota Pollution Control Agency, Water Quality Division. 2006. *Sampling Procedures for Groundwater Monitoring Wells*.

Table 1

Volume of Water in Casing or Hole

Diameter of Casing or Hole (In)	Gallons per Foot of Depth (WV)	Cubic Feet per Foot of Depth (V)	Liters per Meter of Depth	Cubic Meters per Meter of Depth
1	0.041	0.0055	0.509	0.509 x 10 ⁻³
11/2	0.092	0.0123	1.142	1.142 x 10 ⁻³
2	0.163	0.0218	2.024	2.024 x 10 ⁻³
21/2	0.255	0.0341	3.167	3.167 x 10 ⁻³
3	0.367	0.0491	4.558	4.558 x 10 ⁻³
31/2	0.500	0.0668	6.209	6.209 x 10 ⁻³
4	0.653	0.0873	8.110	8.110 x 10 ⁻³
41/2	0.826	0.1104	10.26	10.26 x 10 ⁻³
5	1.020	0.1364	12.67	12.67 x 10 ⁻³
51/2	1.234	0.1650	15.33	15.33 x 10 ⁻³
6	1.469	0.1963	18.24	18.24 x 10 ⁻³
7	2.000	0.2673	24.84	24.84 x 10 ⁻³
8	2.611	0.3491	32.43	32.43 x 10 ⁻³
9	3.305	0.4418	41.04	42.04 x 10 ⁻³
10	4.080	0.5454	50.67	50.67 x 10 ⁻³
11	4.937	0.6600	61.31	61.31 x 10 ⁻³
12	5.875	0.7854	72.96	72.96 x 10 ⁻³
14	8.000	1.069	99.35	99.35 x 10 ⁻³
16	10.44	1.396	129.65	129.65 x 10 ⁻³
18	13.22	1.767	164.18	164.18 x 10 ⁻³
20	16.32	2.182	202.68	202.68 x 10 ⁻³
22	19.75	2.640	245.28	245.28 x 10 ⁻³
24	23.50	3.142	291.85	291.85 x 10 ⁻³
26	27.58	3.687	342.52	342.52 x 10 ⁻³
28	32.00	4.276	397.41	397.41 x 10 ⁻³
30	36.72	4.909	456.02	456.02 x 10 ⁻³
32	41.78	5.585	518.87	518.87 x 10 ⁻³
34	47.16	6.305	585.68	585.68 x 10 ⁻³
36	52.88	7.069	656.72	656.72 x 10 ⁻³

1 gallon = 3.7854 liters

1 liter = 0.26417 gallons

1 meter = 3.281 feet

1 gallon water weighs 8.33 lbs. = 3.785 kilograms

1 liter water weighs 1 kilogram = 2.205 lbs.

1 gallon per foot of depth = 12.419 liters per foot of depth

1 gallon per meter of depth = 12.419×10^{-3} cubic meters per meter of depth

Standard Operating Procedure Collection of Soil Samples

Revision 8

February 23, 2016

Approved By:

Kevin McGilp	, h	Albrigs	02/23/16
Print	Technical Reviewer	Signature	Date
Terri Olson	ð	mi a. alson	02/23/16
Print	QA Manager	Signature	Date

Review of the SOP has been performed and the SOP still reflects current practice.				
Initials:	Date:			

Collection of Soil Samples

1.0 Scope and Applicability

The purpose of this Standard Operating Procedure (SOP) is to describe the collection of a representative soil sample using a variety of methods (including compositing of discrete samples) and equipment depending on the depth and type of sample required. This procedure applies to the collection of soil samples for volatiles (VOC), semivolatiles (SVOC), metals, and inorganics analyses. It also identifies the container, preservative, and weight required for each analysis type.

The recommended procedures in this SOP should be followed unless conditions make it impractical or inappropriate to do so. Modifications should be noted in the applicable documentation and communicated to appropriate personnel. Significant changes may result in a revision or newly created SOP.

2.0 Limitations

- Sample collection methods can vary by project. If not specified in the project scope of work and/or documentation (e.g., Work Plan, Sampling Analysis Plan (SAP), or Quality Assurance Project Plan (QAPP)), consult with the appropriate regulatory agency for guidance.
- Inadequate homogenization of the samples, where applicable, can result in non-representative samples and results.
- Decontamination of sampling equipment is required to prevent cross-contamination.
- Contact the local utilities hotline prior to digging to have utilities identified at sampling locations.

3.0 Responsibilities

Equipment Technicians are responsible to maintain equipment in working order and aid in troubleshooting equipment issues.

The role of the Project Health and Safety Team Leader is to oversee all aspects of on-site safety activities.

The Project Manager, in conjunction with the client, develops the site specific scope of work (e.g., Work Plan, SAP, etc.).

Experienced Field Technicians are responsible for the proper sample identification, collection of samples, field screening procedures, field equipment and calibration, quality control procedures, and documentation.

Project staff are responsible for ordering sample containers prior to the sampling event.

4.0 Safety

Barr staff is responsible for conducting all aspects of the job safely. When applicable, refer to the appropriate Project Health and Safety Plan (PHASP) to understand the hazards associated with suspected contamination, symptoms of exposure, methods to minimize exposure, personal protection equipment (PPE), and personal air monitoring required when using this SOP. Minimum protection of two pair of chemical resistant gloves (e.g., nitrile) and safety glasses with side shields should be worn to prevent

sample contact with the skin and eyes. When sampling soils contaminated with corrosive materials, emergency eye flushing facilities should be available.

Some of the sample containers may require the use of preservatives. Consult the applicable Safety Data Sheet to review hazards and appropriate PPE to minimize exposure.

5.0 Equipment, Reagents, and Supplies

- Sampling devices/tools
- Stainless steel mixing bowl and spoon
- Sample containers (method specific)
- Balance
- Coolers
- Plastic bags
- Non-phosphorus containing detergent (e.g., Liquinox[™])

- Chemical resistant gloves (e.g., nitrile)
- Paper towels/laboratory tissues
- Chain-of-custody (COC)
- Sample label
- Custody seal, if applicable
- Waterproof ink pen or pencil
- Ice

6.0 Procedure

This section describes the procedure(s) for the sampling, handling, and delivery of soil samples.

6.1 Calibration

No specific calibration procedures are required for the actual sampling equipment; however, the calibration of the balance should be verified prior to use. Refer to the applicable Barr SOP.

6.2 Sampling

General considerations to be taken into account when planning and conducting sampling operations are the required sample weight, sample holding times, sample handling, and special precautions for trace contaminant sampling.

To prevent sample cross-contamination, the soil sampling equipment is carefully cleaned before initially sampling and after working at each sampling point per Barr's SOP 'Decontamination of Sampling Equipment'. A new, clean outer pair of disposable gloves will be worn for each sample location and sample containers are placed in separate plastic bags after collecting, preserving and tagging. Sample collection activities will proceed progressively from the least contaminated area to the most contaminated area (when known).

Depending on the project work to be done, soil samples will be collected for analysis by either a drilling apparatus (equipped with a split spoon or core barrel sampler), hand excavation (hand auger, trowel, or shovel), or direct-push (Geoprobe[®]) technology

• If a drilling apparatus was used, retrieve the split spoon or core barrel sampler from the desired sampling interval and open. If a liner (sleeve) is present and will not be sampled in the field, wrap the ends of the liner with heavy-duty aluminum foil, taking care to not pierce the foil. Tape the foil to the brass liner with duct tape to seal. Cover the ends of the liner with plastic caps or duct tape to fully protect the foil and package for shipment to the laboratory. If a liner is being sampled in the field, open the liner to sample the soil.

- If hand excavating, dig with a trowel or shovel to the desired sampling interval and expose a fresh soil surface to sample. Collect a large sample on a shovel and bring it to the surface or collect the sample directly from the fresh soil surface. The hand excavation technique may be done from the bucket of a backhoe also.
- If direct-push (Geoprobe[®]) technology is used, soils are typically sampled following the subcontractor's soil sampling procedures. This method generally utilizes a direct-push soil boring rig, steel drive rods and a 2-inch outside diameter (O.D.) soil core sampler with a dedicated 1.75-inch inside diameter (I.D) removable acetate plastic sampler liner. The probe rods and sampling unit are driven to the desired sampling depth by the static weight of the carrier vehicle and hydraulic hammer percussion. Two, four, or five-foot sample cores are typically collected. The assembly is brought to the surface and the soil sample is exposed by cutting open the sampler liner.

In most investigations, the soil samples are field screened for moisture, odor, oil sheen, discoloration and the presence of organic soil vapors and classified in accordance with ASTM D-2488, Standard Practice for Description and Identification of Soils (Visual-Manual Procedure). Refer to Barr's SOP 'Screening Soil Samples'.

The form 'Soil Sampling Guidelines' lists the analyses (in order of collection) and describes the weight of sample, preservation, container, and holding time for the most common sampling media (information can vary depending on the laboratory used). The container size, type, preservative, and holding time are important considerations in sample collection. Sample and container size must be adequate to meet laboratory requirements for quality control, split samples, or repeat analyses. The container type varies with the analysis required. Typically, the analytical laboratory will preserve the container before shipment, where applicable. Preservation and shelf life vary; contact the laboratory to determine if an on-hand container is still useful.

Both discrete and composite samples can be used for environmental investigations. A discrete sample is a sample that originated from a specific area at a specific time. The sample may be transferred directly from the sampler or sampling location to the sample container.

A composite sample is a collection of multiple temporary or discrete samples of the same medium that are combined, thoroughly homogenized, and treated as a single sample. Composite samples are valuable in characterizing a large area or volume of soil.

NOTE: Samples collected for analysis of volatile organic compounds (VOC) should not be homogenized or composited, due to aeration of the sample during mixing which may result in loss of VOC.

6.2.1 Volatile Organic Compounds (VOC)

If VOC or similar analyses (e.g., GRO, TPH as Gasoline) are being analyzed, these samples should be collected as soon as possible after the soil is removed from the ground from a representative area of the most undisturbed soil possible. Please refer to Barr's SOP 'Screening Soil Samples'. It is important to note that there are different containers and sampling media available for collecting a soil sample for VOC. Typically, the VOC sample is collected at a 1:1 weight ratio with a preservative. A coring device, such as a Terra Core[®] or En Core[®] sampler, is the first choice for sampling. After VOC samples are collected, mix the remaining soil from the sampling locations/intervals prior to filling the rest of the sample containers.
Note: Analytical samples should not be collected from polyethylene bags sometimes used for field screening purposes.

6.2.1.1 Terra Core® Sampler

The Terra Core[®] Sampler is a single use device that is typically supplied with a 40 mL VOA vial containing preservative (e.g., methanol) and an unpreserved container for % moisture/% solids determination. To use the Terra Core[®], make certain the plunger is aligned with, and seated in, the handle. Push the Terra Core[®] into freshly exposed soil until the sample chamber is filled. Depending on the Terra Core[®] sampler size, a filled chamber will deliver approximately 5 or 10 g of soil. If a 1:1 ratio of soil to preservative is needed, verify the correct size sampler is being used.

Wipe the outside of the sampler, check that the soil plug is flush with the mouth of the sampler, and remove any excess soil. Rotate the plunger 90° until it is aligned with the slots in the body. Extrude the sample into the appropriate container by pushing the plunger down. To provide a good sealing surface, wipe the container lip and screw threads to remove soil and immediately screw on the lid. If preservative is present in the container, swirl to immerse the sample. Record the sample ID on the container and package for shipment to the laboratory.

6.2.1.2 En Core® Sampler

The disposable En Core[®] sampler is a single use device that is pushed into the soil using a reusable En Core[®] T-handle. Two, 5 g samplers are typically supplied with an unpreserved container for % moisture/% solids determination. Hold the En Core[®] coring body and push plunger down until the small O-ring rests against the tabs so the plunger moves freely.

Depress the locking lever on the T-handle. Place coring body plunger end first into the open end of the T-Handle, aligning the slots on the coring body with the locking pins in the T-Handle. Twist coring body clockwise to lock pins in slots. Make certain that the sampler is locked in place.

Turn T-handle with T-up and coring body down. This will position the plunger bottom flush with bottom of coring body. Using T-handle, push sampler into soil until coring body is completely full. When full the small O-ring will be centered in the T-handle viewing hole. Remove excess soil from the coring body exterior.

Cap the coring body while it is still on the T-handle by pushing and twisting the cap over the bottom until grooves on locking arms seat over ridge on coring body. Remove the coring body from the T-handle and lock plunger by rotating extended plunger rod fully counterclockwise until wings rest firmly against tabs.

Attach the accompanying label and package for shipment to the laboratory.

6.2.1.3 Other

If no coring device is available, an estimate of the amount of soil needed to provide the desired weight can be determined. Place an extra laboratory container, disposable weigh boat, paper towel, or laboratory tissue on a balance pan. Using a stainless steel spoon, add the desired weight (10 g or 25 g) of a representative soil sample on the balance. Once the amount has been established, discard the soil used in the estimation and collect the sample as per form 'Soil Sampling Guidelines'.

If allowed by applicable regulations for VOC sample collection, the VOC aliquot may be weighed directly into the sample container by placing the pre-weighed sample container on the balance, taring the balance, then adding the appropriate amount of soil to the container to reach the desired aliquot weight. This should be done quickly to reduce the possible loss of VOCs.

6.2.2 Compositing Discrete Samples

Discrete samples, to be used for compositing, are stored at \leq 6 °C until each individual sample is obtained. A minimum volume of soil obtained during discrete sampling will be dependent on the final analytical requirements for the composite sample; however, a minimum weight of eight ounces should be sufficient for analysis of semivolatiles (SVOC), PCBs, pesticides, and metals.

After discrete samples have been obtained, record the locations to be included in a final composited sample in the field documentation. Appropriate laboratory containers should be labeled with this final sample identifier and the date of collection.

Retrieve the samples selected for compositing from storage. One container from each discrete sample location should remain in storage in case individual sample confirmations are necessary. Empty the entire contents of each container into a stainless steel mixing bowl, removing any large debris or rocks, and mix thoroughly.

6.2.3 Diesel Range Organics (DRO) / SVOC / General Chemistry / Metals

Using either a composited sample or a homogenized, discrete sample, fill the remaining containers in the order listed on form 'Soil Sampling Guidelines'. Unless aliquot weights are listed, pack the soil into the sample jars leaving no headspace. If allowed by applicable regulations, the WIDRO sample may be weighed directly into the sample container by placing the pre-weighed sample container on the field balance, taring the field balance, then adding the appropriate amount of soil to the container to reach the desired sample weight (~25 g).

Wipe the container lip and screw threads to remove soil and provide a good sealing surface, and immediately screw on the lid.

6.2.4 Handling

After collection, all samples should be handled as few times as possible. Samplers should use extreme care to ensure that samples are not contaminated. Immediately after samples are collected, they are bubble wrap or bagged and placed in a cooler containing bagged ice. Samples will be kept cold (\leq 6 °C, but not frozen) until receipt at the laboratory, where they are to be stored in a refrigerated area.

Keep samples secure to prevent tampering. If sample coolers are left in a vehicle or field office for temporary storage, the area will be locked and secured.

6.2.5 Shipment/Delivery

Once the cooler is packed to prevent breaking of containers, the proper COC documentation is relinquished by the sampler, placed into a plastic bag, and included in the cooler. Custody seals may be used, and the coolers should be taped shut if not hand delivered.

The coolers must be delivered to the laboratory via hand or overnight delivery courier in accordance with all Federal, State and Local transportation regulations and Barr's SOP 'Domestic Transport of Samples to the Laboratory'.

Note: Samples may have to be stored indoors in winter to prevent freezing.

6.3 Data Reduction/Calculations

No data reduction or calculations are associated with this procedure.

6.4 Disposal

Waste generated by this process will be disposed of in accordance with Federal, State and Local regulations and Barr's SOP 'Investigative Derived Waste'. Where reasonably feasible, technological changes have been implemented to minimize the potential for environmental pollution.

7.0 Quality Control and Quality Assurance (QA/QC)

The QC activities described below allow the self-verification of the quality and consistency of the work.

7.1 QA/QC Samples

QA/QC samples are defined in Barr's SOP 'Collection of Quality Control Samples'. The sampling frequency should be performed as written in the project scope of work and/or documentation (e.g., Work Plan, SAP, or QAPP).

7.2 Measurement Criteria

No specific criteria apply to the implementation of this SOP.

8.0 Records

The field technician will document the soil sampling event in a project dedicated field logbook or on field log data sheets. The analysis for each container, the number of bottles, and the laboratory used will be documented on the chain-of-custody record. Refer to Barr's SOP 'Documentation on a Chain-of-Custody (COC)' for further information.

Examples of common field documentation are available in Barr's "Compendium of Field Documentation". Field documentation specific to this SOP are listed below:

- Field Sampling Report
- Field Log Data Sheet
- COC
- Sample label
- Custody seal (if applicable)
- Soil Sampling Guidelines (includes sampling order, container, preservation, and holding time)

Field documentation and COC are provided to a Barr Data Management Administrator for storage on the internal Barr network.

Additional records information can be found in Barr's "Records Management System Manual."

Other Barr SOP subjects referenced within this SOP: screening soil samples, balance calibration, collection of QC samples, decontamination of sampling equipment, investigative derived waste, domestic transport of samples, and documentation on a COC.

9.0 References

USEPA Environmental Response Team. 2000. SOP for Soil Sampling.

Standard Operating Procedure Decontamination of Sampling Equipment

Revision 1

March 15, 2018

Approved By:

John W. Jemtittes

John W. Juntilla

Print

Technical Reviewer Signature 03/15/18 Date

Terri Olson

Print QA Manager

Jerri A. allom Signature

03/15<u>/18</u> Date

Review of the SOP has been performed and the SOP still reflects current practice.									
Initials:	Date:								
Initials:	Date:								
Initials:	Date:								
Initials:	Date:								

Decontamination of Sampling Equipment

1.0 Scope and Applicability

The purpose of this Standard Operating Procedure (SOP) is to define the process used for decontaminating environmental sampling-related equipment including pumps, meters, and materials coming into contact with actual sampling equipment or with sampling personnel. This procedure is applicable to all personnel who are collecting samples and/or decontaminating sampling and field equipment.

The recommended procedures in this SOP should be followed unless conditions make it impractical or inappropriate to do so. Modifications should be noted in the applicable documentation and communicated to appropriate personnel. Significant changes may result in a revision or newly created SOP.

2.0 Limitations

• Equipment used once and discarded such as bailers, protective gear, and filtration devices are not part of this SOP.

3.0 Responsibilities

The equipment technician is responsible for ensuring field equipment has been thoroughly decontaminated and prepared for use out in the field. The field technician(s) are responsible for decontamination in the field at each individual sampling point and for ensuring adherence to any investigative derived waste (IDW) project-specific requirements set forth in a QAPP or SAP (if applicable).

The role of the Field Safety Representative is to oversee on-site safety activities.

4.0 Safety

Barr staff is responsible for implementing aspects of the job safely. Where available, refer to the appropriate Project Health and Safety Plan (PHASP) to determine the proper personal protection equipment (PPE) required when using this SOP. Barr staff is responsible for conducting all aspects of the job safely. When applicable, refer to the appropriate Project Health and Safety Plan (PHASP) to understand the hazards associated with suspected contamination, symptoms of exposure, methods to minimize exposure, personal protection equipment (PPE), and personal air monitoring required when using this SOP. Minimum protection of one pair of chemical resistant gloves (e.g., nitrile) and safety glasses with side shields should be worn to prevent sample contact with the skin and eyes. When sampling soils contaminated with corrosive materials, emergency eye flushing facilities should be available.

Some of the sample containers may require the use of preservatives. Consult the applicable Safety Data Sheet to review hazards and appropriate PPE to minimize exposure.

5.0 Equipment, Reagents, and Supplies

- Non-phosphorus detergent (e.g., Liquinox[™])
- Scrub brush made of inert materials
- Oven
- Bucket
- Tap water

- Analyte-free water (e.g., distilled or deionized (DI) water, or equivalent)
- Kimwipes[®], or equivalent
- Chemical resistant gloves (e.g., nitrile)
- Spray bottle
- Organic solvent (e.g. methanol)

6.0 Procedure

This section describes the procedure(s) for the decontamination of equipment used to sample water, soil, or air.

6.1 Calibration

Calibration is not applicable to this SOP.

6.2 Operation

Decontamination of sampling equipment will be performed before sampling and after working at each sampling point, if applicable.

6.2.1 Water Sampling Equipment

Equipment that does not contact sample water or the inside of the well should be rinsed with analyte-free water and inspected for remaining particles or surface film. If these are noted, repeat cleaning and rinse procedures.

Equipment that contacts sample water or the inside of the well should be cleaned (inside and outside where possible) with a non-phosphorus detergent solution applied with a spray bottle and/or scrub brush (if needed). Rinse with analyte-free water and containerize with other IDW if required by the SAP or QAPP and inspect for remaining particles or surface film. If these are noted, repeat cleaning and rinse procedures. Shake off remaining water and allow to air dry.

The internal surfaces of pumps and tubing that cannot be adequately cleaned by the above methods alone will also be cleaned by first circulating a non-phosphorus detergent solution through them followed by circulating analyte-free water. Special care will be exercised to ensure that the "rinse" fluids will be circulated in sufficient quantities to completely flush out contaminants and detergents.

When transporting or storing equipment after cleaning, the equipment will be stored in a manner that minimizes the potential for contamination.

6.2.2 Soil/Sediment Sampling Equipment

A variety of samplers (split-barrel, split-barrel with brass liners, piston sampler, backhoe, hand-auger, or shovel) may be used to retrieve soil from sampling locations. The soil sample will either be sealed within the sampler (e.g., collecting volatile samples) or the soil sample will be transferred to laboratory-supplied containers depending on the analysis to be conducted on the soil sample. The equipment required to transfer the soil from the sampler to the laboratory-supplied sample containers includes: stainless-steel

spoons or scoops and the appropriate personal protective equipment necessary for collection and handling of soil samples as described in the PHASP.

All soil sampling equipment, including split-barrels, stainless-steel spoons and scoops, will be carefully cleaned before and during sampling with a tap water and non-phosphorus detergent solution, using a brush if necessary to remove particulate matter and films. The equipment is then rinsed three times with tap water and/or three times with analyte-free water. Inspect equipment and repeat procedure if any residual soil or visible contaminants are present. Dry sampler with a Kimwipes[®]. Organic solvents (e.g., methanol) may be used to aid with desorbing organic material but should be kept to a minimum and must be collected and containerized if used.

At the completion of the work day, the samplers should be decontaminated following the procedure above and stored in a manner that minimizes the potential for contamination.

6.2.3 Air Sampling Equipment

For non-laboratory manifold equipment, methanol soak manifold components for a minimum of two hours. Remove from the methanol bath and place in an oven pre-heated to 90 °C and continue to heat manifold components for at least 3 hours or until interior and exterior surface inspections of the manifold components indicate that they are free of liquid methanol.

6.2.4 Handling

All equipment will be handled in a manner that minimizes cross-contamination between points. After cleaning, the equipment will be visibly inspected to detect any residues or other substances that may exist after normal cleaning. If inspection reveals that decontamination was insufficient, the decontamination procedures will be repeated.

6.3 Data Reduction/Calculations

No data reduction or calculations are associated with this procedure.

6.4 Disposal

IDW generated by this process will be disposed of in accordance with Federal, State and Local regulations and/or as required by project-specific SAP or Work Plan. Where reasonably feasible, technological changes have been implemented to minimize the potential for environmental pollution.

7.0 Quality Control and Quality Assurance (QA/QC)

The QC activities described below allow the self-verification of the quality and consistency of the work.

7.1 QA/QC Samples

Decontamination procedures may be monitored through the use of an equipment blank which consists of analyte-free water processed through non-disposable or non-dedicated aqueous or solid sampling equipment after equipment decontamination and before field sample collection. The equipment blank is analyzed for the same parameters as the samples at a project specific frequency (e.g., one per twenty samples).

7.2 Measurement Criteria

Equipment blank results should be below the laboratory's method detection limit or reporting limit (depending on the data quality objectives).

8.0 Records

When required, the field technician(s) will document the field equipment decontamination procedures in a project dedicated field logbook or on field log data sheets.

Examples of common field documentation are available in Barr's "Compendium of Field Documentation". Field documentation is listed in the applicable sample collection SOP.

Field documentation and COC are provided to a Barr Data Management Administrator for storage on the internal Barr network.

Additional records information can be found in Barr's "Records Management System Manual."

Other Barr SOP subjects referenced within this SOP: collection of samples and investigative derived waste.

9.0 References

ASTM. 2015. Standard Practice for Decontamination of Field Equipment Used at Waste Sites.

Standard Operating Procedure Field Screening Soil Samples

Revision 7

April 27, 2017

Approved By:

bhe tr. Jentites

John W. Juntilla Print T

Technical Reviewer Signature

QA Manager

04/27/17 Date

Terri A. Olson

Print

Berri A. allson Signature

04/27/17 Date

Review of the SOP has been performed and the SOP still reflects current practice.									
Initials:	Date:								
Initials:	Date:								
Initials:	Date:								
Initials:	Date:								

Field Screening of Soil Samples

1.0 Scope and Applicability

The purpose of this Standard Operating Procedure (SOP) is to describe the procedure for properly screening soil or sediment samples in the field. This procedure applies to all field technicians responsible for field screening soil or sediment samples.

The recommended procedures in this SOP should be followed unless conditions make it impractical or inappropriate to do so. Modifications should be noted in the applicable documentation and communicated to appropriate personnel. Significant changes may result in a revision or newly created SOP.

2.0 Limitations

- Screening techniques can vary by project. If not specified in the project scope of work and/or documentation (e.g., Work Plan, Sampling Analysis Plan (SAP), or Quality Assurance Project Plan (QAPP)), consult with the appropriate regulatory agency for guidance, if applicable.
- Interferences on the test can be caused by any contaminant that can cause an oil sheen on water. The samples will be carefully observed for characteristic appearance or odors which may indicate a possible contaminant other than coal tar or petroleum substances.
- Sunlight and low temperatures may interfere with headspace development.
- Water and soil particles may interfere with PID and FID measurements.
- Decontamination of screening equipment is required to prevent cross-contamination.
- Contact the local utilities hotline prior to digging to have utilities identified at sampling locations.

3.0 Responsibilities

Equipment Technicians are responsible to maintain equipment in working order and aid in troubleshooting equipment issues.

The role of the Project Health and Safety Team Leader is to oversee all aspects of on-site safety activities.

The Project Manager, in conjunction with the client, develops the site specific scope of work (e.g., Work Plan, SAP, etc.).

Experienced Field Technicians are responsible for the proper sample identification, field screening procedures, field equipment and calibration, quality control procedures, and documentation.

4.0 Safety

Barr staff is responsible for conducting all aspects of the job safely. When applicable, refer to the appropriate Project Health and Safety Plan (PHASP) to understand the hazards associated with suspected contamination, symptoms of exposure, methods to minimize exposure, personal protection equipment (PPE), and personal air monitoring required when using this SOP. Minimum protection of two pair of chemical resistant gloves (e.g., nitrile) and safety glasses with side shields should be worn to prevent sample contact with the skin and eyes. When screening soils contaminated with corrosive materials, emergency eye flushing facilities should be available.

Consult the applicable Safety Data Sheet to review hazards and appropriate PPE to minimize exposure.

5.0 Equipment, Reagents, and Supplies

- Photoionization detector (PID)
- Flame ionization detector (FID)
- Squirt bottle with tap water
- Waterproof ink pen or pencil

6.0 Procedure

The field screening techniques for soils are as follows: visual examination, odor, headspace organic vapor screening, and oil sheen. The results of these four screening procedures may be used to screen soil samples for possible contamination.

Chemical resistant gloves (e.g., nitrile)

Stainless steel spoon

Polyethylene bags

6.1 Calibration

The PID or FID shall be calibrated or checked against a known concentration of a calibration gas standard prior to collection of field measurements. Calibration of the PID or FID shall follow the recommended procedures as described in the manufacturer's operation manual or as per the applicable Barr SOP.

Regular calibration checks (bump tests) are expected to be performed by the field technician a minimum of once per day of use in the field. It is recommended that bump tests be conducted around mid-day and at the end of the day. More frequent bump testing may be completed if warranted by field conditions. The bump testing results should be recorded in the field log book or field log data sheets.

If problems occur during calibration, during bump tests, or if the unit will not stay calibrated, the field technician should document the issue in the field notes then contact the equipment technician or project manager for assistance.

6.2 Screening Techniques

The field screening techniques for soils are as follows: visual examination, odor, headspace organic vapor screening, and oil sheen. The results of these four screening procedures may be used to screen soil samples for possible contamination. To prevent sample cross-contamination, the screening equipment is carefully cleaned before and after working with each sample per Barr's SOP 'Decontamination of Sampling Equipment'.

6.2.1 Visual Examination

A visual examination of the soil sample will include noting any discoloration of the soil or visible oiliness or tar.

6.2.2 Odor

The field technician will note odor only if noticed incidentally while handling the soil sample. Field technicians will not unduly expose themselves to sample odors. Odor will be described as trace, light, moderate, or strong, and appropriate description of the type of odor, if evident.

6.2.3 Headspace Organic Vapor Screening

The polyethylene bag headspace method recommended by the Minnesota Pollution Control Agency will be used in the field to screen soils suspected to contain volatile organic compounds. The screening method is intended to be used in conjunction with other "real time" observations.

The following equipment is required to conduct headspace organic vapor screening: PID or FID, polyethylene bag, log book or record sheet, and appropriate PPE. Soil samples collected from a splitbarrel sampler or a direct-push (i.e., Geoprobe) sample liner will be collected immediately after opening the barrel or liner. If the sample is collected from an excavation wall, soil pile, or backhoe bucket, it will be collected from a freshly exposed surface.

- Half-fill the bag with the sample to be analyzed using a stainless-steel spoon or a gloved hand and immediately seal it. Agitate the bag for 15 seconds and manually break up any soil clumps within the bag.
- Allow headspace development for approximately 10 minutes. The sample should be kept in a shaded area out of direct sunlight. Ambient temperatures during headspace development should be recorded. When ambient temperatures are below 50°F, headspace development should be conducted inside a heated vehicle or building. After completing the headspace development, agitate the bag for an additional 15 seconds.
- Quickly puncture the bag with the sampling probe of the PID or FID at a point about one-half of the headspace depth. Exercise care to avoid uptake of water droplets or soil particles.
- Record the highest PID or FID meter response as the headspace concentration. The maximum response will likely occur between 0 to 5 seconds.
- When using a FID, it may be necessary to correct for methane. In this case, take a reading first with the carbon filter, then without. This will require two duplicate bag samples. The second reading less the first is the headspace adjusted for methane. Adjusted readings less than zero are considered zero. Methane correction is not necessary if a PID is used.

6.2.4 Oil Sheen Test

The oil sheen or hydrocarbon test is a method used to immediately determine the approximate magnitude of coal tar or petroleum contamination in soil by observation of the sample in the field. The test is useful in soils which do not have a high binding capacity with petroleum compounds or polycyclic aromatic hydrocarbons (PAHs) (i.e., petroleum compounds or PAHs are free on the surface of the soil particles and can be released by a stream of water).

The equipment required to conduct the oil sheen test includes: a stainless-steel spoon, a squirt bottle filled with tap water, a log book or field log data sheet, and the appropriate personal protective equipment necessary for collection and handling of soil samples as described in the Project Health and Safety Plan.

The procedure for conducting the oil sheen test consists of obtaining approximately 50 grams (about 30 cc) of representative soil with the spoon and then directing a stream of water onto the soil in the spoon with the squirt bottle until the soil is saturated and water begins to collect around the soil. The amount of oil sheen present on the water is determined by observation and the results of the test are reported as a magnitude of oil sheen observed: none, trace, light, moderate, heavy or rainbow. The test results, sample location, and observations of the sample's appearance and odor are recorded in the log book or field log data sheet.

The specific soil types at the area of investigation should be accounted for when performing the oil sheen test. The best results are obtained in silts, sands, and/or gravels with low organic content. The results obtained from clay soils may appear deceptively low. Typical descriptions of each test result are provided in the table below.

Oil Sheen Test Result	Description
None	No sheen detected.
Trace	Possible or faint oil sheen observed (may not continue to generate
	sheen as additional water is added).
Light	Obvious sheen that may not cover entire water surface
Moderate	Definite oil sheen that covers entire surface, but "rainbow colors"
	not distinguishable.
Heavy	Definite oil film or product that does not display rainbow colors.
Rainbow	Definite oil sheen, film or product that displays rainbow colors.

6.3 Data Reduction/Calculations

No data reduction or calculations are associated with this procedure.

6.4 Disposal

Waste generated by this process will be disposed of in accordance with Federal, State and Local regulations and Barr's SOP 'Investigative Derived Waste'. Where reasonably feasible, technological changes have been implemented to minimize the potential for environmental pollution.

7.0 Quality Control and Quality Assurance (QA/QC)

Field background readings are measured for the headspace organic vapor screening. PID and FID readings should be duplicated every 20 field samples.

8.0 Records

The field technician(s) will document the field screening activities and measurements in a project dedicated field logbook or on field log data sheets.

Examples of common field documentation are available in Barr's "Compendium of Field Documentation". Field documentation specific to this SOP are listed below:

- Field Sampling Report
- Field Log Data Sheet

Field documentation are provided to a Barr Data Management Administrator for storage on the internal Barr network.

Additional records information can be found in Barr's "Records Management System Manual."

Other Barr SOP subjects referenced within this SOP: PID and FID equipment, decontamination of sampling equipment, and investigative derived waste.

9.0 References

PID and FID operation manuals.

Attachment B

Representative Photographs

resourceful. naturally. engineering and environmental consultants

Photo 1: Setting up at SB-1.

Photo 2: Typical soil boring recovery. Pictured is recovery from SB-4, 0-5 feet bgs. Thin layer of organic topsoil visible on right (top) end of sample sleeve. Soil below is stiff glaciolacustrine lean clay.

resourceful. naturally. engineering and environmental consultants

Photo 3: Advancing sampler at SB-4.

Photo 4: Attempting to sample the temporary monitoring well at SB-1.

Attachment C

Soil Boring Logs

	E 3	Barr Engineering Company 325 South Lake Avenue, Su	ite 70	0		LO	g of Boring SB-1	J
BA		Duluth, MN 55802 Telephone: 218-529-8200					SHEET 1 OF 1	
Projec Projec Locat Coorc Datur	ct: ct No.: ion: dinates: n:	Husky/MNPower Phase II Superior, WI UTM 15T N:5170970.147 E:571189.0276m NAD 83	3.00 200 Surface Elevation: 6/21/2018 Drilling Method: Direct Push Sampling Method: Macro-Core Completion Depth: 20.0 ft					
Depth, feet	Sample Type & Recovery Sample No.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	WE	ELL OR PIEZOMETER CONSTRUCTION DETAIL	Elevation, teet
		PID: 0.3 D/O/S: N/ N/ N	-OL/		ORGANIC SOIL (OL): brown; moist; medium stiff; with 20% grass fibers and trace medium to coarse-grained angular sand and fine gravel. LEAN CLAY (CL): Red-brown; moist; medium stiff; medium to high plasticity; no dilatancy; glacialacustrine deposit; with trace medium to coarse-grained angular sand and fine gravel. SB-1_2-3 ft collected for VOCs, RCRA 8 metals and PAHs.			
- 5-		PID: 0.3 D/O/S:N/ N/ N						
		PID:0.8 D/O/S:N/ N/ N	CL				-Temporary Monitoring Well	
- 10-		PID:0.6 D/O/S:N/ N/ N						
		PID: 0.5 D/O/S: N/ N/ N			SB-1_12-13 ft collected for VOCs, RCRA 8 metals and PAHs.	-		
		PID:0.5 D/O/S:N/ N/ N			glacialacustrine deposit; with trace medium to coarse-grained angular sand and fine gravel.		· .∵ → -Screened 14.5-19.5 ft → bgs.	
		PID:0.4 D/O/S:N/ N/ N	СН		Very soft, 15-20 ft.		-Water at 16.7 ft bgs on 6/22/18, one day after installation. Likely surface water draining into boring.	
20-		PID: 0.2 D/O/S: N/ N/ N			End of boring 20.0 feet Target depth reached.		 approximately 250 mL and purged dry before sample could be collected. 	
Date I Date I Logge Drillin Drill F	Boring Star Boring Con ed By: g Contracto Rig:	ted: 6/21/18 2:00 p ppleted: 6/22/18 11:05 MAB pr: Twin Ports Te Geoprobe 782	om am sting 22DT		Remarks: Boring advanced in SE corner of property. Gr recently chipped brush, vegetated with marsh 2 inches of standing water. PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane C Additional data may have been collected in the field which is not included on this le	ound sur grass, a prrected; G/s	rface was hummocky, covered wi and submerged with approximate 'S/F = Gravel/Sand/Fines	th ly

	Barr Engineering Company	ite 70	0		LOG	OF BORING SB	8-2
BARR	Duluth, MN 55802 Telephone: 218-529-8200		0			SHEET 1 OF 1	
Project:	Husky/MNPower Phase II	4916	61423	3.00 200 Surface Elevation: 6/21/2018			
Project No.:	Superior, WI	1m		Drilling Method: Direct Push			
Coordinates:	E:571114.8391m NAD 83	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		Sampling Method: Macro-Core			
Datum:				Completion Depth: 20.0 ft	1		
Depth, feet Sample Type & Recovery	ออ ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	WELI	L OR PIEZOMETER ONSTRUCTION DETAIL	Elevation, feet
				ORGANIC SOIL WITH GRAVEL (OL): dark brown; moist; soft; with			
	PID: 0.1 D/O/S: N/ N/ N			LEAN CLAY (CL): brown; moist; stiff; medium to high plasticity; no dilatancy; glacialacustrine deposit; with trace angular medium to coarse-grained sand and fine gravel. SB-2_0-1 ft collected for VOCs, RCRA 8 metals and PAHs. Red-brown below 5 ft bgs.			
5	PID: 0.2 D/O/S: N/ N/ N						
	PID:0.2 D/O/S:N/ N/ N			With 1-2mm long planar gray mottles, 5-7 ft bgs. SB-2_6-7 ft collected for VOCs, RCRA 8 metals and PAHs.		–Temporary Monitoring Well	
- 10	PID:0.3 D/O/S:N/ N/ N	CL					
-	PID:0.4 D/O/S:N/ N/ N						
- 15	PID:0.4 D/O/S:N/ N/ N						
	PID:0.4 D/O/S:N/ N/ N					-Screened at 14-19' -Well was dry on 6/22/18, one day after installation.	
- 20	PID: 0.4 D/O/S: N/ N/ N			End of boring 20.0 feet			
				Target depth reached.			
Date Boring S Date Boring C Logged By:	tarted: 6/21/18 3:05 p ompleted: 6/22/18 11:10 MAB	om am		Remarks: Boring advanced in center of property. Groun	d surface w	as dry, flat, and grass-cove	ered.
Drilling Contra Drill Rig:	actor: Twin Ports Te Geoprobe 782	sting 22DT		Additional data may have been collected in the field which is not included on this lo	orrectea; G/S/F : og.	- Graver/Sana/Fines	

Distance Distance Distance Project Hisky/MAPPower Phase II 49181423.00 200 Surface Elevation: 057.3 ft Project Surface Direct Push Constraint Surface Elevation: 057.3 ft Direct Nutrix E571073 1286m NAD 83 Direct Nutrix Surface Elevation: 057.3 ft Direct Nutrix Surface Elevation: 05.5 ft Direct Nutrix Surface Elevation: 05.5 ft Direc			Ba 32	arr Engineering Company 25 South Lake Avenue, Su	ite 70	0		LOG	OF BORING SB	3-3
Project No: Husky/MNPower Phase II 49161423.00 200 Surface Elevation: 657.3 ft Dreider No: ES71073.1286m NAD 83 Dreining Method: Direct Plush Coordinate: ES71073.1286m NAD 83 Completion Depth: 20.0 ft Datum: Completion Depth: 20.0 ft Image: State Sta	BA	٩R	R Di	uluth, MN 55802 elephone: 218-529-8200		•			SHEET 1 OF 1	
Priget No: Superior WI Superior WI Superior WI Superior WI Stars Totale86 Or Push Coadimies: E:S71073.1286m NAD 83 Data:: Completion Depth: 20.0 ft Data::	Proje	ect:	ŀ	Husky/MNPower Phase II	4916	61423	.00 200 Surface Elevation: 657.3 ft			
Constituents: E-971073.1286m NAD-33 Sampletion Dept: 20.0 ft Datum: Completion Dept: 20.0 ft WELL OR PIEZOMETER Image: State of S	Proje	ect No.: tion:	ร เ	Superior, WI UTM 15T_N:5170886.079)m		Drilling Method: Direct Push			
Datum: Completion Depth: 20.0 ft Image: Section Depth: <td>Coord</td> <td>dinates</td> <td>: E</td> <td>E:571073.1286m NAD 83</td> <td>5</td> <td></td> <td>Sampling Method: Macro-Core</td> <td></td> <td></td> <td></td>	Coord	dinates	: E	E:571073.1286m NAD 83	5		Sampling Method: Macro-Core			
a a b b B B B B B B CONTRONMENTAL U B B B CONTROLOGIC DESCRIPTION WELL OR PIEZOMETER 0 D <t< td=""><td>Datur</td><td>m:</td><td></td><td></td><td></td><td></td><td>Completion Depth: 20.0 ft</td><td> </td><td></td><td></td></t<>	Datur	m:					Completion Depth: 20.0 ft			
0 OL CVC OPCANIC SOL (CU): tark trown: motis stift, methods believe. LEAK (LAY (CL): reak-trowned stift, methods believe. CLAK (CVC): reak-trowned stift and methods and PAHs. 0 DOGSN'N N 5 DOGSN'N N 5 DOGSN'N N 0 CL 0 DOGSN'N N 0 CL 0 DOGSN'N N 0 CL 0 DOGSN'N N 0 DOGSN'N N <td< td=""><td>Depth, feet</td><td>Sample Type & Recovery</td><td>Sample No.</td><td>ENVIRONMENTAL DATA</td><td>U S C S</td><td>Graphic Log</td><td>LITHOLOGIC DESCRIPTION</td><td>WELI</td><td>L OR PIEZOMETER ONSTRUCTION DETAIL</td><td>Elevation, feet</td></td<>	Depth, feet	Sample Type & Recovery	Sample No.	ENVIRONMENTAL DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	WELI	L OR PIEZOMETER ONSTRUCTION DETAIL	Elevation, feet
 DOSN N N N CL Vith trace faint 1mm-long brown-gray mottling, 5-10' bgs. SB-3_8-9 ft collected for VOCs, RCRA 8 metals and PAHs. DOSN N N CL DOSN N N Medium soft consistency from 9-13.5 ft bgs. Trace weathered fine gravel from 10-15 ft bgs. Soft consistency below 13.5 ft bgs. DOSN N N DOSN N N End of boring 20.0 feet Target deph reached. 	-0			PID: 0.1 D/O/S: N/ N/ N	~OL ⁄		 ORGANIC SOIL (OL): dark brown; moist; soft; with 20% grass fibers./ LEAN CLAY (CL): red-brown; moist; stiff; medium to high plasticity; no dilatancy; glacialacustrine deposit; with trace angular medium to coarse-grained sand and fine gravel. SB-3_0-2 ft collected for VOCs, RCRA 8 metals and PAHs. 			- 655-
PBD:0.1 DOGSN/N/N With trace faint 1mm-long brown-gray mottling, 5-10' bgs.	5 -	-		PID: 0.1 D/O/S: N/ N/ N						-
DOSN/IN/N CL SB-3_8-9 ft collected for VOCs, RCRA 8 metals and PAHs. 10 CL PD:0.2 DOSN/IN/N Medium soft consistency from 9-13.5 ft bgs. Trace weathered fine gravel from 10-15 ft bgs. Soft consistency below 13.5 ft bgs. PD:0.2 DOSN/IN/N PD:0.2 DOSN/IN/N PD:0.2 DOSN/IN/N PD:0.2 DOSN/IN/N PD:0.2 DOSN/IN/N PD:0.2 DOSN/IN/N End of boring 20.0 feet Target depth reached.	-	-		PID: 0.1 D/O/S: N/ N/ N			With trace faint 1mm-long brown-gray mottling, 5-10' bgs.		-Temporary Monitoring Well	650-
PID:0.2 DIOS:N/ N/ N PID:0.2 DIOS:N/ N/ N 15 	- - - - - - - - -			PID: 0.2 D/O/S: N/ N/ N	CL		SB-3_8-9 ft collected for VOCs, RCRA 8 metals and PAHs.		Ţ	
PID:0.2 DOUSIN/ N/ N 15 - PID:0.2 DOUSIN/ N/ N PID:0.2 DOUSIN/ N/ N PID:0.2 PID:0		-		PID: 0.2 D/O/S: N/ N/ N			Medium soft consistency from 9-13.5 ft bgs. Trace weathered fine gravel from 10-15 ft bgs.			- 645-
PID:0.2 D/O/S:N/ N/ N PID:0.2 D/O/S:N/ N/ N 20 - - - - - - - - - - - - - - - - - -	-	-		PID: 0.2 D/O/S: N/ N/ N			Soft consistency below 13.5 ft bgs.			-
PID:0.2 D/O/S:N/ N/ N 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20		-		PID:0.2 D/O/S:N/ N/ N					-Screened at 14.5-19.5' -Water at 9.5 ft bgs on 6/22/18, one day after	640-
	20-	-		PID: 0.2 D/O/S: N/ N/ N			End of boring 20.0 feet Target depth reached.		- SB-3_14.5-19.5 (groundwater) collected for VOCs and PAHs	-
Date Boring Started: 6/22/18 4:15 pm Remarks: Boring advanced in SW corner of property. Ground surface was soft, vegetated wearsh grass and submerged by approximately one inch of standing water. Date Boring Completed: 6/22/18 11:30 am MAB PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines Drilling Contractor: Twin Ports Testing Additional data may have been collected in the field which is not included on this log.	Date Date Logge	Boring Boring ed By: ng Cont	Starte Comp tractor	ed: 6/22/18 4:15 p bleted: 6/22/18 11:30 MAB r: Twin Ports Te	om am sting		Remarks: Boring advanced in SW corner of property. G marsh grass and submerged by approximatel PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Cr Additional data may have been collected in the field which is not included on this lo	round surfa y one inch prrected; G/S/F g.	ace was soft, vegetated with of standing water. = Gravel/Sand/Fines	

		Barr Engineering Company 325 South Lake Avenue, Su	iite 70	0	LOG OF BORING SE	3-4
B	٩RR	Duluth, MN 55802 Telephone: 218-529-8200			SHEET 1 OF	1
Proje Proje Loca Coor Datu	ect: ect No.: tion: dinates: m:	Husky/MNPower Phase I Superior, WI UTM 15T N:5170910.454 E:571048.3472m NAD 83	I 491 4m, 3	61423	.00 200 Surface Elevation: 657.4 ft Drilling Method: Direct Push Sampling Method: Macro-Core Completion Depth: 20.0 ft	
Depth, feet	Sample Type & Recovery	OZ environmental d DATA	U S C S	Graphic Log	LITHOLOGIC DESCRIPTION	Elevation, feet
		PID: 0.3 D/O/S: N/ N/ N	-OL		-ORGANIC SOIL (OL): dark brown; moist; soft; with 30% grass fibers. LEAN CLAY (CL): red-brown; moist; stiff; medium plasticity; no dilatancy; glacialacustrine deposit; with trace angular medium to coarse-grained sand and fine gravel. SB-4_0-2 ft collected for VOCs, RCRA 8 metals and PAHs.	655-
	-	PID: 0.2 D/O/S: N/ N/ N				-
		PID: 0.1 D/O/S:N/ N/ N			SB-4_6-7 ft collected for VOCs, RCRA 8 metals and PAHs.	650-
	-	PID: 0.0 D/O/S: N/ N/ N	CL		1/2-inch diameter very weathered basalt clast at 8.5 ft bgs.	-
ESTIGATION/BURIN	-	PID: 0.0 D/O/S:N/ N/ N				- 645-
	_	PID: 0.0 D/O/S: N/ N/ N				-
U ENV ASSISIMUR	-	PID :0.0 D/O/S:N/ N/ N				640-
	-	PID :0.0 D/O/S :N/ N/ N				-
					End of boring 20.0 feet Target depth reached.	
Date Date Logg Drillir Drill	Boring S Boring C ed By: ng Contra Rig:	tarted: 6/22/18 8:35 a completed: 6/22/18 9:00 a MAB actor: Twin Ports Te Geoprobe 782	am am esting 22DT		 Remarks: Boring advanced in NW corner of property. Ground surface was hummocky, cover with recently chipped brush, vegetated with marsh grass, and covered in approximation inches of standing water. PID = Headspace; D/O/S = Discoloration/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines Additional data may have been collected in the field which is not included on this log. 	ed ately 2

		Ba 32	rr Engineering Company 5 South Lake Avenue, Su	ite 70	0				LOG OF BORING S	B-5
E	BAR	R Te	iluth, MN 55802 lephone: 218-529-8200						SHEET 1 OF	1
Pro	oject:	ا	lusky/MNPower Phase I	I 491	61423	3.00	Surface Elevatio	n:	657.6 ft	
Pro	oject No	.: 2	200				Drilling Method:		Direct Push	
Lo	cation: ordinate		Superior, WI JTM 15T N:5170984.65m	n. E:5	7113	8.864m	Sampling Metho	d:	Macro-Core	
Da	itum:	1	NAD 83	.,			Completion Dep	th:	20.0 ft	
RR TEMPLATE.GDT	Sample Type & Recovery	Sample No.	ENVIRONMENTAL DATA	U S C S	Graphic Log		I	_ITŀ	IOLOGIC DESCRIPTION	Elevation, feet
DG BA) \square			SM		FILL; SILT	Y SAND WITH GRAVEL (SM ine gravel; apparent weather	1): b ed a	lack; moist; 70% shiny black angular fine to coarse-grained sphalt pavement with topsoil.	<u>г</u> -
GLB ENVIRO LO			PID: 1.2 D/O/S: Black/ N/ N			<u>6B-5_0-1 fi</u> LEAN CLA trace medit	t collected for VOCs, RCRA Y (CL): red-brown; moist; sti um to coarse-grained angula	8 m ff; n ir sa	etals and PAHs. nedium plasticity, no dilatancy; glacialacustrine deposit; with and and fine gravel.	655-
BARRLIBRARY.(-		PID :N/A D/O/S: N/ N/ N			Insufficent	recovery for headspace read	ling.		
/ER LIM PH II.GPJ	5		PID: 0.4 D/O/S: N/ N/ N							
S/HUSKY MNPOW			PID: 0.5 D/O/S: N/ N/ N			SB-5_8-9 fi	t collected for VOCs, RCRA	8 m	etals and PAHs.	650-
N/BORING LOG	0			CL		With trace	1-2mm-long, planar gray mo	ttle	s from 5-15 ft bgs.	
INVESTIGATIO	_									645-
FILES/PHASE I	5		PID: 0.3 D/O/S: N/ N/ N							
VV ASSIS/WORK	_		PID: 0.3 D/O/S: N/ N/ N							
REFINING CO EI	_		PID: 0.3 D/O/S: N/ N/ N							640-
423 SUPERIOR	0					End of bori Target dep	ng 20.0 feet th reached.			
49 WI\16\49161	te Boring	g Starte g Comp	ed: 6/22/18 9:30 a eleted: 6/22/18 9:55 a	i am am	1	<u> </u>	Remarks: Boring advance with grass and	ced d gr	in NE corner of property. Ground surface was dry, level, and cov avel.	ered
NBLS/ Dri	illing Cor Ill Rig:	ntractor	Twin Ports Te Geoprobe 782	sting 22DT			PID = Headspace; D/O/S = Discolo Additional data may have been colle	ration ected	/Odor/Sheen; FID/MC = FID/Methane Corrected; G/S/F = Gravel/Sand/Fines in the field which is not included on this log.	

Attachment D

Soil and Groundwater Laboratory Analytical Reports

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

July 03, 2018

Jim Taraldsen Barr Engineering Company 325 S Lake Ave Duluth, MN 55802

RE: Project: 49161423.00 Husky Phase II Pace Project No.: 10436863

Dear Jim Taraldsen:

Enclosed are the analytical results for sample(s) received by the laboratory on June 22, 2018. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

amanda J albeedit

Amanda Albrecht amanda.albrecht@pacelabs.com (612)607-6382 Project Manager

Enclosures

cc: BarrDM, Barr Engineering

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

Minnesota Certification IDs

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414-2485 A2LA Certification #: 2926.01 Alabama Certification #: 40770 Alaska Contaminated Sites Certification #: 17-009 Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014 Arkansas Certification #: 88-0680 California Certification #: 2929 CNMI Saipan Certification #:MP0003 Colorado Certification #: MN00064 Connecticut Certification #: PH-0256 EPA Region 8+Wyoming DW Certification #: via MN 027-053-137 Florida Certification #: E87605 Georgia Certification #: 959 Guam EPA Certification #: MN00064 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky DW Certification #: 90062 Kentucky WW Certification #: 90062 Louisiana DEQ Certification #: 03086 Louisiana DW Certification #: MN00064 Maine Certification #: MN00064 Maryland Certification #: 322 Massachusetts Certification #: M-MN064

Green Bay Certification IDs

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 North Dakota Certification #: R-150 Michigan Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: MN00064 Montana Certification #: CERT0092 Nebraska Certification #: NE-OS-18-06 Nevada Certification #: MN00064 New Hampshire Certification #: 2081 New Jersey Certification #: MN002 New York Certification #: 11647 North Carolina DW Certification #: 27700 North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon NwTPH Certification #: MN300001 Oregon Secondary Certification #: MN200001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification #: MN00064 South Carolina Certification #:74003001 Tennessee Certification #: TN02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia Certification #: 460163 Washington Certification #: C486 West Virginia DW Certification #: 9952 C West Virginia DEP Certification #: 382 Wisconsin Certification #: 999407970

Virginia VELAP ID: 460263 South Carolina Certification #: 83006001 Texas Certification #: 1104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

Pace Analytical Services, LLC 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

SAMPLE SUMMARY

 Project:
 49161423.00 Husky Phase II

 Pace Project No.:
 10436863

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10436863001		Solid	06/21/18 14:05	06/22/18 20:00
10436863002	SB-1_12-13	Solid	06/21/18 14:30	06/22/18 20:00
10436863003	SB-2_0-1	Solid	06/21/18 15:15	06/22/18 20:00
10436863004	SB-2_6-7	Solid	06/21/18 15:30	06/22/18 20:00
10436863005	SB-3_0-2	Solid	06/21/18 16:20	06/22/18 20:00
10436863006	SB-3_8-9	Solid	06/21/18 16:35	06/22/18 20:00
10436863007	SB-4_0-2	Solid	06/22/18 08:40	06/22/18 20:00
10436863008	SB-4_6-7	Solid	06/22/18 08:55	06/22/18 20:00
10436863009	SB-5_0-1	Solid	06/22/18 09:35	06/22/18 20:00
10436863010	SB-5_8-9	Solid	06/22/18 09:50	06/22/18 20:00
10436863011	SB-3_14.5-19.5	Water	06/22/18 11:20	06/22/18 20:00
10436863012	Trip Blank	Water	06/21/18 00:00	06/22/18 20:00
10436863013	MeOH Trip Blank	Solid	06/21/18 00:00	06/22/18 20:00

SAMPLE ANALYTE COUNT

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
10436863001	SB-1_2-3	EPA 6010D	DM	7	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260	SMT	39	PASI-G
10436863002	SB-1_12-13	EPA 6010D	DM	7	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260	SMT	39	PASI-G
10436863003	SB-2_0-1	EPA 6010D	DM	7	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260	SMT	39	PASI-G
10436863004	SB-2_6-7	EPA 6010D	DM	7	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260	SMT	39	PASI-G
10436863005	SB-3_0-2	EPA 6010D	DM	7	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260	SMT	39	PASI-G
10436863006	SB-3_8-9	EPA 6010D	DM	7	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260	SMT	39	PASI-G
10436863007	SB-4_0-2	EPA 6010D	DM	7	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260	SMT	39	PASI-G
10436863008	SB-4_6-7	EPA 6010D	DM	7	PASI-M
		EPA 7471B	IMW	1	PASI-M

SAMPLE ANALYTE COUNT

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260	SMT	39	PASI-G
10436863009	SB-5_0-1	EPA 6010D	DM	7	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260	SMT	39	PASI-G
10436863010	SB-5_8-9	EPA 6010D	DM	7	PASI-M
		EPA 7471B	LMW	1	PASI-M
		ASTM D2974	JDL	1	PASI-M
		EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260	SMT	39	PASI-G
10436863011	SB-3_14.5-19.5	EPA 8270D by SIM	STB	18	PASI-M
		EPA 8260B	DS2	70	PASI-M
10436863012	Trip Blank	EPA 8260B	DS2	70	PASI-M
10436863013	MeOH Trip Blank	EPA 8260	SMT	39	PASI-G

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-1_2-3
 Lab ID:
 10436863001
 Collected:
 06/21/18
 14:05
 Received:
 06/22/18
 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EP	A 6010D Prep	aration Met	hod: E	PA 3050			
Arsenic	3.1	mg/kg	1.6	0.48	1	06/26/18 04:58	06/27/18 06:54	7440-38-2	M1
Barium	245	ma/ka	4.2	1.3	5	06/26/18 04:58	06/27/18 15:29	7440-39-3	M1
Cadmium	< 0.075	ma/ka	0.25	0.075	1	06/26/18 04:58	06/27/18 06:54	7440-43-9	
Chromium	49.6	ma/ka	5.1	1.5	5	06/26/18 04:58	06/27/18 15:29	7440-47-3	
Lead	10.5	ma/ka	5.3	1.6	5	06/26/18 04:58	06/27/18 15:29	7439-92-1	
Selenium	0.56.1	ma/ka	1.9	0.56	1	06/26/18 04:58	06/27/18 06:54	7782-49-2	M1
Silver	<0.11	mg/kg	0.38	0.11	1	06/26/18 04:58	06/27/18 06:54	7440-22-4	M1
7471B Mercury	Analytical	Method: EP/	A7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	0.023J	mg/kg	0.033	0.0098	1	06/25/18 07:21	06/28/18 17:46	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: AS	TM D2974						
Percent Moisture	27.6	%	0.10	0.10	1		06/27/18 16:25		
8270D MSSV PAH by SIM	Analytical	Method: EP/	A 8270D by SI	M Prepara	tion Me	ethod: EPA 3550			
Acenaphthene	<0.56	ug/kg	1.9	0.56	1	06/25/18 06:31	06/26/18 18:00	83-32-9	
Acenaphthylene	<0.68	ug/kg	2.3	0.68	1	06/25/18 06:31	06/26/18 18:00	208-96-8	
Anthracene	<0.65	ug/kg	2.2	0.65	1	06/25/18 06:31	06/26/18 18:00	120-12-7	
Benzo(a)anthracene	<1.5	ug/kg	5.0	1.5	1	06/25/18 06:31	06/26/18 18:00	56-55-3	
Benzo(a)pyrene	<0.95	ug/kg	3.2	0.95	1	06/25/18 06:31	06/26/18 18:00	50-32-8	
Benzo(b)fluoranthene	1.1J	ua/ka	1.7	0.52	1	06/25/18 06:31	06/26/18 18:00	205-99-2	
Benzo(a.h.i)pervlene	<0.87	ua/ka	2.9	0.87	1	06/25/18 06:31	06/26/18 18:00	191-24-2	
Benzo(k)fluoranthene	<1.2	ua/ka	3.9	1.2	1	06/25/18 06:31	06/26/18 18:00	207-08-9	
Chrysene	<1.9	ua/ka	6.3	1.9	1	06/25/18 06:31	06/26/18 18:00	218-01-9	
Dibenz(a,h)anthracene	<0.64	ua/ka	2.1	0.64	1	06/25/18 06:31	06/26/18 18:00	53-70-3	
Fluoranthene	1.8J	ua/ka	2.0	0.59	1	06/25/18 06:31	06/26/18 18:00	206-44-0	
Fluorene	<0.43	ug/kg	14	0.43	1	06/25/18 06:31	06/26/18 18:00	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.93	ug/kg	3.1	0.93	1	06/25/18 06:31	06/26/18 18:00	193-39-5	
Naphthalene	<1.1	ug/kg	3.5	11	1	06/25/18 06:31	06/26/18 18:00	91-20-3	
Phenanthrene	<27	ug/kg	8.8	27	1	06/25/18 06:31	06/26/18 18:00	85-01-8	
Pyrene	~2.1	ug/kg	7.0	2.7	1	06/25/18 06:31	06/26/18 18:00	129-00-0	
Surrogates	S2.1	ug/kg	7.0	2.1		00/20/10 00.01	00/20/10 10:00	120 00 0	
2-Fluorobiphenyl (S)	58	%.	42-125		1	06/25/18 06:31	06/26/18 18:00	321-60-8	
p-Terphenyl-d14 (S)	75	%.	57-125		1	06/25/18 06:31	06/26/18 18:00	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepai	ration Meth	od: EP	A 5035/5030B			
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	71-55-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	79-34-5	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	79-00-5	W
1,1-Dichloroethane	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	75-34-3	W
1,1-Dichloroethene	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	75-35-4	W
1.2-Dichloroethane	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	107-06-2	W
1.2-Dichloropropane	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	78-87-5	W
2-Butanone (MEK)	<107	ug/ka	250	107	1	06/28/18 11:30	06/28/18 18:02	78-93-3	W
2-Hexanone	<52.0	ug/ka	250	52.0	1	06/28/18 11:30	06/28/18 18:02	591-78-6	W
		- 3 3							

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-1_2-3
 Lab ID:
 10436863001
 Collected:
 06/21/18 14:05
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepar	ation Metho	od: EP	A 5035/5030B			
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 18:02	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 18:02	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 18:02	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 18:02	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 18:02	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 18:02	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:02	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	107	%	57-148		1	06/28/18 11:30	06/28/18 18:02	1868-53-7	
Toluene-d8 (S)	95	%	58-142		1	06/28/18 11:30	06/28/18 18:02	2037-26-5	
4-Bromofluorobenzene (S)	81	%	48-130		1	06/28/18 11:30	06/28/18 18:02	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-1_12-13
 Lab ID:
 10436863002
 Collected:
 06/21/18
 14:30
 Received:
 06/22/18
 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	thod: E	PA 3050					
Arsenic	3.8	mg/kg	1.8	0.53	1	06/26/18 04:58	06/27/18 07:02	7440-38-2			
Barium	193	mg/kg	0.92	0.28	1	06/26/18 04:58	06/27/18 07:02	7440-39-3			
Cadmium	<0.082	mg/kg	0.27	0.082	1	06/26/18 04:58	06/27/18 07:02	7440-43-9			
Chromium	42.9	ma/ka	1.1	0.34	1	06/26/18 04:58	06/27/18 07:02	7440-47-3			
Lead	9.5	ma/ka	1.2	0.35	1	06/26/18 04:58	06/27/18 07:02	7439-92-1			
Selenium	<0.61	ma/ka	2.0	0.61	1	06/26/18 04:58	06/27/18 07:02	7782-49-2			
Silver	<0.12	mg/kg	0.41	0.12	1	06/26/18 04:58	06/27/18 07:02	7440-22-4			
7471B Mercury	Analytical	Analytical Method: EPA 7471B Preparation Method: EPA 7471B									
Mercury	0.026J	mg/kg	0.039	0.012	1	06/25/18 07:21	06/28/18 17:52	7439-97-6			
Dry Weight / %M by ASTM D2974	Analytical	Analytical Method: ASTM D2974									
Percent Moisture	35.3	%	0.10	0.10	1		06/27/18 16:26				
8270D MSSV PAH by SIM	Analytical	Method: EP/	A 8270D by SI	M Prepara	tion Me	ethod: EPA 3550					
Acenaphthene	<0.63	ug/kg	2.1	0.63	1	06/25/18 06:31	06/26/18 18:23	83-32-9			
Acenaphthylene	<0.76	ug/kg	2.5	0.76	1	06/25/18 06:31	06/26/18 18:23	208-96-8			
Anthracene	<0.72	ug/kg	2.4	0.72	1	06/25/18 06:31	06/26/18 18:23	120-12-7			
Benzo(a)anthracene	<1.7	ug/kg	5.5	1.7	1	06/25/18 06:31	06/26/18 18:23	56-55-3			
Benzo(a)pyrene	<1.1	ug/kg	3.5	1.1	1	06/25/18 06:31	06/26/18 18:23	50-32-8			
Benzo(b)fluoranthene	<0.57	ug/kg	1.9	0.57	1	06/25/18 06:31	06/26/18 18:23	205-99-2			
Benzo(g,h,i)perylene	<0.97	ug/kg	3.2	0.97	1	06/25/18 06:31	06/26/18 18:23	191-24-2			
Benzo(k)fluoranthene	<1.3	ug/kg	4.3	1.3	1	06/25/18 06:31	06/26/18 18:23	207-08-9			
Chrysene	<2.1	ug/kg	7.0	2.1	1	06/25/18 06:31	06/26/18 18:23	218-01-9			
Dibenz(a,h)anthracene	<0.71	ug/kg	2.4	0.71	1	06/25/18 06:31	06/26/18 18:23	53-70-3			
Fluoranthene	<0.66	ug/kg	2.2	0.66	1	06/25/18 06:31	06/26/18 18:23	206-44-0			
Fluorene	<0.48	ua/ka	1.6	0.48	1	06/25/18 06:31	06/26/18 18:23	86-73-7			
Indeno(1.2.3-cd)pyrene	<1.0	ua/ka	3.4	1.0	1	06/25/18 06:31	06/26/18 18:23	193-39-5			
Naphthalene	<1.2	ua/ka	4.0	1.2	1	06/25/18 06:31	06/26/18 18:23	91-20-3			
Phenanthrene	<3.0	ua/ka	9.8	3.0	1	06/25/18 06:31	06/26/18 18:23	85-01-8			
Pyrene	<2.4	ua/ka	7.8	2.4	1	06/25/18 06:31	06/26/18 18:23	129-00-0			
Surrogates		-9.19									
2-Fluorobiphenyl (S)	60	%.	42-125		1	06/25/18 06:31	06/26/18 18:23	321-60-8			
p-Terphenyl-d14 (S)	78	%.	57-125		1	06/25/18 06:31	06/26/18 18:23	1718-51-0			
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B					
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	71-55-6	W		
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	79-34-5	W		
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	79-00-5	W		
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	75-34-3	W		
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	75-35-4	W		
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	107-06-2	W		
1,2-Dichloropropane	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	78-87-5	W		
2-Butanone (MEK)	<107	ug/ka	250	107	1	06/28/18 11:30	06/28/18 18:25	78-93-3	W		
2-Hexanone	<52.0	ug/kg	250	52.0	1	06/28/18 11:30	06/28/18 18:25	591-78-6	W		

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-1_12-13
 Lab ID:
 10436863002
 Collected:
 06/21/18
 14:30
 Received:
 06/22/18
 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 18:25	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 18:25	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 18:25	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 18:25	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 18:25	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 18:25	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:25	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	110	%	57-148		1	06/28/18 11:30	06/28/18 18:25	1868-53-7	
Toluene-d8 (S)	94	%	58-142		1	06/28/18 11:30	06/28/18 18:25	2037-26-5	
4-Bromofluorobenzene (S)	80	%	48-130		1	06/28/18 11:30	06/28/18 18:25	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-2_0-1
 Lab ID:
 10436863003
 Collected:
 06/21/18 15:15
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual		
6010D MET ICP	Analytical	Method: EP	A 6010D Prep	aration Met	hod: E	PA 3050					
Arsenic	3.0	ma/ka	1.4	0.42	1	06/26/18 04:58	06/27/18 07:04	7440-38-2			
Barium	145	mg/kg	0.73	0.22	1	06/26/18 04:58	06/27/18 07:04	7440-39-3			
Cadmium	<0.065	ma/ka	0.22	0.065	1	06/26/18 04:58	06/27/18 07:04	7440-43-9			
Chromium	37.0	ma/ka	0.89	0.27	1	06/26/18 04:58	06/27/18 07:04	7440-47-3			
Lead	7.6	ma/ka	0.93	0.28	1	06/26/18 04:58	06/27/18 07:04	7439-92-1			
Selenium	<0.49	mg/kg	1.6	0.49	1	06/26/18 04:58	06/27/18 07:04	7782-49-2			
Silver	<0.098	mg/kg	0.33	0.098	1	06/26/18 04:58	06/27/18 07:04	7440-22-4			
7471B Mercury	Analytical	Method: EP	A 7471B Prepa	aration Met	hod: E	PA 7471B					
Mercury	0.022J	mg/kg	0.028	0.0084	1	06/25/18 07:21	06/28/18 17:54	7439-97-6			
Dry Weight / %M by ASTM D2974	Analytical	Analytical Method: ASTM D2974									
Percent Moisture	20.3	%	0.10	0.10	1		06/27/18 16:26				
8270D MSSV PAH by SIM	Analytical	Method: EP	A 8270D by SII	M Prepara	tion Me	ethod: EPA 3550					
Acenaphthene	<0.51	ug/kg	1.7	0.51	1	06/25/18 06:31	06/26/18 18:46	83-32-9			
Acenaphthylene	<0.62	ug/kg	2.1	0.62	1	06/25/18 06:31	06/26/18 18:46	208-96-8			
Anthracene	<0.59	ug/kg	2.0	0.59	1	06/25/18 06:31	06/26/18 18:46	120-12-7			
Benzo(a)anthracene	<1.4	ug/kg	4.5	1.4	1	06/25/18 06:31	06/26/18 18:46	56-55-3			
Benzo(a)pyrene	<0.86	ug/kg	2.9	0.86	1	06/25/18 06:31	06/26/18 18:46	50-32-8			
Benzo(b)fluoranthene	<0.47	ug/kg	1.6	0.47	1	06/25/18 06:31	06/26/18 18:46	205-99-2			
Benzo(a.h.i)pervlene	<0.79	ua/ka	2.6	0.79	1	06/25/18 06:31	06/26/18 18:46	191-24-2			
Benzo(k)fluoranthene	<1.1	ug/kg	3.5	1.1	1	06/25/18 06:31	06/26/18 18:46	207-08-9			
Chrysene	<1.7	ua/ka	5.7	1.7	1	06/25/18 06:31	06/26/18 18:46	218-01-9			
Dibenz(a,h)anthracene	<0.58	ua/ka	1.9	0.58	1	06/25/18 06:31	06/26/18 18:46	53-70-3			
Fluoranthene	<0.54	ua/ka	1.8	0.54	1	06/25/18 06:31	06/26/18 18:46	206-44-0			
Fluorene	< 0.39	ug/kg	1.3	0.39	1	06/25/18 06:31	06/26/18 18:46	86-73-7			
Indeno(1,2,3-cd)pyrene	< 0.84	ua/ka	2.8	0.84	1	06/25/18 06:31	06/26/18 18:46	193-39-5			
Naphthalene	<0.97	ug/kg	3.2	0.97	1	06/25/18 06:31	06/26/18 18:46	91-20-3			
Phenanthrene	<24	ug/kg	8.0	2.07	1	06/25/18 06:31	06/26/18 18:46	85-01-8			
Pyrene	<1.4	ug/kg	6.4	1 0	1	06/25/18 06:31	06/26/18 18:46	129-00-0			
Surrogates	<1.5	ug/kg	0.4	1.5		00/20/10 00:01	00/20/10 10.40	125 00 0			
2-Fluorobiphenyl (S)	60	%	42-125		1	06/25/18 06:31	06/26/18 18:46	321-60-8			
p-Terphenyl-d14 (S)	74	%.	57-125		1	06/25/18 06:31	06/26/18 18:46	1718-51-0			
8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepar	ration Meth	od: EP	A 5035/5030B					
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	71-55-6	W		
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	79-34-5	W		
1,1,2-Trichloroethane	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	79-00-5	W		
1.1-Dichloroethane	<25.0	ua/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	75-34-3	W		
1.1-Dichloroethene	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	75-35-4	W		
1.2-Dichloroethane	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	107-06-2	W		
1 2-Dichloropropane	<25.0	ua/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	78-87-5	W		
2-Butanone (MEK)	~107	ug/kg	250	107	1	06/28/18 11:30	06/28/18 18:47	78-93-3	W		
2-Hexanone	<52.0	ug/kg	250	52 0	1	06/28/18 11:30	06/28/18 18:47	591-78-6	W		
		~9/~9	200	02.0		00/20/10 11.00	00,20,10,10,41		••		

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-2_0-1
 Lab ID:
 10436863003
 Collected:
 06/21/18 15:15
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepar	ration Meth	od: EP	A 5035/5030B			
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 18:47	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 18:47	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 18:47	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 18:47	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 18:47	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 18:47	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 18:47	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	117	%	57-148		1	06/28/18 11:30	06/28/18 18:47	1868-53-7	
Toluene-d8 (S)	102	%	58-142		1	06/28/18 11:30	06/28/18 18:47	2037-26-5	
4-Bromofluorobenzene (S)	87	%	48-130		1	06/28/18 11:30	06/28/18 18:47	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-2_6-7
 Lab ID:
 10436863004
 Collected:
 06/21/18 15:30
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual			
6010D MET ICP	Analytical	Method: EP/	A 6010D Prep	aration Met	hod: E	PA 3050						
Arsenic	3.3	mg/kg	1.5	0.45	1	06/26/18 04:58	06/27/18 07:06	7440-38-2				
Barium	150	ma/ka	0.79	0.24	1	06/26/18 04:58	06/27/18 07:06	7440-39-3				
Cadmium	<0.070	ma/ka	0.23	0.070	1	06/26/18 04:58	06/27/18 07:06	7440-43-9				
Chromium	39.5	ma/ka	0.96	0.29	1	06/26/18 04:58	06/27/18 07:06	7440-47-3				
Lead	8 1	mg/kg	1.0	0.20	1	06/26/18 04:58	06/27/18 07:06	7439-92-1				
Selenium	<0.52	mg/kg	1.0	0.00	1	06/26/18 04:58	06/27/18 07:06	7782-49-2				
Silver	<0.11	mg/kg	0.35	0.11	1	06/26/18 04:58	06/27/18 07:06	7440-22-4				
7471B Mercury	Analytical	Analytical Method: EPA 7471B Preparation Method: EPA 7471B										
Mercury	0.020J	mg/kg	0.032	0.0097	1	06/25/18 07:21	06/28/18 17:56	7439-97-6				
Dry Weight / %M by ASTM D2974	Analytical	Analytical Method: ASTM D2974										
Percent Moisture	24.5	%	0.10	0.10	1		06/27/18 16:26					
8270D MSSV PAH by SIM	Analytical	Method: EPA	A 8270D by SI	M Preparat	tion Me	ethod: EPA 3550						
Acenaphthene	<0.54	ug/kg	1.8	0.54	1	06/25/18 06:31	06/26/18 19:10	83-32-9				
Acenaphthylene	<0.66	ug/kg	2.2	0.66	1	06/25/18 06:31	06/26/18 19:10	208-96-8				
Anthracene	<0.62	ug/kg	2.1	0.62	1	06/25/18 06:31	06/26/18 19:10	120-12-7				
Benzo(a)anthracene	<1.4	ug/kg	4.8	1.4	1	06/25/18 06:31	06/26/18 19:10	56-55-3				
Benzo(a)pvrene	<0.91	ua/ka	3.0	0.91	1	06/25/18 06:31	06/26/18 19:10	50-32-8				
Benzo(b)fluoranthene	<0.49	ua/ka	1.6	0.49	1	06/25/18 06:31	06/26/18 19:10	205-99-2				
Benzo(a.h.i)pervlene	<0.84	ua/ka	2.8	0.84	1	06/25/18 06:31	06/26/18 19:10	191-24-2				
Benzo(k)fluoranthene	<1.1	ua/ka	3.7	1.1	1	06/25/18 06:31	06/26/18 19:10	207-08-9				
Chrysene	<1.8	ua/ka	6.0	1.8	1	06/25/18 06:31	06/26/18 19:10	218-01-9				
Dibenz(a b)anthracene	<0.61	ug/kg	2.0	0.61	1	06/25/18 06:31	06/26/18 19:10	53-70-3				
Fluoranthene	<0.01	ug/kg	1.0	0.57	1	06/25/18 06:31	06/26/18 19:10	206-44-0				
Elucropo	<0.07	ug/kg	1.5	0.07	1	06/25/18 06:31	06/26/18 10:10	200 44 0				
Indone(1.2.3.cd)pyropo	<0.41	ug/kg	1.4	0.41	1	06/25/18 06:31	06/26/18 19:10	102 20 5				
Nanhthalana	<0.09	ug/kg	3.0	0.09	1	06/25/10 00.31	06/26/18 19:10	193-39-3				
Dhananthran	<1.0	ug/kg	3.4	1.0	1	00/23/10 00.31	00/20/10 19.10	91-20-3				
Phenanthrene	<2.5	ug/kg	8.5	2.5	1	06/25/18 06:31	06/26/18 19:10	85-01-8				
Pyrene Surregates	<2.0	ug/kg	6.7	2.0	1	06/25/18 06:31	06/26/18 19:10	129-00-0				
2 Elucrobiohonyl (S)	55	0/	10 105		1	06/25/19 06:21	06/26/19 10:10	221 60 9				
2-Fluorobiphenyl (3)	55	/0.	42-125		1	06/25/10 00.31	06/26/18 19:10	1719 51 0				
p-reiphenyi-ur4 (5)	75 Analytical	70.	07-120	ention Math	ו מלו דח	00/23/10 00.31	00/20/10 19.10	1710-51-0				
8260 MSV Med Level Normal List	Analytical					A 5035/5030B	00/00/40 47 40	74 55 0	14/			
1,1,1-Irichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	71-55-6	VV			
1,1,2,2- letrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	79-34-5	VV			
1,1,2-I richloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	/9-00-5	VV			
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	75-34-3	W			
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	75-35-4	W			
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	107-06-2	W			
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	78-87-5	W			
2-Butanone (MEK)	<107	ug/kg	250	107	1	06/28/18 11:30	06/28/18 17:40	78-93-3	W			
2-Hexanone	<52.0	ug/kg	250	52.0	1	06/28/18 11:30	06/28/18 17:40	591-78-6	W			

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-2_6-7
 Lab ID:
 10436863004
 Collected:
 06/21/18 15:30
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepar	ation Metho	od: EP	A 5035/5030B			
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 17:40	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 17:40	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 17:40	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 17:40	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 17:40	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 17:40	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:40	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	109	%	57-148		1	06/28/18 11:30	06/28/18 17:40	1868-53-7	
Toluene-d8 (S)	105	%	58-142		1	06/28/18 11:30	06/28/18 17:40	2037-26-5	
4-Bromofluorobenzene (S)	89	%	48-130		1	06/28/18 11:30	06/28/18 17:40	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-3_0-2
 Lab ID:
 10436863005
 Collected:
 06/21/18
 16:20
 Received:
 06/22/18
 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A6010D Prep	aration Met	hod: E	PA 3050			
Arsenic	3.5	mg/kg	1.5	0.44	1	06/26/18 04:58	06/27/18 07:10	7440-38-2	
Barium	174	ma/ka	0.77	0.23	1	06/26/18 04:58	06/27/18 07:10	7440-39-3	
Cadmium	<0.069	ma/ka	0.23	0.069	1	06/26/18 04:58	06/27/18 07:10	7440-43-9	
Chromium	41.7	ma/ka	0.94	0.28	1	06/26/18 04:58	06/27/18 07:10	7440-47-3	
Lead	9.0	mg/kg	0.99	0.20	1	06/26/18 04:58	06/27/18 07:10	7439-92-1	
Selenium	<0.51	mg/kg	1 7	0.00	1	06/26/18 04:58	06/27/18 07:10	7782-49-2	
Silver	<0.10	mg/kg	0.35	0.10	1	06/26/18 04:58	06/27/18 07:10	7440-22-4	
7471B Mercury	Analytical	Method: EPA	A 7471B Prepa	aration Met	hod: E	PA 7471B			
Mercury	0.026J	mg/kg	0.031	0.0094	1	06/25/18 07:21	06/28/18 18:03	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: AS	FM D2974						
Percent Moisture	24.5	%	0.10	0.10	1		06/27/18 16:26		
8270D MSSV PAH by SIM	Analytical	Method: EPA	A 8270D by SII	M Preparat	tion Me	ethod: EPA 3550			
Acenaphthene	<0.54	ug/kg	1.8	0.54	1	06/25/18 06:31	06/26/18 19:33	83-32-9	
Acenaphthylene	<0.65	ug/kg	2.2	0.65	1	06/25/18 06:31	06/26/18 19:33	208-96-8	
Anthracene	<0.62	ug/kg	2.1	0.62	1	06/25/18 06:31	06/26/18 19:33	120-12-7	
Benzo(a)anthracene	<1.4	ug/kg	4.7	1.4	1	06/25/18 06:31	06/26/18 19:33	56-55-3	
Benzo(a)pyrene	<0.91	ug/kg	3.0	0.91	1	06/25/18 06:31	06/26/18 19:33	50-32-8	
Benzo(b)fluoranthene	<0.49	ug/kg	1.6	0.49	1	06/25/18 06:31	06/26/18 19:33	205-99-2	
Benzo(a.h.i)pervlene	<0.83	ua/ka	2.8	0.83	1	06/25/18 06:31	06/26/18 19:33	191-24-2	
Benzo(k)fluoranthene	<1.1	ua/ka	3.7	1.1	1	06/25/18 06:31	06/26/18 19:33	207-08-9	
Chrvsene	<1.8	ua/ka	6.0	1.8	1	06/25/18 06:31	06/26/18 19:33	218-01-9	
Dibenz(a,h)anthracene	<0.61	ua/ka	2.0	0.61	1	06/25/18 06:31	06/26/18 19:33	53-70-3	
Eluoranthene	<0.56	ua/ka	19	0.56	1	06/25/18 06:31	06/26/18 19:33	206-44-0	
Fluorene	<0.41	ug/kg	1.0	0.00	1	06/25/18 06:31	06/26/18 19:33	86-73-7	
Indeno(1 2 3-cd)pyrene	<0.88	ug/kg	2.9	0.88	1	06/25/18 06:31	06/26/18 19:33	193-39-5	
Nanhthalene	<10	ug/kg	3.4	1.0	1	06/25/18 06:31	06/26/18 19:33	91-20-3	
Phenanthrene	~2.5	ug/kg	8.4	2.5	1	06/25/18 06:31	06/26/18 10:33	85-01-8	
Pyrepe	<2.0	ug/kg	6.7	2.0	1	06/25/18 06:31	06/26/18 10:33	129-00-0	
Surrogates	~2.0	ug/kg	0.7	2.0		00/20/10 00:01	00/20/10 15:55	125 00 0	
2-Fluorobiphenyl (S)	79	%.	42-125		1	06/25/18 06:31	06/26/18 19:33	321-60-8	
p-Terphenyl-d14 (S)	77	%.	57-125		1	06/25/18 06:31	06/26/18 19:33	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepar	ration Methe	od: EP	A 5035/5030B			
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	71-55-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	79-34-5	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	79-00-5	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	75-34-3	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	75-35-4	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	107-06-2	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	78-87-5	W
2-Butanone (MEK)	<107	ug/kg	250	107	1	06/28/18 11:30	06/28/18 19:10	78-93-3	W
2-Hexanone	<52.0	ug/kg	250	52.0	1	06/28/18 11:30	06/28/18 19:10	591-78-6	W

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-3_0-2
 Lab ID:
 10436863005
 Collected:
 06/21/18 16:20
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepar	ation Meth	od: EP	A 5035/5030B			
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 19:10	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 19:10	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 19:10	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 19:10	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 19:10	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 19:10	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:10	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	109	%	57-148		1	06/28/18 11:30	06/28/18 19:10	1868-53-7	
Toluene-d8 (S)	99	%	58-142		1	06/28/18 11:30	06/28/18 19:10	2037-26-5	
4-Bromofluorobenzene (S)	83	%	48-130		1	06/28/18 11:30	06/28/18 19:10	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-3_8-9
 Lab ID:
 10436863006
 Collected:
 06/21/18
 16:35
 Received:
 06/22/18
 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EP/	A 6010D Prep	aration Met	thod: E	EPA 3050			
Arsenic	2.8	mg/kg	1.7	0.50	1	06/26/18 04:58	06/27/18 07:12	7440-38-2	
Barium	176	ma/ka	0.87	0.26	1	06/26/18 04:58	06/27/18 07:12	7440-39-3	
Cadmium	0.11J	ma/ka	0.26	0.077	1	06/26/18 04:58	06/27/18 07:12	7440-43-9	
Chromium	42.6	ma/ka	1.1	0.32	1	06/26/18 04:58	06/27/18 07:12	7440-47-3	
Lead	7.8	ma/ka	1.1	0.33	1	06/26/18 04:58	06/27/18 07:12	7439-92-1	
Selenium	<0.58	ma/ka	1.9	0.58	1	06/26/18 04:58	06/27/18 07:12	7782-49-2	
Silver	<0.12	mg/kg	0.39	0.12	1	06/26/18 04:58	06/27/18 07:12	7440-22-4	
7471B Mercury	Analytical	Method: EP	A 7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	0.021J	mg/kg	0.037	0.011	1	06/25/18 07:21	06/28/18 18:05	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: AS	TM D2974						
Percent Moisture	31.6	%	0.10	0.10	1		06/27/18 16:27		
8270D MSSV PAH by SIM	Analytical	Method: EP	A 8270D by SI	M Prepara	tion M	ethod: EPA 3550			
Acenaphthene	<0.60	ug/kg	2.0	0.60	1	06/25/18 06:31	06/26/18 19:57	83-32-9	
Acenaphthylene	<0.72	ug/kg	2.4	0.72	1	06/25/18 06:31	06/26/18 19:57	208-96-8	
Anthracene	<0.68	ug/kg	2.3	0.68	1	06/25/18 06:31	06/26/18 19:57	120-12-7	
Benzo(a)anthracene	<1.6	ug/kg	5.3	1.6	1	06/25/18 06:31	06/26/18 19:57	56-55-3	
Benzo(a)pyrene	1.2J	ug/kg	3.3	1.0	1	06/25/18 06:31	06/26/18 19:57	50-32-8	
Benzo(b)fluoranthene	2.2	ug/kg	1.8	0.55	1	06/25/18 06:31	06/26/18 19:57	205-99-2	
Benzo(a.h.i)pervlene	2.3J	ua/ka	3.1	0.93	1	06/25/18 06:31	06/26/18 19:57	191-24-2	
Benzo(k)fluoranthene	2.2J	ua/ka	4.1	1.2	1	06/25/18 06:31	06/26/18 19:57	207-08-9	
Chrysene	<2.0	ua/ka	6.6	2.0	1	06/25/18 06:31	06/26/18 19:57	218-01-9	
Dibenz(a,h)anthracene	2.2J	ua/ka	2.2	0.67	1	06/25/18 06:31	06/26/18 19:57	53-70-3	
Fluoranthene	1.9.1	ua/ka	21	0.63	1	06/25/18 06:31	06/26/18 19:57	206-44-0	
Fluorene	<0.46	ug/kg	1.5	0.00	1	06/25/18 06:31	06/26/18 19:57	86-73-7	
Indeno(1,2,3-cd)pyrene	2.2.1	ug/kg	3.3	0.98	1	06/25/18 06:31	06/26/18 19:57	193-39-5	
Nanhthalene	<11	ug/kg	3.8	1 1	1	06/25/18 06:31	06/26/18 19:57	91-20-3	
Phenanthrene	~2.8	ug/kg	9.9	2.8	1	06/25/18 06:31	06/26/18 19:57	85-01-8	
Dyrene	<2.0	ug/kg	5.5 7.4	2.0	1	06/25/18 06:31	06/26/18 10:57	120-00-0	
Surrogates	\ <i>L</i> . <i>L</i>	ug/kg	7.4	2.2		00/20/10 00.01	00/20/10 10:07	125 00 0	
2-Fluorobiphenvl (S)	60	%.	42-125		1	06/25/18 06:31	06/26/18 19:57	321-60-8	
p-Terphenyl-d14 (S)	77	%.	57-125		1	06/25/18 06:31	06/26/18 19:57	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepa	ration Meth	od: EP	PA 5035/5030B			
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	71-55-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	79-34-5	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	79-00-5	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	75-34-3	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	75-35-4	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	107-06-2	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	78-87-5	W
2-Butanone (MEK)	<107	ug/kg	250	107	1	06/28/18 11:30	06/28/18 19:32	78-93-3	W
2-Hexanone	<52.0	ug/kg	250	52.0	1	06/28/18 11:30	06/28/18 19:32	591-78-6	W

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-3_8-9
 Lab ID:
 10436863006
 Collected:
 06/21/18 16:35
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 19:32	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 19:32	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 19:32	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 19:32	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 19:32	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 19:32	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:32	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	103	%	57-148		1	06/28/18 11:30	06/28/18 19:32	1868-53-7	
Toluene-d8 (S)	98	%	58-142		1	06/28/18 11:30	06/28/18 19:32	2037-26-5	
4-Bromofluorobenzene (S)	82	%	48-130		1	06/28/18 11:30	06/28/18 19:32	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-4_0-2
 Lab ID:
 10436863007
 Collected:
 06/22/18 08:40
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: SB-4_0-2
 Image:

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050										
Arsenic	3.0	mg/kg	1.5	0.46	1	06/26/18 04:58	06/27/18 07:14	7440-38-2			
Barium	191	mg/kg	0.79	0.24	1	06/26/18 04:58	06/27/18 07:14	7440-39-3			
Cadmium	<0.071	ma/ka	0.24	0.071	1	06/26/18 04:58	06/27/18 07:14	7440-43-9			
Chromium	48.6	ma/ka	0.97	0.29	1	06/26/18 04:58	06/27/18 07:14	7440-47-3			
Lead	9.1	ma/ka	1.0	0.30	1	06/26/18 04:58	06/27/18 07:14	7439-92-1			
Selenium	<0.53	ma/ka	1.8	0.53	1	06/26/18 04:58	06/27/18 07:14	7782-49-2			
Silver	<0.11	mg/kg	0.36	0.11	1	06/26/18 04:58	06/27/18 07:14	7440-22-4			
7471B Mercury	Analytical	Method: EP	A 7471B Prep	aration Met	hod: E	PA 7471B					
Mercury	0.023J	mg/kg	0.032	0.0097	1	06/25/18 07:21	06/28/18 18:07	7439-97-6			
Dry Weight / %M by ASTM D2974	Analytical	Method: AS	TM D2974								
Percent Moisture	26.7	%	0.10	0.10	1		06/27/18 16:27				
8270D MSSV PAH by SIM	Analytical	Method: EP/	A 8270D by SI	M Prepara	tion Me	ethod: EPA 3550					
Acenaphthene	<0.56	ug/kg	1.9	0.56	1	06/25/18 06:31	06/26/18 20:20	83-32-9			
Acenaphthylene	<0.67	ug/kg	2.2	0.67	1	06/25/18 06:31	06/26/18 20:20	208-96-8			
Anthracene	<0.64	ug/kg	2.1	0.64	1	06/25/18 06:31	06/26/18 20:20	120-12-7			
Benzo(a)anthracene	<1.5	ug/kg	4.9	1.5	1	06/25/18 06:31	06/26/18 20:20	56-55-3			
Benzo(a)pyrene	<0.94	ug/kg	3.1	0.94	1	06/25/18 06:31	06/26/18 20:20	50-32-8			
Benzo(b)fluoranthene	<0.51	ug/kg	1.7	0.51	1	06/25/18 06:31	06/26/18 20:20	205-99-2			
Benzo(g,h,i)perylene	<0.86	ug/kg	2.9	0.86	1	06/25/18 06:31	06/26/18 20:20	191-24-2			
Benzo(k)fluoranthene	<1.2	ug/kg	3.8	1.2	1	06/25/18 06:31	06/26/18 20:20	207-08-9			
Chrysene	<1.9	ug/kg	6.2	1.9	1	06/25/18 06:31	06/26/18 20:20	218-01-9			
Dibenz(a,h)anthracene	<0.63	ug/kg	2.1	0.63	1	06/25/18 06:31	06/26/18 20:20	53-70-3			
Fluoranthene	<0.58	ug/kg	1.9	0.58	1	06/25/18 06:31	06/26/18 20:20	206-44-0			
Fluorene	<0.43	ug/kg	1.4	0.43	1	06/25/18 06:31	06/26/18 20:20	86-73-7			
Indeno(1,2,3-cd)pyrene	<0.91	ug/kg	3.0	0.91	1	06/25/18 06:31	06/26/18 20:20	193-39-5			
Naphthalene	<1.1	ug/kg	3.5	1.1	1	06/25/18 06:31	06/26/18 20:20	91-20-3			
Phenanthrene	<2.6	ug/kg	8.7	2.6	1	06/25/18 06:31	06/26/18 20:20	85-01-8			
Pvrene	<2.1	ua/ka	6.9	2.1	1	06/25/18 06:31	06/26/18 20:20	129-00-0			
Surrogates		0 0									
2-Fluorobiphenyl (S)	64	%.	42-125		1	06/25/18 06:31	06/26/18 20:20	321-60-8			
p-Terphenyl-d14 (S)	74	%.	57-125		1	06/25/18 06:31	06/26/18 20:20	1718-51-0			
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B					
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	71-55-6	W		
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	79-34-5	W		
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	79-00-5	W		
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	75-34-3	W		
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	75-35-4	W		
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	107-06-2	W		
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	78-87-5	W		
2-Butanone (MEK)	<107	ug/kg	250	107	1	06/28/18 11:30	06/28/18 19:55	78-93-3	W		
2-Hexanone	<52.0	ug/kg	250	52.0	1	06/28/18 11:30	06/28/18 19:55	591-78-6	W		

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-4_0-2
 Lab ID:
 10436863007
 Collected:
 06/22/18 08:40
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 19:55	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 19:55	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 19:55	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 19:55	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 19:55	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 19:55	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 19:55	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	109	%	57-148		1	06/28/18 11:30	06/28/18 19:55	1868-53-7	
Toluene-d8 (S)	97	%	58-142		1	06/28/18 11:30	06/28/18 19:55	2037-26-5	
4-Bromofluorobenzene (S)	80	%	48-130		1	06/28/18 11:30	06/28/18 19:55	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-4_6-7
 Lab ID:
 10436863008
 Collected:
 06/22/18 08:55
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: Collected in the second secon

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual		
6010D MET ICP	Analytical Method: EPA 6010D Preparation Method: EPA 3050										
Arsenic	3.0	mg/kg	1.6	0.48	1	06/26/18 04:58	06/27/18 07:15	7440-38-2			
Barium	160	mg/kg	0.84	0.25	1	06/26/18 04:58	06/27/18 07:15	7440-39-3			
Cadmium	0.097J	ma/ka	0.25	0.075	1	06/26/18 04:58	06/27/18 07:15	7440-43-9			
Chromium	39.4	ma/ka	1.0	0.31	1	06/26/18 04:58	06/27/18 07:15	7440-47-3			
Lead	7.7	ma/ka	1.1	0.32	1	06/26/18 04:58	06/27/18 07:15	7439-92-1			
Selenium	<0.56	ma/ka	1.9	0.56	1	06/26/18 04:58	06/27/18 07:15	7782-49-2			
Silver	<0.11	mg/kg	0.38	0.11	1	06/26/18 04:58	06/27/18 07:15	7440-22-4			
7471B Mercury	Analytical	Method: EP	A 7471B Prep	aration Met	hod: E	PA 7471B					
Mercury	0.021J	mg/kg	0.038	0.011	1	06/25/18 07:21	06/28/18 18:09	7439-97-6			
Dry Weight / %M by ASTM D2974	Analytical	Method: AS	TM D2974								
Percent Moisture	29.4	%	0.10	0.10	1		06/27/18 16:27				
8270D MSSV PAH by SIM	Analytical	Method: EP/	A 8270D by SI	M Prepara	tion Me	ethod: EPA 3550					
Acenaphthene	<0.58	ug/kg	1.9	0.58	1	06/25/18 06:31	06/26/18 20:44	83-32-9			
Acenaphthylene	<0.70	ug/kg	2.3	0.70	1	06/25/18 06:31	06/26/18 20:44	208-96-8			
Anthracene	<0.66	ug/kg	2.2	0.66	1	06/25/18 06:31	06/26/18 20:44	120-12-7			
Benzo(a)anthracene	<1.5	ug/kg	5.1	1.5	1	06/25/18 06:31	06/26/18 20:44	56-55-3			
Benzo(a)pyrene	<0.97	ug/kg	3.2	0.97	1	06/25/18 06:31	06/26/18 20:44	50-32-8			
Benzo(b)fluoranthene	<0.53	ug/kg	1.8	0.53	1	06/25/18 06:31	06/26/18 20:44	205-99-2			
Benzo(g,h,i)perylene	<0.90	ug/kg	3.0	0.90	1	06/25/18 06:31	06/26/18 20:44	191-24-2			
Benzo(k)fluoranthene	<1.2	ug/kg	4.0	1.2	1	06/25/18 06:31	06/26/18 20:44	207-08-9			
Chrysene	<1.9	ug/kg	6.4	1.9	1	06/25/18 06:31	06/26/18 20:44	218-01-9			
Dibenz(a,h)anthracene	<0.65	ug/kg	2.2	0.65	1	06/25/18 06:31	06/26/18 20:44	53-70-3			
Fluoranthene	<0.61	ug/kg	2.0	0.61	1	06/25/18 06:31	06/26/18 20:44	206-44-0			
Fluorene	<0.44	ug/kg	1.5	0.44	1	06/25/18 06:31	06/26/18 20:44	86-73-7			
Indeno(1,2,3-cd)pyrene	<0.95	ug/kg	3.2	0.95	1	06/25/18 06:31	06/26/18 20:44	193-39-5			
Naphthalene	<1.1	ug/kg	3.6	1.1	1	06/25/18 06:31	06/26/18 20:44	91-20-3			
Phenanthrene	<2.7	ug/kg	9.0	2.7	1	06/25/18 06:31	06/26/18 20:44	85-01-8			
Pvrene	<2.2	ua/ka	7.2	2.2	1	06/25/18 06:31	06/26/18 20:44	129-00-0			
Surrogates		0 0									
2-Fluorobiphenyl (S)	75	%.	42-125		1	06/25/18 06:31	06/26/18 20:44	321-60-8			
p-Terphenyl-d14 (S)	74	%.	57-125		1	06/25/18 06:31	06/26/18 20:44	1718-51-0			
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B					
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	71-55-6	W		
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	79-34-5	W		
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	79-00-5	W		
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	75-34-3	W		
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	75-35-4	W		
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	107-06-2	W		
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	78-87-5	W		
2-Butanone (MEK)	<107	ug/kg	250	107	1	06/28/18 11:30	06/28/18 20:18	78-93-3	W		
2-Hexanone	<52.0	ug/kg	250	52.0	1	06/28/18 11:30	06/28/18 20:18	591-78-6	W		

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-4_6-7
 Lab ID:
 10436863008
 Collected:
 06/22/18 08:55
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepar	ration Meth	od: EP	A 5035/5030B			
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 20:18	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 20:18	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 20:18	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 20:18	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 20:18	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 20:18	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:18	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	108	%	57-148		1	06/28/18 11:30	06/28/18 20:18	1868-53-7	
Toluene-d8 (S)	93	%	58-142		1	06/28/18 11:30	06/28/18 20:18	2037-26-5	
4-Bromofluorobenzene (S)	80	%	48-130		1	06/28/18 11:30	06/28/18 20:18	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-5_0-1
 Lab ID:
 10436863009
 Collected:
 06/22/18 09:35
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Vertical Solid
 Vertical Solid

G0100 MET ICP Analytical Method: EPR a Job 0 Preparation Method: EPR 3050 Second 1000 Method 10000 Method 10000 Method 1000 Method 1000 Method 1000 Method 1000 Me	Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual
Arsenic 5.1.J mg/kg 7.5 2.3 5 08/2/18 0/458 06/2/18 0/719 7440-38-2 D Barium 287 mg/kg 3.9 1.2 5 06/2/18 0/458 06/2/18 0/719 7440-38-2 D Chromium 150 mg/kg 9.5 2.9 10 06/2/18 0/458 06/2/18 0/2.0 74/4-3-3 D Selenium 4.52 mg/kg 17.4 5.2 10 06/2/18 0/4.58 06/2/18 0/2.0 74/4-3-3 D D Selenium 4.52 mg/kg 17.4 5.2 10 06/2/18 0/4.58 06/2/18 0/2.0 74/4-3-3 D D Silver 1.1.1 mg/kg 3.5 0.00 1 06/2/18 0/4.58 06/2/18 0/2.0 74/4-2.4 D Dry Weight /5M by SIM Analytical Method: EPA 7471B Preparation Method: EPA 7471B Preparation 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06/2/18 0/2.1 06	6010D MET ICP	Analytical	Method: EP	A 6010D Prep	aration Met	hod: E	PA 3050			
Barium 287 mg/kg 3.9 1.2 6 06/26/18 04:80 06/27/18 07:19 7440-39-3 Cadmium 0.561 mg/kg 9.5 2.0 10 06/26/18 04:80 06/27/18 07:20 7440-43-9 3 Lead 88.2 mg/kg 10.0 3.0 10 06/26/18 04:80 06/27/18 07:20 7424-92 D Selenium 45.2 mg/kg 1.3 10 06/26/18 04:80 06/27/18 07:20 7449-22-4 D Selenium 4.1.1 mg/kg 3.5 1.1 10 06/25/18 04:50 06/27/18 07:20 7440-22-4 D Mercury 0.10 mg/kg 0.30 0.098 1 06/25/18 07:10 06/28/18 12.07 7439-76 7439-76 Propertion/Subpertion	Arsenic	5.1J	ma/ka	7.5	2.3	5	06/26/18 04:58	06/27/18 07:19	7440-38-2	D3
Cadmium 0.56.j mgku 1.2 0.35 6 06/22/18 0/13 06/22/18 0/13 744-04-9 D Chromium 1850 mgkg 10 06/22/18 0/13 06/27/18 0/7.20 744-04-9 D Selenium 4.5.2 mgkg 17.4 5.2 10 06/22/18 0/4.35 06/27/18 0/7.20 742-49-2 D3 Silver 1.1 mgkg 3.5 1.1 10 06/22/18 0/2.3 0740 0/2.0 742-92-2 D3 TATI B Mercury 0.10 mgkg 0.03 0.0098 1 06/27/18 0/2.1 06/27/18 0/2.1 740-92-2 V Protent Moisture 2.3.3 % 0.10 0.10 1 06/27/18 0/3 06/26/18 21.07 73-32-9 Accmaphthme 6.9 ugkg 2.1 0.64 1 06/25/18 0/31 06/26/18 21.07 23-32-9 Accmaphthme 3.4 ugkg 2.0 0.61 1 06/25/18 0/31 06/26/18 21.07 20-32-9 Benzo(a)anthracene	Barium	287	ma/ka	3.9	1.2	5	06/26/18 04:58	06/27/18 07:19	7440-39-3	-
Chromium 1850 mg/kg 9.5 2.9 10 0622/18 04:38 0627/18 07:20 7440.47.3 Lead 88.2 mg/kg 10.0 3.0 10 0626/18 04:58 0627/18 07:20 7439-92-1 Silver 1.1 mg/kg 1.5 1.1 10 0622/18 04:58 0627/18 07:20 7440.47.3 D3 7471B Mercury Analytical Method: EPA 7471B reparation Method: EPA 7471B reparation Method: EPA 7471B reparation Method: EPA 7471B Percent Molsture 23.3 % 0.10 0.10 1 0622/18 07:21 0622/18 16:11 7439-97-6 Percent Molsture 23.3 % 0.10 0.10 1 0622/18 07:31 0622/18 12:17 83-32-9 Acenaphthene 6.9 ug/kg 1.8 0.53 1 0622/18 06:31 0626/18 2:17 20-2-17 Acenaphthylee 3.4 ug/kg 2.0 0.61 1 0622/18 06:31 062/26/18 2:07 20-9-2 Benzo(a)phylene 124 ug/kg 3	Cadmium	0.56J	ma/ka	1.2	0.35	5	06/26/18 04:58	06/27/18 07:19	7440-43-9	D3
Lead B8.2 mg/kg 10.0 66/28/18 04/28 06/28/18 04/28 06/28/18 04/28	Chromium	1850	ma/ka	9.5	29	10	06/26/18 04:58	06/27/18 07:20	7440-47-3	20
Constant	Lead	88.2	mg/kg	10.0	3.0	10	06/26/18 04:58	06/27/18 07:20	7439-92-1	
Stiver 1,1J mg/kg 3,2 1,0 00 06/27/18 000000 06/27/18 007.20 7440-22.4 D3 747 B Mercury Analytical Method: EPA 7471B Preparation Method: EPA 7471B 06/27/18 07.20 7440-22.4 D3 747 B Mercury 0.10 mg/kg 0.033 0.0098 1 06/25/18 07.21 06/27/18 16:27 06/27/18 16:27 Dry Weight / %M by ASTM D2974 Analytical Method: SATM D2974 Analytical Method: SATM D2974 0.010 1 06/27/18 16:27 83-32-9 Accenaphthene 6.9 ug/kg 1.8 0.53 1 06/25/18 06:31 06/26/18 21:07 83-32-9 Accenaphthylene 3.4 ug/kg 2.1 0.641 06/25/18 06:31 06/26/18 21:07 208-96-8 Anthracene 11.0 ug/kg 2.0 0.611 06/25/18 06:31 06/26/18 21:07 208-96-8 Benzo(a)/Invorahnene 128 ug/kg 3.0 0.89 1 06/25/18 06:31 06/26/18 21:07 208-96-8 Benzo(k)/Invorahnene 128 ug/kg <td>Selenium</td> <td><5.2</td> <td>mg/kg</td> <td>17.4</td> <td>5.2</td> <td>10</td> <td>06/26/18 04:58</td> <td>06/27/18 07:20</td> <td>7782-49-2</td> <td>ГЗ</td>	Selenium	<5.2	mg/kg	17.4	5.2	10	06/26/18 04:58	06/27/18 07:20	7782-49-2	ГЗ
Art1B Mercury Analytical Method: EPA 7471B Prevaluation Prevaluat	Silver	1.1J	mg/kg	3.5	1.1	10	06/26/18 04:58	06/27/18 07:20	7440-22-4	D3
Mercury 0.10 mg/kg 0.03 0.098 1 06/25/18 07:2 06/28/18 18:11 7439-97-6 Dry Weight / %M by ASTM D2974 Analytical //etcl // STM D2974 Analytical //etcl // STM D2974 06/27/18 16:27 7 Percent Moisture 23.3 % 0.10 0.10 1 06/27/18 16:27 7 8 Segna phthene 6.9 ug/kg 1.8 0.53 1 06/25/18 06:31 06/26/18 21:07 83:32-9 Acenaphthene 6.9 ug/kg 2.0 0.61 1 06/25/18 06:31 06/26/18 21:07 56:55-3 Benzo(a)propre 12 ug/kg 4.7 1.4 1 06/25/18 06:31 06/26/18 21:07 20:32-8 Benzo(a)propre 12 ug/kg 2.7 0.82 1 06/25/18 06:31 06/26/18 21:07 20:32-8 Benzo(A)fluoranthene 162 ug/kg 2.9 1.8 1 06/25/18 06:31 06/26/18 21:07 20:37-3 Benzo(A)fluoranthene 98.1 ug/kg 2.9 0.87 <td>7471B Mercury</td> <td>Analytical</td> <td>Method: EP</td> <td>A 7471B Prep</td> <td>aration Met</td> <td>hod: E</td> <td>PA 7471B</td> <td></td> <td></td> <td></td>	7471B Mercury	Analytical	Method: EP	A 7471B Prep	aration Met	hod: E	PA 7471B			
Dry Weight / %M by ASTM D2974 Analytical Method: ASTM D2974 Percent Moisture 23.3 % 0.10 0.10 1 06/27/18 16:27 Store MSSV PAH by SIM Analytical Method: EPA 8270D by SIM Preparation Method: EPA 8500 Devalation Method: Metho	Mercury	0.10	mg/kg	0.033	0.0098	1	06/25/18 07:21	06/28/18 18:11	7439-97-6	
Percent Moisture 23.3 % 0.10 0.10 1 06/27/18 16:27 S2TOD MSSV PAH by SIM Analytical Method: EPA 8270D by SIM Preparative EPA 3200 Acenaphthylene 6.9 ug/kg 1.8 0.53 1 06/25/18 06:31 06/26/18 21:07 28-32-9 Acenaphthylene 3.4 ug/kg 2.1 0.64 1 06/25/18 06:31 06/26/18 21:07 28-32-9 Anthracene 77.8 ug/kg 4.7 1.4 1 06/25/18 06:31 06/26/18 21:07 55-32-3 Benzo(a)pyrene 122 ug/kg 3.6 0.82 1 06/25/18 06:31 06/26/18 21:07 50-32-3 Benzo(b)fuoranthene 122 ug/kg 3.6 0.825/18 06:31 06/26/18 21:07 210-12-7 Benzo(b)fuoranthene 102 ug/kg 3.7 1.1 1 06/25/18 06:31 06/26/18 21:07 210-23-7 Benzo(k)fuoranthene 3.1 ug/kg 3.3 1.0 06/25/18 06:31 06/26/18 21:07 210-37-7	Dry Weight / %M by ASTM D2974	Analytical	Method: AS	TM D2974						
B27OD MSSV PAH by SIM Analytical Method: EPA 8270D by SIM Preparation Method: EPA 3550 Acenaphthylene 6.9 ug/kg 1.8 0.53 1 06/25/18 06.31 06/26/18 21:07 283-32-9 Acenaphthylene 3.4 ug/kg 2.1 0.64 1 06/25/18 06.31 06/26/18 21:07 209-68.3 Anthracene 11.0 ug/kg 2.0 0.61 1 06/25/18 06.31 06/26/18 21:07 50-32.8 Benzo(a)ptyrene 128 ug/kg 3.0 0.89 1 06/25/18 06.31 06/26/18 21:07 205-92.2 Benzo(b)fluoranthene 162 ug/kg 1.6 0.49 1 06/25/18 06.31 06/26/18 21:07 205-92.2 Benzo(b)fluoranthene 55.7 ug/kg 3.7 1.1 1 06/25/18 06.31 06/26/18 21:07 210-9 Dibenz(a,h)anthracene 94.4 ug/kg 1.9 0.56 1 06/25/18 06.31 06/26/18 21:07 210-9 Iluorene 2.5 ug/kg 1.9 0.56 1 06/25/18 06.31 06/26/18 21:07 33-7-3 Iluoren(1,2,3-cd)pyrene 94.4<	Percent Moisture	23.3	%	0.10	0.10	1		06/27/18 16:27		
Acenaphthene 6.9 ug/kg 1.8 0.53 1 06/25/18 06:31 06/26/18 21:07 83-32-9 Acenaphthylene 3.4 ug/kg 2.1 0.64 1 06/25/18 06:31 06/26/18 21:07 200-96-8 Anthracene 11.0 ug/kg 2.0 0.61 1 06/25/18 06:31 06/26/18 21:07 56-55-3 Benzo(a)pyrene 128 ug/kg 3.0 0.89 1 06/25/18 06:31 06/26/18 21:07 50-32-8 Benzo(b)(uoranthene 162 ug/kg 1.6 0.49 1 06/25/18 06:31 06/26/18 21:07 207-08-9 Benzo(k)(luoranthene 55.7 ug/kg 3.7 1.1 1 06/25/18 06:31 06/26/18 21:07 207-08-9 Chrysene 98.1 ug/kg 5.9 1.8 1 06/25/18 06:31 06/26/18 21:07 207-08-9 Dibenz(a,h)anthracene 92.5 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 207-03-7 Iduanthene 90.4 ug/kg 2.9 0.87 1 06/25/18 06:31 06/26/18 21:07	8270D MSSV PAH by SIM	Analytical	Method: EP	A 8270D by SI	M Preparat	tion Me	ethod: EPA 3550			
Acenaphthylene 3.4 ug/kg 2.1 0.64 1 06/25/18 06:31 06/26/18 21:07 208-96-8 Anthracene 11.0 ug/kg 2.0 0.61 1 06/25/18 06:31 06/26/18 21:07 50-55-3 Benzo(a)pyrene 128 ug/kg 3.0 0.89 1 06/25/18 06:31 06/26/18 21:07 20-32-8 Benzo(a)pyrene 16 ug/kg 2.7 0.82 1 06/25/18 06:31 06/26/18 21:07 20-32-8 Benzo(b)fluoranthene 16 ug/kg 2.7 0.82 1 06/25/18 06:31 06/26/18 21:07 20-70-89 Benzo(k)fluoranthene 55.7 ug/kg 3.7 1.1 1 06/25/18 06:31 06/26/18 21:07 20-70-3 Chrysene 94.1 ug/kg 5.9 1.8 1 06/25/18 06:31 06/26/18 21:07 20-44-0 Fluoranthene 90.4 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 20-3-3 Indeno(1,2,3-cd)pyrene 91.4 ug/kg 3.3 1.0 1 06/25/18 06:31 06/26/18 21:07	Acenaphthene	6.9	ug/kg	1.8	0.53	1	06/25/18 06:31	06/26/18 21:07	83-32-9	
Anthracene 11.0 ug/kg 2.0 0.61 1 06/25/18 06:31 06/26/18 21:07 120-12-7 Benzo(a)anthracene 77.8 ug/kg 4.7 1.4 1 06/25/18 06:31 06/26/18 21:07 50-55-3 Benzo(a)pyrene 162 ug/kg 3.0 0.89 1 06/25/18 06:31 06/26/18 21:07 50-32-8 Benzo(b)Iluoranthene 162 ug/kg 2.7 0.82 1 06/25/18 06:31 06/26/18 21:07 205-99-2 Benzo(k)Iluoranthene 55.7 ug/kg 3.7 1.1 1 06/25/18 06:31 06/26/18 21:07 218-01-9 Dibenz(a,h)anthracene 32.5 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 26-7-7-3 Fluorene 2.5 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 26-7-7-3 Fluorene 3.1 ug/kg 2.9 0.87 1 06/25/18 06:31 06/26/18 21:07 27-7-3 Pitorene 3.1 ug/kg 3.3 1.0 1 06/25/18 06:31 06/26/18 21:07 <th< td=""><td>Acenaphthylene</td><td>3.4</td><td>ug/kg</td><td>2.1</td><td>0.64</td><td>1</td><td>06/25/18 06:31</td><td>06/26/18 21:07</td><td>208-96-8</td><td></td></th<>	Acenaphthylene	3.4	ug/kg	2.1	0.64	1	06/25/18 06:31	06/26/18 21:07	208-96-8	
Benzo(a)anthracene 77.8 ug/kg 4.7 1.4 1 06/25/18 06:31 06/26/18 21:07 56-55-3 Benzo(a)pyrene 128 ug/kg 3.0 0.89 1 06/25/18 06:31 06/26/18 21:07 50-32-8 Benzo(a),i)perylene 116 ug/kg 2.7 0.82 1 06/25/18 06:31 06/26/18 21:07 191-24-2 Benzo(b),i/uoranthene 55.7 ug/kg 3.7 1.1 1 06/25/18 06:31 06/26/18 21:07 207-08-9 Chrysene 98.1 ug/kg 5.9 1.8 1 06/25/18 06:31 06/26/18 21:07 53-70-3 Fluoranthene 90.4 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 68-73-7 Indeno(1,2,3-cd)pyrene 94.4 ug/kg 2.9 0.87 1 06/25/18 06:31 06/26/18 21:07 193-39-5 Naphthalene 4.3 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 12-0-0-3 Surrogates	Anthracene	11.0	ug/kg	2.0	0.61	1	06/25/18 06:31	06/26/18 21:07	120-12-7	
Benzo(a)pyrene 128 ug/kg 3.0 0.89 1 06/25/18 06:31 06/26/18 21:07 50-32-8 Benzo(b)fluoranthene 162 ug/kg 1.6 0.49 1 06/25/18 06:31 06/26/18 21:07 207-99-2 Benzo(b)fluoranthene 157. ug/kg 3.7 1.1 06/25/18 06:31 06/26/18 21:07 207-08-9 Chrysene 98.1 ug/kg 5.9 1.8 1 06/25/18 06:31 06/26/18 21:07 218-01-9 Dibenz(a,h)anthracene 32.5 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 264-44-0 Fluoranthene 90.4 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 86-73-7 Indeno(1,2,3-cd)pyrene 94.4 ug/kg 3.3 1.0 1 06/25/18 06:31 06/26/18 21:07 12-0-3 Phenanthrene 33.1 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 12-0-3 Surg/gats 5.7 vg/kg	Benzo(a)anthracene	77.8	ug/kg	4.7	1.4	1	06/25/18 06:31	06/26/18 21:07	56-55-3	
Benzo(b)/luoranthene 162 ug/kg 1.6 0.49 1 06/25/18 06:31 06/26/18 21:07 205-99-2 Benzo(g), h) perylene 116 ug/kg 2.7 0.82 1 06/25/18 06:31 06/26/18 21:07 205-99-2 Benzo(k)/fluoranthene 55.7 ug/kg 3.7 1.1 1 06/25/18 06:31 06/26/18 21:07 218-01-9 Dibenz(a,h) anthracene 32.5 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 28-70-3 Fluoranthene 90.4 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 206-44-0 Fluoranthene 2.5 ug/kg 3.3 1.0 1 06/25/18 06:31 06/26/18 21:07 91-20-3 Naphthalene 4.3 ug/kg 3.3 1.0 1 06/25/18 06:31 06/26/18 21:07 91-20-3 Surrogates 2-Fluorobiphenyl (S) 77 % 42-125 1 06/25/18 06:31 06/26/18 21:07 71-85-10 Surogates	Benzo(a)pyrene	128	ug/kg	3.0	0.89	1	06/25/18 06:31	06/26/18 21:07	50-32-8	
Benzo(g,h,l)perylene 116 ug/kg 2.7 0.82 1 06/25/18 06:31 06/26/18 21:07 191-24-2 Benzo(k)fluoranthene 55.7 ug/kg 3.7 1.1 1 06/25/18 06:31 06/26/18 21:07 207-08-9 Chrysene 98.1 ug/kg 5.9 1.8 1 06/25/18 06:31 06/26/18 21:07 218-01-9 Dibenz(a,h)anthracene 32.5 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 86-73-7 Indeno(1,2,3-cd)pyrene 94.4 ug/kg 2.9 0.87 1 06/25/18 06:31 06/26/18 21:07 91-20-3 Phenanthrene 39.1 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 191-20-3 Phenanthrene 39.1 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 120-0-0 Surrogates 2 Ug/kg 6.6 2.0 1 06/25/18 06:31 06/26/18 21:07 321-60-8 P-Terphenyl-d14 (S) 8	Benzo(b)fluoranthene	162	ug/kg	1.6	0.49	1	06/25/18 06:31	06/26/18 21:07	205-99-2	
Benzo(k)fluoranthene 55.7 ug/kg 3.7 1.1 1 06/25/18 06:31 06/26/18 21:07 207-08-9 Chrysene 98.1 ug/kg 5.9 1.8 1 06/25/18 06:31 06/26/18 21:07 218-01-9 Dibenz(a,h)anthracene 32.5 ug/kg 1.9 0.66 1 06/25/18 06:31 06/26/18 21:07 26-44-0 Fluoranthene 90.4 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 26-44-0 Fluorene 2.5 ug/kg 1.4 0.41 1 06/25/18 06:31 06/26/18 21:07 28-73-7 Indeno(1,2,3-cd)pyrene 94.4 ug/kg 2.9 0.87 1 06/25/18 06:31 06/26/18 21:07 19-33-5 Naphthalene 4.3 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 29-0-0 Surrogates 2-Fluorobiphenyl (S) 77 %. 42-125 1 06/25/18 06:31 06/26/18 21:07 321-60-8 1,1,1-Trichloroethane <	Benzo(g,h,i)perylene	116	ug/kg	2.7	0.82	1	06/25/18 06:31	06/26/18 21:07	191-24-2	
Chrysene 98.1 ug/kg 5.9 1.8 1 06/25/18 06:31 06/26/18 21:07 218-01-9 Dibenz(a,h)anthracene 32.5 ug/kg 1.9 0.60 1 06/25/18 06:31 06/26/18 21:07 53-70-3 Fluoranthene 90.4 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 266-44-0 Fluorene 2.5 ug/kg 2.9 0.87 1 06/25/18 06:31 06/26/18 21:07 86-73-7 Indeno(1,2,3-cd)pyrene 94.4 ug/kg 3.3 1.0 1 06/25/18 06:31 06/26/18 21:07 91-20-3 Phenanthrene 39.1 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 129-0-0 Surrogates 75.2 ug/kg 6.6 2.0 1 06/25/18 06:31 06/26/18 21:07 321-60-8 P-Terphenyl-d14 (S) 75 7 % 42-125 1 06/25/18 06:31 06/26/18 21:07 321-60-8 1,1-1-Trichloroethane <25.0	Benzo(k)fluoranthene	55.7	ug/kg	3.7	1.1	1	06/25/18 06:31	06/26/18 21:07	207-08-9	
Dibenz(a,h)anthracene 32.5 ug/kg 2.0 0.60 1 06/25/18 06:31 06/26/18 21:07 53-70-3 Fluoranthene 90.4 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 206-44-0 Fluoranthene 2.5 ug/kg 1.4 0.41 1 06/25/18 06:31 06/26/18 21:07 86-73-7 Indeno(1,2,3-cd)pyrene 94.4 ug/kg 2.9 0.87 1 06/25/18 06:31 06/26/18 21:07 91-20-3 Naphthalene 4.3 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 91-20-3 Phenanthrene 39.1 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 321-60-8 Surrogates 7 7 %. 42-125 1 06/25/18 06:31 06/26/18 21:07 321-60-8 2-Fluorobiphenyl (S) 77 %. 42-125 1 06/25/18 06:31 06/26/18 21:07 321-60-8 1,1,1-Trichloroethane <25.0	Chrysene	98.1	ug/kg	5.9	1.8	1	06/25/18 06:31	06/26/18 21:07	218-01-9	
Fluoranthene 90.4 ug/kg 1.9 0.56 1 06/25/18 06:31 06/26/18 21:07 206-44-0 Fluorene 2.5 ug/kg 1.4 0.41 1 06/25/18 06:31 06/26/18 21:07 86-73-7 Indeno(1,2,3-cd)pyrene 94.4 ug/kg 2.9 0.87 1 06/25/18 06:31 06/26/18 21:07 91-20-3 Naphthalene 4.3 ug/kg 3.3 1.0 1 06/25/18 06:31 06/26/18 21:07 91-20-3 Phenanthrene 39.1 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 85-01-8 Surrogates 2-Fluorobiphenyl (S) 77 %. 42-125 1 06/25/18 06:31 06/26/18 21:07 321-60-8 p-Terphenyl-d14 (S) 85 %. 57-125 1 06/25/18 06:31 06/28/18 21:07 1718-51-0 8260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B 1 1,1,2-Trichloroethane <25.0	Dibenz(a.h)anthracene	32.5	ua/ka	2.0	0.60	1	06/25/18 06:31	06/26/18 21:07	53-70-3	
Fluorene 2.5 ug/kg 1.4 0.41 1 06/25/18 06:31 06/26/18 21:07 86-73-7 Indeno(1,2,3-cd)pyrene 94.4 ug/kg 2.9 0.87 1 06/25/18 06:31 06/26/18 21:07 193-39-5 Naphthalene 4.3 ug/kg 3.3 1.0 1 06/25/18 06:31 06/26/18 21:07 91-20-3 Phenanthrene 39.1 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 85-01-8 Surrogates 75.2 ug/kg 6.6 2.0 1 06/25/18 06:31 06/26/18 21:07 321-60-8 p-Terphenyl-d14 (S) 85 %. 57-125 1 06/25/18 06:31 06/26/18 21:07 321-60-8 1,1,1-Trichloroethane <25.0	Fluoranthene	90.4	ua/ka	1.9	0.56	1	06/25/18 06:31	06/26/18 21:07	206-44-0	
Indeno(1,2,3-cd)pyrene 94.4 ug/kg 2.9 0.87 1 06/25/18 06:31 06/26/18 21:07 193-39-5 Naphthalene 4.3 ug/kg 3.3 1.0 1 06/25/18 06:31 06/26/18 21:07 193-39-5 Phenanthrene 39.1 ug/kg 8.3 2.5 1 06/25/18 06:31 06/26/18 21:07 129-00-0 Surrogates 2 Fluorobiphenyl (S) 77 %. 42-125 1 06/25/18 06:31 06/26/18 21:07 321-60-8 P-Terphenyl-d14 (S) 85 %. 57-125 1 06/25/18 06:31 06/26/18 21:07 321-60-8 9/Terphenyl-d14 (S) 77 %. 42-125 1 06/25/18 06:31 06/26/18 21:07 321-60-8 9/Terphenyl-d14 (S) 85 %. 57-125 1 06/25/18 06:31 06/26/18 21:07 1718-51-0 8260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B 1 10/28/18 11:30 06/28/18 20:40 71-55-6 W 1,1,2-2-Tetrachloroethane <25.0 ug/kg 60.0 25.0 1 06/28/18 11:30<	Fluorene	2.5	ua/ka	1.4	0.41	1	06/25/18 06:31	06/26/18 21:07	86-73-7	
Naphthalene 4.3 ug/kg 3.3 1.0 1 06/25/18 06/26/18 21:07 91-20-3 Phenanthrene 39.1 ug/kg 8.3 2.5 1 06/25/18 06/26/18 21:07 91-20-3 Pyrene 75.2 ug/kg 6.6 2.0 1 06/25/18 06/26/18 21:07 129-00-0 Surrogates	Indeno(1.2.3-cd)pyrene	94.4	ua/ka	2.9	0.87	1	06/25/18 06:31	06/26/18 21:07	193-39-5	
Analytical Method: To Ligrig Bit To Display and the second secon	Naphthalene	4.3	ua/ka	3.3	1.0	1	06/25/18 06:31	06/26/18 21:07	91-20-3	
This is a string of the string string string of the string of the string of the str	Phenanthrene	39.1	ug/kg	8.3	2.5	1	06/25/18 06:31	06/26/18 21:07	85-01-8	
Surrogates 2-Fluorobiphenyl (S) 77 %. 42-125 1 06/25/18 06:21.07 321-60-8 p-Terphenyl-d14 (S) 85 %. 57-125 1 06/25/18 06:31 06/26/18 21:07 1718-51-0 8260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B 1 06/28/18 11:30 06/28/18 20:40 71-55-6 W 1,1,2,2-Tetrachloroethane <25.0	Pyrene	75.2	ug/kg	6.6	2.0	1	06/25/18 06:31	06/26/18 21:07	129-00-0	
2-Fluorobiphenyl (S) 77 %. 42-125 1 06/25/18 06:31 06/26/18 21:07 321-60-8 p-Terphenyl-d14 (S) 85 %. 57-125 1 06/25/18 06:31 06/26/18 21:07 1718-51-0 8260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B 1,1,1-Trichloroethane <25.0	Surrogates	10.2	ug/ng	0.0	2.0	'	00/20/10 00:01	00/20/10 21:07	120 00 0	
p-Terphenyl-d14 (S) 85 %. 57-125 1 06/25/18 06:31 06/26/18 21:07 1718-51-0 8260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B 1,1,1-Trichloroethane <25.0 ug/kg 60.0 25.0 1 06/28/18 11:30 06/28/18 20:40 71-55-6 W 1,1,2-Zretrachloroethane <25.0 ug/kg 60.0 25.0 1 06/28/18 11:30 06/28/18 20:40 71-55-6 W 1,1,2-Trichloroethane <25.0 ug/kg 60.0 25.0 1 06/28/18 11:30 06/28/18 20:40 71-55-6 W 1,1,2-Trichloroethane <25.0 ug/kg 60.0 25.0 1 06/28/18 11:30 06/28/18 20:40 79-34-5 W 1,1-Dichloroethane <25.0 ug/kg 60.0 25.0 1 06/28/18 11:30 06/28/18 20:40 75-34-3 W 1,2-Dichloroethane <25.0 ug/kg 60.0 25.0 1 06/28/18 11:30 06/28/18 20:40 75-35-4 W 1,2-Dichloroethane <25.0 ug/kg 60.0 25.0	2-Fluorobiphenvl (S)	77	%.	42-125		1	06/25/18 06:31	06/26/18 21:07	321-60-8	
8260 MSV Med Level Normal List Analytical Method: EPA 8260 Preparation Method: EPA 5035/5030B 1,1,1-Trichloroethane <25.0	p-Terphenyl-d14 (S)	85	%.	57-125		1	06/25/18 06:31	06/26/18 21:07	1718-51-0	
1,1,1-Trichloroethane <25.0	8260 MSV Med Level Normal List	Analytical	Method: EP	A 8260 Prepa	ration Methe	od: EP	A 5035/5030B			
1,1,2,2-Tetrachloroethane<25.0ug/kg60.025.0106/28/18 11:3006/28/18 20:4079-34-5W1,1,2-Trichloroethane<25.0	1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	71-55-6	W
1,1,2-Trichloroethane <25.0	1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	79-34-5	W
1,1-Dichloroethane <25.0	1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	79-00-5	W
1,1-Dichloroethene <25.0	1,1-Dichloroethane	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	75-34-3	W
1,2-Dichloroethane <25.0 ug/kg 60.0 25.0 1 06/28/18 11:30 06/28/18 20:40 107-06-2 W 1,2-Dichloropropane <25.0 ug/kg 60.0 25.0 1 06/28/18 11:30 06/28/18 20:40 107-06-2 W 2-Butanone (MEK) <107 ug/kg 250 107 1 06/28/18 11:30 06/28/18 20:40 78-87-5 W 2-Hexanone <52.0 ug/kg 250 52.0 1 06/28/18 11:30 06/28/18 20:40 78-93-3 W	1,1-Dichloroethene	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	75-35-4	W
1,2-Dichloropropane <25.0 ug/kg 60.0 25.0 1 06/28/18 11:30 06/28/18 20:40 78-87-5 W 2-Butanone (MEK) <107	1.2-Dichloroethane	<25.0	ua/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	107-06-2	W
2-Butanone (MEK) <107	1.2-Dichloropropane	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	78-87-5	W
2-Hexanone <52.0 ug/kg 250 52.0 1 06/28/18 11:30 06/28/18 20:40 591-78-6 W	2-Butanone (MEK)	<107	ug/ka	250	107	1	06/28/18 11:30	06/28/18 20:40	78-93-3	W
	2-Hexanone	<52.0	ug/ka	250	52.0	1	06/28/18 11:30	06/28/18 20:40	591-78-6	W

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-5_0-1
 Lab ID:
 10436863009
 Collected:
 06/22/18
 09:35
 Received:
 06/22/18
 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: SB-5_0-1
 Image:

Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 20:40	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 20:40	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 20:40	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 20:40	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 20:40	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	127-18-4	W
Toluene	38.8J	ug/kg	78.3	32.6	1	06/28/18 11:30	06/28/18 20:40	108-88-3	
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 20:40	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 20:40	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	111	%	57-148		1	06/28/18 11:30	06/28/18 20:40	1868-53-7	
Toluene-d8 (S)	99	%	58-142		1	06/28/18 11:30	06/28/18 20:40	2037-26-5	
4-Bromofluorobenzene (S)	83	%	48-130		1	06/28/18 11:30	06/28/18 20:40	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-5_8-9
 Lab ID:
 10436863010
 Collected:
 06/22/18 09:50
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: Collected in the second secon

Parameters	Results	Units		LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EP	A 6010D Prep	aration Met	thod: E	PA 3050			
Arsenic	3.4	ma/ka	1.6	0.47	1	06/26/18 04:58	06/27/18 07:22	7440-38-2	
Barium	173	mg/kg	0.82	0.25	1	06/26/18 04:58	06/27/18 07:22	7440-39-3	
Cadmium	<0.073	ma/ka	0.24	0.073	1	06/26/18 04:58	06/27/18 07:22	7440-43-9	
Chromium	42.0	ma/ka	1.0	0.30	1	06/26/18 04:58	06/27/18 07:22	7440-47-3	
Lead	8.4	ma/ka	1.0	0.31	1	06/26/18 04:58	06/27/18 07:22	7439-92-1	
Selenium	<0.54	ma/ka	1.8	0.54	1	06/26/18 04:58	06/27/18 07:22	7782-49-2	
Silver	<0.11	mg/kg	0.37	0.11	1	06/26/18 04:58	06/27/18 07:22	7440-22-4	
7471B Mercury	Analytical	Method: EP	A 7471B Prep	aration Met	hod: E	PA 7471B			
Mercury	0.017J	mg/kg	0.032	0.0096	1	06/25/18 07:21	06/28/18 18:13	7439-97-6	
Dry Weight / %M by ASTM D2974	Analytical	Method: AS	TM D2974						
Percent Moisture	28.1	%	0.10	0.10	1		06/27/18 16:28		
8270D MSSV PAH by SIM	Analytical	Method: EP/	A 8270D by SI	M Prepara	tion Me	ethod: EPA 3550			
Acenaphthene	<0.57	ug/kg	1.9	0.57	1	06/25/18 06:31	06/26/18 21:31	83-32-9	
Acenaphthylene	<0.69	ug/kg	2.3	0.69	1	06/25/18 06:31	06/26/18 21:31	208-96-8	
Anthracene	<0.65	ug/kg	2.2	0.65	1	06/25/18 06:31	06/26/18 21:31	120-12-7	
Benzo(a)anthracene	<1.5	ug/kg	5.0	1.5	1	06/25/18 06:31	06/26/18 21:31	56-55-3	
Benzo(a)pyrene	<0.95	ug/kg	3.2	0.95	1	06/25/18 06:31	06/26/18 21:31	50-32-8	
Benzo(b)fluoranthene	<0.52	ug/kg	1.7	0.52	1	06/25/18 06:31	06/26/18 21:31	205-99-2	
Benzo(g,h,i)perylene	<0.88	ug/kg	2.9	0.88	1	06/25/18 06:31	06/26/18 21:31	191-24-2	
Benzo(k)fluoranthene	<1.2	ug/kg	3.9	1.2	1	06/25/18 06:31	06/26/18 21:31	207-08-9	
Chrysene	<1.9	ug/kg	6.3	1.9	1	06/25/18 06:31	06/26/18 21:31	218-01-9	
Dibenz(a,h)anthracene	<0.64	ug/kg	2.1	0.64	1	06/25/18 06:31	06/26/18 21:31	53-70-3	
Fluoranthene	<0.59	ug/kg	2.0	0.59	1	06/25/18 06:31	06/26/18 21:31	206-44-0	
Fluorene	<0.43	ua/ka	1.4	0.43	1	06/25/18 06:31	06/26/18 21:31	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.93	ug/kg	3.1	0.93	1	06/25/18 06:31	06/26/18 21:31	193-39-5	
Naphthalene	<1.1	ua/ka	3.6	1.1	1	06/25/18 06:31	06/26/18 21:31	91-20-3	
Phenanthrene	<2.7	ua/ka	8.9	2.7	1	06/25/18 06:31	06/26/18 21:31	85-01-8	
Pyrene	<2.1	ua/ka	7.1	2.1	1	06/25/18 06:31	06/26/18 21:31	129-00-0	
Surrogates		- 3- 3							
2-Fluorobiphenyl (S)	60	%.	42-125		1	06/25/18 06:31	06/26/18 21:31	321-60-8	
p-Terphenyl-d14 (S)	74	%.	57-125		1	06/25/18 06:31	06/26/18 21:31	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	71-55-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	79-34-5	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	79-00-5	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	75-34-3	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	75-35-4	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	107-06-2	W
1,2-Dichloropropane	<25.0	ug/ka	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	78-87-5	W
2-Butanone (MEK)	<107	ug/kg	250	107	1	06/28/18 11:30	06/28/18 21:03	78-93-3	W
2-Hexanone	<52.0	ug/kg	250	52.0	1	06/28/18 11:30	06/28/18 21:03	591-78-6	W

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

 Sample:
 SB-5_8-9
 Lab ID:
 10436863010
 Collected:
 06/22/18 09:50
 Received:
 06/22/18 20:00
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EP/	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 21:03	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 21:03	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 21:03	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 21:03	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 21:03	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 21:03	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 21:03	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	103	%	57-148		1	06/28/18 11:30	06/28/18 21:03	1868-53-7	
Toluene-d8 (S)	94	%	58-142		1	06/28/18 11:30	06/28/18 21:03	2037-26-5	
4-Bromofluorobenzene (S)	82	%	48-130		1	06/28/18 11:30	06/28/18 21:03	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

Sample: SB-3_14.5-19.5	Lab ID:	10436863011	Collected	d: 06/22/18	3 11:20	Received: 06/	22/18 20:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270D MSSV PAH by SIM	Analytica	I Method: EPA 8	270D by SI	M Prepara	tion Me	thod: EPA Mod. 3	510C		
Acenaphthene	<0.0043	ug/L	0.014	0.0043	1	06/26/18 14:37	06/27/18 17:24	83-32-9	
Acenaphthylene	<0.0063	ug/L	0.021	0.0063	1	06/26/18 14:37	06/27/18 17:24	208-96-8	
Anthracene	<0.0083	ug/L	0.028	0.0083	1	06/26/18 14:37	06/27/18 17:24	120-12-7	
Benzo(a)anthracene	<0.0053	ug/L	0.018	0.0053	1	06/26/18 14:37	06/27/18 17:24	56-55-3	
Benzo(a)pyrene	<0.0054	ug/L	0.018	0.0054	1	06/26/18 14:37	06/27/18 17:24	50-32-8	
Benzo(b)fluoranthene	<0.017	ug/L	0.057	0.017	1	06/26/18 14:37	06/27/18 17:24	205-99-2	
Benzo(g,h,i)perylene	<0.013	ug/L	0.044	0.013	1	06/26/18 14:37	06/27/18 17:24	191-24-2	
Benzo(k)fluoranthene	<0.014	ug/L	0.047	0.014	1	06/26/18 14:37	06/27/18 17:24	207-08-9	
Chrysene	<0.012	ug/L	0.041	0.012	1	06/26/18 14:37	06/27/18 17:24	218-01-9	
Dibenz(a,h)anthracene	<0.012	ug/L	0.041	0.012	1	06/26/18 14:37	06/27/18 17:24	53-70-3	
Fluoranthene	<0.025	ug/L	0.082	0.025	1	06/26/18 14:37	06/27/18 17:24	206-44-0	
Fluorene	<0.0080	ug/L	0.027	0.0080	1	06/26/18 14:37	06/27/18 17:24	86-73-7	
Indeno(1,2,3-cd)pyrene	<0.018	ug/L	0.060	0.018	1	06/26/18 14:37	06/27/18 17:24	193-39-5	
Naphthalene	<0.0092	ug/L	0.031	0.0092	1	06/26/18 14:37	06/27/18 17:24	91-20-3	
Phenanthrene	<0.014	ug/L	0.047	0.014	1	06/26/18 14:37	06/27/18 17:24	85-01-8	
Pyrene	<0.020	ug/L	0.066	0.020	1	06/26/18 14:37	06/27/18 17:24	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	72	%.	30-145		1	06/26/18 14:37	06/27/18 17:24	321-60-8	A5
p-Terphenyl-d14 (S)	88	%.	30-149		1	06/26/18 14:37	06/27/18 17:24	1718-51-0	
8260B VOC	Analytica	I Method: EPA 8	260B						
Acetone	<9.2	ug/L	30.8	9.2	1		06/27/18 15:59	67-64-1	
Allyl chloride	<0.29	ug/L	0.97	0.29	1		06/27/18 15:59	107-05-1	
Benzene	<0.10	ug/L	0.34	0.10	1		06/27/18 15:59	71-43-2	
Bromobenzene	<0.21	ug/L	0.69	0.21	1		06/27/18 15:59	108-86-1	
Bromochloromethane	<0.27	ug/L	0.91	0.27	1		06/27/18 15:59	74-97-5	
Bromodichloromethane	<0.22	ug/L	0.72	0.22	1		06/27/18 15:59	75-27-4	
Bromoform	<0.80	ug/L	2.7	0.80	1		06/27/18 15:59	75-25-2	
Bromomethane	<1.8	ug/L	6.1	1.8	1		06/27/18 15:59	74-83-9	
2-Butanone (MEK)	<0.99	ug/L	3.3	0.99	1		06/27/18 15:59	78-93-3	
n-Butylbenzene	<0.24	ug/L	0.80	0.24	1		06/27/18 15:59	104-51-8	
sec-Butylbenzene	<0.15	ug/L	0.50	0.15	1		06/27/18 15:59	135-98-8	
tert-Butylbenzene	<0.15	ug/L	0.49	0.15	1		06/27/18 15:59	98-06-6	
Carbon tetrachloride	<0.19	ug/L	0.63	0.19	1		06/27/18 15:59	56-23-5	
Chlorobenzene	<0.17	ug/L	0.57	0.17	1		06/27/18 15:59	108-90-7	
Chloroethane	<0.49	ug/L	1.6	0.49	1		06/27/18 15:59	75-00-3	
Chloroform	<0.45	ug/L	1.5	0.45	1		06/27/18 15:59	67-66-3	
Chloromethane	<0.16	ug/L	0.52	0.16	1		06/27/18 15:59	74-87-3	
2-Chlorotoluene	<0.16	ug/L	0.54	0.16	1		06/27/18 15:59	95-49-8	
4-Chlorotoluene	<0.13	ug/L	0.45	0.13	1		06/27/18 15:59	106-43-4	
1,2-Dibromo-3-chloropropane	<1.7	ug/L	5.5	1.7	1		06/27/18 15:59	96-12-8	
Dibromochloromethane	<0.12	ug/L	0.41	0.12	1		06/27/18 15:59	124-48-1	
1,2-Dibromoethane (EDB)	<0.24	ug/L	0.80	0.24	1		06/27/18 15:59	106-93-4	
Dibromomethane	<0.16	ug/L	0.54	0.16	1		06/27/18 15:59	74-95-3	
1,2-Dichlorobenzene	<0.14	ug/L	0.46	0.14	1		06/27/18 15:59	95-50-1	
1.3-Dichlorobenzene	<0.16	ug/L	0.54	0.16	1		06/27/18 15:59	541-73-1	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

Sample: SB-3_14.5-19.5	Lab ID:	10436863011	Collecte	d: 06/22/18	3 11:20	Received: 06	6/22/18 20:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260B VOC	Analytica	l Method: EPA 8	260B						
1,4-Dichlorobenzene	<0.17	ug/L	0.56	0.17	1		06/27/18 15:59	106-46-7	
Dichlorodifluoromethane	<0.23	ug/L	0.78	0.23	1		06/27/18 15:59	75-71-8	
1,1-Dichloroethane	<0.17	ug/L	0.57	0.17	1		06/27/18 15:59	75-34-3	
1,2-Dichloroethane	<0.22	ug/L	0.73	0.22	1		06/27/18 15:59	107-06-2	
1,1-Dichloroethene	<0.16	ug/L	0.53	0.16	1		06/27/18 15:59	75-35-4	
cis-1,2-Dichloroethene	<0.15	ug/L	0.51	0.15	1		06/27/18 15:59	156-59-2	
trans-1,2-Dichloroethene	<0.12	ug/L	0.39	0.12	1		06/27/18 15:59	156-60-5	
Dichlorofluoromethane	<0.14	ug/L	0.47	0.14	1		06/27/18 15:59	75-43-4	N2
1,2-Dichloropropane	<0.16	ug/L	0.55	0.16	1		06/27/18 15:59	78-87-5	
1,3-Dichloropropane	<0.070	ug/L	0.23	0.070	1		06/27/18 15:59	142-28-9	
2,2-Dichloropropane	<0.17	ug/L	0.57	0.17	1		06/27/18 15:59	594-20-7	
1,1-Dichloropropene	<0.20	ug/L	0.66	0.20	1		06/27/18 15:59	563-58-6	
cis-1,3-Dichloropropene	<0.20	ug/L	0.68	0.20	1		06/27/18 15:59	10061-01-5	
trans-1,3-Dichloropropene	<0.18	ug/L	0.61	0.18	1		06/27/18 15:59	10061-02-6	
Diethyl ether (Ethyl ether)	<0.095	ug/L	0.32	0.095	1		06/27/18 15:59	60-29-7	
Ethylbenzene	<0.14	ug/L	0.46	0.14	1		06/27/18 15:59	100-41-4	
Hexachloro-1,3-butadiene	<0.31	ug/L	1.0	0.31	1		06/27/18 15:59	87-68-3	
Isopropylbenzene (Cumene)	<0.18	ug/L	0.62	0.18	1		06/27/18 15:59	98-82-8	
p-Isopropyltoluene	<0.15	ug/L	0.51	0.15	1		06/27/18 15:59	99-87-6	
Methylene Chloride	<0.98	ug/L	3.3	0.98	1		06/27/18 15:59	75-09-2	
4-Methyl-2-pentanone (MIBK)	<0.42	ug/L	1.4	0.42	1		06/27/18 15:59	108-10-1	
Methyl-tert-butyl ether	<0.16	ug/L	0.54	0.16	1		06/27/18 15:59	1634-04-4	
Naphthalene	<0.48	ug/L	1.6	0.48	1		06/27/18 15:59	91-20-3	
n-Propylbenzene	<0.10	ug/L	0.34	0.10	1		06/27/18 15:59	103-65-1	
Styrene	<0.19	ug/L	0.62	0.19	1		06/27/18 15:59	100-42-5	
1,1,1,2-Tetrachloroethane	<0.20	ug/L	0.65	0.20	1		06/27/18 15:59	630-20-6	
1,1,2,2-Tetrachloroethane	<0.17	ug/L	0.57	0.17	1		06/27/18 15:59	79-34-5	
Tetrachloroethene	<0.17	ug/L	0.57	0.17	1		06/27/18 15:59	127-18-4	
Tetrahydrofuran	<2.2	ug/L	7.4	2.2	1		06/27/18 15:59	109-99-9	
Toluene	2.1	ug/L	0.28	0.083	1		06/27/18 15:59	108-88-3	
1,2,3-Trichlorobenzene	<0.21	ug/L	0.69	0.21	1		06/27/18 15:59	87-61-6	
1,2,4-Trichlorobenzene	<0.20	ug/L	0.66	0.20	1		06/27/18 15:59	120-82-1	
1,1,1-Trichloroethane	<0.14	ug/L	0.45	0.14	1		06/27/18 15:59	71-55-6	
1,1,2-Trichloroethane	<0.18	ug/L	0.60	0.18	1		06/27/18 15:59	79-00-5	
Trichloroethene	<0.15	ug/L	0.50	0.15	1		06/27/18 15:59	79-01-6	
Trichlorofluoromethane	<0.23	ug/L	0.77	0.23	1		06/27/18 15:59	75-69-4	
1,2,3-Trichloropropane	<0.26	ug/L	0.86	0.26	1		06/27/18 15:59	96-18-4	
1,1,2-Trichlorotrifluoroethane	<0.22	ug/L	0.72	0.22	1		06/27/18 15:59	76-13-1	
1,2,4-Trimethylbenzene	<0.20	ug/L	0.65	0.20	1		06/27/18 15:59	95-63-6	
1,3,5-Trimethylbenzene	<0.12	ug/L	0.41	0.12	1		06/27/18 15:59	108-67-8	
Vinyl chloride	<0.092	ug/L	0.31	0.092	1		06/27/18 15:59	75-01-4	
Xylene (Total)	<0.31	ug/L	1.0	0.31	1		06/27/18 15:59	1330-20-7	
Surrogates		0/						47000 07 -	
1,2-Dichloroethane-d4 (S)	100	%.	75-125		1		06/27/18 15:59	17060-07-0	
Ioluene-d8 (S)	98	%.	75-125		1		06/27/18 15:59	2037-26-5	
4-Bromotluorobenzene (S)	98	%.	75-125		1		06/27/18 15:59	460-00-4	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

Sample: Trip Blank	Lab ID:	10436863012	Collecte	d: 06/21/18	3 00:00	Received: 06	6/22/18 20:00 Ma	atrix: Water	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260B VOC	Analytica	l Method: EPA 8	260B						
Acetone	<9.2	ug/L	30.8	9.2	1		06/27/18 15:42	67-64-1	
Allyl chloride	<0.29	ug/L	0.97	0.29	1		06/27/18 15:42	107-05-1	
Benzene	<0.10	ug/L	0.34	0.10	1		06/27/18 15:42	71-43-2	
Bromobenzene	<0.21	ug/L	0.69	0.21	1		06/27/18 15:42	108-86-1	
Bromochloromethane	<0.27	ug/L	0.91	0.27	1		06/27/18 15:42	74-97-5	
Bromodichloromethane	<0.22	ug/L	0.72	0.22	1		06/27/18 15:42	75-27-4	
Bromoform	<0.80	ug/L	2.7	0.80	1		06/27/18 15:42	75-25-2	
Bromomethane	<1.8	ug/L	6.1	1.8	1		06/27/18 15:42	74-83-9	
2-Butanone (MEK)	<0.99	ug/L	3.3	0.99	1		06/27/18 15:42	78-93-3	
n-Butylbenzene	<0.24	ug/L	0.80	0.24	1		06/27/18 15:42	104-51-8	
sec-Butylbenzene	<0.15	ug/L	0.50	0.15	1		06/27/18 15:42	135-98-8	
tert-Butylbenzene	<0.15	ug/L	0.49	0.15	1		06/27/18 15:42	98-06-6	
Carbon tetrachloride	<0.19	ug/L	0.63	0.19	1		06/27/18 15:42	56-23-5	
Chlorobenzene	<0.17	ug/L	0.57	0.17	1		06/27/18 15:42	108-90-7	
Chloroethane	<0.49	ug/L	1.6	0.49	1		06/27/18 15:42	75-00-3	
Chloroform	<0.45	ug/L	1.5	0.45	1		06/27/18 15:42	67-66-3	
Chloromethane	<0.16	ug/L	0.52	0.16	1		06/27/18 15:42	74-87-3	
2-Chlorotoluene	<0.16	ug/L	0.54	0.16	1		06/27/18 15:42	95-49-8	
4-Chlorotoluene	<0.13	ug/L	0.45	0.13	1		06/27/18 15:42	106-43-4	
1,2-Dibromo-3-chloropropane	<1.7	ug/L	5.5	1.7	1		06/27/18 15:42	96-12-8	
Dibromochloromethane	<0.12	ug/L	0.41	0.12	1		06/27/18 15:42	124-48-1	
1,2-Dibromoethane (EDB)	<0.24	ug/L	0.80	0.24	1		06/27/18 15:42	106-93-4	
Dibromomethane	<0.16	ug/L	0.54	0.16	1		06/27/18 15:42	74-95-3	
1,2-Dichlorobenzene	<0.14	ug/L	0.46	0.14	1		06/27/18 15:42	95-50-1	
1,3-Dichlorobenzene	<0.16	ug/L	0.54	0.16	1		06/27/18 15:42	541-73-1	
1,4-Dichlorobenzene	<0.17	ug/L	0.56	0.17	1		06/27/18 15:42	106-46-7	
Dichlorodifluoromethane	<0.23	ug/L	0.78	0.23	1		06/27/18 15:42	75-71-8	
1,1-Dichloroethane	<0.17	ug/L	0.57	0.17	1		06/27/18 15:42	75-34-3	
1,2-Dichloroethane	<0.22	ug/L	0.73	0.22	1		06/27/18 15:42	107-06-2	
1,1-Dichloroethene	<0.16	ug/L	0.53	0.16	1		06/27/18 15:42	75-35-4	
cis-1,2-Dichloroethene	<0.15	ug/L	0.51	0.15	1		06/27/18 15:42	156-59-2	
trans-1,2-Dichloroethene	<0.12	ug/L	0.39	0.12	1		06/27/18 15:42	156-60-5	NO
Dichlorofluoromethane	<0.14	ug/L	0.47	0.14	1		06/27/18 15:42	75-43-4	N2
1,2-Dichloropropane	<0.16	ug/L	0.55	0.16	1		06/27/18 15:42	/8-8/-5	
1,3-Dichloropropane	<0.070	ug/L	0.23	0.070	1		06/27/18 15:42	142-28-9	
2,2-Dichloropropane	<0.17	ug/L	0.57	0.17	1		06/27/18 15:42	594-20-7	
	<0.20	ug/L	0.66	0.20	1		06/27/18 15:42	563-58-6	
cis-1,3-Dichloropropene	<0.20	ug/L	0.68	0.20	1		06/27/18 15:42	10061-01-5	
lians-1,3-Dichloropropene	<0.10	ug/L	0.01	0.10	1		06/27/18 15:42	10061-02-6	
	<0.095	ug/L	0.32	0.095	1		06/27/18 15:42	60-29-7	
LutyDellZelle	<0.14	ug/L	0.40	0.14	1		06/27/10 15:42	97 69 2	
	<0.31 -0.10	ug/L	0.62	0.31	1		06/27/19 15:42	01-00-3	
	<u.18< td=""><td>ug/L</td><td>0.02</td><td>0.10</td><td>1</td><td></td><td>06/27/10 15:42</td><td>30-02-0 00 87 6</td><td></td></u.18<>	ug/L	0.02	0.10	1		06/27/10 15:42	30-02-0 00 87 6	
Mothylono Chlorida	<0.13 -0.09	ug/L	0.01	0.10	1		06/27/10 10.42	75 00 2	
Mothyl 2 pontonona (MIDIC)	<0.38	ug/L	3.3 1 1	0.90	1		06/07/49 45:40	109 10 1	
4-ivietriyi-z-peritanone (iviibit)	<0.42	uy/L	1.4	0.42	1		00/21/10 15:42	100-10-1	

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

Sample: Trip Blank	Lab ID:	10436863012	12 Collected: 06/21/18 00:00			0 Received: 06/22/18 20:00 Matrix: Water				
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual	
8260B VOC	Analytical	Method: EPA 8	260B							
Methyl-tert-butyl ether	<0.16	ug/L	0.54	0.16	1		06/27/18 15:42	1634-04-4		
Naphthalene	<0.48	ug/L	1.6	0.48	1		06/27/18 15:42	91-20-3		
n-Propylbenzene	<0.10	ug/L	0.34	0.10	1		06/27/18 15:42	103-65-1		
Styrene	<0.19	ug/L	0.62	0.19	1		06/27/18 15:42	100-42-5		
1,1,1,2-Tetrachloroethane	<0.20	ug/L	0.65	0.20	1		06/27/18 15:42	630-20-6		
1,1,2,2-Tetrachloroethane	<0.17	ug/L	0.57	0.17	1		06/27/18 15:42	79-34-5		
Tetrachloroethene	<0.17	ug/L	0.57	0.17	1		06/27/18 15:42	127-18-4		
Tetrahydrofuran	<2.2	ug/L	7.4	2.2	1		06/27/18 15:42	109-99-9		
Toluene	<0.083	ug/L	0.28	0.083	1		06/27/18 15:42	108-88-3		
1,2,3-Trichlorobenzene	<0.21	ug/L	0.69	0.21	1		06/27/18 15:42	87-61-6		
1,2,4-Trichlorobenzene	<0.20	ug/L	0.66	0.20	1		06/27/18 15:42	120-82-1		
1,1,1-Trichloroethane	<0.14	ug/L	0.45	0.14	1		06/27/18 15:42	71-55-6		
1,1,2-Trichloroethane	<0.18	ug/L	0.60	0.18	1		06/27/18 15:42	79-00-5		
Trichloroethene	<0.15	ug/L	0.50	0.15	1		06/27/18 15:42	79-01-6		
Trichlorofluoromethane	<0.23	ug/L	0.77	0.23	1		06/27/18 15:42	75-69-4		
1,2,3-Trichloropropane	<0.26	ug/L	0.86	0.26	1		06/27/18 15:42	96-18-4		
1,1,2-Trichlorotrifluoroethane	<0.22	ug/L	0.72	0.22	1		06/27/18 15:42	76-13-1		
1,2,4-Trimethylbenzene	<0.20	ug/L	0.65	0.20	1		06/27/18 15:42	95-63-6		
1,3,5-Trimethylbenzene	<0.12	ug/L	0.41	0.12	1		06/27/18 15:42	108-67-8		
Vinyl chloride	<0.092	ug/L	0.31	0.092	1		06/27/18 15:42	75-01-4		
Xylene (Total)	<0.31	ug/L	1.0	0.31	1		06/27/18 15:42	1330-20-7		
Surrogates										
1,2-Dichloroethane-d4 (S)	100	%.	75-125		1		06/27/18 15:42	17060-07-0		
Toluene-d8 (S)	98	%.	75-125		1		06/27/18 15:42	2037-26-5		
4-Bromofluorobenzene (S)	96	%.	75-125		1		06/27/18 15:42	460-00-4		

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

Sample: MeOH Trip Blank	Lab ID:	10436863013	Collecte	d: 06/21/18	3 00:00	Received: 06/	/22/18 20:00 Ma	atrix: Solid	
Results reported on a "wet-weight	" basis								
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytica	Method: EPA 8	260 Prepa	ration Meth	od: EP/	A 5035/5030B			
1,1,1-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	71-55-6	W
1,1,2,2-Tetrachloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	79-34-5	W
1,1,2-Trichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	79-00-5	W
1,1-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	75-34-3	W
1,1-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	75-35-4	W
1,2-Dichloroethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	107-06-2	W
1,2-Dichloropropane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	78-87-5	W
2-Butanone (MEK)	<107	ug/kg	250	107	1	06/28/18 11:30	06/28/18 17:17	78-93-3	W
2-Hexanone	<52.0	ug/kg	250	52.0	1	06/28/18 11:30	06/28/18 17:17	591-78-6	W
4-Methyl-2-pentanone (MIBK)	<41.1	ug/kg	250	41.1	1	06/28/18 11:30	06/28/18 17:17	108-10-1	W
Acetone	<77.8	ug/kg	250	77.8	1	06/28/18 11:30	06/28/18 17:17	67-64-1	W
Benzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	71-43-2	W
Bromodichloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	75-27-4	W
Bromoform	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	75-25-2	W
Bromomethane	<69.9	ug/kg	250	69.9	1	06/28/18 11:30	06/28/18 17:17	74-83-9	W
Carbon disulfide	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	75-15-0	W
Carbon tetrachloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	56-23-5	W
Chlorobenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	108-90-7	W
Chloroethane	<67.0	ug/kg	250	67.0	1	06/28/18 11:30	06/28/18 17:17	75-00-3	W
Chloroform	<46.4	ug/kg	250	46.4	1	06/28/18 11:30	06/28/18 17:17	67-66-3	W
Chloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	74-87-3	W
Dibromochloromethane	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	124-48-1	W
Ethylbenzene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	100-41-4	W
Methyl-tert-butyl ether	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	1634-04-4	W
Methylene Chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	75-09-2	W
Styrene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	100-42-5	W
Tetrachloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	127-18-4	W
Toluene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	108-88-3	W
Trichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	79-01-6	W
Vinyl chloride	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	75-01-4	W
cis-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	156-59-2	W
cis-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	10061-01-5	W
m&p-Xylene	<50.0	ug/kg	120	50.0	1	06/28/18 11:30	06/28/18 17:17	179601-23-1	W
o-Xylene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	95-47-6	W
trans-1,2-Dichloroethene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	156-60-5	W
trans-1,3-Dichloropropene	<25.0	ug/kg	60.0	25.0	1	06/28/18 11:30	06/28/18 17:17	10061-02-6	W
Surrogates									
Dibromofluoromethane (S)	110	%	57-148		1	06/28/18 11:30	06/28/18 17:17	1868-53-7	
Toluene-d8 (S)	102	%	58-142		1	06/28/18 11:30	06/28/18 17:17	2037-26-5	
4-Bromofluorobenzene (S)	94	%	48-130		1	06/28/18 11:30	06/28/18 17:17	460-00-4	

REPORT OF LABORATORY ANALYSIS

Project:	49161423.	00 Husky Pł	nase II										
Pace Project No.:	10436863												
QC Batch:	546627			Analys	is Method	: E	PA 7471B						
QC Batch Method:	EPA 7471	IB		Analys	is Descrip	tion: 7	471B Mercu	ry Solids					
Associated Lab Sar	nples: 10 10	436863001, 436863008,	10436863002 10436863009	, 10436863 , 10436863	003, 1043 010	6863004, 1	10436863005	5, 1043686	3006, 1043	6863007,			
METHOD BLANK:	2972710			Ν	latrix: Sol	id							
Associated Lab Sar	nples: 10 10	436863001, 436863008,	10436863002 10436863009	, 10436863 , 10436863	003, 1043 010	6863004, 1	10436863005	5, 1043686	3006, 1043	6863007,			
				Blank	R	eporting							
Parar	neter		Units	Result	t	Limit	Analyz	ed	Qualifiers				
Mercury			mg/kg	<0.	0080	0.027	06/28/18	17:42					
LABORATORY CO	NTROL SAM	1PLE: 297	2711										
				Spike	LCS	6	LCS	% Red	b				
Parar	neter		Units	Conc.	Resu	ılt	% Rec	Limits	s Qi	ualifiers			
Mercury			mg/kg	.47		0.46	98	80)-120		-		
MATRIX SPIKE & N	ATRIX SPI		ATE: 29727	12		2972713							
				MS	MSD								
		1	0436863001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury		mg/kg	0.023J	.62	.62	0.63	0.64	97	98	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project:	49161423	8.00 Husky	Phase II										
Pace Project No.:	10436863	5											
QC Batch:	546886			Analys	sis Method	: E	PA 6010D						
QC Batch Method:	EPA 305	50		Analys	sis Descrip	tion: 60	010D Solids	;					
Associated Lab Sam	nples: 1 1	043686300 043686300	1, 10436863002, 8, 10436863009,	10436863 10436863	8003, 1043 8010	6863004, 1	043686300	5, 1043686	3006, 1043	6863007,			
METHOD BLANK:	2973660			P	Matrix: Sol	lid							
Associated Lab Sam	nples: 1	043686300 043686300	1, 10436863002, 8, 10436863009,	10436863 10436863	8003, 1043 8010	6863004, 1	043686300	5, 1043686	3006, 1043	6863007,			
				Blank	K R	Reporting							
Param	neter		Units	Resu	lt	Limit	Analyz		Qualifiers	_			
Arsenic			mg/kg		<0.35	1.2	06/27/18	06:51					
Barium			mg/kg		<0.18	0.60	06/27/18	06:51					
Cadmium			mg/kg	<	0.054	0.18	06/27/18	06:51					
Chromium			mg/kg		<0.22	0.74	06/27/18	06:51					
Lead			mg/kg		<0.23	0.77	06/27/18	06:51					
Selenium			mg/kg		<0.40 0.092	1.3	06/27/10	06.51					
Siver			ilig/kg		0.002	0.27	00/27/18	00.51					
LABORATORY COM	NTROL SA	MPLE: 29	973661										
_				Spike	LCS	S	LCS	% Rec	;				
Param	neter		Units	Conc.	Resu	ult	% Rec	Limits	Qı	alifiers			
Arsenic			mg/kg	50)	48.7	97	80	-120				
Barium			mg/kg	50)	51.9	104	80	-120				
Cadmium			mg/kg	50)	50.8	102	80	-120				
Chromium			mg/kg	50)	52.0	104	80	-120				
Lead			mg/kg	50)	51.9	104	80	-120				
Selenium			mg/kg	50)	47.4	95	80	-120				
Silver			mg/kg	25)	25.0	100	80	-120				
MATRIX SPIKE & M	IATRIX SP		CATE: 297366	62		2973663							
				MS	MSD								
			10436863001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Arsenic		mg/kg	3.1	67.7	67.7	50.0	54.7	69	76	75-125	9	20	M1
Barium		mg/kg	245	67.7	67.7	326	284	119	57	75-125	14	20	M1
Cadmium		mg/kg	<0.075	67.7	67.7	50.8	55.8	75	82	75-125	9	20	
Chromium		mg/kg	49.6	67.7	67.7	113	123	94	108	75-125	8	20	
Lead		mg/kg	10.5	67.7	67.7	70.8	78.8	89	101	75-125	11	20	
Selenium		mg/kg	0.56J	67.7	67.7	45.5	48.9	66	71	75-125	7	20	M1
Silver		mg/kg	<0.11	33.9	33.9	24.4	27.0	72	80	75-125	10	20	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	49161423.00 Husky	Phase II							
Pace Project No .:	10436863								
QC Batch:	547426		Analysis Meth	iod:	ASTM D2974				
QC Batch Method:	ASTM D2974		Analysis Desc	ription:	Dry Weight / %	M by AST	M D2974		
Associated Lab San	nples: 1043686300 1043686300	01, 1043686300 08, 1043686300	02, 10436863003, 10 09, 10436863010	436863004,	10436863005,	1043686	3006, 1043	6863007,	
SAMPLE DUPLICA	TE: 2975910								
			10436863001	Dup			Max		
Paran	neter	Units	Result	Result	RPD	I	RPD	Qualifiers	
Percent Moisture		%	27.6	27.	4	1	30		
SAMPLE DUPLICA	TE: 2975911								
			10436863010	Dup			Max		
Paran	neter	Units	Result	Result	RPD	I	RPD	Qualifiers	
Percent Moisture		%	28.1	28.	4	1	30		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project:	4916142	23.00 Husky Phase II						
Pace Project No.:	104368	63						
QC Batch:	29318	4	Analysis Meth	nod:	EP	A 8260		
QC Batch Method:	EPA 5	035/5030B	Analysis Dese	cription:	826	60 MSV Med Level	Normal List	
Associated Lab Sar	nples:	10436863001, 10436863002,	10436863003, 10	0436863004,	. 10	436863005, 10436	863006, 10436863007,	
		10436863008, 10436863009,	10436863010, 10	0436863013		·		
METHOD BLANK:	171446	6	Matrix:	Solid				
Associated Lab Sar	nples:	10436863001, 10436863002, 10436863008, 10436863009,	10436863003, 10 10436863010, 10)436863004,)436863013	, 10	436863005, 10436	863006, 10436863007,	
			Blank	Reporting				
Parar	neter	Units	Result	Limit		Analyzed	Qualifiers	
1,1,1-Trichloroethar	ne	ug/kg	<14.4	50	0.0	06/28/18 15:01		
1,1,2,2-Tetrachloroe	ethane	ug/kg	<17.5	50	0.0	06/28/18 15:01		
1,1,2-Trichloroethar	ne	ug/kg	<20.2	50	0.0	06/28/18 15:01		
1,1-Dichloroethane		ug/kg	<17.6	50	0.0	06/28/18 15:01		
1,1-Dichloroethene		ug/kg	<17.6	50	0.0	06/28/18 15:01		
1,2-Dichloroethane		ug/kg	<15.0	50	0.0	06/28/18 15:01		
1,2-Dichloropropan	е	ug/kg	<16.8	50	0.0	06/28/18 15:01		
2-Butanone (MEK)		ug/kg	<124	25	50	06/28/18 15:01		
2-Hexanone		ug/kg	<52.0	25	50	06/28/18 15:01		
4-Methyl-2-pentano	ne (MIBK	.) ug/kg	<41.1	25	50	06/28/18 15:01		
Acetone		ug/kg	<98.6	25	50	06/28/18 15:01		
Benzene		ug/kg	<9.2	20	0.0	06/28/18 15:01		
Bromodichlorometh	ane	ug/kg	<9.8	50	0.0	06/28/18 15:01		
Bromoform		ug/kg	<19.8	50	0.0	06/28/18 15:01		
Bromomethane		ug/kg	<69.9	25	50	06/28/18 15:01		
Carbon disulfide		ug/kg	<11.1	50	0.0	06/28/18 15:01		
Carbon tetrachlorid	е	ug/kg	<12.1	50	0.0	06/28/18 15:01		
Chlorobenzene		ug/kg	<14.8	50	0.0	06/28/18 15:01		
Chloroethane		ug/kg	<67.0	25	50	06/28/18 15:01		
Chloroform		ug/kg	<46.4	25	50	06/28/18 15:01		
Chloromethane		ug/kg	<20.4	50	0.0	06/28/18 15:01		
cis-1,2-Dichloroethe	ene	ug/kg	<16.6	50	0.0	06/28/18 15:01		
cis-1,3-Dichloroprop	bene	ug/kg	<16.6	50	0.0	06/28/18 15:01		
Dibromochlorometh	ane	ug/kg	<17.9	50	0.0	06/28/18 15:01		
Ethylbenzene		ug/kg	<12.4	50	0.0	06/28/18 15:01		
m&p-Xylene		ug/kg	<34.4	10	00	06/28/18 15:01		
Methyl-tert-butyl eth	ner	ug/kg	<12.7	50	0.0	06/28/18 15:01		
Methylene Chloride		ug/kg	<16.2	50	0.0	06/28/18 15:01		
o-Xylene		ug/kg	<14.0	50	0.0	06/28/18 15:01		
Styrene		ug/kg	<9.0	50	0.0	06/28/18 15:01		
		ug/kg	<12.9	50	0.0	06/28/18 15:01		
Ioluene		ug/kg	<11.2	50	0.0	06/28/18 15:01		
trans-1,2-Dichloroe	inene	ug/kg	<16.5	50	0.0	06/28/18 15:01		
trans-1,3-Dichlorop	ropene	ug/kg	<14.4	50	0.0	06/28/18 15:01		
		ug/kg	<23.6	50	0.0	06/28/18 15:01		
		ug/kg	<21.1	50	1.U	06/28/18 15:01		
4-Bromofluorobenz		% 0/	93	48-13	3U 40	06/28/18 15:01		
	ane (S)	70 0/	110	57-14	+0 40	00/20/10 13:01		
10106116-00 (3)		70	107	30-14	+∠	00/20/10 10:01		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

LABORATORY CONTROL SAMPLE: 1714467

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2590	104	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2840	114	68-130	
1,1,2-Trichloroethane	ug/kg	2500	2610	104	70-130	
1,1-Dichloroethane	ug/kg	2500	2550	102	67-132	
1,1-Dichloroethene	ug/kg	2500	2740	110	67-128	
1,2-Dichloroethane	ug/kg	2500	2500	100	65-137	
1,2-Dichloropropane	ug/kg	2500	2820	113	75-126	
Benzene	ug/kg	2500	2470	99	70-130	
Bromodichloromethane	ug/kg	2500	2750	110	70-130	
Bromoform	ug/kg	2500	2310	92	57-117	
Bromomethane	ug/kg	2500	2360	94	48-135	
Carbon disulfide	ug/kg	2500	2580	103	66-143	
Carbon tetrachloride	ug/kg	2500	2650	106	65-133	
Chlorobenzene	ug/kg	2500	2590	103	70-130	
Chloroethane	ug/kg	2500	2500	100	37-165	
Chloroform	ug/kg	2500	2530	101	72-126	
Chloromethane	ug/kg	2500	1960	78	34-120	
cis-1,2-Dichloroethene	ug/kg	2500	2430	97	70-130	
cis-1,3-Dichloropropene	ug/kg	2500	2700	108	69-130	
Dibromochloromethane	ug/kg	2500	2610	104	68-130	
Ethylbenzene	ug/kg	2500	2630	105	79-121	
m&p-Xylene	ug/kg	5000	5260	105	70-130	
Methyl-tert-butyl ether	ug/kg	2500	2370	95	66-129	
Methylene Chloride	ug/kg	2500	2580	103	68-129	
o-Xylene	ug/kg	2500	2670	107	70-130	
Styrene	ug/kg	2500	2660	107	70-130	
Tetrachloroethene	ug/kg	2500	2630	105	70-130	
Toluene	ug/kg	2500	2660	106	80-123	
trans-1,2-Dichloroethene	ug/kg	2500	2540	102	70-130	
trans-1,3-Dichloropropene	ug/kg	2500	2290	91	67-130	
Trichloroethene	ug/kg	2500	2720	109	70-130	
Vinyl chloride	ug/kg	2500	2080	83	52-122	
4-Bromofluorobenzene (S)	%			98	48-130	
Dibromofluoromethane (S)	%			105	57-148	
Toluene-d8 (S)	%			101	58-142	

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	CATE: 17144	68		1714469							
		10436863004	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1-Trichloroethane	ug/kg	<25.0	1660	1660	1500	1440	90	87	62-130	4	20	
1,1,2,2-Tetrachloroethane	ug/kg	<25.0	1660	1660	1670	1550	101	94	64-137	7	20	
1,1,2-Trichloroethane	ug/kg	<25.0	1660	1660	1650	1520	100	92	70-130	8	20	
1,1-Dichloroethane	ug/kg	<25.0	1660	1660	1590	1510	96	91	65-132	5	20	
1,1-Dichloroethene	ug/kg	<25.0	1660	1660	1460	1410	88	85	50-128	4	21	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 17144	68		1714469							
			MS	MSD								
	1	0436863004	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2-Dichloroethane	ug/kg	<25.0	1660	1660	1670	1570	101	95	65-139	6	20	
1,2-Dichloropropane	ug/kg	<25.0	1660	1660	1790	1660	108	100	74-128	8	20	
Benzene	ug/kg	<25.0	1660	1660	1550	1470	93	89	66-132	5	20	
Bromodichloromethane	ug/kg	<25.0	1660	1660	1710	1650	103	99	69-130	4	20	
Bromoform	ug/kg	<25.0	1660	1660	1600	1550	97	94	57-130	3	20	
Bromomethane	ug/kg	<69.9	1660	1660	1330	1250	80	75	34-145	6	20	
Carbon disulfide	ug/kg	<25.0	1660	1660	1320	1270	80	77	48-143	4	20	
Carbon tetrachloride	ug/kg	<25.0	1660	1660	1480	1460	90	88	54-133	2	20	
Chlorobenzene	ug/kg	<25.0	1660	1660	1670	1590	101	96	70-130	5	20	
Chloroethane	ug/kg	<67.0	1660	1660	1370	1360	83	82	33-165	1	20	
Chloroform	ug/kg	<46.4	1660	1660	1650	1570	99	95	72-128	5	20	
Chloromethane	ug/kg	<25.0	1660	1660	836	777	50	47	20-120	7	20	
cis-1,2-Dichloroethene	ug/kg	<25.0	1660	1660	1620	1480	98	90	69-130	9	20	
cis-1,3-Dichloropropene	ug/kg	<25.0	1660	1660	1620	1500	98	91	65-130	7	20	
Dibromochloromethane	ug/kg	<25.0	1660	1660	1620	1460	98	88	65-130	10	20	
Ethylbenzene	ug/kg	<25.0	1660	1660	1590	1480	96	90	63-127	7	20	
m&p-Xylene	ug/kg	<50.0	3310	3310	3250	3100	98	94	70-130	5	20	
Methyl-tert-butyl ether	ug/kg	<25.0	1660	1660	1480	1390	89	84	62-135	6	20	
Methylene Chloride	ug/kg	<25.0	1660	1660	1670	1560	101	94	68-129	7	20	
o-Xylene	ug/kg	<25.0	1660	1660	1620	1530	98	92	69-130	6	20	
Styrene	ug/kg	<25.0	1660	1660	1720	1580	104	96	70-130	8	20	
Tetrachloroethene	ug/kg	<25.0	1660	1660	1570	1540	95	93	70-130	2	20	
Toluene	ug/kg	<25.0	1660	1660	1680	1580	102	95	80-123	6	20	
trans-1,2-Dichloroethene	ug/kg	<25.0	1660	1660	1590	1420	96	86	70-130	11	20	
trans-1,3-Dichloropropene	ug/kg	<25.0	1660	1660	1460	1370	88	83	67-130	6	20	
Trichloroethene	ug/kg	<25.0	1660	1660	1640	1590	99	96	70-130	3	20	
Vinyl chloride	ug/kg	<25.0	1660	1660	928	899	56	54	39-122	3	20	
4-Bromofluorobenzene (S)	%						97	90	48-130			
Dibromofluoromethane (S)	%						106	100	57-148			
Toluene-d8 (S)	%						102	96	58-142			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

,

QC Batch:	547301	Analysis Method:	EPA 8260B
QC Batch Method:	EPA 8260B	Analysis Description:	8260B MSV 465 W
Associated Lab Sam	ples: 10436863011, 10436863012		

Matrix: Water

METHOD BLANK: 2975400

Associated Lab Samples: 10436863011, 10436863012

Associated Lab Samples. 1043	30803011, 10436863012	5			
_		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	<0.20	0.65	06/27/18 12:47	
1,1,1-Trichloroethane	ug/L	<0.14	0.45	06/27/18 12:47	
1,1,2,2-Tetrachloroethane	ug/L	<0.17	0.57	06/27/18 12:47	
1,1,2-Trichloroethane	ug/L	<0.18	0.60	06/27/18 12:47	
1,1,2-Trichlorotrifluoroethane	ug/L	<0.22	0.72	06/27/18 12:47	
1,1-Dichloroethane	ug/L	<0.17	0.57	06/27/18 12:47	
1,1-Dichloroethene	ug/L	<0.16	0.53	06/27/18 12:47	
1,1-Dichloropropene	ug/L	<0.20	0.66	06/27/18 12:47	
1,2,3-Trichlorobenzene	ug/L	<0.21	0.69	06/27/18 12:47	
1,2,3-Trichloropropane	ug/L	<0.26	0.86	06/27/18 12:47	
1,2,4-Trichlorobenzene	ug/L	<0.20	0.66	06/27/18 12:47	
1,2,4-Trimethylbenzene	ug/L	<0.20	0.65	06/27/18 12:47	
1,2-Dibromo-3-chloropropane	ug/L	<1.7	5.5	06/27/18 12:47	
1,2-Dibromoethane (EDB)	ug/L	<0.24	0.80	06/27/18 12:47	
1,2-Dichlorobenzene	ug/L	<0.14	0.46	06/27/18 12:47	
1,2-Dichloroethane	ug/L	<0.22	0.73	06/27/18 12:47	
1,2-Dichloropropane	ug/L	<0.16	0.55	06/27/18 12:47	
1,3,5-Trimethylbenzene	ug/L	<0.12	0.41	06/27/18 12:47	
1,3-Dichlorobenzene	ug/L	<0.16	0.54	06/27/18 12:47	
1,3-Dichloropropane	ug/L	<0.070	0.23	06/27/18 12:47	
1,4-Dichlorobenzene	ug/L	<0.17	0.56	06/27/18 12:47	
2,2-Dichloropropane	ug/L	<0.17	0.57	06/27/18 12:47	
2-Butanone (MEK)	ug/L	<0.99	3.3	06/27/18 12:47	
2-Chlorotoluene	ug/L	<0.16	0.54	06/27/18 12:47	
4-Chlorotoluene	ug/L	<0.13	0.45	06/27/18 12:47	
4-Methyl-2-pentanone (MIBK)	ug/L	<0.42	1.4	06/27/18 12:47	
Acetone	ug/L	<9.2	30.8	06/27/18 12:47	
Allyl chloride	ug/L	<0.29	0.97	06/27/18 12:47	
Benzene	ug/L	<0.10	0.34	06/27/18 12:47	
Bromobenzene	ug/L	<0.21	0.69	06/27/18 12:47	
Bromochloromethane	ua/L	<0.27	0.91	06/27/18 12:47	
Bromodichloromethane	ua/L	<0.22	0.72	06/27/18 12:47	
Bromoform	ua/L	<0.80	2.7	06/27/18 12:47	
Bromomethane	ua/L	<1.8	6.1	06/27/18 12:47	
Carbon tetrachloride	ua/L	<0.19	0.63	06/27/18 12:47	
Chlorobenzene	ug/L	<0.17	0.57	06/27/18 12:47	
Chloroethane	ug/L	<0.49	1.6	06/27/18 12:47	
Chloroform	ug/L	<0.45	1.5	06/27/18 12:47	
Chloromethane	ua/L	<0.16	0.52	06/27/18 12:47	
cis-1,2-Dichloroethene	ua/L	<0.15	0.51	06/27/18 12:47	
cis-1,3-Dichloropropene	ug/L	<0.20	0.68	06/27/18 12:47	
	~9, L	30.EU	0.00		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

METHOD BLANK: 2975400		Matrix:	Water		
Associated Lab Samples: 10	0436863011, 10436863012				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Dibromochloromethane	ug/L	<0.12	0.41	06/27/18 12:47	-
Dibromomethane	ug/L	<0.16	0.54	06/27/18 12:47	
Dichlorodifluoromethane	ug/L	<0.23	0.78	06/27/18 12:47	
Dichlorofluoromethane	ug/L	<0.14	0.47	06/27/18 12:47	N2
Diethyl ether (Ethyl ether)	ug/L	<0.095	0.32	06/27/18 12:47	
Ethylbenzene	ug/L	<0.14	0.46	06/27/18 12:47	
Hexachloro-1,3-butadiene	ug/L	<0.31	1.0	06/27/18 12:47	
Isopropylbenzene (Cumene)	ug/L	<0.18	0.62	06/27/18 12:47	
Methyl-tert-butyl ether	ug/L	<0.16	0.54	06/27/18 12:47	
Methylene Chloride	ug/L	<0.98	3.3	06/27/18 12:47	
n-Butylbenzene	ug/L	<0.24	0.80	06/27/18 12:47	
n-Propylbenzene	ug/L	<0.10	0.34	06/27/18 12:47	
Naphthalene	ug/L	<0.48	1.6	06/27/18 12:47	
p-Isopropyltoluene	ug/L	<0.15	0.51	06/27/18 12:47	
sec-Butylbenzene	ug/L	<0.15	0.50	06/27/18 12:47	
Styrene	ug/L	<0.19	0.62	06/27/18 12:47	
tert-Butylbenzene	ug/L	<0.15	0.49	06/27/18 12:47	
Tetrachloroethene	ug/L	<0.17	0.57	06/27/18 12:47	
Tetrahydrofuran	ug/L	<2.2	7.4	06/27/18 12:47	
Toluene	ug/L	<0.083	0.28	06/27/18 12:47	
trans-1,2-Dichloroethene	ug/L	<0.12	0.39	06/27/18 12:47	
trans-1,3-Dichloropropene	ug/L	<0.18	0.61	06/27/18 12:47	
Trichloroethene	ug/L	<0.15	0.50	06/27/18 12:47	
Trichlorofluoromethane	ug/L	<0.23	0.77	06/27/18 12:47	
Vinyl chloride	ug/L	<0.092	0.31	06/27/18 12:47	
Xylene (Total)	ug/L	<0.31	1.0	06/27/18 12:47	
1,2-Dichloroethane-d4 (S)	%.	99	75-125	06/27/18 12:47	
4-Bromofluorobenzene (S)	%.	96	75-125	06/27/18 12:47	
Toluene-d8 (S)	%.	98	75-125	06/27/18 12:47	

LABORATORY CONTROL SAMPLE: 2975401

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	20	17.7	89	75-125	
1,1,1-Trichloroethane	ug/L	20	21.1	106	75-125	
1,1,2,2-Tetrachloroethane	ug/L	20	18.5	92	75-129	
1,1,2-Trichloroethane	ug/L	20	19.5	97	75-125	
1,1,2-Trichlorotrifluoroethane	ug/L	20	18.7	94	74-125	
1,1-Dichloroethane	ug/L	20	20.7	103	75-127	
1,1-Dichloroethene	ug/L	20	18.4	92	73-125	
1,1-Dichloropropene	ug/L	20	20.5	102	75-125	
1,2,3-Trichlorobenzene	ug/L	20	17.4	87	74-126	
1,2,3-Trichloropropane	ug/L	20	19.7	98	75-125	
1,2,4-Trichlorobenzene	ug/L	20	16.9	84	75-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

LABORATORY CONTROL SAMPLE: 2975401

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1.2.4-Trimethylbenzene	ua/L	20	18.4	92	75-125	
1.2-Dibromo-3-chloropropane	ug/L	50	44.2	88	64-129	
1.2-Dibromoethane (EDB)	ug/L	20	18.3	92	75-125	
1.2-Dichlorobenzene	ug/L	20	18.8	94	75-125	
1.2-Dichloroethane	ua/L	20	19.8	99	74-125	
1.2-Dichloropropane	ug/L	20	20.6	103	75-125	
1.3.5-Trimethylbenzene	ug/L	20	18.7	93	75-125	
1.3-Dichlorobenzene	ug/L	20	18.6	93	75-125	
1.3-Dichloropropane	ug/L	20	19.5	98	75-125	
1.4-Dichlorobenzene	ug/L	20	18.1	91	75-125	
2.2-Dichloropropane	ug/L	20	21.0	105	70-125	
2-Butanone (MEK)	ug/L	100	106	106	57-130	
2-Chlorotoluene	ug/L	20	18.0	90	75-125	
4-Chlorotoluene	ug/L	20	18.3	92	75-125	
4-Methyl-2-pentanone (MIBK)	ua/L	100	103	103	69-137	
Acetone	ug/L	100	98.0	98	32-150	
Allvl chloride	ug/L	20	18.5	93	64-135	
Benzene	ug/L	20	19.6	98	75-126	
Bromobenzene	ug/L	20	20.0	100	75-125	
Bromochloromethane	ug/L	20	21.9	109	75-126	
Bromodichloromethane	ug/L	20	19.3	96	75-125	
Bromoform	ug/L	20	17.0	85	67-125	
Bromomethane	ug/L	20	14.1	71	30-150	
Carbon tetrachloride	ug/L	20	18.0	90	75-125	
Chlorobenzene	ug/L	20	19.8	99	75-125	
Chloroethane	ug/l	20	16.1	81	64-142	
Chloroform	ug/L	20	19.7	99	75-125	
Chloromethane	ug/L	20	15.9	80	40-150	
cis-1.2-Dichloroethene	ug/l	20	21.3	107	75-125	
cis-1.3-Dichloropropene	ug/L	20	17.5	87	75-125	
Dibromochloromethane	ua/L	20	17.6	88	75-125	
Dibromomethane	ua/L	20	19.5	97	75-125	
Dichlorodifluoromethane	ua/L	20	14.4	72	61-132	
Dichlorofluoromethane	ua/L	20	18.3	92	75-129 N	12
Diethyl ether (Ethyl ether)	ua/L	20	20.1	101	74-125	
Ethylbenzene	ua/L	20	19.5	98	75-125	
Hexachloro-1.3-butadiene	ua/L	20	18.9	95	75-125	
Isopropylbenzene (Cumene)	ua/L	20	19.6	98	75-125	
Methyl-tert-butyl ether	ua/L	20	20.8	104	73-129	
Methylene Chloride	ua/L	20	19.9	.99	72-125	
n-Butvlbenzene	ua/L	20	16.8	84	75-125	
n-Propylbenzene	ua/L	20	18.4	92	75-125	
Naphthalene	ua/l	20	16.9	85	65-126	
p-lsopropyltoluene	ua/l	20	16.9	85	75-125	
sec-Butylbenzene	ug/L	20	17.9	89	75-125	
Styrene	ua/L	20	19.6	98	75-125	
tert-Butylbenzene	ua/L	20	18.3	92	75-125	
		=-				

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

LABORATORY CONTROL SAMPLE: 2975401

		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers	
Tetrachloroethene	ug/L		18.9	94	75-125		
Tetrahydrofuran	ug/L	200	206	103	30-150		
Toluene	ug/L	20	19.1	96	74-125		
trans-1,2-Dichloroethene	ug/L	20	19.9	99	70-126		
trans-1,3-Dichloropropene	ug/L	20	19.7	99	75-125		
Trichloroethene	ug/L	20	18.8	94	75-125		
Trichlorofluoromethane	ug/L	20	17.5	87	71-131		
Vinyl chloride	ug/L	20	18.1	90	65-137		
Xylene (Total)	ug/L	60	59.2	99	75-125		
1,2-Dichloroethane-d4 (S)	%.			101	75-125		
4-Bromofluorobenzene (S)	%.			96	75-125		
Toluene-d8 (S)	%.			100	75-125		

MATRIX SPIKE & MATRIX SPIK	2975424											
			MS	MSD								
	1	0436832003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,1,1,2-Tetrachloroethane	ug/L	<1.0	20	20	8.5	5.7	43	28	69-130	41	30	M1,R1
1,1,1-Trichloroethane	ug/L	<1.0	20	20	10.4	6.8	52	34	72-133	42	30	M1,R1
1,1,2,2-Tetrachloroethane	ug/L	<1.0	20	20	8.4	5.8	42	29	60-137	37	30	M1,R1
1,1,2-Trichloroethane	ug/L	<1.0	20	20	9.3	6.4	46	32	70-128	36	30	M1,R1
1,1,2-Trichlorotrifluoroethane	ug/L	<1.0	20	20	7.6	4.9	38	24	64-147	43	30	M1,R1
1,1-Dichloroethane	ug/L	<1.0	20	20	10.3	7.0	52	35	64-136	38	30	M1,R1
1,1-Dichloroethene	ug/L	<1.0	20	20	9.5	6.4	47	32	67-139	39	30	M1,R1
1,1-Dichloropropene	ug/L	<1.0	20	20	9.7	6.0	48	30	69-131	47	30	M1,R1
1,2,3-Trichlorobenzene	ug/L	<1.0	20	20	6.5	3.9	32	20	60-138	49	30	M1,R1
1,2,3-Trichloropropane	ug/L	<4.0	20	20	9.3	6.1	46	31	67-129	41	30	M1,R1
1,2,4-Trichlorobenzene	ug/L	<1.0	20	20	6.3	4.0	32	20	71-125	45	30	M1,R1
1,2,4-Trimethylbenzene	ug/L	<1.0	20	20	8.1	4.9	40	24	67-130	49	30	M1,R1
1,2-Dibromo-3-	ug/L	<4.0	50	50	19.6	13.2	39	26	52-141	39	30	M1,R1
chloropropane	-											
1,2-Dibromoethane (EDB)	ug/L	<1.0	20	20	8.7	6.1	43	31	66-130	34	30	M1,R1
1,2-Dichlorobenzene	ug/L	<1.0	20	20	8.2	5.2	41	26	72-126	44	30	M1,R1
1,2-Dichloroethane	ug/L	<1.0	20	20	9.5	6.9	47	35	64-125	32	30	M1,R1
1,2-Dichloropropane	ug/L	<4.0	20	20	9.9	6.9	50	34	65-128	37	30	M1,R1
1,3,5-Trimethylbenzene	ug/L	<1.0	20	20	8.0	4.8	40	24	63-139	51	30	M1,R1
1,3-Dichlorobenzene	ug/L	<1.0	20	20	7.9	4.9	39	24	70-128	47	30	M1,R1
1,3-Dichloropropane	ug/L	<1.0	20	20	9.2	6.3	46	31	70-131	38	30	M1,R1
1,4-Dichlorobenzene	ug/L	<1.0	20	20	7.6	5.0	38	25	74-125	42	30	M1,R1
2,2-Dichloropropane	ug/L	<4.0	20	20	10.9	7.5	55	37	58-137	38	30	M1,R1
2-Butanone (MEK)	ug/L	<5.0	100	100	50.6	35.1	51	35	45-132	36	30	M1,R1
2-Chlorotoluene	ug/L	<1.0	20	20	8.2	5.0	41	25	66-134	48	30	M1,R1
4-Chlorotoluene	ug/L	<1.0	20	20	7.9	4.9	40	25	70-132	46	30	M1,R1
4-Methyl-2-pentanone (MIBK)	ug/L	<5.0	100	100	49.1	33.6	49	34	54-143	38	30	M1,R1
Acetone	ug/L	<20.0	100	100	45.6	36.4	46	36	51-150	23	30	M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

MATRIX SPIKE & MATRIX SPI	KE DUPLI	CATE: 29754	23		2975424							
			MS	MSD								
		10436832003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Allyl chloride	ug/L	<4.0	20	20	8.9	6.7	45	34	52-150	28	30	M1
Benzene	ug/L	<1.0	20	20	9.7	6.6	48	32	62-140	38	30	M1,R1
Bromobenzene	ug/L	<1.0	20	20	9.3	5.9	47	29	70-128	45	30	M1,R1
Bromochloromethane	ug/L	<1.0	20	20	10.6	7.2	53	36	65-131	38	30	M1,R1
Bromodichloromethane	ug/L	<1.0	20	20	9.0	6.2	45	31	74-127	37	30	M1,R1
Bromoform	ug/L	<4.0	20	20	7.6	5.4	38	27	59-125	34	30	M1,R1
Bromomethane	ug/L	<4.0	20	20	9.8	5.8J	49	29	30-149	52	30	M1,R1
Carbon tetrachloride	ug/L	<1.0	20	20	8.7	5.6	44	28	67-134	43	30	M1,R1
Chlorobenzene	ug/L	<1.0	20	20	9.2	5.9	46	29	72-131	44	30	M1,R1
Chloroethane	ug/L	<1.0	20	20	13.5	7.0	67	35	55-150	63	30	M1,R1
Chloroform	ug/L	<1.0	20	20	9.3	6.4	47	32	67-125	38	30	M1,R1
Chloromethane	ua/L	<4.0	20	20	13.3	7.3	67	37	43-148	58	30	M1.R1
cis-1.2-Dichloroethene	ua/L	<1.0	20	20	10.3	7.0	51	35	62-132	38	30	M1.R1
cis-1.3-Dichloropropene	ua/L	<4.0	20	20	8.1	5.6	41	28	63-129	37	30	M1.R1
Dibromochloromethane	ua/l	<1.0	20	20	8.2	5.8	41	29	67-127	35	30	M1.R1
Dibromomethane	ua/l	<4.0	20	20	9.2	6.4	46	32	68-132	36	30	M1.R1
Dichlorodifluoromethane	ua/l	<1.0	20	20	12.6	5.6	63	28	59-144	76	30	M1 R1
Dichlorofluoromethane	ug/L	<1.0	20	20	15.1	7.9	76	40	63-144	62	30	M1,N2, R1
Diethyl ether (Ethyl ether)	ug/L	<4.0	20	20	9.8	6.8	49	34	52-139	36	30	M1,R1
Ethylbenzene	ug/L	<1.0	20	20	9.5	5.9	45	28	75-131	46	30	M1,R1
Hexachloro-1,3-butadiene	ug/L	<1.0	20	20	6.1	3.6	30	18	58-146	50	30	M1,R1
Isopropylbenzene (Cumene)	ug/L	<1.0	20	20	8.9	5.2	45	26	71-132	52	30	M1,R1
Methyl-tert-butyl ether	ug/L	<1.0	20	20	9.9	7.1	49	35	65-130	32	30	M1,R1
Methylene Chloride	ug/L	<4.0	20	20	9.5	6.8	47	34	66-125	33	30	M1,R1
n-Butylbenzene	ug/L	<1.0	20	20	6.1	3.7	30	18	57-141	49	30	M1,R1
n-Propylbenzene	ug/L	<1.0	20	20	7.9	4.7	39	23	70-131	51	30	M1,R1
Naphthalene	ug/L	<4.0	20	20	7.1	4.7	36	23	48-134	42	30	M1,R1
p-Isopropyltoluene	ug/L	<1.0	20	20	6.9	4.0	34	20	66-136	52	30	M1,R1
sec-Butylbenzene	ug/L	<1.0	20	20	7.5	4.1	37	20	69-134	58	30	M1,R1
Styrene	ug/L	<1.0	20	20	8.9	5.5	44	28	65-134	46	30	M1,R1
tert-Butylbenzene	ug/L	<1.0	20	20	8.3	4.7	41	23	71-130	56	30	M1,R1
Tetrachloroethene	ua/L	<1.0	20	20	8.4	5.1	42	26	69-135	48	30	M1.R1
Tetrahvdrofuran	ua/L	<10.0	200	200	93.1	68.4	47	34	48-150	31	30	M1.R1
Toluene	ua/L	<1.0	20	20	9.5	6.1	45	28	68-132	43	30	M1.R1
trans-1.2-Dichloroethene	ua/l	<1.0	20	20	9.6	6.4	48	32	61-134	40	30	M1.R1
trans-1.3-Dichloropropene	ua/l	<4.0	20	20	9.1	6.1	46	31	66-125	39	30	M1.R1
Trichloroethene	ua/l	<0.40	20	20	91	6.0	45	30	64-136	41	30	M1 R1
Trichlorofluoromethane	ug/L	<10	20	20	15.0	7.2	75	36	65-146	70	30	M1 R1
	ug/L	<0.20	20	20	15.4	8.0	77	40	51-150	64	30	M1 R1
Xylene (Total)	un/l	~3.0	20 60	20 60	27.8	17 3	46		69-135	 	30	MS RS
1 2-Dichloroethane-d4 (S)	ug/ ۲ %	~0.0	00	00	21.0	17.5	101	101	75-125	17	50	
4-Bromofluorobenzene (S)	%						05	90	75-125			
Toluene-d8 (S)	70. 0/2						aa	07	75-125			
	/0.						55	51	10-120			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

EPA 8270D by SIM

8270D Solid PAH by SIM MSSV

Project.	40161423 00 Husky Phase II
1 10/000	40101420.00 Husky Husc II

Pace Project No.:	10436863
-------------------	----------

QC Batch:546641QC Batch Method:EPA 3550Associated Lab Samples:104

Analysis Method: Analysis Description: 10436863003 10436863

10436863001, 10436863002, 10436863003, 10436863004, 10436863005, 10436863006, 10436863007,

10436863008, 10436863009, 10436863010

METHOD BLANK: 2972761

Matrix: Solid

Associated Lab Samples: 10436863001, 10436863002, 10436863003, 10436863004, 10436863005, 10436863006, 10436863007, 10436863008, 10436863009, 10436863010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Acenaphthene	ug/kg	<0.41	1.4	06/26/18 11:44	
Acenaphthylene	ug/kg	<0.50	1.6	06/26/18 11:44	
Anthracene	ug/kg	<0.47	1.6	06/26/18 11:44	
Benzo(a)anthracene	ug/kg	<1.1	3.6	06/26/18 11:44	
Benzo(a)pyrene	ug/kg	<0.69	2.3	06/26/18 11:44	
Benzo(b)fluoranthene	ug/kg	<0.37	1.2	06/26/18 11:44	
Benzo(g,h,i)perylene	ug/kg	<0.63	2.1	06/26/18 11:44	
Benzo(k)fluoranthene	ug/kg	<0.84	2.8	06/26/18 11:44	
Chrysene	ug/kg	<1.4	4.5	06/26/18 11:44	
Dibenz(a,h)anthracene	ug/kg	<0.46	1.5	06/26/18 11:44	
Fluoranthene	ug/kg	<0.43	1.4	06/26/18 11:44	
Fluorene	ug/kg	<0.31	1.0	06/26/18 11:44	
Indeno(1,2,3-cd)pyrene	ug/kg	<0.67	2.2	06/26/18 11:44	
Naphthalene	ug/kg	<0.77	2.6	06/26/18 11:44	
Phenanthrene	ug/kg	<1.9	6.4	06/26/18 11:44	
Pyrene	ug/kg	<1.5	5.1	06/26/18 11:44	
2-Fluorobiphenyl (S)	%.	60	42-125	06/26/18 11:44	
p-Terphenyl-d14 (S)	%.	78	57-125	06/26/18 11:44	

LABORATORY CONTROL SAMPLE: 2972762

	LOILIOL					
Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
						Quamoro
Acenaphthene	ug/kg	33.3	21.4	64	52-125	
Acenaphthylene	ug/kg	33.3	21.9	66	50-125	
Anthracene	ug/kg	33.3	31.2	94	65-125	
Benzo(a)anthracene	ug/kg	33.3	36.2	109	60-125	
Benzo(a)pyrene	ug/kg	33.3	33.4	100	69-125	
Benzo(b)fluoranthene	ug/kg	33.3	39.3	118	61-125	
Benzo(g,h,i)perylene	ug/kg	33.3	34.6	104	60-125	
Benzo(k)fluoranthene	ug/kg	33.3	31.2	94	67-125	
Chrysene	ug/kg	33.3	37.4	112	67-125	
Dibenz(a,h)anthracene	ug/kg	33.3	31.2	94	63-125	
Fluoranthene	ug/kg	33.3	37.6	113	75-125	
Fluorene	ug/kg	33.3	24.5	74	54-125	
Indeno(1,2,3-cd)pyrene	ug/kg	33.3	33.6	101	63-125	
Naphthalene	ug/kg	33.3	22.6	68	49-125	
Phenanthrene	ug/kg	33.3	28.6	86	65-125	
Pyrene	ug/kg	33.3	32.2	97	64-125	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

LABORATORY CONTROL SAMPLE:	2972762					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2-Fluorobiphenyl (S)	%.			67	42-125	
p-Terphenyl-d14 (S)	%.			80	57-125	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2972763 2972764												
			MS	MSD								
	10	0436821003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Acenaphthene	ug/kg	ND	39.3	39.3	45.3	38.3	115	98	30-125		30	
Acenaphthylene	ug/kg	ND	39.3	39.3	36.1	28.8	92	73	30-133		30	
Anthracene	ug/kg	ND	39.3	39.3	<5.5	<5.5	0	0	30-150		30	M6
Benzo(a)anthracene	ug/kg	ND	39.3	39.3	34.2J	33.1J	87	84	30-150		30	
Benzo(a)pyrene	ug/kg	ND	39.3	39.3	33.9	33.6	86	86	30-150		30	
Benzo(b)fluoranthene	ug/kg	ND	39.3	39.3	30.6	28.9	78	74	30-150		30	
Benzo(g,h,i)perylene	ug/kg	ND	39.3	39.3	32.5	32.0	82	81	30-150		30	
Benzo(k)fluoranthene	ug/kg	ND	39.3	39.3	37.3	31.1J	95	79	30-150		30	
Chrysene	ug/kg	ND	39.3	39.3	35.4J	37.2J	90	95	30-150		30	
Dibenz(a,h)anthracene	ug/kg	ND	39.3	39.3	31.4	29.4	80	75	30-131		30	
Fluoranthene	ug/kg	ND	39.3	39.3	36.6	35.1	93	89	30-150		30	
Fluorene	ug/kg	ND	39.3	39.3	32.3	28.1	82	72	30-147		30	
Indeno(1,2,3-cd)pyrene	ug/kg	ND	39.3	39.3	32.4	31.0	82	79	30-150		30	
Naphthalene	ug/kg	ND	39.3	39.3	28.8J	24.2J	73	62	30-131		30	
Phenanthrene	ug/kg	ND	39.3	39.3	51.6J	44.7J	131	114	30-150		30	
Pyrene	ug/kg	ND	39.3	39.3	60.3	53.6J	153	136	30-150		30	M6
2-Fluorobiphenyl (S)	%.						0	0	42-125			D3,S4
p-Terphenyl-d14 (S)	%.						0	0	57-125			S4

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Project: 49161423.00 Husky Phase II

Pace Project No.:

10436863

QC Batch:	547072	Analysis Method:	EPA 8270D by SIM
QC Batch Method:	EPA Mod. 3510C	Analysis Description:	8270D PAH by SIM MSSV
Associated Lab Samp	bles: 10436863011		

Matrix: Water

METHOD BLANK: 2974269

Associated Lab Samples: 10436863011

	Blank	Reporting		
Units	Result	Limit	Analyzed	Qualifiers
ug/L	<0.0032	0.011	06/27/18 09:55	
ug/L	<0.0046	0.015	06/27/18 09:55	
ug/L	<0.0062	0.021	06/27/18 09:55	
ug/L	<0.0039	0.013	06/27/18 09:55	
ug/L	<0.0040	0.013	06/27/18 09:55	
ug/L	<0.013	0.042	06/27/18 09:55	
ug/L	<0.0098	0.033	06/27/18 09:55	
ug/L	<0.010	0.035	06/27/18 09:55	
ug/L	<0.0092	0.031	06/27/18 09:55	
ug/L	<0.0092	0.031	06/27/18 09:55	
ug/L	<0.018	0.061	06/27/18 09:55	
ug/L	<0.0059	0.020	06/27/18 09:55	
ug/L	<0.013	0.044	06/27/18 09:55	
ug/L	<0.0068	0.023	06/27/18 09:55	
ug/L	<0.010	0.035	06/27/18 09:55	
ug/L	<0.015	0.049	06/27/18 09:55	
%.	76	30-145	06/27/18 09:55	
%.	91	30-149	06/27/18 09:55	
	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Blank Units Result ug/L <0.0032	Blank Reporting Units Result Limit ug/L <0.0032	Blank Reporting Units Result Limit Analyzed ug/L <0.0032

LABORATORY CONTROL SAMPLE: 2974270

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Acenaphthene	ug/L	1	0.70	70	50-125	
Acenaphthylene	ug/L	1	0.72	72	47-125	
Anthracene	ug/L	1	0.93	93	65-125	
Benzo(a)anthracene	ug/L	1	0.91	91	60-125	
Benzo(a)pyrene	ug/L	1	0.92	92	67-125	
Benzo(b)fluoranthene	ug/L	1	0.88	88	64-125	
Benzo(g,h,i)perylene	ug/L	1	0.83	83	53-125	
Benzo(k)fluoranthene	ug/L	1	0.88	88	61-125	
Chrysene	ug/L	1	0.91	91	68-125	
Dibenz(a,h)anthracene	ug/L	1	0.75	75	45-125	
Fluoranthene	ug/L	1	0.91	91	73-125	
Fluorene	ug/L	1	0.72	72	53-125	
Indeno(1,2,3-cd)pyrene	ug/L	1	0.83	83	62-125	
Naphthalene	ug/L	1	0.74	74	46-125	
Phenanthrene	ug/L	1	0.81	81	66-125	
Pyrene	ug/L	1	0.89	89	65-125	
2-Fluorobiphenyl (S)	%.			75	30-145	
p-Terphenyl-d14 (S)	%.			94	30-149	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2974271 2974272												
			MS	MSD								
	1	0436884010	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Acenaphthene	ug/L	ND	.95	.95	0.65	0.63	69	67	53-125	3	30	
Acenaphthylene	ug/L	ND	.95	.95	0.67	0.66	70	70	48-125	1	30	
Anthracene	ug/L	ND	.95	.95	0.88	0.89	92	94	66-125	2	30	
Benzo(a)anthracene	ug/L	ND	.95	.95	0.86	0.82	90	86	57-125	5	30	
Benzo(a)pyrene	ug/L	ND	.95	.95	0.84	0.87	89	91	62-125	2	30	
Benzo(b)fluoranthene	ug/L	ND	.95	.95	0.78	0.91	82	96	50-125	16	30	
Benzo(g,h,i)perylene	ug/L	ND	.95	.95	0.73	0.76	76	81	34-125	5	30	
Benzo(k)fluoranthene	ug/L	ND	.95	.95	0.80	0.77	84	81	50-125	4	30	
Chrysene	ug/L	ND	.95	.95	0.90	0.87	95	92	65-125	4	30	
Dibenz(a,h)anthracene	ug/L	ND	.95	.95	0.71	0.74	75	78	31-127	4	30	
Fluoranthene	ug/L	ND	.95	.95	0.88	0.90	92	95	70-125	2	30	
Fluorene	ug/L	ND	.95	.95	0.69	0.68	73	72	53-125	1	30	
Indeno(1,2,3-cd)pyrene	ug/L	ND	.95	.95	0.74	0.77	78	81	45-125	4	30	
Naphthalene	ug/L	ND	.95	.95	0.57	0.65	60	69	34-125	13	30	
Phenanthrene	ug/L	ND	.95	.95	0.78	0.79	82	84	61-125	1	30	
Pyrene	ug/L	ND	.95	.95	0.88	0.84	92	89	60-125	4	30	
2-Fluorobiphenyl (S)	%.						69	69	30-145			
p-Terphenyl-d14 (S)	%.						98	96	30-149			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor and percent moisture.

LOQ - Limit of Quantitation adjusted for dilution factor and percent moisture.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

LABORATORIES

PASI-G P	ace Analytical	Services - 0	Green E	Зау
----------	----------------	--------------	---------	-----

PASI-M Pace Analytical Services - Minneapolis

ANALYTE QUALIFIERS

- A5 Greater than 5% sediment in sample determined by visual observation. Aqueous portion decanted from the sediment and extracted. The sample container could not be rinsed with solvent per the method requirement.
- D3 Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- M6 Matrix spike and Matrix spike duplicate recovery not evaluated against control limits due to sample dilution.
- MS Analyte recovery in the matrix spike was outside QC limits for one or more of the constituent analytes used in the calculated result.
- N2 The lab does not hold NELAC/TNI accreditation for this parameter.
- R1 RPD value was outside control limits.
- RS The RPD value in one of the constituent analytes was outside the control limits.
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.
- W Non-detect results are reported on a wet weight basis.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 49161423.00 Husky Phase II

Pace Project No.: 10436863

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10436863001	SB-1_2-3	EPA 3050	546886	 EPA 6010D	547086
10436863002	SB-1 12-13	EPA 3050	546886	EPA 6010D	547086
10436863003	SB-2_0-1	EPA 3050	546886	EPA 6010D	547086
10436863004	SB-2 6-7	EPA 3050	546886	EPA 6010D	547086
10436863005	SB-3 0-2	EPA 3050	546886	EPA 6010D	547086
10436863006	SB-3 8-9	EPA 3050	546886	EPA 6010D	547086
10436863007	SB-4 0-2	EPA 3050	546886	EPA 6010D	547086
10436863008	SB-4 6-7	EPA 3050	546886	EPA 6010D	547086
10436863009	SB-5_0-1	EPA 3050	546886	EPA 6010D	547086
10436863010	SB-5_8-9	EPA 3050	546886	EPA 6010D	547086
10436863001	SB-1_2-3	EPA 7471B	546627	EPA 7471B	546772
10436863002	SB-1_12-13	EPA 7471B	546627	EPA 7471B	546772
10436863003	SB-2_0-1	EPA 7471B	546627	EPA 7471B	546772
10436863004	SB-2_6-7	EPA 7471B	546627	EPA 7471B	546772
10436863005	SB-3_0-2	EPA 7471B	546627	EPA 7471B	546772
10436863006	SB-3_8-9	EPA 7471B	546627	EPA 7471B	546772
10436863007	SB-4_0-2	EPA 7471B	546627	EPA 7471B	546772
10436863008	SB-4_6-7	EPA 7471B	546627	EPA 7471B	546772
10436863009	SB-5_0-1	EPA 7471B	546627	EPA 7471B	546772
10436863010	SB-5_8-9	EPA 7471B	546627	EPA 7471B	546772
10436863001	SB-1_2-3	ASTM D2974	547426		
10436863002	SB-1_12-13	ASTM D2974	547426		
10436863003	SB-2_0-1	ASTM D2974	547426		
10436863004	SB-2_6-7	ASTM D2974	547426		
10436863005	SB-3_0-2	ASTM D2974	547426		
10436863006	SB-3_8-9	ASTM D2974	547426		
10436863007	SB-4_0-2	ASTM D2974	547426		
10436863008	SB-4_6-7	ASTM D2974	547426		
10436863009	SB-5_0-1	ASTM D2974	547426		
10436863010	SB-5_8-9	ASTM D2974	547426		
10436863001	SB-1_2-3	EPA 3550	546641	EPA 8270D by SIM	546989
10436863002	SB-1_12-13	EPA 3550	546641	EPA 8270D by SIM	546989
10436863003	SB-2_0-1	EPA 3550	546641	EPA 8270D by SIM	546989
10436863004	SB-2_6-7	EPA 3550	546641	EPA 8270D by SIM	546989
10436863005	SB-3_0-2	EPA 3550	546641	EPA 8270D by SIM	546989
10436863006	SB-3_8-9	EPA 3550	546641	EPA 8270D by SIM	546989
10436863007	SB-4_0-2	EPA 3550	546641	EPA 8270D by SIM	546989
10436863008	SB-4_6-7	EPA 3550	546641	EPA 8270D by SIM	546989
10436863009	SB-5_0-1	EPA 3550	546641	EPA 8270D by SIM	546989
10436863010	SB-5_8-9	EPA 3550	546641	EPA 8270D by SIM	546989
10436863011	SB-3_14.5-19.5	EPA Mod. 3510C	547072	EPA 8270D by SIM	547275
10436863001	SB-1_2-3	EPA 5035/5030B	293184	EPA 8260	293187
10436863002	SB-1_12-13	EPA 5035/5030B	293184	EPA 8260	293187
10436863003	SB-2_0-1	EPA 5035/5030B	293184	EPA 8260	293187
10436863004	SB-2_6-7	EPA 5035/5030B	293184	EPA 8260	293187
10436863005	SB-3 0-2	EPA 5035/5030B	293184	EPA 8260	293187

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:49161423.00 Husky Phase IIPace Project No.:10436863

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch						
10436863006	SB-3_8-9	EPA 5035/5030B	293184	EPA 8260	293187						
10436863007	SB-4_0-2	EPA 5035/5030B	293184	EPA 8260	293187						
10436863008	SB-4_6-7	EPA 5035/5030B	293184	EPA 8260	293187						
10436863009	SB-5_0-1	EPA 5035/5030B	293184	EPA 8260	293187						
10436863010	SB-5_8-9	EPA 5035/5030B	293184	EPA 8260	293187						
10436863013	MeOH Trip Blank	EPA 5035/5030B	293184	EPA 8260	293187						
10436863011	SB-3_14.5-19.5	EPA 8260B	547301								
10436863012	Trip Blank	EPA 8260B	547301								
Ann Arbor Arbor Arbor Barn Bismarck	Chain Hibbing Jefferso	of n City	Cust	ody S eapolis City	ample Origination KS	State: □ UT 도(WI her:		An Water	alysis Request	ed Soil	COC Number: 58003 COC <u>i</u> of <u></u>
-------------------------------------	---	--------------	-----------------	-----------------------	---	--------------------------------	--	--------------	----------------	---------------	---
REPORT TO		_		INVOI	E TO		4			5	Matrix Code: Preservative Code:
Company: Barr Engineening		Comp	any:	Bay	<u>м</u> МО	#:1	04	3686	3	t T	GW = Groundwater A = None SW = Surface Water B = HCI
Address: 325 S. Lalue Are. D.	aluth	Addre	255:				 		T	6	WW = Waste Water $C = HNO_3$ DW = Drinking Water $D = H_2SO_4$
Name: Lynette Carney		Name								2	S = Soil/Solid E = NaOH
email: LMC ebarr, com		email:	:		1043	6863				8	$O = Other$ $G = NaHSO_4$
Copy to: datamgt@barr.com		P.O.		1	/		SN SN SN SN SN				$H = Na_2S_2O_3$ I = Ascorbic Acid
Project Name: Husky phase 11		Barr I	Project	No: 49/61	423.00		MS/ MD			J T T	J = NH₄Cl K = 7n Acetate
	Sam	ple De	epth	Collectio	n Collection	Matrix	EZ			24%	% O = Other
Location	Start	Stop	Unit (m./ft.	Date (mm/dd/wa	Time	Code	erfo otal			FAP	Preservative Code
	──		or in.)	(mm/dd/yy	yy) (mi.mi)		μ μ μ μ μ μ μ μ μ μ μ μ μ μ			<u>- 14 M</u>	Field Filtered Y/N
5B-1	2	3	Ft	6/21/1	8 405	S	N4			211	105
SB-1	12_	13			1430	1					072
SB-2	0	1			1515						003
s B-2	6	7			1530						064
513-3	0	2			1620						865
SB-3	8	9			1635						006
SB-4	0	2	-	6/22/1	8 0840			v			007
5B-4	þ	7			0855						00%
58-5	0	1			0935						905
° 5B-5	8	7			0750	I	11.11.11.11.11.11.11.11.11.11.11.11.11.				010
BARR USE ONLY		Relinq	uished	by N	2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ice?	Date	142 c-	Received by	Att	Date Time 6/23/18 (4:35
ampled by: MAB		Relina	uished			<u>/ ™ V/</u> n Ice?	<i>и и <u>и и</u>з</i> Date	Time	Received by		Date Time
arr Proj. Manager: LIM C			ty	VL OU	D C	5 N 6/1	18	1700		Cho	6-22-18 1700
		Sampl	et Ship	ped VIA:	」Courier □ F	ederal Exp	oress 👂	🕻 Sampler	Air Bill Nur	nber:	Requested Due Date:
ar Name: rhuc		1.04.34		<u>۔</u>		Donalat	1°C). 7	5	L Sool Intent		
	on Chi			ona Vallassa 🤇	iemperature c	old Deer	(():	Lustod	y sear intact:		t Administrators
and and a write-original. Accompany	es oniph	R	C,		22 - (\$ 2	a'où	ients, 1	mik copy: st		fire (61Mills Joro T= 2.8

Barr Engineering Co. Cl	hain	of	Cust	ody Samp	le Origination	State:				A	nalysis	Requ	ested			COC Number: Nº 47625
Ann Arbor 🛛 Duluth] Jeffers	on City	——— ⊔ KS □ MI	⊔mo ≱ ⊡nD (∢ WI Other:				Wate	r		Soi	ii 		coc <u>Z</u> of <u>Z</u>
BARR Dismarck Dibbing] Minne	apolis													Matrix Code: Preservative Code:
REPORT TO				INVOICE T	0											GW = Groundwater A = None
Company: Barr Engineering		Comp	any:	Garr				lers								SW = Surface Water B = HCl WW = Waste Water C = HNO ₃
Address: 325 S. Loke Ave. Dulut	1	Addre	ess:				Ĺ	Itai								$DW = Drinking Water D = H_2 SO_4$
Name: Lynette Carney		Name					≻	5								S = Soll/Solid E = NaOH SD = Sediment F = MeOH
email: LMC C. bury. Com		email:					ß	5								$O = Other \qquad G = NaHSO_4 H = Na_2S_2O_2$
Copy to: datamgt@barr.com		P.O.	<u> </u>				W/S	ē	-						l ₽	I = Ascorbic Acid
Project Name: Histy Phuse 11		Barr I	Project	No: 4916142	<u>३,७०</u>		Σ	Ē				00			Solic	J = NH₄CI K = Zn Acetate
	Sam	nple De I	epth	Collection	Collection	Matrix	E L	z	20			>			%	O = Other
Location	Start	Stop	(m./ft.	Date (mm/dd/yyyy)	(hh:mm)	Code	erfo	ota	3 4			F	<u>_</u>			Preservative Code
		500	or in.)				<u> </u>				+-+-		┿╍┼			Field Filtered Y/N
513-3	19.5	193	++	6/22/18	1120	GW	N	4	3 1							711
2. Trip Blank	Ĵ	l	-	-	-	-	2	3	2			1				017
3. Many or Blank													┼┼			1213
4. 6/22/100 00					- <u></u>		-		_	+ +		+	┿			
orcaria or																
5.																
6.			·				-				+		+	_		
7.	:															
0						_				$\left \right $						
0.																
9.							\square						++			
10.																
BARR USE ONLY		Relina	l uished	by: A IA da	- Qn	Ice?	Date	<u>に</u> と	1	l l Time	Red	 cej ∕Q ed_	⊥ ∕øy:	$\overline{\mathcal{A}}$		Daths Time
Sampled by: MAB		D		- JUVPL) N 6/	22	10	14	<u>3</u> sm		<u>₩</u>		M	øv	0/2°/10 /9:35
Barr Proj. Manager: LMC		Relinq	uished	oy:		N 6/2	M	8	17	00	Rec	fved	by:	/ (22	- 6-22-18 /700
Barr DQ Manager: JET		Sampl	es Ship	ped VIA: Co	urier 🗌 Fo	ederal Exp	ress	X	Sam	pler	Air	Bill N	umber	r:		Requested Due Date:
Lab Name: Pqu		☐ Other:								Standard Turn Around Time						
Indu Location: MPLS		Lab V	VO :		Temperature o	n Receipt	(°C): २	_ح,	Custo	dy Se	al Inta	ct? 🗆	Υ□]N	None I Rush (mm/dd/yyyy)
Distribution - White-Original: Accompanies	s Shipn	nent to	Laborat	cory; Yellow Copy:	Include in Fie ここ - 1名	eld Docum ډ ۵ 📿	nents ු ය	s; Pi ୯	ink C	Copy: S	Send t	to Dat	a Man	agem	ent	Administrators. 102.8 6/22/14 2000

Pace Analytical*	Do Sample Cond D	cument I ition Up ocument	Name: on Receip No.:	Document Revised: 02May2018 pt Form Page 1 of 2 Issuing Authority:
	F-N	N-L-213	-rev.23	Pace Minnesota Quality Office
Sample Condition Upon Receipt		(August)	Project #	WO#:10436863
Courier: Fed Ex UPS			ient	PM: AR1 Due Date: 07/02/18
Commercial Pace SpeeDe	e Other:			CLIENT: BARR
Tracking Number:				
Custody Seal on Cooler/Box Present?	⊡No S	eals Inta	ict? 📉	Yes No Optional: Proj. Due Date: Proj. Name:
Packing Material: 🔲 Bubble Wrap 🖉 Bubble	Bags 🔄 None		ther:	Temp Blank? KYes No
Thermometer G87A9170600254 Used: (Construction)	Туре	of Ice:	Wet	Blue None Dry Melted
Cooler Temp Read (°C): 2.1 Cooler Tem	p Corrected (°C):	2.8	·	Biological Tissue Frozen? 🗌 Yes 🗌 No 🕅 N/A
Temp should be above freezing to 6°C Correction	n Factor:	<u>1</u>	Date	e and Initials of Person Examining Contents: 19~ (pn/18
Did samples originate in a quarantine zone within the U	nited States: AL. A	R, CA. FL	GA, ID, IA	A. MS. Did samples originate from a foreign source (internationally
NC, NM, NY, OK, OR, SC, TN, TX or VA (check maps)?		□Ye	es 🗵	No including Hawali and Puerto Rico)?
If Yes to either question, fill out	a Regulated Soil	Checklis	it (F-MN-	Q-338) and include with SCUR/COC paperwork.
				COMMENTS:
Chain of Custody Present?	Yes	No		1.
Chain of Custody Filled Out?	2 Yes	No		2.
Chain of Custody Relinquished?	1 Ves	[]No		3.
Sampler Name and/or Signature on COC?	Ves	No	N/A	4.
Samples Arrived within Hold Time?	Yes	No		5.
Short Hold Time Analysis (<72 hr)?	Yes	1 No		6.
Rush Turn Around Time Requested?	Yes	X No		7.
Sufficient Volume?	12 Yes	[]No		8.
Correct Containers Used?	K yes	No		9.
-Pace Containers Used?	Yes	No		
Containers Intact?	Yes	No		10.
Filtered Volume Received for Dissolved Tests?	Yes	No	N/A	11. Note if sediment is visible in the dissolved container
Is sufficient information available to reconcile the samp	les to 🛛 🔣 Yes	□No		12.
the COC? Matrix: WT	Ste		· .	D-the D
checked?	n NYes	□No	XN/A	13. □HNO ₃ □H ₂ SO ₄ □NaOH Positive for Res. Chlorine? Y N
All containers needing preservation are found to be in				Sample #
<pre>compliance with EPA recommendation? {HNO₃, H₂SO₄, ≤2pH, NaOH >9 Sulfide, NaOH>12 Cyanic</pre>	de) 🗆 Yes	ΠNo	XIN/A	
Exceptions VOA Coliform, TOC/DOC Oil and Grease,	, LI ^{.C3}	o		Initial when Lot # of added
DRO/8015 (water) and Dioxin/PFAS	Ves	No	□N/A	completed: preservative:
Headspace in VOA Vials (>6mm)?	Y∑S¥es ∠	□No	□N/A	14. Mif Blank 1/2 headspace Symm
Trip Blank Present?	Yes	∐No		15.
Pace Trin Blank Lot # (if nurchased) LH(1." ICGISC	Yes OU	0011 - 812 CI	-ζ	
	t meen	10	>	
CLIENT NOTIFICATION/RESOLUTION				Field Data Required? []Yes []No
Comments/Perolution:		10 <u>0</u> -9		Date/ filme:
comments/resolution:				
Depicet Manager Beulaus	uda Ma	acer	ut	6/25/18

Project Manager Review: Date: 6/25/18 Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers). Chain of Custody

40171636

Samples were sent directly to the Subcontracting Laboratory.

State Of Origin: WI

Pace Analytical

Rep	ort To	workorder	Subcontra	ct To	11456 11		Owner Ver		Requested	Analysis	ested by. 1/3/2010
Ama Pac 170 Suit Min Pho	anda Albrecht e Analytical Minnesota D Elm Street e 200 heapolis, MN 55414 ne (612)607-6382		Pace , 1241 Suite Greer Phone	Analytical Gree Bellevue Street 9 Bay, WI 5430 e (920)469-2436	n Bay 2 3	Preser	ved Containers	3260 (Pace-Green Bay)			
ltem	Sample ID	Sample Type	Collect Date/Time	Lab ID	Matrix	HOeM		VOC by 1			LAB USE ONLY
1	SB-1_2-3	PS	6/21/2018 14:05	10436863001	Solid	2		X			001
2	SB-1_12-13	PS	6/21/2018 14:30	10436863002	Solid	2		X			002
3	SB-2_0-1	PS	6/21/2018 15:15	10436863003	Solid	2		X			003
4	SB-2_6-7	PS	6/21/2018 15:30	10436863004	Solid	2		X			004
5	SB-3_0-2	PS	6/21/2018 16:20	10436863005	Solid	2		Х			005
6	SB-3_8-9	PS	6/21/2018 16:35	10436863006	Solid	2		Х			006
7	SB-4_0-2	PS	6/22/2018 08:40	10436863007	Solid	2		X			007
8	SB-4_6-7	PS	6/22/2018 08:55	10436863008	Solid	2		Х			008
9	SB-5_0-1	PS	6/22/2018 09:35	10436863009	Solid	2		Х			009
10	SB-5_8-9	PS	6/22/2018 09:50	10436863010	Solid	2		X			010
11	MeOH Trip Blank	PS	6/21/2018 00:00	10436863013	Solid	1		X			01
**************************************										Comments	
Trar	sfers Released By	А.	Date/Time	Received E	By	an an a succession of the succession of	Date/T	ime			
1 2 3	Walt	0	6/27/8	712 1855 Jus	u KU	tyles !	are the	10 085			
Cor	ler Temperature on R	eceint 5,3	°C Cuis	tody Seal	Dor N	V T	Received (on Ice V	or N	Samples	Intact Y ar N
***1	nor remperature off A	A a a a field a a field					neede and the		not ha a ray i -t		

This chain of custody is considered complete as is since this information is available in the owner laboratory.

Client Name:	Pace	MN

013

014

015

016

017

018

019

020

1

Sample Preservation Receipt Form Project # 40171636

Pace Analytical Services, LLC 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

	All co	ontain	ers ne	eding	prese	ervatio	on ha	ve bee	n che	cked Lab	and n Lot# o	oted b f pH p	elow: aper:	⊡Yes	□No		Lab	Std #	ID of p	oreser	vation	(if p⊢	l adju	sted):					Initial comp	when leted:		Date/ Time:	
		njenistania S I I I I I I I I I I I I I I I I I I		Glass					· · · · · ·		Plasti	ic					Via	als				Jars		Ge	enera	1	(>6mm) *	≤2	Act pH ≥9	e12	53	justed	Volume
Pace Lab #	AG1U	AG1H	AG4S	AG4U	AG5U	AG2S	BG3U	BP1U	BP2N	BP2Z	BP3U	BP3C	BP3N	BP3S	DG9A	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	WGFU	WPFU	SP5T	ZPLC	GN	vOA Vials	H2SO4 pH	NaOH+Zn	NaOH pH ≥	HNO3 pH ≤	pH after ad	(mL)
001																			2														2.5/5/10
002																			2														2.5/5/10
003	Γ					Γ	Ī	Ι											2														2.5/5/10
004																			2														2.5 / 5 / 10
005	Ι		Ι			Γ	T	l			Τ					Γ			2														2.5 / 5 / 10
006																			2	n. Dan san													2.5 / 5 / 10
007	Γ		1		Γ	Γ		Ι											2											Γ			2.5/5/10
008														18.5					2														2.5/5/10
009		Γ		Ι	Τ	Γ		Τ											3														2.5/5/10
010																			2														2.5/5/10
011					Γ		T	Ι				Ι							17													I	2.5 / 5 / 10
012																			1.														2.5 / 5 / 10

Exceptions to preservation check: VOA, Coliform, TOC, TOX, TOH, O&G, WI DRO, Phenolics, Other:

_Headspace in VOA Vials (>6mm) : □Yes □No □M/A *If yes look in headspace column

AG1U	1 liter amber glass	BP1U	1 liter plastic unpres	DG9A	40 mL amber ascorbic	JGFU	4 oz amber jar unpres
AG1H	1 liter amber glass HCL	BP2N	500 mL plastic HNO3	DG9T	40 mL amber Na Thio	WGFU	4 oz clear jar unpres
AG4S	125 mL amber glass H2SO4	BP2Z	500 mL plastic NaOH, Znact	VG9U	40 mL clear vial unpres	WPFU	4 oz plastic jar unpres
AG4U	120 mL amber glass unpres	BP3U	250 mL plastic unpres	VG9H	40 mL clear vial HCL		
AG5U	100 mL amber glass unpres	BP3C	250 mL plastic NaOH	VG9M	40 mL clear vial MeOH	SP5T	120 mL plastic Na Thiosulfate
AG2S	500 mL amber glass H2SO4	BP3N	250 mL plastic HNO3	VG9D	40 mL clear vial DI	ZPLC	ziploc bag
BG3U	250 mL clear glass unpres	BP3S	250 mL plastic H2SO4			GN:	

Page <u>1</u> of

2.5/5/10

2.5 / 5 / 10

2.5/5/10

2.5/5/10

2.5 / 5 / 10

2.5 / 5 / 10

2.5 / 5 / 10

2.5/5/10

F-GB-C-046-Rev.02 (29Mar2018) Sample Preservation Receipt Form

Pace Analytical"	Docu Sample Conditio	ment Name: on Upon Receipt (SCUR)	Document Revised: 25Apr2018
1241 Pollourie Street Orrest Day Mil 54000	Doo	ument No.:	Issuing Authority: Pace Green Bay Quality Office:
1241 Bellevue Street, Green Bay, WI 54302	r-gb-	C-031-REV.07	Face Green Bay Quality Onice
Sample C	Condition Upo	n Receipt Form (S	CUR)
Client Name:	110		JO#:40171636
Courier: CS Logistics Fed Ex F Speede	e FUPS FV	/altco	
Tracking #: 160825			0171636
Custody Seal on Cooler/Box Present: Kyes	no Seals intact		
Custody Seal on Samples Present: 🗂 yes 🏴	no Seals intact	r yes r no	
Packing Material: TBubble Wrap TBubble	e Bags F Non	e 🔽 Other	
Thermometer Used SR -	Type of Ice: (Ver	Blue Dry None	Samples on ice, cooling process has begun
Tomo Blank Propert: News C no	Biological	lissue is Frozen: Tryes	Person examining cententer
Temp should be above freezing to 6° C. Biota Samples may be received at $\leq 0^{\circ}$ C.		, joc	Date:
Chain of Custody Present:	Yes No N/A	1	
Chain of Custody Filled Out:		2.	
Chain of Custody Relinquished:		3	
Sampler Name & Signature on COC:	□Yes □No ØN/A	4. FRWO	
Samples Arrived within Hold Time:	Øyes □No	5.	
- VOA Samples frozen upon receipt	□Yes □No	Date/Time:	
Short Hold Time Analysis (<72hr):		6.	
Rush Turn Around Time Requested:	Ayes □No	7.	
Sufficient Volume:		8.	
For Analysis: ৶Yes □No MS/MSD:			
Correct Containers Used:	Yes DNO	9. 007 - dunts	1008-10:21,001-20145
-Pace Containers Used: 475(4)-	Ayes □No ØNA	incovered tur	erent divis
-Pace IR Containers Used:	Yes No N/A		Str 9291
Containers Intact:	🗆 Yes 🗖 No	10.	
Filtered volume received for Dissolved tests	Dyes/ DNO DN/A	11.	
Sample Labels match COC:		12.	
-Includes date/time/ID/Analysis Matrix:	W		
Trip Blank Present:	ZYes ONO ONA	13. MEOH	
Trip Blank Custody Seals Present		Man I)	c
Pace Trip Blank Lot # (if purchased):	"upo	[Bre	62878-
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:	Date/	If checked	I, see attached form for additional comments
Project Manager Review:			Date 24

Page 54 Pfil	\mathcal{A}
- 1 ugo o 1 0 - e	_