

July 18, 2023 File: 193708490

Attention: Adam Tegen City of Manitowoc, Wisconsin 900 Quay Street Manitowoc, WI 54220-4543

Dear Mr. Tegen,

Reference: Phase II Environmental Site Assessment

Lot 3 of the River Point District Manitowoc, Wisconsin

BRRTS ID: 02-36-585491 (Open ERP), 02-36-176478 (Closed ERP), 07-36-583000 (LGU

Exemption/General Property)

ACRES ID: Pending

This Phase II Environmental Site Assessment (ESA) was prepared on behalf of the City of Manitowoc (hereinafter referred to as "the City") and the Community Development Authority of the City of Manitowoc (CDA; current owner) by Stantec Consulting Services Inc. (Stantec) at the former railroad/industrial property located at "Lot 3" of the River Point District in the City of Manitowoc, Wisconsin (herein referred to as "the Property"). This Phase II ESA was prepared using funds from the City of Manitowoc Coalition Assessment Grant awarded to the City by the United States Environmental Protection Agency (USEPA) on June 15, 2021 under Cooperative Agreement number is BF-00E03040.

The Property is located in the northeast quarter of the northeast quarter of Section 30, Township 19 North, Range 24 East, in the City of Manitowoc, Manitowoc County, Wisconsin. The Property consists of all or portions of four contiguous parcels of land totaling approximately 1.2 acres and forming the central portion of a larger 21-acre former railroad/industrial peninsula referred to locally as the "River Point District". The locations of the 1.2-acre Property and the larger 21-acre River Point District relative to nearby topography are illustrated on Figure 1. The four parcels comprising the Property are shown on the orthophotograph provided as Figure 2 and include historic Parcel IDs 173000, 173070, 173080, and 173170. The Property constitutes "Lot 3" of the Phase I Construction Area. A Certified Survey Map (CSM) depicting the legal description and boundaries of Lot 3 is included as Figure 3. Conceptual reuse features are detailed on Figure 4a and include road rights of way and other non-industrial reuses.

The purpose of this Phase II ESA is to further investigate residual soil and groundwater quality at the Property to confirm current conditions and facilitate non-industrial Property redevelopment.

BACKGROUND

The Property is undeveloped and consists of 1.2 acres of vacant former railroad/industrial land. The Property is zoned Central Business B-4 (Figure 4b). Surrounding properties are a mix of vacant land, public road rights-of-way, commercial and industrial land uses. Historic parcel identification numbers (PIN) associated with the Property are illustrated on the orthophotograph provided as Figure 2.

July 18, 2023 Mr. Adam Tegen Page 2 of 12

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

Past Ownership and Property Use – River Point District (1835-2018)

Development and Historic Uses. The River Point District appears undeveloped in 1835 (Figure 5a); however, the proximity of the peninsula to the Lake Michigan/Great Lakes shipping route facilitated initial development for lumber/saw mills by 1868 with expanded industrial (coal transloading, ship building), commercial, and residential development between 1868 and 1883 (Figure 5b). Historic records indicate the River Point District was transferred from the Manitowoc Terminal Company to the Manitowoc and Western Railroad Company on July 22, 1895, which is consistent with railroad development in the late 19th Century (Figure 5c and Figure 5d). Prior occupants/uses at the River Point District in the 19th and 20th Centuries are illustrated on Figure 5d and Figure 5e, respectively. In addition to railroad infrastructure (e.g., turn table, engine house, cinder pit), historic uses of the River Point District by previous owners/tenants have included ship building, lumberyards, warehouses, blacksmiths, smoke house, carpet weaving, an iron/metal scrap yard, multiple bulk petroleum storage/distribution yards, transloading yards for stone or coal, parking, grain elevator, woodworking (Stantec, 2019).

Ownership. Assessor records suggest the River Point District was transferred to the Soo Line Railroad Company and ultimately transferred to Wisconsin Central, Ltd. (WCL) sometime during the latter half of the 20th Century. Railroad use of the River Point District ceased in the 1980s and the property was formally decommissioned by the railroad in the 2000s; however, WCL maintained ownership of the River Point District until 2018.

Past Ownership and Property Use – Target Property (1835-2018)

The Target Property was platted as 11 contiguous parcels by 1878 (Figure 5a), presumably for residential/commercial use as an extension of the downtown street grid. However, historic Birdseye maps drawn in the 19th Century (Figure 5b) and historic plat maps (Figure 5a) suggest, the Property remained vacant/undeveloped through at least 1893 (Figure 5b). The Property was developed for railroad use in the late 19th Century (Figure 5c and Figure 5d). Property uses in each parcel, including identifiable tenants in the mid/late 20th Century (Figure 5f), are summarized below.

Northeast Portion of Property, Former Grain Elevator (PIN 173080):

A grain elevator was constructed on the northern portion of the Property in the late 19th Century, along a railroad spur. As noted in Stantec (2021), the grain elevator fell into disrepair in the late 20th Century and was ultimately demolished in 2001. Rail operations remained at the parcel until the early 2000s when the remaining steel rails were removed.

Northwest Portion of Property, Former Bulk Petroleum Storage (PIN 173170):

Records suggest that the northwest corner of the Property and north-adjoining properties were leased to a variety of bulk fuel storage companies operating under a variety of names during the early/mid-20th Century, including the Standard Oil Company bulk oil station (Figure 5e and Figure 5f). Historic Sanborn® fire insurance maps indicate use for bulk petroleum storage began between 1912 and 1919 when the Standard Oil Company installed four steel tanks, a 20,000-gallon iron oil tank, and a partially inground 20,000-gallon iron oil tank along a railroad spur present in the northwest of the Property. Records indicate most of the petroleum stored/handled at the Property was fuel oil. However, state records indicate a significant quantity of leaded and unleaded gasoline, diesel fuel, kerosene, and used/waste motor oil may have been stored in bulk. The locations of known historic features associated with bulk fuel storage by tenants are illustrated on Figure 5e. Bulk petroleum storage was consolidated by the Wingfield Oil Company (later renamed Holmes Oil Company) who continued to operate through the late 1990s. The Holmes Oil Corporation appears to have vacated the Property and north-adjoining properties concurrent with removal of the final storage tanks by 1997. The large oil house depicted in the northwest portion of the Property on Figure 5e was demolished in the later portion of the 20th Century (Stantec, 2020b).

July 18, 2023 Mr. Adam Tegen Page 3 of 12

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

South Portion of Property, Former Roundhouse and Turntable (PINs 173000 and 173170):

The majority of the Property was developed for railroad use by 1895 and included a cinder pit, railroad roundhouse, turntable and coal shed (labeled as "4" through "7" on Figure 5e, respectively) and multiple spurs/tracks. Historic orthophotographs indicate the spur lines were removed by 2000.

Ownership. Ownership of the Property appears to mirror ownership of the River Point District. Railroad use ceased in the 1980s and the Property was formally decommissioned by the railroad in the 2000s; however, WCL maintained ownership of the River Point District until 2018.

Current Property Ownership and Use

A Phase I ESA was completed by Stantec (2019) per the All Appropriate Inquiries rule detailed in 40 CFR §312.21 utilizing ASTM E1527-13 on behalf of the current owner (CDA) on March 21, 2019. The current owner acquired the River Point District on April 12, 2019 for the purpose of blight elimination and subsequently received a Local Governmental Unit (LGU) Environmental Liability Exemption from Wisconsin Department of Natural Resources (WDNR) per ch. 292.11(9) of the Wisconsin Administrative Code (WAC) on March 18, 2019 under Bureau for Remediation and Redevelopment Tracking System (BRRTS) Case Number 07-36-583000.

Since taking ownership, the CDA has maintained compliance with the required continuing obligations and no records have been identified indicating the CDA is considered potentially liable or known to be affiliated with any other person that is potentially liable for contamination at the Target Property.

Summary of BRRTS Cases at the Property

The following four BRRTS cases are associated with the Property.

<u>02-36-585491 RIVERPOINT DISTRICT (Open ERP) - This ERP case was opened in 2020 based on the results of the Stantec (2020a) Phase II ESA, which documented residual impacts to soil and/or groundwater from volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), Resource Conservation and Recovery Act (RCRA) metals, polychlorinated biphenyls (PCBs), and per and polyfluorinated alkyl substances (PFAS). Identified impacts near the Property are adapted from Stantec (2020a) and illustrated on Figure 6.</u>

<u>07-36-583000 RAILROAD PROPERTY (FORMER) (LGU/General Property) -</u> This General Property listing confirms that the CDA was granted state LGU environmental liability exemption on March 18, 2019 for the River Point District after the CDA acquired the River Point District for the purpose of blight elimination.

<u>02-36-176478 W C L - TURNTABLE FORMER ROUNDHOUSE (Closed ERP)</u> - This ERP case was opened in 1997 at the southwest corner of 11th Street and Buffalo Street when WDNR was notified of contamination in association with operations of a former railroad turntable and roundhouse at the Property, listing "Soo Line Railroad" and "Canadian National Railway" as the responsible parties. Contamination from VOCs (chlorinated and petroleum) and PAHs to soil and/or groundwater were identified and delineated by TRC Companies, Inc. (TRC) in subsequent investigations, and the case was closed in 2007 with continuing obligations to maintain a cap over the former roundhouse area. Residual soil and groundwater impacts at the time of closure and the cap maintenance area adapted from TRC (2007) are illustrated on Figure 6.

<u>03-36-001962 HOLMES OIL CORP (Closed LUST) – This LUST case is located adjacent to and immediately north/northeast of the Property and is included in this Phase II ESA due to the proximity of this case to the Property. This LUST case was opened in 1994 at 1110 Buffalo Street (north-adjoining parcels to the Property) when petroleum contamination to soil and groundwater was identified in association with former bulk</u>

July 18, 2023 Mr. Adam Tegen Page 4 of 12

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

petroleum storage by "Holmes Oil Corp", listing "Wisconsin Central LTD" as the responsible party. Approximately 510 tons of petroleum-impacted soil was remedially excavated from three locations, and groundwater was monitored for four quarters post-excavation. The case was closed in 2005 with residual petroleum impacts to soil at concentrations greater than Chapter NR720 residual contaminant levels (RCLs) and for residual concentrations of petroleum constituents in groundwater greater the cn. HR 140 Enforcement Standard (ES) on parcels north of the Property.

Summary of Previous Environmental Investigations

Several site investigations and assessments have been performed at or near the Property since 1997. Historic sample locations and associated environmental impacts are adapted from TRC (2007) and Stantec (2020a) and illustrated on Figure 6.

METHODS

Soil borings and groundwater wells were installed and samples collected during this investigation by Stantec followed standard operating procedures and quality control requirements stipulated in the Stantec (2015) Quality Assurance Project Plan (QAPP) and associated addenda/revisions (Stantec, 2016-2022). Photographic documentation of the investigation is provided in Attachment A.

<u>Soil Assessment</u> – Soil assessment work was completed by Stantec and AECOM in a phased approach in 2022 and 2023, as described below. It is important to realize that following WDNR approval, Stantec placed granular fill sourced from a commercial quarry in the project area in 2021 to create a safe slope for the adjacent River Point Drive and Buffalo Street rights of ways.

Stantec initiated the soil and groundwater investigation on the Property in March 2022 following the approach presented in the (2022) SSSAP. Under supervision of Stantec, Horizon Construction and Exploration (Horizon) advanced 19 soil borings on the Property using direct push drilling techniques. Soil samples were collected continuously from each borehole, and each borehole extended downward between 10 to 15 ft bgs to intersect the water table, and/or until apparent native soils were encountered to evaluate the thickness of fill at each boring location. Sample locations completed in March 2022 (SB-213 through SB-237) are illustrated on Figure 8 and identifiable lithology is summarized on soil boring logs provided in Attachment B. Soil borings were abandoned with bentonite as summarized on soil borehole abandonment forms provided in Attachment B. Soil samples selected for analysis were placed directly into laboratory-supplied containers, preserved as appropriate, and immediately placed in a cooler on ice for shipping to Eurofins TestAmerica in Chicago, Illinois, under a chain of custody for analysis. Soil sample analyses included VOCs (EPA 8260B), semi-volatile organic compounds (SVOCs; 8270D), Herbicides (8151A), Pesticides (8081B), PAHs (EPA 8270D), PCBs (EPA 8082A), and RCRA metals (EPA 6010C, 7471B). Laboratory reports are provided in Attachment D and detected constituents are compared to RCLs on Table 1.

AECOM continued the investigation in August 2022 to further delineate the RCL exceedances in soil identified during the Stantec March 2022 sampling event. Under the supervision of AECOM, On-site Environmental Services, Inc. (On-Site Environmental) advanced 15 soil borings on the Property to depths ranging from 5 to 15 feet below ground surface (ft bgs). AECOM's soil boring logs are included in Attachment E. For consistency, soil samples submitted to the laboratory by AECOM were renamed to conform with the consecutive sample identification nomenclature used by Stantec at the River Point District. Therefore, each boring sampled by AECOM is relabeled as SB-238 through SB-252 on Table 1 and Figure 8; however, AECOM's initial nomenclature is preserved on Table 1. Soil samples selected for analysis during the AECOM August 2022 sampling event were placed directly into laboratory-supplied containers, preserved as appropriate, and immediately placed in a cooler on ice for shipping to Pace Analytical Services in Green Bay,

July 18, 2023 Mr. Adam Tegen Page 5 of 12

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

Wisconsin, under a chain of custody for analysis. Soil sample analyses included VOCs (EPA 8260B), PAHs (EPA 8270E SIM), PCBs (EPA 8082A), and RCRA metals (EPA 6010C, 7471B). The laboratory report is attached as Attachment E and detected constituents are compared to RCLs on Table 1.

To further the investigation and under the supervision of Stantec field geologists, Horizon advanced seven soil borings (SB-253 through SB-261) at the Property in January 2023 using direct-push dual-tube Geoprobe® drilling methods. Soil samples were collected continuously from each borehole, and each borehole extended downward between 10 to 15 ft bgs to intersect the water table, and/or until apparent native soils were encountered to evaluate the thickness of fill at each boring location. The locations of the soil borings are illustrated on Figure 8 and identifiable lithology is summarized on soil boring logs provided in Attachment B. Soil borings were abandoned with bentonite as summarized on soil borehole abandonment forms provided in Attachment B. Soil samples selected for analysis were placed directly into laboratory-supplied containers, preserved as appropriate, and immediately placed in a cooler on ice for shipping to Eurofins TestAmerica. The laboratory report is attached as Attachment D and detected constituents are compared to RCLs on Table 1.

Although initially proposed in the Stantec (2022) SSSAP, soil boring SB-262 could not be advanced as planned due the presence of a live electrical transformer at the former location of SB-237, which presented a safety hazard to field staff. In addition, soil borings SB-257 and SB-258 were not accessible due to precipitation and/or snowmelt leading to unstable ground conditions.

<u>Groundwater Assessment</u> – Horizon completed 12 initial soil borings as temporary groundwater monitoring wells (TW-213 through TW-216, TW-221 through TW-223, TW-225, TW-227, TW-229, TW-230, and TW-237). The temporary wells were constructed in general conformance with NR 141 using one-inch diameter polyvinyl chloride casing with 10-foot long, 0.010-inch slotted screens with coarse sand pack, installed to a total depth of approximately 15 ft bgs to intersect the water table. Temporary monitoring well construction forms are included in Attachment C. The locations of the wells are illustrated on Figure 10.

In addition, Horizon constructed two permanent groundwater monitoring wells (MW-231 and MW-234) at the Property in conformance with NR 141 to assess groundwater quality and/or confirm previously identified impacts. The two permanent monitoring wells were constructed using two-inch diameter polyvinyl chloride casing with 10-foot long, 0.010-inch slotted screens, installed to a total depth of approximately 15 ft bgs to intersect the water table. Quartz filter sand was placed in the annular space between the borehole wall and the outside of each screen. The annular space above the filter pack was filled to the ground surface with granular bentonite to serve as a seal to prevent filtration of surface water runoff into the borings which would potentially compromise the integrity and representativeness of the groundwater sample data. Well construction forms are provided in Attachment C.

The horizontal location/elevation of the top of each well casing was surveyed by a registered land surveyor. Following recovery, the elevation of groundwater in each well was measured using an electronic probe and the potentiometric surface of shallow groundwater is illustrated on Figure 9.

Each well was developed and purged prior to sampling in accordance with ch. NR 141.21 Wisconsin Administrative Code (WAC). After purging/development, groundwater samples were collected from all temporary and permanent groundwater monitoring wells. Groundwater samples collected for PAH and/or PCB analysis were collected using low-flow sampling techniques and samples were placed directly into laboratory-supplied, non-preserved, amber colored sample jars. Groundwater samples collected for dissolved RCRA metals were collected with a peristaltic pump and field-filtered through an inline 0.45

July 18, 2023 Mr. Adam Tegen Page 6 of 12

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

micrometer disposable high-capacity filter capsule directly into a laboratory-supplied sample jars containing a nitric acid preservative. Groundwater samples collected for VOC analysis were collected with a Voss disposable polyethylene bailer and poured directly into laboratory-supplied sample jars containing a hydrochloric acid preservative. Groundwater samples collected for PFAS were collected with dedicated, high-density polyethylene (HDPE) tubing. Additionally, an equipment blank (EB-1) was collected by pumping laboratory-supplied PFAS-free water into laboratory-supplied sample jars using the same collection methods and equipment used in collecting the PFAS groundwater samples.

Groundwater samples were placed in laboratory-supplied sample containers, stored on ice, and sent under chain-of-custody procedures to Eurofins TestAmerica of Chicago, Illinois for analysis of VOCs (SW846 Method 8260B), SVOCs (SW846 Method 8270D), PCBs (SW846 Method 8082A), pesticides (SW846 Method 8082A), herbicides (SW846 Method 8151A), dissolved RCRA metals (SW846 Method 6010), and/or PFAS (Method 537Mod). Laboratory reports are provided in Attachment D and detected constituents in groundwater are compared to ch. NR 104 standards on Table 2.

RESULTS AND CONCLUSIONS

SOIL QUALITY

Table 1 compares detected constituents in Property fill/soils in the 2022 and 2023 sampling events to applicable NR 720 RCLs. Laboratory reports for the Stantec 2022 and 2023 soil samples are provided in Attachment D, and the laboratory report for the August 2022 AECOM sampling event is provided in Attachment E. As noted previously, the top of the ground surface changed significantly between the Stantec (2020a) Phase II ESA and this study, a correction will need to be completed in the future to directly compare previous soil quality data to the results of this Phase II ESA. For the purpose of this Phase II ESA, the depths of impacts summarized below are in reference to current grade.

Soil Lithology – The following presents a summary of the soil lithology based on current conditions.

Surface soils at the Property consisted of granular fill imported from a commercial quarry underlain by heterogenous black granular fills of varying thickness. The granular material is consistent with black granular fills encountered across the River Point District and is not consistent with foundry sand. The extent and thickness of the black granular fill is illustrated on Figure 7.

<u>Field Observations and Soil Screening</u> – Summarized on the soil borehole logs provided in Attachment B and Attachment E, PID measurements in surficial soils at the Property were found to be near background levels (less than 1 iu) except for in select soils sampled by AECOM. The peak PID measurement across all three rounds of soil sampling was 91 iu, which was measured at SB-239 (3-4 ft bgs), and an apparent odor was noted; however, VOCs were not detected in the corresponding soil sample. A weathered hydrocarbon odor was noted in select soil borings, and generally corresponded to PID measurements above 0.8 iu.

A faint burnt tobacco odor was observed in soil sampled from SB-253 from 8-10 ft bgs and SB-255 from 7.5-10 ft bgs. As a result of these field observations, total cyanide was added to list of analyses for those sampled intervals.

Black Granular Fill. The concentrations of heavy metals and/or PAHs in the black granular fill at the Property exceed one or more RCL (Table 1), which is consistent with multiple Stantec (e.g., 2020a) investigations completed at the River Point District. In addition, metals and PAHs in the black granular fill do not appear to have leached to underlying native soil at the Property (Table 1), which is consistent with extensive soil sampling completed elsewhere across the River Point District. Therefore, impacts associated with the fill are

July 18, 2023 Mr. Adam Tegen Page 7 of 12

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

considered delineated and these constituents of concern (COCs) will be retained at the Property during non-industrial redevelopment. Risks associated with the black granular fill will be mitigated through the construction of a sitewide engineered barrier (Figure 4a) maintained with continuing obligation in addition to a sitewide groundwater use restriction/continuing obligation.

Please note that AECOM characterized the black granular fill on their boring logs as associated with foundry sand. However, given the heterogeneity of particle sizes in the fill, it does not appear likely the granular fill is associated with foundry waste.

<u>VOCs</u> – Detected VOCs in soil are compared to NR 720 RCLs on Table 1. The horizontal extents of VOC constituents detected in this investigation at concentrations greater than health-based RCLs are illustrated on Figure 8. The results from this investigation are similar to TRC (2007) and continue to show natural attenuation of residual organic impacts. With the exception of naphthalene at SB-216, the concentrations of VOCs are all less than the direct contact RCL at non-industrial properties. Individual VOCs are discussed below.

Benzene. Benzene was sporadically detected in black granular fill at concentrations exceeding the soil to groundwater RCL (Figure 8). VOC impacts to appeared isolated to the black granular fill (which was the ground surface soil during historic industrial operations), and impacts were vertically delineated at multiple locations suggesting benzene impacts to soil do not pose a risk to groundwater. Furthermore, as shown on Table 2, benzene was not detected in groundwater sampled on the Property, suggesting that benzene impacts to soil are not leaching to groundwater at the Property. Therefore, although benzene remains a COC for soil at the Property, further evaluation of benzene impacts to soil is not warranted. Risks associated with the benzene impacts to soil will be mitigated through the construction of a sitewide engineered barrier (Figure 4a) maintained with a continuing obligation in addition to a sitewide groundwater use restriction/continuing obligation while natural attenuation decreases concentrations over time.

Naphthalene. The concentration of Naphthalene at soil boring SB-216 (northeast corner of Property near the former grain elevator) was greater than the non-industrial direct contact RCL and soil to groundwater RCL in a sample of black gravely sand (8-8.5 ft bgs, which is approximately 2 feet below the initial ground surface). As naphthalene was not detected in soil from 10-11 feet below ground surface at SB-216 (nor at SB-165 from the corresponding depth interval), it appears naphthalene impacts to soil at SB-216 are vertically confined. Furthermore, the concentrations of naphthalene in soil from the corresponding depth interval at SB-251 and SB-126 (Stantec, 2020a) was less than the most conservative health-based standard for naphthalene suggesting impacts are horizontally delineated. Therefore, although naphthalene remains a specific COC for soil at the far northeast portion of the Property, impacts appear vertically and horizontally delineated. Risks associated with naphthalene impacts to soil at SB-216 will be mitigated through the construction of a sitewide engineered barrier (Figure 4a) maintained with a continuing obligation in addition to a sitewide groundwater use restriction/continuing obligation while natural attenuation decreases concentrations over time.

Methylene Chloride. Methylene chloride is a known laboratory artifact and was reportedly detected in several soil samples. However, these detections were "J" and/or "B" flagged by the laboratory, meaning the measurements are an approximate value and the constituent was detected in the laboratory blank sample, respectively. The methylene chloride detections in soil are therefore not believed to be representative of soil quality at the Property and methylene chloride is not retained as a COC for the Property.

<u>PAHs</u> – As described previously and consistent with findings from previous investigations at the River Point District, concentrations of PAHs in samples of the black granular fill exceed one or more RCL (Table 1). PAHs associated with the granular fill do not appear to have leached to underlying native soils. Please note, upon further evaluation, soil samples SB-221 (4-5 ft bgs), SB-231 (5-7 ft bgs), SB-238 (3-4 ft bgs), and SB-239 (3-9 ft bgs).

July 18, 2023 Mr. Adam Tegen Page 8 of 12

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

4 ft bgs) appear to have been taken from reworked soils comingled with black granular fill and sample results are not indicative of native soil quality at depth, as demonstrated by the absence of PAH exceedances in native material sampled from soil borings SB-253 through SB-261. Although PAHs have been vertically and horizontally delineated, PAHs are considered a COC for the Property. Risks associated with the PAHs in the historic granular fill will be mitigated through the construction of a sitewide engineered barrier (Figure 4a) maintained with a continuing obligation in addition to a sitewide groundwater use restriction/continuing obligation. A specific discussion on a potential release of naphthalene is discussed previously.

<u>RCRA Metals</u> - As described previously and consistent with findings from previous investigations at the River Point District, concentrations of heavy metals in samples of the black granular fill exceed one or more RCL (Table 1). However, heavy metals associated with the granular fill do not appear to have leached to underlying native soils. Although heavy metals have been vertically and horizontally delineated, metals are considered a COC for the Property. Risks associated with the heavy metals in the historic granular fill will be mitigated through the construction of a sitewide engineered barrier (Figure 4a) maintained with a continuing obligation in addition to a sitewide groundwater use restriction/continuing obligation.

Of additional note, the concentration of lead in an apparent native organic horizon at soil boring SB-237 (9-10 ft bgs) was greater than the industrial direct contact RCL, which was unexpected given the large number of native subsurface soil samples collected to date at the River Point District. Unfortunately, Stantec was not able to confirm nor delineate apparent lead impacts at SB-237 as a live electrical transformer (and associated concrete pad) was constructed over SB-237 in 2021. The concrete pad will serve as an engineered barrier and will be maintained with an institutional control.

<u>SVOCs</u> - As summarized on Table 1, the concentrations of non-PAH SVOCs in soil are all less than the most conservative health-based RCLs. Therefore, non-PAH SVOCs are not considered COCs for the Property.

<u>PCBs</u> – Two PCB mixtures (Aroclor 1260 and Aroclor 1254) were detected in the black granular fill at concentrations slightly greater than one or more health-based RCLs (Table 1). The concentration of Aroclor 1260 in the black granular fill at SB-217 (0-2 ft bgs) was slightly greater than the non-industrial direct contact RCL (Table 1). However, the concentrations of PCBs in black granular fill from three soil borings advanced by AECOM in the vicinity of SB-217 are all less than the non-industrial direct contact RCL suggesting PCB impacts are relatively localized. Risks associated with PCBs will be mitigated through the construction of a sitewide engineered barrier (Figure 4a) maintained with a continuing obligation in addition to a sitewide groundwater use restriction/continuing obligation.

<u>Chlorinated Pesticides</u> – As shown on Table 1, chlorinated pesticides were not detected at concentrations greater than the most conservative RCLs; therefore, chlorinated pesticides are not COCs for the Property.

<u>Herbicides</u> - As shown on Table 1, herbicides were not detected in soil sampled at the Property; therefore, herbicides are not considered COCs for the Property.

<u>Total Cyanide</u> - As shown on Table 1, the concentrations of total cyanide in soil from SB-253 and SB-255 were less than the laboratory reporting limit. Therefore, cyanide is not considered a COC for the Property.

GROUNDWATER QUALITY

Detected constituents in groundwater are compared to applicable NR 140 health-based standards on Table 2. The horizontal extents of impacts identified to groundwater are illustrated on Figure 10.

<u>Groundwater Elevation</u> – The elevation of groundwater at the Property decreases in a southern/southwestern direction, toward the Manitowoc River (Figure 9).

July 18, 2023 Mr. Adam Tegen Page 9 of 12

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

<u>VOCs</u> – Detected VOCs in groundwater are compared to groundwater standards on Table 2. The horizontal extents of VOC constituents are illustrated on Figure 10. The results from this investigation are similar to TRC (2007) and continue to show natural attenuation of residual solvent and petroleum impacts.

Chlorinated Solvents. As adapted on Figure 6, TRC (2007) previously noted the concentrations of trichloroethene (TCE) and/or associated daughter products in groundwater exceeded one or standard on the east-central portion of the Property. During this Phase II ESA, TCE was not detectable in groundwater; however, the concentration of vinyl chloride was greater than the ES in groundwater sampled from MW-234 and the concentration of cis-1,2-dichloroethene was greater than the ch. NR140 Preventive Action Limit (PAL) in groundwater sampled from MW-231 (Table 2). The concentrations of VOCs downgradient (south/southeast) of these wells are less than applicable PALs suggesting residual solvent impacts to groundwater remain confined to a small portion of the Property (Figure 10). Although these two COCs will be retained, the detections of cis-1,2-dichloroethene and vinyl chloride in groundwater suggest ongoing natural attenuation of previously documented TCE impacts to groundwater on the east-central portion of the Property. Risks associated with chlorinated solvents will be mitigated through a sitewide groundwater use restriction/continuing obligation.

Napthalene. The concentration of naphthalene in groundwater at TW-216 was greater than the PAL. However, the concentrations of naphthalene in groundwater from nearby sample locations (e.g., TW-215, TW-221, and TW-222) were less than the PAL. Therefore, the extent of naphthalene impacts to groundwater appears isolated to the far northeastern portion of the Property. Naphthalene will be retained as a COC. Risks associated with napthalene will be mitigated through a sitewide groundwater use restriction/continuing obligation while natural attenuation continues to reduce concentrations.

<u>SVOCs</u> – As shown on Table 2, the concentrations of detected SVOCs are less than applicable PALs. Therefore, SVOCs (except naphthalene) are not retained as COCs.

<u>Chlorinated Pesticides</u> – As shown on Table 2, chlorinated pesticides were not detected in groundwater sampled from MW-231 and MW-234; therefore, chlorinated pesticides in groundwater are retained as COCs for the Property.

<u>PCBs</u> – As shown on Table 2, PCBs were not detected in groundwater sampled from MW-231 and MW-234; therefore, PCBs are not retained as COCs for groundwater at the Property.

<u>Herbicides</u> – The concentrations of herbicides in groundwater are less than applicable PALs; therefore, herbicides are not retained as COCs for groundwater at the Property.

<u>Dissolved RCRA Metals</u> – Consistent with assessment work completed across the River Point District (e.g., Stantec, 2020a), the concentrations of arsenic in groundwater at the Property were slightly greater than the PAL (Table 2). The concentrations of other dissolved RCRA metals were less than the PAL. Although the source of arsenic in groundwater has not been definitively confirmed, risks associated with heavy metals will be mitigated through a sitewide groundwater use restriction/continuing obligation.

<u>PFAS</u> – Several fluorinated compounds were detected in groundwater at the Property (Table 2), which is consistent with assessment work completed across the River Point District. As illustrated on Figure 11, the concentrations of PFAS decrease downgradient from MW-231 to MW-234 and further decreases downgradient from MW-234 to MW-117/TW-49 suggesting the Property is unlikely to be the source of PFAS impacts to groundwater. Overall, PFAS is considered a COC for groundwater at the River Point District and

July 18, 2023 Mr. Adam Tegen Page 10 of 12

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

the risk to groundwater at the Property will be mitigated through a sitewide groundwater use restriction/continuing obligation.

RECOMMENDATIONS

As discussed above, several constituents were detected in soil and groundwater at concentrations greater than health-based standards and are retained as COCs for the Property. Soil and groundwater impacts were largely delineated during this investigation and are consistent with prior assessment work completed at the Property. Risks associated with residual soil and groundwater impacts will be mitigated through construction of a sitewide engineered barrier maintained with a continuing obligation supplemented with a sitewide groundwater use restriction/continuing obligation.

Proposed soil management activities and engineered barrier placement and maintenance will be outlined and discussed in greater detail in combined Remedial Action Plans / Materials Management Plans to be prepared under separate cover once a developer has been identified. Furthermore, upon finalization of redevelopment plans for the Property, a post-closure modification for the sitewide engineered barrier will be submitted to the WDNR.

Stantec recommends submitting this report to WDNR for review and for concurrence with Stantec's recommendations detailed above.

Regards,

STANTEC CONSULTING SERVICES INC

Jiyan Hatami, M.S. Contaminant Hydrogeologist Jiyan.Hatami@stantec.com STANTEC CONSULTING SERVICES INC.

Harris L. Byers, Ph.D. Sr. Brownfields Project Manager Harris.Byers@Stantec.com Phone: 414-581-6476

airs I layers

STANTEC CONSULTING SERVICES INC

Stu Gross, P.G. QA/QC Manager Stu.Gross@stantec.com

ENCLOSURES

Figures Tables

Attachment A – Photographic Documentation

Attachment B – Stantec Soil Boring Logs and Abandonment Forms

Attachment C – Well Construction Forms
Attachment D – Stantec Laboratory Reports
Attachment E – AECOM Supplied Documents

LIMITATIONS

The conclusions in this Phase II ESA (Report) are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from the City of Manitowoc and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the City of Manitowoc in accordance with Stantec's contract with the City of Manitowoc. While the Report may be provided to applicable authorities having jurisdiction and others for whom the City of Manitowoc is responsible, Stantec does not warrant the services to any third party. The report may not be relied upon by any other party without the express written consent of Stantec, which may be withheld at Stantec's discretion.

REFERENCES

Stantec, 2015, Quality Assurance Project Plan (Revision 0), Implementation of U.S. EPA Assessment Grants for Petroleum and Hazardous Substance Brownfields, City of Manitowoc, WI, U.S. EPA Cooperative Agreement Nos. BF-BF-00E01529-0, August 19, 2015.

- Stantec, 2016a, June 3, 2016, Quality Assurance Project Plan Addendum 1.
- Stantec, 2016b, August 15, 2016. Quality Assurance Project Plan Update and Addendum 2.
- Stantec, 2016c, October 18, 2016. Quality Assurance Project Plan Update.
- Stantec, 2018a, Quality Assurance Project Plan Update and Addendum 3, June 17, 2018.
- Stantec, 2018b, QAPP 2018 Update Current WDNR Laboratory Certificates, September 11, 2018.
- Stantec, 2018c, Quality Assurance Project Plan Addendum, November 18, 2018.
- Stantec, 2019a, Quality Assurance Project Plan Addendum, January 1, 2019.
- Stantec, 2019b, Quality Assurance Project Plan Addendum, January 7, 2019.
- Stantec, 2021, Quality Assurance Project Plan Update and Addendum, September 28, 2021.
- Stantec, 2022, Quality Assurance Project Plan Update and Addendum, November 29, 2022.
- Stantec, 2019. 10th Street Railroad Property, Manitowoc, Wisconsin, Phase I Environmental Site Assessment, March 21, 2019.
- Stantec, 2020a. Phase II Environmental Site Assessment, Riverpoint District; Manitowoc, Wisconsin, March 23, 2020.
- Stantec, 2020b, Construction Documentation Report for Demolition and Removal of Structural Impediments, River Point District Site 3. December 11, 2020.
- Stantec, 2021. Fire Department Response During Explosive Demolition of a Former Grain Elevator, 1101

 Buffalo Street, River Point District Phase I Construction Area; Manitowoc, Wisconsin, September 7, 2021.

July 18, 2023 Mr. Adam Tegen Page 12 of 12

Reference: Phase II Environmental Site Assessment; Lot 3 of the River Point District; Manitowoc, Wisconsin

Stantec, 2022. Site-Specific Sampling and Analysis Plan, Lot 3 of Riverpoint District; Manitowoc, Wisconsin, March 7, 2022.

TRC, 2007, GIS Registry Information, February 14, 2007.

FIGURES

Figure No.

1
Title

Location of Lot 3 and
Regional Topography

Client/Project
Lot 3 Phase II ESA
River Point District
City of Manitowoc

0 265 530
Frepared by HLB on 1/27/2022

Legend

Lot 3

City of Manitowoc

River Point District

Notes

 Coordinate System: NAD 1983 StatePlane Wisconsin South FIPS 4803 Feet

LOCATED IN BLOCKS 168, 169, 170, 172, AND 173 OF THE ORIGINAL PLAT OF THE CITY OF MANITOWOC AND ADJACENT VACATED STREETS, BEING PART OF GOVERNMENT LOT 3 OF SECTION 30, TOWN 19 NORTH, RANGE 24 EAST, CITY OF MANITOWOC, MANITOWOC COUNTY, WISCONSIN

THIS INSTRUMENT WAS DRAFTED BY: Jeffrey A. DeZeeuw, PLS of Corner Point.

JULY 26, 2021

JOB No.: \$356021

FILE: DWG\CITY\MTWC\STANTEC\CITY-CN RR PROJECT\CSM 2021\S356021

4a Title

Proposed Reuse and Proposed Engineered Barriers/Caps

Client/Project Lot 3 Phase II ESA River Point District City of Manitowoc

> 250 Prepared by HLB on 4/15/2021 125 □ Feet

Legend

River Point District

Future Commercial (2024-2025)

Proposed Redevelopments

Town Homes (2025-2026)

Town Homes (2024-2025)

Commercial (Finished)

Multi-Family (Finishing 2022)

Roadway (2021-2024)

Landscaping (2023-2025)

Floating Dock and Pier (2023)

Multi-Family Residential (2023-2024)

Sidewalk (2024-2025)

River Walk / Park (2023-2024)

Proposed Commercial (2025-2026)

- 1. Coordinate System: NAD 1983 StatePlane Wisconsin South FIPS 4803 Feet 2. Orthophotograph: Manitowoc County, 2017

Legend Lot 3 125 250 500 0 ■ Feet

State Location

120/5 Curpora...
Suite 200
Mequon, WI 53092
(262) 643-9174 12075 Corporate Parkway

The information on this map has been compiled by Stantec staff from a variety of sources and is subject to change without notice. Stantec makes no representations or warranties, which are to acquire completeness timeliness.

Manitowoc, Wisconsin express or implied, as to accuracy, completeness, timeliness, or rights to the use of such information.

Figure 5a Historic Plat Maps DWG: 03.mxd DATE: February 2023

PROJ NO.

5bTitle Project Area and Features from the 19th Century

Client/Project Lot 3 Phase II ESA River Point District City of Manitowoc

Prepared by HLB on 2/1/2023

Figure No. <u>5d</u> Project Area and 1898 Panoramic Photograph Client/Project Lot 3 Phase II ESA River Point District City of Manitowoc Prepared by HLB on 1/31/2023 Approximate Approximate Horizontal Scale Vertical Scale 30 Feet 175 Feet

 \bigcup_{0}

- 1. Coordinate System: NAD 1983 HARN WISCRS Manitowoc County Feet
- 2. Orthophotograph: Manitowoc County Historical Society
 3. Approximate horizontal and vertical scale for the Site Investigation
 Project Area based on measurements and notations on the Sanborn (R)
 Fire Insurance Map published in 1900. The approximate scales are not applicable outside of this area.

Figure No.

5f
Title
Historic Tenants

Client/Project
Lot 3 Phase II ESA
River Point District
City of Manitowoc

0 37.5 75
Prepared by HLB on 1/24/2022
Feet

N

Legend

River Point District

Prior Tenants

Lot 3

Notes

Coordinate System: NAD 1983 HARN WISCRS Manitowoc County Feet
 Orthophotograph: Manitowoc County, 2020

Extent and Thickness of Granular Fill Unit

130

Client/Project Lot 3 Phase II ESA River Point District

City of Manitowoc

260 Prepared by HLB on 1/27/2022

Legend

Lot 3

River Point District

Thickness of **Granular Fill**

(Feet)

7 - 8

0 - 1

Coordinate System: NAD 1983 HARN WISCRS Manitowoc County Feet
 Orthophotograph: Manitowoc County, 2020

Project Area and Groundwater Elevation (March 2023)

Client/Project Area B1 River Point District City of Manitowoc

260 Prepared by HLB on 5/8/2023

Legend

River Point District

Area B1

130

Groundwater Elevation (feet above mean sea level)

Groundwater Monitoring Well

Coordinate System: NAD 1983 HARN WISCRS Manitowoc County Feet
 Orthophotograph: Manitowoc County, 2020

TABLES

Table 1

Detected Compounds in Soil Lot 3 of the River Point District Manitowoc, WI

Notes

140163	
Sample ID*	Sample ID as it appeared on the associated laboratory Chain-of-Custody. Samples taken by AECOM have been renamed to conform with Stantec sample ID format.
ug/kg	Micrograms per kilogram
mg/kg	Milligrams per kilogram
MS/MSD	Matrix spike/matrix spike duplicate
VOCs	Volatile organic compounds
SVOCs	Semi-volatile organic compounds
ft	Feet
ND	Compound not detected
< x	Concentration is less than the detection limit of x
RCRA	Resource Conservation and Recovery Act
BTV	Background threshold value
n/v	No standard/guideline value
RCL	Residual contaminant level (ch. NR700 Wis. Admin. Code)
	Concentration exceeds the non-industrial direct contact RCL
	Concentration exceeds the industrial direct contact RCL
	Concentration exceeds the soil to groundwater RCL
-	Compound not analyzed
В	Compound was found in the blank and sample
DL	Sample was diluted due to matrix interference
F1	MS and/or MSD Recovery is outside acceptance limits
F2	MS/MSD relative percent difference exceeds control limits
J	The concentration is an approximate value
XX* [XXX]	Standard in bold is the BTV used for the purpose of evaluation under ch. NR700 WAC. The established RCL is noted in brackets

Table 1
Detected Compounds in Soil
Lot 3 of the River Point District
Manitowoc, WI

			1		ı						Stante	c Soil Boring N	lumber, Sampl	e Interval. S	ample ID*. U	SCS Soil Cla	ssification. a	nd Date						
	Industrial				SE	3-213	SB-	214	SB-	215		SB-216			SB-2		, , ,		SB-218			SB-220	SB-221	
	Industrial	Non-Industrial	Soil to		0 - 2 ft	10 - 12 ft	0 - 2 ft	4 - 5 ft	0 - 2 ft	6 - 7 ft	7 - 8 ft	8 - 8.5 ft	10 - 11 ft	0 - 2 ft	3 - 5 ft	3 - 5 ft	9 - 10 ft	2 - 4 ft	2 - 4 ft	5 - 7 ft	4 - 5 ft	14.75 - 15 ft	0 - 2 ft	4 - 5 ft
Analyte	Direct Contact	Direct Contact	Groundwater RCL	Wisconsin BTV	SB-213 (0-2)	SB-213 (10-12)	SB-214 (0-2)	SB-214 (4-5)	SB-215 (0-2)	SB-215 (6-7)	SB-216 (7-8)	SB-216 (8-8.5)	SB-216 (10-11)	SB-217 (0-2)	SB-217 (3-5)	FD-1	SB-217 (9-10)	SB-218 (2-4)	FD-2	SB-218 (5-7)	SB-220 (4-5)	SB-220 (14.75-15)	SB-221 (0-2)	SB-221 (4-5)
	RCL	RCL				CH		ML		SWG	SP SP	SWG	SP SP		ML ML	ML				SWG		CH	FILL	
					7/1L 3/24/2022	3/24/2022	7 FILL 3/24/2022	3/24/2022	FILL 3/24/2022	3/24/2022	3/23/2022	3/23/2022	3/23/2022	FILL 3/24/2022	3/24/2022	3/24/2022	OH 3/24/2022	FILL 3/24/2022	7/24/2022	3/24/2022	7/24/2022	3/24/2022	3/24/2022	SM 3/24/2022
Detected VOCs (μg/kg)					3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/23/2022	3/23/2022	3/23/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022
1,2,4-Trimethylbenzene	219,000	219,000		n/v	190	< 27	350	< 26	< 23	< 23	-	74 J	< 24	410	< 25	< 25	< 49	< 38	< 38	< 24	58 J	< 44	97	< 26
1,3,5-Trimethylbenzene	182,000	182,000	1,378	n/v	51 J	< 29	75 J	< 28	< 24	< 24	-	< 31	< 25	96	< 26	< 27	< 52	< 41	< 40	< 26	< 48	< 47	< 30	< 28
Benzene	7,070	1,600	5.1	n/v	< 16	< 11	100	< 11	< 9.3	< 9.3	-	< 12	< 9.8	74	< 10	< 10	< 20	< 16	< 15	< 9.9	< 18	< 18	22	< 11
Ethylbenzene	35,400	8,020	1,570	n/v	100	< 14	210	< 13	< 12	< 12	-	< 15	< 12	170	< 13	< 13	< 25	< 20	< 19	< 12	< 23	< 23	63	< 13
Isopropylbenzene (Cumene)	268,000	268,000	n/v	n/v	88 J	< 29	140	< 28	< 24	< 24	-	< 31	< 26	130	< 26	< 27	< 52	< 41	< 41	< 26	< 48	< 47	39 J	< 28
Methylene Chloride	1,150,000 24,100	61,800 5,520	2.6 658	n/v	410 J B	290 J B	< 180 480	< 120	< 100	< 100	-	330 J B 12,000	280 J B	< 160	< 110	< 110	< 220	< 170 < 36	< 170	< 110	< 200	< 200	< 130 300	< 120 < 24
Naphthalene n-Butylbenzene	108,000	108,000	n/v	n/v n/v	250 < 42	< 26 < 30	< 42	< 24 < 28	34 J < 25	< 21 < 25	-	< 32	< 22 < 26	500 < 37	< 23 < 27	< 23 < 27	62 J B < 53	< 41	< 35 < 41	< 23 < 26	< 42 < 49	< 41 < 48	< 31	< 28
n-Propylbenzene	264,000	264,000	n/v	n/v	110	< 32	170	< 30	< 26	< 26	-	< 34	< 28	180	< 28	< 29	< 56	< 44	< 44	< 28	< 52	< 51	60 J	< 30
p-Isopropyltoluene	162,000	162,000	n/v	n/v	< 39	< 28	< 40	< 27	< 23	< 23	-	< 30	< 24	48 J	< 25	< 25	< 49	< 39	< 38	< 25	< 45	< 45	< 29	< 26
sec-Butylbenzene	145,000	145,000	n/v	n/v	< 43	< 30	57 J	< 29	< 25	< 25	-	< 33	< 27	69 J	< 27	< 28	< 54	< 42	< 42	< 27	< 50	< 49	< 32	< 29
tert-Butylbenzene	183,000	183,000	n/v	n/v	< 43	< 30	< 44	< 29	< 25	< 25	-	< 33	< 27	< 38	< 27	< 28	< 54	< 42	< 42	< 27	< 50	< 49	< 32	< 29
Toluene	818,000	818,000	1,107	n/v	390	< 11	660	< 11	< 9.4	< 9.3	-	27	< 9.8	460	< 10	< 10	< 20	58	< 16	< 10	< 18	< 18	190	25
Xylene (Total)	260,000	260,000	3,960	n/v	660	< 17	1,200	< 16	< 14	< 14	-	20 J	< 15	1,100	< 15	< 15	< 30	68	< 23	< 15	98	< 27	270	44
Detected PAHs (µg/kg)	72.700	17.000			4.200	40.7	2.000	107	62.1	400	22.1	ı		2.500	101	10.1	- 1 1	220	270	100	07.1	160.1	F10	24.1
1-Methylnaphthalene	72,700 3,010,000	17,600 239,000	n/v n/v	n/v n/v	4,300 5,700	< 9.7 < 7.3	3,600 4,800	< 9.7 < 7.3	62 J 78	< 9.0 < 6.8	23 J 24 J	-	< 14 < 11	3,500 4,300	< 9.4 < 7.1	< 9.4 < 7.1	< 14	330 390	270 320	< 9.0 < 6.8	87 J 120 J	160 J 180 J	510 710	24 J 27 J
2-Methylnaphthalene Acenaphthene	45,200,000	3,590,000	n/v n/v	n/v n/v	< 81	< 7.3	2,200	< 7.3	78 18 J	< 6.6	< 6.5	-	<11	4,300 < 72	< 6.9	< 6.9	< 10	21 J	18 J	< 6.6	< 13	< 25	100 J	< 7.0
Acenaphthylene	n/v	n/v	n/v	n/v	< 59	< 5.2	750	< 5.2	15 J	< 4.9	< 4.8	-	< 7.6	< 53	< 5.1	< 5.1	< 7.7	240	190	< 4.9	< 9.2	< 18	1,800	78
Anthracene	100,000,000	17,900,000	196,949	n/v	260 J	< 6.6	5,300	< 6.7	43	< 6.2	8.2 J	-	14 J	210 J	< 6.4	< 6.4	< 9.7	240	170	< 6.1	29 J	< 23	2,100	42
Benzo(a)anthracene	20,800	1,140	n/v	n/v	640	< 5.3	7,800	< 5.4	140	6.3 J	24 J	-	18 J	250 J	< 5.2	< 5.2	< 7.8	1,400	1,100	< 5.0	27 J	40 J	18,000	190
Benzo(a)pyrene	2,110	115	470	n/v	620	< 7.7	8,600	< 7.7	200	< 7.1	32 J	-	20 J	200 J	< 7.4	< 7.4	< 11	1,400	1,000	< 7.1	18 J	< 27	19,000	540
Benzo(b)fluoranthene	21,100	1,150	478	n/v	980	< 8.6	11,000	< 8.6	320	9.9 J	50	-	25 J	400	< 8.3	< 8.3	< 13	2,000	1,500	< 7.9	< 15	50 J	25,000	350
Benzo(g,h,i)perylene	n/v	n/v	n/v	n/v	290 J	< 13	2,200	< 13	98	< 12	17 J	-	< 19	130 J	< 12	< 12	< 19	400	250	< 12	< 22	< 45	3,900	260
Benzo(k)fluoranthene Chrysene	211,000 2,110,000	11,500 115,000	n/v 144	n/v n/v	260 J 870	< 12 < 11	4,400 8,300	< 12 < 11	120 230	< 11 11 J	19 J 32 J	-	< 17 22 J	< 120 310 J	< 11 < 10	< 11 < 10	< 17 < 16	670 1,400	540 1,000	< 11 < 10	< 21 20 J	< 41 43 J	8,500 13,000	170 230
Dibenzo(a,h)anthracene	2,110,000	115,000	n/v	n/v	< 87	< 7.7	810	< 7.7	24 J	< 7.1	< 7.0	-	<11	< 78	< 7.4	< 7.4	< 11	160	110	< 7.1	< 13	< 27	1,700	64
Fluoranthene	30,100,000	2,390,000	88,877	n/v	1,200	< 7.4	18,000	< 7.4	270	20 J	57	-	32 J	350 J	< 7.1	< 7.1	< 11	2,500	1,600	16 J	40 J	55 J	37,000	190
Fluorene	30,100,000	2,390,000	14,829	n/v	< 63	< 5.6	2,200	< 5.6	23 J	< 5.2	< 5.1	-	< 8.1	< 56	< 5.4	< 5.4	< 8.2	< 11	< 5.7	< 5.2	< 9.8	< 19	320	5.5 J
Indeno(1,2,3-cd)pyrene	21,100	1,150	n/v	n/v	230 J	< 10	2,400	< 10	78	< 9.6	14 J	-	< 15	< 100	< 9.9	< 9.9	< 15	460	300	< 9.5	< 18	< 36	4,600	220
Naphthalene	24,100	5,520	658	n/v	4,200	< 6.1	3,700	< 6.1	46	< 5.7	18 J	-	< 8.9	2,500	< 5.9	< 5.9	< 8.9	270	210	5.8 J	42 J	110 J	640	21 J
Phenanthrene	n/v	n/v	n/v	n/v	2,700	6.1 J	20,000	< 5.5	190	11 J	56	-	21 J	1,800	< 5.4	< 5.3	9.1 J	540	310	11 J	160	120 J	5,800	39
Pyrene Detected Metals (mg/kg)	22,600,000	1,790,000	54,545	n/v	1,300	< 7.9	15,000	< 7.9	500	22 J	51	-	22 J	510	< 7.6	< 7.6	< 12	1,900	1,400	14 J	53 J	61 J	45,000	510
Arsenic	8.3* [3]	8.3* [0.677]	8.3* [0.584]	8.3	12	0.64 J	9.4	3.0	2.3	1.0 J	0.52 J	-	0.99	6.3	1.5	2.3	3.5	7.1	7.9	3.1	5.4	2.2	2.1	2.2
Barium	100,000	15,300	364* [164.8]	364	81	-	68	-	32	-	10	-	-	82	-	-	-	49	76	-	32	-	31	-
Cadmium	985	71	1* [0.752]	1	0.67	-	0.53	-	1.4	-	0.080 J B	-	-	0.60	-	-	-	0.29	0.11 J B	-	0.25 B	-	0.20 J B	-
Chromium	100,000	100,000	360,000	44	22	-	9.6	-	12	-	5.6	-	-	15	-	-	-	13	10	-	8.5	-	9.4	-
Lead	800	400	51.6* [27]	51.6	210	3.3	76	3.5	53	15	5.0	-	4.1	90	4.1	4.3	5.7	52	61	27	140	19	38	6.8
Mercury	3	3	0.208	n/v	0.065	-	1.9	-	0.14	-	< 0.0060	-	-	0.054	-	-	-	0.029	0.030	-	0.0085 J	-	0.080	
Selenium	5,840	391	0.52	n/v	< 0.83	-	4.2	-	< 0.66	-	< 0.58	-	-	1.1 J	-	-	-	< 0.70	1.1 J	-	0.83 J	-	< 0.66	-
Silver	5,840	391	1	n/v	< 0.18	-	0.20 J	-	0.19 J	-	< 0.13	-	-	0.28 J	-	-	-	< 0.15	0.16 J	-	< 0.16	-	0.17 J	-
Detected SVOCs (μg/kg) 3 & 4 Methylphenol	n/v	n/v	n/v	n/v	< 750	-	< 1,000	-	< 61	-	< 60	-	-	< 670	- 1	-	-	< 130	-	- 1	< 120	-	< 340	-
Benzoic acid	100,000,000	100,000,000	n/v	n/v	< 4,500	-	< 6,200	-	< 360	-	< 360	-	-	< 4,000	-	-	-	< 800	-	-	< 690	-	< 2,100	-
Bis(2-ethylhexyl)phthalate	164,000	38,800	2,880	n/v	< 820	-	< 1,100	-	< 67	-	< 66	-	-	< 730	-	-	-	< 150	-	-	< 130	-	< 380	-
Carbazole	n/v	n/v	n/v	n/v	< 1,100	-	< 1,600	-	< 91	-	< 91	-	-	< 1,000	-	-	-	< 200	-	-	< 170	-	630 J	-
Dibenzofuran	1,040,000	73,000	n/v	n/v	1,400 J	-	2,300 J	-	< 43	-	< 42	-	-	840 J	-	-	-	95 J	-	-	< 82	-	< 240	-
Detected Chlorinated Pesticides												_			,									
4,4'-DDT	1,890	8,530	n/v	n/v	< 5.7	-	< 16	-	< 8.8	-	< 4.4	-	-	< 5.1	-	-	-	< 4.9	< 1.0	-	< 1.1	-	< 5.0	-
Detected PCBs (mg/kg)		0.000	1 000	.,	.0.000				.0.000				ı			ı		.0.000	1.0.0074	,	.0.00		.0.00=1	
Aroclor 1254	0.239	0.988	0.01	n/v	< 0.0080	-	< 0.023	-	< 0.0062	-	< 0.0062	-	-	< 0.0071	-	-	-	< 0.0069	< 0.0071	-	< 0.0077	-	< 0.0071	
Aroclor 1260 Detected Herbicides (μg/kg)	0.243	1	0.01	n/v	0.052	-	< 0.026	-	< 0.0069	-	< 0.0068	-	-	0.34	-	-	-	< 0.0077	< 0.0079	-	< 0.0085	-	< 0.0079	-
(6) Compounds Analyzed	Various	Various	Various	n/v	ND		ND	-	ND	-	ND	l -	-	ND	l - I	- 1	-	ND	ND	- 1	ND	-	ND	-
Cyanide (mg/kg)	various	various	various	11/ V	140		140		110		140			140				140	140		140		140	
Total Cyanide	n/v	n/v	n/v	n/v	-	-	-	-	-	-	-	-	-	-	- 1	- 1	-	-	-	- 1	-	-	-	_
		, .	. "	4.															-					$\overline{}$

Table 1
Detected Compounds in Soil
Lot 3 of the River Point District
Manitowoc, WI

	1		T								Sta	ntec Soil Bo	ring Number	. Sample Int	terval. Sampl	e ID*. USCS	Soil Classific	ation, and Date						
			!		SB-2	222	SB	-223	SB-	-224		225		227		SB-229			SB-230		SB-231		SB-234	
	Industrial	Non-Industrial	Soil to		6.5 - 8 ft	9 - 10 ft	4 - 6 ft	9 - 10 ft	1 - 3 ft	7 - 8 ft	2 - 4 ft	8 - 9 ft	4 - 6 ft	7 - 8 ft	1 - 3 ft	4 - 5 ft	5 - 7 ft	3.5 - 4.5 ft	4.5 - 6 ft	8 - 10 ft	5 - 7 ft	8.25 - 10 ft	3.5 - 4.5 ft	4.5 - 6.5 ft
Analyte	Direct Contact	Direct Contact	Groundwater RCL	Wisconsin BTV	SD 222 (C F 8)	CD 222 (0.10)	CD 222 (4 C)	CD 222 (0.10)	CD 224 /1 2\	CD 224 (7.0)	CD 225 (2.4)	CD 225 (0.0)	CD 227 (4 C)	CD 227 (7.0)	CD 220 (1.2)		CD 220 (F 7)	CD 220 (2 F 4 F)	CD 220 (4 F C)	SB-230 (8-10)	CD 224 /F 7\		CD 224 (2 F 4 F)	SB-234 (4.5-6.5)
	RCL	RCL			SB-222 (6.5-8)	SB-222 (9-10)	SB-223 (4-6)	SB-223 (9-10)	SB-224 (1-3)	SB-224 (7-8)	SB-225 (2-4)	SB-225 (8-9)	SB-227 (4-6)	SB-227 (7-8)	SB-229 (1-3)	SB-229 (4-5)	SB-229 (5-7)	SB-230 (3.5-4.5)	SB-230 (4.5-6)		SB-231 (5-7)	SB-231 (8.25-10)	SB-234 (3.5-4.5)	
					FILL	SP	FILL	CH	FILL	SP a /aa /aaaa	FILL	OH	FILL	OH	FILL	SP	SC SC	FILL	SP	SW	CH	SP	FILL	CH
Data at ad 1/00a (a/l.a)					3/23/2022	3/23/2022	3/24/2022	3/24/2022	3/23/2022	3/23/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/23/2022	3/23/2022	3/23/2022	3/23/2022	3/23/2022	3/23/2022	3/23/2022	3/23/2022	3/23/2022	3/23/2022
Detected VOCs (μg/kg) 1,2,4-Trimethylbenzene	219,000	219,000		n/v	< 22	< 24	72 J	< 28	< 26	< 25	340	< 34	83	< 31	< 23	_	< 23	140	_	< 24	< 25	< 23	360	< 25
1,3,5-Trimethylbenzene	182,000	182.000	1,378	n/v	< 23	< 26	< 45	< 30	< 28	< 27	92 J	< 36	< 28	< 33	< 25		< 24	< 41	_	< 25	< 26	< 25	91 J	< 26
Benzene	7,070	1,600	5.1	n/v	< 8.8	< 9.8	< 17	< 11	< 11	< 10	170	< 14	17 J	< 13	< 9.5	-	< 9.3	< 16	-	< 9.6	< 10	< 9.4	36	< 10
Ethylbenzene	35,400	8,020	1,570	n/v	< 11	< 12	43	< 14	13 J	< 13	290	< 17	38	< 16	< 12	-	< 12	54	-	< 12	< 13	< 12	190	< 13
Isopropylbenzene (Cumene)	268,000	268,000	n/v	n/v	< 23	< 26	< 45	< 30	< 28	< 27	92 J	< 37	< 29	< 33	< 25	-	< 24	59 J	-	< 25	< 27	< 25	99 J	< 27
Methylene Chloride	1,150,000	61,800	2.6	n/v	320 B	380 B	< 190	< 130	430 B	400 B	< 200	< 160	< 120	< 140	420 B	-	380 B	630 B	-	380 B	410 B	370 B	620 B	440 B
Naphthalene	24,100	5,520	658	n/v	< 20	< 22	70 J B	< 26	46 J B	< 24	350	< 32	86 B	< 29	< 22	-	31 J B	260	-	< 22	< 23	< 22	480	28 J B
n-Butylbenzene	108,000	108,000	n/v	n/v	< 23	< 26	< 46	< 30	< 28	< 28	57 J	< 37	< 29	< 34	< 25	-	< 25	< 42	-	< 26	< 27	< 25	82 J	< 27
n-Propylbenzene p-Isopropyltoluene	264,000 162,000	264,000 162,000	n/v n/v	n/v n/v	< 25 < 22	< 28 < 24	< 49 < 43	< 32 < 28	< 30 < 26	< 29 < 26	160 < 43	< 40 < 35	36 J < 27	< 36 < 31	< 27 < 24	-	< 26 < 23	78 J < 39	-	< 27 < 24	< 29 < 25	< 27 < 23	170 44 J	< 29 < 25
sec-Butylbenzene	145,000	145,000	n/v	n/v	< 24	< 27	< 47	< 31	< 29	< 28	< 48	< 38	< 30	< 34	< 26	-	< 25	< 43	_	< 26	< 28	< 26	48 J	< 28
tert-Butylbenzene	183,000	183,000	n/v	n/v	< 24	< 27	< 47	< 31	< 29	< 28	< 48	< 38	< 30	< 34	< 26	-	< 25	< 43	-	< 26	< 28	< 26	< 40	< 28
Toluene	818,000	818,000	1,107	n/v	< 8.8	< 9.9	43	< 11	59	< 10	730	< 14	60	< 13	< 9.6	-	36	100	-	< 9.7	< 10	< 9.5	300	< 10
Xylene (Total)	260,000	260,000	3,960	n/v	< 13	< 15	160	< 17	66	< 16	1,000	< 21	170	< 19	< 14	-	110	420	-	< 15	< 15	< 14	770	< 15
Detected PAHs (μg/kg)																								
1-Methylnaphthalene	72,700	17,600	n/v	n/v	< 420	< 9.4	900	< 9.8	210 J	< 25	1,200	< 12	750	< 11	8.8 J	< 9.3	-	220 J	< 8.6	-	29 J	< 9.3	1,400	< 9.3
2-Methylnaphthalene	3,010,000	239,000	n/v	n/v	< 320	< 7.1	1,200	< 7.4	240 J	< 19	1,500	< 8.7	910	< 8.5	9.7 J	< 7.0	-	260	< 6.5	-	32 J	< 7.0	1,900	< 7.0
Acenaphthene	45,200,000	3,590,000	n/v	n/v	1,200 J	< 6.9	< 40	< 7.2	70 J	< 18	< 39	< 8.5	< 37	< 8.3	< 6.5	< 6.8	-	200	< 6.4	-	29 J	< 6.8	180 J	< 6.9
Acenaphthylene	n/v 100,000,000	n/v 17,900,000	n/v 196,949	n/v n/v	< 230 3,300	< 5.1 < 6.4	< 30 < 37	< 5.3 < 6.7	54 J 430	< 14	< 29 55 J	< 6.3	< 27 < 34	< 6.1 < 7.7	< 4.8 6.7 J	< 5.0	-	140 590	< 4.7 < 5.9	-	18 J 74	< 5.0 29 J	< 29 680	< 5.0 < 6.4
Anthracene Benzo(a)anthracene	20,800	1,140	n/v	n/v	16,000	8.9 J	49 J	< 5.4	3,300	< 17 < 14	62 J	< 7.9 < 6.4	45 J	< 6.2	27 J	< 6.3 < 5.1	-	1,500	8.5 J	-	220	< 5.1	1,600	< 5.1
Benzo(a)pyrene	2,110	115	470	n/v	23,000	12 J	< 43	< 7.8	4,300	< 20	< 42	< 9.2	< 40	< 8.9	36	< 7.3	-	1,700	< 6.8	-	290	< 7.4	1,800	< 7.4
Benzo(b)fluoranthene	21,100	1,150	478	n/v	31,000	11 J	< 48	< 8.7	4,500	< 22	53 J	< 10	< 44	< 10	61	< 8.2	-	2,500	8.2 J	-	400	< 8.2	2,000	< 8.2
Benzo(g,h,i)perylene	n/v	n/v	n/v	n/v	11,000	< 12	< 72	< 13	2,100	< 33	< 71	< 15	< 66	< 15	17 J	< 12	-	330	< 11	-	110	< 12	770	< 12
Benzo(k)fluoranthene	211,000	11,500	n/v	n/v	12,000	< 11	< 66	< 12	1,600	< 30	< 65	< 14	< 60	< 14	27 J	< 11	-	1,000	< 10	-	160	< 11	760	< 11
Chrysene	2,110,000	115,000	144	n/v	19,000	< 11	< 61	< 11	3,600	< 28	73 J	< 13	< 56	< 13	36	< 10	-	1,800	< 9.6	-	280	< 10	1,600	< 10
Dibenzo(a,h)anthracene	2,110	115	n/v	n/v	2,700	< 7.5	< 43	< 7.8	450	< 20	< 42	< 9.2	< 40	< 8.9	< 7.0	< 7.3	-	95 J	< 6.8	-	29 J	< 7.4	180 J	< 7.4
Fluoranthene	30,100,000	2,390,000	88,877	n/v	44,000	21 J	68 J	< 7.5	5,600	25 J	81 J	< 8.8	51 J	< 8.5	72	< 7.0	-	4,200	14 J	-	600	< 7.1	3,300	< 7.1
Fluorene Indeno(1,2,3-cd)pyrene	30,100,000	2,390,000 1,150	14,829 n/v	n/v n/v	1,300 J 10,000	< 5.4 < 10	< 32 < 58	< 5.7 < 10	97 J 1,500	< 14 < 27	< 31 < 57	< 6.7 < 12	< 29 < 53	< 6.5 < 12	< 5.1 14 J	< 5.3 < 9.8	-	210 340	< 5.0 < 9.2	-	29 J 100	< 5.3 < 9.9	200 J 660	< 5.4 < 9.9
Naphthalene	24,100	5,520	658	n/v	< 270	< 5.9	630	< 6.2	150 J	< 16	940	< 7.3	510	< 7.1	9.1 J	< 5.8		230	< 5.4	_	27 J	< 5.9	1.100	< 5.9
Phenanthrene	n/v	n/v	n/v	n/v	18,000	8.3 J	500	< 5.6	1,400	15 J	810	< 6.6	350	7.8 J	30 J	< 5.3	-	3,300	6.5 J	-	400	< 5.3	3,300	< 5.3
Pyrene	22,600,000	1,790,000	54,545	n/v	36,000	18 J	87 J	< 8.0	6,700	25 J	120 J	< 9.4	66 J	< 9.2	62	< 7.5	-	3,700	11 J	-	550	< 7.6	3,600	< 7.6
Detected Metals (mg/kg)																								
Arsenic	8.3* [3]	8.3* [0.677]	8.3* [0.584]	8.3	1.3	1.4	4.7	0.53 J	3.2	1.3	6.6	2.3	6.5	1.8	0.80 J	1.1	-	11	1.2	-	1.9	0.41 J	12	2.0
Barium	100,000	15,300	364* [164.8]	364	25	-	120	-	93	-	62	-	69	-	23	-	-	140	-	-	34	-	110	-
Cadmium	985	71	1* [0.752]	1	0.22 B	-	0.050 J B	-	0.21 J B	-	0.080 J B	-	0.31	-	0.094 J B	-	-	7.6	-	-	0.11 J B	-	0.92	-
Chromium Lead	100,000	100,000 400	360,000 51.6* [27]	51.6	36 180	- 11	13 29	3.6	38	3.5	12 14	6.2	9.2 9.5	5.7	8.3 42	3.4	-	50 890	61	-	15 23	1.5	28 250	4.3
Mercury	3	3	0.208	n/v	0.023	-	0.015 J	3.0	0.028	- 3.3	0.011 J	- 0.2	9.5 0.015 J	-	0.056		-	0.83	-	-	0.069	-	0.24	
Selenium	5,840	391	0.52	n/v	< 0.61	-	2.5	-	< 0.65	-	1.7	-	1.2	-	< 0.63	-	-	0.84 J	-	-	< 0.63	-	1.2 J	-
Silver	5,840	391	1	n/v	< 0.13	-	< 0.18	-	< 0.14	-	0.15 J	-	< 0.15	-	< 0.14	-	-	0.37 J	-	-	< 0.14	-	0.21 J	-
Detected SVOCs (μg/kg)																								
3 & 4 Methylphenol	n/v	n/v	n/v	n/v	< 2,900	-	< 370	-	670 J	-	< 370	-	< 340	-	< 60	-	-	< 190	-	-	< 62	-	520 J	-
Benzoic acid	100,000,000	100,000,000	n/v	n/v	< 17,000	-	< 2,200	-	< 2,000	-	< 2,200	-	< 2,000	-	< 360	-	-	< 1200	-	-	< 370	-	2,500 J	-
Bis(2-ethylhexyl)phthalate	164,000	38,800	2,880	n/v	< 3,200	-	< 410	-	< 370	-	< 400	-	< 370	-	< 66	-	-	220 J	-	-	< 68	-	< 400	-
Carbazole	n/v	n/v	n/v	n/v	< 4,300	-	< 560	-	< 510	-	< 550	-	< 510	-	< 90	-	-	380 J	-	-	< 93	-	< 540	-
Dibenzofuran Detected Chlorinated Pesticide	1,040,000	73,000	n/v	n/v	< 2,000	-	< 260	-	< 240	-	290 J	-	< 240	-	< 42	-	-	200 J	-	-	< 44	-	440 J	-
4,4'-DDT	1,890	8,530	n/v	n/v	< 44	_	< 1.1	-	< 4.8	-	< 1.0	-	< 0.99	-	< 0.88	-	-	51	-	_	9.3 J		< 5.5	_
Detected PCBs (mg/kg)	1,030	1 0,330	11/ V	11/V	\ + ++		× 1.1		1 14.0		\ 1.U		\ U.33		1 .0.00			1 21			J.3 J	-	\ J.J	
Aroclor 1254	0.239	0.988	0.01	n/v	< 0.0062	-	< 0.0077	-	< 0.0068	-	< 0.0074	-	< 0.0070	-	< 0.0062	-	-	0.11	-	-	< 0.0066	-	< 0.0077	-
Aroclor 1260	0.243	1	0.01	n/v	< 0.0069	-	< 0.0086	-	< 0.0076	-	< 0.0082	-	< 0.0077	-	< 0.0069	-	-	< 0.0074	-	-	< 0.0074	-	< 0.0086	-
Detected Herbicides (µg/kg)																								
(6) Compounds Analyzed	Various	Various	Various	n/v	ND	-	ND	-	ND	-	ND	-	ND	-	ND	-	-	ND	-	-	ND	-	ND	-
Cyanide (mg/kg)																								
Total Cyanide	n/v	n/v	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 1
Detected Compounds in Soil
Lot 3 of the River Point District
Manitowoc, WI

			T	1																				
		Non Industrial	Soil to Groundwater RCL						T						,	JSCS Soil Clas								
					SB-2			-237	SB	-238		239	SB-		SB	-241		-242		243			SB-244 SE	
Analyte	Industrial	Non-Industrial		Wisconsin BTV	3.5 - 5 ft	6 - 7 ft	1 - 2 ft	9 - 10 ft	1-2 ft	3-4 ft	1-2 ft	3-4 ft	1-2 ft	4-5 ft	1-2 ft	2-3 ft	1-2 ft	3-4 ft	1-2 ft	2-3 ft	1-2 ft	3-4 ft	1-2 ft	3-4 ft
Allalyte	Direct Contact RCL	Direct Contact RCL		. Wisconsiii Bi V	SB-236 (3.5-5)	SB-236 (6-7)	SB-237 (1-2)	SB-237 (9-10)	PB-1 (1'-2')	PB-1 (3'-4')	PB-2 (1'-2')	PB-2 (3'-4')	PB-3 (1'-2')	PB-3 (4'-5')	PB-4 (1'-2')	PB-4 (2'-3')	PB-5 (1'-2')	PB-5 (3'-4')	PB-6 (1'-2')	PB-6 (2'-3')	PB-7 (1'-2')	PB-7 (3'-4')	PB-8 (1'-2')	PB-8 (3'-4')
					FILL	ОН	FILL	ОН	FILL	FILL	FILL	SP	FILL	SP	FILL	FILL	FILL	SP-SM	FILL	FILL	FILL	SP-SM	FILL	FILL
					3/23/2022	3/23/2022	3/23/2022	3/23/2022	8/19/2022	_		8/19/2022		8/19/2022		8/19/2022	8/19/2022	+		8/19/2022	+	8/19/2022	8/19/2022	+
Detected VOCs (μg/kg)									-, -,		., ., .		-, -, -	-, -, -	1, 1, 1	-, -, -	-, -, -			, , ,		-, -, -	-, -, -	
1,2,4-Trimethylbenzene	219,000	219,000	4.270	n/v	290	< 34	< 21	< 31	< 18	126	< 38.0	< 20.0	< 17.3	< 21.4	32.5 J	< 26.5	-	-	-	-	-	-	< 18.4	< 21.1
1,3,5-Trimethylbenzene	182,000	182,000	1,378	n/v	77 J	< 36	< 23	< 33	< 19.4	68.6	< 41.1	< 21.7	< 18.6	< 23.2	< 19.1	< 28.6	-	-	-	-	-	-	< 19.9	< 22.8
Benzene	7,070	1,600	5.1	n/v	64	< 14	< 8.7	< 13	< 14.3	< 14.6	< 30.4	< 16.0	< 13.8	< 17.1	24.2	< 21.1	-	-	-	-	-	-	< 14.7	< 16.9
Ethylbenzene	35,400	8,020	1,570	n/v	130	< 17	< 11	< 16	< 14.3	59.2 J	< 30.4	< 16.0	< 13.8	< 17.1	38.8 J	< 21.1	-	-	-	-	-	-	< 14.7	< 16.9
Isopropylbenzene (Cumene)	268,000	268,000	n/v	n/v	91	< 36	< 23	< 34	< 16.3	39.3 J	< 34.4	< 18.2	< 15.6	< 19.4	18.8 J	< 24.0	-	-	-	-	-	-	< 16.7	< 19.1
Methylene Chloride	1,150,000	61,800	2.6	n/v	540 B	580 B	250 J B	350 J B	< 16.8	< 17.0	< 35.5	< 18.7	< 16.1	< 20.0	< 16.5	< 24.7	-	-	-	-	-	-	< 17.2	< 19.7
Naphthalene	24,100	5,520	658	n/v	440	49 J B	140	< 29	38.7 J	372	< 39.8	< 21.0	< 18.1	< 22.5	101 J	< 27.7	-	-	-	-	-	-	< 19.3	< 22.1
n-Butylbenzene	108,000	108,000	n/v	n/v	< 34	< 36	< 23	< 34	< 27.6	< 28.1	< 58.4	< 30.8	< 26.5	< 33.0	< 27.2	< 40.7	-	-	-	-	-	-	< 28.3	< 32.4
n-Propylbenzene	264,000	264,000	n/v	n/v	110	< 39	< 25	< 36	< 14.5	50.1 J	< 30.6	< 16.1	< 13.9	< 17.3	27.2 J	< 21.3	-	-	-	-	-	-	< 14.8	< 17.0
p-lsopropyltoluene	162,000	162,000	n/v	n/v	33 J	< 34	< 22	< 32	< 18.3	< 18.6	< 38.8	< 20.4	< 17.6	< 21.9	< 18.0	< 27.0	-	-	-	-	-	-	< 18.8	< 21.5
sec-Butylbenzene	145,000 183,000	145,000 183,000	n/v	n/v	41 J < 35	< 37	470 32 J	< 35 < 35	< 14.7 < 18.9	< 15.0	< 31.1 < 40.1	< 16.4	< 14.1 < 18.2	< 17.6	< 14.5	< 21.7 < 27.9	-	-	-	-	-	-	< 15.1 < 19.4	< 17.3 < 22.2
tert-Butylbenzene Toluene	818,000	818,000	n/v 1,107	n/v n/v	< 35 440	< 37 < 14	< 8.8	< 13	17.7 J	< 19.3 91.5	< 40.1 < 32.2	< 21.1 < 16.9	< 18.2 < 14.6	< 22.6 < 18.1	< 18.6 141	< 27.9	-	-	-	-	-	-	< 19.4 < 15.6	< 17.8
Xylene (Total)	260,000	260,000	3,960	n/v	1,000	< 21	< 13	< 19	< 43.5	211	< 92.1	< 48.6	< 41.8	< 52.0	179	< 64.1	-	-	-	-	-	-	< 44.7	< 51.1
Detected PAHs (µg/kg)	200,000	200,000	3,300	11/ V	1,000	\21	\ 13	\13	V 43.3	211	\ J2.1	V 40.0	V41.0	₹ 32.0	173	V 04.1							\ 44. 7	V 31.1
1-Methylnaphthalene	72,700	17,600	n/v	n/v	1,600	< 11	< 180	< 11	239 J	118	< 13.7	35.7 J	9.7 J	70.2	932	833	3,840	< 3.0	1,610	741	10.2 J	< 3.0	< 2.7	< 29.5
2-Methylnaphthalene	3,010,000	239,000	n/v	n/v	2,100	< 7.9	< 140	< 8.0	313 J	144	14.1 J	43.8 J	12.1 J	80.8	1,170	1,060	4,710	< 3.0	1,970	909	13.0 J	< 3.0	3.8 J	< 29.5
Acenaphthene	45,200,000	3,590,000	n/v	n/v	56 J	< 7.7	< 130	< 7.8	909	196	17.5 J	95.8	8.0 J	6.6 J	22.8 J	186	52.6 J	< 2.7	29.4 J	< 10.3	< 2.4	< 2.7	< 2.4	37.1 J
Acenaphthylene	n/v	n/v	n/v	n/v	140 J	< 5.7	< 99	< 5.7	598	28.0 J	< 11.8	18.1 J	11.4 J	5.4 J	53.3 J	55.6 J	123 J	< 2.6	57.8 J	57.6 J	< 2.3	< 2.6	4.9 J	< 25.5
Anthracene	100,000,000	17,900,000	196,949	n/v	160 J	< 7.2	160 J	11 J	3,530	211	38.0 J	167	22.9	8.0 J	46.7 J	352	113 J	< 2.6	65.8 J	43.1 J	3.4 J	< 2.5	7.6 J	131 J
Benzo(a)anthracene	20,800	1,140	n/v	n/v	630	< 5.8	170 J	32 J	6,230	199	110	350	52.6	44.6	124	355	273 J	< 2.7	136	97.7	8.0 J	< 2.6	37.7	658
Benzo(a)pyrene	2,110	115	470	n/v	890	< 8.3	200 J	50	6,670	195	178	440	64.6	56.1	106	253	119 J	< 2.3	77.1 J	61.9 J	7.8 J	< 2.3	60.9	940
Benzo(b)fluoranthene	21,100	1,150	478	n/v	1,500	< 9.3	270 J	54	7,390	309	251	635	87.6	86.8	153	344	177 J	< 2.9	148	186	9.7 J	< 2.8	95.1	1,390
Benzo(g,h,i)perylene	n/v	n/v	n/v	n/v	380	< 14	< 240	< 14	4,200	96.7	102	277	45	36.8	47.8 J	143	< 65.8	< 3.6	34.6 J	64.1 J	4.5 J	< 3.6	46.5	614
Benzo(k)fluoranthene	211,000	11,500	n/v	n/v	460	< 13	< 220	34 J	3,160	96.5	129	258	28.5	30.8	49.0 J	140	63.9 J	< 2.6	45.4 J	58.2 J	4.6 J	< 2.6	35.1	593
Chrysene	2,110,000	115,000	144	n/v	880	< 12	< 200	44	6,810	248	229	567	64.9	63.6	146	424	321 J	< 3.9	181	188	13.3 J	< 3.9	67.2	1,010
Dibenzo(a,h)anthracene	2,110	115	n/v	n/v	90 J	< 8.3	< 140	< 8.4	757	28.1 J	21.5 J	72.8 J	11.4 J	10.1 J	16.5 J	52.8 J	< 51.9	< 2.9	16.1 J	21.2 J	< 2.5	< 2.8	11.3 J	165 J
Fluoranthene Fluorene	30,100,000	2,390,000	88,877 14,829	n/v n/v	1,100 < 29	< 8.0 < 6.1	210 J < 110	88 6.7 J	17,200 1,600	596 161	313 13.4 J	1,140 86.5 J	119 7.7 J	93.6 4.1 J	210 38.6 J	838 200	262 J 59.6 J	< 2.4 < 2.5	172 31.9 J	221 19.0 J	18.0 J < 2.2	< 2.4 < 2.5	93.4 2.9 J	1,900 40.8 J
Indeno(1,2,3-cd)pyrene	21,100	1,150	n/v	n/v	350	<11	< 190	25 J	3,310	80.4	65.8 J	205	35.4	29.4	39.9 J	121	< 78.1	< 4.3	30.2 J	51.5 J	< 3.8	< 4.3	32.2	514
Naphthalene	24,100	5,520	658	n/v	1,300	< 6.6	< 120	14 J	758	241	15.8 J DL	44.7 J	16.5 J	53.2	858	779	3,430	< 2.0	1,430	701	9.6 J	< 2.0	2.6 J	< 19.7
Phenanthrene	n/v	n/v	n/v	n/v	1,300	< 6.0	220 J	67	13,500	608	174	865	72.3	61.3	547	1,510	1,800	< 2.4	846	573	17.3 J	< 2.3	32.9	812
Pyrene	22,600,000	1,790,000	54,545	n/v	1,200	< 8.6	250 J	91	14,900	483	298	880	129	85.2	211	604	362 J	< 3.0	204	191	25.9	< 3.0	75.5	1,600
Detected Metals (mg/kg)			•																		_	<u> </u>		
Arsenic	8.3* [3]	8.3* [0.677]	8.3* [0.584]	8.3	32	1.4	3.8	27	1.8 J	< 15.9	3.5	1.9 J	1.6 J	1.8 J	< 1.6	87.9	6.4	2.1 J	16.2	11.3	< 1.6	< 1.8	1.7 J	2.8
Barium	100,000	15,300	364* [164.8]	364	170	-	46	-	53.1 F1 F2	53.4	44	19.6	23.2	33.4	24.1	23.9	36.6	22.9	92.6	110	24.6	30.5	75.2	83.3
Cadmium	985	71	1* [0.752]	1	0.94	-	0.077 J B	-	0.58	< 1.4	1.0	< 0.14	< 0.14	0.25 J	< 0.14	< 1.8	0.17 J	< 0.16	0.40 J	0.58	0.69	0.16 J	0.19 J	0.22 J
Chromium	100,000	100,000	360,000	44	23	-	15	-	11.4	10.9	24.1	7.2	7.9	11.8	5.1	20.1	8.2	15.6	24.7	10.7	9.4	14.4	19.9	26.7
Lead	800	400	51.6* [27]	51.6	2,100	7.3	35	1,400	270 F1	24,500	49.4	15.2	26.1	11.1	14.2	23.8 J DL	45	4.9	318	162	50.9	4.3	7.7	22.7
Mercury	3	3	0.208	n/v	1.0	-	0.11	-	0.12	0.093	0.024 J	0.029 J	0.031 J	0.019 J	0.021 J	0.093	0.046	0.015 J	0.12	0.043	0.15	< 0.011	0.020 J	0.057 B
Selenium	5,840	391	0.52	n/v	< 0.75	-	< 0.61	-	< 1.4	< 14.2	< 1.4	< 1.4	< 1.4	< 1.5	< 1.4	< 17.8	< 1.5	< 1.5	3.0 J	2.2 J	< 1.4	< 1.6	< 1.3	< 1.5
Silver	5,840	391	1	n/v	0.54 J	-	0.13 J	-	< 0.34	< 3.3	< 0.32	< 0.32	< 0.32	< 0.35	< 0.33	< 4.2	< 0.34	< 0.36	0.48 J	0.36 J	< 0.33	< 0.37	< 0.32	< 0.34
Detected SVOCs (μg/kg) 3 & 4 Methylphenol	n/v	n/v	n/v	n/v	< 350	-	< 1,200	-	Ī	1	-					-		-			-		-	
Benzoic acid	100,000,000	100,000,000	n/v	n/v n/v	< 2,100	-	< 7,400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	 	-	-
Bis(2-ethylhexyl)phthalate	164,000	38,800	2,880	n/v	< 380	-	< 1,400	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Carbazole	n/v	n/v	n/v	n/v	< 520	-	< 1,900	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzofuran	1,040,000	73,000	n/v	n/v	480 J	-	< 880	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Detected Chlorinated Pesticides																								
4,4´-DDT	1,890	8,530	n/v	n/v	< 5.1	-	< 0.91	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Detected PCBs (mg/kg)																								
Aroclor 1254	0.239	0.988	0.01	n/v	< 0.0072	-	< 0.0064	-	-	-	-	-	-	-	-	-	<0.0171	<0.0187	<0.0164	<0.0181	<0.0168	<0.0187	-	-
Aroclor 1260	0.243	1	0.01	n/v	0.034	-	< 0.0072	-	-	-	-	-	-	-	-	-	<0.0171	<0.0187	0.0190 J	<0.0181	<0.0168	<0.0187	-	-
Detected Herbicides (μg/kg)																								
(6) Compounds Analyzed	Various	Various	Various	n/v	ND	-	ND	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide (mg/kg)																								
Total Cyanide	n/v	n/v	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Table 1
Detected Compounds in Soil
Lot 3 of the River Point District
Manitowoc, WI

					T					Stantec Soil Boring Nu				nle Interval. S	Sample ID*. U	SCS Soil Class	ification, and	Date					
					SB	-246	SB-	247	SB-	-248	1	249		-250		-251	1	252	SB-253	SB-254	SB-255	SB-256	SB-259
	Industrial	Non-Industrial	Soil to		1-2 ft	2-3 ft	2-3 ft	3-4 ft	1-2 ft	2-3 ft	1-2 ft	3-4 ft	1-2 ft	3-4 ft	1-2 ft	3-4 ft	1-2 ft	4-5 ft	8-10 ft	8-10 ft	9-10 ft	8-9 ft	11.5-14 ft
Analyte	Direct Contact	Direct Contact	Soil to Groundwater RCL	Wisconsin BTV																			
	RCL	RCL	0.04.14.14.0.1.02		PB-9 (1'-2')	PB-9 (2'-3')	PB-10 (2'-3')	PB-10 (3'-4')	PB-11 (1'-2')	PB-11 (2'-3')	PB-12 (1'-2')	PB-12 (3'-4')	PB-13 (1'-2')		PB-14 (1'-2')	PB-14 (3'-4')	PB-15 (1'-2')	PB-15 (4'-5')	SB-253 (8-10)	SB-254 (8-10)	SB-255 (9-10)	SB-256 (8-9)	SB-259 (11.5-14)
					FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	FILL	SW	SM	ОН	ОН	СН
- · · · · · · · · · · · · · · · · · · ·					8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	8/19/2022	1/16/2023	1/17/2023	1/16/2023	1/17/2023	1/17/2023
Detected VOCs (µg/kg)	219,000	210.000	T	- /-	+21.2	4 20 2	< 19.7	202	27.61	110.1					120.4	25.24				Т	1		< 27
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	182,000	219,000 182.000	1,378	n/v n/v	< 21.3 < 23.1	< 20.2 < 21.8	< 21.3	202 42.9 J	27.6 J < 20.3	< 19.1 < 20.6	-	-	-	-	< 20.4 < 22.0	25.3 J < 19.7	-	-	-	-	-	-	< 27
Benzene	7,070	1,600	5.1	n/v	< 17.0	< 16.1	< 15.7	343	33.6	< 15.3	-	-	-	-	< 16.3	< 14.6	-	-	-		-	-	< 11
Ethylbenzene	35,400	8,020	1,570	n/v	< 17.0	< 16.1	< 15.7	88.3	34.9 J	< 15.3	-	-	-	-	< 16.3	< 14.6	-	-	-	-	-	-	< 14
Isopropylbenzene (Cumene)	268,000	268,000	n/v	n/v	< 19.3	< 18.3	< 17.8	31.4 J	< 17.0	< 17.3	-	-	-	-	< 18.4	< 16.5	-	-	-	-	-	-	< 29
Methylene Chloride	1,150,000	61,800	2.6	n/v	< 19.9	< 18.8	< 18.3	< 16.1	< 17.5	< 17.8	-	-	-	-	< 19.0	< 17.0	-	-	-	-	-	-	< 120
Naphthalene	24,100	5,520	658	n/v	< 22.3	< 21.2	< 20.6	435	66.3 J	< 20.0	-	-	-	-	< 21.3	69.7 J	-	-	-	-	-	-	< 25
n-Butylbenzene	108,000	108,000	n/v	n/v	< 32.8	< 31.1	< 30.2	< 26.5	< 28.8	< 29.4	-	-	-	-	< 31.3	< 28.0	-	-	-	-	-	-	< 29
n-Propylbenzene	264,000	264,000	n/v	n/v	< 17.2	< 16.3	< 15.8	42.3 J	25.7 J	< 15.4	-	-	-	-	< 16.4	< 14.7	-	-	-	-	-	-	< 31
p-Isopropyltoluene	162,000	162,000	n/v	n/v	< 21.8	< 20.6	< 20.1	< 17.6	< 19.1	< 19.5	-	-	-	-	< 20.8	< 18.6	-	-	-	-	-	-	< 27
sec-Butylbenzene tert-Butylbenzene	145,000 183,000	145,000 183,000	n/v n/v	n/v n/v	< 17.5 < 22.5	< 16.5 < 21.3	< 16.1 < 20.7	< 14.1 < 18.2	< 15.4 < 19.8	< 15.6 < 20.1	-	-	-	-	< 16.7 < 21.5	< 14.9 < 19.2	-	-	-	-	-	-	< 30 < 30
Toluene	818,000	818,000	1,107	n/v	< 18.1	< 17.1	< 16.6	1,100	227	< 16.2	-	-	-	-	< 17.2	< 19.2 < 15.4	-	-	-	-	-	-	< 30 < 11
Xylene (Total)	260,000	260,000	3,960	n/v	< 51.7	< 49.0	< 47.7	854	144 J	< 46.3	-	-	-	-	< 49.3	< 44.2	-	-	-	-	-	-	< 17
Detected PAHs (µg/kg)	_55,550		3,300	.,,,	. 52.7	5.0		. 557							5.5								
1-Methylnaphthalene	72,700	17,600	n/v	n/v	21.4 J	< 2.9	6.0 J	< 460	63.4 J	44.8 J	83.5 J	3.7 J	65.4 J	79.7	149	73.8	-	-	< 14	< 14	< 12	< 11	< 14
2-Methylnaphthalene	3,010,000	239,000	n/v	n/v	28.0 J	< 2.9	9.2 J	< 461	72.6 J	52.1 J	98.5 J	4.8 J	148 J	112	188	98.2	-	-	< 10	< 11	< 8.9	< 8.6	< 11
Acenaphthene	45,200,000	3,590,000	n/v	n/v	51.1 J	< 2.6	< 2.5	1,310 J	19.8 J	35.8 J	82.0 J	< 2.4	< 47.6	8.4 J	48.7	24.9	-	-	< 10	< 10	< 8.7	< 8.4	< 11
Acenaphthylene	n/v	n/v	n/v	n/v	< 12.0	< 2.5	4.9 J	< 397	14.3 J	17.3 J	< 45.1	2.6 J	686	25.3	35.1 J	28.2	-	-	< 7.4	< 7.7	< 6.4	< 6.2	< 7.8
Anthracene	100,000,000	17,900,000	196,949	n/v	135	< 2.4	7.3 J	4,390	96.1	110	264 J	2.4 J	1,220	40.8	128	56	-	-	< 9.4	< 9.7	< 8.1	< 7.8	< 9.9
Benzo(a)anthracene	20,800	1,140	n/v	n/v	361	2.8 J	28.2	14,300	292	237	634	6.1 J	2,470	224	267	208	-	-	< 7.6	< 7.8	< 6.5	< 6.3	< 8.0
Benzo(a)pyrene	2,110	115	470	n/v	470	3.1 J	34.1	17,700	350	250	881	8.9 J	2,360	172	246	229	-	-	<11	< 11	< 9.3	< 9.0	< 11
Benzo(b)fluoranthene	21,100 n/v	1,150 n/v	478 n/v	n/v n/v	652 252	5.7 J 3.8 J	45.3 28.6	24,800 13,000	502 234	313 146	1,150 537	12.0 J 8.1 J	2,570 1,170	488 95.7	347 167	340 98	-	-	< 12 < 18	< 13 < 19	< 10 < 16	< 10 < 15	< 13 < 19
Benzo(g,h,i)perylene Benzo(k)fluoranthene	211,000	11,500	n/v	n/v	282	3.2 J	19.9	10,400	171	133	516	5.5 J	1,170	222	107	133	-	-	< 17	< 17	<14	< 14	< 17
Chrysene	2,110,000	115,000	144	n/v	503	5.2 J	38.5	20,500	388	305	1,090	10.6 J	2,450	283	284	221	-	-	< 15	< 16	<13	< 13	< 16
Dibenzo(a,h)anthracene	2,110	115	n/v	n/v	74.3 J	< 2.7	7.8 J	3,550	66.9 J	43.0 J	147 J	< 2.6	298 J	21.3	52	23.5	-	-	< 11	< 11	< 9.3	< 9.0	< 11
Fluoranthene	30,100,000	2,390,000	88,877	n/v	960	4.2 J	60.9	41,500	743	590	1,950	12.4 J	6,100	407	575	384	-	-	< 10	< 11	< 8.9	< 8.7	< 11
Fluorene	30,100,000	2,390,000	14,829	n/v	48.0 J	< 2.4	3.0 J	1,590 J	22.0 J	32.9 J	75.8 J	< 2.2	244 J	10.9 J	59	21.3	-	-	< 7.9	< 8.2	< 6.8	< 6.6	< 8.3
Indeno(1,2,3-cd)pyrene	21,100	1,150	n/v	n/v	217	< 4.1	20.1	10,700	191	117	441	4.9 J	974	90.4	131	82	-	-	< 15	< 15	< 12	< 12	< 15
Naphthalene	24,100	5,520	658	n/v	39.4 J	< 1.9	4.7 J	< 307	55.5 J	40.5 J	97.5 J	6.0 J	298 J	76.7	156	84.5	-	-	< 8.7	< 9.0	< 7.4	< 7.2	< 9.1
Phenanthrene	n/v	n/v	n/v	n/v	617	2.8 J	28.8	20,500	388	434	1,130	9.1 J	2,260	155	520	199	-	-	< 7.9	< 8.1	7.1 J	7.2 J	< 8.2
Pyrene	22,600,000	1,790,000	54,545	n/v	903	3.9 J	50	32,100	621	513	1,660	18.4 J	5,800	414	439	369	-	-	< 11	< 12	< 9.6	< 9.3	< 12
Detected Metals (mg/kg) Arsenic	8.3* [3]	8.3* [0.677]	8.3* [0.584]	8.3	2.9	3.4	2.0 J	2.6	3.4 J DL	2.1 J	6.4	< 3.1	2.4 J	2.1 J	2.9	1.5 J	3.8	< 1.7	1.0 J	1.5	2.3	2.2	0.98 J
Barium	100,000	15,300	364* [164.8]	364	68.8	67	72.6	61.6	38.7 J	51.1	74.8	19.7	60.7	54.1	49.3	50.1	80.4	32.9	20	1.5	93	73	52
Cadmium	985	71	1* [0.752]	1	0.91	0.17 J	0.19 J	1.1	< 0.28	0.25 J	1.6	<0.28	0.25 J	0.32 J	0.55 J	0.18 J	<0.14	<0.16	0.11 J	0.095 J	0.33	0.25 J	0.18 J
Chromium	100,000	100,000	360,000	44	18.4	28.1	28.4	15.2	13.6	18.3	21.9	7.4	18.8	18	10.1	10.4	9.6	11.4	4.8	7.0	23	21	14
Lead	800	400	51.6* [27]	51.6	141	9.9	8.9	200	26	25.2	236	14	24.3	24.5	113	31	84.7	39.3	5.7	2.5	7.9	7.3	4.6
Mercury	3	3	0.208	n/v	0.11 B	0.14 B	0.036 J B	0.093 B	0.08 B	0.15	0.13 B	0.023 J B	0.057 B	0.075 B	0.084 B	0.052 B	0.05 B	0.055 B	0.021	0.0098 J	0.033	0.045	0.018 J
Selenium	5,840	391	0.52	n/v	< 1.4	<1.5	< 1.5	< 1.3	<2.8	<1.5	<2.8	<2.8	<1.4	<1.4	<1.5	<1.3	2.4 J	<1.6	< 0.62	< 0.65	< 0.75	< 0.79	< 0.73
Silver	5,840	391	1	n/v	< 0.33	<0.35	< 0.35	< 0.32	<0.65	<0.34	<0.66	<0.65	0.34 J	0.41 J	<0.34	<0.31	<0.33	<0.36	< 0.14	< 0.14	0.54 J	0.51 J	0.29 J
Detected SVOCs (μg/kg)	/			1 .,																			
3 & 4 Methylphenol Benzoic acid	n/v 100,000,000	n/v 100,000,000	n/v	n/v n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Benzoic acid Bis(2-ethylhexyl)phthalate	164,000	38,800	n/v 2,880	n/v n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbazole	n/v	n/v	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dibenzofuran	1,040,000	73,000	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Detected Chlorinated Pesticides				, , , , , , , , , , , , , , , , , , ,												·							
4,4'-DDT	1,890	8,530	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Detected PCBs (mg/kg)																							
Aroclor 1254	0.239	0.988	0.01	n/v	-	-	-	-	-	-	-	-	-	-	-	-	<0.0180	<0.0186	-	-	-	-	-
Aroclor 1260	0.243	1	0.01	n/v	-	-	-	-	-	-	-	-	-	-	-	-	<0.0180	<0.0186	-	-	-	-	-
Detected Herbicides (μg/kg)																							
(6) Compounds Analyzed	Various	Various	Various	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cyanide (mg/kg)		1 .	1 .																_				
Total Cyanide	n/v	n/v	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	< 0.28	-	< 0.35	-	-

					Stantec Soil Boring	Number, Sample Interval,	Sample ID*, USCS Soil Cla	assification, and Date
					SB	-260	SB-261	TB-01
	Industrial	Non-Industrial	Soil to		12.5-24 ft	12.5-14 ft	8.8.75 ft	N/A
Analyte	Direct Contact RCL	Direct Contact RCL	Groundwater RCL	Wisconsin BTV	SB-260 (12.5-14)	FD-1	SB-261 (8-8.75)	N/A
					СН	СН	SM	N/A
					1/17/2023	1/17/2023	1/17/2023	8/19/2022
Detected VOCs (μg/kg)					2/21/2020		2/2://2020	5/25/2322
1,2,4-Trimethylbenzene	219,000	219,000	1 270	n/v	< 28	< 28	-	< 14.9
1,3,5-Trimethylbenzene	182,000	182,000	1,378	n/v	< 29	< 30	-	< 16.1
Benzene	7,070	1,600	5.1	n/v	< 11	< 11	-	< 11.9
Ethylbenzene	35,400	8,020	1,570	n/v	< 14	< 14	-	< 11.9
Isopropylbenzene (Cumene)	268,000	268,000	n/v	n/v	< 30	< 30	-	< 13.5
Methylene Chloride	1,150,000	61,800	2.6	n/v	< 130	< 130	-	< 13.9
Naphthalene	24,100	5,520	658	n/v	< 26	< 26	-	< 15.6
n-Butylbenzene	108,000	108,000	n/v	n/v	< 30	< 30	-	< 22.9
n-Propylbenzene	264,000	264,000	n/v	n/v	< 32	< 32	-	< 12.0
p-Isopropyltoluene	162,000	162,000	n/v	n/v	< 28	< 28	-	< 15.2
sec-Butylbenzene tert-Butylbenzene	145,000 183,000	145,000 183,000	n/v n/v	n/v n/v	< 31 < 31	< 31 < 31	-	< 12.2 < 15.7
Toluene	818,000	818,000	1,107	n/v	<11	< 12	-	< 12.6
Xylene (Total)	260,000	260,000	3,960	n/v	< 17	< 17	<u>-</u>	< 36.1
Detected PAHs (µg/kg)	200,000	200,000	3,500	, •	- 17			. 55.1
1-Methylnaphthalene	72,700	17,600	n/v	n/v	< 15	< 15	< 15	_
2-Methylnaphthalene	3,010,000	239,000	n/v	n/v	< 11	< 11	< 11	-
Acenaphthene	45,200,000	3,590,000	n/v	n/v	< 11	< 11	< 11	-
Acenaphthylene	n/v	n/v	n/v	n/v	< 8.1	< 8.2	< 7.9	-
Anthracene	100,000,000	17,900,000	196,949	n/v	< 10	< 10	< 10	-
Benzo(a)anthracene	20,800	1,140	n/v	n/v	< 8.3	< 8.4	< 8.1	-
Benzo(a)pyrene	2,110	115	470	n/v	< 12	< 12	< 12	-
Benzo(b)fluoranthene	21,100	1,150	478	n/v	< 13	< 13	< 13	-
Benzo(g,h,i)perylene	n/v	n/v	n/v	n/v	< 20	< 20	< 19	-
Benzo(k)fluoranthene	211,000	11,500	n/v	n/v	< 18	< 18	< 18	-
Chrysene	2,110,000	115,000	144	n/v	< 17	< 17	< 16	-
Dibenzo(a,h)anthracene	2,110	115	n/v	n/v	< 12	< 12	< 12	-
Fluoranthene	30,100,000	2,390,000	88,877	n/v	< 11	< 12	< 11	-
Fluorene	30,100,000	2,390,000	14,829	n/v	< 8.7	< 8.7	< 8.5	-
Indeno(1,2,3-cd)pyrene	21,100	1,150	n/v	n/v	< 16	< 16	< 16	-
Naphthalene Phenanthrene	24,100	5,520	658	n/v n/v	< 9.5 < 8.6	< 9.6 < 8.7	< 9.3 < 8.4	-
Pyrene	n/v 22,600,000	n/v 1,790,000	n/v 54,545	n/v	< 12	< 12	< 12	-
Detected Metals (mg/kg)	22,000,000	1,750,000	34,343	11/ V	\12	\12	\12	
Arsenic	8.3* [3]	8.3* [0.677]	8.3* [0.584]	8.3	0.67 J	0.97 J	1.8	
Barium	100,000	15,300	364* [164.8]	364	40	55	25	-
Cadmium	985	71	1* [0.752]	1	0.16 J	0.18 J	0.095 J	-
Chromium	100,000	100,000	360,000	44	12	17	11	-
Lead	800	400	51.6* [27]	51.6	4.0	4.6	3.4	-
Mercury	3	3	0.208	n/v	0.011 J	0.017 J	0.10	=
Selenium	5,840	391	0.52	n/v	< 0.69	< 0.74	< 0.62	-
Silver	5,840	391	1	n/v	0.23 J	0.39 J	0.24 J	-
Detected SVOCs (μg/kg)								
3 & 4 Methylphenol	n/v	n/v	n/v	n/v	-	-	-	-
Benzoic acid	100,000,000	100,000,000	n/v	n/v	-	-	-	-
Bis(2-ethylhexyl)phthalate	164,000	38,800	2,880	n/v	-	-	-	-
Carbazole	n/v	n/v	n/v	n/v	-	-	-	-
Dibenzofuran Detected Chlorinated Posticides	1,040,000	73,000	n/v	n/v	-	-	-	
Detected Chlorinated Pesticides 4,4'-DDT	1,890	8,530	n/v	n/v	-	-	-	-
Detected PCBs (mg/kg)	1,050	0,330	11/ V	11/ V	-	<u> </u>	<u> </u>	
Aroclor 1254	0.239	0.988	0.01	n/v	-	-	-	_
Aroclor 1260	0.239	0.988	0.01	n/v	-	-	-	-
Detected Herbicides (µg/kg)	0.243	<u> </u>	0.01	11/ V	-	<u> </u>	<u> </u>	-
(6) Compounds Analyzed	Various	Various	Various	n/v	-		<u>-</u>	-
Cyanide (mg/kg)			12.7003	, •		<u> </u>		
Total Cyanide	n/v	n/v	n/v	n/v	-	-	-	-
	.,, .	,•	,.	.,, •		1	1	1

Table 2 Detected Compounds in Groundwater Lot B-3 of the River Point District Manitowoc, WI

												ample ID								
Analyte	ES	PAL	TIM: 040	TW 04.4	TW 045	TM 040	TM 004	TW 000	TM 000	TM 005		mple Date	TM 000	T	MM 004		88141	224	TM/ 00=	T 55.1
_			TW-213	TW-214	TW-215	TW-216	TW-221	TW-222	TW-223	TW-225	TW-227		TW-230	3/25/2022	MW-231 3/25/2022 (Dup)	1/17/2022		-234 1/17/2023	TW-237	EB-1 3/25/202
Detected VOCs (µg/L):			3/23/2022	3/23/2022	3/23/2022	3/23/2022	3/23/2022	JIZJIZUZZ	3/23/2022	3/23/2022	3/23/2022	SIZSIZUZZ	3/23/2022	JIZJIZUZZ	3/23/2022 (Dup)	1/11/2023	3/23/2022	1/11/2023	3/23/2022	3/23/202
1,2,4-Trimethylbenzene	n/v	n/v	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	0.70 J	< 0.36	< 0.36	T -
cis-1,2-Dichloroethene	70	7	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	8.7	9.6	9.9	16	1.3	1.4	< 0.41	-
Ethylbenzene	700	140	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	0.40 J	< 0.18	< 0.18	_
Naphthalene	100	10	< 0.34	< 0.34	0.50 J	23	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	-
p-Isopropyltoluene	n/v	n/v	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	< 0.36	0.53 J	0.46 J	< 0.36	0.41 J	< 0.36	< 0.36	-
Toluene	800	160	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	0.57	0.67	< 0.15	1.1	< 0.15	< 0.15	-
Vinyl chloride	0.2	0.02	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20	1.9	4.2	< 0.20	_
Xvlene (Total)	2000	400	< 0.22	< 0.22	0.28 J	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	0.37 J	0.33 J	< 0.22	1.6	< 0.22	< 0.22	-
Detected SVOCs (μg/L):			1		0.00									0.0.	0.000		119			
2-Methylnaphthalene	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	0.062 J	-	-	0.053 J	-	-	T -
3 & 4 Methylphenol	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	7.9	-	-	< 0.36	-	-	-
Detected Chlorinated Pesticides (µg/L):					•															
(21) Constituents Analyzed	n/v	n/v	-	-	-	_	-	-	-	_	-	-	-	ND	_	_	ND	-	-	-
Detected PCBs (µg/L):																				
(9) Constituents Analyzed	0.03	0.003	_	-	_	-	_	-	_	-	_	-	_	ND	-	-	ND	_	-	Ι.
Detected Herbicides (µg/L):	0.00													.,2			.,,5			
2,4-DB	n/v	n/v	Т -	_	_	_	_	-	_	_	_	_		2	_	_	0.41 J	_	<u> </u>	Ι.
Detected RCRA Metals (mg/L):	100	117 V			<u> </u>												0.410			
Arsenic	0.01	0.001	T -	_	I -	I -	I -	-	_	I -	_	_	_	0.0037	-	_	0.0064	_	I -	Ι.
Barium	2	0.4	-	_	_	_	_	-	_	_	_	-	-	0.22	_	_	0.19	-	_	-
Chromium	0.1	0.01	_	_	_	_	_	_	_	_	_	_		0.0057	-	_	< 0.0011	_		_
Lead	0.015	0.0015	_	_	_	_	_	_	_	_	_	_	_	0.00052	_	_	< 0.00011	_	_	-
Detected Carboxylic Acids (ng/L):	0.010	0.0010												0.00002			< 0.00010			
PFBA (Perfluorobutanoic acid)	10,000	2.000	_	-	-	-	_	-	-	-	_	-	-	62	-	-	36	-	-	< 2.2
PFPeA (Perfluoropentanoic acid)	n/v	n/v	_	-	-	_	_	-	-	_	-	-	_	36	-	-	26	_	_	< 0.44
PFHxA (Perfluorohexanoic acid)	150.000	30.000	-	-	-	-	-	-	-	-	-	-	-	24	-	-	17	-	-	< 0.53
PFHpA (Perfluoroheptanoic acid)	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	30	-	-	20	-	-	< 0.23
PFOA (Perfluorooctanoic acid)*	20	2	-	-	-	_	-	-	-	-	-	-	-	150	-	-	81	-	-	< 0.77
PFNA (Perfluorononaoic acid)	30	3	-	-	-	-	-	-	-	-	-	-	-	5.4	-	-	< 0.25	-	-	< 0.24
Detected Sulfonic Acids (ng/L):																			<u> </u>	
PFBS (Perfluorobutanesulfonic acid)	450,000	90,000	-	-	-	-	-	-	-	-	-	-	-	6.3	-	-	7.7	-	-	< 0.18
PFPeS (Perfluoropentanesulfonic Acid)	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	1.4 J	-	-	1.9	-	-	< 0.27
PFHxS (Perfluorohexanesulfonoic acid)	40	4	-	-	-	-	-	-	-	-	-	-	-	8.6	-	-	4.6	-	-	< 0.52
PFHpS (Perfluoroheptanesulfonic acid)	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	0.47 J	-	-	< 0.18	-	-	< 0.17
PFOS (Perfluorooctanesulfonic acid)*	20	2	-	-	-	-	-	-	-	-	-	-	-	23	-	-	< 0.51	-	-	< 0.49
Detected Sulfonamides, Sulfomidoacetic acids, Sulfonamidoethanol	_							<u> </u>												
(7) Constituents Analyzed	Various	Various	_	-		_	-	-	_	_	_	-	_	ND	-	-	ND	-	-	ND
Detected Replacement Chemicals (ng/L):																				1,5
*Sum of PFOA, NEtFOSE, NEtFOSA, NEtFOSAA, FOSA, and PFOS	20	2	T		1			T T	1					173			81			< 4.5
L COM, INC. COL, INC. COM, INC. COM, I COM, AND FEOS	20			-		_	-		-	_	_	_	-	173	-	_	61	<u> </u>		< 4.5

ug/L	Micrograms per liter
mg/L	Milligrams per liter
ng/L	Nanograms per liter
Λ	Monitoring well is located outside the Property boundary and was installed as part of a separate investigation for the northern-adjoining property (Stantec, 2023)
VOCs	Volatile organic compounds
SVOCs	Semi-volatile organic compounds
< X	Compound measured at a concentration less than the detection limit of x
RCRA	Resource Conservation and Recovery Act
	Concentration exceeds the Ch. NR140 Wis. Admin. Code Preventative Action Limit (PAL)
	Concentration exceeds the Ch. NR140 Wis. Admin. Code Enforcement Standard (ES)
n/v	No standard/guideline value
•	Parameter not analyzed
*	Constituent proposed for evaluation as part of a combined standard
J	Reported concentration is an approximate value
2,000	Proposed NR 140 groundwater standard

Stantec 12/5/2022

ATTACHMENT A Photographic Documentation

Site Name: Lot 3 of the River Point Site Location: Manitowoc, Wisconsin

District

Photograph ID: 1

Photo Location:

Direction:

Survey Date: 3/23/2022

Comments: Drilling SB-231.

Photograph ID: 2

Photo Location:

Direction:

Survey Date: 3/23/2022

Comments:

SB-231 (0-15 ft bgs).

Site Name: Lot 3 of the River Point Site Location: Manitowoc, Wisconsin

District

Photograph ID: 3

Photo Location:

Direction:

Survey Date: 3/23/2022

Comments:

SB-231 (0-15 ft bgs).

Photograph ID: 4

Photo Location:

Direction:

Survey Date:

3/23/2022

Comments: Developing MW-231.

Site Name: Lot 3 of the River Point Site Location: Manitowoc, Wisconsin

District

Photograph ID: 5

Photo Location:

Direction:

Survey Date: 3/23/2022

Comments:

MW-231 post-development.

Photograph ID: 6

Photo Location:

Direction:

Survey Date:

3/23/2022

Comments:

Photo of native sand, peat, and clay in SB-224 (5-10 ft bgs).

Site Name: Lot 3 of the River Point Site Location: Manitowoc, Wisconsin

District

Photograph ID: 7

Photo Location:

Direction:

Survey Date: 3/25/2022

Comments:

Developing TW-213.

Photograph ID: 8

Photo Location:

Direction:

Survey Date:

3/24/2022

Comments:

SB-214 (0-10 ft bgs).

Site Name: Lot 3 of the River Point Site Location: Manitowoc, Wisconsin

District

Photograph ID: 9

Photo Location:

Direction:

Survey Date: 3/24/2022

Comments:

SB-221 (0-10 ft bgs).

Photograph ID: 10

Photo Location:

Direction:

Survey Date: 3/23/2022

Comments:

SB-237 (0-15 ft bgs).

Site Name: Lot 3 of the River Point Site Location: Manitowoc, Wisconsin

District

Photograph ID: 11

Photo Location:

Direction:

Survey Date: 1/16/2023

Comments:

SB-255 (0-10 ft bgs).

Photograph ID: 12

Photo Location:

Direction:

Survey Date:

1/17/2023

Comments:

SB-254 (0-10 ft bgs).

Site Name: Lot 3 of the River Point Site Location: Manitowoc, Wisconsin

District

Photograph ID: 13

Photo Location:

Direction:

Survey Date: 1/17/2023

Comments:

SB-259 (0-15 ft bgs).

Photograph ID: 14

Photo Location:

Direction:

Survey Date:

1/17/2023

Comments: SB-261 (0-10 ft bgs).

ATTACHMENT B Stantec Soil Boring Logs and Abandonment Forms

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	ute To:	Watershed/Wa Remediation/F			Waste I Other	_	ement								
															Page		of	2
	y/Proje							License/I						Boring	Numb			
Riv	er Poi	nt Dis	trict -	Lot 3	ef (first, last) an	d Lirm		BRRT			7647		la Drilli	na Con	anlatad		-213	
	_	-	varneo	i crew crite	ar (mist, iast) an	a Fiiii		Date Dri	iing S	arteu		Da	te Drilli	ng Con	npreteu		ווווטן	ing Method
Ho	n Long rizon C nique W	Constr	uction		oloration, LL	C Common W	Idl Namo	Final Sta		/2022	,	Surtace	3 e Elevat	3/24/2	022	IRO	ge	oprobe Diameter
/VI OI	iique vv	GI INO.		DIVIN	GIID No.		-213		=eet.N		a		87.4 F		CI			inches
ocal	Grid Oi	rigin	□ (es	stimated: [) or Bori	ng Location	-213	<u> </u>	ea iv	/IOL		3	Local G				2.3	IIIU IES
	Plane	Ū			232,274 E	S/C		La	t	°	<u>'</u>				□ N	i		□ E
NE		of N		/4 of Section	•	т 19 N,		Long	ı	0	1	"		Feet			F	eet □ W
-acilii					ounty	- ,		County Co		Civil T	own/Cit	ty/ or V	/illage					
				l N	Manitowoc			36		Mani	towoc	;						
San	nple													Soil	Prope	rties		
	~ <u>~</u>		<u> </u>		Soil/Roo	ck Descripti	on											
40	ά.π Έ.ω	unts	8			logic Origin							sive					ts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Each	Major Unit	t		S	njc Jic	Well Diagram	무	Compressive Strength	Moisture Content	፟	Plasticity Index		RQD/ Comments
탈	eug	<u>8</u>	ebtl			•			ဟ	Graphic Log	/ell iagı	PID/FID	tren	lois	Liquid Limit	Plastic Index	200	G m
∠ ऌ	60	В		0-6B	BLACK FILL	moist s	aturated	@ 5'		<u>ω</u>	≤ □	0.4	ပ တ	≥ ∪				SB-213 0-2
	24		E		ar, no odor.	., 1110100, 0	alarata	© 0,				•••						VOC,
			_1		•													SVOC, RCRA,
			_															PCB, Pest.,
			- 1															Herb.
2-4			_2									0.1						
			-															
			_3															
			E															
			_4															
4-6			_									0.2						
	60		5 -															
	30		F															
6-7			6	6-75	ILTY SAND) liahtar	ev-brown)		\bowtie		0.1						
			_		ed, soft, no c		o, 5.0	-,										
7-7.5			_7	7 75	WOOD no	ooi bl o troc	, root no					0.6						
			-		WOOD, po: g, no odor.	ssibletie	eroot, no					0.6						
7.5-10			_ 8	1 \	0 NO RECC	N/FRV		/				-						
			-	7.5-1	O NO NECC	/V LIXI .												
			9															
			-															
10-12	60		10	10 10		und notius	ot and north	- aballa				0.1						SB-213
10-12	36		-		2 CLAY, gle t, native, no		ateo, son	, sneris				0.1						10-12 VOC,
			11	produ	t, Hative, He	odoi.			СН									PAH, As, Pb
			E''															
			Ė															
			12							Kiring								
	-	fy that	the info	ormation or	n this form is tr	ue and corre	ect to the b	est of my k	nowled	dge.								
Signa	ture / /	1/:		0 1	<u> </u>	Į.	-irm Sta	ntec										Tel:
	u	/na	ney	_Cul	E													Fax:

Boring Number	SB-	-213 Use only as an attachment to Form 4400-1	122.						Pag	je 2	of	2
Sample								Soil	Prope			
ಷ (i.j) ಜ	#	Soil/Rock Description					Φ					
ount	l Fe	And Geologic Origin For			_		SSiv L	ø		>-		nts
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	Well Diagram	PID/FID	npre	Moisture Content	Liquid Limit	Plasticity Index	8	RQD/ Comments
	Dec		S O	Grap Log	Well Diag	E E	Compressive Strength	No.	Lig	Plasti Index	P 200	Cor
12-14		12 - 15 CLAY, brown, saturated, medium-soft, shells and roots present, no				0.2						
	13	odor.										
	-		СН									
	14											
14-15	-					0.1						
Ц	15											
1 1	1	T. Control of the con	1	ı	1	1	1	1	1	1	1	1

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	ite To:	Watershed/W Remediation/I			Waste I Other	_	jement								
										,					Pag		of	2
	ty/Proje ver Poi:			l ot 2				License/I		/Monito 1 2-36 -1	-			Boring	Numb		-214	
					hief (first, last) ar	nd Firm		Date Dri			17047		te Drilli	ng Con	npleted	30		ing Method
Ве	n Long	ı																
Ho	rizon C	Constr	uction	and E	Exploration, LL		Mall Name	Line Che		/2022		Crimton		3/24/2	022	1112	ge	oprobe Diameter
VVI U	nique v	en No.		DINK	wei ib no.		Well Name /-214	Final Sta	⊪icwa FeetN		3		e Elevat 86.7 F		QI .	BC		inches
Loca	Grid Oi	rigin	(es	stimated	: D or Bori			<u> </u>	a 1	VIOL			Local C		_		2.5	пию
	Plane			,769 N	I, 232,315 E		C/N	La	t		<u> </u>	"			\square N			□E
NE Facili		of N	E 1	/4 of Se	ection 30,	т 19 N		Long		CIVIL TO	<u>'</u>	" tv/ or \	/illage	Feet			F	Feet □ W
i aciii	ty ID				Manitowoc			36	ue	Mani		•	rillage					
Sar	nple				Wallowoo					IVICIII				Soil	Prope	ties		
	E				Soil/Ro	ck Descrip	tion								Γ.			-
ø.	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			logic Origi							Sive					ıts
Type	Length Att. Recovered (8	h L		Each	n Major Ur	nit		CS	hic	Jram	딛	pres	sture	<u>.</u> = .	x x	0)/ Imer
Number and Type	Rec	Blov	Dept						S O	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
0-2	60 36		E		BLACK FILL	_, moist,	fine matri:	x, no				0.2						SB-214 0-2: VOC,
	30		١ ,	odor	-													SVOC,
			<u> </u>															RCRA, PCB, Pest.,
			- 1															Herb.
2-2.5			_2		2.5 SAND, bro			,				0.1						
2.5-4			ا م	I 1	se, rounded, ur 4 BLACK FI			ot ad				0.1						
			_3		is medium sof													
			-		intermixed, no		,	,										
4-5			_4		CLAYEY SII		orown, satu	urated,	ML	*****		0.3						SB-214 4-5 VOC, PAH,
					native, no odo				IVIL									As, Pb
5-7	60 24		5 _		CLAYEY SA							0.2						
	24		- 6		rated, trace gra nic odor.	vers, son	ne tackines	SS,										
			0 _	oi ga	illo odor.				sc									
			- - -7															
7-8			-/									0.4						
			- - -8															
8-9			_0	8 - 9	WOOD, pulp	y, no sta	ining, no c	odor.	ОН	<u> </u>		0.5						
			- - -9						00	<u> </u>								
9-10			9 		0.75 PEAT, bla	ack, satur	ated, orga	nic	ОН	<u> </u>		0.4						
			10	odor	- 10 CLAY, g	alayad sa	oft shalls n	recent	СН	/ \\/ 								
10-15	60 0		_ 10	\no o		ji cycu , sc	nt, silons p)		حججر	ĺ	-						
				10 -	15 NO RECO	VERY.												
			- ''															
			12															
l here	eby certif	fy that		rmation	on this form is tr	ue and cor	rect to the h	est of mv k	nowle	dae								
Signa	ature					45 GI IG WI	II i mino		. 104410									
,	U	Sha	ney	L Cu	ell		Star	ntec										Tel: Fax:

Boring Number	SB-	214 Use only as an attachment to Form 4400-	122.						Pag	e 2	of	2
Sample								Soil	Prope			
(in) &	 Ħ	Soil/Rock Description					e e					
er Ppe Att. Soun	니 교	And Geologic Origin For	ဟ	O	E	۵	essiv th	e t		ity		ents
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u> </u>		10 - 15 NO RECOVERY. (continued)	⊃	ت ق	≥ ⊡		<u>0</u> 8	ΣŬ		료 드		ž Č
	E	(11.1.1.7)										
	13 -											
	14											
	- 14											
Ц	15											
	•	•		•	•		•		•	•		•

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	<u>ite To:</u>	Watershed/W Remediation/			Waste Other	_	ement								
															Page		of	2
	ty/Proje			1 04 2				License/			•			Boring	Numb		-215	
			strict - Nameo		nief (first, last) ar	nd Firm		Date Dri		2-36-1 arted	7647		e Drilli	ng Con	npleted	SD		ing Method
	n Long					•			0/04	10000			_	VO 4 /0	000			
	nique W				xploration, LL weild no.		Well Name	Final Sta		/2022 ter Leve	; k	Surface	Elevat	3/24/2 ion	022	Во		oprobe Diameter
							/-215		Feet N	/ISL			88.8 F				2.3	inches
	Grid O	rigin	_		□) or Bor , 232,413 E		n ⊠ C/N	La	at	0		"	Local G	irid Lo				
NE		of N		/4 of Sec	· ·	T 19 N		Long	g	o		"		Feet	⊔ N □ S		F	⊟ E Feet □ W
Facili	ty ID				County			County Co		Civil To		•	/illage					
San	nple		T		Manitowoc			36		Mani	towoo	; 		Soil I	Prope	ties		
-	İ		l		Soil/Ro	ock Descrip	tion								Горо			_
an.	Aff. &	unts	<u> </u>			ologic Origi							Sive					lts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eacl	n Major Un	it		CS	Graphic Log	Well Diagram	PID/FID	ngth	Moisture Content	<u>ا</u> = ا	Plasticity Index	9	RQD/ Comments
Nun		Blo	Dep						S N	Grap Log	Well Diag		Compressive Strength	Moi Con	Liquid Limit	Plasti Index	P 200	S C O
0-2	60 42		F		FILL, moist, mingled grave			anular				3.5						SB-215 0-2: VOC,
			_1	fill, c	inders and sil	tyday, n	o odor.	a idi di										SVOC, RCRA,
			E															PCB, Pest., Herb.
2-4			_2									0.4						
			-															
			3															
			E															
4-5			<u>-</u> 4									0.6						
			F _															
5-6	60 42		5 _		SAND, red-b arse, trace bla							0.4						
	_		6		•	•	,											00 045 0 7
6-7			F .	6 - 7 well-	GRAVELLY graded, grave	SAND, I s (~40%	beige,sat)1/8-1"	urated,	SWG			0.4						SB-215 6-7 VOC, PAH,
7-8				round	ded, native, no	oòdor.	,			,,,,,,		0.4						As, Pb
			E		SAND, grey- arse, uniform,		aturated, r	medium	SP			0.4						
8-9			8		PEAT, black,		d. no odoi	r.	-	<u> </u>		0.4						
			E		, ,		,		ОН	1, 11,								
9-10			9 -		CLAY, gley	ed, satura	ated, soft,	shells	-			0.3						
			E 40	prese	nt, no odor.				CH									
10-15	60 0		10	10 - 1	15 NO RECC	VERY.						-						
			†															
			12															
I here	by certif	fy that	the info	rmation	on this form is tr	ue and cor	rect to the b	pest of my k	nowle	dge.								
Signa	ture U	Tha	tney	- Cu	ll		Firm Sta	antec										Tel: Fax:

	ng Numb	oer	SB-	215	Use only a	s an attachm	ent to Form 4	4400-12	22.						Pa	ge 2	of	2
San	nple				0-:1/5	Descript!		T						Soil	Prop	erties		
	t. & d (in)	ınts	e			Description gic Origin Fo							.xe					S
oer .ype	th At vere	Con	l In F			/Jajor Unit	Л		S	.je	a	유	oress gth	ture	σ.	city		/ ment
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			,			n sc	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
2 (0		-		10 - 15 N	O RECOV	ERY. (coi	ntinued)						0 0,	20			+	1 2 0
			13															
			14															
L	-		15															

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	watershed/W Remediation/	astewater □ Redevelopment ⊠	Waste Other	-	gement								
-acilit	v/Proie	ct Nam	IA.			License/l	Permit	/Monito	rina Ni	ımher		Borina	Page Number		of	2
			strict-	Lot 3)2-36-1	J			Domig	Numb		-216	;
				r crew chief (first, last) ar	nd Firm	Date Dri			170-17		e Drilli	ng Con	npleted			ing Method
Hor	Long izon (Constr	uction	and Exploration, LL	_C		3/23	/2022			3	3/23/2	022		ge	eoprobe
/VI Ur	iique W	/ell No.		DNR WellD No.	Common Well Name				el		e Elevat			Вс		Diameter
ocal	Grid O	rigin		│ stimated: ┌┐) or Bor	TW-216 ing Location		Feet M	MSL_		5	93.3 F		_		2.3	inches
	Ond O	iigiii	ш .	,770 N, 232,507 E	S/C/N	La	ıt	°	<u> </u>		Local C) C	□ N	ı		□ E
NE		of N			T 19 N, R 24 E	Long	a	o	·	"		Feet	_		F	Feet □ W
-acilit				County	·	County Co	ode	Civil I		•	'illage					
0		1		Manitowoc		36		Mani	towoo			0-:1	<u> </u>	·C		
Sam	·											SOIL	Prope	rties		-
	Length Att. & Recovered (in)	ıts	₩ ₩		ock Description						e e					
ed √pe	n Att	Blow Counts	Depth In Feet		ologic Origin For		ဟ	ပ	ڇ		Compressive Strength	e t		ity		RQD/ Comments
Number and Type	so v) wo	\$pth	Eaci	n Major Unit		SC	Graphic Log	Well Diagram	PID/FID	iduo	Moisture Content	Liquid Limit	Plasticity Index	200) QC
<u> </u>	<u>3</u> &	B	۵	0 - 1 BROWN FIL	I & LIMESTON	_	>	Cog Log	<u>≽</u> ⊡	0.0	<u>ა</u> დ	≥ັບັ	<u> </u>	<u> </u>	<u>a</u>	<u> </u>
	30		_	SCREENINGS, gr						0.0						
1-2			_1	_	-					0.0						
1-2			Ė	1 - 2 SAND, red-b odor.	rown, wet, mediur	TI, TIO				0.0						
2-4			_2			احداد										
2-4			-	2 - 5 BLACK FILI brown silty matrix,						0.0						
			_3	odor.	р. со.	o,o										
			-													
			_4													
4-5			-							0.1						
			_ 5													
5-6	60 36		-	5 - 6 CLAY, red-b odor.	rown, moist, stiff,	no				0.0						
			_ 6													
6-7			-	6 - 7 SAND & GR asphalt (original si						0.0						
			_ 7	_ (~45%) 1/8 - 3/4",												
7-8			-	7 - 8 SAND, light	brown, wet, fine,	no odor.				0.1						SB-216 7-8 SVOC,
			_ 8													RCRA, PCB, Pest.,
8-8.5			-	$8 - 8.5$ GRAVELL $_{\neg}$ with slight sheet, s						0.8						Herb.
8.5-9			_ 9	_\odor.	aturateu @ 0, riyo	ii Ocaboi i				3.2						SB-216 8-8.5 VOC
9-10			-	8.5 - 9 WOOD, no	staining, creosote	e odor.				0.4						
			10	9 - 10 COBBLE, g												
10-11	60 36		_ 10	10 - 11 SAND, gre		xd,	SP			0.2						SB-216 10-11 VOC,
			- 11	coarse, native, no o												PAH, As, Pb
11-13			F '	11 - 14 SAND, red no odor.	d-brown, saturated	l, fine,	SP		-	0.1						
			- 12	TIO OUOL.			J.		:							
heret	ov certi	l fv that		rmation on this form is ti	rue and correct to the	hest of my k	nowle	dae	<u> </u>			<u> </u>	<u> </u>			<u> </u>
Signat	-	. y 1.101			II immo			~gv.								
J		Shit	ney	L Cull	Sta	antec										Tel: Fax:

Boring Number	SB-	216 Use only as an attachment to Form 4400)-122.						Pag		of	2
Sample								Soil	Prope	rties		
% (in)	 ₩	Soil/Rock Description					Φ					
ount	n Fe	And Geologic Origin For			_		SSiv L	a		>		nts
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
		11 - 14 SAND, red-brown, saturated, fine,	⊃	<u> </u>	<u>> </u>	Δ_	O Ø	≥ 0		<u> </u>	Δ.	<u> </u>
		no odor. (continued)			:							
13-14	13		SP		1	0.1						
	Ē											
14-14.5	14	14 - 14.5 PEAT, black, saturated, no odor.	ОН	<u> </u>		0.1						
14.5-15		14.5 - 15 CLAY, gleyed, saturated, soft,	CL			0.1						
	15	shells present, no odor.	/									
1 1	1	ı	1	I	1	1	1	1	1	1	1	1

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Rou</u>		astewater □ Redevelopment □	Waste I Other	-	ement								
													Page		of	1
	ty/Proje			1 (0		License/I			_			Boring	Numb		047	,
	er Poi			LOT 3 f crew chief (first, last) a	nd Firm	Date Dri		2-36-1	7647		e Drilli	na Con	noleted	SD	-217	ing Method
	_	-	. 1011100	r or our or nor (mor, root) or		Baiobii	g C	.ai toa			.0 5	ng con	пріосос			mg manaa
	n Long rizon (ruction	and Exploration, LL	C		3/24	/2022			3	3/24/2	022		ne ne	oprobe
WI U	nique W	el No		DNR WeITD No.	Common Well Nam	ne Final Sta			 	Surface	Elevat		.022	Вс	rehole	Diameter
							Feet N	/ISL		5	87.7 F	eet M	SL		2.3	inches
Local	Grid O	rigin	(e	stimated: 🗌) or Bor	ing Location 🖂			0	,		Local G	Frid Lo	cation			
State	Plane		301	,731 N, 232,293 E	S/C/N	La	t		<u> </u>				\square N			□Е
NE		of N	E 1		T 19 N, R 24 E			<u> </u>	<u> </u>			Feet	□s		F	eet 🗌 W
Facili	ty ID			County		County Co	de	Civil To		-	'illage					
				Manitowoc		36		Mani	towoc	}		<u> </u>				
San	nple											Soil	Prope	ties		
	∞ (<u>⊆</u>	S	一市	Soil/Ro	ock Description						d)					
Ф	₩ ₩	nu	F.	And Geo	ologic Origin For				_		,igg	40		_		lts
Şper	Ith A	ပို	h	Eacl	n Major Unit		S	hic	ram		pre gth	sture ent	₽ +	igi		uer –
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet				S O	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
0-2	60	ш		0 - 2 BLACK FILI	moist. granulai	r. no	-	\times	> 🗆	0.9	0 0	20		ш =		SB-217 0-2
	30		-	odor.	_, g	,										VOC,
			_1													SVOC, RCRA,
			F													PCB, Pest.,
			_2													Herb.
2-3				2 - 3 SAND, dark		x t,				0.7						
			E	medium to coarse,	no odor.											
3-5			3	3 - 8 SANDY SIL	T. red-brown. ara	ades to				0.5						SB-213 3-5,
			F	grey-brown with d												MS/MSD & FD-1: VOC,
			_4	native, no odor.												PAH, As, Pb
			F													
			_5													
5-7	60 48		E				NA.			0.6						
	40		<u> </u>				ML									
			6													
			ļ.													
7-8			_7							0.5						
			F							0.0						
			_8													
8-9			-	8 - 9 WOOD, red-	brown to brown,	pulpy, no	ОН	71/2 /1		0.4						
			-	odor.			011	1, <u>\ \ 1,</u>								
9-10			<u></u> 9	9 - 10 PEAT, blac	k, saturated, no o	dor.		<u> </u>		0.4						SB-217
			F				OH	1, 11,								9-10 VOC, PAH, As, Pb
L	-		10					11/ 11								17(11,7(0,1)
	<u> </u>							<u> </u>								
	-	ty that	the info	ormation on this form is t		best of my k	nowle	dge.								
Signa	ture / /	16:	+	- Cull	Firm S	tantec										Tel:
	U	riil	rvy	- cuc												Fax:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou		/Wastewater on/Redevelopr		Waste Other	_	ement								
														Page		of	1
	y/Projec						License/I			Ū			Boring	Numb		040	
RIV	er Poi	nt Dis	strict -	Lot 3 f crew chief (first, last)	and Firm		BRR Date Dri		2-36-1	7647		te Drilli	na Con	nnlated		-218	ing Method
	_	-	Name 0	i crew chia (ms., iasi,	andiiiii		Date Di	iiiig Si	aiteu		Da	ie Dillii	rig Con	ipiaa			ing wanoa
Ho	n Long rizon C nique W	Constr	uction	and Exploration,	LLC	Well Name	Final Sta		/2022		Custon		3/24/2	022	10.4		oprobe Diameter
VVI UI	iique vv	en No.		DINK WEI ID NO.	Common	weinane				*		e Elevat		CI	BC		
Local	Grid Oi	rigin	(e	stimated:) or E	oring Location	on 🖂	<u> </u>	Feet N	/ISL		<u>5</u>	87.9 F				2.3	inches
	Plane	Ü		,726 N, 232,367		C/N	La	t	°	<u>'</u>				□ N	ı		□ E
NE	1/4	of N		1/4 of Section 30,	т 19 N	I, R 24 E	Long	ı	o	<u> </u>			Feet			F	eet W
Facilit				County			County Co		Civil To	own/Ci	ty/ or \	/illage					
				Manitowo			36		Manit	towoo	;						
San	nple												Soill	Prope	rties		
	∞ <u>E</u>	S	 #	Soil/	Rock Descrip	tion						d)					
Φ	\#. 8d (i	nut nut	Π. A	And 0	Geologic Origi	n For				_		. <u>is</u>	40		_		ste
Der Typ	th /	ပိ	보	E	ach Major Ur	nit		CS	hic	Iram	[[pre gth	sture:	± ë	igit,	0	mer /
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet					S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
0-2	60	ш	-	0 - 4 BLACK FI	LL, wet, sa	aturated @	3',	-			0.1	0 0)	20			ш.	<u> </u>
	36		F	granular, no odo													
			_1														
			E														
2-4			_2														OD 040 0 4
2-4			-								0.2						SB-218 2-4 & FD-2:
			_3														VOC,
			E 3														SVOC, RCRA,
			Ε.														PCB, Pest., Herb.
4-5			_4	4 - 5 SILT, light	red-brown	, saturated	, some				0.1						nerb.
			F	day, trace black	fill pieces,	no odor.											
5-7	60		_5	5 - 7 SAND & C	RAVEL r	ed-brown	davev				0.1						SB-218 5-7
	36		-	matrix, saturated													VOC, PAH,
			_6	(~50%) 1/8 - 1/2	2", rounded	, native, no	o odor.	SWG	3								As, Pb
			F														
			_7	7 0 0 0 1 1 5 0 7	SD & V / E				0.000								
7-9			-	7 - 9 SAND & C well-graded, gra	RAVEL, (orown, satu N 1/8 - 3/4	urated, "				0.1						
			_8	rounded, no odo	vas(~+070 ſ.) 1/O - 3/ -	,	SWG									
			E		-			3000									
			E														
9-10			_9	9 - 10 WOOD 8					<u> </u>		0.2						
			F	saturated, soft, p	ulpy, no sta	aining, no d	odor.	OH	1, 11,								
L	1		_10						\\/ \\/								
l here	by certif	v that	the info	l ormation on this form i	strue and cor	rect to the he	est of mv k	nowle	dae.			1		<u> </u>	1	<u> </u>	
Signal	ure	<u> </u>															
-	\mathcal{U}	/hà	tney	L'Cull		Firm Star	ileC										Tel: Fax:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou		Vastewater ☐ /Redevelopment ☐	Waste I Other	-	jement								
													Page		of	2
	y/Proje					License/I			_			Boring	Numb		200	
			strict -	Lot 3 f crew chief (first, last) a	and Firm	Date Dri		2-36-1	7647		te Drilli	na Con	noleted	<u>28</u>	-220	ing Method
	Long	-		. 6. 6.1. 6.1. 6. (6., 1.66.)		20.02	g C	10 100.					.p. 0.00			9
			ruction	and Exploration, L	LC		3/24	/2022			3	3/24/2	022		ge	oprobe Diameter
WI Un	iique W	el No		DNR Well ID No.	Common Well Nam	e Final Sta	tic Wa	ater Leve	E	Surfac	e Elevat	ion		Во		
	Cwal O						=eet N	ИSL		5	86.6 F				2.3	inches
State	Grid O	rigin	_	stimated: \Box) or Bo ,694 N, 232,322 E		La	t	0	•	"	Local G	oria Lo	_			
NE		of N		/4 of Section 30,				0	,			Foot	⊔ N □ S		-	□ E Feet □ W
Facility		01 14		County	1 10 11,11212	County Co		Civil To	own/Ci	ty/ or \	/illage	1 001				<u> </u>
				Manitowoc		36		Mani	towoo	;						
Sam	ple											Soil	Prope	rties		
	ع <u>(آ</u>	ည	₩ ₩	Soil/R	ock Description						ø					
_ e	Att.	onul	n Fe		cologic Origin For				_		SSiV	go		<u></u> ≥		ants
Number and Type	gth	Blow Counts	Depth In Feet	Eac	ch Major Unit		SCS	Graphic Log	Well Diagram	PID/FID	npre	istur	Liquid Limit	Plasticity Index	200	RQD/ Comments
and	Length Att. & Recovered (in)	B	Deg				\supset	Grap Log	We		Compressive Strength	Moisture Content	F. F.		P2	S S
0-2	60 36		F	0 - 2 BLACK FIL granular, no odor.		noist,				0.2						
			<u>E</u> 1	granulai, no odor.												
			E.													
			_2													
2-4				2 - 5 BLACK FIL						0.1						
			<u> </u>	granular, sharp, so	ome rea a naers, no	o odor.										
			3 -													
			E .													
4-5			- 4							0.2						SB-220 4-5
			E													VOC, SVOC,
5-10	60		_5	5 - 10 POOR REC	COVERY, black f	ill				-						RCRA, PCB, Pest.,
	6		Ė	present.												Herb.
			6													
			F													
			_7													
			F													
			8													
			-													
			_9													
			E													
0-14.75	60		10	10 - 14.75 NO RE	COVEDV dave	procent in		<u> </u>								
	3		E	shoe (see descripti	ion below).	nese il ili										
			_11		,											
			Ė													
			_12													
l hereb	y certi	fy that	the info	ormation on this form is:	true and correct to the	best of my k	nowle	dge.	1	1		-		ı		<u> </u>
Signat	uro		L an			tantec										Tel:
	//	16-		. (' ////	0											ıd.

As, Pb		g Numb	oer	SB-	Use only as an attachment to Form 4400-1	22.						Pag		of	2
And Geologic Origin For Each Major Unit Substitution of Subst	San	nple									Soi∏	Prope	rties		
10 - 14.75 NO RECOVERY, clay present in shoe (see description below). (continued) 14.75 - 15 CLAY, gleyed, soft, shells 15 Voc. PAH, As, Pb		∞. (i.)	ıts	<u>₩</u>	-					e					
10 - 14.75 NO RECOVERY, clay present in shoe (see description below). (continued) 14.75 - 15 CLAY, gleyed, soft, shells 15 Voc. PAH, As, Pb	b b	Att	Jone	n F		S	O	E		essi :h	e +		ţ		ents
10 - 14.75 NO RECOVERY, clay present in shoe (see description below). (continued) 14.75 - 15 CLAY, gleyed, soft, shells 15 Voc. PAH, As, Pb	a Ty	ngth) wc	bth	Each Major Unit	ပ	aphi g	agra)/FI	engt	oistu Inten	ni di	astic.	00) E
shoe (see description below). (continued) 14 15 14.75 - 15 CLAY, gleyed, soft, shells CH 2002 0.1 S8-220 14.75 - 15 CVCC, PAH, As, Pb	a SC	Le Re	Ble	De	10 14 75 NO DECOVEDY dov.present in		ت ق	ŠÄ	문	ರ ಕ್ರ	Σိ ပိ	ٿ ٽ	<u>R</u> u	Ъ.	888
14.75-15 CLAY, gleyed, soft, shells 14.75-15 CLAY, gleyed, soft, shells 0.1 SB-220 14.75-15 VCC, PAH, As, Pb				_	shoe (see description below). (continued)										
14.75 - 15 CLAY, gleyed, soft, shells 14.75 - 15 CLAY, gleyed, soft, shells O.1 SB-220 14.75-15 VOC, PAH, As, Pb				13	()										
14.75 - 15 CLAY, gleyed, soft, shells 14.75 - 15 CLAY, gleyed, soft, shells O.1 SB-220 14.75-15 VOC, PAH, As, Pb				-											
present, no odor.				14											
present, no odor.				_											
VOC. PAH, As, Pb	14.75-15			_ 15	14.75 - 15 CLAY, gleyed, soft, shells	CH	KAN	4	0.1						
					\present, no odor.										VOC, PAH,
															As, Pb

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	ute To: Watershed/W Remediation/		□ nent ⊠	Waste N	_	ement								
Looili	ty/Droio	ot Niono					II i oonoo/I	lormit	Manita	ina Nii	mh or		Dorino	Page		of	2
	ty/Proje			1 -1 0			License/F			•			Boring	Numbe		224	
	er Poi			LOt 3 Forew chief (first, last) a	nd Firm		BRRT Date Dril			76478		A Drilli	na Cor	npleted	<u>2</u> B	-221	ing Method
	•		Name of	r crew critic (mot, rast) a	110111111		Date Dill	iii ig O	arta		Dai	.c Dillii	ng coi	пріскса			ing wickloa
	n Long rizon (ruction	and Exploration, LI	С			3/24	/2022			:	3/24/2	2022		ge	oprobe
WI U	nique W	el No		DNR WeITD No.		Vell Name	Final Sta			3	Surface	e Elevat			Во	rehole	Diameter
						/-221	F	=eet N	/ISL		5	87.8 F	eet M	ISL		2.3	inches
Local	Grid O	rigin	ш ,	stimated: 🗌) or Bor	•		1		0	,		Local C	Frid Lo	cation			
	Plane			,701 N, 232,381 E			Lat	i						\square N			□ Ε
NE		of N	E 1	/4 of Section 30,	T 19 N		Long		°		<u>"</u>	/illogo	Feet	☐ S		F	eet 🗌 W
Facili	ty ID			County			County Co	ue	Civil I		•	mage					
San	nple			Manitowoc		,	36		Manit	OWOC			Soil	Proper	tice		
Jai	-												- J	Т			-
	Length Att. & Recovered (in)	ıţ	₩		ock Descript							é					
be "	Att	Joon	ᄕ		ologic Origin			ဟ	0	اء	Ω	essi h	e t		₹		ents
Number and Type	gg	Blow Counts	Depth In Feet	Eac	h Major Uni	it		SC	Graphic Log	Well Diagram	PID/FID	angt	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
a S	Le R	BIG	De					\supset	Gra	We Dia		Compressive Strength	δΩ	Liquid Limit	Plastic Index	P 2	2 S
0-2	60 48		_	0 - 2 BLACK FIL red-brown, soft, fil			ay is				0.3						SB-221 0-2 & MS/MSD:
			- 1	intermingled, no o		ia aiu											VOC,
			- '	micomingroa, no o	uoi.												SVOC, RCRA,
			E														PCB, Pest., Herb.
2-4			_2	2 - 4 BLACK FIL	L & SILT	Y SAND,					0.2						nerb.
			-	saturated @ 2.5', r	no odor.												
			_3														
			E														
4-5			_4	A FOILTY CAN	D rod bro	www.coture	+00		\bowtie		0.2						SB-221 4-5
,,,			-	4 - 5 SILTY SAN some clay, roots p				SM			0.2						VOC, PAH,
			_5	3,	,	ŕ											As, Pb
5-7.5	60		-	5 - 7.5 SAND, bro	own, satur	ated, medio	um, no				0.1						
			-	odor.													
			6 -					SP									
			E														
			_7														
7.5-8			-	7.5 - 8 WOOD, pu	ulpy, peat	present ~8	B', no	ОН	<u> </u>		0.3						
8-10			_8	∖staining, no odor.	1, 3, 1			0	خينيم		0.2						
			E	8 - 15 CLAY, gley	/ed, satura	ated, shells	;				-						
			_9	present, no odor.													
			-														
			10					СН									
10-12	60 36							0			0.2						
			- 4														
			11 -														
			E														
			12														
	-	fy that	the info	rmation on this form is t	rue and corr	rect to the be	st of my k	nowle	dge.								
Signa	ture U)hà	tney	Cull		Firm Stan	tec										Tel: Fax:

Boring Number	SB-	Use only as an attachment to Form 4400-	122.						Pa		of	2
Sample								Soil	Prope			
% (in)	₩	Soil/Rock Description					Φ.					
De Att.	n Fe	And Geologic Origin For			_		vissi v	e		≥		ants
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	8	RQD/ Comments
	D A) 	Grap	Well Diag	님	S to	δΩ	Liquid Limit	Plasti (Index	P 200	8 <u>9</u>
12-15	_	8 - 15 CLAY, gleyed, saturated, shells present, no odor. (continued)				0.3						
	13	pressit, no odor. (ooramasa)										
	-		СН									
	14											
Ц	15			993								
I I	1	I	I	1	I	I	l	I	I	1	I	I

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou		/astewater □ Redevelopment ⊠	Waste Other	_	ement								
													Page		of	2
	y/Proje			1 -4 0		License/			•			Boring	Numb		222	•
			strict - Name o	LOT 3 Forew chief (first, last) a	nd Firm	Date Dri		2-36-1 tarted	7647		te Drilli	ng Con	npleted		-222 Drill	ing Method
	Long	-		, ,			J					J	•			J
Ho	izon (Const	ruction	and Exploration, LL	_C		3/23	/2022			3	3/23/2	022		ge	oprobe
WI Ur	nique W	el No).	DNR Well ID No.	Common Well Name				3		e Elevat			Вс		Diameter
Ocal	Grid O	rigin		│ stimated: ┌┐) or Bor	TW-222		Feet N	/ISL		5	92.0 F				2.3	inches
	Plane	iigiii	_	,704 N, 232,512 E	S/C/N	La	ıt	o 	<u> </u>	"	Local C	JIIG LO	_	Ī		
NE		of N			T 19 N, R 24 E	Lond	נ	0	•	"		Feet	⊔ N □ S		F	⊟ E Feet □ W
Facilit				County		County Co	,	Civil To	own/Cit	y/ or \	/illage					
				Manitowoc		36		Mani	towoc	:						
San	nple											Soil	Prope	rties		
	æ (Ë	ts	#		ock Description						φ					
_ e	Att.	onu	n Fe		ologic Origin For				_		SSiV	go		<u></u> ≥		ants
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Eacl	h Major Unit		S C S	Graphic Log	II grar	PID/FID	npre	Moisture Content	Liquid Limit	Plasticity Index	200	D/ nme
		Blo	Dep				s n	Grap Log	Well Diagram	PIC	Compressive Strength	M Co	Liquid Limit	Pla	P 2	RQD/ Comments
0-1	60 36		_	0 - 1 LIMESTONE						0.1						
			<u> </u>	road base, wet, da	•											
1-3			E'	1 - 3 BROWN FIL	L, wet, dayey sa	nd,				0.0						
			-	gravels (~30%) 1/8	3 - 3/4", no odor.											
			_2													
3-5			_3	3 - 5 CLAY, red-b	rown, moist, stiff,	no				0.0						
			Ė I	odor.												
			_4													
			-													
5-6.5	60		_5	5 - 6.5 SAND, mo	ist arev-brown o	narse		+		0.0						
	36			well-graded, no od		oa oo,				0.0						
			_6													
6.5-8			Ė	6 F O DI ACIZ EI	II moiet erepul	or				0.0						SB-222
0.5-0			_7	6.5 - 8 BLACK FI brown silt matrix,		ar,				0.0						6.5-8 VOC,
			-													SVOC, RCRA,
			_8			\ <u>-</u>										PCB, Pest.,
8-9			-	8 - 9 SAND, red-b some black fill pie						0.0						Herb.
			9	•	•											
9-10				9 - 10 SAND, red-		medium	SP			0.0						SB-222 9-10 VOC, PAH,
			- 40	to fine, native, no	odor.		SP.									As, Pb
10-15	0		_10	10 - 15 NO RECC	VERY.			<u> </u>		-						
			E													
			11													
			<u> </u>													
			12													
		fy that	theinfo	rmation on this form is to	rue and correct to the	best of my k	nowle	dge.								
Signal	ure //	16	tunn	Cull	Firm St	antec										Tel:

Boring Number	SB-2	Use only as an attachment to Form 4400-				Pag	e 2	of	2			
Sample								Soil	Prope			
ಷ (r) ಜ	¥	Soil/Rock Description					Φ					
Pe Att.	n Fe	And Geologic Origin For	S	0	ے		essiv h	e t		t₹		ants
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Na Re Re Bic	De	10 15 NO DECOVEDY (continued)	Š	Grap Log	Well Diag	급	လို ကွဲ	<u>ဗိ</u> ပိ	<u> </u>	Pa n	Р2	8 S
		10 - 15 NO RECOVERY. (continued)										
	_13											
	14											
	Ė											
	15											
	1		I			l		l			l	1

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	ıte To:	Watershed/W Remediation/I			Waste Other	_	ement								
															Pag		of	2
	y/Proje							License/			•			Boring	Numb		222	,
RIV Borin	er Pou	nt Dis	strict -	Lot 3	ief (first, last) ar	nd Firm		Date Dri		2-36-1	7647		te Drilli	na Con	noleted	<u>28</u>	-223	ing Method
	Long	-	r tour io o	. 0.011 0	iror (mor, roor) or			Date Di	g C	.a. toa				ng con	пртосос			mig ivracioa
Ho		Const	ruction		kploration, LL	Common W	ell Name	Final Sta		/2022 ter Leve		Surface	e Elevat	3/24/2 ion	022	Bc	ge	oprobe Diameter
	•					TW-	223		Feet N	/ISL		5	86.4 F	eet M	SL		2.3	inches
Local	Grid O	rigin	_		Or Bori			'		0	,		Local G	rid Lo	cation	ı		
	Plane				232,310 E	S/C		La							\square N			□ E
NE Facili		of N	IE 1	/4 of Sec	tion 30, County	T 19 N, I		Lonç County Co		CIVILIO			/illana	Feet			F	eet W
i aciiii	y ID				Manitowoc			36	ue	Mani		-	rillage					
San	nple				Mailtowoc			30		IVIAIII	lowoc	, 		Soil	Prope	rties		
- Cai	i -				Soil/Do	ak Descriptio	on									1		+
	Length Att. & Recovered (in)	nts	<u>`</u> #			ck Descriptio Jogic Origin							Compressive Strength					(0
er /pe	At erec	No.	<u> </u>			•			ဟ	. <u>o</u>	ڇ	□	ressi t	r je	_	ity		ents
Number and Type	Length Att. Recovered (Blow Counts	Depth In Feet		Eau	n Major Unit			SC	Graphic Log	Well Diagram	PID/FID	July Jeng	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
<u> </u>	<u>9</u> %	ā	ے ا	0 0		und ook	mated (a)	21	_	Grap Log	ے ≲	0.5	ပိ အွ်	žö	تَ تَا	<u> </u>	<u>~</u>	8 8
0.2	36		F		BLACK FILI ılar, some rec			3,				0.5						
			E ₁	grana	iiai, soine ia	i orridoro, ri	io odor.											
			E.															
			-															
2-4			2									0.1						
			F															
			_3															
4-6			_4									0.6						SB-223 4-6
			F									0.0						VOC,
			_5															SVOC, RCRA,
	60 42																	PCB, Pest.,
	"-		-															Herb.
6-8			6 -									0.2						
			E															
			_7															
			-															
8-8.5			_8	8-8	5 WOOD, rec	h-brown to	brown i	oulov	OH			0.1						
8.5-9			E	no od		a Di Ovvii lO	, Di Ovvi i,	puipy,		<u> </u>		0.1						
			_9	I \	9 PEAT, blac	k, saturate	d, native	, no ,	OH	24 4142		_						OD 000 0 40
9-10			-	\odor.		•	·		СН			0.1						SB-223 9-10 VOC, PAH,
			10	9 - 10	CLAY, gley	ed, saturat	ed, soft, l	loamy,										As, Pb
10-15	60 0		E		present, no c							-						
	"		<u> </u>	10 - 1	15 NO RECO	VERY.												
			11 -															
			E															
			12														<u> </u>	
	-	y that	the info	rmation (on this form is tr	ue and corre	ct to the be	est of my k	nowle	dge.								
Signa	ture	1/	·/_	0	11	F	irm Star	ntec										Tel:
	\mathcal{U}	Ma	ney	. Cu	ll		2.00											Fax:

Boring Number	SB-	-223 Use only as an attachment to Form 4400-12	22.						Pag		of 2	2
Sample								Soil	Prope	rties		
. (in)	l ₹	Soil/Rock Description					e e					
er rpe ered ered	드	And Geologic Origin For Each Major Unit	S	్లు	Ę	□	ressiv th	e t		ity		ients
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Each Major Offic	SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Z \alpha		10 - 15 NO RECOVERY. (continued)	<u> </u>	ב פ	≤ □		O 02	≥ ິບ	<u> </u>	트 드	Δ.	<u> </u>
	E											
	13 -											
	14											
	- 14 - -											
Ц	_ 15											
1 1	1			1	l		1	l	I	1		

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	ute To: Watershed/Wa Remediation/F	estewater 🗌 Redevelopment 🛚	Waste I Other	-	ement								
													Page		of	1
	y/Projed er Poid			Lot 3		License/F BRR1			•			Boring	Numb		-224	
				f crew chief (first, last) an	d Firm	Date Dri			7047		e Drilli	ng Con	npleted			ing Method
	Long						0/00	(0000			,	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	.000			
	TIZON C			n and Exploration, LL	Common Well Name	Final Sta		/2022 ter Leve	; <u>k</u>	Surface	Elevat	3/23/2 ion	:022	Во		oprobe Diameter
						l i	=eet N	/ISL		58	38.0 F	eet M	SL		2.3	inches
	Grid Oi	rigin	_	stimated:) or Bori		La	t	0	,	"	Local G	rid Lo	cation	•		_
State NE	Plane 1/4	of N		,677 N, 232,488 E /4 of Section 30,	S/C/N T 19 N, R 24 E	Long		0	,			Feet	⊔ N □ S		F	⊟ E Feet □ W
-acilit		01 14		County	10 14,14 21 2	County Co		Civil To	own/Ci	y/ or V	ıllage	1 001			•	<u> </u>
0				Manitowoc		36		Mani	towoo	;	1	0-:1	<u></u>	·C		ı
San	·			0-:1/0	ala Daganinsti an							5011	Prope	Ties		-
	t. & d (in)	nts	*		ck Description logic Origin For						Ve					ω
ype	th At vere	Sou	n c		Major Unit		S	Si	E E	₽	oress gth	ar tre	0	city		/ nent
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		•		n sc	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
0-1	60	ш		0 - 1 LIMESTONE					<i>></i> ⊔	0.1	0 0)	20		ш	<u> </u>	ш О
	36		E	road base, wet, clay	ey matrix, no odo	or.										
1-3			_1	1 - 4 BROWN FIL						0.1						SB-224 1-3 VOC,
			2	topsoil-like quality surface), red and bla	(previous ground ack fill pieces in d	dayey										SVOC, RCRA,
			_	sand matrix, no odd	or.											PCB, Pest., Herb.
3-4.5			_3							0.1						nerb.
3-4.5										0.1						
			_4	4 - 4.5 BLACK FIL	l wet granular	no										
4.5-5				odor.	-L, wa, grandar,	/ /				0.0						
5-7	60		_5	4.5 - 5 CLAYEY S		set,				0.0						
	36		-	saturated @ 4.75', i												
			6	grey-brown, saturat	ed, gravels (~50%											
			_	1/2", subangular, n	o odor.											
7-8			7 _	7 - 8 SAND, red-br	own, saturated, m	nedium,	SP	XXXX		0.0						SB-229 7-8 VOC, PAH,
			- 8	native, no odor.) SP									As, Pb
8-9			0	8 - 9 PEAT, black,	saturated, no odo	r.	ОН	<u> </u>		0.0						
			9	0 40 01 01				× × × ×								
9-10			E	9 - 10 CLAY, gleye present, no odor.	ea, saturatea, soft	, shells	СН			0.0						
L	-		10	, ,												
_																
herel Signat	-	y that	theinfo	ormation on this form is tru	II i was		nowle	dge.								
Jyrial	\mathcal{U})hà	tney	. Cull	Firm Sta	antec										Tel: Fax:

SOIL BORING LOG INFORMATION

Fax:

Form 4400-122 Rev. 7-98

			Rou	watershed/W Remediation/I	astewater Redevelopment	Waste Other	-	ement								
001114	· // Drain	at Niama				II i som so/	Danies it	Manita	aire er Niv			Davisas	Page		of	2
	y/Proje			1 4 0		License/I			_			During	Numb		-225	
			trict -	crew chief (first, last) ar	nd Firm	Date Dri		2-36-1 arted	7647		te Drilli	na Con	npleted			ing Method
	Long	-		(2, 22, 22, 22			3 -					3				3
Hor		Constr	uction	and Exploration, LL	_C Common Well Name	e Final Sta		/2022 ter Leve	el 1;	Surface	: E Elevat	3/24/2	022	IBo	ge	oprobe Diameter
	•				TW-225		Feet N	/ISL		5	86.4 F	eet M	SL		2.3	inches
ocal	Grid O	rigin	(es	stimated:) or Bori		1					Local C					
State	Plane		301	,664 N, 232,332 E	S/C/N	La	at		<u> </u>				□ N			□E
NE		of N	E 1		T 19 N, R 24 E	Long	g	°	<u> </u>			Feet	□s		F	eet 🗌 W
-acilit	y ID			County		County Co	ode	Civil To			/illage					
Corr				Manitowoc		36		Mani	towoc	;	1	Cail	D	u!		
San	pre											5011	Prope	ues		-
	∞ (Ē	ts	葉		ck Description						e e					
၂ ဓ	Att.	uno	n Fe		ologic Origin For				_		issi –	فإ		<u>≻</u>		ants
T See	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each	n Major Unit		CS	Graphic Log	grar	PID/FID	npre	stur	ig #	₩ ₩ ₩	200	
Number and Type	Rec	Blo	Deχ				S U	Grap	Well Diagram		Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 2(RQD/ Comments
0-2	60 36		E	0 - 4 BLACK FILL	_, wet, saturated (@ 2', no				0.1						
	30		<u> </u>	odor.												
			_1													
			-													
2-4			_2							0.3						SB-225 2-4
			-													VOC,
			_3													SVOC, RCRA,
			Ė I													PCB, Pest., Herb.
			_4													nerb.
4-5			-	4 - 5 SAND, grey-l (~10%) 1/4 - 12",	brown, saturated,	gravels				0.3						
			ا ج ا	(~10%) 1/4 - 12 , 1 _ ortanic odor.	rounded, trace iiii	preces,										
5-8	60		5 -	5 - 7.75 POOR RE	COVERY sand t	from				-						
	24		E	previous interval m												
			6	•	•											
			-													
			_7													
			E													
8-9			_8	_7.75 - 8 WOOD, n	o staining, no odo	or.	OH			0.3						SB-225 8-9
0.9			-	8 - 9 PEAT, black,	saturated, native,	organic	ОН	\(\frac{\lambda}{\lambda}\)		0.3						VOC, PAH,
			_9	odor.				<u> </u>								As, Pb
9-10			E" l	9 - 10 CLAY, gley		, Ioamy,	СН			0.1						
				shells present, no c	odor.		СП									
10-12	60		10	10 - 15 CLAY, bro	own, saturated, sof	ft, roots				0.2						
	24		-	and shells present,	no odor.											
			11				CH									
			12					XXX								
herel	by certif	y that	the info	rmation on this form is tr	ue and correct to the	best of my k	nowle	dge.								
Signat	ure					antec										Tel:
	\mathcal{U}	That	ney	L Cull	30	ar II. C										ren: Fax:

Borin	g Numl	oer	SB-	·225 Use only as an attachment to Form 4	400-122.							Pag	e 2	of	2
	nple										Soil	Prope	rties	-	
	~ ĉ		ایپا	Soil/Rock Description											
a)	# H	unts	&	And Geologic Origin For						Sive					ts
ber ype	th A	ပိ	n d	Each Major Unit	S		je.	lam	문	gth	ture	۰.	git		men /
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		08.0		Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	, 200	RQD/ Comments
12-14	<u> </u>	ш	_ 🗀	10 - 15 CLAY, brown, saturated, soft, roo				> 🗆	0.2	0 0	20	-	<u> </u>	Δ.	<u> </u>
			-	and shells present, no odor. (continued)											
			13												
					CH	ا ⊢									
14-15			14						0.4						
									0.4						
			15												

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	ite To:		/astewater /Redevelopment	\boxtimes	Waste I	_	jement								
	/	-t N1								(N. A					Pag		of	2
	ty/Proje ver Poi			l ot 2				License/F			Boring Number SB-227							
					ief (first, last) a	nd Firm		BRRTS #02-36-176478 Date Drilling Started Date Dri					ate Drilli	Illing Completed Drilling Meth				
Ben Long Horizon Construction and Exploration, LLC								3/24	/2022			3	3/24/2	2022		geoprobe		
WI U	nique W	el No				Common Well		Final Sta			; E		e Elevat			Во	rehole	Diameter
Local	Grid O	rigin		timated.	□) or Boi	TW-22		F	-eet N	//SL		5	86.6 F				2.3	inches
	Plane				232,350 E			La	t	°	<u> </u>		20001)a	□ N	ı		□ E
NE 1/4 of NE 1/4 of Section 30, T 19 N, R 24 E					Long		°	<u> </u>	"		Feet	□ s		⊢ E Feet □ W				
Facili	ty ID				County			County Co	de	Civil To		-	Village					
Manitowoc Sample								36		Mani	towoc	;		Soil	Prope	rtico		
Sai	<u> </u>				Cail/D	aal. Daaanintian								3011	Tiopa	1165		-
	Length Att. & Recovered (in)	nts	Æ			ock Description ologic Origin For							š.					, n
ype	h At /erec	8	l I			ch Major Unit			တ	oje.	au	₽	gth	ure	_	city		nent
Number and Type	engt	Blow Counts	Depth In Feet						SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	500	RQD/ Comments
0-2	60	<u> </u>	_	0-21	3LACK FIL	L & TOPSOI	L, moi	st,		<u> </u>	5 0	0.2	0 %	≥ 0		<u> </u>	Δ.	20
2-4 4-6 6-7 7-8 8-10	60 42		- 10 - 10 - 12	2 - 7 E preser 7 - 8 F odor. 8 - 10 shells	PEAT, black	, saturated, na /ed, saturated, odor.	ative, n	0	он сн			0.2 0.3 0.2 0.1						SB-227 4-6 VOC, SVOC, RCRA, PCB, Pest., Herb. SB-227 7-8 VOC, PAH, As, Pb
I here	by certi	fy that	theinfo	rmation o	on this form is t	rue and correct t	o the be	st of my k	nowle	dge.			'					
Signa	ture	1/:	·	0		Firm	¹ Stan	tec										Tel:

Boring Number	SB-	-227 Use only as an attachment to Form 4400-1:	22.						Pa	ge 2	of	2
Sample								Soil	Prop	erties		
its (in)	₩	Soil/Rock Description					e e					
er pe Att. Soun	드 관	And Geologic Origin For	S	U	€	۵	essiv th	e ±		ξį		ents
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moi sture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
		10 - 15 NO RECOVERY. (continued)		Θ J	<u>≯ </u>	॒	<u>ഗ് ഗ്ര</u>	≥ ర	<u> </u>	i <u>a s</u>	Δ.	<u> </u>
	F	(33.13.13.13.13.13.13.13.13.13.13.13.13.1										
	13											
	Ē		CH									
	14											
	_ 15											
	F 13											
				1	l		1					

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou		astewater Redevelopment	\boxtimes	Waste I Other	_	jement										
														Pag		of	2		
	ty/Proje						License/I			Boring Number									
	er Poi				od Lirm				2-36-1	7647		40 Deilli	na Con	anlatad		-229			
	•	•	Name 0	f crew chief (first, last) ar	ia Fillii		Date Dri	illig S	larieu		De	ate Drilli	ng con	прівіви		Drilling Method			
	n Long			and Evaloration III	0			2/22	/2022			,	2/22/2	000					
WIU	nique W	ONSU Vel No.	uction	n and Exploration, LL	Common Well I	Name	Final Sta		/2022 ater Leve	1	Surfac	3/23/2022 urface Elevation					geoprobe Borehole Diameter		
					TW-229			Feet N				88.5 F			2.3 inches				
Local	Grid Oi	rigin	□ (e	stimated:) or Bori			<u> </u>	<u>a 1</u>	VIOL				Frid Lo		2.3 mones				
	Plane	•	_	,616 N, 232,456 E	S/C/N	7	La	t	°	<u>'</u>					ı		□ E		
NE	1/4	of N			T 19 N, R 2	4 E	Long	ı t	0	•	"		Feet	□s		F	Feet □ W		
Facili				County			County Co		Civil To	own/Ci	ty/ or \	Village							
				Manitowoc		;	36		Mani	towoo	;								
Sar	nple					•							Soil	Prope	rties				
	J., e			Soil/Ro	ck Description														
	d (ir	nuts	8	And Geo	logic Origin For							jve Sive					ß		
ype ype	h A	Š	<u>_</u>		n Major Unit			တ	. <u>e</u>	믋	₽	gt Signal	ure int	_	city		l Lieu		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet					SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments		
<u>Z</u> k	60 2 &	<u>B</u>	۵	0 - 1 BROWN FIL	I wat day i	no ode	or .		בֿ פֿ	≥ □	0.4	<u>0</u> 0	≥ ŏ	<u> </u>	교드	₾	<u> </u>		
	36		-	U - I BROWN FIL	.L, wei, day, i	no ouc	JI .				0.4								
			_ _1																
1-3			Ε'	1 - 4 FILL, dayey	with gravels a	and bla	ack/red				0.1						SB-229 1-3 VOC,		
	fill pieces (foundry material and brick) moist, stiff clay, no odor.					,										SVOC,			
			_2	morsi, sim day, no	ouoi.												RCRA, PCB, Pest.,		
			<u> </u>														Herb.		
3-4			_3								0.0								
			F								0.0								
			4																
4-5				4 - 5 SAND, red-b			1',				0.0						SB-229 4-5 PAH, As, Pb		
			E	medium grain size,	native, no od	lor.											FAH, AS, FD		
5-7	60		5	5 - 8.5 CLAYEY S	SAND, red-bro	own,			////		0.2						SB-229 5-7		
	36		_	saturated, soft, no o		•											VOC		
			_6																
			_																
			_ 7					SC											
7-8.5			Ε΄								0.0								
										1									
			8 -																
8.5-9.5			-	8.5 - 9.5 GRAVEL	LY SAND. b	rown.					0.1								
			9	saturated, well-grad	ded, gravels (-			SW											
9.5-11			F	_ 1/4", rounded, no d	odor.	•	_				0.4								
3.3-11			10	9.5 - 10 PEAT, bla	ack, saturated,	no oc	dor.	OH	<u>,</u>		0.1								
	60 36		_	10 - 11 CLAY LO	AM, red-brow	vn,		CH											
			- 44	saturated, no odor.															
11-13			11								0.0								
			F					CH											
			12																
I here	by certif	y that	theinfo	ormation on this form is tr	ue and correct to	the be	st of my k	nowle	dge.										
Signa	iture	1/.	,	0 11	Firm	Stan	ntec:										Tel:		
	\mathcal{U}	Ina	ney	L'Cull		Juli											Fax:		

Boring Number SB-229	Use only as an attachment to Form 4400-	122.						Pag	je 2	of	2
Sample	·						Soil	Prope			
\& (in) \	Soil/Rock Description					go					
r Att.	And Geologic Origin For	ဟ	0	ے		sssiv h	e _		rţ.		ants
Number and Type Length Att. & Recovered (in) Blow Counts Depth In Feet	Each Major Unit	USC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
- 11 - 13 Cl red-brown	LAY LOAM W/ GRAVELS, n, saturated, gravels (~30%) 1/8 - dor. <i>(continued)</i>	СН									
	LAY, gleyed, saturated, medium				0.1						
soft, shells	s present, no odor.										
		CH									
			1]							

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	ite To:	Watershed/W Remediation/I			Waste I Other	_	ement								
															Page		of	2
	ty/Proje ⁄er Poi			1 04 2				BRR			_			Boring	Numb		-230	1
					ief (first, last) ar	nd Firm		Date Dri			70476		e Drilli	ng Con	npleted	30		ing Method
	n Long	-			,				•					•				J
Но	rizon (Consti	ruction		ploration, LL					/2022				3/23/2	022		ge	oprobe
WI U	nique W	/ell No		DNR V	VelTD No.		Well Name	Final Sta			3		e Elevat			Во		Diameter
l ocal	Grid O	rigin		timated.) or Bori		/-230		Feet N	/ISL		5	90.9 F				2.3	inches
	Plane	9	_		232,504 E		″' ⊠ C/N	La	t	°	<u> </u>		Loodi C), TG	□ N			□ E
NE		of N		/4 of Sec	-	T 19 N		Lond	ı	0				Feet			F	Feet □ W
Facili	ty ID			(County		C	County Co	de	Civil To		-	'illage					
_					Manitowoc		;	36		Mani	towoc	:		0 11 1				
San	nple	-												SOILI	Prope	ties		-
	∞ Œ	ts	₹			ck Descrip							e					
pe "	Att.	l no	n Fe			ologic Origi			ဟ	O	ے		essiv h	e t		ty		ants
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Each	n Major Un	nit		SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
a S	Z E	B	De	0 0					ŝ	Grap	W V		လွှင့်	Σိ ပိ	<u> </u>	Pla	P2	25.0
0-0.5	60 30		F		5 LIMESTON base, wet, no		ENINGS,	grey,				0.2						
0.5-2			E ₁	l \	2 CLAY, bro		st. stiff. no o	odor.				0.1						
			F .	0.0		,	.,,											
			_2															
2-3.5			F -		5 BROWN F			ieces,				0.1						
			_3	Silty,	trace gravels,	no odor.												
			E 3															
3.5-4.5			 		4.5 BROWN							0.4						SB-230 3.5-4.5
			_4		d, topsoil-like e), no odor.	equality (previous g	rouna										VOC,
4.5-6			E _	\ \	SAND, red	-brown v	vet medium	<u> </u>				0.0						SVOC, RCRA,
t	60		5 _		e, no odor.	Diowii, v	vot, modrai	,										PCB, Pest., Herb.
	30		E						SP									SB-230
6-8			6									0.1						4.5-6 PAH, As, Pb
			F	6.5 - 8	B SILTY SAM	ND, red-k	orown, satu	ırated										1.5, 1.5
			_7		no odor.				SM									
			F															
8-10			8	8 - 12	GRAVELL	Y SAND	. red-browr	n to		***		0.2						SB-230 8-10
			-	dark b	orown, satura	ted, grave	els (~30%)	1/4",		.8. 6								VOC
			_9	no od	or.													
			E															
10-12	60		_10						SW			0.1						
	60		E									0.1						
			11															
			E															
			12							3								
I here	by certif	fy that	the info	rmation o	on this form is tr	ue and cor	rect to the be	st of my k	nowle	dge.	ı		1		1	ı		
Signa	ture	<u> </u>					Firm Stan			-								Tel:
	\mathcal{U}	Sha	tney	L Cui	VL		Start											Fax:

SOIL BORING LOG INFORMATION SUPPLEMENT

Boring Number	SB-	-230 Use only as an attachment to Form 4400-	122.						Paç	ge 2	of	2
Sample								Soil	Prope			
% (in)	 ₩	Soil/Rock Description					Φ					
ount	n Fe	And Geologic Origin For			_		ssiv L	go		≥		ants
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	8	RQD/ Comments
	Д Ф))	Grap Log	Well Diag	님	S th	္ဂိ ဋ	F. F.	Plasti (Index	P 200	8 Q
12-15	_	12 - 15 CLAY, gleyed, saturated, medium soft, shells present, no odor.				0.1						
	13	cort, didio press it, no odor.										
	-		СН									
	14											
Ц	15											
				1		1			1	1	I	

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Rou</u>			astewater 🗌 Redevelopment 🗵		/aste M ther [-	ement								
															Pag		of	2
	y/Proje			L of O						Monito 2-36-1	_			Boring	Numb		-231	
			strict - Nameo	f crew chief (first, la	ast) an	d Firm		e Drill			1/04/		e Drillii	ng Con	npleted			ing Method
	Long																	
Hor	izon (lique W	Consti	ruction	and Exploration		C Common Well Name	2 Fin:			2022 ter Leve	a	Surface	3 Elevat	3/23/2	2022	IBO	ge	oprobe Diameter
771 01	11quo **	GI 140		Divite Wall Divi	,	MW-231			eet M		,		91.5 F		ISL			inches
	Grid Oi	rigin	ш .			ng Location 🔀	<u> </u>			0	,	"	Local G					
State		-ε NI		,639 N, 232,50		S/C/N		Lat									_	□ E
NE -acilit		of N	E 1	/4 of Section 30	J,	T 19 N, R 24 E		Long ty Coo		Civil To	own/Ci	ty/ or V	/illage	Feet	□S	i		Feet □ W
				Manitow	VOC		36			Mani	towo							
Sam	ple													Soil	Prope	rties		
	∞. <u>(E</u>	ıţ	₩ ₩			ck Description							e					
er /pe	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	An		ogic Origin For			S	. <u>o</u>	ڇ	□	Compressive Strength	re t		ity		RQD/ Comments
Number and Type	angth acov) wo	ebth		Each	Major Unit			SC	Graphic Log	Well Diagram	PID/FID	ompi	Moisture Content	Liquid Limit	Plasticity Index	200	DD/ Jumo
<u>Z </u>	60	回		0-1CLAYE	Y SA	ND & GRAVEL	brow	/n	\cap	<u>©</u> →	≥ ⊡	0.1	<u>ა</u> გ	≥ ŏ		교드	Δ.	ž č
	36		F	moist, gravels		%) 1/4 - 1", roun												
1-3			_1	odor.	·M br	own, moist, satur	atad (<u>~</u> /				0.0						
			E			pieces, stiff, no o		<u>w</u>										
			_2			•												
			Ė.															
3-5			3 -									0.1						
			E,															
			-4															
			F ₂															
5-7	60 24		5 _									0.1						SB-231 5-7 VOC,
	24		6															SVOC.
			-0															RCRA, PCB, Pest.,
			<u> </u>															Herb.
7-7.25 25-8.25			E'	I \	-	llow, dry, no odc						0.0						
			8), black and red st g 8 - 8.25, manur												
.25-10			-	∖odor.	•			/				0.8						SB-231
			_9	8.25 - 10 SAN native, no odo		rown, saturated, o	coarse	,	SP		:							8.25-10 VOC, PAH,
			E	Hauve, 110 000	۱.				OI									As, Pb
10-15	60		_10	10 - 15 NO R	ECO	/EDV												
	0		E	10-13 NO K	LCC	VLNI.												
			11															
			F															
			12															
	-	y that	theinfo	ormation on this form	m is tru	ue and correct to the	best of	my kr	nowled	dge.								
Signat	ure	Shi	tuni	Cull		Firm Sta	antec											Tel:

SOIL BORING LOG INFORMATION SUPPLEMENT

	g Numl	per	SB-	Use only as an attachment to Form 4400-1	22.	,				0 11	Pag		of .	2
San	İ			Oril/David David						Soil I	Prope	rties		
	Length Att. & Recovered (in)	nts	. #	Soil/Rock Description And Geologic Origin For					ě					0
ype	h Ati 'ered	Coul	n H	Each Major Unit	ဟ	.≌	E E	₽	ressi Jth	a t		oity		nents
Number and Type	Length Att. & Recovered (in	Blow Counts	Depth In Feet	Lauriwajor Onit	SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
Z æ	<u> </u>			10 - 15 NO RECOVERY. (continued)	⊃	9	≶ □		ပတ	≥ 0			Δ.	<u> </u>
			-	,										
			13											
			14											
			15											
_			15				1							

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	watershed/W Remediation/	astewater Redevelopment	_	eManag · □	jement								
													Pag		of	2
	y/Proje			1 -4 0			e/Permit/		Ū			Boring	Numb		-234	
KIV Borina	er Poi	nt Dis	itrict - Name of	LOT 3 Forew chief (first, last) ar	nd Firm		RTS#0		1/64/		te Drilli	ng Con	npleted	_		ing Method
	Long			(23, 232, 23			3 -					3				3
Hor	izon (Constr	uction	and Exploration, LL				/2022				3/23/2	2022		ge	oprobe
/VI Ur	nique W	/ell No.		DNR Well ID No.	Common Well N		tatic Wa		el		e Elevat			Bo		Diameter
ocal	Grid Oi	rigin	□ (es	_ stimated: □) or Bor	MW-234 Ing Location		Feet N	VI SL		5	89.8 F	-eet IVI Grid Lo			2.3	inches
	Plane	Ü		,587 N, 232,492 E	S/C/N		_at	<u> </u>								□ E
NE		of N	E 1		T 19 N, R 24			°	<u>'</u>			Feet			F	Feet □ W
-acılıt	уЮ			County		County (Code	Civil I		•	/illage					
San	nla	l		Manitowoc		36		Manı	towoo	;	1	Soil	Prope	rtice		T
Jan	·			Cail/Da	al Danavintian							3011	Гора	11165		-
	t. Ø. ij	nts	<u>#</u>		ock Description blogic Origin For						ě					(0
ype	n At	Cou	n n		n Major Unit		ဟ	<u>.</u> 2	E	□	ressi Jth	r de	_	sity		l ants
a F	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Lau	Tiviajoi Offit		sc	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
Number and Type	<u>교 교</u>	Ω		0 - 2 BROWN FIL	I wet day so	omesilt no		<u>د</u> ه	≶ □	0.0	O 20	≥ 0	<u> </u>	프 드		<u> </u>
	36		-	odor.	,,, .	J. 1. 10 G. 11, 1.10										
			_1													
			_													
2-3.5			_2	2 - 3.5 GRAVELL	Y SAND grev	y-hrown		+		0.1						
			_	wet, coarse, well-g												
			_3	_												
3.5-4.5			Ε.	3.5 - 4.5 BLACK	FIII wet aran	nular				1.4						SB-234
			_4	manure-like odor, v												3.5-4.5
1.5-6.5				4.5 - 8 CLAY, red	-brown wat sa	aturated (10)				0.1						VOC, SVOC,
	60		_5	6', soft, no odor.	-biowii, wa, s	aluraleu &				0.1						RCRA, PCB, Pest.,
	36			, ,												Herb. SB-236
			_6													4.5-6.5
6.5-7							CH			0.1						VOC, PAH, As, Pb
7-8			_7							0.1						,
										0.1						
8-8.75			_8	0.075.004.751	LV CAND by					0.1						
5-6.75			-	8 - 8.75 GRAVEL saturated, gravels (SW	.66		0.1						
75-9.75			_9	rounded, no odor.		. ,	/	<u> </u>	7	0.1						
			-	8.75 - 9.75 PEAT,	black, saturate	ed, organic	OH	1, 11,								
75 - 11	00		_ 10	_odor. 9.75 - 15 CLAY, g	alayad caturata	d modium	/	****		0.4						
	60 36		-	soft shells present,												
			11	medium stiff with o			CH									
11-13			-						1	0.2						
			_ 12						Â							
herel	by certif	fy that		rmation on this form is tr	rue and correct to	the best of my	knowle	dge.		1	1	ı	1	1	<u> </u>	L
Signat	ure	1 .			Firm	Stantec										 Tel:
	\mathcal{U}	Shit	ney	-Cull		Jant										Fax:

SOIL BORING LOG INFORMATION SUPPLEMENT

Bori	ng Numl	oer	SB-	Use only as an attachment to Form 4400-1	122.						Pa	ge 2	of	2
	nple			·						Soil		erties		
	% (in)	ts	 	Soil/Rock Description					φ					
be L	Att.	uno	n Fe	And Geologic Origin For	ဟ	O	٤	۵	essiv h	e _		₹		ants
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
<u>3 E</u>	Le Re	Bie	De	9.75 - 15 CLAY, gleyed, saturated, medium	⊃	Grap Log	Well	≣	ပိ ကွ်	Σ̈́ပိ	<u> </u>		<u>~</u>	8 8
				soft shells present, grades to brown and										
13-15			13	medium stiff with depth, organic odor. (continued)				0.1						
			-	(Continued)	CH									
			14											
			-											
L			15											

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Rou</u>		astewater □ Redevelopment ▷	_	Waste N Other	_	ement								
														Page		of	2
	ty/Proje						.icense/F			_			Boring	Numbe		000	
			strict -	Lot 3 f crew chief (first, last) ai	nd Firm		BRRT Tate Dril	_		76478	-	e Drilli	na Con	nlatad	SB	-236	ing Method
	_	-	I Val I I C U	i crew criter (m.s., ias.) ai	iu i iiiii	Ľ	ale Dili	iiig S	arteu		Dai		ng con	ipiaa			ing Manou
	n Long		ruation	and Exploration, LL	C			2/22	2022				3/23/2	ഹാ		90	onrobo
WI U	nique W	/el No		TONR WeITD No.	_C Common Well Na	ame F	inal Sta			9 18	Surface	Elevat		022	Во	rehole	oprobe Diameter
								Feet N				39.8 F		SI		23	inches
Local	Grid O	rigin	☐ (e	stimated:) or Bor	Ing Location 🖂		<u>'</u>	- COL 11			_	Local G		_		2.0	110100
State	Plane		_	,545 N, 232,477 E	S/C/N		Lat	t	° — ——	<u>'</u>	"			□ м			□ E
NE	1/4	of N			T 19 N, R 24	E	Long	ıı	•				Feet	□s		F	eet W
Facili				County	- ,		unty Co		Civil To	own/Cit	y/ or V	'illage					
				Manitowoc		36	3		Mani	towoc							
San	nple			•				,					Soill	Proper	ties		
	ج ر	1		Soil/Ro	ock Description												
	tt. &	nrts	8		ologic Origin For							ž.					γ
ype	h A	હ	드		h Major Unit			ဟ	<u>.</u> 2	띭	₽	ar fr	ure nt	_	gty		je j
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Laoi	Tiviajor Offic			SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
2 k	60	B	ă	0 4 5 000\\\\\\\	III modiat ailt	v alav		\supset	تَ ق	≥ ⊡	0.1	റ്റ് ഗ്	≥ ŏ		교드	<u>a</u>	<u> </u>
0-1.5	54		F	0 - 1.5 BROWN F medium-stiff, no o	TLL, MOISI, SITT	y day,					0.1						
			<u>E</u> 1	mediani-san, no o	doi.												
			F'														
1.5-2.25			E	1.5 - 2.25 GRAVE							0.1						
			_2	moist, gravels (~50	0%) 1/2", rounc	ded, no)										
2.25-2.5 2.5-3.5			F	\odor.							0.2 0.2						
			_3	2.25 - 2.5 CONCF		у,					0.2						
			F	pulverized, no odo													
3.5-5			_4	2.5 - 3.5 CLAYEY							0.3						SB-236 3.5-5 VOC,
			-	gravels (~25%) 1/8 odor.	5 - 1/2 , SUDIOU	naea, i	ПО										SVOC,
			E	3.5 - 5 BLACK FI	II moist aran	nular n	<u> </u>										RCRA, PCB, Pest.,
5.25	60		_5	\odor.	LL, Moist, gran	iuiai, i	_				0.2						Herb.
5.25-6	30		-	5 - 5.25 SANDY (GRAVEL, grev-	-brown	<u>. </u>	SP			0.2						
6-7			_6	√moist, gravels (~60							0.4						SB-236 6-7
6-7			F	no odor.	,			ОН	<u> </u>		0.1						VOC, PAH,
			7	5.25 - 6 SAND, re		native,											As, Pb
7-8			E'	medium-to-coarse,							0.1						
			<u> </u>	6 - 7 PEAT, black,	, saturated @ 6'	, orgar	nic	CL-MI									
8-10			8	odor.	./						0.0						
			F	7 - 8 SILTY CLA'soft, no odor.	Y, grey-brown,	saturat	iea,										
			_9	8 - 12 SANDY CL	AV brown sa	turatoo	1										
			F	soft, no odor.	.A i , biowii, sa	luiala	۸,										
			E_10	30.1, 1.0 300.1				CL									
10-12	60 48		-					"-			0.1						
	10		- 44														
			11														
			F														
			12						1//////								
I here	by certi	fy that	theinfo	rmation on this form is to	rue and correct to t	he best	of my kı	nowled	dge.								
Signa	ture	11.		0 11	Firm	Stante	<u> </u>										 Tel:
	U	Sha	ney	L'Cull		J. Cal I. C	~										Fax:

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	ng Numb	oer	SB-	-236 Use only as an attachment to Form 4400-1	22.						F	Page	2	of	2
San	nple									Soil	Pro	per	ties		
	æ Ê	ς,	et	Soil/Rock Description					Φ						
, ф	Att.	onut	n Fe	And Geologic Origin For			_		SSiv L	φ			÷.		ants
Typ.	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	scs	Graphic Log	Well Diagram	PID/FID	npre	istur	Liquid	ξ	Plasticity Index	8	RQD/ Comments
Number and Type	Ler Rec	Blo	Dec		S O	Grap Log	Well Diag	吕	Compressive Strength	Moisture Content	Lig	Liπ	Plastio Index	P 200	Co P
12-15			_	12 - 14 CLAY, gleyed, saturated, Ioamy, shells present, no odor.				0.3							
			_ 13	Shars presail, no odor.	СН										
			- "		0										
			14												
			- '	14 - 15 CLAY, brown, saturated, medium-soft, shells present, no odor.	СН										
			_ 15	medianrison, shans presant, no odor.	0										

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rou	watershed/W Remediation/	astewater □ Redevelopment ⊠	Waste Other	_	ement								
-ooilit	y/Proje	ot Nom				License/l	Dormit/	Monito	rina Ni	ımbor		Poring	Pag Numb		of	2
	-		strict-	lot 3				2-36-1	Ū			Бипу	INUITID		-237	,
3orino	g Drille	By: I	Name of	crew chief (first, last) a	nd Firm	Date Dri			17047		e Drilli	ng Con	npleted			ing Method
Hor	Long izon C	Constr	uction	and Exploration, LL	_C			/2022			3	3/23/2	2022		ge	eoprobe
/VI Ur	nique W	el No.		DNR Well ID No.	Common Well Name				E		e Elevat			Вс		Diameter
ocal	Grid Oi	rigin		│ stimated: ┌┐) or Bor	TW-237		Feet N	/ISL		5	90.0 F				2.3	inches
	Plane	9	ш .	492 N, 232,470 E	S/C/N	La	t	°	<u> </u>)a 20	□ N	l		□ E
NE		of N	E 1	/4 of Section 30,	T 19 N, R 24 E	Long		°	<u> </u>			Feet	_		F	Feet □ W
-acılıt	y ID			County Manitowoc		County Co	de	Civil To Mani		•	/illage					
Sam	nole			Maintowoc		30		IVIAIII	lowoc	, 		Soil	Prope	rties		
	·	-		Soil/Ro	ock Description								<u> </u>			-
an.	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		logic Origin For						Compressive Strength					ıts
Number and Type	gth A	ပိ	th L	Eacl	n Major Unit		CS	Graphic Log	Well Diagram	PID/FID	ngth	Moisture Content	ē ±	Plasticity Index	0	RQD/ Comments
and	Len Rec	Blo	Оер				S U	Grap	Wel Diag	PD,	Con	Moi	Liquid Limit	Plastic Index	P 200	RAC
0-1	60 60			0 - 1 BROWN FIL odor.	.L, wet, clayey sar	nd, no				0.4						
1-2			-	1 - 3.5 FILL, mois day), gravels, blad	t, reworked native	e(gleyed				45.7						SB-237 1-2 VOC,
			2	day intermixed, H		азпц										SVOC, RCRA,
2-3.5			-	•						1.7						PCB, Pest., Herb.
			_3													nerb.
			-	0.5 0.011 TV 041	ND 1											
3.5-5			_4	3.5 - 8 SILTY SAI red-brown with de	אט, burr, grades to oth.saturated @.6	o 5'. fine.				0.6						
			Ė I	no odor.	,	,,										
5-7	60		_ 5							0.8						
	48		-							0.8						
			_6													
7-8			_7							0.3						
			-													
8-9			8	8 - 9 SAND, red-b	rown. saturated. o	oarse.				0.2						
			-	well-graded, no od		,										
9-10			9	9 - 10 PEAT, blad	k, saturated, native	e, no		XXXX		0.3						SB-237 9-10
			Ė	odor.	·		OH	1, 11,								VOC, PAH, As, Pb
10-12	60		10	10 - 13 SAND, bro						0.2						,
	60		<u> </u>	depth, saturated, or	oarse, no staining,	no	SW									
			11 -	_odor.				1.0.000								
			E ,													
horr!	DV 05"1"	f ₁ , that	12	rmation on this farm is to	ruo and correct to the	had of mile	noude	dac								
nerer Signat	-	y mat	u ie irii 0	rmation on this form is to	II i was		iiowie	uge.								
	\mathcal{U}	Sha	ney	- Cull	Sta	antec										Tel: Fax:

SOIL BORING LOG INFORMATION SUPPLEMENT

	ıg Numl	oer	SB-	Use only as an attachment to Form 4400-	122.						Pa		of	2
San	nple									Soil	Prop	erties		
	æ (Ē	ıts	₩ E	Soil/Rock Description					e					
ъ ф ф	Att ered	Sour	ln F	And Geologic Origin For	ဟ	ပ	ڇ		essi th	e ±		ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	200	RQD/ Comments
<u>Ź</u> €	7 %	⊞	۵		⊃	Grap Log	≥ ⊡	0.2	<u> </u>	≥ ర	<u> </u>	i 🖺 💆	<u>a</u>	<u>x</u> ö
			_					0.2						
13-15			13	13 - 15 CLAY, grey, saturated, soft, shells		KAN	4	0.1						
			-	present, no odor.										
			14		CL									
			E											
L	-		15			كبيب	1							
	1	1	1	ı	1	I	1	1	I	1	1	1	1	I

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro			astewater Redevelopment	Waste Other	_	ement						1		
Facility	y/Projec	rt Nam	ne .				License/	Permit/	Monitor	ring Ni	ımbe	•	Roring	Pag Numbe	-	of	1
-	-		ea B-1						02-36	_			Dorling	, INGILIO		-253	
				of crew chief ((first, last) ar	nd Firm	Date Dri			2021		ate Drilli	ing Con	npleted			ing Method
	Long izon C		uction	n and Explo	oration			1/16	/2023				1/16/2	2023		Ge	eoprobe
	ique W			DNR Well		Common Well Name					Surfa	ce Elevat	tion		Bo		Diameter
							583	3.1 Fe	et MS	L		591.1				2.3	inches
				stimated: 📋 County Coc		ing Location E S/C/N	La	nt.	0	•	,	Local C	irid Lo				
NE		of N		1/4 of Section		T 19 N, R 24 E			0	,	2'	hi 777 oc)1 Foot	N 🗵		0.007	⊠ E Feet □ W
Facility		01 IN	L I	Cour		1 19 N, K 24 E	County Co		Civil To	own/Ci		Village	71 reet	. 🗀 ъ	232483	9.907	reet 🔲 w
					nitowoc		36		Mani		•		~ '1				T
San													Soil	Prope	erties		_
	. & (in)	ıts	eet			ock Description						, e					
r pe	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			ologic Origin For		N N	၁	8		Compressive Strength	5 ±		ity		RQD/ Comments
Number and Type	ngth) W (pth		Eac	h Major Unit		SC	Graphic Log	Well Diagram	PID/FID	mpr	Moisture Content	Liquid Limit	Plasticity Index	200	D/Q/
		BIG	De					Ď.	Grap Log	ĭ Dig		Co	ĭ ĭ ĭ	Lir	Pla Inc	P 2	So. RC
0-2.5	60 36		1 1	0 - 2.5 Sl 5% grave	ILTY SAI el (1/4", ro	ND, yellow-browr ounded), no odor.	n, dry,	SM			0.0						
2.5-3			2 3 4	no odor. 3 - 6.5 Sand slag	ANDY FI	NE COBBLE, light LL, dark brown, of trace gravel (1/4",	dry, coal				0.1						
7.5-8	60 36		-5 -6 -7 -8 -9 -10	7.5 - 8 B \slag com 8 - 10 SA	well round BRICK FII amon, no o AND, grey	rey, dry, medium, ed, no odor. L, red, dry, red bodor. r, saturated, trace oburnt tobacco odo	rick and	SWG		▼	0.1 0.0 0.2 0.1						SB-253 (8-10) PAH, RCRA, Total Cyanide
hereb	y certif	y that	the info	ormation on th	his form is tr	rue and correct to the	best of my k	nowled	lge.		•			•			
Signati	-	-	-//	:///_4		In:	antec Con			ices Ir	nc						Tel:
			11/	1/1/1/2	,			كالالتالة	5 5 C1 V	L COUL							Fax

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Ro</u>		Vastewater □ /Redevelopment □	Waste l	_	ement								
													Pag		of	2
	y/Proje					License/I			-		•	Boring	Numb		254	
			ea B-1 Name o	f crew chief (first, last) a	and Firm	Date Dri		02-36- arted	-3834		ate Drilli	ng Con	nnleted	SD	-254 Drill	ing Method
_	Long	-		r ere w ermer (mrss, mss) s									приссе			ang manaa
Hor	izon (Consti		and Exploration				/2023				1/17/2	2023			eoprobe
WI Un	ique W	ell No		DNR Well ID No.	Common Well Name	1		ter Leve et MS			ce Elevat 590.0		/CI	Bo		Diameter inches
Local	Grid Oı	rigin		stimated:) or Bo	ring Location	302	.5 FE	et IVIS	L		Local				2.3	inches
					E S/C/N	La	t		<u>'</u> —				⊠ N			⊠ E
NE		of N	E 1	/4 of Section 30,	T 19 N, R 24 E	Long	3	°	<u>'</u>			24 Feet	□ S	232484	1.236	Feet W
Facilit	y ID			County Manitowoc		County Co	de	Cıvıl To Mani		-	Village					
San	mle			Maintowoc		30		Iviaiii	lowoc	-		Soil	Prope	rties		
Dun	1	-		Soil/F	Rock Description								Порс			-
	tt. & d (ii	unts	Feel		eologic Origin For						sive					ts
lber Type	gth A	ို	h In		ch Major Unit		CS	hic	ram		pres	sture	pi t	icity	0	men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Į.		SO	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
0-2 2-4.5 2-4.5 4.5-6.5	60 30 60 30		-1 -2 -3 -4 -4 -5 -6 -7 -7 -8 -10	7 - 7.5 PEAT, dar wood, no odor. 7.5 - 8 SAND, greedium-coarse, wood. 8 - 10.5 SILTY Soodor.	SAND FILL, brown to black, provinced, dark brown to black, for the dark brown to black, grey, saturated, and graded, well rounded.	wn, dry, bieces of unded, wet, no	SWG OH SW		▼	0.1 0.1 0.1 0.1 0.1 0.1						SB-254 (8-10) PAH, RCRA Metals
1.5-14			11 	pieces of plant ma	terial 10.5-10.75',	no odor.	СН			0.1						
			-12													
	•	fy that	the info	ormation on this form is	true and correct to the l	est of my k	nowled	lge.								
Signat	ure	1//	1.//	11_4.	Firm Sta	intec Cons	aıltine	Serv	ices I	nc						Tel·

Borin	g Numl	oer	SB-	Use only as an attachment to Form 4400-	122.						Pag	ge 2	of	2
San	nple									Soil	Prope	rties		
	(ii) &	ts	et	Soil/Rock Description					ò					
r	Att.	onn	In Fe	And Geologic Origin For	N N	3	l g		essiv	e t		ty		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	8	RQD/ Comments
Nu	Ler	Blc	De		n n	Grap Log	Well Diagr	PII	Col	သို ပိ	Liquid Limit	Pla Ind	P 200	RQ Coi
			-	11.5 - 14 CLAY, gleyed, wet, soft, high										
			_ 13	plasticity, no odor. (continued)	СН									
			- 13											
			_ 14											
14-15			- ''	14 - 15 CLAY, grey-brown, wet, soft, high	СН			0.1						
			_ 15	plasticity, white shells common, no odor.	CII									
			13											
	'	1	1	1	1	1	1	1	1	1	1			ı

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

					Wastewater ☐ n/Redevelopment ☒	Waste : Other	_						Pag	ge 1	of	1
	//Projec					License/			_		r	Boring	Numbe	er		
			ea B-1	f crew chief (first, last)	and Eime			02-36	-5854		ate Drilli	n o Com	اممغماسم	SB	-255	ing Method
_	Long	-	Name o	i crew chief (first, last)	and riffi	Date Dri	iling Si	arted			ate Drill	ng Con	присцец		Driii	ing Method
			uction	and Exploration			1/16	/2023				1/16/2	2023		G	eoprobe
WI Un	ique W	ell No.		DNR Well ID No.	Common Well Name					Surfa	ice Elevat			Во		Diameter
00011	Grid Or	ioin	N (20	stimated:) or B	aring Lagation	581	.1 Fe	et MS	L		588.6 Local C				2.3	inches
				County Coord's N,	E S/C/N	La	t	°	<u>'</u>	'	- Local C	JIIG LO	Cation ⊠ N	ſ		⊠ E
NE		of N		/4 of Section 30,	т 19 n, r 24 e	Long		o	<u> </u>			7 Feet			16.25	Feet W
Facilit	/ ID			County		County Co	de				Village					
	1			Manitowoo		36		Mani	towoo	 		G '1	<u> </u>			1
San												Soil	Prope	erties		
	Length Att. & Recovered (in)	nts	eet		Rock Description						ive					80
er ype	h At vere	Con	l In l		Geologic Origin For ach Major Unit		S	лic	am	Įβ	oress gth	ure	-5	city	_	, nent
Number and Type	Length Att. & Recovered (in	Blow Counts	Depth In Feet	_	acii Major Oliit		SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
0-2.5	60	Щ	-	0 - 5.5 SANDY	FILL, brown-grey, v	wet.	D			1.8	_	Z 0		P 1	Ь	<u> </u>
	36		_	15% gravel (1/4'	', rounded), black gr											
			1 	fill intermixed, n	o odor.											
			-2													
2.5-4			_							0.3	3					
			-3													
			_													
4-5.5			-4													
			_													
	60		<u>-</u> 5													
5.5-7.5	48			5.5 - 6 CLAY, g	leyed, moist, soft, hi	igh	СН			0.1	1					
			 6	plasticity, no odo												
			<u> </u>		SAND, black, monded), trace pieces of											
			<u>-</u> 7	red brick, no odo		n sinan			▼							
7.5-9			-		rey-brown, saturated			XXXX		0.1	1					
			- 8	medium, trace gr	avel (1/4", rounded) nded, burnt tobacco), well	SW									
			_	graded, wen roui	ided, burnt tobacco	odor.										
9-10			<u>-</u> 9		rk brown, wet, rootl	ets	011			0.1	1					SB-255
			-	common, faint b	ırnt tobacco odor.		OH									(9-10) PAH. RCRA
			-10						1							Metals, Total
																Cyanide
herek	v certif	iv that	the info	rmation on this form is	s true and correct to the	hest of my b	nowlea	lge.								
Signat	-	y mat	THE IIIIO	mation on this form is	Te:				ioca T	n.c						m 1
-5	/	1/	14-7	4.	Sta	antec Cons	suiting	g serv	ices Ii	IIC.						Tel:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Ro</u>		Vastewater □ /Redevelopment ⊠	Waste I	_	ement								
P 1114	-/D:-	-4 NT				T:/	D - ····· '4/	M '4	NI	1		D'	Pag	-	of	1
	y/Projec		ne ea B-1			License/I		Monitoi 02-36-	-			Boring	Numbe		-256	
				f crew chief (first, last) a	and Firm	Date Dri			-3634		ate Drilli	ng Con	noleted	SD		ing Method
Ben	Long			and Exploration				/2023				1/17/2	•			eoprobe
	ique W			DNR Well ID No.	Common Well Name	Final Sta			el	Surfa	ce Elevat		.023	Во		Diameter
	1						l.4 Fe	et MS			587.9		ISL			inches
				stimated:) or Bo		-		0	,		Local C	Grid Lo	cation			
				County Coord's N,	E S/C/N	La							⊠ N			⊠ E
NE		of N	E 1	/4 of Section 30,	T 19 N, R 24 E	Long		<u> </u>	<u> </u>			33 Feet	□ S	232374	1.343	Feet W
Facility	y ID			County Manitowoc		County Co	ae	Mani		-	Village					
San	nple											Soil	Prope	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And G	Rock Description eologic Origin For ch Major Unit		USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
0-2 2-3.5 4-25-5 4-25-5 5-6.5 8-9	60 36			moist, trace slag, subrounded), no of subrounded), no of subrounded), no of subrounded), no of subrounded, no of subrounded, no of subrounded slag common, 4.25 - 5 SILTY S. trace gravel (1/2", 6.5 - 8 SAND, recoarse sand lense lense 7.25-7.5', no subrounded subrou	Y FILL, black and aded, well rounded, no odor. AND, orange-brow subangular), no od	red, coal /n, wet, dor. ium, sand ce plant	SC SW SC CH		▼	0.0 0.0 0.0 0.1 0.1						SB-256 (8-9) PAH, RCRA Metals
hereh	v certif	fy that	the info	ormation on this form is	true and correct to the l	best of mv k	nowled	lge.	<u> </u>			1	I.	<u> </u>		ı
Signati	-	Anat		of the form is					T							<i>m</i> :
-5	- //	ils	47	<i>#</i> .	Sta	antec Cons	suiting	s serv	ices II	nc.						Tel:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	oute To:	Watershed/W	Vastewater		Waste	_	ement								
					Remediation	/Redevelopr	ment 🛚	Other										
															Pag	e 1	of	2
	y/Projec							License/			_			Boring	Numbe			
	er Poi									02-36	-5854						-259	
_	-	•	Name o	f crew chi	ef (first, last) a	and Firm		Date Dri	lling St	arted		Da	te Drilli	ng Con	npleted		Drill	ing Method
Hor		Constr			ploration					/2023				1/17/2	2023			eoprobe
WI Ur	nique W	ell No.		DNR W	Vell ID No.	Common	Well Name						e Elevat			Во		Diameter
1	Cui d Ou		N (2)	ation at a d.	□) or Bo	nin a I a aatia		582	2.9 Fe	et MS	L		589.9] Local C				2.3	inches
					Coord's N,		n ∐ C/N	La	ıt	o	'	"	Local	iria Lo	cation N			⊠ E
NE		of N		/4 of Sect		T 19 N		Lon	g	0	•	3'0	1601.35	4 Feet			0.676	Feet W
Facilit					County		,	County Co		Civil To	own/Ci							
				1	Manitowoc			36		Mani	towoo							
San	nple													Soil	Prope	erties		
	& in)	S	्र इ		Soil/F	Rock Descrip	otion						မ					
o	Att.	ount	Fe		And G	eologic Orig	in For				_		SSIV	, a		>		nts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eac	ch Major Ur	nit		CS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	it it	Plasticity Index	0	RQD/ Comments
Nun	Len	Blo	Dep						S U	Graj Log	Well Diagr		Con	Moi	Liquid Limit	Plastic Index	P 200	RQI Con
0-2	60		_		CLAYEY							0.2						
	42		E		coal pieces													
			-1	gravel	(1/4-1)'', sub	bangular),	no odor.											
			F						SC									
2-3.5			-2						50			0.3						
												0.5						
			-3															
3.5-4			E	2.5.4	LCI AV	1.1	1 1	1				0.2						
4-6			-4		CLAY, red				CL			0.2						
4-0			F		SAND AN							0.3						
L			_ _5		rown to blace													
	60		F "		on, red-brov	vn dense c	lay 6-6.5	i', no										
			F,	odor.														
6-7.5			- 6									0.2						
			_								▼							
			- 7								₹							
7.5-8.5			E	7.5 - 8	3.5 SILTY C	CLAY, ora	ange-brov	vn,				0.2						
			-8	saturat		,	υ	,	CL									
8.5-10			F	85-1	10 SAND W	/ITH GR /	VFI.					0.2						
			<u>-</u> 9	grey-b	rown, wet, 3	30% grave	el (1/4-1"	,	SW									
			E	rounde	ed), peat len	se 8.5-8.7	'5', no od	or.	3w									
0-11.5	60		-10	10 1	1 5 CAND I	MTH CD	AXZEL					0.2						
	60		E		1.5 SAND Vorown, wet, 6			2"				0.2						
			-11		ed), no odor.		21 (17 1 17	<i>-</i> ,	SW									
			F															
1.5-14			-12						CH			0.3						SB-259
heral	w certif	iv that	-	rmation o	on this form is t	true and cor	rect to the l	hest of my l	nowle	lge.	<u> </u>			<u> </u>	<u> </u>			1
Signat	•			, marion 0	101111 18 (T				т							
٠	//	/il,	HA	1			- Sta	antec Con	suiiinį	g serv	ices II	IIC.						Tel: Fax:
	- 1/		,	-														

Boring Number	SB-	Use only as an attachment to Form 4400-1	22.						Pag	ge 2	of	2
Sample								Soil	Prop			
Number and Type Length Att. & Recovered (in) Blow Counts	eet	Soil/Rock Description					, e					
Number and Type Length Att. & Recovered (ii Blow Counts	Depth In Feet	And Geologic Origin For	S	ပ	8	Д	Compressive Strength	r e		ity		RQD/ Comments
Number and Type Length At Recovered Blow Cou	pth	Each Major Unit	SC	Graphic Log	Well Diagram	PID/FID	Compress Strength	Moisture Content	Liquid Limit	Plasticity Index	200)QQ mm
Nu and Re Re Bla	De		Ď	<u>5</u> 3	Well Diagr	II I	Co	<u>ജ് ഗ്</u>	Ľ.	Pla	P 2	2 3
		11.5 - 14 CLAY, gleyed, wet, very soft, high plasticity, white shells common, no odor.										(11.5-14) VOC, PAH,
	- -13	(continued)	CH									RCRA Metals
	_											
14-15	- 14	14 15 CH TV CL AV				0.3						
	_	14 - 15 SILTY CLAY, grey, wet, white shells common, no odor.	СН			0.5						
Ч	-15	,			<u> </u> 							

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro		Vastewater □ Redevelopment □	Waste Other	_	ement								
													Pag		of	2
	//Projec					License/			-			Boring	Numbe		260	
	er Poi			f	4 E:			02-36	-5854		ite Drilli	C	1.41	SB	-260	
_		-	vame o	f crew chief (first, last) a	na rirm	Date Dri	lling Si	arted		Da	ite Drilli	ng Con	приетеа		Drill	ing Method
Hor		Constr		and Exploration	C WIIN	F: 10		/2023		C C		1/17/2	2023	l D		eoprobe
WI Un	ique W	eli No.		DNR Well ID No.	Common Well Name			ter Leve et MS			ce Elevat 589.8]		ICI	Bo		Diameter inches
ocal (Grid Or	rigin	⊠ (es	stimated: or Bor	ring Location	302	2.3 10	Ct IVIS	L		Local C				2.3	inches
				_ ,	E S/C/N	La	ıt	°	<u>'</u>		Local C	nia Lo	⊠ N			⊠ E
NE		of N		/4 of Section 30,	т 19 N, R 24 E	Lon	σ	0	•	3'0	1581.56	9 Feet			3.352	Feet W
Facilit				County	· · · · · · · · · · · · · · · · · · ·	County Co		Civil T	own/Ci							
				Manitowoc		36		Mani	towo	2						
San	ıple											Soil	Prope	erties		
	& n)	,,	 	Soil/R	ock Description											
0	vtt. e	unts	Fee		cologic Origin For						Sive			_		sts
ber Sype	th A vere	်	h In		ch Major Unit		CS	hic	ram	l E	pres gth	ture	.e _	icity	(mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		J		Sn	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
0-1.5	60	Щ		0 - 1.5 CLAY, red	-brown moist der	se high	۲	$\stackrel{\overline{\vee}}{\otimes}$		0.0		20	пп	4 1	Ь	<u> </u>
	42		-	plasticity, no odor.		ise, mgn	CII									
			-1				CH									
			E													
1.5-3.5			_2	1.5 - 7.5 SAND W		// 111				0.1						
				brown-grey, moist, subangular), clay l	, 63-73% graver (1 enses 3 5-4 25' an	d.,										
			١,	4.75-5', no odor.	CH505 5.5 1.25 un	u.										
			_3	ŕ												
3.5-5.5			E						1	0.1						
			-4													
			-				SWG									
	60		_5													
5.5-7.5	24		_							0.2						
			-6							0.2						
			-													
			_ 													
			⊢ ′ ∣						▼							
7.5-9.5			-	7.5 - 10.5 GRANU					_	0.2						
			-8	saturated, brick an	d slag common, no	o odor.			1							
			E													
			_9													
.5-10.5			-							0.1						
	60		-10							0.1						
).5-12.5	60 48		E	10.5.15.033.553.5	NF 4 X /	1 .										
7.3-12.3			- 11	10.5 - 15 SILTY (blue-grey and grey						0.1						
			<u> </u>	white shells comm	-orown wun uepui on, no odor.	, 1110181,	CH									
			- -12		,											
1 1		C-41 (41.6		L 4 - C 1	1	1		1		<u> </u>				
	-	y tnat	ine into	ormation on this form is t	Te:											
Signat	иге	/	1:1	1114.	Firm Sta	antec Con	sulting	g Serv	ices I	nc.						Tel:

SOIL BORING LOG INFORMATION SUPPLEMENT

Borin	g Numl	er	SB-	Use only as an attachment to Form 4400-	122.						Pag	ge 2	of	2
San	nple									Soil	Prope	erties		
	Length Att. & Recovered (in)	ıts	eet	Soil/Rock Description					ve					
er /pe	Att ered	Cour	In F	And Geologic Origin For	N	.c	띭	Ω	ressi th	ıre nt	_	ity		ents
Number and Type	ength	Blow Counts	Depth In Feet	Each Major Unit	SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u>a z</u>	1 X	<u>B</u>	Ā	10.5 - 15 SILTY CLAY, cream, grades to	D	5 7	ß Ö	PI	S	Σŭ	<u> </u>	Pl In	Ь	<u> </u>
12.5-14			F	blue-grey and grey-brown with depth, moist,				0.1						SB-260
			-13	white shells common, no odor. (continued)										(12.5-14) VOC, PAH,
			Ė		CH									RCRA
14-15			-14					0.1						Metals ; FD-1 VOC,
			Ē											PAH, RCRA Metals
L			-15											

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	oute To:		Wastewater □ n/Redevelopment ⊠		aste Nate Nather	_	ement						1		1
Facilit	y/Projec	ot Nam	ne .				II io	ence/D	ermit/	Monito	ring N	ımb	or I	Boring	Pag		of	1
	er Poi									02-36	_		J1	Dorling	INUITION		-261	
					hief (first, last)	and Firm			ling St		-		Date Drilli	ng Con	npleted			ling Method
Hor		Consti			xploration				1/17	/2023				1/17/2	2023		G	eoprobe
WI Ur	nique W	ell No		DNR	Well ID No.	Common Well Nan	ne Fina			ter Leve		Surf	ace Elevat			Bo		Diameter
Local	Grid Or	rigin	⊠ (a)	ctimated	. 🗆) or D	oring Location		582.	.5 Fe	et MS	L		590.0 Local C				2.3	inches
					Coord's N,			Lat		°	<u>'</u>		" Local C	JIIG LO	⊠ N	-		⊠ E
NE		of N		1/4 of Se		т 19 n, r 24 i	3	Long		0	1	3	<u>5</u> 01522.48	32 Feet			9.401	Feet W
Facilit	y ID				County			ty Coo	le			•	r Village					
					Manitowoc		36			Mani	towoo	-		G '1	<u> </u>			
San	nple													Soil	Prope	rties		-
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		And C	Rock Description Geologic Origin For ach Major Unit			USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
0-2 2-3.75 2-3.75 7.5-8 8-8.75 9.5-10	60 42			3.75 slag brick odor. 7.5 - coars 8 - 8 odor. 8.75 plant 9.5 -	ack granular 1", angular). - 7.5 GRAN common, tract at 7', trace granular 2. 8 SAND, years, well grade 3. 75 SILTY Silty Si	red and grey, wet, i	ek, dry, no extended atted, no odor, wet, no trace		SW SM OH CL			0. 0. 0. 0. 0.	1 1 3 1 1 1					SB-260 (8-8.75) PAH, RCRA Metals
		fy that	the info	ormation	on this form is	true and correct to the	e best of	my kr	nowled	lge.								
Signat	ure	1/2	1/1	1:		Firm S	tantec	Cons	ulting	g Serv	ices I1	nc.						Tel:

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

□ Verification Only of Fill	and Seal		rinking Water		Watersh	ed/Wastewater	Remed	liation/Redevelopment
		□w	/aste Manageme	ent 🗆	Other _			·
1. Well Location Information		•		2. Facility	/ Owner Ir	nformation		
	e Well # of	Hicap #		Facility Name				
Removed	Well			River Poin	nt District -	Lot 3		
Manitowoc (Dames and A	4: . \		3/TW-213	Facility ID (FI	D or PWS)			
Lattitude / Longitude (Degrees and N	/ilnutes)	Method Code	(see instruction	,				
IN				License/Perm	nit/Monitorin	g #		
0 ' "'W	Section	Tournahin	Dongs —		02-36-176	478		
1/4 / 1/4 NE 1/4 NE		Township	Range E	Original Well	Owner			
or Gov't Lot#	30	19	24 □ w					
Well Street Address				Present Well				
200 North 10th Street				City of Ma				
Well City, Village or Town		Well ZIP	P Code	Mailing Addre		ent Owner		
Manitowoc		54220		900 Quay			04-4-	710.0-4-
Subdivision Name		Lot #	,	City of Preser			State	
				Manitowo			W W	1 54220
Reason For Removal From Service	WI Unique W	/ell # of Repla	acement Well	4. Pump, Li	ner, Scree	en, Casing &	Sealing Material	
Temporary well abandonment		·		Pump and	piping remo	oved?	∐ Yes	
3. Well / Drillhole / Borehole Ir	formation			Liner(s) rei	moved?		∐ Yes	
		nstruction Da	ite	Screen ren	noved?		∑ Yes	
Monitoring Well	3/24/20	22		Casing left	in place?		Yes	No NA
Water Well				Was casin	g cut off bel	low surface?	Yes	s ∐ No ⊠ N/A
Drillhole / Borehole		Construction , please attac		Did sealing	g material ri	se to surface?	Yes	S No NA
	available	, piease allac	11.	Did materia	al settle afte	er 24 hours?	Yes	
Construction Type:			_	If yes, wa	as hole reto	pped?	Yes	S No N/A
Drilled Driv	en (Sandpoint)		_ Dug	If bentonite	chips were	used, were the		
Other (Specify)						vn safe source	X Yes	No NA
Formation Type:						ing Sealing Mat		
Unconsolidated Formation		Bedrock			tor Pipe-Gr	•		Pipe-Pumped
				-	ed & Poured	d	U Other (Expla	ain)
Total Well Depth From Ground Surfa	ace (ft) Casing	Diameter (in	.)	(Benton	nite Chips)			
12.0	1.00			Sealing Mater	rials			
Lower Drillhole Diameter (in.)	Casing	Depth (ft.)			ement Grou			nd Slurry (11 lb./gal. wt
2.3	12.0	ı			•	ncrete) Grout		te-Sand Slurry " "
				Concre			Bentoni	te Chips
Was well annular space grouted?		No 🗆	Unknown			Monitoring Wel	l Boreholes Only:	
If yes, to what depth (feet)?	Depth to W	ater (feet)			ite Chips		Bentonite - Cemer	
				Granula	ar Bentonite		Bentonite - Sand S	
5. Material Used to Fill Well / I	Orillhole			From (ft.)	To (ft.)		s, Sacks Sealant ne (circle one)	Mix Ratio or Mud Weight
Bentonite chips				Surface	12.0		0.1	Sacks
Be itorite crips				Surrace	12.0		0.1	Sauks
6. Comments								
7. Supervision of Work							DNR Us	e Only
Name of Person or Firm Doing Filling	a & Sealing	License	# D	ate of Filling &	Sealing (m	m/dd/yyyy)Date		Noted By
Stantec	,		-	3/24/2022		.,,,,,	ľ	,
Street or Route			T	elephone Num	ber	Com	ments	
12075 Corporate Parkway				(262) 241 - 4		[-3		
City		State	ZIP Code	Signature of F		ng Work /) 44 [Date Signed
Meguon		WI	53092			trey (ull	4/1/2022
3400.1		1	1 00002	1		J	L	

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ verification Or	nıy ot ⊢ılı ar	na Seai			rinking Water	[Watersh	ed/Wastewater	· 🖂 Re	mediation/	/Redevelopment
				□ w	/aste Managem		Other _				
1. Well Location Info			1	- ,,			y / Owner Ir	nformation			
County	WI Unique W Removed We		Hic	ap#		Facility Nam		1.40			
Manitowoc			5	SB-214	4/TW-214		int District - FID or PWS)	Lot 3			
Lattitude / Longitude (De	grees and Minu	ites)	Method	d Code	(see instruction		ib oi i wo,				
0 1 11	' N					License/Per	mit/Monitorin	a #			
	' W						#02-36-176	•			
1/4 / 1/4 NE 1/4	NE	Section	Town	nship	Range E	Original We					
or Gov't Lot#		30	1	19	24 🗒 w	,					
Well Street Address						Present We	ell Owner				
OOO Namba 40th Char	_4						/lanitowoc				
200 North 10th Street Well City, Village or Tow			I v	/ell ZIP	Code		ress of Prese	ent Owner			
Manitowoc				54220		900 Qua			1,		Trip o .
Subdivision Name			_	ot #	,	_City of Pres				State	ZIP Code
						Manitow		an Casina P	Caslina Mata	WI	54220
Reason For Removal Fro	om Service V	VI Unique W	ell # o	f Repla	cement Well	1			Sealing Mate		N N N/A
Temporary well aba	ndonment						d piping remo	oved?	H	Yes	No No N/A
3. Well / Drillhole / E	Borehole Infor	rmation				` ′	removed?			Yes X	No No N/A
Monitoring Well		Original Cor	nstruct	tion Da	te	Screen re				Yes 🖂	No N/A
☐ Water Well		3/24/202	2				eft in place?			Yes	No N/A
		If a Well (Constr	uction	Report is		ing cut off be		\forall	Yes	No N/A
Drillhole / Boreh	nole	available,					rial settle afte	se to surface?		Yes	No N/A
Construction Type:							was hole reto			Yes 🗌	No N/A
Drilled	Driven	(Sandpoint)			Dug	1		used, were th	ev hvdrated	_	_
Other (Specify)						with water	er from a knov	vn safe source	X	Yes	No N/A
Formation Type:								ing Sealing Ma		D: D	
	mation		Bedr	ock			uctor Pipe-Gr ened & Poure	•		tor Pipe-P Explain)	umpea
Total Well Depth From 0		(ft) Casing	Diame	otor (in	1		onite Chips)	u	Cirilei (i	<u> Ехріаііі)</u>	
•	Jiouria Suriace		Dianie	eter (III.	-)						
12.0	('- \	1.00	D	(6)		Sealing Mat	eriais Cement Grou	t .	Cla	v-Sand Slu	ırry (11 lb./gal. wt
Lower Drillhole Diameter	r (in.)	Casing	Deptn	ι (π.)				ncrete) Grout			nd Slurry" "
2.3		12.0				Concr		ioroto) Orout		tonite Chi	,
Was well annular space	grouted?] Yes 🛚	No		Unknown	For Monitori	ing Wells and	Monitoring We	Il Boreholes Only	y:	
If yes, to what depth (fee	t)?	Depth to Wa	ater (fe	eet)		\dashv \Box	nite Chips		Bentonite - Ce		ut
						Grant	ular Bentonite		Bentonite - Sa	and Slurry	
5. Material Used to F	Fill Well / Dril	lhole				From (ft.)) To (ft.)		s, Sacks Seala me (circle one		Mix Ratio Mud Weight
Bentonite chips						Surface	12.0		0.1		Sacks
6. Comments											
<u> </u>											
7. Supervision of Wo	ork								DNR	Use Onl	v
Name of Person or Firm		Sealing	L	icense	# [Date of Filling	& Sealing (m	m/dd/yyyy)Date		Noted	-
Stantec						4/1/2022	- ,				
Street or Route					1	elephone Nur	mber	Com	ments		
12075 Corporate Par	rkway					(262) 241 -					
City			Stat		ZIP Code	Signature of	f Person Doir	ig Work	2.00	Date S	
Mequon			l V	VI	53092		Whi	tney C	ull	4/	/1/2022
								0			

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ Verification Only	v of Fill an	d Seal	Koute		_	☐ Wetereb	ed/Wastewater	⊠ Bom	ediation/Redevelopment
	,		1 —	Orinking Water		_	eu/wasiewaier	Z Reme	ediation/Redevelopment
4 Mall Leastion Inform				Vaste Manageme		Other _	£		
1. Well Location Information	Mation WI Unique We	all # of	Hicap #		2. Facility		itormation		
	Removed We		I licap #		1 1	: nt District -	Lot 2		
Manitowoc			SB-21	5/TW-215	Facility ID (FII		LOLS		
Lattitude / Longitude (Degr	ees and Minut	es)	Method Code	e (see instruction		5 61 1 11 6)			
0 ' " '	N				License/Perm	it/Monitorin	a #		
0 ! !!!!	W					02-36-1764	•		
1/4 / 1/4 NE 1/4 N	NE S	Section	Township	Range X E	Original Well				
or Gov't Lot #		30	19	24 🖺 W					
Well Street Address					Present Well				
200 North 10th Street					City of Ma				
Well City, Village or Town			Well ZII	Code	Mailing Addre		nt Owner		
Manitowoc			5422	0	900 Quay City of Preser			Sta	ate ZIP Code
Subdivision Name			Lot #		*				WI 54220
					Manitowo		n Casina &	Sealing Materia	
Reason For Removal From	n Service W	I Unique W	ell # of Repla	acement Well					
Temporary well aband	donment					piping remo	oved?	=	es No NA N/A
3. Well / Drillhole / Bo	rehole Inform	mation			Liner(s) rer			=	es No N/A
Monitoring Well		Original Co	nstruction Da	ate	Screen ren			=	es No N/A
☐ Water Well		3/24/202	22		Casing left				es No N/A
		If a Well	Construction	Report is		•	ow surface?		es No N/A
Drillhole / Borehol	е		, please attac			,	se to surface?		es No NA
Construction Type:							er 24 hours?	=	es No N/A
Drilled	Driven (Sandpoint)		Dug	1	as hole reto	ppea? used, were the		00 110 11//1
Other (Specify)		. ,	_	_ 0			vn safe source	X Y	es No N/A
					Required Met	hod of Placi	ng Sealing Mat	erial	
Formation Type:		_	1			tor Pipe-Gr	avity	Conductor	r Pipe-Pumped
Unconsolidated Forma	ation		Bedrock		Screene	ed & Poured	d	U Other (Exp	olain)
Total Well Depth From Gro	ound Surface (ft) Casing	Diameter (ir	n.)	(Benton	ite Chips)			
12.0		1.00			Sealing Mater	rials		_	
Lower Drillhole Diameter (in.)	Casing	Depth (ft.)		Neat Ce	ement Grou	t	☐ Clay-S	Sand Slurry (11 lb./gal. wt
2.3		12.0			Sand-C	ement (Con	crete) Grout		nite-Sand Slurry " "
				1	Concret	te		Bento	nite Chips
Was well annular space gr		Yes 2		Unknown			Monitoring Well	Boreholes Only:	
If yes, to what depth (feet)?	?	Depth to W	ater (feet)			te Chips		Bentonite - Cem	
					Granula Granula	ar Bentonite		Bentonite - Sand	
5. Material Used to Fil	II Well / Drill	hole			From (ft.)	To (ft.)		, Sacks Sealan ne (circle one)	t Mix Ratio or Mud Weight
Bentonite chips					Surface	12.0		0.1	Sacks
						12.0			Gaerre
6. Comments									
7. Supervision of Wor			lı -	"	4 CEIII: 0	0 11 /	(111/222)		lse Only
Name of Person or Firm Do	oing Filling & S	eaiing	License	e# D	ū	Sealing (mi	m/dd/yyyy)Date	Received	Noted By
Stantec Street or Route				 -	4/1/2022 elephone Numl	hor	Com	ments	
				'	=		Comi	nents	
12075 Corporate Park	way		State	ZIP Code	(262) 241 - 4 Signature of F		a Work -		Date Signed
Mequon			WI	53092	orginature of F	Whi	ney C	ull	4/1/2022
Ινισμοιι			VVI	J308Z		30,000			7/1/2022
							~		

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ Verification Only of Fill	and Seal		rinking Water		Watersh	ed/Wastewater	Remed	iation/Redevelopment
		l □ w	/aste Manageme	ent 🗆	Other _			
1. Well Location Information				2. Facility	/ Owner Ir	nformation		
	e Well # of	Hicap #		Facility Name				
Removed	Well			River Poir	nt District -	Lot 3		
Manitowoc	U4\		6/TW-216	Facility ID (FI	D or PWS)			
Lattitude / Longitude (Degrees and M	linutes)	Method Code	(see instruction	,				
IN				License/Perm	nit/Monitorin	g #		
1/ /1/ > = 1/ > =	Section	Tournahin	Dongs —		02-36-176	478		
1/4 / 1/4 NE 1/4 NE		Township	Range E	Original Well	Owner			
or Gov't Lot #	30	19	24 □ w					
Well Street Address				Present Well				
200 North 10th Street				City of Ma				
Well City, Village or Town		Well ZIF	P Code	Mailing Addre		ent Owner		
Manitowoc		54220		900 Quay			lo	710.0
Subdivision Name		Lot #	,	City of Preser			State	
				Manitowo		0 ' 0	W W	l 54220
Reason For Removal From Service	WI Unique W	/ell # of Repla	acement Well	4. Pump, Li	ner, Scree	en, Casing &	Sealing Material	
Temporary well abandonment	,			Pump and	piping remo	oved?	∐ Yes	
3. Well / Drillhole / Borehole In	formation			Liner(s) re	moved?		∐ Yes	
		nstruction Da	ite	Screen ren	noved?		∐ Yes	
Monitoring Well	3/23/20	22		Casing left	in place?		Yes	No NA
Water Well				Was casin	g cut off bel	low surface?	Yes	i ∐ No ⊠ N/A
Drillhole / Borehole		Construction , please attac		Did sealing	g material ri	se to surface?	∑ Yes	No NA
	available	, piease allac	11.	Did materia	al settle afte	er 24 hours?	Yes	
Construction Type:			_	If yes, w	as hole reto	pped?	Yes	No N/A
Drilled Driv	en (Sandpoint)		_ Dug	If bentonite	chips were	used, were the		
Other (Specify)						vn safe source	X Yes	No NA
Formation Type:						ing Sealing Ma		
Unconsolidated Formation		Bedrock			tor Pipe-Gr	•		Pipe-Pumped
				-	ed & Poured	d	U Other (Expla	ain)
Total Well Depth From Ground Surfa	ice (ft) Casing	g Diameter (in	.)	(Bentor	nite Chips)			
14.0	1.00			Sealing Mater	rials			
Lower Drillhole Diameter (in.)	Casing	Depth (ft.)			ement Grou			nd Slurry (11 lb./gal. wt
2.3	14.0				•	ncrete) Grout		te-Sand Slurry " "
		7 -		Concre			Bentonit	te Chips
Was well annular space grouted?			Unknown			Monitoring Wel	l Boreholes Only:	
If yes, to what depth (feet)?	Depth to W	ater (feet)			ite Chips	F	Bentonite - Cemer	
				Granula	ar Bentonite		Bentonite - Sand S	
5. Material Used to Fill Well / D	Drillhole			From (ft.)	To (ft.)		s, Sacks Sealant me (circle one)	Mix Ratio or Mud Weight
Pontonito china				Curtoss	140		0.1	Cooks
Bentonite chips				Surface	14.0		0.1	Sacks
6. Comments								
o. Commento								
7. Supervision of Work							DND	o Only
Name of Person or Firm Doing Filling	& Sealing	License	# n	ate of Filling &	Sealing (m	m/dd/yyyy)Date	Received N	Noted By
_	, a county	Liverise		4/1/2022	Journal (III	, чч, уууурсак	555,1754	.5.54 5,
Stantec Street or Route			т.	elephone Num	ber	Com	ments	
12075 Corporate Parkway			''	(262) 241 - 4				
City		State	ZIP Code	Signature of F		na Work -) 14 r	Date Signed
Mequon		WI	53092			tney (ull	4/1/2022
moquon		•••	1 00032		2 = , , , ,			., .,

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ Verification Only of	f Fill and Seal	eal Drinking Water Watershed/Wastewater Remediation/Rede						iation/Redevelopment				
		l □ w	/aste Manageme	ent \Box	Other			<u>'</u>				
1. Well Location Informat	ion	•		2. Facility	/ Owner In	formation						
	Unique Well # of	Hicap #		Facility Name)							
	noved Well		_	River Poin	nt District -	Lot 3						
Manitowoc Description (Description of Description o		SB-217		Facility ID (FI	D or PWS)							
Lattitude / Longitude (Degrees	and Minutes)	Method Code	(see instruction	s)								
IN				License/Perm	nit/Monitorin	g #						
° ' " ' W	Section	Taumahin	Dange —		02-36-1764	478						
1/4 / 1/4 NE 1/4 NE		Township	Range E	Original Well	Owner							
or Gov't Lot#	30	19	24 □ w									
Well Street Address				Present Well								
200 North 10th Street				City of Ma		1.0						
Well City, Village or Town		Well ZIP	Code	Mailing Address of Present Owner								
Manitowoc		54220		900 Quay Street								
Subdivision Name		Lot #	<u> </u>	City of Present Owner State ZIP Code								
				Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material								
Reason For Removal From Se	rvice WI Unique W	/ell # of Repla	cement Well	4. Pump, Li	ner, Scree	en, Casing &						
Soil borehole abandonmer				Pump and	piping remo	oved?	Yes					
3. Well / Drillhole / Boreh				Liner(s) rea	moved?		☐ Yes					
		nstruction Da	te	Screen ren								
Monitoring Well	3/24/20	22		Casing left in place? Yes No								
Water Well				Was casin	g cut off bel	low surface?	Yes	No No N/A				
Drillhole / Borehole		Construction , please attac		Did sealing	g material ri	se to surface?	∑ Yes	No NA				
	avanabio	, prodoc attac		Did materia	i ∐ No ⊠ N/A							
Construction Type:	1 _	If yes, wa	No NA									
∑ Drilled		Dug	If bentonite	chips were	used, were the							
Other (Specify)						vn safe source	X Yes	No NA				
Formation Type:						ing Sealing Mat						
Unconsolidated Formation		Bedrock			tor Pipe-Gr	•		Pipe-Pumped				
				-	ed & Poured	d	U Other (Expla	ain)				
Total Well Depth From Ground	d Surface (ft) Casing	Diameter (in	.)	(Benton	nite Chips)							
				Sealing Materials								
Lower Drillhole Diameter (in.)	Casing	Depth (ft.)			ement Grou			nd Slurry (11 lb./gal. wt				
2.3						ncrete) Grout		te-Sand Slurry " "				
	,	No 🗆		Concre				te Chips				
Was well annular space groute			Unknown			Monitoring Wel	Boreholes Only:					
If yes, to what depth (feet)?	Depth to W	ater (feet)			ite Chips		Bentonite - Cemer					
				Granula	ar Bentonite		Bentonite - Sand S					
5. Material Used to Fill W	ell / Drillhole			From (ft.)	To (ft.)		, Sacks Sealant ne (circle one)	Mix Ratio or Mud Weight				
Bentonite chips				Surface	10.0		0.3	Sacks				
				Surface	10.0		0.3	Sauks				
6. Comments												
o. Comments												
7. Supervision of Work							DNR Use	e Only				
Name of Person or Firm Doing	Filling & Sealing	License	# D	ate of Filling &	Sealing (m	m/dd/yyyy)Date		Noted By				
· ·		2.501.56		3/24/2022	225mig (iiii	,, , , , , , , , , o ale						
Horizon Construction and Exploration, LLC Street or Route				elephone Num	ber	Com						
764 Tower Drive	['`	(262) 692 - 3			=							
					Person Doin	g Work -	Г	Date Signed				
Fredonia		WI	53021			trey (ull	4/1/2022				
. 10001110			00021			- J						

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ Verification Only of Fill a	and Seal		rinking Water		☐ Watersh	ed/Wastewater	. Rem	ediation/Redevelopment					
•		I —	aste Managen	nent [Other _	cu, vv astowato	Z Nom	culation// (cucvelopinent					
1. Well Location Information		<u> </u>	aste Managen	2. Facility		formation							
County WI Unique	Well # of	Hicap #		Facility Name									
Removed \	Vell			River Poin	nt District -	Lot 3							
Manitowoc		SB-218		Facility ID (FII									
Lattitude / Longitude (Degrees and Mi	nutes)	Method Code	(see instruction	ns)									
° ' " 'N				License/Perm	it/Monitorin	g #							
• " " W	10 "		1=	BRRTS#0	02-36-176	478							
1/4 / 1/4 NE 1/4 NE	Section	Township	Range 🖂 E	Original Well	Owner								
or Gov't Lot #	30	19	24 🔲 v										
Well Street Address			I	Present Well									
200 North 40th Chront				City of Ma									
200 North 10th Street Well City, Village or Town		Well ZIP	Code	Mailing Address of Present Owner									
Manitowoc		54220		900 Quay									
Subdivision Name		Lot #		City of Preser				ate ZIP Code					
Subdivision (Value		Lot #		Manitowoc WI 54220									
Reason For Removal From Service	WI Unique W	ell # of Renla	cement Well	4. Pump, Li	ner, Scree	en, Casing &	Sealing Materi	al					
Soil borehole abandonment	VVI Orlique VV	on # or repla	ocinioni vvon	Pump and	piping remo	oved?	Y	′es ☐ No ☒ N/A					
3. Well / Drillhole / Borehole Inf	ormation			Liner(s) rei	moved?		Y	′es ☐ No ⊠ N/A					
		nstruction Dat	te	Screen ren	noved?		Y	′es ☐ No ∑ N/A					
Monitoring Well	3/24/202			Casing left in place? Yes No									
Water Well	0/2-1/202			Was casin	g cut off be	low surface?	Y	′es ☐ No ⊠ N/A					
Drillhole / Borehole		Construction I		Did sealing	material ri	se to surface?	⊠ Y	es No N/A					
	available,	please attach	1.	Did materia	al settle afte	er 24 hours?	Y	′es ☐ No ⊠ N/A					
Construction Type:		_	•	If yes, wa	as hole reto	pped?	Y	res No N/A					
☑ Drilled ☐ Drive	Dug	If bentonite	chips were	used, were th									
Other (Specify)				vn safe source		/es No N/A							
Formation Type:				1 🗂		ing Sealing Ma		n Dina Duman d					
Unconsolidated Formation		Bedrock			tor Pipe-Gr ed & Poured	•		or Pipe-Pumped					
	(4) 0		`	_	ed & Poured nite Chips)	ı	☐ Other (Ex	(piairi)					
Total Well Depth From Ground Surface	e (iii) Casing	Diameter (in.)	,	. ,								
				Sealing Mater	C Cl.,,,,,, (44 lb, / ,,,,								
Lower Drillhole Diameter (in.)	Casing	Depth (ft.)			ement Grou			Sand Slurry (11 lb./gal. wt onite-Sand Slurry " "					
2.3				Concre	•	ncrete) Grout		onite Chips					
Was well annular space grouted?	☐ Yes ▷	No \square	Unknown			Monitorina We	Il Boreholes Only:	orite Oritps					
If yes, to what depth (feet)?	Depth to Wa		Omanown		te Chips	Worldoning We	Bentonite - Cen	nent Grout					
ii yoo, to what dopar (loot).	Dopar to W	ator (root)			ar Bentonite	. –	Bentonite - San						
							s, Sacks Sealar						
5. Material Used to Fill Well / D	rillhole			From (ft.)	To (ft.)		me (circle one)						
Bentonite chips				Surface	10.0		0.3	Sacks					
				Surrace	10.0		0.3	Sacks					
6. Comments													
7. Supervision of Work	0.0 "		,,		0 11 /	/		Jse Only					
Name of Person or Firm Doing Filling	•	License	#	Date of Filling &	Sealing (m	m/dd/yyyy) Date	Received	Noted By					
Horizon Construction and Explor	ration, LLC			3/24/2022									
Street or Route				Telephone Num (262) 692 - 3		Com	ments						
764 Tower Drive						a Mark		Data Cigna					
City		State	ZIP Code	Signature of F	erson Doin	ig Work	1100	Date Signed 4/1/2022					
Fredonia		WI	53021		vviu	my C	w	4/ 1/2022					
						U							

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

□ Verification Only	of Fill ar	nd Seal	eal Drinking Water Watershed/Wastewater 🖂 Remediation/Redeve						velopment							
				_	aste Mana		nt \Box	Other _					<u> </u>			
1. Well Location Inforn	nation		•				2. Facility	/ Owner In	formation							
	VI Unique W		Hica	p #			Facility Name	1								
	Removed Wo	ell					River Poin	t District -	Lot 3							
Manitowoc	I M:	4\		3-220		4!	Facility ID (FII	D or PWS)								
Lattitude / Longitude (Degre		ites)	ivietnoa t	Jode	(see instr	uctions)									
ľ							License/Perm	it/Monitorin	g #							
° ' "'V		Section	Taumal	hin I	Danga —		BRRTS#0		478							
1/4 / 1/4 NE 1/4 N	E		Townsl	пр	Range	₫ E	Original Well	Owner								
or Gov't Lot#		30	19		24	W										
Well Street Address							Present Well									
200 North 10th Street							City of Ma									
Well City, Village or Town			We	II ZIP	Code		Mailing Address of Present Owner									
Manitowoc				4220			900 Quay Street									
Subdivision Name			Lot				City of Present Owner State ZIP Code									
							Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material									
Reason For Removal From	Service V	VI Unique W	ell # of F	Replac	cement W	ell	4. Pump, Li	ner, Scree	en, Casing &	Sealing Mate		1				
Soil borehole abandonr	ment			•			Pump and	piping remo	oved?		Yes _	No	M N/A			
3. Well / Drillhole / Bor		rmation					Liner(s) rer	moved?			Yes	No	⊠ N/A ⊠ N/A			
		Original Co	nstructio	n Dat	e		Screen removed? Yes No									
Monitoring Well		3/24/202	22				Casing left	No	N/A							
Water Well							Was casin	g cut off bel	low surface?		Yes	No	⊠ N/A			
Drillhole / Borehole)	If a Well available					Did sealing	material ri	se to surface?	\boxtimes	Yes	No	∐ N/A			
		available	, prodoc .	attaori			Did materia	No	⊠ N/A							
Construction Type: Driven (Sandpoint)					١ _		If yes, was hole retopped?						N/A			
Drilled Driven (Sandpoint)				Ш	Dug		If bentonite	chips were	used, were th			1				
Other (Specify)						_			vn safe source		Yes	No	N/A			
Formation Type:								ing Sealing Ma			_					
Unconsolidated Format	tion		Bedroo	-k				tor Pipe-Gr	•		tor Pipe-l	Pumpe	d			
								ed & Poured	d	U Other (E	Explain)					
Total Well Depth From Gro	und Surface	(ft) Casing	Diamete	er (in.))		(Benton	ite Chips)								
							Sealing Materials Neat Cement Grout Clay-Sand Slurry (11 lb./gal.									
Lower Drillhole Diameter (in	า.)	Casing	Depth (f	ft.)				ement Grou			-		_			
2.3								-	ncrete) Grout			e-Sand Slurry " "				
	F		No No				Concret				tonite Ch	ips				
Was well annular space gro	outed? L				Unknown	1	1 🗀		Monitoring We	II Boreholes Only ¬						
If yes, to what depth (feet)?		Depth to W	ater (fee	t)				te Chips		Bentonite - Ce						
							Granula	ar Bentonite		Bentonite - Sa						
5. Material Used to Fill	Well / Dril	Ilhole					From (ft.)	To (ft.)		s, Sacks Seala me (circle one			Ratio I Weight			
Bentonite chips							Surface	15.0		0.5		Sa	cks			
<u> </u>							Surrace	13.0		0.5		Ja	UNS			
6. Comments																
7. Supervision of Work	(DNR	Use On	ly				
Name of Person or Firm Do		Sealing	Lic	ense i	#	Da	ate of Filling &	Sealing (mi	m/dd/yyyy)Date		Noted					
Horizon Construction a		•					3/24/2022	٠.				-				
					elephone Numl	ber	Com	ments								
764 Tower Drive						(262) 692 - 3	347									
City			State		ZIP Code	-	Signature of F	Person Doin	g Work	2 11		Signed				
Fredonia			WI	_	53021			Wha	tney C	ull	4	/1/2	022			

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ Verification Only of Fil	l and Seal		Drinking Water	er Watershed/Wastewater Remediation/Redevelopment								
			Waste Managen	nent 🗀	Other _							
1. Well Location Information		•	_	2. Facility	/ Owner Ir	formation						
	ue Well # of	Hicap #		Facility Name)							
Remove	d Well	05.00	04/TM 004		nt District -	Lot 3						
Manitowoc Lattitude / Longitude (Degrees and	Minutos)		21/TW-221 le (see instruction	Facility ID (FI	D or PWS)							
° ' "'N	viiriutes)	Metriod Cod	ie (see iristructio	<u>′</u>								
IN				License/Perm	nit/Monitorin	g #						
VV	Section	Township	Range 📈 📙		02-36-176	478						
112 112	30	19		Original Well	Owner							
or Gov't Lot #	30	19	24 🗌 v									
Well Street Address				Present Well								
200 North 10th Street				City of Ma		nt Owner						
Well City, Village or Town		Well Z	IP Code	Mailing Address of Present Owner								
Manitowoc		5422	20	900 Quay Street City of Present Owner State ZIP Code								
Subdivision Name		Lot #		'								
				Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material								
Reason For Removal From Service	WI Unique W	ell # of Rep	lacement Well	4. Pump, Liner, Screen, Casing & Sealing Material Pump and piping removed? Yes No								
Temporary well abandonment				·		oved?	☐ Yes	= =				
3. Well / Drillhole / Borehole I				Liner(s) re Screen rer			☐ Yes					
Monitoring Well	"	nstruction D	ate	Casing left			Yes					
Water Well	3/24/202	22				low surface?	☐ Yes	= = =				
	If a Well	Construction	n Report is		•	se to surface?	∑ Yes					
Drillhole / Borehole		, please atta		1	•	er 24 hours?	☐ Yes					
Construction Type:					as hole reto		Yes	= =				
∑ Drilled ☐ Dri	ven (Sandpoint)		Dug	'		e used, were they h						
Other (Specify)		_			•	vn safe source	X Yes	□ No □ N/A				
						ing Sealing Materia						
Formation Type:		ı			ctor Pipe-Gr	avity [Conductor P	ipe-Pumped				
Unconsolidated Formation		Bedrock		⊠ Screen	ed & Poured	d [Other (Expla	in)				
Total Well Depth From Ground Sur	ace (ft) Casing	Diameter (i	n.)	(Bentor	nite Chips)							
12.0	1.00			Sealing Mate	rials							
Lower Drillhole Diameter (in.)	Casing	Depth (ft.)		☐ Neat C	ement Grou	t	☐ Clay-Sar	nd Slurry (11 lb./gal. wt				
		(,		Sand-C	ement (Cor	ncrete) Grout	Bentonit	e-Sand Slurry " "				
2.3	12.0	7 -		☐ Concre	te		Bentonite Bentoni	e Chips				
Was well annular space grouted?		No [Unknown	For Monitoring	g Wells and	Monitoring Well Bo	reholes Only:					
If yes, to what depth (feet)?	Depth to W	ater (feet)		Benton	ite Chips	∐ в	entonite - Cemen	nt Grout				
				Granula	ar Bentonite	В	entonite - Sand S					
5. Material Used to Fill Well /	Drillhole			From (ft.)	To (ft.)		acks Sealant (circle one)	Mix Ratio				
					` '	or volume	(Circle Orie)	or Mud Weight				
Bentonite chips				Surface	12.0	0	.1	Sacks				
Вакопкеспрѕ				Surface	12.0	0	. !	Jacks				
6. Comments								•				
7. Supervision of Work							DNR Use	Only				
Name of Person or Firm Doing Fillin	g & Sealing	Licens	e#	Date of Filling &	Sealing (m	m/dd/yyyy)Date Re	ceived N	loted By				
Stantec				4/1/2022								
Street or Route To				Telephone Number Comments								
12075 Corporate Parkway				(262) 241 - 4								
City		State	ZIP Code	Signature of I	Person Doin	g Work They Cu		ate Signed				
Mequon		WI	53092		Wha	ney cu		4/1/2022				

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ Verification Only of Fill	and Seal		Orinking Water	ter Watershed/Wastewater Remediation/Redevelopment								
		□ v	Vaste Managen	nent 🗀	Other _							
1. Well Location Information		•		2. Facility	/ Owner Ir	formation						
	e Well # of	Hicap #		Facility Name)							
Removed	Well	05.00	00/TIM 000		nt District -	Lot 3						
Manitowoc Lattitude / Longitude (Degrees and M	linutos)		2/TW-222 e (see instructio	Facility ID (FI	D or PWS)							
° ' " 'N	inutes)	vieti iou Cou	e (see instructio	,								
IN				License/Perm	nit/Monitorin	g #						
VV	Section	Township	Range 🖂 💆		02-36-176	478						
112	30	19	Range E	Original Well	Owner							
or Gov't Lot#	30	19	²⁴									
Well Street Address				Present Well								
200 North 10th Street				City of Ma		nt Owner						
Well City, Village or Town		Well ZII	P Code	Mailing Address of Present Owner 900 Quay Street								
Manitowoc		5422	0	City of Prese			State	ZIP Code				
Subdivision Name		Lot #										
				Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material								
Reason For Removal From Service	WI Unique W	ell # of Repla	acement Well				Yes	No ⊠ N/A				
Temporary well abandonment				1	piping remo	oved?	Yes	= =				
3. Well / Drillhole / Borehole In	formation			Liner(s) re			Yes	= =				
Monitoring Well	Original Cor		ate	Screen rer			Yes					
☐ Water Well	3/23/202	2		Casing left			Yes					
	If a Well (Construction	Report is		•	low surface?	∑ Yes					
Drillhole / Borehole		please attac			•	se to surface?	Yes					
Construction Type:				Did material settle after 24 hours? If yes, was hole retopped? Yes No [Yes No [
	en (Sandpoint)	Г	Dug	1		ppped ? e used, were they h		No N/A				
	(_	_		•	vn safe source	Yes	No □ N/A				
Other (Specify)						ing Sealing Materia						
Formation Type:					ctor Pipe-Gr			Pipe-Pumped				
Unconsolidated Formation		Bedrock			ed & Poured	,	Other (Expla	•				
Total Well Depth From Ground Surfa	ace (ft) Casing	Diameter (ir	ı.)	(Bentor	nite Chips)			,				
14.0	1.00	`	,	Sealing Mate	rials							
Lower Drillhole Diameter (in.)		Depth (ft.)		⊣	ement Grou	t	Clav-Sar	nd Slurry (11 lb./gal. w				
• •		Dopui (it.)		☐ Sand-C	Cement (Cor	ncrete) Grout		e-Sand Slurry " "				
2.3	14.0			Concre	•	•	Bentonit	-				
Was well annular space grouted?	∐ Yes ⊠	No 🗆	Unknown	For Monitoring	g Wells and	Monitoring Well Bo	reholes Only:					
If yes, to what depth (feet)?	Depth to Wa	ater (feet)		Benton	ite Chips	□в	entonite - Cemer	nt Grout				
				Granula	ar Bentonite	В	entonite - Sand S	Slurry				
5. Material Used to Fill Well / [Orillhole			From (ft.)	To (ft.)		acks Sealant	Mix Ratio				
- material cood to 1 in 110in / E				110 (10.)	10 (11.)	or Volume	(circle one)	or Mud Weight				
5												
Bentonite chips				Surface	14.0	0	.1	Sacks				
6. Comments												
or commonto												
7. Supervision of Work							DNR Use	Only				
Name of Person or Firm Doing Filling	& Sealing	License	e#	Date of Filling &	Sealing (m	m/dd/yyyy)Date Re		loted By				
Stantec	-			4/1/2022	•	[-				
Street or Route			-	Telephone Num	ber	Comme	nts					
12075 Corporate Parkway				(262) 241 - 4								
City		State	ZIP Code			g Work Trey Cu	<i>11</i>	ate Signed				
Mequon		WI	53092		Wha	trey Cu	ll	4/1/2022				

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

Verification Only of Fill and Seal Drinking Wa					rinking Water	er Watershed/Wastewater Remediation/Redevelopment								
				□ v	/aste Managem		Other _							
1. Well Location Inf			1					nformation						
County	WI Unique W Removed W		Hid	cap#		Facility Nam								
Manitowoc			;	SB-223	3/TW-223		int District	- Lot 3						
Lattitude / Longitude (De	egrees and Minu	utes) I	Metho	d Code	(see instruction		ib oi i woj							
0 1 11	' N					License/Per	mit/Monitorir	na #						
	'W						#02-36-176	•						
1/4 / 1/4 NE 1/4	NE	Section	Tow	nship	Range E	Original We								
or Gov't Lot#		30	·	19	24 🗒 w									
Well Street Address			1			Present We	II Owner							
000 North 40th China	-4						1anitowoc							
200 North 10th Stre			Iv	Vell ZIP	2 Code	-	ress of Prese	ent Owner						
Manitowoc			"	54220		900 Quay Street								
Subdivision Name			L	ot #	,	City of Present Owner State ZIP Code								
						Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material								
Reason For Removal Fr	rom Service V	VI Unique W	ell # c	of Repla	cement Well									
Temporary well aba	andonment					Pump and piping removed?								
3. Well / Drillhole / I	Borehole Info	rmation				Liner(s) removed?								
Monitoring Wel	I	Original Cor	nstruc	tion Da	te	Screen removed? Yes No No No No No No No No No No No No No								
☐ Water Well		3/24/202	2			Casing left in place? Was casing cut off below surface? Yes No No No No No No No No No No No No No								
		If a Well (Consti	ruction	Report is		•		H	Yes	No	N/A		
Drillhole / Bore	hole	available,				Did sealing material rise to surface? Did material settle after 24 hours? Ves No Pool								
Construction Type:	"						was hole ret			Yes	No	X N/A N/A		
☑ Drilled ☐ Driven (Sandpoint)				Dug	1		e used, were th	ev hvdrated						
Other (Specify)					with water	r from a kno	wn safe source	X	Yes	No	N/A			
Formation Type:							ing Sealing Ma		-4 Di I					
	mation		Bedi	rock			uctor Pipe-G ned & Poure	•		ctor Pipe-l (Explain)	rumpe	ea		
Total Well Depth From		(ft) Casing	Diam	otor (in	``		ned & Foure onite Chips)	u	L Other ((шхріаіі і)				
	Ground Surface		Diaiii	eter (III	.)									
12.0		1.00	D	(5)		Sealing Materials Neat Cement Grout Clay-Sand Slurry (11 lb./gal								
Lower Drillhole Diamete	er (in.)	Casing	Deptr	η (π.)				ncrete) Grout		ntonite-Sa				
2.3		12.0				Concr		norcic) Grout		ntonite Ch		ııı y		
Was well annular space	e grouted?	🗌 Yes 🗵	No		Unknown	For Monitori	ng Wells and	Monitoring We	II Boreholes On	ly:	'			
If yes, to what depth (fee	et)?	Depth to Wa	ater (f	eet)			nite Chips		Bentonite - C	-	out			
						Granu	ılar Bentonite		Bentonite - S	and Slurry	,			
5. Material Used to	Fill Well / Dri	Ilhole				From (ft.)	To (ft.)		s, Sacks Seal me (circle on			Ratio Weight		
Bentonite chips						Surface	12.0		0.1		Sa	icks		
6. Comments														
7. Supervision of W	ork								DNF	R Use On	ly			
Name of Person or Firm		Sealing	L	icense	# [ate of Filling	& Sealing (m	m/dd/yyyy)Date		Noted				
Stantec			4/1/2022											
Street or Route T			elephone Nur	mber	Com	ments	•							
12075 Corporate Parkway				(262) 241 -										
City			Sta		ZIP Code	Signature of	Person Doi	ng Work			Signed			
Mequon			V	ΝI	53092		Whi	tney (uce	4	/1/2	022		
								0						

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

□ Verification Only of Fi	ll and Seal	Bl ☐ Drinking Water ☐ Watershed/Wastewater ☐ Remediation/Redevelop						ation/Redevelopment					
			/aste Manageme	ent \Box	Other			·					
1. Well Location Information			<u> </u>	2. Facility	/ Owner Ir	formation							
County WI Uniq	ue Well # of	Hicap #		Facility Name									
Remove	d Well			River Poin	t District -	Lot 3							
Manitowoc	1. f	SB-224		Facility ID (FII	D or PWS)								
Lattitude / Longitude (Degrees and	Minutes)	Method Code	(see instruction	s)									
IN				License/Perm	it/Monitorin	g #							
° ' " ' W	0	T	I Danner	-	02-36-176	478							
1/4 / 1/4 NE 1/4 NE	Section	Township	Range E	Original Well	Owner								
or Gov't Lot#	30	19	24 □ w										
Well Street Address		•	•	Present Well									
200 North 10th Street				City of Manitowoc Mailing Address of Present Owner									
Well City, Village or Town		Well ZIF	Code	1									
Manitowoc		54220		900 Quay	ZID Code								
Subdivision Name		Lot #		City of Present Owner State ZIP Code									
				Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material									
Reason For Removal From Service	WI Unique V	/ell # of Repla	cement Well										
Soil borehole abandonment				1	piping remo	oved?	Yes Yes						
3. Well / Drillhole / Borehole	Information			Liner(s) rei									
Monitoring Well	Original Co	onstruction Da	te	Screen removed? Casing left in place? Yes No									
☐ Water Well	3/23/20	22		Casing left									
water weir	If a Well	Construction	Renort is		· ·	low surface?	Yes ⊠ Yes						
Drillhole / Borehole		, please attac		1	•	se to surface?							
Construction Type:	nstruction Type:					Did material settle after 24 hours? If yes, was hole retopped? Yes No							
Drilled D	Г	Dug	-			_	∐ No ∐ N/A						
			•	e used, were the vn safe source	Yes	□ No □ N/A							
Other (Specify)						ing Sealing Mat							
Formation Type:	_	,		Conduc	tor Pipe-Gr	avity	☐ Conductor P	ipe-Pumped					
Unconsolidated Formation		Bedrock			ed & Poured	•	Other (Expla						
Total Well Depth From Ground Su	face (ft) Casino	Diameter (in	.)	(Benton	ite Chips)			•					
•	` [, ,	,	Sealing Mater	rials								
Lower Drillhole Diameter (in.)	Casino	Depth (ft.)		Neat Cement Grout Clay-Sand Slurry (11 lb./ga									
` ,	Casing	J Deptii (it.)				ncrete) Grout		e-Sand Slurry " "					
2.3				Concre	•	,		e Chips					
Was well annular space grouted?	Yes	🛮 No 🔲	Unknown	For Monitoring	g Wells and	Monitoring Wel	Boreholes Only:						
If yes, to what depth (feet)?	Depth to W	ater (feet)			te Chips		Bentonite - Cemer	nt Grout					
				Granula	ar Bentonite		Bentonite - Sand S	Slurry					
5. Material Used to Fill Well	Drillhole			From (ft.)	To (ft.)		, Sacks Sealant ne (circle one)	Mix Ratio or Mud Weight					
							,	g					
Bentonite chips				Surface	10.0		0.3	Sacks					
6. Comments													
7 Curancialan of Wark							DND He	Omby					
7. Supervision of Work Name of Person or Firm Doing Filli	ng & Sealing	License	# n	ate of Filling 2	Sealing (m	m/dd/yyyy)Date	DNR Use	loted By					
Horizon Construction and Exp		License	"	3/23/2022	Journal (III	, аа, уууурдаге	. Cociveu	lotted by					
Street or Route	3/23/2022 elephone Num	ber	Com	ments									
764 Tower Drive	''	(262) 692 - 3		00111	monto								
City		State	ZIP Code	Signature of F		a Work 🦯) 44 In	Date Signed					
Fredonia		WI	53021	.3		trey (ull	4/1/2022					
			00021			- y o							

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

	and Seal		Drinking Water	ter Watershed/Wastewater Remediation/Redevelopment								
			Waste Managen	nent 🗀	Other _							
1. Well Location Information		•		2. Facility	/ Owner In	formation						
	e Well # of	Hicap #		Facility Name)							
Removed	I Well	00.00	05/EM/ 005		nt District -	Lot 3						
Manitowoc Lattitude / Longitude (Degrees and N	Ainutoo)		25/TW-225 le (see instruction	Facility ID (FI	D or PWS)							
° ' "'N	viiriutes)	ivietrioù Cou	le (see instructio	<u></u>								
IN				License/Perm	nit/Monitorin	g #						
VV	Section	Township	Range N		02-36-1764	478						
	30	19	Range Z E	Original Well	Owner							
or Gov't Lot #	30	19	24									
Well Street Address				Present Well								
200 North 10th Street				City of Ma Mailing Addre		nt Owner						
Well City, Village or Town		Well ZI	P Code			ili Owner						
Manitowoc		5422	20	900 Quay City of Prese			State	ZIP Code				
Subdivision Name		Lot #		1								
				Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material								
Reason For Removal From Service	WI Unique W	ell # of Repl	lacement Well				Yes	□ No ⊠ N/A				
Temporary well abandonment				- I	piping remo	oved?	Yes	□ No □ N/A				
3. Well / Drillhole / Borehole II	nformation			Liner(s) re			Yes	= =				
Monitoring Well	"	nstruction D	ate	Screen rer			Yes					
☐ Water Well	3/24/202	22		Casing left			☐ Yes	□ No □ N/A				
	If a Well	Construction	Report is		•	low surface?	∑ Yes	No N/A				
Drillhole / Borehole		please atta			•	se to surface?	Yes	□ No □ N/A				
Construction Type:					Did material settle after 24 hours? If yes, was hole retopped? Yes No							
	ven (Sandpoint)	Г	Dug			ppped ? e used, were they h		∐ No ∐ N/A				
	(1 /	_	_		•	vn safe source	X Yes	□ No □ N/A				
Other (Specify)						ing Sealing Materia						
Formation Type:					ctor Pipe-Gr		Conductor P	ipe-Pumped				
Unconsolidated Formation		Bedrock			ed & Poured	•	Other (Expla					
Total Well Depth From Ground Surf	ace (ft) Casing	Diameter (i	n.)	(Bentor	nite Chips)			,				
12.0	1.00	,	,	Sealing Mate	rials							
Lower Drillhole Diameter (in.)		Depth (ft.)		⊣	ement Grou	t	☐ Clav-Sar	nd Slurry (11 lb./gal. w				
. ,		Dopur (it.)		☐ Sand-C	Cement (Cor	ncrete) Grout		e-Sand Slurry " "				
2.3	12.0			Concre	•	•	Bentonite ■ Bentonite ■ Bentonite ■ Bentonite ■ Bentonite ■ Bentonite ■ Bentonite ■ Bentonite ■ Bentonite ■ Bentonite Bentonite					
Was well annular space grouted?	∐ Yes ≥	No 🗆	Unknown	For Monitorin	g Wells and	Monitoring Well Bo	reholes Only:					
If yes, to what depth (feet)?	Depth to W	ater (feet)		Benton	ite Chips	□в	entonite - Cemen	t Grout				
				Granula	ar Bentonite	□в	entonite - Sand S	lurry				
5. Material Used to Fill Well /	Drillhole			From (ft.)	To (ft.)		acks Sealant	Mix Ratio				
- Indicate Cook to 1 in 17cm /				110 (10.)	10 (11.)	or Volume	(circle one)	or Mud Weight				
5					400							
Bentonite chips				Surface	12.0	0	.1	Sacks				
6. Comments												
C. Comments												
7. Supervision of Work							DNR Use	Only				
Name of Person or Firm Doing Filling	g & Sealing	Licens	e#	Date of Filling &	Sealing (mi	m/dd/yyyy)Date Re		oted By				
Stantec				4/1/2022	3 (,,,,,		•				
Street or Route				Telephone Num	ber	Comme	nts					
12075 Corporate Parkway				(262) 241 - 4								
City		State	ZIP Code			ig Work	<i>11</i>	ate Signed				
Mequon		WI	53092		What	g Work They Cu	ll	4/1/2022				

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

	Drinking Water	r Watershed/Wastewater Remediation/Redevelopment												
				Waste Manage	ment [Other _								
1. Well Location Inform	nation		_	_	2. Facility	/ Owner Ir	nformation							
	VI Unique Well	l # of	Hicap #		Facility Name	Э								
	Removed Well		00.0	07/7/1/ 007		nt District -	Lot 3							
Manitowoc Lattitude / Longitude (Degre	on and Minutes	-\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		27/TW-227 de (see instructi	Facility ID (FI	ID or PWS)								
° ' ' N		s) "	vietrioù Cot	ue (see msirucii	<u></u>									
IN					License/Pern	nit/Monitorin	g #							
V	1	ction	Township	Range 🖂		02-36-176	478							
	= 06	30	19	24	Original Well	Owner								
or Gov't Lot#		30	19	24 📙 '	N	0								
Well Street Address					Present Well									
200 North 10th Street					City of Ma		ent Ournor							
Well City, Village or Town		_	Well Z	IP Code	Mailing Address of Present Owner									
Manitowoc			542	20		900 Quay Street City of Present Owner State ZIP Code								
Subdivision Name			Lot #		1 -			1						
					Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material									
Reason For Removal From	Service WI l	Unique We	ell # of Rep	olacement Well										
Temporary well abando						piping remo	ovea?	Yes	= =					
3. Well / Drillhole / Bore					Liner(s) re			☐ Yes	= =					
Monitoring Well		•	struction [Date	Screen rer Casing lef			☐ Yes						
Water Well		3/24/202	2					☐ Yes	= = =					
		If a Well C	Constructio	n Report is		•	low surface?	∑ Yes						
Drillhole / Borehole			please atta			•	se to surface? er 24 hours?	☐ Yes						
Construction Type:						as hole reto		Yes	= =					
Drilled	Driven (Sa	andpoint)		Dug			e used, were they h							
Other (Specify)		. ,	•				wn safe source	X Yes	No N/A					
							ing Sealing Materia							
Formation Type:					Conduc	ctor Pipe-Gr	avity	Conductor F	Pipe-Pumped					
Unconsolidated Formati	ion	Ш	Bedrock		⊠ Screen	ed & Poured	d	Other (Expla	ain)					
Total Well Depth From Grou	und Surface (ft	Casing	Diameter (in.)	(Bentor	nite Chips)								
12.0		1.00			Sealing Mate	rials								
Lower Drillhole Diameter (in	1)	Casing	Depth (ft.)		⊣	ement Grou	t	Clay-Sa	nd Slurry (11 lb./gal. wt					
•	,	_	Dopur (ii.)		☐ Sand-C	Cement (Cor	ncrete) Grout		e-Sand Slurry " "					
2.3		12.0	, ,		— 🗌 Concre	ete		Bentonit	e Chips					
Was well annular space gro	outed?	Yes 🗵	No [Unknown	For Monitoring Wells and Monitoring Well Boreholes Only:									
If yes, to what depth (feet)?	De	epth to Wa	iter (feet)		☐ Benton	ite Chips	<u></u>	entonite - Cemer	nt Grout					
					Granular Bentonite Bentonite - Sand Slurry									
5. Material Used to Fill	Well / Drillh	ole			From (ft.)	To (ft.)		acks Sealant	Mix Ratio					
					- (-,	- (-)	or volume	(circle one)	or Mud Weight					
Dentenite shine					Curtons	40.0			Cooks					
Bentonite chips					Surface	12.0).1	Sacks					
6. Comments														
7. Supervision of Work								DNR Use	e Only					
Name of Person or Firm Doi		aling	Licens	se #	Date of Filling &	Sealing (m	m/dd/yyyy)Date Re		loted By					
Stantec	-	-			4/1/2022									
				Telephone Number Comments										
12075 Corporate Parkw	<i>r</i> ay				(262) 241 - 4									
City			State	ZIP Code	Signature of I	Person Doin	g Work Ensy Cu	7/1	Date Signed					
Mequon			WI	53092		Wha	trey Cu	ll	4/1/2022					

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ Verification Only	of Fill and Seal		Drinking Water	er Watershed/Wastewater Remediation/Redevelopment									
			Waste Manage	ement [Other _								
1. Well Location Informa	ation			2. Facility	/ Owner Ir	nformation							
	I Unique Well # of	Hicap 7	#	Facility Name	Э								
	emoved Well	00.	000/TM/ 000		nt District -	Lot 3							
Manitowoc Lattitude / Longitude (Degree	a and Minutae)		229/TW-229 ode (see instruct	Facility ID (FI	ID or PWS)								
° ' ' 'N	s and Minutes)	INIELI IOG CC	ode (see ilistruct	<u></u>									
IN				License/Pern	nit/Monitorin	g #							
VV	Section	 Township	p Range ⊠		02-36-176	478							
112 112	30	19	P Range 24	E Original Well	Owner								
or Gov't Lot#	30	19		W	0								
Well Street Address				Present Well									
200 North 10th Street				City of Ma		ent Owner							
Well City, Village or Town		Well	ZIP Code	Mailing Address of Present Owner									
Manitowoc		542	220		900 Quay Street City of Present Owner State ZIP Code								
Subdivision Name		Lot #											
				Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material									
Reason For Removal From S	Service WI Unique V	Vell # of Re	placement Well				Yes	No ⊠ N/A					
Temporary well abandor	nment				piping remo	oved?	Yes	= =					
3. Well / Drillhole / Bore	hole Information			Liner(s) re			∑ Yes						
Monitoring Well	Original C	onstruction	Date	Screen rer			☐ Yes						
☐ Water Well	3/23/20	22		Casing lef			Yes						
	If a Well	Construction	on Report is		•	low surface?	∑ Yes						
Drillhole / Borehole		e, please at			•	se to surface?	☐ Yes						
Construction Type:						er 24 hours?	Yes	= =					
Drilled	Driven (Sandpoint)	Dug	1	as hole reto	oppea <i>?</i> e used, were they h	_						
	_ ` '	,				vn safe source	X Yes	□ No □ N/A					
Other (Specify)						ing Sealing Materia							
Formation Type:	_	_			ctor Pipe-Gr			Pipe-Pumped					
Unconsolidated Formation	on	Bedrock			ed & Poured		Other (Expla						
Total Well Depth From Groun	nd Surface (ft) Casin	g Diameter	(in.)	(Bentor	nite Chips)		` .	,					
13.0	1.00	_	` ,	Sealing Mate	rials								
Lower Drillhole Diameter (in.		g Depth (ft.)	١	—	ement Grou	t	☐ Clav-Sar	nd Slurry (11 lb./gal. wt					
•			,	Sand-C	Cement (Cor	ncrete) Grout		e-Sand Slurry " "					
2.3	13.0		_	Concre		•	Bentonite ■						
Was well annular space grou	ited? L Yes	⊠ No [Unknown	For Monitoring Wells and Monitoring Well Boreholes Only:									
If yes, to what depth (feet)?	Depth to V	/ater (feet)		Bentonite Chips Bentonite - Cement Grout									
				Granular Bentonite Bentonite - Sand Slurry									
5. Material Used to Fill \	Well / Drillhole			From (ft.)	To (ft.)		acks Sealant	Mix Ratio					
					10 (11.)	or volume	(circle one)	or Mud Weight					
D ('' L'				0,	40.0								
Bentonite chips				Surface	13.0	0).1	Sacks					
6. Comments													
or commonts													
7. Supervision of Work							DNR Use	e Only					
Name of Person or Firm Doin	g Filling & Sealing	Licer	nse #	Date of Filling &	Sealing (m	m/dd/yyyy)Date Re		loted By					
Stantec	-			4/1/2022									
				Telephone Number Comments									
12075 Corporate Parkwa	ay			(262) 241 - 4									
City		State	ZIP Code	Signature of I	Person Doin	g Work Ensy Cu	7/1	Date Signed					
Mequon		WI	53092		Wha	trey Cu	ll	4/1/2022					

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ Verification Only of F	ll and Seal		rinking Water	ater Watershed/Wastewater Remediation/Redevelopment								
		I □ v	/aste Manageme	ent 🗆								
1. Well Location Information				2. Facility	/ Owner Ir	nformation						
	ue Well # of	Hicap #		Facility Name								
Remove	ed Well			River Poin	nt District -	Lot 3						
Manitowoc	N 4: 4 \		0/TW-230	Facility ID (FI	D or PWS)							
Lattitude / Longitude (Degrees and	winutes)	Method Code	(see instruction	,								
IN				License/Perm	nit/Monitorin	g #						
° ' " 'W	Section	Taumahin	Dongs —		02-36-176	478						
1/4 / 1/4 NE 1/4 NE		Township	Range E	Original Well	Owner							
or Gov't Lot#	30	19	24 □ w									
Well Street Address		•		Present Well								
200 North 10th Street				City of Ma								
Well City, Village or Town		Well ZIF	P Code	Mailing Addre		ent Owner						
Manitowoc		54220		900 Quay			lo	710.0				
Subdivision Name		Lot #	,	City of Preser			State					
				Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material								
Reason For Removal From Service	e WI Unique W	Vell # of Repla	acement Well	4. Pump, Li	ner, Scree	en, Casing &						
Temporary well abandonmen	.	•		Pump and	piping remo	oved?	∐ Yes					
3. Well / Drillhole / Borehole				Liner(s) rei	moved?		∐ Yes					
		onstruction Da	ite	Screen ren	noved?		∐ Yes					
Monitoring Well	3/23/20	22		Casing left	in place?		Yes	No NA				
Water Well				Was casin	g cut off bel	low surface?	Yes	i ∐ No ⊠ N/A				
Drillhole / Borehole		Construction please attac		Did sealing	g material ri	se to surface?	∑ Yes	No NA				
	available	, picase allac	11.	Did materia	al settle afte	er 24 hours?	Yes					
Construction Type:	_	If yes, wa	No N/A									
Drilled D		Dug	If bentonite	chips were	used, were the							
Other (Specify)						vn safe source	X Yes	No NA				
Formation Type:						ing Sealing Ma						
Unconsolidated Formation		Bedrock			tor Pipe-Gr	•		Pipe-Pumped				
- Officerisolidated Formation		J Deulock		-	ed & Poure	d	U Other (Expla	ain)				
Total Well Depth From Ground Su	rface (ft) Casino	g Diameter (in	.)	(Benton	nite Chips)							
14.0	1.00)		Sealing Materials								
Lower Drillhole Diameter (in.)	Casing	g Depth (ft.)		Neat Ce	ement Grou	t	☐ Clay-Sa	nd Slurry (11 lb./gal. wt				
2.3	14.0)		Sand-C	ement (Cor	ncrete) Grout		te-Sand Slurry " "				
				Concre				te Chips				
Was well annular space grouted?		No 🗆	Unknown	For Monitoring	g Wells and	Monitoring Wel	l Boreholes Only:					
If yes, to what depth (feet)?	Depth to W	ater (feet)			ite Chips	F	Bentonite - Cemer					
				☐ Granula	ar Bentonite		Bentonite - Sand S					
5. Material Used to Fill Well	/ Drillhole			From (ft.)	To (ft.)		s, Sacks Sealant me (circle one)	Mix Ratio or Mud Weight				
Bentonite chips				Surface	14.0		0.1	Sacks				
Ballorite drips				Surrace	14.0		0.1	Sauks				
6. Comments												
7. Supervision of Work							DNR Use	e Only				
Name of Person or Firm Doing Filli	ng & Sealing	License	# D	ate of Filling &	Sealing (m	m/dd/yyyy)Date		Noted By				
Stantec	-			4/1/2022								
Street or Route		1	T	elephone Num	ber	Com	ments					
12075 Corporate Parkway				(262) 241 - 4	1466							
City		State	ZIP Code	Signature of F	Person Doin	ig Work) 11	Date Signed				
Mequon		WI	53092		Wha	tney C	ull	4/1/2022				

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

☐ Verification Only	fication Only of Fill and Seal						ater Watershed/Wastewater ⊠ Remediation/Redevelopment							
				Waste Ma	nageme	ent 🗀	Other _							
1. Well Location Inform	nation					2. Facility	/ Owner Ir	nformation						
County	VI Unique W		Hicap #			Facility Name								
	Removed We	ell				River Poin	t District -	Lot 3						
Manitowoc			SB-23			Facility ID (FII	D or PWS)							
Lattitude / Longitude (Degre		tes)	Method Cod	e (see ins	tructions	3)								
° ' "'N						License/Perm	it/Monitorin	g #						
V	1.	D = -4! =	T	l D		BRRTS#0		478						
1/4 / 1/4 NE 1/4 N	Ė '	Section	Township	Range	⊠ E	Original Well	Owner							
or Gov't Lot#		30	19	24	∐ w									
Well Street Address				•		Present Well Owner								
200 North 10th Street						City of Manitowoc Mailing Address of Present Owner								
Well City, Village or Town			Well Z	P Code										
Manitowoc			5422			900 Quay Street _City of Present Owner State						Code		
Subdivision Name			Lot #			1								
						Manitowoc WI 54220								
Reason For Removal From	Service W	/I Unique W	ell # of Rep	acement	Well	4. Pump, Liner, Screen, Casing & Sealing Material								
Soil borehole abandonr	ment					1	piping remo	oved?	H	Yes [ا No	⊠ N/A ⊠ N/A		
3. Well / Drillhole / Bor	ehole Infor	mation				Liner(s) rei				Yes [No No	⊠ N/A ⊠ N/A		
Monitoring Well		Original Co	nstruction D	ate		□ v □ N- □								
		3/23/202	22			Casing left					=-	N/A		
Water Well		If a Well	Construction	Renort is	:		•	low surface?		Yes L	No No	N/A N/A		
Drillhole / Borehole)		please atta		,		•	se to surface?		Yes L	No □ No	□ N/A N/A		
Construction Type:						Bid material could alter 21 hours.						N/A		
	Drilled Driven (Sandpoint)					1				163	No	IN/A		
Other (Specify)				Dug			•	e used, were the wn safe source		Yes	No	N/A		
							ing Sealing Ma							
Formation Type:							tor Pipe-Gr			ctor Pipe	-Pumpe	ed		
Unconsolidated Format	tion		Bedrock				ed & Poure	•		(Explain)		-		
Total Well Depth From Gro	und Surface	(ft) Casing	Diameter (i	n.)		(Benton	ite Chips)			,				
		(.,		,		Sealing Mater	. ,							
Lower Drillhole Diameter /ir	- 1	Cooing	Depth (ft.)			Neat Cement Grout Clay-Sand Slurry (11 lb./g.								
Lower Drillhole Diameter (ir	1.)	Casing	Depui (it.)					ncrete) Grout		ntonite-S		-		
2.3						Concre		, -		ntonite C		,		
Was well annular space gro	outed?] Yes 🛭	No 🗆	Unknov	vn	For Monitoring	g Wells and	Monitoring Wel	ll Boreholes On	ly:	·			
If yes, to what depth (feet)?		Depth to W	ater (feet)				te Chips		Bentonite - C		Grout			
						Granula	ar Bentonite		Bentonite - S	and Slur	ry			
5. Material Used to Fill	Wall / Dril	lholo				From (ft.)	To (ft.)		s, Sacks Seal		Mix	Ratio		
5. Material Osed to Fill	weii / Dili	illole				From (it.)	10 (11.)	or Volu	me (circle on	e)	or Muc	l Weight		
Bentonite chips						Surface	15.0		0.5		Sa	cks		
2 2														
6. Comments														
7 Supervision of Mark	,								DAI	D Lloo C	nlv.			
7. Supervision of Work Name of Person or Firm Do		Sealing	Licens	e #	D	ate of Filling 9	Sealing (m	m/dd/yyyy)Date		R Use C	nly ed By			
	-	-	Liceils	- π		3/23/2022	Jeaning (III	, dd, yyyyjiDale	, (COCIVEU	INOLE	ла шу			
Horizon Construction a Street or Route	nu ⊑xpiorat	IUII, LLU				3/23/2022 elephone Num	her	Com	ments					
764 Tower Drive					''	(262) 692 - 3		Com						
City			State	ZIP Cod	de	Signature of F		na Work -		Date	e Signed			
Fredonia			WI	5302				tney (ull		4/1/2			
. rodonia			1 441	1 0002	• •	I					., ., =			
								-						

Form 3300-5 (R 4/08)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

Route to:

☐ Verification Only of Fi	ll and Seal		Drinking Water		Watersh	ed/Wastewater	Remedi	ation/Redevelopment
			Waste Managen	nent 🗀	Other _			
1. Well Location Information		•	_	2. Facility	/ Owner Ir	formation		
	ue Well # of	Hicap #		Facility Name)			
Remove	ed Well	05.00	27TM 007		nt District -	Lot 3		
Manitowoc Lattitude / Longitude (Degrees and	Minutos)		37/TW-237 le (see instruction	Facility ID (FI	D or PWS)			
° ' ' N	willutes)	Metriod Cod	ie (see iristructio					
IN				License/Perm	nit/Monitorin	g #		
VV	Section	Township	Range N		02-36-176	478		
	30	19		Original Well	Owner			
or Gov't Lot #	30	19	24 🗌 v					
Well Street Address				Present Well				
200 North 10th Street				City of Ma Mailing Addre		nt Owner		
Well City, Village or Town		Well ZI	IP Code			ili Owilei		
Manitowoc		5422	20	900 Quay City of Prese			State	ZIP Code
Subdivision Name		Lot #		Manitowo			WI	
						en, Casing & Se		34220
Reason For Removal From Service	WI Unique W	ell # of Repl	lacement Well				Yes	□ No □ N/A
Temporary well abandonment				·	piping remo	oved?	☐ Yes	= =
3. Well / Drillhole / Borehole				Liner(s) re Screen rer			☐ Yes	
Monitoring Well	"	nstruction D	ate	Casing left			Yes	
Water Well	3/23/202	22				low surface?	☐ Yes	= = =
	If a Well (Construction	n Report is		•	se to surface?	∑ Yes	
Drillhole / Borehole		, please atta		1	•	er 24 hours?	☐ Yes	
Construction Type:					as hole reto		Yes	= =
Drilled Dr	iven (Sandpoint)		Dug	'		e used, were they h		
Other (Specify)					•	vn safe source	X Yes	□ No □ N/A
						ing Sealing Materia		
Formation Type:					ctor Pipe-Gr	avity [Conductor P	ipe-Pumped
Unconsolidated Formation		Bedrock		⊠ Screen	ed & Poured	d [Other (Expla	in)
Total Well Depth From Ground Sui	face (ft) Casing	Diameter (i	n.)	(Bentor	nite Chips)			
14.0	1.00			Sealing Mate	rials			
Lower Drillhole Diameter (in.)	Casing	Depth (ft.)		☐ Neat C	ement Grou	t	☐ Clay-Sar	nd Slurry (11 lb./gal. wt
	-			Sand-C	ement (Cor	ncrete) Grout	Bentonit	e-Sand Slurry " "
2.3	14.0	7 _		☐ Concre	te		Bentonite Bentoni	e Chips
Was well annular space grouted?	☐ Yes 区	No [Unknown		-	Monitoring Well Bo	reholes Only:	
If yes, to what depth (feet)?	Depth to Wa	ater (feet)		Benton	ite Chips	∐ в	entonite - Cemen	nt Grout
				Granula	ar Bentonite	В	entonite - Sand S	
5. Material Used to Fill Well /	Drillhole			From (ft.)	To (ft.)		acks Sealant (circle one)	Mix Ratio
					` '	or volume	(Circle Orie)	or Mud Weight
Bentonite chips				Surface	14.0	0	.1	Sacks
Ballorite crips				Surface	14.0	0	· I	Jacks
6. Comments				•				•
7. Supervision of Work							DNR Use	Only
Name of Person or Firm Doing Fillin	ng & Sealing	Licens	e#	Date of Filling &	Sealing (m	m/dd/yyyy)Date Re	ceived N	loted By
Stantec				4/1/2022				
Street or Route		<u> </u>		Telephone Num	ber	Comme	nts	
12075 Corporate Parkway				(262) 241 - 4				
City		State	ZIP Code	Signature of I	Person Doin	g Work They Cu		ate Signed
Mequon		WI	53092		Wha	ney lu		4/1/2022

Form 3300-5 (R 4/08)

Page 1 of 2

				Route to	o:									
☐ Verification O	nly of Fill a	and Seal			rinking Wa	ater		Watersh	ed/Wastewater	\boxtimes	Remedia	ation/	Redev	elopment
				□ v	/aste Man	ageme		Other _						
1. Well Location Inf				. ,,			2. Facility		nformation					
County	WI Unique Removed V		H	icap#			Facility Name							
Manitowoc				SB-253	3		River Poin Facility ID (FII							
Lattitude / Longitude (De	egrees and Mir	nutes)	Metho		(see instr	uction	is)	J (1 F VV 3)						
0 1 11	' N						License/Perm	it/Monitorin	a #					
o ' "	'W						BRRTS #		-					
1/4 / 1/4 NE 1/4	NE	Section	Tow	vnship	Range	ΞE	Original Well							
or Gov't Lot #		30		19	24	i w								
Well Street Address			1				Present Well	Owner						
200 North 10th Ctra	a t						City of Ma							
200 North 10th Stre			T	Well ZIP	2 Code		_Mailing Addre		ent Owner					
Manitowoc	••••			54220			900 Quay						Tzıp.o	
Subdivision Name			l	Lot #	,		_City of Preser				State		ZIP C	
							Manitowo		en, Casing &	Soaling M	WI		542	220
Reason For Removal Fi	rom Service	WI Unique W	/ell#	of Repla	cement W	/ell				Seaning IVI			No	□ N/A
Soil borehole aband	lonment						Pump and		oved?	[[Yes Yes	H	No No	N/A N/A
3. Well / Drillhole /	Borehole Info						Liner(s) rer Screen ren			[[Yes	H	No	N/A
Monitoring Wel	II	Original Co	nstru	ction Da	ite		Casing left			[Yes	X	No	□ N/A
Water Well									low surface?		Yes		No	□ N/A
	h-1-	If a Well	Const	truction	Report is			-	se to surface?	[Yes	Ħ	No	□ N/A
Drillhole / Bore	noie	available	, plea	se attac	h.		1	•	er 24 hours?	[Yes	\Box	No	N/A
Construction Type:								as hole reto		[Yes		No	N/A
Drilled	Drive	n (Sandpoint)			Dug		1		used, were the	y hydrated				
Other (Specify)									wn safe source		X Yes		No	N/A
Formation Type:						_	1 —		ing Sealing Mat					
Unconsolidated For	mation		Boo	drock				tor Pipe-Gr	•		ductor Pi	•	umped	i
							-	ed & Poure	d	☐ Othe	er (Expla	in)		
Total Well Depth From	Ground Surfac	e (ft) Casing	g Dian	neter (in	.)		`	ite Chips)						
							Sealing Mater				0. 0			
Lower Drillhole Diamete	er (in.)	Casing	g Dept	th (ft.)				ement Grou	ncrete) Grout		Bentonite			l lb./gal. wt
2.3							Concret	•	icrete) Grout		Bentonite			ıy
Was well annular space	e arouted?	Yes D	⊠ No	, [Unknowr	า			Monitoring Well			o Om	,3	
If yes, to what depth (fee		Depth to W	ater (feet)			⊣ ┌─	te Chips		Bentonite	-	t Gro	ut	
	•	8.0	,	,				ar Bentonite		Bentonite				
5. Material Used to	Fill Well / Dr	illhole					From (ft.)	To (ft.)	No. Yards	, Sacks Sene (circle	ealant		Mix F	
							. ,	. ,	or volui	ne (Circle	one)	or	IVIUG	Weight
Bentonite chips							Surface	10.0		0.25			Sac	cks
•														
0.0														
6. Comments														
7. Supervision of W	ork									D	NR Use	Onl	у	
Name of Person or Firm	Doing Filling 8	& Sealing		License	#	D	ate of Filling &	Sealing (m	m/dd/yyyy Date			oted	-	
Horizon Construction	on and Explor	ation, LLC					1/17/2023							
Street or Route						Τ	elephone Numl		Com	ments				
764 Tower Drive			1		ların a		(262) 692 - 3		1 /11	1				
City				ate	ZIP Code		Signature of F	erson Doir	ng vvork	· .			igned	
Fredonia				WI	53021		1	1//	1700		- 1	1/1/	/2023	

Form 3300-5 (R 4/08)

Page 1 of 2

☐ Verification	n Only of Fill a	nd Seal	"	coute to		\\/atar	Г	□ \\/atarab	ad/Mastawat		Damas	diation	/Dada	, clanmant
					rinking '		L 	_	ed/Wastewat	er 🔼	Remed	llation/	Rede	velopment
1. Well Location	n Information			<u> </u>	aste M	anager		Other _	nformation					
County	WI Unique V	Vell # of	Hic	cap#			Facility Nam		IIOIIIIatioii					
- ,	Removed W						1	nt Area B-1						
Manitowoc				SB-254			Facility ID (F		-					
_	de (Degrees and Min	utes)	Method	d Code	(see in	structio	ons)							
0 1	" 'N						License/Peri	mit/Monitorin	ng #					
0 1	" 'W		1-		I .			# 02-36-58	5491					
1/4 / 1/4 NE	¼ NE	Section	Town	•	Range	³ <u>⊠</u> €	Original We	l Owner						
or Gov't Lot#		30	l	19	24	<u></u>	N Present Wel	l Oumar						
Well Street Addres	ss							[anitowoc						
200 North 10th							Mailing Addr		ent Owner					
Well City, Village	or Town			Vell ZIP			900 Quav	Street						
Manitowoc				54220			City of Prese				State		ZIP (Code
Subdivision Name			Lo	ot#			Manitow	ос			W	П	54	220
Reason For Remo	wal From Contino	WI Unique W	/ oll # of	f Donlo	oomont	t M/all	4. Pump, L	iner, Scre	en, Casing a	& Sealing N	laterial			
Soil borehole a		vvi Onique vi	ren # o	пкеріа	cemen	ı vveii	Pump and	l piping remo	oved?		Yes	s 🗌	No	N/A
	ole / Borehole Info	rmation					Liner(s) re	emoved?			Yes	з 🔲	No	N/A
		Original Co	nstruct	tion Dat	te		Screen re	moved?			Yes	3 🔲	No	N/A
Monitoring	g Well						Casing le	ft in place?			Yes	<u>: 🗵</u>	No	N/A
Water We	ell	15 . \A/. II	0 1		D		Was casi	ng cut off be	low surface?		Yes	=	No	∐ N/A
Drillhole /	Borehole	If a Well available				IS	Did sealir	g material ri	ise to surface	?	Yes	=	No	∐ N/A
Construction Type			, ,						er 24 hours?		Yes	=	No	∐ N/A
Drilled		(Sandpoint)			Dug			vas hole reto			Yes	٠ <u> </u>	No	∐ N/A
		(Gariapoint)		_] Dag			•	e used, were t wn safe sourc		X Yes	s \square	No	□ N/A
Other (Specif	y) 								ing Sealing M	<u> </u>				
Formation Type:		_	,					ctor Pipe-Gr	-		nductor F	Pipe-P	umpe	d
Unconsolidate	ed Formation		Bedr	rock				ned & Poure	•		er (Expl		·	
Total Well Depth I	From Ground Surface	e (ft) Casing	Diame	eter (in.	.)		(Bento	nite Chips)						
							Sealing Mate	erials						
Lower Drillhole Dia	ameter (in.)	Casing	Depth	n (ft.)			Neat C	ement Grou	ıt		Clay-Sa	ınd Slu	urry (1	1 lb./gal. w
2.3								•	ncrete) Grout		Bentoni			ry" "
			No.				Concre			<u> </u>	Bentoni	te Chi	ps	
Was well annular If yes, to what dep	· ·	Yes Depth to W		t)	Unkno	own	\neg		Monitoring W			-4 0		
ii yes, to what dep	ui (ieet):	7.5	ater (ie	561)				nite Chips Iar Bentonite	, [BentoniteBentonite			uı	
		'								ds, Sacks S		Jiuny	Mix	Ratio
5. Material Use	ed to Fill Well / Dri	illhole					From (ft.)	To (ft.)		ime (circle		or		Weight
Bentonite chips	3						Surface	10.0		0.25			Sa	icks
												+-		
6. Comments														
7. Supervision											ONR Us			
	Firm Doing Filling &	•	L	icense	#		Date of Filling 8	& Sealing (m	m/dd/yyyy Dat	e Received	ļ!	Noted	Ву	
	ruction and Explora	tion, LLC					1/17/2023	- h - r						
Street or Route							Telephone Nun		Co	mments				
764 Tower Dri	ve		Stat	te.	ZIP Co	nde	(262) 692 - Signature of		na Work		——————————————————————————————————————	Date S	Signed	
Fredonia				VI	530		2.9114141001	. 5.5611 5011	1/1/1	z .	ľ		//2023	
				-	1 220		i	.//	-///	/				

☐ Verification Only of Fill and Seal

Well / Drillhole / Borehole Filling & Sealing

Form 3300-5 (R 4/08)

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return this form to the appropriate DNR office and bureau. See instructions on reverse for more information.

Route to:

☐ Verification Only of Fill	and Seal		Orinking Wat	ter		Watersh	ed/Wastewater	⊠ Reme	diation/Redevelopment
		□ \	Naste Mana	geme	nt 🗆	Other _			
1. Well Location Information					2. Facility	/ Owner Ir	nformation		
County WI Unique Removed	Well # of	Hicap #			Facility Name				
Manitowoc	veli	SB-25	:5		River Poir				
Lattitude / Longitude (Degrees and Mi	nutes)	Method Cod		ctions	Facility ID (FI	D or PWS)			
° ' "'N			o (000o u						
° ' "'W					License/Perm		•		
1/4 / 1/4 NE 1/4 NE	Section	Township	Range	 1	Original Well	02-36-58:	5491		
or Gov't Lot #	30	19	24	٦	Oligiliai Well	Owner			
Well Street Address				W	Present Well	Owner			
200 North 10th Street					City of Ma				
200 North 10th Street Well City, Village or Town		Well ZI	P Code		Mailing Addre		ent Owner		
Manitowoc		5422			900 Quay			le.	
Subdivision Name		Lot #	.0		City of Preser			Stat	
		251,1			Manitowo				VI 54220
Reason For Removal From Service	WI Unique W	ell # of Repl	acement We	ell	4. Pump, Li	iner, Scre	en, Casing & S	Sealing Materia	
Soil borehole abandonment					Pump and	piping remo	oved?	∐ Ye	= =
3. Well / Drillhole / Borehole Inf	ormation				Liner(s) re	moved?		∐ Ye	
Monitoring Well		nstruction D	ate		Screen rer	noved?		∐ Ye	
					Casing left	in place?		Ye	
Water Well	IE - \A/-II	0	D		Was casin	g cut off be	low surface?	∐ Ye	
Drillhole / Borehole		Construction , please atta			1	•	se to surface?	∑ Ye	
Construction Types		· 1					er 24 hours?	∐ Ye	
Construction Type: Drilled Drive	en (Sandpoint)	Г	Dug		1	as hole reto		Ye	es No N/A
	ii (Sanupoiiii)	L	Dug				used, were the	y hydrated X Ye	es No N/A
Other (Specify)				_			wn safe source ing Sealing Mate		5 NO N/A
Formation Type:					1 🗂	tor Pipe-Gr			Pipe-Pumped
		Bedrock				ed & Poure	•	Other (Exp	
Total Well Depth From Ground Surface	ce (ft) Casing	Diameter (ii	n.)		(Bentor	nite Chips)			
					Sealing Mater	rials			
Lower Drillhole Diameter (in.)	Casino	Depth (ft.)			1 🗀 -	ement Grou	ıt	☐ Clay-S	and Slurry (11 lb./gal. wt
, ,	Cuomig	Dopar (i.i.)			Sand-C	ement (Cor	ncrete) Grout		ite-Sand Slurry " "
2.3					Concre		,		ite Chips
Was well annular space grouted?	☐ Yes ☐	□ No □	Unknown		For Monitoring	g Wells and	Monitoring Well	Boreholes Only:	
If yes, to what depth (feet)?	Depth to W	ater (feet)			Benton	ite Chips		Bentonite - Ceme	ent Grout
	7.5				Granula	ar Bentonite		Bentonite - Sand	Slurry
5. Material Used to Fill Well / D	rillhole				From (ft.)	To (ft.)		Sacks Sealant ne (circle one)	Mix Ratio or Mud Weight
Bentonite chips					Surface	10.0		0.25	Sacks
6. Comments									
o. Comments									
7 Curaminian of Mark								DND H	oo Omby
7. Supervision of Work Name of Person or Firm Doing Filling	& Spaling	License	a #	D/	ate of Filling 9	Spaling (m	m/dd/yyyyDate I	DNR Us	Noted By
Horizon Construction and Explo	•	LICEIIS	υ π	- 1	1/17/2023	Jeaning (III	iii/uu/yyyyDale I	COCIVEU	THOIGH DY
Street or Route	iailoii, LLC				elephone Num	ber	Comn	nents	
764 Tower Drive					(262) 692 - 3		Comm	10.10	
City		State	ZIP Code		Signature of F		ng Work		Date Signed
Fredonia		WI	53021			1//	HALA		1/17/2023
			1			-//	, - 0		

Form 3300-5 (R 4/08)

Page 1 of 2

☐ Verification	Only of Fill a	nd Seal	"	coute to				_	-						
□ verilication	Offiny Of Till a	iiu ocai			rinking '				_	ed/Waste	water 🔀	Remedia	ation/Red	evelop	oment
1. Well Location	lufovnoti on			<u>ш w</u>	aste M	anage			Other _	of a was a tile					
County	WI Unique \	Well # of	Hic	cap#				2. Facility		normane)fi				
,	Removed W							River Poin							
Manitowoc				SB-256			F	acility ID (FII		•					
Lattitude / Longitude	, -	utes)	Method	d Code	(see in	structi	ions))							
0 1	" 'N						L	_icense/Perm	it/Monitorin	g #					
	"'W 4 NF	Section	Town	nehin	Range		_		02-36-58	5491					
or Gov't Lot #	⁴ NE	30		19	24		-	Original Well	Owner						
Well Street Address						Ш'	W	Present Well	Owner						
	N4							City of Ma							
200 North 10th S Well City, Village or			I W	Vell ZIP	Code			Mailing Addre		ent Owner					
Manitowoc				54220				900 Quay				Ctata	715	Codo	
Subdivision Name				ot #				City of Preser				State WI		Code	
								Manitowo		en Casir	ng & Sealing N			54220	
Reason For Remova	I From Service	WI Unique W	/ell # of	f Repla	cement	t Well					ig a coamig ii	Yes	□ No	$\overline{}$	N/A
Soil borehole aba		_						Pump and Liner(s) rer		oveu :		Yes	=	=	N/A
3. Well / Drillhole	e / Borehole Info	Original Co	notruot	tion Dat	to			Screen ren				Yes	☐ No		N/A
Monitoring V	Vell	Original CC	JIISH UCI	lion Da	le			Casing left				Yes	No No		N/A
Water Well								Was casin	g cut off be	low surfac	e?	Yes	☐ No		N/A
Drillhole / Bo	orehole	If a Well available				is		Did sealing	material ri	se to surfa	ace?	Yes	No		N/A
		available	, picas	c attaci				Did materia	al settle afte	er 24 hours	s?	Yes	=	=	N/A
Construction Type: Drilled	Driver	ı (Sandpoint)			Dug			-	as hole reto			Yes	∐ No	Ш	N/A
	□ Dilvei	i (Gariapoirit)		_] Dug				•		ere they hydrated	X Yes	□ No		N/A
Other (Specify)							F	with water Required Met				<u> </u>			
Formation Type:		_	1					rri .	tor Pipe-Gr	-		nductor P	ipe-Pump	oed	
Unconsolidated I	Formation	L	Bedr	rock				Screene	ed & Poure	d	Oth	er (Explai	in)		
Total Well Depth Fro	m Ground Surface	e (ft) Casing	g Diame	eter (in.	.)			(Benton Sealing Mater	ite Chips)						
Lower Drillhole Diam	eter (in)	Casino	Depth	(ft)			—	\Box	ement Grou	ıt		Clay-Sar	nd Slurry	(11 lb.	/gal. wt.
	iotor (iii.)	Cuomig	, Dopui	(14.)				Sand-C	ement (Cor	ncrete) Gr			e-Sand S		
2.3	[<u> </u>					Concret				Bentonite	e Chips		
Was well annular spa			No	+>	Unkno	own	/			Monitoring	Well Boreholes				
If yes, to what depth ((reet)?	Depth to W	ater (16	eet)					te Chips ar Bentonite		Bentonite Bentonite				
											ards, Sacks S			x Rati	io
5. Material Used	to Fill Well / Dr	illhole						From (ft.)	To (ft.)		/olume (circle		or Mu		
Bentonite chips								Surface	10.0		0.25			Sacks	
•															
6. Comments															
7. Supervision of	Mork										г	NR Use	Only		
Name of Person or Fi		Sealing	l l	icense	#		Dat	e of Filling &	Sealing (m	m/dd/www	Date Received		loted By		
Horizon Construc				- 300	•			/17/2023	9 (111	, , , , , ,	,				
Street or Route	una Emplore	, LLC					_	ephone Numl	ber		Comments				
764 Tower Drive								262) 692 - 3			,				
City		-	Stat		ZIP Co			Signature of F	Person Doir	ng Work	<i>A</i> .	I	ate Signe		
Fredonia			V	VI	530	21			1//	1111	1		1/17/202	23	

Form 3300-5 (R 4/08)

Page 1 of 2

Verification Only of Fill and Seal
1. Well Location Information County Wil Unique Well # of Removed Well SB-259 Facility D(FID or PWS)
County WI Unique Well # of Removed Well SB-259
Removed Well SB-259 River Point Area B-1 Facility ID (FID or PWS)
Manitowoc Lattitude / Longitude (Degrees and Minutes) Nethod Code (see instructions) Method Code (see instructions) License/Permit/Monitoring # BRRTS # 02-36-585491 Val / Van Ne
Latititude / Longitude (Degrees and Minutes) " ' N " ' W Well Street Address 200 North 10th Street Well City, Village or Town Manitowoc Subdivision Name Reason For Removal From Service Soil borehole abandonment Method Code (see instructions) License/Permit/Monitoring # BRRTS # 02-36-585491 Original Well Owner City of Manitowoc Mailing Address of Present Owner 900 Quay Street City of Present Owner 900 Quay Street City of Present Owner 900 Quay Street City of Present Owner 900 Quay Street City of Present Owner 4. Pump, Liner, Screen, Casing & Sealing Material Pump and piping removed? Yes No No No No No No Screen removed? Casing left in place?
Section Township Range E Original Well Owner
Well Street Address Section 19
or Gov't Lot # Well Street Address 200 North 10th Street Well City, Village or Town Manitowoc Subdivision Name Well ZIP Code Subdivision Name Well ZIP Code Subdivision Name Well ZIP Code Manitowoc Subdivision Name Well ZIP Code Subdivision Name Lot # Manitowoc Analytowoc WI Unique Well # of Replacement Well Soil borehole abandonment Well ZIP Code Manitowoc Analytowoc Analytowoc WI Unique Well # of Replacement Well Soil borehole abandonment Pump, Liner, Screen, Casing & Sealing Material Pump and piping removed? Yes No No No Screen removed? Screen removed? Yes No No No Casing left in place?
Well Street Address 200 North 10th Street Well City, Village or Town Manitowoc Subdivision Name Well ZIP Code Manitowoc Subdivision Name Well ZIP Code Manitowoc Subdivision Name Lot # Manitowoc WI Unique Well # of Replacement Well Soil borehole abandonment Well ZIP Code Manitowoc WI 54220 4. Pump, Liner, Screen, Casing & Sealing Material Pump and piping removed? Liner(s) removed? Yes No No No No No No Screen removed? Casing left in place?
City of Manitowoc 200 North 10th Street Well City, Village or Town Manitowoc Subdivision Name Well ZIP Code Subdivision Name Lot # Manitowoc City of Present Owner 900 Quay Street City of Present Owner 900 Quay Street City of Present Owner Manitowoc 4. Pump, Liner, Screen, Casing & Sealing Material Pump and piping removed? Yes No No No No No No No No No No N
Mailing Address of Present Owner
Well City, Village or Town Manitowoc Subdivision Name Lot # Manitowoc Subdivision Name Lot # Manitowoc A. Pump, Liner, Screen, Casing & Sealing Material Pump and piping removed? Liner(s) removed? Screen removed? Screen removed? City of Present Owner Manitowoc A. Pump, Liner, Screen, Casing & Sealing Material Pump and piping removed? Yes No No No No No Screen removed? Casing left in place? Version No No No No Casing left in place?
Manitowoc Subdivision Name Lot # Manitowoc Mi State Mi Java State Mi Joya State Manitowoc Mi State Manitowoc Mi State Mi Joya State Manitowoc Mi Joya State Mi Joya State Manitowoc Mi Joya State Manitowoc Manitowoc Manitowoc Manitowoc Manitowoc Manitowoc Manitowoc Manitowoc Mi Joya State Manitowoc Mi Joya State M
Reason For Removal From Service Soil borehole abandonment Manitowoc W1 54220
Reason For Removal From Service Soil borehole abandonment Yes No N/
Soil borehole abandonment 3. Well / Drillhole / Borehole Information Monitoring Well Original Construction Date Pump and piping removed? Liner(s) removed? Screen removed? Casing left in place? Ves No N/ Casing left in place?
3. Well / Drillhole / Borehole Information Monitoring Well Casing left in place? Liner(s) removed? Screen removed? Casing left in place?
Monitoring Well Original Construction Date Screen removed? Yes No N/
Casing left in place?
\N/=4\N/=
Water Well Was casing cut off below surface? Yes No No No
Drillhole / Borehole If a Well Construction Report is available, please attach. Did sealing material rise to surface? Yes No No No No No No No N
Did material settle after 24 hours? Ves No No No No No No No No No No No No No
Political (Conduction)
V Vop □ No □ NU
Required Method of Placing Sealing Material
Formation Type: Conductor Pipe-Gravity Conductor Pipe-Pumped
Unconsolidated Formation Bedrock Screened & Poured Other (Explain)
Total Well Depth From Ground Surface (ft) Casing Diameter (in.) (Bentonite Chips)
Sealing Materials
Lower Drillhole Diameter (in.) Casing Depth (ft.) Neat Cement Grout Clay-Sand Slurry (11 lb./gal
2.3 Sand-Cement (Concrete) Grout Bentonite-Sand Slurry "
Was well annular space grouted? Yes No Unknown For Monitoring Wells and Monitoring Well Boreholes Only:
Was well annular space grouted?
7.0 Granular Bentonite Bentonite - Sand Slurry
No Vendo Cooles Cooles Mix Detio
5. Material Used to Fill Well / Drillhole From (ft.) To (ft.) No. Yards, Sacks Sealant or Volume (circle one) or Mud Weight
Bentonite chips Surface 10.0 0.25 Sacks
6. Comments
7. Supervision of Work DNR Use Only
Name of Person or Firm Doing Filling & Sealing License # Date of Filling & Sealing (mm/dd/yyyy)Date Received Noted By
Horizon Construction and Exploration, LLC 1/17/2023
Street or Route Telephone Number Comments
764 Tower Drive (262) 692 - 3347 City State ZIP Code Signature of Person, Doing Wow Date Signed
Fredonia WI 53021 1/17/2023

Form 3300-5 (R 4/08)

Page 1 of 2

□ \/orificatio	n Only of Fill o	nd Sool	F	Route to) :			_		_		
□ verilicatio	on Only of Fill a	inu Seai			rinking V	Vater	Ļ	_	ed/Wastew	ater 🔀 F	Remediati	ion/Redevelopment
			丄	<u></u> Ш w	aste Ma	nagen		_ Other _				
1. Well Location			1				2. Facility		nformation	1		
County	WI Unique ' Removed V		HIG	cap#			Facility Name					
Manitowoc	1			SB-260)		River Poir Facility ID (FI	nt Area B-1				
	de (Degrees and Mir	nutes)			(see ins	structio		D OI PWS)				
0 1	" ' N						License/Perm	nit/Monitorin	na #			
0 !	" 'W							# 02-36-58:	•			
1/4 / 1/4 NE	1/4 NE	Section	Town	nship	Range	⊠ E	0-1-1		J 4 71			
or Gov't Lot#		30		19	24							
Well Street Addre	SS	ı					Present Well	Owner				
200 North 10tl	h Street						City of Ma		1.0			
Well City, Village			V	Vell ZIP	Code		Mailing Addre		ent Owner			
Manitowoc				54220			900 Quay City of Preser				State	ZIP Code
Subdivision Name	;		L	ot #			Manitowo				WI	54220
									en. Casino	g & Sealing Ma		34220
Reason For Remo	oval From Service	WI Unique W	/ell#o	of Repla	cement '	Well		piping remo		, .	Yes	No N/A
Soil borehole a							Liner(s) re		oveu:	F	Yes	No N/A
3. Well / Drillho	ole / Borehole Info			5			Screen rer				Yes	No N/A
Monitorin	g Well	Original Co	nstruc	ction Da	te		Casing left				Yes	No N/A
Water W	ell							ng cut off be	low surface	?	Yes	No N/A
Drillhole	/ Borehole	If a Well				S		g material ri		Ν.	Yes	No N/A
	Berenele	available	, pieas	se attaci	n		Did materi	al settle afte	er 24 hours	? _	Yes [No N/A
Construction Type					1 _		If yes, w	as hole reto	pped?		Yes	No N/A
Drilled	Driver	n (Sandpoint)			Dug		If bentonite	e chips were	e used, were	e they hydrated	a r	
Other (Specif								from a know			Yes [No N/A
Formation Type:							Required Met	ctor Pipe-Gr	-		ustar Din	a Dummad
	ed Formation		Bedı	rock				ed & Poure	•		(Explain)	e-Pumped
Total Well Denth	From Ground Surfac	e (ft) Casino	ı Diam	eter (in.)		_	nite Chips)	u		(Explain)	,
. o.a o 2 op	. rom Ground Gando	5 (.t.) Gass	, D .a		')		Sealing Mate					
Lower Drillhole Di	ameter (in)	Casing	. Denth	h (ft)				ement Grou	ıt	□ c	lay-Sand	Slurry (11 lb./gal. w
	amotor (m.)	Odome	, Бори	(14.)			Sand-C	Cement (Cor	ncrete) Gro			Sand Slurry " "
2.3			<u> </u>				─ Concre	te		⊠в	entonite (Chips
Was well annular	· •		S No		Unknov	wn	For Monitorin	g Wells and	Monitoring	Well Boreholes O	-	
If yes, to what dep	th (feet)?	Depth to W	ater (f	eet)				ite Chips		Bentonite -		
		7.5					Granula	ar Bentonite		Bentonite -		<u> </u>
5. Material Use	ed to Fill Well / Dr	illhole					From (ft.)	To (ft.)		irds, Sacks Sea Dlume (circle o		Mix Ratio or Mud Weight
Bentonite chips	S						Surface	10.0		0.25		Sacks
6. Comments												
7. Supervision										DN	IR Use C	Only
	r Firm Doing Filling 8	_	L	License	#	I	Date of Filling &	Sealing (m	m/dd/yyyy	ate Received	Not	ted By
	ruction and Explor	ation, LLC					1/17/2023					
Street or Route							Telephone Num		C	comments		
764 Tower Dri	ve		Sta	ıto.	ZIP Cod		(262) 692 - 3 Signature of I		na Werk		Det	te Signed
Fredonia				WI	5302		Signature of I	GISUII IJUII	y volk	<i>#</i> ·		/17/2023
i i cuolila			١, ١	7 Y I	1 2302	- I	1	1//	1/1//	///	1/	1,,2020

Form 3300-5 (R 4/08)

Page 1 of 2

☐ Verification	n Only of Fill a	nd Seal	K	oute to				_	-					
vermoation	ii Oilly Oi i lii a	nd Ocai			inking \				_	ed/Wastev	vater 🔀	Remedia	ation/Red	levelopment
4 14/-11 1 41				<u> </u>	aste M	anage			Other _	. 				
1. Well Location	MI Unique \	Nell # of	Hica	an#				2. Facility acility Name		ntormatio	<u>n</u>			
County	Removed W		11100	лр <i>п</i>			ľ	River Poin						
Manitowoc				B-261			F	acility ID (FII						
_	le (Degrees and Min	utes)	Method	Code	(see in	structi	ions)							
0 !	" 'N						L	icense/Perm	it/Monitorin	ıg#				
0 1	" 'W	04:	I -	-1-1	l D			BRRTS#		5491				
1/4 / 1/4 NE	¹ / ₄ NE	Section 30	Towns		Range 24	"⊠ ı	E C	Original Well	Owner					
or Gov't Lot #		30	18	<i></i>	24	<u></u> □ '	W	Present Well	Owner					
Well Street Addres	SS						ľ	City of Ma						
200 North 10th							N	Mailing Addre		ent Owner				
Well City, Village o	or Town			ell ZIP				900 Quay	Street					
Manitowoc				54220			C	City of Preser	t Owner			State	ZIP	Code
Subdivision Name			Lot	τ#			L	Manitowo				WI	. 5	54220
Reason For Remov	val From Service	WI Unique W	/ell # of	Renla	rement	t Well		1. Pump, Li	ner, Scre	en, Casin	g & Sealing N	aterial		
Soil borehole al		W Omquo W	7 OII 77 OI 1	rtopia	001110111			Pump and	piping remo	oved?		Yes	∐ No	∐ N/A
	le / Borehole Info	rmation						Liner(s) rer	noved?			Yes	∐ No	N/A
Monitoring	ı Well	Original Co	nstructio	on Dat	ie .		\neg	Screen ren				Yes Yes	∐ No ⊠ No	N/A N/A
☐ Water We	•							Casing left				Yes	No	□ N/A
		If a Well	Constru	ıction F	Report i	is		Was casing	•			Yes Yes	☐ No	□ N/A
Drillhole /	Borehole	available						Did sealing Did materia				Yes	☐ No	□ N/A
Construction Type:									as hole reto		• •	Yes	☐ No	N/A
Drilled	Driver	(Sandpoint)			Dug						re they hydrated			_
Other (Specify	<i>(</i>)						L	with water			ui oo	X Yes	☐ No	N/A
Formation Type:							— F	Required Met		-				
☐ Unconsolidated	d Formation	Г	Bedro	nck					tor Pipe-Gr	•			ipe-Pump	ed
		/fil 0 :			`				ed & Poure	d	∟ Oth	er (Explai	in)	
rotai weli Depth F	rom Ground Surface	e (III) Casing	g Diamet	ter (in.)			•	ite Chips)					
		0 :	D 11 1	/ft \			— ⁵	Sealing Mater	iais ement Grou	ıt		Clay-Sar	nd Slurry ((11 lb./gal. wt
Lower Drillhole Dia	imeter (in.)	Casing	g Depth ((π.)					ement (Cor				e-Sand Sl	
2.3			_					Concret	`	,		Bentonite		,
Was well annular s	space grouted?	Yes 2	⊠ No	Ш	Unkno	own	F	or Monitoring	g Wells and	Monitoring	Well Boreholes	Only:		
If yes, to what dept	h (feet)?	Depth to W	ater (fee	et)				Bentoni	te Chips		Bentonite	- Cemen	t Grout	
		7.5						☐ Granula	r Bentonite		☐ Bentonite			
5. Material Used	d to Fill Well / Dr	illhole						From (ft.)	To (ft.)		ards, Sacks S olume (circle		l	x Ratio Id Weight
Bentonite chips							_	Surface	10.0		0.25		S	Sacks
							+							
6. Comments														
7. Supervision		CII	lı ·		ш		ID /	C = 10	OIII /	/-l-l /		ONR Use		
	Firm Doing Filling 8	•	Lic	cense	#f			•	sealing (m	m/aa/yyyy)	Date Received	N	oted By	
Horizon Constri	uction and Explora	ation, LLC					_	/17/2023 ephone Numl	her		Comments			
764 Tower Driv	ve.							262) 692 - 3			Commonto			
City			State	e	ZIP Co	ode		Signature of F		ng Work	/	D	ate Signe	:d
Fredonia			W	Γ	530	21			1/1	HA	7		1/17/202	23

ATTACHMENT C Well Construction Forms

Facility/Project Name	Remediation		Other		INC WAL		98	
200 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Local Grid Loc	_ DN		П Е.	Well Name			
River Point District - Lot 3 Facility License, Permit or Monitoring No.	Local Cuid Oui	ft. □ S Igin □ (estimate	ft.	□ W.	MV	V-231		
	Local Grid Ori	igin [(estimated	u:	vell Location 🖂	Wis. Unique Well No.	DNR Well	Num	iber
BRRTS #02-36-176478 Facility ID		L			Date Well Installed		_	
racinty 15	St. Plane	301,639 ft. N,	232,508	_ ft. E. S/C/N	7.6272			
Type of Well	Section Location	on of Waste/Source		ME		3/2022		Ci
	NE_1/4 of _	NE 1/4 of Sec	30 T. 19	N, R. 24 DW	Well Installed By: (Pe			
Well Code 71/dw Distance from Waste/ Enf. Stds.			DOGLOO	Gov. Lot Number	Ben	Long		
Source ft. Apply	u □ Upgrad d □ Downs	gradient n 🗆	Sidegradient Not Known		Horizon Construction			
A. Protective pipe, top elevation	ft. MSL		1	1. Cap and lock?		⊠ Ye	s 🗆	No
	594.46 ft. MSL			2. Protective cover pi	-			
				a. Inside diameter:				i
C. Land surface elevation	591.5 ft. MSL		200	b. Length:				
D. Surface seal, bottom ft. M	SL or ft	53F3F	15.275.27	c. Material:	N/A			04
12. USCS classification of soil near screen:		275.275	ANT 317 31	d. Additional prote		Other ☐ Yes		
GP □ GM □ GC □ GW □	SW □ SP ⊠	1	X		ction;		5 🖂	NO
	CL CH 🗆		11/			Bentonite	_ 	2.0
Bedrock □				3. Surface seal:		Concrete		
13. Sieve analysis attached?	Yes ⊠ No					Other	_	
14. Drilling method used: Ro	otary 🗆 5 0			. Material between v	vell casing and protective			
Hollow Stem A	•				and protection	Bentonite	: 🗆	3 0
	Other 🗆		▩		N/A			
		ft.	55	Δnnular snace seal	: a. Granular/Chipp			
15. Drilling fluid used: Water □ 0 2	Air 🗆 0 1	■	8 1		ıd weight Bentoni			
Drilling Mud 🗀 0 3 N	lone ⊠99				ıd weight Be			
16 75 700 1100 10		■	` ⊗	d% Bentoni		-cement grout		
16. Drilling additives used?	Yes ⊠ No		₩ .		volume added for any of	f the above		
Describe			▩	f. How installed:	·	Tremie		0 1
17. Source of water (attach analysis, if require					Tr	emie pumped		02
17. Source of water (attach analysis, if requir	ea):		▩			Gravity	\boxtimes	08
			₩ 6	. Bentonite seal:	a. Bento	onite granules		3 3
			₩ /	b. □ 1/4 in. ⊠ 3		entonite chips		
E. Bentonite seal, top591.5 ft. MS	L or0.0	ft. 🗎	₩ /	С		Other		
F. Fine sand, top589.0_ ft. MS	L or			. Fine sand material:	Manufacturer, product	t name & mes	h siz	ze
II. IVID	<i>L</i> or	" / 🕷	₩//	b. Volume added	1.5 f	+3		
G. Filter pack, top 588.5 ft. MS	L or3.0	ft. \ [3]	8		: Manufacturer, produc		sh s	ize
1 / 1			1	a	, in the second of the second	A Mainte de Inte	511 01	izo
H. Screen joint, top 587.5 ft. MS	L or4.0	ft.		b. Volume added	1 f	3		-
			9	. Well casing:	Flush threaded PVC		\boxtimes	2 3
I. Well bottom 577.5 ft. MS	L or14.0	A. [8]			Flush threaded PVC			24
			4			Other		
Filter pack, bottom 577.5 ft. MS	L or14.0	n.	10	. Screen material:	PVC		_	33
		VIIII		a. Screen Type:		Factory cut	\boxtimes	11
K. Borehole, bottom 576.5 ft. MS	L or15.0	ft			Co	ntinuous slot		0 1
999						Other		
. Borehole, diameter 2.3 in.		V/////		b. Manufacturer				
			1	c. Slot size:		_	0.01	10 in
M. O.D. well casing 2.25 in.			1	d. Slotted length:		0-		.0 f
3.00			11.	Backfill material (b	elow filter pack):	None		
N. I.D. well casing 2.00 in.						Other		
hereby certify that the information on this for								

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent

River Point District Losa Grid Origin	Facility/Project Name	Remediation/Redevelopment Local Grid Location of Well	Other	Form 4400-113A Rev.	7-98	_
Section Least		e □N.	⊕ E.	MW-234		
St. Plane St. Plane St. Plane St. Plane Section Location of WasterSource NE_146 f NE_146	Facility License, Permit or Monitoring No.	Local Grid Origin (estimated:) or Well Location		ll Nur	mber
Section Castering Caster						
Net Velt Code 71/dw Net 14 of Sec. 30 T. 19 N. R. 24 St Welt Installed By: (Person's Name and Firm Distance from Waste) Source R. Apply Degradient N Degradient	racinty iD	St. Plane301,587 ft. N,2	32,492 ft. E. S/C/N			
Distance from Waster Source Continuous state Distance from Waster Distance from W	Type of Well	Section Location of Waste/Source	ME	Wall Installed By: (Person's Nam	oand	Cima
Distance from Waster Source R. Apply	The control	<u>NE</u> 1/4 of <u>NE</u> 1/4 of Sec. <u>30</u>	T. 19 N. R. 24 W	Well histaried by. (Leison's Ham	Callu	Tituly
A. Protective pipe, top elevation	Distance from Waste/ Enf. Stds.	u □ Upgradient s □ Sideg	radient Gov. Lot Number			
C. Land surface elevation	A Protective nine ton elevation	ft MSI	1. Cap and lock?			
D. Surface seal, bottom	El Work Cashing, top Clovation	— IC. MISE	a. Inside diameter	pipe:		i
D. Surface seal, bottom	C. Land surface elevation	89.8 ft. MSL		Ct.		
12. USCS classification of soil near screen: GP	D. Surface seal, bottom ft. MSL	or ft.	c. Material:	* * 1 4		
If yes, describe:	12. USCS classification of soil near screen:	77.07	d Additional prot	Ou		
SC		V⊠ SP □	1			3 110
13. Sieve analysis attached?	SM □ SC □ ML □ MH⊠ CI	. CHM	1 1			⊠ 30
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. E. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.			3. Surface seal:			
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. Borehole, diameter 2.3 in. 7. Fine sand material: Manufacturer, product name & mesh size a. b. Volume added 1.5 ft³ 8. Filter pack material: Manufacturer, product name & mesh size a. b. Volume added 1 ft³ 9. Well casing: Flush threaded PVC schedule 40 ≥ 2 Flush threaded PVC schedule 80 ≥ 2 Other □ □ Continuous slot □ 0 Other □ □ Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.	13. Sieve analysis attached?	s ⊠ No	\	Oth	ner 🗆	J
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. Borehole, diameter 2.3 in. 7. Fine sand material: Manufacturer, product name & mesh size a. b. Volume added 1.5 ft³ 8. Filter pack material: Manufacturer, product name & mesh size a. b. Volume added 1 ft³ 9. Well casing: Flush threaded PVC schedule 40 ≥ 2 Flush threaded PVC schedule 80 ≥ 2 Other □ □ Continuous slot □ 0 Other □ □ Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.	_	y □50	4. Material between	well casing and protective pipe:		
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. Borehole, diameter 2.3 in. 7. Fine sand material: Manufacturer, product name & mesh size a. b. Volume added 1.5 ft³ 8. Filter pack material: Manufacturer, product name & mesh size a. b. Volume added 1 ft³ 9. Well casing: Flush threaded PVC schedule 40 ≥ 2 Flush threaded PVC schedule 80 ≥ 2 Other □ □ Continuous slot □ 0 Other □ □ Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.		er ⊠ 4 1				
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. Borehole, diameter 2.3 in. 7. Fine sand material: Manufacturer, product name & mesh size a. b. Volume added 1.5 ft³ 8. Filter pack material: Manufacturer, product name & mesh size a. b. Volume added 1 ft³ 9. Well casing: Flush threaded PVC schedule 40 ≥ 2 Flush threaded PVC schedule 80 ≥ 2 Other □ □ Continuous slot □ 0 Other □ □ Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.	Othe	# U 		N/A Oth	ier 🗵	⊠
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. Borehole, diameter 2.3 in. 7. Fine sand material: Manufacturer, product name & mesh size a. b. Volume added 1.5 ft³ 8. Filter pack material: Manufacturer, product name & mesh size a. b. Volume added 1 ft³ 9. Well casing: Flush threaded PVC schedule 40 ≥ 2 Flush threaded PVC schedule 80 ≥ 2 Other □ □ Continuous slot □ 0 Other □ □ Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.	15 Drilling fluid used: Water □ 0.2 Ai	- O1				
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. E. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.		e 🖂 9 9				
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. E. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.			_	_	-	
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. E. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.	16. Drilling additives used? ☐ Ye	s ⊠ No				7 20
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. E. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.						0 1
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. E. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.				Tremie pump	ed [02
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. E. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.	17. Source of water (attach analysis, if required)	.		Grav	ity 🗵	3 08
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. E. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.			6. Bentonite seal:	a. Bentonite granul	ies 🗆	33
F. Fine sand, top 587.3 ft. MSL or 2.5 ft. G. Filter pack, top 586.8 ft. MSL or 3.0 ft. H. Screen joint, top 585.8 ft. MSL or 4.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. E. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.			/		•	
6. Filter pack, top 586.8 ft. MSL or 3.0 ft. 8. Filter pack material: Manufacturer, product name & mesh size a. b. Volume added 1 ft ³ 9. Well casing: Flush threaded PVC schedule 40 ≥ 2 Flush threaded PVC schedule 80 □ 2 1. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. 10. Screen material: PVC 1. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. 15.0	E. Bentonite seal, top 589.8 ft. MSL c	V 1001				
6. Filter pack, top 586.8 ft. MSL or 3.0 ft. 8. Filter pack material: Manufacturer, product name & mesh size a. b. Volume added 1 ft ³ 9. Well casing: Flush threaded PVC schedule 40 ≥ 2 Flush threaded PVC schedule 80 □ 2 1. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. 10. Screen material: PVC 1. Filter pack, bottom 574.8 ft. MSL or 15.0 ft. 15.0	F. Fine sand, top 587.3 ft. MSL of	or	a		iesh si	ize
H. Screen joint, top 585.8 ft. MSL or 4.0 ft. Moderate Section Secti	596.0	1 164 168	/			
H. Screen joint, top 585.8 ft. MSL or 4.0 ft. I. Well bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. I. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in.	G. Filter pack, top ft. MSL c	or	/	al: Manufacturer, product name &	mesh s	size
I. Well bottom 575.8 ft. MSL or 14.0 ft. J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. 10. Screen material: a. Screen Type: Factory cut ≥ 1 Continuous slot □ 0 Other □ _ L. Borehole, diameter 2.3 in. b. Manufacturer c. Slot size: d. Slotted length: M. O.D. well casing Flush threaded PVC schedule 40 ≥ 2 Flush threaded PVC schedule 80 □ 2 Flush threaded PVC schedule 80 □ 2 Cother □ _ Other □ _ Other □ _ Other □ _ Other □ _ Slot size: d. Slotted length:	H. Screen joint, top585.8 ft. MSL c	or4.0 ft.		1 ft ³		
Other	-		f		40 ⊠	3 23
J. Filter pack, bottom 575.8 ft. MSL or 14.0 ft. 10. Screen material: PVC a. Screen Type: Factory cut ⋈ 1 1 Continuous slot □ 0 Other □ □ L. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in. 10. Screen material: PVC	I. Well bottom575.8 ft. MSL c	r 14.0 ft.				
A. Borehole, bottom 574.8 ft. MSL or 15.0 ft. Continuous slot □ 0 Continuous slot □ 0 Continuous slot □				Oth	er 🗆]
K. Borehole, bottom 574.8 ft. MSL or 15.0 ft. L. Borehole, diameter 2.3 in. M. O.D. well casing 2.25 in. Continuous slot □ 0 Other □ □ b. Manufacturer c. Slot size: 0.010 d. Slotted length: 10.0	J. Filter pack, bottom575.8 ft. MSL c	r14.0 ft.	10. Screen material:	PVC		
Countries	574.0	150	a. Screen Type:	· ·		
L. Borehole, diameter 2.3 in. b. Manufacturer c. Slot size: 0.010 d. Slotted length: 10.0	K. Borehole, bottom <u>574.8</u> ft. MSL o	r15.0 ft.				
c. Slot size: 0.010 M. O.D. well casing 2.25 in. c. Slotted length: 10.0			1	Oth	er 🗆]
M. O.D. well casing <u>2.25</u> in. d. Slotted length: <u>10.0</u>	L. Borehole, diameter 2.3 in.	-			0.0	010 -
	M.O.D. well agains 2.25 in				1/	00 r
II Backfill material thelow filter nackly None IVI I .	vi. O.D. well castingin.			below filter pack):		
0.00	N. I.D. well casing <u>2.00</u> in.		Backini materiai (

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

ATTACHMENT D Stantec Laboratory Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-214283-1

Client Project/Site: Lot 3, River Point Dist. - Manitowoc

193708490

For:

Stantec Consulting Corp. 12075 Corporate Pkwy, Suite 200 Mequon, Wisconsin 53092

Attn: Whitney Cull

Sanda heduk

Authorized for release by:

Authorized for release by: 4/15/2022 8:48:06 AM

Sandie Fredrick, Project Manager II (920)261-1660

Sandra.Fredrick@et.eurofinsus.com

LINKS

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

5

6

8

11

14

14

16

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	8
Method Summary	27
Sample Summary	28
Client Sample Results	30
Definitions	216
QC Association	218
Surrogate Summary	235
QC Sample Results	242
Chronicle	317
Certification Summary	341
Chain of Custody	342
Receipt Checklists	352
Field Data Sheets	354
Isotope Dilution Summary	355

3

4

6

8

10

12

10

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-214283-1

Comments

No additional comments.

Receipt

The samples were received on 3/29/2022 10:20 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 3 coolers at receipt time were -0.7° C, 0.8° C and 2.7° C.

Receipt Exceptions

The following sample(s) was listed on the Chain of Custody (COC); however, no sample(s) was received: "EB-2" for PFAS.

One or more containers for the following sample(s) was received broken or leaking: Sample #53 "TW-230" one of three voa vials received broken.

GC/MS VOA

Method 5035: sample vial has < 8 grams of soil in 10 ml of methanol. SB-230 3.5-4.5 (500-214283-8), SB-217 0-2 (500-214283-24), SB-223 4-6 (500-214283-27), SB-220 4-5 (500-214283-30), SB-225 2-4 (500-214283-32), SB-218 2-4 (500-214283-38) and FD-2 (500-214283-39)

Method 8260B: The laboratory control sample (LCS) for 649331 recovered outside control limits for Vinyl chloride and Dichlorodifluoromethane. This is a prepped 5035 LCS. All daily insrument LCSs were acceptable, and the data have been reported.SB-236 3.5-5 (500-214283-1), SB-236 6-7 (500-214283-2), SB-234 3.5-4.5 (500-214283-3), SB-234 4.5-6.5 (500-214283-4), SB-229 1-3 (500-214283-5), SB-229 5-7 (500-214283-7), SB-230 3.5-4.5 (500-214283-8), SB-230 8-10 (500-214283-10), SB-231 5-7 (500-214283-11), SB-231 8.25-10 (500-214283-12), SB-224 1-3 (500-214283-13), SB-224 7-8 (500-214283-14), SB-222 6.5-8 (500-214283-15), SB-222 9-10 (500-214283-16), SB-216 8-8.5 (500-214283-18), SB-216 10-11 (500-214283-19), SB-237 1-2 (500-214283-20), SB-237 9-10 (500-214283-21), SB-213 0-2 (500-214283-22) and SB-213 10-12 (500-214283-23)

Method 8260B: Methylene chloride was detected in the following items: SB-236 3.5-5 (500-214283-1), SB-236 6-7 (500-214283-2), SB-234 3.5-4.5 (500-214283-3), SB-234 4.5-6.5 (500-214283-4), SB-229 1-3 (500-214283-5), SB-229 5-7 (500-214283-7), SB-230 3.5-4.5 (500-214283-8), SB-230 8-10 (500-214283-10), SB-231 5-7 (500-214283-11), SB-231 8.25-10 (500-214283-12), SB-224 1-3 (500-214283-13), SB-224 7-8 (500-214283-14), SB-222 6.5-8 (500-214283-15), SB-222 9-10 (500-214283-16), SB-216 8-8.5 (500-214283-18), SB-216 10-11 (500-214283-19), SB-237 1-2 (500-214283-20), SB-237 9-10 (500-214283-21), SB-213 0-2 (500-214283-22), SB-213 10-12 (500-214283-23) and (LB3 500-649332/21-A). Methylene chloride is a known lab contaminant; therefore all low level detects for this compound could be suspected as lab contamination.

Method 8260B: The matrix spike duplicate (MSD) for the following sample was analyzed outside the 12 hour tune window. No further action was taken.SB-236 3.5-5 (500-214283-1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 500-649620 and analytical batch 500-649786 recovered outside control limits for the following analytes: Benzoic acid.

Method 8270D: The continuing calibration verification (CCV) analyzed in batch 500-649786 was outside the method criteria for the following analyte(s): Hexachlorocyclopentadiene, 3,3'-Dichlorobenzinde, 4-Nitrophenol and 4-nitroaniline A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D: The continuing calibration verification (CCV) associated with batch 500-649786 recovered above the upper control limit for Phenol, Benzo[a]pyrene, Benzo[k]fluoranthene, Benzo[g,h,i]perylene, Dibenz(a,h)anthracene and Indeno[1,2,3-cd]pyrene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

9

Job ID: 500-214283-1

3

4

5

6

8

4.6

11

16

14

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1 (Continued)

Laboratory: Eurofins Chicago (Continued)

Method 8270D: The continuing calibration verification (CCV) analyzed in batch 500-650605 was outside the method criteria for the following analyte(s): 2,2'-oxybis[1-chloropropane], 2,6-Dinitrotoluene, Benzyl alcohol, Hexachlorocyclopentadiene and N-Nitrosodi-n-propylamine. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 500-650394 and analytical batch 500-650605 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recoveries was within acceptance limits.

Method 8270D: Perylene-d12 Internal standard (ISTD) response for the following associated MS were outside of acceptance limits. However; The Internal standard in parent sample and associated MSD were within of acceptance limits. re-analysis was not performed. (500-214283-C-1-E MS).

Method 8270D: The following samples were diluted due to the nature of the sample matrix: SB-236 3.5-5 (500-214283-1), (500-214283-C-1-E MS) and (500-214283-C-1-F MSD). Elevated reporting limits (RLs) are provided.

Method 8270D: The following sample contained one acid surrogate outside acceptance limits: SB-236 3.5-5 (500-214283-1) and (500-214283-C-1-E MS). The laboratory's SOP allows one acid and one base surrogate to be outside acceptance limits; therefore, re-extraction was not performed. These results have been reported and qualified.

Method 8270D: The continuing calibration verification (CCV) analyzed in 500-650611 was outside the method criteria for the following analyte(s): Benzo[k]fluoranthene. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D: The continuing calibration verification (CCV) analyzed in batch 500-650792 was outside the method criteria for the following analytes: Hexachlorocyclopentadiene, Pentachlorophenol, and Benzyl alcohol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

Method 8270D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 500-650648 and analytical batch 500-650792 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8270D: The following samples were diluted due to the nature of the sample matrix: SB-221 0-2 (500-214283-36), SB-221 0-2 (500-214283-36[MS]) and SB-221 0-2 (500-214283-36[MSD]). Elevated reporting limits (RLs) are provided.

Method 8270D: Perylene-d12 Internal standard (ISTD) response for the following associated MS and MSD were outside of acceptance limits.however Internal standard in parent samples were within acceptance limits . SB-221 0-2 (500-214283-36[MS]) and SB-221 0-2 (500-214283-36[MSD]).

Method 8270D: The continuing calibration verification (CCV) analyzed in 500-650798 was outside the method criteria for the following analyte(s): Benzo[k]fluoranthene. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D: The following sample contained one base surrogate outside acceptance limits: SB-215 6-7 (500-214283-44). The laboratory's SOP allows one base surrogate to be outside acceptance limits; therefore, re-extraction was not performed. These results have been reported and qualified.

Method 8270D: The following samples required a dilution due to the nature of the sample matrix: SB-222 6.5-8 (500-214283-15), SB-237 1-2 (500-214283-20) and SB-221 0-2 (500-214283-36). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method 8270D: The following sample contained one acid surrogate outside acceptance limits: SB-214 0-2 (500-214283-41). The laboratory's SOP allows one acid and one base surrogate to be outside acceptance limits; therefore, re-extraction was not performed.

Job ID: 500-214283-1

3

4

6

9

11

12

14

13

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1 (Continued)

Laboratory: Eurofins Chicago (Continued)

These results have been reported and qualified.

Method 8270D: Naphthalene-d8 Internal standard (ISTD) response for the following sample was outside of acceptance limits: SB-222 6.5-8 (500-214283-15). Analytes associated to this internal standard were non-detect; therefore, re-analysis was not performed.

Method 8270D: The continuing calibration verification (CCV) analyzed in batch 500-651037 was outside the method criteria for the following analyte(s): Pentachlorophenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D: Internal standard responses for Perylene-d12 was outside of acceptance limits for the following samples: SB-221 0-2 (500-214283-36) and SB-215 0-2 (500-214283-43). The samples were run a second time with concurring results. Results with the highest ISTD recovery have been reported.

Method 8270D: Naphthalene-d8 Internal standard (ISTD) response for the following sample was outside of acceptance limits: SB-221 0-2 (500-214283-36). This internal standard is not associated to the reported analytes; therefore, re-analysis was not performed.

Method 8270D: The following samples were diluted due to the nature of the sample matrix: SB-222 6.5-8 (500-214283-15), SB-237 1-2 (500-214283-20), SB-213 0-2 (500-214283-22), SB-217 0-2 (500-214283-24), SB-223 4-6 (500-214283-27), SB-225 2-4 (500-214283-32), SB-227 4-6 (500-214283-34), SB-218 2-4 (500-214283-38) and SB-214 0-2 (500-214283-41). Elevated reporting limits (RLs) are provided.

Method 8270D: The following sample required a dilution due to the nature of the sample matrix: SB-224 1-3 (500-214283-13). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method 8270D: The following sample was diluted due to the nature of the sample matrix: SB-224 1-3 (500-214283-13). Elevated reporting limits (RLs) are provided.

Method 8270D: The continuing calibration verification (CCV) associated with batch 500-650792 recovered above the upper control limit for 2-Nitrophenol. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCVIS 500-650792/2).

Method 8270D: The following samples were diluted due to the nature of the sample matrix: SB-234 3.5-4.5 (500-214283-3) and SB-224 1-3 (500-214283-13). Elevated reporting limits (RLs) are provided.

Method 8270D: The continuing calibration verification (CCV) analyzed in batch 500-651252 was outside the method criteria for the following analyte(s): Benzyl alcohol, Hexachlorocyclopentadiene and Pentachlorophenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D: The continuing calibration verification (CCV) analyzed in 500-651252 was outside the method criteria for the following analyte(s): 2,4-Dinitrotoluene, Benzo[q,h,i]perylene, Dibenz(a,h)anthracene and Indeno[1,2,3-cd]pyrene. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte(s) is considered estimated.

Method 8270D: The following sample was diluted due to the nature of the sample matrix: SB-220 4-5 (500-214283-30). Elevated reporting limits (RLs) are provided.

Method 8270D: The continuing calibration verification (CCV) analyzed in batch 500-651246 was outside the method criteria for the following analytes: Benzyl alcohol, Hexachlorocyclopentadiene and Pentachlorophenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

Method 8270D: The continuing calibration verification (CCV) associated with batch 500-651685 recovered above the upper control limit for 2,4-Dinitrotoluene, Benzo[g,h,i]perylene, Dibenz(a,h)anthracene and Phenol. The samples associated with this CCV were non-detects for

Job ID: 500-214283-1

3

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1 (Continued)

Laboratory: Eurofins Chicago (Continued)

the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCVIS 500-651685/2).

Method 8270D: The continuing calibration verification (CCV) analyzed in batch 500-651685 was outside the method criteria for the following analytes: Hexachlorocyclopentadiene and Pentachlorophenol. A CCV standard at or below the reporting limit (RL) was analyzed with the affected samples and found to be acceptable. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analytes is considered estimated.

Method 8270D: The continuing calibration verification (CCV) analyzed in 500-651685 was outside the method criteria for the following analyte: Indeno[1,2,3-cd]pyrene. As indicated in the reference method, sample analysis may proceed; however, any detection for the affected analyte is considered estimated.

Method 8270D: Surrogate recovery for the following sample was outside control limits: SB-220 4-5 (500-214283-30). Re-extraction was performed outside of holding time with acceptable results. The original analysis has been reported due to hold time considerations.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC Semi VOA

Method 8082A: The laboratory control sample duplicate (LCSD) for preparation batch 500-649706 and analytical batch 500-649859 recovered slightly outside control limits for the following analyte for PCB-1016. However; The laboratory control sample (LCS) recovered meet control limit; therefore, the data have been reported.

Method 8151A: The continuing calibration verification (CCV) associated with batch 500-650032 recovered outside the control limit for Dichlorprop. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported from the primary column. The associated samples are impacted: MW-231 (500-214283-46) and MW-234 (500-214283-47).

Method 8081A: The following sample required a dilution due to the nature of the sample matrix: SB-222 6.5-8 (500-214283-15). Because of this dilution, the surrogate spike concentration in the sample was reduced to a level where the recovery calculation does not provide useful information.

Method 8081A: Surrogate recovery for the following samples were outside control limits: SB-234 3.5-4.5 (500-214283-3), SB-216 7-8 (500-214283-17), SB-221 0-2 (500-214283-36), SB-221 0-2 (500-214283-36[MSD]) and SB-221 0-2 (500-214283-36[MSD]). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8081A: The following samples were diluted due to the nature of the sample matrix: SB-236 3.5-5 (500-214283-1), SB-234 3.5-4.5 (500-214283-3), SB-230 3.5-4.5 (500-214283-8), SB-231 5-7 (500-214283-11), SB-224 1-3 (500-214283-13), SB-222 6.5-8 (500-214283-15), SB-216 7-8 (500-214283-17), SB-213 0-2 (500-214283-22), SB-217 0-2 (500-214283-24), SB-221 0-2 (500-214283-36), SB-221 0-2 (500-214283-36[MS]), SB-221 0-2 (500-214283-36[MSD]) and SB-218 2-4 (500-214283-38). Elevated reporting limits (RLs) are provided.

Method 8081A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 500-650339 and analytical batch 500-650373 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recoveries was within acceptance limits.

Method 8151A: The continuing calibration verification (CCV) associated with batch 500-650580 recovered above the upper control limit for Dicamba. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method 8151A: Surrogate recovery for the following sample was outside the upper control limit: SB-223 4-6 (500-214283-27). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method 8081A: The following samples required a mercury clean-up, via EPA Method 3660A, to reduce matrix interferences caused by sulfur: SB-236 3.5-5 (500-214283-1), SB-234 3.5-4.5 (500-214283-3), SB-229 1-3 (500-214283-5), SB-230 3.5-4.5 (500-214283-8), SB-224 1-3 (500-214283-13), SB-222 6.5-8 (500-214283-15), SB-237 1-2 (500-214283-20), SB-213 0-2 (500-214283-22), SB-217 0-2 (500-214283-24), SB-223 4-6 (500-214283-27), SB-220 4-5 (500-214283-30), SB-225 2-4 (500-214283-32), SB-227 4-6 (500-214283-34), SB-221 0-2 (500-214283-36), SB-221 0-2 (500-214283-36), SB-221 0-2 (500-214283-36)] and SB-218 2-4 (500-214283-38). The reagent lot number used was: W23H004.

Job ID: 500-214283-1

3

6

۶ R

9

11

12

14

10

Eurofins Chicago 4/15/2022

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1 (Continued)

Laboratory: Eurofins Chicago (Continued)

Method 8082A: Surrogate DCB Decachlorobiphenyl recovery for the following sample was outside control limits: SB-218 2-4 (500-214283-38). The other surrogate was within limits; therefore, re-analysis was not performed.

Method 8151A: The continuing calibration verification (CCV) associated with batch 500-651034 recovered above the upper control limit for Dicamba. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 500-651034/1).

Method 8081A: Surrogate recovery for the following samples were outside control limits: SB-215 0-2 (500-214283-43), (500-214283-C-43-D MS) and (500-214283-C-43-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8081A: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 500-650565 and analytical batch 500-651097 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recoveries was within acceptance limits.

Method 8081A: The following samples were diluted due to the nature of the sample matrix: SB-214 0-2 (500-214283-41), SB-215 0-2 (500-214283-43), (500-214283-C-43-D MS) and (500-214283-C-43-E MSD). Elevated reporting limits (RLs) are provided.

Method 8081A: The following samples required a mercury clean-up, via EPA Method 3660A, to reduce matrix interferences caused by sulfur: FD-2 (500-214283-39). The reagent lot number used was: W23H004.

Method 8081A: Surrogate recovery for the following sample was outside the upper control limit: SB-214 0-2 (500-214283-41). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

Method 8081A: The following sample required a mercury clean-up, via EPA Method 3660A, to reduce matrix interferences caused by sulfur: SB-214 0-2 (500-214283-41). The reagent lot number used was: W23H004.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

Method 6020A: The continuing calibration verification (CCV) associated with batch 500-650728 recovered above the upper control limit for Selenium. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

LCMS

Method 537 (modified): The "I" qualifier means the transition mass ratio for the indicated analyte was above the established ratio limits. The qualitative identification of the analyte has some degree of uncertainty, and the reported value may have some high bias. However, analyst judgment was used to positively identify the analyte.

MW-231 (500-214283-46) and MW-234 (500-214283-47)

Method 537 (modified): Isotope Dilution Analyte (IDA) recovery is above the method recommended limit for the following samples: EB-1 (500-214283-45) and MW-231 (500-214283-46). Quantitation by isotope dilution generally precludes any adverse effect on data quality due to elevated IDA recoveries.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Field Service / Mobile Lab

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3535: The following samples were light brown prior to extraction: MW-231 (500-214283-46) and MW-234 (500-214283-47). preparation batch 320-577343 Method: 3535 PFC 28D-W Matrix: Aqueous

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1

Client Sample ID: SB-236 3.5-5

Lab Sample ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2,4-Trimethylbenzene	290		88	32	ug/Kg	50	☼	8260B	Total/NA
1,3,5-Trimethylbenzene	77	J	88	33	ug/Kg	50	₩	8260B	Total/NA
Benzene	64		22	13	ug/Kg	50	₩	8260B	Total/NA
Ethylbenzene	130		22	16	ug/Kg	50	₩	8260B	Total/NA
Isopropylbenzene	91		88	34	ug/Kg	50	₩	8260B	Total/NA
Methylene Chloride	540	В	440	140	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	440	В	88	29	ug/Kg	50	☼	8260B	Total/NA
N-Propylbenzene	110		88	36	ug/Kg	50	₩	8260B	Total/NA
p-Isopropyltoluene	33	J	88	32	ug/Kg	50	₩	8260B	Total/NA
sec-Butylbenzene	41	J	88	35	ug/Kg	50	₩	8260B	Total/NA
Toluene	440		22	13	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	1000		44	19	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	1600	F2 F1	420	51	ug/Kg	5	₩	8270D	Total/NA
2-Methylnaphthalene	2100	F2 F1	420	39	ug/Kg	5	₩	8270D	Total/NA
Acenaphthene	56	J	210	38	ug/Kg	5	₩	8270D	Total/NA
Acenaphthylene	140	J F1	210	28	ug/Kg	5	₩.	8270D	Total/NA
Anthracene	160	J F1	210	35	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	630	F1	210	28	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]pyrene	890	F1	210	41	ug/Kg	5	. ∵	8270D	Total/NA
Benzo[b]fluoranthene	1500	F2 F1	210	45	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene	380	F1	210	68	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	460	F2 F1	210	62	ug/Kg	5	₩	8270D	Total/NA
Chrysene	880	F1	210	57	ug/Kg	5	₩	8270D	Total/NA
Dibenz(a,h)anthracene	90	J F1	210	41	ug/Kg	5	₩	8270D	Total/NA
Dibenzofuran	480	J F1	1100	250	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	1100		210	39	ug/Kg	5	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	350	F2 F1	210	54	ug/Kg	5	₩	8270D	Total/NA
Naphthalene	1300	F1	210	32	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	1300	F1	210	29	ug/Kg	5	₩	8270D	Total/NA
Pyrene	1200		210	42	ug/Kg	5	₩	8270D	Total/NA
PCB-1260	0.034		0.021	0.0080	mg/Kg	1	₩.	8082A	Total/NA
Arsenic	32		1.3	0.44	mg/Kg	1	₩	6010C	Total/NA
Barium	170		1.3	0.15	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.94	В	0.26	0.046	mg/Kg	1	⊅	6010C	Total/NA
Chromium	23	В	1.3	0.63		1	₩	6010C	Total/NA
Lead	2100		0.64	0.30	mg/Kg	1	₩	6010C	Total/NA
Silver	0.54	J	0.64	0.17	mg/Kg	1	₩.	6010C	Total/NA
Mercury	1.0		0.039	0.013	mg/Kg	2	₩	7471B	Total/NA

Client Sample ID: SB-236 6-7

Lead

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	580	В	470	150	ug/Kg	50	₽	8260B	Total/NA
Naphthalene	49	JB	94	31	ug/Kg	50	₩	8260B	Total/NA
Arsenic	1.4		1.2	0.42	mg/Kg	1	₩	6010C	Total/NA

0.61

0.28 mg/Kg

Client Sample ID: SB-234 3.5-4.5

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
1,2,4-Trimethylbenzene	360	100	36 ug/Kg	50 ☆	8260B	Total/NA
1,3,5-Trimethylbenzene	91 J	100	38 ug/Kg	50 ☆	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

7.3

Total/NA

Page 8 of 356

Lab Sample ID: 500-214283-2

Lab Sample ID: 500-214283-3

1 ♯ 6010C

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1

Client Sample ID: SB-234 3.5-4.5 (Continued)

Lab Sample ID: 500-214283-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzene	36		25	15	ug/Kg	50	₩	8260B	Total/NA
Ethylbenzene	190		25	18	ug/Kg	50	₩	8260B	Total/NA
Isopropylbenzene	99	J	100	38	ug/Kg	50	☼	8260B	Total/NA
Methylene Chloride	620	В	500	160	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	480	В	100	33	ug/Kg	50	₩	8260B	Total/NA
n-Butylbenzene	82	J	100	39	ug/Kg	50	☼	8260B	Total/NA
N-Propylbenzene	170		100	41	ug/Kg	50	₩	8260B	Total/NA
p-Isopropyltoluene	44	J	100	36	ug/Kg	50	₩	8260B	Total/NA
sec-Butylbenzene	48	J	100	40	ug/Kg	50	₩	8260B	Total/NA
Toluene	300		25	15	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	770		50	22	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	1400		440	53	ug/Kg	5	☼	8270D	Total/NA
2-Methylnaphthalene	1900		440	40	ug/Kg	5	☼	8270D	Total/NA
3 & 4 Methylphenol	520	J	1100	360	ug/Kg	5	₩	8270D	Total/NA
Acenaphthene	180	J	220	39	ug/Kg	5	☼	8270D	Total/NA
Anthracene	680		220	36	ug/Kg	5	☼	8270D	Total/NA
Benzo[a]anthracene	1600		220	29	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]pyrene	1800		220	42	ug/Kg	5	☼	8270D	Total/NA
Benzo[b]fluoranthene	2000		220	47	ug/Kg	5	☼	8270D	Total/NA
Benzo[g,h,i]perylene	770		220	70	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	760		220	64	ug/Kg	5	☼	8270D	Total/NA
Benzoic acid	2500	J	11000	2200	ug/Kg	5	₩	8270D	Total/NA
Chrysene	1600		220	59	ug/Kg	5	₩	8270D	Total/NA
Dibenz(a,h)anthracene	180	J	220	42	ug/Kg	5	☼	8270D	Total/NA
Dibenzofuran	440	J	1100	260	ug/Kg	5	☼	8270D	Total/NA
Fluoranthene	3300		220	40	ug/Kg	5	₩	8270D	Total/NA
Fluorene	200	J	220	31	ug/Kg	5	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	660		220	56	ug/Kg	5	₩	8270D	Total/NA
Naphthalene	1100		220	34	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	3300		220	30	ug/Kg	5	₩	8270D	Total/NA
Pyrene	3600		220	43	ug/Kg	5	₩	8270D	Total/NA
Arsenic	12		1.4	0.46	mg/Kg	1	₩	6010C	Total/NA
Barium	110		1.4	0.15	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.92	В	0.27	0.049	mg/Kg	1	₩	6010C	Total/NA
Chromium	28	В	1.4	0.67	mg/Kg	1	₩	6010C	Total/NA
Lead	250		0.68	0.31	mg/Kg	1	₩	6010C	Total/NA
Selenium	1.2	J	1.4	0.80	mg/Kg	1	₩	6010C	Total/NA
Silver	0.21	J	0.68	0.17	mg/Kg	1	☼	6010C	Total/NA
Mercury	0.24		0.022	0.0072	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-234 4.5-6.5

Lab Sample ID: 500-214283-4

- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	440	В	350	110	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	28	JB	69	23	ug/Kg	50	₩	8260B	Total/NA
Arsenic	2.0		1.1	0.39	mg/Kg	1	₩	6010C	Total/NA
Lead	4.3		0.57	0.26	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: SB-229 1-3

Lab Sample ID: 500-214283-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	420	В	330	110	ug/Kg	50	₩	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

Page 9 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-229 1-3 (Continued)

Lab Sample ID: 500-214283-5

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1-Methylnaphthalene	8.8	J	73	8.8	ug/Kg	1	✡	8270D	Total/NA
2-Methylnaphthalene	9.7	J	73	6.6	ug/Kg	1	₽	8270D	Total/NA
Anthracene	6.7	J	36	6.0	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	27	J	36	4.9	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	36		36	7.0	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	61		36	7.8	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	17	J	36	12	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	27	J	36	11	ug/Kg	1	₩	8270D	Total/NA
Chrysene	36		36	9.8	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	72		36	6.7	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	14	J	36	9.4	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	9.1	J	36	5.6	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	30	J	36	5.0	ug/Kg	1	₩	8270D	Total/NA
Pyrene	62		36	7.2	ug/Kg	1	☼	8270D	Total/NA
Arsenic	0.80	J	1.1	0.37	mg/Kg	1	₽	6010C	Total/NA
Barium	23		1.1	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.094	JB	0.22	0.039	mg/Kg	1	₩	6010C	Total/NA
Chromium	8.3	В	1.1	0.53	mg/Kg	1	₩	6010C	Total/NA
Lead	42		0.54	0.25	mg/Kg	1	☼	6010C	Total/NA
Mercury	0.056		0.017	0.0057	mg/Kg	1	₽	7471B	Total/NA

Client Sample ID: SB-229 4-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.1		1.0	0.35	mg/Kg	1	₩	6010C	Total/NA
Lead	3.4		0.50	0.23	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-229 5-7

Lab Sample ID: 500-214283-7

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	380	В	320	100	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	31 .	JB	64	21	ug/Kg	50	☼	8260B	Total/NA
Toluene	36		16	9.3	ug/Kg	50	☼	8260B	Total/NA
Xylenes, Total	110		32	14	ug/Kg	50	₩	8260B	Total/NA

Client Sample ID: SB-230 3.5-4.5

Lab Sample ID: 500-214283-8

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2,4-Trimethylbenzene	140		110	39	ug/Kg	50	-	8260B	Total/NA
Ethylbenzene	54		27	20	ug/Kg	50	₩	8260B	Total/NA
Isopropylbenzene	59	J	110	41	ug/Kg	50	₩	8260B	Total/NA
Methylene Chloride	630	В	540	180	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	260	В	110	36	ug/Kg	50	₩	8260B	Total/NA
N-Propylbenzene	78	J	110	45	ug/Kg	50	₩	8260B	Total/NA
Toluene	100		27	16	ug/Kg	50	☼	8260B	Total/NA
Xylenes, Total	420		54	24	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	220	J	240	29	ug/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	260		240	21	ug/Kg	1	₽	8270D	Total/NA
Acenaphthene	200		120	21	ug/Kg	1	☼	8270D	Total/NA
Acenaphthylene	140		120	15	ug/Kg	1	₩	8270D	Total/NA
Anthracene	590		120	20	ug/Kg	1	☼	8270D	Total/NA
Benzo[a]anthracene	1500		120	16	ug/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

5

7

9

10

12

14

15

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-230 3.5-4.5 (Continued)

Lab Sample ID: 500-214283-8

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]pyrene	1700		120	23	ug/Kg		₩	8270D	Total/NA
Benzo[b]fluoranthene	2500		120	25	ug/Kg	1	₽	8270D	Total/NA
Benzo[g,h,i]perylene	330		120	38	ug/Kg	1	₽	8270D	Total/NA
Benzo[k]fluoranthene	1000		120	34	ug/Kg	1	₩	8270D	Total/NA
Bis(2-ethylhexyl) phthalate	220	J	590	210	ug/Kg	1	₩	8270D	Total/NA
Carbazole	380	J	590	290	ug/Kg	1	₩	8270D	Total/NA
Chrysene	1800		120	32	ug/Kg	1	₽	8270D	Total/NA
Dibenz(a,h)anthracene	95	J	120	23	ug/Kg	1	₽	8270D	Total/NA
Dibenzofuran	200	J	590	140	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	4200		120	22	ug/Kg	1	₽	8270D	Total/NA
Fluorene	210		120	16	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	340		120	30	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	230		120	18	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	3300		120	16	ug/Kg	1	₩	8270D	Total/NA
Pyrene	3700		120	23	ug/Kg	1	₽	8270D	Total/NA
4,4'-DDT	51		10	4.7	ug/Kg	5	₩	8081A	Total/NA
PCB-1254	0.11		0.020	0.0067	mg/Kg	1	₩	8082A	Total/NA
Arsenic	11		1.2	0.41	mg/Kg	1	₩	6010C	Total/NA
Barium	140		1.2	0.14	mg/Kg	1	₩	6010C	Total/NA
Cadmium	7.6	В	0.24	0.043	mg/Kg	1	₽	6010C	Total/NA
Chromium	50	В	1.2	0.60	mg/Kg	1	₩	6010C	Total/NA
Lead	890		0.60	0.28	mg/Kg	1	₩	6010C	Total/NA
Selenium	0.84	J	1.2	0.71	mg/Kg	1	₩	6010C	Total/NA
Silver	0.37	J	0.60	0.16	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.83		0.019	0.0064	mg/Kg	1	☼	7471B	Total/NA

Client Sample ID: SB-230 4.5-6

Lab Sample ID: 500-214283-9

Analyte	Result Qu	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	8.5 J	35	4.8	ug/Kg		☼	8270D	Total/NA
Benzo[b]fluoranthene	8.2 J	35	7.6	ug/Kg	1	☼	8270D	Total/NA
Fluoranthene	14 J	35	6.6	ug/Kg	1	☼	8270D	Total/NA
Phenanthrene	6.5 J	35	4.9	ug/Kg	1	₩	8270D	Total/NA
Pyrene	11 J	35	7.0	ug/Kg	1	₩	8270D	Total/NA
Arsenic	1.2	1.0	0.35	mg/Kg	1	₩	6010C	Total/NA
Lead	61	0.51	0.23	ma/Ka	1		6010C	Total/NA

Client Sample ID: SB-230 8-10

Lab Sample ID: 500-214283-10

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Methylene Chloride	380 B	330	110 ug/Kg	50 🌣 8260B	Total/NA

Client Sample ID: SB-231 5-7

Lab Sample ID: 500-214283-11

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	410	В	350	110	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	29	J	75	9.1	ug/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	32	J	75	6.9	ug/Kg	1	₩	8270D	Total/NA
Acenaphthene	29	J	37	6.7	ug/Kg	1	₩	8270D	Total/NA
Acenaphthylene	18	J	37	4.9	ug/Kg	1	₩	8270D	Total/NA
Anthracene	74		37	6.2	ug/Kg	1	☼	8270D	Total/NA
Benzolalanthracene	220		37	5.0	ua/Ka	1		8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-231 5-7 (Continued)

Lab Sample ID: 500-214283-11

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]pyrene	290		37	7.2	ug/Kg		☼	8270D	Total/NA
Benzo[b]fluoranthene	400		37	8.0	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	110		37	12	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	160		37	11	ug/Kg	1	₩	8270D	Total/NA
Chrysene	280		37	10	ug/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	29	J	37	7.2	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	600		37	6.9	ug/Kg	1	₩	8270D	Total/NA
Fluorene	29	J	37	5.2	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	100		37	9.7	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	27	J	37	5.7	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	400		37	5.2	ug/Kg	1	₩	8270D	Total/NA
Pyrene	550		37	7.4	ug/Kg	1	₩	8270D	Total/NA
4,4'-DDT	9.3	J	9.9	4.7	ug/Kg	5	₩	8081A	Total/NA
Arsenic	1.9		1.1	0.37	mg/Kg	1	₩	6010C	Total/NA
Barium	34		1.1	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.11	JB	0.21	0.039	mg/Kg	1	₩	6010C	Total/NA
Chromium	15	В	1.1	0.53	mg/Kg	1	₩	6010C	Total/NA
Lead	23		0.54	0.25	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.069		0.018	0.0060	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-231 8.25-10

Lab Sample II	D: 500-214283-12
---------------	------------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	370	В	320	110	ug/Kg	50	₩	8260B	Total/NA
Anthracene	29	J	38	6.4	ug/Kg	1	₩	8270D	Total/NA
Arsenic	0.41	J	1.1	0.36	mg/Kg	1	₩	6010C	Total/NA
Lead	1.5		0.53	0.24	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: SB-224 1-3

Lab Sample ID: 500-214283-13

Amalista	Decul	Ouglifier	DI	MD	l lmi4	Dil Ess	_	Mathad	Duan Torre
Analyte		Qualifier	RL _	MDL		Dil Fac	D	Method	Prep Type
Ethylbenzene		J	18		0 0	50	₩	8260B	Total/NA
Methylene Chloride	430	В	360	120	0 0	50	₩	8260B	Total/NA
Naphthalene	46	JB	72	24	ug/Kg	50	₩	8260B	Total/NA
Toluene	59		18	11	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	66		36	16	ug/Kg	50	☼	8260B	Total/NA
1-Methylnaphthalene	210	J	410	49	ug/Kg	5	₩	8270D	Total/NA
2-Methylnaphthalene	240	J	410	37	ug/Kg	5	₩	8270D	Total/NA
3 & 4 Methylphenol	670	J	1000	340	ug/Kg	5	☼	8270D	Total/NA
Acenaphthene	70	J	200	36	ug/Kg	5	₩	8270D	Total/NA
Acenaphthylene	54	J	200	27	ug/Kg	5	₩	8270D	Total/NA
Anthracene	430		200	34	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	3300		200	27	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]pyrene	4300		200	39	ug/Kg	5	₩	8270D	Total/NA
Benzo[b]fluoranthene	4500		200	44	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene	2100		200	65	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	1600		200	60	ug/Kg	5	₩	8270D	Total/NA
Chrysene	3600		200	55	ug/Kg	5	☼	8270D	Total/NA
Dibenz(a,h)anthracene	450		200	39	ug/Kg	5	☼	8270D	Total/NA
Fluoranthene	5600		200	38	ug/Kg	5	₩	8270D	Total/NA
Fluorene	97	J	200	28	ug/Kg	5	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	1500		200		ug/Kg	5	₽	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Page 12 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-224 1-3 (Continued)

Lab Sample ID: 500-214283-13

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Naphthalene	150	J	200	31	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	1400		200	28	ug/Kg	5	₩	8270D	Total/NA
Pyrene	6700		200	40	ug/Kg	5	☼	8270D	Total/NA
Arsenic	3.2		1.1	0.38	mg/Kg	1	₩	6010C	Total/NA
Barium	93		1.1	0.13	mg/Kg	1	☼	6010C	Total/NA
Cadmium	0.21	JB	0.22	0.040	mg/Kg	1	☼	6010C	Total/NA
Chromium	11	В	1.1	0.55	mg/Kg	1	☼	6010C	Total/NA
Lead	38		0.55	0.26	mg/Kg	1	☼	6010C	Total/NA
Mercury	0.028		0.019	0.0064	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-224 7-8

Lab Sample ID: 500-214283-14

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	400	B	350	120	ug/Kg	50	₩	8260B	Total/NA
Fluoranthene	25	J	100	19	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	15	J	100	14	ug/Kg	1	₽	8270D	Total/NA
Pyrene	25	J	100	20	ug/Kg	1	₩	8270D	Total/NA
Arsenic	1.3		1.1	0.39	mg/Kg	1	₩	6010C	Total/NA
Lead	3.5		0.57	0.26	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-222 6.5-8

Lab Sample ID: 500-214283-15

<u> </u>							_		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	320	В	300	98	ug/Kg	50	₩	8260B	Total/NA
Acenaphthene	1200	J	1700	310	ug/Kg	50	₩	8270D	Total/NA
Anthracene	3300		1700	290	ug/Kg	50	₩	8270D	Total/NA
Benzo[a]anthracene	16000		1700	230	ug/Kg	50	₩	8270D	Total/NA
Benzo[a]pyrene	23000		1700	340	ug/Kg	50	₩	8270D	Total/NA
Benzo[b]fluoranthene	31000		1700	370	ug/Kg	50	₩	8270D	Total/NA
Benzo[g,h,i]perylene	11000		1700	560	ug/Kg	50	₩	8270D	Total/NA
Benzo[k]fluoranthene	12000		1700	510	ug/Kg	50	₩	8270D	Total/NA
Chrysene	19000		1700	470	ug/Kg	50	₩	8270D	Total/NA
Dibenz(a,h)anthracene	2700		1700	340	ug/Kg	50	₩	8270D	Total/NA
Fluoranthene	44000		1700	320	ug/Kg	50	₩	8270D	Total/NA
Fluorene	1300	J	1700	240	ug/Kg	50	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	10000		1700	450	ug/Kg	50	₩	8270D	Total/NA
Phenanthrene	18000		1700	240	ug/Kg	50	₩	8270D	Total/NA
Pyrene	36000		1700	340	ug/Kg	50	₩	8270D	Total/NA
Arsenic	1.3		1.0	0.35	mg/Kg	1	₩	6010C	Total/NA
Barium	25		1.0	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.22	В	0.21	0.037	mg/Kg	1	₽	6010C	Total/NA
Chromium	36	В	1.0	0.51	mg/Kg	1	₩	6010C	Total/NA
Lead	180		0.52	0.24	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.023		0.018	0.0059	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-222 9-10

Lab Sample ID: 500-214283-16

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	380	В	340	110	ug/Kg	50	₩	8260B	Total/NA
Benzo[a]anthracene	8.9	J	38	5.2	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	12	J	38	7.5	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	11	J	38	8.3	ug/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

5

7

9

10

12

14

15

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-222 9-10 (Continued)

Lab Sample ID: 500-214283-16

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	21	J	38	7.2	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	8.3	J	38	5.4	ug/Kg	1	₩	8270D	Total/NA
Pyrene	18	J	38	7.7	ug/Kg	1	₩	8270D	Total/NA
Arsenic	1.4		1.1	0.36	mg/Kg	1	₩	6010C	Total/NA
Lead	11		0.53	0.24	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: SB-216 7-8

Lab Sample ID: 500-214283-17

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1-Methylnaphthalene	23	J	73	8.9	ug/Kg		₩	8270D	Total/NA
2-Methylnaphthalene	24	J	73	6.7	ug/Kg	1	₩	8270D	Total/NA
Anthracene	8.2	J	36	6.1	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	24	J	36	4.9	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	32	J	36	7.0	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	50		36	7.8	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	17	J	36	12	ug/Kg	1	☼	8270D	Total/NA
Benzo[k]fluoranthene	19	J	36	11	ug/Kg	1	₩	8270D	Total/NA
Chrysene	32	J	36	9.9	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	57		36	6.7	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	14	J	36	9.4	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	18	J	36	5.6	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	56		36	5.1	ug/Kg	1	₩	8270D	Total/NA
Pyrene	51		36	7.2	ug/Kg	1	₩	8270D	Total/NA
Arsenic	0.52	J	0.99	0.34	mg/Kg	1	₩	6010C	Total/NA
Barium	10		0.99	0.11	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.080	JB	0.20	0.036	mg/Kg	1	₩	6010C	Total/NA
Chromium	5.6	В	0.99	0.49	mg/Kg	1	☼	6010C	Total/NA
Lead	5.0		0.50	0.23	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-216 8-8.5

Lab Sample ID: 500-214283-18

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2,4-Trimethylbenzene	74	J	82	29	ug/Kg	50	₩	8260B	Total/NA
Methylene Chloride	330	JB	410	130	ug/Kg	50	₽	8260B	Total/NA
Naphthalene	12000	В	82	27	ug/Kg	50	₩	8260B	Total/NA
Toluene	27		20	12	ug/Kg	50	₽	8260B	Total/NA
Xylenes, Total	20	J	41	18	ug/Kg	50	☼	8260B	Total/NA

Client Sample ID: SB-216 10-11

Lab Sample ID: 500-214283-19

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	280	JB	330	110	ug/Kg	50	₩	8260B	Total/NA
Anthracene	14	J	57	9.6	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	18	J	57	7.8	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	20	J	57	11	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	25	J	57	12	ug/Kg	1	₩	8270D	Total/NA
Chrysene	22	J	57	16	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	32	J	57	11	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	21	J	57	8.0	ug/Kg	1	₩	8270D	Total/NA
Pyrene	22	J	57	11	ug/Kg	1	₩	8270D	Total/NA
Arsenic	0.99		0.99	0.34	mg/Kg	1	₩	6010C	Total/NA
Lead	4.1		0.50	0.23	mg/Kg	1	☼	6010C	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

Page 14 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-237 1-2

Lab Sample ID: 500-214283-20

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	250	JB	300	97	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	140	В	60	20	ug/Kg	50	₽	8260B	Total/NA
sec-Butylbenzene	470		60	24	ug/Kg	50	₽	8260B	Total/NA
tert-Butylbenzene	32	J	60	24	ug/Kg	50	₩	8260B	Total/NA
Anthracene	160	J	740	130	ug/Kg	20	₽	8270D	Total/NA
Benzo[a]anthracene	170	J	740	100	ug/Kg	20	₽	8270D	Total/NA
Benzo[a]pyrene	200	J	740	150	ug/Kg	20	₽	8270D	Total/NA
Benzo[b]fluoranthene	270	J	740	160	ug/Kg	20	₩	8270D	Total/NA
Fluoranthene	210	J	740	140	ug/Kg	20	₩	8270D	Total/NA
Phenanthrene	220	J	740	100	ug/Kg	20	₽	8270D	Total/NA
Pyrene	250	J	740	150	ug/Kg	20	₩	8270D	Total/NA
Arsenic	3.8		1.0	0.35	mg/Kg	1	₩	6010C	Total/NA
Barium	46		1.0	0.12	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.077	JB	0.21	0.037	mg/Kg	1	₩	6010C	Total/NA
Chromium	15	В	1.0	0.51	mg/Kg	1	₩	6010C	Total/NA
Lead	35		0.52	0.24	mg/Kg	1	₽	6010C	Total/NA
Silver	0.13	J	0.52	0.13	mg/Kg	1	☼	6010C	Total/NA
Mercury	0.11		0.018	0.0060	mg/Kg	1	₽	7471B	Total/NA

Client Sample ID: SB-237 9-10

Lab Sample ID: 500-214283-21

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	350	J B	440	140	ug/Kg	50	₩	8260B	Total/NA
Anthracene	11	J	43	7.3	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	32	J	43	5.9	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	50		43	8.4	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	54		43	9.4	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	34	J	43	13	ug/Kg	1	₩	8270D	Total/NA
Chrysene	44		43	12	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	88		43	8.1	ug/Kg	1	₩	8270D	Total/NA
Fluorene	6.7	J	43	6.1	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	25	J	43	11	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	14	J	43	6.7	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	67		43	6.1	ug/Kg	1	₩	8270D	Total/NA
Pyrene	91		43	8.7	ug/Kg	1	₩	8270D	Total/NA
Arsenic	27		1.2	0.42	mg/Kg	1	₩	6010C	Total/NA
Lead	1400		0.61	0.28	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-213 0-2

Lab Sample ID: 500-214283-22

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2,4-Trimethylbenzene	190		110	39	ug/Kg	50	₩	8260B	Total/NA
1,3,5-Trimethylbenzene	51	J	110	41	ug/Kg	50	₩	8260B	Total/NA
Ethylbenzene	100		27	20	ug/Kg	50	₩	8260B	Total/NA
Isopropylbenzene	88	J	110	42	ug/Kg	50	₩	8260B	Total/NA
Methylene Chloride	410	JB	540	180	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	250	В	110	36	ug/Kg	50	₩	8260B	Total/NA
N-Propylbenzene	110		110	45	ug/Kg	50	₩	8260B	Total/NA
Toluene	390		27	16	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	660		54	24	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	4300		910	110	ug/Kg	10	₩	8270D	Total/NA
2-Methylnaphthalene	5700		910	83	ug/Kg	10	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

Page 15 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-213 0-2 (Continued)

Lab Sample ID: 500-214283-22

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Anthracene	260	J	450	75	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]anthracene	640		450	60	ug/Kg	10	⊅	8270D	Total/NA
Benzo[a]pyrene	620		450	87	ug/Kg	10	₽	8270D	Total/NA
Benzo[b]fluoranthene	980		450	97	ug/Kg	10	₽	8270D	Total/NA
Benzo[g,h,i]perylene	290	J	450	140	ug/Kg	10	₩	8270D	Total/NA
Benzo[k]fluoranthene	260	J	450	130	ug/Kg	10	₩	8270D	Total/NA
Chrysene	870		450	120	ug/Kg	10	₩	8270D	Total/NA
Dibenzofuran	1400	J	2300	530	ug/Kg	10	₩	8270D	Total/NA
Fluoranthene	1200		450	83	ug/Kg	10	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	230	J	450	120	ug/Kg	10	₩	8270D	Total/NA
Naphthalene	4200		450	69	ug/Kg	10	₩	8270D	Total/NA
Phenanthrene	2700		450	63	ug/Kg	10	₩	8270D	Total/NA
Pyrene	1300		450	89	ug/Kg	10	₩	8270D	Total/NA
PCB-1260	0.052		0.024	0.0089	mg/Kg	1	₩	8082A	Total/NA
Arsenic	12		1.4	0.48	mg/Kg	1	₩	6010C	Total/NA
Barium	81		1.4	0.16	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.67	В	0.28	0.051	mg/Kg	1	₩	6010C	Total/NA
Chromium	22	В	1.4	0.70	mg/Kg	1	₩	6010C	Total/NA
Lead	210		0.71	0.33	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.065		0.023	0.0076	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-213 10-12

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Methylene Chloride	290	J B	380	120	ug/Kg	50	₩	8260B	Total/NA
Phenanthrene	6.1	J	39	5.5	ug/Kg	1	₩	8270D	Total/NA
Arsenic	0.64	J	1.2	0.42	mg/Kg	1	₩	6010C	Total/NA
Lead	3.3		0.62	0.29	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-217 0-2

Lab Sample ID: 500-214283-24

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2,4-Trimethylbenzene	410		95	34	ug/Kg	50	₩	8260B	Total/NA
1,3,5-Trimethylbenzene	96		95	36	ug/Kg	50	₩	8260B	Total/NA
Benzene	74		24	14	ug/Kg	50	₩	8260B	Total/NA
Ethylbenzene	170		24	17	ug/Kg	50	₽	8260B	Total/NA
Isopropylbenzene	130		95	37	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	500	В	95	32	ug/Kg	50	₩	8260B	Total/NA
N-Propylbenzene	180		95	39	ug/Kg	50	₩	8260B	Total/NA
p-Isopropyltoluene	48	J	95	35	ug/Kg	50	₩	8260B	Total/NA
sec-Butylbenzene	69	J	95	38	ug/Kg	50	₩	8260B	Total/NA
Toluene	460		24	14	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	1100		48	21	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	3500		810	98	ug/Kg	10	₩	8270D	Total/NA
2-Methylnaphthalene	4300		810	74	ug/Kg	10	₩	8270D	Total/NA
Anthracene	210	J	400	67	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]anthracene	250	J	400	54	ug/Kg	10	₩	8270D	Total/NA
Benzo[a]pyrene	200	J	400	78	ug/Kg	10	₩	8270D	Total/NA
Benzo[b]fluoranthene	400		400	87	ug/Kg	10	₩	8270D	Total/NA
Benzo[g,h,i]perylene	130	J	400	130	ug/Kg	10	₩	8270D	Total/NA
Chrysene	310	J	400	110	ug/Kg	10	₩	8270D	Total/NA
Dibenzofuran	840	J	2000	470	ug/Kg	10	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

Page 16 of 356

2

5

0

3

11

13

4.6

1/

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-217 0-2 (Continued)

Lab Sample ID: 500-214283-24

Lab Sample ID: 500-214283-25

Lab Sample ID: 500-214283-26

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	350	J	400	74	ug/Kg		₩	8270D	Total/NA
Naphthalene	2500		400	62	ug/Kg	10	₽	8270D	Total/NA
Phenanthrene	1800		400	56	ug/Kg	10	₽	8270D	Total/NA
Pyrene	510		400	80	ug/Kg	10	₩	8270D	Total/NA
PCB-1260	0.34		0.021	0.0079	mg/Kg	1	₽	8082A	Total/NA
Arsenic	6.3		1.2	0.43	mg/Kg	1	₽	6010C	Total/NA
Barium	82		1.2	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.60	В	0.25	0.045	mg/Kg	1	₽	6010C	Total/NA
Chromium	15		1.2	0.58	mg/Kg	1	₩	6010C	Total/NA
Lead	90		0.62	0.29	mg/Kg	1	₩	6010C	Total/NA
Selenium	1.1	J	1.2	0.73	mg/Kg	1	☼	6010C	Total/NA
Silver	0.28	J	0.62	0.16	mg/Kg	1	☼	6010C	Total/NA
Mercury	0.054		0.019	0.0064	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-217 9-10

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Naphthalene	62	J B	140	46	ug/Kg	50	⊅	8260B	Total/NA
Phenanthrene	9.1	J	58	8.1	ug/Kg	1	₩	8270D	Total/NA
Arsenic	3.5		1.6	0.56	mg/Kg	1	₽	6010C	Total/NA
Lead	5.7		0.82	0.38	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-217 3-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.5		1.0	0.35	mg/Kg	1	₩	6010C	Total/NA
Lead	4.1		0.51	0.24	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-223 4-6

Client Sample ID: SB-2	23 4-6		Lab Sa	mp	ole ID: 50	0-214283-27			
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2,4-Trimethylbenzene	72	J	120	42	ug/Kg	50	₩	8260B	Total/NA
Ethylbenzene	43		30	22	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	70	JB	120	39	ug/Kg	50	₩	8260B	Total/NA
Toluene	43		30	17	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	160		59	26	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	900		450	55	ug/Kg	5	₩	8270D	Total/NA
2-Methylnaphthalene	1200		450	41	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	49	J	220	30	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	68	J	220	42	ug/Kg	5	₩	8270D	Total/NA
Naphthalene	630		220	35	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	500		220	31	ug/Kg	5	₩	8270D	Total/NA
Pyrene	87	J	220	45	ug/Kg	5	₩	8270D	Total/NA
Arsenic	4.7		1.4	0.47	mg/Kg	1	₩	6010C	Total/NA
Barium	120		1.3	0.15	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.050	JB	0.27	0.049	mg/Kg	1	₩	6010C	Total/NA
Chromium	13		1.3	0.66	mg/Kg	1	₩	6010C	Total/NA
Lead	29		0.68	0.32	mg/Kg	1	₩	6010C	Total/NA
Selenium	2.5		1.4	0.80	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.015	J	0.022	0.0074	mg/Kg	1	₩	7471B	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: FD-1 Lab Sample ID: 500-214283-28

Analyte	Result Qual	ifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	2.3	1.1	0.37	mg/Kg	1	☆	6010C	Total/NA
Lead	4.3	0.54	0.25	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-223 9-10 Lab Sample ID: 500-214283-29

Analyte	Result Quali	fier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.53 J	1.1	0.39	mg/Kg	1	₩	6010C	Total/NA
Lead	3.6	0.56	0.26	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-220 4-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2,4-Trimethylbenzene	58	J	130	45	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	98		63	28	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	87	J	140	17	ug/Kg	1	₽	8270D	Total/NA
2-Methylnaphthalene	120	J	140	13	ug/Kg	1	₩	8270D	Total/NA
Anthracene	29	J	69	12	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]anthracene	27	J	69	9.4	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	18	J	69	13	ug/Kg	1	₽	8270D	Total/NA
Chrysene	20	J	69	19	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	40	J	69	13	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	42	J	69	11	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	160		69	9.7	ug/Kg	1	₩	8270D	Total/NA
Pyrene	53	J	69	14	ug/Kg	1	₽	8270D	Total/NA
Arsenic	5.4		1.2	0.42	mg/Kg	1	₩	6010C	Total/NA
Barium	32		1.3	0.15	mg/Kg	1	₽	6010C	Total/NA
Cadmium	0.25	В	0.25	0.044	mg/Kg	1	₩	6010C	Total/NA
Chromium	8.5		1.3	0.65	mg/Kg	1	₽	6010C	Total/NA
Lead	140		0.61	0.28	mg/Kg	1	₽	6010C	Total/NA
Selenium	0.83	J	1.2	0.72	mg/Kg	1	☼	6010C	Total/NA
Mercury	0.0085	J	0.022	0.0074	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-220 14.75-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1-Methylnaphthalene	160	J	280	34	ug/Kg	1	₽	8270D	Total/NA
2-Methylnaphthalene	180	J	280	25	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	40	J	140	19	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	50	J	140	30	ug/Kg	1	₩	8270D	Total/NA
Chrysene	43	J	140	38	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	55	J	140	26	ug/Kg	1	₽	8270D	Total/NA
Naphthalene	110	J	140	21	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	120	J	140	19	ug/Kg	1	₩	8270D	Total/NA
Pyrene	61	J	140	28	ug/Kg	1	₽	8270D	Total/NA
Arsenic	2.2		1.4	0.47	mg/Kg	1	₽	6010C	Total/NA
Lead	19		0.69	0.32	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-225 2-4

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2,4-Trimethylbenzene	340	120	43	ug/Kg	50	₩	8260B	Total/NA
1,3,5-Trimethylbenzene	92 J	120	46	ug/Kg	50	₩	8260B	Total/NA
Benzene	170	30	17	ug/Kg	50	₩	8260B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

Job ID: 500-214283-1

Lab Sample ID: 500-214283-30

Lab Sample ID: 500-214283-31

Lab Sample ID: 500-214283-32

1

6

8

10

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-225 2-4 (Continued)

Lab Sample ID: 500-214283-32

Lab Sample ID: 500-214283-33

Lab Sample ID: 500-214283-34

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Ethylbenzene	290		30	22	ug/Kg	50	☼	8260B	Total/NA
Isopropylbenzene	92	J	120	46	ug/Kg	50	☼	8260B	Total/NA
Naphthalene	350	В	120	40	ug/Kg	50	₩	8260B	Total/NA
n-Butylbenzene	57	J	120	46	ug/Kg	50	☼	8260B	Total/NA
N-Propylbenzene	160		120	50	ug/Kg	50	₩	8260B	Total/NA
Toluene	730		30	18	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	1000		60	26	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	1200		440	54	ug/Kg	5	₩	8270D	Total/NA
2-Methylnaphthalene	1500		440	40	ug/Kg	5	₩	8270D	Total/NA
Anthracene	55	J	220	37	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	62	J	220	29	ug/Kg	5	☼	8270D	Total/NA
Benzo[b]fluoranthene	53	J	220	47	ug/Kg	5	₩	8270D	Total/NA
Chrysene	73	J	220	60	ug/Kg	5	₩	8270D	Total/NA
Dibenzofuran	290	J	1100	260	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	81	J	220	41	ug/Kg	5	₩	8270D	Total/NA
Naphthalene	940		220	34	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	810		220	31	ug/Kg	5	☼	8270D	Total/NA
Pyrene	120	J	220	44	ug/Kg	5	☼	8270D	Total/NA
Arsenic	6.6		1.2	0.39	mg/Kg	1	₩	6010C	Total/NA
Barium	62		1.3	0.15	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.080	JB	0.23	0.041	mg/Kg	1	₩	6010C	Total/NA
Chromium	12		1.3	0.64	mg/Kg	1	₩	6010C	Total/NA
Lead	14		0.58	0.27	mg/Kg	1	₩	6010C	Total/NA
Selenium	1.7		1.2	0.68	mg/Kg	1	₩	6010C	Total/NA
Silver	0.15	J	0.58	0.15	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.011	J	0.020	0.0068	mg/Kg	1	☼	7471B	Total/NA

Client Sample ID: SB-225 8-9

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	2.3		1.3	0.44	mg/Kg	1	₩	6010C	Total/NA
Lead	6.2		0.64	0.30	ma/Ka	1	₩	6010C	Total/NA

Client Sample ID: SB-227 4-6

Analyte Result Qualifier RL **MDL** Unit Dil Fac D Method Prep Type 74 1,2,4-Trimethylbenzene 83 27 ug/Kg 50 ₩ 8260B Total/NA Benzene 17 J 19 50 ☼ 8260B Total/NA ug/Kg Ethylbenzene 38 19 ug/Kg 50 ₩ 8260B Total/NA 74 Naphthalene 86 B 25 ug/Kg 50 ☆ 8260B Total/NA 74 N-Propylbenzene 36 J 8260B Total/NA ug/Kg 50 ☆ Toluene 60 19 11 ug/Kg 50 ☆ 8260B Total/NA Xylenes, Total 170 37 50 ₩ 8260B Total/NA 16 ug/Kg 1-Methylnaphthalene 750 410 8270D 50 ug/Kg 5 ☆ Total/NA 2-Methylnaphthalene 910 410 38 ug/Kg 5 \$ 8270D Total/NA Benzo[a]anthracene 45 200 28 ug/Kg 5 ☆ 8270D Total/NA Fluoranthene 51 200 5 ☆ 8270D Total/NA 38 ug/Kg Naphthalene 510 200 32 ug/Kg 5 ₩ 8270D Total/NA Phenanthrene 200 29 8270D 350 ug/Kg 5 ☼ Total/NA Pyrene 66 J 200 41 ug/Kg 5 \$ 8270D Total/NA Arsenic 6.5 1.2 0.41 mg/Kg 1 # 6010C Total/NA 1 # 6010C Barium 69 1.2 0.14 mg/Kg Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 500-214283-1

4

6

8

10

12

11

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-227 4-6 (Continued)

Lab Sample ID: 500-214283-34

Lab Sample ID: 500-214283-35

Lab Sample ID: 500-214283-36

Dil Fac D Method

25 🌣 8270D

1 # 6010C

1 # 6010C

1 ♯ 6010C

1 # 7471B

₩

1 ☆

8270D

6010C

6010C

6010C

25 ☆

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Cadmium	0.31	В	0.24	0.043	mg/Kg	1	₩	6010C	Total/NA
Chromium	9.2		1.2	0.59	mg/Kg	1	₩	6010C	Total/NA
Lead	9.5		0.59	0.27	mg/Kg	1	₽	6010C	Total/NA
Selenium	1.2		1.2	0.70	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.015	J	0.019	0.0065	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-227 7-8

Analyte	Result Qualifier	RL	MDL U	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	7.8 J	46	6.4 u	ug/Kg	1	₩	8270D	Total/NA
Arsenic	1.8	1.4	0.48 n	mg/Kg	1	₩	6010C	Total/NA
Lead	5.7	0.70	0.32 n	mg/Kg	1	₩	6010C	Total/NA

RL

MDL Unit

Result Qualifier

2.1 F1

0.20 JB

9.4 F1

38 F1

0.080 F1 F2

0.17 J

31

37000

45000

Client Sample ID: SB-221 0-2

Analyte

Fluoranthene - DL

Pyrene - DL

Arsenic

Barium

Lead

Silver

Mercury

Cadmium

Chromium

· ······ y · ·						_		
1,2,4-Trimethylbenzene	97	80	29	ug/Kg	50	₩	8260B	Total/NA
Benzene	22	20	12	ug/Kg	50	₩	8260B	Total/NA
Ethylbenzene	63	20	15	ug/Kg	50	₩	8260B	Total/NA
Isopropylbenzene	39 J	80	31	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	300 B	80	27	ug/Kg	50	₩	8260B	Total/NA
N-Propylbenzene	60 J	80	33	ug/Kg	50	₩	8260B	Total/NA
Toluene	190	20	12	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	270	40	18	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	510 F:	2 F1 420	50	ug/Kg	5	₩	8270D	Total/NA
2-Methylnaphthalene	710 F	2 F1 420	38	ug/Kg	5	₩	8270D	Total/NA
Acenaphthene	100 J	210	37	ug/Kg	5	₩	8270D	Total/NA
Acenaphthylene	1800 F	1 210	27	ug/Kg	5	₩	8270D	Total/NA
Anthracene	2100 F	2 F1 210	35	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene	3900 F	2 F1 210	67	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	8500 F	2 210	61	ug/Kg	5	₩	8270D	Total/NA
Carbazole	630 J	F1 1000	520	ug/Kg	5	₩	8270D	Total/NA
Chrysene	13000 F	2 210	56	ug/Kg	5	₩	8270D	Total/NA
Dibenz(a,h)anthracene	1700 F	2 F1 210	40	ug/Kg	5	₩	8270D	Total/NA
Fluorene	320	210	29	ug/Kg	5	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	4600 F2	2 F1 210	54	ug/Kg	5	₩	8270D	Total/NA
Naphthalene	640 F2	2 F1 210	32	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	5800 F	2 F1 210	29	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene - DL	18000	1000	140	ug/Kg	25	₩	8270D	Total/NA
Benzo[a]pyrene - DL	19000 *3	3 1000	200	ug/Kg	25	₩	8270D	Total/NA
Benzo[b]fluoranthene - DL	25000 *3	3 1000	220	ug/Kg	25	₩	8270D	Total/NA

1000

1000

1.1

1.1

0.22

1.1

0.56

0.56

0.020

190 ug/Kg

210 ug/Kg

0.38 mg/Kg

0.13 mg/Kg

0.040 mg/Kg

0.55 mg/Kg

0.26 mg/Kg

0.14 mg/Kg

0.0065 mg/Kg

This Detection Summary does not include radiochemical test results.

Job ID: 500-214283-1

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-221 4-5

Lab Sample ID: 500-214283-37

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	25		18	11	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	44		36	16	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	24	J	79	9.6	ug/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	27	J	79	7.2	ug/Kg	1	₩	8270D	Total/NA
Acenaphthylene	78		39	5.2	ug/Kg	1	₩	8270D	Total/NA
Anthracene	42		39	6.5	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	190		39	5.3	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	540		39	7.6	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	350		39	8.4	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	260		39	13	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	170		39	12	ug/Kg	1	₩	8270D	Total/NA
Chrysene	230		39	11	ug/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	64		39	7.6	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	190		39	7.3	ug/Kg	1	₩	8270D	Total/NA
Fluorene	5.5	J	39	5.5	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	220		39	10	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	21	J	39	6.0	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	39		39	5.5	ug/Kg	1	₩	8270D	Total/NA
Pyrene	510		39	7.8	ug/Kg	1	₩	8270D	Total/NA
Arsenic	2.2		1.2	0.42	mg/Kg	1	₩	6010C	Total/NA
Lead	6.8		0.61	0.28	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: SB-218 2-4

Lab Sample ID: 500-214283-38

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Toluene	58		27	16	ug/Kg	50	₩	8260B	Total/NA
Xylenes, Total	68		53	23	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	330		160	20	ug/Kg	2	₽	8270D	Total/NA
2-Methylnaphthalene	390		160	15	ug/Kg	2	₽	8270D	Total/NA
Acenaphthene	21	J	80	14	ug/Kg	2	₽	8270D	Total/NA
Acenaphthylene	240		80	11	ug/Kg	2	₽	8270D	Total/NA
Anthracene	240		80	13	ug/Kg	2	₩	8270D	Total/NA
Benzo[a]anthracene	1400		80	11	ug/Kg	2	₽	8270D	Total/NA
Benzo[a]pyrene	1400		80	16	ug/Kg	2	₽	8270D	Total/NA
Benzo[b]fluoranthene	2000		80	17	ug/Kg	2	₩	8270D	Total/NA
Benzo[g,h,i]perylene	400		80	26	ug/Kg	2	₩	8270D	Total/NA
Benzo[k]fluoranthene	670		80	24	ug/Kg	2	₽	8270D	Total/NA
Chrysene	1400		80	22	ug/Kg	2	₩	8270D	Total/NA
Dibenz(a,h)anthracene	160		80	15	ug/Kg	2	₩	8270D	Total/NA
Dibenzofuran	95	J	400	94	ug/Kg	2	₽	8270D	Total/NA
Fluoranthene	2500		80	15	ug/Kg	2	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	460		80	21	ug/Kg	2	₩	8270D	Total/NA
Naphthalene	270		80	12	ug/Kg	2	☼	8270D	Total/NA
Phenanthrene	540		80	11	ug/Kg	2	₽	8270D	Total/NA
Pyrene	1900		80	16	ug/Kg	2	☼	8270D	Total/NA
Arsenic	7.1		1.2	0.41	mg/Kg	1	☼	6010C	Total/NA
Barium	49		1.2	0.14	mg/Kg	1	☼	6010C	Total/NA
Cadmium	0.29	В	0.24	0.043	mg/Kg	1	₽	6010C	Total/NA
Chromium	13		1.2	0.59	mg/Kg	1	₩	6010C	Total/NA
Lead	52		0.60	0.28	mg/Kg	1	₽	6010C	Total/NA
Mercury	0.029		0.021	0.0069	mg/Kg	1	₽	7471B	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 500-214283-1

6

8

10

11

13

15

16

Eurofins Chicago

Client: Stantec Consulting Corp.

Client Sample ID: FD-2

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-39

- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1-Methylnaphthalene	270		82	9.9	ug/Kg		-	8270D	Total/NA
2-Methylnaphthalene	320		82	7.4	ug/Kg	1	₩	8270D	Total/NA
Acenaphthene	18	J	40	7.3	ug/Kg	1	₩	8270D	Total/NA
Acenaphthylene	190		40	5.3	ug/Kg	1	₩	8270D	Total/NA
Anthracene	170		40	6.8	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]anthracene	1100		40	5.4	ug/Kg	1	₽	8270D	Total/NA
Benzo[a]pyrene	1000		40	7.8	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	1500		40	8.7	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	250		40	13	ug/Kg	1	₽	8270D	Total/NA
Benzo[k]fluoranthene	540		40	12	ug/Kg	1	₩	8270D	Total/NA
Chrysene	1000		40	11	ug/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	110		40	7.8	ug/Kg	1	₽	8270D	Total/NA
Dibenzofuran	87	J	200	47	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	1600		40	7.5	ug/Kg	1	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	300		40	10	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	210		40	6.2	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	310		40	5.6	ug/Kg	1	₩	8270D	Total/NA
Pyrene	1400		40	8.0	ug/Kg	1	₩	8270D	Total/NA
Arsenic	7.9		1.2	0.41	mg/Kg	1	₩	6010C	Total/NA
Barium	76		1.2	0.14	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.11	JB	0.24	0.044	mg/Kg	1	₽	6010C	Total/NA
Chromium	10		1.2	0.60	mg/Kg	1	₩	6010C	Total/NA
Lead	61		0.61	0.28	mg/Kg	1	₩	6010C	Total/NA
Selenium	1.1	J	1.2	0.71	mg/Kg	1	₩	6010C	Total/NA
Silver	0.16	J	0.61	0.16	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.030		0.021	0.0069	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-218 5-7

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Fluoranthene	16	J	37	6.8	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	5.8	J	37	5.7	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	11	J	37	5.1	ug/Kg	1	₩	8270D	Total/NA
Pyrene	14	J	37	7.3	ug/Kg	1	₽	8270D	Total/NA
Arsenic	3.1		1.0	0.35	mg/Kg	1	₩	6010C	Total/NA
Lead	27		0.52	0.24	mg/Kg	1	₽	6010C	Total/NA

Client Sample ID: SB-214 0-2

							_		
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
1,2,4-Trimethylbenzene	350		110	39	ug/Kg	50	₽	8260B	Total/NA
1,3,5-Trimethylbenzene	75	J	110	42	ug/Kg	50	₩	8260B	Total/NA
Benzene	100		27	16	ug/Kg	50	₩	8260B	Total/NA
Ethylbenzene	210		27	20	ug/Kg	50	₩	8260B	Total/NA
Isopropylbenzene	140		110	42	ug/Kg	50	₩	8260B	Total/NA
Naphthalene	480	В	110	37	ug/Kg	50	₽	8260B	Total/NA
N-Propylbenzene	170		110	45	ug/Kg	50	₩	8260B	Total/NA
sec-Butylbenzene	57	J	110	44	ug/Kg	50	₩	8260B	Total/NA
Toluene	660		27	16	ug/Kg	50	₽	8260B	Total/NA
Xylenes, Total	1200		55	24	ug/Kg	50	☼	8260B	Total/NA
1-Methylnaphthalene	3600		1300	150	ug/Kg	5	₽	8270D	Total/NA
2-Methylnaphthalene	4800		1300	110	ug/Kg	5	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Job ID: 500-214283-1

Lab Sample ID: 500-214283-40

Lab Sample ID: 500-214283-41

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-214 0-2 (Continued)

Lab Sample ID: 500-214283-41

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acenaphthene	2200		620	110	ug/Kg	5	₽	8270D	Total/NA
Acenaphthylene	750		620	82	ug/Kg	5	₩	8270D	Total/NA
Anthracene	5300		620	100	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]anthracene	7800		620	84	ug/Kg	5	₩	8270D	Total/NA
Benzo[a]pyrene	8600		620	120	ug/Kg	5	₩	8270D	Total/NA
Benzo[b]fluoranthene	11000		620	130	ug/Kg	5	₩	8270D	Total/NA
Benzo[g,h,i]perylene	2200		620	200	ug/Kg	5	₩	8270D	Total/NA
Benzo[k]fluoranthene	4400		620	180	ug/Kg	5	₩	8270D	Total/NA
Chrysene	8300		620	170	ug/Kg	5	₩	8270D	Total/NA
Dibenz(a,h)anthracene	810		620	120	ug/Kg	5	₩	8270D	Total/NA
Dibenzofuran	2300	J	3100	730	ug/Kg	5	₩	8270D	Total/NA
Fluoranthene	18000		620	120	ug/Kg	5	₩	8270D	Total/NA
Fluorene	2200		620	88	ug/Kg	5	₽	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	2400		620	160	ug/Kg	5	₩	8270D	Total/NA
Naphthalene	3700		620	96	ug/Kg	5	₩	8270D	Total/NA
Phenanthrene	20000		620	87	ug/Kg	5	₩	8270D	Total/NA
Pyrene	15000		620	120	ug/Kg	5	₩	8270D	Total/NA
Arsenic	9.4		1.5	0.50	mg/Kg	1	₩	6010C	Total/NA
Barium	68		1.5	0.17	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.53	В	0.29	0.052	mg/Kg	1	₩	6010C	Total/NA
Chromium	9.6		1.5	0.72	mg/Kg	1	₩	6010C	Total/NA
Lead	76		0.73	0.34	mg/Kg	1	₩	6010C	Total/NA
Selenium	4.2		1.5	0.86	mg/Kg	1	₽	6010C	Total/NA
Silver	0.20	J	0.73	0.19	mg/Kg	1	₩	6010C	Total/NA
Mercury	1.9		0.11	0.037	mg/Kg	5	₽	7471B	Total/NA

Client Sample ID: SB-214 4-5

Lab Sample ID: 500-214283-42

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	3.0		1.1	0.38	mg/Kg	1	₩	6010C	Total/NA
Lead	3.5		0.56	0.26	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: SB-215 0-2

Lab Sample ID: 500-214283-43

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Naphthalene	34	J	64	21	ug/Kg	50	₩	8260B	Total/NA
1-Methylnaphthalene	62	J	74	8.9	ug/Kg	1	₩	8270D	Total/NA
2-Methylnaphthalene	78		74	6.7	ug/Kg	1	₩	8270D	Total/NA
Acenaphthene	18	J	36	6.6	ug/Kg	1	₩	8270D	Total/NA
Acenaphthylene	15	J	36	4.8	ug/Kg	1	₽	8270D	Total/NA
Anthracene	43		36	6.1	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]anthracene	140		36	4.9	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	200	*3	36	7.1	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	320	*3	36	7.9	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	98	*3	36	12	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	120	*3	36	11	ug/Kg	1	₩	8270D	Total/NA
Chrysene	230		36	9.9	ug/Kg	1	☼	8270D	Total/NA
Dibenz(a,h)anthracene	24	J *3	36		ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	270		36	6.8	ug/Kg	1	₩	8270D	Total/NA
Fluorene	23	J	36	5.1	ug/Kg	1	☼	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	78	*3	36	9.5	ug/Kg	1	₩	8270D	Total/NA
Naphthalene	46		36		ug/Kg	1	₩	8270D	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

Page 23 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-215 0-2 (Continued)

Lab Sample ID: 500-214283-43

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	190		36	5.1	ug/Kg	1	₩	8270D	Total/NA
Pyrene	500		36	7.2	ug/Kg	1	⊅	8270D	Total/NA
Arsenic	2.3		1.1	0.38	mg/Kg	1	₽	6010C	Total/NA
Barium	32		1.1	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	1.4	В	0.22	0.040	mg/Kg	1	⊅	6010C	Total/NA
Chromium	12		1.1	0.55	mg/Kg	1	₽	6010C	Total/NA
Lead	53		0.56	0.26	mg/Kg	1	₩	6010C	Total/NA
Silver	0.19	J	0.56	0.14	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.14		0.017	0.0058	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-215 6-7

Lab Sample ID: 500-214283-44

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Benzo[a]anthracene	6.3	J	37	5.0	ug/Kg	1	☼	8270D	Total/NA
Benzo[b]fluoranthene	9.9	J	37	8.0	ug/Kg	1	₽	8270D	Total/NA
Chrysene	11	J	37	10	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	20	J	37	6.8	ug/Kg	1	₽	8270D	Total/NA
Phenanthrene	11	J	37	5.1	ug/Kg	1	₩	8270D	Total/NA
Pyrene	22	J	37	7.3	ug/Kg	1	₩	8270D	Total/NA
Arsenic	1.0	J	1.1	0.36	mg/Kg	1		6010C	Total/NA
Lead	15	F1	0.53	0.24	mg/Kg	1	₩	6010C	Total/NA

Client Sample ID: EB-1

Lab Sample ID: 500-214283-45

No Detections.

Client Sample ID: MW-231

Lab Sample ID: 500-214283-46

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	9.6		1.0	0.41	ug/L		_	8260B	Total/NA
p-Isopropyltoluene	0.53	J	1.0	0.36	ug/L	1		8260B	Total/NA
Toluene	0.57		0.50	0.15	ug/L	1		8260B	Total/NA
Xylenes, Total	0.37	J	1.0	0.22	ug/L	1		8260B	Total/NA
2-Methylnaphthalene	0.062	J	1.6	0.053	ug/L	1		8270D	Total/NA
3 & 4 Methylphenol	7.9		1.6	0.36	ug/L	1		8270D	Total/NA
2,4-DB	2.0		1.0	0.39	ug/L	1		8151A	Total/NA
Perfluorobutanoic acid (PFBA)	62		4.4	2.1	ng/L	1		537 (modified)	Total/NA
Perfluoropentanoic acid (PFPeA)	36		1.8	0.44	ng/L	1		537 (modified)	Total/NA
Perfluorohexanoic acid (PFHxA)	24		1.8	0.52	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanoic acid (PFHpA)	30		1.8	0.22	ng/L	1		537 (modified)	Total/NA
Perfluorooctanoic acid (PFOA)	150		1.8	0.75	ng/L	1		537 (modified)	Total/NA
Perfluorononanoic acid (PFNA)	5.4		1.8	0.24	ng/L	1		537 (modified)	Total/NA
Perfluorobutanesulfonic acid (PFBS)	6.3		1.8	0.18	ng/L	1		537 (modified)	Total/NA
Perfluoropentanesulfonic acid (PFPeS)	1.4	J	1.8	0.27	ng/L	1		537 (modified)	Total/NA
Perfluorohexanesulfonic acid (PFHxS)	8.6		1.8	0.51	ng/L	1		537 (modified)	Total/NA
Perfluoroheptanesulfonic acid (PFHpS)	0.47	J	1.8	0.17	ng/L	1		537 (modified)	Total/NA
Perfluorooctanesulfonic acid (PFOS)	23	1	1.8	0.48	ng/L	1		537 (modified)	Total/NA
Arsenic	0.0037		0.0010	0.00023	mg/L	1		6020A	Dissolved
Barium	0.22		0.0025	0.00073	mg/L	1		6020A	Dissolved
Chromium	0.0057		0.0050	0.0011	mg/L	1		6020A	Dissolved
Lead	0.00052		0.00050	0.00019	mg/L	1		6020A	Dissolved

This Detection Summary does not include radiochemical test results.

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

17

20

81

7.7

Result Qualifier

8.7

Lab Sample ID: 500-214283-47 Client Sample ID: MW-234 Analyte Result Qualifier Dil Fac D Method RL MDL Unit **Prep Type** 1,2,4-Trimethylbenzene 0.70 J 8260B 1.0 0.36 ug/L Total/NA cis-1.2-Dichloroethene 1.3 1.0 0.41 ug/L 1 8260B Total/NA Ethylbenzene 0.40 J 0.50 8260B Total/NA 0.18 ug/L 1 p-Isopropyltoluene 0.41 1.0 0.36 ug/L 1 8260B Total/NA Toluene 1.1 0.50 0.15 ug/L 1 8260B Total/NA Vinyl chloride 1.9 1.0 0.20 ug/L 8260B Total/NA 8260B Total/NA Xylenes, Total 1.6 1.0 0.22 ug/L 2-Methylnaphthalene 0.053 J 0.052 ug/L 8270D Total/NA 1.6 2,4-DB 0.39 ug/L 0.41 J 1.0 1 8151A Total/NA Perfluorobutanoic acid (PFBA) 4.7 2.2 ng/L 537 (modified) Total/NA 36 Perfluoropentanoic acid (PFPeA) 537 (modified) 26 19 0.46 ng/L Total/NA

1.9

1.9

1.9

1.9

0.54 ng/L

0.23 ng/L

0.80 ng/L

0.19 ng/L

Perfluoropentanesulfonic acid 1.9 I 1.9 0.28 ng/L 537 (modified) Total/NA (PFPeS) Perfluorohexanesulfonic acid (PFHxS) 4.6 1.9 0.53 ng/L 1 537 (modified) Total/NA Arsenic 0.0064 0.0010 0.00023 mg/L 6020A Dissolved 1 Barium 0.19 0.0025 0.00073 mg/L 6020A Dissolved

Client Sample ID: TW-237

Perfluorohexanoic acid (PFHxA)

Perfluoroheptanoic acid (PFHpA)

Perfluorobutanesulfonic acid (PFBS)

Perfluorooctanoic acid (PFOA)

Client Sample ID: TW-222

No Detections.

No Detections.

Client Sample ID: TW-227

No Detections.

Client Sample ID: TW-213

No Detections

Client Sample ID: TW-229

No Detections.

Client Sample ID: TW-230

Analyte

cis-1,2-Dichloroethene Client Sample ID: TW-223

No Detections.

No Detections.

Lab Sample ID: 500-214283-48

537 (modified)

537 (modified)

537 (modified)

537 (modified)

1

1

Lab Sample ID: 500-214283-49

Lab Sample ID: 500-214283-50

Lab Sample ID: 500-214283-51

Lab Sample ID: 500-214283-52

Lab Sample ID: 500-214283-53

Dil Fac D Method **Prep Type** 8260B Total/NA

Lab Sample ID: 500-214283-54

Client Sample ID: TW-225 Lab Sample ID: 500-214283-55

RL

1.0

MDL Unit

0.41 ug/L

This Detection Summary does not include radiochemical test results.

Job ID: 500-214283-1

Total/NA

Total/NA

Total/NA

Total/NA

Detection Summary

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-216 Lab Sample ID: 500-214283-56

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
Naphthalene		1.0	0.34 ug/L	1 8260B	Total/NA

Client Sample ID: TW-215 Lab Sample ID: 500-214283-57

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Naphthalene	0.50	J	1.0	0.34	ug/L	1	_	8260B	Total/NA
Xylenes, Total	0.28	J	1.0	0.22	ug/L	1		8260B	Total/NA

Client Sample ID: TW-221 Lab Sample ID: 500-214283-58

No Detections.

Client Sample ID: TW-214 Lab Sample ID: 500-214283-59

No Detections.

Client Sample ID: FD-3 Lab Sample ID: 500-214283-60

Analyte	Result Qualif	ier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
cis-1,2-Dichloroethene	9.9	1.0	0.41	ug/L	1	_	8260B	Total/NA
p-Isopropyltoluene	0.46 J	1.0	0.36	ug/L	1		8260B	Total/NA
Toluene	0.67	0.50	0.15	ug/L	1		8260B	Total/NA
Xylenes, Total	0.33 J	1.0	0.22	ug/L	1		8260B	Total/NA

Client Sample ID: TB1 Lab Sample ID: 500-214283-61

No Detections.

This Detection Summary does not include radiochemical test results.

1

Job ID: 500-214283-1

3

4

6

7

9

10

111

13

14

15

Method Summary

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method	Method Description	Protocol	Laboratory
3260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CHI
3270D	Semivolatile Organic Compounds (GC/MS)	SW846	TAL CHI
081A	Organochlorine Pesticides (GC)	SW846	TAL CHI
081B	Organochlorine Pesticides (GC)	SW846	TAL CHI
082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	TAL CHI
151A	Herbicides (GC)	SW846	TAL CHI
37 (modified)	Fluorinated Alkyl Substances	EPA	TAL SAC
010C	Metals (ICP)	SW846	TAL CHI
020A	Metals (ICP/MS)	SW846	TAL CHI
470A	Mercury (CVAA)	SW846	TAL CHI
471B	Mercury (CVAA)	SW846	TAL CHI
loisture	Percent Moisture	EPA	TAL CHI
005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL CHI
050B	Preparation, Metals	SW846	TAL CHI
510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	TAL CHI
535	Solid-Phase Extraction (SPE)	SW846	TAL SAC
541	Automated Soxhlet Extraction	SW846	TAL CHI
030B	Purge and Trap	SW846	TAL CHI
035	Closed System Purge and Trap	SW846	TAL CHI
170A	Preparation, Mercury	SW846	TAL CHI
171B	Preparation, Mercury	SW846	TAL CHI
151A	Extraction (Herbicides)	SW846	TAL CHI

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Job ID: 500-214283-1

6

5

7

9

10

12

10

11-5

Sample Summary

Client: Stantec Consulting Corp.
Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

500-744283-1 SR-266 5.5-6 Solid	Lab Sample ID	Client Sample ID	Matrix	Collected	Received
S00-214283-2 SB-236-6-7 Solid 032322 09-55 0329022 10-20		•	Solid	03/23/22 09:20	
500-214283-4 SB-234 4.5-6.5 Solid 03/23/22 00-55 03/20/22 10-00 03/20/22 10-00 500-214283-5 SB-294 1-5 Solid 03/23/22 11-10 03/20/22 10-00 03/20/22 10-00 500-214283-6 SB-229 1-5 Solid 03/23/22 11-12 03/20/22 10-20 500-214283-8 SB-220 5-7 Solid 03/23/22 11-15 03/20/22 10-20 500-214283-8 SB-20 5-4-6 Solid 03/23/22 11-15 03/20/22 10-20 500-214283-10 SB-230 6-7 Solid 03/23/22 11-15 03/20/22 10-20 500-214283-11 SB-230 6-7 Solid 03/23/22 11-15 03/20/22 10-20 500-214283-12 SB-231 6-7 Solid 03/23/22 11-15 03/20/22 10-20 500-214283-13 SB-241 5 Solid 03/23/22 13-30 03/20/22 10-20 500-214283-14 SB-242 7-8 Solid 03/23/22 13-35 03/20/22 10-20 500-214283-15 SB-246 7-8 Solid 03/23/22 13-35 03/20/22 10-20 500-214283-16 SB-247 7-8 Solid 03/23/22 13-35 03/20/22 10-20					
\$00.214283-4 \$0.224.45-6.5 \$0.01d \$0.32322 11.00 \$0.32022 10.00 \$0.5002.14283-6 \$0.024283-5 \$0.024283-5 \$0.024283-5 \$0.024283-5 \$0.024283-6 \$0.024283-7 \$0.024283-9 \$0.024283-9 \$0.024283-9 \$0.024283-9 \$0.024283-1 \$0.004283-					
\$\text{500-214283-5} \text{ \$81-229 1-3} \text{ \$81-229 1-3} \text{ \$81-230 1-5} \text	500-214283-4				
S00-14/88-6 SB-229 4-5 Solid 03/23/22 11:15 03/29/22 10:20		SB-229 1-3			
S00-214/283-7 S0-228 5-7 Solid 03/23/22 11:20 03/29/22 10:20					
S00.214283-10 SB-230 3.5-4.5 Solid 03/23/22 11/35 03/29/22 10/20					
SB0-214/283-10 SB-230 4-56 Solid 03/23/22 11-40 03/29/22 10-20					
SP-214283-10 SP-200 8-10 Solid 03/23/22 11-45 03/28/22 10-20 03/29/22 10-20 0					
Second S					
SD-214283-12 SB-213 & 25-10 Solid 03/23/22 13/30 03/29/22 10/20					***-**-
\$600_214283-14 \$8-224 1-3 \$olid 03/23/22 13:30 03/29/22 10:20 \$000_214283-15 \$8-224 5-8 \$olid 03/23/22 13:30 03/29/22 10:20 \$000_214283-15 \$8-222 5-10 \$olid 03/23/22 13:50 03/29/22 10:20 \$000_214283-15 \$8-222 5-10 \$olid 03/23/22 13:50 03/29/22 10:20 \$000_214283-17 \$8-216 7-8 \$olid 03/23/22 14:50 03/29/22 10:20 \$000_214283-17 \$8-216 8-8.5 \$olid 03/23/22 14:20 03/29/22 10:20 \$000_214283-18 \$8-216 8-8.5 \$olid 03/23/22 14:20 03/29/22 10:20 \$000_214283-18 \$8-216 8-8.5 \$olid 03/23/22 14:20 03/29/22 10:20 \$000_214283-18 \$8-216 8-8.5 \$olid 03/23/22 14:20 03/29/22 10:20 \$000_214283-21 \$8-237 9-10 \$olid 03/23/22 15:50 03/29/22 10:20 \$000_214283-21 \$8-237 9-10 \$olid 03/23/22 15:10 03/29/22 10:20 \$000_214283-21 \$8-237 9-10 \$olid 03/24/22 09:10 03/29/22 10:20 \$000_214283-23 \$8-213 10-12 \$olid 03/24/22 09:15 03/29/22 10:20 \$000_214283-23 \$8-213 10-12 \$olid 03/24/22 09:15 03/29/22 10:20 \$000_214283-23 \$8-213 10-12 \$olid 03/24/22 10:15 03/29/22 10:20 \$000_214283-25 \$8-217 9-10 \$olid 03/24/22 10:15 03/29/22 10:20 \$000_214283-25 \$8-217 9-10 \$olid 03/24/22 10:15 03/29/22 10:20 \$000_214283-26 \$8-217 3-5 \$olid 03/24/22 10:15 03/29/22 10:20 \$000_214283-26 \$8-217 3-5 \$olid 03/24/22 10:15 03/29/22 10:20 \$000_214283-26 \$8-217 3-5 \$olid 03/24/22 10:15 03/29/22 10:20 \$000_214283-28 \$8-210 \$0.000_214283-28 \$8-210 \$0.000_214283-28 \$8-210 \$0.000_214283-28 \$8-220 4-5 \$olid 03/24/22 11:15 03/29/22 10:20 \$000_214283-28 \$8-220 4-5 \$olid 03/24/22 11:15 03/29/22 10:20 \$000_214283-30 \$8-220 4-5 \$olid 03/24/22 11:15 03/29/22 10:20 \$000_214283-33 \$8-220 4-5 \$olid 03/24/22 11:15 03/29/22 10:20 \$000_214283-33 \$8-220 4-5 \$olid 03/24/22 11:15 03/29/22 10:20 \$000_214283-33 \$8-225 8-9 \$olid 03/24/22 11:25 03/29/22 10:20 \$000_214283-33 \$8-220 4-5 \$olid 03/24/22 11:25 03/29/22 10:20 \$000_214283-34 \$8-210-2 \$olid 03/24/22 11:25 03/29/22 10:20 \$000_214283-34 \$8-210-2 \$olid 03/24/22 11:25 03/29/22 10:20 \$000_214283-34 \$8-210-2 \$olid 03/24/22 11:30 03/29/22 10:20 \$000_214283-34 \$8-210-2 \$olid 03/24/22 11:30 03/29/22 10:20 \$000_214283-34 \$8-215-2 \$olid 03/24/22					
500_214283-14 SB_222 6.5-8 Solid 03/23/22 13:35 03/29/22 10:20					
\$00.214283-15 \$8-222.6.5-8 \$0.id \$0.323/22 13.45 \$0.329/22 10:20 \$0.0214283-16 \$8-222.9-10 \$0.id \$0.323/22 13.45 \$0.329/22 10:20 \$0.0214283-17 \$8-216.7-8 \$0.id \$0.323/22 13.45 \$0.329/22 10:20 \$0.0214283-18 \$8-216.8-8.5 \$0.id \$0.323/22 14:20 \$0.329/22 10:20 \$0.0214283-18 \$8-216.8-8.5 \$0.id \$0.323/22 14:20 \$0.329/22 10:20 \$0.0214283-20 \$8-237 1-2 \$0.id \$0.323/22 15:05 \$0.329/22 10:20 \$0.0214283-21 \$8-237 9-10 \$0.id \$0.323/22 15:05 \$0.329/22 10:20 \$0.0214283-21 \$8-237 9-10 \$0.id \$0.323/22 15:10 \$0.329/22 10:20 \$0.0214283-23 \$8-213 0-2 \$0.id \$0.324/22 09:10 \$0.329/22 10:20 \$0.0214283-23 \$8-213 10-12 \$0.id \$0.324/22 09:15 \$0.329/22 10:20 \$0.0214283-23 \$8-213 10-12 \$0.id \$0.324/22 09:15 \$0.329/22 10:20 \$0.0214283-23 \$8-213 10-12 \$0.id \$0.324/22 09:15 \$0.329/22 10:20 \$0.0214283-23 \$8-213 10-12 \$0.id \$0.324/22 10:15 \$0.329/22 10:20 \$0.0214283-24 \$8-217 0-2 \$0.id \$0.324/22 10:15 \$0.329/22 10:20 \$0.0214283-26 \$8-217 3-5 \$0.id \$0.324/22 10:15 \$0.329/22 10:20 \$0.0214283-26 \$8-217 3-5 \$0.id \$0.324/22 10:10 \$0.329/22 10:20 \$0.0214283-26 \$8-217 3-5 \$0.id \$0.324/22 10:21 \$0.329/22 10:20 \$0.0214283-28 \$8-21 3-5 \$0.0214283-29 \$8-223 9-10 \$0.id \$0.324/22 10:21 \$0.329/22 10:20 \$0.0214283-28 \$8-21 3-5 \$0.0214283-29 \$8-223 9-10 \$0.id \$0.324/22 10:21 \$0.329/22 10:20 \$0.0214283-29 \$8-223 9-10 \$0.id \$0.324/22 10:21 \$0.329/22 10:20 \$0.0214283-31 \$8-220 14.75-15 \$0.id \$0.324/22 10:21 \$0.329/22 10:20 \$0.0214283-31 \$8-220 14.75-15 \$0.id \$0.324/22 11:10 \$0.329/22 10:20 \$0.0214283-32 \$8-225 4-4 \$0.id \$0.324/22 11:10 \$0.329/22 10:20 \$0.0214283-34 \$8-227 4-6 \$0.id \$0.324/22 11:10 \$0.329/22 10:20 \$0.0214283-34 \$8-227 4-6 \$0.id \$0.324/22 11:10 \$0.329/22 10:20 \$0.0214283-34 \$8-227 4-6 \$0.id \$0.324/22 11:10 \$0.329/22 10:20 \$0.0214283-34 \$8-227 4-6 \$0.id \$0.324/22 11:10 \$0.329/22 10:20 \$0.0214283-34 \$8-227 4-6 \$0.id \$0.324/22 11:10 \$0.329/22 10:20 \$0.0214283-34 \$8-2145 \$0.021428 4-4 \$0.id \$0.324/22 11:10 \$0.329/22 10:20 \$0.0214283-34 \$8-2145 \$0.021428 4-4 \$0.id \$0.324/22 11:10 \$0.329/22 10:20 \$0.0214283-34 \$8-2145 \$0.021428 4-4 \$0.id \$0.324/22 11:2					
500-214283-16 SB-222-9-10 Solid 03/23/22 13-50 03/29/22 10-20 500-214283-17 SB-216 7-8 Solid 03/23/22 14-25 03/29/22 10-20 500-214283-18 SB-216 10-11 Solid 03/23/22 14-25 03/29/22 10-20 500-214283-21 SB-216 10-11 Solid 03/23/22 15-05 03/29/22 10-20 500-214283-22 SB-213 10-2 Solid 03/23/22 15-05 03/29/22 10-20 500-214283-22 SB-213 0-2 Solid 03/24/22 09-10 03/29/22 10-20 500-214283-24 SB-217 0-2 Solid 03/24/22 10-10 03/29/22 10-20 500-214283-24 SB-217 0-2 Solid 03/24/22 10-10 03/29/22 10-20 500-214283-24 SB-217 0-1 Solid 03/24/22 10-10 03/29/22 10-20 500-214283-25 SB-217 3-5 Solid 03/24/22 10-20 03/29/22 10-20 500-214283-26 SB-217 3-5 Solid 03/24/22 10-20 03/29/22 10-20 500-214283-27 SB-223 4-6 Solid 03/24/22 10-20 03/29/22 10-20 500-214283-28 SB-222					
500_214283-17 SB-216 7-8 Solid 03/23/22 14:25 03/23/22 14:20 03/23/22 10:20 500_214283-19 SB-216 10-11 Solid 03/23/22 14:25 03/29/22 10:20 500_214283-20 SB-237 1-2 Solid 03/23/22 15:05 03/29/22 10:20 500_214283-21 SB-237 9-10 Solid 03/23/22 15:10 03/29/22 10:20 500_214283-22 SB-213 10-2 Solid 03/24/22 09:15 03/29/22 10:20 500_214283-23 SB-213 10-12 Solid 03/24/22 09:10 03/29/22 10:20 500_214283-24 SB-217 9-10 Solid 03/24/22 10:10 03/29/22 10:20 500_214283-25 SB-217 9-10 Solid 03/24/22 10:10 03/29/22 10:20 500_214283-26 SB-217 3-5 Solid 03/24/22 10:10 03/29/22 10:20 500_214283-27 SB-223 4-6 Solid 03/24/22 10:21 03/29/22 10:20 500_214283-28 FD-1 Solid 03/24/22 10:21 03/29/22 10:20 500_214283-31 SB-220 4-5 Solid 03/24/22 10:21 03/29/22 10:20 500_21428					
500_214283-18 SB-216 8-8.5 Solid 03/23/22 14:25 03/29/22 10:20 500_214283-19 SB-216 10-11 Solid 03/23/22 14:25 03/29/22 10:20 500_214283-21 SB-237 1-2 Solid 03/23/22 15:10 03/29/22 10:20 500_214283-22 SB-213 0-2 Solid 03/24/22 09:10 03/29/22 10:20 500_214283-23 SB-211 0-12 Solid 03/24/22 09:10 03/29/22 10:20 500_214283-24 SB-217 0-2 Solid 03/24/22 10:10 03/29/22 10:20 500_214283-25 SB-217 9-10 Solid 03/24/22 10:10 03/29/22 10:20 500_214283-26 SB-217 3-5 Solid 03/24/22 10:20 03/29/22 10:20 500_214283-27 SB-223 4-6 Solid 03/24/22 10:20 03/29/22 10:20 500_214283-28 SB-210 4-5 Solid 03/24/22 10:21 03/29/22 10:20 500_214283-30 SB-220 4-5 Solid 03/24/22 10:21 03/29/22 10:20 500_214283-32 SB-221 4-5 Solid 03/24/22 11:03 03/29/22 10:20 500_214283-33 SB-222					
500.214283-19 SB-216 10-11 Solid 03/23/22 14:25 03/29/22 10:20 500.214283-21 SB-237 1-2 Solid 03/23/22 15:10 03/29/22 10:20 500.214283-22 SB-213 9-10 Solid 03/24/22 09:10 03/29/22 10:20 500.214283-23 SB-213 10-12 Solid 03/24/22 09:10 03/29/22 10:20 500.214283-25 SB-217 9-10 Solid 03/24/22 10:10 03/29/22 10:20 500.214283-25 SB-217 9-10 Solid 03/24/22 10:10 03/29/22 10:20 500.214283-26 SB-217 9-10 Solid 03/24/22 10:20 03/29/22 10:20 500.214283-27 SB-23 4-6 Solid 03/24/22 10:20 03/29/22 10:20 500.214283-28 SB-21 4-1 Solid 03/24/22 10:20 03/29/22 10:20 500.214283-30 SB-223 4-6 Solid 03/24/22 10:20 03/29/22 10:20 500.214283-31 SB-220 4-5 Solid 03/24/22 11:05 03/29/22 10:20 500.214283-33 SB-220 14.75-16 Solid 03/24/22 11:05 03/29/22 10:20 500.214283-34 S					
500-214283-20 SB-237 1-2 Solid 03/23/22 15:05 03/29/22 10:20 500-214283-21 SB-237 9-10 Solid 03/24/22 09:10 03/29/22 10:20 500-214283-23 SB-213 0-12 Solid 03/24/22 09:15 03/29/22 10:20 500-214283-23 SB-213 0-12 Solid 03/24/22 10:10 03/29/22 10:20 500-214283-26 SB-217 9-10 Solid 03/24/22 10:20 03/29/22 10:20 500-214283-28 SB-217 3-5 Solid 03/24/22 10:20 03/29/22 10:20 500-214283-29 SB-223 4-6 Solid 03/24/22 10:20 03/29/22 10:20 500-214283-29 SB-23 9-10 Solid 03/24/22 10:30 03/29/22 10:20 500-214283-39 SB-220 4-5 Solid 03/24/22 10:30 03/29/22 10:20 500-214283-31 SB-220 14.75-15 Solid 03/24/22 11:0 03/29/22 10:20 500-214283-33 SB-225 24 Solid 03/24/22 11:0 03/29/22 10:20 500-214283-33 SB-225 8-9 Solid 03/24/22 11:0 03/29/22 10:20 500-214283-34 SB-210-					
500-214283-21 SB-237 9-10 Solid 03/23/22 15:10 03/29/22 10:20 500-214283-22 SB-213 0-2 Solid 03/24/22 09:10 03/29/22 10:20 500-214283-23 SB-213 10-12 Solid 03/24/22 10:10 03/29/22 10:20 500-214283-25 SB-217 0-2 Solid 03/24/22 10:10 03/29/22 10:20 500-214283-26 SB-217 3-5 Solid 03/24/22 10:20 03/29/22 10:20 500-214283-27 SB-23 4-6 Solid 03/24/22 10:20 30/29/22 10:20 500-214283-28 FD-1 Solid 03/24/22 10:20 30/29/22 10:20 500-214283-39 SB-23 9-10 Solid 03/24/22 10:20 30/29/22 10:20 500-214283-31 SB-220 14.75-15 Solid 03/24/22 11:0 30/29/22 10:20 500-214283-33 SB-225 8-9 Solid 03/24/22 11:0 30/29/22 10:20 500-214283-34 SB-227 7-6 Solid 03/24/22 11:0 30/29/22 10:20 500-214283-35 SB-221 0-2 Solid 03/24/22 12:0 30/29/22 10:20 500-214283-36 SB-210-2					
500-214283-22 \$B-213 0-2 \$Oild 03/24/22 09:10 03/29/22 10:20 500-214283-23 \$B-217 10-12 \$Oild 03/24/22 10:10 03/29/22 10:20 500-214283-24 \$B-217 0-1 \$Oild 03/24/22 10:10 03/29/22 10:20 500-214283-25 \$B-217 9-10 \$Oild 03/24/22 10:20 03/29/22 10:20 500-214283-26 \$B-217 3-5 \$Oild 03/24/22 10:20 03/29/22 10:20 500-214283-28 \$D-1 \$Oild 03/24/22 10:20 03/29/22 10:20 500-214283-28 \$D-1 \$Oild 03/24/22 10:20 03/29/22 10:20 500-214283-39 \$B-223 9-10 \$Oild 03/24/22 10:30 03/29/22 10:20 500-214283-31 \$B-220 4-5 \$Oild 03/24/22 11:10 03/29/22 10:20 500-214283-31 \$B-220 14.75-15 \$Oild 03/24/22 11:20 03/29/22 10:20 500-214283-33 \$B-225 2-4 \$Oild 03/24/22 11:20 03/29/22 10:20 500-214283-33 \$B-227 7-8 \$Oild 03/24/22 11:20 03/29/22 10:20 500-214283-35 \$B-221 0-2					
500-214283-23 SB-213 10-12 Solid 03/24/22 10:10 03/29/22 10:20 500-214283-24 SB-217 0-2 Solid 03/24/22 10:10 03/29/22 10:20 500-214283-25 SB-217 9-10 Solid 03/24/22 10:20 03/29/22 10:20 500-214283-26 SB-217 3-5 Solid 03/24/22 10:20 03/29/22 10:20 500-214283-27 SB-223 4-6 Solid 03/24/22 10:20 03/29/22 10:20 500-214283-28 FD-1 Solid 03/24/22 10:30 03/29/22 10:20 500-214283-30 SB-223 9-10 Solid 03/24/22 11:00 03/29/22 10:20 500-214283-31 SB-220 14.75-15 Solid 03/24/22 11:00 03/29/22 10:20 500-214283-33 SB-225 8-9 Solid 03/24/22 11:20 03/29/22 10:20 500-214283-33 SB-227 8-8 Solid 03/24/22 11:30 03/29/22 10:20 500-214283-36 SB-227 7-8 Solid 03/24/22 11:30 03/29/22 10:20 500-214283-39 SB-214 5- Solid 03/24/22 11:30 03/29/22 10:20 500-214283-39 SB-216 2-<					
500-214283-24 SB-217 0-2 Solid 03/24/22 10:10 03/29/22 10:20 500-214283-26 SB-217 9-10 Solid 03/24/22 10:15 03/29/22 10:20 500-214283-26 SB-217 3-5 Solid 03/24/22 10:20 03/29/22 10:20 500-214283-27 SB-223 4-6 Solid 03/24/22 10:21 03/29/22 10:20 500-214283-28 FD-1 Solid 03/24/22 10:01 03/29/22 10:20 500-214283-30 SB-220 4-5 Solid 03/24/22 11:05 03/29/22 10:20 500-214283-31 SB-220 14.75-15 Solid 03/24/22 11:10 03/29/22 10:20 500-214283-33 SB-225 5-9 Solid 03/24/22 11:30 03/29/22 10:20 500-214283-33 SB-225 5-9 Solid 03/24/22 11:30 03/29/22 10:20 500-214283-34 SB-227 7-8 Solid 03/24/22 11:30 03/29/22 10:20 500-214283-35 SB-2210 -2 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-36 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-37 SB-221 4-5 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
500-214283-25 SB-217 9-10 Solid 03/24/22 10:15 03/29/22 10:20 500-214283-26 500-214283-26 SB-217 3-5 Solid 03/24/22 10:20 03/29/22 10:20 03/29/22 10:20 500-214283-27 SB-223 4-6 Solid 03/24/22 10:21 03/29/22 10:20 03/29/22 10:20 500-214283-28 FD-1 Solid 03/24/22 10:31 03/29/22 10:20 03/29/22 10:20 500-214283-30 SB-220 9-10 Solid 03/24/22 11:03 03/29/22 10:20 500-214283-30 SB-220 14.75-15 Solid 03/24/22 11:00 03/29/22 10:20 500-214283-31 SB-225 24 Solid 03/24/22 11:10 03/29/22 10:20 500-214283-33 SB-225 8-9 Solid 03/24/22 11:10 03/29/22 10:20 500-214283-33 SB-227 4-6 Solid 03/24/22 11:10 03/29/22 10:20 500-214283-34 SB-227 4-6 Solid 03/24/22 12:10 03/29/22 10:20 500-214283-35 SB-227 4-6 Solid 03/24/22 12:10 03/29/22 10:20 500-214283-34 SB-221 4-5 Solid 03/24/22 13:50 03/29/22 10:20 500-214283-34 SB-221 4-5 Solid 03/24/22 13:50 03/29/22 10:20 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
500-214283-26 SB-217 3-5 Solid 03/24/22 10:20 03/29/22 10:20 500-214283-27 SB-223 4-6 Solid 03/24/22 10:25 03/29/22 10:20 500-214283-28 FD-1 Solid 03/24/22 10:30 03/29/22 10:20 500-214283-30 SB-223 9-10 Solid 03/24/22 11:05 03/29/22 10:20 500-214283-31 SB-220 4-5 Solid 03/24/22 11:10 03/29/22 10:20 500-214283-32 SB-225 2-4 Solid 03/24/22 11:25 03/29/22 10:20 500-214283-33 SB-225 8-9 Solid 03/24/22 11:20 03/29/22 10:20 500-214283-34 SB-227 7-8 Solid 03/24/22 12:10 03/29/22 10:20 500-214283-35 SB-227 7-8 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-36 SB-221 0-2 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-37 SB-214 4-5 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-40 SB-218 5-7					
500-214283-27 SB-223 4-6 Solid 03/24/22 10:25 03/29/22 10:20 500-214283-28 FD-1 Solid 03/24/22 10:21 03/29/22 10:20 500-214283-30 SB-223 9-10 Solid 03/24/22 11:05 03/29/22 10:20 500-214283-31 SB-220 14.75-15 Solid 03/24/22 11:10 03/29/22 10:20 500-214283-32 SB-225 2-4 Solid 03/24/22 11:25 03/29/22 10:20 500-214283-33 SB-227 4-6 Solid 03/24/22 11:20 03/29/22 10:20 500-214283-34 SB-227 7-8 Solid 03/24/22 12:10 03/29/22 10:20 500-214283-35 SB-227 4-5 Solid 03/24/22 12:15 03/29/22 10:20 500-214283-36 SB-227 4-6 Solid 03/24/22 12:15 03/29/22 10:20 500-214283-37 SB-221 4-5 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-38 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:01 03/29/22 10:20 500-214283-41 SB-214 0-2					
500-214283-28 FD-1 Solid 03/24/22 10:21 03/29/22 10:20 500-214283-39 SB-220 4-5 Solid 03/24/22 11:05 03/29/22 10:20 500-214283-31 SB-220 14.75-15 Solid 03/24/22 11:10 03/29/22 10:20 500-214283-32 SB-225 2-4 Solid 03/24/22 11:25 03/29/22 10:20 500-214283-33 SB-225 8-9 Solid 03/24/22 11:10 03/29/22 10:20 500-214283-34 SB-227 7-8 Solid 03/24/22 11:15 03/29/22 10:20 500-214283-35 SB-227 7-8 Solid 03/24/22 12:15 03/29/22 10:20 500-214283-36 SB-221 0-2 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-37 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-38 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:01 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:01 03/29/22 10:20 500-214283-41 SB-216 5-7 <					
500-214283-29 SB-223 9-10 Solid 03/24/22 10:30 03/29/22 10:20 500-214283-30 SB-220 4-5 Solid 03/24/22 11:05 03/29/22 10:20 500-214283-31 SB-220 14.75-15 Solid 03/24/22 11:25 03/29/22 10:20 500-214283-32 SB-225 2-4 Solid 03/24/22 11:25 03/29/22 10:20 500-214283-33 SB-225 8-9 Solid 03/24/22 12:10 03/29/22 10:20 500-214283-34 SB-227 7-8 Solid 03/24/22 12:15 03/29/22 10:20 500-214283-36 SB-221 0-2 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-37 SB-221 4-5 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-40 SB-218 5-7 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-41 SB-214 4-5 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-42 SB-215 6-7					
500-214283-30 SB-220 4-5 Solid 03/24/22 11:05 03/29/22 10:20 500-214283-31 SB-220 14.75-15 Solid 03/24/22 11:10 03/29/22 10:20 500-214283-32 SB-225 2-4 Solid 03/24/22 11:30 03/29/22 10:20 500-214283-34 SB-227 4-6 Solid 03/24/22 12:10 03/29/22 10:20 500-214283-35 SB-227 7-8 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-36 SB-221 0-2 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-38 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-38 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:01 03/29/22 10:20 500-214283-40 SB-218 5-7 Solid 03/24/22 13:05 03/29/22 10:20 500-214283-41 SB-214 0-2 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-43 SB-215 0-2 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-44 SB-215 0-2 <td></td> <td></td> <td></td> <td></td> <td></td>					
500-214283-31 SB-220 14.75-15 Solid 03/24/22 11:10 03/29/22 10:20 500-214283-32 SB-225 2-4 Solid 03/24/22 11:25 03/29/22 10:20 500-214283-33 SB-225 8-9 Solid 03/24/22 12:10 03/29/22 10:20 500-214283-34 SB-227 7-8 Solid 03/24/22 12:15 03/29/22 10:20 500-214283-35 SB-227 7-8 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-36 SB-221 0-2 Solid 03/24/22 12:55 03/29/22 10:20 500-214283-37 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-34 SB-216 5-7 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-34 SB-215 0-2 Sol					
500-214283-32 \$B-225 2-4 \$Olid 03/24/22 11:25 03/29/22 10:20 500-214283-33 \$B-225 8-9 \$Olid 03/24/22 11:30 03/29/22 10:20 500-214283-34 \$B-227 7-8 \$Olid 03/24/22 12:10 03/29/22 10:20 500-214283-35 \$B-221 0-2 \$Olid 03/24/22 12:50 03/29/22 10:20 500-214283-36 \$B-221 4-5 \$Olid 03/24/22 12:50 03/29/22 10:20 500-214283-38 \$B-218 2-4 \$Olid 03/24/22 13:00 03/29/22 10:20 500-214283-39 \$D-2 \$Olid 03/24/22 13:00 03/29/22 10:20 500-214283-40 \$B-218 5-7 \$Olid 03/24/22 13:00 03/29/22 10:20 500-214283-41 \$B-214 0-2 \$Olid 03/24/22 14:00 03/29/22 10:20 500-214283-42 \$B-214 4-5 \$Olid 03/24/22 14:05 03/29/22 10:20 500-214283-43 \$B-214 0-2 \$Olid 03/24/22 14:05 03/29/22 10:20 500-214283-43 \$B-215 0-2 \$Olid 03/24/22 14:25 03/29/22 10:20 500-214283-45 \$B-21					
500-214283-33 SB-225 8-9 Solid 03/24/22 11:30 03/29/22 10:20 500-214283-34 SB-227 4-6 Solid 03/24/22 12:10 03/29/22 10:20 500-214283-35 SB-227 7-8 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-36 SB-221 0-2 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-37 SB-221 4-5 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-38 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:01 03/29/22 10:20 500-214283-40 SB-218 5-7 Solid 03/24/22 13:05 03/29/22 10:20 500-214283-42 SB-214 0-2 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-43 SB-215 0-2 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-46 MW-231					
500-214283-34 SB-227 4-6 Solid 03/24/22 12:10 03/29/22 10:20 500-214283-35 SB-227 7-8 Solid 03/24/22 12:15 03/29/22 10:20 500-214283-36 SB-221 0-2 Solid 03/24/22 12:55 03/29/22 10:20 500-214283-37 SB-221 4-5 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-40 SB-218 5-7 Solid 03/24/22 13:05 03/29/22 10:20 500-214283-41 SB-214 0-2 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-42 SB-215 0-2 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-43 SB-215 0-2 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-45 BB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-46 MW-231 Water 03/25/22 11:05 03/29/22 10:20 500-214283-47 MW-234 Wate					
500-214283-35 SB-227 7-8 Solid 03/24/22 12:15 03/29/22 10:20 500-214283-36 SB-221 0-2 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-37 SB-221 4-5 Solid 03/24/22 12:55 03/29/22 10:20 500-214283-38 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:01 03/29/22 10:20 500-214283-40 SB-218 5-7 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-41 SB-214 0-2 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-42 SB-215 0-2 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-43 SB-215 6-7 Solid 03/24/22 14:25 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/24/22 14:30 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-47 MW-234 Water 03/25/22 11:05 03/29/22 10:20 500-214283-49 TW-227 Wate					
500-214283-36 SB-221 0-2 Solid 03/24/22 12:50 03/29/22 10:20 500-214283-37 SB-221 4-5 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-38 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:05 03/29/22 10:20 500-214283-40 SB-218 5-7 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-41 SB-214 0-2 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-42 SB-215 0-2 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-43 SB-215 6-7 Solid 03/24/22 14:25 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/24/22 14:25 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-47 MW-231 Water 03/25/22 11:05 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 17:15 03/29/22 10:20 500-214283-49 TW-222 Water <td></td> <td></td> <td></td> <td></td> <td></td>					
500-214283-37 SB-221 4-5 Solid 03/24/22 12:55 03/29/22 10:20 500-214283-38 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:05 03/29/22 10:20 500-214283-40 SB-218 5-7 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-41 SB-214 0-2 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-42 SB-215 0-2 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-43 SB-215 0-2 Solid 03/24/22 14:25 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/24/22 14:25 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-46 MW-231 Water 03/25/22 11:45 03/29/22 10:20 500-214283-47 MW-234 Water 03/25/22 11:45 03/29/22 10:20 500-214283-49 TW-227 Water 03/25/22 15:30 03/29/22 10:20 500-214283-50 TW-213 Water					
500-214283-38 SB-218 2-4 Solid 03/24/22 13:00 03/29/22 10:20 500-214283-39 FD-2 Solid 03/24/22 13:01 03/29/22 10:20 500-214283-40 SB-218 5-7 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-41 SB-214 0-2 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-42 SB-214 4-5 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-43 SB-215 0-2 Solid 03/24/22 14:25 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/24/22 14:30 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-46 MW-231 Water 03/25/22 11:45 03/29/22 10:20 500-214283-47 MW-234 Water 03/25/22 11:45 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 11:45 03/29/22 10:20 500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water					
500-214283-39 FD-2 Solid 03/24/22 13:01 03/29/22 10:20 500-214283-40 SB-218 5-7 Solid 03/24/22 13:05 03/29/22 10:20 500-214283-41 SB-214 0-2 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-42 SB-215 0-2 Solid 03/24/22 14:25 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/24/22 14:30 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-46 MW-231 Water 03/25/22 11:00 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 11:45 03/29/22 10:20 500-214283-49 TW-222 Water 03/25/22 15:30 03/29/22 10:20 500-214283-50 TW-213 Water 03/25/22 17:15 03/29/22 10:20 500-214283-52 TW-299 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 17:25 03/29/22 10:20 500-214283-54 TW-233 Water 0					
500-214283-40 SB-218 5-7 Solid 03/24/22 13:05 03/29/22 10:20 500-214283-41 SB-214 0-2 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-42 SB-215 0-2 Solid 03/24/22 14:25 03/29/22 10:20 500-214283-43 SB-215 0-2 Solid 03/24/22 14:30 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/25/22 11:05 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:00 03/29/22 10:20 500-214283-46 MW-231 Water 03/25/22 11:45 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 12:17 03/29/22 10:20 500-214283-49 TW-222 Water 03/25/22 15:30 03/29/22 10:20 500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:05 03/29/22 10:20 500-214283-54 TW-23 Water 03/25/22 12:45 03/29/22 10:20					
500-214283-41 SB-214 0-2 Solid 03/24/22 14:00 03/29/22 10:20 500-214283-42 SB-214 4-5 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-43 SB-215 0-2 Solid 03/24/22 14:25 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/25/22 11:05 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-46 MW-231 Water 03/25/22 11:45 03/29/22 10:20 500-214283-47 MW-234 Water 03/25/22 11:45 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 12:10 03/29/22 10:20 500-214283-49 TW-222 Water 03/25/22 15:30 03/29/22 10:20 500-214283-50 TW-213 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water <th< td=""><td></td><td></td><td></td><td></td><td></td></th<>					
500-214283-42 SB-214 4-5 Solid 03/24/22 14:05 03/29/22 10:20 500-214283-43 SB-215 0-2 Solid 03/24/22 14:30 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/25/22 11:05 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:00 03/29/22 10:20 500-214283-46 MW-231 Water 03/25/22 11:45 03/29/22 10:20 500-214283-47 MW-234 Water 03/25/22 11:45 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 12:17 03/29/22 10:20 500-214283-49 TW-222 Water 03/25/22 17:15 03/29/22 10:20 500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-52 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 17:25 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20					
500-214283-43 SB-215 0-2 Solid 03/24/22 14:25 03/29/22 10:20 500-214283-44 SB-215 6-7 Solid 03/24/22 14:30 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-46 MW-231 Water 03/25/22 11:45 03/29/22 10:20 500-214283-47 MW-234 Water 03/25/22 12:17 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 15:30 03/29/22 10:20 500-214283-49 TW-222 Water 03/25/22 17:15 03/29/22 10:20 500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-233 Water 03/25/22 17:25 03/29/22 10:20					
500-214283-44 SB-215 6-7 Solid 03/24/22 14:30 03/29/22 10:20 500-214283-45 EB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-46 MW-231 Water 03/25/22 11:00 03/29/22 10:20 500-214283-47 MW-234 Water 03/25/22 12:17 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 15:30 03/29/22 10:20 500-214283-49 TW-222 Water 03/25/22 17:15 03/29/22 10:20 500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-52 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20					
500-214283-45 EB-1 Water 03/25/22 11:05 03/29/22 10:20 500-214283-46 MW-231 Water 03/25/22 11:00 03/29/22 10:20 500-214283-47 MW-234 Water 03/25/22 11:45 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 15:30 03/29/22 10:20 500-214283-49 TW-222 Water 03/25/22 17:15 03/29/22 10:20 500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-52 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20					
500-214283-46 MW-231 Water 03/25/22 11:00 03/29/22 10:20 500-214283-47 MW-234 Water 03/25/22 11:45 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 12:17 03/29/22 10:20 500-214283-49 TW-222 Water 03/25/22 15:30 03/29/22 10:20 500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-52 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20					
500-214283-47 MW-234 Water 03/25/22 11:45 03/29/22 10:20 500-214283-48 TW-237 Water 03/25/22 12:17 03/29/22 10:20 500-214283-49 TW-222 Water 03/25/22 15:30 03/29/22 10:20 500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-52 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20			Water		
500-214283-48 TW-237 Water 03/25/22 12:17 03/29/22 10:20 500-214283-49 TW-222 Water 03/25/22 15:30 03/29/22 10:20 500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-52 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20			Water		
500-214283-49 TW-222 Water 03/25/22 15:30 03/29/22 10:20 500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-52 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20			Water		
500-214283-50 TW-227 Water 03/25/22 17:15 03/29/22 10:20 500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-52 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20	500-214283-48		Water		
500-214283-51 TW-213 Water 03/25/22 17:05 03/29/22 10:20 500-214283-52 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20	500-214283-49				
500-214283-52 TW-229 Water 03/25/22 12:05 03/29/22 10:20 500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20	500-214283-50		Water		
500-214283-53 TW-230 Water 03/25/22 12:45 03/29/22 10:20 500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20	500-214283-51	TW-213	Water		
500-214283-54 TW-223 Water 03/25/22 17:25 03/29/22 10:20	500-214283-52	TW-229	Water		
	500-214283-53	TW-230	Water		
500-214283-55 TW-225 Water 03/25/22 17:35 03/29/22 10:20	500-214283-54	TW-223	Water		
	500-214283-55	TW-225	Water	03/25/22 17:35	03/29/22 10:20

Sample Summary

Client: Stantec Consulting Corp.
Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-214283-56	TW-216	Water	03/25/22 15:40	03/29/22 10:20
500-214283-57	TW-215	Water	03/25/22 16:00	03/29/22 10:20
500-214283-58	TW-221	Water	03/25/22 16:55	03/29/22 10:20
500-214283-59	TW-214	Water	03/25/22 16:20	03/29/22 10:20
500-214283-60	FD-3	Water	03/25/22 11:01	03/29/22 10:20
500-214283-61	TB1	Water	03/25/22 00:00	03/29/22 10:20

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-236 3.5-5 Lab Sample ID: 500-214283-1

Date Collected: 03/23/22 09:20

Matrix: Solid

Date Received: 03/29/22 10:20

Percent Solids: 76.1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<41	88	41	ug/Kg	— <u></u>	03/23/22 09:20	03/31/22 11:59	5
1,1,1-Trichloroethane	<33	88	33		₩	03/23/22 09:20	03/31/22 11:59	5
1,1,2,2-Tetrachloroethane	<35	88	35	ug/Kg	₽	03/23/22 09:20	03/31/22 11:59	5
1,1,2-Trichloroethane	<31	88		ug/Kg		03/23/22 09:20		5
1,1-Dichloroethane	<36	88		ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	5
1,1-Dichloroethene	<34	88		ug/Kg	₩	03/23/22 09:20		5
1,1-Dichloropropene	<26	88		ug/Kg		03/23/22 09:20		5
1,2,3-Trichlorobenzene	<40	88		ug/Kg		03/23/22 09:20		5
1,2,3-Trichloropropane	<36	180		ug/Kg			03/31/22 11:59	5
1,2,4-Trichlorobenzene	<30	88		ug/Kg	 ∵	03/23/22 09:20		5
1,2,4-Trimethylbenzene	290	88		ug/Kg	₩		03/31/22 11:59	5
1,2-Dibromo-3-Chloropropane	<180	440		ug/Kg	₩	03/23/22 09:20		5
1,2-Dibromoethane	<34				¥. ∴		03/31/22 11:59	5
•	<29	88		ug/Kg				
1,2-Dichlorobenzene	<29 <35	88		ug/Kg		03/23/22 09:20		5
1,2-Dichloroethane		88		ug/Kg	· · · · ·	03/23/22 09:20		5
1,2-Dichloropropane	<38	88		ug/Kg	*	03/23/22 09:20		5
1,3,5-Trimethylbenzene	77 J	88		ug/Kg	*	03/23/22 09:20	03/31/22 11:59	5
1,3-Dichlorobenzene	<35	88		ug/Kg	<u>.</u> .	03/23/22 09:20	03/31/22 11:59	5
1,3-Dichloropropane	<32	88		ug/Kg	‡	03/23/22 09:20		5
1,4-Dichlorobenzene	<32	88		ug/Kg	☼	03/23/22 09:20		5
2,2-Dichloropropane	<39	88		ug/Kg		03/23/22 09:20		5
2-Chlorotoluene	<28	88		ug/Kg	☼	03/23/22 09:20		5
4-Chlorotoluene	<31	88	31	0 0	☼	03/23/22 09:20		5
Benzene	64	22		ug/Kg		03/23/22 09:20		5
Bromobenzene	<31	88		ug/Kg	≎	03/23/22 09:20		5
Bromochloromethane	<38	88		ug/Kg	₩	03/23/22 09:20		5
Dichlorobromomethane	<33	88	33	ug/Kg		03/23/22 09:20	03/31/22 11:59	5
Bromoform	<43	88		ug/Kg	☼	03/23/22 09:20	03/31/22 11:59	5
Bromomethane	<70	260	70	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	5
Carbon tetrachloride	<34	88	34	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	5
Chlorobenzene	<34	88	34	ug/Kg	☼	03/23/22 09:20	03/31/22 11:59	5
Chloroethane	<44	88	44	ug/Kg	☼	03/23/22 09:20	03/31/22 11:59	5
Chloroform	<33	180	33	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	5
Chloromethane	<28	88	28	ug/Kg	₽	03/23/22 09:20	03/31/22 11:59	5
cis-1,2-Dichloroethene	<36	88	36	ug/Kg	☼	03/23/22 09:20	03/31/22 11:59	5
cis-1,3-Dichloropropene	<37	88	37	ug/Kg	₽	03/23/22 09:20	03/31/22 11:59	5
Dibromochloromethane	<43	88	43	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	5
Dibromomethane	<24	88	24	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	5
Dichlorodifluoromethane	<59	260	59	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	5
Ethylbenzene	130	22		ug/Kg		03/23/22 09:20	03/31/22 11:59	5
Hexachlorobutadiene	<39	88		ug/Kg	₽	03/23/22 09:20	03/31/22 11:59	5
sopropyl ether	<24	88		ug/Kg	₽	03/23/22 09:20	03/31/22 11:59	5
sopropylbenzene	91	88		ug/Kg	 ☆	03/23/22 09:20	03/31/22 11:59	5
Methyl tert-butyl ether	<35	88		ug/Kg	≎	03/23/22 09:20	03/31/22 11:59	5
Methylene Chloride	540 B	440		ug/Kg	≎	03/23/22 09:20	03/31/22 11:59	5
Naphthalene	440 B	88		ug/Kg		03/23/22 09:20	03/31/22 11:59	5
Naphthalene n-Butylbenzene	440 B <34	88		ug/Kg ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	5 5
-	110	88				03/23/22 09:20	03/31/22 11:59	
N-Propylbenzene p-Isopropyltoluene	33 J	88		ug/Kg ug/Kg	 ∴			5

Eurofins Chicago

4/15/2022

Job ID: 500-214283-1

2

4

6

8

11

13

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-236 3.5-5

Lab Sample ID: 500-214283-1 Date Collected: 03/23/22 09:20 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 76.1

Method: 8260B - Volatile O	ganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	41	J	88	35	ug/Kg	<u></u>	03/23/22 09:20	03/31/22 11:59	50
Styrene	<34		88	34	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	50
tert-Butylbenzene	<35		88	35	ug/Kg	₽	03/23/22 09:20	03/31/22 11:59	50
Tetrachloroethene	<33		88	33	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	50
Toluene	440		22	13	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	50
trans-1,2-Dichloroethene	<31		88	31	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	50
trans-1,3-Dichloropropene	<32		88	32	ug/Kg	☼	03/23/22 09:20	03/31/22 11:59	50
Trichloroethene	<14		44	14	ug/Kg	☼	03/23/22 09:20	03/31/22 11:59	50
Trichlorofluoromethane	<38		88	38	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	50
Vinyl chloride	<23		88	23	ug/Kg	₩	03/23/22 09:20	03/31/22 11:59	50
Xylenes, Total	1000		44	19	ug/Kg	☼	03/23/22 09:20	03/31/22 11:59	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		75 - 126				03/23/22 09:20	03/31/22 11:59	50
4-Bromofluorobenzene (Surr)	87		72 - 124				03/23/22 09:20	03/31/22 11:59	50
Dibromofluoromethane (Surr)	100		75 - 120				03/23/22 09:20	03/31/22 11:59	50
Toluene-d8 (Surr)	95		75 - 120				03/23/22 09:20	03/31/22 11:59	50

- Toluene-uo (Sun)	90		73-120				03/23/22 09.20	03/31/22 11.09	50
Method: 8270D - Semivolatile	_	mpounds Qualifier	(GC/MS)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<230		1100	230		— <u>-</u>	04/06/22 06:52	04/07/22 14:29	5
1,2-Dichlorobenzene	<250		1100	250	ug/Kg		04/06/22 06:52	04/07/22 14:29	5
1,3-Dichlorobenzene	<240		1100		ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
1,4-Dichlorobenzene	<270		1100	270	ug/Kg		04/06/22 06:52	04/07/22 14:29	5
1-Methylnaphthalene	1600	F2 F1	420	51	ug/Kg	≎	04/06/22 06:52	04/07/22 14:29	5
2,2'-oxybis[1-chloropropane]	<240		1100	240	ug/Kg	≎	04/06/22 06:52	04/07/22 14:29	5
2,4,5-Trichlorophenol	<480		2100	480	ug/Kg		04/06/22 06:52	04/07/22 14:29	5
2,4,6-Trichlorophenol	<720		2100	720	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
2,4-Dichlorophenol	<500		2100	500	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
2,4-Dimethylphenol	<800		2100	800	ug/Kg		04/06/22 06:52	04/07/22 14:29	5
2,4-Dinitrophenol	<3700		4200	3700	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
2,4-Dinitrotoluene	<330	F1	1100	330	ug/Kg	≎	04/06/22 06:52	04/07/22 14:29	5
2,6-Dinitrotoluene	<410		1100	410	ug/Kg	≎	04/06/22 06:52	04/07/22 14:29	5
2-Chloronaphthalene	<230	F1	1100	230	ug/Kg	≎	04/06/22 06:52	04/07/22 14:29	5
2-Chlorophenol	<360		1100	360	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
2-Methylnaphthalene	2100	F2 F1	420	39	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
2-Methylphenol	<340	F1	1100	340	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
2-Nitroaniline	<280		1100	280	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
2-Nitrophenol	<500		2100	500	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
3 & 4 Methylphenol	<350		1100	350	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
3,3'-Dichlorobenzidine	<290	F1	1100	290	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
3-Nitroaniline	<650		2100	650	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
4,6-Dinitro-2-methylphenol	<1700	F1	4200	1700	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
4-Bromophenyl phenyl ether	<280		1100	280	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
4-Chloro-3-methylphenol	<710		2100	710	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
4-Chloroaniline	<990	F1	4200	990	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
4-Chlorophenyl phenyl ether	<250		1100	250	ug/Kg	≎	04/06/22 06:52	04/07/22 14:29	5
4-Nitroaniline	<880	F1	2100	880	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5
4-Nitrophenol	<2000	F2	4200	2000	ug/Kg	≎	04/06/22 06:52	04/07/22 14:29	5
Acenaphthene	56	J	210	38	ug/Kg	₽	04/06/22 06:52	04/07/22 14:29	5

Eurofins Chicago

Page 31 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-236 3.5-5 Lab Sample ID: 500-214283-1

Date Collected: 03/23/22 09:20

Matrix: Solid

Date Received: 03/29/22 10:20

Percent Solids: 76.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	140	J F1	210	28	ug/Kg	<u></u>	04/06/22 06:52	04/07/22 14:29	
Anthracene	160	J F1	210	35	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Benzo[a]anthracene	630	F1	210	28	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Benzo[a]pyrene	890	F1	210	41	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Benzo[b]fluoranthene	1500	F2 F1	210	45	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Benzo[g,h,i]perylene	380	F1	210	68	ug/Kg	☼	04/06/22 06:52	04/07/22 14:29	5
Benzo[k]fluoranthene	460	F2 F1	210	62	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Benzoic acid	<2100	F1	11000	2100	ug/Kg	☼	04/06/22 06:52	04/07/22 14:29	5
Benzyl alcohol	<2100		4200	2100	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Bis(2-chloroethoxy)methane	<210		1100	210	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Bis(2-chloroethyl)ether	<310		1100	310	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Bis(2-ethylhexyl) phthalate	<380		1100	380	ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Butyl benzyl phthalate	<400		1100		ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Carbazole	<520	F2	1100	520		₩		04/07/22 14:29	5
Chrysene	880		210	57	0 0	₩		04/07/22 14:29	5
Dibenz(a,h)anthracene		J F1	210	41				04/07/22 14:29	5
Dibenzofuran		J F1	1100		ug/Kg	₩		04/07/22 14:29	5
Diethyl phthalate	<360		1100		ug/Kg	₩	04/06/22 06:52	04/07/22 14:29	5
Dimethyl phthalate	<270		1100		ug/Kg	 ☆	04/06/22 06:52	04/07/22 14:29	5
Di-n-butyl phthalate	<320	F2	1100	320		₩	04/06/22 06:52	04/07/22 14:29	5
Di-n-octyl phthalate	<340		1100	340		₩	04/06/22 06:52	04/07/22 14:29	5
Fluoranthene	1100		210	39		 .☆		04/07/22 14:29	5
Fluorene	<29		210	29		₩		04/07/22 14:29	5
Hexachlorobenzene	<49		420		ug/Kg	₩		04/07/22 14:29	5
Hexachlorobutadiene	<330		1100		ug/Kg			04/07/22 14:29	5
Hexachlorocyclopentadiene	<1200	F1	4200	1200		₩		04/07/22 14:29	5
Hexachloroethane	<320		1100		ug/Kg	₩		04/07/22 14:29	5
Indeno[1,2,3-cd]pyrene		F2 F1	210		ug/Kg			04/07/22 14:29	5
Isophorone	<240		1100		ug/Kg			04/07/22 14:29	5
Naphthalene	1300	F1	210		ug/Kg			04/07/22 14:29	5
Nitrobenzene	<52		210		ug/Kg			04/07/22 14:29	5
N-Nitrosodi-n-propylamine	<260		420		ug/Kg			04/07/22 14:29	5
N-Nitrosodiphenylamine	<250		1100		ug/Kg			04/07/22 14:29	5
Pentachlorophenol	<3400		4200		ug/Kg			04/07/22 14:29	5
Phenanthrene	1300		210		ug/Kg	~ \$		04/07/22 14:29	5
Phenol	<470	• •	1100		ug/Kg	Ď.		04/07/22 14:29	5
Pyrene	1200		210		ug/Kg		04/06/22 06:52		5
•		0 1/5"	I to te				5	A 1	D.:: -
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	93		31 - 143					04/07/22 14:29	5
2-Fluorobiphenyl (Surr)	85	C1.	43 - 145					04/07/22 14:29	5
2-Fluorophenol (Surr)		S1+	31 - 166					04/07/22 14:29	
Nitrobenzene-d5 (Surr)	68		37 - 147					04/07/22 14:29	5
Phenol-d5 (Surr)	103		30 ₋ 153					04/07/22 14:29	5
Terphenyl-d14 (Surr)	90		42 - 157				04/06/22 06:52	04/07/22 14:29	5
Method: 8081A - Organoch	nlorine Pesticid	les (GC)							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<7.4		11	7.4	ug/Kg	☼	04/05/22 16:57	04/06/22 13:33	5
alpha-BHC	<6.0		11	6.0	ug/Kg	₽	04/05/22 16:57	04/06/22 13:33	5

Eurofins Chicago

2

Job ID: 500-214283-1

3

O

10

1 <u>/</u>

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-236 3.5-5 Lab Sample ID: 500-214283-1

Date Collected: 03/23/22 09:20

Matrix: Solid

Date Received: 03/29/22 10:20

Percent Solids: 76.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<5.7		11	5.7	ug/Kg	₽	04/05/22 16:57	04/06/22 13:33	5
beta-BHC	<8.6		11	8.6	ug/Kg	₽	04/05/22 16:57	04/06/22 13:33	5
4,4'-DDD	<5.8		11	5.8	ug/Kg	☼	04/05/22 16:57	04/06/22 13:33	5
4,4'-DDE	<5.5		11	5.5	ug/Kg	≎	04/05/22 16:57	04/06/22 13:33	5
4,4'-DDT	<5.1		11	5.1	ug/Kg	₽	04/05/22 16:57	04/06/22 13:33	5
delta-BHC	<5.1		11	5.1	ug/Kg	≎	04/05/22 16:57	04/06/22 13:33	5
Dieldrin	<5.6		11	5.6	ug/Kg	☼	04/05/22 16:57	04/06/22 13:33	5
Endosulfan I	<5.8		11	5.8	ug/Kg	₽	04/05/22 16:57	04/06/22 13:33	5
Endosulfan II	<5.9		11	5.9	ug/Kg	☼	04/05/22 16:57	04/06/22 13:33	5
Endosulfan sulfate	<5.9		11	5.9	ug/Kg	₩	04/05/22 16:57	04/06/22 13:33	5
Endrin	<5.5		11	5.5	ug/Kg	₽	04/05/22 16:57	04/06/22 13:33	5
Endrin aldehyde	<6.1		11	6.1	ug/Kg	₩	04/05/22 16:57	04/06/22 13:33	5
Endrin ketone	<5.2		11	5.2	ug/Kg	≎	04/05/22 16:57	04/06/22 13:33	5
gamma-BHC (Lindane)	<5.3		11	5.3	ug/Kg	₽	04/05/22 16:57	04/06/22 13:33	5
trans-Chlordane	<6.2		11	6.2	ug/Kg	☼	04/05/22 16:57	04/06/22 13:33	5
Heptachlor	<5.8		11	5.8	ug/Kg	₩	04/05/22 16:57	04/06/22 13:33	5
Heptachlor epoxide	<5.8		11	5.8	ug/Kg	₽	04/05/22 16:57	04/06/22 13:33	5
Methoxychlor	<7.1		53	7.1	ug/Kg	☼	04/05/22 16:57	04/06/22 13:33	5
Toxaphene	<43		110	43	ug/Kg	₩	04/05/22 16:57	04/06/22 13:33	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl			33 - 148				04/05/22 16:57	04/06/22 13:33	5
Tetrachloro-m-xylene	95		30 - 121				04/05/22 16:57	04/06/22 13:33	5

- Tetracilloro III xylene	30		00-121				0 1/00/22 10.01	04700722 70.00	U
- Method: 8082A - Polychic	orinated Bipheny	/Is (PCBs)	by Gas Chr	omatogr	aphy				
Analyte		Qualifier	RL	_	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0083		0.021	0.0083	mg/Kg	<u></u>	04/05/22 16:57	04/08/22 18:57	1
PCB-1221	<0.0083		0.021	0.0083	mg/Kg	₩	04/05/22 16:57	04/08/22 18:57	1
PCB-1232	<0.0057		0.021	0.0057	mg/Kg	☼	04/05/22 16:57	04/08/22 18:57	1
PCB-1242	<0.0082		0.021	0.0082	mg/Kg	₩	04/05/22 16:57	04/08/22 18:57	1
PCB-1248	<0.010		0.021	0.010	mg/Kg	☼	04/05/22 16:57	04/08/22 18:57	1
PCB-1254	<0.0072		0.021	0.0072	mg/Kg	☼	04/05/22 16:57	04/08/22 18:57	1
PCB-1260	0.034		0.021	0.0080	mg/Kg	☼	04/05/22 16:57	04/08/22 18:57	1
PCB-1262	<0.0070		0.021	0.0070	mg/Kg	☼	04/05/22 16:57	04/08/22 18:57	1
PCB-1268	<0.012		0.021	0.012	mg/Kg	☼	04/05/22 16:57	04/08/22 18:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	76		49 - 129				04/05/22 16:57	04/08/22 18:57	1
DCB Decachlorobiphenyl	85		37 - 121				04/05/22 16:57	04/08/22 18:57	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<100		430	100	ug/Kg	<u></u>	04/05/22 12:40	04/07/22 14:20	10
2,4-DB	<130		430	130	ug/Kg	₽	04/05/22 12:40	04/07/22 14:20	10
Dicamba	<93		430	93	ug/Kg	☼	04/05/22 12:40	04/07/22 14:20	10
Dichlorprop	<110		430	110	ug/Kg	₩	04/05/22 12:40	04/07/22 14:20	10
Silvex (2,4,5-TP)	<98		430	98	ug/Kg	☼	04/05/22 12:40	04/07/22 14:20	10
2,4,5-T	<87		430	87	ug/Kg	☼	04/05/22 12:40	04/07/22 14:20	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	71		25 - 120				04/05/22 12:40	04/07/22 14:20	10

Eurofins Chicago

Page 33 of 356 4/15/2022

2

Job ID: 500-214283-1

4

0

0

10

12

1 /

15

10

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-236 3.5-5

Date Collected: 03/23/22 09:20

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-1

Matrix: Solid

Percent Solids: 76.1

Job ID: 500-214283-1

Analyte	Pocult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier -							Dil i ac
Arsenic	32		1.3	0.44	mg/Kg	₩	04/06/22 01:36	04/06/22 23:16	1
Barium	170		1.3	0.15	mg/Kg	☼	04/06/22 01:36	04/06/22 23:16	1
Cadmium	0.94	В	0.26	0.046	mg/Kg	₩	04/06/22 01:36	04/06/22 23:16	1
Chromium	23	В	1.3	0.63	mg/Kg	☆	04/06/22 01:36	04/06/22 23:16	1
Lead	2100		0.64	0.30	mg/Kg	☆	04/06/22 01:36	04/06/22 23:16	1
Selenium	< 0.75		1.3	0.75	mg/Kg	☼	04/06/22 01:36	04/06/22 23:16	1
Silver	0.54	J	0.64	0.17	mg/Kg	₽	04/06/22 01:36	04/06/22 23:16	1
Method: 7471B - Mercury (C	CVAA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	1.0		0.039	0.013	mg/Kg	<u></u>	04/07/22 13:45	04/08/22 12:16	2

4

7

ŏ

4.6

11

40

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-2

Matrix: Solid

Percent Solids: 74.1

Job ID: 500-214283-1

Client Sample ID: SB-236 6-7 Date Collected: 03/23/22 09:25

Date Received: 03/29/22 10:20

Method: 8260B - Volatile Or	ganic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
I,1,1,2-Tetrachloroethane	<43	94	43	ug/Kg	<u></u>	03/23/22 09:25	03/31/22 12:22	
1,1,1-Trichloroethane	<36	94	36	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
1,1,2,2-Tetrachloroethane	<37	94	37	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
1,1,2-Trichloroethane	<33	94	33	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
1,1-Dichloroethane	<39	94	39	ug/Kg	≎	03/23/22 09:25	03/31/22 12:22	
1,1-Dichloroethene	<37	94	37	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
I,1-Dichloropropene	<28	94		ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
,2,3-Trichlorobenzene	<43	94	43	ug/Kg	≎	03/23/22 09:25	03/31/22 12:22	
,2,3-Trichloropropane	<39	190		ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
,2,4-Trichlorobenzene	<32	94		ug/Kg		03/23/22 09:25	03/31/22 12:22	
,2,4-Trimethylbenzene	<34	94		ug/Kg	☆	03/23/22 09:25	03/31/22 12:22	
,2-Dibromo-3-Chloropropane	<190	470		ug/Kg	☆		03/31/22 12:22	
,2-Dibromoethane	<36	94		ug/Kg			03/31/22 12:22	
,2-Dichlorobenzene	<31	94		ug/Kg			03/31/22 12:22	
,2-Dichloroethane	<37	94		ug/Kg			03/31/22 12:22	
,2-Dichloropropane	<40	94		ug/Kg		03/23/22 09:25		
,3,5-Trimethylbenzene	<36	94		ug/Kg ug/Kg	₩		03/31/22 12:22	
,3-Dichlorobenzene	<38	94		ug/Kg ug/Kg	₩	03/23/22 09:25		
3-Dichloropropane	<34 <34	94		ug/Kg	φ.		03/31/22 12:22	
4-Dichlorobenzene		94		ug/Kg	₩.		03/31/22 12:22	
2-Dichloropropane	<42	94		ug/Kg	· · · · ·		03/31/22 12:22	
Chlorotoluene	<29	94		ug/Kg	₩.		03/31/22 12:22	
Chlorotoluene	<33	94		ug/Kg	*		03/31/22 12:22	
enzene	<14	23		ug/Kg	<u>.</u>		03/31/22 12:22	
romobenzene	<33	94		ug/Kg	**		03/31/22 12:22	
romochloromethane	<40	94		ug/Kg	*		03/31/22 12:22	
ichlorobromomethane	<35	94		ug/Kg	.		03/31/22 12:22	
romoform	<45	94		ug/Kg	₩		03/31/22 12:22	
romomethane	<75	280		ug/Kg	₩		03/31/22 12:22	
arbon tetrachloride	<36	94		ug/Kg			03/31/22 12:22	
hlorobenzene	<36	94		ug/Kg	₽		03/31/22 12:22	
hloroethane	<47	94		ug/Kg	₽		03/31/22 12:22	
hloroform	<35	190		ug/Kg	₩		03/31/22 12:22	
hloromethane	<30	94		ug/Kg	≎	03/23/22 09:25	03/31/22 12:22	
s-1,2-Dichloroethene	<38	94	38	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
s-1,3-Dichloropropene	<39	94	39	ug/Kg	₽	03/23/22 09:25	03/31/22 12:22	
ibromochloromethane	<46	94	46	ug/Kg	₽	03/23/22 09:25	03/31/22 12:22	
ibromomethane	<25	94	25	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
ichlorodifluoromethane	<63	280	63	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
thylbenzene	<17	23	17	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
exachlorobutadiene	<42	94	42	ug/Kg	≎	03/23/22 09:25	03/31/22 12:22	
opropyl ether	<26	94	26	ug/Kg	≎	03/23/22 09:25	03/31/22 12:22	
opropylbenzene	<36	94	36	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
lethyl tert-butyl ether	<37	94	37	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	
lethylene Chloride	580 B	470		ug/Kg	☆	03/23/22 09:25	03/31/22 12:22	
aphthalene	49 JB	94	31	ug/Kg	₽	03/23/22 09:25	03/31/22 12:22	
-Butylbenzene	<36	94		ug/Kg	₽		03/31/22 12:22	
J-Propylbenzene	<39	94		ug/Kg	☼	03/23/22 09:25		
o-Isopropyltoluene	<34	94		ug/Kg			03/31/22 12:22	

Eurofins Chicago

3

6

9

11

1 <u>/</u>

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-236 6-7 Lab Sample ID: 500-214283-2

Date Collected: 03/23/22 09:25 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 74.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<37		94	37	ug/Kg	<u></u>	03/23/22 09:25	03/31/22 12:22	50
Styrene	<36		94	36	ug/Kg	☼	03/23/22 09:25	03/31/22 12:22	50
tert-Butylbenzene	<37		94	37	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	50
Tetrachloroethene	<35		94	35	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	50
Toluene	<14		23	14	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	50
trans-1,2-Dichloroethene	<33		94	33	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	50
trans-1,3-Dichloropropene	<34		94	34	ug/Kg	☼	03/23/22 09:25	03/31/22 12:22	50
Trichloroethene	<15		47	15	ug/Kg	☼	03/23/22 09:25	03/31/22 12:22	50
Trichlorofluoromethane	<40		94	40	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	50
Vinyl chloride	<25		94	25	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	50
Xylenes, Total	<21		47	21	ug/Kg	₩	03/23/22 09:25	03/31/22 12:22	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		75 - 126				03/23/22 09:25	03/31/22 12:22	50
4-Bromofluorobenzene (Surr)	88		72 - 124				03/23/22 09:25	03/31/22 12:22	50
Dibromofluoromethane (Surr)	98		75 - 120				03/23/22 09:25	03/31/22 12:22	50
Toluene-d8 (Surr)	96		75 - 120				03/23/22 09:25	03/31/22 12:22	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<11		87	11	ug/Kg	<u></u>	04/06/22 06:52	04/07/22 09:34	1
2-Methylnaphthalene	<7.9		87	7.9	ug/Kg	☼	04/06/22 06:52	04/07/22 09:34	1
Acenaphthene	<7.7		43	7.7	ug/Kg	₩	04/06/22 06:52	04/07/22 09:34	1
Acenaphthylene	<5.7		43	5.7	ug/Kg	₩	04/06/22 06:52	04/07/22 09:34	1
Anthracene	<7.2		43	7.2	ug/Kg	☼	04/06/22 06:52	04/07/22 09:34	1
Benzo[a]anthracene	<5.8		43	5.8	ug/Kg	☼	04/06/22 06:52	04/07/22 09:34	1
Benzo[a]pyrene	<8.3		43	8.3	ug/Kg	₩	04/06/22 06:52	04/07/22 09:34	1
Benzo[b]fluoranthene	<9.3		43	9.3	ug/Kg	☼	04/06/22 06:52	04/07/22 09:34	1
Benzo[g,h,i]perylene	<14		43	14	ug/Kg	₩	04/06/22 06:52	04/07/22 09:34	1
Benzo[k]fluoranthene	<13		43	13	ug/Kg	₩	04/06/22 06:52	04/07/22 09:34	1
Chrysene	<12		43	12	ug/Kg	☼	04/06/22 06:52	04/07/22 09:34	1
Dibenz(a,h)anthracene	<8.3		43	8.3	ug/Kg	₩	04/06/22 06:52	04/07/22 09:34	1
Fluoranthene	<8.0		43	8.0	ug/Kg	⊅	04/06/22 06:52	04/07/22 09:34	1
Fluorene	<6.1		43	6.1	ug/Kg	₩	04/06/22 06:52	04/07/22 09:34	1
Indeno[1,2,3-cd]pyrene	<11		43	11	ug/Kg	₩	04/06/22 06:52	04/07/22 09:34	1
Naphthalene	<6.6		43	6.6	ug/Kg	⊅	04/06/22 06:52	04/07/22 09:34	1
Phenanthrene	<6.0		43	6.0	ug/Kg	☼	04/06/22 06:52	04/07/22 09:34	1
Pyrene	<8.6		43	8.6	ug/Kg	☼	04/06/22 06:52	04/07/22 09:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	63		43 - 145				04/06/22 06:52	04/07/22 09:34	1
Nitrobenzene-d5 (Surr)	62		37 - 147				04/06/22 06:52	04/07/22 09:34	1
Terphenyl-d14 (Surr)	86		42 - 157				04/06/22 06:52	04/07/22 09:34	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.4		1.2	0.42	mg/Kg	*	04/06/22 01:36	04/06/22 23:19	1
Lead	7.3		0.61	0.28	mg/Kg	☼	04/06/22 01:36	04/06/22 23:19	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-234 3.5-4.5 Lab Sample ID: 500-214283-3

Date Collected: 03/23/22 09:55

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 72.0

Method: 8260B - Volatile Org	anic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<46	100	46	ug/Kg	-	03/23/22 09:55	03/31/22 12:44	50
1,1,1-Trichloroethane	<38	100	38	ug/Kg	₽	03/23/22 09:55	03/31/22 12:44	50
1,1,2,2-Tetrachloroethane	<40	100	40	ug/Kg	₽	03/23/22 09:55	03/31/22 12:44	50
1,1,2-Trichloroethane	<35	100	35	ug/Kg	≎	03/23/22 09:55	03/31/22 12:44	50
1,1-Dichloroethane	<41	100	41	ug/Kg	₩	03/23/22 09:55	03/31/22 12:44	50
1,1-Dichloroethene	<39	100	39	ug/Kg	₩	03/23/22 09:55	03/31/22 12:44	50
1,1-Dichloropropene	<30	100	30	ug/Kg		03/23/22 09:55	03/31/22 12:44	50
1,2,3-Trichlorobenzene	<46	100	46	ug/Kg	₩	03/23/22 09:55	03/31/22 12:44	50
1,2,3-Trichloropropane	<41	200	41	ug/Kg	₽	03/23/22 09:55	03/31/22 12:44	50
1,2,4-Trichlorobenzene	<34	100		ug/Kg		03/23/22 09:55	03/31/22 12:44	50
1,2,4-Trimethylbenzene	360	100		ug/Kg	₩	03/23/22 09:55	03/31/22 12:44	50
1,2-Dibromo-3-Chloropropane	<200	500		ug/Kg		03/23/22 09:55		50
1,2-Dibromoethane	<39	100		ug/Kg		03/23/22 09:55		50
1,2-Dichlorobenzene	<33	100		ug/Kg	₩		03/31/22 12:44	50
1,2-Dichloroethane	<39	100		ug/Kg	☆	03/23/22 09:55		50
1,2-Dichloropropane	<43	100		ug/Kg			03/31/22 12:44	50
1,3,5-Trimethylbenzene	91 J	100		ug/Kg			03/31/22 12:44	50
1,3-Dichlorobenzene	<40	100		ug/Kg		03/23/22 09:55		50
1,3-Dichloropropane	<36	100		ug/Kg		03/23/22 09:55		50
1,4-Dichlorobenzene	<36	100		ug/Kg ug/Kg	₩		03/31/22 12:44	50
2,2-Dichloropropane	<44	100		ug/Kg	₩		03/31/22 12:44	50
2-Chlorotoluene	<31	100		ug/Kg ug/Kg		03/23/22 09:55		5(
4-Chlorotoluene	<35	100		ug/Kg ug/Kg	₩	03/23/22 09:55		50
	36	25		ug/Kg ug/Kg	₩	03/23/22 09:55		50
Benzene Bromobenzene	<36					03/23/22 09:55		5(
		100		ug/Kg	ψ.			
Bromochloromethane	<43	100		ug/Kg	₩.		03/31/22 12:44	50
Dichlorobromomethane	<37	100		ug/Kg	.	03/23/22 09:55		50
Bromoform	<48	100		ug/Kg	*		03/31/22 12:44	50
Bromomethane	<80	300		ug/Kg	*		03/31/22 12:44	50
Carbon tetrachloride	<38	100		ug/Kg	<u>.</u> .		03/31/22 12:44	50
Chlorobenzene	<39	100		ug/Kg	*		03/31/22 12:44	50
Chloroethane	<50	100		ug/Kg	*		03/31/22 12:44	50
Chloroform	<37	200		ug/Kg		03/23/22 09:55		50
Chloromethane	<32	100		ug/Kg		03/23/22 09:55		50
cis-1,2-Dichloroethene	<41	100		ug/Kg	₩		00/01/22 12111	50
cis-1,3-Dichloropropene	<42	100		ug/Kg		03/23/22 09:55		50
Dibromochloromethane	<49	100	49	ug/Kg	₽	03/23/22 09:55		50
Dibromomethane	<27	100		ug/Kg	₩		03/31/22 12:44	50
Dichlorodifluoromethane	<67	300	67	ug/Kg	.		03/31/22 12:44	50
Ethylbenzene	190	25	18	ug/Kg	₩	03/23/22 09:55	03/31/22 12:44	50
Hexachlorobutadiene	<45	100	45	ug/Kg	₩	03/23/22 09:55	03/31/22 12:44	50
Isopropyl ether	<28	100	28	ug/Kg	☼	03/23/22 09:55	03/31/22 12:44	50
Isopropylbenzene	99 J	100	38	ug/Kg	₽	03/23/22 09:55	03/31/22 12:44	50
Methyl tert-butyl ether	<39	100	39	ug/Kg	☼		03/31/22 12:44	50
Methylene Chloride	620 B	500	160	ug/Kg	≎	03/23/22 09:55	03/31/22 12:44	50
Naphthalene	480 B	100	33	ug/Kg	₽	03/23/22 09:55	03/31/22 12:44	50
n-Butylbenzene	82 J	100	39	ug/Kg	₽	03/23/22 09:55	03/31/22 12:44	50
N-Propylbenzene	170	100	41	ug/Kg	≎	03/23/22 09:55	03/31/22 12:44	50
p-Isopropyltoluene	44 J	100	36	ug/Kg		03/23/22 09:55	03/31/22 12:44	50

Eurofins Chicago

Job ID: 500-214283-1

3

6

10

12

14

13

1/

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-234 3.5-4.5

Date Collected: 03/23/22 09:55 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-3

Matrix: Solid

Percent Solids: 72.0

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	48	J	100	40	ug/Kg	☆	03/23/22 09:55	03/31/22 12:44	50
Styrene	<39		100	39	ug/Kg	☆	03/23/22 09:55	03/31/22 12:44	50
tert-Butylbenzene	<40		100	40	ug/Kg	☆	03/23/22 09:55	03/31/22 12:44	50
Tetrachloroethene	<37		100	37	ug/Kg	☆	03/23/22 09:55	03/31/22 12:44	50
Toluene	300		25	15	ug/Kg	₩	03/23/22 09:55	03/31/22 12:44	50
trans-1,2-Dichloroethene	<35		100	35	ug/Kg	☆	03/23/22 09:55	03/31/22 12:44	50
trans-1,3-Dichloropropene	<36		100	36	ug/Kg	☆	03/23/22 09:55	03/31/22 12:44	50
Trichloroethene	<16		50	16	ug/Kg	₩	03/23/22 09:55	03/31/22 12:44	50
Trichlorofluoromethane	<43		100	43	ug/Kg	☆	03/23/22 09:55	03/31/22 12:44	50
Vinyl chloride	<26		100	26	ug/Kg	☆	03/23/22 09:55	03/31/22 12:44	50
Xylenes, Total	770		50	22	ug/Kg	₩	03/23/22 09:55	03/31/22 12:44	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		75 - 126				03/23/22 09:55	03/31/22 12:44	50
4-Bromofluorobenzene (Surr)	87		72 - 124				03/23/22 09:55	03/31/22 12:44	50
Dibromofluoromethane (Surr)	98		75 - 120				03/23/22 09:55	03/31/22 12:44	50
Toluene-d8 (Surr)	94		75 - 120				03/23/22 09:55	03/31/22 12:44	50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<230	1100	230	ug/Kg	<u></u>	04/06/22 06:52	04/12/22 13:22	5
1,2-Dichlorobenzene	<260	1100	260	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
1,3-Dichlorobenzene	<250	1100	250	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
1,4-Dichlorobenzene	<280	1100	280	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
1-Methylnaphthalene	1400	440	53	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
2,2'-oxybis[1-chloropropane]	<250	1100	250	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
2,4,5-Trichlorophenol	<500	2200	500	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
2,4,6-Trichlorophenol	<750	2200	750	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
2,4-Dichlorophenol	<520	2200	520	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
2,4-Dimethylphenol	<830	2200	830	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
2,4-Dinitrophenol	<3800	4400	3800	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
2,4-Dinitrotoluene	<350	1100	350	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
2,6-Dinitrotoluene	<430	1100	430	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
2-Chloronaphthalene	<240	1100	240	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
2-Chlorophenol	<370	1100	370	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
2-Methylnaphthalene	1900	440	40	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
2-Methylphenol	<350	1100	350	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
2-Nitroaniline	<290	1100	290	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
2-Nitrophenol	<510	2200	510	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
3 & 4 Methylphenol	520 J	1100	360	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
3,3'-Dichlorobenzidine	<310	1100	310	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
3-Nitroaniline	<680	2200	680	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
4,6-Dinitro-2-methylphenol	<1800	4400	1800	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
4-Bromophenyl phenyl ether	<290	1100	290	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
4-Chloro-3-methylphenol	<740	2200	740	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
4-Chloroaniline	<1000	4400	1000	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
4-Chlorophenyl phenyl ether	<250	1100	250	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
4-Nitroaniline	<910	2200	910	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
4-Nitrophenol	<2100	4400	2100	ug/Kg	☼	04/06/22 06:52	04/12/22 13:22	5
Acenaphthene	180 J	220	39	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5

Eurofins Chicago

2

4

7

_

10

12

4 4

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-234 3.5-4.5

Date Collected: 03/23/22 09:55 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-3

Matrix: Solid

Percent Solids: 72.0

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	<29		220	29	ug/Kg	<u></u>	04/06/22 06:52	04/12/22 13:22	5
Anthracene	680		220	36	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Benzo[a]anthracene	1600		220	29	ug/Kg	≎	04/06/22 06:52	04/12/22 13:22	5
Benzo[a]pyrene	1800		220	42	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Benzo[b]fluoranthene	2000		220	47	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Benzo[g,h,i]perylene	770		220	70	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Benzo[k]fluoranthene	760		220	64	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Benzoic acid	2500	J	11000	2200	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Benzyl alcohol	<2200		4400	2200	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Bis(2-chloroethoxy)methane	<220		1100	220	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Bis(2-chloroethyl)ether	<330		1100	330	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
Bis(2-ethylhexyl) phthalate	<400		1100	400	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
Butyl benzyl phthalate	<410		1100	410	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Carbazole	<540		1100	540	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
Chrysene	1600		220		ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Dibenz(a,h)anthracene	180	J	220		ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
Dibenzofuran	440	J	1100	260	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
Diethyl phthalate	<370		1100	370	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
Dimethyl phthalate	<280		1100	280	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Di-n-butyl phthalate	<330		1100	330	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Di-n-octyl phthalate	<360		1100	360	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Fluoranthene	3300		220				04/06/22 06:52	04/12/22 13:22	5
Fluorene	200	J	220	31	ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Hexachlorobenzene	<51		440	51	ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
Hexachlorobutadiene	<340		1100	340	ug/Kg		04/06/22 06:52	04/12/22 13:22	5
Hexachlorocyclopentadiene	<1300		4400	1300		₩	04/06/22 06:52	04/12/22 13:22	5
Hexachloroethane	<330		1100		ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Indeno[1,2,3-cd]pyrene	660		220		ug/Kg		04/06/22 06:52	04/12/22 13:22	5
Isophorone	<240		1100		ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
Naphthalene	1100		220		ug/Kg	₽	04/06/22 06:52	04/12/22 13:22	5
Nitrobenzene	<54		220		ug/Kg		04/06/22 06:52	04/12/22 13:22	5
N-Nitrosodi-n-propylamine	<270		440		ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
N-Nitrosodiphenylamine	<260		1100		ug/Kg	₩	04/06/22 06:52	04/12/22 13:22	5
Pentachlorophenol	<3500		4400		ug/Kg		04/06/22 06:52	04/12/22 13:22	5
Phenanthrene	3300		220		ug/Kg	₩		04/12/22 13:22	5
Phenol	<480		1100		ug/Kg	₩		04/12/22 13:22	5
Pyrene	3600		220		ug/Kg		04/06/22 06:52	04/12/22 13:22	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	114		31 - 143				04/06/22 06:52	04/12/22 13:22	5
2-Fluorobiphenyl (Surr)	77		43 - 145				04/06/22 06:52	04/12/22 13:22	5
2-Fluorophenol (Surr)	151		31 - 166				04/06/22 06:52	04/12/22 13:22	5
Nitrobenzene-d5 (Surr)	73		37 - 147				04/06/22 06:52	04/12/22 13:22	5
Phenol-d5 (Surr)	101		30 - 153				04/06/22 06:52	04/12/22 13:22	5
Terphenyl-d14 (Surr)	101		42 - 157				04/06/22 06:52	04/12/22 13:22	5
Method: 8081A - Organoch	lorine Pesticid	es (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<8.0		12	8.0	ug/Kg	\	04/05/22 16:57	04/06/22 13:54	5
alpha-BHC	<6.5		12	6.5	ug/Kg	₽	04/05/22 16:57	04/06/22 13:54	5

Eurofins Chicago

2

3

6

8

10

12

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-234 3.5-4.5

Date Collected: 03/23/22 09:55 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-3

Matrix: Solid

Job ID: 500-214283-1

Percent Solids: 72.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<6.1		12	6.1	ug/Kg	<u></u>	04/05/22 16:57	04/06/22 13:54	5
beta-BHC	<9.3		12	9.3	ug/Kg	⊅	04/05/22 16:57	04/06/22 13:54	5
4,4'-DDD	<6.2		12	6.2	ug/Kg	☼	04/05/22 16:57	04/06/22 13:54	5
4,4'-DDE	<5.9		12	5.9	ug/Kg	☼	04/05/22 16:57	04/06/22 13:54	5
4,4'-DDT	<5.5		12	5.5	ug/Kg	⊅	04/05/22 16:57	04/06/22 13:54	5
delta-BHC	<5.5		12	5.5	ug/Kg	☼	04/05/22 16:57	04/06/22 13:54	5
Dieldrin	<6.0		12	6.0	ug/Kg	☼	04/05/22 16:57	04/06/22 13:54	5
Endosulfan I	<6.2		12	6.2	ug/Kg	₩	04/05/22 16:57	04/06/22 13:54	5
Endosulfan II	<6.3		12	6.3	ug/Kg	☼	04/05/22 16:57	04/06/22 13:54	5
Endosulfan sulfate	<6.4		12	6.4	ug/Kg	₩	04/05/22 16:57	04/06/22 13:54	5
Endrin	<5.9		12	5.9	ug/Kg	₩	04/05/22 16:57	04/06/22 13:54	5
Endrin aldehyde	<6.5		12	6.5	ug/Kg	☼	04/05/22 16:57	04/06/22 13:54	5
Endrin ketone	<5.6		12	5.6	ug/Kg	☼	04/05/22 16:57	04/06/22 13:54	5
gamma-BHC (Lindane)	<5.7		12	5.7	ug/Kg	₩	04/05/22 16:57	04/06/22 13:54	5
trans-Chlordane	<6.6		12	6.6	ug/Kg	☼	04/05/22 16:57	04/06/22 13:54	5
Heptachlor	<6.2		12	6.2	ug/Kg	☼	04/05/22 16:57	04/06/22 13:54	5
Heptachlor epoxide	<6.2		12	6.2	ug/Kg	₩	04/05/22 16:57	04/06/22 13:54	5
Methoxychlor	<7.6		56	7.6	ug/Kg	☼	04/05/22 16:57	04/06/22 13:54	5
Toxaphene	<46		110	46	ug/Kg	₩	04/05/22 16:57	04/06/22 13:54	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	119		33 - 148				04/05/22 16:57	04/06/22 13:54	5
Tetrachloro-m-xylene	180	S1+	30 - 121				04/05/22 16:57	04/06/22 13:54	5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0089	0.023	0.0089	mg/Kg	₩	04/05/22 16:57	04/08/22 19:13	1
PCB-1221	<0.0089	0.023	0.0089	mg/Kg	☼	04/05/22 16:57	04/08/22 19:13	1
PCB-1232	<0.0062	0.023	0.0062	mg/Kg	₩	04/05/22 16:57	04/08/22 19:13	1
PCB-1242	<0.0088	0.023	0.0088	mg/Kg	₽	04/05/22 16:57	04/08/22 19:13	1
PCB-1248	<0.011	0.023	0.011	mg/Kg	₩	04/05/22 16:57	04/08/22 19:13	1
PCB-1254	<0.0077	0.023	0.0077	mg/Kg	₩	04/05/22 16:57	04/08/22 19:13	1
PCB-1260	<0.0086	0.023	0.0086	mg/Kg	₩	04/05/22 16:57	04/08/22 19:13	1
PCB-1262	<0.0074	0.023	0.0074	mg/Kg	₩	04/05/22 16:57	04/08/22 19:13	1
PCB-1268	<0.013	0.023	0.013	mg/Kg	☼	04/05/22 16:57	04/08/22 19:13	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	69	49 - 129				04/05/22 16:57	04/08/22 19:13	1
DCB Decachlorobiphenyl	75	37 - 121				04/05/22 16:57	04/08/22 19:13	1

Method: 8151A - Herbi	cides (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<110		450	110	ug/Kg	<u></u>	04/05/22 12:40	04/07/22 14:40	10
2,4-DB	<130		450	130	ug/Kg	₩	04/05/22 12:40	04/07/22 14:40	10
Dicamba	<97		450	97	ug/Kg	☼	04/05/22 12:40	04/07/22 14:40	10
Dichlorprop	<110		450	110	ug/Kg	☼	04/05/22 12:40	04/07/22 14:40	10
Silvex (2,4,5-TP)	<100		450	100	ug/Kg	₩	04/05/22 12:40	04/07/22 14:40	10
2,4,5-T	<91		450	91	ug/Kg	₩	04/05/22 12:40	04/07/22 14:40	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	68		25 - 120				04/05/22 12:40	04/07/22 14:40	10

Eurofins Chicago

Page 40 of 356

2

4

6

8

10

11

13

15

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-234 3.5-4.5

Date Collected: 03/23/22 09:55

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-3

Matrix: Solid

Percent Solids: 72.0

Job ID: 500-214283-1

Method: 6010C - Metals (ICP) Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	12	Qualifier -	1.4		mg/Kg	— "	04/06/22 01:36		1
					0 0	-11			
Barium	110		1.4	0.15	mg/Kg	☆	04/06/22 01:36	04/06/22 23:32	1
Cadmium	0.92	В	0.27	0.049	mg/Kg	₩	04/06/22 01:36	04/06/22 23:32	1
Chromium	28	В	1.4	0.67	mg/Kg	₩	04/06/22 01:36	04/06/22 23:32	1
Lead	250		0.68	0.31	mg/Kg	₩	04/06/22 01:36	04/06/22 23:32	1
Selenium	1.2	J	1.4	0.80	mg/Kg	₩	04/06/22 01:36	04/06/22 23:32	1
Silver	0.21	J	0.68	0.17	mg/Kg	₽	04/06/22 01:36	04/06/22 23:32	1
- Method: 7471B - Mercury (CV	AA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.24		0.022	0.0072	ma/Ka	— <u> </u>	04/07/22 13:45	04/08/22 11:21	

J

7

8

10

10

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-234 4.5-6.5

Date Collected: 03/23/22 10:00 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-4

Matrix: Solid

Percent Solids: 83.4

Job ID: 500-214283-1

Method: 8260B - Volatile Org Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<32		69	32	ug/Kg	— <u></u>	03/23/22 10:00	03/31/22 13:07	
1,1,1-Trichloroethane	<26		69		ug/Kg	₽	03/23/22 10:00	03/31/22 13:07	į
1,1,2,2-Tetrachloroethane	<28		69		ug/Kg	₽	03/23/22 10:00	03/31/22 13:07	į
1,1,2-Trichloroethane	<24		69		ug/Kg	 ф	03/23/22 10:00	03/31/22 13:07	
1,1-Dichloroethane	<28		69		ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	į
1,1-Dichloroethene	<27		69		ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	į
1,1-Dichloropropene	<21		69		ug/Kg		03/23/22 10:00	03/31/22 13:07	
1,2,3-Trichlorobenzene	<32		69		ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	į
1,2,3-Trichloropropane	<29		140		ug/Kg	☆	03/23/22 10:00	03/31/22 13:07	į
1,2,4-Trichlorobenzene	<24		69		ug/Kg		03/23/22 10:00	03/31/22 13:07	
1,2,4-Trimethylbenzene	<25		69		ug/Kg	₩		03/31/22 13:07	į
1,2-Dibromo-3-Chloropropane	<140		350		ug/Kg			03/31/22 13:07	į
1,2-Dibromoethane	<27		69		ug/Kg			03/31/22 13:07	
1,2-Dichlorobenzene	<23		69	23		~ ☆		03/31/22 13:07	į
1,2-Dichloroethane	<27		69		ug/Kg	₩		03/31/22 13:07	į
1,2-Dichloropropane	<30		69		ug/Kg	∵ \$		03/31/22 13:07	
1,3,5-Trimethylbenzene	<26		69		ug/Kg	₩		03/31/22 13:07	
1,3-Dichlorobenzene	<28		69		ug/Kg	~ ☆		03/31/22 13:07	Ì
1,3-Dichloropropane	<25		69		ug/Kg	∵ ∵		03/31/22 13:07	
1,4-Dichlorobenzene	<25		69		ug/Kg ug/Kg	₩		03/31/22 13:07	
2,2-Dichloropropane	<31		69		ug/Kg ug/Kg	₩		03/31/22 13:07	
2-Chlorotoluene	<22		69		ug/Kg ug/Kg	¥ 		03/31/22 13:07	
1-Chlorotoluene	<24		69			₩		03/31/22 13:07	
3enzene	<10		17		ug/Kg ug/Kg	₩		03/31/22 13:07	
Bromobenzene	<25		69					03/31/22 13:07	
	<30		69		ug/Kg	ψ.		03/31/22 13:07	
Bromochloromethane	<26		69		ug/Kg	ψ.			
Dichlorobromomethane					ug/Kg	 .		03/31/22 13:07	
Bromoform	<34		69		ug/Kg	‡		03/31/22 13:07	
Bromomethane	<55		210		ug/Kg	‡		03/31/22 13:07	
Carbon tetrachloride	<27		69		ug/Kg			03/31/22 13:07	
Chlorobenzene	<27		69		ug/Kg	‡		03/31/22 13:07	
Chloroethane	<35		69		ug/Kg	‡		03/31/22 13:07	
Chloroform	<26		140		ug/Kg	<u>.</u> .		03/31/22 13:07	
Chloromethane	<22		69		ug/Kg		03/23/22 10:00		
is-1,2-Dichloroethene	<28		69		ug/Kg	‡	03/23/22 10:00		
sis-1,3-Dichloropropene	<29		69		ug/Kg	.	03/23/22 10:00		
Dibromochloromethane	<34		69		ug/Kg	₩	03/23/22 10:00		
Dibromomethane	<19		69		ug/Kg	₩		03/31/22 13:07	
Dichlorodifluoromethane	<47		210		ug/Kg	.		03/31/22 13:07	
Ethylbenzene	<13		17		ug/Kg	₩		03/31/22 13:07	
łexachlorobutadiene	<31		69		ug/Kg	₩		03/31/22 13:07	
sopropyl ether	<19		69		ug/Kg			03/31/22 13:07	
sopropylbenzene	<27		69		ug/Kg	☼		03/31/22 13:07	
Methyl tert-butyl ether	<27		69		ug/Kg	☼		03/31/22 13:07	
Methylene Chloride	440	В	350	110	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	
laphthalene		JB	69	23	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	
n-Butylbenzene	<27		69	27	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	
N-Propylbenzene	<29		69	29	ug/Kg	≎	03/23/22 10:00	03/31/22 13:07	

Eurofins Chicago

3

6

1

9

11

1 A

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-234 4.5-6.5

Date Collected: 03/23/22 10:00 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-4

Matrix: Solid

Percent Solids: 83.4

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<28		69	28	ug/Kg	<u></u>	03/23/22 10:00	03/31/22 13:07	50
Styrene	<27		69	27	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	50
tert-Butylbenzene	<28		69	28	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	50
Tetrachloroethene	<26		69	26	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	50
Toluene	<10		17	10	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	50
trans-1,2-Dichloroethene	<24		69	24	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	50
trans-1,3-Dichloropropene	<25		69	25	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	50
Trichloroethene	<11		35	11	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	50
Trichlorofluoromethane	<30		69	30	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	50
Vinyl chloride	<18		69	18	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	50
Xylenes, Total	<15		35	15	ug/Kg	₩	03/23/22 10:00	03/31/22 13:07	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		75 - 126				03/23/22 10:00	03/31/22 13:07	50
4-Bromofluorobenzene (Surr)	90		72 - 124				03/23/22 10:00	03/31/22 13:07	50
Dibromofluoromethane (Surr)	99		75 - 120				03/23/22 10:00	03/31/22 13:07	50
Toluene-d8 (Surr)	95		75 - 120				03/23/22 10:00	03/31/22 13:07	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<9.3		77	9.3	ug/Kg	<u></u>	04/06/22 06:52	04/07/22 09:57	1
2-Methylnaphthalene	<7.0		77	7.0	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Acenaphthene	<6.9		38	6.9	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Acenaphthylene	<5.0		38	5.0	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Anthracene	<6.4		38	6.4	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Benzo[a]anthracene	<5.1		38	5.1	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Benzo[a]pyrene	<7.4		38	7.4	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Benzo[b]fluoranthene	<8.2		38	8.2	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Benzo[g,h,i]perylene	<12		38	12	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Benzo[k]fluoranthene	<11		38	11	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Chrysene	<10		38	10	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Dibenz(a,h)anthracene	<7.4		38	7.4	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Fluoranthene	<7.1		38	7.1	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Fluorene	<5.4		38	5.4	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Indeno[1,2,3-cd]pyrene	<9.9		38	9.9	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Naphthalene	<5.9		38	5.9	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Phenanthrene	<5.3		38	5.3	ug/Kg	₽	04/06/22 06:52	04/07/22 09:57	1
Pyrene	<7.6		38	7.6	ug/Kg	₩	04/06/22 06:52	04/07/22 09:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	86		43 - 145				04/06/22 06:52	04/07/22 09:57	1
Nitrobenzene-d5 (Surr)	89		37 - 147				04/06/22 06:52	04/07/22 09:57	1
Terphenyl-d14 (Surr)	99		42 - 157				04/06/22 06:52	04/07/22 09:57	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.0		1.1	0.39	mg/Kg	*	04/06/22 01:36	04/06/22 23:35	1
Lead	4.3		0.57	0.26	mg/Kg	₽	04/06/22 01:36	04/06/22 23:35	1

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-229 1-3

Date Collected: 03/23/22 11:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-5

Matrix: Solid

Percent Solids: 87.0

Job ID: 500-214283-1

Method: 8260B - Volatile Org	janic Compounds (GC/MS	3)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<30	65	30	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
1,1,1-Trichloroethane	<25	65	25	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
1,1,2,2-Tetrachloroethane	<26	65	26	ug/Kg	≎	03/23/22 11:10	03/31/22 13:30	50
1,1,2-Trichloroethane	<23	65	23	ug/Kg	₽	03/23/22 11:10	03/31/22 13:30	50
1,1-Dichloroethane	<27	65	27	ug/Kg	₽	03/23/22 11:10	03/31/22 13:30	50
1,1-Dichloroethene	<26	65	26	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
1,1-Dichloropropene	<19	65	19	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
1,2,3-Trichlorobenzene	<30	65	30	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
1,2,3-Trichloropropane	<27	130	27	ug/Kg	≎	03/23/22 11:10	03/31/22 13:30	50
1,2,4-Trichlorobenzene	<22	65		ug/Kg	≎	03/23/22 11:10	03/31/22 13:30	50
1,2,4-Trimethylbenzene	<23	65		ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
1,2-Dibromo-3-Chloropropane	<130	330		ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
1,2-Dibromoethane	<25	65		ug/Kg			03/31/22 13:30	50
1,2-Dichlorobenzene	<22	65		ug/Kg	₽		03/31/22 13:30	50
1,2-Dichloroethane	<26	65		ug/Kg	₽		03/31/22 13:30	50
1,2-Dichloropropane	<28	65		ug/Kg			03/31/22 13:30	50
1,3,5-Trimethylbenzene	<25	65		ug/Kg	₩		03/31/22 13:30	50
1,3-Dichlorobenzene	<26	65		ug/Kg	₩		03/31/22 13:30	50
1,3-Dichloropropane	<24	65		ug/Kg			03/31/22 13:30	50
1,4-Dichlorobenzene	<24	65		ug/Kg			03/31/22 13:30	50
2,2-Dichloropropane	<29	65		ug/Kg			03/31/22 13:30	50
2-Chlorotoluene	<21	65		ug/Kg			03/31/22 13:30	5(
4-Chlorotoluene	<23	65		ug/Kg	☆		03/31/22 13:30	50
Benzene	<9.5	16		ug/Kg	~ \$		03/31/22 13:30	50
Bromobenzene	<23	65		ug/Kg			03/31/22 13:30	50
Bromochloromethane	<28	65		ug/Kg	~ \$		03/31/22 13:30	50
Dichlorobromomethane	<24	65		ug/Kg ug/Kg	₩		03/31/22 13:30	50
Bromoform	<32	65		ug/Kg			03/31/22 13:30	50
Bromomethane	<52 <52	200		ug/Kg ug/Kg	₩		03/31/22 13:30	50
Carbon tetrachloride	<25	65					03/31/22 13:30	50
				ug/Kg	. .			
Chlorobenzene	<25	65		ug/Kg	φ.		03/31/22 13:30	50
Chloroethane	<33	65		ug/Kg	φ.		03/31/22 13:30	50
Chloroform	<24	130		ug/Kg			03/31/22 13:30	50
Chloromethane	<21	65		ug/Kg	\$		03/31/22 13:30	50
cis-1,2-Dichloroethene	<27	65		ug/Kg	*		03/31/22 13:30	50
cis-1,3-Dichloropropene	<27	65		ug/Kg	. .		03/31/22 13:30	50
Dibromochloromethane	<32	65		ug/Kg	☼		03/31/22 13:30	50
Dibromomethane	<18	65		ug/Kg	₩		03/31/22 13:30	50
Dichlorodifluoromethane	<44	200		ug/Kg			03/31/22 13:30	50
Ethylbenzene	<12	16		ug/Kg	≎		03/31/22 13:30	50
Hexachlorobutadiene	<29	65		ug/Kg	≎		03/31/22 13:30	50
Isopropyl ether	<18	65		ug/Kg	. .		03/31/22 13:30	50
Isopropylbenzene	<25	65		ug/Kg	☼		03/31/22 13:30	50
Methyl tert-butyl ether	<26	65		ug/Kg	₩	03/23/22 11:10		50
Methylene Chloride	420 B	330	110	ug/Kg	₩	03/23/22 11:10		50
Naphthalene	<22	65	22	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
n-Butylbenzene	<25	65	25	ug/Kg	☼	03/23/22 11:10	03/31/22 13:30	50
N-Propylbenzene	<27	65	27	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
p-Isopropyltoluene	<24	65	24	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50

Eurofins Chicago

3

5

7

9

11

13

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-229 1-3

Date Collected: 03/23/22 11:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-5

Matrix: Solid

Percent Solids: 87.0

Job ID: 500-214283-1

Method: 8260B - Volatile On Analyte	•	Qualifier	RL	•	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<26		65	26	ug/Kg	— <u></u>	03/23/22 11:10	03/31/22 13:30	50
Styrene	<25		65	25	ug/Kg	☼	03/23/22 11:10	03/31/22 13:30	50
tert-Butylbenzene	<26		65	26	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
Tetrachloroethene	<24		65	24	ug/Kg	☼	03/23/22 11:10	03/31/22 13:30	50
Toluene	<9.6		16	9.6	ug/Kg	☼	03/23/22 11:10	03/31/22 13:30	50
trans-1,2-Dichloroethene	<23		65	23	ug/Kg	☼	03/23/22 11:10	03/31/22 13:30	50
trans-1,3-Dichloropropene	<24		65	24	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
Trichloroethene	<11		33	11	ug/Kg	☼	03/23/22 11:10	03/31/22 13:30	50
Trichlorofluoromethane	<28		65	28	ug/Kg	☼	03/23/22 11:10	03/31/22 13:30	50
Vinyl chloride	<17		65	17	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
Xylenes, Total	<14		33	14	ug/Kg	₩	03/23/22 11:10	03/31/22 13:30	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		75 - 126				03/23/22 11:10	03/31/22 13:30	50
4-Bromofluorobenzene (Surr)	88		72 - 124				03/23/22 11:10	03/31/22 13:30	50
Dibromofluoromethane (Surr)	100		75 - 120				03/23/22 11:10	03/31/22 13:30	50
Toluene-d8 (Surr)	95		75 - 120				03/23/22 11:10	03/31/22 13:30	50

=									
Method: 8270D - Semivolatile Analyte	_	mpounds Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<39		180	39	ug/Kg	— <u></u>	04/06/22 06:52	04/07/22 16:04	1
1,2-Dichlorobenzene	<43		180	43	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
1,3-Dichlorobenzene	<41		180	41	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
1,4-Dichlorobenzene	<46		180	46	ug/Kg	≎	04/06/22 06:52	04/07/22 16:04	1
1-Methylnaphthalene	8.8	J	73	8.8	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
2,2'-oxybis[1-chloropropane]	<42		180	42	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
2,4,5-Trichlorophenol	<82		360	82	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
2,4,6-Trichlorophenol	<120		360	120	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
2,4-Dichlorophenol	<86		360	86	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
2,4-Dimethylphenol	<140		360	140	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
2,4-Dinitrophenol	<640		730	640	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
2,4-Dinitrotoluene	<57		180	57	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
2,6-Dinitrotoluene	<71		180	71	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
2-Chloronaphthalene	<40		180	40	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
2-Chlorophenol	<62		180	62	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
2-Methylnaphthalene	9.7	J	73	6.6	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
2-Methylphenol	<58		180	58	ug/Kg	≎	04/06/22 06:52	04/07/22 16:04	1
2-Nitroaniline	<49		180	49	ug/Kg	☼	04/06/22 06:52	04/07/22 16:04	1
2-Nitrophenol	<85		360	85	ug/Kg	≎	04/06/22 06:52	04/07/22 16:04	1
3 & 4 Methylphenol	<60		180	60	ug/Kg	☼	04/06/22 06:52	04/07/22 16:04	1
3,3'-Dichlorobenzidine	<51		180	51	ug/Kg	≎	04/06/22 06:52	04/07/22 16:04	1
3-Nitroaniline	<110		360	110	ug/Kg	≎	04/06/22 06:52	04/07/22 16:04	1
4,6-Dinitro-2-methylphenol	<290		730	290	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
4-Bromophenyl phenyl ether	<48		180	48	ug/Kg	≎	04/06/22 06:52	04/07/22 16:04	1
4-Chloro-3-methylphenol	<120		360	120	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
4-Chloroaniline	<170		730	170	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
4-Chlorophenyl phenyl ether	<42		180	42	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
4-Nitroaniline	<150		360	150	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
4-Nitrophenol	<340		730	340	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
Acenaphthene	<6.5		36	6.5	ug/Kg	ď÷	04/06/22 06:52	04/07/22 16:04	1

Eurofins Chicago

2

5

7

9

10

12

14

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-229 1-3 Lab Sample ID: 500-214283-5

Date Collected: 03/23/22 11:10

Matrix: Solid
Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 87.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	<4.8		36	4.8	ug/Kg	— <u></u>	04/06/22 06:52	04/07/22 16:04	1
Anthracene	6.7		36		ug/Kg	≎	04/06/22 06:52	04/07/22 16:04	1
Benzo[a]anthracene	27	J	36		ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
Benzo[a]pyrene	36		36		ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
Benzo[b]fluoranthene	61		36		ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
Benzo[g,h,i]perylene	17	J	36		ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
Benzo[k]fluoranthene	27		36		ug/Kg		04/06/22 06:52	04/07/22 16:04	1
Benzoic acid	<360		1800			₩	04/06/22 06:52	04/07/22 16:04	1
Benzyl alcohol	<360		730	360		☆	04/06/22 06:52	04/07/22 16:04	1
Bis(2-chloroethoxy)methane	<37		180		ug/Kg	∴		04/07/22 16:04	1
Bis(2-chloroethyl)ether	<54		180			*		04/07/22 16:04	1
Bis(2-ethylhexyl) phthalate	<66		180		ug/Kg			04/07/22 16:04	1
Butyl benzyl phthalate	<69		180	69				04/07/22 16:04	· · · · · · · 1
Carbazole	<90		180	90	ug/Kg			04/07/22 16:04	1
Chrysene	36		36		ug/Kg	~ *		04/07/22 16:04	1
Dibenz(a,h)anthracene	<7.0		36		ug/Kg			04/07/22 16:04	
Dibenzofuran	<42		180		ug/Kg ug/Kg	₩		04/07/22 16:04	1
Diethyl phthalate	<61		180	61	ug/Kg ug/Kg	₩		04/07/22 16:04	1
	<47		180						
Dimethyl phthalate				47 55	0 0	φ.		04/07/22 16:04 04/07/22 16:04	-
Di-n-butyl phthalate	<55		180	55	ug/Kg	₩.			1
Di-n-octyl phthalate	<59		180	59	ug/Kg			04/07/22 16:04	
Fluoranthene	72		36	6.7	ug/Kg	*		04/07/22 16:04	1
Fluorene	<5.1		36	5.1	ug/Kg	*		04/07/22 16:04	1
Hexachlorobenzene	<8.4		73		ug/Kg	. .		04/07/22 16:04	1
Hexachlorobutadiene	<57		180	57	ug/Kg	☼		04/07/22 16:04	1
Hexachlorocyclopentadiene	<210		730		ug/Kg	≎		04/07/22 16:04	1
Hexachloroethane	<55		180	55	ug/Kg			04/07/22 16:04	1
Indeno[1,2,3-cd]pyrene	14	J	36	9.4	ug/Kg	☆		04/07/22 16:04	1
Isophorone	<41		180	41	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
Naphthalene	9.1	J	36	5.6	ug/Kg		04/06/22 06:52	04/07/22 16:04	1
Nitrobenzene	<9.0		36	9.0	ug/Kg	≎	04/06/22 06:52	04/07/22 16:04	1
N-Nitrosodi-n-propylamine	<44		73	44	ug/Kg	≎	04/06/22 06:52	04/07/22 16:04	1
N-Nitrosodiphenylamine	<43		180	43	ug/Kg	⇔	04/06/22 06:52	04/07/22 16:04	1
Pentachlorophenol	<580		730	580	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
Phenanthrene	30	J	36	5.0	ug/Kg	₩	04/06/22 06:52	04/07/22 16:04	1
Phenol	<80		180	80	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
Pyrene	62		36	7.2	ug/Kg	₽	04/06/22 06:52	04/07/22 16:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	105		31 - 143				04/06/22 06:52	04/07/22 16:04	1
2-Fluorobiphenyl (Surr)	80		43 - 145				04/06/22 06:52	04/07/22 16:04	1
2-Fluorophenol (Surr)	102		31 - 166				04/06/22 06:52	04/07/22 16:04	1
Nitrobenzene-d5 (Surr)	77		37 - 147				04/06/22 06:52	04/07/22 16:04	1
Phenol-d5 (Surr)	92		30 - 153				04/06/22 06:52	04/07/22 16:04	1
Terphenyl-d14 (Surr)	110		42 - 157				04/06/22 06:52	04/07/22 16:04	1
Method: 8081A - Organoch	nlorine Pesticid	es (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<1.3		1.9	1.3	ug/Kg	-	04/05/22 16:57	04/06/22 14:15	1
alpha-BHC	<1.0		1.9	1.0	ug/Kg	☆	04/05/22 16:57	04/06/22 14:15	1

Eurofins Chicago

Job ID: 500-214283-1

3

5

1

10

12

1 1

15

4/15/2022

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-229 1-3

Date Collected: 03/23/22 11:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-5

Matrix: Solid

Percent Solids: 87.0

Job ID: 500-214283-1

Method: 8081A - Organo	chlorine Pesticides	(GC) (Continued)						
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<0.99	1.9	0.99	ug/Kg		04/05/22 16:57	04/06/22 14:15	1
beta-BHC	<1.5	1.9	1.5	ug/Kg	₽	04/05/22 16:57	04/06/22 14:15	1
4,4'-DDD	<1.0	1.9	1.0	ug/Kg	₽	04/05/22 16:57	04/06/22 14:15	1
4,4'-DDE	<0.96	1.9	0.96	ug/Kg	₽	04/05/22 16:57	04/06/22 14:15	1
4,4'-DDT	<0.88	1.9	0.88	ug/Kg	₽	04/05/22 16:57	04/06/22 14:15	1
delta-BHC	<0.89	1.9	0.89	ug/Kg	☼	04/05/22 16:57	04/06/22 14:15	1
Dieldrin	<0.97	1.9	0.97	ug/Kg	₽	04/05/22 16:57	04/06/22 14:15	1
Endosulfan I	<1.0	1.9	1.0	ug/Kg	₽	04/05/22 16:57	04/06/22 14:15	1
Endosulfan II	<1.0	1.9	1.0	ug/Kg	☼	04/05/22 16:57	04/06/22 14:15	1
Endosulfan sulfate	<1.0	1.9	1.0	ug/Kg	₽	04/05/22 16:57	04/06/22 14:15	1
Endrin	<0.95	1.9	0.95	ug/Kg	₩	04/05/22 16:57	04/06/22 14:15	1
Endrin aldehyde	<1.1	1.9	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 14:15	1
Endrin ketone	<0.91	1.9	0.91	ug/Kg	₽	04/05/22 16:57	04/06/22 14:15	1
gamma-BHC (Lindane)	<0.93	1.9	0.93	ug/Kg	₩	04/05/22 16:57	04/06/22 14:15	1
trans-Chlordane	<1.1	1.9	1.1	ug/Kg	₽	04/05/22 16:57	04/06/22 14:15	1
Heptachlor	<1.0	1.9	1.0	ug/Kg	₩	04/05/22 16:57	04/06/22 14:15	1
Heptachlor epoxide	<1.0	1.9	1.0	ug/Kg	₩	04/05/22 16:57	04/06/22 14:15	1
Methoxychlor	<1.2	9.2	1.2	ug/Kg	₩	04/05/22 16:57	04/06/22 14:15	1
Toxaphene	<7.4	18	7.4	ug/Kg	☼	04/05/22 16:57	04/06/22 14:15	1
Surrogate	%Recovery Qu	alifier Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	81	33 - 148				04/05/22 16:57	04/06/22 14:15	1
Tetrachloro-m-xylene	79	30 - 121				04/05/22 16:57	04/06/22 14:15	1

Analyte	Result Qualifier	· RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0072	0.018	0.0072	mg/Kg	<u></u>	04/05/22 16:57	04/08/22 19:29	1
PCB-1221	<0.0072	0.018	0.0072	mg/Kg	₩	04/05/22 16:57	04/08/22 19:29	1
PCB-1232	<0.0050	0.018	0.0050	mg/Kg	₩	04/05/22 16:57	04/08/22 19:29	1
PCB-1242	<0.0072	0.018	0.0072	mg/Kg	₩	04/05/22 16:57	04/08/22 19:29	1
PCB-1248	<0.0087	0.018	0.0087	mg/Kg	₩	04/05/22 16:57	04/08/22 19:29	1
PCB-1254	<0.0062	0.018	0.0062	mg/Kg	₩	04/05/22 16:57	04/08/22 19:29	1
PCB-1260	<0.0069	0.018	0.0069	mg/Kg	₩	04/05/22 16:57	04/08/22 19:29	1
PCB-1262	<0.0060	0.018	0.0060	mg/Kg	₩	04/05/22 16:57	04/08/22 19:29	1
PCB-1268	<0.011	0.018	0.011	mg/Kg	₩	04/05/22 16:57	04/08/22 19:29	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	75	49 - 129				04/05/22 16:57	04/08/22 19:29	1
DCB Decachlorobiphenyl	72	37 - 121				04/05/22 16:57	04/08/22 19:29	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<91		380	91	ug/Kg	— <u>~</u>	04/05/22 12:40	04/07/22 14:59	10
2,4-DB	<110		380	110	ug/Kg	₽	04/05/22 12:40	04/07/22 14:59	10
Dicamba	<82		380	82	ug/Kg	☼	04/05/22 12:40	04/07/22 14:59	10
Dichlorprop	<94		380	94	ug/Kg	⊅	04/05/22 12:40	04/07/22 14:59	10
Silvex (2,4,5-TP)	<86		380	86	ug/Kg	☼	04/05/22 12:40	04/07/22 14:59	10
2,4,5-T	<76		380	76	ug/Kg	☼	04/05/22 12:40	04/07/22 14:59	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	65		25 - 120				04/05/22 12:40	04/07/22 14:59	10

Eurofins Chicago

Page 47 of 356

6

8

10

12

13

15

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-229 1-3

Date Collected: 03/23/22 11:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-5

Matrix: Solid

Percent Solids: 87.0

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.80	J	1.1	0.37	mg/Kg	— <u></u>	04/06/22 01:36	04/06/22 23:39	1
Barium	23		1.1	0.12	mg/Kg	₩	04/06/22 01:36	04/06/22 23:39	1
Cadmium	0.094	JB	0.22	0.039	mg/Kg	₩	04/06/22 01:36	04/06/22 23:39	1
Chromium	8.3	В	1.1	0.53	mg/Kg	₩	04/06/22 01:36	04/06/22 23:39	1
Lead	42		0.54	0.25	mg/Kg	₩	04/06/22 01:36	04/06/22 23:39	1
Selenium	< 0.63		1.1	0.63	mg/Kg	₩	04/06/22 01:36	04/06/22 23:39	1
Silver	<0.14		0.54	0.14	mg/Kg	≎	04/06/22 01:36	04/06/22 23:39	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.056		0.017	0.0057	mg/Kg	<u></u>	04/07/22 13:45	04/08/22 11:24	1

6

46

44

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-229 4-5 Lab Sample ID: 500-214283-6

Date Collected: 03/23/22 11:15 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 86.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<9.3		76	9.3	ug/Kg	<u></u>	04/06/22 06:52	04/07/22 10:19	1
2-Methylnaphthalene	<7.0		76	7.0	ug/Kg	☼	04/06/22 06:52	04/07/22 10:19	1
Acenaphthene	<6.8		38	6.8	ug/Kg	₩	04/06/22 06:52	04/07/22 10:19	1
Acenaphthylene	<5.0		38	5.0	ug/Kg	₽	04/06/22 06:52	04/07/22 10:19	1
Anthracene	<6.3		38	6.3	ug/Kg	☼	04/06/22 06:52	04/07/22 10:19	1
Benzo[a]anthracene	<5.1		38	5.1	ug/Kg	₩	04/06/22 06:52	04/07/22 10:19	1
Benzo[a]pyrene	<7.3		38	7.3	ug/Kg	₽	04/06/22 06:52	04/07/22 10:19	1
Benzo[b]fluoranthene	<8.2		38	8.2	ug/Kg	☼	04/06/22 06:52	04/07/22 10:19	1
Benzo[g,h,i]perylene	<12		38	12	ug/Kg	≎	04/06/22 06:52	04/07/22 10:19	1
Benzo[k]fluoranthene	<11		38	11	ug/Kg	₽	04/06/22 06:52	04/07/22 10:19	1
Chrysene	<10		38	10	ug/Kg	₩	04/06/22 06:52	04/07/22 10:19	1
Dibenz(a,h)anthracene	<7.3		38	7.3	ug/Kg	≎	04/06/22 06:52	04/07/22 10:19	1
Fluoranthene	<7.0		38	7.0	ug/Kg	₩	04/06/22 06:52	04/07/22 10:19	1
Fluorene	<5.3		38	5.3	ug/Kg	₩	04/06/22 06:52	04/07/22 10:19	1
Indeno[1,2,3-cd]pyrene	<9.8		38	9.8	ug/Kg	≎	04/06/22 06:52	04/07/22 10:19	1
Naphthalene	<5.8		38	5.8	ug/Kg	₩	04/06/22 06:52	04/07/22 10:19	1
Phenanthrene	<5.3		38	5.3	ug/Kg	₩	04/06/22 06:52	04/07/22 10:19	1
Pyrene	<7.5		38	7.5	ug/Kg	☆	04/06/22 06:52	04/07/22 10:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	87		43 - 145				04/06/22 06:52	04/07/22 10:19	1
Nitrobenzene-d5 (Surr)	65		37 - 147				04/06/22 06:52	04/07/22 10:19	1
Terphenyl-d14 (Surr)	103		42 - 157				04/06/22 06:52	04/07/22 10:19	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

ı	Method: 6010C - Metals (ICP)									
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Arsenic	1.1		1.0	0.35	mg/Kg		04/06/22 01:36	04/06/22 23:42	1
l	_Lead	3.4		0.50	0.23	mg/Kg	₩	04/06/22 01:36	04/06/22 23:42	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-229 5-7 Lab Sample ID: 500-214283-7

Date Collected: 03/23/22 11:20 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 88.0

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	<29	64	29	ug/Kg	-	03/23/22 11:20	03/31/22 13:53	
1,1,1-Trichloroethane	<24	64	24	ug/Kg	☼	03/23/22 11:20	03/31/22 13:53	
1,1,2,2-Tetrachloroethane	<25	64	25	ug/Kg	☼	03/23/22 11:20	03/31/22 13:53	
1,1,2-Trichloroethane	<22	64	22	ug/Kg	₩	03/23/22 11:20	03/31/22 13:53	
1,1-Dichloroethane	<26	64	26	ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	
1,1-Dichloroethene	<25	64	25	ug/Kg	☼	03/23/22 11:20	03/31/22 13:53	
1,1-Dichloropropene	<19	64	19	ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	
1,2,3-Trichlorobenzene	<29	64	29	ug/Kg	☼	03/23/22 11:20	03/31/22 13:53	
,2,3-Trichloropropane	<26	130	26	ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	
,2,4-Trichlorobenzene	<22	64	22	ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	
,2,4-Trimethylbenzene	<23	64	23	ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	
,2-Dibromo-3-Chloropropane	<130	320	130	ug/Kg	☼	03/23/22 11:20	03/31/22 13:53	
,2-Dibromoethane	<25	64	25	ug/Kg	₩	03/23/22 11:20	03/31/22 13:53	
,2-Dichlorobenzene	<21	64	21		☼	03/23/22 11:20	03/31/22 13:53	
,2-Dichloroethane	<25	64	25	ug/Kg	☼	03/23/22 11:20	03/31/22 13:53	
,2-Dichloropropane	<27	64		ug/Kg		03/23/22 11:20	03/31/22 13:53	
,3,5-Trimethylbenzene	<24	64		ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	
,3-Dichlorobenzene	<25	64		ug/Kg	₩		03/31/22 13:53	
,3-Dichloropropane	<23	64		ug/Kg			03/31/22 13:53	
,4-Dichlorobenzene	<23	64		ug/Kg	☆		03/31/22 13:53	
,2-Dichloropropane	<28	64		ug/Kg			03/31/22 13:53	
-Chlorotoluene	<20	64		ug/Kg	. T		03/31/22 13:53	
-Chlorotoluene	<22	64		ug/Kg	~ ☆		03/31/22 13:53	
denzene	<9.3	16		ug/Kg	Ť		03/31/22 13:53	
romobenzene	<23	64		ug/Kg			03/31/22 13:53	
romochloromethane	<27	64	27		Ť	03/23/22 11:20	03/31/22 13:53	
Dichlorobromomethane	<24	64		ug/Kg	~ ☆		03/31/22 13:53	
romoform	<31	64		ug/Kg			03/31/22 13:53	
Bromomethane	<51 <51	190		ug/Kg ug/Kg	₩		03/31/22 13:53	
Carbon tetrachloride	<24	64		ug/Kg ug/Kg	Ψ Φ		03/31/22 13:53	
Chlorobenzene	<25	64					03/31/22 13:53	
Chloroethane	<32	64		ug/Kg	☆		03/31/22 13:53	
hloroform	<24			ug/Kg			03/31/22 13:53	
Chloromethane		130		ug/Kg	· · · · · · · · · · · · · · · · · · ·			
is-1.2-Dichloroethene	<20	64 64		ug/Kg			03/31/22 13:53	
,	<26			ug/Kg	±.		03/31/22 13:53	
is-1,3-Dichloropropene	<26	64		ug/Kg	 .		03/31/22 13:53	
Dibromochloromethane	<31	64		ug/Kg	₩		03/31/22 13:53	
Dibromomethane	<17	64		ug/Kg	*		03/31/22 13:53	
Dichlorodifluoromethane	<43	190		ug/Kg			03/31/22 13:53	
Ethylbenzene	<12	16		ug/Kg	*		03/31/22 13:53	
lexachlorobutadiene	<28	64		ug/Kg	*		03/31/22 13:53	
opropyl ether	<18	64		ug/Kg	. .		03/31/22 13:53	
sopropylbenzene	<24	64		ug/Kg	₩		03/31/22 13:53	
Methyl tert-butyl ether	<25	64		ug/Kg	₩		03/31/22 13:53	
lethylene Chloride	380 B	320		ug/Kg			03/31/22 13:53	
laphthalene	31 JB	64		ug/Kg	₩		03/31/22 13:53	
-Butylbenzene	<25	64		ug/Kg	₩		03/31/22 13:53	
N-Propylbenzene	<26	64	26	ug/Kg	₩	03/23/22 11:20	03/31/22 13:53	

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-229 5-7 Lab Sample ID: 500-214283-7

Date Collected: 03/23/22 11:20 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 88.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<25		64	25	ug/Kg	-	03/23/22 11:20	03/31/22 13:53	50
Styrene	<25		64	25	ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	50
tert-Butylbenzene	<25		64	25	ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	50
Tetrachloroethene	<24		64	24	ug/Kg	☼	03/23/22 11:20	03/31/22 13:53	50
Toluene	36		16	9.3	ug/Kg	☼	03/23/22 11:20	03/31/22 13:53	50
trans-1,2-Dichloroethene	<22		64	22	ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	50
trans-1,3-Dichloropropene	<23		64	23	ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	50
Trichloroethene	<10		32	10	ug/Kg	☼	03/23/22 11:20	03/31/22 13:53	50
Trichlorofluoromethane	<27		64	27	ug/Kg	₽	03/23/22 11:20	03/31/22 13:53	50
Vinyl chloride	<17		64	17	ug/Kg	☼	03/23/22 11:20	03/31/22 13:53	50
Xylenes, Total	110		32	14	ug/Kg	≎	03/23/22 11:20	03/31/22 13:53	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		75 - 126				03/23/22 11:20	03/31/22 13:53	50
4-Bromofluorobenzene (Surr)	90		72 - 124				03/23/22 11:20	03/31/22 13:53	50
Dibromofluoromethane (Surr)	99		75 - 120				03/23/22 11:20	03/31/22 13:53	50
Toluene-d8 (Surr)	95		75 - 120				03/23/22 11:20	03/31/22 13:53	50

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-230 3.5-4.5

Date Collected: 03/23/22 11:35 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-8

Matrix: Solid

Percent Solids: 81.1

Job ID: 500-214283-1

Method: 8260B - Volatile Org	ganic Compounds (GC/MS)							
Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<50	110		0 0	₩		03/31/22 14:16	5
1,1,1-Trichloroethane	<41	110		ug/Kg	₩	03/23/22 11:35	03/31/22 14:16	5
1,1,2,2-Tetrachloroethane	<43	110	43	ug/Kg	.	03/23/22 11:35	03/31/22 14:16	5
1,1,2-Trichloroethane	<38	110		ug/Kg	₽	03/23/22 11:35	03/31/22 14:16	5
1,1-Dichloroethane	<44	110	44	ug/Kg	≎	03/23/22 11:35	03/31/22 14:16	5
1,1-Dichloroethene	<42	110	42	ug/Kg	₩	03/23/22 11:35	03/31/22 14:16	5
1,1-Dichloropropene	<32	110	32	ug/Kg	₩	03/23/22 11:35	03/31/22 14:16	5
1,2,3-Trichlorobenzene	<49	110	49	ug/Kg	₩	03/23/22 11:35	03/31/22 14:16	5
1,2,3-Trichloropropane	<45	220	45	ug/Kg	₩	03/23/22 11:35	03/31/22 14:16	5
1,2,4-Trichlorobenzene	<37	110	37	ug/Kg	⊅	03/23/22 11:35	03/31/22 14:16	5
1,2,4-Trimethylbenzene	140	110	39	ug/Kg	₽	03/23/22 11:35	03/31/22 14:16	5
1,2-Dibromo-3-Chloropropane	<220	540	220	ug/Kg	₩	03/23/22 11:35	03/31/22 14:16	5
1,2-Dibromoethane	<42	110	42	ug/Kg	☼	03/23/22 11:35	03/31/22 14:16	5
1,2-Dichlorobenzene	<36	110		ug/Kg	☼	03/23/22 11:35	03/31/22 14:16	5
1,2-Dichloroethane	<42	110		ug/Kg	☼	03/23/22 11:35	03/31/22 14:16	5
1,2-Dichloropropane	<46	110	46	ug/Kg	≎	03/23/22 11:35	03/31/22 14:16	5
1,3,5-Trimethylbenzene	<41	110	41	ug/Kg	≎	03/23/22 11:35	03/31/22 14:16	5
1,3-Dichlorobenzene	<43	110	43	ug/Kg	≎	03/23/22 11:35	03/31/22 14:16	5
1,3-Dichloropropane	<39	110		ug/Kg	₩	03/23/22 11:35	03/31/22 14:16	5
1,4-Dichlorobenzene	<39	110		ug/Kg	₩	03/23/22 11:35	03/31/22 14:16	5
2,2-Dichloropropane	<48	110		ug/Kg	₩	03/23/22 11:35	03/31/22 14:16	5
2-Chlorotoluene	<34	110		ug/Kg		03/23/22 11:35	03/31/22 14:16	5
4-Chlorotoluene	<38	110		ug/Kg	₩	03/23/22 11:35	03/31/22 14:16	5
Benzene	<16	27		ug/Kg	☆		03/31/22 14:16	5
Bromobenzene	<38	110		ug/Kg		03/23/22 11:35	03/31/22 14:16	5
3romochloromethane	<46	110		ug/Kg	☆		03/31/22 14:16	5
Dichlorobromomethane	<40	110		ug/Kg	₩		03/31/22 14:16	5
Bromoform	<52	110		ug/Kg			03/31/22 14:16	5
Bromomethane	<86	320		ug/Kg			03/31/22 14:16	5
Carbon tetrachloride	<41	110		ug/Kg			03/31/22 14:16	5
Chlorobenzene	<42	110		ug/Kg			03/31/22 14:16	5
Chloroethane	<54	110		ug/Kg	~ \$		03/31/22 14:16	5
Chloroform	<40	220		ug/Kg	~ \$		03/31/22 14:16	5
Chloromethane	<35	110		ug/Kg			03/31/22 14:16	5
cis-1,2-Dichloroethene	<44	110		ug/Kg	₩		03/31/22 14:16	5
	<45	110			*			
cis-1,3-Dichloropropene Dibromochloromethane	<53	110		ug/Kg			03/31/22 14:16 03/31/22 14:16	5
Dibromocnioromethane Dibromomethane				ug/Kg	φ.			5
Dichlorodifluoromethane	<29 <73	110		ug/Kg	φ.		03/31/22 14:16	5
		320		ug/Kg	· · · · ·		03/31/22 14:16	5
Ethylbenzene	54	27		ug/Kg	*		03/31/22 14:16	5
Hexachlorobutadiene	<48	110		ug/Kg	*		03/31/22 14:16	5
sopropyl ether	<30	110		ug/Kg			03/31/22 14:16	5
sopropylbenzene	59 J	110		ug/Kg	☆		03/31/22 14:16	5
Methyl tert-butyl ether	<43	110		ug/Kg	*		03/31/22 14:16	5
Methylene Chloride	630 B	540		ug/Kg	. .		03/31/22 14:16	5
Naphthalene	260 B	110		ug/Kg	☼		03/31/22 14:16	5
n-Butylbenzene	<42	110		ug/Kg	₩		03/31/22 14:16	5
N-Propylbenzene	78 J	110		ug/Kg			03/31/22 14:16	5
p-Isopropyltoluene	<39	110	39	ug/Kg	₽	03/23/22 11:35	03/31/22 14:16	5

Eurofins Chicago

6

R

10

11

1 *1*

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-230 3.5-4.5

Date Collected: 03/23/22 11:35 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-8

Matrix: Solid

Percent Solids: 81.1

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<43		110	43	ug/Kg	-	03/23/22 11:35	03/31/22 14:16	50
Styrene	<42		110	42	ug/Kg	₽	03/23/22 11:35	03/31/22 14:16	50
tert-Butylbenzene	<43		110	43	ug/Kg	₽	03/23/22 11:35	03/31/22 14:16	50
Tetrachloroethene	<40		110	40	ug/Kg	☼	03/23/22 11:35	03/31/22 14:16	50
Toluene	100		27	16	ug/Kg	☼	03/23/22 11:35	03/31/22 14:16	50
trans-1,2-Dichloroethene	<38		110	38	ug/Kg	₽	03/23/22 11:35	03/31/22 14:16	50
trans-1,3-Dichloropropene	<39		110	39	ug/Kg	₽	03/23/22 11:35	03/31/22 14:16	50
Trichloroethene	<18		54	18	ug/Kg	☼	03/23/22 11:35	03/31/22 14:16	50
Trichlorofluoromethane	<46		110	46	ug/Kg	₽	03/23/22 11:35	03/31/22 14:16	50
Vinyl chloride	<28		110	28	ug/Kg	₽	03/23/22 11:35	03/31/22 14:16	50
Xylenes, Total	420		54	24	ug/Kg	≎	03/23/22 11:35	03/31/22 14:16	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		75 - 126				03/23/22 11:35	03/31/22 14:16	50
4-Bromofluorobenzene (Surr)	89		72 - 124				03/23/22 11:35	03/31/22 14:16	50
Dibromofluoromethane (Surr)	100		75 - 120				03/23/22 11:35	03/31/22 14:16	50
Toluene-d8 (Surr)	95		75 - 120				03/23/22 11:35	03/31/22 14:16	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<130		590	130	ug/Kg	-	04/06/22 06:52	04/08/22 18:09	1
1,2-Dichlorobenzene	<140		590	140	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
1,3-Dichlorobenzene	<130		590	130	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
1,4-Dichlorobenzene	<150		590	150	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
1-Methylnaphthalene	220	J	240	29	ug/Kg	≎	04/06/22 06:52	04/08/22 18:09	1
2,2'-oxybis[1-chloropropane]	<140		590	140	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
2,4,5-Trichlorophenol	<270		1200	270	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
2,4,6-Trichlorophenol	<400		1200	400	ug/Kg	≎	04/06/22 06:52	04/08/22 18:09	1
2,4-Dichlorophenol	<280		1200	280	ug/Kg	≎	04/06/22 06:52	04/08/22 18:09	1
2,4-Dimethylphenol	<440		1200	440	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
2,4-Dinitrophenol	<2100		2400	2100	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
2,4-Dinitrotoluene	<190		590	190	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
2,6-Dinitrotoluene	<230		590	230	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
2-Chloronaphthalene	<130		590	130	ug/Kg	≎	04/06/22 06:52	04/08/22 18:09	1
2-Chlorophenol	<200		590	200	ug/Kg	≎	04/06/22 06:52	04/08/22 18:09	1
2-Methylnaphthalene	260		240	21	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
2-Methylphenol	<190		590	190	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
2-Nitroaniline	<160		590	160	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
2-Nitrophenol	<280		1200	280	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
3 & 4 Methylphenol	<190		590	190	ug/Kg	≎	04/06/22 06:52	04/08/22 18:09	1
3,3'-Dichlorobenzidine	<160		590	160	ug/Kg	≎	04/06/22 06:52	04/08/22 18:09	1
3-Nitroaniline	<360		1200	360	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
4,6-Dinitro-2-methylphenol	<940		2400	940	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
4-Bromophenyl phenyl ether	<150		590	150	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
4-Chloro-3-methylphenol	<400		1200	400	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
4-Chloroaniline	<550		2400	550	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
4-Chlorophenyl phenyl ether	<140		590	140	ug/Kg	≎	04/06/22 06:52	04/08/22 18:09	1
4-Nitroaniline	<490		1200	490	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
4-Nitrophenol	<1100		2400	1100	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
Acenaphthene	200		120	21	ug/Kg	₩	04/06/22 06:52	04/08/22 18:09	1

Eurofins Chicago

Page 53 of 356

2

3

6

7

9

10

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-230 3.5-4.5 Lab Sample ID: 500-214283-8

Date Collected: 03/23/22 11:35

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 81.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	140		120	15	ug/Kg	— <u></u>	04/06/22 06:52	04/08/22 18:09	1
Anthracene	590		120	20	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
Benzo[a]anthracene	1500		120	16	ug/Kg	₩	04/06/22 06:52	04/08/22 18:09	1
Benzo[a]pyrene	1700		120	23	ug/Kg	₩	04/06/22 06:52	04/08/22 18:09	1
Benzo[b]fluoranthene	2500		120	25	ug/Kg	₩	04/06/22 06:52	04/08/22 18:09	1
Benzo[g,h,i]perylene	330		120		ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
Benzo[k]fluoranthene	1000		120		ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
Benzoic acid	<1200		5900		ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
Benzyl alcohol	<1200		2400	1200	ug/Kg	₩	04/06/22 06:52	04/08/22 18:09	1
Bis(2-chloroethoxy)methane	<120		590	120	ug/Kg		04/06/22 06:52	04/08/22 18:09	1
Bis(2-chloroethyl)ether	<180		590		ug/Kg	₩	04/06/22 06:52	04/08/22 18:09	1
Bis(2-ethylhexyl) phthalate	220	J	590		ug/Kg	₩		04/08/22 18:09	1
Butyl benzyl phthalate	<220		590		ug/Kg			04/08/22 18:09	
Carbazole	380	J.	590		ug/Kg	₩		04/08/22 18:09	1
Chrysene	1800		120		ug/Kg	₩		04/08/22 18:09	1
Dibenz(a,h)anthracene	95		120		ug/Kg			04/08/22 18:09	
Dibenzofuran	200		590		ug/Kg	~ ☆		04/08/22 18:09	1
Diethyl phthalate	<200	3	590		ug/Kg	₩		04/08/22 18:09	1
Dimethyl phthalate	<150		590		ug/Kg			04/08/22 18:09	
Di-n-butyl phthalate	<180		590			☆		04/08/22 18:09	1
• •					ug/Kg				
Di-n-octyl phthalate	<190		590		ug/Kg	<u>.</u> .		04/08/22 18:09	
Fluoranthene	4200		120		ug/Kg	₩.		04/08/22 18:09	1
Fluorene	210		120		ug/Kg	*		04/08/22 18:09	1
Hexachlorobenzene	<27		240		ug/Kg	. .		04/08/22 18:09	1
Hexachlorobutadiene	<180		590		ug/Kg	₽		04/08/22 18:09	1
Hexachlorocyclopentadiene	<670		2400		ug/Kg	☼		04/08/22 18:09	1
Hexachloroethane	<180		590		ug/Kg			04/08/22 18:09	1
Indeno[1,2,3-cd]pyrene	340		120		ug/Kg	₽		04/08/22 18:09	1
Isophorone	<130		590		ug/Kg	₽		04/08/22 18:09	1
Naphthalene	230		120		ug/Kg		04/06/22 06:52		1
Nitrobenzene	<29		120		ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
N-Nitrosodi-n-propylamine	<140		240	140	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
N-Nitrosodiphenylamine	<140		590		ug/Kg	≎	04/06/22 06:52	04/08/22 18:09	1
Pentachlorophenol	<1900		2400	1900	ug/Kg	☆	04/06/22 06:52	04/08/22 18:09	1
Phenanthrene	3300		120	16	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
Phenol	<260		590	260	ug/Kg	☼	04/06/22 06:52	04/08/22 18:09	1
Pyrene	3700		120	23	ug/Kg	₽	04/06/22 06:52	04/08/22 18:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	100		31 - 143				04/06/22 06:52	04/08/22 18:09	1
2-Fluorobiphenyl (Surr)	90		43 - 145				04/06/22 06:52	04/08/22 18:09	1
2-Fluorophenol (Surr)	111		31 - 166				04/06/22 06:52	04/08/22 18:09	1
Nitrobenzene-d5 (Surr)	74		37 - 147				04/06/22 06:52	04/08/22 18:09	1
Phenol-d5 (Surr)	98		30 - 153				04/06/22 06:52	04/08/22 18:09	1
Terphenyl-d14 (Surr)	94		42 - 157				04/06/22 06:52	04/08/22 18:09	1
Method: 8081A - Organochi	orine Pesticid	les (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<6.9		10		ug/Kg	— <u></u>	04/05/22 16:57		
	3.0				J 9		=		•

Eurofins Chicago

Page 54 of 356

2

Job ID: 500-214283-1

3

5

1

10

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-230 3.5-4.5

Date Collected: 03/23/22 11:35 Date Received: 03/29/22 10:20

DCB Decachlorobiphenyl

Lab Sample ID: 500-214283-8

Matrix: Solid

Job ID: 500-214283-1

Percent Solids: 81.1

Method: 8081A - Organo	chlorine Pesticide	s (GC) (C	ontinued)						
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<5.3		10	5.3	ug/Kg	<u></u>	04/05/22 16:57	04/06/22 14:35	5
beta-BHC	<8.0		10	8.0	ug/Kg	₩	04/05/22 16:57	04/06/22 14:35	5
4,4'-DDD	<5.3		10	5.3	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
4,4'-DDE	<5.1		10	5.1	ug/Kg	₩	04/05/22 16:57	04/06/22 14:35	5
4,4'-DDT	51		10	4.7	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
delta-BHC	<4.7		10	4.7	ug/Kg	₩	04/05/22 16:57	04/06/22 14:35	5
Dieldrin	<5.2		10	5.2	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
Endosulfan I	<5.4		10	5.4	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
Endosulfan II	<5.4		10	5.4	ug/Kg	₩	04/05/22 16:57	04/06/22 14:35	5
Endosulfan sulfate	<5.5		10	5.5	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
Endrin	<5.1		10	5.1	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
Endrin aldehyde	<5.7		10	5.7	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
Endrin ketone	<4.8		10	4.8	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
gamma-BHC (Lindane)	<4.9		10	4.9	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
trans-Chlordane	<5.7		10	5.7	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
Heptachlor	<5.4		10	5.4	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
Heptachlor epoxide	<5.3		10	5.3	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
Methoxychlor	<6.5		49	6.5	ug/Kg	₽	04/05/22 16:57	04/06/22 14:35	5
Toxaphene	<40		98	40	ug/Kg	☼	04/05/22 16:57	04/06/22 14:35	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	116		33 - 148				04/05/22 16:57	04/06/22 14:35	5
Tetrachloro-m-xylene	77		30 - 121				04/05/22 16:57	04/06/22 14:35	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0077		0.020	0.0077	mg/Kg	₽	04/05/22 16:57	04/08/22 19:45	1
PCB-1221	<0.0077		0.020	0.0077	mg/Kg	☼	04/05/22 16:57	04/08/22 19:45	1
PCB-1232	< 0.0053		0.020	0.0053	mg/Kg	₩	04/05/22 16:57	04/08/22 19:45	1
PCB-1242	<0.0076		0.020	0.0076	mg/Kg	₽	04/05/22 16:57	04/08/22 19:45	1
PCB-1248	<0.0093		0.020	0.0093	mg/Kg	₩	04/05/22 16:57	04/08/22 19:45	1
PCB-1254	0.11		0.020	0.0067	mg/Kg	☼	04/05/22 16:57	04/08/22 19:45	1
PCB-1260	<0.0074		0.020	0.0074	mg/Kg	₩	04/05/22 16:57	04/08/22 19:45	1
PCB-1262	<0.0064		0.020	0.0064	mg/Kg	₩	04/05/22 16:57	04/08/22 19:45	1
PCB-1268	<0.011		0.020	0.011	mg/Kg	₩	04/05/22 16:57	04/08/22 19:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	72		49 - 129				04/05/22 16:57	04/08/22 19:45	1

Method: 8151A - Herbi	cides (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<140	590	140	ug/Kg	<u></u>	04/05/22 12:40	04/07/22 15:38	10
2,4-DB	<170	590	170	ug/Kg	₩	04/05/22 12:40	04/07/22 15:38	10
Dicamba	<130	590	130	ug/Kg	₩	04/05/22 12:40	04/07/22 15:38	10
Dichlorprop	<150	590	150	ug/Kg	₩	04/05/22 12:40	04/07/22 15:38	10
Silvex (2,4,5-TP)	<130	590	130	ug/Kg	₩	04/05/22 12:40	04/07/22 15:38	10
2,4,5-T	<120	590	120	ug/Kg	₩	04/05/22 12:40	04/07/22 15:38	10
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	71	25 - 120				04/05/22 12:40	04/07/22 15:38	10

37 - 121

Eurofins Chicago

04/05/22 16:57 04/08/22 19:45

Page 55 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-230 3.5-4.5 Lab Sample ID: 500-214283-8

Date Collected: 03/23/22 11:35

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 81.1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	11		1.2	0.41	mg/Kg	<u></u>	04/06/22 01:36	04/06/22 23:45	1
Barium	140		1.2	0.14	mg/Kg	₩	04/06/22 01:36	04/06/22 23:45	1
Cadmium	7.6	В	0.24	0.043	mg/Kg	₩	04/06/22 01:36	04/06/22 23:45	1
Chromium	50	В	1.2	0.60	mg/Kg	₩	04/06/22 01:36	04/06/22 23:45	1
Lead	890		0.60	0.28	mg/Kg	₩	04/06/22 01:36	04/06/22 23:45	1
Selenium	0.84	J	1.2	0.71	mg/Kg	₩	04/06/22 01:36	04/06/22 23:45	1
Silver	0.37	J	0.60	0.16	mg/Kg	₽	04/06/22 01:36	04/06/22 23:45	1
- Method: 7471B - Mercury (CVA	AA)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.83		0.019	0.0064	mg/Kg	— <u></u>	04/07/22 13:45	04/08/22 11:26	1

Job ID: 500-214283-1

A

5

7

0

4.0

11

13

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-230 4.5-6

Date Collected: 03/23/22 11:40 Date Received: 03/29/22 10:20

Arsenic

Lead

Lab Sample ID: 500-214283-9

© 04/06/22 01:36 04/06/22 23:49

Matrix: Solid

Percent Solids: 92.0

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<8.6		71	8.6	ug/Kg	<u></u>	04/06/22 06:52	04/07/22 10:42	1
2-Methylnaphthalene	<6.5		71	6.5	ug/Kg	₩	04/06/22 06:52	04/07/22 10:42	1
Acenaphthene	<6.4		35	6.4	ug/Kg	₩	04/06/22 06:52	04/07/22 10:42	1
Acenaphthylene	<4.7		35	4.7	ug/Kg	₩	04/06/22 06:52	04/07/22 10:42	1
Anthracene	<5.9		35	5.9	ug/Kg	☼	04/06/22 06:52	04/07/22 10:42	1
Benzo[a]anthracene	8.5	J	35	4.8	ug/Kg	₩	04/06/22 06:52	04/07/22 10:42	1
Benzo[a]pyrene	<6.8		35	6.8	ug/Kg	₽	04/06/22 06:52	04/07/22 10:42	1
Benzo[b]fluoranthene	8.2	J	35	7.6	ug/Kg	₩	04/06/22 06:52	04/07/22 10:42	1
Benzo[g,h,i]perylene	<11		35	11	ug/Kg	☼	04/06/22 06:52	04/07/22 10:42	1
Benzo[k]fluoranthene	<10		35	10	ug/Kg	₽	04/06/22 06:52	04/07/22 10:42	1
Chrysene	<9.6		35	9.6	ug/Kg	☼	04/06/22 06:52	04/07/22 10:42	1
Dibenz(a,h)anthracene	<6.8		35	6.8	ug/Kg	₩	04/06/22 06:52	04/07/22 10:42	1
Fluoranthene	14	J	35	6.6	ug/Kg	₽	04/06/22 06:52	04/07/22 10:42	1
Fluorene	<5.0		35	5.0	ug/Kg	₩	04/06/22 06:52	04/07/22 10:42	1
Indeno[1,2,3-cd]pyrene	<9.2		35	9.2	ug/Kg	₩	04/06/22 06:52	04/07/22 10:42	1
Naphthalene	<5.4		35	5.4	ug/Kg	₽	04/06/22 06:52	04/07/22 10:42	1
Phenanthrene	6.5	J	35	4.9	ug/Kg	₩	04/06/22 06:52	04/07/22 10:42	1
Pyrene	11	J	35	7.0	ug/Kg	₩	04/06/22 06:52	04/07/22 10:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	88		43 - 145				04/06/22 06:52	04/07/22 10:42	1
Nitrobenzene-d5 (Surr)	80		37 - 147				04/06/22 06:52	04/07/22 10:42	1
Terphenyl-d14 (Surr)	99		42 - 157				04/06/22 06:52	04/07/22 10:42	1
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1.0

0.51

0.35 mg/Kg

0.23 mg/Kg

1.2

61

<u>ح</u>

5

7

a

10

11 12

13

14

16

17

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-230 8-10

Date Collected: 03/23/22 11:45
Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-10

Matrix: Solid

Percent Solids: 86.9

Job ID: 500-214283-1

Method: 8260B - Volatile Orզ		•1						
Analyte	Result Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<30	66		0 0	☼	03/23/22 11:45	03/31/22 14:39	50
1,1,1-Trichloroethane	<25	66	25	ug/Kg	☼	03/23/22 11:45	03/31/22 14:39	50
1,1,2,2-Tetrachloroethane	<26	66	26	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
1,1,2-Trichloroethane	<23	66	23	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
1,1-Dichloroethane	<27	66	27	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
1,1-Dichloroethene	<26	66	26	ug/Kg	☼	03/23/22 11:45	03/31/22 14:39	50
1,1-Dichloropropene	<20	66	20	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
1,2,3-Trichlorobenzene	<30	66	30	ug/Kg	☼	03/23/22 11:45	03/31/22 14:39	50
1,2,3-Trichloropropane	<27	130	27	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
1,2,4-Trichlorobenzene	<23	66	23	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
1,2,4-Trimethylbenzene	<24	66	24	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
1,2-Dibromo-3-Chloropropane	<130	330	130	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
1,2-Dibromoethane	<25	66	25	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
1,2-Dichlorobenzene	<22	66	22	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
1,2-Dichloroethane	<26	66	26	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
1,2-Dichloropropane	<28	66	28	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
1,3,5-Trimethylbenzene	<25	66	25	ug/Kg	≎	03/23/22 11:45	03/31/22 14:39	50
1,3-Dichlorobenzene	<26	66	26	ug/Kg	≎	03/23/22 11:45	03/31/22 14:39	50
1,3-Dichloropropane	<24	66	24	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
1,4-Dichlorobenzene	<24	66	24	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
2,2-Dichloropropane	<29	66	29	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
2-Chlorotoluene	<21	66	21	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
4-Chlorotoluene	<23	66	23	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
Benzene	<9.6	16	9.6	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
Bromobenzene	<23	66	23	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
Bromochloromethane	<28	66	28	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
Dichlorobromomethane	<25	66	25	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
Bromoform	<32	66	32	ug/Kg	⊅	03/23/22 11:45	03/31/22 14:39	50
Bromomethane	<53	200	53	ug/Kg	≎	03/23/22 11:45	03/31/22 14:39	50
Carbon tetrachloride	<25	66	25	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
Chlorobenzene	<25	66	25	ug/Kg	≎	03/23/22 11:45	03/31/22 14:39	50
Chloroethane	<33	66	33	ug/Kg	≎	03/23/22 11:45	03/31/22 14:39	50
Chloroform	<24	130		ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
Chloromethane	<21	66	21	ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
cis-1,2-Dichloroethene	<27	66		ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
cis-1,3-Dichloropropene	<27	66		ug/Kg	₩		03/31/22 14:39	50
Dibromochloromethane	<32	66		ug/Kg			03/31/22 14:39	50
Dibromomethane	<18	66		ug/Kg	₩	03/23/22 11:45	03/31/22 14:39	50
Dichlorodifluoromethane	<44	200		ug/Kg	₩		03/31/22 14:39	50
Ethylbenzene	<12	16		ug/Kg	 .		03/31/22 14:39	50
Hexachlorobutadiene	<29	66		ug/Kg	☆		03/31/22 14:39	50
Isopropyl ether	<18	66		ug/Kg	 \$		03/31/22 14:39	50
Isopropylbenzene	<25	66		ug/Kg	 .☆		03/31/22 14:39	50
Methyl tert-butyl ether	<26	66		ug/Kg	~ \$		03/31/22 14:39	50
Methylene Chloride	380 B	330		ug/Kg	₩		03/31/22 14:39	50
Naphthalene	<22	66		ug/Kg			03/31/22 14:39	50
n-Butylbenzene	<26	66		ug/Kg ug/Kg	₩		03/31/22 14:39	50
N-Propylbenzene	<27	66		ug/Kg ug/Kg	₩		03/31/22 14:39	50
p-Isopropyltoluene	<24	66		ug/Kg ug/Kg			03/31/22 14:39	50

Eurofins Chicago

3

6

1

10

12

14

15

1/

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-230 8-10

Date Collected: 03/23/22 11:45 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-10

Matrix: Solid

Percent Solids: 86.9

ganic Compo	unds (GC/	MS) (Continu	ed)					
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<26		66	26	ug/Kg	-	03/23/22 11:45	03/31/22 14:39	50
<25		66	25	ug/Kg	☼	03/23/22 11:45	03/31/22 14:39	50
<26		66	26	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
<24		66	24	ug/Kg	☼	03/23/22 11:45	03/31/22 14:39	50
<9.7		16	9.7	ug/Kg	☼	03/23/22 11:45	03/31/22 14:39	50
<23		66	23	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
<24		66	24	ug/Kg	☼	03/23/22 11:45	03/31/22 14:39	50
<11		33	11	ug/Kg	☼	03/23/22 11:45	03/31/22 14:39	50
<28		66	28	ug/Kg	₽	03/23/22 11:45	03/31/22 14:39	50
<17		66	17	ug/Kg	☼	03/23/22 11:45	03/31/22 14:39	50
<15		33	15	ug/Kg	☆	03/23/22 11:45	03/31/22 14:39	50
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
98		75 - 126				03/23/22 11:45	03/31/22 14:39	50
88		72 - 124				03/23/22 11:45	03/31/22 14:39	50
101		75 - 120				03/23/22 11:45	03/31/22 14:39	50
94		75 - 120				03/23/22 11:45	03/31/22 14:39	50
	Result <26 <25 <26 <24 <9.7 <23 <24 <11 <28 <17 <15 < 15	Result Qualifier	Result Qualifier RL <26	<26	Result Qualifier RL MDL Unit <26	Result Qualifier RL MDL Unit D <26	Result Qualifier RL MDL Unit D Prepared <26	Result Qualifier RL MDL Unit D Prepared Analyzed <26

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-231 5-7

Lab Sample ID: 500-214283-11

Date Collected: 03/23/22 12:00 Matrix: Solid
Date Received: 03/29/22 10:20 Percent Solids: 84.2

Method: 8260B - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<32	69	32	ug/Kg	— <u></u>	03/23/22 12:00	03/31/22 15:03	5
1,1,1-Trichloroethane	<26	69	26		☼	03/23/22 12:00	03/31/22 15:03	50
1,1,2,2-Tetrachloroethane	<28	69	28	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
1,1,2-Trichloroethane	<24	69		ug/Kg	∴		03/31/22 15:03	50
1,1-Dichloroethane	<28	69		ug/Kg	☆	03/23/22 12:00		50
1,1-Dichloroethene	<27	69		ug/Kg	☆		03/31/22 15:03	50
1,1-Dichloropropene	<21	69		ug/Kg			03/31/22 15:03	50
1,2,3-Trichlorobenzene	<32	69		ug/Kg			03/31/22 15:03	50
1,2,3-Trichloropropane	<29	140		ug/Kg			03/31/22 15:03	50
1,2,4-Trichlorobenzene	<24	69		ug/Kg	. T		03/31/22 15:03	50
1,2,4-Trimethylbenzene	<25	69		ug/Kg	~ \$		03/31/22 15:03	50
1,2-Dibromo-3-Chloropropane	<140	350		ug/Kg	₩		03/31/22 15:03	50
1,2-Dibromoethane		69		ug/Kg			03/31/22 15:03	50
,	<27 <23	69					03/31/22 15:03	50
1,2-Dichlorobenzene 1.2-Dichloroethane	<23 <27	69 69		ug/Kg	☆		03/31/22 15:03	50
	<30			ug/Kg			03/31/22 15:03	5(
1,2-Dichloropropane	<30 <26	69		ug/Kg	φ.			
1,3,5-Trimethylbenzene		69		ug/Kg	φ.	03/23/22 12:00		50
1,3-Dichlorobenzene	<28	69		ug/Kg			03/31/22 15:03	50
1,3-Dichloropropane	<25	69		ug/Kg	*		03/31/22 15:03	50
1,4-Dichlorobenzene	<25	69		ug/Kg	*		03/31/22 15:03	50
2,2-Dichloropropane	<31	69	31		<u>.</u> .		03/31/22 15:03	50
2-Chlorotoluene	<22	69		ug/Kg	₽		03/31/22 15:03	50
4-Chlorotoluene	<24	69		ug/Kg	☼		03/31/22 15:03	50
Benzene	<10	17		ug/Kg			03/31/22 15:03	50
Bromobenzene	<25	69		ug/Kg	₩		03/31/22 15:03	50
Bromochloromethane	<30	69		ug/Kg	≎		03/31/22 15:03	50
Dichlorobromomethane	<26	69		ug/Kg			03/31/22 15:03	50
Bromoform	<34	69	34	ug/Kg	₩		03/31/22 15:03	50
Bromomethane	<55	210	55	ug/Kg	₩		03/31/22 15:03	50
Carbon tetrachloride	<27	69	27				03/31/22 15:03	50
Chlorobenzene	<27	69	27	ug/Kg	☼	03/23/22 12:00	03/31/22 15:03	50
Chloroethane	<35	69	35	ug/Kg	≎	03/23/22 12:00	03/31/22 15:03	50
Chloroform	<26	140	26	ug/Kg	₽	03/23/22 12:00	03/31/22 15:03	50
Chloromethane	<22	69	22	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
cis-1,2-Dichloroethene	<28	69	28	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
cis-1,3-Dichloropropene	<29	69	29	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
Dibromochloromethane	<34	69	34	ug/Kg	⊅	03/23/22 12:00	03/31/22 15:03	50
Dibromomethane	<19	69	19	ug/Kg	₽	03/23/22 12:00	03/31/22 15:03	50
Dichlorodifluoromethane	<47	210	47	ug/Kg	₽	03/23/22 12:00	03/31/22 15:03	50
Ethylbenzene	<13	17	13	ug/Kg	₽	03/23/22 12:00	03/31/22 15:03	50
Hexachlorobutadiene	<31	69	31	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
Isopropyl ether	<19	69	19	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
Isopropylbenzene	<27	69		ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
Methyl tert-butyl ether	<27	69		ug/Kg	₽	03/23/22 12:00	03/31/22 15:03	50
Methylene Chloride	410 B	350		ug/Kg	₽	03/23/22 12:00	03/31/22 15:03	50
Naphthalene	<23	69		ug/Kg		03/23/22 12:00		50
n-Butylbenzene	<27	69		ug/Kg	₽	03/23/22 12:00		50
N-Propylbenzene	<29	69		ug/Kg		03/23/22 12:00		50
p-Isopropyltoluene	<25	69		ug/Kg			03/31/22 15:03	50

Eurofins Chicago

Job ID: 500-214283-1

<u>ی</u>

6

8

10

12

14

4.0

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-231 5-7 Lab Sample ID: 500-214283-11

Date Collected: 03/23/22 12:00 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 84.2

Method: 8260B - Volatile Or	rganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<28		69	28	ug/Kg	<u></u>	03/23/22 12:00	03/31/22 15:03	50
Styrene	<27		69	27	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
tert-Butylbenzene	<28		69	28	ug/Kg	₽	03/23/22 12:00	03/31/22 15:03	50
Tetrachloroethene	<26		69	26	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
Toluene	<10		17	10	ug/Kg	☼	03/23/22 12:00	03/31/22 15:03	50
trans-1,2-Dichloroethene	<24		69	24	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
trans-1,3-Dichloropropene	<25		69	25	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
Trichloroethene	<11		35	11	ug/Kg	☼	03/23/22 12:00	03/31/22 15:03	50
Trichlorofluoromethane	<30		69	30	ug/Kg	☼	03/23/22 12:00	03/31/22 15:03	50
Vinyl chloride	<18		69	18	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
Xylenes, Total	<15		35	15	ug/Kg	₩	03/23/22 12:00	03/31/22 15:03	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 126				03/23/22 12:00	03/31/22 15:03	50
4-Bromofluorobenzene (Surr)	90		72 - 124				03/23/22 12:00	03/31/22 15:03	50
Dibromofluoromethane (Surr)	101		75 - 120				03/23/22 12:00	03/31/22 15:03	50
Toluene-d8 (Surr)	93		75 - 120				03/23/22 12:00	03/31/22 15:03	50

Mathada 9270D Carrivalatil	95 - Ormania Car		/5-120					03/31/22 15.03	50
Method: 8270D - Semivolatile Analyte		mpounds Qualifier	(GC/IVIS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<40		190	40	ug/Kg	<u></u>	04/06/22 06:52	04/08/22 18:33	1
1,2-Dichlorobenzene	<45		190	45	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
1,3-Dichlorobenzene	<42		190	42	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
1,4-Dichlorobenzene	<48		190	48	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
1-Methylnaphthalene	29	J	75	9.1	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
2,2'-oxybis[1-chloropropane]	<43		190	43	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
2,4,5-Trichlorophenol	<85		370	85	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
2,4,6-Trichlorophenol	<130		370	130	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
2,4-Dichlorophenol	<88		370	88	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	1
2,4-Dimethylphenol	<140		370	140	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
2,4-Dinitrophenol	<660		750	660	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
2,4-Dinitrotoluene	<59		190	59	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	1
2,6-Dinitrotoluene	<73		190	73	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
2-Chloronaphthalene	<41		190	41	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	1
2-Chlorophenol	<64		190	64	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	1
2-Methylnaphthalene	32	J	75	6.9	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
2-Methylphenol	<60		190	60	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	1
2-Nitroaniline	<50		190	50	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
2-Nitrophenol	<88		370	88	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
3 & 4 Methylphenol	<62		190	62	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
3,3'-Dichlorobenzidine	<52		190	52	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
3-Nitroaniline	<120		370	120	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
4,6-Dinitro-2-methylphenol	<300		750	300	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
4-Bromophenyl phenyl ether	<49		190	49	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
4-Chloro-3-methylphenol	<130		370	130	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
4-Chloroaniline	<170		750	170	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	1
4-Chlorophenyl phenyl ether	<44		190	44	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
4-Nitroaniline	<160		370	160	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
4-Nitrophenol	<350		750	350	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	1
Acenaphthene	29	J	37	6.7	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	1

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-231 5-7 Lab Sample ID: 500-214283-11

Date Collected: 03/23/22 12:00

Matrix: Solid

Date Received: 03/29/22 10:20

Percent Solids: 84.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthylene	18	J	37	4.9	ug/Kg	— <u></u>	04/06/22 06:52	04/08/22 18:33	
Anthracene	74		37	6.2	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	
Benzo[a]anthracene	220		37		ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	
Benzo[a]pyrene	290		37	7.2	ug/Kg		04/06/22 06:52	04/08/22 18:33	
Benzo[b]fluoranthene	400		37		ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Benzo[g,h,i]perylene	110		37		ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Benzo[k]fluoranthene	160		37		ug/Kg			04/08/22 18:33	
Benzoic acid	<370		1900		ug/Kg	☆		04/08/22 18:33	
Benzyl alcohol	<370		750		ug/Kg			04/08/22 18:33	
Bis(2-chloroethoxy)methane	<38		190		ug/Kg	T #		04/08/22 18:33	
Bis(2-chloroethyl)ether	<56		190	56		~		04/08/22 18:33	
Bis(2-ethylhexyl) phthalate	<68		190	68		₩		04/08/22 18:33	
Butyl benzyl phthalate	<71		190	71				04/08/22 18:33	
					0 0				
Carbazole	<93		190 37	93	0 0	☆		04/08/22 18:33	
Chrysene	280				ug/Kg	🌣		04/08/22 18:33	
Dibenz(a,h)anthracene	29	J	37		ug/Kg	₩		04/08/22 18:33	
Dibenzofuran	<44		190		ug/Kg	*		04/08/22 18:33	
Diethyl phthalate	<63		190		ug/Kg			04/08/22 18:33	
Dimethyl phthalate	<49		190		ug/Kg	₩		04/08/22 18:33	
Di-n-butyl phthalate	<57		190	57	0 0	₩		04/08/22 18:33	
Di-n-octyl phthalate	<61		190	61	ug/Kg			04/08/22 18:33	
Fluoranthene	600		37	6.9	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Fluorene	29	J	37	5.2	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Hexachlorobenzene	<8.6		75	8.6	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Hexachlorobutadiene	<59		190	59	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	
Hexachlorocyclopentadiene	<210		750	210	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Hexachloroethane	<57		190	57	ug/Kg	☼	04/06/22 06:52	04/08/22 18:33	
Indeno[1,2,3-cd]pyrene	100		37	9.7	ug/Kg	₽	04/06/22 06:52	04/08/22 18:33	
Isophorone	<42		190	42	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Naphthalene	27	J	37	5.7	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Nitrobenzene	<9.3		37	9.3	ug/Kg		04/06/22 06:52	04/08/22 18:33	
N-Nitrosodi-n-propylamine	<46		75	46	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
N-Nitrosodiphenylamine	<44		190	44	ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Pentachlorophenol	<600		750		ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Phenanthrene	400		37		ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Phenol	<83		190		ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Pyrene	550		37		ug/Kg	₩	04/06/22 06:52	04/08/22 18:33	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	74		31 - 143				04/06/22 06:52	04/08/22 18:33	
2-Fluorobiphenyl (Surr)	76		43 - 145				04/06/22 06:52	04/08/22 18:33	
2-Fluorophenol (Surr)	104		31 - 166				04/06/22 06:52	04/08/22 18:33	
Nitrobenzene-d5 (Surr)	62		37 - 147				04/06/22 06:52	04/08/22 18:33	
Phenol-d5 (Surr)	89		30 - 153				04/06/22 06:52	04/08/22 18:33	
Terphenyl-d14 (Surr)	100		42 - 157				04/06/22 06:52	04/08/22 18:33	
Method: 8081A - Organoch	lorine Pesticid	es (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aldrin	<6.8		9.9	6.8	ug/Kg	<u></u>	04/05/22 16:57	04/06/22 14:56	
alpha-BHC	< 5.6		9.9	5.6	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	

Eurofins Chicago

2

Job ID: 500-214283-1

<u>5</u>

6

R

10

12

14

4.0

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-231 5-7

Lab Sample ID: 500-214283-11

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<5.3	9.9	5.3	ug/Kg	<u></u>	04/05/22 16:57	04/06/22 14:56	5
beta-BHC	<8.0	9.9	8.0	ug/Kg	₽	04/05/22 16:57	04/06/22 14:56	5
4,4'-DDD	<5.3	9.9	5.3	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	5
4,4'-DDE	<5.1	9.9	5.1	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	5
4,4'-DDT	9.3 J	9.9	4.7	ug/Kg	₽	04/05/22 16:57	04/06/22 14:56	5
delta-BHC	<4.7	9.9	4.7	ug/Kg	☼	04/05/22 16:57	04/06/22 14:56	5
Dieldrin	<5.2	9.9	5.2	ug/Kg	☼	04/05/22 16:57	04/06/22 14:56	5
Endosulfan I	<5.3	9.9	5.3	ug/Kg	₽	04/05/22 16:57	04/06/22 14:56	5
Endosulfan II	<5.4	9.9	5.4	ug/Kg	☼	04/05/22 16:57	04/06/22 14:56	5
Endosulfan sulfate	<5.5	9.9	5.5	ug/Kg	☼	04/05/22 16:57	04/06/22 14:56	5
Endrin	<5.0	9.9	5.0	ug/Kg	☼	04/05/22 16:57	04/06/22 14:56	5
Endrin aldehyde	<5.6	9.9	5.6	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	5
Endrin ketone	<4.8	9.9	4.8	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	5
gamma-BHC (Lindane)	<4.9	9.9	4.9	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	5
trans-Chlordane	<5.7	9.9	5.7	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	5
Heptachlor	<5.3	9.9	5.3	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	5
Heptachlor epoxide	<5.3	9.9	5.3	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	5
Methoxychlor	<6.5	49	6.5	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	5
Toxaphene	<39	98	39	ug/Kg	₩	04/05/22 16:57	04/06/22 14:56	5
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	103	33 - 148				04/05/22 16:57	04/06/22 14:56	5
Tetrachloro-m-xylene	89	30 - 121				04/05/22 16:57	04/06/22 14:56	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0077		0.020	0.0077	mg/Kg	<u></u>	04/05/22 16:57	04/08/22 20:01	1
PCB-1221	< 0.0077		0.020	0.0077	mg/Kg	₩	04/05/22 16:57	04/08/22 20:01	1
PCB-1232	< 0.0053		0.020	0.0053	mg/Kg	₩	04/05/22 16:57	04/08/22 20:01	1
PCB-1242	<0.0076		0.020	0.0076	mg/Kg	₩	04/05/22 16:57	04/08/22 20:01	1
PCB-1248	<0.0093		0.020	0.0093	mg/Kg	₩	04/05/22 16:57	04/08/22 20:01	1
PCB-1254	<0.0066		0.020	0.0066	mg/Kg	₩	04/05/22 16:57	04/08/22 20:01	1
PCB-1260	<0.0074		0.020	0.0074	mg/Kg	₩	04/05/22 16:57	04/08/22 20:01	1
PCB-1262	<0.0064		0.020	0.0064	mg/Kg	₩	04/05/22 16:57	04/08/22 20:01	1
PCB-1268	<0.011		0.020	0.011	mg/Kg	₩	04/05/22 16:57	04/08/22 20:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	76		49 - 129				04/05/22 16:57	04/08/22 20:01	1
DCB Decachlorobiphenyl	72		37 - 121				04/05/22 16:57	04/08/22 20:01	1

Method: 8151A - Herbi	icides (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<93		390	93	ug/Kg	<u></u>	04/05/22 12:40	04/07/22 15:57	10
2,4-DB	<120		390	120	ug/Kg	₩	04/05/22 12:40	04/07/22 15:57	10
Dicamba	<84		390	84	ug/Kg	₩	04/05/22 12:40	04/07/22 15:57	10
Dichlorprop	<96		390	96	ug/Kg	≎	04/05/22 12:40	04/07/22 15:57	10
Silvex (2,4,5-TP)	<88		390	88	ug/Kg	₩	04/05/22 12:40	04/07/22 15:57	10
2,4,5-T	<78		390	78	ug/Kg	₩	04/05/22 12:40	04/07/22 15:57	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	62		25 - 120				04/05/22 12:40	04/07/22 15:57	10

Eurofins Chicago

Page 63 of 356 4/15/2022

2

Job ID: 500-214283-1

3

6

0

10

11

11

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-231 5-7

Date Collected: 03/23/22 12:00 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-11

Matrix: Solid

Percent Solids: 84.2

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.9		1.1	0.37	mg/Kg	— <u></u>	04/06/22 01:36	04/06/22 23:52	1
Barium	34		1.1	0.12	mg/Kg	₩	04/06/22 01:36	04/06/22 23:52	1
Cadmium	0.11	JB	0.21	0.039	mg/Kg	₩	04/06/22 01:36	04/06/22 23:52	1
Chromium	15	В	1.1	0.53	mg/Kg	₩	04/06/22 01:36	04/06/22 23:52	1
Lead	23		0.54	0.25	mg/Kg	₩	04/06/22 01:36	04/06/22 23:52	1
Selenium	< 0.63		1.1	0.63	mg/Kg	₩	04/06/22 01:36	04/06/22 23:52	1
Silver	<0.14		0.54	0.14	mg/Kg	≎	04/06/22 01:36	04/06/22 23:52	1
Method: 7471B - Mercury (CVA	A)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.069		0.018	0.0060	mg/Kg	— <u></u>	04/07/22 13:45	04/08/22 11:28	1

5

7

Ŏ

4.6

11

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-231 8.25-10 Lab Sample ID: 500-214283-12

Date Collected: 03/23/22 12:05

Date Received: 03/29/22 10:20

Matrix: Solid

Percent Solids: 87.3

Method: 8260B - Volatile Org Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<30	65	30	ug/Kg	— <u>-</u>		03/31/22 15:26	
1,1,1-Trichloroethane	<25	65	25	ug/Kg	☆	03/23/22 12:05	03/31/22 15:26	5
1,1,2,2-Tetrachloroethane	<26	65			☆	03/23/22 12:05	03/31/22 15:26	5
1,1,2-Trichloroethane	<23	65		ug/Kg		03/23/22 12:05	03/31/22 15:26	
1,1-Dichloroethane	<26	65		ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	5
1,1-Dichloroethene	<25	65		ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	5
1,1-Dichloropropene	<19	65		ug/Kg	 .☆		03/31/22 15:26	
1,2,3-Trichlorobenzene	<30	65		ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	5
1,2,3-Trichloropropane	<27	130		ug/Kg	₩		03/31/22 15:26	į
1,2,4-Trichlorobenzene	<22	65		ug/Kg			03/31/22 15:26	
1,2,4-Trimethylbenzene	<23	65		ug/Kg			03/31/22 15:26	
1,2-Dibromo-3-Chloropropane	<130	320		ug/Kg	~ :		03/31/22 15:26	į
1,2-Dibromoethane	<25	65		ug/Kg			03/31/22 15:26	
1,2-Distribution 1,2-Di	<23 <22	65		ug/Kg ug/Kg	₩		03/31/22 15:26	į
1,2-Dichloropenzene 1.2-Dichloroethane	<25	65		ug/Kg ug/Kg	¥ Ž		03/31/22 15:26	;
1,2-Dichloropropane	<28	65		ug/Kg ug/Kg			03/31/22 15:26	
1,3,5-Trimethylbenzene	<25	65		ug/Kg ug/Kg	₩		03/31/22 15:26	;
•	<26	65					03/31/22 15:26	·
1,3-Dichlorobenzene				ug/Kg	· · · · · · · · · · · · · · · · · · ·		03/31/22 15:26	
1,3-Dichloropropane	<23	65		ug/Kg	₩.			
1,4-Dichlorobenzene	<23	65		ug/Kg	*		03/31/22 15:26	
2,2-Dichloropropane	<29	65		ug/Kg			03/31/22 15:26	
2-Chlorotoluene	<20	65		ug/Kg	\$		03/31/22 15:26	
4-Chlorotoluene	<23	65		ug/Kg	*		03/31/22 15:26	
Benzene	<9.4	16		ug/Kg	<u>.</u> .		03/31/22 15:26	
Bromobenzene	<23	65		ug/Kg	☼		03/31/22 15:26	,
Bromochloromethane	<28	65		ug/Kg	☼		03/31/22 15:26	
Dichlorobromomethane	<24	65		ug/Kg	.		03/31/22 15:26	
Bromoform	<31	65		ug/Kg	₩		03/31/22 15:26	
Bromomethane	<51	190	51		₩		03/31/22 15:26	
Carbon tetrachloride	<25	65	25	ug/Kg			03/31/22 15:26	
Chlorobenzene	<25	65		ug/Kg	₩		03/31/22 15:26	
Chloroethane	<33	65	33	ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	
Chloroform	<24	130	24	ug/Kg		03/23/22 12:05	03/31/22 15:26	
Chloromethane	<21	65	21	ug/Kg	☼		03/31/22 15:26	
cis-1,2-Dichloroethene	<26	65	26	ug/Kg	☼	03/23/22 12:05	03/31/22 15:26	
cis-1,3-Dichloropropene	<27	65		ug/Kg	☼	03/23/22 12:05	03/31/22 15:26	
Dibromochloromethane	<31	65	31	ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	
Dibromomethane	<17	65	17	ug/Kg	≎	03/23/22 12:05	03/31/22 15:26	
Dichlorodifluoromethane	<43	190	43	ug/Kg	☼	03/23/22 12:05	03/31/22 15:26	
Ethylbenzene	<12	16	12	ug/Kg	₽	03/23/22 12:05	03/31/22 15:26	
Hexachlorobutadiene	<29	65	29	ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	
sopropyl ether	<18	65	18	ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	
sopropylbenzene	<25	65	25	ug/Kg	☆	03/23/22 12:05	03/31/22 15:26	
Methyl tert-butyl ether	<25	65		ug/Kg	₽	03/23/22 12:05	03/31/22 15:26	
Methylene Chloride	370 B	320		ug/Kg	₽	03/23/22 12:05	03/31/22 15:26	
Naphthalene	<22	65		ug/Kg	 		03/31/22 15:26	
n-Butylbenzene	<25	65		ug/Kg	₽		03/31/22 15:26	
N-Propylbenzene	<27	65		ug/Kg			03/31/22 15:26	
p-Isopropyltoluene	<23	65		ug/Kg	. ∵ ∵.		03/31/22 15:26	;

Eurofins Chicago

Job ID: 500-214283-1

2

3

6

1

9

11

14

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-231 8.25-10

Date Collected: 03/23/22 12:05 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-12

Matrix: Solid

Percent Solids: 87.3

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<26		65	26	ug/Kg	-	03/23/22 12:05	03/31/22 15:26	50
Styrene	<25		65	25	ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	50
tert-Butylbenzene	<26		65	26	ug/Kg	₽	03/23/22 12:05	03/31/22 15:26	50
Tetrachloroethene	<24		65	24	ug/Kg	₽	03/23/22 12:05	03/31/22 15:26	50
Toluene	<9.5		16	9.5	ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	50
trans-1,2-Dichloroethene	<23		65	23	ug/Kg	₽	03/23/22 12:05	03/31/22 15:26	50
trans-1,3-Dichloropropene	<23		65	23	ug/Kg	₽	03/23/22 12:05	03/31/22 15:26	50
Trichloroethene	<11		32	11	ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	50
Trichlorofluoromethane	<28		65	28	ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	50
Vinyl chloride	<17		65	17	ug/Kg	₩	03/23/22 12:05	03/31/22 15:26	50
Xylenes, Total	<14		32	14	ug/Kg	≎	03/23/22 12:05	03/31/22 15:26	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 126				03/23/22 12:05	03/31/22 15:26	50
4-Bromofluorobenzene (Surr)	87		72 - 124				03/23/22 12:05	03/31/22 15:26	50
Dibromofluoromethane (Surr)	100		75 - 120				03/23/22 12:05	03/31/22 15:26	50
Toluene-d8 (Surr)	94		75 - 120				03/23/22 12:05	03/31/22 15:26	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<9.3		77	9.3	ug/Kg	<u></u>	04/06/22 06:52	04/07/22 11:05	1
2-Methylnaphthalene	<7.0		77	7.0	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Acenaphthene	<6.8		38	6.8	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Acenaphthylene	<5.0		38	5.0	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Anthracene	29	J	38	6.4	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Benzo[a]anthracene	<5.1		38	5.1	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Benzo[a]pyrene	<7.4		38	7.4	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Benzo[b]fluoranthene	<8.2		38	8.2	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Benzo[g,h,i]perylene	<12		38	12	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Benzo[k]fluoranthene	<11		38	11	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Chrysene	<10		38	10	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Dibenz(a,h)anthracene	<7.4		38	7.4	ug/Kg	☼	04/06/22 06:52	04/07/22 11:05	1
Fluoranthene	<7.1		38	7.1	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Fluorene	<5.3		38	5.3	ug/Kg	☼	04/06/22 06:52	04/07/22 11:05	1
Indeno[1,2,3-cd]pyrene	<9.9		38	9.9	ug/Kg	☼	04/06/22 06:52	04/07/22 11:05	1
Naphthalene	<5.9		38	5.9	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Phenanthrene	<5.3		38	5.3	ug/Kg	₽	04/06/22 06:52	04/07/22 11:05	1
Pyrene	<7.6		38	7.6	ug/Kg	₩	04/06/22 06:52	04/07/22 11:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	76		43 - 145				04/06/22 06:52	04/07/22 11:05	1
Nitrobenzene-d5 (Surr)	70		37 - 147				04/06/22 06:52	04/07/22 11:05	1
Terphenyl-d14 (Surr)	86		42 - 157				04/06/22 06:52	04/07/22 11:05	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.41	J	1.1	0.36	mg/Kg		04/06/22 01:36	04/06/22 23:55	1
Lead	1.5		0.53	0.24	mg/Kg	₽	04/06/22 01:36	04/06/22 23:55	1

Eurofins Chicago

2

4

7

9

10

12

4

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-224 1-3 Lab Sample ID: 500-214283-13

Date Collected: 03/23/22 13:30

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 80.8

Method: 8260B - Volatile Organiste Analyte	Result Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<33 Quantities	72	33		— -	03/23/22 13:30	03/31/22 15:49	5
1,1,1-Trichloroethane	<28	72	28	0 0	Ť	03/23/22 13:30	03/31/22 15:49	5
1,1,2,2-Tetrachloroethane	<29	72		ug/Kg	Ť	03/23/22 13:30		5
1,1,2-Trichloroethane	<26	72		ug/Kg		03/23/22 13:30		
1,1-Dichloroethane	<30	72	30		₩	03/23/22 13:30		5
1,1-Dichloroethane	<28	72		ug/Kg	₩	03/23/22 13:30		5
	<22	72					03/31/22 15:49	
1,1-Dichloropropene		72 72		ug/Kg	‡		03/31/22 15:49	į
1,2,3-Trichlorobenzene	<33			ug/Kg	*			
1,2,3-Trichloropropane	<30	140		ug/Kg			03/31/22 15:49	
1,2,4-Trichlorobenzene	<25	72		ug/Kg	*		03/31/22 15:49	į
1,2,4-Trimethylbenzene	<26	72		ug/Kg	₩		03/31/22 15:49	
1,2-Dibromo-3-Chloropropane	<140	360		ug/Kg			03/31/22 15:49	
1,2-Dibromoethane	<28	72		ug/Kg	☼		03/31/22 15:49	į
1,2-Dichlorobenzene	<24	72	24	0 0	₩		03/31/22 15:49	,
1,2-Dichloroethane	<28	72	28		.		03/31/22 15:49	
1,2-Dichloropropane	<31	72	31	0 0	₩		03/31/22 15:49	;
1,3,5-Trimethylbenzene	<28	72	28	ug/Kg	☼	03/23/22 13:30	03/31/22 15:49	;
1,3-Dichlorobenzene	<29	72	29	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	
1,3-Dichloropropane	<26	72	26	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	;
1,4-Dichlorobenzene	<26	72	26	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	
2,2-Dichloropropane	<32	72	32	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	
2-Chlorotoluene	<23	72	23	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	
1-Chlorotoluene	<25	72	25	ug/Kg	₽	03/23/22 13:30	03/31/22 15:49	;
Benzene	<11	18	11	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	;
Bromobenzene	<26	72	26	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	;
Bromochloromethane	<31	72	31	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	
Dichlorobromomethane	<27	72	27	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	
Bromoform	<35	72	35	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	
Bromomethane	<58	220		ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	;
Carbon tetrachloride	<28	72		ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	
Chlorobenzene	<28	72		ug/Kg		03/23/22 13:30	03/31/22 15:49	
Chloroethane	<37	72	37		:¤	03/23/22 13:30		
Chloroform	<27	140		ug/Kg	₩	03/23/22 13:30		
Chloromethane	<23	72		ug/Kg	 #		03/31/22 15:49	
cis-1,2-Dichloroethene	<30	72		ug/Kg	₩.		03/31/22 15:49	
cis-1,3-Dichloropropene	<30	72		ug/Kg	Φ	03/23/22 13:30		
Dibromochloromethane	<35	72		ug/Kg			03/31/22 15:49	'
Dibromomethane	<20	72		ug/Kg	₩		03/31/22 15:49	
Dichlorodifluoromethane	< 4 9	220		ug/Kg ug/Kg			03/31/22 15:49	;
Ethylbenzene	13 J	18		ug/Kg	₩.		03/31/22 15:49	;
dexachlorobutadiene	<32	72		ug/Kg	₩		03/31/22 15:49	
sopropyl ether	<20	72		ug/Kg	🌣	03/23/22 13:30		
sopropylbenzene	<28	72 70		ug/Kg	₩.		03/31/22 15:49	
Methyl tert-butyl ether	<29	72	29	0 0	*	03/23/22 13:30		
Methylene Chloride	430 B	360		ug/Kg		03/23/22 13:30		
Naphthalene	46 JB	72		ug/Kg	≎			;
n-Butylbenzene	<28	72		ug/Kg	₩	03/23/22 13:30		
N-Propylbenzene	<30	72	30	ug/Kg	₩	03/23/22 13:30	03/31/22 15:49	
p-Isopropyltoluene	<26	72	26	ug/Kg	₽	03/23/22 13:30	03/31/22 15:49	

Eurofins Chicago

Job ID: 500-214283-1

3

4

7

9

11

13

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-224 1-3

Date Collected: 03/23/22 13:30 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-13

Matrix: Solid

Job ID: 500-214283-1

Percent Solids: 80.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<29		72	29	ug/Kg	-	03/23/22 13:30	03/31/22 15:49	50
Styrene	<28		72	28	ug/Kg	☼	03/23/22 13:30	03/31/22 15:49	50
tert-Butylbenzene	<29		72	29	ug/Kg	₽	03/23/22 13:30	03/31/22 15:49	50
Tetrachloroethene	<27		72	27	ug/Kg	₽	03/23/22 13:30	03/31/22 15:49	50
Toluene	59		18	11	ug/Kg	☼	03/23/22 13:30	03/31/22 15:49	50
trans-1,2-Dichloroethene	<25		72	25	ug/Kg	₽	03/23/22 13:30	03/31/22 15:49	50
trans-1,3-Dichloropropene	<26		72	26	ug/Kg	☼	03/23/22 13:30	03/31/22 15:49	50
Trichloroethene	<12		36	12	ug/Kg	☼	03/23/22 13:30	03/31/22 15:49	50
Trichlorofluoromethane	<31		72	31	ug/Kg	₽	03/23/22 13:30	03/31/22 15:49	50
Vinyl chloride	<19		72	19	ug/Kg	☼	03/23/22 13:30	03/31/22 15:49	50
Xylenes, Total	66		36	16	ug/Kg	☆	03/23/22 13:30	03/31/22 15:49	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75 - 126				03/23/22 13:30	03/31/22 15:49	50
4-Bromofluorobenzene (Surr)	90		72 - 124				03/23/22 13:30	03/31/22 15:49	50
Dibromofluoromethane (Surr)	100		75 - 120				03/23/22 13:30	03/31/22 15:49	50
Toluene-d8 (Surr)	94		75 - 120				03/23/22 13:30	03/31/22 15:49	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<220		1000	220	ug/Kg	<u></u>	04/06/22 06:52	04/12/22 14:09	5
1,2-Dichlorobenzene	<240		1000	240	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
1,3-Dichlorobenzene	<230		1000	230	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
1,4-Dichlorobenzene	<260		1000	260	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	5
1-Methylnaphthalene	210	J	410	49	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
2,2'-oxybis[1-chloropropane]	<230		1000	230	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
2,4,5-Trichlorophenol	<460		2000	460	ug/Kg	₽	04/06/22 06:52	04/12/22 14:09	5
2,4,6-Trichlorophenol	<690		2000	690	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
2,4-Dichlorophenol	<480		2000	480	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
2,4-Dimethylphenol	<770		2000	770	ug/Kg	₽	04/06/22 06:52	04/12/22 14:09	5
2,4-Dinitrophenol	<3600		4100	3600	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
2,4-Dinitrotoluene	<320		1000	320	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
2,6-Dinitrotoluene	<400		1000	400	ug/Kg	₽	04/06/22 06:52	04/12/22 14:09	5
2-Chloronaphthalene	<220		1000	220	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
2-Chlorophenol	<350		1000	350	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
2-Methylnaphthalene	240	J	410	37	ug/Kg	₽	04/06/22 06:52	04/12/22 14:09	5
2-Methylphenol	<320		1000	320	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
2-Nitroaniline	<270		1000	270	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
2-Nitrophenol	<480		2000	480	ug/Kg	₽	04/06/22 06:52	04/12/22 14:09	5
3 & 4 Methylphenol	670	J	1000	340	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
3,3'-Dichlorobenzidine	<280		1000	280	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
3-Nitroaniline	<630		2000	630	ug/Kg	⊅	04/06/22 06:52	04/12/22 14:09	5
4,6-Dinitro-2-methylphenol	<1600		4100	1600	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
4-Bromophenyl phenyl ether	<270		1000	270	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
4-Chloro-3-methylphenol	<690		2000	690	ug/Kg	₽	04/06/22 06:52	04/12/22 14:09	5
4-Chloroaniline	<950		4100	950	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
4-Chlorophenyl phenyl ether	<240		1000	240	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
4-Nitroaniline	<850		2000	850	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	5
4-Nitrophenol	<1900		4100	1900	ug/Kg	☼	04/06/22 06:52	04/12/22 14:09	5
Acenaphthene	70	J	200	36	ug/Kg	≎	04/06/22 06:52	04/12/22 14:09	5

Eurofins Chicago

Page 68 of 356

2

4

7

8

10

11

13

1 5

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-13 Client Sample ID: SB-224 1-3

Date Collected: 03/23/22 13:30 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 80.8

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	54	J	200	27	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	
Anthracene	430		200		0 0	₩	04/06/22 06:52	04/12/22 14:09	
Benzo[a]anthracene	3300		200	27	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	
Benzo[a]pyrene	4300		200	39	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	;
Benzo[b]fluoranthene	4500		200	44	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	į
Benzo[g,h,i]perylene	2100		200	65	ug/Kg	≎	04/06/22 06:52	04/12/22 14:09	į
Benzo[k]fluoranthene	1600		200	60	ug/Kg	≎	04/06/22 06:52	04/12/22 14:09	
Benzoic acid	<2000		10000	2000	ug/Kg	≎	04/06/22 06:52	04/12/22 14:09	
Benzyl alcohol	<2000		4100	2000	ug/Kg	₽	04/06/22 06:52	04/12/22 14:09	
Bis(2-chloroethoxy)methane	<210		1000	210	ug/Kg	₽	04/06/22 06:52	04/12/22 14:09	
Bis(2-chloroethyl)ether	<300		1000	300	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	į
Bis(2-ethylhexyl) phthalate	<370		1000	370	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	į
Butyl benzyl phthalate	<390		1000	390	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	
Carbazole	<510		1000	510	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	į
Chrysene	3600		200	55	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	
Dibenz(a,h)anthracene	450		200		ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	
Dibenzofuran	<240		1000	240	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	į
Diethyl phthalate	<340		1000	340	ug/Kg	₩	04/06/22 06:52	04/12/22 14:09	į
Dimethyl phthalate	<260		1000		ug/Kg	∴	04/06/22 06:52	04/12/22 14:09	
Di-n-butyl phthalate	<310		1000		ug/Kg	☆	04/06/22 06:52	04/12/22 14:09	į
Di-n-octyl phthalate	<330		1000		ug/Kg	₩		04/12/22 14:09	į
Fluoranthene	5600		200		ug/Kg			04/12/22 14:09	
Fluorene	97	a.	200		ug/Kg			04/12/22 14:09	į
Hexachlorobenzene	<47		410		ug/Kg			04/12/22 14:09	į
Hexachlorobutadiene	<320		1000			T #		04/12/22 14:09	
Hexachlorocyclopentadiene	<1200		4100	1200	ug/Kg			04/12/22 14:09	į
Hexachloroethane	<310		1000		ug/Kg			04/12/22 14:09	į
Indeno[1,2,3-cd]pyrene	1500		200		ug/Kg	T #		04/12/22 14:09	
Isophorone	<230		1000		ug/Kg	~ \$		04/12/22 14:09	į
Naphthalene	150	1	200		ug/Kg	~ \$		04/12/22 14:09	į
Nitrobenzene	<51		200		ug/Kg			04/12/22 14:09	
N-Nitrosodi-n-propylamine	<250		410		ug/Kg ug/Kg	₩		04/12/22 14:09	į
N-Nitrosodiphenylamine	<240		1000		ug/Kg ug/Kg	₩		04/12/22 14:09	į
Pentachlorophenol	<3200		4100					04/12/22 14:09	
•			200		ug/Kg				
Phenanthrene	1400				ug/Kg			04/12/22 14:09	
Phenol	<450		1000		ug/Kg		04/06/22 06:52		
Pyrene	6700		200	40	ug/Kg	:Q:	04/06/22 06:52	04/12/22 14:09	;
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	110		31 - 143					04/12/22 14:09	
2-Fluorobiphenyl (Surr)	85		43 - 145				04/06/22 06:52	04/12/22 14:09	
2-Fluorophenol (Surr)	151		31 - 166					04/12/22 14:09	
Nitrobenzene-d5 (Surr)	66		37 - 147					04/12/22 14:09	
Phenol-d5 (Surr)	105		30 - 153					04/12/22 14:09	
Terphenyl-d14 (Surr)	88		42 ₋ 157					04/12/22 14:09	
Method: 8081A - Organoch							_		
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Aldrin	<7.0		10	7.0	ug/Kg	☼	04/05/22 16:57	04/06/22 15:17	į

Eurofins Chicago

Page 69 of 356

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-224 1-3 Lab Sample ID: 500-214283-13

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<5.4	10	5.4	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
beta-BHC	<8.2	10	8.2	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
4,4'-DDD	<5.4	10	5.4	ug/Kg	☼	04/05/22 16:57	04/06/22 15:17	5
4,4'-DDE	<5.2	10	5.2	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
4,4'-DDT	<4.8	10	4.8	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
delta-BHC	<4.8	10	4.8	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
Dieldrin	<5.3	10	5.3	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
Endosulfan I	<5.5	10	5.5	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
Endosulfan II	<5.6	10	5.6	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
Endosulfan sulfate	<5.6	10	5.6	ug/Kg	☼	04/05/22 16:57	04/06/22 15:17	5
Endrin	<5.2	10	5.2	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
Endrin aldehyde	<5.8	10	5.8	ug/Kg	☼	04/05/22 16:57	04/06/22 15:17	5
Endrin ketone	<4.9	10	4.9	ug/Kg	☼	04/05/22 16:57	04/06/22 15:17	5
gamma-BHC (Lindane)	<5.0	10	5.0	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
trans-Chlordane	<5.8	10	5.8	ug/Kg	☼	04/05/22 16:57	04/06/22 15:17	5
Heptachlor	<5.5	10	5.5	ug/Kg	☼	04/05/22 16:57	04/06/22 15:17	5
Heptachlor epoxide	<5.5	10	5.5	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
Methoxychlor	<6.7	50	6.7	ug/Kg	₽	04/05/22 16:57	04/06/22 15:17	5
Toxaphene	<40	100	40	ug/Kg	₩	04/05/22 16:57	04/06/22 15:17	5
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	122	33 - 148				04/05/22 16:57	04/06/22 15:17	5
Tetrachloro-m-xylene	89	30 - 121				04/05/22 16:57	04/06/22 15:17	5

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0079	0.020	0.0079	mg/Kg	-	04/05/22 16:57	04/08/22 20:16	1
PCB-1221	<0.0079	0.020	0.0079	mg/Kg	☼	04/05/22 16:57	04/08/22 20:16	1
PCB-1232	<0.0054	0.020	0.0054	mg/Kg	☼	04/05/22 16:57	04/08/22 20:16	1
PCB-1242	<0.0078	0.020	0.0078	mg/Kg	₩	04/05/22 16:57	04/08/22 20:16	1
PCB-1248	<0.0095	0.020	0.0095	mg/Kg	☼	04/05/22 16:57	04/08/22 20:16	1
PCB-1254	<0.0068	0.020	0.0068	mg/Kg	☼	04/05/22 16:57	04/08/22 20:16	1
PCB-1260	<0.0076	0.020	0.0076	mg/Kg	₩	04/05/22 16:57	04/08/22 20:16	1
PCB-1262	<0.0066	0.020	0.0066	mg/Kg	☼	04/05/22 16:57	04/08/22 20:16	1
PCB-1268	<0.012	0.020	0.012	mg/Kg	☼	04/05/22 16:57	04/08/22 20:16	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	114	49 - 129				04/05/22 16:57	04/08/22 20:16	1
DCB Decachlorobiphenyl	120	37 - 121				04/05/22 16:57	04/08/22 20:16	1

Method: 8151A - Herbi	cides (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<97		410	97	ug/Kg	<u></u>	04/05/22 12:40	04/07/22 16:17	10
2,4-DB	<120		410	120	ug/Kg	₩	04/05/22 12:40	04/07/22 16:17	10
Dicamba	<88		410	88	ug/Kg	₩	04/05/22 12:40	04/07/22 16:17	10
Dichlorprop	<100		410	100	ug/Kg	₩	04/05/22 12:40	04/07/22 16:17	10
Silvex (2,4,5-TP)	<92		410	92	ug/Kg	☼	04/05/22 12:40	04/07/22 16:17	10
2,4,5-T	<81		410	81	ug/Kg	₩	04/05/22 12:40	04/07/22 16:17	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	70		25 - 120				04/05/22 12:40	04/07/22 16:17	10

Eurofins Chicago

Page 70 of 356

2

Job ID: 500-214283-1

3

9

11

13

14

16

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-224 1-3 Lab Sample ID: 500-214283-13

Date Collected: 03/23/22 13:30 **Matrix: Solid** Percent Solids: 80.8 Date Received: 03/29/22 10:20

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.2		1.1	0.38	mg/Kg	-	04/06/22 01:36	04/06/22 23:59	1
Barium	93		1.1	0.13	mg/Kg	₩	04/06/22 01:36	04/06/22 23:59	1
Cadmium	0.21	JB	0.22	0.040	mg/Kg	☼	04/06/22 01:36	04/06/22 23:59	1
Chromium	11	В	1.1	0.55	mg/Kg	₽	04/06/22 01:36	04/06/22 23:59	1
Lead	38		0.55	0.26	mg/Kg	₽	04/06/22 01:36	04/06/22 23:59	1
Selenium	< 0.65		1.1	0.65	mg/Kg	≎	04/06/22 01:36	04/06/22 23:59	1
Silver	<0.14		0.55	0.14	mg/Kg	≎	04/06/22 01:36	04/06/22 23:59	1
_ Method: 7471B - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.028		0.019	0.0064	mg/Kg	-	04/07/22 13:45	04/08/22 11:31	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-224 7-8 Lab Sample ID: 500-214283-14

Date Collected: 03/23/22 13:35

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 82.1

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
I,1,1,2-Tetrachloroethane	<33		71	33	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	į
1,1,1-Trichloroethane	<27		71	27	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	į
1,1,2,2-Tetrachloroethane	<28		71	28	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	į.
1,1,2-Trichloroethane	<25		71	25	ug/Kg	₽	03/23/22 13:35	03/31/22 16:12	
1,1-Dichloroethane	<29		71	29	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	į
1,1-Dichloroethene	<28		71	28	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	į
1,1-Dichloropropene	<21		71	21	ug/Kg	₽	03/23/22 13:35	03/31/22 16:12	
1,2,3-Trichlorobenzene	<33		71	33	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	į
1,2,3-Trichloropropane	<29		140	29	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	;
1,2,4-Trichlorobenzene	<24		71	24	ug/Kg	₽	03/23/22 13:35	03/31/22 16:12	
1,2,4-Trimethylbenzene	<25		71	25	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	į
1,2-Dibromo-3-Chloropropane	<140		350	140	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	!
1,2-Dibromoethane	<27		71	27	ug/Kg	₽	03/23/22 13:35	03/31/22 16:12	
1,2-Dichlorobenzene	<24		71	24	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	į
1,2-Dichloroethane	<28		71	28	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	ļ
1,2-Dichloropropane	<30		71		ug/Kg		03/23/22 13:35	03/31/22 16:12	
1,3,5-Trimethylbenzene	<27		71		ug/Kg	₽	03/23/22 13:35	03/31/22 16:12	
1,3-Dichlorobenzene	<28		71		ug/Kg	₽	03/23/22 13:35	03/31/22 16:12	
1,3-Dichloropropane	<26		71		ug/Kg			03/31/22 16:12	
1.4-Dichlorobenzene	<26		71		ug/Kg	☆		03/31/22 16:12	
2,2-Dichloropropane	<32		71		ug/Kg	ά		03/31/22 16:12	
2-Chlorotoluene	<22		71		ug/Kg			03/31/22 16:12	
4-Chlorotoluene	<25		71		ug/Kg			03/31/22 16:12	
Benzene	<10		18	10	ug/Kg			03/31/22 16:12	
Bromobenzene	<25		71		ug/Kg	T #		03/31/22 16:12	
Bromochloromethane	<30		71	30	ug/Kg	Ť.		03/31/22 16:12	
Dichlorobromomethane	<26		71		ug/Kg	Ť		03/31/22 16:12	,
Bromoform	<34				ug/Kg			03/31/22 16:12	
Bromomethane	<56		210		ug/Kg	Ď.		03/31/22 16:12	
Carbon tetrachloride	<27		71		ug/Kg	Ď.		03/31/22 16:12	
Chlorobenzene	<27		71		ug/Kg			03/31/22 16:12	
Chloroethane	<36		71		ug/Kg ug/Kg	₩		03/31/22 16:12	į
Chloroform	<26		140		ug/Kg ug/Kg	₩		03/31/22 16:12	į
Chloromethane	<23		71		ug/Kg ug/Kg	· · · · · · · · · · · · · · · · · · ·		03/31/22 16:12	
cis-1,2-Dichloroethene	<29		71		ug/Kg ug/Kg			03/31/22 16:12	;
cis-1,3-Dichloropropene	<30		71 71		ug/Kg	· · · · · · 🌣	03/23/22 13:35	03/31/22 16:12	
Dibromochloromethane	<35				ug/Kg	1.7r			;
Dibromomethane	<19		71		ug/Kg	₩.		03/31/22 16:12	
Dichlorodifluoromethane	<48		210		ug/Kg			03/31/22 16:12	
Ethylbenzene	<13		18		ug/Kg	:Ω:	03/23/22 13:35		
	<32		71		ug/Kg	*		03/31/22 16:12	
sopropyl ether	<20		71		ug/Kg	. .		03/31/22 16:12	
sopropylbenzene	<27		71		ug/Kg	*		03/31/22 16:12	;
Methyl tert-butyl ether	<28	_	71		ug/Kg	‡		03/31/22 16:12	
Methylene Chloride	400	В	350		ug/Kg			03/31/22 16:12	
Naphthalene	<24		71		ug/Kg	≎		03/31/22 16:12	;
n-Butylbenzene	<28		71		ug/Kg	₩		03/31/22 16:12	;
N-Propylbenzene	<29		71	29	ug/Kg	☼	03/23/22 13:35	03/31/22 16:12	

Eurofins Chicago

Job ID: 500-214283-1

2

3

5

7

9

11

14

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-224 7-8 Lab Sample ID: 500-214283-14

Date Collected: 03/23/22 13:35 Matrix: Solid

Pate Received: 03/29/22 10:							<u> </u>	Percent Solid	0. 02.
Method: 8260B - Volatile O Analyte	•	unds (GC/l Qualifier	MS) (Continu RL	•	Unit	D	Prepared	Analyzed	Dil Fa
sec-Butylbenzene		- Qualifier	71		ug/Kg	— <u>=</u>		03/31/22 16:12	5
Styrene	<27		71		ug/Kg	~ \$		03/31/22 16:12	5
tert-Butylbenzene	<28		71		ug/Kg			03/31/22 16:12	50
Tetrachloroethene	<26		71		ug/Kg	Ď.		03/31/22 16:12	5
Toluene	<10		18		ug/Kg	₩		03/31/22 16:12	5
trans-1,2-Dichloroethene	<25		71		ug/Kg			03/31/22 16:12	5
trans-1,3-Dichloropropene	<26		71		ug/Kg	Ď.		03/31/22 16:12	5
Trichloroethene	<12		35		ug/Kg	₩		03/31/22 16:12	5
Trichlorofluoromethane	<30		71		ug/Kg	 .		03/31/22 16:12	5 5
Vinyl chloride	<19		71	19	ug/Kg ug/Kg	₩		03/31/22 16:12	5
Xylenes, Total	<16		35		ug/Kg ug/Kg	₩		03/31/22 10:12	5
•					9/9				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1,2-Dichloroethane-d4 (Surr)	101		75 - 126					03/31/22 16:12	5
4-Bromofluorobenzene (Surr)	89		72 - 124				03/23/22 13:35	03/31/22 16:12	5
Dibromofluoromethane (Surr)	102		75 - 120				03/23/22 13:35	03/31/22 16:12	5
Toluene-d8 (Surr)	92		75 - 120				03/23/22 13:35	03/31/22 16:12	5
Method: 8270D - Semivolat	tile Organic Co	mnounds	(GC/MS)						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	<25		210	25	ug/Kg	— <u></u>	04/06/22 06:52		
2-Methylnaphthalene	<19		210		ug/Kg	₩	04/06/22 06:52	04/07/22 11:27	
Acenaphthene	<18		100		ug/Kg	₩	04/06/22 06:52	04/07/22 11:27	
Acenaphthylene	<14		100		ug/Kg		04/06/22 06:52	04/07/22 11:27	
Anthracene	<17		100		ug/Kg	₩	04/06/22 06:52	04/07/22 11:27	
Benzo[a]anthracene	<14		100		ug/Kg	☆		04/07/22 11:27	
Benzo[a]pyrene	<20		100		ug/Kg			04/07/22 11:27	
Benzo[b]fluoranthene	<22		100		ug/Kg	₩		04/07/22 11:27	
Benzo[g,h,i]perylene	<33		100		ug/Kg	☆		04/07/22 11:27	
Benzo[k]fluoranthene	<30		100		ug/Kg			04/07/22 11:27	
Chrysene	<28		100	28	ug/Kg	☆		04/07/22 11:27	
Dibenz(a,h)anthracene	<20		100		ug/Kg	☆		04/07/22 11:27	
Fluoranthene	25		100		ug/Kg			04/07/22 11:27	
Fluorene	<14		100		ug/Kg	Ď.		04/07/22 11:27	
Indeno[1,2,3-cd]pyrene	<27		100		ug/Kg			04/07/22 11:27	
Naphthalene	<16		100		ug/Kg		04/06/22 06:52		
Phenanthrene	15	1	100		ug/Kg ug/Kg	*		04/07/22 11:27	
Pyrene	25		100		ug/Kg ug/Kg	☆	04/06/22 06:52		
•									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	83		43 - 145					04/07/22 11:27	
Nitrobenzene-d5 (Surr)	73		37 - 147					04/07/22 11:27	
Terphenyl-d14 (Surr)	99		42 - 157				04/06/22 06:52	04/07/22 11:27	

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.3		1.1	0.39	mg/Kg	☆	04/06/22 01:36	04/07/22 00:02	1
Lead	3.5		0.57	0.26	mg/Kg	₩	04/06/22 01:36	04/07/22 00:02	1

Eurofins Chicago

Page 73 of 356

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-222 6.5-8

Date Collected: 03/23/22 13:45 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-15

Matrix: Solid

Percent Solids: 90.7

Job ID: 500-214283-1

Method: 8260B - Volatile Orga Analyte	Result (MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<28	60 -		ug/Kg	— -	<u> </u>	03/31/22 16:35	DILLE
1,1,1-Trichloroethane	<23	60		ug/Kg ug/Kg	₩		03/31/22 16:35	į
1,1,2,2-Tetrachloroethane	<24	60		ug/Kg ug/Kg	₩		03/31/22 16:35	į
1,1,2-Trichloroethane	<21	60		ug/Kg	. .		03/31/22 16:35	
1, 1,2- McMoroethane 1,1-Dichloroethane	<25	60		ug/Kg ug/Kg	₩		03/31/22 16:35	į
1,1-Dichloroethene	<23	60		ug/Kg ug/Kg	**		03/31/22 16:35	į
	<18	60					03/31/22 16:35	
1,1-Dichloropropene	<18 <28	60		ug/Kg	☆		03/31/22 16:35	į
1,2,3-Trichlorobenzene	<25			ug/Kg	φ.		03/31/22 16:35	
1,2,3-Trichloropropane		120		ug/Kg				
1,2,4-Trichlorobenzene	<21	60	21	ug/Kg	*		03/31/22 16:35	;
1,2,4-Trimethylbenzene	<22	60		ug/Kg	₽.		03/31/22 16:35	
1,2-Dibromo-3-Chloropropane	<120	300	120	ug/Kg	. .		03/31/22 16:35	
1,2-Dibromoethane	<23	60		ug/Kg	☼		03/31/22 16:35	
1,2-Dichlorobenzene	<20	60		ug/Kg	₽.		03/31/22 16:35	
1,2-Dichloroethane	<24	60		ug/Kg	.		03/31/22 16:35	
1,2-Dichloropropane	<26	60		ug/Kg	₩		03/31/22 16:35	;
1,3,5-Trimethylbenzene	<23	60		ug/Kg	≎		03/31/22 16:35	;
1,3-Dichlorobenzene	<24	60		ug/Kg		03/23/22 13:45	03/31/22 16:35	
1,3-Dichloropropane	<22	60		ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	
1,4-Dichlorobenzene	<22	60	22	ug/Kg	☼	03/23/22 13:45	03/31/22 16:35	
2,2-Dichloropropane	<27	60	27	ug/Kg	☼	03/23/22 13:45	03/31/22 16:35	
2-Chlorotoluene	<19	60	19	ug/Kg	₽	03/23/22 13:45	03/31/22 16:35	;
4-Chlorotoluene	<21	60	21	ug/Kg	₽	03/23/22 13:45	03/31/22 16:35	;
Benzene	<8.8	15	8.8	ug/Kg	☼	03/23/22 13:45	03/31/22 16:35	;
Bromobenzene	<21	60	21	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	;
Bromochloromethane	<26	60	26	ug/Kg	☼	03/23/22 13:45	03/31/22 16:35	
Dichlorobromomethane	<22	60	22	ug/Kg	≎	03/23/22 13:45	03/31/22 16:35	
Bromoform	<29	60	29	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	
3romomethane	<48	180	48	ug/Kg	☼	03/23/22 13:45	03/31/22 16:35	
Carbon tetrachloride	<23	60	23	ug/Kg	☼	03/23/22 13:45	03/31/22 16:35	
Chlorobenzene	<23	60	23	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	
Chloroethane	<30	60	30	ug/Kg	≎	03/23/22 13:45	03/31/22 16:35	
Chloroform	<22	120	22	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	
Chloromethane	<19	60		ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	
cis-1,2-Dichloroethene	<25	60		ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	
cis-1,3-Dichloropropene	<25	60		ug/Kg	☆	03/23/22 13:45	03/31/22 16:35	
Dibromochloromethane	<29	60					03/31/22 16:35	
Dibromomethane	<16	60		ug/Kg	₩		03/31/22 16:35	
Dichlorodifluoromethane	<41	180		ug/Kg	₩		03/31/22 16:35	
Ethylbenzene	<11	15		ug/Kg	 .⇔		03/31/22 16:35	
Hexachlorobutadiene	<27	60		ug/Kg	₩		03/31/22 16:35	
sopropyl ether	<17	60		ug/Kg			03/31/22 16:35	
sopropylbenzene	<23	60		ug/Kg			03/31/22 16:35	
Methyl tert-butyl ether	<24	60		ug/Kg	~ \$		03/31/22 16:35	
Methylene Chloride	320 E			ug/Kg ug/Kg			03/31/22 16:35	
							03/31/22 16:35	
Naphthalene	<20	60		ug/Kg	*			
n-Butylbenzene	<23	60		ug/Kg	₩.		03/31/22 16:35	
N-Propylbenzene p-Isopropyltoluene	<25 <22	60		ug/Kg ug/Kg	.		03/31/22 16:35 03/31/22 16:35	

Eurofins Chicago

2

6

8

10

12

14

4.0

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-222 6.5-8 Lab Sample ID: 500-214283-15

Date Collected: 03/23/22 13:45

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 90.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<24		60	24	ug/Kg	<u></u>	03/23/22 13:45	03/31/22 16:35	50
Styrene	<23		60	23	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	50
tert-Butylbenzene	<24		60	24	ug/Kg	₽	03/23/22 13:45	03/31/22 16:35	50
Tetrachloroethene	<22		60	22	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	50
Toluene	<8.8		15	8.8	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	50
trans-1,2-Dichloroethene	<21		60	21	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	50
trans-1,3-Dichloropropene	<22		60	22	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	50
Trichloroethene	<9.9		30	9.9	ug/Kg	☼	03/23/22 13:45	03/31/22 16:35	50
Trichlorofluoromethane	<26		60	26	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	50
Vinyl chloride	<16		60	16	ug/Kg	☼	03/23/22 13:45	03/31/22 16:35	50
Xylenes, Total	<13		30	13	ug/Kg	₩	03/23/22 13:45	03/31/22 16:35	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 126				03/23/22 13:45	03/31/22 16:35	50
4-Bromofluorobenzene (Surr)	89		72 - 124				03/23/22 13:45	03/31/22 16:35	50
Dibromofluoromethane (Surr)	102		75 - 120				03/23/22 13:45	03/31/22 16:35	50
Toluene-d8 (Surr)	97		75 - 120				03/23/22 13:45	03/31/22 16:35	50

-	•.						00/20/22 .00	00/01/22 10/00	
Method: 8270D - Semivolatil Analyte	_	mpounds Qualifier	(GC/MS)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<1900	*3	8700	1900	ug/Kg	— <u></u>	04/06/22 06:52	04/11/22 14:42	50
1,2-Dichlorobenzene	<2100		8700	2100	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
1,3-Dichlorobenzene	<2000		8700	2000	ug/Kg	≎	04/06/22 06:52	04/11/22 14:42	50
1,4-Dichlorobenzene	<2200		8700	2200	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
1-Methylnaphthalene	<420	*3	3500	420	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
2,2'-oxybis[1-chloropropane]	<2000		8700	2000	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
2,4,5-Trichlorophenol	<4000		17000	4000	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
2,4,6-Trichlorophenol	<5900		17000	5900	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
2,4-Dichlorophenol	<4100	*3	17000	4100	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
2,4-Dimethylphenol	<6600	*3	17000	6600	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
2,4-Dinitrophenol	<31000		35000	31000	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
2,4-Dinitrotoluene	<2800		8700	2800	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
2,6-Dinitrotoluene	<3400		8700	3400	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
2-Chloronaphthalene	<1900		8700	1900	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
2-Chlorophenol	<3000		8700	3000	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
2-Methylnaphthalene	<320	*3	3500	320	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
2-Methylphenol	<2800		8700	2800	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
2-Nitroaniline	<2300		8700	2300	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
2-Nitrophenol	<4100	*3	17000	4100	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
3 & 4 Methylphenol	<2900		8700	2900	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
3,3'-Dichlorobenzidine	<2400		8700	2400	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
3-Nitroaniline	<5400		17000	5400	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
4,6-Dinitro-2-methylphenol	<14000		35000	14000	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
4-Bromophenyl phenyl ether	<2300		8700	2300	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
4-Chloro-3-methylphenol	<5900	*3	17000	5900	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
4-Chloroaniline	<8100	*3	35000	8100	ug/Kg	₽	04/06/22 06:52	04/11/22 14:42	50
4-Chlorophenyl phenyl ether	<2000		8700	2000	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
4-Nitroaniline	<7300		17000	7300	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
4-Nitrophenol	<16000		35000	16000	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50
Acenaphthene	1200	J	1700	310	ug/Kg	₩	04/06/22 06:52	04/11/22 14:42	50

Eurofins Chicago

Job ID: 500-214283-1

3

6

Q

46

11

13

14

16

1/

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-222 6.5-8

Date Collected: 03/23/22 13:45 Date Received: 03/29/22 10:20

alpha-BHC

Lab Sample ID: 500-214283-15

Matrix: Solid Percent Solids: 90.7

Job ID: 500-214283-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued) MDL Unit D Dil Fac Analyte Result Qualifier RL Prepared Analyzed 1700 Acenaphthylene <230 230 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 1700 04/06/22 06:52 04/11/22 14:42 50 **Anthracene** 3300 290 ug/Kg Benzo[a]anthracene 16000 1700 230 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 04/06/22 06:52 04/11/22 14:42 1700 340 ug/Kg ť 50 Benzo[a]pyrene 23000 370 1700 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 Benzo[b]fluoranthene 31000 ug/Kg 11000 1700 560 04/06/22 06:52 04/11/22 14:42 50 Benzo[g,h,i]perylene 1700 510 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 Benzo[k]fluoranthene 12000 Benzoic acid <17000 87000 17000 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 *3 Benzyl alcohol <17000 35000 17000 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 Bis(2-chloroethoxy)methane <1800 *3 8700 1800 ug/Kg ₩ 04/06/22 06:52 04/11/22 14:42 50 Bis(2-chloroethyl)ether <2600 8700 2600 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 Bis(2-ethylhexyl) phthalate <3200 8700 3200 ua/Ka 04/06/22 06:52 04/11/22 14:42 50 Butyl benzyl phthalate <3300 8700 3300 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 Carbazole <4300 8700 4300 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 1700 04/06/22 06:52 04/11/22 14:42 50 470 ug/Kg Chrysene 19000 04/06/22 06:52 04/11/22 14:42 50 Dibenz(a,h)anthracene 2700 1700 340 ug/Kg 2000 Dibenzofuran <2000 8700 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 Diethyl phthalate <2900 8700 2900 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 04/06/22 06:52 04/11/22 14:42 Dimethyl phthalate <2300 8700 2300 ug/Kg 50 Di-n-butyl phthalate <2600 8700 2600 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 Di-n-octyl phthalate <2800 8700 2800 ug/Kg ÷ 04/06/22 06:52 04/11/22 14:42 50 **Fluoranthene** 44000 1700 320 ug/Kg Ö 04/06/22 06:52 04/11/22 14:42 50 1700 04/06/22 06:52 04/11/22 14:42 50 Fluorene 1300 J 240 ug/Kg Hexachlorobenzene <400 3500 400 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 Hexachlorobutadiene <2700 8700 2700 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 35000 10000 04/06/22 06:52 04/11/22 14:42 50 Hexachlorocyclopentadiene <10000 ug/Kg Hexachloroethane <2600 8700 2600 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 450 04/06/22 06:52 04/11/22 14:42 50 Indeno[1,2,3-cd]pyrene 10000 1700 ug/Kg 1900 04/06/22 06:52 04/11/22 14:42 50 Isophorone <1900 *3 8700 ug/Kg *3 Naphthalene 1700 270 04/11/22 14:42 50 <270 ug/Kg ť 04/06/22 06:52 Nitrobenzene <430 *3 1700 430 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 04/06/22 06:52 04/11/22 14:42 N-Nitrosodi-n-propylamine <2100 3500 2100 ug/Kg 50 N-Nitrosodiphenylamine <2000 8700 2000 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 28000 04/06/22 06:52 04/11/22 14:42 50 Pentachlorophenol <28000 35000 ug/Kg **Phenanthrene** 18000 1700 240 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 Phenol <3900 8700 3900 ug/Kg 04/06/22 06:52 04/11/22 14:42 50 04/06/22 06:52 50 **Pyrene** 36000 1700 340 ug/Kg 04/11/22 14:42 Qualifier Surrogate %Recovery Limits Prepared Analyzed Dil Fac 2,4,6-Tribromophenol (Surr) 0 D 31 - 143 04/06/22 06:52 04/11/22 14:42 50 0 D 2-Fluorobiphenyl (Surr) 43 - 145 04/06/22 06:52 04/11/22 14:42 50 2-Fluorophenol (Surr) 0 D 31 - 166 04/06/22 06:52 04/11/22 14:42 50 0 37 - 147 04/06/22 06:52 04/11/22 14:42 50 Nitrobenzene-d5 (Surr) *3 D Phenol-d5 (Surr) 0 D 30 - 153 04/06/22 06:52 04/11/22 14:42 50 Terphenyl-d14 (Surr) 0 D 42 - 157 04/06/22 06:52 04/11/22 14:42 50 Method: 8081A - Organochlorine Pesticides (GC) Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Aldrin <64 93 64 ug/Kg 04/05/22 16:57 04/06/22 16:19 50

Eurofins Chicago

04/05/22 16:57 04/06/22 16:19

93

52

ug/Kg

<52

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-222 6.5-8 Lab Sample ID: 500-214283-15

Date Collected: 03/23/22 13:45

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 90.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<50		93	50	ug/Kg	-	04/05/22 16:57	04/06/22 16:19	50
beta-BHC	<75		93	75	ug/Kg	₽	04/05/22 16:57	04/06/22 16:19	50
4,4'-DDD	<50		93	50	ug/Kg	₽	04/05/22 16:57	04/06/22 16:19	50
4,4'-DDE	<48		93	48	ug/Kg	₽	04/05/22 16:57	04/06/22 16:19	50
4,4'-DDT	<44		93	44	ug/Kg	₽	04/05/22 16:57	04/06/22 16:19	50
delta-BHC	<44		93	44	ug/Kg	₽	04/05/22 16:57	04/06/22 16:19	50
Dieldrin	<49		93	49	ug/Kg	☼	04/05/22 16:57	04/06/22 16:19	50
Endosulfan I	<50		93	50	ug/Kg	₽	04/05/22 16:57	04/06/22 16:19	50
Endosulfan II	<51		93	51	ug/Kg	₽	04/05/22 16:57	04/06/22 16:19	50
Endosulfan sulfate	<51		93	51	ug/Kg	☼	04/05/22 16:57	04/06/22 16:19	50
Endrin	<47		93	47	ug/Kg	₽	04/05/22 16:57	04/06/22 16:19	50
Endrin aldehyde	<53		93	53	ug/Kg	☼	04/05/22 16:57	04/06/22 16:19	50
Endrin ketone	<45		93	45	ug/Kg	☼	04/05/22 16:57	04/06/22 16:19	50
gamma-BHC (Lindane)	<46		93	46	ug/Kg	₽	04/05/22 16:57	04/06/22 16:19	50
trans-Chlordane	<53		93	53	ug/Kg	☼	04/05/22 16:57	04/06/22 16:19	50
Heptachlor	<50		93	50	ug/Kg	₽	04/05/22 16:57	04/06/22 16:19	50
Heptachlor epoxide	<50		93	50	ug/Kg	₩	04/05/22 16:57	04/06/22 16:19	50
Methoxychlor	<61		460	61	ug/Kg	☼	04/05/22 16:57	04/06/22 16:19	50
Toxaphene	<370		920	370	ug/Kg	≎	04/05/22 16:57	04/06/22 16:19	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl		D	33 - 148				04/05/22 16:57	04/06/22 16:19	50
Tetrachloro-m-xylene	0	D	30 - 121				04/05/22 16:57	04/06/22 16:19	50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0072	0.018	0.0072	mg/Kg	<u></u>	04/05/22 16:57	04/08/22 20:32	1
PCB-1221	<0.0072	0.018	0.0072	mg/Kg	₩	04/05/22 16:57	04/08/22 20:32	1
PCB-1232	<0.0050	0.018	0.0050	mg/Kg	₩	04/05/22 16:57	04/08/22 20:32	1
PCB-1242	<0.0071	0.018	0.0071	mg/Kg	₩	04/05/22 16:57	04/08/22 20:32	1
PCB-1248	<0.0087	0.018	0.0087	mg/Kg	₩	04/05/22 16:57	04/08/22 20:32	1
PCB-1254	<0.0062	0.018	0.0062	mg/Kg	₩	04/05/22 16:57	04/08/22 20:32	1
PCB-1260	<0.0069	0.018	0.0069	mg/Kg	₩	04/05/22 16:57	04/08/22 20:32	1
PCB-1262	<0.0060	0.018	0.0060	mg/Kg	₩	04/05/22 16:57	04/08/22 20:32	1
PCB-1268	<0.011	0.018	0.011	mg/Kg	₩	04/05/22 16:57	04/08/22 20:32	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	84	49 - 129				04/05/22 16:57	04/08/22 20:32	1
DCB Decachlorobiphenyl	84	37 - 121				04/05/22 16:57	04/08/22 20:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<85		350	85	ug/Kg	— <u></u>	04/05/22 12:40	04/07/22 16:36	10
2,4-DB	<110		350	110	ug/Kg	☼	04/05/22 12:40	04/07/22 16:36	10
Dicamba	<76		350	76	ug/Kg	☼	04/05/22 12:40	04/07/22 16:36	10
Dichlorprop	<88		350	88	ug/Kg	₩	04/05/22 12:40	04/07/22 16:36	10
Silvex (2,4,5-TP)	<80		350	80	ug/Kg	☼	04/05/22 12:40	04/07/22 16:36	10
2,4,5-T	<71		350	71	ug/Kg	₩	04/05/22 12:40	04/07/22 16:36	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	68		25 - 120				04/05/22 12:40	04/07/22 16:36	10

Eurofins Chicago

Page 77 of 356

2

Job ID: 500-214283-1

3

5

7

9

11

13

14

16

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-222 6.5-8

Lab Sample ID: 500-214283-15 Date Collected: 03/23/22 13:45 **Matrix: Solid**

Date Received: 03/29/22 10:20 Percent Solids: 90.7

Method: 6010C - Metals Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.3		1.0	0.35	mg/Kg	— <u></u>	04/06/22 01:36	04/07/22 00:16	1
Barium	25		1.0	0.12	mg/Kg	☼	04/06/22 01:36	04/07/22 00:16	1
Cadmium	0.22	В	0.21	0.037	mg/Kg	☼	04/06/22 01:36	04/07/22 00:16	1
Chromium	36	В	1.0	0.51	mg/Kg	₩	04/06/22 01:36	04/07/22 00:16	1
Lead	180		0.52	0.24	mg/Kg	☼	04/06/22 01:36	04/07/22 00:16	1
Selenium	<0.61		1.0	0.61	mg/Kg	₩	04/06/22 01:36	04/07/22 00:16	1
Silver	<0.13		0.52	0.13	mg/Kg	₽	04/06/22 01:36	04/07/22 00:16	1
- Method: 7471B - Mercu	ry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.023		0.018	0.0059	mg/Kg	— <u></u>	04/07/22 13:45	04/08/22 11:33	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-222 9-10

Date Collected: 03/23/22 13:50 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-16

Matrix: Solid

Percent Solids: 85.4

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1,2-Tetrachloroethane	<31		67	31	ug/Kg	<u></u>	03/23/22 13:50	03/31/22 16:58	
,1,1-Trichloroethane	<26		67	26	ug/Kg	☼	03/23/22 13:50	03/31/22 16:58	į
,1,2,2-Tetrachloroethane	<27		67	27	ug/Kg	☼	03/23/22 13:50	03/31/22 16:58	!
,1,2-Trichloroethane	<24		67	24	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	
,1-Dichloroethane	<28		67	28	ug/Kg	☼	03/23/22 13:50	03/31/22 16:58	į
,1-Dichloroethene	<26		67	26	ug/Kg	☼	03/23/22 13:50	03/31/22 16:58	į
,1-Dichloropropene	<20		67		ug/Kg	∴	03/23/22 13:50	03/31/22 16:58	
,2,3-Trichlorobenzene	<31		67	31		₩	03/23/22 13:50	03/31/22 16:58	ļ
,2,3-Trichloropropane	<28		130	28	ug/Kg	☆	03/23/22 13:50	03/31/22 16:58	
,2,4-Trichlorobenzene	<23		67		ug/Kg		03/23/22 13:50	03/31/22 16:58	
,2,4-Trimethylbenzene	<24		67		ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	
,2-Dibromo-3-Chloropropane	<130		340		ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	
,2-Dibromoethane	<26		67		ug/Kg	 .	03/23/22 13:50	03/31/22 16:58	;
,2-Dichlorobenzene	<22		67		ug/Kg	₩		03/31/22 16:58	
,2-Dichloroethane	<26		67		ug/Kg	 \$	03/23/22 13:50		
,2-Dichloropropane	<29		67			 .☆		03/31/22 16:58	
,3,5-Trimethylbenzene	<26		67		ug/Kg		03/23/22 13:50		
,3-Dichlorobenzene	<27		67		ug/Kg			03/31/22 16:58	
,3-Dichloropropane	<24		67		ug/Kg			03/31/22 16:58	
,4-Dichlorobenzene	<25		67		ug/Kg	~ \$		03/31/22 16:58	
2,2-Dichloropropane	<30		67		ug/Kg	~ \$		03/31/22 16:58	
2-Chlorotoluene	<21		67	21				03/31/22 16:58	
-Chlorotoluene	<24		67		ug/Kg ug/Kg	₩		03/31/22 16:58	
Benzene	<9.8		17		ug/Kg ug/Kg	₩		03/31/22 16:58	
Bromobenzene	<24		67		ug/Kg ug/Kg	 		03/31/22 16:58	
	<29		67						
Bromochloromethane	<29 <25			29	ug/Kg	φ.		03/31/22 16:58	
Dichlorobromomethane			67	25	ug/Kg			03/31/22 16:58	
Bromoform	<33		67		ug/Kg	₩.		03/31/22 16:58	
Bromomethane	<54		200		ug/Kg	*		03/31/22 16:58	
Carbon tetrachloride	<26		67	26	ug/Kg	· · · · · · · · ·		03/31/22 16:58	
Chlorobenzene	<26		67		ug/Kg	₽.		03/31/22 16:58	
Chloroethane	<34		67	34	0 0	*	03/23/22 13:50		
Chloroform	<25		130		ug/Kg			03/31/22 16:58	
Chloromethane	<22		67		ug/Kg	☼		03/31/22 16:58	
is-1,2-Dichloroethene	<27		67		ug/Kg	₩		03/31/22 16:58	
is-1,3-Dichloropropene	<28		67		ug/Kg	.		03/31/22 16:58	
Dibromochloromethane	<33		67		ug/Kg	≎	03/23/22 13:50		
Dibromomethane	<18		67		ug/Kg	₩		03/31/22 16:58	
Dichlorodifluoromethane	<45		200		ug/Kg	₩		03/31/22 16:58	
Ethylbenzene	<12		17	12	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	
lexachlorobutadiene	<30		67		ug/Kg	☼	03/23/22 13:50	03/31/22 16:58	
sopropyl ether	<19		67	19	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	
sopropylbenzene	<26		67	26	ug/Kg	₽	03/23/22 13:50	03/31/22 16:58	
Nethyl tert-butyl ether	<27		67	27	ug/Kg	☼	03/23/22 13:50		
lethylene Chloride	380	В	340	110	ug/Kg	☼	03/23/22 13:50	03/31/22 16:58	
laphthalene	<22		67	22	ug/Kg	₽	03/23/22 13:50	03/31/22 16:58	
-Butylbenzene	<26		67	26	ug/Kg	☼	03/23/22 13:50	03/31/22 16:58	
N-Propylbenzene	<28		67	28	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	

Eurofins Chicago

3

6

8

11

11

1 1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-222 9-10

Date Collected: 03/23/22 13:50 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-16

Matrix: Solid

Percent Solids: 85.4

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<27		67	27	ug/Kg	<u></u>	03/23/22 13:50	03/31/22 16:58	50
Styrene	<26		67	26	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	50
tert-Butylbenzene	<27		67	27	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	50
Tetrachloroethene	<25		67	25	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	50
Toluene	<9.9		17	9.9	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	50
trans-1,2-Dichloroethene	<24		67	24	ug/Kg	⊅	03/23/22 13:50	03/31/22 16:58	50
trans-1,3-Dichloropropene	<24		67	24	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	50
Trichloroethene	<11		34	11	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	50
Trichlorofluoromethane	<29		67	29	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	50
Vinyl chloride	<18		67	18	ug/Kg	₩	03/23/22 13:50	03/31/22 16:58	50
Xylenes, Total	<15		34	15	ug/Kg	≎	03/23/22 13:50	03/31/22 16:58	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 126				03/23/22 13:50	03/31/22 16:58	50
4-Bromofluorobenzene (Surr)	89		72 - 124				03/23/22 13:50	03/31/22 16:58	50
Dibromofluoromethane (Surr)	99		75 - 120				03/23/22 13:50	03/31/22 16:58	50
Toluene-d8 (Surr)	94		75 - 120				03/23/22 13:50	03/31/22 16:58	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<9.4		78	9.4	ug/Kg	<u></u>	04/06/22 06:52	04/07/22 11:50	1
2-Methylnaphthalene	<7.1		78	7.1	ug/Kg	☼	04/06/22 06:52	04/07/22 11:50	1
Acenaphthene	<6.9		38	6.9	ug/Kg	☼	04/06/22 06:52	04/07/22 11:50	1
Acenaphthylene	<5.1		38	5.1	ug/Kg	₩	04/06/22 06:52	04/07/22 11:50	1
Anthracene	<6.4		38	6.4	ug/Kg	₽	04/06/22 06:52	04/07/22 11:50	1
Benzo[a]anthracene	8.9	J	38	5.2	ug/Kg	₽	04/06/22 06:52	04/07/22 11:50	1
Benzo[a]pyrene	12	J	38	7.5	ug/Kg	₽	04/06/22 06:52	04/07/22 11:50	1
Benzo[b]fluoranthene	11	J	38	8.3	ug/Kg	☼	04/06/22 06:52	04/07/22 11:50	1
Benzo[g,h,i]perylene	<12		38	12	ug/Kg	₽	04/06/22 06:52	04/07/22 11:50	1
Benzo[k]fluoranthene	<11		38	11	ug/Kg	₽	04/06/22 06:52	04/07/22 11:50	1
Chrysene	<11		38	11	ug/Kg	₽	04/06/22 06:52	04/07/22 11:50	1
Dibenz(a,h)anthracene	<7.5		38	7.5	ug/Kg	☼	04/06/22 06:52	04/07/22 11:50	1
Fluoranthene	21	J	38	7.2	ug/Kg	₽	04/06/22 06:52	04/07/22 11:50	1
Fluorene	<5.4		38	5.4	ug/Kg	₽	04/06/22 06:52	04/07/22 11:50	1
Indeno[1,2,3-cd]pyrene	<10		38	10	ug/Kg	₽	04/06/22 06:52	04/07/22 11:50	1
Naphthalene	<5.9		38	5.9	ug/Kg	≎	04/06/22 06:52	04/07/22 11:50	1
Phenanthrene	8.3	J	38	5.4	ug/Kg	₽	04/06/22 06:52	04/07/22 11:50	1
Pyrene	18	J	38	7.7	ug/Kg	₩	04/06/22 06:52	04/07/22 11:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualitier Limits	Prepared	Anaiyzea	DII Fac
2-Fluorobiphenyl (Sui	rr) 52	43 - 14	<u>04/06/22 06:52</u>	04/07/22 11:50	1
Nitrobenzene-d5 (Suri	r) 44	37 - 14	7 04/06/22 06:52	04/07/22 11:50	1
Terphenyl-d14 (Surr)	87	42 - 15	7 04/06/22 06:52	04/07/22 11:50	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.4		1.1	0.36	mg/Kg	*	04/06/22 01:36	04/07/22 00:19	1
Lead	11		0.53	0.24	mg/Kg	☼	04/06/22 01:36	04/07/22 00:19	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-216 7-8 Lab Sample ID: 500-214283-17

Date Collected: 03/23/22 14:15

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 88.9

Method: 8270D - Semivolatil ^{Analyte}	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	<39		180	39	ug/Kg	— <u></u>	04/06/22 06:52	04/08/22 19:21	
1,2-Dichlorobenzene	<43		180	43	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	
1,3-Dichlorobenzene	<41		180	41	ug/Kg	≎	04/06/22 06:52	04/08/22 19:21	
1,4-Dichlorobenzene	<46		180	46	ug/Kg	₩	04/06/22 06:52	04/08/22 19:21	
1-Methylnaphthalene	23	J	73	8.9	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	
2,2'-oxybis[1-chloropropane]	<42		180	42	ug/Kg	₩	04/06/22 06:52	04/08/22 19:21	
2,4,5-Trichlorophenol	<83		360	83	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	
2,4,6-Trichlorophenol	<120		360	120	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	
2,4-Dichlorophenol	<86		360	86	ug/Kg	₩	04/06/22 06:52	04/08/22 19:21	
2,4-Dimethylphenol	<140		360	140	ug/Kg		04/06/22 06:52	04/08/22 19:21	
2,4-Dinitrophenol	<640		730			₩	04/06/22 06:52	04/08/22 19:21	
2,4-Dinitrotoluene	<58		180		ug/Kg	₩	04/06/22 06:52	04/08/22 19:21	
2,6-Dinitrotoluene	<71		180				04/06/22 06:52	04/08/22 19:21	
2-Chloronaphthalene	<40		180	40	ug/Kg	☆		04/08/22 19:21	
2-Chlorophenol	<62		180		ug/Kg	 \$		04/08/22 19:21	
2-Methylnaphthalene	24		73	6.7		 .☆		04/08/22 19:21	
2-Methylphenol	<58		180	58	ug/Kg			04/08/22 19:21	
2-Nitroaniline	<49		180	49	ug/Kg			04/08/22 19:21	
2-Nitrophenol	<86		360		ug/Kg			04/08/22 19:21	
3 & 4 Methylphenol	<60		180	60	ug/Kg	~ \$		04/08/22 19:21	
3,3'-Dichlorobenzidine	<51		180	51	ug/Kg	~ \$		04/08/22 19:21	
3-Nitroaniline	<110		360	110	ug/Kg			04/08/22 19:21	
l,6-Dinitro-2-methylphenol	<290		730	290	ug/Kg ug/Kg	₩		04/08/22 19:21	
l-Bromophenyl phenyl ether	<48		180		ug/Kg ug/Kg	₩		04/08/22 19:21	
I-Chloro-3-methylphenol	<120		360	120	ug/Kg ug/Kg	 		04/08/22 19:21	
-Chloroaniline	<170		730						
	<170 <42		730 180	170	ug/Kg	φ.		04/08/22 19:21 04/08/22 19:21	
I-Chlorophenyl phenyl ether	<150				ug/Kg	🌣			
I-Nitroaniline			360 730	150	ug/Kg	φ.		04/08/22 19:21	
I-Nitrophenol	<340 <6.5		730 36	340	ug/Kg	φ.		04/08/22 19:21	
Acenaphthene				6.5	ug/Kg	· · · · · ·		04/08/22 19:21	
Acenaphthylene	<4.8		36	4.8	ug/Kg	÷.		04/08/22 19:21	
Anthracene	8.2		36	6.1	ug/Kg	*		04/08/22 19:21	
Benzo[a]anthracene	24		36	4.9	ug/Kg	· · · · · · · · ·		04/08/22 19:21	
Benzo[a]pyrene	32	J	36	7.0	ug/Kg	₽.		04/08/22 19:21	
Benzo[b]fluoranthene	50		36		ug/Kg	₽		04/08/22 19:21	
Benzo[g,h,i]perylene	17		36		ug/Kg	.	04/06/22 06:52		
Benzo[k]fluoranthene	19	J	36		ug/Kg	₩	04/06/22 06:52		
Benzoic acid	<360		1800		ug/Kg	≎		04/08/22 19:21	
Benzyl alcohol	<360		730		ug/Kg			04/08/22 19:21	
Bis(2-chloroethoxy)methane	<37		180		ug/Kg	₽	04/06/22 06:52		
Bis(2-chloroethyl)ether	<54		180		ug/Kg	₩		04/08/22 19:21	
Bis(2-ethylhexyl) phthalate	<66		180		ug/Kg		04/06/22 06:52		
Butyl benzyl phthalate	<69		180	69	ug/Kg	₩	04/06/22 06:52	04/08/22 19:21	
Carbazole	<91		180	91	ug/Kg	☼	04/06/22 06:52	04/08/22 19:21	
Chrysene	32	J	36	9.9	ug/Kg	.	04/06/22 06:52	04/08/22 19:21	
Dibenz(a,h)anthracene	<7.0		36	7.0	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	
Dibenzofuran	<42		180	42	ug/Kg	☼	04/06/22 06:52	04/08/22 19:21	
Diethyl phthalate	<61		180	61	ug/Kg	₩	04/06/22 06:52	04/08/22 19:21	
Dimethyl phthalate	<47		180	47	ug/Kg		04/06/22 06:52	04/08/22 19:21	

Eurofins Chicago

Job ID: 500-214283-1

3

6

8

10

13

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-216 7-8 Lab Sample ID: 500-214283-17

Date Collected: 03/23/22 14:15 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 88.9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Di-n-butyl phthalate	<55		180	55	ug/Kg	-	04/06/22 06:52	04/08/22 19:21	1
Di-n-octyl phthalate	<59		180	59	ug/Kg	☼	04/06/22 06:52	04/08/22 19:21	1
Fluoranthene	57		36	6.7	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	1
Fluorene	<5.1		36	5.1	ug/Kg	☼	04/06/22 06:52	04/08/22 19:21	1
Hexachlorobenzene	<8.4		73	8.4	ug/Kg	☼	04/06/22 06:52	04/08/22 19:21	1
Hexachlorobutadiene	<57		180	57	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	1
Hexachlorocyclopentadiene	<210		730	210	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	1
Hexachloroethane	<55		180	55	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	1
Indeno[1,2,3-cd]pyrene	14	J	36	9.4	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	1
Isophorone	<41		180	41	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	1
Naphthalene	18	J	36	5.6	ug/Kg	≎	04/06/22 06:52	04/08/22 19:21	1
Nitrobenzene	<9.0		36	9.0	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	1
N-Nitrosodi-n-propylamine	<44		73	44	ug/Kg	☼	04/06/22 06:52	04/08/22 19:21	1
N-Nitrosodiphenylamine	<43		180	43	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	1
Pentachlorophenol	<580		730	580	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	1
Phenanthrene	56		36	5.1	ug/Kg	≎	04/06/22 06:52	04/08/22 19:21	1
Phenol	<81		180	81	ug/Kg	₽	04/06/22 06:52	04/08/22 19:21	1
Pyrene	51		36	7.2	ug/Kg	☆	04/06/22 06:52	04/08/22 19:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	91		31 - 143				04/06/22 06:52	04/08/22 19:21	1
2-Fluorobiphenyl (Surr)	59		43 - 145				04/06/22 06:52	04/08/22 19:21	1
2-Fluorophenol (Surr)	81		31 - 166				04/06/22 06:52	04/08/22 19:21	1
Nitrobenzene-d5 (Surr)	43		37 - 147				04/06/22 06:52	04/08/22 19:21	1
Phenol-d5 (Surr)	82		30 - 153				04/06/22 06:52	04/08/22 19:21	1
Terphenyl-d14 (Surr)	108		42 - 157				04/06/22 06:52	04/08/22 19:21	1

Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<6.4		9.2	6.4	ug/Kg	₩	04/05/22 16:57	04/06/22 16:39	5
alpha-BHC	<5.2		9.2	5.2	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
cis-Chlordane	<4.9		9.2	4.9	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
beta-BHC	<7.4		9.2	7.4	ug/Kg	₩	04/05/22 16:57	04/06/22 16:39	5
4,4'-DDD	<4.9		9.2	4.9	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
4,4'-DDE	<4.7		9.2	4.7	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
4,4'-DDT	<4.4		9.2	4.4	ug/Kg	₩	04/05/22 16:57	04/06/22 16:39	5
delta-BHC	<4.4		9.2	4.4	ug/Kg	₩	04/05/22 16:57	04/06/22 16:39	5
Dieldrin	<4.8		9.2	4.8	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
Endosulfan I	<5.0		9.2	5.0	ug/Kg	₩	04/05/22 16:57	04/06/22 16:39	5
Endosulfan II	<5.0		9.2	5.0	ug/Kg	₩	04/05/22 16:57	04/06/22 16:39	5
Endosulfan sulfate	<5.1		9.2	5.1	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
Endrin	<4.7		9.2	4.7	ug/Kg	₩	04/05/22 16:57	04/06/22 16:39	5
Endrin aldehyde	<5.2		9.2	5.2	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
Endrin ketone	<4.5		9.2	4.5	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
gamma-BHC (Lindane)	<4.6		9.2	4.6	ug/Kg	₩	04/05/22 16:57	04/06/22 16:39	5
trans-Chlordane	<5.3		9.2	5.3	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
Heptachlor	<5.0		9.2	5.0	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
Heptachlor epoxide	<4.9		9.2	4.9	ug/Kg	≎	04/05/22 16:57	04/06/22 16:39	5
Methoxychlor	<6.0		45	6.0	ug/Kg	☼	04/05/22 16:57	04/06/22 16:39	5
Toxaphene	<37		91	37	ug/Kg	≎	04/05/22 16:57	04/06/22 16:39	5

Page 82 of 356

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-216 7-8 Lab Sample ID: 500-214283-17

Date Collected: 03/23/22 14:15 **Matrix: Solid** Date Received: 03/29/22 10:20

Percent Solids: 88.9

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	1605	S1+	33 - 148	04/05/22 16:57	04/06/22 16:39	5
Tetrachloro-m-xylene	76		30 - 121	04/05/22 16:57	04/06/22 16:39	5

Analyte	Result Quali	ifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0071	0.018	0.0071	mg/Kg	<u></u>	04/05/22 16:57	04/08/22 20:48	1
PCB-1221	<0.0071	0.018	0.0071	mg/Kg	₩	04/05/22 16:57	04/08/22 20:48	1
PCB-1232	< 0.0049	0.018	0.0049	mg/Kg	₩	04/05/22 16:57	04/08/22 20:48	1
PCB-1242	<0.0071	0.018	0.0071	mg/Kg	₩	04/05/22 16:57	04/08/22 20:48	1
PCB-1248	<0.0086	0.018	0.0086	mg/Kg	☼	04/05/22 16:57	04/08/22 20:48	1
PCB-1254	<0.0062	0.018	0.0062	mg/Kg	₩	04/05/22 16:57	04/08/22 20:48	1
PCB-1260	<0.0068	0.018	0.0068	mg/Kg	₩	04/05/22 16:57	04/08/22 20:48	1
PCB-1262	< 0.0059	0.018	0.0059	mg/Kg	₩	04/05/22 16:57	04/08/22 20:48	1
PCB-1268	<0.011	0.018	0.011	mg/Kg	☼	04/05/22 16:57	04/08/22 20:48	1
Surrogate	%Recovery Quali	ifier Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	73	49 - 129				04/05/22 16:57	04/08/22 20:48	1
DCB Decachlorobiphenyl	65	37 - 121				04/05/22 16:57	04/08/22 20:48	1

	05		37 - 121				04/03/22 10.57	04/00/22 20.40	,
- Method: 8151A - Herbicides (6	GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<88>		370	88	ug/Kg	-	04/05/22 12:40	04/07/22 16:56	10
2,4-DB	<110		370	110	ug/Kg	₩	04/05/22 12:40	04/07/22 16:56	10
Dicamba	<79		370	79	ug/Kg	☼	04/05/22 12:40	04/07/22 16:56	10
Dichlorprop	<91		370	91	ug/Kg	₩	04/05/22 12:40	04/07/22 16:56	10
Silvex (2,4,5-TP)	<83		370	83	ug/Kg	₩	04/05/22 12:40	04/07/22 16:56	10
2,4,5-T	<74		370	74	ug/Kg	≎	04/05/22 12:40	04/07/22 16:56	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	74		25 - 120				04/05/22 12:40	04/07/22 16:56	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.52	J	0.99	0.34	mg/Kg	₩	04/06/22 01:36	04/07/22 00:22	1
Barium	10		0.99	0.11	mg/Kg	₩	04/06/22 01:36	04/07/22 00:22	1
Cadmium	0.080	JB	0.20	0.036	mg/Kg	₩	04/06/22 01:36	04/07/22 00:22	1
Chromium	5.6	В	0.99	0.49	mg/Kg	₩	04/06/22 01:36	04/07/22 00:22	1
Lead	5.0		0.50	0.23	mg/Kg	₩	04/06/22 01:36	04/07/22 00:22	1
Selenium	<0.58		0.99	0.58	mg/Kg	₩	04/06/22 01:36	04/07/22 00:22	1
Silver	<0.13		0.50	0.13	mg/Kg	≎	04/06/22 01:36	04/07/22 00:22	1

Method: 7471B - Mercury (CVA	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.0060		0.018	0.0060	mg/Kg	<u></u>	04/07/22 13:45	04/08/22 11:34	1

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-216 8-8.5

Lab Sample ID: 500-214283-18 Date Collected: 03/23/22 14:20 **Matrix: Solid** Date Received: 03/29/22 10:20

Percent Solids: 78.8

Job ID: 500-214283-1

Method: 8260B - Volatile Orga	-	•	•						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<38		82		0 0	₩	03/23/22 14:20	03/31/22 19:16	50
1,1,1-Trichloroethane	<31		82	31	0 0	☼	03/23/22 14:20	03/31/22 19:16	50
1,1,2,2-Tetrachloroethane	<33		82	33	ug/Kg	₽	03/23/22 14:20	03/31/22 19:16	50
1,1,2-Trichloroethane	<29		82	29	ug/Kg	☼	03/23/22 14:20	03/31/22 19:16	50
1,1-Dichloroethane	<34		82	34	ug/Kg	☼	03/23/22 14:20	03/31/22 19:16	50
1,1-Dichloroethene	<32		82	32	ug/Kg	≎	03/23/22 14:20	03/31/22 19:16	50
1,1-Dichloropropene	<24		82	24	ug/Kg	₽	03/23/22 14:20	03/31/22 19:16	50
1,2,3-Trichlorobenzene	<38		82	38	ug/Kg	₩	03/23/22 14:20	03/31/22 19:16	50
1,2,3-Trichloropropane	<34		160	34	ug/Kg	₽	03/23/22 14:20	03/31/22 19:16	50
1,2,4-Trichlorobenzene	<28		82	28	ug/Kg	₩	03/23/22 14:20	03/31/22 19:16	50
1,2,4-Trimethylbenzene	74	J	82	29	ug/Kg	☼	03/23/22 14:20	03/31/22 19:16	50
1,2-Dibromo-3-Chloropropane	<160		410	160	ug/Kg	₩	03/23/22 14:20	03/31/22 19:16	50
1,2-Dibromoethane	<32		82	32	ug/Kg	₩	03/23/22 14:20	03/31/22 19:16	50
1,2-Dichlorobenzene	<27		82		ug/Kg	☆	03/23/22 14:20	03/31/22 19:16	50
1,2-Dichloroethane	<32		82		ug/Kg	☆	03/23/22 14:20	03/31/22 19:16	50
1,2-Dichloropropane	<35		82		ug/Kg	 \$	03/23/22 14:20	03/31/22 19:16	50
1,3,5-Trimethylbenzene	<31		82	31	ug/Kg	₩	03/23/22 14:20	03/31/22 19:16	50
1,3-Dichlorobenzene	<33		82		ug/Kg	₩		03/31/22 19:16	50
1,3-Dichloropropane	<30		82		ug/Kg	 ₩		03/31/22 19:16	50
1,4-Dichlorobenzene	<30		82	30				03/31/22 19:16	50
2,2-Dichloropropane	<36		82	36				03/31/22 19:16	50
2-Chlorotoluene	<26		82		ug/Kg			03/31/22 19:16	50
4-Chlorotoluene	<29		82	29	ug/Kg	₩		03/31/22 19:16	50
Benzene	<12		20		ug/Kg			03/31/22 19:16	50
Bromobenzene	<29		82		ug/Kg			03/31/22 19:16	50
Bromochloromethane	<35		82	35		₩		03/31/22 19:16	50
Dichlorobromomethane	<30		82		ug/Kg ug/Kg	₩		03/31/22 19:16	50
Bromoform	<40		82					03/31/22 19:16	50
Bromomethane	<40 <65		250		ug/Kg	*		03/31/22 19:16	50
	<31		82	31	ug/Kg	*		03/31/22 19:16	50
Carbon tetrachloride						· · · · · ·			
Chlorobenzene	<32		82		ug/Kg	₩.		03/31/22 19:16	50
Chloroethane	<41		82	41	0 0	*		03/31/22 19:16	50
Chloroform	<30		160		ug/Kg	; .		03/31/22 19:16	50
Chloromethane	<26		82		ug/Kg	‡		03/31/22 19:16	50
cis-1,2-Dichloroethene	<33		82		ug/Kg	₽		03/31/22 19:16	50
cis-1,3-Dichloropropene	<34		82		ug/Kg			03/31/22 19:16	50
Dibromochloromethane	<40		82		ug/Kg	₩		03/31/22 19:16	50
Dibromomethane	<22		82		ug/Kg	₩		03/31/22 19:16	50
Dichlorodifluoromethane	<55		250		ug/Kg			03/31/22 19:16	50
Ethylbenzene	<15		20		ug/Kg	₩		03/31/22 19:16	50
Hexachlorobutadiene	<37		82	37	ug/Kg	≎	03/23/22 14:20	03/31/22 19:16	50
Isopropyl ether	<23		82		ug/Kg			03/31/22 19:16	50
Isopropylbenzene	<31		82	31	ug/Kg	₽		03/31/22 19:16	50
Methyl tert-butyl ether	<32		82	32	ug/Kg	☼	03/23/22 14:20	03/31/22 19:16	50
Methylene Chloride	330	JB	410	130	ug/Kg	₩	03/23/22 14:20	03/31/22 19:16	50
Naphthalene	12000	В	82	27	ug/Kg	₽	03/23/22 14:20	03/31/22 19:16	50
n-Butylbenzene	<32		82	32	ug/Kg	₩	03/23/22 14:20	03/31/22 19:16	50
N-Propylbenzene	<34		82	34	ug/Kg	≎	03/23/22 14:20	03/31/22 19:16	50
p-Isopropyltoluene	<30		82		ug/Kg		03/23/22 14:20	03/31/22 19:16	50

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-216 8-8.5

Date Collected: 03/23/22 14:20 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-18

Matrix: Solid

Percent Solids: 78.8

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<33		82	33	ug/Kg	☆	03/23/22 14:20	03/31/22 19:16	50
Styrene	<32		82	32	ug/Kg	☆	03/23/22 14:20	03/31/22 19:16	50
tert-Butylbenzene	<33		82	33	ug/Kg	☆	03/23/22 14:20	03/31/22 19:16	50
Tetrachloroethene	<30		82	30	ug/Kg	☆	03/23/22 14:20	03/31/22 19:16	50
Toluene	27		20	12	ug/Kg	☆	03/23/22 14:20	03/31/22 19:16	50
trans-1,2-Dichloroethene	<29		82	29	ug/Kg	≎	03/23/22 14:20	03/31/22 19:16	50
trans-1,3-Dichloropropene	<30		82	30	ug/Kg	≎	03/23/22 14:20	03/31/22 19:16	50
Trichloroethene	<13		41	13	ug/Kg	☆	03/23/22 14:20	03/31/22 19:16	50
Trichlorofluoromethane	<35		82	35	ug/Kg	≎	03/23/22 14:20	03/31/22 19:16	50
Vinyl chloride	<21		82	21	ug/Kg	☆	03/23/22 14:20	03/31/22 19:16	50
Xylenes, Total	20	J	41	18	ug/Kg	₩	03/23/22 14:20	03/31/22 19:16	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 126				03/23/22 14:20	03/31/22 19:16	50
4-Bromofluorobenzene (Surr)	87		72 - 124				03/23/22 14:20	03/31/22 19:16	50
Dibromofluoromethane (Surr)	102		75 - 120				03/23/22 14:20	03/31/22 19:16	50
Toluene-d8 (Surr)	95		75 - 120				03/23/22 14:20	03/31/22 19:16	50

Eurofins Chicago

4/15/2022

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-216 10-11

Date Collected: 03/23/22 14:25 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-19

Matrix: Solid

Percent Solids: 84.8

Job ID: 500-214283-1

Method: 8260B - Volatile O	rganic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<31	67	31	ug/Kg	<u></u>	03/23/22 14:25	03/31/22 17:21	5
1,1,1-Trichloroethane	<25	67	25	ug/Kg	☼	03/23/22 14:25	03/31/22 17:21	5
1,1,2,2-Tetrachloroethane	<27	67	27	ug/Kg	☼	03/23/22 14:25	03/31/22 17:21	5
1,1,2-Trichloroethane	<24	67	24	ug/Kg	₩	03/23/22 14:25	03/31/22 17:21	5
1,1-Dichloroethane	<27	67	27	ug/Kg	₩	03/23/22 14:25	03/31/22 17:21	5
1,1-Dichloroethene	<26	67	26	ug/Kg	☼	03/23/22 14:25	03/31/22 17:21	5
1,1-Dichloropropene	<20	67	20	ug/Kg	⊅	03/23/22 14:25	03/31/22 17:21	5
1,2,3-Trichlorobenzene	<31	67	31	ug/Kg	☼	03/23/22 14:25	03/31/22 17:21	5
1,2,3-Trichloropropane	<28	130	28	ug/Kg	☼	03/23/22 14:25	03/31/22 17:21	5
1,2,4-Trichlorobenzene	<23	67	23	ug/Kg	₽	03/23/22 14:25	03/31/22 17:21	5
1,2,4-Trimethylbenzene	<24	67	24	ug/Kg	₩	03/23/22 14:25	03/31/22 17:21	5
1,2-Dibromo-3-Chloropropane	<130	330	130	ug/Kg	₩	03/23/22 14:25	03/31/22 17:21	5
1,2-Dibromoethane	<26	67	26	ug/Kg	₩	03/23/22 14:25	03/31/22 17:21	5
1,2-Dichlorobenzene	<22	67		ug/Kg	₩	03/23/22 14:25	03/31/22 17:21	5
1,2-Dichloroethane	<26	67		ug/Kg	☆	03/23/22 14:25	03/31/22 17:21	5
1,2-Dichloropropane	<29	67		ug/Kg		03/23/22 14:25	03/31/22 17:21	5
1,3,5-Trimethylbenzene	<25	67		ug/Kg	₩		03/31/22 17:21	5
1,3-Dichlorobenzene	<27	67		ug/Kg	₩	03/23/22 14:25	03/31/22 17:21	5
1,3-Dichloropropane	<24	67		ug/Kg		03/23/22 14:25		5
1,4-Dichlorobenzene	<24	67		ug/Kg	☆		03/31/22 17:21	5
2,2-Dichloropropane	<30	67		ug/Kg	ď		03/31/22 17:21	5
2-Chlorotoluene	<21	67		ug/Kg			03/31/22 17:21	5
4-Chlorotoluene	<23	67		ug/Kg			03/31/22 17:21	5
Benzene	<9.8	17		ug/Kg			03/31/22 17:21	5
Bromobenzene	<24	67		ug/Kg	 	03/23/22 14:25		5
Bromochloromethane	<29	67		ug/Kg			03/31/22 17:21	5
Dichlorobromomethane	<25	67		ug/Kg	Tr.		03/31/22 17:21	5
Bromoform	<32	67		ug/Kg			03/31/22 17:21	5
Bromomethane	<53 <53	200		ug/Kg ug/Kg	₩		03/31/22 17:21	5
Carbon tetrachloride	<26	67		ug/Kg ug/Kg	₩		03/31/22 17:21	5
Chlorobenzene	<26	67		ug/Kg			03/31/22 17:21	5 5
Chloroethane	<34	67					03/31/22 17:21	5
				ug/Kg	☆		03/31/22 17:21	
Chloroform Chloromethane	<25	130		ug/Kg	· · · · ·			5
	<21 <27	67 67		ug/Kg	₩	03/23/22 14:25	03/31/22 17:21	5
cis-1,2-Dichloroethene				ug/Kg	₩.			5
cis-1,3-Dichloropropene	<28	67		ug/Kg	.		03/31/22 17:21	5
Dibromochloromethane	<33	67		ug/Kg	☼		03/31/22 17:21	5
Dibromomethane	<18	67		ug/Kg	☼		03/31/22 17:21	5
Dichlorodifluoromethane	<45	200		ug/Kg	. .		03/31/22 17:21	5
Ethylbenzene	<12	17		ug/Kg	₩		03/31/22 17:21	5
Hexachlorobutadiene	<30	67		ug/Kg	₩		03/31/22 17:21	5
Isopropyl ether	<18	67		ug/Kg			03/31/22 17:21	5
Isopropylbenzene	<26	67		ug/Kg	₩		03/31/22 17:21	5
Methyl tert-butyl ether	<26	67		ug/Kg	☼		03/31/22 17:21	5
Methylene Chloride	280 JB	330		ug/Kg	≎		03/31/22 17:21	5
Naphthalene	<22	67	22	ug/Kg	₽	03/23/22 14:25	03/31/22 17:21	5
n-Butylbenzene	<26	67	26	ug/Kg	☼	03/23/22 14:25	03/31/22 17:21	5
N-Propylbenzene	<28	67	28	ug/Kg	₽	03/23/22 14:25	03/31/22 17:21	5
p-Isopropyltoluene	<24	67	24	ug/Kg	≎	03/23/22 14:25	03/31/22 17:21	5

Eurofins Chicago

Client: Stantec Consulting Corp.

Terphenyl-d14 (Surr)

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-216 10-11 Lab Sample ID: 500-214283-19

Date Collected: 03/23/22 14:25

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 84.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<27		67	27	ug/Kg	-	03/23/22 14:25	03/31/22 17:21	50
Styrene	<26		67	26	ug/Kg	₽	03/23/22 14:25	03/31/22 17:21	50
tert-Butylbenzene	<27		67	27	ug/Kg	₽	03/23/22 14:25	03/31/22 17:21	50
Tetrachloroethene	<25		67	25	ug/Kg	☼	03/23/22 14:25	03/31/22 17:21	50
Toluene	<9.8		17	9.8	ug/Kg	☼	03/23/22 14:25	03/31/22 17:21	50
trans-1,2-Dichloroethene	<23		67	23	ug/Kg	₽	03/23/22 14:25	03/31/22 17:21	50
trans-1,3-Dichloropropene	<24		67	24	ug/Kg	≎	03/23/22 14:25	03/31/22 17:21	50
Trichloroethene	<11		33	11	ug/Kg	≎	03/23/22 14:25	03/31/22 17:21	50
Trichlorofluoromethane	<29		67	29	ug/Kg	≎	03/23/22 14:25	03/31/22 17:21	50
Vinyl chloride	<18		67	18	ug/Kg	≎	03/23/22 14:25	03/31/22 17:21	50
Xylenes, Total	<15		33	15	ug/Kg	☆	03/23/22 14:25	03/31/22 17:21	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		75 - 126				03/23/22 14:25	03/31/22 17:21	50
4-Bromofluorobenzene (Surr)	88		72 - 124				03/23/22 14:25	03/31/22 17:21	50
Dibromofluoromethane (Surr)	101		75 - 120				03/23/22 14:25	03/31/22 17:21	50
Toluene-d8 (Surr)	95		75 - 120				03/23/22 14:25	03/31/22 17:21	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<14		120	14	ug/Kg	<u></u>	04/06/22 06:52	04/07/22 12:13	1
2-Methylnaphthalene	<11		120	11	ug/Kg	☼	04/06/22 06:52	04/07/22 12:13	1
Acenaphthene	<10		57	10	ug/Kg	≎	04/06/22 06:52	04/07/22 12:13	1
Acenaphthylene	<7.6		57	7.6	ug/Kg	₽	04/06/22 06:52	04/07/22 12:13	1
Anthracene	14	J	57	9.6	ug/Kg	≎	04/06/22 06:52	04/07/22 12:13	1
Benzo[a]anthracene	18	J	57	7.8	ug/Kg	≎	04/06/22 06:52	04/07/22 12:13	1
Benzo[a]pyrene	20	J	57	11	ug/Kg	₽	04/06/22 06:52	04/07/22 12:13	1
Benzo[b]fluoranthene	25	J	57	12	ug/Kg	≎	04/06/22 06:52	04/07/22 12:13	1
Benzo[g,h,i]perylene	<19		57	19	ug/Kg	≎	04/06/22 06:52	04/07/22 12:13	1
Benzo[k]fluoranthene	<17		57	17	ug/Kg	₽	04/06/22 06:52	04/07/22 12:13	1
Chrysene	22	J	57	16	ug/Kg	≎	04/06/22 06:52	04/07/22 12:13	1
Dibenz(a,h)anthracene	<11		57	11	ug/Kg	≎	04/06/22 06:52	04/07/22 12:13	1
Fluoranthene	32	J	57	11	ug/Kg	₽	04/06/22 06:52	04/07/22 12:13	1
Fluorene	<8.1		57	8.1	ug/Kg	≎	04/06/22 06:52	04/07/22 12:13	1
Indeno[1,2,3-cd]pyrene	<15		57	15	ug/Kg	≎	04/06/22 06:52	04/07/22 12:13	1
Naphthalene	<8.9		57	8.9	ug/Kg	₽	04/06/22 06:52	04/07/22 12:13	1
Phenanthrene	21	J	57	8.0	ug/Kg	☼	04/06/22 06:52	04/07/22 12:13	1
Pyrene	22	J	57	11	ug/Kg	₩	04/06/22 06:52	04/07/22 12:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	71		43 - 145				04/06/22 06:52	04/07/22 12:13	1
Nitrobenzene-d5 (Surr)	55		37 - 147				04/06/22 06:52	04/07/22 12:13	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.99		0.99	0.34	mg/Kg	₩	04/06/22 01:36	04/07/22 00:26	1
Lead	4.1		0.50	0.23	mg/Kg	₩	04/06/22 01:36	04/07/22 00:26	1

42 - 157

95

Eurofins Chicago

04/06/22 06:52 04/07/22 12:13

2

Job ID: 500-214283-1

3

6

9

11

13

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-237 1-2 Lab Sample ID: 500-214283-20

Date Collected: 03/23/22 15:05 Matrix: Solid
Date Received: 03/29/22 10:20 Percent Solids: 87.1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<28	60			— <u>-</u>	03/23/22 15:05	03/31/22 17:44	5
1,1,1-Trichloroethane	<23	60	23		₩	03/23/22 15:05		5
1,1,2,2-Tetrachloroethane	<24	60		ug/Kg	₩	03/23/22 15:05		5
1,1,2-Trichloroethane	<21	60		ug/Kg		03/23/22 15:05		5
1,1-Dichloroethane	<24	60		ug/Kg			03/31/22 17:44	5
1,1-Dichloroethene	<23	60		ug/Kg			03/31/22 17:44	5
1,1-Dichloropropene	<18	60		ug/Kg	 ☆		03/31/22 17:44	5
1,2,3-Trichlorobenzene	<27	60		ug/Kg	₩		03/31/22 17:44	5
1,2,3-Trichloropropane	<25	120		ug/Kg			03/31/22 17:44	5
1,2,4-Trichlorobenzene	<20	60		ug/Kg		03/23/22 15:05		5
1,2,4-Trimethylbenzene	<21	60		ug/Kg ug/Kg	₩		03/31/22 17:44	5
•	<120	300				03/23/22 15:05		5
1,2-Dibromo-3-Chloropropane				ug/Kg			03/31/22 17:44	
1,2-Dibromoethane	<23	60		ug/Kg	₩.			5
1,2-Dichlorobenzene	<20	60 60		ug/Kg	*		03/31/22 17:44	5
I,2-Dichloroethane	<23	60		ug/Kg	<u>.</u> .		03/31/22 17:44	
I,2-Dichloropropane	<26	60		ug/Kg	‡		03/31/22 17:44	5
,3,5-Trimethylbenzene	<23	60		ug/Kg	‡		03/31/22 17:44	5
,3-Dichlorobenzene	<24	60		ug/Kg			03/31/22 17:44	
,3-Dichloropropane	<22	60		ug/Kg	☼		03/31/22 17:44	5
,4-Dichlorobenzene	<22	60		ug/Kg	₩		03/31/22 17:44	5
,2-Dichloropropane	<27	60	27	ug/Kg		03/23/22 15:05	03/31/22 17:44	
2-Chlorotoluene	<19	60	19	ug/Kg	☼	03/23/22 15:05	03/31/22 17:44	į
-Chlorotoluene	<21	60	21	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	Ę
Benzene	<8.7	15	8.7	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	
Bromobenzene	<21	60	21	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	
Bromochloromethane	<26	60	26	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	;
Dichlorobromomethane	<22	60	22	ug/Kg	☼	03/23/22 15:05	03/31/22 17:44	
Bromoform	<29	60	29	ug/Kg	₽	03/23/22 15:05	03/31/22 17:44	
Bromomethane	<48	180	48	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	
Carbon tetrachloride	<23	60	23	ug/Kg	☼	03/23/22 15:05	03/31/22 17:44	;
Chlorobenzene	<23	60	23	ug/Kg	₽	03/23/22 15:05	03/31/22 17:44	
Chloroethane	<30	60	30	ug/Kg	☼	03/23/22 15:05	03/31/22 17:44	
Chloroform	<22	120	22	ug/Kg	☼	03/23/22 15:05	03/31/22 17:44	į
Chloromethane	<19	60	19	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	
sis-1,2-Dichloroethene	<24	60	24	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	
sis-1,3-Dichloropropene	<25	60	25	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	
Dibromochloromethane	<29	60		ug/Kg	 \$	03/23/22 15:05	03/31/22 17:44	
Dibromomethane	<16	60		ug/Kg	₽	03/23/22 15:05	03/31/22 17:44	;
Dichlorodifluoromethane	<40	180		ug/Kg	₽	03/23/22 15:05	03/31/22 17:44	;
thylbenzene	<11	15		ug/Kg	 \$		03/31/22 17:44	
Hexachlorobutadiene	<27	60		ug/Kg	₩		03/31/22 17:44	
sopropyl ether	<16	60		ug/Kg	Φ	03/23/22 15:05		
sopropylbenzene	<23	60		ug/Kg			03/31/22 17:44	
Methyl tert-butyl ether	<24	60		ug/Kg ug/Kg	₩		03/31/22 17:44	į
		300		ug/Kg ug/Kg			03/31/22 17:44	,
Methylene Chloride	250 JB							
laphthalene Butulbanzana	140 B	60 60		ug/Kg	*		03/31/22 17:44	!
-Butylbenzene	<23	60		ug/Kg			03/31/22 17:44	;
I-Propylbenzene -Isopropyltoluene	<25 <22	60		ug/Kg ug/Kg			03/31/22 17:44 03/31/22 17:44	

Eurofins Chicago

9

Job ID: 500-214283-1

3

4

7

9

11

13

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-237 1-2 Lab Sample ID: 500-214283-20

Date Collected: 03/23/22 15:05 Matrix: Solid
Date Received: 03/29/22 10:20 Percent Solids: 87.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	470		60	24	ug/Kg	<u></u>	03/23/22 15:05	03/31/22 17:44	50
Styrene	<23		60	23	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	50
tert-Butylbenzene	32	J	60	24	ug/Kg	₽	03/23/22 15:05	03/31/22 17:44	50
Tetrachloroethene	<22		60	22	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	50
Toluene	<8.8		15	8.8	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	50
trans-1,2-Dichloroethene	<21		60	21	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	50
trans-1,3-Dichloropropene	<22		60	22	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	50
Trichloroethene	<9.8		30	9.8	ug/Kg	≎	03/23/22 15:05	03/31/22 17:44	50
Trichlorofluoromethane	<26		60	26	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	50
Vinyl chloride	<16		60	16	ug/Kg	≎	03/23/22 15:05	03/31/22 17:44	50
Xylenes, Total	<13		30	13	ug/Kg	₩	03/23/22 15:05	03/31/22 17:44	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 126				03/23/22 15:05	03/31/22 17:44	50
4-Bromofluorobenzene (Surr)	95		72 - 124				03/23/22 15:05	03/31/22 17:44	50
Dibromofluoromethane (Surr)	105		75 - 120				03/23/22 15:05	03/31/22 17:44	50
Toluene-d8 (Surr)	94		75 - 120				03/23/22 15:05	03/31/22 17:44	50

- Toldene-do (San)	34		75-120				03/23/22 13.03	03/31/22 11.44	50
Method: 8270D - Semivolati Analyte	_	mpounds Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene			3800	810	ug/Kg	— -	04/06/22 06:52		20
1,2-Dichlorobenzene	<900		3800	900	ug/Kg	☆		04/11/22 15:06	20
1,3-Dichlorobenzene	<840		3800	840	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
1,4-Dichlorobenzene	<960		3800	960	ug/Kg	 \$	04/06/22 06:52	04/11/22 15:06	20
1-Methylnaphthalene	<180		1500	180	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
2,2'-oxybis[1-chloropropane]	<870		3800	870	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
2,4,5-Trichlorophenol	<1700		7400	1700			04/06/22 06:52	04/11/22 15:06	20
2,4,6-Trichlorophenol	<2600		7400	2600	ug/Kg	≎	04/06/22 06:52	04/11/22 15:06	20
2,4-Dichlorophenol	<1800		7400	1800	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
2,4-Dimethylphenol	<2800		7400	2800	ug/Kg		04/06/22 06:52	04/11/22 15:06	20
2,4-Dinitrophenol	<13000		15000	13000	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
2,4-Dinitrotoluene	<1200		3800	1200	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
2,6-Dinitrotoluene	<1500		3800	1500	ug/Kg		04/06/22 06:52	04/11/22 15:06	20
2-Chloronaphthalene	<830		3800	830	ug/Kg	≎	04/06/22 06:52	04/11/22 15:06	20
2-Chlorophenol	<1300		3800	1300	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
2-Methylnaphthalene	<140		1500	140	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
2-Methylphenol	<1200		3800	1200	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
2-Nitroaniline	<1000		3800	1000	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
2-Nitrophenol	<1800		7400	1800	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
3 & 4 Methylphenol	<1200		3800	1200	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
3,3'-Dichlorobenzidine	<1000		3800	1000	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
3-Nitroaniline	<2300		7400	2300	ug/Kg		04/06/22 06:52	04/11/22 15:06	20
4,6-Dinitro-2-methylphenol	<6000		15000	6000	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
4-Bromophenyl phenyl ether	<990		3800	990	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
4-Chloro-3-methylphenol	<2500		7400	2500	ug/Kg		04/06/22 06:52	04/11/22 15:06	20
4-Chloroaniline	<3500		15000	3500	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
4-Chlorophenyl phenyl ether	<880		3800	880	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
4-Nitroaniline	<3100		7400	3100	ug/Kg		04/06/22 06:52	04/11/22 15:06	20
4-Nitrophenol	<7100		15000	7100	ug/Kg	≎	04/06/22 06:52	04/11/22 15:06	20
Acenaphthene	<130		740	130	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20

Eurofins Chicago

Page 89 of 356

9

Job ID: 500-214283-1

3

Ė

7

9

11

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-237 1-2

Date Collected: 03/23/22 15:05 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-20

Matrix: Solid

Percent Solids: 87.1

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	<99		740	99	ug/Kg	<u></u>	04/06/22 06:52	04/11/22 15:06	20
Anthracene	160	J	740	130	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
Benzo[a]anthracene	170	J	740	100	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
Benzo[a]pyrene	200	J	740	150	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
Benzo[b]fluoranthene	270	J	740	160	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
Benzo[g,h,i]perylene	<240		740	240	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
Benzo[k]fluoranthene	<220		740	220	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
Benzoic acid	<7400		38000	7400	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
Benzyl alcohol	<7400		15000	7400	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
Bis(2-chloroethoxy)methane	<760		3800	760	ug/Kg		04/06/22 06:52	04/11/22 15:06	20
Bis(2-chloroethyl)ether	<1100		3800	1100	ug/Kg	₩	04/06/22 06:52	04/11/22 15:06	20
Bis(2-ethylhexyl) phthalate	<1400		3800	1400	ug/Kg	₩		04/11/22 15:06	20
Butyl benzyl phthalate	<1400		3800	1400	ug/Kg			04/11/22 15:06	20
Carbazole	<1900		3800	1900	ug/Kg	₩		04/11/22 15:06	20
Chrysene	<200		740	200	ug/Kg	~ ☆		04/11/22 15:06	20
Dibenz(a,h)anthracene	<140		740	140	ug/Kg			04/11/22 15:06	20
Dibenzofuran	<880		3800	880	ug/Kg	₩		04/11/22 15:06	20
Diethyl phthalate	<1300		3800	1300	ug/Kg	₩		04/11/22 15:06	20
Dimethyl phthalate	<980		3800	980				04/11/22 15:06	20
Di-n-butyl phthalate	<1100		3800	1100	ug/Kg ug/Kg	₩		04/11/22 15:06	20
Di-n-octyl phthalate	<1200		3800	1200	ug/Kg ug/Kg			04/11/22 15:06	20
						 .			
Fluoranthene	210	J	740		ug/Kg	ψ.		04/11/22 15:06	20
Fluorene	<110		740		ug/Kg	‡		04/11/22 15:06	20
Hexachlorobenzene	<170		1500	170	ug/Kg	.		04/11/22 15:06	20
Hexachlorobutadiene	<1200		3800	1200	ug/Kg	‡		04/11/22 15:06	20
Hexachlorocyclopentadiene	<4300		15000	4300	ug/Kg	₩		04/11/22 15:06	20
Hexachloroethane	<1100		3800	1100	ug/Kg			04/11/22 15:06	20
Indeno[1,2,3-cd]pyrene	<190		740	190	ug/Kg	₩		04/11/22 15:06	20
Isophorone	<840		3800	840	ug/Kg	₽		04/11/22 15:06	20
Naphthalene	<120		740	120	ug/Kg		04/06/22 06:52	04/11/22 15:06	20
Nitrobenzene	<190		740	190	ug/Kg	☼	04/06/22 06:52	04/11/22 15:06	20
N-Nitrosodi-n-propylamine	<920		1500	920	ug/Kg	☼	04/06/22 06:52	04/11/22 15:06	20
N-Nitrosodiphenylamine	<880		3800	880	ug/Kg	≎	04/06/22 06:52	04/11/22 15:06	20
Pentachlorophenol	<12000		15000	12000	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
Phenanthrene	220	J	740	100	ug/Kg	☼	04/06/22 06:52	04/11/22 15:06	20
Phenol	<1700		3800	1700	ug/Kg	☼	04/06/22 06:52	04/11/22 15:06	20
Pyrene	250	J	740	150	ug/Kg	₽	04/06/22 06:52	04/11/22 15:06	20
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)		D	31 - 143				04/06/22 06:52	04/11/22 15:06	20
2-Fluorobiphenyl (Surr)	0	D	43 - 145				04/06/22 06:52	04/11/22 15:06	20
2-Fluorophenol (Surr)	0	D	31 - 166				04/06/22 06:52	04/11/22 15:06	20
Nitrobenzene-d5 (Surr)	0	D	37 - 147				04/06/22 06:52	04/11/22 15:06	20
Phenol-d5 (Surr)		D	30 - 153					04/11/22 15:06	20
Terphenyl-d14 (Surr)		D	42 - 157					04/11/22 15:06	20
: Method: 8081A - Organoch	nlorine Pesticid	es (GC)							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Aldrin	<1.3		1.9	1.3	ug/Kg	\	04/05/22 16:57	04/06/22 17:00	1
alpha-BHC	<1.1		1.9		ug/Kg	₩	04/05/22 16:57	04/06/22 17:00	1

Eurofins Chicago

Δ

6

R

10

1 A

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-237 1-2

Date Collected: 03/23/22 15:05 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-20

Matrix: Solid

Job ID: 500-214283-1

Percent Solids: 87.1

Analyte	Result Qualific	er RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<1.0	1.9	1.0	ug/Kg	<u></u>	04/05/22 16:57	04/06/22 17:00	1
beta-BHC	<1.5	1.9	1.5	ug/Kg	₽	04/05/22 16:57	04/06/22 17:00	1
4,4'-DDD	<1.0	1.9	1.0	ug/Kg	☼	04/05/22 16:57	04/06/22 17:00	1
4,4'-DDE	<0.99	1.9	0.99	ug/Kg	☼	04/05/22 16:57	04/06/22 17:00	1
4,4'-DDT	<0.91	1.9	0.91	ug/Kg	₽	04/05/22 16:57	04/06/22 17:00	1
delta-BHC	<0.92	1.9	0.92	ug/Kg	☼	04/05/22 16:57	04/06/22 17:00	1
Dieldrin	<1.0	1.9	1.0	ug/Kg	☼	04/05/22 16:57	04/06/22 17:00	1
Endosulfan I	<1.0	1.9	1.0	ug/Kg	₽	04/05/22 16:57	04/06/22 17:00	1
Endosulfan II	<1.1	1.9	1.1	ug/Kg	☼	04/05/22 16:57	04/06/22 17:00	1
Endosulfan sulfate	<1.1	1.9	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 17:00	1
Endrin	<0.98	1.9	0.98	ug/Kg	₽	04/05/22 16:57	04/06/22 17:00	1
Endrin aldehyde	<1.1	1.9	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 17:00	1
Endrin ketone	<0.93	1.9	0.93	ug/Kg	☼	04/05/22 16:57	04/06/22 17:00	1
gamma-BHC (Lindane)	<0.95	1.9	0.95	ug/Kg	₽	04/05/22 16:57	04/06/22 17:00	1
trans-Chlordane	<1.1	1.9	1.1	ug/Kg	☼	04/05/22 16:57	04/06/22 17:00	1
Heptachlor	<1.0	1.9	1.0	ug/Kg	☼	04/05/22 16:57	04/06/22 17:00	1
Heptachlor epoxide	<1.0	1.9	1.0	ug/Kg	₽	04/05/22 16:57	04/06/22 17:00	1
Methoxychlor	<1.3	9.4	1.3	ug/Kg	₩	04/05/22 16:57	04/06/22 17:00	1
Toxaphene	<7.7	19	7.7	ug/Kg	₩	04/05/22 16:57	04/06/22 17:00	1
Surrogate	%Recovery Qualific	er Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	88	33 - 148				04/05/22 16:57	04/06/22 17:00	1
Tetrachloro-m-xylene	77	30 - 121				04/05/22 16:57	04/06/22 17:00	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0074		0.019	0.0074	mg/Kg	☆	04/05/22 16:57	04/08/22 21:04	1
PCB-1221	<0.0074		0.019	0.0074	mg/Kg	₩	04/05/22 16:57	04/08/22 21:04	1
PCB-1232	<0.0051		0.019	0.0051	mg/Kg	☼	04/05/22 16:57	04/08/22 21:04	1
PCB-1242	<0.0074		0.019	0.0074	mg/Kg	₽	04/05/22 16:57	04/08/22 21:04	1
PCB-1248	< 0.0090		0.019	0.0090	mg/Kg	≎	04/05/22 16:57	04/08/22 21:04	1
PCB-1254	< 0.0064		0.019	0.0064	mg/Kg	≎	04/05/22 16:57	04/08/22 21:04	1
PCB-1260	<0.0072		0.019	0.0072	mg/Kg	≎	04/05/22 16:57	04/08/22 21:04	1
PCB-1262	< 0.0062		0.019	0.0062	mg/Kg	≎	04/05/22 16:57	04/08/22 21:04	1
PCB-1268	<0.011		0.019	0.011	mg/Kg	₩	04/05/22 16:57	04/08/22 21:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	86		49 - 129				04/05/22 16:57	04/08/22 21:04	1
DCB Decachlorobiphenyl	91		37 - 121				04/05/22 16:57	04/08/22 21:04	1

Method: 8151A - Herbi	cides (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<90		380	90	ug/Kg	<u></u>	04/05/22 12:40	04/07/22 17:15	10
2,4-DB	<110		380	110	ug/Kg	₩	04/05/22 12:40	04/07/22 17:15	10
Dicamba	<81		380	81	ug/Kg	₩	04/05/22 12:40	04/07/22 17:15	10
Dichlorprop	<93		380	93	ug/Kg	☼	04/05/22 12:40	04/07/22 17:15	10
Silvex (2,4,5-TP)	<85		380	85	ug/Kg	₩	04/05/22 12:40	04/07/22 17:15	10
2,4,5-T	<76		380	76	ug/Kg	₩	04/05/22 12:40	04/07/22 17:15	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	42		25 - 120				04/05/22 12:40	04/07/22 17:15	10

Eurofins Chicago

Page 91 of 356

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-237 1-2

Lab Sample ID: 500-214283-20 Date Collected: 03/23/22 15:05

Matrix: Solid

Date Received: 03/29/22 10:20 Percent Solids: 87.1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.8		1.0	0.35	mg/Kg	-	04/06/22 01:36	04/07/22 00:29	1
Barium	46		1.0	0.12	mg/Kg	☼	04/06/22 01:36	04/07/22 00:29	1
Cadmium	0.077	JB	0.21	0.037	mg/Kg	☼	04/06/22 01:36	04/07/22 00:29	1
Chromium	15	В	1.0	0.51	mg/Kg	₩	04/06/22 01:36	04/07/22 00:29	1
Lead	35		0.52	0.24	mg/Kg	☼	04/06/22 01:36	04/07/22 00:29	1
Selenium	<0.61		1.0	0.61	mg/Kg	₽	04/06/22 01:36	04/07/22 00:29	1
Silver	0.13	J	0.52	0.13	mg/Kg	≎	04/06/22 01:36	04/07/22 00:29	1
- Method: 7471B - Mercury (CVA	A)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.11		0.018	0.0060	mg/Kg	<u></u>	04/07/22 13:45	04/08/22 11:36	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-237 9-10

Date Collected: 03/23/22 15:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-21

Matrix: Solid

Percent Solids: 72.4

Job ID: 500-214283-1

Method: 8260B - Volatile Org		5)						
Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<40	87	40	ug/Kg	☼	03/23/22 15:10	03/31/22 18:07	5
1,1,1-Trichloroethane	<33	87	33	ug/Kg	☼	03/23/22 15:10	03/31/22 18:07	5
1,1,2,2-Tetrachloroethane	<35	87	35	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	5
1,1,2-Trichloroethane	<31	87	31	ug/Kg	≎	03/23/22 15:10	03/31/22 18:07	5
1,1-Dichloroethane	<36	87	36	ug/Kg	≎	03/23/22 15:10	03/31/22 18:07	5
1,1-Dichloroethene	<34	87	34	ug/Kg	≎	03/23/22 15:10	03/31/22 18:07	5
1,1-Dichloropropene	<26	87	26	ug/Kg	₽	03/23/22 15:10	03/31/22 18:07	5
1,2,3-Trichlorobenzene	<40	87	40	ug/Kg	≎	03/23/22 15:10	03/31/22 18:07	5
1,2,3-Trichloropropane	<36	170	36	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	5
1,2,4-Trichlorobenzene	<30	87	30	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	5
1,2,4-Trimethylbenzene	<31	87	31	ug/Kg	≎	03/23/22 15:10	03/31/22 18:07	5
1,2-Dibromo-3-Chloropropane	<170	440	170	ug/Kg	⇔	03/23/22 15:10	03/31/22 18:07	5
1,2-Dibromoethane	<34	87	34	ug/Kg	≎	03/23/22 15:10	03/31/22 18:07	5
1,2-Dichlorobenzene	<29	87		ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	5
1,2-Dichloroethane	<34	87		ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	5
1,2-Dichloropropane	<37	87		ug/Kg		03/23/22 15:10	03/31/22 18:07	5
1,3,5-Trimethylbenzene	<33	87		ug/Kg	₩		03/31/22 18:07	5
1,3-Dichlorobenzene	<35	87		ug/Kg	₩		03/31/22 18:07	5
1,3-Dichloropropane	<32	87		ug/Kg		03/23/22 15:10	03/31/22 18:07	5
1,4-Dichlorobenzene	<32	87		ug/Kg	☆		03/31/22 18:07	5
2,2-Dichloropropane	<39	87		ug/Kg	₩		03/31/22 18:07	5
2-Chlorotoluene	<27	87		ug/Kg	. T		03/31/22 18:07	5
4-Chlorotoluene	 <31	87		ug/Kg			03/31/22 18:07	5
Benzene	<13	22		ug/Kg			03/31/22 18:07	5
Bromobenzene	<31	87		ug/Kg			03/31/22 18:07	5
Bromochloromethane	<37	87		ug/Kg			03/31/22 18:07	5
Dichlorobromomethane	<33	87		ug/Kg	~ ☆		03/31/22 18:07	5
Bromoform	<42	87		ug/Kg			03/31/22 18:07	5
Bromomethane	<70	260		ug/Kg ug/Kg	₩		03/31/22 18:07	5
Carbon tetrachloride	<34	87		ug/Kg ug/Kg	₩		03/31/22 18:07	5
Chlorobenzene	<34	87		ug/Kg			03/31/22 18:07	5
Chloroethane	<44	87					03/31/22 18:07	5
	<32			ug/Kg	*			
Chloroform	<32	170		ug/Kg			03/31/22 18:07	5
Chloromethane	<26 <36	87		ug/Kg	#		03/31/22 18:07	5
cis-1,2-Dichloroethene		87		ug/Kg	*		03/31/22 18:07	5
cis-1,3-Dichloropropene	<36	87		ug/Kg	 .		03/31/22 18:07	5
Dibromochloromethane	<43	87		ug/Kg	‡		03/31/22 18:07	5
Dibromomethane	<24	87		ug/Kg	‡		03/31/22 18:07	5
Dichlorodifluoromethane	<59	260		ug/Kg	 .		03/31/22 18:07	5
Ethylbenzene	<16	22		ug/Kg	☼		03/31/22 18:07	5
Hexachlorobutadiene	<39	87		ug/Kg	≎		03/31/22 18:07	5
Isopropyl ether	<24	87		ug/Kg	.		03/31/22 18:07	
sopropylbenzene	<34	87		ug/Kg	₩		03/31/22 18:07	5
Methyl tert-butyl ether	<34	87		ug/Kg	₩		03/31/22 18:07	5
Methylene Chloride	350 JB	440		ug/Kg	≎		03/31/22 18:07	5
Naphthalene	<29	87	29	ug/Kg	☼	03/23/22 15:10	03/31/22 18:07	5
n-Butylbenzene	<34	87	34	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	5
N-Propylbenzene	<36	87	36	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	5
p-Isopropyltoluene	<32	87	32	ug/Kg		03/23/22 15:10	03/31/22 18:07	5

Eurofins Chicago

__

A

6

8

10

12

14

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-237 9-10

Lab Sample ID: 500-214283-21 Date Collected: 03/23/22 15:10 Date Received: 03/29/22 10:20

Matrix: Solid Percent Solids: 72.4

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<35		87	35	ug/Kg	₽	03/23/22 15:10	03/31/22 18:07	50
Styrene	<34		87	34	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	50
tert-Butylbenzene	<35		87	35	ug/Kg	₽	03/23/22 15:10	03/31/22 18:07	50
Tetrachloroethene	<32		87	32	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	50
Toluene	<13		22	13	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	50
trans-1,2-Dichloroethene	<31		87	31	ug/Kg	₽	03/23/22 15:10	03/31/22 18:07	50
trans-1,3-Dichloropropene	<32		87	32	ug/Kg	≎	03/23/22 15:10	03/31/22 18:07	50
Trichloroethene	<14		44	14	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	50
Trichlorofluoromethane	<37		87	37	ug/Kg	₽	03/23/22 15:10	03/31/22 18:07	50
Vinyl chloride	<23		87	23	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	50
Xylenes, Total	<19		44	19	ug/Kg	₩	03/23/22 15:10	03/31/22 18:07	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 126				03/23/22 15:10	03/31/22 18:07	50
4-Bromofluorobenzene (Surr)	88		72 - 124				03/23/22 15:10	03/31/22 18:07	50
Dibromofluoromethane (Surr)	100		75 - 120				03/23/22 15:10	03/31/22 18:07	50
Toluene-d8 (Surr)	94		75 - 120				03/23/22 15:10	03/31/22 18:07	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<11		88	11	ug/Kg	<u></u>	04/06/22 06:52	04/07/22 12:35	1
2-Methylnaphthalene	<8.0		88	8.0	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Acenaphthene	<7.8		43	7.8	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Acenaphthylene	<5.7		43	5.7	ug/Kg	≎	04/06/22 06:52	04/07/22 12:35	1
Anthracene	11	J	43	7.3	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Benzo[a]anthracene	32	J	43	5.9	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Benzo[a]pyrene	50		43	8.4	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Benzo[b]fluoranthene	54		43	9.4	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Benzo[g,h,i]perylene	<14		43	14	ug/Kg	☼	04/06/22 06:52	04/07/22 12:35	1
Benzo[k]fluoranthene	34	J	43	13	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Chrysene	44		43	12	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Dibenz(a,h)anthracene	<8.4		43	8.4	ug/Kg	☼	04/06/22 06:52	04/07/22 12:35	1
Fluoranthene	88		43	8.1	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Fluorene	6.7	J	43	6.1	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Indeno[1,2,3-cd]pyrene	25	J	43	11	ug/Kg	☼	04/06/22 06:52	04/07/22 12:35	1
Naphthalene	14	J	43	6.7	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Phenanthrene	67		43	6.1	ug/Kg	₽	04/06/22 06:52	04/07/22 12:35	1
Pyrene	91		43	8.7	ug/Kg	≎	04/06/22 06:52	04/07/22 12:35	1
Surrogate	%Recovery	Qualifier	l imits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	59		43 - 145	04/06/22 06:52	04/07/22 12:35	1
Nitrobenzene-d5 (Surr)	63		37 - 147	04/06/22 06:52	04/07/22 12:35	1
Terphenyl-d14 (Surr)	62		42 - 157	04/06/22 06:52	04/07/22 12:35	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	27		1.2	0.42	mg/Kg	*	04/06/22 01:36	04/07/22 00:32	1
Lead	1400		0.61	0.28	mg/Kg	₩	04/06/22 01:36	04/07/22 00:32	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-213 0-2

Date Collected: 03/24/22 09:10

Lab Sample ID: 500-214283-22

Matrix: Solid

Job ID: 500-214283-1

Method: 8260B - Volatile Org	anic Compounds	(GC/MS)						
Analyte	Result Qual		MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<50	110	50	ug/Kg	⇒	03/24/22 09:10	03/31/22 18:30	5
1,1,1-Trichloroethane	<41	110	41	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,1,2,2-Tetrachloroethane	<43	110	43	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,1,2-Trichloroethane	<38	110	38	ug/Kg	₽	03/24/22 09:10	03/31/22 18:30	5
1,1-Dichloroethane	<44	110	44	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,1-Dichloroethene	<42	110	42	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,1-Dichloropropene	<32	110	32	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,2,3-Trichlorobenzene	<50	110	50	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,2,3-Trichloropropane	<45	220	45	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,2,4-Trichlorobenzene	<37	110	37	ug/Kg	₽	03/24/22 09:10	03/31/22 18:30	5
1,2,4-Trimethylbenzene	190	110	39	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,2-Dibromo-3-Chloropropane	<220	540	220	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,2-Dibromoethane	<42	110	42	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,2-Dichlorobenzene	<36	110	36	ug/Kg	₽	03/24/22 09:10	03/31/22 18:30	5
1,2-Dichloroethane	<42	110		ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,2-Dichloropropane	<46	110	46	ug/Kg		03/24/22 09:10	03/31/22 18:30	5
1,3,5-Trimethylbenzene	51 J	110	41	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,3-Dichlorobenzene	<43	110	43	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
1,3-Dichloropropane	<39	110	39	ug/Kg		03/24/22 09:10	03/31/22 18:30	5
1,4-Dichlorobenzene	<39	110	39	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
2,2-Dichloropropane	<48	110	48	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
2-Chlorotoluene	<34	110		ug/Kg		03/24/22 09:10	03/31/22 18:30	5
4-Chlorotoluene	<38	110		ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
Benzene	<16	27	16	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
Bromobenzene	<39	110	39	ug/Kg		03/24/22 09:10	03/31/22 18:30	5
Bromochloromethane	<46	110	46	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
Dichlorobromomethane	<40	110	40	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
Bromoform	<52	110		ug/Kg		03/24/22 09:10	03/31/22 18:30	5
Bromomethane	<86	320		ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
Carbon tetrachloride	<42	110		ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
Chlorobenzene	<42	110	42	ug/Kg		03/24/22 09:10	03/31/22 18:30	5
Chloroethane	<55	110		ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	5
Chloroform	<40	220		ug/Kg	₩		03/31/22 18:30	5
Chloromethane	<35	110		ug/Kg	 \$	03/24/22 09:10		5
cis-1,2-Dichloroethene	<44	110		ug/Kg	₽		03/31/22 18:30	5
cis-1,3-Dichloropropene	<45	110		ug/Kg	₩		03/31/22 18:30	5
Dibromochloromethane	<53	110		ug/Kg			03/31/22 18:30	5
Dibromomethane	<29	110		ug/Kg	₩		03/31/22 18:30	5
Dichlorodifluoromethane	<73	320		ug/Kg			03/31/22 18:30	5
Ethylbenzene	100	27		ug/Kg			03/31/22 18:30	5
Hexachlorobutadiene	<48	110		ug/Kg			03/31/22 18:30	5
Isopropyl ether	<30	110		ug/Kg	₩		03/31/22 18:30	5
Isopropylbenzene	88 J	110		ug/Kg			03/31/22 18:30	5
Methyl tert-butyl ether	<43	110		ug/Kg	₩		03/31/22 18:30	5
Methylene Chloride	410 JB	540		ug/Kg	₩		03/31/22 18:30	5
Naphthalene	250 B	110		ug/Kg			03/31/22 18:30	5 5
n-Butylbenzene	250 B <42	110		ug/Kg ug/Kg	₩		03/31/22 18:30	5
	110	110		ug/Kg ug/Kg	₩ \$		03/31/22 18:30	5
N-Propylbenzene p-Isopropyltoluene	<39	110		ug/Kg ug/Kg	\		03/31/22 18:30	5 5

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-213 0-2

Date Collected: 03/24/22 09:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-22

Matrix: Solid

Percent Solids: 70.1

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<43		110	43	ug/Kg	<u></u>	03/24/22 09:10	03/31/22 18:30	50
Styrene	<42		110	42	ug/Kg	☼	03/24/22 09:10	03/31/22 18:30	50
tert-Butylbenzene	<43		110	43	ug/Kg	₽	03/24/22 09:10	03/31/22 18:30	50
Tetrachloroethene	<40		110	40	ug/Kg	☼	03/24/22 09:10	03/31/22 18:30	50
Toluene	390		27	16	ug/Kg	☼	03/24/22 09:10	03/31/22 18:30	50
trans-1,2-Dichloroethene	<38		110	38	ug/Kg	₽	03/24/22 09:10	03/31/22 18:30	50
trans-1,3-Dichloropropene	<39		110	39	ug/Kg	☼	03/24/22 09:10	03/31/22 18:30	50
Trichloroethene	<18		54	18	ug/Kg	☼	03/24/22 09:10	03/31/22 18:30	50
Trichlorofluoromethane	<46		110	46	ug/Kg	₽	03/24/22 09:10	03/31/22 18:30	50
Vinyl chloride	<28		110	28	ug/Kg	☼	03/24/22 09:10	03/31/22 18:30	50
Xylenes, Total	660		54	24	ug/Kg	₩	03/24/22 09:10	03/31/22 18:30	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75 - 126				03/24/22 09:10	03/31/22 18:30	50
4-Bromofluorobenzene (Surr)	89		72 - 124				03/24/22 09:10	03/31/22 18:30	50
Dibromofluoromethane (Surr)	99		75 - 120				03/24/22 09:10	03/31/22 18:30	50
Toluene-d8 (Surr)	95		75 - 120				03/24/22 09:10	03/31/22 18:30	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<480		2300	480	ug/Kg	<u></u>	04/06/22 06:52	04/11/22 15:29	10
1,2-Dichlorobenzene	<540		2300	540	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
1,3-Dichlorobenzene	<510		2300	510	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
1,4-Dichlorobenzene	<580		2300	580	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
1-Methylnaphthalene	4300		910	110	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
2,2'-oxybis[1-chloropropane]	<520		2300	520	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
2,4,5-Trichlorophenol	<1000		4500	1000	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
2,4,6-Trichlorophenol	<1500		4500	1500	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
2,4-Dichlorophenol	<1100		4500	1100	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
2,4-Dimethylphenol	<1700		4500	1700	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
2,4-Dinitrophenol	<7900		9100	7900	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
2,4-Dinitrotoluene	<710		2300	710	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
2,6-Dinitrotoluene	<880		2300	880	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
2-Chloronaphthalene	<500		2300	500	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
2-Chlorophenol	<770		2300	770	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
2-Methylnaphthalene	5700		910	83	ug/Kg	⊅	04/06/22 06:52	04/11/22 15:29	10
2-Methylphenol	<720		2300	720	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
2-Nitroaniline	<600		2300	600	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
2-Nitrophenol	<1100		4500	1100	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
3 & 4 Methylphenol	<750		2300	750	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
3,3'-Dichlorobenzidine	<630		2300	630	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
3-Nitroaniline	<1400		4500	1400	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
4,6-Dinitro-2-methylphenol	<3600		9100	3600	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
4-Bromophenyl phenyl ether	<590		2300	590	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
4-Chloro-3-methylphenol	<1500		4500	1500	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
4-Chloroaniline	<2100		9100	2100	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
4-Chlorophenyl phenyl ether	<520		2300	520	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
4-Nitroaniline	<1900		4500	1900	ug/Kg	☼	04/06/22 06:52	04/11/22 15:29	10
4-Nitrophenol	<4300		9100	4300	ug/Kg	☆	04/06/22 06:52	04/11/22 15:29	10
Acenaphthene	<81		450	81	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10

Eurofins Chicago

2

3

6

9

1 4

12

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-213 0-2

Date Collected: 03/24/22 09:10 Date Received: 03/29/22 10:20

Aldrin

alpha-BHC

Lab Sample ID: 500-214283-22

Matrix: Solid

Percent Solids: 70.1

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	<59		450	59	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
Anthracene	260	J	450	75	ug/Kg	₽	04/06/22 06:52	04/11/22 15:29	10
Benzo[a]anthracene	640		450	60	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
Benzo[a]pyrene	620		450	87	ug/Kg	₽	04/06/22 06:52	04/11/22 15:29	10
Benzo[b]fluoranthene	980		450	97	ug/Kg	₽	04/06/22 06:52	04/11/22 15:29	10
Benzo[g,h,i]perylene	290	J	450	140	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
Benzo[k]fluoranthene	260	J	450	130	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
Benzoic acid	<4500		23000	4500	ug/Kg	₽	04/06/22 06:52	04/11/22 15:29	10
Benzyl alcohol	<4500		9100	4500	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
Bis(2-chloroethoxy)methane	<460		2300	460	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
Bis(2-chloroethyl)ether	<670		2300	670	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
Bis(2-ethylhexyl) phthalate	<820		2300	820	ug/Kg	₩	04/06/22 06:52	04/11/22 15:29	10
Butyl benzyl phthalate	<850		2300	850	ug/Kg		04/06/22 06:52	04/11/22 15:29	10
Carbazole	<1100		2300	1100	ug/Kg	₽	04/06/22 06:52	04/11/22 15:29	10
Chrysene	870		450	120	ug/Kg	₽	04/06/22 06:52	04/11/22 15:29	10
Dibenz(a,h)anthracene	<87		450	87			04/06/22 06:52	04/11/22 15:29	10
Dibenzofuran	1400	J	2300	530		₩	04/06/22 06:52	04/11/22 15:29	10
Diethyl phthalate	<760		2300	760		₩	04/06/22 06:52	04/11/22 15:29	10
Dimethyl phthalate	<590		2300	590		 ☆	04/06/22 06:52	04/11/22 15:29	10
Di-n-butyl phthalate	<680		2300	680	ug/Kg	₩.	04/06/22 06:52	04/11/22 15:29	10
Di-n-octyl phthalate	<730		2300	730	ug/Kg	₽		04/11/22 15:29	10
Fluoranthene	1200		450	83			04/06/22 06:52		10
Fluorene	<63		450	63	ug/Kg	₽		04/11/22 15:29	10
Hexachlorobenzene	<100		910	100		₩		04/11/22 15:29	10
Hexachlorobutadiene	<710		2300		ug/Kg		04/06/22 06:52		10
Hexachlorocyclopentadiene	<2600		9100	2600	ug/Kg			04/11/22 15:29	10
Hexachloroethane	<680		2300	680	ug/Kg			04/11/22 15:29	10
Indeno[1,2,3-cd]pyrene	230		450	120			04/06/22 06:52		10
Isophorone	<500	•	2300	500		₩		04/11/22 15:29	10
Naphthalene	4200		450	69	ug/Kg	₩		04/11/22 15:29	10
Nitrobenzene	<110		450		ug/Kg			04/11/22 15:29	10
N-Nitrosodi-n-propylamine	<550		910	550		₩		04/11/22 15:29	10
N-Nitrosodiphenylamine	<530 <530		2300	530	ug/Kg	₩		04/11/22 15:29	10
Pentachlorophenol	<7200		9100	7200			04/06/22 06:52		10
			450		ug/Kg ug/Kg		04/06/22 06:52		10
Phenanthrene	2700				0 0	ψ.			
Phenol Pyrene	<1000 1300		2300 450		ug/Kg ug/Kg	ф ф	04/06/22 06:52		10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	81		31 - 143					04/11/22 15:29	10
2-Fluorobiphenyl (Surr)	76		43 - 145				04/06/22 06:52	04/11/22 15:29	10
2-Fluorophenol (Surr)	144		31 - 166					04/11/22 15:29	10
Nitrobenzene-d5 (Surr)	61		37 - 147					04/11/22 15:29	10
Phenol-d5 (Surr)	90		30 - 153					04/11/22 15:29	10
Terphenyl-d14 (Surr)	75		42 - 157					04/11/22 15:29	10
Method: 8081A - Organoch									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Eurofins Chicago

© 04/05/22 16:57 04/06/22 17:21

☼ 04/05/22 16:57 04/06/22 17:21

12

12

8.3 ug/Kg

6.7 ug/Kg

<8.3

<6.7

5

2

Ĭ

8

10

4.0

13

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-213 0-2 Lab Sample ID: 500-214283-22

Date Collected: 03/24/22 09:10

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 70.1

Analyte	Result Q	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<6.4		12	6.4	ug/Kg	<u></u>	04/05/22 16:57	04/06/22 17:21	5
beta-BHC	<9.6		12	9.6	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
4,4'-DDD	<6.4		12	6.4	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
4,4'-DDE	<6.1		12	6.1	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
4,4'-DDT	<5.7		12	5.7	ug/Kg	₽	04/05/22 16:57	04/06/22 17:21	5
delta-BHC	<5.7		12	5.7	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
Dieldrin	<6.2		12	6.2	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
Endosulfan I	<6.4		12	6.4	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
Endosulfan II	<6.5		12	6.5	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
Endosulfan sulfate	<6.6		12	6.6	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
Endrin	<6.1		12	6.1	ug/Kg	₽	04/05/22 16:57	04/06/22 17:21	5
Endrin aldehyde	<6.8		12	6.8	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
Endrin ketone	<5.8		12	5.8	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
gamma-BHC (Lindane)	<5.9		12	5.9	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
trans-Chlordane	<6.9		12	6.9	ug/Kg	₽	04/05/22 16:57	04/06/22 17:21	5
Heptachlor	<6.4		12	6.4	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
Heptachlor epoxide	<6.4		12	6.4	ug/Kg	₽	04/05/22 16:57	04/06/22 17:21	5
Methoxychlor	<7.8		59	7.8	ug/Kg	₽	04/05/22 16:57	04/06/22 17:21	5
Toxaphene	<48		120	48	ug/Kg	₩	04/05/22 16:57	04/06/22 17:21	5
Surrogate	%Recovery Q	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	118		33 - 148				04/05/22 16:57	04/06/22 17:21	5
Tetrachloro-m-xylene	89		30 - 121				04/05/22 16:57	04/06/22 17:21	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0093		0.024	0.0093	mg/Kg	*	04/05/22 16:57	04/08/22 21:20	1
PCB-1221	< 0.0093		0.024	0.0093	mg/Kg	☼	04/05/22 16:57	04/08/22 21:20	1
PCB-1232	< 0.0064		0.024	0.0064	mg/Kg	☼	04/05/22 16:57	04/08/22 21:20	1
PCB-1242	<0.0092		0.024	0.0092	mg/Kg	₩	04/05/22 16:57	04/08/22 21:20	1
PCB-1248	<0.011		0.024	0.011	mg/Kg	₩	04/05/22 16:57	04/08/22 21:20	1
PCB-1254	<0.0080		0.024	0.0080	mg/Kg	₩	04/05/22 16:57	04/08/22 21:20	1
PCB-1260	0.052		0.024	0.0089	mg/Kg	☆	04/05/22 16:57	04/08/22 21:20	1
PCB-1262	< 0.0077		0.024	0.0077	mg/Kg	₩	04/05/22 16:57	04/08/22 21:20	1
PCB-1268	<0.014		0.024	0.014	mg/Kg	☼	04/05/22 16:57	04/08/22 21:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	62		49 - 129				04/05/22 16:57	04/08/22 21:20	1
DCB Decachlorobiphenyl	71		37 - 121				04/05/22 16:57	04/08/22 21:20	1

Method: 8151A - Herbicides	(GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<110	460	110	ug/Kg	— -	04/05/22 12:40	04/07/22 17:34	10
2,4-DB	<140	460	140	ug/Kg	₽	04/05/22 12:40	04/07/22 17:34	10
Dicamba	<99	460	99	ug/Kg	₽	04/05/22 12:40	04/07/22 17:34	10
Dichlorprop	<110	460	110	ug/Kg	₩	04/05/22 12:40	04/07/22 17:34	10
Silvex (2,4,5-TP)	<100	460	100	ug/Kg	₩	04/05/22 12:40	04/07/22 17:34	10
2,4,5-T	<92	460	92	ug/Kg	☼	04/05/22 12:40	04/07/22 17:34	10
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	66	25 - 120				04/05/22 12:40	04/07/22 17:34	10

Eurofins Chicago

Job ID: 500-214283-1

Page 98 of 356 4/15/2022

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-213 0-2

Date Collected: 03/24/22 09:10

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-22

Matrix: Solid

Percent Solids: 70.1

Method: 6010C - Metals (IC	•							
Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	12	1.4	0.48	mg/Kg	— <u></u>	04/06/22 01:36	04/07/22 00:36	1
Barium	81	1.4	0.16	mg/Kg	₽	04/06/22 01:36	04/07/22 00:36	1
Cadmium	0.67 B	0.28	0.051	mg/Kg	₽	04/06/22 01:36	04/07/22 00:36	1
Chromium	22 B	1.4	0.70	mg/Kg	₽	04/06/22 01:36	04/07/22 00:36	1
Lead	210	0.71	0.33	mg/Kg	₽	04/06/22 01:36	04/07/22 00:36	1
Selenium	<0.83	1.4	0.83	mg/Kg	≎	04/06/22 01:36	04/07/22 00:36	1
Silver	<0.18	0.71	0.18	mg/Kg	☼	04/06/22 01:36	04/07/22 00:36	1
- Method: 7471B - Mercury (CVAA)							
Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.065	0.023	0.0076	mg/Kg	<u></u>	04/07/22 13:45	04/08/22 11:42	1

6

8

9

10

11

13

15

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-213 10-12

Date Collected: 03/24/22 09:15 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-23

Matrix: Solid

Job ID: 500-214283-1

Percent Solids: 79.2

Result Qualifier	RL	MDL	11		Daniel and a second	A II	
				D	Prepared	Analyzed	Dil Fa
<35	76		ug/Kg	☼	03/24/22 09:15	03/31/22 18:53	5
				☼			5
<30	76	30	ug/Kg		03/24/22 09:15	03/31/22 18:53	5
<27	76	27	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	5
<31	76	31	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	5
<30	76	30	ug/Kg	☼	03/24/22 09:15	03/31/22 18:53	5
<23	76	23	ug/Kg	☼	03/24/22 09:15	03/31/22 18:53	5
<35	76	35	ug/Kg	☼	03/24/22 09:15	03/31/22 18:53	5
<32	150	32	ug/Kg	☼	03/24/22 09:15	03/31/22 18:53	5
<26	76	26	ug/Kg	₽	03/24/22 09:15	03/31/22 18:53	5
<27	76	27	ug/Kg	☼	03/24/22 09:15	03/31/22 18:53	5
<150	380	150	ug/Kg	☼	03/24/22 09:15	03/31/22 18:53	5
<30	76	30	ug/Kg	₽	03/24/22 09:15	03/31/22 18:53	5
<26	76	26	ug/Kg	₽	03/24/22 09:15	03/31/22 18:53	5
<30	76	30	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	5
<33	76	33	ug/Kg	₽	03/24/22 09:15	03/31/22 18:53	5
<29	76	29	ug/Kg	₽	03/24/22 09:15	03/31/22 18:53	5
<31	76	31		☼	03/24/22 09:15	03/31/22 18:53	5
<28	76	28		 ф	03/24/22 09:15	03/31/22 18:53	5
<28	76			☼	03/24/22 09:15	03/31/22 18:53	5
<34	76	34		₽	03/24/22 09:15	03/31/22 18:53	5
				 			5
				₩			5
							5
							5
							5
							5
							5
							5
							5
							5
							5
							5
							5
							5
							5
							5
							5
							5
							5
							5
				₩			5
				₩			5
290 JB				.			5
<26	76			₩			5
<30	76	30	ug/Kg	☼	03/24/22 09:15	03/31/22 18:53	5
<32	76	32	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	5
	<29 <30 <27 <31 <30 <23 <35 <32 <26 <27 <150 <30 <26 <30 <28 <28 <28 <34 <24 <27 <11 <27 <33 <28 <28 <31 <22 <11 <27 <31 <28 <28 <31 <21 <27 <11 <27 <31 <28 <28 <31 <29 <31 <28 <31 <29 <31 <20 <31 <20 <31 <20 <31 <32 <31 <32 <32 <31 <32 <31 <32 <32 <31 <32 <32 <31 <32 <31 <32 <32 <31 <32 <31 <32 <32 <31 <32 <31 <32 <32 <31 <32 <31 <32 <32 <31 <32 <31 <32 <32 <31 <32 <31 <32 <32 <31 <32 <32 <31 <32 <32 <31 <32 <32 <31 <32 <32 <31 <32 <32 <33 <32 <31 <32 <32 <33 <32 <33 <32 <33 <32 <33 <32 <33 <33	<29	<29	<29	<29	<29	<29

Eurofins Chicago

3

5

7

9

11

1 /

Client: Stantec Consulting Corp.

Dibromofluoromethane (Surr)

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-213 10-12 Lab Sample ID: 500-214283-23

101

Date Collected: 03/24/22 09:15 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 79.2

Method: 8260B - Volatile Or	rganic Compo	unds (GC/	MS) (Contini	ued)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<30		76	30	ug/Kg	<u></u>	03/24/22 09:15	03/31/22 18:53	50
Styrene	<30		76	30	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	50
tert-Butylbenzene	<30		76	30	ug/Kg	₩	03/24/22 09:15	03/31/22 18:53	50
Tetrachloroethene	<28		76	28	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	50
Toluene	<11		19	11	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	50
trans-1,2-Dichloroethene	<27		76	27	ug/Kg	₽	03/24/22 09:15	03/31/22 18:53	50
trans-1,3-Dichloropropene	<28		76	28	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	50
Trichloroethene	<13		38	13	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	50
Trichlorofluoromethane	<33		76	33	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	50
Vinyl chloride	<20		76	20	ug/Kg	≎	03/24/22 09:15	03/31/22 18:53	50
Xylenes, Total	<17		38	17	ug/Kg	₽	03/24/22 09:15	03/31/22 18:53	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102		75 - 126				03/24/22 09:15	03/31/22 18:53	50
4-Bromofluorobenzene (Surr)	90		72 - 124				03/24/22 09:15	03/31/22 18:53	50

75 - 120

Toluene-d8 (Surr)	95		75 - 120				03/24/22 09:15	03/31/22 18:53	5
Method: 8270D - Semivo	latile Organic Co	mpounds	(GC/MS)						
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	<9.7		80	9.7	ug/Kg	<u></u>	04/06/22 06:52	04/07/22 12:58	-
2-Methylnaphthalene	<7.3		80	7.3	ug/Kg	₩	04/06/22 06:52	04/07/22 12:58	
Acenaphthene	<7.1		39	7.1	ug/Kg	₩	04/06/22 06:52	04/07/22 12:58	
Acenaphthylene	<5.2		39	5.2	ug/Kg	☼	04/06/22 06:52	04/07/22 12:58	
Anthracene	<6.6		39	6.6	ug/Kg	₩	04/06/22 06:52	04/07/22 12:58	
Benzo[a]anthracene	<5.3		39	5.3	ug/Kg	☼	04/06/22 06:52	04/07/22 12:58	
Benzo[a]pyrene	<7.7		39	7.7	ug/Kg	≎	04/06/22 06:52	04/07/22 12:58	
Benzo[b]fluoranthene	<8.6		39	8.6	ug/Kg	₩	04/06/22 06:52	04/07/22 12:58	
Benzo[g,h,i]perylene	<13		39	13	ug/Kg	₩	04/06/22 06:52	04/07/22 12:58	
Benzo[k]fluoranthene	<12		39	12	ug/Kg	≎	04/06/22 06:52	04/07/22 12:58	
Chrysene	<11		39	11	ug/Kg	₩	04/06/22 06:52	04/07/22 12:58	
Dibenz(a,h)anthracene	<7.7		39	7.7	ug/Kg	☼	04/06/22 06:52	04/07/22 12:58	
Fluoranthene	<7.4		39	7.4	ug/Kg	₩	04/06/22 06:52	04/07/22 12:58	
Fluorene	<5.6		39	5.6	ug/Kg	☼	04/06/22 06:52	04/07/22 12:58	
Indeno[1,2,3-cd]pyrene	<10		39	10	ug/Kg	₩	04/06/22 06:52	04/07/22 12:58	
Naphthalene	<6.1		39	6.1	ug/Kg	₩	04/06/22 06:52	04/07/22 12:58	
Phenanthrene	6.1	J	39	5.5	ug/Kg	₩	04/06/22 06:52	04/07/22 12:58	
Pyrene	<7.9		39	7.9	ug/Kg	☼	04/06/22 06:52	04/07/22 12:58	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	70		43 - 145				04/06/22 06:52	04/07/22 12:58	
Nitrobenzene-d5 (Surr)	55		37 - 147				04/06/22 06:52	04/07/22 12:58	
Terphenyl-d14 (Surr)	106		42 - 157				04/06/22 06:52	04/07/22 12:58	

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.64	J	1.2	0.42	mg/Kg	☆	04/07/22 07:00	04/07/22 22:30	1
Lead	3.3		0.62	0.29	mg/Kg	₩	04/07/22 07:00	04/07/22 22:30	1

Eurofins Chicago

Job ID: 500-214283-1

03/24/22 09:15 03/31/22 18:53

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: 500-214283-24

Lab Sample ID: 500-214283-24

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<44		95		ug/Kg	— <u></u>	03/24/22 10:10	04/01/22 12:25	5
1,1,1-Trichloroethane	<36		95		ug/Kg	₩		04/01/22 12:25	5
1,1,2,2-Tetrachloroethane	<38		95		ug/Kg	₩	03/24/22 10:10	04/01/22 12:25	5
1,1,2-Trichloroethane	<34		95		ug/Kg	∴	03/24/22 10:10	04/01/22 12:25	
I,1-Dichloroethane	<39		95		ug/Kg	÷		04/01/22 12:25	5
1,1-Dichloroethene	<37		95		ug/Kg	₩		04/01/22 12:25	5
1,1-Dichloropropene	<28		95		ug/Kg		03/24/22 10:10		5
1,2,3-Trichlorobenzene	<44		95		ug/Kg	☆		04/01/22 12:25	5
1,2,3-Trichloropropane	<39		190		ug/Kg	☼		04/01/22 12:25	5
1,2,4-Trichlorobenzene	<33		95		ug/Kg				5
1,2,4-Trimethylbenzene	410		95		ug/Kg			04/01/22 12:25	5
1,2-Dibromo-3-Chloropropane	<190	,	480		ug/Kg		03/24/22 10:10		5
1,2-Dibromoethane	<37		95		ug/Kg		03/24/22 10:10		5 5
1,2-Diblomoetrialie	<32		95		ug/Kg ug/Kg	₩	03/24/22 10:10		5
1,2-Dichloroethane	<37		95		ug/Kg ug/Kg		03/24/22 10:10		5
1,2-Dichloropropane	<41		95		ug/Kg		03/24/22 10:10		5 5
· ·	96		95		ug/Kg ug/Kg	₽		04/01/22 12:25	5
1,3,5-Trimethylbenzene 1,3-Dichlorobenzene	96 <38		95 95		ug/Kg ug/Kg	₩		04/01/22 12:25	5
							03/24/22 10:10		
1,3-Dichloropropane	<35		95		ug/Kg	ψ.			5
I,4-Dichlorobenzene	<35		95		ug/Kg	*		04/01/22 12:25	5
2,2-Dichloropropane	<42		95		ug/Kg	<u>*</u> .		04/01/22 12:25	
2-Chlorotoluene	<30		95		ug/Kg	<u></u>		04/01/22 12:25	5
1-Chlorotoluene	<33		95		ug/Kg	*		04/01/22 12:25	5
3enzene	74		24		ug/Kg	.		04/01/22 12:25	5
Bromobenzene	<34		95		ug/Kg	*		04/01/22 12:25	5
Bromochloromethane	<41		95		ug/Kg	*		04/01/22 12:25	5
Dichlorobromomethane	<35		95		ug/Kg	. .		04/01/22 12:25	
Bromoform	<46		95		ug/Kg	‡		04/01/22 12:25	5
Bromomethane	<76	2	290		ug/Kg	₩		04/01/22 12:25	5
Carbon tetrachloride	<37		95		ug/Kg			04/01/22 12:25	
Chlorobenzene	<37		95		ug/Kg		03/24/22 10:10		5
Chloroethane	<48		95		ug/Kg	☼	03/24/22 10:10		5
Chloroform	<35		190		ug/Kg		03/24/22 10:10		5
Chloromethane	<31		95		ug/Kg	₩	03/24/22 10:10		5
cis-1,2-Dichloroethene	<39		95		ug/Kg	≎	03/24/22 10:10		5
cis-1,3-Dichloropropene	<40		95		ug/Kg		03/24/22 10:10		5
Dibromochloromethane	<47		95	47	ug/Kg	₩	03/24/22 10:10		5
Dibromomethane	<26		95	26	ug/Kg	₩	03/24/22 10:10	04/01/22 12:25	5
Dichlorodifluoromethane	<64	2	290	64	ug/Kg	₩	03/24/22 10:10	04/01/22 12:25	5
Ethylbenzene	170		24	17	ug/Kg	₩	03/24/22 10:10	04/01/22 12:25	5
Hexachlorobutadiene	<43		95	43	ug/Kg	≎	03/24/22 10:10	04/01/22 12:25	5
sopropyl ether	<26		95	26	ug/Kg	≎	03/24/22 10:10	04/01/22 12:25	5
sopropylbenzene	130		95	37	ug/Kg	≎	03/24/22 10:10	04/01/22 12:25	5
Methyl tert-butyl ether	<38		95	38	ug/Kg	☼	03/24/22 10:10	04/01/22 12:25	5
Methylene Chloride	<160	4	480	160	ug/Kg	☆	03/24/22 10:10	04/01/22 12:25	5
laphthalene	500 E	B	95	32	ug/Kg	≎	03/24/22 10:10	04/01/22 12:25	5
n-Butylbenzene	<37		95	37	ug/Kg	≎	03/24/22 10:10	04/01/22 12:25	5
N-Propylbenzene	180		95		ug/Kg	≎	03/24/22 10:10	04/01/22 12:25	5

Eurofins Chicago

9

Job ID: 500-214283-1

3

5

7

9

11

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-217 0-2

Date Collected: 03/24/22 10:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-24

Matrix: Solid

Percent Solids: 78.8

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	69	J	95	38	ug/Kg	<u></u>	03/24/22 10:10	04/01/22 12:25	50
Styrene	<37		95	37	ug/Kg	☼	03/24/22 10:10	04/01/22 12:25	50
tert-Butylbenzene	<38		95	38	ug/Kg	₽	03/24/22 10:10	04/01/22 12:25	50
Tetrachloroethene	<35		95	35	ug/Kg	☼	03/24/22 10:10	04/01/22 12:25	50
Toluene	460		24	14	ug/Kg	₩	03/24/22 10:10	04/01/22 12:25	50
trans-1,2-Dichloroethene	<33		95	33	ug/Kg	₽	03/24/22 10:10	04/01/22 12:25	50
trans-1,3-Dichloropropene	<35		95	35	ug/Kg	₩	03/24/22 10:10	04/01/22 12:25	50
Trichloroethene	<16		48	16	ug/Kg	☼	03/24/22 10:10	04/01/22 12:25	50
Trichlorofluoromethane	<41		95	41	ug/Kg	₽	03/24/22 10:10	04/01/22 12:25	50
Vinyl chloride	<25		95	25	ug/Kg	₩	03/24/22 10:10	04/01/22 12:25	50
Xylenes, Total	1100		48	21	ug/Kg	₩	03/24/22 10:10	04/01/22 12:25	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		75 - 126				03/24/22 10:10	04/01/22 12:25	50
4-Bromofluorobenzene (Surr)	87		72 - 124				03/24/22 10:10	04/01/22 12:25	50
Dibromofluoromethane (Surr)	95		75 - 120				03/24/22 10:10	04/01/22 12:25	50
Toluene-d8 (Surr)	96		75 - 120				03/24/22 10:10	04/01/22 12:25	50

Analyte	Result Q	Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<430	2000	430	ug/Kg	— <u>~</u>	04/07/22 05:35	04/11/22 18:15	10
1,2-Dichlorobenzene	<480	2000	480	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	10
1,3-Dichlorobenzene	<450	2000	450	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	10
1,4-Dichlorobenzene	<510	2000	510	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	10
1-Methylnaphthalene	3500	810	98	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
2,2'-oxybis[1-chloropropane]	<470	2000	470	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	10
2,4,5-Trichlorophenol	<920	4000	920	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	10
2,4,6-Trichlorophenol	<1400	4000	1400	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
2,4-Dichlorophenol	<950	4000	950	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	10
2,4-Dimethylphenol	<1500	4000	1500	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	10
2,4-Dinitrophenol	<7100	8100	7100	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
2,4-Dinitrotoluene	<640	2000	640	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
2,6-Dinitrotoluene	<790	2000	790	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
2-Chloronaphthalene	<440	2000	440	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
2-Chlorophenol	<690	2000	690	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
2-Methylnaphthalene	4300	810	74	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	10
2-Methylphenol	<640	2000	640	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
2-Nitroaniline	<540	2000	540	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
2-Nitrophenol	<950	4000	950	ug/Kg	⊅	04/07/22 05:35	04/11/22 18:15	10
3 & 4 Methylphenol	<670	2000	670	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	10
3,3'-Dichlorobenzidine	<560	2000	560	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
3-Nitroaniline	<1200	4000	1200	ug/Kg	⊅	04/07/22 05:35	04/11/22 18:15	10
4,6-Dinitro-2-methylphenol	<3200	8100	3200	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
4-Bromophenyl phenyl ether	<530	2000	530	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
4-Chloro-3-methylphenol	<1400	4000	1400	ug/Kg	⊅	04/07/22 05:35	04/11/22 18:15	10
4-Chloroaniline	<1900	8100	1900	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
4-Chlorophenyl phenyl ether	<470	2000	470	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
4-Nitroaniline	<1700	4000	1700	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	10
4-Nitrophenol	<3800	8100	3800	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	10
Acenaphthene	<72	400	72	ug/Kg	₽	04/07/22 05:35	04/11/22 18:15	10

Eurofins Chicago

3

7

9

10

12

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-217 0-2

Date Collected: 03/24/22 10:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-24

Matrix: Solid

Percent Solids: 78.8

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthylene	<53		400	53	ug/Kg	-	04/07/22 05:35	04/11/22 18:15	1
Anthracene	210	J	400	67	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Benzo[a]anthracene	250	J	400	54	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Benzo[a]pyrene	200	J	400	78	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Benzo[b]fluoranthene	400		400	87	ug/Kg	≎	04/07/22 05:35	04/11/22 18:15	1
Benzo[g,h,i]perylene	130	J	400	130	ug/Kg	₽	04/07/22 05:35	04/11/22 18:15	1
Benzo[k]fluoranthene	<120		400	120	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Benzoic acid	<4000		20000	4000	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Benzyl alcohol	<4000		8100	4000	ug/Kg	₽	04/07/22 05:35	04/11/22 18:15	1
Bis(2-chloroethoxy)methane	<410		2000	410	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Bis(2-chloroethyl)ether	<600		2000	600	ug/Kg	₽	04/07/22 05:35	04/11/22 18:15	1
Bis(2-ethylhexyl) phthalate	<730		2000	730	ug/Kg	₽	04/07/22 05:35	04/11/22 18:15	1
Butyl benzyl phthalate	<760		2000	760	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Carbazole	<1000		2000	1000	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Chrysene	310	J	400	110	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Dibenz(a,h)anthracene	<78		400	78	ug/Kg	₽	04/07/22 05:35	04/11/22 18:15	1
Dibenzofuran	840	J	2000	470	ug/Kg	☼	04/07/22 05:35	04/11/22 18:15	1
Diethyl phthalate	<680		2000	680	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Dimethyl phthalate	<520		2000	520	ug/Kg	₽	04/07/22 05:35	04/11/22 18:15	1
Di-n-butyl phthalate	<610		2000	610	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Di-n-octyl phthalate	<660		2000	660	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Fluoranthene	350	J	400	74	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Fluorene	<56		400	56	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Hexachlorobenzene	<93		810	93	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Hexachlorobutadiene	<630		2000	630	ug/Kg	₽	04/07/22 05:35	04/11/22 18:15	1
Hexachlorocyclopentadiene	<2300		8100	2300	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Hexachloroethane	<610		2000	610	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Indeno[1,2,3-cd]pyrene	<100		400	100	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Isophorone	<450		2000	450	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Naphthalene	2500		400	62	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Nitrobenzene	<100		400	100	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
N-Nitrosodi-n-propylamine	<490		810	490	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
N-Nitrosodiphenylamine	<470		2000	470	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Pentachlorophenol	<6400		8100	6400	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Phenanthrene	1800		400	56	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Phenol	<890		2000	890	ug/Kg	₩	04/07/22 05:35	04/11/22 18:15	1
Pyrene	510		400	80	ug/Kg	₽	04/07/22 05:35	04/11/22 18:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	69		31 - 143					04/11/22 18:15	1
2-Fluorobiphenyl (Surr)	64		43 - 145					04/11/22 18:15	1
2-Fluorophenol (Surr)	118		31 - 166					04/11/22 18:15	1
Nitrobenzene-d5 (Surr)	45		37 - 147					04/11/22 18:15	1
Phenol-d5 (Surr)	65		30 - 153				04/07/22 05:35	04/11/22 18:15	1
Terphenyl-d14 (Surr)	86		42 - 157				04/07/22 05:35	04/11/22 18:15	1
Method: 8081A - Organocl						_			.
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Eurofins Chicago

© 04/05/22 16:57 04/06/22 17:41

© 04/05/22 16:57 04/06/22 17:41

11

11

7.4 ug/Kg

6.0 ug/Kg

<7.4

<6.0

Aldrin

alpha-BHC

5

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-217 0-2 Lab Sample ID: 500-214283-24

Date Collected: 03/24/22 10:10 **Matrix: Solid** Percent Solids: 78.8 Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<5.7		11	5.7	ug/Kg	<u></u>	04/05/22 16:57	04/06/22 17:41	5
beta-BHC	<8.6		11	8.6	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
4,4'-DDD	<5.7		11	5.7	ug/Kg	☼	04/05/22 16:57	04/06/22 17:41	5
4,4'-DDE	<5.5		11	5.5	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
4,4'-DDT	<5.1		11	5.1	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
delta-BHC	<5.1		11	5.1	ug/Kg	≎	04/05/22 16:57	04/06/22 17:41	5
Dieldrin	<5.6		11	5.6	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
Endosulfan I	<5.8		11	5.8	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
Endosulfan II	<5.8		11	5.8	ug/Kg	≎	04/05/22 16:57	04/06/22 17:41	5
Endosulfan sulfate	<5.9		11	5.9	ug/Kg	☼	04/05/22 16:57	04/06/22 17:41	5
Endrin	<5.4		11	5.4	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
Endrin aldehyde	<6.1		11	6.1	ug/Kg	☼	04/05/22 16:57	04/06/22 17:41	5
Endrin ketone	<5.2		11	5.2	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
gamma-BHC (Lindane)	<5.3		11	5.3	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
trans-Chlordane	<6.1		11	6.1	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
Heptachlor	<5.8		11	5.8	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
Heptachlor epoxide	<5.7		11	5.7	ug/Kg	₽	04/05/22 16:57	04/06/22 17:41	5
Methoxychlor	<7.0		52	7.0	ug/Kg	₩	04/05/22 16:57	04/06/22 17:41	5
Toxaphene	<43		110	43	ug/Kg	☼	04/05/22 16:57	04/06/22 17:41	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	120		33 - 148				04/05/22 16:57	04/06/22 17:41	5
Tetrachloro-m-xylene	110		30 - 121				04/05/22 16:57	04/06/22 17:41	5

Method: 8082A - Polychio			•	_					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0083		0.021	0.0083	mg/Kg	-	04/05/22 16:57	04/08/22 21:35	1
PCB-1221	<0.0083		0.021	0.0083	mg/Kg	☼	04/05/22 16:57	04/08/22 21:35	1
PCB-1232	< 0.0057		0.021	0.0057	mg/Kg	☼	04/05/22 16:57	04/08/22 21:35	1
PCB-1242	<0.0082		0.021	0.0082	mg/Kg	⊅	04/05/22 16:57	04/08/22 21:35	1
PCB-1248	<0.010		0.021	0.010	mg/Kg	☼	04/05/22 16:57	04/08/22 21:35	1
PCB-1254	< 0.0071		0.021	0.0071	mg/Kg	☼	04/05/22 16:57	04/08/22 21:35	1
PCB-1260	0.34		0.021	0.0079	mg/Kg	₩	04/05/22 16:57	04/08/22 21:35	1
PCB-1262	< 0.0069		0.021	0.0069	mg/Kg	☼	04/05/22 16:57	04/08/22 21:35	1
PCB-1268	<0.012		0.021	0.012	mg/Kg	☼	04/05/22 16:57	04/08/22 21:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	74		49 - 129				04/05/22 16:57	04/08/22 21:35	1
DCB Decachlorobinhenyl	77		37 - 121				04/05/22 16:57	04/08/22 21:35	1

Method: 8151A - Herbic	ides (GC)							
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<100	420	100	ug/Kg		04/05/22 12:40	04/07/22 17:54	10
2,4-DB	<120	420	120	ug/Kg	₩	04/05/22 12:40	04/07/22 17:54	10
Dicamba	<90	420	90	ug/Kg	₩	04/05/22 12:40	04/07/22 17:54	10
Dichlorprop	<100	420	100	ug/Kg	₩	04/05/22 12:40	04/07/22 17:54	10
Silvex (2,4,5-TP)	<95	420	95	ug/Kg	₽	04/05/22 12:40	04/07/22 17:54	10
2,4,5-T	<84	420	84	ug/Kg	₽	04/05/22 12:40	04/07/22 17:54	10
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
DCAA	65	25 - 120				04/05/22 12:40	04/07/22 17:54	10

Eurofins Chicago

Page 105 of 356

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-217 0-2

Date Collected: 03/24/22 10:10

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-24

Matrix: Solid

Percent Solids: 78.8

Job ID: 500-214283-1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.3		1.2	0.43	mg/Kg	<u></u>	04/07/22 07:00	04/07/22 22:47	1
Barium	82		1.2	0.13	mg/Kg	₩	04/06/22 02:01	04/07/22 17:17	1
Cadmium	0.60	В	0.25	0.045	mg/Kg	₩	04/07/22 07:00	04/07/22 22:47	1
Chromium	15		1.2	0.58	mg/Kg	₩	04/06/22 02:01	04/07/22 17:17	1
Lead	90		0.62	0.29	mg/Kg	₩	04/07/22 07:00	04/07/22 22:47	1
Selenium	1.1	J	1.2	0.73	mg/Kg	₩	04/07/22 07:00	04/07/22 22:47	1
Silver	0.28	J	0.62	0.16	mg/Kg	≎	04/07/22 07:00	04/07/22 22:47	1
_ Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.054		0.019	0.0064	mg/Kg	<u></u>	04/07/22 13:45	04/08/22 11:44	1

7

8

9

10

13

4 6

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-217 9-10

Date Collected: 03/24/22 10:15 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-25

Matrix: Solid

Percent Solids: 55.1

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<63		140	63	ug/Kg	— <u></u>	03/24/22 10:15	04/01/22 12:48	5
1,1,1-Trichloroethane	<52		140	52	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	5
1,1,2,2-Tetrachloroethane	<54		140	54	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	5
1,1,2-Trichloroethane	<48		140	48	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	5
1,1-Dichloroethane	<56		140	56	ug/Kg	₽	03/24/22 10:15	04/01/22 12:48	5
1,1-Dichloroethene	<53		140	53	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	5
1,1-Dichloropropene	<41		140	41		 ф	03/24/22 10:15	04/01/22 12:48	5
1,2,3-Trichlorobenzene	<62		140	62	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	5
1,2,3-Trichloropropane	<56		270		ug/Kg	☆	03/24/22 10:15	04/01/22 12:48	5
1,2,4-Trichlorobenzene	<47		140		ug/Kg		03/24/22 10:15	04/01/22 12:48	5
1,2,4-Trimethylbenzene	<49		140	49	ug/Kg	₩		04/01/22 12:48	5
1,2-Dibromo-3-Chloropropane	<270		680		ug/Kg	- TÚ-		04/01/22 12:48	5
1,2-Dibromoethane	<53		140		ug/Kg	∵ ∵		04/01/22 12:48	5
1,2-Dichlorobenzene	<46		140	46	ug/Kg	₩.		04/01/22 12:48	5
1,2-Dichloroethane	<53		140	53		₩		04/01/22 12:48	5
1,2-Dichloropropane	<58		140	58				04/01/22 12:48	
1,3,5-Trimethylbenzene	<52		140		ug/Kg	₩		04/01/22 12:48	į
1,3-Dichlorobenzene	<55		140		ug/Kg ug/Kg	₩		04/01/22 12:48	5
1,3-Dichloropropane	<49		140		ug/Kg ug/Kg	¥ 		04/01/22 12:48	
1,4-Dichlorobenzene	<50		140	50		₩		04/01/22 12:48	į
	<61		140					04/01/22 12:48	į
2,2-Dichloropropane	<43			61	ug/Kg	.			
2-Chlorotoluene			140		ug/Kg			04/01/22 12:48	
4-Chlorotoluene	<48		140		ug/Kg	*		04/01/22 12:48	5
Benzene	<20		34	20				04/01/22 12:48	
Bromobenzene	<49		140		ug/Kg	*	03/24/22 10:15		į
Bromochloromethane	<58		140	58	ug/Kg	‡		04/01/22 12:48	
Dichlorobromomethane	<51		140	51	ug/Kg	<u>.</u> .		04/01/22 12:48	
Bromoform	<66		140		ug/Kg	₩		04/01/22 12:48	Ę
Bromomethane	<110		410	110	ug/Kg	₩		04/01/22 12:48	į
Carbon tetrachloride	<52		140		ug/Kg			04/01/22 12:48	
Chlorobenzene	<53		140		ug/Kg	₩		04/01/22 12:48	į
Chloroethane	<69		140	69	ug/Kg	₩		04/01/22 12:48	į
Chloroform	<50		270	50	ug/Kg		03/24/22 10:15	04/01/22 12:48	
Chloromethane	<44		140		ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	į
cis-1,2-Dichloroethene	<56		140		ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	į
cis-1,3-Dichloropropene	<57		140		ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	
Dibromochloromethane	<67		140	67	ug/Kg	≎	03/24/22 10:15	04/01/22 12:48	į
Dibromomethane	<37		140	37	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	į
Dichlorodifluoromethane	<92		410	92	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	
Ethylbenzene	<25		34	25	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	
Hexachlorobutadiene	<61		140	61	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	į
Isopropyl ether	<38		140	38	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	
Isopropylbenzene	<52		140	52	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	
Methyl tert-butyl ether	<54		140	54	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	!
Methylene Chloride	<220		680		ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	
Naphthalene	62	JB	140		ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	
n-Butylbenzene	<53		140		ug/Kg	₽		04/01/22 12:48	Ę
N-Propylbenzene	<56		140		ug/Kg	₩		04/01/22 12:48	
p-Isopropyltoluene	<49		140		ug/Kg			04/01/22 12:48	5

Eurofins Chicago

2

5

7

9

11

12

14

Client: Stantec Consulting Corp.

Nitrobenzene-d5 (Surr)

Lead

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-217 9-10 Lab Sample ID: 500-214283-25

Date Collected: 03/24/22 10:15 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 55.1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<54		140	54	ug/Kg	₽	03/24/22 10:15	04/01/22 12:48	50
Styrene	<53		140	53	ug/Kg	≎	03/24/22 10:15	04/01/22 12:48	50
tert-Butylbenzene	<54		140	54	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	50
Tetrachloroethene	<50		140	50	ug/Kg	≎	03/24/22 10:15	04/01/22 12:48	50
Toluene	<20		34	20	ug/Kg	≎	03/24/22 10:15	04/01/22 12:48	50
trans-1,2-Dichloroethene	<48		140	48	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	50
trans-1,3-Dichloropropene	<49		140	49	ug/Kg	≎	03/24/22 10:15	04/01/22 12:48	50
Trichloroethene	<22		68	22	ug/Kg	≎	03/24/22 10:15	04/01/22 12:48	50
Trichlorofluoromethane	<58		140	58	ug/Kg	≎	03/24/22 10:15	04/01/22 12:48	50
Vinyl chloride	<36		140	36	ug/Kg	≎	03/24/22 10:15	04/01/22 12:48	50
Xylenes, Total	<30		68	30	ug/Kg	₩	03/24/22 10:15	04/01/22 12:48	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		75 - 126				03/24/22 10:15	04/01/22 12:48	50
4-Bromofluorobenzene (Surr)	88		72 - 124				03/24/22 10:15	04/01/22 12:48	50
Dibromofluoromethane (Surr)	99		75 - 120				03/24/22 10:15	04/01/22 12:48	50
Toluene-d8 (Surr)	95		75 - 120				03/24/22 10:15	04/01/22 12:48	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<14		120	14	ug/Kg	<u></u>	04/07/22 05:35	04/08/22 14:10	1
2-Methylnaphthalene	<11		120	11	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Acenaphthene	<10		58	10	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Acenaphthylene	<7.7		58	7.7	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Anthracene	<9.7		58	9.7	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Benzo[a]anthracene	<7.8		58	7.8	ug/Kg	☼	04/07/22 05:35	04/08/22 14:10	1
Benzo[a]pyrene	<11		58	11	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Benzo[b]fluoranthene	<13		58	13	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Benzo[g,h,i]perylene	<19		58	19	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Benzo[k]fluoranthene	<17		58	17	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Chrysene	<16		58	16	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Dibenz(a,h)anthracene	<11		58	11	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Fluoranthene	<11		58	11	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Fluorene	<8.2		58	8.2	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Indeno[1,2,3-cd]pyrene	<15		58	15	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Naphthalene	<8.9		58	8.9	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Phenanthrene	9.1	J	58	8.1	ug/Kg	₽	04/07/22 05:35	04/08/22 14:10	1
Pyrene	<12		58	12	ug/Kg	₩	04/07/22 05:35	04/08/22 14:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	74		43 - 145				04/07/22 05:35	04/08/22 14:10	1

Terphenyl-d14 (Surr)	90		42 - 157				04/07/22 05:35	04/08/22 14:10	1
Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.5		1.6	0.56	mg/Kg	☆	04/07/22 07:00	04/07/22 22:50	1

0.82

0.38 mg/Kg

37 - 147

66

5.7

04/07/22 05:35 04/08/22 14:10

© 04/07/22 07:00 04/07/22 22:50

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-217 3-5 Lab Sample ID: 500-214283-26

Date Collected: 03/24/22 10:20 Matrix: Solid
Date Received: 03/29/22 10:20 Percent Solids: 84.4

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<32	69	32	ug/Kg	-	03/24/22 10:20	04/01/22 13:11	50
1,1,1-Trichloroethane	<26	69	26	ug/Kg	☼	03/24/22 10:20	04/01/22 13:11	50
1,1,2,2-Tetrachloroethane	<27	69	27	ug/Kg	☼	03/24/22 10:20	04/01/22 13:11	50
1,1,2-Trichloroethane	<24	69	24	ug/Kg	⊅	03/24/22 10:20	04/01/22 13:11	50
1,1-Dichloroethane	<28	69	28	ug/Kg	☼	03/24/22 10:20	04/01/22 13:11	50
1,1-Dichloroethene	<27	69	27	ug/Kg	☼	03/24/22 10:20	04/01/22 13:11	50
1,1-Dichloropropene	<20	69	20	ug/Kg	₩	03/24/22 10:20	04/01/22 13:11	50
1,2,3-Trichlorobenzene	<31	69	31	ug/Kg	☼	03/24/22 10:20	04/01/22 13:11	50
1,2,3-Trichloropropane	<28	140	28	ug/Kg	₩	03/24/22 10:20	04/01/22 13:11	50
1,2,4-Trichlorobenzene	<23	69	23	ug/Kg	₽	03/24/22 10:20	04/01/22 13:11	50
1,2,4-Trimethylbenzene	<25	69	25		₩	03/24/22 10:20	04/01/22 13:11	50
1,2-Dibromo-3-Chloropropane	<140	340	140	ug/Kg	₩	03/24/22 10:20	04/01/22 13:11	50
1,2-Dibromoethane	<26	69		ug/Kg	₩	03/24/22 10:20	04/01/22 13:11	50
1,2-Dichlorobenzene	<23	69		ug/Kg	₩	03/24/22 10:20	04/01/22 13:11	50
1,2-Dichloroethane	<27	69		ug/Kg	₩	03/24/22 10:20	04/01/22 13:11	50
1,2-Dichloropropane	<29	69		ug/Kg	 \$	03/24/22 10:20	04/01/22 13:11	50
1,3,5-Trimethylbenzene	<26	69		ug/Kg	₩	03/24/22 10:20	04/01/22 13:11	50
1,3-Dichlorobenzene	<27	69		ug/Kg	₩	03/24/22 10:20	04/01/22 13:11	50
1,3-Dichloropropane	<25	69		ug/Kg		03/24/22 10:20	04/01/22 13:11	50
1,4-Dichlorobenzene	<25	69		ug/Kg	₩	03/24/22 10:20	04/01/22 13:11	50
2,2-Dichloropropane	<30	69		ug/Kg	₩	03/24/22 10:20		50
2-Chlorotoluene	<22	69		ug/Kg	 	03/24/22 10:20		5(
4-Chlorotoluene	<24	69		ug/Kg	☆	03/24/22 10:20	04/01/22 13:11	50
Benzene	<10	17		ug/Kg	Ď.	03/24/22 10:20	04/01/22 13:11	50
Bromobenzene	<24	69		ug/Kg		03/24/22 10:20		5(
Bromochloromethane	<29	69	29		Ď.	03/24/22 10:20	04/01/22 13:11	50
Dichlorobromomethane	<26	69		ug/Kg	Ď.	03/24/22 10:20		50
Bromoform	<33	69		ug/Kg		03/24/22 10:20		5(
Bromomethane	<55	210		ug/Kg	Ď.	03/24/22 10:20		50
Carbon tetrachloride	<26	69		ug/Kg	Ď.		04/01/22 13:11	50
Chlorobenzene	<26	69		ug/Kg		03/24/22 10:20		5(
Chloroethane	<35	69		ug/Kg	~ \$		04/01/22 13:11	50
Chloroform	<25	140		ug/Kg			04/01/22 13:11	5(
Chloromethane	<22	69		ug/Kg		03/24/22 10:20		5(
cis-1,2-Dichloroethene	<28	69		ug/Kg	₩			50
cis-1,3-Dichloropropene	<29	69	29		~ ☆	03/24/22 10:20	04/01/22 13:11	50
Dibromochloromethane	<33	69		ug/Kg		03/24/22 10:20		5(
Dibromomethane	<19	69	19		₩	03/24/22 10:20		50
Dichlorodifluoromethane	<19 <46	210		ug/Kg ug/Kg		03/24/22 10:20		50
Ethylbenzene Hexachlorobutadiene	<13	17		ug/Kg	ψ.	03/24/22 10:20		50
	<31	69	31	0 0	φ.	03/24/22 10:20		50
Isopropyl ether	<19	69		ug/Kg	· · · · · · · · · · · ·	03/24/22 10:20		50
Isopropylbenzene Methyd tert bytyd ether	<26	69		ug/Kg		03/24/22 10:20		50
Methylers Chleride	<27	69		ug/Kg	φ.	03/24/22 10:20		50
Methylene Chloride	<110	340		ug/Kg	· · · · · ·	03/24/22 10:20		50
Naphthalene	<23	69		ug/Kg	₩.	03/24/22 10:20		50
n-Butylbenzene	<27	69		ug/Kg	*	03/24/22 10:20		50
N-Propylbenzene p-Isopropyltoluene	<28 <25	69 69		ug/Kg ug/Kg	.	03/24/22 10:20	04/01/22 13:11 04/01/22 13:11	50 50

Eurofins Chicago

4/15/2022

Job ID: 500-214283-1

2

<u>ی</u>

6

8

11

13

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-217 3-5 Lab Sample ID: 500-214283-26

Date Collected: 03/24/22 10:20 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 84.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<27		69	27	ug/Kg	-	03/24/22 10:20	04/01/22 13:11	50
Styrene	<26		69	26	ug/Kg	₽	03/24/22 10:20	04/01/22 13:11	50
tert-Butylbenzene	<27		69	27	ug/Kg	₽	03/24/22 10:20	04/01/22 13:11	50
Tetrachloroethene	<25		69	25	ug/Kg	₽	03/24/22 10:20	04/01/22 13:11	50
Toluene	<10		17	10	ug/Kg	₽	03/24/22 10:20	04/01/22 13:11	50
trans-1,2-Dichloroethene	<24		69	24	ug/Kg	≎	03/24/22 10:20	04/01/22 13:11	50
trans-1,3-Dichloropropene	<25		69	25	ug/Kg	≎	03/24/22 10:20	04/01/22 13:11	50
Trichloroethene	<11		34	11	ug/Kg	≎	03/24/22 10:20	04/01/22 13:11	50
Trichlorofluoromethane	<29		69	29	ug/Kg	≎	03/24/22 10:20	04/01/22 13:11	50
Vinyl chloride	<18		69	18	ug/Kg	₽	03/24/22 10:20	04/01/22 13:11	50
Xylenes, Total	<15		34	15	ug/Kg	₩	03/24/22 10:20	04/01/22 13:11	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		75 - 126				03/24/22 10:20	04/01/22 13:11	50
4-Bromofluorobenzene (Surr)	87		72 - 124				03/24/22 10:20	04/01/22 13:11	50
Dibromofluoromethane (Surr)	99		75 - 120				03/24/22 10:20	04/01/22 13:11	50
Toluene-d8 (Surr)	95		75 - 120				03/24/22 10:20	04/01/22 13:11	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<9.4		77	9.4	ug/Kg	<u></u>	04/07/22 05:35	04/08/22 14:33	1
2-Methylnaphthalene	<7.1		77	7.1	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Acenaphthene	<6.9		38	6.9	ug/Kg	₽	04/07/22 05:35	04/08/22 14:33	1
Acenaphthylene	<5.1		38	5.1	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Anthracene	<6.4		38	6.4	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Benzo[a]anthracene	<5.2		38	5.2	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Benzo[a]pyrene	<7.4		38	7.4	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Benzo[b]fluoranthene	<8.3		38	8.3	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Benzo[g,h,i]perylene	<12	F1	38	12	ug/Kg	☼	04/07/22 05:35	04/08/22 14:33	1
Benzo[k]fluoranthene	<11		38	11	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Chrysene	<10		38	10	ug/Kg	☼	04/07/22 05:35	04/08/22 14:33	1
Dibenz(a,h)anthracene	<7.4		38	7.4	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Fluoranthene	<7.1		38	7.1	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Fluorene	<5.4		38	5.4	ug/Kg	☼	04/07/22 05:35	04/08/22 14:33	1
Indeno[1,2,3-cd]pyrene	<9.9		38	9.9	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Naphthalene	<5.9		38	5.9	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Phenanthrene	<5.4		38	5.4	ug/Kg	₩	04/07/22 05:35	04/08/22 14:33	1
Pyrene	<7.6		38	7.6	ug/Kg	☼	04/07/22 05:35	04/08/22 14:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	63		43 - 145				04/07/22 05:35	04/08/22 14:33	1
Nitrobenzene-d5 (Surr)	48		37 - 147				04/07/22 05:35	04/08/22 14:33	1
Terphenyl-d14 (Surr)	104		42 - 157				04/07/22 05:35	04/08/22 14:33	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.5		1.0	0.35	mg/Kg	₩	04/06/22 01:36	04/06/22 22:59	1
Lead	4.1		0.51	0.24	mg/Kg	☼	04/06/22 01:36	04/06/22 22:59	1

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: 500-214283-27

Lab Sample ID: 500-214283-27

Date Collected: 03/24/22 10:25

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 71.8

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<55	120	55	ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
1,1,1-Trichloroethane	<45	120	45	ug/Kg	☼	03/24/22 10:25	04/01/22 13:34	50
1,1,2,2-Tetrachloroethane	<47	120	47	ug/Kg	☼	03/24/22 10:25	04/01/22 13:34	50
1,1,2-Trichloroethane	<42	120	42	ug/Kg	⊅	03/24/22 10:25	04/01/22 13:34	50
1,1-Dichloroethane	<48	120	48	ug/Kg	☼	03/24/22 10:25	04/01/22 13:34	50
1,1-Dichloroethene	<46	120	46	ug/Kg	☼	03/24/22 10:25	04/01/22 13:34	50
1,1-Dichloropropene	<35	120	35	ug/Kg	⊅	03/24/22 10:25	04/01/22 13:34	50
1,2,3-Trichlorobenzene	<54	120	54	ug/Kg	☼	03/24/22 10:25	04/01/22 13:34	50
1,2,3-Trichloropropane	<49	240	49	ug/Kg	☼	03/24/22 10:25	04/01/22 13:34	50
1,2,4-Trichlorobenzene	<40	120	40	ug/Kg	₽	03/24/22 10:25	04/01/22 13:34	50
1,2,4-Trimethylbenzene	72 J	120	42	ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
1,2-Dibromo-3-Chloropropane	<230	590	230	ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
1,2-Dibromoethane	<46	120	46	ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
1,2-Dichlorobenzene	<39	120		ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
1,2-Dichloroethane	<46	120		ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
1,2-Dichloropropane	<51	120		ug/Kg	 \$	03/24/22 10:25	04/01/22 13:34	50
1,3,5-Trimethylbenzene	<45	120		ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
1,3-Dichlorobenzene	<47	120		ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
1,3-Dichloropropane	<43	120		ug/Kg		03/24/22 10:25	04/01/22 13:34	50
1,4-Dichlorobenzene	<43	120		ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
2,2-Dichloropropane	<52	120		ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
2-Chlorotoluene	<37	120		ug/Kg			04/01/22 13:34	50
4-Chlorotoluene	<41	120		ug/Kg			04/01/22 13:34	50
Benzene	<17	30		ug/Kg	Ď.		04/01/22 13:34	50
Bromobenzene	<42	120		ug/Kg	. T ∵		04/01/22 13:34	50
Bromochloromethane	<51	120	51		Ď.		04/01/22 13:34	50
Dichlorobromomethane	<44	120		ug/Kg	Ď.		04/01/22 13:34	50
Bromoform	<57	120		ug/Kg			04/01/22 13:34	50
Bromomethane	<94	350		ug/Kg	Ď.		04/01/22 13:34	50
Carbon tetrachloride	<45	120		ug/Kg	Ď.		04/01/22 13:34	50
Chlorobenzene	<46	120		ug/Kg			04/01/22 13:34	50
Chloroethane	<60	120		ug/Kg	~ \$		04/01/22 13:34	50
Chloroform	<44	240		ug/Kg	₩		04/01/22 13:34	50
Chloromethane	<38	120		ug/Kg			04/01/22 13:34	50
cis-1,2-Dichloroethene	<48	120		ug/Kg	₩		04/01/22 13:34	50
cis-1,3-Dichloropropene							04/01/22 13:34	
	<49 <58	120 120		ug/Kg		03/24/22 10:25		50
Dibromochloromethane				ug/Kg				50
Dibromomethane	<32	120		ug/Kg	φ.	03/24/22 10:25	04/01/22 13:34	50
Dichlorodifluoromethane	<80	350		ug/Kg				50
Ethylbenzene	43	30		ug/Kg	Ψ.		04/01/22 13:34	50
Hexachlorobutadiene	<53	120		ug/Kg	₩.		04/01/22 13:34	50
Isopropyl ether	<33	120		ug/Kg	🌣	03/24/22 10:25		50
Isopropylbenzene	<45	120		ug/Kg		03/24/22 10:25		50
Methyl tert-butyl ether	<47	120		ug/Kg	₩.		04/01/22 13:34	50
Methylene Chloride	<190	590		ug/Kg			04/01/22 13:34	50
Naphthalene	70 JB	120		ug/Kg	*		04/01/22 13:34	50
n-Butylbenzene	<46	120		ug/Kg	₽		04/01/22 13:34	50
N-Propylbenzene p-Isopropyltoluene	<49 <43	120 120		ug/Kg ug/Kg			04/01/22 13:34 04/01/22 13:34	50 50

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-223 4-6 Lab Sample ID: 500-214283-27

 Date Collected: 03/24/22 10:25
 Matrix: Solid

 Date Received: 03/29/22 10:20
 Percent Solids: 71.8

Method: 8260B - Volatile Or	ganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<47		120	47	ug/Kg	<u></u>	03/24/22 10:25	04/01/22 13:34	50
Styrene	<46		120	46	ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
tert-Butylbenzene	<47		120	47	ug/Kg	₽	03/24/22 10:25	04/01/22 13:34	50
Tetrachloroethene	<44		120	44	ug/Kg	☼	03/24/22 10:25	04/01/22 13:34	50
Toluene	43		30	17	ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
trans-1,2-Dichloroethene	<41		120	41	ug/Kg	☼	03/24/22 10:25	04/01/22 13:34	50
trans-1,3-Dichloropropene	<43		120	43	ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
Trichloroethene	<19		59	19	ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
Trichlorofluoromethane	<51		120	51	ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
Vinyl chloride	<31		120	31	ug/Kg	₩	03/24/22 10:25	04/01/22 13:34	50
Xylenes, Total	160		59	26	ug/Kg	☼	03/24/22 10:25	04/01/22 13:34	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 126				03/24/22 10:25	04/01/22 13:34	50
4-Bromofluorobenzene (Surr)	90		72 - 124				03/24/22 10:25	04/01/22 13:34	50
Dibromofluoromethane (Surr)	98		75 - 120				03/24/22 10:25	04/01/22 13:34	50
Toluene-d8 (Surr)	96		75 - 120				03/24/22 10:25	04/01/22 13:34	50

=									
Method: 8270D - Semivolatile	_	mpounds (G	C/MS)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<240		1100	240	ug/Kg	— <u></u>	04/07/22 05:35	04/11/22 16:40	5
1,2-Dichlorobenzene	<270		1100	270	ug/Kg	₽	04/07/22 05:35	04/11/22 16:40	5
1,3-Dichlorobenzene	<250		1100	250	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
1,4-Dichlorobenzene	<290		1100	290	ug/Kg	≎	04/07/22 05:35	04/11/22 16:40	5
1-Methylnaphthalene	900		450	55	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2,2'-oxybis[1-chloropropane]	<260		1100	260	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2,4,5-Trichlorophenol	<510		2200	510	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2,4,6-Trichlorophenol	<770		2200	770	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2,4-Dichlorophenol	<530		2200	530	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2,4-Dimethylphenol	<850		2200	850	ug/Kg	₽	04/07/22 05:35	04/11/22 16:40	5
2,4-Dinitrophenol	<4000		4500	4000	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2,4-Dinitrotoluene	<360		1100	360	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2,6-Dinitrotoluene	<440		1100	440	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2-Chloronaphthalene	<250		1100	250	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2-Chlorophenol	<380		1100	380	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2-Methylnaphthalene	1200		450	41	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2-Methylphenol	<360		1100	360	ug/Kg	₽	04/07/22 05:35	04/11/22 16:40	5
2-Nitroaniline	<300		1100	300	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
2-Nitrophenol	<530		2200	530	ug/Kg	₽	04/07/22 05:35	04/11/22 16:40	5
3 & 4 Methylphenol	<370		1100	370	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
3,3'-Dichlorobenzidine	<310		1100	310	ug/Kg	₽	04/07/22 05:35	04/11/22 16:40	5
3-Nitroaniline	<700		2200	700	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
4,6-Dinitro-2-methylphenol	<1800		4500	1800	ug/Kg	₽	04/07/22 05:35	04/11/22 16:40	5
4-Bromophenyl phenyl ether	<300		1100	300	ug/Kg	₽	04/07/22 05:35	04/11/22 16:40	5
4-Chloro-3-methylphenol	<760		2200	760	ug/Kg	≎	04/07/22 05:35	04/11/22 16:40	5
4-Chloroaniline	<1100		4500	1100	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
4-Chlorophenyl phenyl ether	<260		1100	260	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
4-Nitroaniline	<940		2200	940	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
4-Nitrophenol	<2100		4500	2100	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
					ug/Kg				

Eurofins Chicago

Job ID: 500-214283-1

3

6

10

11

13

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-223 4-6 Lab Sample ID: 500-214283-27

Date Collected: 03/24/22 10:25 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 71.8

A	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	<30		220	30	ug/Kg	— <u></u>	04/07/22 05:35	04/11/22 16:40	5
Anthracene	<37		220	37	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
Benzo[a]anthracene	49	J	220	30	ug/Kg	☼	04/07/22 05:35	04/11/22 16:40	5
Benzo[a]pyrene	<43		220	43	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
Benzo[b]fluoranthene	<48		220	48	ug/Kg	☼	04/07/22 05:35	04/11/22 16:40	5
Benzo[g,h,i]perylene	<72		220	72	ug/Kg	☼	04/07/22 05:35	04/11/22 16:40	5
Benzo[k]fluoranthene	<66		220	66	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
Benzoic acid	<2200		11000	2200	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
Benzyl alcohol	<2200		4500	2200	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
Bis(2-chloroethoxy)methane	<230		1100	230	ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
Bis(2-chloroethyl)ether	<340		1100		ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
Bis(2-ethylhexyl) phthalate	<410		1100		ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
Butyl benzyl phthalate	<430		1100		ug/Kg	 .	04/07/22 05:35	04/11/22 16:40	5
Carbazole	<560		1100	560		₩		04/11/22 16:40	5
Chrysene	<61		220	61	ug/Kg	₩		04/11/22 16:40	5
Dibenz(a,h)anthracene	<43		220		ug/Kg	 		04/11/22 16:40	5
Dibenzofuran	<260		1100		ug/Kg	☆		04/11/22 16:40	5
Diethyl phthalate	<380		1100		ug/Kg	₩	04/07/22 05:35	04/11/22 16:40	5
Dimethyl phthalate	<290		1100		ug/Kg	 .☆		04/11/22 16:40	5
Di-n-butyl phthalate	<340		1100	340				04/11/22 16:40	5
Di-n-octyl phthalate	<370		1100		ug/Kg	☆		04/11/22 16:40	5
Fluoranthene	68		220		ug/Kg	. T		04/11/22 16:40	5
Fluorene	<32	•	220		ug/Kg			04/11/22 16:40	5
Hexachlorobenzene	<52		450		ug/Kg ug/Kg	~ \$		04/11/22 16:40	5
Hexachlorobutadiene	<350		1100		ug/Kg			04/11/22 16:40	5
Hexachlorocyclopentadiene	<1300		4500	1300	ug/Kg	~ \$		04/11/22 16:40	5
Hexachloroethane	<340		1100		ug/Kg ug/Kg	~ \$		04/11/22 16:40	5
Indeno[1,2,3-cd]pyrene	<58		220		ug/Kg			04/11/22 16:40	5
Isophorone	<250		1100		ug/Kg ug/Kg	₩		04/11/22 16:40	5
Naphthalene	630		220		ug/Kg ug/Kg	₩		04/11/22 16:40	5
Nitrobenzene	<56		220		ug/Kg			04/11/22 16:40	5
N-Nitrosodi-n-propylamine	<270		450		ug/Kg ug/Kg	☆		04/11/22 16:40	5
• • •	<260		1100			☆		04/11/22 16:40	5
N-Nitrosodiphenylamine Pentachlorophenol	<3600				ug/Kg	· · · · · · · · · · · · · · · · · · ·		04/11/22 16:40	5 5
•			4500 220		ug/Kg	☆			5
Phenanthrene Dhanal	500 <500				ug/Kg	φ.		04/11/22 16:40 04/11/22 16:40	5
Phenol			1100		ug/Kg	· · · · · · · · · · · · · · ·	04/07/22 05:35		5 5
Pyrene	87	J	220	43	ug/Kg	1,4	04/07/22 05.35	04/11/22 10.40	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	77		31 - 143					04/11/22 16:40	5
2-Fluorobiphenyl (Surr)	63		43 - 145					04/11/22 16:40	5
2-Fluorophenol (Surr)	122		31 - 166					04/11/22 16:40	5
Nitrobenzene-d5 (Surr)	46		37 - 147					04/11/22 16:40	5
Phenol-d5 (Surr)	62		30 - 153					04/11/22 16:40	5
Terphenyl-d14 (Surr)	81		42 - 157					04/11/22 16:40	5
		(00)							
: Method: 8081A - Organochi	Iorine Pesticid	es (GC)							
Method: 8081A - Organochi Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			RL 2.3		Unit ug/Kg		Prepared 04/05/22 16:57		Dil Fac

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-223 4-6

Date Collected: 03/24/22 10:25 Date Received: 03/29/22 10:20

DCB Decachlorobiphenyl

Lab Sample ID: 500-214283-27

Matrix: Solid

Percent Solids: 71.8

Job ID: 500-214283-1

Method: 8081A - Organo	chlorine Pesticid	es (GC) (C	Continued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<1.2		2.3	1.2	ug/Kg	<u></u>	04/05/22 16:57	04/06/22 18:02	1
beta-BHC	<1.9		2.3	1.9	ug/Kg	₩	04/05/22 16:57	04/06/22 18:02	1
4,4'-DDD	<1.2		2.3	1.2	ug/Kg	₽	04/05/22 16:57	04/06/22 18:02	1
4,4'-DDE	<1.2		2.3	1.2	ug/Kg	₩	04/05/22 16:57	04/06/22 18:02	1
4,4'-DDT	<1.1		2.3	1.1	ug/Kg	₽	04/05/22 16:57	04/06/22 18:02	1
delta-BHC	<1.1		2.3	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 18:02	1
Dieldrin	<1.2		2.3	1.2	ug/Kg	₩	04/05/22 16:57	04/06/22 18:02	1
Endosulfan I	<1.2		2.3	1.2	ug/Kg	₽	04/05/22 16:57	04/06/22 18:02	1
Endosulfan II	<1.3		2.3	1.3	ug/Kg	₩	04/05/22 16:57	04/06/22 18:02	1
Endosulfan sulfate	<1.3		2.3	1.3	ug/Kg	₽	04/05/22 16:57	04/06/22 18:02	1
Endrin	<1.2		2.3	1.2	ug/Kg	₽	04/05/22 16:57	04/06/22 18:02	1
Endrin aldehyde	<1.3		2.3	1.3	ug/Kg	₩	04/05/22 16:57	04/06/22 18:02	1
Endrin ketone	<1.1		2.3	1.1	ug/Kg	₽	04/05/22 16:57	04/06/22 18:02	1
gamma-BHC (Lindane)	<1.1		2.3	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 18:02	1
trans-Chlordane	<1.3		2.3	1.3	ug/Kg	₩	04/05/22 16:57	04/06/22 18:02	1
Heptachlor	<1.2		2.3	1.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:02	1
Heptachlor epoxide	<1.2		2.3	1.2	ug/Kg	₩	04/05/22 16:57	04/06/22 18:02	1
Methoxychlor	<1.5		11	1.5	ug/Kg	₩	04/05/22 16:57	04/06/22 18:02	1
Toxaphene	<9.2		23	9.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	116		33 - 148				04/05/22 16:57	04/06/22 18:02	1
Tetrachloro-m-xylene	63		30 - 121				04/05/22 16:57	04/06/22 18:02	1

Method: 8082A - Polych	Iorinated Biphenyls (PCBs)	by Gas Chr	omatogr	aphy				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0090	0.023	0.0090	mg/Kg	₽	04/05/22 16:57	04/08/22 21:51	1
PCB-1221	<0.0090	0.023	0.0090	mg/Kg	₽	04/05/22 16:57	04/08/22 21:51	1
PCB-1232	<0.0062	0.023	0.0062	mg/Kg	₽	04/05/22 16:57	04/08/22 21:51	1
PCB-1242	<0.0089	0.023	0.0089	mg/Kg	₽	04/05/22 16:57	04/08/22 21:51	1
PCB-1248	<0.011	0.023	0.011	mg/Kg	≎	04/05/22 16:57	04/08/22 21:51	1
PCB-1254	<0.0077	0.023	0.0077	mg/Kg	≎	04/05/22 16:57	04/08/22 21:51	1
PCB-1260	<0.0086	0.023	0.0086	mg/Kg	₽	04/05/22 16:57	04/08/22 21:51	1
PCB-1262	<0.0075	0.023	0.0075	mg/Kg	☼	04/05/22 16:57	04/08/22 21:51	1
PCB-1268	<0.013	0.023	0.013	mg/Kg	₩	04/05/22 16:57	04/08/22 21:51	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	57	49 - 129				04/05/22 16:57	04/08/22 21:51	1

Method: 8151A - Herbi	cides (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<110		450	110	ug/Kg	<u></u>	04/05/22 12:40	04/07/22 18:13	10
2,4-DB	<130		450	130	ug/Kg	₩	04/05/22 12:40	04/07/22 18:13	10
Dicamba	<98		450	98	ug/Kg	≎	04/05/22 12:40	04/07/22 18:13	10
Dichlorprop	<110		450	110	ug/Kg	₩	04/05/22 12:40	04/07/22 18:13	10
Silvex (2,4,5-TP)	<100		450	100	ug/Kg	₩	04/05/22 12:40	04/07/22 18:13	10
2,4,5-T	<91		450	91	ug/Kg	₩	04/05/22 12:40	04/07/22 18:13	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	163	S1+	25 - 120				04/05/22 12:40	04/07/22 18:13	10

37 - 121

73

Eurofins Chicago

04/05/22 16:57 04/08/22 21:51

9

11

12

14

15

16

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-223 4-6

Lab Sample ID: 500-214283-27 Date Collected: 03/24/22 10:25 **Matrix: Solid**

Percent Solids: 71.8

Date Received: 03/29/22 10:20

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.7		1.4	0.47	mg/Kg	-	04/07/22 07:00	04/07/22 23:00	1
Barium	120		1.3	0.15	mg/Kg	☼	04/06/22 02:01	04/07/22 17:23	1
Cadmium	0.050	JB	0.27	0.049	mg/Kg	☼	04/07/22 07:00	04/07/22 23:00	1
Chromium	13		1.3	0.66	mg/Kg	☼	04/06/22 02:01	04/07/22 17:23	1
Lead	29		0.68	0.32	mg/Kg	☼	04/07/22 07:00	04/07/22 23:00	1
Selenium	2.5		1.4	0.80	mg/Kg	☼	04/07/22 07:00	04/07/22 23:00	1
Silver	<0.18		0.68	0.18	mg/Kg	₩	04/07/22 07:00	04/07/22 23:00	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.015	J	0.022	0.0074	mg/Kg	— <u></u>	04/07/22 13:45	04/08/22 11:46	1

Client: Stantec Consulting Corp.

Date Collected: 03/24/22 10:21

Date Received: 03/29/22 10:20

Client Sample ID: FD-1

Dichlorodifluoromethane

Hexachlorobutadiene

Methyl tert-butyl ether

Methylene Chloride

Ethylbenzene

Isopropyl ether

Naphthalene

n-Butylbenzene

N-Propylbenzene

p-Isopropyltoluene

Isopropylbenzene

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-28

Matrix: Solid

Percent Solids: 83.3

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
I,1,1,2-Tetrachloroethane	<32		70	32	ug/Kg	<u></u>	03/24/22 10:21	04/01/22 13:57	5
1,1,1-Trichloroethane	<27		70	27	ug/Kg	☼	03/24/22 10:21	04/01/22 13:57	5
1,1,2,2-Tetrachloroethane	<28		70	28	ug/Kg	☼	03/24/22 10:21	04/01/22 13:57	5
1,1,2-Trichloroethane	<25		70	25	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
1,1-Dichloroethane	<29		70	29	ug/Kg	☼	03/24/22 10:21	04/01/22 13:57	5
1,1-Dichloroethene	<27		70	27	ug/Kg	☼	03/24/22 10:21	04/01/22 13:57	5
1,1-Dichloropropene	<21		70	21	ug/Kg	⊅	03/24/22 10:21	04/01/22 13:57	5
1,2,3-Trichlorobenzene	<32		70	32	ug/Kg	☼	03/24/22 10:21	04/01/22 13:57	5
1,2,3-Trichloropropane	<29		140	29	ug/Kg	☼	03/24/22 10:21	04/01/22 13:57	5
1,2,4-Trichlorobenzene	<24		70	24	ug/Kg	₽	03/24/22 10:21	04/01/22 13:57	5
1,2,4-Trimethylbenzene	<25		70	25	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
1,2-Dibromo-3-Chloropropane	<140		350	140	ug/Kg	☼	03/24/22 10:21	04/01/22 13:57	5
1,2-Dibromoethane	<27		70	27	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
1,2-Dichlorobenzene	<23		70	23	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
1,2-Dichloroethane	<27		70	27	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
1,2-Dichloropropane	<30		70	30	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
1,3,5-Trimethylbenzene	<27		70	27	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
1,3-Dichlorobenzene	<28		70	28	ug/Kg	☼	03/24/22 10:21	04/01/22 13:57	5
1,3-Dichloropropane	<25		70	25	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
1,4-Dichlorobenzene	<26		70	26	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
2,2-Dichloropropane	<31		70	31	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
2-Chlorotoluene	<22		70		ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
1-Chlorotoluene	<25		70	25	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
Benzene	<10		18	10	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
Bromobenzene	<25		70	25	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
Bromochloromethane	<30		70	30	ug/Kg	☆	03/24/22 10:21	04/01/22 13:57	5
Dichlorobromomethane	<26		70	26	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
Bromoform	<34		70		ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
Bromomethane	<56		210	56	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
Carbon tetrachloride	<27		70	27	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
Chlorobenzene	<27		70		ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
Chloroethane	<35		70		ug/Kg	☆	03/24/22 10:21	04/01/22 13:57	5
Chloroform	<26		140		ug/Kg	☆	03/24/22 10:21	04/01/22 13:57	5
Chloromethane	<22		70		ug/Kg		03/24/22 10:21	04/01/22 13:57	5
cis-1,2-Dichloroethene	<29		70		ug/Kg	☼		04/01/22 13:57	5
cis-1,3-Dichloropropene	<29		70		ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	5
Dibromochloromethane	<34		70		ug/Kg			04/01/22 13:57	5
			-		J. J				-

Eurofins Chicago

© 03/24/22 10:21 04/01/22 13:57

© 03/24/22 10:21 04/01/22 13:57

☼ 03/24/22 10:21 04/01/22 13:57

© 03/24/22 10:21 04/01/22 13:57

© 03/24/22 10:21 04/01/22 13:57

© 03/24/22 10:21 04/01/22 13:57

© 03/24/22 10:21 04/01/22 13:57

© 03/24/22 10:21 04/01/22 13:57

03/24/22 10:21 04/01/22 13:57

© 03/24/22 10:21 04/01/22 13:57

03/24/22 10:21 04/01/22 13:57

210

18

70

70

70

70

70

70

70

70

350

47 ug/Kg

13 ug/Kg

27

28 ug/Kg

110

29 ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

23 ug/Kg

27 ug/Kg

25 ug/Kg

<47

<13

<31

<19

<27

<28

<110

<23

<27

<29

<25

50

50

50

50

50

50

50

50

50

50

3

5

7

0

10

12

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: FD-1 Lab Sample ID: 500-214283-28

Date Collected: 03/24/22 10:21 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 83.3

Method: 8260B - Volatile Or	ganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<28		70	28	ug/Kg		03/24/22 10:21	04/01/22 13:57	50
Styrene	<27		70	27	ug/Kg	₽	03/24/22 10:21	04/01/22 13:57	50
tert-Butylbenzene	<28		70	28	ug/Kg	₽	03/24/22 10:21	04/01/22 13:57	50
Tetrachloroethene	<26		70	26	ug/Kg	₽	03/24/22 10:21	04/01/22 13:57	50
Toluene	<10		18	10	ug/Kg	₽	03/24/22 10:21	04/01/22 13:57	50
trans-1,2-Dichloroethene	<25		70	25	ug/Kg	₽	03/24/22 10:21	04/01/22 13:57	50
trans-1,3-Dichloropropene	<25		70	25	ug/Kg	₽	03/24/22 10:21	04/01/22 13:57	50
Trichloroethene	<12		35	12	ug/Kg	₽	03/24/22 10:21	04/01/22 13:57	50
Trichlorofluoromethane	<30		70	30	ug/Kg	₽	03/24/22 10:21	04/01/22 13:57	50
Vinyl chloride	<18		70	18	ug/Kg	₽	03/24/22 10:21	04/01/22 13:57	50
Xylenes, Total	<15		35	15	ug/Kg	₩	03/24/22 10:21	04/01/22 13:57	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		75 - 126				03/24/22 10:21	04/01/22 13:57	50
4-Bromofluorobenzene (Surr)	88		72 - 124				03/24/22 10:21	04/01/22 13:57	50
Dibromofluoromethane (Surr)	98		75 - 120				03/24/22 10:21	04/01/22 13:57	50
Toluene-d8 (Surr)	95		75 - 120				03/24/22 10:21	04/01/22 13:57	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<9.4		77	9.4	ug/Kg	≎	04/07/22 05:35	04/08/22 15:40	1
2-Methylnaphthalene	<7.1		77	7.1	ug/Kg	☼	04/07/22 05:35	04/08/22 15:40	1
Acenaphthene	<6.9		38	6.9	ug/Kg	☼	04/07/22 05:35	04/08/22 15:40	1
Acenaphthylene	<5.1		38	5.1	ug/Kg	₽	04/07/22 05:35	04/08/22 15:40	1
Anthracene	<6.4		38	6.4	ug/Kg	☼	04/07/22 05:35	04/08/22 15:40	1
Benzo[a]anthracene	<5.2		38	5.2	ug/Kg	☼	04/07/22 05:35	04/08/22 15:40	1
Benzo[a]pyrene	<7.4		38	7.4	ug/Kg	₽	04/07/22 05:35	04/08/22 15:40	1
Benzo[b]fluoranthene	<8.3		38	8.3	ug/Kg	☼	04/07/22 05:35	04/08/22 15:40	1
Benzo[g,h,i]perylene	<12		38	12	ug/Kg	☼	04/07/22 05:35	04/08/22 15:40	1
Benzo[k]fluoranthene	<11		38	11	ug/Kg	₽	04/07/22 05:35	04/08/22 15:40	1
Chrysene	<10		38	10	ug/Kg	₩	04/07/22 05:35	04/08/22 15:40	1
Dibenz(a,h)anthracene	<7.4		38	7.4	ug/Kg	☼	04/07/22 05:35	04/08/22 15:40	1
Fluoranthene	<7.1		38	7.1	ug/Kg	₩	04/07/22 05:35	04/08/22 15:40	1
Fluorene	<5.4		38	5.4	ug/Kg	₩	04/07/22 05:35	04/08/22 15:40	1
Indeno[1,2,3-cd]pyrene	<9.9		38	9.9	ug/Kg	☼	04/07/22 05:35	04/08/22 15:40	1
Naphthalene	<5.9		38	5.9	ug/Kg	₩	04/07/22 05:35	04/08/22 15:40	1
Phenanthrene	<5.3		38	5.3	ug/Kg	☼	04/07/22 05:35	04/08/22 15:40	1
Pyrene	<7.6		38	7.6	ug/Kg	₩	04/07/22 05:35	04/08/22 15:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	68		43 - 145				04/07/22 05:35	04/08/22 15:40	1
Nitrobenzene-d5 (Surr)	54		37 - 147				04/07/22 05:35	04/08/22 15:40	1
Terphenyl-d14 (Surr)	99		42 - 157				04/07/22 05:35	04/08/22 15:40	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3		1.1	0.37	mg/Kg	₩	04/07/22 07:00	04/07/22 23:03	1
Lead	4.3		0.54	0.25	mg/Kg	≎	04/07/22 07:00	04/07/22 23:03	1

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-223 9-10

Date Collected: 03/24/22 10:30 Date Received: 03/29/22 10:20

p-Isopropyltoluene

Lab Sample ID: 500-214283-29

Matrix: Solid

Percent Solids: 78.1

Job ID: 500-214283-1

	Organic Compounds (GC/I	•		1114	_	B	A1	D:: -
Analyte	Result Qualifier		MDL		— <u>D</u>	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<36	78 78		ug/Kg	*		04/01/22 14:20	5
1,1,1-Trichloroethane	<30 <31	76 78		ug/Kg	*	03/24/22 10:30		5
1,1,2,2-Tetrachloroethane				ug/Kg	· · · · ·		04/01/22 14:20	5
1,1,2-Trichloroethane	<27	78		ug/Kg	₩.		04/01/22 14:20	5
1,1-Dichloroethane	<32	78		ug/Kg	*		04/01/22 14:20	5
1,1-Dichloroethene	<30	78		ug/Kg	. .		04/01/22 14:20	5
1,1-Dichloropropene	<23	78		ug/Kg	‡		04/01/22 14:20	5
1,2,3-Trichlorobenzene	<36	78		ug/Kg	₽		04/01/22 14:20	5
1,2,3-Trichloropropane	<32	160		ug/Kg	. .		04/01/22 14:20	5
1,2,4-Trichlorobenzene	<27	78		ug/Kg	☼		04/01/22 14:20	5
1,2,4-Trimethylbenzene	<28	78		ug/Kg	₩		04/01/22 14:20	5
1,2-Dibromo-3-Chloropropane	<160	390		ug/Kg			04/01/22 14:20	5
1,2-Dibromoethane	<30	78		ug/Kg	≎		04/01/22 14:20	5
1,2-Dichlorobenzene	<26	78		ug/Kg	₩		04/01/22 14:20	5
1,2-Dichloroethane	<31	78	31	ug/Kg		03/24/22 10:30	04/01/22 14:20	5
1,2-Dichloropropane	<33	78	33	ug/Kg	☼	03/24/22 10:30	04/01/22 14:20	5
1,3,5-Trimethylbenzene	<30	78	30	ug/Kg	₩	03/24/22 10:30	04/01/22 14:20	5
1,3-Dichlorobenzene	<31	78	31	ug/Kg	☼	03/24/22 10:30	04/01/22 14:20	5
1,3-Dichloropropane	<28	78	28	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	5
1,4-Dichlorobenzene	<28	78	28	ug/Kg	☼	03/24/22 10:30	04/01/22 14:20	5
2,2-Dichloropropane	<35	78	35	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	5
2-Chlorotoluene	<24	78	24	ug/Kg	₩	03/24/22 10:30	04/01/22 14:20	5
1-Chlorotoluene	<27	78	27	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	5
Benzene	<11	19	11	ug/Kg	☼	03/24/22 10:30	04/01/22 14:20	5
Bromobenzene	<28	78	28	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	5
Bromochloromethane	<33	78	33	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	5
Dichlorobromomethane	<29	78		ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	5
Bromoform	<38	78	38	ug/Kg	₩	03/24/22 10:30	04/01/22 14:20	5
Bromomethane	<62	230		ug/Kg	☼	03/24/22 10:30	04/01/22 14:20	5
Carbon tetrachloride	<30	78			☼	03/24/22 10:30	04/01/22 14:20	5
Chlorobenzene	<30	78	30	ug/Kg	 \$	03/24/22 10:30	04/01/22 14:20	5
Chloroethane	<39	78	39	ug/Kg	₩		04/01/22 14:20	5
Chloroform	<29	160	29	ug/Kg	₩	03/24/22 10:30	04/01/22 14:20	5
Chloromethane	<25	78		ug/Kg	 ₩		04/01/22 14:20	5
cis-1,2-Dichloroethene	<32	78		ug/Kg	₩		04/01/22 14:20	5
cis-1,3-Dichloropropene	<32	78		ug/Kg	 		04/01/22 14:20	5
Dibromochloromethane	<38	78		ug/Kg	. T		04/01/22 14:20	5
Dibromomethane	<21	78		ug/Kg	₩		04/01/22 14:20	5
Dichlorodifluoromethane	<53	230		ug/Kg	*		04/01/22 14:20	5
Ethylbenzene	<14	19		ug/Kg			04/01/22 14:20	5
Hexachlorobutadiene	<35	78		ug/Kg	*		04/01/22 14:20	5
sopropyl ether	<22	78			☆		04/01/22 14:20	5
				ug/Kg	.			
sopropylbenzene	<30	78 78		ug/Kg	\$ }.		04/01/22 14:20	5
Methyl tert-butyl ether	<31	78 200		ug/Kg			04/01/22 14:20	5
Methylene Chloride	<130	390		ug/Kg	· · · · · ·		04/01/22 14:20	5
Naphthalene n-Butylbenzene	<26 <30	78 78		ug/Kg ug/Kg	*		04/01/22 14:20 04/01/22 14:20	5
	~20			110/1/0		いついりんりつ イロ・クロ	ロオルコニック イオ・クロ	5

Eurofins Chicago

© 03/24/22 10:30 04/01/22 14:20

<28

28 ug/Kg

2

5

7

9

11

14

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-223 9-10 Lab Sample ID: 500-214283-29

Method: 8260B - Volatile Or	ganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<31		78	31	ug/Kg		03/24/22 10:30	04/01/22 14:20	50
Styrene	<30		78	30	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	50
tert-Butylbenzene	<31		78	31	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	50
Tetrachloroethene	<29		78	29	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	50
Toluene	<11		19	11	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	50
trans-1,2-Dichloroethene	<27		78	27	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	50
trans-1,3-Dichloropropene	<28		78	28	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	50
Trichloroethene	<13		39	13	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	50
Trichlorofluoromethane	<33		78	33	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	50
Vinyl chloride	<20		78	20	ug/Kg	₽	03/24/22 10:30	04/01/22 14:20	50
Xylenes, Total	<17		39	17	ug/Kg	₩	03/24/22 10:30	04/01/22 14:20	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		75 - 126				03/24/22 10:30	04/01/22 14:20	50
4-Bromofluorobenzene (Surr)	88		72 - 124				03/24/22 10:30	04/01/22 14:20	50
Dibromofluoromethane (Surr)	100		75 - 120				03/24/22 10:30	04/01/22 14:20	50
Toluene-d8 (Surr)	95		75 - 120				03/24/22 10:30	04/01/22 14:20	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<9.8		81	9.8	ug/Kg	— -	04/07/22 05:35	04/08/22 16:03	1
2-Methylnaphthalene	<7.4		81	7.4	ug/Kg	≎	04/07/22 05:35	04/08/22 16:03	1
Acenaphthene	<7.2		40	7.2	ug/Kg	≎	04/07/22 05:35	04/08/22 16:03	1
Acenaphthylene	<5.3		40	5.3	ug/Kg	₽	04/07/22 05:35	04/08/22 16:03	1
Anthracene	<6.7		40	6.7	ug/Kg	₽	04/07/22 05:35	04/08/22 16:03	1
Benzo[a]anthracene	<5.4		40	5.4	ug/Kg	₩	04/07/22 05:35	04/08/22 16:03	1
Benzo[a]pyrene	<7.8		40	7.8	ug/Kg	₩	04/07/22 05:35	04/08/22 16:03	1
Benzo[b]fluoranthene	<8.7		40	8.7	ug/Kg	₩	04/07/22 05:35	04/08/22 16:03	1
Benzo[g,h,i]perylene	<13		40	13	ug/Kg	₩	04/07/22 05:35	04/08/22 16:03	1
Benzo[k]fluoranthene	<12		40	12	ug/Kg	₩	04/07/22 05:35	04/08/22 16:03	1
Chrysene	<11		40	11	ug/Kg	₩	04/07/22 05:35	04/08/22 16:03	1
Dibenz(a,h)anthracene	<7.8		40	7.8	ug/Kg	☼	04/07/22 05:35	04/08/22 16:03	1
Fluoranthene	<7.5		40	7.5	ug/Kg	₩	04/07/22 05:35	04/08/22 16:03	1
Fluorene	<5.7		40	5.7	ug/Kg	₩	04/07/22 05:35	04/08/22 16:03	1
Indeno[1,2,3-cd]pyrene	<10		40	10	ug/Kg	☼	04/07/22 05:35	04/08/22 16:03	1
Naphthalene	<6.2		40	6.2	ug/Kg	₽	04/07/22 05:35	04/08/22 16:03	1
Phenanthrene	<5.6		40	5.6	ug/Kg	₩	04/07/22 05:35	04/08/22 16:03	1
Pyrene	<8.0		40	8.0	ug/Kg	☼	04/07/22 05:35	04/08/22 16:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	59		43 - 145				04/07/22 05:35	04/08/22 16:03	1
Nitrobenzene-d5 (Surr)	46		37 - 147				04/07/22 05:35	04/08/22 16:03	1
Terphenyl-d14 (Surr)	97		42 - 157				04/07/22 05:35	04/08/22 16:03	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.53	J	1.1	0.39	mg/Kg		04/07/22 07:00	04/07/22 23:07	1
Lead	3.6		0.56	0.26	mg/Kg	₩	04/07/22 07:00	04/07/22 23:07	1

Eurofins Chicago

2

Job ID: 500-214283-1

3

6

8

10

12

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-220 4-5

Date Collected: 03/24/22 11:05 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-30

Matrix: Solid

Percent Solids: 70.8

Job ID: 500-214283-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<u></u>	130	58	ug/Kg	— <u></u>	03/24/22 11:05	04/01/22 14:43	5
1,1,1-Trichloroethane	<48	130		ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
1,1,2,2-Tetrachloroethane	<50	130		ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
1,1,2-Trichloroethane	<44	130		ug/Kg	 \$	03/24/22 11:05	04/01/22 14:43	5(
1,1-Dichloroethane	<51	130		ug/Kg	₩		04/01/22 14:43	50
1,1-Dichloroethene	<49	130		ug/Kg	₩		04/01/22 14:43	50
1,1-Dichloropropene	<37	130		ug/Kg	 ☆		04/01/22 14:43	50
1,2,3-Trichlorobenzene	<57	130		ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
1,2,3-Trichloropropane	<52	250		ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
1,2,4-Trichlorobenzene	<43	130		ug/Kg		03/24/22 11:05	04/01/22 14:43	50
1,2,4-Trimethylbenzene	58 J	130		ug/Kg	₩		04/01/22 14:43	50
1,2-Dibromo-3-Chloropropane	<250	630		ug/Kg	₩		04/01/22 14:43	50
1,2-Dibromoethane	<48	130		ug/Kg	 		04/01/22 14:43	50
1.2-Dichlorobenzene	<42	130		ug/Kg	☆		04/01/22 14:43	50
1.2-Dichloroethane	<49	130		ug/Kg	~ \$		04/01/22 14:43	50
1,2-Dichloropropane	<54	130		ug/Kg			04/01/22 14:43	50
1,3,5-Trimethylbenzene	<48	130		ug/Kg	~ \$		04/01/22 14:43	50
1,3-Dichlorobenzene	<50	130		ug/Kg	~ \$		04/01/22 14:43	50
1,3-Dichloropropane	<45	130		ug/Kg			04/01/22 14:43	50
1,4-Dichlorobenzene	<46	130		ug/Kg ug/Kg	₩		04/01/22 14:43	50
2,2-Dichloropropane	<56	130		ug/Kg ug/Kg	₩		04/01/22 14:43	50
2-Chlorotoluene	<39	130		ug/Kg ug/Kg	 		04/01/22 14:43	50
4-Chlorotoluene	<44	130			₩		04/01/22 14:43	
	<18	31		ug/Kg				50
Benzene Bromobenzene				ug/Kg			04/01/22 14:43	50
	<45	130		ug/Kg	₩.		04/01/22 14:43	50
Bromochloromethane	<54	130		ug/Kg	₩.		04/01/22 14:43	50
Dichlorobromomethane	<47	130		ug/Kg	<u>.</u> .		04/01/22 14:43	50
Bromoform	<61	130		ug/Kg	*		04/01/22 14:43	50
Bromomethane	<100	380		ug/Kg	*		04/01/22 14:43	50
Carbon tetrachloride	<48	130		ug/Kg	. .		04/01/22 14:43	50
Chlorobenzene	<48	130		ug/Kg	☼		04/01/22 14:43	50
Chloroethane	<63	130		ug/Kg	☼		04/01/22 14:43	50
Chloroform	<46	250		ug/Kg			04/01/22 14:43	50
Chloromethane	<40	130		ug/Kg	☼		04/01/22 14:43	50
cis-1,2-Dichloroethene	<51	130		ug/Kg	₩		04/01/22 14:43	50
cis-1,3-Dichloropropene	<52	130		ug/Kg	.		04/01/22 14:43	
Dibromochloromethane	<61	130		ug/Kg	≎		04/01/22 14:43	50
Dibromomethane	<34	130		ug/Kg	₩		04/01/22 14:43	50
Dichlorodifluoromethane	<84	380		ug/Kg			04/01/22 14:43	50
Ethylbenzene	<23	31	23	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
Hexachlorobutadiene	<56	130		ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
sopropyl ether	<35	130		ug/Kg			04/01/22 14:43	50
sopropylbenzene	<48	130		ug/Kg	☼	03/24/22 11:05	04/01/22 14:43	50
Methyl tert-butyl ether	<49	130	49	ug/Kg	☼	03/24/22 11:05	04/01/22 14:43	50
Methylene Chloride	<200	630	200	ug/Kg	☼	03/24/22 11:05	04/01/22 14:43	5
Naphthalene	<42	130	42	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
n-Butylbenzene	<49	130	49	ug/Kg	☼	03/24/22 11:05	04/01/22 14:43	5
N-Propylbenzene	<52	130	52	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-220 4-5

Lab Sample ID: 500-214283-30 Date Collected: 03/24/22 11:05 **Matrix: Solid**

Percent Solids: 70.8 Date Received: 03/29/22 10:20

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<50		130	50	ug/Kg	<u></u>	03/24/22 11:05	04/01/22 14:43	50
Styrene	<48		130	48	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
tert-Butylbenzene	<50		130	50	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
Tetrachloroethene	<46		130	46	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
Toluene	<18		31	18	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
trans-1,2-Dichloroethene	<44		130	44	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
trans-1,3-Dichloropropene	<45		130	45	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
Trichloroethene	<21		63	21	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
Trichlorofluoromethane	<54		130	54	ug/Kg	☼	03/24/22 11:05	04/01/22 14:43	50
Vinyl chloride	<33		130	33	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
Xylenes, Total	98		63	28	ug/Kg	₩	03/24/22 11:05	04/01/22 14:43	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 126				03/24/22 11:05	04/01/22 14:43	50
4-Bromofluorobenzene (Surr)	86		72 - 124				03/24/22 11:05	04/01/22 14:43	50
Dibromofluoromethane (Surr)	101		75 - 120				03/24/22 11:05	04/01/22 14:43	50
Toluene-d8 (Surr)	94		75 - 120				03/24/22 11:05	04/01/22 14:43	50

- Toluerie-do (Surr)	94		75 - 120				03/24/22 11.03	04/01/22 14.43	30
Method: 8270D - Semivolatil	_	_	•	MDI	11-4		Durananad	Anahmad	Dil Faa
Analyte	- Result - <75	Qualifier	RL 350	MDL		— <u>D</u>	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene					ug/Kg	*		04/08/22 16:27	1
1,2-Dichlorobenzene	<83		350		ug/Kg	‡		04/08/22 16:27	1
1,3-Dichlorobenzene	<78		350		ug/Kg			04/08/22 16:27	
1,4-Dichlorobenzene	<89		350		ug/Kg	₽		04/08/22 16:27	1
1-Methylnaphthalene	87	J	140		ug/Kg	₩		04/08/22 16:27	1
2,2'-oxybis[1-chloropropane]	<81		350		ug/Kg			04/08/22 16:27	1
2,4,5-Trichlorophenol	<160		690		ug/Kg	₩		04/08/22 16:27	1
2,4,6-Trichlorophenol	<240		690		ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
2,4-Dichlorophenol	<170		690	170	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
2,4-Dimethylphenol	<260		690	260	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
2,4-Dinitrophenol	<1200		1400	1200	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
2,4-Dinitrotoluene	<110		350	110	ug/Kg	☼	04/07/22 05:35	04/08/22 16:27	1
2,6-Dinitrotoluene	<140		350	140	ug/Kg	₽	04/07/22 05:35	04/08/22 16:27	1
2-Chloronaphthalene	<77		350	77	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
2-Chlorophenol	<120		350	120	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
2-Methylnaphthalene	120	J	140	13	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
2-Methylphenol	<110		350	110	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
2-Nitroaniline	<94		350	94	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
2-Nitrophenol	<160		690	160	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
3 & 4 Methylphenol	<120		350		ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
3,3'-Dichlorobenzidine	<98		350	98	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
3-Nitroaniline	<220		690		ug/Kg		04/07/22 05:35	04/08/22 16:27	1
4,6-Dinitro-2-methylphenol	<560		1400	560	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
4-Bromophenyl phenyl ether	<92		350	92	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
4-Chloro-3-methylphenol	<240		690		ug/Kg		04/07/22 05:35	04/08/22 16:27	1
4-Chloroaniline	<330		1400		ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
4-Chlorophenyl phenyl ether	<81		350		ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	1
4-Nitroaniline	<290		690		ug/Kg			04/08/22 16:27	
4-Nitrophenol	<660		1400		ug/Kg	 		04/08/22 16:27	1
Acenaphthene	<13		69		ug/Kg	Ť.		04/08/22 16:27	1
, 100.13p.11110110	110		00	.0	~3'''8	~	5 ., 51, LL 55.00	5 ., 00, LL 10.L1	•

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8081A - Organochlorine Pesticides (GC)

Analyte

alpha-BHC

Aldrin

Result Qualifier

<1.6

<1.3

Lab Sample ID: 500-214283-30

Matrix: Solid

Percent Solids: 70.8

Job ID: 500-214283-1

Client Sample ID: SB-220 4-5	
Date Collected: 03/24/22 11:05	

Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Acenaphthylene	<9.2		69	9.2	ug/Kg		04/07/22 05:35	04/08/22 16:27	
Anthracene	29	J	69	12	ug/Kg	₽	04/07/22 05:35	04/08/22 16:27	
Benzo[a]anthracene	27	J	69	9.4	ug/Kg	₽	04/07/22 05:35	04/08/22 16:27	
Benzo[a]pyrene	18	J	69	13	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	
Benzo[b]fluoranthene	<15		69	15	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	
Benzo[g,h,i]perylene	<22		69	22	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	
Benzo[k]fluoranthene	<21		69	21	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	
Benzoic acid	<690		3500	690	ug/Kg	₽	04/07/22 05:35	04/08/22 16:27	
Benzyl alcohol	<690		1400		ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	
Bis(2-chloroethoxy)methane	<71		350	71			04/07/22 05:35	04/08/22 16:27	
Bis(2-chloroethyl)ether	<100		350	100		₩	04/07/22 05:35	04/08/22 16:27	
Bis(2-ethylhexyl) phthalate	<130		350	130	ug/Kg	₩	04/07/22 05:35	04/08/22 16:27	
Butyl benzyl phthalate	<130		350	130	ug/Kg		04/07/22 05:35	04/08/22 16:27	
Carbazole	<170		350	170	ug/Kg	☆		04/08/22 16:27	
Chrysene	20	J	69	19		.∵		04/08/22 16:27	
Dibenz(a,h)anthracene	<13	·	69		ug/Kg			04/08/22 16:27	
Dibenzofuran	<82		350		ug/Kg			04/08/22 16:27	
Diethyl phthalate	<120		350		ug/Kg			04/08/22 16:27	
Dimethyl phthalate	<91		350	91	ug/Kg			04/08/22 16:27	
Di-n-butyl phthalate	<110		350		ug/Kg	₩		04/08/22 16:27	
Di-n-octyl phthalate	<110		350		ug/Kg	₩		04/08/22 16:27	
Fluoranthene	40		69		ug/Kg ug/Kg	¥ 		04/08/22 16:27	
Fluorantinene	<9.8	J	69			₩		04/08/22 16:27	
Hexachlorobenzene	<9.6 <16		140		ug/Kg			04/08/22 16:27	
	<110		350		ug/Kg	· · · · ·		04/08/22 16:27	
Hexachlorobutadiene					0 0	.☆			
Hexachlorocyclopentadiene	<400		1400	400	ug/Kg			04/08/22 16:27	
Hexachloroethane	<110		350	110	ug/Kg			04/08/22 16:27	
Indeno[1,2,3-cd]pyrene	<18		69		ug/Kg	‡	04/07/22 05:35		
Isophorone	<78		350		ug/Kg	‡		04/08/22 16:27	
Naphthalene	42	J	69	11		<u>.</u> .		04/08/22 16:27	
Nitrobenzene	<17		69		ug/Kg	**		04/08/22 16:27	
N-Nitrosodi-n-propylamine	<85		140		ug/Kg	₩		04/08/22 16:27	
N-Nitrosodiphenylamine	<82		350		ug/Kg			04/08/22 16:27	
Pentachlorophenol	<1100		1400		ug/Kg	₽		04/08/22 16:27	
Phenanthrene	160		69	9.7	ug/Kg	☼		04/08/22 16:27	
Phenol	<150		350		ug/Kg			04/08/22 16:27	
Pyrene	53	J	69	14	ug/Kg	☼	04/07/22 05:35	04/08/22 16:27	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
2,4,6-Tribromophenol (Surr)	81		31 - 143				04/07/22 05:35	04/08/22 16:27	
2-Fluorobiphenyl (Surr)	37	S1-	43 - 145				04/07/22 05:35	04/08/22 16:27	
2-Fluorophenol (Surr)	60		31 - 166				04/07/22 05:35	04/08/22 16:27	
Nitrobenzene-d5 (Surr)	29	S1-	37 - 147				04/07/22 05:35	04/08/22 16:27	
Phenol-d5 (Surr)	46		30 - 153				04/07/22 05:35	04/08/22 16:27	
Terphenyl-d14 (Surr)	106		42 - 157				04/07/22 05:35	04/08/22 16:27	

Eurofins Chicago

Analyzed

Prepared

04/05/22 16:57 04/06/22 18:22

RL

2.3

2.3

MDL Unit

1.6 ug/Kg

1.3 ug/Kg

Dil Fac

3

7

9

11

13

15

Client: Stantec Consulting Corp.

DCB Decachlorobiphenyl

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-220 4-5 Lab Sample ID: 500-214283-30

Date Collected: 03/24/22 11:05

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 70.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<1.2		2.3	1.2	ug/Kg	₽	04/05/22 16:57	04/06/22 18:22	1
beta-BHC	<1.8		2.3	1.8	ug/Kg	₽	04/05/22 16:57	04/06/22 18:22	1
4,4'-DDD	<1.2		2.3	1.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:22	1
4,4'-DDE	<1.2		2.3	1.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:22	1
4,4'-DDT	<1.1		2.3	1.1	ug/Kg	₽	04/05/22 16:57	04/06/22 18:22	1
delta-BHC	<1.1		2.3	1.1	ug/Kg	☼	04/05/22 16:57	04/06/22 18:22	1
Dieldrin	<1.2		2.3	1.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:22	1
Endosulfan I	<1.2		2.3	1.2	ug/Kg	₽	04/05/22 16:57	04/06/22 18:22	1
Endosulfan II	<1.3		2.3	1.3	ug/Kg	≎	04/05/22 16:57	04/06/22 18:22	1
Endosulfan sulfate	<1.3		2.3	1.3	ug/Kg	≎	04/05/22 16:57	04/06/22 18:22	1
Endrin	<1.2		2.3	1.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:22	1
Endrin aldehyde	<1.3		2.3	1.3	ug/Kg	≎	04/05/22 16:57	04/06/22 18:22	1
Endrin ketone	<1.1		2.3	1.1	ug/Kg	₽	04/05/22 16:57	04/06/22 18:22	1
gamma-BHC (Lindane)	<1.1		2.3	1.1	ug/Kg	₽	04/05/22 16:57	04/06/22 18:22	1
trans-Chlordane	<1.3		2.3	1.3	ug/Kg	≎	04/05/22 16:57	04/06/22 18:22	1
Heptachlor	<1.2		2.3	1.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:22	1
Heptachlor epoxide	<1.2		2.3	1.2	ug/Kg	₽	04/05/22 16:57	04/06/22 18:22	1
Methoxychlor	<1.5		11	1.5	ug/Kg	≎	04/05/22 16:57	04/06/22 18:22	1
Toxaphene	<9.1		23	9.1	ug/Kg	☆	04/05/22 16:57	04/06/22 18:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	116		33 - 148				04/05/22 16:57	04/06/22 18:22	1
Tetrachloro-m-xylene	65		30 - 121				04/05/22 16:57	04/06/22 18:22	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0089		0.023	0.0089	mg/Kg	-	04/05/22 16:57	04/08/22 22:07	1
PCB-1221	<0.0089		0.023	0.0089	mg/Kg	☼	04/05/22 16:57	04/08/22 22:07	1
PCB-1232	<0.0061		0.023	0.0061	mg/Kg	☼	04/05/22 16:57	04/08/22 22:07	1
PCB-1242	<0.0088		0.023	0.0088	mg/Kg	₽	04/05/22 16:57	04/08/22 22:07	1
PCB-1248	<0.011		0.023	0.011	mg/Kg	☼	04/05/22 16:57	04/08/22 22:07	1
PCB-1254	<0.0077		0.023	0.0077	mg/Kg	☼	04/05/22 16:57	04/08/22 22:07	1
PCB-1260	<0.0085		0.023	0.0085	mg/Kg	₩	04/05/22 16:57	04/08/22 22:07	1
PCB-1262	<0.0074		0.023	0.0074	mg/Kg	☼	04/05/22 16:57	04/08/22 22:07	1
PCB-1268	<0.013		0.023	0.013	mg/Kg	₩	04/05/22 16:57	04/08/22 22:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	56		49 - 129				04/05/22 16:57	04/08/22 22:07	1

Method: 8151A - Herbi	cides (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<110		460	110	ug/Kg	<u></u>	04/05/22 12:40	04/07/22 18:33	10
2,4-DB	<140		460	140	ug/Kg	₩	04/05/22 12:40	04/07/22 18:33	10
Dicamba	<100		460	100	ug/Kg	₩	04/05/22 12:40	04/07/22 18:33	10
Dichlorprop	<110		460	110	ug/Kg	☼	04/05/22 12:40	04/07/22 18:33	10
Silvex (2,4,5-TP)	<100		460	100	ug/Kg	₩	04/05/22 12:40	04/07/22 18:33	10
2,4,5-T	<93		460	93	ug/Kg	₩	04/05/22 12:40	04/07/22 18:33	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	83		25 - 120				04/05/22 12:40	04/07/22 18:33	10

37 - 121

70

Eurofins Chicago

04/05/22 16:57 04/08/22 22:07

Page 123 of 356

2

Job ID: 500-214283-1

3

6

8

10

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-220 4-5

Date Collected: 03/24/22 11:05

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-30

Matrix: Solid

Percent Solids: 70.8

Job ID: 500-214283-1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	5.4		1.2	0.42	mg/Kg	— <u>~</u>	04/07/22 07:00	04/07/22 23:10	1
Barium	32		1.3	0.15	mg/Kg	☼	04/06/22 02:01	04/07/22 17:32	1
Cadmium	0.25	В	0.25	0.044	mg/Kg	☼	04/07/22 07:00	04/07/22 23:10	1
Chromium	8.5		1.3	0.65	mg/Kg	⊅	04/06/22 02:01	04/07/22 17:32	1
Lead	140		0.61	0.28	mg/Kg	₩	04/07/22 07:00	04/07/22 23:10	1
Selenium	0.83	J	1.2	0.72	mg/Kg	☼	04/07/22 07:00	04/07/22 23:10	1
Silver	<0.16		0.61	0.16	mg/Kg	≎	04/07/22 07:00	04/07/22 23:10	1
- Method: 7471B - Mercury (CVA	AA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0085	J	0.022	0.0074	mg/Kg	<u></u>	04/07/22 13:45	04/08/22 11:48	1

8

9

10

12

13

4.6

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-220 14.75-15

Date Collected: 03/24/22 11:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-31

Matrix: Solid

Job ID: 500-214283-1

Percent Solids: 63.0

Method: 8260B - Volatile Org	ganic Compounds (GC/MS)							
Analyte	Result Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<57	120	57	ug/Kg	₽	03/24/22 11:10	04/01/22 15:06	5
1,1,1-Trichloroethane	<47	120	47	ug/Kg	₽	03/24/22 11:10	04/01/22 15:06	5
1,1,2,2-Tetrachloroethane	<49	120	49	ug/Kg	☼	03/24/22 11:10	04/01/22 15:06	5
1,1,2-Trichloroethane	<43	120	43	ug/Kg	₩	03/24/22 11:10	04/01/22 15:06	5
1,1-Dichloroethane	<50	120	50	ug/Kg	₩	03/24/22 11:10	04/01/22 15:06	5
1,1-Dichloroethene	<48	120	48	ug/Kg	₽	03/24/22 11:10	04/01/22 15:06	5
1,1-Dichloropropene	<37	120	37	ug/Kg	₽	03/24/22 11:10	04/01/22 15:06	5
1,2,3-Trichlorobenzene	<56	120	56	ug/Kg	₽	03/24/22 11:10	04/01/22 15:06	5
1,2,3-Trichloropropane	<51	250	51	ug/Kg	₩	03/24/22 11:10	04/01/22 15:06	5
1,2,4-Trichlorobenzene	<42	120	42	ug/Kg	₩	03/24/22 11:10	04/01/22 15:06	5
1,2,4-Trimethylbenzene	<44	120	44	ug/Kg	₩	03/24/22 11:10	04/01/22 15:06	5
1,2-Dibromo-3-Chloropropane	<250	620	250	ug/Kg	₽	03/24/22 11:10	04/01/22 15:06	5
1,2-Dibromoethane	<48	120		ug/Kg		03/24/22 11:10	04/01/22 15:06	5
1,2-Dichlorobenzene	<41	120		ug/Kg	☆	03/24/22 11:10	04/01/22 15:06	5
1,2-Dichloroethane	<48	120		ug/Kg	≎		04/01/22 15:06	5
1,2-Dichloropropane	<53	120		ug/Kg	∴ ☆	03/24/22 11:10	04/01/22 15:06	5
1,3,5-Trimethylbenzene	<47	120		ug/Kg			04/01/22 15:06	5
1,3-Dichlorobenzene	<49	120		ug/Kg		03/24/22 11:10	04/01/22 15:06	5
1,3-Dichloropropane	<45	120		ug/Kg			04/01/22 15:06	5
1,4-Dichlorobenzene	<45	120		ug/Kg			04/01/22 15:06	5
2,2-Dichloropropane	<55	120		ug/Kg	☆		04/01/22 15:06	5
2-Chlorotoluene	<39	120		ug/Kg			04/01/22 15:06	5
4-Chlorotoluene	<43	120		ug/Kg			04/01/22 15:06	5
Benzene	<18	31		ug/Kg			04/01/22 15:06	5
Bromobenzene	<44	120		ug/Kg			04/01/22 15:06	5
Bromochloromethane	<53	120		ug/Kg			04/01/22 15:06	5
Dichlorobromomethane	<46	120		ug/Kg	~		04/01/22 15:06	5
Bromoform	<60	120		ug/Kg			04/01/22 15:06	5
Bromomethane	<98	370		ug/Kg ug/Kg	₩		04/01/22 15:06	5
Carbon tetrachloride	<90 <47	120		ug/Kg ug/Kg	₩		04/01/22 15:06	5
Chlorobenzene	<48	120		ug/Kg			04/01/22 15:06	5
Chloroethane	<62	120					04/01/22 15:06	5
	<62 <46			ug/Kg	*		04/01/22 15:06	
Chloroform Chloromethane		250		ug/Kg	· · · · ·			5
	<39	120		ug/Kg	☆		04/01/22 15:06	5 5
cis-1,2-Dichloroethene	<50	120		ug/Kg	₩.		04/01/22 15:06	_
cis-1,3-Dichloropropene	<51	120		ug/Kg	 .		04/01/22 15:06	5
Dibromochloromethane	<60	120		ug/Kg	*		04/01/22 15:06	5
Dibromomethane	<33	120		ug/Kg	*		04/01/22 15:06	5
Dichlorodifluoromethane	<83	370		ug/Kg	. .		04/01/22 15:06	5
Ethylbenzene	<23	31		ug/Kg	☼		04/01/22 15:06	5
Hexachlorobutadiene	<55	120		ug/Kg	₩		04/01/22 15:06	5
Isopropyl ether	<34	120		ug/Kg	.		04/01/22 15:06	5
Isopropylbenzene	<47	120		ug/Kg	₩		04/01/22 15:06	5
Methyl tert-butyl ether	<49	120		ug/Kg	₩		04/01/22 15:06	5
Methylene Chloride	<200	620		ug/Kg	.		04/01/22 15:06	5
Naphthalene	<41	120		ug/Kg	☼		04/01/22 15:06	5
n-Butylbenzene	<48	120		ug/Kg	☼		04/01/22 15:06	5
N-Propylbenzene	<51	120	51	ug/Kg	₩	03/24/22 11:10	04/01/22 15:06	5
p-Isopropyltoluene	<45	120	45	ug/Kg	₩	03/24/22 11:10	04/01/22 15:06	5

Eurofins Chicago

3

5

9

11

1 /

15

Client: Stantec Consulting Corp.

Nitrobenzene-d5 (Surr)

Terphenyl-d14 (Surr)

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-31 Client Sample ID: SB-220 14.75-15

Date Collected: 03/24/22 11:10 **Matrix: Solid** Date Received: 03/29/22 10:20

Percent Solids: 63.0

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<49		120	49	ug/Kg	<u></u>	03/24/22 11:10	04/01/22 15:06	50
Styrene	<48		120	48	ug/Kg	☼	03/24/22 11:10	04/01/22 15:06	50
tert-Butylbenzene	<49		120	49	ug/Kg	₩	03/24/22 11:10	04/01/22 15:06	50
Tetrachloroethene	<46		120	46	ug/Kg	☼	03/24/22 11:10	04/01/22 15:06	50
Toluene	<18		31	18	ug/Kg	₩	03/24/22 11:10	04/01/22 15:06	50
trans-1,2-Dichloroethene	<43		120	43	ug/Kg	⊅	03/24/22 11:10	04/01/22 15:06	50
trans-1,3-Dichloropropene	<45		120	45	ug/Kg	☼	03/24/22 11:10	04/01/22 15:06	50
Trichloroethene	<20		62	20	ug/Kg	☼	03/24/22 11:10	04/01/22 15:06	50
Trichlorofluoromethane	<53		120	53	ug/Kg	⊅	03/24/22 11:10	04/01/22 15:06	50
Vinyl chloride	<32		120	32	ug/Kg	☼	03/24/22 11:10	04/01/22 15:06	50
Xylenes, Total	<27		62	27	ug/Kg	☼	03/24/22 11:10	04/01/22 15:06	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75 - 126				03/24/22 11:10	04/01/22 15:06	50
4-Bromofluorobenzene (Surr)	87		72 - 124				03/24/22 11:10	04/01/22 15:06	50
Dibromofluoromethane (Surr)	103		75 - 120				03/24/22 11:10	04/01/22 15:06	50
Toluene-d8 (Surr)	93		75 - 120				03/24/22 11:10	04/01/22 15:06	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	160	J	280	34	ug/Kg	<u></u>	04/07/22 05:35	04/08/22 16:26	1
2-Methylnaphthalene	180	J	280	25	ug/Kg	☆	04/07/22 05:35	04/08/22 16:26	1
Acenaphthene	<25		140	25	ug/Kg	☆	04/07/22 05:35	04/08/22 16:26	1
Acenaphthylene	<18		140	18	ug/Kg	₽	04/07/22 05:35	04/08/22 16:26	1
Anthracene	<23		140	23	ug/Kg	≎	04/07/22 05:35	04/08/22 16:26	1
Benzo[a]anthracene	40	J	140	19	ug/Kg	≎	04/07/22 05:35	04/08/22 16:26	1
Benzo[a]pyrene	<27		140	27	ug/Kg	₽	04/07/22 05:35	04/08/22 16:26	1
Benzo[b]fluoranthene	50	J	140	30	ug/Kg	≎	04/07/22 05:35	04/08/22 16:26	1
Benzo[g,h,i]perylene	<45		140	45	ug/Kg	≎	04/07/22 05:35	04/08/22 16:26	1
Benzo[k]fluoranthene	<41		140	41	ug/Kg	≎	04/07/22 05:35	04/08/22 16:26	1
Chrysene	43	J	140	38	ug/Kg	☼	04/07/22 05:35	04/08/22 16:26	1
Dibenz(a,h)anthracene	<27		140	27	ug/Kg	≎	04/07/22 05:35	04/08/22 16:26	1
Fluoranthene	55	J	140	26	ug/Kg	₩	04/07/22 05:35	04/08/22 16:26	1
Fluorene	<19		140	19	ug/Kg	☼	04/07/22 05:35	04/08/22 16:26	1
Indeno[1,2,3-cd]pyrene	<36		140	36	ug/Kg	≎	04/07/22 05:35	04/08/22 16:26	1
Naphthalene	110	J	140	21	ug/Kg	₩	04/07/22 05:35	04/08/22 16:26	1
Phenanthrene	120	J	140	19	ug/Kg	≎	04/07/22 05:35	04/08/22 16:26	1
Pyrene	61	J	140	28	ug/Kg	₩	04/07/22 05:35	04/08/22 16:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	70		43 - 145				04/07/22 05:35	04/08/22 16:26	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.2		1.4	0.47	mg/Kg	*	04/07/22 07:00	04/07/22 23:13	1
Lead	19		0.69	0.32	mg/Kg	⇔	04/07/22 07:00	04/07/22 23:13	1

37 - 147

42 - 157

52

103

04/07/22 05:35 04/08/22 16:26

04/07/22 05:35 04/08/22 16:26

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-225 2-4

Date Collected: 03/24/22 11:25 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-32

Matrix: Solid

Percent Solids: 74.2

Job ID: 500-214283-1

Method: 8260B - Volatile O	rganic Compounds (GC/MS)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<55	120	55	ug/Kg	☼	03/24/22 11:25	04/01/22 15:29	5
1,1,1-Trichloroethane	<46	120	46	ug/Kg	☼	03/24/22 11:25	04/01/22 15:29	5
1,1,2,2-Tetrachloroethane	<48	120	48	ug/Kg	☼	03/24/22 11:25	04/01/22 15:29	5
1,1,2-Trichloroethane	<42	120	42	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	5
1,1-Dichloroethane	<49	120	49	ug/Kg	≎	03/24/22 11:25	04/01/22 15:29	5
1,1-Dichloroethene	<47	120	47	ug/Kg	₩	03/24/22 11:25	04/01/22 15:29	5
1,1-Dichloropropene	<36	120	36	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	5
1,2,3-Trichlorobenzene	<55	120	55	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	5
1,2,3-Trichloropropane	<50	240	50	ug/Kg	≎	03/24/22 11:25	04/01/22 15:29	5
1,2,4-Trichlorobenzene	<41	120	41	ug/Kg	₩	03/24/22 11:25	04/01/22 15:29	5
1,2,4-Trimethylbenzene	340	120	43	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	5
1,2-Dibromo-3-Chloropropane	<240	600	240	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	5
1,2-Dibromoethane	<46	120	46	ug/Kg		03/24/22 11:25	04/01/22 15:29	5
1,2-Dichlorobenzene	<40	120		ug/Kg	₩	03/24/22 11:25	04/01/22 15:29	5
1,2-Dichloroethane	<47	120		ug/Kg	₩	03/24/22 11:25	04/01/22 15:29	5
1,2-Dichloropropane	<51	120		ug/Kg		03/24/22 11:25	04/01/22 15:29	5
1,3,5-Trimethylbenzene	92 J	120		ug/Kg	₩		04/01/22 15:29	5
1,3-Dichlorobenzene	<48	120		ug/Kg	₩		04/01/22 15:29	5
1,3-Dichloropropane	<43	120		ug/Kg			04/01/22 15:29	5
1,4-Dichlorobenzene	<44	120		ug/Kg			04/01/22 15:29	5
2,2-Dichloropropane	<53	120		ug/Kg	Ü		04/01/22 15:29	5
2-Chlorotoluene	<38	120		ug/Kg	. T . th		04/01/22 15:29	
4-Chlorotoluene	<42	120		ug/Kg			04/01/22 15:29	5
Benzene	170	30		ug/Kg	 ##		04/01/22 15:29	5
Bromobenzene	<43	120		ug/Kg	. T . th		04/01/22 15:29	5
Bromochloromethane	<51	120		ug/Kg			04/01/22 15:29	5
Dichlorobromomethane	<45	120		ug/Kg	**		04/01/22 15:29	5
Bromoform	<58	120		ug/Kg			04/01/22 15:29	
Bromomethane	<95	360		ug/Kg ug/Kg	₩		04/01/22 15:29	5
Carbon tetrachloride	<46	120		ug/Kg ug/Kg	₩		04/01/22 15:29	į
Chlorobenzene	<46	120		ug/Kg ug/Kg	¥. ☆		04/01/22 15:29	
Chloroethane	<60	120					04/01/22 15:29	5
Chloroform	<00 <44	240		0 0			04/01/22 15:29	
Chloromethane				ug/Kg			04/01/22 15:29	
	<38	120		ug/Kg	*			Ę
cis-1,2-Dichloroethene	<49	120		ug/Kg	#		04/01/22 15:29	į
cis-1,3-Dichloropropene	<50	120		ug/Kg	 .		04/01/22 15:29	
Dibromochloromethane	<58	120		ug/Kg	‡		04/01/22 15:29	į
Dibromomethane	<32	120		ug/Kg	‡		04/01/22 15:29	į
Dichlorodifluoromethane	<81	360		ug/Kg			04/01/22 15:29	
Ethylbenzene	290	30		ug/Kg	☼		04/01/22 15:29	į
Hexachlorobutadiene	<53	120		ug/Kg	₩		04/01/22 15:29	Ę
Isopropyl ether	<33	120		ug/Kg			04/01/22 15:29	
sopropylbenzene	92 J	120		ug/Kg	₩		04/01/22 15:29	;
Methyl tert-butyl ether	<47	120		ug/Kg	₩		04/01/22 15:29	į
Methylene Chloride	<200	600		ug/Kg			04/01/22 15:29	
Naphthalene	350 B	120	40	ug/Kg	₩	03/24/22 11:25	04/01/22 15:29	Ę
n-Butylbenzene	57 J	120	46	ug/Kg	☼	03/24/22 11:25	04/01/22 15:29	5
N-Propylbenzene	160	120	50	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	5
p-Isopropyltoluene	<43	120	43	ug/Kg		03/24/22 11:25	04/01/22 15:29	5

Eurofins Chicago

2

5

7

9

11

13

4 -

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-225 2-4

Date Collected: 03/24/22 11:25 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-32

Matrix: Solid

Percent Solids: 74.2

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<48		120	48	ug/Kg	-	03/24/22 11:25	04/01/22 15:29	50
Styrene	<46		120	46	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	50
tert-Butylbenzene	<48		120	48	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	50
Tetrachloroethene	<44		120	44	ug/Kg	☼	03/24/22 11:25	04/01/22 15:29	50
Toluene	730		30	18	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	50
trans-1,2-Dichloroethene	<42		120	42	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	50
trans-1,3-Dichloropropene	<43		120	43	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	50
Trichloroethene	<20		60	20	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	50
Trichlorofluoromethane	<51		120	51	ug/Kg	₩	03/24/22 11:25	04/01/22 15:29	50
Vinyl chloride	<31		120	31	ug/Kg	₽	03/24/22 11:25	04/01/22 15:29	50
Xylenes, Total	1000		60	26	ug/Kg	☼	03/24/22 11:25	04/01/22 15:29	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75 - 126				03/24/22 11:25	04/01/22 15:29	50
4-Bromofluorobenzene (Surr)	90		72 - 124				03/24/22 11:25	04/01/22 15:29	50
Dibromofluoromethane (Surr)	102		75 - 120				03/24/22 11:25	04/01/22 15:29	50
Toluene-d8 (Surr)	96		75 - 120				03/24/22 11:25	04/01/22 15:29	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<240		1100	240	ug/Kg	<u></u>	04/07/22 05:35	04/11/22 17:04	5
1,2-Dichlorobenzene	<260		1100	260	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
1,3-Dichlorobenzene	<250		1100	250	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
1,4-Dichlorobenzene	<280		1100	280	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
1-Methylnaphthalene	1200		440	54	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
2,2'-oxybis[1-chloropropane]	<250		1100	250	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
2,4,5-Trichlorophenol	<500		2200	500	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
2,4,6-Trichlorophenol	<750		2200	750	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
2,4-Dichlorophenol	<520		2200	520	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
2,4-Dimethylphenol	<830		2200	830	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
2,4-Dinitrophenol	<3900		4400	3900	ug/Kg	₩	04/07/22 05:35	04/11/22 17:04	5
2,4-Dinitrotoluene	<350		1100	350	ug/Kg	₩	04/07/22 05:35	04/11/22 17:04	5
2,6-Dinitrotoluene	<430		1100	430	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
2-Chloronaphthalene	<240		1100	240	ug/Kg	₩	04/07/22 05:35	04/11/22 17:04	5
2-Chlorophenol	<370		1100	370	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
2-Methylnaphthalene	1500		440	40	ug/Kg	₩	04/07/22 05:35	04/11/22 17:04	5
2-Methylphenol	<350		1100	350	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
2-Nitroaniline	<290		1100	290	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
2-Nitrophenol	<520		2200	520	ug/Kg	₩	04/07/22 05:35	04/11/22 17:04	5
3 & 4 Methylphenol	<370		1100	370	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
3,3'-Dichlorobenzidine	<310		1100	310	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
3-Nitroaniline	<680		2200	680	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
4,6-Dinitro-2-methylphenol	<1800		4400	1800	ug/Kg	₩	04/07/22 05:35	04/11/22 17:04	5
4-Bromophenyl phenyl ether	<290		1100	290	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
4-Chloro-3-methylphenol	<750		2200	750	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
4-Chloroaniline	<1000		4400	1000	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
4-Chlorophenyl phenyl ether	<260		1100	260	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	5
4-Nitroaniline	<920		2200	920	ug/Kg	⊅	04/07/22 05:35	04/11/22 17:04	5
4-Nitrophenol	<2100		4400	2100	ug/Kg	☆	04/07/22 05:35	04/11/22 17:04	5
Acenaphthene	<39		220	39	ug/Kg	÷	04/07/22 05:35	04/11/22 17:04	5

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-225 2-4 Lab Sample ID: 500-214283-32

Date Collected: 03/24/22 11:25 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 74.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthylene	<29		220	29	ug/Kg	<u></u>	04/07/22 05:35	04/11/22 17:04	-
Anthracene	55	J	220	37	ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	
Benzo[a]anthracene	62	J	220	29	ug/Kg	☼	04/07/22 05:35	04/11/22 17:04	
Benzo[a]pyrene	<42		220	42	ug/Kg	₩	04/07/22 05:35	04/11/22 17:04	
Benzo[b]fluoranthene	53	J	220		ug/Kg	₽	04/07/22 05:35	04/11/22 17:04	
Benzo[g,h,i]perylene	<71		220	71		☼	04/07/22 05:35	04/11/22 17:04	
Benzo[k]fluoranthene	<65		220	65	ug/Kg	≎	04/07/22 05:35	04/11/22 17:04	
Benzoic acid	<2200		11000			₽	04/07/22 05:35	04/11/22 17:04	
Benzyl alcohol	<2200		4400			₽	04/07/22 05:35	04/11/22 17:04	:
Bis(2-chloroethoxy)methane	<220		1100	220	ug/Kg	☼	04/07/22 05:35	04/11/22 17:04	
Bis(2-chloroethyl)ether	<330		1100	330		₩	04/07/22 05:35	04/11/22 17:04	
Bis(2-ethylhexyl) phthalate	<400		1100	400	ug/Kg	₩		04/11/22 17:04	
Butyl benzyl phthalate	<420		1100	420	ug/Kg			04/11/22 17:04	
Carbazole	<550		1100	550	ug/Kg	₩		04/11/22 17:04	
Chrysene	73	J	220	60	ug/Kg	₩		04/11/22 17:04	
Dibenz(a,h)anthracene	<42		220		ug/Kg			04/11/22 17:04	
Dibenzofuran	290	1	1100	260		₩			
Diethyl phthalate	<370	•	1100	370	ug/Kg ug/Kg	₩		04/11/22 17:04	
Dimethyl phthalate	<290		1100	290	ug/Kg ug/Kg	¥ 		04/11/22 17:04	
Di-n-butyl phthalate	<330		1100	330	ug/Kg ug/Kg	₩		04/11/22 17:04	
• •	<360		1100		ug/Kg ug/Kg			04/11/22 17:04	
Di-n-octyl phthalate			220	41				04/11/22 17:04	
Fluoranthene	81 <31	J	220		ug/Kg	☆		04/11/22 17:04	
Fluorene	<31 <51		440	31	ug/Kg	*			
Hexachlorobenzene					ug/Kg	· · · · · · · · · · · · · · · · · · ·		04/11/22 17:04	
Hexachlorobutadiene	<340		1100		ug/Kg	φ.		04/11/22 17:04	
Hexachlorocyclopentadiene	<1300		4400	1300	ug/Kg	ψ.	04/07/22 05:35	04/11/22 17:04	
Hexachloroethane	<330		1100	330	ug/Kg	 .	04/07/22 05:35	04/11/22 17:04	
Indeno[1,2,3-cd]pyrene	<57		220		ug/Kg			04/11/22 17:04	
Isophorone	<250		1100	250	ug/Kg			04/11/22 17:04	
Naphthalene	940		220	34	ug/Kg			04/11/22 17:04	
Nitrobenzene	<55		220		ug/Kg	‡	04/07/22 05:35		
N-Nitrosodi-n-propylamine	<270		440	270	ug/Kg	‡		04/11/22 17:04	:
N-Nitrosodiphenylamine	<260		1100	260	ug/Kg			04/11/22 17:04	
Pentachlorophenol	<3500		4400	3500	ug/Kg	₩		04/11/22 17:04	
Phenanthrene	810		220	31	ug/Kg	₩		04/11/22 17:04	
Phenol	<490		1100		ug/Kg		04/07/22 05:35		
Pyrene	120	J	220	44	ug/Kg	₩	04/07/22 05:35	04/11/22 17:04	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	79		31 - 143					04/11/22 17:04	
2-Fluorobiphenyl (Surr)	58		43 - 145					04/11/22 17:04	
2-Fluorophenol (Surr)	118		31 - 166					04/11/22 17:04	
Nitrobenzene-d5 (Surr)	41		37 - 147					04/11/22 17:04	
Phenol-d5 (Surr)	67		30 - 153					04/11/22 17:04	
Terphenyl-d14 (Surr)	82		42 - 157					04/11/22 17:04	
Torphonyr-u i + (Ouii)	02		72 - 101				J-#01/22 00.30	0 T/ 11/22 11.04	
Method: 8081A - Organoch	nlorine Pesticid	es (GC)							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Aldrin	<1.5		2.2	1.5	ug/Kg		04/05/22 16:57	04/06/22 18:43	
alpha-BHC	<1.2		2.2	1.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:43	

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-225 2-4

Date Collected: 03/24/22 11:25 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-32

Matrix: Solid

Percent Solids: 74.2

Job ID: 500-214283-1

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<1.2		2.2	1.2	ug/Kg	-	04/05/22 16:57	04/06/22 18:43	1
beta-BHC	<1.8		2.2	1.8	ug/Kg	₽	04/05/22 16:57	04/06/22 18:43	1
4,4'-DDD	<1.2		2.2	1.2	ug/Kg	₩	04/05/22 16:57	04/06/22 18:43	1
4,4'-DDE	<1.1		2.2	1.1	ug/Kg	₽	04/05/22 16:57	04/06/22 18:43	1
4,4'-DDT	<1.0		2.2	1.0	ug/Kg	₽	04/05/22 16:57	04/06/22 18:43	1
delta-BHC	<1.1		2.2	1.1	ug/Kg	≎	04/05/22 16:57	04/06/22 18:43	1
Dieldrin	<1.2		2.2	1.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:43	1
Endosulfan I	<1.2		2.2	1.2	ug/Kg	₽	04/05/22 16:57	04/06/22 18:43	1
Endosulfan II	<1.2		2.2	1.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:43	1
Endosulfan sulfate	<1.2		2.2	1.2	ug/Kg	≎	04/05/22 16:57	04/06/22 18:43	1
Endrin	<1.1		2.2	1.1	ug/Kg	≎	04/05/22 16:57	04/06/22 18:43	1
Endrin aldehyde	<1.3		2.2	1.3	ug/Kg	≎	04/05/22 16:57	04/06/22 18:43	1
Endrin ketone	<1.1		2.2	1.1	ug/Kg	₽	04/05/22 16:57	04/06/22 18:43	1
gamma-BHC (Lindane)	<1.1		2.2	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 18:43	1
trans-Chlordane	<1.3		2.2	1.3	ug/Kg	₽	04/05/22 16:57	04/06/22 18:43	1
Heptachlor	<1.2		2.2	1.2	ug/Kg	☼	04/05/22 16:57	04/06/22 18:43	1
Heptachlor epoxide	<1.2		2.2	1.2	ug/Kg	₽	04/05/22 16:57	04/06/22 18:43	1
Methoxychlor	<1.4		11	1.4	ug/Kg	₽	04/05/22 16:57	04/06/22 18:43	1
Toxaphene	<8.8		22	8.8	ug/Kg	☼	04/05/22 16:57	04/06/22 18:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	111		33 - 148				04/05/22 16:57	04/06/22 18:43	1
Tetrachloro-m-xylene	90		30 - 121				04/05/22 16:57	04/06/22 18:43	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0086		0.022	0.0086	mg/Kg	-	04/05/22 16:57	04/08/22 22:23	1
PCB-1221	<0.0086		0.022	0.0086	mg/Kg	☼	04/05/22 16:57	04/08/22 22:23	1
PCB-1232	<0.0059		0.022	0.0059	mg/Kg	☼	04/05/22 16:57	04/08/22 22:23	1
PCB-1242	<0.0085		0.022	0.0085	mg/Kg	₽	04/05/22 16:57	04/08/22 22:23	1
PCB-1248	<0.010		0.022	0.010	mg/Kg	☼	04/05/22 16:57	04/08/22 22:23	1
PCB-1254	<0.0074		0.022	0.0074	mg/Kg	☼	04/05/22 16:57	04/08/22 22:23	1
PCB-1260	<0.0082		0.022	0.0082	mg/Kg	₩	04/05/22 16:57	04/08/22 22:23	1
PCB-1262	<0.0071		0.022	0.0071	mg/Kg	☼	04/05/22 16:57	04/08/22 22:23	1
PCB-1268	<0.013		0.022	0.013	mg/Kg	₩	04/05/22 16:57	04/08/22 22:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	85		49 - 129				04/05/22 16:57	04/08/22 22:23	1
DCB Decachlorobiphenyl	101		37 - 121				04/05/22 16:57	04/08/22 22:23	1

Method: 8151A - Herbi	cides (GC)							
Analyte	Result Qu	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<100	440	100	ug/Kg		04/06/22 10:55	04/11/22 09:44	10
2,4-DB	<130	440	130	ug/Kg	₩	04/06/22 10:55	04/11/22 09:44	10
Dicamba	<94	440	94	ug/Kg	₩	04/06/22 10:55	04/11/22 09:44	10
Dichlorprop	<110	440	110	ug/Kg	₩	04/06/22 10:55	04/11/22 09:44	10
Silvex (2,4,5-TP)	<99	440	99	ug/Kg	₩	04/06/22 10:55	04/11/22 09:44	10
2,4,5-T	<88	440	88	ug/Kg	☼	04/06/22 10:55	04/11/22 09:44	10
Surrogate	%Recovery Qu	ualifier Limits				Prepared	Analyzed	Dil Fac
DCAA	79	25 - 120				04/06/22 10:55	04/11/22 09:44	10

Eurofins Chicago

2

4

9

11

13

15

16

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-225 2-4

Lab Sample ID: 500-214283-32 Date Collected: 03/24/22 11:25 **Matrix: Solid**

Percent Solids: 74.2

Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.6		1.2	0.39	mg/Kg	<u></u>	04/07/22 07:00	04/07/22 23:16	1
Barium	62		1.3	0.15	mg/Kg	☼	04/06/22 02:01	04/07/22 17:49	1
Cadmium	0.080	JB	0.23	0.041	mg/Kg	₩	04/07/22 07:00	04/07/22 23:16	1
Chromium	12		1.3	0.64	mg/Kg	⊅	04/06/22 02:01	04/07/22 17:49	1
Lead	14		0.58	0.27	mg/Kg	☼	04/07/22 07:00	04/07/22 23:16	1
Selenium	1.7		1.2	0.68	mg/Kg	☼	04/07/22 07:00	04/07/22 23:16	1
Silver	0.15	J	0.58	0.15	mg/Kg	☼	04/07/22 07:00	04/07/22 23:16	1
Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.011	J	0.020	0.0068	mg/Kg	<u></u>	04/07/22 13:45	04/08/22 11:50	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-225 8-9

Date Collected: 03/24/22 11:30 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-33

Matrix: Solid

Percent Solids: 69.3

Job ID: 500-214283-1

Method: 8260B - Volatile Org	janic Compounds (GC/MS	3)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<44	96	44	ug/Kg	≎	03/24/22 11:30	04/01/22 15:52	50
1,1,1-Trichloroethane	<36	96	36	ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
1,1,2,2-Tetrachloroethane	<38	96	38	ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
1,1,2-Trichloroethane	<34	96	34	ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
1,1-Dichloroethane	<39	96	39	ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
1,1-Dichloroethene	<37	96	37	ug/Kg	₽	03/24/22 11:30	04/01/22 15:52	50
1,1-Dichloropropene	<28	96	28	ug/Kg	₽	03/24/22 11:30	04/01/22 15:52	50
1,2,3-Trichlorobenzene	<44	96	44	ug/Kg	₽	03/24/22 11:30	04/01/22 15:52	50
1,2,3-Trichloropropane	<40	190	40	ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
1,2,4-Trichlorobenzene	<33	96	33	ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
1,2,4-Trimethylbenzene	<34	96	34	ug/Kg	⇔	03/24/22 11:30	04/01/22 15:52	50
1,2-Dibromo-3-Chloropropane	<190	480		ug/Kg	⇔	03/24/22 11:30	04/01/22 15:52	50
1,2-Dibromoethane	<37	96		ug/Kg	≎	03/24/22 11:30	04/01/22 15:52	50
1,2-Dichlorobenzene	<32	96		ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
1,2-Dichloroethane	<37	96		ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
1,2-Dichloropropane	<41	96		ug/Kg		03/24/22 11:30	04/01/22 15:52	50
1,3,5-Trimethylbenzene	<36	96		ug/Kg	☆		04/01/22 15:52	50
1,3-Dichlorobenzene	<38	96		ug/Kg	☆		04/01/22 15:52	50
1,3-Dichloropropane	<35	96		ug/Kg			04/01/22 15:52	50
1,4-Dichlorobenzene	<35	96		ug/Kg			04/01/22 15:52	50
2,2-Dichloropropane	<42	96		ug/Kg			04/01/22 15:52	50
2-Chlorotoluene	<30	96		ug/Kg			04/01/22 15:52	50
4-Chlorotoluene	<33	96		ug/Kg			04/01/22 15:52	50
Benzene	<14	24		ug/Kg			04/01/22 15:52	50
Bromobenzene	<34	96		ug/Kg			04/01/22 15:52	50
Bromochloromethane	<41	96		ug/Kg			04/01/22 15:52	50
Dichlorobromomethane	<36	96		ug/Kg	~ \$		04/01/22 15:52	50
Bromoform	<46	96		ug/Kg			04/01/22 15:52	50
Bromomethane	<76	290		ug/Kg ug/Kg	₩		04/01/22 15:52	50
Carbon tetrachloride	<37	290 96		ug/Kg ug/Kg	₩		04/01/22 15:52	50
Chlorobenzene	<37	96		ug/Kg			04/01/22 15:52	50
Chloroethane	<48	96		ug/Kg ug/Kg	₩		04/01/22 15:52	50
Chloroform	<35							
Chloromethane	<31	190		ug/Kg	· · · · ·		04/01/22 15:52 04/01/22 15:52	50
	<39	96 96		ug/Kg	\$			50 50
cis-1,2-Dichloroethene				ug/Kg	₩.		04/01/22 15:52	-
cis-1,3-Dichloropropene	<40	96		ug/Kg	 .		04/01/22 15:52	50
Dibromochloromethane	<47	96		ug/Kg	*		04/01/22 15:52	50
Dibromomethane	<26	96		ug/Kg	**		04/01/22 15:52	50
Dichlorodifluoromethane	<64	290		ug/Kg	. .		04/01/22 15:52	50
Ethylbenzene	<17	24		ug/Kg	₽		04/01/22 15:52	50
Hexachlorobutadiene	<43	96		ug/Kg	₩		04/01/22 15:52	50
Isopropyl ether	<26	96		ug/Kg	.		04/01/22 15:52	50
Isopropylbenzene	<37	96		ug/Kg	₩		04/01/22 15:52	50
Methyl tert-butyl ether	<38	96		ug/Kg	₽		04/01/22 15:52	50
Methylene Chloride	<160	480		ug/Kg		03/24/22 11:30		50
Naphthalene	<32	96		ug/Kg	₽		04/01/22 15:52	50
n-Butylbenzene	<37	96	37	ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
N-Propylbenzene	<40	96	40	ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
p-Isopropyltoluene	<35	96	35	ug/Kg	₽	03/24/22 11:30	04/01/22 15:52	50

Eurofins Chicago

3

5

7

9

11

4 4

15

T.

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-225 8-9 Lab Sample ID: 500-214283-33

Date Collected: 03/24/22 11:30 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 69.3

Method: 8260B - Volatile O	•	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<38	- Guuiiiici	96		ug/Kg	— <u>-</u>	<u> </u>	04/01/22 15:52	50
Styrene	<37		96		ug/Kg			04/01/22 15:52	50
tert-Butylbenzene	<38		96		ug/Kg		03/24/22 11:30	04/01/22 15:52	50
Tetrachloroethene	<35		96		ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
Toluene	<14		24		ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
trans-1,2-Dichloroethene	<33		96		ug/Kg		03/24/22 11:30	04/01/22 15:52	50
trans-1,3-Dichloropropene	<35		96	35	ug/Kg	≎	03/24/22 11:30	04/01/22 15:52	50
Trichloroethene	<16		48	16	ug/Kg	☼	03/24/22 11:30	04/01/22 15:52	50
Trichlorofluoromethane	<41		96	41	ug/Kg		03/24/22 11:30	04/01/22 15:52	50
Vinyl chloride	<25		96	25	ug/Kg	☼	03/24/22 11:30	04/01/22 15:52	50
Xylenes, Total	<21		48	21	ug/Kg	₩	03/24/22 11:30	04/01/22 15:52	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 126				03/24/22 11:30	04/01/22 15:52	50
4-Bromofluorobenzene (Surr)	88		72 - 124				03/24/22 11:30	04/01/22 15:52	50
Dibromofluoromethane (Surr)	103		75 - 120				03/24/22 11:30	04/01/22 15:52	50
Toluene-d8 (Surr)	94		75 - 120				03/24/22 11:30	04/01/22 15:52	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<12		96	12	ug/Kg	— -	04/07/22 05:35	04/08/22 16:48	1
2-Methylnaphthalene	<8.7		96	8.7	ug/Kg	₽	04/07/22 05:35	04/08/22 16:48	1
Acenaphthene	<8.5		47	8.5	ug/Kg	₽	04/07/22 05:35	04/08/22 16:48	1
Acenaphthylene	<6.3		47	6.3	ug/Kg	₽	04/07/22 05:35	04/08/22 16:48	1
Anthracene	<7.9		47	7.9	ug/Kg	₽	04/07/22 05:35	04/08/22 16:48	1
Benzo[a]anthracene	<6.4		47	6.4	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Benzo[a]pyrene	<9.2		47	9.2	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Benzo[b]fluoranthene	<10		47	10	ug/Kg	₽	04/07/22 05:35	04/08/22 16:48	1
Benzo[g,h,i]perylene	<15		47	15	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Benzo[k]fluoranthene	<14		47	14	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Chrysene	<13		47	13	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Dibenz(a,h)anthracene	<9.2		47	9.2	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Fluoranthene	<8.8		47	8.8	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Fluorene	<6.7		47	6.7	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Indeno[1,2,3-cd]pyrene	<12		47	12	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Naphthalene	<7.3		47	7.3	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Phenanthrene	<6.6		47	6.6	ug/Kg	₩	04/07/22 05:35	04/08/22 16:48	1
Pyrene	<9.4		47	9.4	ug/Kg	☼	04/07/22 05:35	04/08/22 16:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	58		43 - 145				04/07/22 05:35	04/08/22 16:48	1
Nitrobenzene-d5 (Surr)	50		37 - 147				04/07/22 05:35	04/08/22 16:48	1
Terphenyl-d14 (Surr)	93		42 - 157				04/07/22 05:35	04/08/22 16:48	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3		1.3	0.44	mg/Kg	₩	04/07/22 07:00	04/07/22 23:20	1
Lead	6.2		0.64	0.30	mg/Kg	≎	04/07/22 07:00	04/07/22 23:20	1

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-227 4-6

Date Collected: 03/24/22 12:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-34

Matrix: Solid

Percent Solids: 79.7

Job ID: 500-214283-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<34	74	34	ug/Kg	☼	03/24/22 12:10	04/01/22 16:14	50
1,1,1-Trichloroethane	<28	74	28	ug/Kg	☼		04/01/22 16:14	50
1,1,2,2-Tetrachloroethane	<30	74	30	ug/Kg	☼	03/24/22 12:10	04/01/22 16:14	50
1,1,2-Trichloroethane	<26	74	26	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
1,1-Dichloroethane	<30	74	30	ug/Kg	☼	03/24/22 12:10	04/01/22 16:14	50
1,1-Dichloroethene	<29	74	29	ug/Kg	☼	03/24/22 12:10	04/01/22 16:14	50
1,1-Dichloropropene	<22	74	22	ug/Kg	₽	03/24/22 12:10	04/01/22 16:14	50
1,2,3-Trichlorobenzene	<34	74	34	ug/Kg	≎	03/24/22 12:10	04/01/22 16:14	50
1,2,3-Trichloropropane	<31	150	31	ug/Kg	≎	03/24/22 12:10	04/01/22 16:14	50
1,2,4-Trichlorobenzene	<25	74	25	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
1,2,4-Trimethylbenzene	83	74	27	ug/Kg	☼	03/24/22 12:10	04/01/22 16:14	50
1,2-Dibromo-3-Chloropropane	<150	370	150	ug/Kg	☼	03/24/22 12:10	04/01/22 16:14	50
1,2-Dibromoethane	<29	74	29	ug/Kg	₽	03/24/22 12:10	04/01/22 16:14	50
1,2-Dichlorobenzene	<25	74	25	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
1,2-Dichloroethane	<29	74	29	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
1,2-Dichloropropane	<32	74		ug/Kg		03/24/22 12:10	04/01/22 16:14	50
1,3,5-Trimethylbenzene	<28	74		ug/Kg	☆	03/24/22 12:10	04/01/22 16:14	50
1,3-Dichlorobenzene	<30	74		ug/Kg	☆	03/24/22 12:10	04/01/22 16:14	50
1,3-Dichloropropane	<27	74		ug/Kg		03/24/22 12:10	04/01/22 16:14	50
1,4-Dichlorobenzene	<27	74		ug/Kg	☆		04/01/22 16:14	50
2,2-Dichloropropane	<33	74		ug/Kg	₩		04/01/22 16:14	50
2-Chlorotoluene	<23	74		ug/Kg	 	03/24/22 12:10		50
4-Chlorotoluene	<26	74		ug/Kg	☆		04/01/22 16:14	50
Benzene	17 J	19		ug/Kg	☆	03/24/22 12:10		50
Bromobenzene	<26	74		ug/Kg	 .☆		04/01/22 16:14	50
Bromochloromethane	<32	74		ug/Kg	₩		04/01/22 16:14	50
Dichlorobromomethane	<28	74		ug/Kg	☆	03/24/22 12:10		50
Bromoform	<36	74		ug/Kg	 		04/01/22 16:14	50
Bromomethane	<59	220		ug/Kg			04/01/22 16:14	50
Carbon tetrachloride	<29	74		ug/Kg			04/01/22 16:14	50
Chlorobenzene	<29	74		ug/Kg	. T ☆		04/01/22 16:14	50
Chloroethane	<37	74		ug/Kg	~ \$	03/24/22 12:10		50
Chloroform	<28	150		ug/Kg ug/Kg	₩	03/24/22 12:10		50
Chloromethane	<24	74		ug/Kg		03/24/22 12:10		50
cis-1,2-Dichloroethene	<30	74		ug/Kg ug/Kg	₩		04/01/22 16:14	50
cis-1,3-Dichloropropene	<31	74		ug/Kg ug/Kg	*	03/24/22 12:10	,,	50
Dibromochloromethane	<36	74		ug/Kg ug/Kg		03/24/22 12:10		50
Dibromomethane Dichlorodifluoromethane	<20	74		ug/Kg	φ.		04/01/22 16:14 04/01/22 16:14	50
	<50	220		ug/Kg	· · · · ·		04/01/22 16:14	50
Ethylbenzene	38	19 74		ug/Kg	₩.			50
Hexachlorobutadiene	<33	74		ug/Kg	*		04/01/22 16:14	50
sopropyl ether	<21	74		ug/Kg	· · · · · · · · ·		04/01/22 16:14	50
sopropylbenzene	<29	74		ug/Kg	*		04/01/22 16:14	50
Methyl tert-butyl ether	<29	74		ug/Kg	\$		04/01/22 16:14	50
Methylene Chloride	<120	370		ug/Kg	. .		04/01/22 16:14	50
Naphthalene	86 B	74		ug/Kg	₩	03/24/22 12:10		50
n-Butylbenzene	<29	74		ug/Kg	☼		04/01/22 16:14	50
N-Propylbenzene	36 J	74	31	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

102

95

Client Sample ID: SB-227 4-6

Date Collected: 03/24/22 12:10 Date Received: 03/29/22 10:20

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Lab Sample ID: 500-214283-34

03/24/22 12:10 04/01/22 16:14

03/24/22 12:10 04/01/22 16:14

Matrix: Solid

Percent Solids: 79.7

Job ID: 500-214283-1

Method: 8260B - Volatile O	rganic Compou	ınds (GC/I	MS) (Continເ	ned)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<30		74	30	ug/Kg	<u></u>	03/24/22 12:10	04/01/22 16:14	50
Styrene	<29		74	29	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
tert-Butylbenzene	<30		74	30	ug/Kg	₽	03/24/22 12:10	04/01/22 16:14	50
Tetrachloroethene	<28		74	28	ug/Kg	☼	03/24/22 12:10	04/01/22 16:14	50
Toluene	60		19	11	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
trans-1,2-Dichloroethene	<26		74	26	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
trans-1,3-Dichloropropene	<27		74	27	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
Trichloroethene	<12		37	12	ug/Kg	☼	03/24/22 12:10	04/01/22 16:14	50
Trichlorofluoromethane	<32		74	32	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
Vinyl chloride	<19		74	19	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
Xylenes, Total	170		37	16	ug/Kg	₩	03/24/22 12:10	04/01/22 16:14	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 126				03/24/22 12:10	04/01/22 16:14	50
4-Bromofluorobenzene (Surr)	89		72 - 124				03/24/22 12:10	04/01/22 16:14	50

75 - 120

75 - 120

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<220	1000	220	ug/Kg	<u></u>	04/07/22 05:35	04/11/22 17:27	5
1,2-Dichlorobenzene	<240	1000	240	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
1,3-Dichlorobenzene	<230	1000	230	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
1,4-Dichlorobenzene	<260	1000	260	ug/Kg	₽	04/07/22 05:35	04/11/22 17:27	5
1-Methylnaphthalene	750	410	50	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
2,2'-oxybis[1-chloropropane]	<240	1000	240	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
2,4,5-Trichlorophenol	<470	2000	470	ug/Kg	₽	04/07/22 05:35	04/11/22 17:27	5
2,4,6-Trichlorophenol	<700	2000	700	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
2,4-Dichlorophenol	<490	2000	490	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
2,4-Dimethylphenol	<780	2000	780	ug/Kg	₽	04/07/22 05:35	04/11/22 17:27	5
2,4-Dinitrophenol	<3600	4100	3600	ug/Kg	₩	04/07/22 05:35	04/11/22 17:27	5
2,4-Dinitrotoluene	<330	1000	330	ug/Kg	₩	04/07/22 05:35	04/11/22 17:27	5
2,6-Dinitrotoluene	<400	1000	400	ug/Kg	₽	04/07/22 05:35	04/11/22 17:27	5
2-Chloronaphthalene	<230	1000	230	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
2-Chlorophenol	<350	1000	350	ug/Kg	₩	04/07/22 05:35	04/11/22 17:27	5
2-Methylnaphthalene	910	410	38	ug/Kg	₩	04/07/22 05:35	04/11/22 17:27	5
2-Methylphenol	<330	1000	330	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
2-Nitroaniline	<280	1000	280	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
2-Nitrophenol	<480	2000	480	ug/Kg	₩	04/07/22 05:35	04/11/22 17:27	5
3 & 4 Methylphenol	<340	1000	340	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
3,3'-Dichlorobenzidine	<290	1000	290	ug/Kg	₩	04/07/22 05:35	04/11/22 17:27	5
3-Nitroaniline	<640	2000	640	ug/Kg	₽	04/07/22 05:35	04/11/22 17:27	5
4,6-Dinitro-2-methylphenol	<1600	4100	1600	ug/Kg	₩	04/07/22 05:35	04/11/22 17:27	5
4-Bromophenyl phenyl ether	<270	1000	270	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
4-Chloro-3-methylphenol	<700	2000	700	ug/Kg	₽	04/07/22 05:35	04/11/22 17:27	5
4-Chloroaniline	<960	4100	960	ug/Kg	₽	04/07/22 05:35	04/11/22 17:27	5
4-Chlorophenyl phenyl ether	<240	1000	240	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
4-Nitroaniline	<860	2000	860	ug/Kg	₽	04/07/22 05:35	04/11/22 17:27	5
4-Nitrophenol	<1900	4100	1900	ug/Kg	☼	04/07/22 05:35	04/11/22 17:27	5
Acenaphthene	<37	200	37	ug/Kg	₩	04/07/22 05:35	04/11/22 17:27	5

Eurofins Chicago

4

Q

3

11

12

50

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: 500-214283-34

Lab Sample ID: 500-214283-34

Date Collected: 03/24/22 12:10

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 79.7

Method: 8270D - Semivolation Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	<27		200	27	ug/Kg	— <u></u>	04/07/22 05:35	04/11/22 17:27	5
Anthracene	<34		200				04/07/22 05:35	04/11/22 17:27	5
Benzo[a]anthracene	45	J	200		ug/Kg	₩		04/11/22 17:27	5
Benzo[a]pyrene	<40		200		ug/Kg			04/11/22 17:27	
Benzo[b]fluoranthene	<44		200		ug/Kg	☆		04/11/22 17:27	5
Benzo[g,h,i]perylene	<66		200		ug/Kg	₩		04/11/22 17:27	5
Benzo[k]fluoranthene	<60		200		ug/Kg			04/11/22 17:27	5
Benzoic acid	<2000		10000	2000				04/11/22 17:27	5
Benzyl alcohol	<2000		4100	2000	0 0			04/11/22 17:27	5
Bis(2-chloroethoxy)methane	<210		1000		ug/Kg			04/11/22 17:27	5
Bis(2-chloroethyl)ether	<310		1000		ug/Kg			04/11/22 17:27	5
Bis(2-ethylhexyl) phthalate	<370		1000		ug/Kg	₩		04/11/22 17:27	5
Butyl benzyl phthalate	<390		1000	390				04/11/22 17:27	5
Carbazole	<510		1000	510	ug/Kg ug/Kg	₩		04/11/22 17:27	5
Chrysene	<56		200			₩		04/11/22 17:27	5
Dibenz(a,h)anthracene	<40		200		ug/Kg ug/Kg	 ☆		04/11/22 17:27	5
Dibenzofuran	<240		1000		ug/Kg ug/Kg	₩		04/11/22 17:27	5
Diethyl phthalate	<350		1000		ug/Kg ug/Kg	₩		04/11/22 17:27	5
	<270		1000					04/11/22 17:27	5
Dimethyl phthalate	<310		1000		ug/Kg ug/Kg	☆		04/11/22 17:27	5
Di-n-butyl phthalate						₩.			
Di-n-octyl phthalate	<330		1000		ug/Kg			04/11/22 17:27	5
Fluoranthene	51	J	200		ug/Kg	₩.		04/11/22 17:27	5
Fluorene	<29		200	29	0 0	*		04/11/22 17:27	5
Hexachlorobenzene	<47		410		ug/Kg			04/11/22 17:27	5
Hexachlorobutadiene	<320		1000	320	0 0	*		04/11/22 17:27	5
Hexachlorocyclopentadiene	<1200		4100	1200	ug/Kg	*		04/11/22 17:27	5
Hexachloroethane	<310		1000			<u>.</u> .		04/11/22 17:27	5
Indeno[1,2,3-cd]pyrene	<53		200	53	0 0	₽		04/11/22 17:27	5
Isophorone	<230		1000		0 0	₽		04/11/22 17:27	5
Naphthalene	510		200					04/11/22 17:27	5
Nitrobenzene	<51		200	51	ug/Kg	₩		04/11/22 17:27	5
N-Nitrosodi-n-propylamine	<250		410	250	0 0	≎		04/11/22 17:27	5
N-Nitrosodiphenylamine	<240		1000					04/11/22 17:27	5
Pentachlorophenol	<3300		4100		ug/Kg	≎		04/11/22 17:27	5
Phenanthrene	350		200		ug/Kg	≎		04/11/22 17:27	5
Phenol	<460		1000		ug/Kg		04/07/22 05:35	04/11/22 17:27	5
Pyrene	66	J	200	41	ug/Kg	₩	04/07/22 05:35	04/11/22 17:27	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	61		31 - 143				04/07/22 05:35	04/11/22 17:27	- 5
2-Fluorobiphenyl (Surr)	49		43 - 145				04/07/22 05:35	04/11/22 17:27	5
2-Fluorophenol (Surr)	104		31 - 166				04/07/22 05:35	04/11/22 17:27	5
Nitrobenzene-d5 (Surr)	41		37 - 147				04/07/22 05:35	04/11/22 17:27	
Phenol-d5 (Surr)	60		30 - 153				04/07/22 05:35	04/11/22 17:27	5
Terphenyl-d14 (Surr)	70		42 - 157					04/11/22 17:27	5
: Method: 8081A - Organoch	lorine Pesticid	es (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<1.4		2.1		ug/Kg	— -	04/05/22 16:57		1
			-	1.7	:31:31		,	, J J, I J . J ¬	

Eurofins Chicago

2

Job ID: 500-214283-1

3

5

7

9

11

1 /

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-227 4-6

Date Collected: 03/24/22 12:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-34

Matrix: Solid

Percent Solids: 79.7

Job ID: 500-214283-1

Method: 8081A - Organo	chlorine Pesticides (GC) (Continued)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<1.1	2.1	1.1	ug/Kg	— <u></u>	04/05/22 16:57	04/06/22 19:04	1
beta-BHC	<1.7	2.1	1.7	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
4,4'-DDD	<1.1	2.1	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
4,4'-DDE	<1.1	2.1	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
4,4'-DDT	<0.99	2.1	0.99	ug/Kg	≎	04/05/22 16:57	04/06/22 19:04	1
delta-BHC	<0.99	2.1	0.99	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
Dieldrin	<1.1	2.1	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
Endosulfan I	<1.1	2.1	1.1	ug/Kg	☼	04/05/22 16:57	04/06/22 19:04	1
Endosulfan II	<1.1	2.1	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
Endosulfan sulfate	<1.1	2.1	1.1	ug/Kg	☼	04/05/22 16:57	04/06/22 19:04	1
Endrin	<1.1	2.1	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
Endrin aldehyde	<1.2	2.1	1.2	ug/Kg	☼	04/05/22 16:57	04/06/22 19:04	1
Endrin ketone	<1.0	2.1	1.0	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
gamma-BHC (Lindane)	<1.0	2.1	1.0	ug/Kg	☼	04/05/22 16:57	04/06/22 19:04	1
trans-Chlordane	<1.2	2.1	1.2	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
Heptachlor	<1.1	2.1	1.1	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
Heptachlor epoxide	<1.1	2.1	1.1	ug/Kg	≎	04/05/22 16:57	04/06/22 19:04	1
Methoxychlor	<1.4	10	1.4	ug/Kg	☼	04/05/22 16:57	04/06/22 19:04	1
Toxaphene	<8.3	21	8.3	ug/Kg	₩	04/05/22 16:57	04/06/22 19:04	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	107	33 - 148				04/05/22 16:57	04/06/22 19:04	1
Tetrachloro-m-xylene	108	30 - 121				04/05/22 16:57	04/06/22 19:04	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0081	0.021	0.0081	mg/Kg	*	04/05/22 16:57	04/08/22 22:39	1
PCB-1221	<0.0081	0.021	0.0081	mg/Kg	₩	04/05/22 16:57	04/08/22 22:39	1
PCB-1232	<0.0056	0.021	0.0056	mg/Kg	₩	04/05/22 16:57	04/08/22 22:39	1
PCB-1242	<0.0080	0.021	0.0080	mg/Kg	₩	04/05/22 16:57	04/08/22 22:39	1
PCB-1248	<0.0098	0.021	0.0098	mg/Kg	₩	04/05/22 16:57	04/08/22 22:39	1
PCB-1254	<0.0070	0.021	0.0070	mg/Kg	₩	04/05/22 16:57	04/08/22 22:39	1
PCB-1260	<0.0077	0.021	0.0077	mg/Kg	₩	04/05/22 16:57	04/08/22 22:39	1
PCB-1262	<0.0067	0.021	0.0067	mg/Kg	₩	04/05/22 16:57	04/08/22 22:39	1
PCB-1268	<0.012	0.021	0.012	mg/Kg	₩	04/05/22 16:57	04/08/22 22:39	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	67	49 - 129				04/05/22 16:57	04/08/22 22:39	1
DCB Decachlorobiphenyl	78	37 - 121				04/05/22 16:57	04/08/22 22:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<98		410	98	ug/Kg	— <u></u>	04/06/22 10:55	04/11/22 10:04	10
2,4-DB	<120		410	120	ug/Kg	☼	04/06/22 10:55	04/11/22 10:04	10
Dicamba	<88		410	88	ug/Kg	☼	04/06/22 10:55	04/11/22 10:04	10
Dichlorprop	<100		410	100	ug/Kg	₩	04/06/22 10:55	04/11/22 10:04	10
Silvex (2,4,5-TP)	<93		410	93	ug/Kg	☼	04/06/22 10:55	04/11/22 10:04	10
2,4,5-T	<82		410	82	ug/Kg	₩	04/06/22 10:55	04/11/22 10:04	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	75		25 - 120				04/06/22 10:55	04/11/22 10:04	10

Eurofins Chicago

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-227 4-6

Lab Sample ID: 500-214283-34 Date Collected: 03/24/22 12:10 **Matrix: Solid**

Date Received: 03/29/22 10:20 Percent Solids: 79.7

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	6.5		1.2	0.41	mg/Kg	<u></u>	04/07/22 07:00	04/07/22 23:23	1
Barium	69		1.2	0.14	mg/Kg	₽	04/06/22 02:01	04/07/22 17:55	1
Cadmium	0.31	В	0.24	0.043	mg/Kg	₽	04/07/22 07:00	04/07/22 23:23	1
Chromium	9.2		1.2	0.59	mg/Kg	₽	04/06/22 02:01	04/07/22 17:55	1
Lead	9.5		0.59	0.27	mg/Kg	≎	04/07/22 07:00	04/07/22 23:23	1
Selenium	1.2		1.2	0.70	mg/Kg	≎	04/07/22 07:00	04/07/22 23:23	1
Silver	<0.15		0.59	0.15	mg/Kg	☆	04/07/22 07:00	04/07/22 23:23	1
- Method: 7471B - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.015	J	0.019	0.0065	mg/Kg	₽	04/07/22 13:45	04/08/22 11:51	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-227 7-8

Date Collected: 03/24/22 12:15 Date Received: 03/29/22 10:20

p-Isopropyltoluene

Lab Sample ID: 500-214283-35

Matrix: Solid

Percent Solids: 71.4

Job ID: 500-214283-1

1,1,1,2-Tetrachloroethane <40 87 40 ug/Kg 1,1,1-Trichloroethane <33 87 33 ug/Kg 1,1,2,2-Tetrachloroethane <34 87 34 ug/Kg 1,1,2-Trichloroethane <30 87 30 ug/Kg 1,1-Dichloroethane <36 87 36 ug/Kg 1,1-Dichloroethene <34 87 34 ug/Kg 1,1-Dichloropropene <26 87 26 ug/Kg 1,2,3-Trichlorobenzene <40 87 40 ug/Kg 1,2,3-Trichloropropane <36 170 36 ug/Kg 1,2,4-Trichlorobenzene <30 87 30 ug/Kg 1,2,4-Trimethylbenzene <31 87 31 ug/Kg 1,2-Dibromo-3-Chloropropane <170 430 170 ug/Kg 1,2-Dibromoethane <33 87 33 ug/Kg 1,2-Dichlorobenzene <29 87 29 ug/Kg 1,2-Dichloropropane <34 87 34 ug/Kg 1,2-Dichloropropane		03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15	04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38	50 50 50 50 50 50 50 50
1,1,2,2-Tetrachloroethane <34	*****	03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15	04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38	50 50 50 50 50 50 50
1,1,2-Trichloroethane <30	* * * * * *	03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15	04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38	50 50 50 50 50 50
1,1-Dichloroethane <36	* * * * * * * * * * * * * * * * * * * *	03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15	04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38	50 50 50 50
1,1-Dichloroethene <34	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15	04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38	50 50 50
1,1-Dichloropropene <26	* * * * *	03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15	04/01/22 16:38 04/01/22 16:38 04/01/22 16:38 04/01/22 16:38	50 50 50
1,1-Dichloropropene <26	\$ \$ \$ \$ \$	03/24/22 12:15 03/24/22 12:15 03/24/22 12:15 03/24/22 12:15	04/01/22 16:38 04/01/22 16:38 04/01/22 16:38	5(5(
1,2,3-Trichloropropane <36	\$ \$ \$ \$	03/24/22 12:15 03/24/22 12:15 03/24/22 12:15	04/01/22 16:38 04/01/22 16:38	50
1,2,4-Trichlorobenzene <30	\$ \$ \$ \$	03/24/22 12:15 03/24/22 12:15	04/01/22 16:38	
1,2,4-Trimethylbenzene <31	\$ \$ \$	03/24/22 12:15		50
1,2,4-Trimethylbenzene <31	₩		04/01/22 16:38	
1,2-Dibromoethane <33	₩	03/24/22 12:15	J 1/ J 1/ LZ 10.00	50
1,2-Dibromoethane <33			04/01/22 16:38	50
1,2-Dichlorobenzene <29	₩	03/24/22 12:15	04/01/22 16:38	50
1,2-Dichloroethane <34			04/01/22 16:38	50
1,2-Dichloropropane <37 87 37 ug/Kg	₩	03/24/22 12:15	04/01/22 16:38	50
		03/24/22 12:15	04/01/22 16:38	50
1,3,5-Trimethylbenzene <33 87 33 ug/Kg	₩		04/01/22 16:38	50
1,3-Dichlorobenzene <35 87 35 ug/Kg	₩		04/01/22 16:38	50
1,3-Dichloropropane <31 87 31 ug/Kg			04/01/22 16:38	5(
1,4-Dichlorobenzene <32 87 32 ug/Kg			04/01/22 16:38	50
2,2-Dichloropropane <38 87 38 ug/Kg			04/01/22 16:38	50
2-Chlorotoluene <27 87 27 ug/Kg	 ☆		04/01/22 16:38	50
4-Chlorotoluene <30 87 30 ug/Kg	₩		04/01/22 16:38	50
Benzene <13 22 13 ug/Kg	☆		04/01/22 16:38	50
Bromobenzene <31 87 31 ug/Kg	~ ☆		04/01/22 16:38	5(
Bromochloromethane <37 87 37 ug/Kg	☼		04/01/22 16:38	50
Dichlorobromomethane <32 87 32 ug/Kg	☆		04/01/22 16:38	50
Bromoform <42 87 42 ug/Kg	.		04/01/22 16:38	5(
Bromomethane <69 260 69 ug/Kg	₩		04/01/22 16:38	50
Carbon tetrachloride <33 87 33 ug/Kg	₩		04/01/22 16:38	50
			04/01/22 16:38	50
0 0	☆		04/01/22 16:38	50
8 9	☆			
	. .		04/01/22 16:38	50
=99	φ.		04/01/22 16:38 04/01/22 16:38	50
cis-1,2-Dichloroethene <35 87 35 ug/Kg	☆			50
cis-1,3-Dichloropropene <36 87 36 ug/Kg	 .		04/01/22 16:38	50
Dibromochloromethane <42 87 42 ug/Kg	*		04/01/22 16:38	50
Dibromomethane <23 87 23 ug/Kg	*		04/01/22 16:38	50
Dichlorodifluoromethane <58 260 58 ug/Kg	. .		04/01/22 16:38	50
Ethylbenzene <16 22 16 ug/Kg	₩		04/01/22 16:38	50
Hexachlorobutadiene <39 87 39 ug/Kg	₩		04/01/22 16:38	50
Isopropyl ether <24 87 24 ug/Kg	.		04/01/22 16:38	50
Isopropylbenzene <33 87 33 ug/Kg	₩		04/01/22 16:38	50
Methyl tert-butyl ether <34 87 34 ug/Kg	₩		04/01/22 16:38	50
Methylene Chloride <140 430 140 ug/Kg	.		04/01/22 16:38	50
Naphthalene <29 87 29 ug/Kg	₩		04/01/22 16:38	50
n-Butylbenzene <34 87 34 ug/Kg	₩	03/24/22 12:15	04/01/22 16:38	50
N-Propylbenzene <36 87 36 ug/Kg	₽	03/24/22 12:15	04/01/22 16:38	50

Eurofins Chicago

© 03/24/22 12:15 04/01/22 16:38

31 ug/Kg

<31

3

5

7

9

11

. .

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-227 7-8 Lab Sample ID: 500-214283-35

Date Collected: 03/24/22 12:15
Date Received: 03/29/22 10:20
Matrix: Solid
Percent Solids: 71.4

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<34		87	34	ug/Kg	-	03/24/22 12:15	04/01/22 16:38	50
Styrene	<33		87	33	ug/Kg	₽	03/24/22 12:15	04/01/22 16:38	50
tert-Butylbenzene	<34		87	34	ug/Kg	₽	03/24/22 12:15	04/01/22 16:38	50
Tetrachloroethene	<32		87	32	ug/Kg	₽	03/24/22 12:15	04/01/22 16:38	50
Toluene	<13		22	13	ug/Kg	₽	03/24/22 12:15	04/01/22 16:38	50
trans-1,2-Dichloroethene	<30		87	30	ug/Kg	₽	03/24/22 12:15	04/01/22 16:38	50
trans-1,3-Dichloropropene	<31		87	31	ug/Kg	₽	03/24/22 12:15	04/01/22 16:38	50
Trichloroethene	<14		43	14	ug/Kg	₩	03/24/22 12:15	04/01/22 16:38	50
Trichlorofluoromethane	<37		87	37	ug/Kg	₽	03/24/22 12:15	04/01/22 16:38	50
Vinyl chloride	<23		87	23	ug/Kg	₽	03/24/22 12:15	04/01/22 16:38	50
Xylenes, Total	<19		43	19	ug/Kg	☼	03/24/22 12:15	04/01/22 16:38	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 126				03/24/22 12:15	04/01/22 16:38	50
4-Bromofluorobenzene (Surr)	90		72 - 124				03/24/22 12:15	04/01/22 16:38	50
Dibromofluoromethane (Surr)	100		75 - 120				03/24/22 12:15	04/01/22 16:38	50
Toluene-d8 (Surr)	96		75 - 120				03/24/22 12:15	04/01/22 16:38	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<11		93	11	ug/Kg	<u></u>	04/07/22 05:35	04/08/22 17:11	1
2-Methylnaphthalene	<8.5		93	8.5	ug/Kg	₩	04/07/22 05:35	04/08/22 17:11	1
Acenaphthene	<8.3		46	8.3	ug/Kg	☼	04/07/22 05:35	04/08/22 17:11	1
Acenaphthylene	<6.1		46	6.1	ug/Kg	₩	04/07/22 05:35	04/08/22 17:11	1
Anthracene	<7.7		46	7.7	ug/Kg	₩	04/07/22 05:35	04/08/22 17:11	1
Benzo[a]anthracene	<6.2		46	6.2	ug/Kg	☼	04/07/22 05:35	04/08/22 17:11	1
Benzo[a]pyrene	<8.9		46	8.9	ug/Kg	₩	04/07/22 05:35	04/08/22 17:11	1
Benzo[b]fluoranthene	<10		46	10	ug/Kg	☼	04/07/22 05:35	04/08/22 17:11	1
Benzo[g,h,i]perylene	<15		46	15	ug/Kg	☼	04/07/22 05:35	04/08/22 17:11	1
Benzo[k]fluoranthene	<14		46	14	ug/Kg	⊅	04/07/22 05:35	04/08/22 17:11	1
Chrysene	<13		46	13	ug/Kg	☼	04/07/22 05:35	04/08/22 17:11	1
Dibenz(a,h)anthracene	<8.9		46	8.9	ug/Kg	₩	04/07/22 05:35	04/08/22 17:11	1
Fluoranthene	<8.5		46	8.5	ug/Kg	☼	04/07/22 05:35	04/08/22 17:11	1
Fluorene	<6.5		46	6.5	ug/Kg	₩	04/07/22 05:35	04/08/22 17:11	1
Indeno[1,2,3-cd]pyrene	<12		46	12	ug/Kg	₩	04/07/22 05:35	04/08/22 17:11	1
Naphthalene	<7.1		46	7.1	ug/Kg	⊅	04/07/22 05:35	04/08/22 17:11	1
Phenanthrene	7.8	J	46	6.4	ug/Kg	☼	04/07/22 05:35	04/08/22 17:11	1
Pyrene	<9.2		46	9.2	ug/Kg	₩	04/07/22 05:35	04/08/22 17:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	53		43 - 145				04/07/22 05:35	04/08/22 17:11	1
Nitrobenzene-d5 (Surr)	44		37 - 147				04/07/22 05:35	04/08/22 17:11	1
Terphenyl-d14 (Surr)	89		42 - 157				04/07/22 05:35	04/08/22 17:11	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.8		1.4	0.48	mg/Kg	<u></u>	04/07/22 07:00	04/07/22 23:26	1
Lead	5.7		0.70	0.32	mg/Kg	☼	04/07/22 07:00	04/07/22 23:26	1

Eurofins Chicago

Job ID: 500-214283-1

4

7

9

10

12

14

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-221 0-2

Date Collected: 03/24/22 12:50 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-36

Matrix: Solid

Percent Solids: 78.8

Job ID: 500-214283-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<37	80	37	ug/Kg	— <u></u>	03/24/22 12:50	04/01/22 18:15	5
1,1,1-Trichloroethane	<30	80	30		₩	03/24/22 12:50	04/01/22 18:15	5
1,1,2,2-Tetrachloroethane	<32	80	32	ug/Kg	₽	03/24/22 12:50	04/01/22 18:15	50
1,1,2-Trichloroethane	<28	80		ug/Kg			04/01/22 18:15	50
1,1-Dichloroethane	<33	80		ug/Kg	₩		04/01/22 18:15	50
1,1-Dichloroethene	<31	80		ug/Kg	₩		04/01/22 18:15	50
1,1-Dichloropropene	<24	80		ug/Kg			04/01/22 18:15	50
1,2,3-Trichlorobenzene	<37	80		ug/Kg			04/01/22 18:15	50
1,2,3-Trichloropropane	<33	160		ug/Kg			04/01/22 18:15	50
1,2,4-Trichlorobenzene	<27	80		ug/Kg			04/01/22 18:15	50
1,2,4-Trimethylbenzene	97	80		ug/Kg	₩		04/01/22 18:15	50
1,2-Dibromo-3-Chloropropane	<160	400		ug/Kg	₩		04/01/22 18:15	50
1,2-Dibromoethane	<31	80		ug/Kg			04/01/22 18:15	5(
1,2-Dibromoetriane 1.2-Dichlorobenzene	<27	80					04/01/22 18:15	50
1,2-Dichloropenzene 1.2-Dichloroethane	<2 <i>1</i> <31	80 80		ug/Kg ug/Kg	☆		04/01/22 18:15	50
	<34						04/01/22 18:15	5(
1,2-Dichloropropane	<30	80 80		ug/Kg				
1,3,5-Trimethylbenzene				ug/Kg			04/01/22 18:15	50
1,3-Dichlorobenzene	<32	80		ug/Kg			04/01/22 18:15	50
1,3-Dichloropropane	<29	80		ug/Kg	*		04/01/22 18:15	50
1,4-Dichlorobenzene	<29	80		ug/Kg	*		04/01/22 18:15	50
2,2-Dichloropropane	<36	80		ug/Kg	. .		04/01/22 18:15	50
2-Chlorotoluene	<25	80		ug/Kg	₽		04/01/22 18:15	50
4-Chlorotoluene	<28	80		ug/Kg	☼		04/01/22 18:15	50
Benzene	22	20		ug/Kg			04/01/22 18:15	50
Bromobenzene	<28	80		ug/Kg	☼		04/01/22 18:15	50
Bromochloromethane	<34	80		ug/Kg	☼		04/01/22 18:15	50
Dichlorobromomethane	<30	80		ug/Kg			04/01/22 18:15	50
Bromoform	<39	80	39	ug/Kg	₩		04/01/22 18:15	50
Bromomethane	<64	240	64	ug/Kg	☼		04/01/22 18:15	50
Carbon tetrachloride	<31	80	31	ug/Kg		03/24/22 12:50	04/01/22 18:15	50
Chlorobenzene	<31	80	31	ug/Kg	☼		04/01/22 18:15	50
Chloroethane	<40	80	40	ug/Kg	₩	03/24/22 12:50	04/01/22 18:15	50
Chloroform	<30	160	30	ug/Kg	☼	03/24/22 12:50	04/01/22 18:15	50
Chloromethane	<26	80	26	ug/Kg	₽	03/24/22 12:50	04/01/22 18:15	50
cis-1,2-Dichloroethene	<33	80	33	ug/Kg	☼	03/24/22 12:50	04/01/22 18:15	50
cis-1,3-Dichloropropene	<33	80	33	ug/Kg	≎	03/24/22 12:50	04/01/22 18:15	50
Dibromochloromethane	<39	80	39	ug/Kg	₽	03/24/22 12:50	04/01/22 18:15	50
Dibromomethane	<22	80	22	ug/Kg	≎	03/24/22 12:50	04/01/22 18:15	50
Dichlorodifluoromethane	<54	240	54	ug/Kg	☼	03/24/22 12:50	04/01/22 18:15	50
Ethylbenzene	63	20	15	ug/Kg	₩	03/24/22 12:50	04/01/22 18:15	50
Hexachlorobutadiene	<36	80	36	ug/Kg	₽	03/24/22 12:50	04/01/22 18:15	50
Isopropyl ether	<22	80	22	ug/Kg	₩	03/24/22 12:50	04/01/22 18:15	50
Isopropylbenzene	39 J	80		ug/Kg		03/24/22 12:50	04/01/22 18:15	50
Methyl tert-butyl ether	<32	80		ug/Kg	₩	03/24/22 12:50		50
Methylene Chloride	<130	400		ug/Kg	₽	03/24/22 12:50		50
Naphthalene	300 B	80		ug/Kg			04/01/22 18:15	5
n-Butylbenzene	<31	80	31		≎		04/01/22 18:15	50
N-Propylbenzene	60 J	80		ug/Kg	₩		04/01/22 18:15	5
p-Isopropyltoluene	<29	80		ug/Kg ug/Kg	¥ 		04/01/22 18:15	50

Eurofins Chicago

4/15/2022

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-221 0-2

Date Collected: 03/24/22 12:50 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-36

Matrix: Solid

Percent Solids: 78.8

Job ID: 500-214283-1

janic Compoi	unds (GC/	MS) (Continu	ıed)					
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<32		80	32	ug/Kg	-	03/24/22 12:50	04/01/22 18:15	50
<31		80	31	ug/Kg	₩	03/24/22 12:50	04/01/22 18:15	50
<32		80	32	ug/Kg	₽	03/24/22 12:50	04/01/22 18:15	50
<30		80	30	ug/Kg	₽	03/24/22 12:50	04/01/22 18:15	50
190		20	12	ug/Kg	₩	03/24/22 12:50	04/01/22 18:15	50
<28		80	28	ug/Kg	₽	03/24/22 12:50	04/01/22 18:15	50
<29		80	29	ug/Kg	☼	03/24/22 12:50	04/01/22 18:15	50
<13		40	13	ug/Kg	☼	03/24/22 12:50	04/01/22 18:15	50
<34		80	34	ug/Kg	₽	03/24/22 12:50	04/01/22 18:15	50
<21		80	21	ug/Kg	☼	03/24/22 12:50	04/01/22 18:15	50
270		40	18	ug/Kg	₩	03/24/22 12:50	04/01/22 18:15	50
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
84		75 - 126				03/24/22 12:50	04/01/22 18:15	50
87		72 - 124				03/24/22 12:50	04/01/22 18:15	50
95		75 - 120				03/24/22 12:50	04/01/22 18:15	50
101		75 - 120				03/24/22 12:50	04/01/22 18:15	50
	Result	Result Qualifier	Result Qualifier RL <32	<32	Result Qualifier RL MDL Unit <32	Result Qualifier RL MDL unit D <32	Result Qualifier RL MDL Unit D Prepared <32	Result Qualifier RL MDL Unit D Prepared Analyzed <32

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<220	F1	1000	220	ug/Kg	-	04/07/22 08:57	04/08/22 13:41	5
1,2-Dichlorobenzene	<250	F1	1000	250	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
1,3-Dichlorobenzene	<230	F2 F1	1000	230	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
1,4-Dichlorobenzene	<270	F1	1000	270	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
1-Methylnaphthalene	510	F2 F1	420	50	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
2,2'-oxybis[1-chloropropane]	<240		1000	240	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2,4,5-Trichlorophenol	<470		2100	470	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2,4,6-Trichlorophenol	<710		2100	710	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2,4-Dichlorophenol	<490		2100	490	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2,4-Dimethylphenol	<780	F1	2100	780	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2,4-Dinitrophenol	<3600		4200	3600	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2,4-Dinitrotoluene	<330		1000	330	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2,6-Dinitrotoluene	<410		1000	410	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2-Chloronaphthalene	<230	F1	1000	230	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2-Chlorophenol	<350		1000	350	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2-Methylnaphthalene	710	F2 F1	420	38	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
2-Methylphenol	<330		1000	330	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
2-Nitroaniline	<280		1000	280	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
2-Nitrophenol	<490		2100	490	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
3 & 4 Methylphenol	<340		1000	340	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
3,3'-Dichlorobenzidine	<290	F1	1000	290	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
3-Nitroaniline	<640		2100	640	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
4,6-Dinitro-2-methylphenol	<1700	F1	4200	1700	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
4-Bromophenyl phenyl ether	<270		1000	270	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
4-Chloro-3-methylphenol	<700		2100	700	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
4-Chloroaniline	<970	F1	4200	970	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
4-Chlorophenyl phenyl ether	<240		1000	240	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
4-Nitroaniline	<860		2100	860	ug/Kg	⊅	04/07/22 08:57	04/08/22 13:41	5
4-Nitrophenol	<2000		4200	2000	ug/Kg	☆	04/07/22 08:57	04/08/22 13:41	5
Acenaphthene	100	J	210	37	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5

Eurofins Chicago

3

5

7

9

10

. . 12

1 1

15

I (e

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-36 Client Sample ID: SB-221 0-2

Date Collected: 03/24/22 12:50 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 78.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	1800	F1	210	27	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
Anthracene	2100	F2 F1	210	35	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
Benzo[g,h,i]perylene	3900	F2 F1	210	67	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Benzo[k]fluoranthene	8500	F2	210	61	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
Benzoic acid	<2100		10000	2100	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Benzyl alcohol	<2100		4200	2100	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Bis(2-chloroethoxy)methane	<210		1000	210	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
Bis(2-chloroethyl)ether	<310	F2 F1	1000	310	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Bis(2-ethylhexyl) phthalate	<380		1000	380	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Butyl benzyl phthalate	<390		1000	390	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
Carbazole	630	J F1	1000	520	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
Chrysene	13000	F2	210	56	ug/Kg	₽	04/07/22 08:57	04/08/22 13:41	5
Dibenz(a,h)anthracene	1700	F2 F1	210	40	ug/Kg	⊅	04/07/22 08:57	04/08/22 13:41	5
Dibenzofuran	<240	F1	1000	240	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Diethyl phthalate	<350		1000	350	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Dimethyl phthalate	<270		1000	270	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
Di-n-butyl phthalate	<310		1000	310	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Di-n-octyl phthalate	<340		1000	340	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Fluorene	320		210	29	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
Hexachlorobenzene	<48		420	48	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Hexachlorobutadiene	<320	F1	1000	320	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Hexachlorocyclopentadiene	<1200	F1	4200	1200	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
Hexachloroethane	<310	F1	1000	310	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Indeno[1,2,3-cd]pyrene	4600	F2 F1	210	54	ug/Kg	☆	04/07/22 08:57	04/08/22 13:41	5
Isophorone	<230		1000	230	ug/Kg		04/07/22 08:57	04/08/22 13:41	5
Naphthalene	640	F2 F1	210	32	ug/Kg	☆	04/07/22 08:57	04/08/22 13:41	5
Nitrobenzene	<52	F1	210	52	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
N-Nitrosodi-n-propylamine	<250		420	250	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
N-Nitrosodiphenylamine	<240		1000	240	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Pentachlorophenol	<3300	F1	4200	3300	ug/Kg	☼	04/07/22 08:57	04/08/22 13:41	5
Phenanthrene	5800	F2 F1	210	29	ug/Kg	 ф	04/07/22 08:57	04/08/22 13:41	5
Phenol	<460		1000	460	ug/Kg	₩	04/07/22 08:57	04/08/22 13:41	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	80		31 - 143				04/07/22 08:57	04/08/22 13:41	5
2-Fluorobiphenyl (Surr)	71		43 - 145				04/07/22 08:57	04/08/22 13:41	5
2-Fluorophenol (Surr)	117		31 - 166				04/07/22 08:57	04/08/22 13:41	5
Nitrobenzene-d5 (Surr)	50		37 - 147				04/07/22 08:57	04/08/22 13:41	5
Phenol-d5 (Surr)	72		30 - 153				04/07/22 08:57	04/08/22 13:41	5
Terphenyl-d14 (Surr)	82		42 - 157				04/07/22 08:57	04/08/22 13:41	5

Method: 8270D -	Semivolatile	Organic (Compounds	(GC/MS) - DI
I WELLIOU. UZI UD -	· Jeilli v Olatile	Or darile v	oonibounius i	GO/INIO/ - DE

Method. 6270D - Seniivolati	ne Organic Co	ilipoulius (i	GC/IVIO) - DL						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzo[a]anthracene	18000		1000	140	ug/Kg		04/07/22 08:57	04/11/22 19:26	25
Benzo[a]pyrene	19000	*3	1000	200	ug/Kg	≎	04/07/22 08:57	04/11/22 19:26	25
Benzo[b]fluoranthene	25000	*3	1000	220	ug/Kg	₽	04/07/22 08:57	04/11/22 19:26	25
Fluoranthene	37000		1000	190	ug/Kg	≎	04/07/22 08:57	04/11/22 19:26	25
Pyrene	45000		1000	210	ua/Ka	₩	04/07/22 08:57	04/11/22 19:26	25

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-221 0-2

Lab Sample ID: 500-214283-36 Date Collected: 03/24/22 12:50 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 78.8

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)		D	31 - 143	04/07/22 08:57	04/11/22 19:26	25
2-Fluorobiphenyl (Surr)	0	D	43 - 145	04/07/22 08:57	04/11/22 19:26	25
2-Fluorophenol (Surr)	0	D	31 - 166	04/07/22 08:57	04/11/22 19:26	25
Nitrobenzene-d5 (Surr)	0	D *3	37 - 147	04/07/22 08:57	04/11/22 19:26	25
Phenol-d5 (Surr)	0	D	30 - 153	04/07/22 08:57	04/11/22 19:26	25
Terphenyl-d14 (Surr)	0	D	42 - 157	04/07/22 08:57	04/11/22 19:26	25

-	Ŭ		72 - 101				0 1/0 1/22 00:01	0-1/11/22 10.20	20
Method: 8081A - Organoc Analyte		es (GC) Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin		F1 F2	11 —	7.3	ug/Kg	— "	04/05/22 16:57		5
alpha-BHC	<5.9	1112	11	5.9	ug/Kg ug/Kg	₩	04/05/22 16:57		5
cis-Chlordane	<5.6	E1	11		ug/Kg ug/Kg	₩	04/05/22 16:57		5
beta-BHC		F1 F2			ug/Kg ug/Kg			04/06/22 19:24	5
4.4'-DDD	<5.7		11	5.7	0 0	1,7	04/05/22 16:57	04/06/22 19:24	5
,	<5.7 <5.4	-	• •		ug/Kg	1.t	04/05/22 16:57		
4,4'-DDE			11	5.4		· · · · ·			5
4,4'-DDT	<5.0		11		ug/Kg	*		04/06/22 19:24	5
delta-BHC	<5.0		11	5.0	ug/Kg	☼	04/05/22 16:57	04/06/22 19:24	5
Dieldrin	<5.5				ug/Kg	.	04/05/22 16:57		5
Endosulfan I	<5.7		11	5.7	0 0	₽		04/06/22 19:24	5
Endosulfan II	<5.8	F1	11	5.8	ug/Kg	₩	04/05/22 16:57	04/06/22 19:24	5
Endosulfan sulfate	<5.8	F1	11	5.8	ug/Kg	≎	04/05/22 16:57	04/06/22 19:24	5
Endrin	<5.4	F1	11	5.4	ug/Kg	₩	04/05/22 16:57	04/06/22 19:24	5
Endrin aldehyde	<6.0	F1	11	6.0	ug/Kg	≎	04/05/22 16:57	04/06/22 19:24	5
Endrin ketone	<5.1	F1	11	5.1	ug/Kg	₽	04/05/22 16:57	04/06/22 19:24	5
gamma-BHC (Lindane)	<5.3		11	5.3	ug/Kg	₩	04/05/22 16:57	04/06/22 19:24	5
trans-Chlordane	<6.1	F1	11	6.1	ug/Kg	≎	04/05/22 16:57	04/06/22 19:24	5
Heptachlor	<5.7		11	5.7	ug/Kg	≎	04/05/22 16:57	04/06/22 19:24	5
Heptachlor epoxide	<5.7	F1	11	5.7	ug/Kg	₩	04/05/22 16:57	04/06/22 19:24	5
Methoxychlor	<6.9	F1	52	6.9	ug/Kg	₽	04/05/22 16:57	04/06/22 19:24	5
Toxaphene	<42		100		ug/Kg	₩	04/05/22 16:57	04/06/22 19:24	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	178	S1+	33 - 148				04/05/22 16:57	04/06/22 19:24	5
Tetrachloro-m-xylene	126	S1+	30 - 121				04/05/22 16:57	04/06/22 19:24	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0082		0.021	0.0082	mg/Kg	<u></u>	04/05/22 16:57	04/08/22 22:55	1
PCB-1221	<0.0082		0.021	0.0082	mg/Kg	₩	04/05/22 16:57	04/08/22 22:55	1
PCB-1232	<0.0057		0.021	0.0057	mg/Kg	₩	04/05/22 16:57	04/08/22 22:55	1
PCB-1242	<0.0081		0.021	0.0081	mg/Kg	₩	04/05/22 16:57	04/08/22 22:55	1
PCB-1248	< 0.0099		0.021	0.0099	mg/Kg	₩	04/05/22 16:57	04/08/22 22:55	1
PCB-1254	< 0.0071		0.021	0.0071	mg/Kg	₩	04/05/22 16:57	04/08/22 22:55	1
PCB-1260	<0.0079		0.021	0.0079	mg/Kg	₩	04/05/22 16:57	04/08/22 22:55	1
PCB-1262	<0.0068		0.021	0.0068	mg/Kg	₩	04/05/22 16:57	04/08/22 22:55	1
PCB-1268	<0.012		0.021	0.012	mg/Kg	₩	04/05/22 16:57	04/08/22 22:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	74		49 - 129				04/05/22 16:57	04/08/22 22:55	1
DCB Decachlorobiphenyl	96		37 - 121				04/05/22 16:57	04/08/22 22:55	1

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-36 Client Sample ID: SB-221 0-2

Date Collected: 03/24/22 12:50 **Matrix: Solid** Date Received: 03/29/22 10:20

Percent Solids: 78.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
2,4-D	<100		420	100	ug/Kg	— <u></u>	04/06/22 10:55	04/11/22 11:41	1
2,4-DB	<120		420	120	ug/Kg	₩	04/06/22 10:55	04/11/22 11:41	1
Dicamba	<90		420	90	ug/Kg	☼	04/06/22 10:55	04/11/22 11:41	1
Dichlorprop	<100		420	100	ug/Kg	☼	04/06/22 10:55	04/11/22 11:41	1
Silvex (2,4,5-TP)	<95		420	95	ug/Kg	₩	04/06/22 10:55	04/11/22 11:41	1
2,4,5-T	<84		420	84	ug/Kg	₽	04/06/22 10:55	04/11/22 11:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
DCAA	61		25 - 120				04/06/22 10:55	04/11/22 11:41	1
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: 6010C - Meta	Is (ICP)								
Method: 6010C - Metal	Result							Analyzed	Dil Fa
Analyte Arsenic	Result 2.1		1.1	0.38	mg/Kg	<u></u>	04/06/22 02:01	04/08/22 15:11	Dil Fa
Analyte Arsenic Barium	Result 2.1 31	F1	1.1	0.38 0.13	mg/Kg mg/Kg	— <u></u>	04/06/22 02:01 04/06/22 02:01	04/08/22 15:11 04/07/22 16:51	Dil Fa
Analyte Arsenic Barium Cadmium	Result 2.1 31 0.20	F1 JB	1.1 1.1 0.22	0.38 0.13 0.040	mg/Kg mg/Kg mg/Kg	# # #	04/06/22 02:01 04/06/22 02:01 04/06/22 02:01	04/08/22 15:11 04/07/22 16:51 04/08/22 15:11	Dil Fa
Analyte Arsenic Barium Cadmium Chromium	Result 2.1 31 0.20 9.4	F1 JB F1	1.1	0.38 0.13 0.040 0.55	mg/Kg mg/Kg mg/Kg mg/Kg	— <u></u>	04/06/22 02:01 04/06/22 02:01	04/08/22 15:11 04/07/22 16:51	Dil Fa
Analyte Arsenic Barium Cadmium	Result 2.1 31 0.20 9.4	F1 JB	1.1 1.1 0.22 1.1	0.38 0.13 0.040 0.55 0.26	mg/Kg mg/Kg mg/Kg mg/Kg	# # # #	04/06/22 02:01 04/06/22 02:01 04/06/22 02:01 04/06/22 02:01	04/08/22 15:11 04/07/22 16:51 04/08/22 15:11 04/07/22 16:51	Dil Fa
Analyte Arsenic Barium Cadmium Chromium Lead Selenium	Result 2.1 31 0.20 9.4 38	F1 JB F1 F1	1.1 1.1 0.22 1.1 0.56	0.38 0.13 0.040 0.55 0.26 0.66	mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * *	04/06/22 02:01 04/06/22 02:01 04/06/22 02:01 04/06/22 02:01 04/06/22 02:01	04/08/22 15:11 04/07/22 16:51 04/08/22 15:11 04/07/22 16:51 04/08/22 15:11	Dil Fa
Analyte Arsenic Barium Cadmium Chromium Lead	Result 2.1 31 0.20 9.4 38 <0.66 0.17	F1 JB F1 F1	1.1 1.1 0.22 1.1 0.56 1.1	0.38 0.13 0.040 0.55 0.26 0.66	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	04/06/22 02:01 04/06/22 02:01 04/06/22 02:01 04/06/22 02:01 04/06/22 02:01 04/06/22 02:01	04/08/22 15:11 04/07/22 16:51 04/08/22 15:11 04/07/22 16:51 04/08/22 15:11 04/08/22 15:11	Dil Fa
Analyte Arsenic Barium Cadmium Chromium Lead Selenium Silver	Result 2.1 31 0.20 9.4 38 <0.66 0.17 ury (CVAA)	F1 JB F1 F1	1.1 1.1 0.22 1.1 0.56 1.1	0.38 0.13 0.040 0.55 0.26 0.66	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	* * * * * * * * * * * * * * * * * * *	04/06/22 02:01 04/06/22 02:01 04/06/22 02:01 04/06/22 02:01 04/06/22 02:01 04/06/22 02:01	04/08/22 15:11 04/07/22 16:51 04/08/22 15:11 04/07/22 16:51 04/08/22 15:11 04/08/22 15:11	Dil Fa

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-221 4-5

Date Collected: 03/24/22 12:55 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-37

Matrix: Solid

Percent Solids: 80.8

Job ID: 500-214283-1

Method: 8260B - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1,2-Tetrachloroethane	<34	73	34	ug/Kg	— <u>-</u>	03/24/22 12:55	-	5
I,1,1-Trichloroethane	<28	73		ug/Kg	₩		04/01/22 17:00	5
I,1,2,2-Tetrachloroethane	<29	73		ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
,1,2-Trichloroethane	<26	73		ug/Kg	 \$	03/24/22 12:55	04/01/22 17:00	50
,1-Dichloroethane	<30	73		ug/Kg			04/01/22 17:00	5
, ,1-Dichloroethene	<28	73		ug/Kg	₩		04/01/22 17:00	50
,1-Dichloropropene	<22	73		ug/Kg			04/01/22 17:00	5
,2,3-Trichlorobenzene	<33	73		ug/Kg		03/24/22 12:55	04/01/22 17:00	5
,2,3-Trichloropropane	<30	150		ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
,2,4-Trichlorobenzene	<25	73		ug/Kg			04/01/22 17:00	5
I,2,4-Trimethylbenzene	<26	73		ug/Kg			04/01/22 17:00	5
,2-Dibromo-3-Chloropropane	<150	360		ug/Kg	~		04/01/22 17:00	5
1,2-Dibromoethane	<28	73		ug/Kg		03/24/22 12:55		50
,2-Dichlorobenzene	<24	73		ug/Kg ug/Kg	₩		04/01/22 17:00	5
I.2-Dichloroethane	<29	73		ug/Kg ug/Kg	₩		04/01/22 17:00	50
,2-Dichloropropane	<31						04/01/22 17:00	5
, , ,	<28	73 73		ug/Kg	☆		04/01/22 17:00	5 5
I,3,5-Trimethylbenzene	<29	73 73		ug/Kg				
,3-Dichlarance				ug/Kg	· · · · ·		04/01/22 17:00	5
,3-Dichloropropane	<26	73		ug/Kg	₩.		04/01/22 17:00	5
,4-Dichlorobenzene	<27	73		ug/Kg	*		04/01/22 17:00	5
2,2-Dichloropropane	<32	73		ug/Kg	. .		04/01/22 17:00	5
2-Chlorotoluene	<23	73		ug/Kg	*		04/01/22 17:00	5
1-Chlorotoluene	<26	73		ug/Kg	₩		04/01/22 17:00	50
Benzene	<11	18		ug/Kg			04/01/22 17:00	5
Bromobenzene	<26	73		ug/Kg	₩		04/01/22 17:00	5
Bromochloromethane	<31	73		0 0	₩		04/01/22 17:00	5
Dichlorobromomethane	<27	73		ug/Kg		03/24/22 12:55	04/01/22 17:00	5
Bromoform	<35	73		ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
Bromomethane	<58	220	58	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
Carbon tetrachloride	<28	73	28	ug/Kg	₽	03/24/22 12:55	04/01/22 17:00	5
Chlorobenzene	<28	73	28	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
Chloroethane	<37	73	37	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
Chloroform	<27	150	27	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
Chloromethane	<23	73	23	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
sis-1,2-Dichloroethene	<30	73	30	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
sis-1,3-Dichloropropene	<30	73	30	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
Dibromochloromethane	<36	73	36	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
Dibromomethane	<20	73	20	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	5
Dichlorodifluoromethane	<49	220		ug/Kg	₽	03/24/22 12:55	04/01/22 17:00	5
Ethylbenzene	<13	18		ug/Kg	₩		04/01/22 17:00	5
	<33	73		ug/Kg	₩		04/01/22 17:00	5
sopropyl ether	<20	73		ug/Kg	₽		04/01/22 17:00	5
sopropylbenzene	<28	73		ug/Kg			04/01/22 17:00	5
lethyl tert-butyl ether	<29	73		ug/Kg	₽		04/01/22 17:00	5
lethylene Chloride	<120	360		ug/Kg	~ ☆		04/01/22 17:00	5
Naphthalene	<24	73		ug/Kg			04/01/22 17:00	5
-Butylbenzene	<28	73 73		ug/Kg ug/Kg	₩		04/01/22 17:00	5
	<30	73 73					04/01/22 17:00	
N-Propylbenzene o-Isopropyltoluene	<26	73		ug/Kg ug/Kg	.		04/01/22 17:00	5

Eurofins Chicago

4/15/2022

0

4.6

11

13

15

Client: Stantec Consulting Corp.

Terphenyl-d14 (Surr)

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-37 Client Sample ID: SB-221 4-5

Date Collected: 03/24/22 12:55 **Matrix: Solid** Percent Solids: 80.8 Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<29		73	29	ug/Kg	— <u>~</u>	03/24/22 12:55	04/01/22 17:00	50
Styrene	<28		73	28	ug/Kg	☼	03/24/22 12:55	04/01/22 17:00	50
tert-Butylbenzene	<29		73	29	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	50
Tetrachloroethene	<27		73	27	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	50
Toluene	25		18	11	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	50
trans-1,2-Dichloroethene	<26		73	26	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	50
trans-1,3-Dichloropropene	<26		73	26	ug/Kg	☼	03/24/22 12:55	04/01/22 17:00	50
Trichloroethene	<12		36	12	ug/Kg	☼	03/24/22 12:55	04/01/22 17:00	50
Trichlorofluoromethane	<31		73	31	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	50
Vinyl chloride	<19		73	19	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	50
Xylenes, Total	44		36	16	ug/Kg	₩	03/24/22 12:55	04/01/22 17:00	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		75 - 126				03/24/22 12:55	04/01/22 17:00	50
4-Bromofluorobenzene (Surr)	88		72 - 124				03/24/22 12:55	04/01/22 17:00	50
Dibromofluoromethane (Surr)	103		75 - 120				03/24/22 12:55	04/01/22 17:00	50
Toluene-d8 (Surr)	94		75 - 120				03/24/22 12:55	04/01/22 17:00	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	24	J	79	9.6	ug/Kg	-	04/07/22 08:57	04/08/22 13:47	1
2-Methylnaphthalene	27	J	79	7.2	ug/Kg	☼	04/07/22 08:57	04/08/22 13:47	1
Acenaphthene	<7.0		39	7.0	ug/Kg	☼	04/07/22 08:57	04/08/22 13:47	1
Acenaphthylene	78		39	5.2	ug/Kg	₽	04/07/22 08:57	04/08/22 13:47	1
Anthracene	42		39	6.5	ug/Kg	☼	04/07/22 08:57	04/08/22 13:47	1
Benzo[a]anthracene	190		39	5.3	ug/Kg	₩	04/07/22 08:57	04/08/22 13:47	1
Benzo[a]pyrene	540		39	7.6	ug/Kg	₽	04/07/22 08:57	04/08/22 13:47	1
Benzo[b]fluoranthene	350		39	8.4	ug/Kg	☼	04/07/22 08:57	04/08/22 13:47	1
Benzo[g,h,i]perylene	260		39	13	ug/Kg	₩	04/07/22 08:57	04/08/22 13:47	1
Benzo[k]fluoranthene	170		39	12	ug/Kg	₽	04/07/22 08:57	04/08/22 13:47	1
Chrysene	230		39	11	ug/Kg	₩	04/07/22 08:57	04/08/22 13:47	1
Dibenz(a,h)anthracene	64		39	7.6	ug/Kg	☼	04/07/22 08:57	04/08/22 13:47	1
Fluoranthene	190		39	7.3	ug/Kg	₽	04/07/22 08:57	04/08/22 13:47	1
Fluorene	5.5	J	39	5.5	ug/Kg	₩	04/07/22 08:57	04/08/22 13:47	1
Indeno[1,2,3-cd]pyrene	220		39	10	ug/Kg	☼	04/07/22 08:57	04/08/22 13:47	1
Naphthalene	21	J	39	6.0	ug/Kg	₽	04/07/22 08:57	04/08/22 13:47	1
Phenanthrene	39		39	5.5	ug/Kg	☼	04/07/22 08:57	04/08/22 13:47	1
Pyrene	510		39	7.8	ug/Kg	₩	04/07/22 08:57	04/08/22 13:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	67		43 - 145				04/07/22 08:57	04/08/22 13:47	1
Nitrobenzene-d5 (Surr)	55		37 - 147				04/07/22 08:57	04/08/22 13:47	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.2		1.2	0.42	mg/Kg	*	04/06/22 02:01	04/08/22 15:37	1
Lead	6.8		0.61	0.28	mg/Kg	₩	04/06/22 02:01	04/08/22 15:37	1

42 - 157

Eurofins Chicago

04/07/22 08:57 04/08/22 13:47

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-218 2-4

Date Collected: 03/24/22 13:00 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-38

Matrix: Solid

Percent Solids: 79.0

Job ID: 500-214283-1

Method: 8260B - Volatile Org	anic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<49	110	49	ug/Kg	— <u></u>	03/24/22 13:00	04/01/22 17:24	50
1,1,1-Trichloroethane	<41	110	41	ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
1,1,2,2-Tetrachloroethane	<42	110	42	ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
1,1,2-Trichloroethane	<38	110	38	ug/Kg	≎	03/24/22 13:00	04/01/22 17:24	50
1,1-Dichloroethane	<44	110		ug/Kg	≎	03/24/22 13:00	04/01/22 17:24	50
1,1-Dichloroethene	<42	110	42	ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
1,1-Dichloropropene	<32	110	32	ug/Kg		03/24/22 13:00	04/01/22 17:24	50
1,2,3-Trichlorobenzene	<49	110	49	ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
1,2,3-Trichloropropane	<44	210	44	ug/Kg	≎	03/24/22 13:00	04/01/22 17:24	50
1,2,4-Trichlorobenzene	<36	110		ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
1,2,4-Trimethylbenzene	<38	110		ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
1,2-Dibromo-3-Chloropropane	<210	530		ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
1,2-Dibromoethane	<41	110		ug/Kg		03/24/22 13:00	04/01/22 17:24	50
1,2-Dichlorobenzene	<36	110		ug/Kg	₩		04/01/22 17:24	50
1,2-Dichloroethane	<42	110		ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
1,2-Dichloropropane	<46	110		ug/Kg	∴	03/24/22 13:00	04/01/22 17:24	50
1,3,5-Trimethylbenzene	<41	110		ug/Kg	☆		04/01/22 17:24	50
1,3-Dichlorobenzene	<43	110		ug/Kg	☆		04/01/22 17:24	50
1,3-Dichloropropane	<39	110		ug/Kg		03/24/22 13:00		50
1,4-Dichlorobenzene	<39	110		ug/Kg			04/01/22 17:24	50
2,2-Dichloropropane	<47	110		ug/Kg			04/01/22 17:24	50
2-Chlorotoluene	<34	110		ug/Kg		03/24/22 13:00		50
4-Chlorotoluene	<37	110		ug/Kg			04/01/22 17:24	50
Benzene	<16	27		ug/Kg			04/01/22 17:24	50
Bromobenzene	<38	110		ug/Kg	. T	03/24/22 13:00		50
Bromochloromethane	<46	110		ug/Kg		03/24/22 13:00		50
Dichlorobromomethane	<40	110		ug/Kg	~ \$		04/01/22 17:24	50
Bromoform	<52	110		ug/Kg		03/24/22 13:00		50
Bromomethane	<85	320		ug/Kg	₩		04/01/22 17:24	50
Carbon tetrachloride	<41	110		ug/Kg	₩		04/01/22 17:24	50
Chlorobenzene	<41	110		ug/Kg			04/01/22 17:24	50
Chloroethane	<54	110		ug/Kg ug/Kg	₩		04/01/22 17:24	50
Chloroform	<39	210		ug/Kg ug/Kg	₩	03/24/22 13:00		50
Chloromethane	<34	110		ug/Kg ug/Kg		03/24/22 13:00		50
cis-1,2-Dichloroethene	<44	110		ug/Kg ug/Kg	₩			50
					1\(\frac{1}{2}\)			
cis-1,3-Dichloropropene	<44	110		ug/Kg	 .	03/24/22 13:00		50
Dibromochloromethane	<52	110		ug/Kg	Ψ.		04/01/22 17:24	50
Dibromomethane	<29	110		ug/Kg	₩.		04/01/22 17:24	50
Dichlorodifluoromethane	<72	320		ug/Kg	· · · · ·	03/24/22 13:00		50
Ethylbenzene	<20	27		ug/Kg	*		04/01/22 17:24	50
Hexachlorobutadiene	<48	110		ug/Kg	*		04/01/22 17:24	50
sopropyl ether	<29	110		ug/Kg	. .	03/24/22 13:00		50
sopropylbenzene	<41	110		ug/Kg	*		04/01/22 17:24	50
Methyl tert-butyl ether	<42	110		ug/Kg	₩		04/01/22 17:24	50
Methylene Chloride	<170	530		ug/Kg	. .		04/01/22 17:24	50
Naphthalene	<36	110		ug/Kg	₩		04/01/22 17:24	50
n-Butylbenzene	<41	110		ug/Kg	₩		04/01/22 17:24	50
N-Propylbenzene	<44	110	44	ug/Kg	☼	03/24/22 13:00	04/01/22 17:24	50

Eurofins Chicago

3

5

7

9

11

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-218 2-4

Date Collected: 03/24/22 13:00 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-38

Matrix: Solid

Percent Solids: 79.0

Job ID: 500-214283-1

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<42		110	42	ug/Kg	☆	03/24/22 13:00	04/01/22 17:24	50
Styrene	<41		110	41	ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
tert-Butylbenzene	<42		110	42	ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
Tetrachloroethene	<39		110	39	ug/Kg	☆	03/24/22 13:00	04/01/22 17:24	50
Toluene	58		27	16	ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
trans-1,2-Dichloroethene	<37		110	37	ug/Kg	☆	03/24/22 13:00	04/01/22 17:24	50
trans-1,3-Dichloropropene	<39		110	39	ug/Kg	☆	03/24/22 13:00	04/01/22 17:24	50
Trichloroethene	<17		53	17	ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
Trichlorofluoromethane	<46		110	46	ug/Kg	☆	03/24/22 13:00	04/01/22 17:24	50
Vinyl chloride	<28		110	28	ug/Kg	☆	03/24/22 13:00	04/01/22 17:24	50
Xylenes, Total	68		53	23	ug/Kg	₩	03/24/22 13:00	04/01/22 17:24	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 126				03/24/22 13:00	04/01/22 17:24	50
4-Bromofluorobenzene (Surr)	89		72 - 124				03/24/22 13:00	04/01/22 17:24	50
Dibromofluoromethane (Surr)	101		75 - 120				03/24/22 13:00	04/01/22 17:24	50
Toluene-d8 (Surr)	92		75 - 120				03/24/22 13:00	04/01/22 17:24	50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene		400	86	ug/Kg	<u></u>	04/07/22 05:35	04/11/22 15:53	2
1,2-Dichlorobenzene	<96	400	96	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
1,3-Dichlorobenzene	<90	400	90	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
1,4-Dichlorobenzene	<100	400	100	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
1-Methylnaphthalene	330	160	20	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
2,2'-oxybis[1-chloropropane]	<93	400	93	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
2,4,5-Trichlorophenol	<180	800	180	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
2,4,6-Trichlorophenol	<280	800	280	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
2,4-Dichlorophenol	<190	800	190	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
2,4-Dimethylphenol	<300	800	300	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
2,4-Dinitrophenol	<1400	1600	1400	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
2,4-Dinitrotoluene	<130	400	130	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
2,6-Dinitrotoluene	<160	400	160	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
2-Chloronaphthalene	<89	400	89	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
2-Chlorophenol	<140	400	140	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
2-Methylnaphthalene	390	160	15	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
2-Methylphenol	<130	400	130	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
2-Nitroaniline	<110	400	110	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
2-Nitrophenol	<190	800	190	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
3 & 4 Methylphenol	<130	400	130	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
3,3'-Dichlorobenzidine	<110	400	110	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
3-Nitroaniline	<250	800	250	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
4,6-Dinitro-2-methylphenol	<640	1600	640	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
4-Bromophenyl phenyl ether	<110	400	110	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
4-Chloro-3-methylphenol	<270	800	270	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
4-Chloroaniline	<380	1600	380	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
4-Chlorophenyl phenyl ether	<94	400	94	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
4-Nitroaniline	<340	800	340	ug/Kg	⊅	04/07/22 05:35	04/11/22 15:53	2
4-Nitrophenol	<760	1600	760	ug/Kg	☆	04/07/22 05:35	04/11/22 15:53	2
Acenaphthene	21 J	80	14	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2

Eurofins Chicago

3

5

7

10

12

1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-218 2-4

Date Collected: 03/24/22 13:00 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-38

Matrix: Solid

Percent Solids: 79.0

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	240		80	11	ug/Kg	-	04/07/22 05:35	04/11/22 15:53	2
Anthracene	240		80	13	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Benzo[a]anthracene	1400		80	11	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Benzo[a]pyrene	1400		80	16	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Benzo[b]fluoranthene	2000		80	17	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Benzo[g,h,i]perylene	400		80	26	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Benzo[k]fluoranthene	670		80	24	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Benzoic acid	<800		4000	800	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Benzyl alcohol	<800		1600	800	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Bis(2-chloroethoxy)methane	<82		400	82	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Bis(2-chloroethyl)ether	<120		400	120	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Bis(2-ethylhexyl) phthalate	<150		400	150	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Butyl benzyl phthalate	<150		400	150	ug/Kg		04/07/22 05:35	04/11/22 15:53	2
Carbazole	<200		400	200	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Chrysene	1400		80		ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Dibenz(a,h)anthracene	160		80		ug/Kg	 ф	04/07/22 05:35	04/11/22 15:53	2
Dibenzofuran	95	J	400	94	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Diethyl phthalate	<140		400	140	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Dimethyl phthalate	<100		400		ug/Kg	ф	04/07/22 05:35	04/11/22 15:53	2
Di-n-butyl phthalate	<120		400	120	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Di-n-octyl phthalate	<130		400	130	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Fluoranthene	2500		80	15	ug/Kg	ф	04/07/22 05:35	04/11/22 15:53	2
Fluorene	<11		80	11	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Hexachlorobenzene	<19		160	19	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Hexachlorobutadiene	<130		400		ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Hexachlorocyclopentadiene	<460		1600	460	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Hexachloroethane	<120		400	120	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Indeno[1,2,3-cd]pyrene	460		80		ug/Kg		04/07/22 05:35	04/11/22 15:53	2
Isophorone	<90		400		ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Naphthalene	270		80		ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Nitrobenzene	<20		80		ug/Kg		04/07/22 05:35	04/11/22 15:53	2
N-Nitrosodi-n-propylamine	<98		160		ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
N-Nitrosodiphenylamine	<95		400		ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Pentachlorophenol	<1300		1600		ug/Kg		04/07/22 05:35	04/11/22 15:53	2
Phenanthrene	540		80	11	ug/Kg	₽	04/07/22 05:35	04/11/22 15:53	2
Phenol	<180		400	180	ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Pyrene	1900		80		ug/Kg	₩	04/07/22 05:35	04/11/22 15:53	2
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	84		31 - 143				04/07/22 05:35	04/11/22 15:53	2
2-Fluorobiphenyl (Surr)	57		43 - 145				04/07/22 05:35	04/11/22 15:53	2
2-Fluorophenol (Surr)	91		31 - 166				04/07/22 05:35	04/11/22 15:53	2
Nitrobenzene-d5 (Surr)	45		37 - 147				04/07/22 05:35	04/11/22 15:53	2
Phenol-d5 (Surr)	71		30 - 153				04/07/22 05:35	04/11/22 15:53	2
Terphenyl-d14 (Surr)	81		42 - 157				04/07/22 05:35	04/11/22 15:53	2
Method: 8081A - Organoch	Jarina Dantinia	loc (CC)							

Eurofins Chicago

© 04/05/22 16:57 04/06/22 20:26

© 04/05/22 16:57 04/06/22 20:26

10

10

7.2 ug/Kg

5.8 ug/Kg

<7.2

<5.8

Aldrin

alpha-BHC

5

5

3

5

7

9

11

13

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-218 2-4

Date Collected: 03/24/22 13:00 Date Received: 03/29/22 10:20

DCB Decachlorobiphenyl

Lab Sample ID: 500-214283-38

Matrix: Solid

Percent Solids: 79.0

Job ID: 500-214283-1

Method: 8081A - Organo	chlorine Pesticide	es (GC) (C	ontinued)						
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<5.5		10	5.5	ug/Kg		04/05/22 16:57	04/06/22 20:26	5
beta-BHC	<8.3		10	8.3	ug/Kg	₩	04/05/22 16:57	04/06/22 20:26	5
4,4'-DDD	<5.5		10	5.5	ug/Kg	₩	04/05/22 16:57	04/06/22 20:26	5
4,4'-DDE	<5.3		10	5.3	ug/Kg	₩	04/05/22 16:57	04/06/22 20:26	5
4,4'-DDT	<4.9		10	4.9	ug/Kg	₩	04/05/22 16:57	04/06/22 20:26	5
delta-BHC	<4.9		10	4.9	ug/Kg	☼	04/05/22 16:57	04/06/22 20:26	5
Dieldrin	<5.4		10	5.4	ug/Kg	₩	04/05/22 16:57	04/06/22 20:26	5
Endosulfan I	<5.6		10	5.6	ug/Kg	₩	04/05/22 16:57	04/06/22 20:26	5
Endosulfan II	<5.7		10	5.7	ug/Kg	₩	04/05/22 16:57	04/06/22 20:26	5
Endosulfan sulfate	<5.7		10	5.7	ug/Kg	₽	04/05/22 16:57	04/06/22 20:26	5
Endrin	<5.3		10	5.3	ug/Kg	₩	04/05/22 16:57	04/06/22 20:26	5
Endrin aldehyde	<5.9		10	5.9	ug/Kg	₽	04/05/22 16:57	04/06/22 20:26	5
Endrin ketone	<5.0		10	5.0	ug/Kg	₽	04/05/22 16:57	04/06/22 20:26	5
gamma-BHC (Lindane)	<5.1		10	5.1	ug/Kg	₩	04/05/22 16:57	04/06/22 20:26	5
trans-Chlordane	<5.9		10	5.9	ug/Kg	₽	04/05/22 16:57	04/06/22 20:26	5
Heptachlor	<5.6		10	5.6	ug/Kg	₩	04/05/22 16:57	04/06/22 20:26	5
Heptachlor epoxide	<5.6		10	5.6	ug/Kg	₽	04/05/22 16:57	04/06/22 20:26	5
Methoxychlor	<6.8		51	6.8	ug/Kg	₽	04/05/22 16:57	04/06/22 20:26	5
Toxaphene	<41		100	41	ug/Kg	☼	04/05/22 16:57	04/06/22 20:26	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	110		33 - 148				04/05/22 16:57	04/06/22 20:26	5
Tetrachloro-m-xylene	91		30 - 121				04/05/22 16:57	04/06/22 20:26	5

Method: 8082A - Polych	Iorinated Biphenyls (PCBs)	by Gas Chr	omatogr	aphy				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0080	0.020	0.0080	mg/Kg	₽	04/05/22 16:57	04/08/22 23:42	1
PCB-1221	<0.0080	0.020	0.0080	mg/Kg	₽	04/05/22 16:57	04/08/22 23:42	1
PCB-1232	<0.0055	0.020	0.0055	mg/Kg	₽	04/05/22 16:57	04/08/22 23:42	1
PCB-1242	<0.0079	0.020	0.0079	mg/Kg	₽	04/05/22 16:57	04/08/22 23:42	1
PCB-1248	<0.0097	0.020	0.0097	mg/Kg	☼	04/05/22 16:57	04/08/22 23:42	1
PCB-1254	<0.0069	0.020	0.0069	mg/Kg	₽	04/05/22 16:57	04/08/22 23:42	1
PCB-1260	<0.0077	0.020	0.0077	mg/Kg	₽	04/05/22 16:57	04/08/22 23:42	1
PCB-1262	<0.0067	0.020	0.0067	mg/Kg	☼	04/05/22 16:57	04/08/22 23:42	1
PCB-1268	<0.012	0.020	0.012	mg/Kg	₩	04/05/22 16:57	04/08/22 23:42	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	126	49 - 129				04/05/22 16:57	04/08/22 23:42	1

Method: 8151A - Herbi	cides (GC)		D.						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<100		420	100	ug/Kg	<u></u>	04/06/22 10:55	04/11/22 12:39	10
2,4-DB	<120		420	120	ug/Kg	₩	04/06/22 10:55	04/11/22 12:39	10
Dicamba	<90		420	90	ug/Kg	₩	04/06/22 10:55	04/11/22 12:39	10
Dichlorprop	<100		420	100	ug/Kg	≎	04/06/22 10:55	04/11/22 12:39	10
Silvex (2,4,5-TP)	<94		420	94	ug/Kg	₩	04/06/22 10:55	04/11/22 12:39	10
2,4,5-T	<83		420	83	ug/Kg	₩	04/06/22 10:55	04/11/22 12:39	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	73		25 - 120				04/06/22 10:55	04/11/22 12:39	10

37 - 121

143 S1+

Eurofins Chicago

04/05/22 16:57 04/08/22 23:42

3

5

9

11

13

15

16

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-218 2-4

Lab Sample ID: 500-214283-38 Date Collected: 03/24/22 13:00 **Matrix: Solid** Date Received: 03/29/22 10:20

Percent Solids: 79.0

Method: 6010C - Metals (ICP) Analyte Result Qualifier RL**MDL** Unit Prepared Dil Fac **Analyzed** 0.41 mg/Kg 1.2 □ 04/06/22 02:01 □ 04/08/22 15:41 Arsenic 7.1 1.2 © 04/06/22 02:01 04/07/22 18:04 49 0.14 mg/Kg 0.29 B 0.24 0.043 mg/Kg © 04/06/22 02:01 04/08/22 15:41

Barium Cadmium 1.2 0.59 mg/Kg © 04/06/22 02:01 04/07/22 18:04 **Chromium** 13 Lead **52** 0.60 0.28 mg/Kg © 04/06/22 02:01 04/08/22 15:41 Selenium 0.70 mg/Kg 04/06/22 02:01 04/08/22 15:41 < 0.70 1.2 Silver < 0.15 0.60 0.15 mg/Kg © 04/06/22 02:01 04/08/22 15:41

Method: 7471B - Mercury (CVAA) Result Qualifier RL **MDL** Unit Analyte D Prepared Analyzed Dil Fac 0.021 0.0069 mg/Kg 04/07/22 13:45 04/08/22 12:05 Mercury 0.029

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: FD-2 Lab Sample ID: 500-214283-39

Date Collected: 03/24/22 13:01

Date Received: 03/29/22 10:20

Matrix: Solid

Percent Solids: 77.7

Method: 8260B - Volatile Orga Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<49	110	49	ug/Kg	— <u></u>	03/24/22 13:01	04/01/22 17:47	50
1,1,1-Trichloroethane	<40	110		ug/Kg	₽	03/24/22 13:01	04/01/22 17:47	50
1,1,2,2-Tetrachloroethane	<42	110		ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
1,1,2-Trichloroethane	<37	110		ug/Kg		03/24/22 13:01	04/01/22 17:47	50
1,1-Dichloroethane	<43	110		ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
1,1-Dichloroethene	<41	110		ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
1,1-Dichloropropene	<32	110		ug/Kg		03/24/22 13:01	04/01/22 17:47	50
1,2,3-Trichlorobenzene	<49	110		ug/Kg	₩	03/24/22 13:01		50
1,2,3-Trichloropropane	<44	210		ug/Kg	☆	03/24/22 13:01	04/01/22 17:47	50
1,2,4-Trichlorobenzene	<36	110		ug/Kg			04/01/22 17:47	50
1,2,4-Trimethylbenzene	<38	110		ug/Kg			04/01/22 17:47	50
1,2-Dibromo-3-Chloropropane	<210	530		ug/Kg	~ \$		04/01/22 17:47	50
1,2-Dibromoethane	<41	110		ug/Kg			04/01/22 17:47	50
1,2-Dishomoetriane 1,2-Dishlorobenzene	<35	110		ug/Kg	₩		04/01/22 17:47	50
1,2-Dichlorobenzene 1.2-Dichloroethane	<42	110		ug/Kg ug/Kg	₩	03/24/22 13:01		50
1,2-Dichloropropane	<45	110		ug/Kg		03/24/22 13:01		50
• •	<40	110		ug/Kg ug/Kg		03/24/22 13:01	04/01/22 17:47	50
1,3,5-Trimethylbenzene	<42	110			*	03/24/22 13:01	04/01/22 17:47	50
1,3-Dichlorobenzene				ug/Kg				
1,3-Dichloropropane	<38 <39	110		ug/Kg	φ.	03/24/22 13:01 03/24/22 13:01	04/01/22 17:47	50
1,4-Dichlorobenzene		110		ug/Kg	*			50
2,2-Dichloropropane	<47	110		ug/Kg		03/24/22 13:01	04/01/22 17:47	50
2-Chlorotoluene	<33	110		ug/Kg	\$		04/01/22 17:47	50
4-Chlorotoluene	<37	110		ug/Kg	**	03/24/22 13:01		50
Benzene	<15	26		ug/Kg	. .		04/01/22 17:47	50
Bromobenzene	<38	110		ug/Kg	☼		04/01/22 17:47	50
Bromochloromethane	<45	110		ug/Kg	₩	03/24/22 13:01		50
Dichlorobromomethane	<39	110				03/24/22 13:01		50
Bromoform	<51	110		ug/Kg	≎		04/01/22 17:47	50
Bromomethane	<84	320	84	0 0	₽	03/24/22 13:01		50
Carbon tetrachloride	<41	110	41	ug/Kg		03/24/22 13:01		50
Chlorobenzene	<41	110		0 0	₩	03/24/22 13:01		50
Chloroethane	<53	110	53	ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
Chloroform	<39	210		ug/Kg	.	03/24/22 13:01	04/01/22 17:47	50
Chloromethane	<34	110		ug/Kg	≎	03/24/22 13:01	04/01/22 17:47	50
cis-1,2-Dichloroethene	<43	110	43	ug/Kg	≎	03/24/22 13:01	04/01/22 17:47	50
cis-1,3-Dichloropropene	<44	110	44	ug/Kg	₽	03/24/22 13:01	04/01/22 17:47	50
Dibromochloromethane	<52	110	52	ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
Dibromomethane	<29	110	29	ug/Kg	≎	03/24/22 13:01	04/01/22 17:47	50
Dichlorodifluoromethane	<71	320	71	ug/Kg	≎	03/24/22 13:01	04/01/22 17:47	50
Ethylbenzene	<19	26	19	ug/Kg	₽	03/24/22 13:01	04/01/22 17:47	50
Hexachlorobutadiene	<47	110	47	ug/Kg	₽	03/24/22 13:01	04/01/22 17:47	50
Isopropyl ether	<29	110	29	ug/Kg	₽	03/24/22 13:01	04/01/22 17:47	50
Isopropylbenzene	<41	110	41	ug/Kg	☼	03/24/22 13:01	04/01/22 17:47	50
Methyl tert-butyl ether	<42	110	42	ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
Methylene Chloride	<170	530		ug/Kg	₽	03/24/22 13:01	04/01/22 17:47	50
Naphthalene	<35	110		ug/Kg		03/24/22 13:01	04/01/22 17:47	50
n-Butylbenzene	<41	110	41		₽	03/24/22 13:01	04/01/22 17:47	50
N-Propylbenzene	<44	110		ug/Kg	₽	03/24/22 13:01	04/01/22 17:47	50
p-Isopropyltoluene	<38	110		ug/Kg			04/01/22 17:47	50

Eurofins Chicago

Job ID: 500-214283-1

3

6

8

10

12

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: FD-2 Lab Sample ID: 500-214283-39

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<42		110	42	ug/Kg	<u></u>	03/24/22 13:01	04/01/22 17:47	50
Styrene	<41		110	41	ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
tert-Butylbenzene	<42		110	42	ug/Kg	₽	03/24/22 13:01	04/01/22 17:47	50
Tetrachloroethene	<39		110	39	ug/Kg	☼	03/24/22 13:01	04/01/22 17:47	50
Toluene	<16		26	16	ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
trans-1,2-Dichloroethene	<37		110	37	ug/Kg	₽	03/24/22 13:01	04/01/22 17:47	50
trans-1,3-Dichloropropene	<38		110	38	ug/Kg	☼	03/24/22 13:01	04/01/22 17:47	50
Trichloroethene	<17		53	17	ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
Trichlorofluoromethane	<45		110	45	ug/Kg	₽	03/24/22 13:01	04/01/22 17:47	50
Vinyl chloride	<28		110	28	ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
Xylenes, Total	<23		53	23	ug/Kg	₩	03/24/22 13:01	04/01/22 17:47	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		75 - 126				03/24/22 13:01	04/01/22 17:47	50
4-Bromofluorobenzene (Surr)	86		72 - 124				03/24/22 13:01	04/01/22 17:47	50
Dibromofluoromethane (Surr)	102		75 - 120				03/24/22 13:01	04/01/22 17:47	50
Toluene-d8 (Surr)	94		75 - 120				03/24/22 13:01	04/01/22 17:47	50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<44	200	44	ug/Kg	<u></u>	04/07/22 05:35	04/11/22 18:38	1
1,2-Dichlorobenzene	<48	200	48	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
1,3-Dichlorobenzene	<46	200	46	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	1
1,4-Dichlorobenzene	<52	200	52	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
1-Methylnaphthalene	270	82	9.9	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	1
2,2'-oxybis[1-chloropropane]	<47	200	47	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
2,4,5-Trichlorophenol	<92	400	92	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
2,4,6-Trichlorophenol	<140	400	140	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	1
2,4-Dichlorophenol	<96	400	96	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
2,4-Dimethylphenol	<150	400	150	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
2,4-Dinitrophenol	<710	820	710	ug/Kg	≎	04/07/22 05:35	04/11/22 18:38	1
2,4-Dinitrotoluene	<64	200	64	ug/Kg	☼	04/07/22 05:35	04/11/22 18:38	1
2,6-Dinitrotoluene	<79	200	79	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
2-Chloronaphthalene	<45	200	45	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
2-Chlorophenol	<69	200	69	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
2-Methylnaphthalene	320	82	7.4	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
2-Methylphenol	<65	200	65	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
2-Nitroaniline	<54	200	54	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
2-Nitrophenol	<96	400	96	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	1
3 & 4 Methylphenol	<67	200	67	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
3,3'-Dichlorobenzidine	<57	200	57	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
3-Nitroaniline	<130	400	130	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
4,6-Dinitro-2-methylphenol	<320	820	320	ug/Kg	≎	04/07/22 05:35	04/11/22 18:38	1
4-Bromophenyl phenyl ether	<53	200	53	ug/Kg	☼	04/07/22 05:35	04/11/22 18:38	1
4-Chloro-3-methylphenol	<140	400	140	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
4-Chloroaniline	<190	820	190	ug/Kg	☼	04/07/22 05:35	04/11/22 18:38	1
4-Chlorophenyl phenyl ether	<47	200	47	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
4-Nitroaniline	<170	400	170	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
4-Nitrophenol	<380	820	380	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	1
Acenaphthene	18 J	40	7.3	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	1

Eurofins Chicago

4/15/2022

Job ID: 500-214283-1

2

4

7

9

10

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: FD-2 Lab Sample ID: 500-214283-39

Date Collected: 03/24/22 13:01

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 77.7

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	190		40	5.3	ug/Kg	<u></u>	04/07/22 05:35	04/11/22 18:38	
Anthracene	170		40	6.8	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	
Benzo[a]anthracene	1100		40	5.4	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	•
Benzo[a]pyrene	1000		40	7.8	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	· · · · · · · · ·
Benzo[b]fluoranthene	1500		40	8.7	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	
Benzo[g,h,i]perylene	250		40	13	ug/Kg	⇔	04/07/22 05:35	04/11/22 18:38	
Benzo[k]fluoranthene	540		40		ug/Kg	≎	04/07/22 05:35	04/11/22 18:38	
Benzoic acid	<400		2000	400	ug/Kg	≎	04/07/22 05:35	04/11/22 18:38	
Benzyl alcohol	<400		820		ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	
Bis(2-chloroethoxy)methane	<41		200		ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	
Bis(2-chloroethyl)ether	<61		200		ug/Kg	☆	04/07/22 05:35	04/11/22 18:38	
Bis(2-ethylhexyl) phthalate	<74		200		ug/Kg	☆		04/11/22 18:38	
Butyl benzyl phthalate	<77		200	77				04/11/22 18:38	,
Carbazole	<100		200	100		₩	04/07/22 05:35	04/11/22 18:38	
Chrysene	1000		40	11	ug/Kg			04/11/22 18:38	
Dibenz(a,h)anthracene	110		40	7.8				04/11/22 18:38	,
Dibenzofuran	87	1	200	47	• •	₩ ₩		04/11/22 18:38	,
Diethyl phthalate	<69	3	200		ug/Kg	₩		04/11/22 18:38	,
	<53		200		ug/Kg	 ☆		04/11/22 18:38	,
Dimethyl phthalate	<62		200					04/11/22 18:38	
Di-n-butyl phthalate					ug/Kg	₩.			,
Di-n-octyl phthalate	<66		200		ug/Kg			04/11/22 18:38	
Fluoranthene	1600		40		ug/Kg	‡		04/11/22 18:38	
Fluorene	<5.7		40		ug/Kg	*		04/11/22 18:38	
Hexachlorobenzene	<9.4		82		ug/Kg	<u>.</u> .		04/11/22 18:38	
Hexachlorobutadiene	<64		200		ug/Kg	₩	04/07/22 05:35		•
Hexachlorocyclopentadiene	<230		820	230	0 0	≎	04/07/22 05:35	04/11/22 18:38	•
Hexachloroethane	<61		200	61		.	04/07/22 05:35	04/11/22 18:38	
Indeno[1,2,3-cd]pyrene	300		40		ug/Kg	☆		04/11/22 18:38	•
Isophorone	<45		200	45	0 0	₩	04/07/22 05:35	04/11/22 18:38	•
Naphthalene	210		40	6.2	ug/Kg		04/07/22 05:35	04/11/22 18:38	
Nitrobenzene	<10		40	10	ug/Kg	≎	04/07/22 05:35	04/11/22 18:38	•
N-Nitrosodi-n-propylamine	<49		82	49	ug/Kg	≎	04/07/22 05:35	04/11/22 18:38	•
N-Nitrosodiphenylamine	<48		200	48	ug/Kg	≎		04/11/22 18:38	
Pentachlorophenol	<650		820	650	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	•
Phenanthrene	310		40	5.6	ug/Kg	₩	04/07/22 05:35	04/11/22 18:38	•
Phenol	<90		200	90	ug/Kg	≎	04/07/22 05:35	04/11/22 18:38	•
Pyrene	1400		40	8.0	ug/Kg	₽	04/07/22 05:35	04/11/22 18:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	76		31 - 143				04/07/22 05:35	04/11/22 18:38	-
2-Fluorobiphenyl (Surr)	58		43 - 145				04/07/22 05:35	04/11/22 18:38	-
2-Fluorophenol (Surr)	71		31 - 166					04/11/22 18:38	
Nitrobenzene-d5 (Surr)	45		37 - 147					04/11/22 18:38	
Phenol-d5 (Surr)	69		30 - 153					04/11/22 18:38	
Terphenyl-d14 (Surr)	101		42 - 157					04/11/22 18:38	
: Method: 8081A - Organoch	nlorine Pesticid	es (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<1.5		2.1		ug/Kg	<u>_</u>	04/07/22 04:55	04/11/22 16:39	
alpha-BHC	<1.2		2.1		ug/Kg			04/11/22 16:39	

Eurofins Chicago

4

Job ID: 500-214283-1

6

0

1 4

12

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: FD-2 Lab Sample ID: 500-214283-39

Date Collected: 03/24/22 13:01 **Matrix: Solid** Percent Solids: 77.7 Date Received: 03/29/22 10:20

Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<1.1	2.1	1.1	ug/Kg	₽	04/07/22 04:55	04/11/22 16:39	1
beta-BHC	<1.7	2.1	1.7	ug/Kg	₽	04/07/22 04:55	04/11/22 16:39	1
4,4'-DDD	<1.1	2.1	1.1	ug/Kg	₽	04/07/22 04:55	04/11/22 16:39	1
4,4'-DDE	<1.1	2.1	1.1	ug/Kg	☼	04/07/22 04:55	04/11/22 16:39	1
4,4'-DDT	<1.0	2.1	1.0	ug/Kg	₽	04/07/22 04:55	04/11/22 16:39	1
delta-BHC	<1.0	2.1	1.0	ug/Kg	☼	04/07/22 04:55	04/11/22 16:39	1
Dieldrin	<1.1	2.1	1.1	ug/Kg	☼	04/07/22 04:55	04/11/22 16:39	1
Endosulfan I	<1.1	2.1	1.1	ug/Kg	₽	04/07/22 04:55	04/11/22 16:39	1
Endosulfan II	<1.2	2.1	1.2	ug/Kg	☼	04/07/22 04:55	04/11/22 16:39	1
Endosulfan sulfate	<1.2	2.1	1.2	ug/Kg	₽	04/07/22 04:55	04/11/22 16:39	1
Endrin	<1.1	2.1	1.1	ug/Kg	₽	04/07/22 04:55	04/11/22 16:39	1
Endrin aldehyde	<1.2	2.1	1.2	ug/Kg	₩	04/07/22 04:55	04/11/22 16:39	1
Endrin ketone	<1.0	2.1	1.0	ug/Kg	₩	04/07/22 04:55	04/11/22 16:39	1
gamma-BHC (Lindane)	<1.1	2.1	1.1	ug/Kg	₽	04/07/22 04:55	04/11/22 16:39	1
trans-Chlordane	<1.2	2.1	1.2	ug/Kg	₩	04/07/22 04:55	04/11/22 16:39	1
Heptachlor	<1.2	2.1	1.2	ug/Kg	₽	04/07/22 04:55	04/11/22 16:39	1
Heptachlor epoxide	<1.1	2.1	1.1	ug/Kg	₽	04/07/22 04:55	04/11/22 16:39	1
Methoxychlor	<1.4	10	1.4	ug/Kg	₩	04/07/22 04:55	04/11/22 16:39	1
Toxaphene	<8.5	21	8.5	ug/Kg	₩	04/07/22 04:55	04/11/22 16:39	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	119	33 - 148				04/07/22 04:55	04/11/22 16:39	1
Tetrachloro-m-xylene	111	30 - 121				04/07/22 04:55	04/11/22 16:39	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0083		0.021	0.0083	mg/Kg	<u></u>	04/07/22 04:55	04/12/22 13:56	1
PCB-1221	<0.0083		0.021	0.0083	mg/Kg	₩	04/07/22 04:55	04/12/22 13:56	1
PCB-1232	<0.0057		0.021	0.0057	mg/Kg	₩	04/07/22 04:55	04/12/22 13:56	1
PCB-1242	<0.0082		0.021	0.0082	mg/Kg	₩	04/07/22 04:55	04/12/22 13:56	1
PCB-1248	<0.010		0.021	0.010	mg/Kg	₩	04/07/22 04:55	04/12/22 13:56	1
PCB-1254	< 0.0071		0.021	0.0071	mg/Kg	₩	04/07/22 04:55	04/12/22 13:56	1
PCB-1260	<0.0079		0.021	0.0079	mg/Kg	₩	04/07/22 04:55	04/12/22 13:56	1
PCB-1262	<0.0069		0.021	0.0069	mg/Kg	₩	04/07/22 04:55	04/12/22 13:56	1
PCB-1268	<0.012		0.021	0.012	mg/Kg	☼	04/07/22 04:55	04/12/22 13:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	78		49 - 129				04/07/22 04:55	04/12/22 13:56	1
DCB Decachlorobiphenyl	83		37 - 121				04/07/22 04:55	04/12/22 13:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<100		420	100	ug/Kg	<u></u>	04/06/22 10:55	04/11/22 12:58	10
2,4-DB	<130		420	130	ug/Kg	₽	04/06/22 10:55	04/11/22 12:58	10
Dicamba	<91		420	91	ug/Kg	₩	04/06/22 10:55	04/11/22 12:58	10
Dichlorprop	<100		420	100	ug/Kg	₩	04/06/22 10:55	04/11/22 12:58	10
Silvex (2,4,5-TP)	<96		420	96	ug/Kg	₩	04/06/22 10:55	04/11/22 12:58	10
2,4,5-T	<85		420	85	ug/Kg	₩	04/06/22 10:55	04/11/22 12:58	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	60		25 - 120				04/06/22 10:55	04/11/22 12:58	10

Eurofins Chicago

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Mercury

0.030

Client Sample ID: FD-2 Lab Sample ID: 500-214283-39

Date Collected: 03/24/22 13:01

Matrix: Solid
Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 77.7

Method: 6010C - Metals (ICP) Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		Qualifier							Dillac
Arsenic	7.9		1.2	0.41	mg/Kg	☆	04/06/22 02:01	04/08/22 15:44	1
Barium	76		1.2	0.14	mg/Kg	₩	04/06/22 02:01	04/07/22 18:08	1
Cadmium	0.11	JB	0.24	0.044	mg/Kg	☼	04/06/22 02:01	04/08/22 15:44	1
Chromium	10		1.2	0.60	mg/Kg	₩	04/06/22 02:01	04/07/22 18:08	1
Lead	61		0.61	0.28	mg/Kg	☼	04/06/22 02:01	04/08/22 15:44	1
Selenium	1.1	J	1.2	0.71	mg/Kg	☼	04/06/22 02:01	04/08/22 15:44	1
Silver	0.16	J	0.61	0.16	mg/Kg	☼	04/06/22 02:01	04/08/22 15:44	1
Method: 7471B - Mercury (CVAA)									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.021

0.0069 mg/Kg

12

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-218 5-7

Date Collected: 03/24/22 13:05 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-40

Matrix: Solid

Percent Solids: 84.8

Job ID: 500-214283-1

Method: 8260B - Volatile Org	ganic Compounds (GC/MS))						
Analyte	Result Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<31	68	31	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	5
1,1,1-Trichloroethane	<26	68	26	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	5
1,1,2,2-Tetrachloroethane	<27	68	27	ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	5
1,1,2-Trichloroethane	<24	68	24	ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	5
1,1-Dichloroethane	<28	68	28	ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	5
1,1-Dichloroethene	<26	68	26	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	5
1,1-Dichloropropene	<20	68	20	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	5
1,2,3-Trichlorobenzene	<31	68	31	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	5
1,2,3-Trichloropropane	<28	140	28	ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	5
1,2,4-Trichlorobenzene	<23	68	23	ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	5
1,2,4-Trimethylbenzene	<24	68	24	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	5
1,2-Dibromo-3-Chloropropane	<140	340	140	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	5
1,2-Dibromoethane	<26	68		ug/Kg	☼	03/24/22 13:05	04/01/22 18:10	5
1,2-Dichlorobenzene	<23	68		ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	5
1,2-Dichloroethane	<27	68		ug/Kg	☆	03/24/22 13:05	04/01/22 18:10	5
1,2-Dichloropropane	<29	68		ug/Kg	∴ ☆	03/24/22 13:05	04/01/22 18:10	5
1,3,5-Trimethylbenzene	<26	68		ug/Kg			04/01/22 18:10	5
1,3-Dichlorobenzene	<27	68		ug/Kg		03/24/22 13:05	04/01/22 18:10	5
1,3-Dichloropropane	<25	68		ug/Kg		03/24/22 13:05	04/01/22 18:10	5
1,4-Dichlorobenzene	<25	68		ug/Kg	☆		04/01/22 18:10	5
2,2-Dichloropropane	<30	68		ug/Kg	☆		04/01/22 18:10	5
2-Chlorotoluene	<21	68		ug/Kg			04/01/22 18:10	5
4-Chlorotoluene	<24	68		ug/Kg			04/01/22 18:10	5
Benzene	<9.9	17		ug/Kg			04/01/22 18:10	5
Bromobenzene	<24	68		ug/Kg			04/01/22 18:10	5
Bromochloromethane	<29	68		ug/Kg			04/01/22 18:10	5
Dichlorobromomethane	<25	68		ug/Kg	~		04/01/22 18:10	5
Bromoform	<33	68		ug/Kg			04/01/22 18:10	5
Bromomethane	<54	200		ug/Kg ug/Kg	₩		04/01/22 18:10	5
Carbon tetrachloride	<26	68		ug/Kg ug/Kg	₩		04/01/22 18:10	5
Chlorobenzene	<26	68					04/01/22 18:10	5
Chloroethane	<26 <34	68		ug/Kg	☆		04/01/22 18:10	5
				ug/Kg	*			
Chloroform Chloromethane	<25 <22	140		ug/Kg	· · · · ·		04/01/22 18:10	5
	<22 <28	68		ug/Kg	☆		04/01/22 18:10	5
cis-1,2-Dichloroethene		68		ug/Kg	*		04/01/22 18:10	5
cis-1,3-Dichloropropene	<28	68		ug/Kg	 .		04/01/22 18:10	5
Dibromochloromethane	<33	68		ug/Kg	*		04/01/22 18:10	5
Dibromomethane	<18	68		ug/Kg	*		04/01/22 18:10	5
Dichlorodifluoromethane	<46	200		ug/Kg	. .		04/01/22 18:10	5
Ethylbenzene	<12	17		ug/Kg	☼		04/01/22 18:10	5
Hexachlorobutadiene	<30	68		ug/Kg	₩		04/01/22 18:10	5
Isopropyl ether	<19	68		ug/Kg	.		04/01/22 18:10	
Isopropylbenzene	<26	68		ug/Kg	₩		04/01/22 18:10	5
Methyl tert-butyl ether	<27	68		ug/Kg	₩		04/01/22 18:10	5
Methylene Chloride	<110	340		ug/Kg	.		04/01/22 18:10	5
Naphthalene	<23	68		ug/Kg	≎		04/01/22 18:10	5
n-Butylbenzene	<26	68		ug/Kg	☼		04/01/22 18:10	5
N-Propylbenzene	<28	68	28	ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	5
p-Isopropyltoluene	<25	68	25	ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	5

Eurofins Chicago

3

6

1

9

11

13

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-218 5-7 Lab Sample ID: 500-214283-40

Date Collected: 03/24/22 13:05 **Matrix: Solid** Percent Solids: 84.8 Date Received: 03/29/22 10:20

Method: 8260B - Volatile Or	ganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<27		68	27	ug/Kg	— -	03/24/22 13:05	04/01/22 18:10	50
Styrene	<26		68	26	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	50
tert-Butylbenzene	<27		68	27	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	50
Tetrachloroethene	<25		68	25	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	50
Toluene	<10		17	10	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	50
trans-1,2-Dichloroethene	<24		68	24	ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	50
trans-1,3-Dichloropropene	<25		68	25	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	50
Trichloroethene	<11		34	11	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	50
Trichlorofluoromethane	<29		68	29	ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	50
Vinyl chloride	<18		68	18	ug/Kg	₽	03/24/22 13:05	04/01/22 18:10	50
Xylenes, Total	<15		34	15	ug/Kg	₩	03/24/22 13:05	04/01/22 18:10	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		75 - 126				03/24/22 13:05	04/01/22 18:10	50
4-Bromofluorobenzene (Surr)	87		72 - 124				03/24/22 13:05	04/01/22 18:10	50
Dibromofluoromethane (Surr)	104		75 - 120				03/24/22 13:05	04/01/22 18:10	50
Toluene-d8 (Surr)	93		75 - 120				03/24/22 13:05	04/01/22 18:10	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<9.0		74	9.0	ug/Kg	<u></u>	04/07/22 05:35	04/08/22 17:34	1
2-Methylnaphthalene	<6.8		74	6.8	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Acenaphthene	<6.6		37	6.6	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Acenaphthylene	<4.9		37	4.9	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Anthracene	<6.1		37	6.1	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Benzo[a]anthracene	<5.0		37	5.0	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Benzo[a]pyrene	<7.1		37	7.1	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Benzo[b]fluoranthene	<7.9		37	7.9	ug/Kg	☼	04/07/22 05:35	04/08/22 17:34	1
Benzo[g,h,i]perylene	<12		37	12	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Benzo[k]fluoranthene	<11		37	11	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Chrysene	<10		37	10	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Dibenz(a,h)anthracene	<7.1		37	7.1	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Fluoranthene	16	J	37	6.8	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Fluorene	<5.2		37	5.2	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Indeno[1,2,3-cd]pyrene	<9.5		37	9.5	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Naphthalene	5.8	J	37	5.7	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Phenanthrene	11	J	37	5.1	ug/Kg	₽	04/07/22 05:35	04/08/22 17:34	1
Pyrene	14	J	37	7.3	ug/Kg	₩	04/07/22 05:35	04/08/22 17:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	63		43 - 145				04/07/22 05:35	04/08/22 17:34	1
Nitrobenzene-d5 (Surr)	47		37 - 147				04/07/22 05:35	04/08/22 17:34	1
Terphenyl-d14 (Surr)	107		42 - 157				04/07/22 05:35	04/08/22 17:34	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.1		1.0	0.35	mg/Kg	₩	04/06/22 02:01	04/08/22 15:47	1
Lead	27		0.52	0.24	mg/Kg	☼	04/06/22 02:01	04/08/22 15:47	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-214 0-2 Lab Sample ID: 500-214283-41

Method: 8260B - Volatile Org	anic Compounds (GC/MS)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<51	110	51	ug/Kg	-	03/24/22 14:00	04/01/22 18:33	50
1,1,1-Trichloroethane	<42	110	42	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
1,1,2,2-Tetrachloroethane	<44	110	44	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
1,1,2-Trichloroethane	<39	110	39	ug/Kg	≎	03/24/22 14:00	04/01/22 18:33	50
1,1-Dichloroethane	<45	110	45	ug/Kg	₩	03/24/22 14:00	04/01/22 18:33	50
1,1-Dichloroethene	<43	110	43	ug/Kg	₩	03/24/22 14:00	04/01/22 18:33	50
1,1-Dichloropropene	<33	110	33	ug/Kg		03/24/22 14:00	04/01/22 18:33	50
1,2,3-Trichlorobenzene	<50	110	50	ug/Kg	₩	03/24/22 14:00	04/01/22 18:33	50
1,2,3-Trichloropropane	<45	220		ug/Kg	₩	03/24/22 14:00	04/01/22 18:33	50
1,2,4-Trichlorobenzene	<37	110		ug/Kg		03/24/22 14:00	04/01/22 18:33	50
1,2,4-Trimethylbenzene	350	110		ug/Kg	₩	03/24/22 14:00	04/01/22 18:33	50
1,2-Dibromo-3-Chloropropane	<220	550		ug/Kg	₩	03/24/22 14:00	04/01/22 18:33	50
1,2-Dibromoethane	<42	110		ug/Kg			04/01/22 18:33	50
1,2-Dichlorobenzene	<37	110		ug/Kg	₩		04/01/22 18:33	50
1,2-Dichloroethane	<43	110		ug/Kg	☆		04/01/22 18:33	50
1,2-Dichloropropane	<47	110		ug/Kg			04/01/22 18:33	50
1,3,5-Trimethylbenzene	75 J	110		ug/Kg			04/01/22 18:33	50
1,3-Dichlorobenzene	<44	110		ug/Kg			04/01/22 18:33	50
1,3-Dichloropropane	<40	110		ug/Kg			04/01/22 18:33	5(
1,4-Dichlorobenzene	<40	110		ug/Kg ug/Kg	₩		04/01/22 18:33	50
2,2-Dichloropropane	<49	110		ug/Kg	₩		04/01/22 18:33	50
2-Chlorotoluene	<34	110		ug/Kg			04/01/22 18:33	5(
4-Chlorotoluene	<38	110		ug/Kg ug/Kg	₩		04/01/22 18:33	50
	100	27		ug/Kg ug/Kg	₩		04/01/22 18:33	50
Benzene Bromobenzene	<39	110		ug/Kg ug/Kg	 		04/01/22 18:33	5(
Bromochloromethane	<47	110					04/01/22 18:33	50
Dichlorobromomethane	<41	110		ug/Kg	*		04/01/22 18:33	50
				ug/Kg	🌣			
Bromoform	<53	110		ug/Kg			04/01/22 18:33	50
Bromomethane	<87	330		ug/Kg	₩.		04/01/22 18:33	50
Carbon tetrachloride	<42	110		ug/Kg	· · · · · ·		04/01/22 18:33	50
Chlorobenzene	<42	110		ug/Kg	*		04/01/22 18:33	50
Chloroethane	<55	110		ug/Kg	*		04/01/22 18:33	50
Chloroform	<40	220		ug/Kg	<u>.</u> .		04/01/22 18:33	50
Chloromethane	<35	110		ug/Kg			04/01/22 18:33	50
cis-1,2-Dichloroethene	<45	110		ug/Kg	☼		04/01/22 18:33	50
cis-1,3-Dichloropropene	<46	110		ug/Kg	.	03/24/22 14:00		50
Dibromochloromethane	<53	110		ug/Kg	₩		04/01/22 18:33	50
Dibromomethane	<30	110		ug/Kg	₩		04/01/22 18:33	50
Dichlorodifluoromethane	<74	330		ug/Kg			04/01/22 18:33	50
Ethylbenzene	210	27		ug/Kg	₽		04/01/22 18:33	50
Hexachlorobutadiene	<49	110		ug/Kg	₩		04/01/22 18:33	50
Isopropyl ether	<30	110	30	ug/Kg			04/01/22 18:33	50
Isopropylbenzene	140	110	42	ug/Kg	≎		04/01/22 18:33	50
Methyl tert-butyl ether	<43	110	43	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
Methylene Chloride	<180	550	180	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
Naphthalene	480 B	110	37	ug/Kg	≎	03/24/22 14:00	04/01/22 18:33	50
n-Butylbenzene	<42	110	42	ug/Kg	≎	03/24/22 14:00	04/01/22 18:33	50
N-Propylbenzene	170	110	45	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
p-Isopropyltoluene	<40	110	40	ug/Kg	₩	03/24/22 14:00	04/01/22 18:33	50

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-214 0-2

Date Collected: 03/24/22 14:00 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-41

Matrix: Solid

Percent Solids: 67.6

Job ID: 500-214283-1

Method: 8260B - Volatile Or	ganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	57	J	110	44	ug/Kg	-	03/24/22 14:00	04/01/22 18:33	50
Styrene	<42		110	42	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
tert-Butylbenzene	<44		110	44	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
Tetrachloroethene	<40		110	40	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
Toluene	660		27	16	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
trans-1,2-Dichloroethene	<38		110	38	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
trans-1,3-Dichloropropene	<40		110	40	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
Trichloroethene	<18		55	18	ug/Kg	₩	03/24/22 14:00	04/01/22 18:33	50
Trichlorofluoromethane	<47		110	47	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
Vinyl chloride	<29		110	29	ug/Kg	₽	03/24/22 14:00	04/01/22 18:33	50
Xylenes, Total	1200		55	24	ug/Kg	☼	03/24/22 14:00	04/01/22 18:33	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		75 - 126				03/24/22 14:00	04/01/22 18:33	50
4-Bromofluorobenzene (Surr)	89		72 - 124				03/24/22 14:00	04/01/22 18:33	50
Dibromofluoromethane (Surr)	103		75 - 120				03/24/22 14:00	04/01/22 18:33	50
Toluene-d8 (Surr)	92		75 - 120				03/24/22 14:00	04/01/22 18:33	50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<670	3100	670	ug/Kg	<u></u>	04/07/22 05:35	04/11/22 16:16	5
1,2-Dichlorobenzene	<750	3100	750	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
1,3-Dichlorobenzene	<700	3100	700	ug/Kg	≎	04/07/22 05:35	04/11/22 16:16	5
1,4-Dichlorobenzene	<800	3100	800	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
1-Methylnaphthalene	3600	1300	150	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
2,2'-oxybis[1-chloropropane]	<720	3100	720	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
2,4,5-Trichlorophenol	<1400	6200	1400	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
2,4,6-Trichlorophenol	<2100	6200	2100	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
2,4-Dichlorophenol	<1500	6200	1500	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
2,4-Dimethylphenol	<2400	6200	2400	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
2,4-Dinitrophenol	<11000	13000	11000	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
2,4-Dinitrotoluene	<990	3100	990	ug/Kg	₩	04/07/22 05:35	04/11/22 16:16	5
2,6-Dinitrotoluene	<1200	3100	1200	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
2-Chloronaphthalene	<690	3100	690	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
2-Chlorophenol	<1100	3100	1100	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
2-Methylnaphthalene	4800	1300	110	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
2-Methylphenol	<1000	3100	1000	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
2-Nitroaniline	<840	3100	840	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
2-Nitrophenol	<1500	6200	1500	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
3 & 4 Methylphenol	<1000	3100	1000	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
3,3'-Dichlorobenzidine	<870	3100	870	ug/Kg	₩	04/07/22 05:35	04/11/22 16:16	5
3-Nitroaniline	<1900	6200	1900	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
4,6-Dinitro-2-methylphenol	<5000	13000	5000	ug/Kg	₩	04/07/22 05:35	04/11/22 16:16	5
4-Bromophenyl phenyl ether	<820	3100	820	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
4-Chloro-3-methylphenol	<2100	6200	2100	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
4-Chloroaniline	<2900	13000	2900	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
4-Chlorophenyl phenyl ether	<730	3100	730	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
4-Nitroaniline	<2600	6200	2600	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
4-Nitrophenol	<5900	13000	5900	ug/Kg	☼	04/07/22 05:35	04/11/22 16:16	5
Acenaphthene	2200	620	110	ug/Kg	₩	04/07/22 05:35	04/11/22 16:16	5

Eurofins Chicago

_

4

7

8

10

11

13

14

16

1 /

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-214 0-2 Lab Sample ID: 500-214283-41

Date Collected: 03/24/22 14:00

Matrix: Solid

Date Received: 03/29/22 10:20

Matrix: Solids: 67.6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	750		620	82	ug/Kg	— <u></u>	04/07/22 05:35	04/11/22 16:16	5
Anthracene	5300		620		ug/Kg	≎	04/07/22 05:35	04/11/22 16:16	5
Benzo[a]anthracene	7800		620	84	ug/Kg	≎	04/07/22 05:35	04/11/22 16:16	5
Benzo[a]pyrene	8600		620		ug/Kg	₩	04/07/22 05:35	04/11/22 16:16	5
Benzo[b]fluoranthene	11000		620	130		₩	04/07/22 05:35	04/11/22 16:16	5
Benzo[g,h,i]perylene	2200		620	200		₩	04/07/22 05:35	04/11/22 16:16	5
Benzo[k]fluoranthene	4400		620	180	ug/Kg		04/07/22 05:35	04/11/22 16:16	5
Benzoic acid	<6200		31000	6200		₩	04/07/22 05:35	04/11/22 16:16	5
Benzyl alcohol	<6200		13000	6200	• •	☆	04/07/22 05:35	04/11/22 16:16	5
Bis(2-chloroethoxy)methane	<640		3100		ug/Kg			04/11/22 16:16	5
Bis(2-chloroethyl)ether	<940		3100	940		☆		04/11/22 16:16	5
Bis(2-ethylhexyl) phthalate	<1100		3100		ug/Kg			04/11/22 16:16	5
Butyl benzyl phthalate	<1200		3100		ug/Kg			04/11/22 16:16	5
Carbazole	<1600		3100	1600	0 0			04/11/22 16:16	5
Chrysene	8300		620		ug/Kg	~ \$		04/11/22 16:16	5
Dibenz(a,h)anthracene	810		620		ug/Kg			04/11/22 16:16	5 5
Dibenzofuran	2300		3100	730		₩		04/11/22 16:16	5
Diethyl phthalate	<1100	J	3100	1100		₩		04/11/22 16:16	5
									5 5
Dimethyl phthalate	<820		3100	820	0 0	φ.		04/11/22 16:16	
Di-n-butyl phthalate	<950		3100	950	0 0	*		04/11/22 16:16	5
Di-n-octyl phthalate	<1000		3100	1000	0 0			04/11/22 16:16	5
Fluoranthene	18000		620	120	ug/Kg	*		04/11/22 16:16	5
Fluorene	2200		620	88	ug/Kg	₽		04/11/22 16:16	5
Hexachlorobenzene	<140		1300	140		. .		04/11/22 16:16	5
Hexachlorobutadiene	<980		3100		ug/Kg	₩		04/11/22 16:16	5
Hexachlorocyclopentadiene	<3600		13000	3600	0 0	₩		04/11/22 16:16	5
Hexachloroethane	<950		3100	950		.		04/11/22 16:16	5
Indeno[1,2,3-cd]pyrene	2400		620		ug/Kg	≎		04/11/22 16:16	5
Isophorone	<700		3100	700	0 0	≎		04/11/22 16:16	5
Naphthalene	3700		620		ug/Kg		04/07/22 05:35	04/11/22 16:16	5
Nitrobenzene	<160		620	160	ug/Kg	₩	04/07/22 05:35	04/11/22 16:16	5
N-Nitrosodi-n-propylamine	<760		1300	760	ug/Kg	₩	04/07/22 05:35	04/11/22 16:16	5
N-Nitrosodiphenylamine	<740		3100	740	ug/Kg	≎	04/07/22 05:35	04/11/22 16:16	5
Pentachlorophenol	<10000		13000	10000	ug/Kg	≎	04/07/22 05:35	04/11/22 16:16	5
Phenanthrene	20000		620	87	ug/Kg	☆	04/07/22 05:35	04/11/22 16:16	5
Phenol	<1400		3100	1400	ug/Kg	₩	04/07/22 05:35	04/11/22 16:16	5
Pyrene	15000		620	120	ug/Kg	₽	04/07/22 05:35	04/11/22 16:16	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	99		31 - 143				04/07/22 05:35	04/11/22 16:16	5
2-Fluorobiphenyl (Surr)	82		43 - 145				04/07/22 05:35	04/11/22 16:16	5
2-Fluorophenol (Surr)	171	S1+	31 - 166				04/07/22 05:35	04/11/22 16:16	5
Nitrobenzene-d5 (Surr)	55		37 - 147				04/07/22 05:35	04/11/22 16:16	5
Phenol-d5 (Surr)	110		30 - 153				04/07/22 05:35	04/11/22 16:16	5
Terphenyl-d14 (Surr)	89		42 - 157				04/07/22 05:35	04/11/22 16:16	5
Method: 8081A - Organoch	nlorine Pesticid	es (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<24		35	24	ug/Kg	-	04/07/22 04:55	04/12/22 12:28	5
alpha-BHC	<19		35		ug/Kg	⇔	04/07/22 04:55	04/12/22 12:28	5

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-214 0-2 Lab Sample ID: 500-214283-41

Date Collected: 03/24/22 14:00 **Matrix: Solid** Percent Solids: 67.6 Date Received: 03/29/22 10:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<18	35	18	ug/Kg	-	04/07/22 04:55	04/12/22 12:28	5
beta-BHC	<28	35	28	ug/Kg	₩	04/07/22 04:55	04/12/22 12:28	5
4,4'-DDD	<19	35	19	ug/Kg	☼	04/07/22 04:55	04/12/22 12:28	5
4,4'-DDE	<18	35	18	ug/Kg	☼	04/07/22 04:55	04/12/22 12:28	5
4,4'-DDT	<16	35	16	ug/Kg	₽	04/07/22 04:55	04/12/22 12:28	5
delta-BHC	<16	35	16	ug/Kg	☼	04/07/22 04:55	04/12/22 12:28	5
Dieldrin	<18	35	18	ug/Kg	☼	04/07/22 04:55	04/12/22 12:28	5
Endosulfan I	<19	35	19	ug/Kg	₽	04/07/22 04:55	04/12/22 12:28	5
Endosulfan II	<19	35	19	ug/Kg	☼	04/07/22 04:55	04/12/22 12:28	5
Endosulfan sulfate	<19	35	19	ug/Kg	₩	04/07/22 04:55	04/12/22 12:28	5
Endrin	<18	35	18	ug/Kg	₩	04/07/22 04:55	04/12/22 12:28	5
Endrin aldehyde	<20	35	20	ug/Kg	☼	04/07/22 04:55	04/12/22 12:28	5
Endrin ketone	<17	35	17	ug/Kg	₩	04/07/22 04:55	04/12/22 12:28	5
gamma-BHC (Lindane)	<17	35	17	ug/Kg	₩	04/07/22 04:55	04/12/22 12:28	5
trans-Chlordane	<20	35	20	ug/Kg	☼	04/07/22 04:55	04/12/22 12:28	5
Heptachlor	<19	35	19	ug/Kg	₩	04/07/22 04:55	04/12/22 12:28	5
Heptachlor epoxide	<19	35	19	ug/Kg	₩	04/07/22 04:55	04/12/22 12:28	5
Methoxychlor	<23	170	23	ug/Kg	☼	04/07/22 04:55	04/12/22 12:28	5
Toxaphene	<140	340	140	ug/Kg	₩	04/07/22 04:55	04/12/22 12:28	5
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	283 S1+	33 - 148				04/07/22 04:55	04/12/22 12:28	5
DCB Decachlorobiphenyl	115	33 - 148				04/07/22 04:55	04/12/22 12:28	5
Tetrachloro-m-xylene	167 S1+	30 - 121				04/07/22 04:55	04/12/22 12:28	5
Tetrachloro-m-xylene	103	30 - 121				04/07/22 04:55	04/12/22 12:28	5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.027		0.068	0.027	mg/Kg	<u></u>	04/07/22 04:55	04/12/22 14:11	1
PCB-1221	<0.027		0.068	0.027	mg/Kg	☼	04/07/22 04:55	04/12/22 14:11	1
PCB-1232	<0.018		0.068	0.018	mg/Kg	☼	04/07/22 04:55	04/12/22 14:11	1
PCB-1242	<0.026		0.068	0.026	mg/Kg	₩	04/07/22 04:55	04/12/22 14:11	1
PCB-1248	< 0.032		0.068	0.032	mg/Kg	☼	04/07/22 04:55	04/12/22 14:11	1
PCB-1254	< 0.023		0.068	0.023	mg/Kg	☼	04/07/22 04:55	04/12/22 14:11	1
PCB-1260	<0.026		0.068	0.026	mg/Kg	₩	04/07/22 04:55	04/12/22 14:11	1
PCB-1262	<0.022		0.068	0.022	mg/Kg	☼	04/07/22 04:55	04/12/22 14:11	1
PCB-1268	<0.039		0.068	0.039	mg/Kg	☼	04/07/22 04:55	04/12/22 14:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	75		49 - 129				04/07/22 04:55	04/12/22 14:11	1
DCB Decachlorobiphenyl	81		37 - 121				04/07/22 04:55	04/12/22 14:11	1

Method: 8151A - Herbicides	s (GC)							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<120	490	120	ug/Kg	<u></u>	04/06/22 10:55	04/11/22 13:18	10
2,4-DB	<140	490	140	ug/Kg	₽	04/06/22 10:55	04/11/22 13:18	10
Dicamba	<100	490	100	ug/Kg	₽	04/06/22 10:55	04/11/22 13:18	10
Dichlorprop	<120	490	120	ug/Kg	₽	04/06/22 10:55	04/11/22 13:18	10
Silvex (2,4,5-TP)	<110	490	110	ug/Kg	₽	04/06/22 10:55	04/11/22 13:18	10
2,4,5-T	<98	490	98	ug/Kg	₽	04/06/22 10:55	04/11/22 13:18	10

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-214 0-2

Date Collected: 03/24/22 14:00

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-41

Matrix: Solid

Percent Solids: 67.6

Job ID: 500-214283-1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	30		25 - 120				04/06/22 10:55	04/11/22 13:18	10
Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	9.4		1.5	0.50	mg/Kg	<u></u>	04/06/22 02:01	04/08/22 15:50	1
Barium	68		1.5	0.17	mg/Kg	☆	04/06/22 02:01	04/07/22 18:14	1
Cadmium	0.53	В	0.29	0.052	mg/Kg	₩	04/06/22 02:01	04/08/22 15:50	1
Chromium	9.6		1.5	0.72	mg/Kg	₩	04/06/22 02:01	04/07/22 18:14	1
Lead	76		0.73	0.34	mg/Kg	☆	04/06/22 02:01	04/08/22 15:50	1
Selenium	4.2		1.5	0.86	mg/Kg	₩	04/06/22 02:01	04/08/22 15:50	1
Silver	0.20	J	0.73	0.19	mg/Kg	☼	04/06/22 02:01	04/08/22 15:50	1
- Method: 7471B - Mercury (CVA)	A)								
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	1.9		0.11	0.037	mg/Kg	— <u></u>	04/07/22 13:45	04/08/22 12:30	

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-214 4-5

Date Collected: 03/24/22 14:05 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-42

Matrix: Solid

Percent Solids: 81.8

Job ID: 500-214283-1

Method: 8260B - Volatile Org Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	- Kesuit	Qualifier	73			— "		04/01/22 18:38	- 51116
1,1,1-Trichloroethane	<28		73		ug/Kg	₩		04/01/22 18:38	į
1,1,2,2-Tetrachloroethane	<29		73 73		ug/Kg ug/Kg	₩		04/01/22 18:38	į
1,1,2-Trichloroethane	<26		73		ug/Kg			04/01/22 18:38	
1,1-Dichloroethane	<30		73 73		ug/Kg ug/Kg	₩		04/01/22 18:38	į
1,1-Dichloroethene	<29		73 73		ug/Kg ug/Kg			04/01/22 18:38	;
<u> </u>			73						
1,1-Dichloropropene	<22 <34		73 73		ug/Kg			04/01/22 18:38	
1,2,3-Trichlorobenzene					ug/Kg	\$		04/01/22 18:38	
1,2,3-Trichloropropane	<30		150		ug/Kg			04/01/22 18:38	
1,2,4-Trichlorobenzene	<25		73		ug/Kg	*		04/01/22 18:38	į
1,2,4-Trimethylbenzene	<26		73		ug/Kg	₩		04/01/22 18:38	į
1,2-Dibromo-3-Chloropropane	<150		370		ug/Kg			04/01/22 18:38	
1,2-Dibromoethane	<28		73		ug/Kg	☼		04/01/22 18:38	į
1,2-Dichlorobenzene	<24		73		ug/Kg	₩		04/01/22 18:38	į
1,2-Dichloroethane	<29		73	29	ug/Kg		03/24/22 14:05	04/01/22 18:38	
1,2-Dichloropropane	<31		73	31	ug/Kg	☼	03/24/22 14:05	04/01/22 18:38	į
1,3,5-Trimethylbenzene	<28		73	28	ug/Kg	₽	03/24/22 14:05	04/01/22 18:38	į
1,3-Dichlorobenzene	<29		73	29	ug/Kg	₩	03/24/22 14:05	04/01/22 18:38	į
1,3-Dichloropropane	<27		73	27	ug/Kg	₩	03/24/22 14:05	04/01/22 18:38	į
1,4-Dichlorobenzene	<27		73	27	ug/Kg	₽	03/24/22 14:05	04/01/22 18:38	į
2,2-Dichloropropane	<33		73	33	ug/Kg	₩	03/24/22 14:05	04/01/22 18:38	į
2-Chlorotoluene	<23		73	23	ug/Kg	₩	03/24/22 14:05	04/01/22 18:38	
4-Chlorotoluene	<26		73	26	ug/Kg	₩	03/24/22 14:05	04/01/22 18:38	į
Benzene	<11		18	11	ug/Kg	₽	03/24/22 14:05	04/01/22 18:38	į
Bromobenzene	<26		73	26	ug/Kg		03/24/22 14:05	04/01/22 18:38	
Bromochloromethane	<31		73	31	ug/Kg	₩	03/24/22 14:05	04/01/22 18:38	į
Dichlorobromomethane	<27		73	27		₩	03/24/22 14:05	04/01/22 18:38	į
Bromoform	<35		73		ug/Kg		03/24/22 14:05	04/01/22 18:38	
Bromomethane	<58		220		ug/Kg	☆		04/01/22 18:38	į
Carbon tetrachloride	<28		73		ug/Kg	☆		04/01/22 18:38	į
Chlorobenzene	<28		73		ug/Kg			04/01/22 18:38	
Chloroethane	<37		73		ug/Kg			04/01/22 18:38	į
Chloroform	<27		150		ug/Kg			04/01/22 18:38	į
Chloromethane	<23		73		ug/Kg			04/01/22 18:38	
cis-1,2-Dichloroethene	<30		73		ug/Kg	₩		04/01/22 18:38	į
cis-1,3-Dichloropropene	<31		73		ug/Kg	₩		04/01/22 18:38	į
Dibromochloromethane	<36		73		ug/Kg ug/Kg	 		04/01/22 18:38	
Dibromocniorometriane Dibromomethane	<20		73 73		ug/Kg ug/Kg			04/01/22 18:38	į
Dichlorodifluoromethane	<20 <49	*	73 220		ug/Kg ug/Kg	≎		04/01/22 18:38	į
		.							
Ethylbenzene	<13		18		ug/Kg			04/01/22 18:38	į
Hexachlorobutadiene 	<33		73		ug/Kg	\$		04/01/22 18:38	į
Isopropyl ether	<20		73		ug/Kg	. .		04/01/22 18:38	
Isopropylbenzene	<28		73		ug/Kg	₩.		04/01/22 18:38	
Methyl tert-butyl ether	<29		73		ug/Kg	≎		04/01/22 18:38	ţ
Methylene Chloride	<120		370		ug/Kg	.		04/01/22 18:38	
Naphthalene	<24		73		ug/Kg	₩		04/01/22 18:38	į
n-Butylbenzene	<28		73	28	ug/Kg	≎	03/24/22 14:05	04/01/22 18:38	į
N-Propylbenzene	<30		73	30	ug/Kg	₽	03/24/22 14:05	04/01/22 18:38	
p-Isopropyltoluene	<27		73	27	ug/Kg	₩	03/24/22 14:05	04/01/22 18:38	

Eurofins Chicago

2

<u>:</u>

7

9

11

13

1 E

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-214 4-5 Lab Sample ID: 500-214283-42

Date Collected: 03/24/22 14:05 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 81.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<29		73	29	ug/Kg	-	03/24/22 14:05	04/01/22 18:38	50
Styrene	<28		73	28	ug/Kg	₽	03/24/22 14:05	04/01/22 18:38	50
tert-Butylbenzene	<29		73	29	ug/Kg	₽	03/24/22 14:05	04/01/22 18:38	50
Tetrachloroethene	<27		73	27	ug/Kg	≎	03/24/22 14:05	04/01/22 18:38	50
Toluene	<11		18	11	ug/Kg	≎	03/24/22 14:05	04/01/22 18:38	50
trans-1,2-Dichloroethene	<26		73	26	ug/Kg	≎	03/24/22 14:05	04/01/22 18:38	50
trans-1,3-Dichloropropene	<27		73	27	ug/Kg	≎	03/24/22 14:05	04/01/22 18:38	50
Trichloroethene	<12		37	12	ug/Kg	≎	03/24/22 14:05	04/01/22 18:38	50
Trichlorofluoromethane	<31		73	31	ug/Kg	≎	03/24/22 14:05	04/01/22 18:38	50
Vinyl chloride	<19	*_	73	19	ug/Kg	≎	03/24/22 14:05	04/01/22 18:38	50
Xylenes, Total	<16		37	16	ug/Kg	₩	03/24/22 14:05	04/01/22 18:38	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		75 - 126				03/24/22 14:05	04/01/22 18:38	50
4-Bromofluorobenzene (Surr)	85		72 - 124				03/24/22 14:05	04/01/22 18:38	50
Dibromofluoromethane (Surr)	98		75 - 120				03/24/22 14:05	04/01/22 18:38	50
Toluene-d8 (Surr)	98		75 - 120				03/24/22 14:05	04/01/22 18:38	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<9.7		80	9.7	ug/Kg	-	04/07/22 05:35	04/08/22 17:56	1
2-Methylnaphthalene	<7.3		80	7.3	ug/Kg	☼	04/07/22 05:35	04/08/22 17:56	1
Acenaphthene	<7.2		40	7.2	ug/Kg	☼	04/07/22 05:35	04/08/22 17:56	1
Acenaphthylene	<5.2		40	5.2	ug/Kg	₽	04/07/22 05:35	04/08/22 17:56	1
Anthracene	<6.7		40	6.7	ug/Kg	☼	04/07/22 05:35	04/08/22 17:56	1
Benzo[a]anthracene	<5.4		40	5.4	ug/Kg	₩	04/07/22 05:35	04/08/22 17:56	1
Benzo[a]pyrene	<7.7		40	7.7	ug/Kg	₽	04/07/22 05:35	04/08/22 17:56	1
Benzo[b]fluoranthene	<8.6		40	8.6	ug/Kg	☼	04/07/22 05:35	04/08/22 17:56	1
Benzo[g,h,i]perylene	<13		40	13	ug/Kg	₽	04/07/22 05:35	04/08/22 17:56	1
Benzo[k]fluoranthene	<12		40	12	ug/Kg	₽	04/07/22 05:35	04/08/22 17:56	1
Chrysene	<11		40	11	ug/Kg	₩	04/07/22 05:35	04/08/22 17:56	1
Dibenz(a,h)anthracene	<7.7		40	7.7	ug/Kg	☼	04/07/22 05:35	04/08/22 17:56	1
Fluoranthene	<7.4		40	7.4	ug/Kg	₽	04/07/22 05:35	04/08/22 17:56	1
Fluorene	<5.6		40	5.6	ug/Kg	₩	04/07/22 05:35	04/08/22 17:56	1
Indeno[1,2,3-cd]pyrene	<10		40	10	ug/Kg	☼	04/07/22 05:35	04/08/22 17:56	1
Naphthalene	<6.1		40	6.1	ug/Kg	₽	04/07/22 05:35	04/08/22 17:56	1
Phenanthrene	<5.5		40	5.5	ug/Kg	₽	04/07/22 05:35	04/08/22 17:56	1
Pyrene	<7.9		40	7.9	ug/Kg	₩	04/07/22 05:35	04/08/22 17:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	56		43 - 145				04/07/22 05:35	04/08/22 17:56	1
Nitrobenzene-d5 (Surr)	51		37 - 147				04/07/22 05:35	04/08/22 17:56	1
Terphenyl-d14 (Surr)	105		42 - 157				04/07/22 05:35	04/08/22 17:56	1

Method: 6010C - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	3.0		1.1	0.38	mg/Kg	₩	04/06/22 02:01	04/08/22 15:53	1
Lead	3.5		0.56	0.26	mg/Kg	☼	04/06/22 02:01	04/08/22 15:53	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-215 0-2

Date Collected: 03/24/22 14:25
Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-43

Matrix: Solid

Percent Solids: 88.2

Job ID: 500-214283-1

Method: 8260B - Volatile Orզ		•						
Analyte	Result Qualifier	RL _	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<29	64		ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
1,1,1-Trichloroethane	<24	64	24	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
1,1,2,2-Tetrachloroethane	<25	64	25	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
1,1,2-Trichloroethane	<22	64	22	ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50
1,1-Dichloroethane	<26	64	26	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
1,1-Dichloroethene	<25	64	25	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
1,1-Dichloropropene	<19	64	19	ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50
1,2,3-Trichlorobenzene	<29	64	29	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
1,2,3-Trichloropropane	<26	130	26	ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50
1,2,4-Trichlorobenzene	<22	64	22	ug/Kg	⊅	03/24/22 14:25	04/01/22 19:01	50
1,2,4-Trimethylbenzene	<23	64	23	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
1,2-Dibromo-3-Chloropropane	<130	320	130	ug/Kg	≎	03/24/22 14:25	04/01/22 19:01	50
1,2-Dibromoethane	<25	64	25	ug/Kg	₽	03/24/22 14:25	04/01/22 19:01	50
1,2-Dichlorobenzene	<21	64	21	ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50
1,2-Dichloroethane	<25	64	25	ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50
1,2-Dichloropropane	<27	64		ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50
1,3,5-Trimethylbenzene	<24	64		ug/Kg	☆	03/24/22 14:25	04/01/22 19:01	50
1,3-Dichlorobenzene	<25	64		ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50
1,3-Dichloropropane	<23	64		ug/Kg	 ∯	03/24/22 14:25	04/01/22 19:01	50
1,4-Dichlorobenzene	<23	64		ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50
2,2-Dichloropropane	<28	64		ug/Kg	☆	03/24/22 14:25	04/01/22 19:01	50
2-Chlorotoluene	<20	64		ug/Kg	 	03/24/22 14:25		50
4-Chlorotoluene	<22	64		ug/Kg	₩	03/24/22 14:25		50
Benzene	<9.3	16		ug/Kg	₩	03/24/22 14:25		50
Bromobenzene	<23	64		ug/Kg		03/24/22 14:25		50
Bromochloromethane	<27	64		ug/Kg	₩	03/24/22 14:25		50
Dichlorobromomethane	<24	64		ug/Kg	₩	03/24/22 14:25		50
Bromoform	<31	64		ug/Kg	 	03/24/22 14:25		50
Bromomethane	<51	190		ug/Kg		03/24/22 14:25		50
Carbon tetrachloride	<24	64		ug/Kg	☆	03/24/22 14:25		50
Chlorobenzene	<25	64		ug/Kg		03/24/22 14:25		50
Chloroethane	<32	64		ug/Kg		03/24/22 14:25		50
Chloroform	<24	130		ug/Kg	☆	03/24/22 14:25		50
Chloromethane	<20	64		ug/Kg		03/24/22 14:25		50
cis-1,2-Dichloroethene	<26	64		ug/Kg	 \$		04/01/22 19:01	50
cis-1,3-Dichloropropene	<26	64		ug/Kg	 	03/24/22 14:25		50
Dibromochloromethane	<31	64		ug/Kg		03/24/22 14:25		50
Dibromomethane	<17	64		ug/Kg		03/24/22 14:25		50
Dichlorodifluoromethane	<43 *-	190		ug/Kg	~ \$	03/24/22 14:25		50
Ethylbenzene	<12	16		ug/Kg		03/24/22 14:25		50
Hexachlorobutadiene	<28	64		ug/Kg			04/01/22 19:01	50
Isopropyl ether	<18	64		ug/Kg	~ \$	03/24/22 14:25		50
Isopropylbenzene	<24	64		ug/Kg		03/24/22 14:25		50
Methyl tert-butyl ether	<25	64			₩		04/01/22 19:01	50
Methylene Chloride	<100	320		ug/Kg ug/Kg		03/24/22 14:25		50
					· · · · · · · · · · · · · · · · · · ·			
Naphthalene n Butulbonzono	34 J	64 64		ug/Kg		03/24/22 14:25		50
n-Butylbenzene	<25	64		ug/Kg	Ψ.	03/24/22 14:25		50
N-Propylbenzene	<26	64	26	ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-215 0-2 Lab Sample ID: 500-214283-43

Date Collected: 03/24/22 14:25 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 88.2

Method: 8260B - Volatile Or	rganic Compo	unds (GC/	MS) (Continu	ıed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<25		64	25	ug/Kg	— <u></u>	03/24/22 14:25	04/01/22 19:01	50
Styrene	<25		64	25	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
tert-Butylbenzene	<25		64	25	ug/Kg	₽	03/24/22 14:25	04/01/22 19:01	50
Tetrachloroethene	<24		64	24	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
Toluene	<9.4		16	9.4	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
trans-1,2-Dichloroethene	<22		64	22	ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50
trans-1,3-Dichloropropene	<23		64	23	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
Trichloroethene	<10		32	10	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
Trichlorofluoromethane	<27		64	27	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
Vinyl chloride	<17	*_	64	17	ug/Kg	☼	03/24/22 14:25	04/01/22 19:01	50
Xylenes, Total	<14		32	14	ug/Kg	₩	03/24/22 14:25	04/01/22 19:01	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		75 - 126				03/24/22 14:25	04/01/22 19:01	50
4-Bromofluorobenzene (Surr)	86		72 - 124				03/24/22 14:25	04/01/22 19:01	50
Dibromofluoromethane (Surr)	95		75 - 120				03/24/22 14:25	04/01/22 19:01	50
Toluene-d8 (Surr)	97		75 - 120				03/24/22 14:25	04/01/22 19:01	50

- Toluene-do (Sun)	31		75-120				03/24/22 14.23	04/01/22 19.01	50
Method: 8270D - Semivolatil Analyte	_	ompounds Qualifier	(GC/MS)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<39		180	39	ug/Kg	— -	04/07/22 05:35	04/11/22 19:02	1
1,2-Dichlorobenzene	<44		180	44	ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	1
1,3-Dichlorobenzene	<41		180	41	ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	1
1,4-Dichlorobenzene	<47		180	47			04/07/22 05:35	04/11/22 19:02	1
1-Methylnaphthalene	62	J	74	8.9	ug/Kg	≎	04/07/22 05:35	04/11/22 19:02	1
2,2'-oxybis[1-chloropropane]	<42		180	42	ug/Kg	≎	04/07/22 05:35	04/11/22 19:02	1
2,4,5-Trichlorophenol	<83		360		ug/Kg		04/07/22 05:35	04/11/22 19:02	1
2,4,6-Trichlorophenol	<130		360	130	ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	1
2,4-Dichlorophenol	<87		360	87	ug/Kg	≎	04/07/22 05:35	04/11/22 19:02	1
2,4-Dimethylphenol	<140		360	140	ug/Kg		04/07/22 05:35	04/11/22 19:02	1
2,4-Dinitrophenol	<640		740	640		≎	04/07/22 05:35	04/11/22 19:02	1
2,4-Dinitrotoluene	<58		180		ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	1
2,6-Dinitrotoluene	<72		180	72	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	1
2-Chloronaphthalene	<40		180	40		₽	04/07/22 05:35	04/11/22 19:02	1
2-Chlorophenol	<62		180	62	ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	1
2-Methylnaphthalene	78		74	6.7	ug/Kg		04/07/22 05:35	04/11/22 19:02	1
2-Methylphenol	<59		180	59	ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	1
2-Nitroaniline	<49		180	49	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	1
2-Nitrophenol	<86		360	86	ug/Kg		04/07/22 05:35	04/11/22 19:02	1
3 & 4 Methylphenol	<61		180	61	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	1
3,3'-Dichlorobenzidine	<51		180	51	ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	1
3-Nitroaniline	<110		360	110	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	1
4,6-Dinitro-2-methylphenol	<290		740	290	ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	1
4-Bromophenyl phenyl ether	<48		180	48	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	1
4-Chloro-3-methylphenol	<120		360	120	ug/Kg	≎	04/07/22 05:35	04/11/22 19:02	1
4-Chloroaniline	<170		740	170	ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	1
4-Chlorophenyl phenyl ether	<43		180	43	ug/Kg	≎	04/07/22 05:35	04/11/22 19:02	1
4-Nitroaniline	<150		360	150	ug/Kg		04/07/22 05:35	04/11/22 19:02	1
4-Nitrophenol	<350		740	350	ug/Kg	≎	04/07/22 05:35	04/11/22 19:02	1
Acenaphthene	18	J	36	6.6	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	1

Eurofins Chicago

Client: Stantec Consulting Corp.

alpha-BHC

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-215 0-2 Lab Sample ID: 500-214283-43

Date Collected: 03/24/22 14:25 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 88.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthylene	15	J	36	4.8	ug/Kg		04/07/22 05:35	04/11/22 19:02	
Anthracene	43		36	6.1	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	
Benzo[a]anthracene	140		36	4.9	ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	
Benzo[a]pyrene	200	*3	36	7.1	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	
Benzo[b]fluoranthene	320	*3	36	7.9	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	
Benzo[g,h,i]perylene	98	*3	36	12	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	
Benzo[k]fluoranthene	120	*3	36	11	ug/Kg		04/07/22 05:35	04/11/22 19:02	
Benzoic acid	<360		1800	360	ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	
Benzyl alcohol	<360		740	360	ug/Kg	₽	04/07/22 05:35	04/11/22 19:02	
Bis(2-chloroethoxy)methane	<37		180		ug/Kg		04/07/22 05:35	04/11/22 19:02	
Bis(2-chloroethyl)ether	<55		180		ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	
Bis(2-ethylhexyl) phthalate	<67		180		ug/Kg	₩	04/07/22 05:35	04/11/22 19:02	
Butyl benzyl phthalate	<69		180	69				04/11/22 19:02	
Carbazole	<91		180	91	ug/Kg	₽		04/11/22 19:02	
Chrysene	230		36	9.9	ug/Kg			04/11/22 19:02	
Dibenz(a,h)anthracene		J *3	36	7.0				04/11/22 19:02	
Dibenzofuran	<43		180	43				04/11/22 19:02	
Diethyl phthalate	<62		180		ug/Kg			04/11/22 19:02	
Dimethyl phthalate	<48		180		ug/Kg			04/11/22 19:02	
Di-n-butyl phthalate	<56		180	56		₩		04/11/22 19:02	
Di-n-octyl phthalate	<60		180	60		₩		04/11/22 19:02	
Fluoranthene	270		36		ug/Kg			04/11/22 19:02	
Fluorene	23		36	5.1	ug/Kg	₩		04/11/22 19:02	
Hexachlorobenzene	<8.5	3	74		ug/Kg	₩		04/11/22 19:02	
Hexachlorobutadiene	<57		180		ug/Kg			04/11/22 19:02	
Hexachlorocyclopentadiene	<210		740	210	ug/Kg	₩		04/11/22 19:02	
Hexachloroethane	<55		180	55		₩		04/11/22 19:02	
		*0	36	9.5				04/11/22 19:02	
Indeno[1,2,3-cd]pyrene	76 <41	*3	180		ug/Kg ug/Kg	*		04/11/22 19:02	
Isophorone			36	41 5.6				04/11/22 19:02	
Naphthalene	46				ug/Kg				
Nitrobenzene	<9.1		36 74	9.1	ug/Kg			04/11/22 19:02	
N-Nitrosodi-n-propylamine	<45			45	ug/Kg	₩.		04/11/22 19:02	
N-Nitrosodiphenylamine	<43		180		ug/Kg			04/11/22 19:02	
Pentachlorophenol	<590		740	590	0 0	₽		04/11/22 19:02	
Phenanthrene	190		36	5.1	ug/Kg	*		04/11/22 19:02	
Phenol	<81		180	81	ug/Kg	.		04/11/22 19:02	
Pyrene	500		36	7.2	ug/Kg	☼	04/07/22 05:35	04/11/22 19:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	97		31 - 143				04/07/22 05:35	04/11/22 19:02	
2-Fluorobiphenyl (Surr)	66		43 - 145				04/07/22 05:35	04/11/22 19:02	
2-Fluorophenol (Surr)	74		31 - 166				04/07/22 05:35	04/11/22 19:02	
Nitrobenzene-d5 (Surr)	43		37 - 147				04/07/22 05:35	04/11/22 19:02	
Phenol-d5 (Surr)	74		30 - 153				04/07/22 05:35	04/11/22 19:02	
Terphenyl-d14 (Surr)	136		42 - 157				04/07/22 05:35	04/11/22 19:02	
Mothod: 9091A Organish	alorino Bosticio	loc (CC)							
Method: 8081A - Organoch Analyte		les (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Aldrin	<13		19		ug/Kg	— -	04/07/22 04:55	04/11/22 17:21	1
	-10		.0	.0		.,,	04/07/00 04 55	04/44/00 47.04	

Eurofins Chicago

☼ 04/07/22 04:55 04/11/22 17:21

19

10 ug/Kg

<10 F1 F2

10

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-215 0-2 Lab Sample ID: 500-214283-43

Date Collected: 03/24/22 14:25 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 88.2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<9.9	F1 F2	19	9.9	ug/Kg	<u></u>	04/07/22 04:55	04/11/22 17:21	10
beta-BHC	<15	F2	19	15	ug/Kg	₩	04/07/22 04:55	04/11/22 17:21	10
4,4'-DDD	<10	F1 F2	19	10	ug/Kg	≎	04/07/22 04:55	04/11/22 17:21	10
4,4'-DDE	<9.6	F1 F2	19	9.6	ug/Kg	☼	04/07/22 04:55	04/11/22 17:21	10
4,4'-DDT	<8.8	F1 F2	19	8.8	ug/Kg	₩	04/07/22 04:55	04/11/22 17:21	10
delta-BHC	<8.9		19	8.9	ug/Kg	₽	04/07/22 04:55	04/11/22 17:21	10
Dieldrin	<9.7	F1 F2	19	9.7	ug/Kg	☼	04/07/22 04:55	04/11/22 17:21	10
Endosulfan I	<10	F1	19	10	ug/Kg	≎	04/07/22 04:55	04/11/22 17:21	10
Endosulfan II	<10	F1 F2	19	10	ug/Kg	₽	04/07/22 04:55	04/11/22 17:21	10
Endosulfan sulfate	<10	F1 F2	19	10	ug/Kg	≎	04/07/22 04:55	04/11/22 17:21	10
Endrin	<9.5	F1	19	9.5	ug/Kg	₩	04/07/22 04:55	04/11/22 17:21	10
Endrin aldehyde	<11	F1	19	11	ug/Kg	≎	04/07/22 04:55	04/11/22 17:21	10
Endrin ketone	<9.0	F1	19	9.0	ug/Kg	≎	04/07/22 04:55	04/11/22 17:21	10
gamma-BHC (Lindane)	<9.2	F1	19	9.2	ug/Kg	≎	04/07/22 04:55	04/11/22 17:21	10
trans-Chlordane	<11	F1 F2	19	11	ug/Kg	≎	04/07/22 04:55	04/11/22 17:21	10
Heptachlor	<10	F1	19	10	ug/Kg	☼	04/07/22 04:55	04/11/22 17:21	10
Heptachlor epoxide	<10	F1 F2	19	10	ug/Kg	≎	04/07/22 04:55	04/11/22 17:21	10
Methoxychlor	<12	F1 F2	91	12	ug/Kg	≎	04/07/22 04:55	04/11/22 17:21	10
Toxaphene	<74		180	74	ug/Kg	☆	04/07/22 04:55	04/11/22 17:21	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	3814	S1+	33 - 148				04/07/22 04:55	04/11/22 17:21	10
Tetrachloro-m-xylene	91		30 - 121				04/07/22 04:55	04/11/22 17:21	10

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0072		0.018	0.0072	mg/Kg	*	04/07/22 04:55	04/12/22 14:27	1
PCB-1221	< 0.0072		0.018	0.0072	mg/Kg	☼	04/07/22 04:55	04/12/22 14:27	1
PCB-1232	<0.0050		0.018	0.0050	mg/Kg	₩	04/07/22 04:55	04/12/22 14:27	1
PCB-1242	<0.0071		0.018	0.0071	mg/Kg	₩	04/07/22 04:55	04/12/22 14:27	1
PCB-1248	<0.0087		0.018	0.0087	mg/Kg	₩	04/07/22 04:55	04/12/22 14:27	1
PCB-1254	<0.0062		0.018	0.0062	mg/Kg	☼	04/07/22 04:55	04/12/22 14:27	1
PCB-1260	<0.0069		0.018	0.0069	mg/Kg	₩	04/07/22 04:55	04/12/22 14:27	1
PCB-1262	<0.0060		0.018	0.0060	mg/Kg	₩	04/07/22 04:55	04/12/22 14:27	1
PCB-1268	<0.011		0.018	0.011	mg/Kg	☼	04/07/22 04:55	04/12/22 14:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	84		49 - 129				04/07/22 04:55	04/12/22 14:27	1
DCB Decachlorobiphenyl	75		37 - 121				04/07/22 04:55	04/12/22 14:27	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<90		370	90	ug/Kg	<u></u>	04/06/22 10:55	04/11/22 13:37	10
2,4-DB	<110		370	110	ug/Kg	≎	04/06/22 10:55	04/11/22 13:37	10
Dicamba	<81		370	81	ug/Kg	≎	04/06/22 10:55	04/11/22 13:37	10
Dichlorprop	<92		370	92	ug/Kg	₩	04/06/22 10:55	04/11/22 13:37	10
Silvex (2,4,5-TP)	<85		370	85	ug/Kg	☼	04/06/22 10:55	04/11/22 13:37	10
2,4,5-T	<75		370	75	ug/Kg	₩	04/06/22 10:55	04/11/22 13:37	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	64		25 - 120				04/06/22 10:55	04/11/22 13:37	10

Eurofins Chicago

Page 170 of 356

Job ID: 500-214283-1

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

0.14

Client Sample ID: SB-215 0-2

Mercury

Lab Sample ID: 500-214283-43 Date Collected: 03/24/22 14:25 **Matrix: Solid**

Percent Solids: 88.2

Date Received: 03/29/22 10:20

Method: 6010C - Metal Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.3		1.1	0.38	mg/Kg	— <u></u>	04/06/22 02:01	04/08/22 15:57	1
Barium	32		1.1	0.13	mg/Kg	₩	04/06/22 02:01	04/08/22 15:57	1
Cadmium	1.4	В	0.22	0.040	mg/Kg	₩	04/06/22 02:01	04/08/22 15:57	1
Chromium	12		1.1	0.55	mg/Kg	₩	04/06/22 02:01	04/08/22 15:57	1
Lead	53		0.56	0.26	mg/Kg	₩	04/06/22 02:01	04/08/22 15:57	1
Selenium	<0.66		1.1	0.66	mg/Kg	₩	04/06/22 02:01	04/08/22 15:57	1
Silver	0.19	J	0.56	0.14	mg/Kg	≎	04/06/22 02:01	04/08/22 15:57	1
_ Method: 7471B - Merci	urv (CVAA)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.017

0.0058 mg/Kg

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-215 6-7

Date Collected: 03/24/22 14:30 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-44

Matrix: Solid

Percent Solids: 88.0

Job ID: 500-214283-1

Method: 8260B - Volatile Org	•	5)						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<29	63	29	ug/Kg	₽	03/24/22 14:30	04/01/22 19:25	50
1,1,1-Trichloroethane	<24	63	24	ug/Kg	₽	03/24/22 14:30	04/01/22 19:25	50
1,1,2,2-Tetrachloroethane	<25	63	25	ug/Kg	☼	03/24/22 14:30	04/01/22 19:25	50
1,1,2-Trichloroethane	<22	63	22	ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
1,1-Dichloroethane	<26	63	26	ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
1,1-Dichloroethene	<25	63	25	ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
1,1-Dichloropropene	<19	63	19	ug/Kg	₽	03/24/22 14:30	04/01/22 19:25	50
1,2,3-Trichlorobenzene	<29	63	29	ug/Kg	₽	03/24/22 14:30	04/01/22 19:25	50
1,2,3-Trichloropropane	<26	130	26	ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
1,2,4-Trichlorobenzene	<22	63	22	ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
1,2,4-Trimethylbenzene	<23	63	23	ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
1,2-Dibromo-3-Chloropropane	<130	320		ug/Kg	₽	03/24/22 14:30	04/01/22 19:25	50
1,2-Dibromoethane	<24	63		ug/Kg		03/24/22 14:30	04/01/22 19:25	50
1,2-Dichlorobenzene	<21	63		ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
1,2-Dichloroethane	<25	63		ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
1,2-Dichloropropane	<27	63		ug/Kg		03/24/22 14:30	04/01/22 19:25	50
1,3,5-Trimethylbenzene	<24	63		ug/Kg	₩.		04/01/22 19:25	50
1,3-Dichlorobenzene	<25	63		ug/Kg	₩.	03/24/22 14:30		50
1,3-Dichloropropane	<23	63		ug/Kg				50
1,4-Dichlorobenzene	<23	63		ug/Kg			04/01/22 19:25	50
2,2-Dichloropropane	<28	63		ug/Kg		03/24/22 14:30		50
2-Chlorotoluene	<20	63		ug/Kg			04/01/22 19:25	50
4-Chlorotoluene	<22	63		ug/Kg			04/01/22 19:25	50
Benzene	<9.3	16		ug/Kg			04/01/22 19:25	50
Bromobenzene	<23	63		ug/Kg			04/01/22 19:25	50
Bromochloromethane	<27	63		ug/Kg			04/01/22 19:25	50
Dichlorobromomethane	<24	63		ug/Kg	₩		04/01/22 19:25	50
Bromoform	<31	63		ug/Kg			04/01/22 19:25	50
Bromomethane	<50	190		ug/Kg ug/Kg	₩		04/01/22 19:25	50
Carbon tetrachloride	<24	63		ug/Kg ug/Kg	₩		04/01/22 19:25	50
Chlorobenzene	<24	63					04/01/22 19:25	50
Chloroethane	<32	63		ug/Kg ug/Kg	☆		04/01/22 19:25	50
Chloroform	<23							
		130		ug/Kg			04/01/22 19:25	50
Chloromethane	<20 <26	63 63		ug/Kg		03/24/22 14:30		50 50
cis-1,2-Dichloroethene				ug/Kg	₩.		04/01/22 19:25	
cis-1,3-Dichloropropene	<26	63		ug/Kg	 .		04/01/22 19:25	50
Dibromochloromethane	<31	63		ug/Kg		03/24/22 14:30		50
Dibromomethane	<17	63		ug/Kg	**		04/01/22 19:25	50
Dichlorodifluoromethane	<43 *-	190		ug/Kg	. .		04/01/22 19:25	50
Ethylbenzene	<12	16		ug/Kg	₩		04/01/22 19:25	50
Hexachlorobutadiene	<28	63		ug/Kg	☼		04/01/22 19:25	50
Isopropyl ether	<17	63		ug/Kg			04/01/22 19:25	50
Isopropylbenzene	<24	63		ug/Kg	≎		04/01/22 19:25	50
Methyl tert-butyl ether	<25	63		ug/Kg	₩		04/01/22 19:25	50
Methylene Chloride	<100	320	100	ug/Kg			04/01/22 19:25	50
Naphthalene	<21	63		ug/Kg	₽		04/01/22 19:25	50
n-Butylbenzene	<25	63		ug/Kg	₽	03/24/22 14:30	04/01/22 19:25	50
N-Propylbenzene	<26	63	26	ug/Kg	≎	03/24/22 14:30	04/01/22 19:25	50
p-Isopropyltoluene	<23	63	23	ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-215 6-7 Lab Sample ID: 500-214283-44 Date Collected: 03/24/22 14:30 **Matrix: Solid** Date Received: 03/29/22 10:20

Percent Solids: 88.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<25		63	25	ug/Kg	<u></u>	03/24/22 14:30	04/01/22 19:25	50
Styrene	<24		63	24	ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
tert-Butylbenzene	<25		63	25	ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
Tetrachloroethene	<23		63	23	ug/Kg	☼	03/24/22 14:30	04/01/22 19:25	50
Toluene	<9.3		16	9.3	ug/Kg	☼	03/24/22 14:30	04/01/22 19:25	50
trans-1,2-Dichloroethene	<22		63	22	ug/Kg	☼	03/24/22 14:30	04/01/22 19:25	50
trans-1,3-Dichloropropene	<23		63	23	ug/Kg	☼	03/24/22 14:30	04/01/22 19:25	50
Trichloroethene	<10		32	10	ug/Kg	☼	03/24/22 14:30	04/01/22 19:25	50
Trichlorofluoromethane	<27		63	27	ug/Kg	₩	03/24/22 14:30	04/01/22 19:25	50
Vinyl chloride	<17	*_	63	17	ug/Kg	☼	03/24/22 14:30	04/01/22 19:25	50
Xylenes, Total	<14		32	14	ug/Kg	☼	03/24/22 14:30	04/01/22 19:25	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82		75 - 126				03/24/22 14:30	04/01/22 19:25	50
4-Bromofluorobenzene (Surr)	86		72 - 124				03/24/22 14:30	04/01/22 19:25	50
Dibromofluoromethane (Surr)	95		75 - 120				03/24/22 14:30	04/01/22 19:25	50
Toluene-d8 (Surr)	97		75 - 120				03/24/22 14:30	04/01/22 19:25	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<9.0		74	9.0	ug/Kg	<u></u>	04/07/22 05:35	04/08/22 18:19	1
2-Methylnaphthalene	<6.8		74	6.8	ug/Kg	☼	04/07/22 05:35	04/08/22 18:19	1
Acenaphthene	<6.6		37	6.6	ug/Kg	☼	04/07/22 05:35	04/08/22 18:19	1
Acenaphthylene	<4.9		37	4.9	ug/Kg	₩	04/07/22 05:35	04/08/22 18:19	1
Anthracene	<6.2		37	6.2	ug/Kg	☼	04/07/22 05:35	04/08/22 18:19	1
Benzo[a]anthracene	6.3	J	37	5.0	ug/Kg	₩	04/07/22 05:35	04/08/22 18:19	1
Benzo[a]pyrene	<7.1		37	7.1	ug/Kg	₩	04/07/22 05:35	04/08/22 18:19	1
Benzo[b]fluoranthene	9.9	J	37	8.0	ug/Kg	☼	04/07/22 05:35	04/08/22 18:19	1
Benzo[g,h,i]perylene	<12		37	12	ug/Kg	₩	04/07/22 05:35	04/08/22 18:19	1
Benzo[k]fluoranthene	<11		37	11	ug/Kg	₩	04/07/22 05:35	04/08/22 18:19	1
Chrysene	11	J	37	10	ug/Kg	₩	04/07/22 05:35	04/08/22 18:19	1
Dibenz(a,h)anthracene	<7.1		37	7.1	ug/Kg	☼	04/07/22 05:35	04/08/22 18:19	1
Fluoranthene	20	J	37	6.8	ug/Kg	₩	04/07/22 05:35	04/08/22 18:19	1
Fluorene	<5.2		37	5.2	ug/Kg	₩	04/07/22 05:35	04/08/22 18:19	1
Indeno[1,2,3-cd]pyrene	<9.6		37	9.6	ug/Kg	☼	04/07/22 05:35	04/08/22 18:19	1
Naphthalene	<5.7		37	5.7	ug/Kg	₩	04/07/22 05:35	04/08/22 18:19	1
Phenanthrene	11	J	37	5.1	ug/Kg	☼	04/07/22 05:35	04/08/22 18:19	1
Pyrene	22	J	37	7.3	ug/Kg	☼	04/07/22 05:35	04/08/22 18:19	1
Surrogate	%Recovery	O lifia	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	48		43 - 145	04/07/22 05:35	04/08/22 18:19	1
Nitrobenzene-d5 (Surr)	36	S1-	37 - 147	04/07/22 05:35	04/08/22 18:19	1
Terphenyl-d14 (Surr)	102		42 - 157	04/07/22 05:35	04/08/22 18:19	1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Arsenic	1.0		1.1		mg/Kg	_		04/08/22 14:25	1
Lead	15	F1	0.53	0.24	mg/Kg	₽	04/06/22 02:37	04/08/22 14:25	1

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: EB-1 Lab Sample ID: 500-214283-45

Date Collected: 03/25/22 11:05

Date Received: 03/29/22 10:20

Matrix: Water

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	<2.2	4.5	2.2	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluoropentanoic acid (PFPeA)	<0.44	1.8	0.44	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorohexanoic acid (PFHxA)	<0.53	1.8	0.53	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluoroheptanoic acid (PFHpA)	<0.23	1.8	0.23	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorooctanoic acid (PFOA)	<0.77	1.8	0.77	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorononanoic acid (PFNA)	<0.24	1.8	0.24	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorodecanoic acid (PFDA)	<0.28	1.8	0.28	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluoroundecanoic acid (PFUnA)	<1.0	1.8	1.0	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorododecanoic acid (PFDoA)	<0.50	1.8	0.50	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorotridecanoic acid (PFTriA)	<1.2	1.8	1.2	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorotetradecanoic acid (PFTeA)	<0.66	1.8	0.66	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluoro-n-hexadecanoic acid (PFHxDA)	<0.81	1.8	0.81	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluoro-n-octadecanoic acid (PFODA)	<0.85	1.8	0.85	ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorobutanesulfonic acid (PFBS)	<0.18	1.8		ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluoropentanesulfonic acid (PFPeS)	<0.27	1.8	0.27			04/02/22 06:51	04/03/22 22:46	1
Perfluorohexanesulfonic acid (PFHxS)	<0.52	1.8	0.52	-		04/02/22 06:51	04/03/22 22:46	1
Perfluoroheptanesulfonic acid (PFHpS)	<0.17	1.8		ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorooctanesulfonic acid (PFOS)	<0.49	1.8	0.49			04/02/22 06:51	04/03/22 22:46	1
Perfluorononanesulfonic acid (PFNS)	<0.34	1.8		ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorodecanesulfonic acid (PFDS)	<0.29	1.8		ng/L		04/02/22 06:51	04/03/22 22:46	1
Perfluorododecanesulfonic acid (PFDoS)	<0.88	1.8	0.88			04/02/22 06:51	04/03/22 22:46	
Perfluorooctanesulfonamide (FOSA)	<0.89	1.8	0.89	-		04/02/22 06:51	04/03/22 22:46	1
NEtFOSA	<0.79	1.8		ng/L		04/02/22 06:51		1
NMeFOSA	<0.39	1.8		ng/L		04/02/22 06:51	04/03/22 22:46	1
NMeFOSAA	<1.1	4.5	1.1	ng/L		04/02/22 06:51	04/03/22 22:46	1
NEtFOSAA	<1.2	4.5	1.2	ng/L		04/02/22 06:51	04/03/22 22:46	1
NMeFOSE	<1.3	3.6	1.3	ng/L		04/02/22 06:51	04/03/22 22:46	1
NEtFOSE	<0.77	1.8	0.77	ng/L		04/02/22 06:51	04/03/22 22:46	1
4:2 FTS	<0.22	1.8	0.22	ng/L		04/02/22 06:51	04/03/22 22:46	1
6:2 FTS	<2.3	4.5		ng/L		04/02/22 06:51	04/03/22 22:46	1
8:2 FTS	<0.42	1.8	0.42	ng/L		04/02/22 06:51	04/03/22 22:46	1
10:2 FTS	<0.61	1.8	0.61	ng/L		04/02/22 06:51	04/03/22 22:46	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	<0.36	1.8		ng/L			04/03/22 22:46	
HFPO-DA (GenX)	<1.4	3.6		ng/L			04/03/22 22:46	1
F-53B Major	<0.22	1.8		ng/L		04/02/22 06:51	04/03/22 22:46	1
F-53B Minor	<0.29	1.8	0.29	ng/L		04/02/22 06:51	04/03/22 22:46	1
Isotope Dilution	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	106	25 - 150					04/03/22 22:46	1
13C5 PFPeA	103	25 - 150				04/02/22 06:51	04/03/22 22:46	1
13C2 PFHxA	119	25 - 150				04/02/22 06:51	04/03/22 22:46	1
13C4 PFHpA	122	25 - 150				04/02/22 06:51	04/03/22 22:46	1
13C4 PFOA	126	25 - 150				04/02/22 06:51	04/03/22 22:46	1
13C5 PFNA	116	25 - 150					04/03/22 22:46	1
13C2 PFDA	115	25 - 150					04/03/22 22:46	1
13C2 PFUnA	118	25 - 150					04/03/22 22:46	1

Eurofins Chicago

Job ID: 500-214283-1

2

4

6

10

12

14

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

13C2 10:2 FTS

Client Sample ID: EB-1 Lab Sample ID: 500-214283-45

Date Collected: 03/25/22 11:05 **Matrix: Water** Date Received: 03/29/22 10:20

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFDoA	109	25 - 150	04/02/22 06:51	04/03/22 22:46	1
13C2 PFTeDA	103	25 - 150	04/02/22 06:51	04/03/22 22:46	1
13C2 PFHxDA	114	25 - 150	04/02/22 06:51	04/03/22 22:46	1
13C3 PFBS	101	25 - 150	04/02/22 06:51	04/03/22 22:46	1
1802 PFHxS	116	25 - 150	04/02/22 06:51	04/03/22 22:46	1
13C4 PFOS	120	25 - 150	04/02/22 06:51	04/03/22 22:46	1
13C8 FOSA	125	10 - 150	04/02/22 06:51	04/03/22 22:46	1
d3-NMeFOSAA	117	25 - 150	04/02/22 06:51	04/03/22 22:46	1
d5-NEtFOSAA	124	25 - 150	04/02/22 06:51	04/03/22 22:46	1
d-N-MeFOSA-M	92	10 - 150	04/02/22 06:51	04/03/22 22:46	1
d-N-EtFOSA-M	93	10 - 150	04/02/22 06:51	04/03/22 22:46	1
d7-N-MeFOSE-M	93	10 - 150	04/02/22 06:51	04/03/22 22:46	1
d9-N-EtFOSE-M	92	10 - 150	04/02/22 06:51	04/03/22 22:46	1
M2-4:2 FTS	161 *5+	25 - 150	04/02/22 06:51	04/03/22 22:46	1
M2-6:2 FTS	139	25 - 150	04/02/22 06:51	04/03/22 22:46	1
M2-8:2 FTS	141	25 - 150	04/02/22 06:51	04/03/22 22:46	1
13C3 HFPO-DA	109	25 - 150	04/02/22 06:51	04/03/22 22:46	1

25 - 150

129

04/02/22 06:51 04/03/22 22:46

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-231

Lab Sample ID: 500-214283-46

Matrix: Water

Date Collected: 03/25/22 11:00 Date Received: 03/29/22 10:20

Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L		-	04/01/22 12:28	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 12:28	
1,1,2,2-Tetrachloroethane	< 0.40	1.0		ug/L			04/01/22 12:28	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 12:28	
1,1-Dichloroethane	<0.41	1.0		ug/L			04/01/22 12:28	
1,1-Dichloroethene	< 0.39	1.0		ug/L			04/01/22 12:28	
1,1-Dichloropropene	<0.30	1.0		ug/L			04/01/22 12:28	
1,2,3-Trichlorobenzene	< 0.46	1.0	0.46	ug/L			04/01/22 12:28	
1,2,3-Trichloropropane	<0.41	2.0		ug/L			04/01/22 12:28	
1,2,4-Trichlorobenzene	<0.34	1.0		ug/L			04/01/22 12:28	
1,2,4-Trimethylbenzene	< 0.36	1.0		ug/L			04/01/22 12:28	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 12:28	
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 12:28	
1,2-Dichlorobenzene	< 0.33	1.0	0.33	-			04/01/22 12:28	
1,2-Dichloroethane	<0.39	1.0	0.39	-			04/01/22 12:28	
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 12:28	
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			04/01/22 12:28	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 12:28	
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 12:28	
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			04/01/22 12:28	
2,2-Dichloropropane	<0.44	1.0	0.44	-			04/01/22 12:28	
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 12:28	
4-Chlorotoluene	<0.35	1.0	0.35				04/01/22 12:28	
Benzene	<0.15	0.50	0.15	-			04/01/22 12:28	
Bromobenzene	<0.36	1.0		ug/L			04/01/22 12:28	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 12:28	
Dichlorobromomethane	<0.37	1.0		ug/L			04/01/22 12:28	
Bromoform	<0.48	1.0		ug/L			04/01/22 12:28	
Bromomethane	<0.80	3.0	0.80	-			04/01/22 12:28	
Carbon tetrachloride	<0.38	1.0	0.38	-			04/01/22 12:28	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 12:28	
Chloroethane	<0.51	1.0		ug/L			04/01/22 12:28	
Chloroform	<0.37	2.0		ug/L			04/01/22 12:28	
Chloromethane	<0.32	1.0		ug/L			04/01/22 12:28	
cis-1,2-Dichloroethene	9.6	1.0	0.41	-			04/01/22 12:28	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 12:28	
Dibromochloromethane	<0.49	1.0		ug/L			04/01/22 12:28	
Dibromomethane	<0.27	1.0		ug/L			04/01/22 12:28	
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 12:28	
Ethylbenzene	<0.18	0.50		ug/L			04/01/22 12:28	
Hexachlorobutadiene	<0.45	1.0		ug/L			04/01/22 12:28	
Isopropyl ether	<0.28	1.0		ug/L			04/01/22 12:28	
Isopropylbenzene	<0.39	1.0		ug/L			04/01/22 12:28	
Methyl tert-butyl ether	<0.39	1.0		ug/L			04/01/22 12:28	
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 12:28	
Naphthalene	<0.34	1.0		ug/L			04/01/22 12:28	
n-Butylbenzene	<0.39	1.0		ug/L			04/01/22 12:28	
N-Propylbenzene	<0.41	1.0		ug/L			04/01/22 12:28	
p-lsopropyltoluene	0.53 J	1.0		ug/L ug/L			04/01/22 12:28	

Eurofins Chicago

2

4

6

9

11

1 A

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-231 Lab Sample ID: 500-214283-46

Date Collected: 03/25/22 11:00 **Matrix: Water** Date Received: 03/29/22 10:20

Method: 8260B -	Volatile Organic	Compounds	(GC/MS) (Cd	ontinued)	

sec-Butylbenzene <0.40 Styrene <0.39	1.0 1.0 1.0	0.39	ug/L ug/L		04/01/22 12:28	1
Styrene <0.39			ug/L		04/04/00 40 00	
	1.0	0.40			04/01/22 12:28	1
tert-Butylbenzene <0.40		0.40	ug/L		04/01/22 12:28	1
Tetrachloroethene <0.37	1.0	0.37	ug/L		04/01/22 12:28	1
Toluene 0.57	0.50	0.15	ug/L		04/01/22 12:28	1
trans-1,2-Dichloroethene <0.35	1.0	0.35	ug/L		04/01/22 12:28	1
trans-1,3-Dichloropropene <0.36	1.0	0.36	ug/L		04/01/22 12:28	1
Trichloroethene <0.16	0.50	0.16	ug/L		04/01/22 12:28	1
Trichlorofluoromethane <0.43	1.0	0.43	ug/L		04/01/22 12:28	1
Vinyl chloride <0.20	1.0	0.20	ug/L		04/01/22 12:28	1
Xylenes, Total 0.37 J	1.0	0.22	ug/L		04/01/22 12:28	1

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82		75 - 126	04/01/22 12:2	······································
4-Bromofluorobenzene (Surr)	86		72 - 124	04/01/22 12:2	?8
Dibromofluoromethane (Surr)	92		75 - 120	04/01/22 12:2	?8
Toluene-d8 (Surr)	98		75 - 120	04/01/22 12:2	28 1

Method: 8270D - Semivolatile Analyte	Result Qua		MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.19	1.6	0.19	ug/L			04/01/22 15:02	1
1,2-Dichlorobenzene	<0.20	1.6		ug/L		03/31/22 07:48	04/01/22 15:02	1
1,3-Dichlorobenzene	<0.17	1.6	0.17	_		03/31/22 07:48	04/01/22 15:02	1
1,4-Dichlorobenzene	<0.17	1.6	0.17	ug/L		03/31/22 07:48	04/01/22 15:02	1
1-Methylnaphthalene	<0.24	1.6	0.24	ug/L		03/31/22 07:48	04/01/22 15:02	1
2,2'-oxybis[1-chloropropane]	<0.31	1.6	0.31	ug/L		03/31/22 07:48	04/01/22 15:02	1
2,4,5-Trichlorophenol	<2.1	8.1	2.1	ug/L		03/31/22 07:48	04/01/22 15:02	1
2,4,6-Trichlorophenol	<0.58	4.0	0.58	ug/L		03/31/22 07:48	04/01/22 15:02	1
2,4-Dichlorophenol	<2.1	8.1	2.1	ug/L		03/31/22 07:48	04/01/22 15:02	1
2,4-Dimethylphenol	<1.5	8.1	1.5	ug/L		03/31/22 07:48	04/01/22 15:02	1
2,4-Dinitrophenol	<6.9	16	6.9	ug/L		03/31/22 07:48	04/01/22 15:02	1
2,4-Dinitrotoluene	<0.20	0.81	0.20	ug/L		03/31/22 07:48	04/01/22 15:02	1
2,6-Dinitrotoluene	<0.060	0.81	0.060	ug/L		03/31/22 07:48	04/01/22 15:02	1
2-Chloronaphthalene	<0.19	1.6	0.19	ug/L		03/31/22 07:48	04/01/22 15:02	1
2-Chlorophenol	< 0.45	4.0	0.45	ug/L		03/31/22 07:48	04/01/22 15:02	1
2-Methylnaphthalene	0.062 J	1.6	0.053	ug/L		03/31/22 07:48	04/01/22 15:02	1
2-Methylphenol	<0.25	1.6	0.25	ug/L		03/31/22 07:48	04/01/22 15:02	1
2-Nitroaniline	<1.0	4.0	1.0	ug/L		03/31/22 07:48	04/01/22 15:02	1
2-Nitrophenol	<2.0	8.1	2.0	ug/L		03/31/22 07:48	04/01/22 15:02	1
3 & 4 Methylphenol	7.9	1.6	0.36	ug/L		03/31/22 07:48	04/01/22 15:02	1
3,3'-Dichlorobenzidine	<1.4	4.0	1.4	ug/L		03/31/22 07:48	04/01/22 15:02	1
3-Nitroaniline	<1.4	8.1	1.4	ug/L		03/31/22 07:48	04/01/22 15:02	1
4,6-Dinitro-2-methylphenol	<4.8	16	4.8	ug/L		03/31/22 07:48	04/01/22 15:02	1
4-Bromophenyl phenyl ether	<0.44	4.0	0.44	ug/L		03/31/22 07:48	04/01/22 15:02	1
4-Chloro-3-methylphenol	<1.9	8.1	1.9	ug/L		03/31/22 07:48	04/01/22 15:02	1
4-Chloroaniline	<1.6	8.1	1.6	ug/L		03/31/22 07:48	04/01/22 15:02	1
4-Chlorophenyl phenyl ether	<0.51	4.0	0.51	ug/L		03/31/22 07:48	04/01/22 15:02	1
4-Nitroaniline	<1.3	8.1	1.3	ug/L		03/31/22 07:48	04/01/22 15:02	1
4-Nitrophenol	<6.0	16	6.0	ug/L		03/31/22 07:48	04/01/22 15:02	1
Acenaphthene	<0.25	0.81	0.25	ug/L		03/31/22 07:48	04/01/22 15:02	1

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-231 Lab Sample ID: 500-214283-46

Date Collected: 03/25/22 11:00 Date Received: 03/29/22 10:20 **Matrix: Water**

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Acenaphthylene	<0.22		0.81	0.22	ug/L		03/31/22 07:48	04/01/22 15:02	
Anthracene	<0.27		0.81	0.27	ug/L		03/31/22 07:48	04/01/22 15:02	
Benzo[a]anthracene	<0.046		0.16	0.046	ug/L		03/31/22 07:48	04/01/22 15:02	
Benzo[a]pyrene	<0.080		0.16	0.080	ug/L		03/31/22 07:48	04/01/22 15:02	
Benzo[b]fluoranthene	< 0.065		0.16	0.065	ug/L		03/31/22 07:48	04/01/22 15:02	
Benzo[g,h,i]perylene	<0.30		0.81	0.30	ug/L		03/31/22 07:48	04/01/22 15:02	
Benzo[k]fluoranthene	<0.052		0.16	0.052	ug/L		03/31/22 07:48	04/01/22 15:02	
Benzoic acid	<4.7	*1	16	4.7	ug/L		03/31/22 07:48	04/01/22 15:02	
Benzyl alcohol	<4.9		16	4.9	ug/L		03/31/22 07:48	04/01/22 15:02	
Bis(2-chloroethoxy)methane	<0.23		1.6	0.23	ug/L		03/31/22 07:48	04/01/22 15:02	
Bis(2-chloroethyl)ether	<0.24		1.6	0.24	ug/L		03/31/22 07:48	04/01/22 15:02	
Bis(2-ethylhexyl) phthalate	<1.4		8.1	1.4	ug/L		03/31/22 07:48	04/01/22 15:02	
Butyl benzyl phthalate	<0.39		1.6	0.39	ug/L		03/31/22 07:48	04/01/22 15:02	
Carbazole	<0.29		4.0		ug/L		03/31/22 07:48	04/01/22 15:02	
Chrysene	<0.055		0.16	0.055	-		03/31/22 07:48	04/01/22 15:02	
Dibenz(a,h)anthracene	<0.041		0.24	0.041			03/31/22 07:48	04/01/22 15:02	
Dibenzofuran	<0.21		1.6	0.21	ug/L		03/31/22 07:48	04/01/22 15:02	
Diethyl phthalate	<0.29		4.0	0.29			03/31/22 07:48	04/01/22 15:02	
Dimethyl phthalate	<0.25		4.0	0.25	ug/L		03/31/22 07:48	04/01/22 15:02	
Di-n-butyl phthalate	<0.59		4.0	0.59	ug/L		03/31/22 07:48	04/01/22 15:02	
Di-n-octyl phthalate	<0.85		8.1	0.85	ug/L		03/31/22 07:48	04/01/22 15:02	
Fluoranthene	<0.37		0.81	0.37	ug/L		03/31/22 07:48	04/01/22 15:02	
Fluorene	<0.20		0.81	0.20	ug/L		03/31/22 07:48	04/01/22 15:02	
Hexachlorobenzene	<0.064		0.40	0.064	ug/L		03/31/22 07:48	04/01/22 15:02	
Hexachlorobutadiene	<0.42		4.0	0.42	ug/L		03/31/22 07:48	04/01/22 15:02	
Hexachlorocyclopentadiene	<5.2		16	5.2	ug/L		03/31/22 07:48	04/01/22 15:02	
Hexachloroethane	<0.48		4.0	0.48	ug/L		03/31/22 07:48	04/01/22 15:02	
Indeno[1,2,3-cd]pyrene	<0.060		0.16	0.060	ug/L		03/31/22 07:48	04/01/22 15:02	
Isophorone	< 0.30		1.6	0.30	ug/L		03/31/22 07:48	04/01/22 15:02	
Naphthalene	<0.25		0.81	0.25	ug/L		03/31/22 07:48	04/01/22 15:02	
Nitrobenzene	<0.36		0.81	0.36	ug/L		03/31/22 07:48	04/01/22 15:02	
N-Nitrosodi-n-propylamine	<0.12		0.40	0.12	ug/L		03/31/22 07:48	04/01/22 15:02	
N-Nitrosodiphenylamine	<0.30		1.6	0.30	ug/L		03/31/22 07:48	04/01/22 15:02	
Pentachlorophenol	<3.2		16	3.2	ug/L		03/31/22 07:48	04/01/22 15:02	
Phenanthrene	<0.24		0.81	0.24	ug/L		03/31/22 07:48	04/01/22 15:02	
Phenol	<0.54		4.0	0.54	ug/L		03/31/22 07:48	04/01/22 15:02	
Pyrene	<0.34		0.81	0.34	ug/L		03/31/22 07:48	04/01/22 15:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2,4,6-Tribromophenol (Surr)	86		40 - 145				03/31/22 07:48	04/01/22 15:02	
2-Fluorobiphenyl (Surr)	85		34 - 110				03/31/22 07:48	04/01/22 15:02	
2-Fluorophenol (Surr)	81		27 - 110				03/31/22 07:48	04/01/22 15:02	
Nitrobenzene-d5 (Surr)	69		36 - 120				03/31/22 07:48	04/01/22 15:02	
Phenol-d5 (Surr)	53		20 - 110				03/31/22 07:48	04/01/22 15:02	
Terphenyl-d14 (Surr)	112		40 - 145				03/31/22 07:48	04/01/22 15:02	
Method: 8081B - Organoch	nlorine Pesticid	les (GC)							
		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	Result	Qualifier	NL.	IVIDE	Oilit	U	rieparea	Allalyzea	Diria

Eurofins Chicago

03/31/22 13:17 04/01/22 12:16

0.040

0.015 ug/L

<0.015

alpha-BHC

2

3

6

R

10

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-231

Date Collected: 03/25/22 11:00

Lab Sample ID: 500-214283-46

Matrix: Water

Date Received: 03/29/22 10:20

	chlorine Pesticides (GC) (C	•						
Analyte	Result Qualifier	RL		Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
cis-Chlordane	<0.028	0.040	0.028	ug/L		03/31/22 13:17	04/01/22 12:16	1
beta-BHC	<0.028	0.040	0.028	ug/L		03/31/22 13:17	04/01/22 12:16	1
4,4'-DDD	<0.032	0.040	0.032	ug/L		03/31/22 13:17	04/01/22 12:16	1
4,4'-DDE	<0.023	0.040	0.023	ug/L		03/31/22 13:17	04/01/22 12:16	1
4,4'-DDT	<0.033	0.040	0.033	ug/L		03/31/22 13:17	04/01/22 12:16	1
delta-BHC	<0.025	0.040	0.025	ug/L		03/31/22 13:17	04/01/22 12:16	1
Dieldrin	<0.025	0.040	0.025	ug/L		03/31/22 13:17	04/01/22 12:16	1
Endosulfan I	<0.026	0.040	0.026	ug/L		03/31/22 13:17	04/01/22 12:16	1
Endosulfan II	<0.039	0.040	0.039	ug/L		03/31/22 13:17	04/01/22 12:16	1
Endosulfan sulfate	<0.021	0.040	0.021	ug/L		03/31/22 13:17	04/01/22 12:16	1
Endrin	<0.027	0.040	0.027	ug/L		03/31/22 13:17	04/01/22 12:16	1
Endrin aldehyde	<0.036	0.040	0.036	ug/L		03/31/22 13:17	04/01/22 12:16	1
Endrin ketone	<0.040	0.040	0.040	ug/L		03/31/22 13:17	04/01/22 12:16	1
gamma-BHC (Lindane)	<0.033	0.040	0.033	ug/L		03/31/22 13:17	04/01/22 12:16	1
trans-Chlordane	<0.032	0.040	0.032	ug/L		03/31/22 13:17	04/01/22 12:16	1
Heptachlor	<0.035	0.040	0.035	ug/L		03/31/22 13:17	04/01/22 12:16	1
Heptachlor epoxide	<0.031	0.040	0.031	ug/L		03/31/22 13:17	04/01/22 12:16	1
Methoxychlor	<0.066	0.081	0.066	ug/L		03/31/22 13:17	04/01/22 12:16	1
Toxaphene	<0.39	0.40	0.39	ug/L		03/31/22 13:17	04/01/22 12:16	1
Surrogate	%Recovery Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	55	30 - 130				03/31/22 13:17	04/01/22 12:16	1
Tetrachloro-m-xylene	79	30 - 120				03/31/22 13:17	04/01/22 12:16	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.068	*+	0.40	0.068	ug/L		03/31/22 13:17	04/01/22 12:09	1
PCB-1221	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:09	1
PCB-1232	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:09	1
PCB-1242	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:09	1
PCB-1248	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:09	1
PCB-1254	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:09	1
PCB-1260	<0.071		0.40	0.071	ug/L		03/31/22 13:17	04/01/22 12:09	1
PCB-1262	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:09	1
PCB-1268	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95		30 - 120				03/31/22 13:17	04/01/22 12:09	1
DCB Decachlorobiphenyl	89		30 - 140				03/31/22 13:17	04/01/22 12:09	1

Method: 8151A - Herbi	cides (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<0.56		1.0	0.56	ug/L		04/01/22 09:10	04/04/22 09:56	1
2,4-DB	2.0		1.0	0.39	ug/L		04/01/22 09:10	04/04/22 09:56	1
Dicamba	<0.38		1.0	0.38	ug/L		04/01/22 09:10	04/04/22 09:56	1
Dichlorprop	<0.39		1.0	0.39	ug/L		04/01/22 09:10	04/04/22 09:56	1
Silvex (2,4,5-TP)	<0.13		1.0	0.13	ug/L		04/01/22 09:10	04/04/22 09:56	1
2,4,5-T	<0.14		1.0	0.14	ug/L		04/01/22 09:10	04/04/22 09:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCAA	91		25 - 130				04/01/22 09:10	04/04/22 09:56	1

Eurofins Chicago

Page 179 of 356

2

Job ID: 500-214283-1

3

6

9

11

13

15

16

17

4/15/2022

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-231 Lab Sample ID: 500-214283-46

Method: 8151A - Herbicides (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	d Dil Fac
DCAA	117		25 - 130	04/01/22 09:10 04/04/22 09	

DCAA	117	<u> </u>	25 - 130				04/01/22 09:10	04/04/22 09:56	1
Marked FOT (see 1975 at)		10 1							
Method: 537 (modified) - Fluo Analyte		/I Substan Qualifier	ICES RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	62		4.4		ng/L			04/03/22 22:56	1
Perfluoropentanoic acid (PFPeA)	36		1.8		ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorohexanoic acid (PFHxA)	24		1.8	0.52	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluoroheptanoic acid (PFHpA)	30		1.8	0.22	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorooctanoic acid (PFOA)	150		1.8		ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorononanoic acid (PFNA)	5.4		1.8	0.24	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorodecanoic acid (PFDA)	<0.28		1.8	0.28	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluoroundecanoic acid (PFUnA)	<0.98		1.8	0.98	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorododecanoic acid (PFDoA)	<0.49		1.8	0.49	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorotridecanoic acid (PFTriA)	<1.2		1.8		ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorotetradecanoic acid (PFTeA)	< 0.65		1.8		ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluoro-n-hexadecanoic acid (PFHxDA)	<0.79		1.8	0.79	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluoro-n-octadecanoic acid (PFODA)	<0.83		1.8	0.83	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorobutanesulfonic acid (PFBS)	6.3		1.8	0.18	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluoropentanesulfonic acid (PFPeS)	1.4	J	1.8	0.27	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorohexanesulfonic acid (PFHxS)	8.6		1.8	0.51	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluoroheptanesulfonic acid (PFHpS)	0.47	J	1.8		ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorooctanesulfonic acid (PFOS)	23	I	1.8		ng/L		04/02/22 06:51	04/03/22 22:56	
Perfluorononanesulfonic acid (PFNS)	<0.33		1.8		ng/L			04/03/22 22:56	1
Perfluorodecanesulfonic acid (PFDS)	<0.28		1.8	0.28	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorododecanesulfonic acid (PFDoS)	<0.86		1.8	0.86	ng/L		04/02/22 06:51	04/03/22 22:56	1
Perfluorooctanesulfonamide (FOSA)	<0.87		1.8	0.87	ng/L		04/02/22 06:51	04/03/22 22:56	1
NEtFOSA	<0.77		1.8	0.77	ng/L		04/02/22 06:51	04/03/22 22:56	1
NMeFOSA	<0.38		1.8	0.38	ng/L		04/02/22 06:51	04/03/22 22:56	1
NMeFOSAA	<1.1		4.4	1.1	ng/L		04/02/22 06:51	04/03/22 22:56	1
NEtFOSAA	<1.2		4.4		ng/L		04/02/22 06:51	04/03/22 22:56	1
NMeFOSE	<1.2		3.6		ng/L		04/02/22 06:51	04/03/22 22:56	1
NEtFOSE	<0.75		1.8	0.75	ng/L		04/02/22 06:51	04/03/22 22:56	1
4:2 FTS	<0.21		1.8	0.21	ng/L		04/02/22 06:51	04/03/22 22:56	1
6:2 FTS	<2.2		4.4	2.2	ng/L		04/02/22 06:51	04/03/22 22:56	1
8:2 FTS	<0.41		1.8	0.41	ng/L		04/02/22 06:51	04/03/22 22:56	1
10:2 FTS	<0.60		1.8	0.60	ng/L		04/02/22 06:51	04/03/22 22:56	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	<0.36		1.8		ng/L			04/03/22 22:56	1
HFPO-DA (GenX)	<1.3		3.6	1.3	ng/L		04/02/22 06:51	04/03/22 22:56	1
F-53B Major	<0.21		1.8		ng/L		04/02/22 06:51	04/03/22 22:56	1
F-53B Minor	<0.28		1.8	0.28	ng/L		04/02/22 06:51	04/03/22 22:56	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	29		25 - 150				04/02/22 06:51	04/03/22 22:56	1

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

13C2 10:2 FTS

Lab Sample ID: 500-214283-46 Client Sample ID: MW-231

Date Collected: 03/25/22 11:00 **Matrix: Water** Date Received: 03/29/22 10:20

Isotope Dilution	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C5 PFPeA	50	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C2 PFHxA	68	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C4 PFHpA	74	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C4 PFOA	85	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C5 PFNA	84	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C2 PFDA	82	25 - 150	04/02/22 06:51 (04/03/22 22:56	1
13C2 PFUnA	81	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C2 PFDoA	74	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C2 PFTeDA	64	25 - 150	04/02/22 06:51 (04/03/22 22:56	1
13C2 PFHxDA	71	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C3 PFBS	67	25 - 150	04/02/22 06:51	04/03/22 22:56	1
1802 PFHxS	78	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C4 PFOS	80	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C8 FOSA	85	10 - 150	04/02/22 06:51	04/03/22 22:56	1
d3-NMeFOSAA	79	25 - 150	04/02/22 06:51	04/03/22 22:56	1
d5-NEtFOSAA	78	25 - 150	04/02/22 06:51	04/03/22 22:56	1
d-N-MeFOSA-M	66	10 - 150	04/02/22 06:51	04/03/22 22:56	1
d-N-EtFOSA-M	63	10 - 150	04/02/22 06:51	04/03/22 22:56	1
d7-N-MeFOSE-M	63	10 - 150	04/02/22 06:51	04/03/22 22:56	1
d9-N-EtFOSE-M	60	10 - 150	04/02/22 06:51	04/03/22 22:56	1
M2-4:2 FTS	116	25 - 150	04/02/22 06:51	04/03/22 22:56	1
M2-6:2 FTS	172 *5+	25 - 150	04/02/22 06:51	04/03/22 22:56	1
M2-8:2 FTS	121	25 - 150	04/02/22 06:51	04/03/22 22:56	1
13C3 HFPO-DA	64	25 - 150	04/02/22 06:51	04/03/22 22:56	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0037		0.0010	0.00023	mg/L		04/06/22 17:04	04/07/22 12:35	1
Barium	0.22		0.0025	0.00073	mg/L		04/06/22 17:04	04/07/22 12:35	1
Cadmium	<0.00017		0.00050	0.00017	mg/L		04/06/22 17:04	04/07/22 12:35	1
Chromium	0.0057		0.0050	0.0011	mg/L		04/06/22 17:04	04/07/22 12:35	1
Lead	0.00052		0.00050	0.00019	mg/L		04/06/22 17:04	04/07/22 12:35	1
Selenium	<0.00098	^+	0.0025	0.00098	mg/L		04/06/22 17:04	04/07/22 12:35	1
Silver	<0.00012		0.00050	0.00012	mg/L		04/06/22 17:04	04/07/22 12:35	1

25 - 150

91

Method: 7470A - Mercury (CVA	A) - Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	<0.000098		0.00020	0.000098	mg/L		04/05/22 10:50	04/06/22 10:10	1

04/02/22 06:51 04/03/22 22:56

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-234

Lab Sample ID: 500-214283-47

Matrix: Water

Date Collected: 03/25/22 11:45 Date Received: 03/29/22 10:20

Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 12:51	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 12:51	1
1,1,2,2-Tetrachloroethane	< 0.40	1.0	0.40	ug/L			04/01/22 12:51	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 12:51	1
1,1-Dichloroethane	< 0.41	1.0		ug/L			04/01/22 12:51	1
1,1-Dichloroethene	< 0.39	1.0	0.39	_			04/01/22 12:51	1
1,1-Dichloropropene	<0.30	1.0		ug/L			04/01/22 12:51	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	-			04/01/22 12:51	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	-			04/01/22 12:51	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34				04/01/22 12:51	1
1,2,4-Trimethylbenzene	0.70		0.36				04/01/22 12:51	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 12:51	1
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 12:51	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			04/01/22 12:51	1
1,2-Dichloroethane	<0.39	1.0	0.39	-			04/01/22 12:51	1
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 12:51	
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			04/01/22 12:51	1
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 12:51	1
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 12:51	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 12:51	1
2.2-Dichloropropane	<0.44	1.0	0.44	_			04/01/22 12:51	1
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 12:51	
4-Chlorotoluene	< 0.35	1.0	0.35				04/01/22 12:51	1
Benzene	<0.15	0.50	0.15	_			04/01/22 12:51	1
Bromobenzene	<0.36	1.0		ug/L			04/01/22 12:51	· · · · · · · · 1
Bromochloromethane	< 0.43	1.0	0.43				04/01/22 12:51	1
Dichlorobromomethane	<0.37	1.0	0.43	_			04/01/22 12:51	1
Bromoform	<0.48	1.0		ug/L			04/01/22 12:51	· · · · · · · · · · · 1
Bromomethane	<0.80	3.0	0.40	_			04/01/22 12:51	1
Carbon tetrachloride	<0.38	1.0	0.38	-			04/01/22 12:51	1
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 12:51	· · · · · · · · · · · · · · · · · · ·
Chloroethane	<0.59	1.0		ug/L ug/L			04/01/22 12:51	1
Chloroform	<0.37	2.0		-			04/01/22 12:51	
Chloromethane	<0.32	1.0	0.37	ug/L ug/L			04/01/22 12:51	
		1.0	0.32	-			04/01/22 12:51	1
cis-1,2-Dichloroethene	1.3			-				
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 12:51	1
Dibromochloromethane	<0.49	1.0		ug/L			04/01/22 12:51	1
Dibromomethane	<0.27	1.0		ug/L			04/01/22 12:51	1
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 12:51	1
Ethylbenzene	0.40			ug/L			04/01/22 12:51	1
Hexachlorobutadiene 	<0.45	1.0		ug/L			04/01/22 12:51	1
Isopropyl ether	<0.28	1.0		ug/L			04/01/22 12:51	1
Isopropylbenzene	<0.39	1.0		ug/L			04/01/22 12:51	1
Methyl tert-butyl ether	<0.39	1.0		ug/L			04/01/22 12:51	1
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 12:51	1
Naphthalene	<0.34	1.0		ug/L			04/01/22 12:51	1
n-Butylbenzene	<0.39	1.0		ug/L			04/01/22 12:51	1
N-Propylbenzene	<0.41	1.0		ug/L			04/01/22 12:51	1
p-Isopropyltoluene	0.41	1.0	0.36	ug/L			04/01/22 12:51	1

Eurofins Chicago

3

4

6

8

10

12

14

4.0

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Acenaphthene

Client Sample ID: MW-234

Date Collected: 03/25/22 11:45 Date Received: 03/29/22 10:20

Lab Sa	ample ID:	: 500-214 :	283-47
--------	-----------	--------------------	--------

Matrix: Water

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 12:51	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 12:51	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 12:51	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 12:51	1
Toluene	1.1		0.50	0.15	ug/L			04/01/22 12:51	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 12:51	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 12:51	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 12:51	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 12:51	1
Vinyl chloride	1.9		1.0	0.20	ug/L			04/01/22 12:51	1
Xylenes, Total	1.6		1.0	0.22	ug/L			04/01/22 12:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		75 - 126			•		04/01/22 12:51	1
4-Bromofluorobenzene (Surr)	85		72 - 124					04/01/22 12:51	1
Dibromofluoromethane (Surr)	95		75 - 120					04/01/22 12:51	1
Toluene-d8 (Surr)	98		75 - 120					04/01/22 12:51	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<0.19	1.6	0.19	ug/L		03/31/22 07:48	04/01/22 15:26	1
1,2-Dichlorobenzene	<0.20	1.6	0.20	ug/L		03/31/22 07:48	04/01/22 15:26	1
1,3-Dichlorobenzene	<0.17	1.6	0.17	ug/L		03/31/22 07:48	04/01/22 15:26	1
1,4-Dichlorobenzene	<0.17	1.6	0.17	ug/L		03/31/22 07:48	04/01/22 15:26	1
1-Methylnaphthalene	<0.24	1.6	0.24	ug/L		03/31/22 07:48	04/01/22 15:26	1
2,2'-oxybis[1-chloropropane]	<0.30	1.6	0.30	ug/L		03/31/22 07:48	04/01/22 15:26	1
2,4,5-Trichlorophenol	<2.0	7.9	2.0	ug/L		03/31/22 07:48	04/01/22 15:26	1
2,4,6-Trichlorophenol	<0.57	4.0	0.57	ug/L		03/31/22 07:48	04/01/22 15:26	1
2,4-Dichlorophenol	<2.1	7.9	2.1	ug/L		03/31/22 07:48	04/01/22 15:26	1
2,4-Dimethylphenol	<1.4	7.9	1.4	ug/L		03/31/22 07:48	04/01/22 15:26	1
2,4-Dinitrophenol	<6.8	16	6.8	ug/L		03/31/22 07:48	04/01/22 15:26	1
2,4-Dinitrotoluene	<0.19	0.79	0.19	ug/L		03/31/22 07:48	04/01/22 15:26	1
2,6-Dinitrotoluene	<0.058	0.79	0.058	ug/L		03/31/22 07:48	04/01/22 15:26	1
2-Chloronaphthalene	<0.19	1.6	0.19	ug/L		03/31/22 07:48	04/01/22 15:26	1
2-Chlorophenol	<0.44	4.0	0.44	ug/L		03/31/22 07:48	04/01/22 15:26	1
2-Methylnaphthalene	0.053 J	1.6	0.052	ug/L		03/31/22 07:48	04/01/22 15:26	1
2-Methylphenol	<0.24	1.6	0.24	ug/L		03/31/22 07:48	04/01/22 15:26	1
2-Nitroaniline	<1.0	4.0	1.0	ug/L		03/31/22 07:48	04/01/22 15:26	1
2-Nitrophenol	<2.0	7.9	2.0	ug/L		03/31/22 07:48	04/01/22 15:26	1
3 & 4 Methylphenol	<0.36	1.6	0.36	ug/L		03/31/22 07:48	04/01/22 15:26	1
3,3'-Dichlorobenzidine	<1.4	4.0	1.4	ug/L		03/31/22 07:48	04/01/22 15:26	1
3-Nitroaniline	<1.4	7.9	1.4	ug/L		03/31/22 07:48	04/01/22 15:26	1
4,6-Dinitro-2-methylphenol	<4.7	16	4.7	ug/L		03/31/22 07:48	04/01/22 15:26	1
4-Bromophenyl phenyl ether	<0.43	4.0	0.43	ug/L		03/31/22 07:48	04/01/22 15:26	1
4-Chloro-3-methylphenol	<1.8	7.9	1.8	ug/L		03/31/22 07:48	04/01/22 15:26	1
4-Chloroaniline	<1.6	7.9	1.6	ug/L		03/31/22 07:48	04/01/22 15:26	1
4-Chlorophenyl phenyl ether	<0.50	4.0	0.50	ug/L		03/31/22 07:48	04/01/22 15:26	1
4-Nitroaniline	<1.3	7.9		ug/L		03/31/22 07:48	04/01/22 15:26	1
4-Nitrophenol	<5.9	16	5.9	ug/L		03/31/22 07:48	04/01/22 15:26	1

Eurofins Chicago

03/31/22 07:48 04/01/22 15:26

0.79

< 0.24

0.24 ug/L

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-234 Lab Sample ID: 500-214283-47

Date Collected: 03/25/22 11:45 Date Received: 03/29/22 10:20 **Matrix: Water**

Job ID: 500-214283-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	<0.21		0.79	0.21	ug/L		03/31/22 07:48	04/01/22 15:26	1
Anthracene	<0.26		0.79	0.26			03/31/22 07:48	04/01/22 15:26	1
Benzo[a]anthracene	<0.045		0.16	0.045	-		03/31/22 07:48	04/01/22 15:26	1
Benzo[a]pyrene	<0.078		0.16	0.078			03/31/22 07:48	04/01/22 15:26	1
Benzo[b]fluoranthene	<0.064		0.16	0.064	-		03/31/22 07:48	04/01/22 15:26	1
Benzo[g,h,i]perylene	<0.30		0.79	0.30	_		03/31/22 07:48	04/01/22 15:26	1
Benzo[k]fluoranthene	<0.051		0.16					04/01/22 15:26	1
Benzoic acid	<4.6	*1	16		ug/L			04/01/22 15:26	1
Benzyl alcohol	<4.8		16		ug/L			04/01/22 15:26	1
Bis(2-chloroethoxy)methane	<0.22		1.6	0.22				04/01/22 15:26	· · · · · · · · · · · · · · · · · · ·
Bis(2-chloroethyl)ether	<0.23		1.6	0.23	-			04/01/22 15:26	1
Bis(2-ethylhexyl) phthalate	<1.4		7.9		ug/L			04/01/22 15:26	1
Butyl benzyl phthalate	<0.38		1.6		ug/L			04/01/22 15:26	· · · · · · · · · · · · · · · · · · ·
Carbazole	<0.28		4.0	0.28	-			04/01/22 15:26	1
Chrysene	<0.054		0.16	0.054	-			04/01/22 15:26	1
Dibenz(a,h)anthracene	<0.040		0.10	0.040				04/01/22 15:26	
Dibenzofuran	<0.040		1.6		_			04/01/22 15:26	1
	<0.21		4.0	0.21	J			04/01/22 15:26	1
Diethyl phthalate									
Dimethyl phthalate	<0.25		4.0	0.25	-			04/01/22 15:26	1
Di-n-butyl phthalate	<0.58		4.0	0.58	-			04/01/22 15:26	1
Di-n-octyl phthalate	<0.83		7.9	0.83				04/01/22 15:26	
Fluoranthene	<0.36		0.79		ug/L			04/01/22 15:26	1
Fluorene	<0.19		0.79		ug/L			04/01/22 15:26	1
Hexachlorobenzene	<0.063		0.40	0.063				04/01/22 15:26	1
Hexachlorobutadiene	<0.41		4.0		ug/L			04/01/22 15:26	1
Hexachlorocyclopentadiene	<5.1		16		ug/L			04/01/22 15:26	1
Hexachloroethane	<0.47		4.0	0.47			03/31/22 07:48	04/01/22 15:26	1
Indeno[1,2,3-cd]pyrene	<0.059		0.16	0.059	-		03/31/22 07:48	04/01/22 15:26	1
Isophorone	<0.30		1.6	0.30	ug/L		03/31/22 07:48	04/01/22 15:26	1
Naphthalene	<0.24		0.79	0.24			03/31/22 07:48	04/01/22 15:26	1
Nitrobenzene	<0.36		0.79	0.36	-		03/31/22 07:48	04/01/22 15:26	1
N-Nitrosodi-n-propylamine	<0.12		0.40	0.12	ug/L		03/31/22 07:48	04/01/22 15:26	1
N-Nitrosodiphenylamine	<0.29		1.6	0.29	ug/L		03/31/22 07:48	04/01/22 15:26	1
Pentachlorophenol	<3.1		16	3.1	ug/L		03/31/22 07:48	04/01/22 15:26	1
Phenanthrene	<0.24		0.79	0.24	ug/L		03/31/22 07:48	04/01/22 15:26	1
Phenol	<0.53		4.0	0.53	ug/L		03/31/22 07:48	04/01/22 15:26	1
Pyrene	<0.34		0.79	0.34	ug/L		03/31/22 07:48	04/01/22 15:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	84		40 - 145				03/31/22 07:48	04/01/22 15:26	1
2-Fluorobiphenyl (Surr)	82		34 - 110				03/31/22 07:48	04/01/22 15:26	1
2-Fluorophenol (Surr)	81		27 - 110				03/31/22 07:48	04/01/22 15:26	1
Nitrobenzene-d5 (Surr)	72		36 - 120				03/31/22 07:48	04/01/22 15:26	1
Phenol-d5 (Surr)	47		20 - 110				03/31/22 07:48	04/01/22 15:26	1
	128		40 - 145				03/31/22 07:48	04/01/22 15:26	1
Terphenyl-d14 (Surr)									
	lorine Pesticid	les (GC)							
Terphenyl-d14 (Surr)		les (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Terphenyl-d14 (Surr) Method: 8081B - Organoch			RL	MDL 0.031		<u>D</u>		Analyzed 04/01/22 12:28	Dil Fac

Eurofins Chicago

6

7

9

11

13

15

16

Ш

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-234

Date Collected: 03/25/22 11:45

Lab Sample ID: 500-214283-47

Matrix: Water

Date Received: 03/29/22 10:20

Method: 8081B - Organoc Analyte		Qualifier	RL	MDL	Linit	D	Prepared	Analyzed	Dil Fac
cis-Chlordane	<0.028	Qualifier	0.040	0.028			03/31/22 13:17	04/01/22 12:28	DII Fac
beta-BHC	<0.028		0.040		ug/L		03/31/22 13:17	04/01/22 12:28	1
4,4'-DDD	<0.031		0.040		ug/L		03/31/22 13:17	04/01/22 12:28	1
4,4'-DDE	<0.023		0.040	0.023			03/31/22 13:17	04/01/22 12:28	1
4,4'-DDT	<0.032		0.040	0.032	ug/L		03/31/22 13:17	04/01/22 12:28	1
delta-BHC	<0.024		0.040	0.024	ug/L		03/31/22 13:17	04/01/22 12:28	1
Dieldrin	<0.025		0.040	0.025	ug/L		03/31/22 13:17	04/01/22 12:28	1
Endosulfan I	<0.025		0.040	0.025	ug/L		03/31/22 13:17	04/01/22 12:28	1
Endosulfan II	< 0.039		0.040	0.039	ug/L		03/31/22 13:17	04/01/22 12:28	1
Endosulfan sulfate	<0.020		0.040	0.020	ug/L		03/31/22 13:17	04/01/22 12:28	1
Endrin	<0.027		0.040	0.027	ug/L		03/31/22 13:17	04/01/22 12:28	1
Endrin aldehyde	< 0.035		0.040	0.035	ug/L		03/31/22 13:17	04/01/22 12:28	1
Endrin ketone	<0.040		0.040	0.040	ug/L		03/31/22 13:17	04/01/22 12:28	1
gamma-BHC (Lindane)	<0.033		0.040	0.033	ug/L		03/31/22 13:17	04/01/22 12:28	1
trans-Chlordane	< 0.032		0.040	0.032	ug/L		03/31/22 13:17	04/01/22 12:28	1
Heptachlor	< 0.035		0.040	0.035	ug/L		03/31/22 13:17	04/01/22 12:28	1
Heptachlor epoxide	<0.030		0.040	0.030	ug/L		03/31/22 13:17	04/01/22 12:28	1
Methoxychlor	< 0.065		0.080	0.065	ug/L		03/31/22 13:17	04/01/22 12:28	1
Toxaphene	<0.39		0.40	0.39	ug/L		03/31/22 13:17	04/01/22 12:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	73		30 - 130				03/31/22 13:17	04/01/22 12:28	1
Tetrachloro-m-xylene	71		30 - 120				03/31/22 13:17	04/01/22 12:28	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.067	*+	0.40	0.067	ug/L		03/31/22 13:17	04/01/22 12:25	1
PCB-1221	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:25	1
PCB-1232	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:25	1
PCB-1242	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:25	1
PCB-1248	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:25	1
PCB-1254	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:25	1
PCB-1260	<0.070		0.40	0.070	ug/L		03/31/22 13:17	04/01/22 12:25	1
PCB-1262	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:25	1
PCB-1268	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 12:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	92		30 - 120				03/31/22 13:17	04/01/22 12:25	1
DCB Decachlorobiphenyl	116		30 - 140				03/31/22 13:17	04/01/22 12:25	1

Method: 8151A - Herbid	cides (GC)							
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<0.56	1.0	0.56	ug/L		04/01/22 09:10	04/04/22 10:15	1
2,4-DB	0.41 J	1.0	0.39	ug/L		04/01/22 09:10	04/04/22 10:15	1
Dicamba	<0.38	1.0	0.38	ug/L		04/01/22 09:10	04/04/22 10:15	1
Dichlorprop	<0.39	1.0	0.39	ug/L		04/01/22 09:10	04/04/22 10:15	1
Silvex (2,4,5-TP)	<0.13	1.0	0.13	ug/L		04/01/22 09:10	04/04/22 10:15	1
2,4,5-T	<0.14	1.0	0.14	ug/L		04/01/22 09:10	04/04/22 10:15	1
Surrogate	%Recovery Qua	alifier Limits				Prepared	Analyzed	Dil Fac
DCAA	106	25 - 130				04/01/22 09:10	04/04/22 10:15	1

Eurofins Chicago

Page 185 of 356

-

Job ID: 500-214283-1

3

5

7

9

11 12

13

15

16

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-234 Lab Sample ID: 500-214283-47

Date Collected: 03/25/22 11:45

Date Received: 03/29/22 10:20

Matrix: Water

Method: 8151A - Herbicides (GC) (Continued)

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCAA	101	25 - 130	04/01/22 09:10	04/04/22 10:15	1

DCAA	101		25 - 130				04/01/22 09:10	04/04/22 10:15	1
Mother Control	wheeterd Aller	d Culpatan							
Method: 537 (modified) - Fluo Analyte	•	/I Substan Qualifier	ces RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	36		4.7		ng/L			04/03/22 23:06	1
Perfluoropentanoic acid (PFPeA)	26		1.9		ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluorohexanoic acid (PFHxA)	17		1.9	0.54	ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluoroheptanoic acid (PFHpA)	20		1.9		ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluorooctanoic acid (PFOA)	81		1.9		ng/L			04/03/22 23:06	1
Perfluorononanoic acid (PFNA)	<0.25		1.9		ng/L			04/03/22 23:06	1
Perfluorodecanoic acid (PFDA)	<0.29		1.9		ng/L			04/03/22 23:06	1
Perfluoroundecanoic acid (PFUnA)	<1.0		1.9		ng/L			04/03/22 23:06	1
Perfluorododecanoic acid (PFDoA)	<0.52		1.9		ng/L			04/03/22 23:06	1
Perfluorotridecanoic acid (PFTriA)	<1.2		1.9		ng/L			04/03/22 23:06	1
Perfluorotetradecanoic acid (PFTeA)	<0.68		1.9		ng/L			04/03/22 23:06	1
Perfluoro-n-hexadecanoic acid	<0.83		1.9		ng/L			04/03/22 23:06	1
(PFHxDA)	0.00			0.00			0 1/02/22 0010 1	0 1/00/22 20:00	•
Perfluoro-n-octadecanoic acid (PFODA)	<0.88		1.9	0.88	ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluorobutanesulfonic acid (PFBS)	7.7		1.9	0.19	ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluoropentanesulfonic acid (PFPeS)	1.9	1	1.9	0.28	ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluorohexanesulfonic acid (PFHxS)	4.6		1.9	0.53	ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluoroheptanesulfonic acid (PFHpS)	<0.18		1.9	0.18	ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluorooctanesulfonic acid (PFOS)	<0.51		1.9	0.51	ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluorononanesulfonic acid (PFNS)	<0.35		1.9	0.35	ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluorodecanesulfonic acid (PFDS)	<0.30		1.9	0.30	ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluorododecanesulfonic acid (PFDoS)	<0.91		1.9	0.91	ng/L		04/02/22 06:51	04/03/22 23:06	1
Perfluorooctanesulfonamide (FOSA)	<0.92		1.9	0.92	ng/L		04/02/22 06:51	04/03/22 23:06	1
NEtFOSA	<0.82		1.9	0.82	ng/L		04/02/22 06:51	04/03/22 23:06	1
NMeFOSA	<0.40		1.9	0.40	ng/L		04/02/22 06:51	04/03/22 23:06	1
NMeFOSAA	<1.1		4.7	1.1	ng/L		04/02/22 06:51	04/03/22 23:06	1
NEtFOSAA	<1.2		4.7	1.2	ng/L		04/02/22 06:51	04/03/22 23:06	1
NMeFOSE	<1.3		3.7	1.3	ng/L		04/02/22 06:51	04/03/22 23:06	1
NEtFOSE	<0.80		1.9	0.80	ng/L		04/02/22 06:51	04/03/22 23:06	1
4:2 FTS	<0.22		1.9	0.22	ng/L		04/02/22 06:51	04/03/22 23:06	1
6:2 FTS	<2.3		4.7	2.3	ng/L		04/02/22 06:51	04/03/22 23:06	1
8:2 FTS	<0.43		1.9		ng/L			04/03/22 23:06	1
10:2 FTS	< 0.63		1.9		ng/L		04/02/22 06:51	04/03/22 23:06	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	<0.37		1.9	0.37	ng/L		04/02/22 06:51	04/03/22 23:06	1
HFPO-DA (GenX)	<1.4		3.7	1.4	ng/L		04/02/22 06:51	04/03/22 23:06	1
F-53B Major	<0.22		1.9		ng/L		04/02/22 06:51	04/03/22 23:06	1
F-53B Minor	<0.30		1.9		ng/L		04/02/22 06:51	04/03/22 23:06	1
Isotope Dilution	%Recovery	Qualifier	Limits		-		Prepared 0.51	Analyzed	Dil Fac
13C4 PFBA	36		25 - 150				04/02/22 06:51		1
13C5 PFPeA	56		25 - 150				04/02/22 06:51	04/03/22 23:06	1

Eurofins Chicago

3

5

7

9

12

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-234 Lab Sample ID: 500-214283-47

Date Collected: 03/25/22 11:45 **Matrix: Water** Date Received: 03/29/22 10:20

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued) Isotope Dilution %Recovery Qualifier Prepared Analyzed Dil Fac 13C2 PFHxA 25 - 150 04/02/22 06:51 04/03/22 23:06 77 13C4 PFHpA 80 25 - 150 04/02/22 06:51 04/03/22 23:06 13C4 PFOA 85 25 - 150 04/02/22 06:51 04/03/22 23:06 13C5 PFNA 85 25 - 150 04/02/22 06:51 04/03/22 23:06 13C2 PFDA 78 25 - 150 04/02/22 06:51 04/03/22 23:06 13C2 PFUnA 75 25 - 150 04/02/22 06:51 04/03/22 23:06 13C2 PFDoA 72 25 - 150 04/02/22 06:51 04/03/22 23:06 13C2 PFTeDA 25 - 150 04/02/22 06:51 04/03/22 23:06 66 13C2 PFHxDA 72 25 - 150 04/02/22 06:51 04/03/22 23:06 13C3 PFBS 67 25 - 150 04/02/22 06:51 04/03/22 23:06 1802 PFHxS 79 25 - 150 04/02/22 06:51 04/03/22 23:06 13C4 PFOS 80 25 - 150 04/02/22 06:51 04/03/22 23:06 13C8 FOSA 83 10 - 150 04/02/22 06:51 04/03/22 23:06 d3-NMeFOSAA 69 25 - 150 04/02/22 06:51 04/03/22 23:06 76 d5-NEtFOSAA 25 - 150 04/02/22 06:51 04/03/22 23:06 d-N-MeFOSA-M 04/02/22 06:51 04/03/22 23:06 61 10 - 150 d-N-EtFOSA-M 61 10 - 150 04/02/22 06:51 04/03/22 23:06 d7-N-MeFOSE-M 63 10 - 150 04/02/22 06:51 04/03/22 23:06 d9-N-EtFOSE-M 04/02/22 06:51 04/03/22 23:06 60 10 - 150 M2-4:2 FTS 102 25 - 150 04/02/22 06:51 04/03/22 23:06 M2-6:2 FTS 107 25 - 150 04/02/22 06:51 04/03/22 23:06 M2-8:2 FTS 93 25 - 150 04/02/22 06:51 04/03/22 23:06 13C3 HFPO-DA 70 25 - 150 04/02/22 06:51 04/03/22 23:06 13C2 10:2 FTS 71 25 - 150 04/02/22 06:51 04/03/22 23:06

Method: 6020A - Metals (ICP/N	/IS) - Dissol	ved							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.0064		0.0010	0.00023	mg/L		04/06/22 17:04	04/07/22 12:38	1
Barium	0.19		0.0025	0.00073	mg/L		04/06/22 17:04	04/07/22 12:38	1
Cadmium	<0.00017		0.00050	0.00017	mg/L		04/06/22 17:04	04/07/22 12:38	1
Chromium	<0.0011		0.0050	0.0011	mg/L		04/06/22 17:04	04/07/22 12:38	1
Lead	<0.00019		0.00050	0.00019	mg/L		04/06/22 17:04	04/07/22 12:38	1
Selenium	<0.00098	^+	0.0025	0.00098	mg/L		04/06/22 17:04	04/07/22 12:38	1
Silver	<0.00012		0.00050	0.00012	mg/L		04/06/22 17:04	04/07/22 12:38	1

Wethou. /4/UA - Wercury (CVA	AA) - Dissoiveu	u					
Analyte	Result Qua	ıalifier RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
Mercury	<0.000098	0.00020	0.000098	mg/L	04/05/22 10:50	04/06/22 10:12	1

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-237 Lab Sample ID: 500-214283-48

Date Collected: 03/25/22 12:17
Date Received: 03/29/22 10:20

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0		ug/L			04/01/22 13:15	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 13:15	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			04/01/22 13:15	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 13:15	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			04/01/22 13:15	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			04/01/22 13:15	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			04/01/22 13:15	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			04/01/22 13:15	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			04/01/22 13:15	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			04/01/22 13:15	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			04/01/22 13:15	
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			04/01/22 13:15	
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 13:15	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			04/01/22 13:15	
1,2-Dichloroethane	<0.39	1.0		ug/L			04/01/22 13:15	
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 13:15	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			04/01/22 13:15	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 13:15	
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 13:15	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 13:15	
2,2-Dichloropropane	<0.44	1.0		ug/L			04/01/22 13:15	
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 13:15	
4-Chlorotoluene	<0.35	1.0		ug/L			04/01/22 13:15	
Benzene	<0.15	0.50		ug/L			04/01/22 13:15	
Bromobenzene	<0.36	1.0		ug/L ug/L			04/01/22 13:15	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 13:15	
Dichlorobromomethane	<0.43	1.0		ug/L ug/L			04/01/22 13:15	
Bromoform	<0.48	1.0		ug/L			04/01/22 13:15	
Bromomethane	<0.80	3.0		ug/L			04/01/22 13:15	
Carbon tetrachloride	<0.38	1.0		ug/L			04/01/22 13:15	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 13:15	
Chloroethane	<0.51	1.0		ug/L			04/01/22 13:15	
Chloroform	<0.37	2.0		ug/L			04/01/22 13:15	
Chloromethane	<0.32	1.0		ug/L			04/01/22 13:15	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			04/01/22 13:15	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 13:15	
Dibromochloromethane	<0.49	1.0		ug/L			04/01/22 13:15	
Dibromomethane	<0.27	1.0		ug/L			04/01/22 13:15	
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 13:15	
Ethylbenzene	<0.18	0.50	0.18	ug/L			04/01/22 13:15	
Hexachlorobutadiene	<0.45	1.0	0.45	ug/L			04/01/22 13:15	
Isopropyl ether	<0.28	1.0	0.28	ug/L			04/01/22 13:15	
Isopropylbenzene	<0.39	1.0	0.39	ug/L			04/01/22 13:15	
Methyl tert-butyl ether	<0.39	1.0	0.39	ug/L			04/01/22 13:15	
Methylene Chloride	<1.6	5.0	1.6	ug/L			04/01/22 13:15	
Naphthalene	<0.34	1.0	0.34	ug/L			04/01/22 13:15	
n-Butylbenzene	<0.39	1.0		ug/L			04/01/22 13:15	
N-Propylbenzene	<0.41	1.0		ug/L			04/01/22 13:15	
p-Isopropyltoluene	<0.36	1.0	0.36				04/01/22 13:15	

Eurofins Chicago

3

4

6

0

46

11 12

11

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Toluene-d8 (Surr)

Client Sample ID: TW-237 Lab Sample ID: 500-214283-48

Date Collected: 03/25/22 12:17 **Matrix: Water** Date Received: 03/29/22 10:20

Analyte	Result C	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 13:15	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 13:15	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 13:15	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 13:15	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 13:15	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 13:15	1
trans-1,3-Dichloropropene	< 0.36		1.0	0.36	ug/L			04/01/22 13:15	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 13:15	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 13:15	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 13:15	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 13:15	1
Surrogate	%Recovery G	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		75 - 126			-		04/01/22 13:15	1
4-Bromofluorobenzene (Surr)	88		72 - 124					04/01/22 13:15	1
Dibromofluoromethane (Surr)	96		75 - 120					04/01/22 13:15	1

75 - 120

04/01/22 13:15

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-222

Lab Sample ID: 500-214283-49

Matrix: Water

Date Collected: 03/25/22 15:30 Date Received: 03/29/22 10:20

Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 13:38	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 13:38	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			04/01/22 13:38	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 13:38	
1,1-Dichloroethane	< 0.41	1.0	0.41	-			04/01/22 13:38	
1,1-Dichloroethene	< 0.39	1.0	0.39	ug/L			04/01/22 13:38	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			04/01/22 13:38	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	-			04/01/22 13:38	
1,2,3-Trichloropropane	< 0.41	2.0	0.41	ug/L			04/01/22 13:38	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34				04/01/22 13:38	
1,2,4-Trimethylbenzene	< 0.36	1.0	0.36				04/01/22 13:38	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 13:38	
1,2-Dibromoethane	<0.39	1.0	0.39				04/01/22 13:38	
1,2-Dichlorobenzene	< 0.33	1.0	0.33	-			04/01/22 13:38	
1,2-Dichloroethane	<0.39	1.0	0.39	-			04/01/22 13:38	
1,2-Dichloropropane	<0.43	1.0	0.43				04/01/22 13:38	,
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			04/01/22 13:38	
1,3-Dichlorobenzene	<0.40	1.0	0.40	-			04/01/22 13:38	
1,3-Dichloropropane	<0.36	1.0	0.36				04/01/22 13:38	
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			04/01/22 13:38	
2,2-Dichloropropane	<0.44	1.0	0.44	-			04/01/22 13:38	
2-Chlorotoluene	<0.31	1.0	0.31				04/01/22 13:38	,
4-Chlorotoluene	<0.35	1.0	0.35				04/01/22 13:38	
Benzene	<0.15	0.50	0.15	-			04/01/22 13:38	
Bromobenzene	<0.36	1.0	0.36				04/01/22 13:38	,
Bromochloromethane	<0.43	1.0	0.43	_			04/01/22 13:38	
Dichlorobromomethane	<0.37	1.0	0.37	-			04/01/22 13:38	
Bromoform	<0.48	1.0	0.48				04/01/22 13:38	,
Bromomethane	<0.80	3.0	0.80	-			04/01/22 13:38	,
Carbon tetrachloride	<0.38	1.0	0.38	-			04/01/22 13:38	,
Chlorobenzene	<0.39	1.0	0.39				04/01/22 13:38	,
Chloroethane	<0.51	1.0	0.51	-			04/01/22 13:38	,
Chloroform	<0.37	2.0	0.37	_			04/01/22 13:38	
Chloromethane	<0.32	1.0	0.32				04/01/22 13:38	,
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			04/01/22 13:38	,
cis-1,3-Dichloropropene	<0.42	1.0	0.42	-			04/01/22 13:38	,
Dibromochloromethane	<0.42	1.0		ug/L			04/01/22 13:38	,
Dibromomethane	<0.49	1.0		ug/L			04/01/22 13:38	,
Dichlorodifluoromethane	<0.67	3.0		ug/L ug/L			04/01/22 13:38	,
Ethylbenzene	<0.18	0.50					04/01/22 13:38	,
Hexachlorobutadiene	<0.15	1.0		ug/L			04/01/22 13:38	,
				ug/L				
Isopropyl ether	<0.28	1.0		ug/L			04/01/22 13:38	
Isopropylbenzene	<0.39	1.0		ug/L			04/01/22 13:38	,
Methyl tert-butyl ether	<0.39	1.0		ug/L			04/01/22 13:38	,
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 13:38	
Naphthalene	<0.34	1.0		ug/L			04/01/22 13:38	,
n-Butylbenzene	<0.39	1.0		ug/L			04/01/22 13:38	
N-Propylbenzene p-Isopropyltoluene	<0.41 <0.36	1.0 1.0		ug/L ug/L			04/01/22 13:38 04/01/22 13:38	

Eurofins Chicago

2

4

6

8

10

12

14

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-222 Lab Sample ID: 500-214283-49

Date Collected: 03/25/22 15:30 **Matrix: Water** Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 13:38	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 13:38	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 13:38	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 13:38	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 13:38	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 13:38	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 13:38	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 13:38	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 13:38	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 13:38	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 13:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		75 - 126			-		04/01/22 13:38	1
4-Bromofluorobenzene (Surr)	86		72 - 124					04/01/22 13:38	1
Dibromofluoromethane (Surr)	97		75 - 120					04/01/22 13:38	1
Toluene-d8 (Surr)	98		75 - 120					04/01/22 13:38	1

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-227

Date Collected: 03/25/22 17:15

Lab Sample ID: 500-214283-50

Matrix: Water

Date Collected: 03/25/22 17:15 Date Received: 03/29/22 10:20

Analyte	Result Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 14:01	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 14:01	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			04/01/22 14:01	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 14:01	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			04/01/22 14:01	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			04/01/22 14:01	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			04/01/22 14:01	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			04/01/22 14:01	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			04/01/22 14:01	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			04/01/22 14:01	
1,2,4-Trimethylbenzene	<0.36	1.0		ug/L			04/01/22 14:01	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 14:01	
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 14:01	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			04/01/22 14:01	
1,2-Dichloroethane	<0.39	1.0		ug/L			04/01/22 14:01	
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 14:01	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			04/01/22 14:01	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 14:01	
I,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 14:01	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 14:01	
2,2-Dichloropropane	<0.44	1.0		ug/L			04/01/22 14:01	
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 14:01	
I-Chlorotoluene	<0.35	1.0		ug/L			04/01/22 14:01	
Benzene	<0.15	0.50		ug/L			04/01/22 14:01	
Bromobenzene	<0.36	1.0		ug/L			04/01/22 14:01	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 14:01	
Dichlorobromomethane	<0.43	1.0		ug/L			04/01/22 14:01	
Bromoform	<0.48			ug/L ug/L			04/01/22 14:01	
	<0.46	1.0		-				
Bromomethane		3.0		ug/L			04/01/22 14:01	
Carbon tetrachloride	<0.38	1.0		ug/L			04/01/22 14:01	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 14:01	
Chloroethane	<0.51	1.0		ug/L			04/01/22 14:01	
Chloroform	<0.37	2.0		ug/L			04/01/22 14:01	
Chloromethane	<0.32	1.0		ug/L			04/01/22 14:01	
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			04/01/22 14:01	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 14:01	
Dibromochloromethane	<0.49	1.0		ug/L			04/01/22 14:01	
Dibromomethane	<0.27	1.0		ug/L			04/01/22 14:01	
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 14:01	
Ethylbenzene	<0.18	0.50		ug/L			04/01/22 14:01	
Hexachlorobutadiene	<0.45	1.0		ug/L			04/01/22 14:01	
sopropyl ether	<0.28	1.0		ug/L			04/01/22 14:01	
sopropylbenzene	<0.39	1.0		ug/L			04/01/22 14:01	
Methyl tert-butyl ether	<0.39	1.0	0.39	ug/L			04/01/22 14:01	
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 14:01	
Naphthalene	<0.34	1.0	0.34	ug/L			04/01/22 14:01	
n-Butylbenzene	<0.39	1.0	0.39	ug/L			04/01/22 14:01	
N-Propylbenzene	<0.41	1.0	0.41	ug/L			04/01/22 14:01	
o-Isopropyltoluene	<0.36	1.0	0.36	ug/L			04/01/22 14:01	

Eurofins Chicago

3

5

7

9

10

12

14

4 C

1/

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Toluene-d8 (Surr)

Client Sample ID: TW-227 Lab Sample ID: 500-214283-50

Date Collected: 03/25/22 17:15 **Matrix: Water** Date Received: 03/29/22 10:20

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 14:01	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 14:01	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 14:01	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 14:01	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 14:01	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 14:01	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 14:01	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 14:01	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 14:01	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 14:01	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 14:01	1
Surrogate	%Recovery (Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		75 - 126			-		04/01/22 14:01	1
4-Bromofluorobenzene (Surr)	88		72 - 124					04/01/22 14:01	1
Dibromofluoromethane (Surr)	95		75 - 120					04/01/22 14:01	1

75 - 120

04/01/22 14:01

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-213 Lab Sample ID: 500-214283-51 Date Collected: 03/25/22 17:05

Matrix: Water

Method: 8260B - Volatile Org	•				_	_		
Analyte	Result Qu		MDL		D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0		ug/L			04/01/22 14:24	•
1,1,1-Trichloroethane	<0.38	1.0		ug/L			04/01/22 14:24	•
1,1,2,2-Tetrachloroethane	<0.40	1.0		ug/L			04/01/22 14:24	
1,1,2-Trichloroethane	< 0.35	1.0		ug/L			04/01/22 14:24	•
1,1-Dichloroethane	<0.41	1.0		ug/L			04/01/22 14:24	•
1,1-Dichloroethene	<0.39	1.0		ug/L			04/01/22 14:24	
1,1-Dichloropropene	< 0.30	1.0		ug/L			04/01/22 14:24	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			04/01/22 14:24	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			04/01/22 14:24	
1,2,4-Trichlorobenzene	< 0.34	1.0	0.34	ug/L			04/01/22 14:24	•
1,2,4-Trimethylbenzene	< 0.36	1.0	0.36	ug/L			04/01/22 14:24	
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			04/01/22 14:24	
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			04/01/22 14:24	
1,2-Dichlorobenzene	< 0.33	1.0	0.33	ug/L			04/01/22 14:24	
1,2-Dichloroethane	< 0.39	1.0	0.39	ug/L			04/01/22 14:24	
1,2-Dichloropropane	<0.43	1.0	0.43	ug/L			04/01/22 14:24	
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	ug/L			04/01/22 14:24	
1,3-Dichlorobenzene	<0.40	1.0	0.40	ug/L			04/01/22 14:24	
1,3-Dichloropropane	<0.36	1.0	0.36	ug/L			04/01/22 14:24	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 14:24	
2,2-Dichloropropane	<0.44	1.0		ug/L			04/01/22 14:24	
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 14:24	
4-Chlorotoluene	< 0.35	1.0		ug/L			04/01/22 14:24	
Benzene	<0.15	0.50		ug/L			04/01/22 14:24	
Bromobenzene	<0.36	1.0		ug/L			04/01/22 14:24	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 14:24	
Dichlorobromomethane	<0.37	1.0		ug/L			04/01/22 14:24	
Bromoform	<0.48	1.0		ug/L			04/01/22 14:24	
Bromomethane	<0.80	3.0		ug/L			04/01/22 14:24	
Carbon tetrachloride	<0.38	1.0		ug/L			04/01/22 14:24	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 14:24	
Chloroethane	<0.51	1.0		ug/L			04/01/22 14:24	
Chloroform	<0.37	2.0		ug/L			04/01/22 14:24	
Chloromethane	<0.32	1.0		ug/L ug/L			04/01/22 14:24	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L ug/L			04/01/22 14:24	
cis-1,3-Dichloropropene Dibromochloromethane	<0.42	1.0		ug/L			04/01/22 14:24	
	<0.49	1.0		ug/L			04/01/22 14:24	
Dibromomethane	<0.27	1.0		ug/L			04/01/22 14:24	
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 14:24	
Ethylbenzene	<0.18	0.50		ug/L			04/01/22 14:24	
Hexachlorobutadiene 	<0.45	1.0		ug/L			04/01/22 14:24	
Isopropyl ether	<0.28	1.0		ug/L			04/01/22 14:24	
Isopropylbenzene	<0.39	1.0		ug/L			04/01/22 14:24	
Methyl tert-butyl ether	<0.39	1.0		ug/L			04/01/22 14:24	
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 14:24	
Naphthalene	<0.34	1.0		ug/L			04/01/22 14:24	
n-Butylbenzene	< 0.39	1.0		ug/L			04/01/22 14:24	•
N-Propylbenzene	<0.41	1.0	0.41	ug/L			04/01/22 14:24	

Eurofins Chicago

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-213 Lab Sample ID: 500-214283-51

Date Collected: 03/25/22 17:05 **Matrix: Water** Date Received: 03/29/22 10:20

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) (Continu	ied)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 14:24	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 14:24	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 14:24	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 14:24	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 14:24	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 14:24	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 14:24	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 14:24	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 14:24	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 14:24	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 14:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		75 - 126			-		04/01/22 14:24	1
4-Bromofluorobenzene (Surr)	85		72 - 124					04/01/22 14:24	1
Dibromofluoromethane (Surr)	100		75 - 120					04/01/22 14:24	1
Toluene-d8 (Surr)	100		75 - 120					04/01/22 14:24	1

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-229

Lab Sample ID: 500-214283-52

Matrix: Water

Date Collected: 03/25/22 12:05 Date Received: 03/29/22 10:20

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 14:47	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 14:47	
1,1,2,2-Tetrachloroethane	< 0.40	1.0	0.40	ug/L			04/01/22 14:47	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 14:47	
1,1-Dichloroethane	<0.41	1.0		ug/L			04/01/22 14:47	
1,1-Dichloroethene	< 0.39	1.0	0.39	ug/L			04/01/22 14:47	
1,1-Dichloropropene	<0.30	1.0		ug/L			04/01/22 14:47	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	-			04/01/22 14:47	
1,2,3-Trichloropropane	<0.41	2.0	0.41	_			04/01/22 14:47	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34				04/01/22 14:47	
1,2,4-Trimethylbenzene	< 0.36	1.0	0.36				04/01/22 14:47	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 14:47	
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 14:47	
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			04/01/22 14:47	
1,2-Dichloroethane	<0.39	1.0	0.39	-			04/01/22 14:47	
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 14:47	
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			04/01/22 14:47	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 14:47	
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 14:47	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 14:47	
2,2-Dichloropropane	<0.44	1.0	0.44	-			04/01/22 14:47	
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 14:47	
4-Chlorotoluene	<0.35	1.0	0.35				04/01/22 14:47	
Benzene	<0.15	0.50	0.15	-			04/01/22 14:47	
Bromobenzene	<0.36	1.0		ug/L			04/01/22 14:47	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 14:47	
Dichlorobromomethane	<0.37	1.0		ug/L			04/01/22 14:47	
Bromoform	<0.48	1.0		ug/L			04/01/22 14:47	
Bromomethane	<0.80	3.0		ug/L			04/01/22 14:47	
Carbon tetrachloride	<0.38	1.0	0.38	-			04/01/22 14:47	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 14:47	
Chloroethane	<0.51	1.0		ug/L			04/01/22 14:47	
Chloroform	< 0.37	2.0	0.37	-			04/01/22 14:47	
Chloromethane	<0.32	1.0		ug/L			04/01/22 14:47	
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			04/01/22 14:47	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 14:47	
Dibromochloromethane	<0.42	1.0		ug/L			04/01/22 14:47	· · · · · .
Dibromomethane	<0.27	1.0		ug/L			04/01/22 14:47	
Dichlorodifluoromethane	<0.67	3.0		ug/L ug/L			04/01/22 14:47	
Ethylbenzene	<0.18	0.50		ug/L ug/L			04/01/22 14:47	· · · · · .
Hexachlorobutadiene	<0.45	1.0		_			04/01/22 14:47	
	<0.45	1.0		ug/L			04/01/22 14:47	
Isopropyl ether				ug/L				·
Isopropylbenzene	<0.39	1.0		ug/L			04/01/22 14:47	
Methyl tert-butyl ether	<0.39	1.0		ug/L			04/01/22 14:47	
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 14:47	
Naphthalene	<0.34	1.0		ug/L			04/01/22 14:47	
n-Butylbenzene	<0.39	1.0		ug/L			04/01/22 14:47	•
N-Propylbenzene p-Isopropyltoluene	<0.41 <0.36	1.0 1.0		ug/L ug/L			04/01/22 14:47 04/01/22 14:47	

Eurofins Chicago

2

4

6

8

10

12

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-52 Client Sample ID: TW-229

Date Collected: 03/25/22 12:05 **Matrix: Water** Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 14:47	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 14:47	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 14:47	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 14:47	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 14:47	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 14:47	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 14:47	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 14:47	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 14:47	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 14:47	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 14:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		75 - 126			-		04/01/22 14:47	1
4-Bromofluorobenzene (Surr)	87		72 - 124					04/01/22 14:47	1
Dibromofluoromethane (Surr)	96		75 - 120					04/01/22 14:47	1
Toluene-d8 (Surr)	100		75 - 120					04/01/22 14:47	1

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-230

Lab Sample ID: 500-214283-53 Date Collected: 03/25/22 12:45 **Matrix: Water**

Date Received: 03/29/22 10:20

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 15:10	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 15:10	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			04/01/22 15:10	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 15:10	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			04/01/22 15:10	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			04/01/22 15:10	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			04/01/22 15:10	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			04/01/22 15:10	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			04/01/22 15:10	
1,2,4-Trichlorobenzene	<0.34	1.0		ug/L			04/01/22 15:10	
1,2,4-Trimethylbenzene	<0.36	1.0		ug/L			04/01/22 15:10	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 15:10	
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 15:10	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			04/01/22 15:10	
1,2-Dichloroethane	<0.39	1.0		ug/L			04/01/22 15:10	
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 15:10	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			04/01/22 15:10	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 15:10	
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 15:10	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 15:10	
2,2-Dichloropropane	<0.44	1.0		ug/L			04/01/22 15:10	
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 15:10	
4-Chlorotoluene	<0.35	1.0		ug/L			04/01/22 15:10	
Benzene	<0.15	0.50		ug/L			04/01/22 15:10	
Bromobenzene	<0.36	1.0		ug/L ug/L			04/01/22 15:10	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 15:10	
Dichlorobromomethane	<0.43	1.0		ug/L ug/L			04/01/22 15:10	
Bromoform								
	<0.48	1.0		ug/L			04/01/22 15:10	
Bromomethane	<0.80	3.0		ug/L			04/01/22 15:10	
Carbon tetrachloride	<0.38	1.0		ug/L			04/01/22 15:10	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 15:10	
Chloroethane	<0.51	1.0		ug/L			04/01/22 15:10	
Chloroform	<0.37	2.0		ug/L			04/01/22 15:10	
Chloromethane	<0.32	1.0		ug/L			04/01/22 15:10	
cis-1,2-Dichloroethene	8.7	1.0		ug/L			04/01/22 15:10	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 15:10	
Dibromochloromethane	<0.49	1.0		ug/L			04/01/22 15:10	
Dibromomethane	<0.27	1.0		ug/L			04/01/22 15:10	
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 15:10	
Ethylbenzene	<0.18	0.50		ug/L			04/01/22 15:10	
Hexachlorobutadiene	<0.45	1.0	0.45	ug/L			04/01/22 15:10	
Isopropyl ether	<0.28	1.0		ug/L			04/01/22 15:10	
Isopropylbenzene	<0.39	1.0		ug/L			04/01/22 15:10	
Methyl tert-butyl ether	<0.39	1.0		ug/L			04/01/22 15:10	
Methylene Chloride	<1.6	5.0	1.6	ug/L			04/01/22 15:10	
Naphthalene	<0.34	1.0	0.34	ug/L			04/01/22 15:10	
n-Butylbenzene	<0.39	1.0	0.39	ug/L			04/01/22 15:10	
N-Propylbenzene	<0.41	1.0	0.41	ug/L			04/01/22 15:10	
p-Isopropyltoluene	<0.36	1.0	0.36	ug/L			04/01/22 15:10	

Eurofins Chicago

4/15/2022

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-230 Lab Sample ID: 500-214283-53

Date Collected: 03/25/22 12:45 **Matrix: Water** Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 15:10	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 15:10	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 15:10	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 15:10	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 15:10	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 15:10	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 15:10	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 15:10	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 15:10	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 15:10	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 15:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	83		75 - 126			•		04/01/22 15:10	1
4-Bromofluorobenzene (Surr)	89		72 - 124					04/01/22 15:10	1
Dibromofluoromethane (Surr)	95		75 - 120					04/01/22 15:10	1
Toluene-d8 (Surr)	98		75 - 120					04/01/22 15:10	1

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-223

Lab Sample ID: 500-214283-54 Date Collected: 03/25/22 17:25

Matrix: Water Date Received: 03/29/22 10:20

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 15:33	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 15:33	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			04/01/22 15:33	•
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 15:33	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			04/01/22 15:33	•
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			04/01/22 15:33	•
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			04/01/22 15:33	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			04/01/22 15:33	•
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			04/01/22 15:33	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			04/01/22 15:33	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			04/01/22 15:33	
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			04/01/22 15:33	
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			04/01/22 15:33	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			04/01/22 15:33	
1,2-Dichloroethane	<0.39	1.0		ug/L			04/01/22 15:33	
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 15:33	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			04/01/22 15:33	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 15:33	
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 15:33	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 15:33	
2,2-Dichloropropane	<0.44	1.0		ug/L			04/01/22 15:33	
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 15:33	
4-Chlorotoluene	<0.35	1.0		ug/L			04/01/22 15:33	
Benzene	<0.15	0.50		ug/L			04/01/22 15:33	
3romobenzene	<0.36	1.0		ug/L			04/01/22 15:33	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 15:33	
Dichlorobromomethane	<0.37	1.0		ug/L			04/01/22 15:33	
Bromoform	<0.48	1.0		ug/L			04/01/22 15:33	
Bromomethane	<0.80	3.0		ug/L			04/01/22 15:33	
Carbon tetrachloride	<0.38	1.0		ug/L			04/01/22 15:33	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 15:33	
Chloroethane	<0.51	1.0		ug/L			04/01/22 15:33	
Chloroform	<0.37	2.0		ug/L			04/01/22 15:33	
Chloromethane	<0.32	1.0		ug/L ug/L			04/01/22 15:33	
ciis-1.2-Dichloroethene	<0.41	1.0		ug/L ug/L			04/01/22 15:33	
,				-				
cis-1,3-Dichloropropene Dibromochloromethane	<0.42	1.0		ug/L			04/01/22 15:33	
	<0.49	1.0		ug/L			04/01/22 15:33	
Dibromomethane	<0.27	1.0		ug/L			04/01/22 15:33	
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 15:33	
Ethylbenzene	<0.18	0.50		ug/L			04/01/22 15:33	
Hexachlorobutadiene	<0.45	1.0		ug/L			04/01/22 15:33	
sopropyl ether	<0.28	1.0		ug/L			04/01/22 15:33	
sopropylbenzene	<0.39	1.0		ug/L			04/01/22 15:33	
Methyl tert-butyl ether	<0.39	1.0		ug/L			04/01/22 15:33	
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 15:33	
Naphthalene	<0.34	1.0		ug/L			04/01/22 15:33	•
n-Butylbenzene	<0.39	1.0		ug/L			04/01/22 15:33	•
N-Propylbenzene	<0.41	1.0	0.41	ug/L			04/01/22 15:33	

Eurofins Chicago

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Toluene-d8 (Surr)

Client Sample ID: TW-223 Lab Sample ID: 500-214283-54 **Matrix: Water**

Date Collected: 03/25/22 17:25 Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 15:33	1
Styrene	< 0.39		1.0	0.39	ug/L			04/01/22 15:33	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 15:33	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 15:33	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 15:33	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 15:33	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 15:33	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 15:33	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 15:33	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 15:33	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 15:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		75 - 126			-		04/01/22 15:33	1
4-Bromofluorobenzene (Surr)	87		72 - 124					04/01/22 15:33	1
Dibromofluoromethane (Surr)	98		75 - 120					04/01/22 15:33	1

75 - 120

04/01/22 15:33

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-225 Lab Sample ID: 500-214283-55

Date Collected: 03/25/22 17:35

Date Received: 03/29/22 10:20

Matrix: Water

Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 15:56	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 15:56	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			04/01/22 15:56	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 15:56	1
1,1-Dichloroethane	<0.41	1.0		ug/L			04/01/22 15:56	1
1,1-Dichloroethene	< 0.39	1.0	0.39	ug/L			04/01/22 15:56	1
1,1-Dichloropropene	<0.30	1.0		ug/L			04/01/22 15:56	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	-			04/01/22 15:56	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	_			04/01/22 15:56	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34				04/01/22 15:56	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36				04/01/22 15:56	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 15:56	1
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 15:56	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			04/01/22 15:56	1
1,2-Dichloroethane	<0.39	1.0	0.39	-			04/01/22 15:56	1
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 15:56	1
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			04/01/22 15:56	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 15:56	1
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 15:56	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 15:56	
2,2-Dichloropropane	<0.44	1.0	0.44	-			04/01/22 15:56	1
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 15:56	
4-Chlorotoluene	<0.35	1.0	0.35				04/01/22 15:56	1
Benzene	<0.15	0.50	0.15	-			04/01/22 15:56	1
Bromobenzene	<0.36	1.0		ug/L			04/01/22 15:56	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 15:56	1
Dichlorobromomethane	<0.37	1.0	0.37	-			04/01/22 15:56	1
Bromoform	<0.48	1.0		ug/L			04/01/22 15:56	1
Bromomethane	<0.80	3.0	0.80	-			04/01/22 15:56	
Carbon tetrachloride	<0.38	1.0	0.38	-			04/01/22 15:56	1
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 15:56	1
Chloroethane	<0.51	1.0		ug/L			04/01/22 15:56	
Chloroform	<0.37	2.0	0.37	_			04/01/22 15:56	
Chloromethane	<0.32	1.0		ug/L			04/01/22 15:56	
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			04/01/22 15:56	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 15:56	-
Dibromochloromethane	<0.42	1.0		ug/L			04/01/22 15:56	
Dibromomethane	<0.49	1.0		ug/L			04/01/22 15:56	,
Dichlorodifluoromethane	<0.67	3.0		ug/L ug/L			04/01/22 15:56	-
		0.50						
Ethylbenzene	< 0.18			ug/L			04/01/22 15:56	
Hexachlorobutadiene Isopropyl ether	<0.45 <0.28	1.0 1.0		ug/L			04/01/22 15:56 04/01/22 15:56	1
				ug/L				
Isopropylbenzene	<0.39	1.0		ug/L			04/01/22 15:56	1
Methyl tert-butyl ether	< 0.39	1.0		ug/L			04/01/22 15:56	1
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 15:56	
Naphthalene	<0.34	1.0		ug/L			04/01/22 15:56	1
n-Butylbenzene	<0.39	1.0		ug/L			04/01/22 15:56	1
N-Propylbenzene p-Isopropyltoluene	<0.41 <0.36	1.0 1.0		ug/L ug/L			04/01/22 15:56 04/01/22 15:56	1

Eurofins Chicago

2

3

5

7

9

12

14

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Toluene-d8 (Surr)

Client Sample ID: TW-225 Lab Sample ID: 500-214283-55 **Matrix: Water**

Date Collected: 03/25/22 17:35 Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 15:56	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 15:56	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 15:56	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 15:56	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 15:56	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 15:56	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 15:56	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 15:56	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 15:56	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 15:56	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 15:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		75 - 126			•		04/01/22 15:56	1
4-Bromofluorobenzene (Surr)	85		72 - 124					04/01/22 15:56	1
Dibromofluoromethane (Surr)	98		75 - 120					04/01/22 15:56	1

75 - 120

04/01/22 15:56

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-216

Lab Sample ID: 500-214283-56

Matrix: Water

Date Collected: 03/25/22 15:40 Date Received: 03/29/22 10:20

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L		-	04/01/22 16:20	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 16:20	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			04/01/22 16:20	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 16:20	
1,1-Dichloroethane	<0.41	1.0		ug/L			04/01/22 16:20	
1,1-Dichloroethene	<0.39	1.0		ug/L			04/01/22 16:20	
1,1-Dichloropropene	<0.30	1.0		ug/L			04/01/22 16:20	
1,2,3-Trichlorobenzene	< 0.46	1.0		ug/L			04/01/22 16:20	
1,2,3-Trichloropropane	<0.41	2.0		ug/L			04/01/22 16:20	
1,2,4-Trichlorobenzene	<0.34	1.0		ug/L			04/01/22 16:20	
1,2,4-Trimethylbenzene	<0.36	1.0		ug/L			04/01/22 16:20	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 16:20	
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 16:20	
1,2-Dichlorobenzene	< 0.33	1.0	0.33	-			04/01/22 16:20	
1,2-Dichloroethane	<0.39	1.0	0.39	-			04/01/22 16:20	
1,2-Dichloropropane	<0.43	1.0	0.43				04/01/22 16:20	
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			04/01/22 16:20	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 16:20	
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 16:20	
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			04/01/22 16:20	
2,2-Dichloropropane	<0.44	1.0	0.44	-			04/01/22 16:20	
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 16:20	
4-Chlorotoluene	<0.35	1.0	0.35				04/01/22 16:20	
Benzene	<0.15	0.50	0.15	-			04/01/22 16:20	
Bromobenzene	<0.36	1.0		ug/L			04/01/22 16:20	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 16:20	
Dichlorobromomethane	<0.37	1.0		ug/L			04/01/22 16:20	
Bromoform	<0.48	1.0		ug/L			04/01/22 16:20	
Bromomethane	<0.80	3.0	0.80	-			04/01/22 16:20	
Carbon tetrachloride	<0.38	1.0	0.38	-			04/01/22 16:20	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 16:20	
Chloroethane	<0.51	1.0		ug/L			04/01/22 16:20	
Chloroform	<0.37	2.0		ug/L			04/01/22 16:20	
Chloromethane	<0.32	1.0		ug/L			04/01/22 16:20	
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			04/01/22 16:20	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 16:20	
Dibromochloromethane	<0.49	1.0		ug/L			04/01/22 16:20	
Dibromomethane	<0.27	1.0		ug/L			04/01/22 16:20	
Dichlorodifluoromethane	< 0.67	3.0		ug/L			04/01/22 16:20	
Ethylbenzene	<0.18	0.50		ug/L			04/01/22 16:20	
Hexachlorobutadiene	<0.45	1.0		ug/L			04/01/22 16:20	
sopropyl ether	<0.28	1.0		ug/L			04/01/22 16:20	
sopropylbenzene	<0.39	1.0		ug/L ug/L			04/01/22 16:20	
Methyl tert-butyl ether	<0.39	1.0		ug/L ug/L			04/01/22 16:20	
Methylene Chloride	<0.39 <1.6	5.0		ug/L ug/L				
							04/01/22 16:20	
Naphthalene n Butulbonzono	23 <0.30	1.0		ug/L			04/01/22 16:20	
n-Butylbenzene	< 0.39	1.0		ug/L			04/01/22 16:20	
N-Propylbenzene p-Isopropyltoluene	<0.41 <0.36	1.0		ug/L ug/L			04/01/22 16:20 04/01/22 16:20	

Eurofins Chicago

4/15/2022

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Toluene-d8 (Surr)

Client Sample ID: TW-216 Lab Sample ID: 500-214283-56

Date Collected: 03/25/22 15:40 Matrix: Water Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 16:20	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 16:20	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 16:20	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 16:20	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 16:20	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 16:20	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 16:20	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 16:20	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 16:20	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 16:20	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 16:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86		75 - 126			-		04/01/22 16:20	1
4-Bromofluorobenzene (Surr)	82		72 - 124					04/01/22 16:20	1
Dibromofluoromethane (Surr)	100		75 - 120					04/01/22 16:20	1

75 - 120

4

6

8

3

12

4 4

04/01/22 16:20

15

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-215

Lab Sample ID: 500-214283-57 Date Collected: 03/25/22 16:00

Matrix: Water

Date Received: 03/29/22 10:20

Analyte	Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 16:43	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 16:43	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			04/01/22 16:43	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 16:43	1
1,1-Dichloroethane	<0.41	1.0		ug/L			04/01/22 16:43	1
1,1-Dichloroethene	< 0.39	1.0	0.39	ug/L			04/01/22 16:43	1
1,1-Dichloropropene	<0.30	1.0		ug/L			04/01/22 16:43	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	-			04/01/22 16:43	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	_			04/01/22 16:43	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34				04/01/22 16:43	1
1,2,4-Trimethylbenzene	< 0.36	1.0	0.36				04/01/22 16:43	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 16:43	1
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 16:43	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			04/01/22 16:43	1
1,2-Dichloroethane	<0.39	1.0	0.39	-			04/01/22 16:43	1
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 16:43	1
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			04/01/22 16:43	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 16:43	1
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 16:43	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 16:43	
2,2-Dichloropropane	<0.44	1.0	0.44	-			04/01/22 16:43	1
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 16:43	
4-Chlorotoluene	<0.35	1.0	0.35				04/01/22 16:43	1
Benzene	<0.15	0.50	0.15	-			04/01/22 16:43	1
Bromobenzene	<0.36	1.0		ug/L			04/01/22 16:43	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 16:43	1
Dichlorobromomethane	<0.37	1.0		ug/L			04/01/22 16:43	1
Bromoform	<0.48	1.0		ug/L			04/01/22 16:43	1
Bromomethane	<0.80	3.0	0.80	-			04/01/22 16:43	
Carbon tetrachloride	<0.38	1.0	0.38	-			04/01/22 16:43	1
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 16:43	1
Chloroethane	<0.51	1.0		ug/L			04/01/22 16:43	
Chloroform	< 0.37	2.0	0.37	_			04/01/22 16:43	
Chloromethane	<0.32	1.0		ug/L			04/01/22 16:43	
cis-1,2-Dichloroethene	< 0.41	1.0	0.41	-			04/01/22 16:43	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 16:43	-
Dibromochloromethane	<0.49	1.0		ug/L			04/01/22 16:43	
Dibromomethane	<0.49	1.0		ug/L			04/01/22 16:43	-
Dichlorodifluoromethane	< 0.67	3.0		ug/L ug/L			04/01/22 16:43	-
		0.50						
Ethylbenzene	<0.18			ug/L			04/01/22 16:43	
Hexachlorobutadiene	< 0.45	1.0		ug/L			04/01/22 16:43	1
Isopropyl ether	<0.28	1.0		ug/L			04/01/22 16:43	
Isopropylbenzene	<0.39	1.0		ug/L			04/01/22 16:43	1
Methyl tert-butyl ether	< 0.39	1.0		ug/L			04/01/22 16:43	1
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 16:43	
Naphthalene	0.50 J	1.0		ug/L			04/01/22 16:43	1
n-Butylbenzene	<0.39	1.0		ug/L			04/01/22 16:43	1
N-Propylbenzene p-Isopropyltoluene	<0.41	1.0 1.0		ug/L ug/L			04/01/22 16:43 04/01/22 16:43	

Eurofins Chicago

4/15/2022

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-215 Lab Sample ID: 500-214283-57

Date Collected: 03/25/22 16:00 **Matrix: Water** Date Received: 03/29/22 10:20

Method: 8260B - Volatile O	rganic Compo	unds (GC/	MS) (Continu	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 16:43	1
Styrene	< 0.39		1.0	0.39	ug/L			04/01/22 16:43	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 16:43	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 16:43	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 16:43	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 16:43	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 16:43	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 16:43	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 16:43	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 16:43	1
Xylenes, Total	0.28	J	1.0	0.22	ug/L			04/01/22 16:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	87		75 - 126			-		04/01/22 16:43	1
4-Bromofluorobenzene (Surr)	89		72 - 124					04/01/22 16:43	1
Dibromofluoromethane (Surr)	97		75 - 120					04/01/22 16:43	1
Toluene-d8 (Surr)	98		75 - 120					04/01/22 16:43	1

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-221 Lab Sample ID: 500-214283-58

Date Collected: 03/25/22 16:55

Date Received: 03/29/22 10:20

Matrix: Water

Analyte	Result Qu	ialifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 17:06	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 17:06	1
1,1,2,2-Tetrachloroethane	< 0.40	1.0	0.40	ug/L			04/01/22 17:06	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 17:06	1
1,1-Dichloroethane	<0.41	1.0		ug/L			04/01/22 17:06	1
1,1-Dichloroethene	< 0.39	1.0	0.39	ug/L			04/01/22 17:06	1
1,1-Dichloropropene	<0.30	1.0		ug/L			04/01/22 17:06	1
1,2,3-Trichlorobenzene	<0.46	1.0		ug/L			04/01/22 17:06	1
1,2,3-Trichloropropane	<0.41	2.0		ug/L			04/01/22 17:06	1
1,2,4-Trichlorobenzene	<0.34	1.0		ug/L			04/01/22 17:06	1
1,2,4-Trimethylbenzene	<0.36	1.0		ug/L			04/01/22 17:06	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 17:06	1
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 17:06	1
1,2-Dichlorobenzene	<0.33	1.0		ug/L			04/01/22 17:06	1
1,2-Dichloroethane	<0.39	1.0		ug/L			04/01/22 17:06	1
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 17:06	· · · · · · · · · · · · · · · · · · ·
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			04/01/22 17:06	1
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 17:06	1
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 17:06	· · · · · · · · · · · 1
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 17:06	
2,2-Dichloropropane	<0.44	1.0		ug/L			04/01/22 17:06	1
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 17:06	· · · · · · · · · · · · · · · · · · ·
4-Chlorotoluene	<0.35	1.0		ug/L			04/01/22 17:06	1
Benzene	<0.15	0.50		ug/L			04/01/22 17:06	1
Bromobenzene	<0.36	1.0		ug/L			04/01/22 17:06	· · · · · · · · · · · · · · · · · · ·
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 17:06	1
Dichlorobromomethane	<0.43	1.0		ug/L			04/01/22 17:06	1
Bromoform	<0.48	1.0		ug/L			04/01/22 17:06	
Bromomethane	<0.80	3.0		ug/L			04/01/22 17:06	1
Carbon tetrachloride	<0.38	1.0		ug/L			04/01/22 17:06	1
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 17:06	
Chloroethane	<0.59	1.0		ug/L ug/L			04/01/22 17:06	1
Chloroform	<0.37	2.0		ug/L ug/L			04/01/22 17:06	
Chloromethane	<0.32	1.0		ug/L ug/L			04/01/22 17:06	
	<0.41	1.0		ug/L ug/L			04/01/22 17:06	1
cis-1,2-Dichloroethene	<0.41	1.0		-				1
cis-1,3-Dichloropropene				ug/L			04/01/22 17:06	
Dibromochloromethane	< 0.49	1.0		ug/L			04/01/22 17:06	1
Dibromomethane	<0.27	1.0		ug/L			04/01/22 17:06	1
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 17:06	
Ethylbenzene	<0.18	0.50		ug/L			04/01/22 17:06	1
Hexachlorobutadiene	<0.45	1.0		ug/L			04/01/22 17:06	1
Isopropyl ether	<0.28	1.0		ug/L			04/01/22 17:06	
Isopropylbenzene	<0.39	1.0		ug/L			04/01/22 17:06	1
Methyl tert-butyl ether	<0.39	1.0		ug/L			04/01/22 17:06	1
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 17:06	1
Naphthalene	<0.34	1.0		ug/L			04/01/22 17:06	1
n-Butylbenzene	<0.39	1.0		ug/L			04/01/22 17:06	1
N-Propylbenzene	<0.41	1.0		ug/L			04/01/22 17:06	1
p-Isopropyltoluene	< 0.36	1.0	0.36	ug/L			04/01/22 17:06	1

Eurofins Chicago

2

3

5

9

. . 12

14

15

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Toluene-d8 (Surr)

Client Sample ID: TW-221 Lab Sample ID: 500-214283-58

Date Collected: 03/25/22 16:55 **Matrix: Water** Date Received: 03/29/22 10:20

Analyte	Result Qu	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L		-	04/01/22 17:06	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 17:06	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 17:06	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 17:06	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 17:06	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 17:06	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 17:06	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 17:06	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 17:06	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 17:06	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 17:06	1
Surrogate	%Recovery Q	ualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		75 - 126			-		04/01/22 17:06	1
4-Bromofluorobenzene (Surr)	84		72 - 124					04/01/22 17:06	1
Dibromofluoromethane (Surr)	99		75 - 120					04/01/22 17:06	1

75 - 120

04/01/22 17:06

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-214

Lab Sample ID: 500-214283-59

Matrix: Water

Date Collected: 03/25/22 16:20 Date Received: 03/29/22 10:20

Analyte	Result (Qualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L		<u>-</u>	04/01/22 17:29	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 17:29	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	-			04/01/22 17:29	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 17:29	
1,1-Dichloroethane	<0.41	1.0		ug/L			04/01/22 17:29	
1,1-Dichloroethene	<0.39	1.0		ug/L			04/01/22 17:29	
1,1-Dichloropropene	<0.30	1.0		ug/L			04/01/22 17:29	
1,2,3-Trichlorobenzene	<0.46	1.0		ug/L			04/01/22 17:29	
1,2,3-Trichloropropane	<0.41	2.0		ug/L			04/01/22 17:29	
1,2,4-Trichlorobenzene	<0.34	1.0		ug/L			04/01/22 17:29	
1,2,4-Trimethylbenzene	<0.36	1.0		ug/L			04/01/22 17:29	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 17:29	
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 17:29	
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			04/01/22 17:29	
1,2-Dichloroethane	<0.39	1.0	0.39	-			04/01/22 17:29	
1,2-Dichloropropane	<0.43	1.0	0.43				04/01/22 17:29	
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			04/01/22 17:29	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 17:29	
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 17:29	
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			04/01/22 17:29	
2,2-Dichloropropane	<0.44	1.0	0.44	-			04/01/22 17:29	
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 17:29	
4-Chlorotoluene	< 0.35	1.0	0.35				04/01/22 17:29	
Benzene	<0.15	0.50	0.15	-			04/01/22 17:29	
Bromobenzene	<0.36	1.0		ug/L			04/01/22 17:29	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 17:29	
Dichlorobromomethane	<0.37	1.0		ug/L			04/01/22 17:29	
Bromoform	<0.48	1.0		ug/L			04/01/22 17:29	
Bromomethane	<0.80	3.0	0.40	-			04/01/22 17:29	
Carbon tetrachloride	<0.38	1.0	0.38	-			04/01/22 17:29	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 17:29	
Chloroethane	<0.59	1.0		ug/L ug/L			04/01/22 17:29	
Chloroform	<0.37	2.0		ug/L ug/L			04/01/22 17:29	
Chloromethane	<0.32	1.0		ug/L ug/L			04/01/22 17:29	
cis-1,2-Dichloroethene	<0.32	1.0	0.32	-			04/01/22 17:29	
·				-				
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 17:29	
Dibromochloromethane	<0.49	1.0		ug/L			04/01/22 17:29	
Dibromomethane	<0.27	1.0		ug/L			04/01/22 17:29	
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 17:29	
Ethylbenzene	<0.18	0.50		ug/L			04/01/22 17:29	
Hexachlorobutadiene	<0.45	1.0		ug/L			04/01/22 17:29	
Isopropyl ether	<0.28	1.0		ug/L			04/01/22 17:29	
sopropylbenzene	<0.39	1.0		ug/L			04/01/22 17:29	
Methyl tert-butyl ether	<0.39	1.0		ug/L			04/01/22 17:29	
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 17:29	
Naphthalene	<0.34	1.0		ug/L			04/01/22 17:29	
n-Butylbenzene	<0.39	1.0		ug/L			04/01/22 17:29	
N-Propylbenzene	<0.41	1.0	0.41	ug/L			04/01/22 17:29	

Eurofins Chicago

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-214 Lab Sample ID: 500-214283-59 Date Collected: 03/25/22 16:20 **Matrix: Water**

Date Received: 03/29/22 10:20

Method: 8260B - Volatile Org Analyte	•	unds (GC/I Qualifier	MS) (Continu RL	ed) MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	- Kesult	Qualifier	1.0		ug/L		rrepared	04/01/22 17:29	1
Styrene	<0.39		1.0	0.39	J			04/01/22 17:29	1
tert-Butylbenzene	<0.40		1.0	0.40				04/01/22 17:29	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 17:29	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 17:29	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 17:29	1
trans-1,3-Dichloropropene	< 0.36		1.0	0.36	ug/L			04/01/22 17:29	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 17:29	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 17:29	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 17:29	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 17:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		75 - 126			-	-	04/01/22 17:29	1
4-Bromofluorobenzene (Surr)	83		72 - 124					04/01/22 17:29	1
Dibromofluoromethane (Surr)	98		75 - 120					04/01/22 17:29	1
Toluene-d8 (Surr)	99		75 - 120					04/01/22 17:29	1

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: 500-214283-60

Date Collected: 03/25/22 11:01 Matrix: Water Date Received: 03/29/22 10:20

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 17:52	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 17:52	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			04/01/22 17:52	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 17:52	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			04/01/22 17:52	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			04/01/22 17:52	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			04/01/22 17:52	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			04/01/22 17:52	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			04/01/22 17:52	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			04/01/22 17:52	
1,2,4-Trimethylbenzene	<0.36	1.0		ug/L			04/01/22 17:52	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 17:52	
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 17:52	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			04/01/22 17:52	
1.2-Dichloroethane	<0.39	1.0		ug/L			04/01/22 17:52	
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 17:52	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			04/01/22 17:52	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 17:52	
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 17:52	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 17:52	
2,2-Dichloropropane	<0.44	1.0		ug/L			04/01/22 17:52	
2-Chlorotoluene	<0.31	1.0		ug/L			04/01/22 17:52	
4-Chlorotoluene	<0.35	1.0		ug/L			04/01/22 17:52	
Benzene	<0.15	0.50		ug/L			04/01/22 17:52	
Bromobenzene	<0.36	1.0		ug/L ug/L			04/01/22 17:52	
Bromochloromethane	<0.43	1.0		ug/L			04/01/22 17:52	
Dichlorobromomethane	<0.43	1.0		ug/L ug/L			04/01/22 17:52	
Bromoform	<0.48	1.0		ug/L			04/01/22 17:52	
Bromomethane	<0.80	3.0		ug/L			04/01/22 17:52	
Carbon tetrachloride	<0.38	1.0		ug/L			04/01/22 17:52	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 17:52	
Chloroethane	<0.51	1.0		ug/L			04/01/22 17:52	
Chloroform	<0.37	2.0		ug/L			04/01/22 17:52	
Chloromethane	<0.32	1.0		ug/L			04/01/22 17:52	
cis-1,2-Dichloroethene	9.9	1.0		ug/L			04/01/22 17:52	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 17:52	
Dibromochloromethane	<0.49	1.0		ug/L			04/01/22 17:52	
Dibromomethane	<0.27	1.0		ug/L			04/01/22 17:52	
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 17:52	
Ethylbenzene	<0.18	0.50		ug/L			04/01/22 17:52	
Hexachlorobutadiene	<0.45	1.0		ug/L			04/01/22 17:52	
Isopropyl ether	<0.28	1.0		ug/L			04/01/22 17:52	
Isopropylbenzene	<0.39	1.0		ug/L			04/01/22 17:52	
Methyl tert-butyl ether	<0.39	1.0		ug/L			04/01/22 17:52	
Methylene Chloride	<1.6	5.0		ug/L			04/01/22 17:52	
Naphthalene	<0.34	1.0		ug/L			04/01/22 17:52	
n-Butylbenzene	<0.39	1.0	0.39	ug/L			04/01/22 17:52	
N-Propylbenzene	<0.41	1.0	0.41	ug/L			04/01/22 17:52	

Eurofins Chicago

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-60 **Client Sample ID: FD-3** Date Collected: 03/25/22 11:01

Matrix: Water

Date Received: 03/29/22 10:20

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 17:52	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 17:52	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 17:52	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 17:52	1
Toluene	0.67		0.50	0.15	ug/L			04/01/22 17:52	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 17:52	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 17:52	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 17:52	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 17:52	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 17:52	1
Xylenes, Total	0.33	J	1.0	0.22	ug/L			04/01/22 17:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		75 - 126			•		04/01/22 17:52	1
4-Bromofluorobenzene (Surr)	86		72 - 124					04/01/22 17:52	1
Dibromofluoromethane (Surr)	96		75 - 120					04/01/22 17:52	1
Toluene-d8 (Surr)	100		75 - 120					04/01/22 17:52	1

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TB1

Lab Sample ID: 500-214283-61

Matrix: Water

Date Collected: 03/25/22 00:00 Date Received: 03/29/22 10:20

Analyte	Result Qua	lifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			04/01/22 12:05	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			04/01/22 12:05	
1,1,2,2-Tetrachloroethane	< 0.40	1.0	0.40	ug/L			04/01/22 12:05	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			04/01/22 12:05	
1,1-Dichloroethane	<0.41	1.0		ug/L			04/01/22 12:05	
1,1-Dichloroethene	<0.39	1.0	0.39	-			04/01/22 12:05	
1,1-Dichloropropene	<0.30	1.0		ug/L			04/01/22 12:05	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	-			04/01/22 12:05	
1,2,3-Trichloropropane	<0.41	2.0	0.41	_			04/01/22 12:05	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34				04/01/22 12:05	,
1,2,4-Trimethylbenzene	<0.36	1.0	0.36				04/01/22 12:05	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			04/01/22 12:05	
1,2-Dibromoethane	<0.39	1.0		ug/L			04/01/22 12:05	
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			04/01/22 12:05	,
1,2-Dichloroethane	<0.39	1.0	0.39	-			04/01/22 12:05	,
1,2-Dichloropropane	<0.43	1.0		ug/L			04/01/22 12:05	,
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			04/01/22 12:05	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			04/01/22 12:05	,
1,3-Dichloropropane	<0.36	1.0		ug/L			04/01/22 12:05	,
1,4-Dichlorobenzene	<0.36	1.0		ug/L			04/01/22 12:05	,
2,2-Dichloropropane	<0.44	1.0	0.30	-			04/01/22 12:05	,
2-Chlorotoluene	<0.31	1.0		ug/L ug/L			04/01/22 12:05	,
4-Chlorotoluene	<0.35	1.0					04/01/22 12:05	
			0.35	-				•
Benzene Bromobenzene	<0.15	0.50	0.15				04/01/22 12:05	
	< 0.36	1.0		ug/L			04/01/22 12:05	•
Bromochloromethane	<0.43 <0.37	1.0 1.0		ug/L			04/01/22 12:05	•
Dichlorobromomethane			0.37				04/01/22 12:05	
Bromoform	<0.48	1.0		ug/L			04/01/22 12:05	•
Bromomethane	<0.80	3.0	0.80	-			04/01/22 12:05	
Carbon tetrachloride	<0.38	1.0	0.38				04/01/22 12:05	
Chlorobenzene	<0.39	1.0		ug/L			04/01/22 12:05	
Chloroethane	<0.51	1.0		ug/L			04/01/22 12:05	•
Chloroform	<0.37	2.0	0.37				04/01/22 12:05	
Chloromethane	<0.32	1.0		ug/L			04/01/22 12:05	•
cis-1,2-Dichloroethene	<0.41	1.0	0.41	-			04/01/22 12:05	•
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			04/01/22 12:05	
Dibromochloromethane	<0.49	1.0		ug/L			04/01/22 12:05	,
Dibromomethane	<0.27	1.0		ug/L			04/01/22 12:05	•
Dichlorodifluoromethane	<0.67	3.0		ug/L			04/01/22 12:05	
Ethylbenzene	<0.18	0.50	0.18	ug/L			04/01/22 12:05	•
Hexachlorobutadiene	<0.45	1.0		ug/L			04/01/22 12:05	•
Isopropyl ether	<0.28	1.0		ug/L			04/01/22 12:05	
Isopropylbenzene	<0.39	1.0	0.39	ug/L			04/01/22 12:05	•
Methyl tert-butyl ether	<0.39	1.0	0.39	ug/L			04/01/22 12:05	•
Methylene Chloride	<1.6	5.0	1.6	ug/L			04/01/22 12:05	
Naphthalene	<0.34	1.0	0.34	ug/L			04/01/22 12:05	,
n-Butylbenzene	<0.39	1.0	0.39	ug/L			04/01/22 12:05	
N-Propylbenzene	<0.41	1.0	0.41	ug/L			04/01/22 12:05	•
p-Isopropyltoluene	<0.36	1.0	0.36	ug/L			04/01/22 12:05	

Eurofins Chicago

4/15/2022

Client: Stantec Consulting Corp. Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TB1

Date Collected: 03/25/22 00:00

Lab Sample ID: 500-214283-61

Matrix: Water

Date Received: 03/29/22 10:20

Toluene-d8 (Surr)

Method: 8260B - Volatile On Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 12:05	1
Styrene	< 0.39		1.0	0.39	ug/L			04/01/22 12:05	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 12:05	1
Tetrachloroethene	< 0.37		1.0	0.37	ug/L			04/01/22 12:05	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 12:05	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 12:05	1
trans-1,3-Dichloropropene	< 0.36		1.0	0.36	ug/L			04/01/22 12:05	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 12:05	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 12:05	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 12:05	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 12:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	82		75 - 126			-		04/01/22 12:05	1
4-Bromofluorobenzene (Surr)	88		72 - 124					04/01/22 12:05	1
Dibromofluoromethane (Surr)	95		75 - 120					04/01/22 12:05	1

75 - 120

100

3

5

7

a

10

12

04/01/22 12:05

15

16

Definitions/Glossary

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Qualifiers

GC/MS VOA

Qualifier	Qualifier Description
*	LCS and/or LCSD is outside accordance limits, low biased

LCS and/or LCSD is outside acceptance limits, low biased.

В Compound was found in the blank and sample.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC/MS Semi VOA

Qualifier	Qualifier Description
4.4	1.00 / 00D DDD

LCS/LCSD RPD exceeds control limits. *1

*3 ISTD response or retention time outside acceptable limits.

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not 4

applicable.

D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a

> dilution may be flagged with a D. Result exceeded calibration range.

F1

MS and/or MSD recovery exceeds control limits.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1-Surrogate recovery exceeds control limits, low biased. S1+ Surrogate recovery exceeds control limits, high biased.

MS/MSD RPD exceeds control limits

GC Semi VOA

Ε

F2

Qualifier **Qualifier Description**

*+ LCS and/or LCSD is outside acceptance limits, high biased.

D Surrogate or matrix spike recoveries were not obtained because the extract was diluted for analysis; also compounds analyzed at a

dilution may be flagged with a D.

F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

S1+ Surrogate recovery exceeds control limits, high biased.

LCMS

Qualifier **Qualifier Description**

*5+ Isotope dilution analyte is outside acceptance limits, high biased.

Value is EMPC (estimated maximum possible concentration).

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

Continuing Calibration Verification (CCV) is outside acceptance limits, high biased.

В Compound was found in the blank and sample. F1 MS and/or MSD recovery exceeds control limits.

F2 MS/MSD RPD exceeds control limits F3 Duplicate RPD exceeds the control limit

F5 Duplicate RPD exceeds limit, and one or both sample results are less than 5 times RL, and the absolute difference between results is <

the upper reporting limits for both.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

Eurofins Chicago

Page 216 of 356

Job ID: 500-214283-1

4/15/2022

Definitions/Glossary

Client: Stantec Consulting Corp. Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490 Job ID: 500-214283-1

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Glossary (Continued)

TEF TEQ

TNTC

,	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC/MS VOA

Prep Batch: 649331

Lab Sample ID 500-214283-42	Client Sample ID SB-214 4-5	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch
500-214283-43	SB-215 0-2	Total/NA	Solid	5035	
500-214283-44	SB-215 6-7	Total/NA	Solid	5035	
LB3 500-649331/18-A	Method Blank	Total/NA	Solid	5035	
LCS 500-649331/19-A	Lab Control Sample	Total/NA	Solid	5035	

Prep Batch: 649332

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	5035	_
500-214283-2	SB-236 6-7	Total/NA	Solid	5035	
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	5035	
500-214283-4	SB-234 4.5-6.5	Total/NA	Solid	5035	
500-214283-5	SB-229 1-3	Total/NA	Solid	5035	
500-214283-7	SB-229 5-7	Total/NA	Solid	5035	
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	5035	
500-214283-10	SB-230 8-10	Total/NA	Solid	5035	
500-214283-11	SB-231 5-7	Total/NA	Solid	5035	
500-214283-12	SB-231 8.25-10	Total/NA	Solid	5035	
500-214283-13	SB-224 1-3	Total/NA	Solid	5035	
500-214283-14	SB-224 7-8	Total/NA	Solid	5035	
500-214283-15	SB-222 6.5-8	Total/NA	Solid	5035	
500-214283-16	SB-222 9-10	Total/NA	Solid	5035	
500-214283-18	SB-216 8-8.5	Total/NA	Solid	5035	
500-214283-19	SB-216 10-11	Total/NA	Solid	5035	
500-214283-20	SB-237 1-2	Total/NA	Solid	5035	
500-214283-21	SB-237 9-10	Total/NA	Solid	5035	
500-214283-22	SB-213 0-2	Total/NA	Solid	5035	
500-214283-23	SB-213 10-12	Total/NA	Solid	5035	
LB3 500-649332/21-A	Method Blank	Total/NA	Solid	5035	
LCS 500-649332/22-A	Lab Control Sample	Total/NA	Solid	5035	
500-214283-1 MS	SB-236 3.5-5	Total/NA	Solid	5035	
500-214283-1 MSD	SB-236 3.5-5	Total/NA	Solid	5035	

Prep Batch: 649333

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-24	SB-217 0-2	Total/NA	Solid	5035	
500-214283-25	SB-217 9-10	Total/NA	Solid	5035	
500-214283-26	SB-217 3-5	Total/NA	Solid	5035	
500-214283-27	SB-223 4-6	Total/NA	Solid	5035	
500-214283-28	FD-1	Total/NA	Solid	5035	
500-214283-29	SB-223 9-10	Total/NA	Solid	5035	
500-214283-30	SB-220 4-5	Total/NA	Solid	5035	
500-214283-31	SB-220 14.75-15	Total/NA	Solid	5035	
500-214283-32	SB-225 2-4	Total/NA	Solid	5035	
500-214283-33	SB-225 8-9	Total/NA	Solid	5035	
500-214283-34	SB-227 4-6	Total/NA	Solid	5035	
500-214283-35	SB-227 7-8	Total/NA	Solid	5035	
500-214283-36	SB-221 0-2	Total/NA	Solid	5035	
500-214283-37	SB-221 4-5	Total/NA	Solid	5035	
500-214283-38	SB-218 2-4	Total/NA	Solid	5035	
500-214283-39	FD-2	Total/NA	Solid	5035	

Eurofins Chicago

Page 218 of 356

2

Job ID: 500-214283-1

2

4

6

8

9

11

13

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC/MS VOA (Continued)

Prep Batch: 649333 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-40	SB-218 5-7	Total/NA	Solid	5035	
500-214283-41	SB-214 0-2	Total/NA	Solid	5035	
LB3 500-649333/23-A	Method Blank	Total/NA	Solid	5035	
LCS 500-649333/24-A	Lab Control Sample	Total/NA	Solid	5035	
500-214283-26 MS	SB-217 3-5	Total/NA	Solid	5035	
500-214283-26 MSD	SB-217 3-5	Total/NA	Solid	5035	
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	5035	
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	5035	

Analysis Batch: 649415

Lab Sample ID LB3 500-649331/18-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 8260B	Prep Batch 649331
MB 500-649415/7	Method Blank	Total/NA	Solid	8260B	
LCS 500-649331/19-A	Lab Control Sample	Total/NA	Solid	8260B	649331
LCS 500-649415/5	Lab Control Sample	Total/NA	Solid	8260B	

Analysis Batch: 649615

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
500-214283-1	SB-236 3.5-5	Total/NA	Solid	8260B	64933
500-214283-2	SB-236 6-7	Total/NA	Solid	8260B	64933
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	8260B	64933
500-214283-4	SB-234 4.5-6.5	Total/NA	Solid	8260B	64933
500-214283-5	SB-229 1-3	Total/NA	Solid	8260B	64933
500-214283-7	SB-229 5-7	Total/NA	Solid	8260B	64933
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	8260B	64933
500-214283-10	SB-230 8-10	Total/NA	Solid	8260B	64933
500-214283-11	SB-231 5-7	Total/NA	Solid	8260B	64933
500-214283-12	SB-231 8.25-10	Total/NA	Solid	8260B	64933
500-214283-13	SB-224 1-3	Total/NA	Solid	8260B	64933
500-214283-14	SB-224 7-8	Total/NA	Solid	8260B	64933
500-214283-15	SB-222 6.5-8	Total/NA	Solid	8260B	64933
500-214283-16	SB-222 9-10	Total/NA	Solid	8260B	64933
500-214283-18	SB-216 8-8.5	Total/NA	Solid	8260B	64933
500-214283-19	SB-216 10-11	Total/NA	Solid	8260B	64933
500-214283-20	SB-237 1-2	Total/NA	Solid	8260B	64933
500-214283-21	SB-237 9-10	Total/NA	Solid	8260B	64933
500-214283-22	SB-213 0-2	Total/NA	Solid	8260B	64933
500-214283-23	SB-213 10-12	Total/NA	Solid	8260B	64933
LB3 500-649332/21-A	Method Blank	Total/NA	Solid	8260B	64933
MB 500-649615/7	Method Blank	Total/NA	Solid	8260B	
LCS 500-649332/22-A	Lab Control Sample	Total/NA	Solid	8260B	64933
LCS 500-649615/5	Lab Control Sample	Total/NA	Solid	8260B	
500-214283-1 MS	SB-236 3.5-5	Total/NA	Solid	8260B	64933
500-214283-1 MSD	SB-236 3.5-5	Total/NA	Solid	8260B	64933

Analysis Batch: 649801

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-24	SB-217 0-2	Total/NA	Solid	8260B	649333
500-214283-25	SB-217 9-10	Total/NA	Solid	8260B	649333
500-214283-26	SB-217 3-5	Total/NA	Solid	8260B	649333
500-214283-27	SB-223 4-6	Total/NA	Solid	8260B	649333

Page 219 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC/MS VOA (Continued)

Analysis Batch: 649801 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-28	FD-1	Total/NA	Solid	8260B	649333
500-214283-29	SB-223 9-10	Total/NA	Solid	8260B	649333
500-214283-30	SB-220 4-5	Total/NA	Solid	8260B	649333
500-214283-31	SB-220 14.75-15	Total/NA	Solid	8260B	649333
500-214283-32	SB-225 2-4	Total/NA	Solid	8260B	649333
500-214283-33	SB-225 8-9	Total/NA	Solid	8260B	649333
500-214283-34	SB-227 4-6	Total/NA	Solid	8260B	649333
500-214283-35	SB-227 7-8	Total/NA	Solid	8260B	649333
500-214283-37	SB-221 4-5	Total/NA	Solid	8260B	649333
500-214283-38	SB-218 2-4	Total/NA	Solid	8260B	649333
500-214283-39	FD-2	Total/NA	Solid	8260B	649333
500-214283-40	SB-218 5-7	Total/NA	Solid	8260B	649333
500-214283-41	SB-214 0-2	Total/NA	Solid	8260B	649333
LB3 500-649333/23-A	Method Blank	Total/NA	Solid	8260B	649333
MB 500-649801/7	Method Blank	Total/NA	Solid	8260B	
LCS 500-649333/24-A	Lab Control Sample	Total/NA	Solid	8260B	649333
LCS 500-649801/31	Lab Control Sample	Total/NA	Solid	8260B	
500-214283-26 MS	SB-217 3-5	Total/NA	Solid	8260B	649333
500-214283-26 MSD	SB-217 3-5	Total/NA	Solid	8260B	649333

Analysis Batch: 649839

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-36	SB-221 0-2	Total/NA	Solid	8260B	649333
500-214283-42	SB-214 4-5	Total/NA	Solid	8260B	649331
500-214283-43	SB-215 0-2	Total/NA	Solid	8260B	649331
500-214283-44	SB-215 6-7	Total/NA	Solid	8260B	649331
MB 500-649839/7	Method Blank	Total/NA	Solid	8260B	
LCS 500-649839/5	Lab Control Sample	Total/NA	Solid	8260B	
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	8260B	649333
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	8260B	649333

Analysis Batch: 649840

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-46	MW-231	Total/NA	Water	8260B	_
500-214283-47	MW-234	Total/NA	Water	8260B	
500-214283-48	TW-237	Total/NA	Water	8260B	
500-214283-49	TW-222	Total/NA	Water	8260B	
500-214283-50	TW-227	Total/NA	Water	8260B	
500-214283-51	TW-213	Total/NA	Water	8260B	
500-214283-52	TW-229	Total/NA	Water	8260B	
500-214283-53	TW-230	Total/NA	Water	8260B	
500-214283-54	TW-223	Total/NA	Water	8260B	
500-214283-55	TW-225	Total/NA	Water	8260B	
500-214283-56	TW-216	Total/NA	Water	8260B	
500-214283-57	TW-215	Total/NA	Water	8260B	
500-214283-58	TW-221	Total/NA	Water	8260B	
500-214283-59	TW-214	Total/NA	Water	8260B	
500-214283-60	FD-3	Total/NA	Water	8260B	
500-214283-61	TB1	Total/NA	Water	8260B	
MB 500-649840/7	Method Blank	Total/NA	Water	8260B	
LCS 500-649840/5	Lab Control Sample	Total/NA	Water	8260B	

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC/MS Semi VOA

Prep Batch: 649620

Lab Sample ID 500-214283-46	Client Sample ID MW-231	Prep Type Total/NA	Matrix Water	Method Prep Ba 3510C	ıtch
500-214283-47	MW-234	Total/NA	Water	3510C	
MB 500-649620/1-A	Method Blank	Total/NA	Water	3510C	
LCS 500-649620/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 500-649620/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Analysis Batch: 649786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-46	MW-231	Total/NA	Water	8270D	649620
500-214283-47	MW-234	Total/NA	Water	8270D	649620
MB 500-649620/1-A	Method Blank	Total/NA	Water	8270D	649620
LCS 500-649620/2-A	Lab Control Sample	Total/NA	Water	8270D	649620
LCSD 500-649620/3-A	Lab Control Sample Dup	Total/NA	Water	8270D	649620

Analysis Batch: 650256

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	8270D	650394
500-214283-11	SB-231 5-7	Total/NA	Solid	8270D	650394
500-214283-17	SB-216 7-8	Total/NA	Solid	8270D	650394

Prep Batch: 650394

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	3541	
500-214283-2	SB-236 6-7	Total/NA	Solid	3541	
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	3541	
500-214283-4	SB-234 4.5-6.5	Total/NA	Solid	3541	
500-214283-5	SB-229 1-3	Total/NA	Solid	3541	
500-214283-6	SB-229 4-5	Total/NA	Solid	3541	
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	3541	
500-214283-9	SB-230 4.5-6	Total/NA	Solid	3541	
500-214283-11	SB-231 5-7	Total/NA	Solid	3541	
500-214283-12	SB-231 8.25-10	Total/NA	Solid	3541	
500-214283-13	SB-224 1-3	Total/NA	Solid	3541	
500-214283-14	SB-224 7-8	Total/NA	Solid	3541	
500-214283-15	SB-222 6.5-8	Total/NA	Solid	3541	
500-214283-16	SB-222 9-10	Total/NA	Solid	3541	
500-214283-17	SB-216 7-8	Total/NA	Solid	3541	
500-214283-19	SB-216 10-11	Total/NA	Solid	3541	
500-214283-20	SB-237 1-2	Total/NA	Solid	3541	
500-214283-21	SB-237 9-10	Total/NA	Solid	3541	
500-214283-22	SB-213 0-2	Total/NA	Solid	3541	
500-214283-23	SB-213 10-12	Total/NA	Solid	3541	
500-214283-1 MS	SB-236 3.5-5	Total/NA	Solid	3541	
500-214283-1 MSD	SB-236 3.5-5	Total/NA	Solid	3541	

Prep Batch: 650567

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500)-214283-24	SB-217 0-2	Total/NA	Solid	3541	
500)-214283-25	SB-217 9-10	Total/NA	Solid	3541	
500)-214283-26	SB-217 3-5	Total/NA	Solid	3541	
500)-214283-27	SB-223 4-6	Total/NA	Solid	3541	

Eurofins Chicago

Page 221 of 356

2

Job ID: 500-214283-1

3

4

6

8

3

11

12

13

4 -

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC/MS Semi VOA (Continued)

Prep Batch: 650567 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
500-214283-28	FD-1	Total/NA	Solid	3541	
500-214283-29	SB-223 9-10	Total/NA	Solid	3541	
500-214283-30	SB-220 4-5	Total/NA	Solid	3541	
500-214283-31	SB-220 14.75-15	Total/NA	Solid	3541	
500-214283-32	SB-225 2-4	Total/NA	Solid	3541	
500-214283-33	SB-225 8-9	Total/NA	Solid	3541	
500-214283-34	SB-227 4-6	Total/NA	Solid	3541	
500-214283-35	SB-227 7-8	Total/NA	Solid	3541	
500-214283-38	SB-218 2-4	Total/NA	Solid	3541	
500-214283-39	FD-2	Total/NA	Solid	3541	
500-214283-40	SB-218 5-7	Total/NA	Solid	3541	
500-214283-41	SB-214 0-2	Total/NA	Solid	3541	
500-214283-42	SB-214 4-5	Total/NA	Solid	3541	
500-214283-43	SB-215 0-2	Total/NA	Solid	3541	
500-214283-44	SB-215 6-7	Total/NA	Solid	3541	
MB 500-650567/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-650567/2-A	Lab Control Sample	Total/NA	Solid	3541	
500-214283-26 MS	SB-217 3-5	Total/NA	Solid	3541	
500-214283-26 MSD	SB-217 3-5	Total/NA	Solid	3541	

Analysis Batch: 650605

Lab Sample ID 500-214283-1	Client Sample ID SB-236 3.5-5	Prep Type Total/NA	Matrix Solid	Method 8270D	Prep Batch 650394
500-214283-5	SB-229 1-3	Total/NA	Solid	8270D	650394
500-214283-1 MS	SB-236 3.5-5	Total/NA	Solid	8270D	650394
500-214283-1 MSD	SB-236 3.5-5	Total/NA	Solid	8270D	650394

Analysis Batch: 650611

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-2	SB-236 6-7	Total/NA	Solid	8270D	650394
500-214283-4	SB-234 4.5-6.5	Total/NA	Solid	8270D	650394
500-214283-6	SB-229 4-5	Total/NA	Solid	8270D	650394
500-214283-9	SB-230 4.5-6	Total/NA	Solid	8270D	650394
500-214283-12	SB-231 8.25-10	Total/NA	Solid	8270D	650394
500-214283-14	SB-224 7-8	Total/NA	Solid	8270D	650394
500-214283-16	SB-222 9-10	Total/NA	Solid	8270D	650394
500-214283-19	SB-216 10-11	Total/NA	Solid	8270D	650394
500-214283-21	SB-237 9-10	Total/NA	Solid	8270D	650394
500-214283-23	SB-213 10-12	Total/NA	Solid	8270D	650394

Prep Batch: 650648

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-36 - DL	SB-221 0-2	Total/NA	Solid	3541	
500-214283-36	SB-221 0-2	Total/NA	Solid	3541	
500-214283-37	SB-221 4-5	Total/NA	Solid	3541	
MB 500-650648/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-650648/2-A	Lab Control Sample	Total/NA	Solid	3541	
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	3541	
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	3541	

Eurofins Chicago

Job ID: 500-214283-1

3

4

7

9

11

13

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC/MS Semi VOA

Analysis Batch: 650792

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-30	SB-220 4-5	Total/NA	Solid	8270D	650567
500-214283-36	SB-221 0-2	Total/NA	Solid	8270D	650648
MB 500-650567/1-A	Method Blank	Total/NA	Solid	8270D	650567
MB 500-650648/1-A	Method Blank	Total/NA	Solid	8270D	650648
LCS 500-650567/2-A	Lab Control Sample	Total/NA	Solid	8270D	650567
LCS 500-650648/2-A	Lab Control Sample	Total/NA	Solid	8270D	650648
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	8270D	650648
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	8270D	650648

Analysis Batch: 650798

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-25	SB-217 9-10	Total/NA	Solid	8270D	650567
500-214283-26	SB-217 3-5	Total/NA	Solid	8270D	650567
500-214283-28	FD-1	Total/NA	Solid	8270D	650567
500-214283-29	SB-223 9-10	Total/NA	Solid	8270D	650567
500-214283-31	SB-220 14.75-15	Total/NA	Solid	8270D	650567
500-214283-33	SB-225 8-9	Total/NA	Solid	8270D	650567
500-214283-35	SB-227 7-8	Total/NA	Solid	8270D	650567
500-214283-37	SB-221 4-5	Total/NA	Solid	8270D	650648
500-214283-40	SB-218 5-7	Total/NA	Solid	8270D	650567
500-214283-42	SB-214 4-5	Total/NA	Solid	8270D	650567
500-214283-44	SB-215 6-7	Total/NA	Solid	8270D	650567
500-214283-26 MS	SB-217 3-5	Total/NA	Solid	8270D	650567
500-214283-26 MSD	SB-217 3-5	Total/NA	Solid	8270D	650567

Analysis Batch: 651037

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-15	SB-222 6.5-8	Total/NA	Solid	8270D	650394
500-214283-20	SB-237 1-2	Total/NA	Solid	8270D	650394
500-214283-22	SB-213 0-2	Total/NA	Solid	8270D	650394
500-214283-24	SB-217 0-2	Total/NA	Solid	8270D	650567
500-214283-27	SB-223 4-6	Total/NA	Solid	8270D	650567
500-214283-32	SB-225 2-4	Total/NA	Solid	8270D	650567
500-214283-34	SB-227 4-6	Total/NA	Solid	8270D	650567
500-214283-36 - DL	SB-221 0-2	Total/NA	Solid	8270D	650648
500-214283-38	SB-218 2-4	Total/NA	Solid	8270D	650567
500-214283-39	FD-2	Total/NA	Solid	8270D	650567
500-214283-41	SB-214 0-2	Total/NA	Solid	8270D	650567
500-214283-43	SB-215 0-2	Total/NA	Solid	8270D	650567

Analysis Batch: 651252

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	8270D	650394
500-214283-13	SB-224 1-3	Total/NA	Solid	8270D	650394

GC Semi VOA

Prep Batch: 649706

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-46	MW-231	Total/NA	Water	3510C	
500-214283-47	MW-234	Total/NA	Water	3510C	

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC Semi VOA (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 500-649706/1-A	Method Blank	Total/NA	Water	3510C	
LCS 500-649706/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCS 500-649706/4-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 500-649706/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	
LCSD 500-649706/5-A	Lab Control Sample Dup	Total/NA	Water	3510C	

Prep Batch: 649855

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-46	MW-231	Total/NA	Water	8151A	
500-214283-47	MW-234	Total/NA	Water	8151A	
MB 500-649855/1-A	Method Blank	Total/NA	Water	8151A	
LCS 500-649855/2-A	Lab Control Sample	Total/NA	Water	8151A	
LCSD 500-649855/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	

Analysis Batch: 649856

Lab Sample ID 500-214283-46	Client Sample ID MW-231	Prep Type Total/NA	Matrix Water	Method 8081B	Prep Batch 649706
500-214283-47	MW-234	Total/NA	Water	8081B	649706
MB 500-649706/1-A	Method Blank	Total/NA	Water	8081B	649706
LCS 500-649706/2-A	Lab Control Sample	Total/NA	Water	8081B	649706
LCSD 500-649706/3-A	Lab Control Sample Dup	Total/NA	Water	8081B	649706

Analysis Batch: 649859

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-46	MW-231	Total/NA	Water	8082A	649706
500-214283-47	MW-234	Total/NA	Water	8082A	649706
MB 500-649706/1-A	Method Blank	Total/NA	Water	8082A	649706
LCS 500-649706/4-A	Lab Control Sample	Total/NA	Water	8082A	649706
LCSD 500-649706/5-A	Lab Control Sample Dup	Total/NA	Water	8082A	649706

Analysis Batch: 650032

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-46	MW-231	Total/NA	Water	8151A	649855
500-214283-47	MW-234	Total/NA	Water	8151A	649855
MB 500-649855/1-A	Method Blank	Total/NA	Water	8151A	649855
LCS 500-649855/2-A	Lab Control Sample	Total/NA	Water	8151A	649855
LCSD 500-649855/3-A	Lab Control Sample Dup	Total/NA	Water	8151A	649855

Prep Batch: 650302

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	8151A	
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	8151A	
500-214283-5	SB-229 1-3	Total/NA	Solid	8151A	
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	8151A	
500-214283-11	SB-231 5-7	Total/NA	Solid	8151A	
500-214283-13	SB-224 1-3	Total/NA	Solid	8151A	
500-214283-15	SB-222 6.5-8	Total/NA	Solid	8151A	
500-214283-17	SB-216 7-8	Total/NA	Solid	8151A	
500-214283-20	SB-237 1-2	Total/NA	Solid	8151A	
500-214283-22	SB-213 0-2	Total/NA	Solid	8151A	
500-214283-24	SB-217 0-2	Total/NA	Solid	8151A	

Eurofins Chicago

Page 224 of 356

2

Job ID: 500-214283-1

2

4

6

8

10

11

13

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC Semi VOA (Continued)

Prep Batch: 650302 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-27	SB-223 4-6	Total/NA	Solid	8151A	
500-214283-30	SB-220 4-5	Total/NA	Solid	8151A	
MB 500-650302/1-A	Method Blank	Total/NA	Solid	8151A	
LCS 500-650302/2-A	Lab Control Sample	Total/NA	Solid	8151A	

Prep Batch: 650339

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	3541	
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	3541	
500-214283-5	SB-229 1-3	Total/NA	Solid	3541	
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	3541	
500-214283-11	SB-231 5-7	Total/NA	Solid	3541	
500-214283-13	SB-224 1-3	Total/NA	Solid	3541	
500-214283-15	SB-222 6.5-8	Total/NA	Solid	3541	
500-214283-17	SB-216 7-8	Total/NA	Solid	3541	
500-214283-20	SB-237 1-2	Total/NA	Solid	3541	
500-214283-22	SB-213 0-2	Total/NA	Solid	3541	
500-214283-24	SB-217 0-2	Total/NA	Solid	3541	
500-214283-27	SB-223 4-6	Total/NA	Solid	3541	
500-214283-30	SB-220 4-5	Total/NA	Solid	3541	
500-214283-32	SB-225 2-4	Total/NA	Solid	3541	
500-214283-34	SB-227 4-6	Total/NA	Solid	3541	
500-214283-36	SB-221 0-2	Total/NA	Solid	3541	
500-214283-38	SB-218 2-4	Total/NA	Solid	3541	
MB 500-650339/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-650339/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCS 500-650339/3-A	Lab Control Sample	Total/NA	Solid	3541	
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	3541	
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	3541	
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	3541	
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	3541	

Analysis Batch: 650373

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	8081A	650339
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	8081A	650339
500-214283-5	SB-229 1-3	Total/NA	Solid	8081A	650339
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	8081A	650339
500-214283-11	SB-231 5-7	Total/NA	Solid	8081A	650339
500-214283-13	SB-224 1-3	Total/NA	Solid	8081A	650339
500-214283-15	SB-222 6.5-8	Total/NA	Solid	8081A	650339
500-214283-17	SB-216 7-8	Total/NA	Solid	8081A	650339
500-214283-20	SB-237 1-2	Total/NA	Solid	8081A	650339
500-214283-22	SB-213 0-2	Total/NA	Solid	8081A	650339
500-214283-24	SB-217 0-2	Total/NA	Solid	8081A	650339
500-214283-27	SB-223 4-6	Total/NA	Solid	8081A	650339
500-214283-30	SB-220 4-5	Total/NA	Solid	8081A	650339
500-214283-32	SB-225 2-4	Total/NA	Solid	8081A	650339
500-214283-34	SB-227 4-6	Total/NA	Solid	8081A	650339
500-214283-36	SB-221 0-2	Total/NA	Solid	8081A	650339
500-214283-38	SB-218 2-4	Total/NA	Solid	8081A	650339

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC Semi VOA (Continued)

Analysis Batch: 650373 (Continued)

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB	500-650339/1-A	Method Blank	Total/NA	Solid	8081A	650339
LCS	S 500-650339/2-A	Lab Control Sample	Total/NA	Solid	8081A	650339
500	-214283-36 MS	SB-221 0-2	Total/NA	Solid	8081A	650339
500	-214283-36 MSD	SB-221 0-2	Total/NA	Solid	8081A	650339

Prep Batch: 650483

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-32	SB-225 2-4	Total/NA	Solid	8151A	
500-214283-34	SB-227 4-6	Total/NA	Solid	8151A	
500-214283-36	SB-221 0-2	Total/NA	Solid	8151A	
500-214283-38	SB-218 2-4	Total/NA	Solid	8151A	
500-214283-39	FD-2	Total/NA	Solid	8151A	
500-214283-41	SB-214 0-2	Total/NA	Solid	8151A	
500-214283-43	SB-215 0-2	Total/NA	Solid	8151A	
MB 500-650483/1-A	Method Blank	Total/NA	Solid	8151A	
LCS 500-650483/2-A	Lab Control Sample	Total/NA	Solid	8151A	
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	8151A	
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	8151A	

Prep Batch: 650565

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-39	FD-2	Total/NA	Solid	3541	
500-214283-41	SB-214 0-2	Total/NA	Solid	3541	
500-214283-43	SB-215 0-2	Total/NA	Solid	3541	
MB 500-650565/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-650565/2-A	Lab Control Sample	Total/NA	Solid	3541	
LCS 500-650565/3-A	Lab Control Sample	Total/NA	Solid	3541	
500-214283-43 MS	SB-215 0-2	Total/NA	Solid	3541	
500-214283-43 MS	SB-215 0-2	Total/NA	Solid	3541	
500-214283-43 MSD	SB-215 0-2	Total/NA	Solid	3541	
500-214283-43 MSD	SB-215 0-2	Total/NA	Solid	3541	

Analysis Batch: 650580

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	8151A	650302
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	8151A	650302
500-214283-5	SB-229 1-3	Total/NA	Solid	8151A	650302
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	8151A	650302
500-214283-11	SB-231 5-7	Total/NA	Solid	8151A	650302
500-214283-13	SB-224 1-3	Total/NA	Solid	8151A	650302
500-214283-15	SB-222 6.5-8	Total/NA	Solid	8151A	650302
500-214283-17	SB-216 7-8	Total/NA	Solid	8151A	650302
500-214283-20	SB-237 1-2	Total/NA	Solid	8151A	650302
500-214283-22	SB-213 0-2	Total/NA	Solid	8151A	650302
500-214283-24	SB-217 0-2	Total/NA	Solid	8151A	650302
500-214283-27	SB-223 4-6	Total/NA	Solid	8151A	650302
500-214283-30	SB-220 4-5	Total/NA	Solid	8151A	650302
MB 500-650302/1-A	Method Blank	Total/NA	Solid	8151A	650302
LCS 500-650302/2-A	Lab Control Sample	Total/NA	Solid	8151A	650302

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC Semi VOA

Analysis Batch: 650870

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	8082A	650339
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	8082A	650339
500-214283-5	SB-229 1-3	Total/NA	Solid	8082A	650339
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	8082A	650339
500-214283-11	SB-231 5-7	Total/NA	Solid	8082A	650339
500-214283-13	SB-224 1-3	Total/NA	Solid	8082A	650339
500-214283-15	SB-222 6.5-8	Total/NA	Solid	8082A	650339
500-214283-17	SB-216 7-8	Total/NA	Solid	8082A	650339
500-214283-20	SB-237 1-2	Total/NA	Solid	8082A	650339
500-214283-22	SB-213 0-2	Total/NA	Solid	8082A	650339
500-214283-24	SB-217 0-2	Total/NA	Solid	8082A	650339
500-214283-27	SB-223 4-6	Total/NA	Solid	8082A	650339
500-214283-30	SB-220 4-5	Total/NA	Solid	8082A	650339
500-214283-32	SB-225 2-4	Total/NA	Solid	8082A	650339
500-214283-34	SB-227 4-6	Total/NA	Solid	8082A	650339
500-214283-36	SB-221 0-2	Total/NA	Solid	8082A	650339
500-214283-38	SB-218 2-4	Total/NA	Solid	8082A	650339
MB 500-650339/1-A	Method Blank	Total/NA	Solid	8082A	650339
LCS 500-650339/3-A	Lab Control Sample	Total/NA	Solid	8082A	650339
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	8082A	650339
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	8082A	650339

Analysis Batch: 651034

Lab Sample ID 500-214283-32	Client Sample ID SB-225 2-4	Prep Type Total/NA	Matrix Solid	Method 8151A	Prep Batch 650483
500-214283-34	SB-227 4-6	Total/NA	Solid	8151A	650483
500-214283-36	SB-221 0-2	Total/NA	Solid	8151A	650483
500-214283-38	SB-218 2-4	Total/NA	Solid	8151A	650483
500-214283-39	FD-2	Total/NA	Solid	8151A	650483
500-214283-41	SB-214 0-2	Total/NA	Solid	8151A	650483
500-214283-43	SB-215 0-2	Total/NA	Solid	8151A	650483
MB 500-650483/1-A	Method Blank	Total/NA	Solid	8151A	650483
LCS 500-650483/2-A	Lab Control Sample	Total/NA	Solid	8151A	650483
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	8151A	650483
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	8151A	650483

Analysis Batch: 651097

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-39	FD-2	Total/NA	Solid	8081A	650565
500-214283-43	SB-215 0-2	Total/NA	Solid	8081A	650565
MB 500-650565/1-A	Method Blank	Total/NA	Solid	8081A	650565
LCS 500-650565/2-A	Lab Control Sample	Total/NA	Solid	8081A	650565
500-214283-43 MS	SB-215 0-2	Total/NA	Solid	8081A	650565
500-214283-43 MSD	SB-215 0-2	Total/NA	Solid	8081A	650565

Analysis Batch: 651238

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-41	SB-214 0-2	Total/NA	Solid	8081A	650565

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

GC Semi VOA

Analysis Batch: 651243

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-39	FD-2	Total/NA	Solid	8082A	650565
500-214283-41	SB-214 0-2	Total/NA	Solid	8082A	650565
500-214283-43	SB-215 0-2	Total/NA	Solid	8082A	650565
MB 500-650565/1-A	Method Blank	Total/NA	Solid	8082A	650565
LCS 500-650565/3-A	Lab Control Sample	Total/NA	Solid	8082A	650565
500-214283-43 MS	SB-215 0-2	Total/NA	Solid	8082A	650565
500-214283-43 MSD	SB-215 0-2	Total/NA	Solid	8082A	650565

LCMS

Prep Batch: 577343

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-45	EB-1	Total/NA	Water	3535	
500-214283-46	MW-231	Total/NA	Water	3535	
500-214283-47	MW-234	Total/NA	Water	3535	
MB 320-577343/1-A	Method Blank	Total/NA	Water	3535	
LCS 320-577343/2-A	Lab Control Sample	Total/NA	Water	3535	

Analysis Batch: 577528

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-45	EB-1	Total/NA	Water	537 (modified)	577343
500-214283-46	MW-231	Total/NA	Water	537 (modified)	577343
500-214283-47	MW-234	Total/NA	Water	537 (modified)	577343
MB 320-577343/1-A	Method Blank	Total/NA	Water	537 (modified)	577343
LCS 320-577343/2-A	Lab Control Sample	Total/NA	Water	537 (modified)	577343

Metals

Prep Batch: 650273

Lab Sample ID 500-214283-46	Client Sample ID MW-231	Prep Type Dissolved	Matrix Water	Method 7470A	Prep Batch
500-214283-47	MW-234	Dissolved	Water	7470A	
MB 500-650273/12-A	Method Blank	Total/NA	Water	7470A	
LCS 500-650273/13-A	Lab Control Sample	Total/NA	Water	7470A	

Prep Batch: 650362

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	3050B	
500-214283-2	SB-236 6-7	Total/NA	Solid	3050B	
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	3050B	
500-214283-4	SB-234 4.5-6.5	Total/NA	Solid	3050B	
500-214283-5	SB-229 1-3	Total/NA	Solid	3050B	
500-214283-6	SB-229 4-5	Total/NA	Solid	3050B	
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	3050B	
500-214283-9	SB-230 4.5-6	Total/NA	Solid	3050B	
500-214283-11	SB-231 5-7	Total/NA	Solid	3050B	
500-214283-12	SB-231 8.25-10	Total/NA	Solid	3050B	
500-214283-13	SB-224 1-3	Total/NA	Solid	3050B	
500-214283-14	SB-224 7-8	Total/NA	Solid	3050B	
500-214283-15	SB-222 6.5-8	Total/NA	Solid	3050B	
500-214283-16	SB-222 9-10	Total/NA	Solid	3050B	
500-214283-17	SB-216 7-8	Total/NA	Solid	3050B	

Eurofins Chicago

Page 228 of 356

2

Job ID: 500-214283-1

3

_

8

10

12

13

15

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Metals (Continued)

Prep Batch: 650362 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-19	SB-216 10-11	Total/NA	Solid	3050B	_
500-214283-20	SB-237 1-2	Total/NA	Solid	3050B	
500-214283-21	SB-237 9-10	Total/NA	Solid	3050B	
500-214283-22	SB-213 0-2	Total/NA	Solid	3050B	
500-214283-26	SB-217 3-5	Total/NA	Solid	3050B	
MB 500-650362/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-650362/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCS 500-650362/2-A ^2	Lab Control Sample	Total/NA	Solid	3050B	
500-214283-26 MS	SB-217 3-5	Total/NA	Solid	3050B	
500-214283-26 MSD	SB-217 3-5	Total/NA	Solid	3050B	
500-214283-26 DU	SB-217 3-5	Total/NA	Solid	3050B	

Prep Batch: 650364

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-24	SB-217 0-2	Total/NA	Solid	3050B	_
500-214283-27	SB-223 4-6	Total/NA	Solid	3050B	
500-214283-30	SB-220 4-5	Total/NA	Solid	3050B	
500-214283-32	SB-225 2-4	Total/NA	Solid	3050B	
500-214283-34	SB-227 4-6	Total/NA	Solid	3050B	
500-214283-36	SB-221 0-2	Total/NA	Solid	3050B	
500-214283-37	SB-221 4-5	Total/NA	Solid	3050B	
500-214283-38	SB-218 2-4	Total/NA	Solid	3050B	
500-214283-39	FD-2	Total/NA	Solid	3050B	
500-214283-40	SB-218 5-7	Total/NA	Solid	3050B	
500-214283-41	SB-214 0-2	Total/NA	Solid	3050B	
500-214283-42	SB-214 4-5	Total/NA	Solid	3050B	
500-214283-43	SB-215 0-2	Total/NA	Solid	3050B	
MB 500-650364/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-650364/2-A	Lab Control Sample	Total/NA	Solid	3050B	
LCS 500-650364/2-A ^2	Lab Control Sample	Total/NA	Solid	3050B	
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	3050B	
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	3050B	
500-214283-36 DU	SB-221 0-2	Total/NA	Solid	3050B	

Prep Batch: 650365

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-44	SB-215 6-7	Total/NA	Solid	3050B	_
MB 500-650365/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-650365/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-214283-44 MS	SB-215 6-7	Total/NA	Solid	3050B	
500-214283-44 MSD	SB-215 6-7	Total/NA	Solid	3050B	
500-214283-44 DU	SB-215 6-7	Total/NA	Solid	3050B	

Analysis Batch: 650513

Lab Sample ID 500-214283-46	Client Sample ID MW-231	Prep Type Dissolved	Matrix Water	Method 7470A	Prep Batch 650273
500-214283-47	MW-234	Dissolved	Water	7470A	650273
MB 500-650273/12-A	Method Blank	Total/NA	Water	7470A	650273
LCS 500-650273/13-A	Lab Control Sample	Total/NA	Water	7470A	650273

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Metals

Prep Batch: 650541

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-46	MW-231	Dissolved	Water	3005A	
500-214283-47	MW-234	Dissolved	Water	3005A	
MB 500-650541/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 500-650541/2-A	Lab Control Sample	Total Recoverable	Water	3005A	

Prep Batch: 650556

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-23	SB-213 10-12	Total/NA	Solid	3050B	
500-214283-24	SB-217 0-2	Total/NA	Solid	3050B	
500-214283-25	SB-217 9-10	Total/NA	Solid	3050B	
500-214283-27	SB-223 4-6	Total/NA	Solid	3050B	
500-214283-28	FD-1	Total/NA	Solid	3050B	
500-214283-29	SB-223 9-10	Total/NA	Solid	3050B	
500-214283-30	SB-220 4-5	Total/NA	Solid	3050B	
500-214283-31	SB-220 14.75-15	Total/NA	Solid	3050B	
500-214283-32	SB-225 2-4	Total/NA	Solid	3050B	
500-214283-33	SB-225 8-9	Total/NA	Solid	3050B	
500-214283-34	SB-227 4-6	Total/NA	Solid	3050B	
500-214283-35	SB-227 7-8	Total/NA	Solid	3050B	
MB 500-650556/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-650556/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-214283-23 MS	SB-213 10-12	Total/NA	Solid	3050B	
500-214283-23 MSD	SB-213 10-12	Total/NA	Solid	3050B	
500-214283-23 DU	SB-213 10-12	Total/NA	Solid	3050B	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	6010C	650362
500-214283-2	SB-236 6-7	Total/NA	Solid	6010C	650362
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	6010C	650362
500-214283-4	SB-234 4.5-6.5	Total/NA	Solid	6010C	650362
500-214283-5	SB-229 1-3	Total/NA	Solid	6010C	650362
500-214283-6	SB-229 4-5	Total/NA	Solid	6010C	650362
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	6010C	650362
500-214283-9	SB-230 4.5-6	Total/NA	Solid	6010C	650362
500-214283-11	SB-231 5-7	Total/NA	Solid	6010C	650362
500-214283-12	SB-231 8.25-10	Total/NA	Solid	6010C	650362
500-214283-13	SB-224 1-3	Total/NA	Solid	6010C	650362
500-214283-14	SB-224 7-8	Total/NA	Solid	6010C	650362
500-214283-15	SB-222 6.5-8	Total/NA	Solid	6010C	650362
500-214283-16	SB-222 9-10	Total/NA	Solid	6010C	650362
500-214283-17	SB-216 7-8	Total/NA	Solid	6010C	650362
500-214283-19	SB-216 10-11	Total/NA	Solid	6010C	650362
500-214283-20	SB-237 1-2	Total/NA	Solid	6010C	650362
500-214283-21	SB-237 9-10	Total/NA	Solid	6010C	650362
500-214283-22	SB-213 0-2	Total/NA	Solid	6010C	650362
500-214283-26	SB-217 3-5	Total/NA	Solid	6010C	650362
MB 500-650362/1-A	Method Blank	Total/NA	Solid	6010C	650362
LCS 500-650362/2-A	Lab Control Sample	Total/NA	Solid	6010C	650362
500-214283-26 MS	SB-217 3-5	Total/NA	Solid	6010C	650362
500-214283-26 MSD	SB-217 3-5	Total/NA	Solid	6010C	650362

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Metals (Continued)

Analysis Batch: 650623 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-26 DU	SB-217 3-5	Total/NA	Solid	6010C	650362

Prep Batch: 650632

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
500-214283-1	SB-236 3.5-5	Total/NA	Solid	7471B	
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	7471B	
500-214283-5	SB-229 1-3	Total/NA	Solid	7471B	
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	7471B	
500-214283-11	SB-231 5-7	Total/NA	Solid	7471B	
500-214283-13	SB-224 1-3	Total/NA	Solid	7471B	
500-214283-15	SB-222 6.5-8	Total/NA	Solid	7471B	
500-214283-17	SB-216 7-8	Total/NA	Solid	7471B	
500-214283-20	SB-237 1-2	Total/NA	Solid	7471B	
500-214283-22	SB-213 0-2	Total/NA	Solid	7471B	
500-214283-24	SB-217 0-2	Total/NA	Solid	7471B	
500-214283-27	SB-223 4-6	Total/NA	Solid	7471B	
500-214283-30	SB-220 4-5	Total/NA	Solid	7471B	
500-214283-32	SB-225 2-4	Total/NA	Solid	7471B	
500-214283-34	SB-227 4-6	Total/NA	Solid	7471B	
500-214283-36	SB-221 0-2	Total/NA	Solid	7471B	
500-214283-38	SB-218 2-4	Total/NA	Solid	7471B	
500-214283-39	FD-2	Total/NA	Solid	7471B	
500-214283-41	SB-214 0-2	Total/NA	Solid	7471B	
500-214283-43	SB-215 0-2	Total/NA	Solid	7471B	
MB 500-650632/12-A	Method Blank	Total/NA	Solid	7471B	
_CS 500-650632/13-A	Lab Control Sample	Total/NA	Solid	7471B	
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	7471B	
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	7471B	
500-214283-36 DU	SB-221 0-2	Total/NA	Solid	7471B	

Analysis Batch: 650728

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-46	MW-231	Dissolved	Water	6020A	650541
500-214283-47	MW-234	Dissolved	Water	6020A	650541
MB 500-650541/1-A	Method Blank	Total Recoverable	Water	6020A	650541
LCS 500-650541/2-A	Lab Control Sample	Total Recoverable	Water	6020A	650541

Analysis Batch: 650733

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 500-650362/2-A ^2	Lab Control Sample	Total/NA	Solid	6010C	650362

Analysis Batch: 650835

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-24	SB-217 0-2	Total/NA	Solid	6010C	650364
500-214283-27	SB-223 4-6	Total/NA	Solid	6010C	650364
500-214283-30	SB-220 4-5	Total/NA	Solid	6010C	650364
500-214283-32	SB-225 2-4	Total/NA	Solid	6010C	650364
500-214283-34	SB-227 4-6	Total/NA	Solid	6010C	650364
500-214283-36	SB-221 0-2	Total/NA	Solid	6010C	650364
500-214283-38	SB-218 2-4	Total/NA	Solid	6010C	650364
500-214283-39	FD-2	Total/NA	Solid	6010C	650364

Eurofins Chicago

Page 231 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Metals (Continued)

Analysis Batch: 650835 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-41	SB-214 0-2	Total/NA	Solid	6010C	650364
MB 500-650364/1-A	Method Blank	Total/NA	Solid	6010C	650364
LCS 500-650364/2-A	Lab Control Sample	Total/NA	Solid	6010C	650364
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	6010C	650364
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	6010C	650364
500-214283-36 DU	SB-221 0-2	Total/NA	Solid	6010C	650364

Analysis Batch: 650836

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-23	SB-213 10-12	Total/NA	Solid	6010C	650556
500-214283-24	SB-217 0-2	Total/NA	Solid	6010C	650556
500-214283-25	SB-217 9-10	Total/NA	Solid	6010C	650556
500-214283-27	SB-223 4-6	Total/NA	Solid	6010C	650556
500-214283-28	FD-1	Total/NA	Solid	6010C	650556
500-214283-29	SB-223 9-10	Total/NA	Solid	6010C	650556
500-214283-30	SB-220 4-5	Total/NA	Solid	6010C	650556
500-214283-31	SB-220 14.75-15	Total/NA	Solid	6010C	650556
500-214283-32	SB-225 2-4	Total/NA	Solid	6010C	650556
500-214283-33	SB-225 8-9	Total/NA	Solid	6010C	650556
500-214283-34	SB-227 4-6	Total/NA	Solid	6010C	650556
500-214283-35	SB-227 7-8	Total/NA	Solid	6010C	650556
MB 500-650556/1-A	Method Blank	Total/NA	Solid	6010C	650556
LCS 500-650556/2-A	Lab Control Sample	Total/NA	Solid	6010C	650556
500-214283-23 MS	SB-213 10-12	Total/NA	Solid	6010C	650556
500-214283-23 MSD	SB-213 10-12	Total/NA	Solid	6010C	650556
500-214283-23 DU	SB-213 10-12	Total/NA	Solid	6010C	650556

Analysis Batch: 650935

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	7471B	650632
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	7471B	650632
500-214283-5	SB-229 1-3	Total/NA	Solid	7471B	650632
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	7471B	650632
500-214283-11	SB-231 5-7	Total/NA	Solid	7471B	650632
500-214283-13	SB-224 1-3	Total/NA	Solid	7471B	650632
500-214283-15	SB-222 6.5-8	Total/NA	Solid	7471B	650632
500-214283-17	SB-216 7-8	Total/NA	Solid	7471B	650632
500-214283-20	SB-237 1-2	Total/NA	Solid	7471B	650632
500-214283-22	SB-213 0-2	Total/NA	Solid	7471B	650632
500-214283-24	SB-217 0-2	Total/NA	Solid	7471B	650632
500-214283-27	SB-223 4-6	Total/NA	Solid	7471B	650632
500-214283-30	SB-220 4-5	Total/NA	Solid	7471B	650632
500-214283-32	SB-225 2-4	Total/NA	Solid	7471B	650632
500-214283-34	SB-227 4-6	Total/NA	Solid	7471B	650632
500-214283-36	SB-221 0-2	Total/NA	Solid	7471B	650632
500-214283-38	SB-218 2-4	Total/NA	Solid	7471B	650632
500-214283-39	FD-2	Total/NA	Solid	7471B	650632
500-214283-41	SB-214 0-2	Total/NA	Solid	7471B	650632
500-214283-43	SB-215 0-2	Total/NA	Solid	7471B	650632
MB 500-650632/12-A	Method Blank	Total/NA	Solid	7471B	650632
LCS 500-650632/13-A	Lab Control Sample	Total/NA	Solid	7471B	650632

Eurofins Chicago

Job ID: 500-214283-1

3

4

6

8

10

11

13

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Metals (Continued)

Analysis Batch: 650935 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	7471B	650632
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	7471B	650632
500-214283-36 DU	SB-221 0-2	Total/NA	Solid	7471B	650632

Analysis Batch: 651084

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-36	SB-221 0-2	Total/NA	Solid	6010C	650364
500-214283-37	SB-221 4-5	Total/NA	Solid	6010C	650364
500-214283-38	SB-218 2-4	Total/NA	Solid	6010C	650364
500-214283-39	FD-2	Total/NA	Solid	6010C	650364
500-214283-40	SB-218 5-7	Total/NA	Solid	6010C	650364
500-214283-41	SB-214 0-2	Total/NA	Solid	6010C	650364
500-214283-42	SB-214 4-5	Total/NA	Solid	6010C	650364
500-214283-43	SB-215 0-2	Total/NA	Solid	6010C	650364
500-214283-44	SB-215 6-7	Total/NA	Solid	6010C	650365
MB 500-650364/1-A	Method Blank	Total/NA	Solid	6010C	650364
MB 500-650365/1-A	Method Blank	Total/NA	Solid	6010C	650365
LCS 500-650364/2-A	Lab Control Sample	Total/NA	Solid	6010C	650364
LCS 500-650365/2-A	Lab Control Sample	Total/NA	Solid	6010C	650365
500-214283-36 MS	SB-221 0-2	Total/NA	Solid	6010C	650364
500-214283-36 MSD	SB-221 0-2	Total/NA	Solid	6010C	650364
500-214283-44 MS	SB-215 6-7	Total/NA	Solid	6010C	650365
500-214283-44 MSD	SB-215 6-7	Total/NA	Solid	6010C	650365
500-214283-36 DU	SB-221 0-2	Total/NA	Solid	6010C	650364
500-214283-44 DU	SB-215 6-7	Total/NA	Solid	6010C	650365

Analysis Batch: 651175

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 500-650364/2-A ^2	Lab Control Sample	Total/NA	Solid	6010C	650364

General Chemistry

Analysis Batch: 650474

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-1	SB-236 3.5-5	Total/NA	Solid	Moisture	
500-214283-2	SB-236 6-7	Total/NA	Solid	Moisture	
500-214283-3	SB-234 3.5-4.5	Total/NA	Solid	Moisture	
500-214283-4	SB-234 4.5-6.5	Total/NA	Solid	Moisture	
500-214283-5	SB-229 1-3	Total/NA	Solid	Moisture	
500-214283-6	SB-229 4-5	Total/NA	Solid	Moisture	
500-214283-7	SB-229 5-7	Total/NA	Solid	Moisture	
500-214283-8	SB-230 3.5-4.5	Total/NA	Solid	Moisture	
500-214283-9	SB-230 4.5-6	Total/NA	Solid	Moisture	
500-214283-10	SB-230 8-10	Total/NA	Solid	Moisture	
500-214283-11	SB-231 5-7	Total/NA	Solid	Moisture	
500-214283-12	SB-231 8.25-10	Total/NA	Solid	Moisture	

Analysis Batch: 650485

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-13	SB-224 1-3	Total/NA	Solid	Moisture	
500-214283-14	SB-224 7-8	Total/NA	Solid	Moisture	

Eurofins Chicago

Job ID: 500-214283-1

3

6

9

11

13

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

General Chemistry (Continued)

Analysis Batch: 650485 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-15	SB-222 6.5-8	Total/NA	Solid	Moisture	
500-214283-16	SB-222 9-10	Total/NA	Solid	Moisture	
500-214283-17	SB-216 7-8	Total/NA	Solid	Moisture	
500-214283-19	SB-216 10-11	Total/NA	Solid	Moisture	
500-214283-20	SB-237 1-2	Total/NA	Solid	Moisture	
500-214283-21	SB-237 9-10	Total/NA	Solid	Moisture	
500-214283-22	SB-213 0-2	Total/NA	Solid	Moisture	
500-214283-23	SB-213 10-12	Total/NA	Solid	Moisture	
500-214283-24	SB-217 0-2	Total/NA	Solid	Moisture	
500-214283-25	SB-217 9-10	Total/NA	Solid	Moisture	
500-214283-26	SB-217 3-5	Total/NA	Solid	Moisture	
500-214283-27	SB-223 4-6	Total/NA	Solid	Moisture	
500-214283-28	FD-1	Total/NA	Solid	Moisture	
500-214283-29	SB-223 9-10	Total/NA	Solid	Moisture	
500-214283-30	SB-220 4-5	Total/NA	Solid	Moisture	
500-214283-31	SB-220 14.75-15	Total/NA	Solid	Moisture	
500-214283-17 DU	SB-216 7-8	Total/NA	Solid	Moisture	

Analysis Batch: 650509

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-32	SB-225 2-4	Total/NA	Solid	Moisture	_
500-214283-33	SB-225 8-9	Total/NA	Solid	Moisture	
500-214283-34	SB-227 4-6	Total/NA	Solid	Moisture	
500-214283-35	SB-227 7-8	Total/NA	Solid	Moisture	
500-214283-36	SB-221 0-2	Total/NA	Solid	Moisture	
500-214283-37	SB-221 4-5	Total/NA	Solid	Moisture	
500-214283-38	SB-218 2-4	Total/NA	Solid	Moisture	
500-214283-39	FD-2	Total/NA	Solid	Moisture	
500-214283-40	SB-218 5-7	Total/NA	Solid	Moisture	
500-214283-41	SB-214 0-2	Total/NA	Solid	Moisture	
500-214283-42	SB-214 4-5	Total/NA	Solid	Moisture	
500-214283-43	SB-215 0-2	Total/NA	Solid	Moisture	
500-214283-44	SB-215 6-7	Total/NA	Solid	Moisture	
500-214283-37 DU	SB-221 4-5	Total/NA	Solid	Moisture	

Analysis Batch: 650654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214283-18	SR-216 8-8 5	Total/NA	Solid	Moieture	

Job ID: 500-214283-1

Eurofins Chicago

Client: Stantec Consulting Corp. Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

			Pe	ercent Surre	gate Recovery (Acceptance Limits)	
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)	
500-214283-1	SB-236 3.5-5	95	87	100	95	
500-214283-1 MS	SB-236 3.5-5	97	91	101	95	
500-214283-1 MSD	SB-236 3.5-5	97	93	101	96	
500-214283-2	SB-236 6-7	94	88	98	96	
500-214283-3	SB-234 3.5-4.5	95	87	98	94	
500-214283-4	SB-234 4.5-6.5	94	90	99	95	
500-214283-5	SB-229 1-3	96	88	100	95	
500-214283-7	SB-229 5-7	96	90	99	95	
500-214283-8	SB-230 3.5-4.5	98	89	100	95	
500-214283-10	SB-230 8-10	98	88	101	94	
500-214283-11	SB-231 5-7	102	90	101	93	
		99	90 87	100	94	
500-214283-12	SB-231 8.25-10					
500-214283-13	SB-224 1-3	100	90	100	94	
500-214283-14	SB-224 7-8	101	89	102	92	
500-214283-15	SB-222 6.5-8	101	89	102	97	
500-214283-16	SB-222 9-10	99	89	99	94	
500-214283-18	SB-216 8-8.5	101	87	102	95	
500-214283-19	SB-216 10-11	98	88	101	95	
500-214283-20	SB-237 1-2	101	95	105	94	
500-214283-21	SB-237 9-10	99	88	100	94	
500-214283-22	SB-213 0-2	97	89	99	95	
500-214283-23	SB-213 10-12	102	90	101	95	
500-214283-24	SB-217 0-2	95	87	95	96	
500-214283-25	SB-217 9-10	93	88	99	95	
500-214283-26	SB-217 3-5	96	87	99	95	
500-214283-26 MS	SB-217 3-5	99	89	102	94	
500-214283-26 MSD	SB-217 3-5	99	93	103	94	
500-214283-27	SB-223 4-6	99	90	98	96	
500-214283-28	FD-1	95	88	98	95	
500-214283-29	SB-223 9-10	94	88	100	95	
500-214283-30	SB-220 4-5	99	86	101	94	
500-214283-31	SB-220 14.75-15	100	87	103	93	
500-214283-32	SB-225 2-4	100	90	102	96	
500-214283-33	SB-225 8-9	101	88	103	94	
500-214283-34	SB-227 4-6	101	89	102	95	
500-214283-35	SB-227 7-8	101	90	100	96	
500-214283-36	SB-221 0-2	84	87	95	101	
500-214283-36 MS	SB-221 0-2	79	89	91	101	
	SB-221 0-2	79 79		92	99	
500-214283-36 MSD			88			
500-214283-37	SB-221 4-5	98	88	103	94	
500-214283-38	SB-218 2-4	99	89	101	92	
500-214283-39	FD-2	104	86	102	94	
500-214283-40	SB-218 5-7	100	87	104	93	
500-214283-41	SB-214 0-2	104	89	103	92	
500-214283-42	SB-214 4-5	83	85	98	98	
500-214283-43	SB-215 0-2	83	86	95	97	
500-214283-44	SB-215 6-7	82	86	95	97	
LB3 500-649331/18-A	Method Blank	86	86	94	100	
LB3 500-649332/21-A	Method Blank	95	88	99	96	

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

		Percent Surrog					
		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)		
LB3 500-649333/23-A	Method Blank	92	89	97	96		
LCS 500-649331/19-A	Lab Control Sample	82	89	90	101		
LCS 500-649332/22-A	Lab Control Sample	98	93	101	96		
LCS 500-649333/24-A	Lab Control Sample	99	91	104	92		
LCS 500-649415/5	Lab Control Sample	84	91	93	100		
LCS 500-649615/5	Lab Control Sample	95	91	100	95		
LCS 500-649801/31	Lab Control Sample	96	89	99	95		
LCS 500-649839/5	Lab Control Sample	80	87	94	100		
MB 500-649415/7	Method Blank	85	91	94	99		
MB 500-649615/7	Method Blank	97	88	102	95		
MB 500-649801/7	Method Blank	103	87	105	93		
MB 500-649839/7	Method Blank	84	89	96	96		

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Water**

			Pe	ercent Surre	ogate Recov	very (Accep
		DCA	BFB	DBFM	TOL	
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)	
500-214283-46	MW-231	82	86	92	98	
500-214283-47	MW-234	83	85	95	98	
500-214283-48	TW-237	84	88	96	96	
500-214283-49	TW-222	84	86	97	98	
600-214283-50	TW-227	84	88	95	98	
00-214283-51	TW-213	86	85	100	100	
00-214283-52	TW-229	84	87	96	100	
00-214283-53	TW-230	83	89	95	98	
00-214283-54	TW-223	84	87	98	97	
00-214283-55	TW-225	85	85	98	99	
00-214283-56	TW-216	86	82	100	96	
00-214283-57	TW-215	87	89	97	98	
00-214283-58	TW-221	84	84	99	97	
00-214283-59	TW-214	85	83	98	99	
500-214283-60	FD-3	84	86	96	100	
500-214283-61	TB1	82	88	95	100	
_CS 500-649840/5	Lab Control Sample	80	87	94	100	
MB 500-649840/7	Method Blank	84	89	96	96	

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

		ТВР	Pe FBP	ercent Surro	ogate Reco	very (Accer PHL	otance Limits) TPHL
Lab Sample ID	Client Sample ID	(31-143)	(43-145)	(31-166)	(37-147)	(30-153)	(42-157)
500-214283-1	SB-236 3.5-5	93	85	173 S1+	68	103	90
500-214283-1 MS	SB-236 3.5-5	99	86	182 S1+	69	109	115
600-214283-1 MSD	SB-236 3.5-5	74	70	162	60	86	80
00-214283-2	SB-236 6-7		63		62		86
00-214283-3	SB-234 3.5-4.5	114	77	151	73	101	101
500-214283-4	SB-234 4.5-6.5	114	86	101	89	101	99
500-214283-5	SB-229 1-3	105	80	102	77	92	110
500-214283-6	SB-229 4-5	100	87	102	65	32	103
500-214283-8	SB-230 3.5-4.5	100	90	111	74	98	94
500-214283-9	SB-230 4.5-6	100	88		80	30	99
500-214283-9 500-214283-11	SB-231 5-7	74	76	104	62	89	100
		74	76 76	104		69	86
500-214283-12	SB-231 8.25-10			454	70	405	
500-214283-13	SB-224 1-3	110	85	151	66	105	88
00-214283-14	SB-224 7-8		83		73		99
00-214283-15	SB-222 6.5-8	0 D	0 D	0 D	0 *3 D	0 D	0 D
00-214283-16	SB-222 9-10		52		44		87
00-214283-17	SB-216 7-8	91	59	81	43	82	108
00-214283-19	SB-216 10-11		71		55		95
600-214283-20	SB-237 1-2	0 D	0 D	0 D	0 D	0 D	0 D
00-214283-21	SB-237 9-10		59		63		62
00-214283-22	SB-213 0-2	81	76	144	61	90	75
00-214283-23	SB-213 10-12		70		55		106
00-214283-24	SB-217 0-2	69	64	118	45	65	86
00-214283-25	SB-217 9-10		74		66		90
00-214283-26	SB-217 3-5		63		48		104
00-214283-26 MS	SB-217 3-5		78		68		97
00-214283-26 MSD	SB-217 3-5		81		74		103
00-214283-27	SB-223 4-6	77	63	122	46	62	81
00-214283-28	FD-1		68		54		99
00-214283-29	SB-223 9-10		59		46		97
00-214283-30	SB-220 4-5	81	37 S1-	60	29 S1-	46	106
00-214283-31	SB-220 14.75-15	01	70	00	52	.0	103
500-214283-32	SB-225 2-4	79	58	118	41	67	82
00-214283-33	SB-225 8-9		58		50		93
600-214283-34 600-214283-34	SB-227 4-6	61	49	104	41	60	93 70
00-214283-34 00-214283-35	SB-227 7-8	O I	49 53	104	44	00	70 89
00-214283-35 00-214283-36				147		70	
	SB-221 0-2	80	71	117	50	72 0.D	82 0.D
00-214283-36 - DL	SB-221 0-2	0 D	0 D	0 D	0 D *3	0 D	0 D
00-214283-36 MS	SB-221 0-2	98	74	147	61	90	108
00-214283-36 MSD	SB-221 0-2	93	69	126	55	82	107
00-214283-37	SB-221 4-5		67		55		94
00-214283-38	SB-218 2-4	84	57	91	45	71	81
00-214283-39	FD-2	76	58	71	45	69	101
600-214283-40	SB-218 5-7		63		47		107
500-214283-41	SB-214 0-2	99	82	171 S1+	55	110	89
00-214283-42	SB-214 4-5		56		51		105
00-214283-43	SB-215 0-2	97	66	74	43	74	136
00-214283-44	SB-215 6-7		48		36 S1-		102
CS 500-650567/2-A	Lab Control Sample	103	94	106	82	97	89
CS 500-650648/2-A	Lab Control Sample	116	100	111	79	104	106

Eurofins Chicago

2

Job ID: 500-214283-1

4

6

8

10

12

14

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco	very (Acce	otance Lim
		TBP	FBP	2FP	NBZ	PHL	TPHL
Lab Sample ID	Client Sample ID	(31-143)	(43-145)	(31-166)	(37-147)	(30-153)	(42-157)
MB 500-650567/1-A	Method Blank	79	81	110	69	105	98
MB 500-650648/1-A	Method Blank	94	86	111	67	104	97

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits						
		TBP	FBP	2FP	NBZ	PHL	TPHL		
Lab Sample ID	Client Sample ID	(40-145)	(34-110)	(27-110)	(36-120)	(20-110)	(40-145)		
500-214283-46	MW-231	86	85	81	69	53	112		
500-214283-47	MW-234	84	82	81	72	47	128		
LCS 500-649620/2-A	Lab Control Sample	91	96	92	92	72	110		
LCSD 500-649620/3-A	Lab Control Sample Dup	84	88	92	84	72	106		
MB 500-649620/1-A	Method Blank	77	86	94	80	64	139		

Surrogate Legend

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

Method: 8081A - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

		Pe	rcent Surrog	ate Reco
		DCBP1 DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(33-148) (33-148)	(30-121) ((30-121)
500-214283-1	SB-236 3.5-5	111		95
500-214283-3	SB-234 3.5-4.5	119		180 S1+
500-214283-5	SB-229 1-3	81		79
500-214283-8	SB-230 3.5-4.5	116		77
500-214283-11	SB-231 5-7	103		89
500-214283-13	SB-224 1-3	122		89
500-214283-15	SB-222 6.5-8	0 D		0 D
500-214283-17	SB-216 7-8	1605 S1+		76
500-214283-20	SB-237 1-2	88		77
500-214283-22	SB-213 0-2	118		89
500-214283-24	SB-217 0-2	120		110
500-214283-27	SB-223 4-6	116		63
500-214283-30	SB-220 4-5	116		65
500-214283-32	SB-225 2-4	111		90
500-214283-34	SB-227 4-6	107		108

Eurofins Chicago

Page 238 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Recov
		DCBP1	DCBP2	TCX1	TCX2
Lab Sample ID	Client Sample ID	(33-148)	(33-148)	(30-121)	(30-121)
500-214283-36	SB-221 0-2		178 S1+		126 S1+
500-214283-36 MS	SB-221 0-2		88		132 S1+
500-214283-36 MSD	SB-221 0-2		525 S1+		125 S1+
500-214283-38	SB-218 2-4		110		91
500-214283-39	FD-2		119		111
500-214283-41	SB-214 0-2	283 S1+	115	167 S1+	103
500-214283-43	SB-215 0-2		3814 S1+		91
500-214283-43 MS	SB-215 0-2		674 S1+		70
500-214283-43 MSD	SB-215 0-2		277 S1+		81
LCS 500-650339/2-A	Lab Control Sample		106		70
LCS 500-650565/2-A	Lab Control Sample		94		86
MB 500-650339/1-A	Method Blank		92		60
MB 500-650565/1-A	Method Blank		108		97

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Water Prep Type: Total/NA

			Percer	nt Surrogate Recovery (Acceptance Limits)
		DCBP2	TCX2	
₋ab Sample ID	Client Sample ID	(30-130)	(30-120)	
500-214283-46	MW-231	55	79	
500-214283-47	MW-234	73	71	
CS 500-649706/2-A	Lab Control Sample	93	71	
CSD 500-649706/3-A	Lab Control Sample Dup	104	76	
MB 500-649706/1-A	Method Blank	98	61	

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

			Percent Surr	ogate Recovery (Acceptance Limits)
		TCX1	DCBP1	
Lab Sample ID	Client Sample ID	(49-129)	(37-121)	
500-214283-1	SB-236 3.5-5	76	85	
500-214283-3	SB-234 3.5-4.5	69	75	
500-214283-5	SB-229 1-3	75	72	
500-214283-8	SB-230 3.5-4.5	72	74	
500-214283-11	SB-231 5-7	76	72	
500-214283-13	SB-224 1-3	114	120	
500-214283-15	SB-222 6.5-8	84	84	
500-214283-17	SB-216 7-8	73	65	
500-214283-20	SB-237 1-2	86	91	
500-214283-22	SB-213 0-2	62	71	
500-214283-24	SB-217 0-2	74	77	
500-214283-27	SB-223 4-6	57	73	

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Matrix: Solid Prep Type: Total/NA

		TCX1	DCBP1	
Lab Sample ID	Client Sample ID	(49-129)	(37-121)	
500-214283-30	SB-220 4-5	56	70	
500-214283-32	SB-225 2-4	85	101	
500-214283-34	SB-227 4-6	67	78	
500-214283-36	SB-221 0-2	74	96	
500-214283-36 MS	SB-221 0-2	76	109	
500-214283-36 MSD	SB-221 0-2	85	109	
500-214283-38	SB-218 2-4	126	143 S1+	
500-214283-39	FD-2	78	83	
500-214283-41	SB-214 0-2	75	81	
500-214283-43	SB-215 0-2	84	75	
500-214283-43 MS	SB-215 0-2	80	68	
500-214283-43 MSD	SB-215 0-2	88	75	
LCS 500-650339/3-A	Lab Control Sample	73	91	
LCS 500-650565/3-A	Lab Control Sample	86	87	
MB 500-650339/1-A	Method Blank	80	110	
MB 500-650565/1-A	Method Blank	84	90	

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Water Prep Type: Total/NA

			Percer	nt Surrogate Recovery (Acceptance Limits)
		TCX2	DCBP2	
Lab Sample ID	Client Sample ID	(30-120)	(30-140)	
500-214283-46	MW-231	95	89	
500-214283-47	MW-234	92	116	
LCS 500-649706/4-A	Lab Control Sample	84	114	
LCSD 500-649706/5-A	Lab Control Sample Dup	96	117	
MB 500-649706/1-A	Method Blank	75	122	
Surrogate Legend				
TCX = Tetrachloro-m-x	ylene			
DCBP = DCB Decachle	orobiphenyl			

Method: 8151A - Herbicides (GC)

DCBP = DCB Decachlorobiphenyl

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)	
		DCPAA1	
Lab Sample ID	Client Sample ID	(25-120)	
500-214283-1	SB-236 3.5-5	71	
500-214283-3	SB-234 3.5-4.5	68	
500-214283-5	SB-229 1-3	65	
500-214283-8	SB-230 3.5-4.5	71	
500-214283-11	SB-231 5-7	62	
500-214283-13	SB-224 1-3	70	
500-214283-15	SB-222 6.5-8	68	
500-214283-17	SB-216 7-8	74	
500-214283-20	SB-237 1-2	42	

Surrogate Summary

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8151A - Herbicides (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

			Percent Surrogate Recovery (Acceptance Limits)
		DCPAA1	
Lab Sample ID	Client Sample ID	(25-120)	
500-214283-22	SB-213 0-2	66	
500-214283-24	SB-217 0-2	65	
500-214283-27	SB-223 4-6	163 S1+	
500-214283-30	SB-220 4-5	83	
500-214283-32	SB-225 2-4	79	
500-214283-34	SB-227 4-6	75	
500-214283-36	SB-221 0-2	61	
500-214283-36 MS	SB-221 0-2	70	
500-214283-36 MSD	SB-221 0-2	73	
500-214283-38	SB-218 2-4	73	
500-214283-39	FD-2	60	
500-214283-41	SB-214 0-2	30	
500-214283-43	SB-215 0-2	64	
LCS 500-650302/2-A	Lab Control Sample	80	
LCS 500-650483/2-A	Lab Control Sample	88	
MB 500-650302/1-A	Method Blank	84	
MB 500-650483/1-A	Method Blank	86	
Cumpagata Lagrand			
Surrogate Legend DCPAA = DCAA			

Method: 8151A - Herbicides (GC)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)						
		DCPAA1	DCPAA2					
Lab Sample ID	Client Sample ID	(25-130)	(25-130)					
500-214283-46	MW-231	91	117					
500-214283-47	MW-234	106	101					
LCS 500-649855/2-A	Lab Control Sample	93	90					
LCSD 500-649855/3-A	Lab Control Sample Dup	97	99					
MB 500-649855/1-A	Method Blank	93	94					
Surrogate Legend								
DCPAA = DCAA								

Eurofins Chicago

Job ID: 500-214283-1

0

10

12

11

15

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LB3 500-649331/18-A

Matrix: Solid

Analysis Batch: 649415

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649331

Analysis Batch: 649415	LD2	I D2						Prep Batch:	649331
Analyte	LB3 Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<23		50	23	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,1,1-Trichloroethane	<19		50	19	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,1,2,2-Tetrachloroethane	<20		50	20	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,1,2-Trichloroethane	<18		50	18	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,1-Dichloroethane	<21		50	21	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,1-Dichloroethene	<20		50	20	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,1-Dichloropropene	<15		50		ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,2,3-Trichlorobenzene	<23		50	23	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,2,3-Trichloropropane	<21		100	21	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,2,4-Trichlorobenzene	<17		50		ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,2,4-Trimethylbenzene	<18		50		ug/Kg		03/30/22 00:30	03/30/22 11:46	50
1,2-Dibromo-3-Chloropropane	<100		250		ug/Kg			03/30/22 11:46	50
1,2-Dibromoethane	<19		50		ug/Kg			03/30/22 11:46	50
1,2-Dichlorobenzene	<17		50		ug/Kg		03/30/22 00:30		50
1,2-Dichloroethane	<20		50		ug/Kg			03/30/22 11:46	50
1,2-Dichloropropane	<21		50		ug/Kg			03/30/22 11:46	50
1,3,5-Trimethylbenzene	<19		50		ug/Kg			03/30/22 11:46	50
1,3-Dichlorobenzene	<20		50		ug/Kg			03/30/22 11:46	50
1,3-Dichloropropane	<18		50		ug/Kg			03/30/22 11:46	
1,4-Dichlorobenzene	<18		50		ug/Kg			03/30/22 11:46	50
2,2-Dichloropropane	<22		50		ug/Kg			03/30/22 11:46	50
2-Chlorotoluene	<16		50		ug/Kg			03/30/22 11:46	50 50
4-Chlorotoluene	<18		50		ug/Kg			03/30/22 11:46	50
Benzene	<7.3		13		ug/Kg ug/Kg			03/30/22 11:46	50
Bromobenzene	<18		50					03/30/22 11:46	50
Bromochloromethane	<21		50		ug/Kg		03/30/22 00:30		50
	<19		50 50		ug/Kg		03/30/22 00:30		50
Dichlorobromomethane					ug/Kg				
Bromoform	<24		50		ug/Kg			03/30/22 11:46	50
Bromomethane	<40		150		ug/Kg		03/30/22 00:30		50
Carbon tetrachloride	<19		50		ug/Kg			03/30/22 11:46	50
Chlorobenzene	<19		50		ug/Kg			03/30/22 11:46	50
Chloroethane	<25		50		ug/Kg		03/30/22 00:30		50
Chloroform	<19		100		ug/Kg			03/30/22 11:46	50
Chloromethane	<16		50		ug/Kg			03/30/22 11:46	50
cis-1,2-Dichloroethene	<20		50		ug/Kg			03/30/22 11:46	50
cis-1,3-Dichloropropene	<21		50		ug/Kg			03/30/22 11:46	50
Dibromochloromethane	<24		50		ug/Kg			03/30/22 11:46	50
Dibromomethane	<14		50		ug/Kg			03/30/22 11:46	50
Dichlorodifluoromethane	<34		150		ug/Kg			03/30/22 11:46	50
Ethylbenzene	<9.2		13	9.2	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Hexachlorobutadiene	<22		50	22	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Isopropyl ether	<14		50	14	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Isopropylbenzene	<19		50	19	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Methyl tert-butyl ether	<20		50	20	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Methylene Chloride	<82		250	82	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Naphthalene	<17		50	17	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
n-Butylbenzene	<19		50		ug/Kg		03/30/22 00:30	03/30/22 11:46	50
N-Propylbenzene	<21		50	21	ug/Kg		03/30/22 00:30	03/30/22 11:46	50

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB3 500-649331/18-A

Matrix: Solid

Analysis Batch: 649415

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649331

-	LB3	LB3							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<18		50	18	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
sec-Butylbenzene	<20		50	20	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Styrene	<19		50	19	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
tert-Butylbenzene	<20		50	20	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Tetrachloroethene	<19		50	19	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Toluene	<7.4		13	7.4	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
trans-1,2-Dichloroethene	<18		50	18	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
trans-1,3-Dichloropropene	<18		50	18	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Trichloroethene	<8.2		25	8.2	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Trichlorofluoromethane	<21		50	21	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Vinyl chloride	<13		50	13	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
Xylenes, Total	<11		25	11	ug/Kg		03/30/22 00:30	03/30/22 11:46	50
					_				

LB3 LB3

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	86	75 - 126	03/30/22 00:30	03/30/22 11:46	50
4-Bromofluorobenzene (Surr)	86	72 - 124	03/30/22 00:30	03/30/22 11:46	50
Dibromofluoromethane (Surr)	94	75 - 120	03/30/22 00:30	03/30/22 11:46	50
Toluene-d8 (Surr)	100	75 - 120	03/30/22 00:30	03/30/22 11:46	50

Lab Sample ID: LCS 500-649331/19-A

Matrix: Solid

Analysis Batch: 649415

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 649331

Analysis Batch. 649415	Spike	LCS L	cs		%Rec
Analyte	Added	Result Q	ualifier Unit	D %Rec	Limits
1,1,1,2-Tetrachloroethane	2500	2350	ug/Kg	94	70 - 125
1,1,1-Trichloroethane	2500	2060	ug/Kg	83	70 - 125
1,1,2,2-Tetrachloroethane	2500	2280	ug/Kg	91	62 - 140
1,1,2-Trichloroethane	2500	2360	ug/Kg	94	71 - 130
1,1-Dichloroethane	2500	2140	ug/Kg	85	70 - 125
1,1-Dichloroethene	2500	2140	ug/Kg	86	67 - 122
1,1-Dichloropropene	2500	2300	ug/Kg	92	70 - 121
1,2,3-Trichlorobenzene	2500	2500	ug/Kg	100	51 - 145
1,2,3-Trichloropropane	2500	2380	ug/Kg	95	50 - 133
1,2,4-Trichlorobenzene	2500	2240	ug/Kg	90	57 - 137
1,2,4-Trimethylbenzene	2500	2280	ug/Kg	91	70 - 123
1,2-Dibromo-3-Chloropropane	2500	2060	ug/Kg	82	56 - 123
1,2-Dibromoethane	2500	2220	ug/Kg	89	70 - 125
1,2-Dichlorobenzene	2500	2340	ug/Kg	93	70 - 125
1,2-Dichloroethane	2500	2000	ug/Kg	80	68 - 127
1,2-Dichloropropane	2500	2250	ug/Kg	90	67 - 130
1,3,5-Trimethylbenzene	2500	2330	ug/Kg	93	70 - 123
1,3-Dichlorobenzene	2500	2280	ug/Kg	91	70 - 125
1,3-Dichloropropane	2500	2260	ug/Kg	90	62 - 136
1,4-Dichlorobenzene	2500	2270	ug/Kg	91	70 - 120
2,2-Dichloropropane	2500	1820	ug/Kg	73	58 - 139
2-Chlorotoluene	2500	2260	ug/Kg	90	70 - 125
4-Chlorotoluene	2500	2240	ug/Kg	90	68 - 124
Benzene	2500	2270	ug/Kg	91	70 - 120

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649331/19-A

Matrix: Solid

Analysis Batch: 649415

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649331 %Rec

Allalysis Batcii. 649413	Spike	LCS LC	s		%Rec
Analyte	Added	Result Qu		D %Rec	Limits
Bromobenzene		2440	ug/Kg	98	70 - 122
Bromochloromethane	2500	2230	ug/Kg	89	65 - 122
Dichlorobromomethane	2500	2040	ug/Kg	82	69 - 120
Bromoform	2500	2190	ug/Kg	88	56 - 132
Bromomethane	2500	1980	ug/Kg	79	40 - 152
Carbon tetrachloride	2500	2110	ug/Kg	84	59 - 133
Chlorobenzene	2500	2370	ug/Kg	95	70 - 120
Chloroethane	2500	1550	ug/Kg	62	48 - 136
Chloroform	2500	2030	ug/Kg	81	70 - 120
Chloromethane	2500	1460	ug/Kg	58	56 - 152
cis-1,2-Dichloroethene	2500	2210	ug/Kg	89	70 - 125
cis-1,3-Dichloropropene	2500	2240	ug/Kg	90	64 - 127
Dibromochloromethane	2500	2210	ug/Kg	88	68 - 125
Dibromomethane	2500	2210	ug/Kg	89	70 - 120
Dichlorodifluoromethane	2500	800 *-	ug/Kg	32	40 - 159
Ethylbenzene	2500	2280	ug/Kg	91	70 - 123
Hexachlorobutadiene	2500	2470	ug/Kg	99	51 - 150
Isopropylbenzene	2500	2400	ug/Kg	96	70 - 126
Methyl tert-butyl ether	2500	1860	ug/Kg	74	55 - 123
Methylene Chloride	2500	2200	ug/Kg	88	69 - 125
Naphthalene	2500	2430	ug/Kg	97	53 - 144
n-Butylbenzene	2500	2280	ug/Kg	91	68 - 125
N-Propylbenzene	2500	2380	ug/Kg	95	69 - 127
p-Isopropyltoluene	2500	2420	ug/Kg	97	70 - 125
sec-Butylbenzene	2500	2410	ug/Kg	96	70 - 123
Styrene	2500	2280	ug/Kg	91	70 - 120
tert-Butylbenzene	2500	2470	ug/Kg	99	70 - 121
Tetrachloroethene	2500	2540	ug/Kg	101	70 - 128
Toluene	2500	2540	ug/Kg	102	70 - 125
trans-1,2-Dichloroethene	2500	2200	ug/Kg	88	70 - 125
trans-1,3-Dichloropropene	2500	2080	ug/Kg	83	62 - 128
Trichloroethene	2500	2420	ug/Kg	97	70 - 125
Trichlorofluoromethane	2500	1660	ug/Kg	67	55 - 128
Vinyl chloride	2500	1570 *-	ug/Kg	63	64 - 126
Xylenes, Total	5000	4260	ug/Kg	85	70 - 125
The state of the s					

LCS LCS

LB3 LB3

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	82		75 - 126
4-Bromofluorobenzene (Surr)	89		72 - 124
Dibromofluoromethane (Surr)	90		75 - 120
Toluene-d8 (Surr)	101		75 - 120

Lab Sample ID: LB3 500-649332/21-A

Matrix: Solid

Analysis Batch: 649615

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 649332

Analyzed Dil Fac

Analyte Result Qualifier RL MDL Unit Prepared 1,1,1,2-Tetrachloroethane <23 50 03/30/22 00:30 03/31/22 11:36 23 ug/Kg

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB3 500-649332/21-A

Matrix: Solid

Analysis Batch: 649615

Client Sample ID: Method	Blank
Pren Type: To	tal/NA

Prep Batch: 649332

Job ID: 500-214283-1

Analysis Batch: 649615	1.00	. 50						Prep Batch:	649332
Analyte	LB3 Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<19		50	19	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,1,2,2-Tetrachloroethane	<20		50	20	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,1,2-Trichloroethane	<18		50	18	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,1-Dichloroethane	<21		50	21	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,1-Dichloroethene	<20		50	20	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,1-Dichloropropene	<15		50	15	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,2,3-Trichlorobenzene	<23		50		ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,2,3-Trichloropropane	<21		100	21	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,2,4-Trichlorobenzene	<17		50	17	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,2,4-Trimethylbenzene	<18		50	18	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,2-Dibromo-3-Chloropropane	<100		250		ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,2-Dibromoethane	<19		50		ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,2-Dichlorobenzene	<17		50		ug/Kg		03/30/22 00:30	03/31/22 11:36	50
1,2-Dichloroethane	<20		50		ug/Kg			03/31/22 11:36	50
1,2-Dichloropropane	<21		50		ug/Kg			03/31/22 11:36	50
1,3,5-Trimethylbenzene	<19		50		ug/Kg			03/31/22 11:36	50
1,3-Dichlorobenzene	<20		50		ug/Kg			03/31/22 11:36	50
1,3-Dichloropropane	<18		50		ug/Kg			03/31/22 11:36	50
1,4-Dichlorobenzene	<18		50		ug/Kg			03/31/22 11:36	50
2,2-Dichloropropane	<22		50		ug/Kg			03/31/22 11:36	50
2-Chlorotoluene	<16		50		ug/Kg			03/31/22 11:36	50
4-Chlorotoluene	<18		50		ug/Kg			03/31/22 11:36	50
Benzene	<7.3		13		ug/Kg			03/31/22 11:36	50
Bromobenzene	<18		50		ug/Kg			03/31/22 11:36	50
Bromochloromethane	<21		50		ug/Kg			03/31/22 11:36	50
Dichlorobromomethane	<19		50		ug/Kg			03/31/22 11:36	50
Bromoform	<24		50		ug/Kg			03/31/22 11:36	50
Bromomethane	<40		150		ug/Kg ug/Kg			03/31/22 11:36	50
Carbon tetrachloride	<19		50		ug/Kg ug/Kg			03/31/22 11:36	50
	<19							03/31/22 11:36	50
Chlorobenzene Chloroethane	<25		50 50		ug/Kg			03/31/22 11:36	50
					ug/Kg				
Chloroform	52.6	J	100		ug/Kg			03/31/22 11:36	50
Chloromethane	<16		50		ug/Kg			03/31/22 11:36	50
cis-1,2-Dichloroethene	<20		50 50		ug/Kg			03/31/22 11:36	50
cis-1,3-Dichloropropene	<21		50		ug/Kg			03/31/22 11:36	50
Dibromochloromethane	<24		50		ug/Kg			03/31/22 11:36	50
Dibromomethane	<14		50		ug/Kg			03/31/22 11:36	50
Dichlorodifluoromethane	<34		150		ug/Kg			03/31/22 11:36	50
Ethylbenzene	<9.2		13		ug/Kg			03/31/22 11:36	50
Hexachlorobutadiene	<22		50		ug/Kg			03/31/22 11:36	50
Isopropyl ether	<14		50		ug/Kg		03/30/22 00:30		50
Isopropylbenzene	<19		50		ug/Kg			03/31/22 11:36	50
Methyl tert-butyl ether	<20		50		ug/Kg		03/30/22 00:30		50
Methylene Chloride	287		250		ug/Kg			03/31/22 11:36	50
Naphthalene	<17		50		ug/Kg			03/31/22 11:36	50
n-Butylbenzene	<19		50		ug/Kg		03/30/22 00:30		50
N-Propylbenzene	<21		50		ug/Kg			03/31/22 11:36	50
p-Isopropyltoluene	<18		50		ug/Kg		03/30/22 00:30	03/31/22 11:36	50
sec-Butylbenzene	<20		50	20	ug/Kg		03/30/22 00:30	03/31/22 11:36	50

Eurofins Chicago

Page 245 of 356

4/15/2022

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB3 500-649332/21-A

Matrix: Solid

Analysis Batch: 649615

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649332

	LB3	LB3							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<19		50	19	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
tert-Butylbenzene	<20		50	20	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
Tetrachloroethene	<19		50	19	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
Toluene	<7.4		13	7.4	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
trans-1,2-Dichloroethene	<18		50	18	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
trans-1,3-Dichloropropene	<18		50	18	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
Trichloroethene	<8.2		25	8.2	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
Trichlorofluoromethane	<21		50	21	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
Vinyl chloride	<13		50	13	ug/Kg		03/30/22 00:30	03/31/22 11:36	50
Xylenes, Total	<11		25	11	ug/Kg		03/30/22 00:30	03/31/22 11:36	50

LB3 LB3

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	1,2-Dichloroethane-d4 (Surr)	95		75 - 126	03/30/22 00:30	03/31/22 11:36	50
	4-Bromofluorobenzene (Surr)	88		72 - 124	03/30/22 00:30	03/31/22 11:36	50
	Dibromofluoromethane (Surr)	99		75 - 120	03/30/22 00:30	03/31/22 11:36	50
١	Toluene-d8 (Surr)	96		75 - 120	03/30/22 00:30	03/31/22 11:36	50

LCS LCS

2300

2310

2300

2270

2670

2410

2400

Result Qualifier

Unit

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

Lab Sample ID: LCS 500-649332/22-A

Matrix: Solid

Analyte

Analysis Batch: 649615

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,1-Trichloroethane

1,1,2-Trichloroethane

1,1-Dichloroethane

1,1-Dichloroethene

1,2-Dichlorobenzene

Client Sample ID: Lab Control Sample

Limits

70 - 125

70 - 125

D %Rec

92

92

96

96

Prep Type: Total/NA

Prep Batch: 649332 %Rec

92 62 - 14091 71 - 130107 70 - 125

67 - 122

70 - 125

70 - 121 2500 2370 95 1,1-Dichloropropene ug/Kg 1,2,3-Trichlorobenzene 2500 2360 ug/Kg 94 51 - 145 2500 2190 ug/Kg 88 50 - 133 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene 2500 2330 93 57 - 137 ug/Kg 2500 2400 1,2,4-Trimethylbenzene ug/Kg 96 70 - 123 ug/Kg 1,2-Dibromo-3-Chloropropane 2500 2060 82 56 - 123 2500 2210 88 70 - 125 1,2-Dibromoethane ug/Kg 2500

Spike

Added

2500

2500

2500

2500

2500

2500

1,2-Dichloroethane 2500 2430 ug/Kg 97 68 - 127 2500 2670 107 67 - 1301,2-Dichloropropane ug/Kg 1,3,5-Trimethylbenzene 2500 2430 ug/Kg 97 70 - 123 2500 2400 ug/Kg 96 70 - 125 2500 2300 92 62 - 136

1,3-Dichlorobenzene 1,3-Dichloropropane ug/Kg 2500 2360 95 1,4-Dichlorobenzene 70 - 120 ug/Kg 2,2-Dichloropropane 2500 2080 83 58 - 139 ug/Kg

2-Chlorotoluene 2500 2410 97 70 - 125 ug/Kg 4-Chlorotoluene 2500 2360 ug/Kg 94 68 - 124 2500 2500 100 70 - 120 Benzene ug/Kg Bromobenzene 2500 2450 ug/Kg 98 70 - 122 65 - 122 Bromochloromethane 2500 2550 ug/Kg 102

Spike

LCS LCS

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649332/22-A

Matrix: Solid

Analysis Batch: 649615

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649332

Analyte	Added	Result Qualifier	Unit	D %Rec	Limits	
Dichlorobromomethane	2500	2370	ug/Kg	95	69 - 120	
Bromoform	2500	2330	ug/Kg	93	56 - 132	
Bromomethane	2500	1770	ug/Kg	71	40 - 152	
Carbon tetrachloride	2500	2370	ug/Kg	95	59 - 133	
Chlorobenzene	2500	2330	ug/Kg	93	70 - 120	
Chloroethane	2500	2370	ug/Kg	95	48 - 136	
Chloroform	2500	2320	ug/Kg	93	70 - 120	
Chloromethane	2500	1840	ug/Kg	73	56 - 152	
cis-1,2-Dichloroethene	2500	2460	ug/Kg	98	70 - 125	
cis-1,3-Dichloropropene	2500	2230	ug/Kg	89	64 - 127	
Dibromochloromethane	2500	2320	ug/Kg	93	68 - 125	
Dibromomethane	2500	2410	ug/Kg	96	70 - 120	
Dichlorodifluoromethane	2500	1210	ug/Kg	48	40 - 159	
Ethylbenzene	2500	2150	ug/Kg	86	70 - 123	
Hexachlorobutadiene	2500	2440	ug/Kg	97	51 - 150	
Isopropylbenzene	2500	2490	ug/Kg	100	70 - 126	
Methyl tert-butyl ether	2500	2190	ug/Kg	88	55 - 123	
Methylene Chloride	2500	2570	ug/Kg	103	69 - 125	
Naphthalene	2500	2250	ug/Kg	90	53 - 144	
n-Butylbenzene	2500	2280	ug/Kg	91	68 - 125	
N-Propylbenzene	2500	2450	ug/Kg	98	69 - 127	
p-Isopropyltoluene	2500	2280	ug/Kg	91	70 - 125	
sec-Butylbenzene	2500	2470	ug/Kg	99	70 - 123	
Styrene	2500	2350	ug/Kg	94	70 - 120	
tert-Butylbenzene	2500	2410	ug/Kg	96	70 - 121	
Tetrachloroethene	2500	2430	ug/Kg	97	70 - 128	
Toluene	2500	2320	ug/Kg	93	70 - 125	
trans-1,2-Dichloroethene	2500	2440	ug/Kg	98	70 - 125	
trans-1,3-Dichloropropene	2500	2070	ug/Kg	83	62 - 128	
Trichloroethene	2500	2440	ug/Kg	98	70 - 125	
Trichlorofluoromethane	2500	2310	ug/Kg	92	55 - 128	
Vinyl chloride	2500	2180	ug/Kg	87	64 - 126	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		75 - 126
4-Bromofluorobenzene (Surr)	93		72 - 124
Dibromofluoromethane (Surr)	101		75 - 120
Toluene-d8 (Surr)	96		75 - 120

Lab Sample ID: 500-214283-1 MS

Matrix: Solid

Xylenes, Total

Analysis Batch: 649615

Client Sample ID: SB-236 3.5-5
Prep Type: Total/NA

70 - 125

90

ug/Kg

Prep Batch: 649332

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	<41		4400	3890		ug/Kg	₩	88	70 - 125	
1,1,1-Trichloroethane	<33		4400	4100		ug/Kg	≎	93	70 - 125	
1,1,2,2-Tetrachloroethane	<35		4400	3930		ug/Kg	₩	89	62 - 140	

5000

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283 Matrix: Solid Analysis Batch: 649615	8-1 MS						CI	ient Sa	mple ID: SB-236 3.5-5 Prep Type: Total/NA Prep Batch: 649332
-	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,2-Trichloroethane	<31		4400	4020		ug/Kg	<u></u>	91	71 - 130
1,1-Dichloroethane	<36		4400	4600		ug/Kg	☼	105	70 - 125

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,2-Trichloroethane	<31		4400	4020		ug/Kg	<u></u>	91	71 - 130	-
1,1-Dichloroethane	<36		4400	4600		ug/Kg	₽	105	70 - 125	
1,1-Dichloroethene	<34		4400	4340		ug/Kg	☼	98	67 - 122	
1,1-Dichloropropene	<26		4400	4210		ug/Kg	₽	96	70 - 121	
1,2,3-Trichlorobenzene	<40		4400	4530		ug/Kg	₽	103	51 - 145	
1,2,3-Trichloropropane	<36		4400	4010		ug/Kg	₽	91	50 - 133	
1,2,4-Trichlorobenzene	<30		4400	4500		ug/Kg	 ☆	102	57 - 137	
1,2,4-Trimethylbenzene	290		4400	4500		ug/Kg	☼	96	70 - 123	
1,2-Dibromo-3-Chloropropane	<180		4400	3940		ug/Kg	☼	89	56 - 123	
1,2-Dibromoethane	<34		4400	3850		ug/Kg		88	70 - 125	
1,2-Dichlorobenzene	<29		4400	4170		ug/Kg	₽	95	70 - 125	
1,2-Dichloroethane	<35		4400	4260		ug/Kg	₽	97	68 - 127	
1,2-Dichloropropane	<38		4400	4610		ug/Kg		105	67 - 130	
1,3,5-Trimethylbenzene	77	J	4400	4260		ug/Kg	⊅	95	70 - 123	
1,3-Dichlorobenzene	<35		4400	4070		ug/Kg		92	70 - 125	
1,3-Dichloropropane	<32		4400	3950		ug/Kg		90	62 - 136	
1,4-Dichlorobenzene	<32		4400	4120		ug/Kg	₽	94	70 - 120	
2,2-Dichloropropane	<39		4400	3730		ug/Kg	☆	85	58 ₋ 139	
2-Chlorotoluene	<28		4400	4240		ug/Kg ug/Kg		96	70 - 125	
4-Chlorotoluene	<31		4400	4060		ug/Kg ug/Kg	☆	92	68 ₋ 124	
Benzene	64		4400	4340		ug/Kg ug/Kg	☆	97	70 ₋ 120	
Bromobenzene	<31		4400	4220			¥ 	96	70 - 120	
Bromochloromethane	<38		4400	4440		ug/Kg		101	65 - 122	
Dichlorobromomethane	<33		4400	4030		ug/Kg	☆	91	69 - 120	
	<43					ug/Kg				
Bromoform	<43 <70		4400 4400	4060		ug/Kg	₩	92	56 ₋ 132	
Bromomethane				3340		ug/Kg	#	76	40 - 152	
Carbon tetrachloride	<34		4400	4290		ug/Kg	 	98	59 - 133	
Chlorobenzene	<34		4400	3960		ug/Kg	#	90	70 - 120	
Chloroethane	<44		4400	4380		ug/Kg	₩	100	48 - 136	
Chloroform	<33		4400	3980		ug/Kg	.	90	70 - 120	
Chloromethane	<28		4400	4040		ug/Kg	₽	92	56 - 152	
cis-1,2-Dichloroethene	<36		4400	4230		ug/Kg	₩	96	70 - 125	
cis-1,3-Dichloropropene	<37		4400	3720		ug/Kg		84	64 - 127	
Dibromochloromethane	<43		4400	3950		ug/Kg	₩	90	68 - 125	
Dibromomethane	<24		4400	4100		ug/Kg	☼	93	70 - 120	
Dichlorodifluoromethane	<59		4400	3400		ug/Kg		77	40 - 159	
Ethylbenzene	130		4400	3860		ug/Kg	☼	85	70 - 123	
Hexachlorobutadiene	<39		4400	4700		ug/Kg	☼	107	51 - 150	
Isopropylbenzene	91		4400	4390		ug/Kg	₩	98	70 - 126	
Methyl tert-butyl ether	<35		4400	3810		ug/Kg	₩	87	55 - 123	
Methylene Chloride	540	В	4400	4670		ug/Kg	₩	94	69 - 125	
Naphthalene	440	В	4400	4790		ug/Kg	₩	99	53 - 144	
n-Butylbenzene	<34		4400	4220		ug/Kg	☼	96	68 - 125	
N-Propylbenzene	110		4400	4300		ug/Kg	☼	95	69 - 127	
p-Isopropyltoluene	33	J	4400	4130		ug/Kg	☼	93	70 - 125	
sec-Butylbenzene	41	J	4400	4460		ug/Kg	₽	100	70 - 123	
Styrene	<34		4400	4050		ug/Kg	₽	92	70 - 120	
tert-Butylbenzene	<35		4400	4190		ug/Kg	₩	95	70 - 121	
Tetrachloroethene	<33		4400	4350		ug/Kg	₩	99	70 - 128	

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-1 MS

Matrix: Solid

Analysis Batch: 649615

Client Sample ID: SB-236 3.5-5

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649332

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Toluene	440		4400	4360		ug/Kg	<u></u>	89	70 - 125	
trans-1,2-Dichloroethene	<31		4400	4210		ug/Kg	≎	96	70 - 125	
trans-1,3-Dichloropropene	<32		4400	3580		ug/Kg	≎	81	62 - 128	
Trichloroethene	<14		4400	4140		ug/Kg	☆	94	70 - 125	
Trichlorofluoromethane	<38		4400	4300		ug/Kg	≎	98	55 - 128	
Vinyl chloride	<23		4400	4540		ug/Kg	☼	103	64 - 126	
Xylenes, Total	1000		8800	8950		ug/Kg	☆	90	70 - 125	

MS MS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97	-	75 - 126
4-Bromofluorobenzene (Surr)	91		72 - 124
Dibromofluoromethane (Surr)	101		75 - 120
Toluene-d8 (Surr)	95		75 - 120

Lab Sample ID: 500-214283	3-1 MSD						CI	ient Sa	mple ID:		
Matrix: Solid									Prep Ty	•	
Analysis Batch: 649615									Prep Ba	atch: 64	
	•	Sample	Spike	_	MSD		_		%Rec		RP
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
1,1,1,2-Tetrachloroethane	<41		4400	4100		ug/Kg	₩	93	70 - 125	5	3
1,1,1-Trichloroethane	<33		4400	4340		ug/Kg	₩	99	70 - 125	6	3
1,1,2,2-Tetrachloroethane	<35		4400	4270		ug/Kg		97	62 - 140	8	3
1,1,2-Trichloroethane	<31		4400	4380		ug/Kg	☆	99	71 - 130	9	3
1,1-Dichloroethane	<36		4400	4900		ug/Kg	≎	111	70 - 125	6	3
1,1-Dichloroethene	<34		4400	4540		ug/Kg	₩	103	67 - 122	5	3
1,1-Dichloropropene	<26		4400	4420		ug/Kg	≎	100	70 - 121	5	3
1,2,3-Trichlorobenzene	<40		4400	4750		ug/Kg	≎	108	51 - 145	5	3
1,2,3-Trichloropropane	<36		4400	4340		ug/Kg	≎	99	50 - 133	8	3
1,2,4-Trichlorobenzene	<30		4400	4650		ug/Kg	☆	106	57 - 137	3	3
1,2,4-Trimethylbenzene	290		4400	4770		ug/Kg	☆	102	70 - 123	6	3
1,2-Dibromo-3-Chloropropane	<180		4400	4540		ug/Kg	≎	103	56 - 123	14	3
1,2-Dibromoethane	<34		4400	4140		ug/Kg	☼	94	70 - 125	7	3
1,2-Dichlorobenzene	<29		4400	4530		ug/Kg	≎	103	70 - 125	8	3
1,2-Dichloroethane	<35		4400	4570		ug/Kg	₩	104	68 - 127	7	3
1,2-Dichloropropane	<38		4400	4880		ug/Kg	☆	111	67 - 130	6	3
1,3,5-Trimethylbenzene	77	J	4400	4580		ug/Kg	☆	102	70 - 123	7	3
1,3-Dichlorobenzene	<35		4400	4440		ug/Kg	☆	101	70 - 125	9	3
1,3-Dichloropropane	<32		4400	4150		ug/Kg	☼	94	62 - 136	5	3
1,4-Dichlorobenzene	<32		4400	4390		ug/Kg	≎	100	70 - 120	6	3
2,2-Dichloropropane	<39		4400	3940		ug/Kg	≎	89	58 - 139	5	3
2-Chlorotoluene	<28		4400	4540		ug/Kg	 ☆	103	70 - 125	7	3
4-Chlorotoluene	<31		4400	4360		ug/Kg	₩	99	68 - 124	7	3
Benzene	64		4400	4670		ug/Kg	₩	105	70 - 120	7	3
Bromobenzene	<31		4400	4520		ug/Kg	∴	103	70 - 122	7	3
Bromochloromethane	<38		4400	4670		ug/Kg	₩	106	65 - 122	5	3
Dichlorobromomethane	<33		4400	4320		ug/Kg	₩	98	69 - 120	7	3
Bromoform	<43		4400	4350		ug/Kg	 ☆	99	56 - 132	7	3
Bromomethane	<70		4400	3470		ug/Kg		79	40 - 152	4	3

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-1 MSD

Matrix: Solid

Analysis Batch: 649615

Client Sample ID: SB-236 3.5-5

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649332

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Carbon tetrachloride	<34		4400	4530		ug/Kg	-	103	59 - 133	5	30
Chlorobenzene	<34		4400	4210		ug/Kg	₽	96	70 - 120	6	30
Chloroethane	<44		4400	4560		ug/Kg	₩	104	48 - 136	4	30
Chloroform	<33		4400	4290		ug/Kg	₩	97	70 - 120	8	30
Chloromethane	<28		4400	4120		ug/Kg	☼	94	56 - 152	2	30
cis-1,2-Dichloroethene	<36		4400	4540		ug/Kg	☼	103	70 - 125	7	30
cis-1,3-Dichloropropene	<37		4400	4000		ug/Kg	☼	91	64 - 127	7	30
Dibromochloromethane	<43		4400	4140		ug/Kg	☼	94	68 - 125	5	30
Dibromomethane	<24		4400	4510		ug/Kg	☼	103	70 - 120	10	30
Dichlorodifluoromethane	<59		4400	3570		ug/Kg	☼	81	40 - 159	5	30
Ethylbenzene	130		4400	4000		ug/Kg	₽	88	70 - 123	4	30
Hexachlorobutadiene	<39		4400	4910		ug/Kg	☼	112	51 - 150	5	30
Isopropylbenzene	91		4400	4750		ug/Kg	☼	106	70 - 126	8	30
Methyl tert-butyl ether	<35		4400	4180		ug/Kg	⊅	95	55 - 123	9	30
Methylene Chloride	540	В	4400	5000		ug/Kg	☼	101	69 - 125	7	30
Naphthalene	440	В	4400	5050		ug/Kg	☼	105	53 - 144	5	30
n-Butylbenzene	<34		4400	4400		ug/Kg	⊅	100	68 - 125	4	30
N-Propylbenzene	110		4400	4640		ug/Kg	☼	103	69 - 127	8	30
p-Isopropyltoluene	33	J	4400	4420		ug/Kg	☼	100	70 - 125	7	30
sec-Butylbenzene	41	J	4400	4740		ug/Kg	⊅	107	70 - 123	6	30
Styrene	<34		4400	4370		ug/Kg	₩	99	70 - 120	7	30
tert-Butylbenzene	<35		4400	4480		ug/Kg	₩	102	70 - 121	7	30
Tetrachloroethene	<33		4400	4460		ug/Kg	⊅	101	70 - 128	2	30
Toluene	440		4400	4620		ug/Kg	₩	95	70 - 125	6	30
trans-1,2-Dichloroethene	<31		4400	4580		ug/Kg	₩	104	70 - 125	8	30
trans-1,3-Dichloropropene	<32		4400	3800		ug/Kg	⊅	86	62 - 128	6	30
Trichloroethene	<14		4400	4460		ug/Kg	☼	101	70 - 125	7	30
Trichlorofluoromethane	<38		4400	4310		ug/Kg	☆	98	55 - 128	0	30
Vinyl chloride	<23		4400	4530		ug/Kg	₩	103	64 - 126	0	30
Xylenes, Total	1000		8800	9330		ug/Kg	☼	95	70 - 125	4	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	97		75 - 126
4-Bromofluorobenzene (Surr)	93		72 - 124
Dibromofluoromethane (Surr)	101		75 - 120
Toluene-d8 (Surr)	96		75 - 120

Lab Sample ID: LB3 500-649333/23-A

Matrix: Solid

Analysis Batch: 649801

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 649333

LB3 L	_B3
-------	-----

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<23	50	23	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,1,1-Trichloroethane	<19	50	19	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,1,2,2-Tetrachloroethane	<20	50	20	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,1,2-Trichloroethane	<18	50	18	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,1-Dichloroethane	<21	50	21	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,1-Dichloroethene	<20	50	20	ug/Kg		03/30/22 00:30	04/01/22 12:02	50

Eurofins Chicago

Page 250 of 356

4/15/2022

3

4

6

Ö

10

12

13

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB3 500-649333/23-A

Matrix: Solid

Analysis Batch: 649801

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649333

		LB3					_		
Analyte		Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	<15		50	15	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,2,3-Trichlorobenzene	30.2	J	50		ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,2,3-Trichloropropane	<21		100		ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,2,4-Trichlorobenzene	25.6	J	50	17	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,2,4-Trimethylbenzene	<18		50	18	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,2-Dibromo-3-Chloropropane	<100		250	100	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,2-Dibromoethane	<19		50	19	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,2-Dichlorobenzene	<17		50	17	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,2-Dichloroethane	<20		50	20	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,2-Dichloropropane	<21		50	21	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,3,5-Trimethylbenzene	<19		50	19	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,3-Dichlorobenzene	<20		50	20	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,3-Dichloropropane	<18		50	18	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
1,4-Dichlorobenzene	<18		50	18	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
2,2-Dichloropropane	<22		50	22	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
2-Chlorotoluene	<16		50	16	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
4-Chlorotoluene	<18		50	18	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Benzene	<7.3		13		ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Bromobenzene	<18		50		ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Bromochloromethane	<21		50		ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Dichlorobromomethane	<19		50		ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Bromoform	<24		50		ug/Kg			04/01/22 12:02	50
Bromomethane	<40		150		ug/Kg			04/01/22 12:02	50
Carbon tetrachloride	<19		50		ug/Kg			04/01/22 12:02	50
Chlorobenzene	<19		50		ug/Kg			04/01/22 12:02	50
Chloroethane	<25		50		ug/Kg			04/01/22 12:02	50
Chloroform	<19		100		ug/Kg			04/01/22 12:02	50
Chloromethane	<16		50		ug/Kg			04/01/22 12:02	50
cis-1,2-Dichloroethene	<20		50		ug/Kg			04/01/22 12:02	50
cis-1,3-Dichloropropene	<21		50					04/01/22 12:02	50
Dibromochloromethane	<24		50		ug/Kg			04/01/22 12:02	50
Dibromomethane	<14		50		ug/Kg			04/01/22 12:02	50
Dichlorodifluoromethane	<34		150		ug/Kg			04/01/22 12:02	50
Ethylbenzene	<9.2		13		ug/Kg			04/01/22 12:02	50
Hexachlorobutadiene	<22		50		ug/Kg			04/01/22 12:02	50
Isopropyl ether	<14		50		ug/Kg			04/01/22 12:02	50
Isopropylbenzene	<19		50		ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Methyl tert-butyl ether	<20		50		ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Methylene Chloride	<82		250		ug/Kg		03/30/22 00:30		50
Naphthalene	26.7		50		ug/Kg		03/30/22 00:30		50
n-Butylbenzene	<19	J	50		ug/Kg ug/Kg		03/30/22 00:30	04/01/22 12:02	50
N-Propylbenzene	<21 <18		50		ug/Kg ug/Kg		03/30/22 00:30	04/01/22 12:02 04/01/22 12:02	50
p-Isopropyltoluene									
sec-Butylbenzene	<20		50 50		ug/Kg		03/30/22 00:30		50
Styrene test Butulbanana	<19		50		ug/Kg		03/30/22 00:30		50
tert-Butylbenzene	<20		50		ug/Kg			04/01/22 12:02	50
Tetrachloroethene	<19		50		ug/Kg			04/01/22 12:02	50
Toluene	<7.4		13	7.4	ug/Kg ug/Kg			04/01/22 12:02 04/01/22 12:02	50

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB3 500-649333/23-A

Matrix: Solid

Analysis Batch: 649801

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649333

	LD3 LD3							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-1,3-Dichloropropene	<18	50	18	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Trichloroethene	<8.2	25	8.2	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Trichlorofluoromethane	<21	50	21	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Vinyl chloride	<13	50	13	ug/Kg		03/30/22 00:30	04/01/22 12:02	50
Xylenes, Total	<11	25	11	ug/Kg		03/30/22 00:30	04/01/22 12:02	50

LB3 LB3

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92		75 - 126	03/30/22 00:30	04/01/22 12:02	50
4-Bromofluorobenzene (Surr)	89		72 - 124	03/30/22 00:30	04/01/22 12:02	50
Dibromofluoromethane (Surr)	97		75 - 120	03/30/22 00:30	04/01/22 12:02	50
Toluene-d8 (Surr)	96		75 - 120	03/30/22 00:30	04/01/22 12:02	50

LCS LCS

Lab Sample ID: LCS 500-649333/24-A

Matrix: Solid

1,4-Dichlorobenzene

Analysis Batch: 649801

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 649333 %Rec

Added Result Qualifier %Rec Limits Analyte Unit 2500 1,1,1,2-Tetrachloroethane 2400 96 70 - 125 ug/Kg 1,1,1-Trichloroethane 2500 2460 ug/Kg 98 70 - 125 1,1,2,2-Tetrachloroethane 2500 2240 ug/Kg 90 62 - 140 1,1,2-Trichloroethane 2500 2400 ug/Kg 96 71 - 130

Spike

2500 2840 114 70 - 125 1,1-Dichloroethane ug/Kg 1,1-Dichloroethene 2500 2640 ug/Kg 106 67 - 1221,1-Dichloropropene 2500 2570 103 70 - 121 ug/Kg 101 2500 1,2,3-Trichlorobenzene 2520 ug/Kg 51 - 145 1,2,3-Trichloropropane 2500 2260 ug/Kg 91 50 - 1332500 1,2,4-Trichlorobenzene 2590 ug/Kg 103 57 - 137 2500 2480 1,2,4-Trimethylbenzene ug/Kg 99 70 - 123

56 - 123 2500 2180 87 1,2-Dibromo-3-Chloropropane ug/Kg 1,2-Dibromoethane 2500 2260 ug/Kg 90 70 - 125 1,2-Dichlorobenzene 2500 2490 100 70 - 125 ug/Kg 1,2-Dichloroethane 2500 2630 105 68 - 127 ug/Kg 2500 118 1,2-Dichloropropane 2960 ug/Kg 67 - 1301,3,5-Trimethylbenzene 2500 2460 98 70 - 123 ug/Kg 1,3-Dichlorobenzene 2500 2520 101 70 - 125 ug/Kg 1,3-Dichloropropane 2500 2390 ug/Kg 96 62 - 136

2500 2240 90 2,2-Dichloropropane ug/Kg 58 - 139 2-Chlorotoluene 2500 2450 98 70 - 125ug/Kg 4-Chlorotoluene 2500 2420 ug/Kg 97 68 - 124Benzene 2500 2670 ug/Kg 107 70 - 120 2500 100 Bromobenzene 2500 70 - 122 ug/Kg

2500

2490

ug/Kg

100

70 - 120

Bromochloromethane 2500 2680 107 65 - 122 ug/Kg Dichlorobromomethane 2500 2530 ug/Kg 101 69 - 120Bromoform 2500 2500 100 56 - 132 ug/Kg 2500 1820 Bromomethane ug/Kg 73 40 - 152

Carbon tetrachloride 2500 2600 ug/Kg 104 59 - 133 Chlorobenzene 2500 2450 ug/Kg 98 70 - 120

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649333/24-A

Matrix: Solid

Analysis Batch: 649801

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 649333

Job ID: 500-214283-1

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloroethane	2500	2630		ug/Kg		105	48 - 136	
Chloroform	2500	2460		ug/Kg		98	70 - 120	
Chloromethane	2500	1960		ug/Kg		78	56 - 152	
cis-1,2-Dichloroethene	2500	2610		ug/Kg		104	70 - 125	
cis-1,3-Dichloropropene	2500	2330		ug/Kg		93	64 - 127	
Dibromochloromethane	2500	2380		ug/Kg		95	68 - 125	
Dibromomethane	2500	2640		ug/Kg		106	70 - 120	
Dichlorodifluoromethane	2500	1190		ug/Kg		48	40 - 159	
Ethylbenzene	2500	2320		ug/Kg		93	70 - 123	
Hexachlorobutadiene	2500	2660		ug/Kg		106	51 - 150	
Isopropylbenzene	2500	2480		ug/Kg		99	70 - 126	
Methyl tert-butyl ether	2500	2370		ug/Kg		95	55 - 123	
Methylene Chloride	2500	2560		ug/Kg		102	69 - 125	
Naphthalene	2500	2260		ug/Kg		90	53 - 144	
n-Butylbenzene	2500	2440		ug/Kg		98	68 - 125	
N-Propylbenzene	2500	2450		ug/Kg		98	69 - 127	
p-Isopropyltoluene	2500	2390		ug/Kg		96	70 - 125	
sec-Butylbenzene	2500	2530		ug/Kg		101	70 - 123	
Styrene	2500	2550		ug/Kg		102	70 - 120	
tert-Butylbenzene	2500	2430		ug/Kg		97	70 - 121	
Tetrachloroethene	2500	2580		ug/Kg		103	70 - 128	
Toluene	2500	2460		ug/Kg		98	70 - 125	
trans-1,2-Dichloroethene	2500	2610		ug/Kg		104	70 - 125	
trans-1,3-Dichloropropene	2500	2190		ug/Kg		88	62 - 128	
Trichloroethene	2500	2640		ug/Kg		105	70 - 125	
Trichlorofluoromethane	2500	2470		ug/Kg		99	55 - 128	
Vinyl chloride	2500	2350		ug/Kg		94	64 - 126	
Xylenes, Total	5000	4800		ug/Kg		96	70 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75 - 126
4-Bromofluorobenzene (Surr)	91		72 - 124
Dibromofluoromethane (Surr)	104		75 - 120
Toluene-d8 (Surr)	92		75 - 120

Lab Sample ID: 500-214283-26 MS

Matrix: Solid

Analysis Batch: 649801

Client	Sample	D:	SB-217	' 3-5
	_	_		

Prep Type: Total/NA Prep Batch: 649333

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	<32		3450	3190		ug/Kg	₩	92	70 - 125	
1,1,1-Trichloroethane	<26		3450	3270		ug/Kg	☼	95	70 - 125	
1,1,2,2-Tetrachloroethane	<27		3450	3180		ug/Kg	☼	92	62 - 140	
1,1,2-Trichloroethane	<24		3450	3270		ug/Kg	₩	95	71 - 130	
1,1-Dichloroethane	<28		3450	3850		ug/Kg	☼	112	70 - 125	
1,1-Dichloroethene	<27		3450	3430		ug/Kg	☼	99	67 - 122	
1,1-Dichloropropene	<20		3450	3410		ug/Kg	₽	99	70 - 121	
1,2,3-Trichlorobenzene	<31		3450	3550		ug/Kg	₩	103	51 - 145	

Eurofins Chicago

3

6

9

11

13

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-26 MS

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Toluene

Matrix: Solid Analysis Batch: 649801	Sample	Sample	Spike	ме	MS				Prep Type: Total/NA Prep Batch: 649333 %Rec
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits
1,2,3-Trichloropropane	<28		3450	3140		ug/Kg	— <u></u>	91	50 - 133
1,2,4-Trichlorobenzene	<23		3450	3580		ug/Kg		104	57 - 137
1,2,4-Trimethylbenzene	<25		3450	3310		ug/Kg	☆	96	70 - 123
1,2-Dibromo-3-Chloropropane	<140		3450	3360		ug/Kg	☆	98	56 - 123
1.2-Dibromoethane	<26		3450	3160		ug/Kg		92	70 - 125
1,2-Dichlorobenzene	<23		3450	3430		ug/Kg	₩	100	70 - 125
1,2-Dichloroethane	<27		3450	3550		ug/Kg	₩	103	68 - 127
1,2-Dichloropropane	<29		3450	3870		ug/Kg	 .⇔	112	67 - 130
1,3,5-Trimethylbenzene	<26		3450	3320		ug/Kg	☆	96	70 - 123
1,3-Dichlorobenzene	<27		3450	3350		ug/Kg	☆	97	70 - 125
1,3-Dichloropropane	<25		3450	3200		ug/Kg		93	62 - 136
1,4-Dichlorobenzene	<25		3450	3370		ug/Kg		98	70 - 120
2,2-Dichloropropane	<30		3450	2960		ug/Kg	₽	86	58 - 139
2-Chlorotoluene	<22		3450	3310		ug/Kg		96	70 - 125
4-Chlorotoluene	<24		3450	3260		ug/Kg	☆	94	68 - 124
Benzene	<10		3450	3530		ug/Kg ug/Kg	☆	103	70 - 120
Bromobenzene	<24		3450	3370		ug/Kg		98	70 - 122
Bromochloromethane	<29		3450	3720		ug/Kg ug/Kg	☆	108	65 - 122
Dichlorobromomethane	<26		3450	3420		ug/Kg ug/Kg	₩	99	69 - 120
Bromoform	<33		3450	3370		ug/Kg		98	56 - 132
Bromomethane	<55		3450	2750		ug/Kg ug/Kg	₩	80	40 - 152
Carbon tetrachloride	<26		3450	3450		ug/Kg ug/Kg	₩	100	59 - 133
Chlorobenzene	<26		3450	3270		ug/Kg ug/Kg	 \$	95	70 - 120
Chloroethane	<35		3450	3620		ug/Kg ug/Kg	₩	105	48 - 136
Chloroform	<25		3450	3270		ug/Kg ug/Kg	₩	95	70 - 120
Chloromethane	<22		3450	3270		ug/Kg ug/Kg	 \$	95	56 - 152
cis-1,2-Dichloroethene	<28		3450	3500		ug/Kg ug/Kg	₩	101	70 - 125
cis-1,3-Dichloropropene	<29		3450	3150		ug/Kg ug/Kg		91	64 ₋ 127
Dibromochloromethane	<33		3450	3260		ug/Kg ug/Kg	 ☆	95	68 - 125
Dibromomethane	<19		3450	3520		ug/Kg ug/Kg		102	70 - 120
Dichlorodifluoromethane	<46		3450	2740		ug/Kg ug/Kg	₩	80	40 - 159
Ethylbenzene	<13		3450	3020			¥ 	87	70 - 123
Hexachlorobutadiene	<31		3450	3640		ug/Kg ug/Kg	₩ \$	106	51 ₋ 150
	<26		3450	3350				97	70 - 126
Isopropylbenzene Methyl tert butyl ether	<27			3250		ug/Kg	· · · · ·		
Methyl tert-butyl ether	<27 <110		3450 3450			ug/Kg	‡	94	55 ₋ 123
Methylene Chloride	<23		3450 3450	3450 3280		ug/Kg	‡	100	69 ₋ 125 53 - 144
Naphthalene			3450			ug/Kg	· · · · ·	95	
n-Butylbenzene	<27		3450 3450	3320		ug/Kg	‡	96 06	68 ₋ 125
N-Propylbenzene	<28		3450	3310		ug/Kg	‡	96	69 - 127
p-Isopropyltoluene	<25		3450	3240		ug/Kg	.	94	70 - 125
sec-Butylbenzene	<27		3450	3420		ug/Kg	₩	99	70 - 123
Styrene	<26		3450	3410		ug/Kg	₩	99	70 - 120

Eurofins Chicago

3450

3450

3450

3450

3450

3450

3450

3300

3450

3210

3480

2980

3500

3480

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

96

100

93

101

86

102

101

₩

₩

₩

₩

☼

☼

70 - 121

70 - 128

70 - 125

70 - 125

62 - 128

70 - 125

55 - 128

<27

<25

<10

<24

<25

<11

<29

Job ID: 500-214283-1

Client Sample ID: SB-217 3-5

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Sample Sample

Lab Sample ID: 500-214283-26 MS

Matrix: Solid

Analysis Batch: 649801

Client Sample ID: SB-217 3-5

Prep Type: Total/NA Prep Batch: 649333

Job ID: 500-214283-1

		Prep Batch: 6493	3
		%Rec	
_	0/ D	Limite	

Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Vinyl chloride	<18		3450	3610		ug/Kg	<u></u>	105	64 - 126	
Xylenes, Total	<15		6890	6410		ug/Kg	₽	93	70 - 125	

Spike

MS MS

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	99		75 - 126
4-Bromofluorobenzene (Surr)	89		72 - 124
Dibromofluoromethane (Surr)	102		75 - 120
Toluene-d8 (Surr)	94		75 - 120

Client Sample ID: SB-217 3-5 Lab Sample ID: 500-214283-26 MSD

latrix: Solid									Prep ly	pe: 10t	al/NA	
nalysis Batch: 649801									Prep Ba	atch: 64	19333	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
nalyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
1.1.2-Tetrachloroethane	<32		3450	3110		ua/Ka	*	90	70 125		30	

Analysis Batch: 649801	0	0	0		MOD				Prep Ba		
Analyta	-	Sample Qualifier	Spike Added		MSD Qualifier	Unit	D	%Rec	%Rec Limits	RPD	RPD Limit
Analyte 1,1,1,2-Tetrachloroethane	<32	Qualifier	3450 —	3110	Qualifier	ug/Kg	— -	90	70 ₋ 125	<u> </u>	30
1,1,1-Trichloroethane	<26		3450	3240		ug/Kg ug/Kg		94	70 - 125 70 - 125	1	30
1,1,2,2-Tetrachloroethane	<27		3450	3120		ug/Kg ug/Kg	‡	90	62 ₋ 140	2	30
1,1,2-Trichloroethane	<24		3450	3130		ug/Kg ug/Kg	 ∵	90	71 - 130	4	30
1,1-Dichloroethane	<28								71 - 130 70 - 125		
1,1-Dichloroethane	<20 <27		3450 3450	3680 3360		ug/Kg	‡	107 98	70 - 125 67 - 122	4	30 30
						ug/Kg	· · · · · · · · · · · · · · ·			2	
1,1-Dichloropropene	<20		3450	3310		ug/Kg	₩	96	70 - 121	3	30
1,2,3-Trichlorobenzene	<31		3450	3450		ug/Kg	₩	100	51 ₋ 145	3	30
1,2,3-Trichloropropane	<28		3450	3160		ug/Kg		92	50 - 133	0	30
1,2,4-Trichlorobenzene	<23		3450	3350		ug/Kg	₩	97	57 - 137	7	30
1,2,4-Trimethylbenzene	<25		3450	3270		ug/Kg	÷	95	70 - 123	1	30
1,2-Dibromo-3-Chloropropane	<140		3450	2950		ug/Kg	.	85	56 - 123	13	30
1,2-Dibromoethane	<26		3450	3010		ug/Kg	÷	87	70 - 125	5	30
1,2-Dichlorobenzene	<23		3450	3320		ug/Kg	₩	96	70 - 125	3	30
1,2-Dichloroethane	<27		3450	3460		ug/Kg	.	100	68 - 127		30
1,2-Dichloropropane	<29		3450	3650		ug/Kg	☼	106	67 - 130	6	30
1,3,5-Trimethylbenzene	<26		3450	3240		ug/Kg	₩	94	70 - 123	2	30
1,3-Dichlorobenzene	<27		3450	3290		ug/Kg	₩	95	70 - 125	2	30
1,3-Dichloropropane	<25		3450	3130		ug/Kg	₩	91	62 - 136	2	30
1,4-Dichlorobenzene	<25		3450	3210		ug/Kg	₩	93	70 - 120	5	30
2,2-Dichloropropane	<30		3450	2910		ug/Kg	₩	85	58 - 139	2	30
2-Chlorotoluene	<22		3450	3250		ug/Kg	₩	94	70 - 125	2	30
4-Chlorotoluene	<24		3450	3190		ug/Kg	₩	92	68 - 124	2	30
Benzene	<10		3450	3430		ug/Kg	₩	99	70 - 120	3	30
Bromobenzene	<24		3450	3350		ug/Kg	₽	97	70 - 122	1	30
Bromochloromethane	<29		3450	3640		ug/Kg	☼	106	65 - 122	2	30
Dichlorobromomethane	<26		3450	3290		ug/Kg	☼	96	69 - 120	4	30
Bromoform	<33		3450	3180		ug/Kg	☼	92	56 - 132	6	30
Bromomethane	<55		3450	2800		ug/Kg	₩	81	40 - 152	2	30
Carbon tetrachloride	<26		3450	3350		ug/Kg	₩	97	59 - 133	3	30
Chlorobenzene	<26		3450	3180		ug/Kg	☼	92	70 - 120	3	30
Chloroethane	<35		3450	4050		ug/Kg	₩	117	48 - 136	11	30
Chloroform	<25		3450	3190		ug/Kg	₩	92	70 - 120	2	30
Chloromethane	<22		3450	3560		ug/Kg		103	56 - 152	8	30

Client: Stantec Consulting Corp.

Analysis Batch: 649801

Matrix: Solid

Lab Sample ID: 500-214283-26 MSD

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: SB-217 3-5

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649333

7 thially old Dutoin Close.											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
cis-1,2-Dichloroethene	<28		3450	3450		ug/Kg	₽	100	70 - 125	1	30
cis-1,3-Dichloropropene	<29		3450	2980		ug/Kg	≎	87	64 - 127	6	30
Dibromochloromethane	<33		3450	3150		ug/Kg	☼	91	68 - 125	3	30
Dibromomethane	<19		3450	3410		ug/Kg	☼	99	70 - 120	3	30
Dichlorodifluoromethane	<46		3450	3010		ug/Kg	≎	87	40 - 159	9	30
Ethylbenzene	<13		3450	2850		ug/Kg	☼	83	70 - 123	6	30
Hexachlorobutadiene	<31		3450	3600		ug/Kg	≎	104	51 - 150	1	30
Isopropylbenzene	<26		3450	3310		ug/Kg	≎	96	70 - 126	1	30
Methyl tert-butyl ether	<27		3450	3050		ug/Kg	☼	88	55 - 123	6	30
Methylene Chloride	<110		3450	3380		ug/Kg	≎	98	69 - 125	2	30
Naphthalene	<23		3450	3180		ug/Kg	≎	92	53 - 144	3	30
n-Butylbenzene	<27		3450	3200		ug/Kg	≎	93	68 - 125	4	30
N-Propylbenzene	<28		3450	3280		ug/Kg	≎	95	69 - 127	1	30
p-Isopropyltoluene	<25		3450	3150		ug/Kg	☼	91	70 - 125	3	30
sec-Butylbenzene	<27		3450	3360		ug/Kg	≎	98	70 - 123	2	30
Styrene	<26		3450	3200		ug/Kg	≎	93	70 - 120	6	30
tert-Butylbenzene	<27		3450	3230		ug/Kg	☼	94	70 - 121	2	30
Tetrachloroethene	<25		3450	3290		ug/Kg	≎	96	70 - 128	5	30
Toluene	<10		3450	3060		ug/Kg	≎	89	70 - 125	5	30
trans-1,2-Dichloroethene	<24		3450	3390		ug/Kg	☼	98	70 - 125	3	30
trans-1,3-Dichloropropene	<25		3450	2820		ug/Kg	☼	82	62 - 128	6	30
Trichloroethene	<11		3450	3370		ug/Kg	₩	98	70 - 125	4	30
Trichlorofluoromethane	<29		3450	3720		ug/Kg	₩	108	55 - 128	7	30
Vinyl chloride	<18		3450	3860		ug/Kg	≎	112	64 - 126	7	30
Xylenes, Total	<15		6890	6130		ug/Kg	₩	89	70 - 125	4	30

MSD MSD %Recovery Qualifier Limits 99 75 - 126 93 72 - 124

Dibromofluoromethane (Surr) 103 75 - 120 Toluene-d8 (Surr) 94 75 - 120

Lab Sample ID: 500-214283-36 MS

Matrix: Solid

Surrogate

Analysis Batch: 649839

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Client Sample ID: SB-221 0-2	
Prep Type: Total/NA	

Prep Batch: 649333

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	<37		3860	3700		ug/Kg	☆	96	70 - 125	
1,1,1-Trichloroethane	<30		3860	3160		ug/Kg	☼	82	70 - 125	
1,1,2,2-Tetrachloroethane	<32		3860	3640		ug/Kg	☼	94	62 - 140	
1,1,2-Trichloroethane	<28		3860	3550		ug/Kg	☼	92	71 - 130	
1,1-Dichloroethane	<33		3860	3290		ug/Kg	☼	85	70 - 125	
1,1-Dichloroethene	<31		3860	3370		ug/Kg	☼	87	67 - 122	
1,1-Dichloropropene	<24		3860	3400		ug/Kg	₩	88	70 - 121	
1,2,3-Trichlorobenzene	<37		3860	4690		ug/Kg	☼	122	51 - 145	
1,2,3-Trichloropropane	<33		3860	3540		ug/Kg	☼	92	50 - 133	
1,2,4-Trichlorobenzene	<27		3860	4060		ug/Kg	☼	105	57 - 137	
1,2,4-Trimethylbenzene	97		3860	3720		ug/Kg	☼	94	70 - 123	

Page 256 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-36 MS

Matrix: Solid

Analysis Batch: 649839

Client Sample ID: SB-221 0-2

Prep Type: Total/NA Prep Batch: 649333

Job ID: 500-214283-1

Analysis Batch: 649839	•	Sample	Spike	MS	MS				Prep Batch: 6493 %Rec
Analyte		Qualifier	Added		Qualifier	Unit	_ D	%Rec	Limits
1,2-Dibromo-3-Chloropropane	<160		3860	3390		ug/Kg	-	88	56 - 123
1,2-Dibromoethane	<31		3860	3290		ug/Kg	₩	85	70 - 125
1,2-Dichlorobenzene	<27		3860	3790		ug/Kg	₩	98	70 - 125
1,2-Dichloroethane	<31		3860	2940		ug/Kg		76	68 - 127
1,2-Dichloropropane	<34		3860	3320		ug/Kg	₩	86	67 - 130
1,3,5-Trimethylbenzene	<30		3860	3770		ug/Kg	₩	98	70 - 123
1,3-Dichlorobenzene	<32		3860	3610		ug/Kg	☼	94	70 - 125
1,3-Dichloropropane	<29		3860	3310		ug/Kg	☆	86	62 - 136
1,4-Dichlorobenzene	<29		3860	3470		ug/Kg	₩	90	70 - 120
2,2-Dichloropropane	<36		3860	2880		ug/Kg	₩	75	58 - 139
2-Chlorotoluene	<25		3860	3610		ug/Kg	₩	93	70 - 125
4-Chlorotoluene	<28		3860	3400		ug/Kg	₩	88	68 - 124
Benzene	22		3860	3480		ug/Kg	₩	90	70 - 120
Bromobenzene	<28		3860	3810		ug/Kg	☆	99	70 - 122
Bromochloromethane	<34		3860	3520		ug/Kg	☆	91	65 - 122
Dichlorobromomethane	<30		3860	3030		ug/Kg	☆	78	69 - 120
Bromoform	<39		3860	3240		ug/Kg	☼	84	56 - 132
Bromomethane	<64		3860	3680		ug/Kg	☼	95	40 - 152
Carbon tetrachloride	<31		3860	3250		ug/Kg	☼	84	59 - 133
Chlorobenzene	<31		3860	3600		ug/Kg	₩	93	70 - 120
Chloroethane	<40		3860	2950		ug/Kg	₩	76	48 - 136
Chloroform	<30		3860	3130		ug/Kg	☆	81	70 - 120
Chloromethane	<26		3860	3140		ug/Kg	☆	81	56 - 152
cis-1,2-Dichloroethene	<33		3860	3500		ug/Kg	☆	91	70 - 125
cis-1,3-Dichloropropene	<33		3860	3310		ug/Kg	☆	86	64 - 127
Dibromochloromethane	<39		3860	3370		ug/Kg	☆	87	68 - 125
Dibromomethane	<22		3860	3240		ug/Kg	₽	84	70 - 120
Dichlorodifluoromethane	<54		3860	2530		ug/Kg	☆	65	40 - 159
Ethylbenzene	63		3860	3390		ug/Kg	☼	86	70 - 123
Hexachlorobutadiene	<36		3860	4480		ug/Kg	☆	116	51 - 150
Isopropylbenzene	39	J	3860	3950		ug/Kg	☆	101	70 - 126
Methyl tert-butyl ether	<32		3860	2870		ug/Kg	☼	74	55 - 123
Methylene Chloride	<130		3860	3440		ug/Kg	₽	89	69 - 125
Naphthalene	300	В	3860	4770		ug/Kg	₽	116	53 - 144
n-Butylbenzene	<31		3860	3520		ug/Kg	₩	91	68 - 125
N-Propylbenzene	60	J	3860	3700		ug/Kg	₩	94	69 - 127
p-Isopropyltoluene	<29		3860	3870		ug/Kg	☆	100	70 - 125
sec-Butylbenzene	<32		3860	3970		ug/Kg	☼	103	70 - 123
Styrene	<31		3860	3310		ug/Kg	₽	86	70 - 120
tert-Butylbenzene	<32		3860	4100		ug/Kg	₽	106	70 - 121
Tetrachloroethene	<30		3860	3950		ug/Kg		102	70 - 128
Toluene	190		3860	3900		ug/Kg	₩	96	70 - 125
trans-1,2-Dichloroethene	<28		3860	3480		ug/Kg	₩	90	70 - 125
trans-1,3-Dichloropropene	<29		3860	2960		ug/Kg		77	62 - 128
Trichloroethene	<13		3860	3840		ug/Kg	₩	99	70 - 125
Trichlorofluoromethane	<34		3860	3020		ug/Kg	₩	78	55 - 128
Vinyl chloride	<21		3860	3100		ug/Kg		80	64 - 126
,									

Eurofins Chicago

Δ

6

q

11

12

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-36 MS

Matrix: Solid

Analysis Batch: 649839

Client Sample ID: SB-221 0-2

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649333

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	79		75 - 126
4-Bromofluorobenzene (Surr)	89		72 - 124
Dibromofluoromethane (Surr)	91		75 - 120
Toluene-d8 (Surr)	101		75 - 120

Lab Sample ID: 500-214283-36 MSD Client Sample ID: SB-221 0-2

Matrix: Solid

Analysis Batch: 649839

Prep Type: Total/NA

Prep Batch: 649333

Analysis Batch: 649839	01-	01-	0		MOD				Prep Ba	atch: 64	
Ameliate	•	Sample	Spike		MSD	1114	_	0/ 🗖	%Rec	222	RPD
Analyte 4.4.4.0 Tetra elilene eth and		Qualifier	Added		Qualifier	Unit	_ D	%Rec	Limits	RPD	Limit
1,1,1,2-Tetrachloroethane	<37		3860	3420		ug/Kg	₽	88	70 - 125	8	30
1,1,1-Trichloroethane	<30		3860	3110		ug/Kg	≎	81	70 - 125	2	30
1,1,2,2-Tetrachloroethane	<32		3860	3310		ug/Kg	☆	86	62 - 140	10	30
1,1,2-Trichloroethane	<28		3860	3270		ug/Kg	☆	85	71 - 130	8	30
1,1-Dichloroethane	<33		3860	3140		ug/Kg	₩	81	70 - 125	5	30
1,1-Dichloroethene	<31		3860	3290		ug/Kg	₩	85	67 - 122	2	30
1,1-Dichloropropene	<24		3860	3330		ug/Kg	☆	86	70 - 121	2	30
1,2,3-Trichlorobenzene	<37		3860	4070		ug/Kg	≎	105	51 - 145	14	30
1,2,3-Trichloropropane	<33		3860	3370		ug/Kg	₩	87	50 - 133	5	30
1,2,4-Trichlorobenzene	<27		3860	3730		ug/Kg	☆	97	57 - 137	8	30
1,2,4-Trimethylbenzene	97		3860	3450		ug/Kg	≎	87	70 - 123	8	30
1,2-Dibromo-3-Chloropropane	<160		3860	2970		ug/Kg	≎	77	56 - 123	13	30
1,2-Dibromoethane	<31		3860	3140		ug/Kg	☆	81	70 - 125	5	30
1,2-Dichlorobenzene	<27		3860	3540		ug/Kg	≎	92	70 - 125	7	30
1,2-Dichloroethane	<31		3860	2890		ug/Kg	≎	75	68 - 127	2	30
1,2-Dichloropropane	<34		3860	3170		ug/Kg	☼	82	67 - 130	5	30
1,3,5-Trimethylbenzene	<30		3860	3460		ug/Kg	≎	90	70 - 123	8	30
1,3-Dichlorobenzene	<32		3860	3420		ug/Kg	≎	88	70 - 125	6	30
1,3-Dichloropropane	<29		3860	3100		ug/Kg		80	62 - 136	7	30
1,4-Dichlorobenzene	<29		3860	3350		ug/Kg	≎	87	70 - 120	4	30
2,2-Dichloropropane	<36		3860	2660		ug/Kg	₩	69	58 - 139	8	30
2-Chlorotoluene	<25		3860	3290		ug/Kg	∴	85	70 - 125	9	30
4-Chlorotoluene	<28		3860	3200		ug/Kg	₩	83	68 - 124	6	30
Benzene	22		3860	3380		ug/Kg	₩	87	70 - 120	3	30
Bromobenzene	<28		3860	3670		ug/Kg		95	70 - 122	4	30
Bromochloromethane	<34		3860	3430		ug/Kg	₩	89	65 - 122	3	30
Dichlorobromomethane	<30		3860	2940		ug/Kg	☆	76	69 - 120	3	30
Bromoform	<39		3860	3280		ug/Kg	 ☆	85	56 - 132	1	30
Bromomethane	<64		3860	3640		ug/Kg	☆	94	40 - 152	1	30
Carbon tetrachloride	<31		3860	3150		ug/Kg	₩	81	59 - 133	3	30
Chlorobenzene	<31		3860	3490		ug/Kg		90	70 - 120	3	30
Chloroethane	<40		3860	3140		ug/Kg	₩	81	48 - 136	6	30
Chloroform	<30		3860	3000		ug/Kg	₩	78	70 - 120	4	30
Chloromethane	<26		3860	3040		ug/Kg		79	56 - 152	3	30
cis-1,2-Dichloroethene	<33		3860	3410		ug/Kg ug/Kg	₩	7 <i>9</i> 88	70 - 125	3	30
cis-1,3-Dichloropropene	<33		3860	3140		ug/Kg ug/Kg	₩	81	64 - 127	5	30
Dibromochloromethane								82			30
	<39		3860	3170		ug/Kg	\$		68 ₋ 125	6	
Dibromomethane	<22		3860	3170		ug/Kg	₩	82	70 - 120	2	30

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-36 MSD

Matrix: Solid

Analysis Batch: 649839

Client Sample ID: SB-221 0-2

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649333

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Dichlorodifluoromethane	<54		3860	2510		ug/Kg	<u></u>	65	40 - 159	1	30
Ethylbenzene	63		3860	3290		ug/Kg	₩	84	70 - 123	3	30
Hexachlorobutadiene	<36		3860	3980		ug/Kg	☼	103	51 - 150	12	30
Isopropylbenzene	39	J	3860	3610		ug/Kg	☼	92	70 - 126	9	30
Methyl tert-butyl ether	<32		3860	2760		ug/Kg	₩	72	55 - 123	4	30
Methylene Chloride	<130		3860	3210		ug/Kg	☼	83	69 - 125	7	30
Naphthalene	300	В	3860	4270		ug/Kg	☼	103	53 - 144	11	30
n-Butylbenzene	<31		3860	3320		ug/Kg	☼	86	68 - 125	6	30
N-Propylbenzene	60	J	3860	3480		ug/Kg	☼	88	69 - 127	6	30
p-Isopropyltoluene	<29		3860	3570		ug/Kg	☼	93	70 - 125	8	30
sec-Butylbenzene	<32		3860	3610		ug/Kg	☼	93	70 - 123	10	30
Styrene	<31		3860	3250		ug/Kg	☼	84	70 - 120	2	30
tert-Butylbenzene	<32		3860	3760		ug/Kg	☼	97	70 - 121	9	30
Tetrachloroethene	<30		3860	3850		ug/Kg	⊅	100	70 - 128	3	30
Toluene	190		3860	3730		ug/Kg	☼	92	70 - 125	4	30
trans-1,2-Dichloroethene	<28		3860	3280		ug/Kg	☼	85	70 - 125	6	30
trans-1,3-Dichloropropene	<29		3860	2910		ug/Kg	≎	75	62 - 128	2	30
Trichloroethene	<13		3860	3770		ug/Kg	☼	98	70 - 125	2	30
Trichlorofluoromethane	<34		3860	3010		ug/Kg	☼	78	55 - 128	0	30
Vinyl chloride	<21		3860	3170		ug/Kg	☼	82	64 - 126	2	30
Xylenes, Total	270		7720	6450		ug/Kg	≎	80	70 - 125	4	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	79		75 - 126
4-Bromofluorobenzene (Surr)	88		72 - 124
Dibromofluoromethane (Surr)	92		75 - 120
Toluene-d8 (Surr)	99		75 - 120

Lab Sample ID: MB 500-649415/7

Matrix: Solid

Analysis Batch: 649415

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/Kg			03/30/22 11:23	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/Kg			03/30/22 11:23	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/Kg			03/30/22 11:23	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/Kg			03/30/22 11:23	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/Kg			03/30/22 11:23	1
1,1-Dichloroethene	< 0.39		1.0	0.39	ug/Kg			03/30/22 11:23	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/Kg			03/30/22 11:23	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/Kg			03/30/22 11:23	1
1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/Kg			03/30/22 11:23	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/Kg			03/30/22 11:23	1
1,2,4-Trimethylbenzene	< 0.36		1.0	0.36	ug/Kg			03/30/22 11:23	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/Kg			03/30/22 11:23	1
1,2-Dibromoethane	<0.39		1.0	0.39	ug/Kg			03/30/22 11:23	1
1,2-Dichlorobenzene	< 0.33		1.0	0.33	ug/Kg			03/30/22 11:23	1
1,2-Dichloroethane	< 0.39		1.0	0.39	ug/Kg			03/30/22 11:23	1

Page 259 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-649415/7

Matrix: Solid

Analysis Batch: 649415

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Ameliate		MB	- -		11			B.: -
Analyte		Qualifier	RL	MDL		D Prepared	Analyzed	Dil Fac
1,2-Dichloropropane	<0.43		1.0		ug/Kg		03/30/22 11:23	
1,3,5-Trimethylbenzene	<0.38		1.0		ug/Kg		03/30/22 11:23	1
1,3-Dichlorobenzene	<0.40		1.0		ug/Kg		03/30/22 11:23	
1,3-Dichloropropane	<0.36		1.0		ug/Kg		03/30/22 11:23	1
1,4-Dichlorobenzene	<0.36		1.0		ug/Kg		03/30/22 11:23	1
2,2-Dichloropropane	<0.44		1.0		ug/Kg		03/30/22 11:23	1
2-Chlorotoluene	<0.31		1.0	0.31	ug/Kg		03/30/22 11:23	1
4-Chlorotoluene	<0.35		1.0	0.35	ug/Kg		03/30/22 11:23	1
Benzene	<0.15		0.25	0.15	ug/Kg		03/30/22 11:23	1
Bromobenzene	<0.36		1.0	0.36	ug/Kg		03/30/22 11:23	1
Bromochloromethane	< 0.43		1.0	0.43	ug/Kg		03/30/22 11:23	1
Dichlorobromomethane	<0.37		1.0	0.37	ug/Kg		03/30/22 11:23	1
Bromoform	<0.48		1.0	0.48	ug/Kg		03/30/22 11:23	1
Bromomethane	<0.80		3.0	0.80	ug/Kg		03/30/22 11:23	1
Carbon tetrachloride	<0.38		1.0	0.38	ug/Kg		03/30/22 11:23	•
Chlorobenzene	<0.39		1.0	0.39	ug/Kg		03/30/22 11:23	
Chloroethane	<0.50		1.0	0.50	ug/Kg		03/30/22 11:23	1
Chloroform	< 0.37		2.0		ug/Kg		03/30/22 11:23	1
Chloromethane	<0.32		1.0		ug/Kg		03/30/22 11:23	1
cis-1,2-Dichloroethene	<0.41		1.0		ug/Kg		03/30/22 11:23	1
cis-1,3-Dichloropropene	<0.42		1.0		ug/Kg		03/30/22 11:23	
Dibromochloromethane	<0.49		1.0		ug/Kg		03/30/22 11:23	1
Dibromomethane	<0.27		1.0		ug/Kg		03/30/22 11:23	
Dichlorodifluoromethane	<0.67		3.0		ug/Kg		03/30/22 11:23	
Ethylbenzene	<0.18		0.25		ug/Kg		03/30/22 11:23	
Hexachlorobutadiene	<0.45		1.0		ug/Kg		03/30/22 11:23	
sopropyl ether	<0.28		1.0		ug/Kg		03/30/22 11:23	
Isopropylbenzene	<0.38		1.0		ug/Kg		03/30/22 11:23	
Methyl tert-butyl ether	<0.39		1.0		ug/Kg		03/30/22 11:23	
Methylene Chloride	<1.6		5.0		ug/Kg ug/Kg		03/30/22 11:23	,
Naphthalene	<0.33		1.0		ug/Kg ug/Kg		03/30/22 11:23	
	<0.39							,
n-Butylbenzene	<0.39		1.0		ug/Kg		03/30/22 11:23 03/30/22 11:23	
N-Propylbenzene			1.0		ug/Kg			
p-Isopropyltoluene	<0.36		1.0		ug/Kg		03/30/22 11:23	1
sec-Butylbenzene	<0.40		1.0		ug/Kg		03/30/22 11:23	1
Styrene	<0.39		1.0		ug/Kg		03/30/22 11:23	1
tert-Butylbenzene	<0.40		1.0		ug/Kg		03/30/22 11:23	1
Tetrachloroethene	<0.37		1.0		ug/Kg		03/30/22 11:23	1
Toluene	<0.15		0.25		ug/Kg		03/30/22 11:23	1
trans-1,2-Dichloroethene	<0.35		1.0		ug/Kg		03/30/22 11:23	1
rans-1,3-Dichloropropene	<0.36		1.0		ug/Kg		03/30/22 11:23	1
Trichloroethene	<0.16		0.50		ug/Kg		03/30/22 11:23	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/Kg		03/30/22 11:23	1
Vinyl chloride	<0.26		1.0	0.26	ug/Kg		03/30/22 11:23	•
Xylenes, Total	<0.22		0.50	0.22	ug/Kg		03/30/22 11:23	•
	MB	MB						
Surrogate	%Recovery		Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	85		75 - 126				03/30/22 11:23	

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-649415/7

Matrix: Solid

Analysis Batch: 649415

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

MB MB %Recovery Qualifier Dil Fac Surrogate Limits Prepared Analyzed 4-Bromofluorobenzene (Surr) 91 72 - 124 03/30/22 11:23 Dibromofluoromethane (Surr) 94 75 - 120 03/30/22 11:23 Toluene-d8 (Surr) 99 75 - 120 03/30/22 11:23

Lab Sample ID: LCS 500-649415/5

Matrix: Solid

Analysis Batch: 649415

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	48.3		ug/Kg		97	70 - 125	
1,1,1-Trichloroethane	50.0	44.4		ug/Kg		89	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	45.8		ug/Kg		92	62 - 140	
1,1,2-Trichloroethane	50.0	44.7		ug/Kg		89	71 - 130	
1,1-Dichloroethane	50.0	44.5		ug/Kg		89	70 - 125	
1,1-Dichloroethene	50.0	46.5		ug/Kg		93	67 - 122	
1,1-Dichloropropene	50.0	47.8		ug/Kg		96	70 - 121	
1,2,3-Trichlorobenzene	50.0	57.4		ug/Kg		115	51 - 145	
1,2,3-Trichloropropane	50.0	44.5		ug/Kg		89	50 - 133	
1,2,4-Trichlorobenzene	50.0	53.7		ug/Kg		107	57 - 137	
1,2,4-Trimethylbenzene	50.0	47.7		ug/Kg		95	70 - 123	
1,2-Dibromo-3-Chloropropane	50.0	44.2		ug/Kg		88	56 - 123	
1,2-Dibromoethane	50.0	42.9		ug/Kg		86	70 - 125	
1,2-Dichlorobenzene	50.0	48.1		ug/Kg		96	70 - 125	
1,2-Dichloroethane	50.0	40.6		ug/Kg		81	68 - 127	
1,2-Dichloropropane	50.0	44.0		ug/Kg		88	67 - 130	
1,3,5-Trimethylbenzene	50.0	48.6		ug/Kg		97	70 - 123	
1,3-Dichlorobenzene	50.0	47.6		ug/Kg		95	70 - 125	
1,3-Dichloropropane	50.0	43.2		ug/Kg		86	62 - 136	
1,4-Dichlorobenzene	50.0	45.5		ug/Kg		91	70 - 120	
2,2-Dichloropropane	50.0	41.0		ug/Kg		82	58 - 139	
2-Chlorotoluene	50.0	46.0		ug/Kg		92	70 - 125	
4-Chlorotoluene	50.0	45.3		ug/Kg		91	68 - 124	
Benzene	50.0	46.2		ug/Kg		92	70 - 120	
Bromobenzene	50.0	47.7		ug/Kg		95	70 - 122	
Bromochloromethane	50.0	45.8		ug/Kg		92	65 - 122	
Dichlorobromomethane	50.0	41.1		ug/Kg		82	69 - 120	
Bromoform	50.0	43.4		ug/Kg		87	56 - 132	
Bromomethane	50.0	49.2		ug/Kg		98	40 - 152	
Carbon tetrachloride	50.0	45.3		ug/Kg		91	59 - 133	
Chlorobenzene	50.0	47.1		ug/Kg		94	70 - 120	
Chloroethane	50.0	41.8		ug/Kg		84	48 - 136	
Chloroform	50.0	42.3		ug/Kg		85	70 - 120	
Chloromethane	50.0	41.7		ug/Kg		83	56 - 152	
cis-1,2-Dichloroethene	50.0	46.5		ug/Kg		93	70 - 125	
cis-1,3-Dichloropropene	50.0	44.0		ug/Kg		88	64 - 127	
Dibromochloromethane	50.0	43.9		ug/Kg		88	68 - 125	
Dibromomethane	50.0	43.4		ug/Kg		87	70 - 120	
Dichlorodifluoromethane	50.0	37.7		ug/Kg		75	40 - 159	

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649415/5

Matrix: Solid

Analysis Batch: 649415

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

7 maryolo Batom 040410	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Ethylbenzene	50.0	45.2		ug/Kg		90	70 - 123
Hexachlorobutadiene	50.0	57.0		ug/Kg		114	51 - 150
Isopropylbenzene	50.0	49.9		ug/Kg		100	70 - 126
Methyl tert-butyl ether	50.0	39.6		ug/Kg		79	55 - 123
Methylene Chloride	50.0	45.7		ug/Kg		91	69 - 125
Naphthalene	50.0	54.6		ug/Kg		109	53 - 144
n-Butylbenzene	50.0	49.0		ug/Kg		98	68 - 125
N-Propylbenzene	50.0	48.3		ug/Kg		97	69 - 127
p-Isopropyltoluene	50.0	50.4		ug/Kg		101	70 - 125
sec-Butylbenzene	50.0	50.6		ug/Kg		101	70 - 123
Styrene	50.0	44.2		ug/Kg		88	70 - 120
tert-Butylbenzene	50.0	51.8		ug/Kg		104	70 - 121
Tetrachloroethene	50.0	52.3		ug/Kg		105	70 - 128
Toluene	50.0	49.8		ug/Kg		100	70 - 125
trans-1,2-Dichloroethene	50.0	46.1		ug/Kg		92	70 - 125
trans-1,3-Dichloropropene	50.0	40.6		ug/Kg		81	62 - 128
Trichloroethene	50.0	50.9		ug/Kg		102	70 - 125
Trichlorofluoromethane	50.0	40.6		ug/Kg		81	55 - 128
Vinyl chloride	50.0	41.4		ug/Kg		83	64 - 126
Xylenes, Total	100	86.9		ug/Kg		87	70 - 125

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	84		75 - 126
4-Bromofluorobenzene (Surr)	91		72 - 124
Dibromofluoromethane (Surr)	93		75 - 120
Toluene-d8 (Surr)	100		75 - 120

Lab Sample ID: MB 500-649615/7

Matrix: Solid

Analysis Batch: 649615

Client Sample ID: Method Blank Prep Type: Total/NA

ı	Amaryolo Batom 0-10010									
ĺ	-	MB	MB							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/Kg			03/31/22 11:14	1
	1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/Kg			03/31/22 11:14	1
	1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/Kg			03/31/22 11:14	1
I	1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/Kg			03/31/22 11:14	1
	1,1-Dichloroethane	<0.41		1.0	0.41	ug/Kg			03/31/22 11:14	1
	1,1-Dichloroethene	< 0.39		1.0	0.39	ug/Kg			03/31/22 11:14	1
	1,1-Dichloropropene	<0.30		1.0	0.30	ug/Kg			03/31/22 11:14	1
	1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/Kg			03/31/22 11:14	1
	1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/Kg			03/31/22 11:14	1
I	1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/Kg			03/31/22 11:14	1
	1,2,4-Trimethylbenzene	< 0.36		1.0	0.36	ug/Kg			03/31/22 11:14	1
	1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/Kg			03/31/22 11:14	1
I	1,2-Dibromoethane	<0.39		1.0	0.39	ug/Kg			03/31/22 11:14	1
	1,2-Dichlorobenzene	< 0.33		1.0	0.33	ug/Kg			03/31/22 11:14	1
	1,2-Dichloroethane	< 0.39		1.0	0.39	ug/Kg			03/31/22 11:14	1
١	1,2-Dichloropropane	<0.43		1.0	0.43	ug/Kg			03/31/22 11:14	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-649615/7

Matrix: Solid

Analysis Batch: 649615

4-Bromofluorobenzene (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

		MB							
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fac
1,3,5-Trimethylbenzene	<0.38		1.0		ug/Kg			03/31/22 11:14	1
1,3-Dichlorobenzene	<0.40		1.0		ug/Kg			03/31/22 11:14	1
1,3-Dichloropropane	<0.36		1.0	0.36	ug/Kg			03/31/22 11:14	1
1,4-Dichlorobenzene	< 0.36		1.0	0.36	ug/Kg			03/31/22 11:14	1
2,2-Dichloropropane	<0.44		1.0	0.44	ug/Kg			03/31/22 11:14	1
2-Chlorotoluene	<0.31		1.0	0.31	ug/Kg			03/31/22 11:14	1
4-Chlorotoluene	< 0.35		1.0	0.35	ug/Kg			03/31/22 11:14	1
Benzene	<0.15		0.25	0.15	ug/Kg			03/31/22 11:14	1
Bromobenzene	<0.36		1.0	0.36	ug/Kg			03/31/22 11:14	1
Bromochloromethane	< 0.43		1.0	0.43	ug/Kg			03/31/22 11:14	1
Dichlorobromomethane	< 0.37		1.0	0.37	ug/Kg			03/31/22 11:14	1
Bromoform	<0.48		1.0	0.48	ug/Kg			03/31/22 11:14	1
Bromomethane	<0.80		3.0	0.80	ug/Kg			03/31/22 11:14	1
Carbon tetrachloride	<0.38		1.0		ug/Kg			03/31/22 11:14	1
Chlorobenzene	<0.39		1.0		ug/Kg			03/31/22 11:14	1
Chloroethane	<0.50		1.0		ug/Kg			03/31/22 11:14	1
Chloroform	<0.37		2.0		ug/Kg			03/31/22 11:14	1
Chloromethane	<0.32		1.0		ug/Kg			03/31/22 11:14	1
cis-1,2-Dichloroethene	<0.41		1.0		ug/Kg			03/31/22 11:14	1
cis-1,3-Dichloropropene	<0.42		1.0		ug/Kg			03/31/22 11:14	1
Dibromochloromethane	<0.49		1.0		ug/Kg			03/31/22 11:14	1
Dibromomethane	<0.27		1.0		ug/Kg			03/31/22 11:14	1
Dichlorodifluoromethane	<0.67		3.0		ug/Kg			03/31/22 11:14	1
Ethylbenzene	<0.18		0.25		ug/Kg			03/31/22 11:14	· · · · · · · · · · · · · · · · · · ·
Hexachlorobutadiene	<0.45		1.0		ug/Kg			03/31/22 11:14	1
Isopropyl ether	<0.28		1.0		ug/Kg			03/31/22 11:14	1
Isopropylbenzene	<0.38		1.0		ug/Kg			03/31/22 11:14	· · · · · · · · · · · · · · · · · · ·
Methyl tert-butyl ether	<0.39		1.0		ug/Kg			03/31/22 11:14	1
Methylene Chloride	<1.6		5.0		ug/Kg			03/31/22 11:14	1
Naphthalene	0.360		1.0		ug/Kg			03/31/22 11:14	· · · · · · · · · · · · · · · · · · ·
n-Butylbenzene	<0.39	J	1.0		ug/Kg			03/31/22 11:14	1
N-Propylbenzene	<0.41		1.0		ug/Kg			03/31/22 11:14	1
p-Isopropyltoluene	<0.36		1.0		ug/Kg			03/31/22 11:14	
sec-Butylbenzene	<0.40		1.0		ug/Kg			03/31/22 11:14	1
	<0.40		1.0					03/31/22 11:14	1
Styrene tert Butulbenzene					ug/Kg				ا
tert-Butylbenzene	<0.40		1.0		ug/Kg			03/31/22 11:14	1
Tetrachloroethene	< 0.37		1.0		ug/Kg			03/31/22 11:14	1
Toluene	<0.15		0.25		ug/Kg			03/31/22 11:14	
trans-1,2-Dichloroethene	<0.35		1.0		ug/Kg			03/31/22 11:14	1
trans-1,3-Dichloropropene	< 0.36		1.0		ug/Kg			03/31/22 11:14	1
Trichloroethene	<0.16		0.50		ug/Kg			03/31/22 11:14	
Trichlorofluoromethane	<0.43		1.0		ug/Kg			03/31/22 11:14	1
Vinyl chloride	<0.26		1.0		ug/Kg			03/31/22 11:14	1
Xylenes, Total	<0.22		0.50	0.22	ug/Kg			03/31/22 11:14	1
	MB	МВ							
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75 - 126			-		03/31/22 11:14	

Eurofins Chicago

03/31/22 11:14

72 - 124

88

<u>ی</u>

6

8

10

12

14

1/

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-649615/7

Matrix: Solid

Analysis Batch: 649615

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Dibromofluoromethane (Surr)	102		75 - 120		03/31/22 11:14	1
Toluene-d8 (Surr)	95		75 - 120		03/31/22 11:14	1

Lab Sample ID: LCS 500-649615/5 **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 64

			Prep Type: Total/NA
649615			
	0	100 100	0/ B

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	41.9		ug/Kg		84	70 - 125	
1,1,1-Trichloroethane	50.0	45.1		ug/Kg		90	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	40.6		ug/Kg		81	62 - 140	
1,1,2-Trichloroethane	50.0	41.7		ug/Kg		83	71 - 130	
1,1-Dichloroethane	50.0	49.2		ug/Kg		98	70 - 125	
1,1-Dichloroethene	50.0	48.2		ug/Kg		96	67 - 122	
1,1-Dichloropropene	50.0	46.4		ug/Kg		93	70 - 121	
1,2,3-Trichlorobenzene	50.0	44.7		ug/Kg		89	51 - 145	
1,2,3-Trichloropropane	50.0	42.2		ug/Kg		84	50 - 133	
1,2,4-Trichlorobenzene	50.0	45.4		ug/Kg		91	57 - 137	
1,2,4-Trimethylbenzene	50.0	44.7		ug/Kg		89	70 - 123	
1,2-Dibromo-3-Chloropropane	50.0	37.7		ug/Kg		75	56 - 123	
1,2-Dibromoethane	50.0	39.4		ug/Kg		79	70 - 125	
1,2-Dichlorobenzene	50.0	43.7		ug/Kg		87	70 - 125	
1,2-Dichloroethane	50.0	45.3		ug/Kg		91	68 - 127	
1,2-Dichloropropane	50.0	49.4		ug/Kg		99	67 - 130	
1,3,5-Trimethylbenzene	50.0	44.5		ug/Kg		89	70 - 123	
1,3-Dichlorobenzene	50.0	43.6		ug/Kg		87	70 - 125	
1,3-Dichloropropane	50.0	41.7		ug/Kg		83	62 - 136	
1,4-Dichlorobenzene	50.0	43.2		ug/Kg		86	70 - 120	
2,2-Dichloropropane	50.0	41.7		ug/Kg		83	58 - 139	
2-Chlorotoluene	50.0	44.0		ug/Kg		88	70 - 125	
4-Chlorotoluene	50.0	43.7		ug/Kg		87	68 - 124	
Benzene	50.0	46.0		ug/Kg		92	70 - 120	
Bromobenzene	50.0	44.1		ug/Kg		88	70 - 122	
Bromochloromethane	50.0	47.2		ug/Kg		94	65 - 122	
Dichlorobromomethane	50.0	42.3		ug/Kg		85	69 - 120	
Bromoform	50.0	43.2		ug/Kg		86	56 - 132	
Bromomethane	50.0	48.1		ug/Kg		96	40 - 152	
Carbon tetrachloride	50.0	47.7		ug/Kg		95	59 - 133	
Chlorobenzene	50.0	42.8		ug/Kg		86	70 - 120	
Chloroethane	50.0	59.5		ug/Kg		119	48 - 136	
Chloroform	50.0	42.5		ug/Kg		85	70 - 120	
Chloromethane	50.0	44.6		ug/Kg		89	56 - 152	
cis-1,2-Dichloroethene	50.0	45.6		ug/Kg		91	70 - 125	
cis-1,3-Dichloropropene	50.0	41.1		ug/Kg		82	64 - 127	
Dibromochloromethane	50.0	43.1		ug/Kg		86	68 - 125	
Dibromomethane	50.0	43.7		ug/Kg		87	70 - 120	
Dichlorodifluoromethane	50.0	43.0		ug/Kg		86	40 - 159	
Ethylbenzene	50.0	39.4		ug/Kg		79	70 - 123	

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649615/5

Matrix: Solid

Analysis Batch: 649615

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Hexachlorobutadiene	50.0	48.7		ug/Kg		97	51 - 150	
Isopropylbenzene	50.0	45.9		ug/Kg		92	70 - 126	
Methyl tert-butyl ether	50.0	40.5		ug/Kg		81	55 - 123	
Methylene Chloride	50.0	44.8		ug/Kg		90	69 - 125	
Naphthalene	50.0	40.1		ug/Kg		80	53 - 144	
n-Butylbenzene	50.0	45.3		ug/Kg		91	68 - 125	
N-Propylbenzene	50.0	45.4		ug/Kg		91	69 - 127	
p-Isopropyltoluene	50.0	43.9		ug/Kg		88	70 - 125	
sec-Butylbenzene	50.0	47.0		ug/Kg		94	70 - 123	
Styrene	50.0	43.6		ug/Kg		87	70 - 120	
tert-Butylbenzene	50.0	44.6		ug/Kg		89	70 - 121	
Tetrachloroethene	50.0	47.5		ug/Kg		95	70 - 128	
Toluene	50.0	42.6		ug/Kg		85	70 - 125	
trans-1,2-Dichloroethene	50.0	47.0		ug/Kg		94	70 - 125	
trans-1,3-Dichloropropene	50.0	38.8		ug/Kg		78	62 - 128	
Trichloroethene	50.0	45.5		ug/Kg		91	70 - 125	
Trichlorofluoromethane	50.0	48.0		ug/Kg		96	55 - 128	
Vinyl chloride	50.0	49.4		ug/Kg		99	64 - 126	
Xylenes, Total	100	84.7		ug/Kg		85	70 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	95		75 - 126
4-Bromofluorobenzene (Surr)	91		72 - 124
Dibromofluoromethane (Surr)	100		75 - 120
Toluene-d8 (Surr)	95		75 - 120

Lab Sample ID: MB 500-649801/7

Matrix: Solid

Analysis Batch: 649801

Client Sample ID: Method Blank

Prep Type: Total/NA

,,	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/Kg			04/01/22 11:39	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/Kg			04/01/22 11:39	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/Kg			04/01/22 11:39	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/Kg			04/01/22 11:39	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/Kg			04/01/22 11:39	1
1,1-Dichloroethene	< 0.39		1.0	0.39	ug/Kg			04/01/22 11:39	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/Kg			04/01/22 11:39	1
1,2,3-Trichlorobenzene	0.763	J	1.0	0.46	ug/Kg			04/01/22 11:39	1
1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/Kg			04/01/22 11:39	1
1,2,4-Trichlorobenzene	0.591	J	1.0	0.34	ug/Kg			04/01/22 11:39	1
1,2,4-Trimethylbenzene	< 0.36		1.0	0.36	ug/Kg			04/01/22 11:39	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/Kg			04/01/22 11:39	1
1,2-Dibromoethane	<0.39		1.0	0.39	ug/Kg			04/01/22 11:39	1
1,2-Dichlorobenzene	< 0.33		1.0	0.33	ug/Kg			04/01/22 11:39	1
1,2-Dichloroethane	< 0.39		1.0	0.39	ug/Kg			04/01/22 11:39	1
1,2-Dichloropropane	<0.43		1.0	0.43	ug/Kg			04/01/22 11:39	1
1,3,5-Trimethylbenzene	<0.38		1.0	0.38	ug/Kg			04/01/22 11:39	1

Page 265 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-649801/7

Matrix: Solid

Surrogate

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analysis Batch: 649801

Client Sample ID: Method Blank

Job ID: 500-214283-1

Prep Type: Total/NA

Analyte		MB Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichlorobenzene		Qualifier	1.0	0.40	ug/Kg		Fiepaieu	04/01/22 11:39	1
1,3-Dichloropropane	<0.36		1.0		ug/Kg			04/01/22 11:39	······່
1,4-Dichlorobenzene	< 0.36		1.0		ug/Kg			04/01/22 11:39	1
2,2-Dichloropropane	<0.44		1.0		ug/Kg			04/01/22 11:39	1
2-Chlorotoluene	<0.31		1.0		ug/Kg			04/01/22 11:39	
4-Chlorotoluene	<0.35		1.0		ug/Kg ug/Kg			04/01/22 11:39	1
	<0.15		0.25						
Benzene Bromobenzene					ug/Kg			04/01/22 11:39	
	< 0.36		1.0		ug/Kg			04/01/22 11:39	1
Bromochloromethane	< 0.43		1.0		ug/Kg			04/01/22 11:39	1
Dichlorobromomethane	<0.37		1.0		ug/Kg			04/01/22 11:39	1
Bromoform	<0.48		1.0		ug/Kg			04/01/22 11:39	1
Bromomethane	<0.80		3.0		ug/Kg			04/01/22 11:39	1
Carbon tetrachloride	<0.38		1.0		ug/Kg			04/01/22 11:39	1
Chlorobenzene	<0.39		1.0		ug/Kg			04/01/22 11:39	1
Chloroethane	<0.50		1.0		ug/Kg			04/01/22 11:39	1
Chloroform	<0.37		2.0		ug/Kg			04/01/22 11:39	1
Chloromethane	<0.32		1.0		ug/Kg			04/01/22 11:39	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/Kg			04/01/22 11:39	1
cis-1,3-Dichloropropene	<0.42		1.0	0.42	ug/Kg			04/01/22 11:39	1
Dibromochloromethane	<0.49		1.0	0.49	ug/Kg			04/01/22 11:39	1
Dibromomethane	<0.27		1.0	0.27	ug/Kg			04/01/22 11:39	1
Dichlorodifluoromethane	<0.67		3.0	0.67	ug/Kg			04/01/22 11:39	1
Ethylbenzene	<0.18		0.25	0.18	ug/Kg			04/01/22 11:39	1
Hexachlorobutadiene	< 0.45		1.0	0.45	ug/Kg			04/01/22 11:39	1
Isopropyl ether	<0.28		1.0	0.28	ug/Kg			04/01/22 11:39	1
Isopropylbenzene	<0.38		1.0	0.38	ug/Kg			04/01/22 11:39	1
Methyl tert-butyl ether	< 0.39		1.0		ug/Kg			04/01/22 11:39	1
Methylene Chloride	<1.6		5.0		ug/Kg			04/01/22 11:39	1
Naphthalene	0.735		1.0		ug/Kg			04/01/22 11:39	1
n-Butylbenzene	<0.39		1.0		ug/Kg			04/01/22 11:39	1
N-Propylbenzene	<0.41		1.0		ug/Kg			04/01/22 11:39	1
p-Isopropyltoluene	<0.36		1.0		ug/Kg			04/01/22 11:39	1
sec-Butylbenzene	<0.40		1.0		ug/Kg			04/01/22 11:39	1
Styrene	<0.39		1.0		ug/Kg			04/01/22 11:39	1
tert-Butylbenzene	<0.40		1.0		ug/Kg			04/01/22 11:39	· · · · · · 1
Tetrachloroethene	<0.37		1.0		ug/Kg			04/01/22 11:39	1
Toluene	<0.15		0.25		ug/Kg			04/01/22 11:39	1
trans-1,2-Dichloroethene	<0.35		1.0		ug/Kg			04/01/22 11:39	
trans-1,3-Dichloropropene	<0.36		1.0		ug/Kg			04/01/22 11:39	1
• •									
Trichloroethene Trichloroethene	<0.16		0.50		ug/Kg			04/01/22 11:39	1
Trichlorofluoromethane	<0.43		1.0		ug/Kg			04/01/22 11:39	1
Vinyl chloride	<0.26		1.0		ug/Kg			04/01/22 11:39	1
Xylenes, Total	<0.22		0.50	0.22	ug/Kg			04/01/22 11:39	1

Eurofins Chicago

Analyzed

04/01/22 11:39

04/01/22 11:39

04/01/22 11:39

Prepared

Limits

75 - 126

72 - 124

75 - 120

%Recovery Qualifier

103

87

105

Dil Fac

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-649801/7

Matrix: Solid

Analysis Batch: 649801

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

MB MB

%Recovery Qualifier Limits Analyzed Dil Fac Surrogate Prepared Toluene-d8 (Surr) 93 75 - 120 04/01/22 11:39

LCS LCS

43.3

46 4

Result Qualifier

Lab Sample ID: LCS 500-649801/31

Matrix: Solid

Analyte

Analysis Batch: 649801

1,1,1,2-Tetrachloroethane

1,1,2,2-Tetrachloroethane

1,1,1-Trichloroethane

1.1.2-Trichloroethane

1,1-Dichloroethane

1,1-Dichloroethene

lient	Sample ID	: Lab Control	Sample
		Prep Type:	Total/NA

CI

			%Rec	
Unit	D	%Rec	Limits	
ug/Kg		87	70 - 125	
ug/Kg		93	70 - 125	
ug/Kg		80	62 - 140	
		00	74 400	

40.0 ug 41.4 ug/Kg 83 71 - 13051.2 ug/Kg 102 70 - 125 48.1 ug/Kg 96 67 - 122 47.7 ug/Kg 95 70 - 121

50.0 1,1-Dichloropropene 97 1,2,3-Trichlorobenzene 50.0 48.3 ug/Kg 51 - 145 50.0 40.1 80 1,2,3-Trichloropropane ug/Kg 50 - 13350.0 98 57 - 137 1,2,4-Trichlorobenzene 49.1 ug/Kg 1,2,4-Trimethylbenzene 92 50.0 45.8 70 - 123ug/Kg

Spike

Added

50.0

50.0

50.0

50.0

50.0

50.0

1,2-Dibromo-3-Chloropropane 50.0 39.1 ug/Kg 78 56 - 123 1,2-Dibromoethane 50.0 40.1 80 70 - 125 ug/Kg 1,2-Dichlorobenzene 50.0 45.5 91 70 - 125 ug/Kg 50.0 44.9 90 1,2-Dichloroethane ug/Kg 68 - 1271,2-Dichloropropane 50.0 50.4 101 67 - 130ug/Kg

50.0 46.0 ug/Kg 92 70 - 123 1,3,5-Trimethylbenzene 45.2 90 1,3-Dichlorobenzene 50.0 ug/Kg 70 - 125 1.3-Dichloropropane 50.0 41.7 ug/Kg 83 62 - 13650.0 92 1,4-Dichlorobenzene 45.8 ug/Kg 70 - 120 50.0 86 2,2-Dichloropropane 43.0 ug/Kg 58 - 139 50.0 91 2-Chlorotoluene 45.4 ug/Kg 70 - 125

4-Chlorotoluene 50.0 44.1 ug/Kg 88 68 - 124 47.4 95 Benzene 50.0 70 - 120ug/Kg 50.0 45.1 90 70 - 122 Bromobenzene ug/Kg 65 - 122 Bromochloromethane 50.0 47.5 ug/Kg 95 Dichlorobromomethane 50.0 43.7 87 69 - 120 ug/Kg Bromoform 50.0 43.2 86 56 - 132 ug/Kg Bromomethane 50.0 48.4 ug/Kg 97 40 - 152 Carbon tetrachloride 50.0 48.4 97 59 - 133

ug/Kg Chlorobenzene 50.0 43.8 ug/Kg 88 70 - 120Chloroethane 50.0 62.7 125 48 - 136 ug/Kg 70 - 120 Chloroform 50.0 43.9 ug/Kg 88 Chloromethane 50.0 43.4 87 56 - 152 ug/Kg 92 70 - 125 cis-1,2-Dichloroethene 50.0 46.2 ug/Kg 83 cis-1,3-Dichloropropene 50.0 41.6 ug/Kg 64 - 127 Dibromochloromethane 50.0 41.6 83 68 - 125ug/Kg

Dibromomethane 50.0 44.8 90 70 - 120 ug/Kg 82 Dichlorodifluoromethane 50.0 40.9 40 - 159 ug/Kg Ethylbenzene 50.0 41.9 ug/Kg 84 70 - 123Hexachlorobutadiene 50.0 50.6 ug/Kg 101 51 - 150

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649801/31

Matrix: Solid

Analysis Batch: 649801

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits Isopropylbenzene 50.0 47 2 94 70 - 126 ug/Kg Methyl tert-butyl ether 50.0 42.3 ug/Kg 85 55 - 123 Methylene Chloride 50.0 45 4 91 69 - 125 ug/Kg Naphthalene 50.0 42.9 ug/Kg 86 53 - 144 50.0 47.5 95 68 - 125 n-Butylbenzene ug/Kg N-Propylbenzene 50.0 46.7 ug/Kg 93 69 - 127 p-Isopropyltoluene 50.0 45.3 ug/Kg 91 70 - 12597 sec-Butylbenzene 50.0 48.5 ug/Kg 70 - 123ug/Kg Styrene 50.0 44.9 90 70 - 120 50.0 45.0 90 tert-Butylbenzene ug/Kg 70 - 121 Tetrachloroethene 98 50.0 48.8 ug/Kg 70 - 128 86 Toluene 50.0 43.0 70 - 125 ug/Kg trans-1,2-Dichloroethene 50.0 94 70 - 125 47.2 ug/Kg 50.0 79 62 - 128 trans-1,3-Dichloropropene 39.6 ug/Kg Trichloroethene 50.0 47.9 ug/Kg 96 70 - 125 50.0 49.0 98 Trichlorofluoromethane ug/Kg 55 - 128Vinyl chloride 50.0 51.6 ug/Kg 103 64 - 126 100 87.4 87 70 - 125 Xylenes, Total ug/Kg

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	96		75 - 126
4-Bromofluorobenzene (Surr)	89		72 - 124
Dibromofluoromethane (Surr)	99		75 - 120
Toluene-d8 (Surr)	95		75 - 120

Lab Sample ID: MB 500-649839/7

Matrix: Solid

Analysis Batch: 649839

Client Sample ID: Method Blank Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac <0.46 1.0 04/01/22 11:42 0.46 ug/Kg 1,1,1,2-Tetrachloroethane < 0.38 1.0 0.38 ug/Kg 04/01/22 11:42 1,1,1-Trichloroethane < 0.40 1.0 ug/Kg 04/01/22 11:42 1,1,2,2-Tetrachloroethane 0.40 1,1,2-Trichloroethane < 0.35 1.0 0.35 04/01/22 11:42 ug/Kg 04/01/22 11:42 1,1-Dichloroethane < 0.41 1.0 0.41 ug/Kg 1,1-Dichloroethene < 0.39 1.0 0.39 ug/Kg 04/01/22 11:42 1,1-Dichloropropene < 0.30 1.0 0.30 ug/Kg 04/01/22 11:42 04/01/22 11:42 1,2,3-Trichlorobenzene < 0.46 1.0 0.46 ug/Kg 1.2.3-Trichloropropane < 0.41 2.0 0.41 ug/Kg 04/01/22 11:42 1,2,4-Trichlorobenzene < 0.34 1.0 0.34 ug/Kg 04/01/22 11:42 1,2,4-Trimethylbenzene < 0.36 1.0 0.36 ug/Kg 04/01/22 11:42 5.0 1,2-Dibromo-3-Chloropropane <2.0 2.0 04/01/22 11:42 ug/Kg 1,2-Dibromoethane 1.0 04/01/22 11:42 < 0.39 0.39 ug/Kg 1.2-Dichlorobenzene < 0.33 1.0 0.33 ug/Kg 04/01/22 11:42 1,2-Dichloroethane < 0.39 1.0 0.39 ug/Kg 04/01/22 11:42 1,2-Dichloropropane < 0.43 1.0 0.43 ug/Kg 04/01/22 11:42 1,3,5-Trimethylbenzene < 0.38 1.0 0.38 ug/Kg 04/01/22 11:42 1.3-Dichlorobenzene < 0.40 1.0 0.40 ug/Kg 04/01/22 11:42

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-649839/7

Matrix: Solid

Styrene

Toluene

tert-Butylbenzene

Tetrachloroethene

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,2-Dichloroethene

Trichlorofluoromethane

trans-1,3-Dichloropropene

Analysis Batch: 649839

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Analysis Daten. 043003	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,3-Dichloropropane	<0.36		1.0	0.36	ug/Kg			04/01/22 11:42	1
1,4-Dichlorobenzene	<0.36		1.0	0.36	ug/Kg			04/01/22 11:42	1
2,2-Dichloropropane	<0.44		1.0	0.44	ug/Kg			04/01/22 11:42	1
2-Chlorotoluene	<0.31		1.0	0.31	ug/Kg			04/01/22 11:42	1
4-Chlorotoluene	< 0.35		1.0	0.35	ug/Kg			04/01/22 11:42	1
Benzene	<0.15		0.25	0.15	ug/Kg			04/01/22 11:42	1
Bromobenzene	<0.36		1.0	0.36	ug/Kg			04/01/22 11:42	1
Bromochloromethane	< 0.43		1.0	0.43	ug/Kg			04/01/22 11:42	1
Dichlorobromomethane	<0.37		1.0	0.37	ug/Kg			04/01/22 11:42	1
Bromoform	<0.48		1.0	0.48	ug/Kg			04/01/22 11:42	1
Bromomethane	<0.80		3.0	0.80	ug/Kg			04/01/22 11:42	1
Carbon tetrachloride	<0.38		1.0	0.38	ug/Kg			04/01/22 11:42	1
Chlorobenzene	<0.39		1.0	0.39	ug/Kg			04/01/22 11:42	1
Chloroethane	<0.50		1.0	0.50	ug/Kg			04/01/22 11:42	1
Chloroform	< 0.37		2.0	0.37	ug/Kg			04/01/22 11:42	1
Chloromethane	<0.32		1.0	0.32	ug/Kg			04/01/22 11:42	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/Kg			04/01/22 11:42	1
cis-1,3-Dichloropropene	<0.42		1.0	0.42	ug/Kg			04/01/22 11:42	1
Dibromochloromethane	<0.49		1.0	0.49	ug/Kg			04/01/22 11:42	1
Dibromomethane	<0.27		1.0	0.27	ug/Kg			04/01/22 11:42	1
Dichlorodifluoromethane	<0.67		3.0	0.67	ug/Kg			04/01/22 11:42	1
Ethylbenzene	<0.18		0.25	0.18	ug/Kg			04/01/22 11:42	1
Hexachlorobutadiene	<0.45		1.0	0.45	ug/Kg			04/01/22 11:42	1
Isopropyl ether	<0.28		1.0	0.28	ug/Kg			04/01/22 11:42	1
Isopropylbenzene	<0.38		1.0	0.38	ug/Kg			04/01/22 11:42	1
Methyl tert-butyl ether	< 0.39		1.0	0.39	ug/Kg			04/01/22 11:42	1
Methylene Chloride	<1.6		5.0	1.6	ug/Kg			04/01/22 11:42	1
Naphthalene	<0.33		1.0	0.33	ug/Kg			04/01/22 11:42	1
n-Butylbenzene	< 0.39		1.0	0.39	ug/Kg			04/01/22 11:42	1
N-Propylbenzene	<0.41		1.0	0.41	ug/Kg			04/01/22 11:42	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/Kg			04/01/22 11:42	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/Kg			04/01/22 11:42	1

MВ	MB	

< 0.39

< 0.40

< 0.37

< 0.15

< 0.35

< 0.36

<0.16

< 0.43

<0.26

<0.22

	III D	1410					
Surrogate	%Recovery	Qualifier	Limits	Prepai	ed Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	84		75 - 126		04/01/22 11:42	1	
4-Bromofluorobenzene (Surr)	89		72 - 124		04/01/22 11:42	1	
Dibromofluoromethane (Surr)	96		75 - 120		04/01/22 11:42	1	
Toluene-d8 (Surr)	96		75 - 120		04/01/22 11:42	1	

1.0

1.0

1.0

0.25

1.0

1.0

0.50

1.0

1.0

0.50

0.39 ug/Kg

0.40 ug/Kg

0.37 ug/Kg

0.15 ug/Kg

0.35 ug/Kg

0.36 ug/Kg

0.16 ug/Kg

0.43 ug/Kg

0.26 ug/Kg

0.22 ug/Kg

Eurofins Chicago

04/01/22 11:42

04/01/22 11:42

04/01/22 11:42

04/01/22 11:42

04/01/22 11:42

04/01/22 11:42

04/01/22 11:42

04/01/22 11:42

04/01/22 11:42

04/01/22 11:42

Page 269 of 356

2

3

6

8

10

12

13

15

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649839/5

Matrix: Solid

Analysis Batch: 649839

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Job ID: 500-214283-1

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	50.0	47.3		ug/Kg		95	70 - 125
1,1,1-Trichloroethane	50.0	43.9		ug/Kg		88	70 - 125
1,1,2,2-Tetrachloroethane	50.0	43.9		ug/Kg		88	62 - 140
1,1,2-Trichloroethane	50.0	43.6		ug/Kg		87	71 - 130
1,1-Dichloroethane	50.0	44.0		ug/Kg		88	70 - 125
1,1-Dichloroethene	50.0	46.2		ug/Kg		92	67 - 122
1,1-Dichloropropene	50.0	46.6		ug/Kg		93	70 - 121
1,2,3-Trichlorobenzene	50.0	56.9		ug/Kg		114	51 - 145
1,2,3-Trichloropropane	50.0	44.3		ug/Kg		89	50 - 133
1,2,4-Trichlorobenzene	50.0	52.1		ug/Kg		104	57 - 137
1,2,4-Trimethylbenzene	50.0	47.0		ug/Kg		94	70 - 123
1,2-Dibromo-3-Chloropropane	50.0	39.9		ug/Kg		80	56 - 123
1,2-Dibromoethane	50.0	41.5		ug/Kg		83	70 - 125
1,2-Dichlorobenzene	50.0	48.0		ug/Kg		96	70 - 125
1,2-Dichloroethane	50.0	39.1		ug/Kg		78	68 - 127
1,2-Dichloropropane	50.0	42.9		ug/Kg		86	67 - 130
1,3,5-Trimethylbenzene	50.0	48.1		ug/Kg		96	70 - 123
1,3-Dichlorobenzene	50.0	46.5		ug/Kg		93	70 - 125
1,3-Dichloropropane	50.0	41.1		ug/Kg		82	62 - 136
I,4-Dichlorobenzene	50.0	45.7		ug/Kg		91	70 - 120
2,2-Dichloropropane	50.0	41.3		ug/Kg		83	58 - 139
2-Chlorotoluene	50.0	45.3		ug/Kg		91	70 - 125
1-Chlorotoluene	50.0	43.9		ug/Kg		88	68 - 124
Benzene	50.0	46.2		ug/Kg		92	70 - 120
Bromobenzene	50.0	48.1		ug/Kg		96	70 - 122
Bromochloromethane	50.0	46.1		ug/Kg		92	65 - 122
Dichlorobromomethane	50.0	40.0		ug/Kg		80	69 - 120
Bromoform	50.0	42.3		ug/Kg		85	56 - 132
Bromomethane	50.0	50.5		ug/Kg		101	40 - 152
Carbon tetrachloride	50.0	44.3		ug/Kg		89	59 - 133
Chlorobenzene	50.0	46.4		ug/Kg		93	70 - 120
Chloroethane	50.0	42.0		ug/Kg		84	48 - 136
Chloroform	50.0	42.1		ug/Kg		84	70 - 120
Chloromethane	50.0	41.6		ug/Kg		83	56 - 152
cis-1,2-Dichloroethene	50.0	46.5		ug/Kg		93	70 - 125
cis-1,3-Dichloropropene	50.0	42.4		ug/Kg		85	64 - 127
Dibromochloromethane	50.0	42.8		ug/Kg		86	68 - 125
Dibromomethane	50.0	42.6		ug/Kg		85	70 - 120
Dichlorodifluoromethane	50.0	33.9		ug/Kg		68	40 - 159
Ethylbenzene	50.0	44.6		ug/Kg		89	70 - 123
	50.0	57.1		ug/Kg		114	51 - 150
sopropylbenzene	50.0	49.9		ug/Kg		100	70 - 126
Methyl tert-butyl ether	50.0	38.6		ug/Kg		77	55 - 123
Methylene Chloride	50.0	46.6		ug/Kg		93	69 - 125
Naphthalene	50.0	52.2		ug/Kg		104	53 - 144
n-Butylbenzene	50.0	47.1		ug/Kg		94	68 - 125
N-Propylbenzene	50.0	47.4		ug/Kg		95	69 - 127
p-Isopropyltoluene	50.0	50.1		ug/Kg		100	70 - 125

Eurofins Chicago

3

4

6

8

4

12

14

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649839/5

Matrix: Solid

Analysis Batch: 649839

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
sec-Butylbenzene	50.0	50.3		ug/Kg		101	70 - 123	
Styrene	50.0	43.5		ug/Kg		87	70 - 120	
tert-Butylbenzene	50.0	51.5		ug/Kg		103	70 - 121	
Tetrachloroethene	50.0	52.9		ug/Kg		106	70 - 128	
Toluene	50.0	49.0		ug/Kg		98	70 - 125	
trans-1,2-Dichloroethene	50.0	46.5		ug/Kg		93	70 - 125	
trans-1,3-Dichloropropene	50.0	38.3		ug/Kg		77	62 - 128	
Trichloroethene	50.0	51.2		ug/Kg		102	70 - 125	
Trichlorofluoromethane	50.0	41.3		ug/Kg		83	55 - 128	
Vinyl chloride	50.0	41.9		ug/Kg		84	64 - 126	
Xylenes, Total	100	85.7		ug/Kg		86	70 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	80		75 - 126
4-Bromofluorobenzene (Surr)	87		72 - 124
Dibromofluoromethane (Surr)	94		75 - 120
Toluene-d8 (Surr)	100		75 - 120

Lab Sample ID: MB 500-649840/7

Matrix: Water

Analysis Batch: 649840

Client Sample ID: Method Blank

Prep Type: Total/NA

			•	
R N	M			

MB	Λ

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			04/01/22 11:42	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			04/01/22 11:42	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			04/01/22 11:42	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			04/01/22 11:42	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			04/01/22 11:42	1
1,1-Dichloroethene	< 0.39		1.0	0.39	ug/L			04/01/22 11:42	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L			04/01/22 11:42	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			04/01/22 11:42	1
1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/L			04/01/22 11:42	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			04/01/22 11:42	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			04/01/22 11:42	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			04/01/22 11:42	1
1,2-Dibromoethane	<0.39		1.0	0.39	ug/L			04/01/22 11:42	1
1,2-Dichlorobenzene	< 0.33		1.0	0.33	ug/L			04/01/22 11:42	1
1,2-Dichloroethane	<0.39		1.0	0.39	ug/L			04/01/22 11:42	1
1,2-Dichloropropane	<0.43		1.0	0.43	ug/L			04/01/22 11:42	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			04/01/22 11:42	1
1,3-Dichlorobenzene	<0.40		1.0	0.40	ug/L			04/01/22 11:42	1
1,3-Dichloropropane	<0.36		1.0	0.36	ug/L			04/01/22 11:42	1
1,4-Dichlorobenzene	< 0.36		1.0	0.36	ug/L			04/01/22 11:42	1
2,2-Dichloropropane	<0.44		1.0	0.44	ug/L			04/01/22 11:42	1
2-Chlorotoluene	<0.31		1.0	0.31	ug/L			04/01/22 11:42	1
4-Chlorotoluene	<0.35		1.0	0.35	ug/L			04/01/22 11:42	1
Benzene	<0.15		0.50	0.15	ug/L			04/01/22 11:42	1
Bromobenzene	<0.36		1.0	0.36	ug/L			04/01/22 11:42	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 500-649840/7 **Client Sample ID: Method Blank**

Matrix: Water

Analysis Batch: 649840

Prep Type: Total/NA

Job ID: 500-214283-1

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Bromochloromethane	<0.43		1.0	0.43	ug/L			04/01/22 11:42	1
Dichlorobromomethane	<0.37		1.0	0.37	ug/L			04/01/22 11:42	1
Bromoform	<0.48		1.0	0.48	ug/L			04/01/22 11:42	1
Bromomethane	<0.80		3.0	0.80	ug/L			04/01/22 11:42	1
Carbon tetrachloride	<0.38		1.0	0.38	ug/L			04/01/22 11:42	1
Chlorobenzene	<0.39		1.0	0.39	ug/L			04/01/22 11:42	1
Chloroethane	<0.51		1.0	0.51	ug/L			04/01/22 11:42	1
Chloroform	<0.37		2.0	0.37	ug/L			04/01/22 11:42	1
Chloromethane	<0.32		1.0	0.32	ug/L			04/01/22 11:42	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	ug/L			04/01/22 11:42	1
cis-1,3-Dichloropropene	<0.42		1.0	0.42	ug/L			04/01/22 11:42	1
Dibromochloromethane	<0.49		1.0	0.49	ug/L			04/01/22 11:42	1
Dibromomethane	<0.27		1.0	0.27	ug/L			04/01/22 11:42	1
Dichlorodifluoromethane	<0.67		3.0	0.67	ug/L			04/01/22 11:42	1
Ethylbenzene	<0.18		0.50	0.18	ug/L			04/01/22 11:42	1
Hexachlorobutadiene	<0.45		1.0	0.45	ug/L			04/01/22 11:42	1
Isopropyl ether	<0.28		1.0	0.28	ug/L			04/01/22 11:42	1
Isopropylbenzene	<0.39		1.0	0.39	ug/L			04/01/22 11:42	1
Methyl tert-butyl ether	< 0.39		1.0	0.39	ug/L			04/01/22 11:42	1
Methylene Chloride	<1.6		5.0	1.6	ug/L			04/01/22 11:42	1
Naphthalene	<0.34		1.0	0.34	ug/L			04/01/22 11:42	1
n-Butylbenzene	<0.39		1.0	0.39	ug/L			04/01/22 11:42	1
N-Propylbenzene	<0.41		1.0	0.41	ug/L			04/01/22 11:42	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			04/01/22 11:42	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 11:42	1
Styrene	<0.39		1.0	0.39	ug/L			04/01/22 11:42	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			04/01/22 11:42	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			04/01/22 11:42	1
Toluene	<0.15		0.50	0.15	ug/L			04/01/22 11:42	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			04/01/22 11:42	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			04/01/22 11:42	1
Trichloroethene	<0.16		0.50	0.16	ug/L			04/01/22 11:42	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			04/01/22 11:42	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			04/01/22 11:42	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			04/01/22 11:42	1

ИΒ	MΒ	
ИΒ		

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	84		75 - 126	_		04/01/22 11:42	1
4-Bromofluorobenzene (Surr)	89		72 - 124			04/01/22 11:42	1
Dibromofluoromethane (Surr)	96		75 - 120			04/01/22 11:42	1
Toluene-d8 (Surr)	96		75 - 120			04/01/22 11:42	1

Lab Sample ID: LCS 500-649840/5

Matrix: Water

Analysis Batch: 649840								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	47.3		ug/L		95	70 - 125	 -

Eurofins Chicago

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Spike

Added

LCS LCS

Result Qualifier

Unit

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649840/5

Matrix: Water

Dichlorodifluoromethane

Hexachlorobutadiene

Methyl tert-butyl ether

Methylene Chloride

Isopropylbenzene

Ethylbenzene

Naphthalene

n-Butylbenzene

N-Propylbenzene

p-Isopropyltoluene

sec-Butylbenzene

Styrene

Analyte

Analysis Batch: 649840

Client Sample ID: Lab Control Sample

%Rec

68

89

114

100

77

93

104

94

95

100

101

87

40 _ 159

70 - 123

51 - 150

70 - 126

55 - 123

69 - 125

53 - 144

68 - 125

69 - 127

70 - 125

70 - 123

70 - 120

%Rec

Limits

Prep Type: Total/NA

Job ID: 500-214283-1

1,1,1-Trichloroethane 50.0 43.9 88 70 - 125 ug/L 1,1,2,2-Tetrachloroethane 50.0 43.9 ug/L 88 62 - 14050.0 87 1,1,2-Trichloroethane 43.6 ug/L 71 - 130 1,1-Dichloroethane 50.0 44.0 ug/L 88 70 - 125 50.0 46.2 92 67 - 122 1,1-Dichloroethene ug/L 1,1-Dichloropropene 50.0 46.6 ug/L 93 70 - 121 1,2,3-Trichlorobenzene 50.0 56.9 ug/L 114 51 - 14589 1,2,3-Trichloropropane 50.0 44.3 ug/L 50 - 1331,2,4-Trichlorobenzene 50.0 52.1 ug/L 104 57 - 13750.0 47.0 94 1,2,4-Trimethylbenzene ug/L 70 - 123 80 1,2-Dibromo-3-Chloropropane 50.0 39.9 ug/L 56 - 123 83 1,2-Dibromoethane 50.0 ug/L 70 - 125 41.5 50.0 96 70 - 125 1,2-Dichlorobenzene 48.0 ug/L 50.0 78 1,2-Dichloroethane 39.1 ug/L 68 - 127 50.0 42.9 ug/L 86 67 - 1301,2-Dichloropropane 48.1 ug/L 96 1,3,5-Trimethylbenzene 50.0 70 - 123 1,3-Dichlorobenzene 50.0 46.5 ug/L 93 70 - 125 50.0 41.1 82 62 - 136 1,3-Dichloropropane ug/L 1,4-Dichlorobenzene 50.0 45.7 ug/L 91 70 - 120 ug/L 2,2-Dichloropropane 50.0 41.3 83 58 - 139 70 - 125 2-Chlorotoluene 50.0 45.3 ug/L 91 4-Chlorotoluene 50.0 43.9 ug/L 88 68 - 124 Benzene 50.0 46.2 ug/L 92 70 - 120 50.0 48.1 96 70 - 122 Bromobenzene ug/L 50.0 46.1 92 Bromochloromethane ug/L 65 - 122 Dichlorobromomethane 50.0 40.0 80 69 - 120 ug/L 50.0 42.3 85 Bromoform ug/L 56 - 132 Bromomethane 50.0 50.5 ug/L 101 40 - 152 ug/L Carbon tetrachloride 50.0 44.3 89 59 - 133Chlorobenzene 50.0 46.4 ug/L 93 70 - 120Chloroethane 50.0 42.0 ug/L 84 48 - 136 Chloroform 50.0 42.1 ug/L 84 70 - 120 ug/L Chloromethane 50.0 41.6 83 56 - 152 50.0 46.5 93 70 - 125 cis-1,2-Dichloroethene ug/L cis-1,3-Dichloropropene 50.0 42.4 ug/L 85 64 - 127 Dibromochloromethane 50.0 42.8 86 68 - 125 ug/L Dibromomethane 50.0 42.6 ug/L 85 70 - 120

Eurofins Chicago

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

50.0

33 9

44.6

57.1

49.9

386

46.6

52.2

47.1

47.4

50.1

50.3

43.5

ug/L

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649840/5

Matrix: Water

Analysis Batch: 649840

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
tert-Butylbenzene	50.0	51.5		ug/L		103	70 - 121	
Tetrachloroethene	50.0	52.9		ug/L		106	70 - 128	
Toluene	50.0	49.0		ug/L		98	70 - 125	
trans-1,2-Dichloroethene	50.0	46.5		ug/L		93	70 - 125	
trans-1,3-Dichloropropene	50.0	38.3		ug/L		77	62 - 128	
Trichloroethene	50.0	51.2		ug/L		102	70 - 125	
Trichlorofluoromethane	50.0	41.3		ug/L		83	55 - 128	
Vinyl chloride	50.0	41.9		ug/L		84	64 - 126	
Xylenes, Total	100	85.7		ug/L		86	70 - 125	

LCS LCS

<1.8

<1.6

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	80		75 - 126
4-Bromofluorobenzene (Surr)	87		72 - 124
Dibromofluoromethane (Surr)	94		75 - 120
Toluene-d8 (Surr)	100		75 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-649620/1-A

Matrix: Water

4-Chloro-3-methylphenol

4-Chloroaniline

Client Sample ID: Method Blank

Prep Type: Total/NA

Analysis Batch: 649786								Prep Batch:	64962
	MB	MB							
Analyte	Result	Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,2,4-Trichlorobenzene	<0.19		1.6	0.19	ug/L		03/31/22 07:48	04/01/22 09:49	
1,2-Dichlorobenzene	<0.20		1.6	0.20	ug/L		03/31/22 07:48	04/01/22 09:49	
1,3-Dichlorobenzene	<0.17		1.6	0.17	ug/L		03/31/22 07:48	04/01/22 09:49	
1,4-Dichlorobenzene	<0.17		1.6	0.17	ug/L		03/31/22 07:48	04/01/22 09:49	
1-Methylnaphthalene	<0.24		1.6	0.24	ug/L		03/31/22 07:48	04/01/22 09:49	
2,2'-oxybis[1-chloropropane]	<0.30		1.6	0.30	ug/L		03/31/22 07:48	04/01/22 09:49	
2,4,5-Trichlorophenol	<2.1		8.0	2.1	ug/L		03/31/22 07:48	04/01/22 09:49	
2,4,6-Trichlorophenol	<0.57		4.0	0.57	ug/L		03/31/22 07:48	04/01/22 09:49	
2,4-Dichlorophenol	<2.1		8.0	2.1	ug/L		03/31/22 07:48	04/01/22 09:49	
2,4-Dimethylphenol	<1.4		8.0	1.4	ug/L		03/31/22 07:48	04/01/22 09:49	
2,4-Dinitrophenol	<6.9		16	6.9	ug/L		03/31/22 07:48	04/01/22 09:49	
2,4-Dinitrotoluene	<0.20		0.80	0.20	ug/L		03/31/22 07:48	04/01/22 09:49	
2,6-Dinitrotoluene	<0.059		0.80	0.059	ug/L		03/31/22 07:48	04/01/22 09:49	
2-Chloronaphthalene	<0.19		1.6	0.19	ug/L		03/31/22 07:48	04/01/22 09:49	
2-Chlorophenol	<0.45		4.0	0.45	ug/L		03/31/22 07:48	04/01/22 09:49	
2-Methylnaphthalene	<0.052		1.6	0.052	ug/L		03/31/22 07:48	04/01/22 09:49	
2-Methylphenol	<0.24		1.6	0.24	ug/L		03/31/22 07:48	04/01/22 09:49	
2-Nitroaniline	<1.0		4.0	1.0	ug/L		03/31/22 07:48	04/01/22 09:49	
2-Nitrophenol	<2.0		8.0	2.0	ug/L		03/31/22 07:48	04/01/22 09:49	
3 & 4 Methylphenol	< 0.36		1.6	0.36	ug/L		03/31/22 07:48	04/01/22 09:49	
3,3'-Dichlorobenzidine	<1.4		4.0	1.4	ug/L		03/31/22 07:48	04/01/22 09:49	
3-Nitroaniline	<1.4		8.0	1.4	ug/L		03/31/22 07:48	04/01/22 09:49	
4,6-Dinitro-2-methylphenol	<4.7		16	4.7	ug/L		03/31/22 07:48	04/01/22 09:49	
4-Bromophenyl phenyl ether	<0.43		4.0	0.43	ug/L		03/31/22 07:48	04/01/22 09:49	

Eurofins Chicago

03/31/22 07:48 04/01/22 09:49

03/31/22 07:48 04/01/22 09:49

8.0

8.0

1.8 ug/L

1.6 ug/L

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-649620/1-A

Matrix: Water

Surrogate

2,4,6-Tribromophenol (Surr)

2-Fluorobiphenyl (Surr)

2-Fluorophenol (Surr) Nitrobenzene-d5 (Surr)

Phenol-d5 (Surr)

Analysis Batch: 649786

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649620

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Chlorophenyl phenyl ether	<0.51		4.0	0.51	ug/L		03/31/22 07:48	04/01/22 09:49	1
4-Nitroaniline	<1.3		8.0	1.3	ug/L		03/31/22 07:48	04/01/22 09:49	1
4-Nitrophenol	< 5.9		16	5.9	ug/L		03/31/22 07:48	04/01/22 09:49	1
Acenaphthene	<0.25		0.80	0.25	ug/L		03/31/22 07:48	04/01/22 09:49	1
Acenaphthylene	<0.21		0.80	0.21	ug/L		03/31/22 07:48	04/01/22 09:49	1
Anthracene	<0.27		0.80	0.27	ug/L		03/31/22 07:48	04/01/22 09:49	1
Benzo[a]anthracene	<0.045		0.16	0.045	ug/L		03/31/22 07:48	04/01/22 09:49	1
Benzo[a]pyrene	<0.079		0.16	0.079	ug/L		03/31/22 07:48	04/01/22 09:49	1
Benzo[b]fluoranthene	<0.065		0.16	0.065	ug/L		03/31/22 07:48	04/01/22 09:49	1
Benzo[g,h,i]perylene	<0.30		0.80	0.30	ug/L		03/31/22 07:48	04/01/22 09:49	1
Benzo[k]fluoranthene	<0.051		0.16	0.051	ug/L		03/31/22 07:48	04/01/22 09:49	1
Benzoic acid	<4.6		16	4.6	ug/L		03/31/22 07:48	04/01/22 09:49	1
Benzyl alcohol	<4.8		16	4.8	ug/L		03/31/22 07:48	04/01/22 09:49	1
Bis(2-chloroethoxy)methane	<0.23		1.6	0.23	ug/L		03/31/22 07:48	04/01/22 09:49	1
Bis(2-chloroethyl)ether	<0.23		1.6	0.23	ug/L		03/31/22 07:48	04/01/22 09:49	1
Bis(2-ethylhexyl) phthalate	<1.4		8.0	1.4	ug/L		03/31/22 07:48	04/01/22 09:49	1
Butyl benzyl phthalate	<0.38		1.6	0.38	ug/L		03/31/22 07:48	04/01/22 09:49	1
Carbazole	<0.28		4.0	0.28	ug/L		03/31/22 07:48	04/01/22 09:49	1
Chrysene	<0.055		0.16	0.055	ug/L		03/31/22 07:48	04/01/22 09:49	1
Dibenz(a,h)anthracene	<0.041		0.24	0.041	ug/L		03/31/22 07:48	04/01/22 09:49	1
Dibenzofuran	<0.21		1.6	0.21	ug/L		03/31/22 07:48	04/01/22 09:49	1
Diethyl phthalate	<0.29		4.0	0.29	ug/L		03/31/22 07:48	04/01/22 09:49	1
Dimethyl phthalate	<0.25		4.0	0.25	ug/L		03/31/22 07:48	04/01/22 09:49	1
Di-n-butyl phthalate	<0.58		4.0	0.58	ug/L		03/31/22 07:48	04/01/22 09:49	1
Di-n-octyl phthalate	<0.84		8.0	0.84	ug/L		03/31/22 07:48	04/01/22 09:49	1
Fluoranthene	<0.36		0.80	0.36	ug/L		03/31/22 07:48	04/01/22 09:49	1
Fluorene	<0.20		0.80	0.20	ug/L		03/31/22 07:48	04/01/22 09:49	1
Hexachlorobenzene	<0.064		0.40	0.064	ug/L		03/31/22 07:48	04/01/22 09:49	1
Hexachlorobutadiene	<0.41		4.0	0.41	ug/L		03/31/22 07:48	04/01/22 09:49	1
Hexachlorocyclopentadiene	<5.1		16	5.1	ug/L		03/31/22 07:48	04/01/22 09:49	1
Hexachloroethane	<0.48		4.0	0.48	ug/L		03/31/22 07:48	04/01/22 09:49	1
Indeno[1,2,3-cd]pyrene	<0.060		0.16	0.060	ug/L		03/31/22 07:48	04/01/22 09:49	1
Isophorone	<0.30		1.6	0.30	ug/L		03/31/22 07:48	04/01/22 09:49	1
Naphthalene	<0.25		0.80	0.25	ug/L		03/31/22 07:48	04/01/22 09:49	1
Nitrobenzene	<0.36		0.80	0.36	ug/L		03/31/22 07:48	04/01/22 09:49	1
N-Nitrosodi-n-propylamine	<0.12		0.40	0.12	ug/L		03/31/22 07:48	04/01/22 09:49	1
N-Nitrosodiphenylamine	<0.30		1.6	0.30	ug/L		03/31/22 07:48	04/01/22 09:49	1
Pentachlorophenol	<3.2		16	3.2	ug/L		03/31/22 07:48	04/01/22 09:49	1
Phenanthrene	<0.24		0.80	0.24	ug/L		03/31/22 07:48	04/01/22 09:49	1
Phenol	<0.54		4.0	0.54	ug/L		03/31/22 07:48	04/01/22 09:49	1
Pyrene	<0.34		0.80	0.34	ug/L		03/31/22 07:48	04/01/22 09:49	1
		440							
	ИB	MB							

Eurofins Chicago

Analyzed

03/31/22 07:48 04/01/22 09:49

03/31/22 07:48 04/01/22 09:49

03/31/22 07:48 04/01/22 09:49

03/31/22 07:48 04/01/22 09:49

Prepared

Limits

40 - 145

34 - 110

27 - 110

36 - 120

20 - 110

%Recovery

77

86

94

80

64

Qualifier

Dil Fac

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-649620/1-A

Matrix: Water

Analysis Batch: 649786

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649620

MB MB

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 Terphenyl-d14 (Surr)
 139
 40 - 145
 03/31/22 07:48
 04/01/22 09:49
 1

Lab Sample ID: LCS 500-649620/2-A

Matrix: Water

Analysis Batch: 649786

Bis(2-chloroethoxy)methane

Bis(2-chloroethyl)ether

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 649620

Analysis Batch. 049700	Spike	LCS I	LCS		%Rec		
Analyte	Added	Result (D %Rec	Limits		
1,2,4-Trichlorobenzene	32.0	22.0	ug/L	69	26 - 110		
1,2-Dichlorobenzene	32.0	22.2	ug/L	69	26 - 110		
1,3-Dichlorobenzene	32.0	20.1	ug/L	63	22 - 110		
1,4-Dichlorobenzene	32.0	20.7	ug/L	65	23 - 110		
1-Methylnaphthalene	32.0	25.5	ug/L	80	38 - 110		
2,2'-oxybis[1-chloropropane]	32.0	29.5	ug/L	92	38 - 140		
2,4,5-Trichlorophenol	32.0	30.8	ug/L	96	63 - 124		
2,4,6-Trichlorophenol	32.0	31.3	ug/L	98	62 - 121		
2,4-Dichlorophenol	32.0	28.7	ug/L	90	58 - 120		
2,4-Dimethylphenol	32.0	29.0	ug/L	91	51 - 115		
2,4-Dinitrophenol	64.0	49.3	ug/L	77	37 - 130		
2,4-Dinitrotoluene	32.0	33.4	ug/L	104	63 - 129		
2,6-Dinitrotoluene	32.0	33.0	ug/L	103	63 - 129		
2-Chloronaphthalene	32.0	26.2	ug/L	82	39 - 110		
2-Chlorophenol	32.0	31.3	ug/L	98	59 - 110		
2-Methylnaphthalene	32.0	25.5	ug/L	80	34 - 110		
2-Methylphenol	32.0	31.5	ug/L	99	53 - 115		
2-Nitroaniline	32.0	32.8	ug/L	102	59 - 138		
2-Nitrophenol	32.0	31.4	ug/L	98	59 - 115		
3 & 4 Methylphenol	32.0	29.1	ug/L	91	50 - 116		
3,3'-Dichlorobenzidine	32.0	24.6	ug/L	77	60 - 132		
3-Nitroaniline	32.0	19.6	ug/L	61	47 - 123		
4,6-Dinitro-2-methylphenol	64.0	57.6	ug/L	90	50 - 129		
4-Bromophenyl phenyl ether	32.0	30.4	ug/L	95	58 - 120		
4-Chloro-3-methylphenol	32.0	31.9	ug/L	100	64 - 128		
4-Chloroaniline	32.0	23.2	ug/L	72	35 - 128		
4-Chlorophenyl phenyl ether	32.0	28.3	ug/L	88	48 - 116		
4-Nitroaniline	32.0	17.8	ug/L	56	35 - 110		
4-Nitrophenol	64.0	33.1	ug/L	52	20 - 110		
Acenaphthene	32.0	30.5	ug/L	95	46 - 110		
Acenaphthylene	32.0	28.8	ug/L	90	47 - 113		
Anthracene	32.0	32.6	ug/L	102	67 - 118		
Benzo[a]anthracene	32.0	29.6	ug/L	93	70 - 126		
Benzo[a]pyrene	32.0	32.2	ug/L	101	70 - 135		
Benzo[b]fluoranthene	32.0	31.5	ug/L	98	69 - 136		
Benzo[g,h,i]perylene	32.0	31.4	ug/L	98	70 - 135		
Benzo[k]fluoranthene	32.0	33.1	ug/L	103	70 - 133		
Benzoic acid	64.0	33.4	ug/L	52	10 - 112		
Benzyl alcohol	32.0	28.0	ug/L	88	46 - 132		
D:-/0 -LI		00.5		00	FO. 440		

Eurofins Chicago

28.5

29.5

ug/L

ug/L

89

92

59 - 118

54 - 112

32.0

32.0

2

А

5

7

9

11

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-649620/2-A

Matrix: Water

Analysis Batch: 649786

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649620

	Spike	LCS			_		%Rec	
Analyte	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits	
Bis(2-ethylhexyl) phthalate	32.0	35.8		ug/L		112	69 - 136	
Butyl benzyl phthalate	32.0	34.0		ug/L		106	68 - 135	
Carbazole	32.0	30.4		ug/L		95	61 - 145	
Chrysene	32.0	31.5		ug/L		98	68 - 129	
Dibenz(a,h)anthracene	32.0	33.0		ug/L		103	70 - 134	
Dibenzofuran	32.0	28.6		ug/L		89	51 - 110	
Diethyl phthalate	32.0	33.4		ug/L		104	62 - 123	
Dimethyl phthalate	32.0	30.7		ug/L		96	63 - 122	
Di-n-butyl phthalate	32.0	33.7		ug/L		105	69 - 129	
Di-n-octyl phthalate	32.0	34.4		ug/L		107	68 - 137	
Fluoranthene	32.0	33.5		ug/L		105	68 - 126	
Fluorene	32.0	29.8		ug/L		93	53 - 120	
Hexachlorobenzene	32.0	29.7		ug/L		93	61 - 126	
Hexachlorobutadiene	32.0	21.0		ug/L		65	20 - 100	
Hexachlorocyclopentadiene	32.0	10.1	J	ug/L		31	10 - 105	
Hexachloroethane	32.0	21.9		ug/L		68	20 - 100	
Indeno[1,2,3-cd]pyrene	32.0	33.6		ug/L		105	65 - 133	
Isophorone	32.0	30.5		ug/L		95	54 - 127	
Naphthalene	32.0	24.9		ug/L		78	36 - 110	
Nitrobenzene	32.0	29.5		ug/L		92	54 - 121	
N-Nitrosodi-n-propylamine	32.0	31.1		ug/L		97	47 - 131	
N-Nitrosodiphenylamine	32.0	32.6		ug/L		102	66 - 120	
Pentachlorophenol	64.0	46.9		ug/L		73	42 - 148	
Phenanthrene	32.0	32.1		ug/L		100	65 - 120	
Phenol	32.0	27.7		ug/L		86	33 - 100	
Pyrene	32.0	33.3		ug/L		104	70 - 126	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	91		40 - 145
2-Fluorobiphenyl (Surr)	96		34 - 110
2-Fluorophenol (Surr)	92		27 - 110
Nitrobenzene-d5 (Surr)	92		36 - 120
Phenol-d5 (Surr)	72		20 - 110
Terphenyl-d14 (Surr)	110		40 - 145

Lab Sample ID: LCSD 500-649620/3-A

Matrix: Water

Analysis Batch: 649786

Client Sample	ID:	Lab	Contro	I Sample	е	Dup

%Rec

Prep Type: Total/NA Prep Batch: 649620

Analyte	Added	Result Qu	alifier Unit	D %Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	32.0	20.5	ug/L	64	26 - 110	7	20
1,2-Dichlorobenzene	32.0	21.3	ug/L	67	26 - 110	4	20
1,3-Dichlorobenzene	32.0	19.2	ug/L	60	22 - 110	5	20
1,4-Dichlorobenzene	32.0	20.1	ug/L	63	23 - 110	3	20
1-Methylnaphthalene	32.0	23.4	ug/L	73	38 - 110	8	20
2,2'-oxybis[1-chloropropane]	32.0	29.0	ug/L	91	38 - 140	2	20
2,4,5-Trichlorophenol	32.0	28.3	ug/L	89	63 - 124	8	20
2,4,6-Trichlorophenol	32.0	28.2	ug/L	88	62 - 121	10	20

LCSD LCSD

Spike

Eurofins Chicago

Page 277 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCSD 500-649620/3-A

Matrix: Water

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 500-214283-1

Spike Added 32.0 32.0 64.0 32.0		LCSD Qualifier	Unit ug/L	<u>D</u>	%Rec	%Rec Limits	RPD	RPD Limit
32.0 32.0 64.0	26.1	Qualifier				Lillits	INFD	LIIIII
32.0 64.0					82	58 - 120	9	20
64.0			ug/L		81	51 - 115	12	20
	40.9		ug/L ug/L		64	37 - 113	19	20
37.0	30.3		ug/L ug/L		95	63 - 129	10	20
								20
			-					20
			_					
								20
			-					20
								20
								20
			_					20
			•					20
								20
			-					20
			-					20
					90	58 - 120	6	20
			ug/L		89	64 - 128	11	20
			ug/L		67	35 - 128	9	20
32.0	25.9		ug/L		81	48 - 116	9	20
32.0	15.5		ug/L		48	35 - 110	14	20
64.0	28.6		ug/L		45	20 - 110	14	20
32.0	27.6		ug/L		86	46 - 110	10	20
32.0	26.6		ug/L		83	47 - 113	8	20
32.0	30.3		ug/L		95	67 - 118	7	20
32.0	26.8		ug/L		84	70 - 126	10	20
32.0	29.5		ug/L		92	70 - 135	9	20
32.0	28.2		ug/L		88	69 - 136	11	20
32.0	27.0		ug/L		85	70 - 135	15	20
32.0	31.1		ug/L		97	70 - 133	6	20
64.0	26.7	*1	ug/L		42	10 - 112	22	20
32.0	27.9		ug/L		87	46 - 132	0	20
32.0	25.9		ug/L		81	59 - 118	10	20
32.0	27.0		ug/L		84	54 - 112	9	20
32.0	32.7		ug/L		102	69 - 136	9	20
32.0	31.3		ug/L		98	68 - 135	8	20
32.0	28.4		-		89	61 - 145	7	20
32.0	29.1		-		91	68 - 129	8	20
					91		13	20
								20
								20
								20
			-					20
			-					20
								20
			-					20
			_					20
								20
		1	-					
		J	·					20 20
	32.0 64.0 32.0 32.0 32.0 32.0 32.0 32.0 32.0 64.0 32.0 32.0 32.0 32.0	32.0 24.1 32.0 30.6 32.0 31.3 32.0 30.0 32.0 28.6 32.0 28.5 32.0 22.2 32.0 17.4 64.0 52.0 32.0 28.8 32.0 25.9 32.0 25.9 32.0 27.6 32.0 26.6 32.0 26.8 32.0 26.8 32.0 27.0 32.0 27.0 32.0 27.0 32.0 27.0 32.0 27.9 32.0 27.0 32.0 27.0 32.0 27.0 32.0 27.0 32.0 27.0 32.0 27.0 32.0 27.0 32.0 29.1 32.0 29.1 32.0 29.1 32.0 29.1 32.0 27.6 32.0 27.6 32.0	32.0	32.0 24.1 ug/L 32.0 30.6 ug/L 32.0 33.3 ug/L 32.0 31.3 ug/L 32.0 30.0 ug/L 32.0 28.6 ug/L 32.0 28.5 ug/L 32.0 22.2 ug/L 32.0 17.4 ug/L 64.0 52.0 ug/L 32.0 28.8 ug/L 32.0 28.4 ug/L 32.0 25.9 ug/L 32.0 25.9 ug/L 32.0 27.6 ug/L 32.0 26.8 ug/L 32.0 26.8 ug/L 32.0 27.0 ug/L 32.0 27.9 ug/L 32.0 27.9 ug/L 32.0 27.0 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.3 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L 32.0 29.7 ug/L	32.0 24.1 ug/L 32.0 30.6 ug/L 32.0 33.3 ug/L 32.0 31.3 ug/L 32.0 30.0 ug/L 32.0 28.6 ug/L 32.0 28.5 ug/L 32.0 22.2 ug/L 32.0 17.4 ug/L 64.0 52.0 ug/L 32.0 28.8 ug/L 32.0 25.9 ug/L 32.0 25.9 ug/L 32.0 26.6 ug/L 32.0 26.6 ug/L 32.0 27.6 ug/L 32.0 28.2 ug/L 32.0 26.8 ug/L 32.0 27.0 ug/L 32.0 25.9 ug/L 32.0 26.8 ug/L 32.0 27.0 ug/L 32.0 26.8 ug/L 32.0 27.0 ug/L 32.0 28.2 ug/L 32.0 29.5 ug/L 32.0 27.0 ug/L 32.0 28.4 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L 32.0 29.1 ug/L	32.0 24.1 ug/L 75 32.0 30.6 ug/L 96 32.0 23.3 ug/L 73 32.0 31.3 ug/L 98 32.0 30.0 ug/L 94 32.0 28.6 ug/L 89 32.0 28.5 ug/L 89 32.0 22.2 ug/L 70 32.0 17.4 ug/L 54 64.0 52.0 ug/L 89 32.0 28.8 ug/L 89 32.0 28.8 ug/L 89 32.0 28.8 ug/L 89 32.0 28.6 ug/L 81 32.0 28.6 ug/L 81 32.0 28.8 ug/L 90 32.0 28.4 ug/L 89 32.0 25.9 ug/L 67 32.0 25.9 ug/L 81 32.0 25.9 ug/L 81 32.0 27.6 ug/L 86 32.0 26.6 ug/L 83 32.0 26.6 ug/L 83 32.0 26.6 ug/L 83 32.0 26.6 ug/L 84 32.0 27.6 ug/L 84 32.0 27.0 ug/L 84 32.0 27.0 ug/L 84 32.0 27.0 ug/L 84 32.0 27.0 ug/L 84 32.0 27.0 ug/L 85 32.0 31.1 ug/L 97 64.0 26.7 *1 ug/L 92 32.0 27.9 ug/L 87 32.0 25.9 ug/L 87 32.0 25.9 ug/L 88 32.0 27.0 ug/L 85 32.0 31.1 ug/L 97 64.0 26.7 *1 ug/L 42 32.0 27.9 ug/L 87 32.0 25.9 ug/L 81 32.0 27.0 ug/L 84 32.0 27.0 ug/L 85 32.0 32.7 ug/L 97 64.0 26.7 *1 ug/L 42 32.0 26.9 ug/L 81 32.0 27.0 ug/L 84 32.0 26.9 ug/L 81 32.0 27.0 ug/L 81 32.0 26.0 ug/L 81 32.0 27.0 ug/L 84 32.0 26.0 ug/L 81 32.0 32.7 ug/L 97 64.0 26.7 *1 ug/L 97 64.0 26.8 ug/L 98 64.0 ug/L 98 65.0 ug/L 98 66.0 ug/L 98 66.0 ug/L 98 66.0 ug/L 98 67 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68.0 ug/L 98 68 68 68 68 68 68 69 69 69 69 69 69 69 69 69 69 69 69 69	32.0 24.1 ug/L 75 39.110 32.0 30.6 ug/L 96 59.110 32.0 23.3 ug/L 73 34.110 32.0 31.3 ug/L 98 53.115 32.0 30.0 ug/L 94 59.138 32.0 28.6 ug/L 89 59.115 32.0 28.5 ug/L 89 59.115 32.0 22.2 ug/L 70 60.132 32.0 17.4 ug/L 81 50.129 32.0 28.8 ug/L 89 64.128 32.0 28.8 ug/L 89 64.128 32.0 28.8 ug/L 89 64.128 32.0 28.4 ug/L 89 64.128 32.0 21.3 ug/L 89 64.128 32.0 21.3 ug/L 81 50.129 32.0 28.6 ug/L 89 64.128 32.0 21.3 ug/L 67 35.128 32.0 25.9 ug/L 81 48.161 32.0 25.9 ug/L 81 48.116 32.0 15.5 ug/L 84 35.110 64.0 28.6 ug/L 85 20.110 32.0 27.6 ug/L 86 46.110 32.0 27.6 ug/L 86 46.110 32.0 26.6 ug/L 86 46.110 32.0 27.6 ug/L 86 46.110 32.0 26.8 ug/L 84 70.126 32.0 29.5 ug/L 84 70.126 32.0 29.5 ug/L 84 70.126 32.0 27.0 ug/L 85 70.135 32.0 28.2 ug/L 86 69.136 32.0 27.0 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 87 46.132 32.0 27.9 ug/L 88 69.136 32.0 27.0 ug/L 84 54.112 32.0 32.7 ug/L 89 68.135 32.0 28.4 ug/L 89 61.145 32.0 27.9 ug/L 81 59.118 32.0 27.0 ug/L 84 54.112 32.0 32.7 ug/L 89 68.135 32.0 28.4 ug/L 89 61.145 32.0 29.1 ug/L 89 61.145 32.0 29.1 ug/L 89 61.145 32.0 29.1 ug/L 89 61.145 32.0 29.1 ug/L 89 61.145 32.0 29.1 ug/L 89 69.129 32.0 29.1 ug/L 89 69.129 32.0 29.1 ug/L 86 63.122 32.0 29.1 ug/L 86 63.122 32.0 29.3 ug/L 86 63.122 32.0 29.7 ug/L 86 63.122 32.0 29.7 ug/L 86 63.122 32.0 29.7 ug/L 86 63.122 32.0 29.7 ug/L 86 63.122 32.0 29.7 ug/L 86 63.122 32.0 29.7 ug/L 86 63.122 32.0 29.7 ug/L 86 63.122	32.0 24.1 ug/L 75 39.110 9 32.0 30.6 ug/L 96 59.110 2 32.0 23.3 ug/L 73 34.110 9 32.0 31.3 ug/L 98 53.115 1 32.0 30.0 ug/L 98 53.115 1 32.0 30.0 ug/L 99 59.118 9 32.0 28.6 ug/L 89 59.116 2 32.0 28.5 ug/L 89 59.116 2 32.0 22.2 ug/L 70 60.132 10 32.0 17.4 ug/L 54 47.123 12 64.0 52.0 ug/L 81 50.129 10 32.0 28.8 ug/L 89 64.128 11 32.0 28.8 ug/L 89 64.128 11 32.0 28.8 ug/L 89 64.128 11 32.0 28.4 ug/L 89 64.128 11 32.0 28.6 ug/L 81 50.129 10 32.0 28.6 ug/L 89 64.128 11 32.0 27.6 ug/L 81 48.116 9 32.0 27.6 ug/L 48 35.110 14 32.0 26.8 ug/L 45 20.110 14 32.0 26.8 ug/L 86 46.110 10 32.0 26.8 ug/L 87 113 8 32.0 27.6 ug/L 86 46.110 10 32.0 26.8 ug/L 87 113 8 32.0 27.6 ug/L 86 46.110 10 32.0 26.8 ug/L 87 113 8 32.0 27.0 ug/L 86 46.110 10 32.0 26.8 ug/L 87 113 8 32.0 27.0 ug/L 87 113 8 32.0 28.2 ug/L 88 69.136 11 32.0 27.9 ug/L 88 69.136 11 32.0 27.9 ug/L 87 70.135 9 32.0 32.7 ug/L 87 70.135 9 32.0 32.7 ug/L 87 70.135 9 32.0 32.7 ug/L 87 46.132 0 32.0 32.7 ug/L 88 69.136 11 32.0 27.9 ug/L 87 46.132 0 32.0 32.7 ug/L 87 46.132 0 32.0 32.7 ug/L 87 46.132 0 32.0 32.7 ug/L 87 46.132 0 32.0 32.7 ug/L 88 69.136 11 32.0 27.9 ug/L 87 46.132 0 32.0 32.7 ug/L 89 68.135 8 32.0 32.0 32.7 ug/L 89 68.135 8 32.0 32.0 32.7 ug/L 89 68.135 8 32.0 32.0 32.7 ug/L 99 68.135 8 32.0 32.0 32.1 ug/L 89 61.145 7 32.0 32.0 32.7 ug/L 99 68.135 8 32.0 32.0 32.7 ug/L 99 68.135 8 32.0 32.0 32.7 ug/L 99 68.135 8 32.0 32.0 32.7 ug/L 99 68.135 8 32.0 32.0 32.7 ug/L 99 68.135 8 32.0 32.0 32.7 ug/L 99 68.137 16 32.0 32.0 32.7 ug/L 99 68.137 16 32.0 29.7 ug/L 99 68.137 16 32.0 29.7 ug/L 99 68.137 16 32.0 29.7 ug/L 99 68.137 16 32.0 28.0 ug/L 85 53.120 9 32.0 32.0 32.0 32.7 ug/L 99 68.137 16 32.0 32.0 32.0 32.7 ug/L 99 68.137 16 32.0 32.0 32.0 32.0 32.0 ug/L 85 53.120 9 32.0 32.0 32.0 32.0 ug/L 85 53.120 9 32.0 32.0 32.0 ug/L 85 53.120 9 32.0 32.0 32.0 ug/L 85 63.126 12

Client: Stantec Consulting Corp.

Analysis Batch: 649786

Matrix: Water

Lab Sample ID: LCSD 500-649620/3-A

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 500-214283-1

				Prep Batch: 649620					
CSD				%Rec		RPD			
ualifier	Unit	D	%Rec	Limits	RPD	Limit			

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Indeno[1,2,3-cd]pyrene	32.0	29.2		ug/L		91	65 - 133	14	20
Isophorone	32.0	28.4		ug/L		89	54 - 127	7	20
Naphthalene	32.0	22.6		ug/L		71	36 - 110	10	20
Nitrobenzene	32.0	27.4		ug/L		86	54 - 121	7	20
N-Nitrosodi-n-propylamine	32.0	30.4		ug/L		95	47 - 131	2	20
N-Nitrosodiphenylamine	32.0	29.5		ug/L		92	66 - 120	10	20
Pentachlorophenol	64.0	38.3		ug/L		60	42 - 148	20	20
Phenanthrene	32.0	29.6		ug/L		93	65 - 120	8	20
Phenol	32.0	27.0		ug/L		84	33 - 100	2	20
Pyrene	32.0	31.8		ug/L		99	70 - 126	5	20

LCSD LCSD

<340 F1

<290 F1

<1700 F1

<280

<500

<350

<650

<280

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	84		40 - 145
2-Fluorobiphenyl (Surr)	88		34 - 110
2-Fluorophenol (Surr)	92		27 - 110
Nitrobenzene-d5 (Surr)	84		36 - 120
Phenol-d5 (Surr)	72		20 - 110
Terphenyl-d14 (Surr)	106		40 - 145

Lab Sample ID: 500-214283-1 MS

Analysis Batch: 650605

Matrix: Solid

2-Methylphenol

2-Nitroaniline

2-Nitrophenol

3-Nitroaniline

3 & 4 Methylphenol

3,3'-Dichlorobenzidine

4,6-Dinitro-2-methylphenol

4-Bromophenyl phenyl ether

Client Sample ID: SB-236 3.5-5

60 - 120

57 - 124

60 - 120

57 - 120

35 - 128

40 - 122

10 - 110

68 - 118

Prep Typ	e: Total/NA
Prep Ba	tch: 650394
%Rec	

-	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	<230		1710	1420		ug/Kg	*	83	66 - 117
1,2-Dichlorobenzene	<250		1710	1240		ug/Kg	☼	73	62 - 110
1,3-Dichlorobenzene	<240		1710	1110		ug/Kg	☼	65	60 - 110
1,4-Dichlorobenzene	<270		1710	1180		ug/Kg	₩	69	61 - 110
1-Methylnaphthalene	1600	F2 F1	1710	2860		ug/Kg	☼	76	68 - 111
2,2'-oxybis[1-chloropropane]	<240		1710	1220		ug/Kg	₩	71	40 - 124
2,4,5-Trichlorophenol	<480		1710	1590	J	ug/Kg	₩	93	50 - 120
2,4,6-Trichlorophenol	<720		1710	1520	J	ug/Kg	₩	89	57 - 120
2,4-Dichlorophenol	<500		1710	1640	J	ug/Kg	☼	96	58 - 120
2,4-Dimethylphenol	<800		1710	1350	J	ug/Kg	₩	79	60 - 110
2,4-Dinitrophenol	<3700		3410	<3700		ug/Kg	₩	NC	10 - 100
2,4-Dinitrotoluene	<330	F1	1710	1450		ug/Kg	☼	85	69 - 124
2,6-Dinitrotoluene	<410		1710	1530		ug/Kg	₽	90	70 - 123
2-Chloronaphthalene	<230	F1	1710	1440		ug/Kg	₩	85	69 - 114
2-Chlorophenol	<360		1710	1810		ug/Kg	☼	106	64 - 110
2-Methylnaphthalene	2100	F2 F1	1710	3160	F1	ug/Kg	₩	62	69 - 112

1710

1710

1710

1710

1710

1710

3410

1710

2090 F1

1500 J

<300 F1

808 J

<1700 F1

1510

1460

1720

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

₩

₩

₩

₩

₩

₩

₩

122

85

88

101

0

47

0

88

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-1 MS

Matrix: Solid

Fluoranthene

Hexachlorobenzene

Hexachloroethane

Isophorone

Naphthalene

Nitrobenzene

Hexachlorobutadiene

Indeno[1,2,3-cd]pyrene

N-Nitrosodi-n-propylamine

2,4,6-Tribromophenol (Surr)

N-Nitrosodiphenylamine

Pentachlorophenol

Phenanthrene

Phenol

Pyrene

Surrogate

Hexachlorocyclopentadiene

Fluorene

Analysis Batch: 650605

Client Sample ID: SB-236 3.5-5

Prep Type: Total/NA Prep Batch: 650394

Job ID: 500-214283-1

Analyte	•	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	%Rec	%Rec Limits	
4-Chloro-3-methylphenol		<u> </u>	1710 —	1430		ug/Kg	— -	84	65 - 122	_
4-Chloroaniline	<990	F1	1710	<1000		ug/Kg		0	30 - 150	
4-Chlorophenyl phenyl ether	<250		1710	1550	• •	ug/Kg	~ ☆	91	62 - 119	
4-Nitroaniline	<880	F1	1710	<890	F1	ug/Kg		0	60 - 160	
4-Nitrophenol	<2000		3410	3040		ug/Kg	₩	89	30 - 122	
Acenaphthene	56		1710	1500		ug/Kg	₩	85	65 - 124	
Acenaphthylene	140	J F1	1710	1620		ug/Kg		87	68 - 120	
Anthracene	160	J F1	1710	1690		ug/Kg	₩	89	70 - 114	
Benzo[a]anthracene	630	F1	1710	2060		ug/Kg	☼	83	67 - 122	
Benzo[a]pyrene	890	F1	1710	2290	*3	ug/Kg	₩	82	65 - 133	
Benzo[b]fluoranthene	1500	F2 F1	1710	3130	*3	ug/Kg	₽	95	69 - 129	
Benzo[g,h,i]perylene	380	F1	1710	1060	F1 *3	ug/Kg	₽	40	72 - 131	
Benzo[k]fluoranthene	460	F2 F1	1710	2280	*3	ug/Kg	₩	107	68 - 127	
Benzoic acid	<2100	F1	3410	2630	J	ug/Kg	₽	77	10 - 100	
Benzyl alcohol	<2100		1710	<2100		ug/Kg	₩	NC	21 - 139	
Bis(2-chloroethoxy)methane	<210		1710	1220		ug/Kg		72	60 - 112	
Bis(2-chloroethyl)ether	<310		1710	1510		ug/Kg	₩	88	55 - 111	
Bis(2-ethylhexyl) phthalate	<380		1710	1880		ug/Kg	₩	110	72 - 131	
Butyl benzyl phthalate	<400		1710	1900		ug/Kg	₩	111	71 - 129	
Carbazole	<520	F2	1710	1670		ug/Kg	₩	98	65 - 142	
Chrysene	880	F1	1710	2310		ug/Kg	₩	84	63 - 120	
Dibenz(a,h)anthracene	90	J F1	1710	932	F1 *3	ug/Kg	☼	49	64 - 131	
Dibenzofuran	480	J F1	1710	2020		ug/Kg	₩	90	66 - 115	
Diethyl phthalate	<360		1710	1540		ug/Kg	₩	90	58 - 120	
Dimethyl phthalate	<270		1710	1540		ug/Kg	₩	90	69 - 116	
Di-n-butyl phthalate	<320	F2	1710	1660		ug/Kg	₩	97	65 - 120	
Di-n-octyl phthalate	<340		1710	1470		ug/Kg	₩	86	68 - 134	

1710

1710

1710

1710

1710

1710

1710

1710

1710

1710

1710

1710

3410

1710

1710

1710

2930

1560

1550

1270

1260

2770

1250

1240

1540

3000

1870

3230

<3400 F1

<1200 F1

1020 J

1210 F1 *3

ug/Kg

106

92

91

74

0

60

50

74

89

73

72

90

0

101

110

119

Ö

Ö

☼

₩

₩

☼

₩

₩

Ö

☼

₩

☼

Ö

62 - 120

62 - 120

63 - 124

56 - 120

10 - 133

60 - 114

68 - 130

55 - 110

63 - 110

60 - 116

56 - 118

65 - 112

13 - 112

62 - 120

56 - 122

61 - 128

IVIS	IVIS	
%Recovery	Qualifier	Limits
99		31 - 143
0.0		10 115

1100

<29

<49

<1200 F1

<320 F1

350 F2 F1

<330

<240

1300

<52

<260

<250

1300

<470

1200

<3400 F1

2-Fluorobiphenyl (Surr) 43 - 145 86 2-Fluorophenol (Surr) 182 S1+ 31 - 166

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-1 MS

Matrix: Solid

Analysis Batch: 650605

Client Sample ID: SB-236 3.5-5

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650394

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	69		37 - 147
Phenol-d5 (Surr)	109		30 - 153
Terphenyl-d14 (Surr)	115		42 - 157

Client Sample ID: SB-236 3 5-5 Lab Sample ID: 500-214283-1 MSD

Matrix: Solid

Benzyl alcohol

Analysis Batch: 650605

Olient Gample ib	7. OD-200 0.0-0
Prep '	Type: Total/NA

Prep Batch: 650394

Analysis Batch: 650605	Sample	Sample	Spike	Med	MSD				%Rec	atcn: 6	SU394 RPD
Analyte	•	Qualifier	Added	_	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	<230	Qualifier	1700	1210	Qualifier	ug/Kg	— -	71	66 ₋ 117	16	30
1,2-Dichlorobenzene	<250		1700	1150		ug/Kg ug/Kg	₩	67	62 - 110	8	30
1,3-Dichlorobenzene	<240		1700	1030	1	ug/Kg ug/Kg	₩	61	60 - 110	7	30
1,4-Dichlorobenzene	<2 7 0		1700	1060		ug/Kg ug/Kg		63	61 - 110	11	30
1-Methylnaphthalene		F2 F1	1700		5 F2 F1	ug/Kg ug/Kg	₩	30	68 - 111	32	30
2,2'-oxybis[1-chloropropane]	<240	FZ F I	1700	1140	FZ F I	ug/Kg ug/Kg	₩	67	40 - 124	6	30
2,4,5-Trichlorophenol	<480		1700	1290		ug/Kg ug/Kg	¥ \$	76	50 - 120	21	30
2,4,6-Trichlorophenol	<720		1700	1170		ug/Kg ug/Kg	₩	69	57 ₋ 120	26	30
2,4-Dichlorophenol	<500		1700	1370		ug/Kg ug/Kg	☆	81	58 ₋ 120	18	30
	<800		1700	1090				64	60 - 110	21	30
2,4-Dimethylphenol	<3700		3400	<3700	J	ug/Kg ug/Kg	☼	NC		NC	30
2,4-Dinitrophenol		E4			F4		₩		10 - 100		
2,4-Dinitrotoluene	<330	F1	1700	1120	F1	ug/Kg	 .	66	69 - 124	26	30
2,6-Dinitrotoluene	<410	F4	1700	1230	F4	ug/Kg	#	72	70 - 123	21	30
2-Chloronaphthalene	<230	F1	1700	1140	F1	ug/Kg	₩	67	69 - 114	23	30
2-Chlorophenol	<360		1700	1610		ug/Kg	<u>.</u> .	95	64 - 110	12	30
2-Methylnaphthalene		F2 F1	1700		F2 F1	ug/Kg	₩	13	69 - 112	31	30
2-Methylphenol	<340	F1	1700	1660		ug/Kg	₩	97	60 - 120	23	30
2-Nitroaniline	<280		1700	1130		ug/Kg		66	57 - 124	25	30
2-Nitrophenol	<500		1700	1290	J	ug/Kg	₩	76	60 - 120	15	30
3 & 4 Methylphenol	<350		1700	1460		ug/Kg	₩	86	57 - 120	16	30
3,3'-Dichlorobenzidine	<290	F1	1700	<300		ug/Kg		0	35 - 128	NC	30
3-Nitroaniline	<650		1700	714		ug/Kg	₩	42	40 - 122	12	30
4,6-Dinitro-2-methylphenol	<1700	F1	3400	<1700	F1	ug/Kg	₩	0	10 - 110	NC	30
4-Bromophenyl phenyl ether	<280		1700	1160		ug/Kg	₩	69	68 - 118	26	30
4-Chloro-3-methylphenol	<710		1700	1120	J	ug/Kg	₩	66	65 - 122	24	30
4-Chloroaniline	<990	F1	1700	<990	F1	ug/Kg	₩	0	30 - 150	NC	30
4-Chlorophenyl phenyl ether	<250		1700	1200		ug/Kg	₩	71	62 - 119	26	30
4-Nitroaniline	<880	F1	1700	<890	F1	ug/Kg	₩	0	60 - 160	NC	30
4-Nitrophenol	<2000	F2	3400	2080	J F2	ug/Kg	₩	61	30 - 122	38	30
Acenaphthene	56	J	1700	1210		ug/Kg	₩	68	65 - 124	22	30
Acenaphthylene	140	J F1	1700	1260	F1	ug/Kg	₩	66	68 - 120	25	30
Anthracene	160	J F1	1700	1250	F1	ug/Kg	₩	64	70 - 114	30	30
Benzo[a]anthracene	630	F1	1700	1540	F1	ug/Kg	☼	53	67 - 122	29	30
Benzo[a]pyrene	890	F1	1700	1730	F1	ug/Kg	₩	49	65 - 133	28	30
Benzo[b]fluoranthene	1500	F2 F1	1700	2160	F2 F1	ug/Kg	₽	39	69 - 129	37	30
Benzo[g,h,i]perylene	380		1700	782	F1	ug/Kg	₩	24	72 - 131	30	30
Benzo[k]fluoranthene	460	F2 F1	1700	1540	F2 F1	ug/Kg		64	68 - 127	39	30
Benzoic acid	<2100	F1	3400	<2100	F1	ug/Kg	₩	0	10 - 100	NC	30

Eurofins Chicago

NC

<2100

ug/Kg

NC

21 - 139

1700

<2100

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-1 MSD

Matrix: Solid

Analysis Batch: 650605

Client Sample ID: SB-236 3.5-5

Prep Type: Total/NA

Prep Batch: 650394

Job ID: 500-214283-1

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limits Bis(2-chloroethoxy))methane <210 1700 1160 ug/Kg © 68 60.112 5 30 Bis(2-chloroethy))ether <330 1700 1120 ug/Kg © 66 55.111 29 30 Bis(2-chloroethy)) phthalate <380 1700 1420 ug/Kg © 85 72.131 26 30 Butyl benzyl phthalate <400 1700 1420 ug/Kg © 84 71.129 29 30 Carbazole <520 F2 1700 1170 F1 ug/Kg © 48 63.120 30 30 Chrysene 888 F1 1700 1700 F1 ug/Kg © 37 64.131 27 30 Dibenzofuran 480 JF1 1700 1210 ug/Kg ©		Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Bis (2-chloroethyl)ether <310	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Bis(2-ethylhexyl) phthalate \$380 1700 1450 ug/Kg \$85 72 - 131 26 30 Butyl benzyl phthalate \$400 1700 1420 ug/Kg \$84 71 - 129 29 30 Carbazole \$520 F2 1700 1170 F2 ug/Kg \$85 69 65 - 142 35 30 Chrysene \$880 F1 1700 1700 F1 ug/Kg \$85 60 65 - 142 35 30 Dibenz(a,h)anthracene 90 JF1 1700 713 F1 ug/Kg \$85 60 66 - 115 29 30 Dibenzofuran 480 JF1 1700 1510 F1 ug/Kg \$85 60 66 - 115 29 30 Diethyl phthalate \$360 1700 1220 ug/Kg \$60 66 - 115 29 30 Dimethyl phthalate \$360 1700 1220 ug/Kg \$60 66 - 116 24 30 Di-n-butyl phthalate \$320 F2 1700 1210 ug/Kg \$67 65 - 120 31 30 Di-n-butyl phthalate \$340 1700 1210 F2 ug/Kg \$67 65 - 120 31 30 Di-n-octyl phthalate \$340 1700 1230 ug/Kg \$65 62 - 120 27 30 Fluoranthene 1100 1700 2230 ug/Kg \$65 62 - 120 27 30 Fluorene \$49 1700 1100 ug/Kg \$65 62 - 120 27 30 Hexachlorobutadiene \$330 F1 1700 1200 ug/Kg \$65 63 - 124 28 30 Hexachlorobutadiene \$320 F1 1700 1200 ug/Kg \$65 63 - 124 28 30 Hexachlorobutadiene \$320 F1 1700 870 F1 ug/Kg \$65 60 - 110 11 30 Indeno[1,2,3-cd]pyrene \$350 F2 F1 1700 858 F2 F1 ug/Kg \$65 65 - 110 34 30 Sophorone \$440 1700 1150 ug/Kg \$65 65 - 110 30 Naphthalene \$1300 F1 1700 2090 F1 ug/Kg \$65 65 - 110 28 30 Nitrobenzene \$450 1700 1150 ug/Kg \$65 65 - 110 11 30 Naphthalene \$450 1700 1150 ug/Kg \$65 65 - 110 11 30 Naphthalene \$450 1700 1150 ug/Kg \$65 65 - 110 11 30 Naphthalene \$450 1700 1150 ug/Kg \$65 65 - 110 11 11 30 Naphthalene \$450 1700 1150 ug/Kg \$65 65 - 110 11 11 11 11 11 11 1	Bis(2-chloroethoxy)methane	<210		1700	1160		ug/Kg	-	68	60 - 112	5	30
Butyl benzyl phthalate <400 1700 1420 ug/kg 84 71 - 129 29 30 Carbazole <520 F2 1700 1170 F2 ug/kg 69 65 - 142 35 30 Chrysene 880 F1 1700 1700 F1 ug/kg 69 65 - 142 35 30 Dibenzofuran 880 F1 1700 713 F1 ug/kg 60 66 - 115 29 30 Dibenzofuran 480 JF1 1700 1510 F1 ug/kg 60 66 - 115 29 30 Diethyl phthalate <360 1700 1220 ug/kg 72 58 - 120 23 30 Di-n-butyl phthalate <270 1700 1210 F2 ug/kg 71 65 - 120 31 30 Di-n-butyl phthalate <340 1700 1220 ug/kg 72 68 - 134 18 30 Fluorenthene	Bis(2-chloroethyl)ether	<310		1700	1120		ug/Kg	₩	66	55 - 111	29	30
Carbazole <520 F2 1700 1170 F2 ug/kg 69 65-142 35 30 Chrysene 880 F1 1700 1700 F1 ug/kg 48 63-120 30 30 Dibenzofuran 90 J F1 1700 713 F1 ug/kg 37 64-131 27 30 Dibenzofuran 480 J F1 1700 1510 F1 ug/kg 60 66-115 29 30 Diethyl phthalate 360 1700 1220 ug/kg 72 58-120 23 30 Di-n-butyl phthalate 4270 1700 1210 F2 ug/kg 71 69-116 24 30 Di-n-butyl phthalate 320 F2 1700 1210 F2 ug/kg 71 65-120 31 30 Di-n-butyl phthalate 340 1700 1230 ug/kg 72 68-134 18 30 Pluy n-cy	Bis(2-ethylhexyl) phthalate	<380		1700	1450		ug/Kg	₩	85	72 - 131	26	30
Chrysene 880 F1 1700 1700 F1 ug/Kg 48 63 - 120 30 30 Dibenz(a,h)anthracene 90 J F1 1700 713 F1 ug/Kg 37 64 - 131 27 30 Dibenzofuran 480 J F1 1700 1510 F1 ug/Kg 37 64 - 131 27 30 Dibenzofuran 480 J F1 1700 1510 F1 ug/Kg 37 64 - 131 27 30 Dibenzofuran 480 J F1 1700 1210 ug/Kg 372 58 - 120 23 30 Dibenzofuran 480 J F1 1700 1210 ug/Kg 371 69 - 116 24 30 Dibenzofuran 480 F2 1700 1210 ug/Kg 71 65 - 120 23 30 Dibenzofuran 430 1700 1220 ug/Kg 72 68 - 134 18 30 Dibe	Butyl benzyl phthalate	<400		1700	1420		ug/Kg	₩	84	71 - 129	29	30
Dibenz(a,h)anthracene 90 JF1 1700 713 F1 ug/Kg 37 64.131 27 30 Dibenzofuran 480 JF1 1700 1510 F1 ug/Kg 60 66.115 29 30 Diethyl phthalate 480 JF1 1700 1220 ug/Kg 72 58.120 23 30 Dimethyl phthalate 480 JF1 1700 1210 ug/Kg 71 69.116 24 30 Dimethyl phthalate 430 JF1 1700 1210 E2 ug/Kg 71 65.120 31 30 Di-n-butyl phthalate 430 JF1 1700 1210 Ug/Kg 71 65.120 31 30 Di-n-octyl phthalate 430 JF1 1700 1230 Ug/Kg 72 68.134 18 30 Fluoranthene 1100 JF1 1700 1230 Ug/Kg 72 68.134 18 30 Fluorene 429 JF1 1700 1200 Ug/Kg 71 62.120 27 30 Hexachlorobutadiene 430 JF1 1700 1170 Ug/Kg 72 56.120 4 30 Hexachlorocyclopentadiene 4100 F1 1700 1220 Ug/Kg 72 56.120 4 30 Hexachloroc	Carbazole	<520	F2	1700	1170	F2	ug/Kg	₩	69	65 - 142	35	30
Dibenzofuran 480 J F1 1700 1510 F1 ug/Kg 60 66-115 29 30 Diethyl phthalate 360 1700 1220 ug/Kg 72 58-120 23 30 Dimethyl phthalate 270 1700 1210 ug/Kg 71 69-116 24 30 Di-n-butyl phthalate 320 F2 1700 1210 F2 ug/Kg 71 65-120 31 30 Di-n-butyl phthalate 330 1700 1230 ug/Kg 72 68-134 18 30 Di-n-octyl phthalate 340 1700 1230 ug/Kg 72 68-134 18 30 Fluoranthene 1100 1700 2230 ug/Kg 65 62-120 27 30 Fluorene 429 1700 1100 ug/Kg 71 62-120 26 30 Hexachlorobutadiene 430 1700 1120 1100 1100	Chrysene	880	F1	1700	1700	F1	ug/Kg	₩	48	63 - 120	30	30
Diethyl phthalate <360 1700 1220 ug/kg % 72 58 - 120 23 30 Dimethyl phthalate <270	Dibenz(a,h)anthracene	90	JF1	1700	713	F1	ug/Kg	₩	37	64 - 131	27	30
Dimethyl phthalate <270 1700 1210 ug/kg % 71 69 - 116 24 30 Di-n-butyl phthalate <320	Dibenzofuran	480	JF1	1700	1510	F1	ug/Kg	☼	60	66 - 115	29	30
Di-n-butyl phthalate <320 F2 1700 1210 F2 ug/Kg \$\pi\$ 71 65-120 31 30 Di-n-octyl phthalate <340	Diethyl phthalate	<360		1700	1220		ug/Kg	☼	72	58 - 120	23	30
Di-n-octyl phthalate ≤340 1700 1230 ug/Kg ☆ 72 68 - 134 18 30 Fluoranthene 1100 1700 2230 ug/Kg ☆ 65 62 - 120 27 30 Fluorene <29	Dimethyl phthalate	<270		1700	1210		ug/Kg	₩	71	69 - 116	24	30
Fluoranthene 1100 1700 2230 ug/Kg \$ 65 62 - 120 27 30 Fluorene <29	Di-n-butyl phthalate	<320	F2	1700	1210	F2	ug/Kg	☼	71	65 - 120	31	30
Fluorene <29 1700 1200 ug/Kg \$\pi\$ 71 62 - 120 26 30 Hexachlorobenzene <49	Di-n-octyl phthalate	<340		1700	1230		ug/Kg	₩	72	68 - 134	18	30
Hexachlorobenzene <49 1700 1170 ug/Kg □ 69 63 - 124 28 30 Hexachlorobutadiene <330	Fluoranthene	1100		1700	2230		ug/Kg	₽	65	62 - 120	27	30
Hexachlorobutadiene <330 1700 1220 ug/Kg ☆ 72 56 - 120 4 30 Hexachlorocyclopentadiene <1200	Fluorene	<29		1700	1200		ug/Kg	₩	71	62 - 120	26	30
Hexachlorocyclopentadiene <1200 F1 1700 <1200 F1 ug/Kg □ 0 10 - 133 NC 30 Hexachloroethane <320	Hexachlorobenzene	<49		1700	1170		ug/Kg	☼	69	63 - 124	28	30
Hexachloroethane <320 F1 1700 897 J F1 ug/Kg ⇒ 53 60 - 114 12 30 Indeno[1,2,3-cd]pyrene 350 F2 F1 1700 858 F2 F1 ug/Kg ⇒ 30 68 - 130 34 30 Isophorone <240	Hexachlorobutadiene	<330		1700	1220		ug/Kg	₽	72	56 - 120	4	30
Indeno[1,2,3-cd]pyrene 350 F2 F1 1700 858 F2 F1 ug/Kg ☆ 30 68 - 130 34 30 Isophorone <240	Hexachlorocyclopentadiene	<1200	F1	1700	<1200	F1	ug/Kg	☼	0	10 - 133	NC	30
Isophorone <240 1700 1150 ug/Kg \$\preceq\$ 68 55 - 110 10 30 Naphthalene 1300 F1 1700 2090 F1 ug/Kg \$\preceq\$ 49 63 - 110 28 30 Nitrobenzene <52 1700 1120 ug/Kg \$\preceq\$ 66 60 - 116 11 30	Hexachloroethane	<320	F1	1700	897	J F1	ug/Kg	☼	53	60 - 114	12	30
Naphthalene 1300 F1 1700 2090 F1 ug/Kg	Indeno[1,2,3-cd]pyrene	350	F2 F1	1700	858	F2 F1	ug/Kg	₽	30	68 - 130	34	30
Nitrobenzene <52 1700 1120 ug/Kg ⇔ 66 60 - 116 11 30	Isophorone	<240		1700	1150		ug/Kg	☼	68	55 - 110	10	30
	Naphthalene	1300	F1	1700	2090	F1	ug/Kg	☼	49	63 - 110	28	30
	Nitrobenzene	<52		1700	1120		ug/Kg	₩	66	60 - 116	11	30
N-Nitrosodi-n-propylamine <260 1700 1170 ug/Kg \$\preceq\$ 69 56 - 118 5 30	N-Nitrosodi-n-propylamine	<260		1700	1170		ug/Kg	₩	69	56 - 118	5	30
N-Nitrosodiphenylamine <250 1700 1170 ug/Kg $\stackrel{\Leftrightarrow}{}$ 69 65 - 112 27 30	N-Nitrosodiphenylamine	<250		1700	1170		ug/Kg	₩	69	65 - 112	27	30
Pentachlorophenol <3400 F1 3400 <3400 ug/Kg NC 13 - 112 NC 30	Pentachlorophenol	<3400	F1	3400	<3400		ug/Kg	₩	NC	13 - 112	NC	30
Phenanthrene 1300 F1 1700 2230 F1 ug/Kg \$\pi\$ 56 62 - 120 29 30	Phenanthrene	1300	F1	1700	2230	F1	ug/Kg	₩	56	62 - 120	29	30
Phenol <470 1700 1470 ug/Kg \$\pi\$ 86 56 - 122 24 30	Phenol	<470		1700	1470		ug/Kg	☼	86	56 - 122	24	30
Pyrene 1200 1700 2440 ug/Kg \$\pi\$ 73 61-128 28 30	Pyrene	1200		1700	2440		ug/Kg	₽	73	61 - 128	28	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	74		31 - 143
2-Fluorobiphenyl (Surr)	70		43 - 145
2-Fluorophenol (Surr)	162		31 - 166
Nitrobenzene-d5 (Surr)	60		37 - 147
Phenol-d5 (Surr)	86		30 - 153
Terphenyl-d14 (Surr)	80		42 - 157

Lab Sample ID: MB 500-650567/1-A

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 650567

	MB	MB								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
1,2,4-Trichlorobenzene	<36		170	36	ug/Kg		04/07/22 05:35	04/08/22 09:44	1	
1,2-Dichlorobenzene	<40		170	40	ug/Kg		04/07/22 05:35	04/08/22 09:44	1	
1,3-Dichlorobenzene	<37		170	37	ug/Kg		04/07/22 05:35	04/08/22 09:44	1	
1,4-Dichlorobenzene	<43		170	43	ug/Kg		04/07/22 05:35	04/08/22 09:44	1	
1-Methylnaphthalene	<8.1		67	8.1	ug/Kg		04/07/22 05:35	04/08/22 09:44	1	
2,2'-oxybis[1-chloropropane]	<39		170	39	ug/Kg		04/07/22 05:35	04/08/22 09:44	1	

Eurofins Chicago

<u>ی</u>

5

7

0

10

12

13

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-650567/1-A

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 650567

Job ID: 500-214283-1

, , , , , , , , , , , , , , , , , , , ,	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4,5-Trichlorophenol	<76		330	76	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2,4,6-Trichlorophenol	<110		330	110	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2,4-Dichlorophenol	<79		330	79	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2,4-Dimethylphenol	<130		330	130	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2,4-Dinitrophenol	<590		670	590	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2,4-Dinitrotoluene	<53		170	53	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2,6-Dinitrotoluene	<65		170	65	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2-Chloronaphthalene	<37		170	37	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2-Chlorophenol	<57		170	57	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2-Methylnaphthalene	<6.1		67	6.1	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2-Methylphenol	<53		170	53	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2-Nitroaniline	<45		170	45	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
2-Nitrophenol	<79		330	79	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
3 & 4 Methylphenol	<55		170	55	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
3,3'-Dichlorobenzidine	<47		170	47			04/07/22 05:35	04/08/22 09:44	1
3-Nitroaniline	<100		330	100	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
4,6-Dinitro-2-methylphenol	<270		670	270	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
4-Bromophenyl phenyl ether	<44		170		ug/Kg		04/07/22 05:35	04/08/22 09:44	1
4-Chloro-3-methylphenol	<110		330	110					1
4-Chloroaniline	<160		670	160	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
4-Chlorophenyl phenyl ether	<39		170	39	ug/Kg		04/07/22 05:35		1
4-Nitroaniline	<140		330	140	ug/Kg		04/07/22 05:35		1
4-Nitrophenol	<320		670	320	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Acenaphthene	<6.0		33	6.0	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Acenaphthylene	<4.4		33	4.4			04/07/22 05:35	04/08/22 09:44	· · · · · · · · · · · · · · · · · · ·
Anthracene	<5.6		33	5.6	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Benzo[a]anthracene	<4.5		33	4.5	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Benzo[a]pyrene	<6.4		33	6.4	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Benzo[b]fluoranthene	<7.2		33		ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Benzo[g,h,i]perylene	<11		33	11	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Benzo[k]fluoranthene	<9.8		33		ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Benzoic acid	<330		1700	330	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Benzyl alcohol	<330		670		ug/Kg			04/08/22 09:44	1
Bis(2-chloroethoxy)methane	<34		170		ug/Kg			04/08/22 09:44	
Bis(2-chloroethyl)ether	<50		170	50	ug/Kg ug/Kg				1
Bis(2-ethylhexyl) phthalate	<61		170		ug/Kg			04/08/22 09:44	1
Butyl benzyl phthalate	<63		170		ug/Kg		04/07/22 05:35		
Carbazole	<83		170		ug/Kg ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Chrysene	<9.1		33	9.1	ug/Kg ug/Kg			04/08/22 09:44	1
	<6.4							04/08/22 09:44	
Dibenz(a,h)anthracene Dibenzofuran	<39		33 170	39	ug/Kg ug/Kg			04/08/22 09:44	1
	<56		170		ug/Kg ug/Kg			04/08/22 09:44	1
Diethyl phthalate Dimethyl phthalate	<43				ug/Kg ug/Kg			04/08/22 09:44	1
• •			170 170						1
Di-n-butyl phthalate	<51		170		ug/Kg			04/08/22 09:44	1
Di-n-octyl phthalate	<54		170		ug/Kg			04/08/22 09:44	1
Fluoranthene	<6.2		33		ug/Kg			04/08/22 09:44	1
Fluorene	<4.7		33		ug/Kg			04/08/22 09:44	1
Hexachlorobenzene	<7.7		67		ug/Kg			04/08/22 09:44	
Hexachlorobutadiene	<52		170	52	ug/Kg		04/07/22 05:35	04/08/22 09:44	1

Eurofins Chicago

2

Л

6

8

10

12

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-650567/1-A

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650567

	MB	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexachlorocyclopentadiene	<190		670	190	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Hexachloroethane	<51		170	51	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Indeno[1,2,3-cd]pyrene	<8.6		33	8.6	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Isophorone	<37		170	37	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Naphthalene	<5.1		33	5.1	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Nitrobenzene	<8.3		33	8.3	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
N-Nitrosodi-n-propylamine	<41		67	41	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
N-Nitrosodiphenylamine	<39		170	39	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Pentachlorophenol	<530		670	530	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Phenanthrene	<4.6		33	4.6	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Phenol	<74		170	74	ug/Kg		04/07/22 05:35	04/08/22 09:44	1
Pyrene	<6.6		33	6.6	ug/Kg		04/07/22 05:35	04/08/22 09:44	1

MB MB

Surrogate	%Recovery Qua	alifier Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	79	31 - 143	04/07/22 05:35	04/08/22 09:44	1
2-Fluorobiphenyl (Surr)	81	43 - 145	04/07/22 05:35	04/08/22 09:44	1
2-Fluorophenol (Surr)	110	31 - 166	04/07/22 05:35	04/08/22 09:44	1
Nitrobenzene-d5 (Surr)	69	37 - 147	04/07/22 05:35	04/08/22 09:44	1
Phenol-d5 (Surr)	105	30 - 153	04/07/22 05:35	04/08/22 09:44	1
Terphenyl-d14 (Surr)	98	42 - 157	04/07/22 05:35	04/08/22 09:44	1

Lab Sample ID: LCS 500-650567/2-A

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 650567

Analysis Batch: 650792							Prep Batch: 650567
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	1330	1380		ug/Kg		103	66 - 117
1,2-Dichlorobenzene	1330	1200		ug/Kg		90	62 - 110
1,3-Dichlorobenzene	1330	1120		ug/Kg		84	65 - 124
1,4-Dichlorobenzene	1330	1140		ug/Kg		86	61 - 110
1-Methylnaphthalene	1330	1130		ug/Kg		85	68 - 111
2,2'-oxybis[1-chloropropane]	1330	1040		ug/Kg		78	40 - 124
2,4,5-Trichlorophenol	1330	1280		ug/Kg		96	50 - 120
2,4,6-Trichlorophenol	1330	1240		ug/Kg		93	57 - 120
2,4-Dichlorophenol	1330	1450		ug/Kg		108	58 - 120
2,4-Dimethylphenol	1330	1200		ug/Kg		90	60 - 110
2,4-Dinitrophenol	2670	<590		ug/Kg		13	10 - 100
2,4-Dinitrotoluene	1330	1360		ug/Kg		102	69 - 124
2,6-Dinitrotoluene	1330	1310		ug/Kg		98	70 - 123
2-Chloronaphthalene	1330	1190		ug/Kg		89	69 - 114
2-Chlorophenol	1330	1390		ug/Kg		104	64 - 110
2-Methylnaphthalene	1330	1130		ug/Kg		85	69 - 112
2-Methylphenol	1330	1310		ug/Kg		99	60 - 120
2-Nitroaniline	1330	1260		ug/Kg		95	57 - 124
2-Nitrophenol	1330	1400		ug/Kg		105	60 - 120
3 & 4 Methylphenol	1330	1130		ug/Kg		85	57 - 120
3,3'-Dichlorobenzidine	1330	962		ug/Kg		72	35 - 128
3-Nitroaniline	1330	1010		ug/Kg		75	40 - 122

Eurofins Chicago

Page 284 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample	ID: LCS	500-650567/2-A
------------	---------	----------------

Matrix: Solid

Analysis Batch: 650792

2,4,6-Tribromophenol (Surr)

103

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 650567

Analysis Batch: 650792		Spike		LCS		_	0/ 5	Prep Batch: 65056 %Rec
Analyte		Added		Qualifier	Unit	D	%Rec	Limits
4,6-Dinitro-2-methylphenol		2670	726		ug/Kg		27	10 - 110
4-Bromophenyl phenyl ether		1330	1290		ug/Kg		96	68 - 118
4-Chloro-3-methylphenol		1330	1230		ug/Kg		92	65 - 122
4-Chloroaniline		1330	1060		ug/Kg		79	30 - 150
4-Chlorophenyl phenyl ether		1330	1290		ug/Kg		97	62 - 119
4-Nitroaniline		1330	1170		ug/Kg		88	60 - 160
4-Nitrophenol		2670	2460		ug/Kg		92	30 - 122
Acenaphthene		1330	1220		ug/Kg		92	65 - 124
Acenaphthylene		1330	1170		ug/Kg		88	68 - 120
Anthracene		1330	1250		ug/Kg		93	70 - 114
Benzo[a]anthracene		1330	1140		ug/Kg		85	67 - 122
Benzo[a]pyrene		1330	1240		ug/Kg		93	65 - 133
Benzo[b]fluoranthene		1330	1220		ug/Kg		92	69 - 129
Benzo[g,h,i]perylene		1330	1200		ug/Kg		90	72 - 131
Benzo[k]fluoranthene		1330	1230		ug/Kg		92	68 - 127
Benzoic acid		2670	853	J	ug/Kg		32	10 - 100
Benzyl alcohol		1330	898		ug/Kg		67	21 - 139
Bis(2-chloroethoxy)methane		1330	1150		ug/Kg		87	60 - 112
Bis(2-chloroethyl)ether		1330	1010		ug/Kg		75	55 - 111
Bis(2-ethylhexyl) phthalate		1330	1260		ug/Kg		94	72 - 131
Butyl benzyl phthalate		1330	1190		ug/Kg		89	71 - 129
Carbazole		1330	1250		ug/Kg		93	65 - 142
Chrysene		1330	1080		ug/Kg		81	63 - 120
Dibenz(a,h)anthracene		1330	1250		ug/Kg		94	64 - 131
Dibenzofuran		1330	1210		ug/Kg		91	66 - 115
Diethyl phthalate		1330	1270		ug/Kg		95	58 - 120
Dimethyl phthalate		1330	1220		ug/Kg		91	69 - 116
Di-n-butyl phthalate		1330	1300		ug/Kg		98	65 - 120
Di-n-octyl phthalate		1330	1360		ug/Kg		102	68 - 134
Fluoranthene		1330	1310		ug/Kg		98	62 - 120
Fluorene		1330	1240		ug/Kg		93	62 - 120
Hexachlorobenzene		1330	1320		ug/Kg		99	63 - 124
Hexachlorobutadiene		1330	1310		ug/Kg		98	56 - 120
Hexachlorocyclopentadiene		1330	355	J	ug/Kg		27	10 - 133
Hexachloroethane		1330	1120		ug/Kg		84	60 - 114
Indeno[1,2,3-cd]pyrene		1330	1260		ug/Kg		95	68 - 130
Isophorone		1330	1100		ug/Kg		82	55 - 110
Naphthalene		1330	1150		ug/Kg		86	63 - 110
Nitrobenzene		1330	1160		ug/Kg		87	60 - 116
N-Nitrosodi-n-propylamine		1330	986		ug/Kg		74	56 - 118
N-Nitrosodiphenylamine		1330	1170		ug/Kg		88	65 - 112
Pentachlorophenol		2670	1010		ug/Kg		38	13 - 112
Phenanthrene		1330	1210		ug/Kg		91	62 - 120
Phenol		1330	1270		ug/Kg		95	56 - 122
Pyrene		1330	1120		ug/Kg		84	61 - 128
, ·-	LCS LCS	. 000	0		פי פי		٠.	- · · ·
Surrogate	%Recovery Qualifier	Limits						
· · · · · · · · · · · · · · · ·								

Eurofins Chicago

31 - 143

2

6

8

10

. .

13

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-650567/2-A

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650567

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	94		43 - 145
2-Fluorophenol (Surr)	106		31 - 166
Nitrobenzene-d5 (Surr)	82		37 - 147
Phenol-d5 (Surr)	97		30 - 153
Terphenyl-d14 (Surr)	89		42 - 157

Client Sample ID: SB-217 3-5

103

107

₩

69 - 129

ug/Kg

ug/Kg

61 - 128

Prep Type: Total/NA

Pren Batch: 650567

Lab Sample ID: 500-214283-26 MS **Matrix: Solid**

Analysis Batch: 650798

Analysis Batch: 650798	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	<9.4		1540	1250		ug/Kg	— <u>—</u>	82	68 - 111
2-Methylnaphthalene	<7.1		1540	1270		ug/Kg	₩	83	69 - 112
Acenaphthene	<6.9		1540	1270		ug/Kg	₩	83	65 - 124
Acenaphthylene	<5.1		1540	1350		ug/Kg	₩	88	68 - 120
Anthracene	<6.4		1540	1500		ug/Kg	₽	98	70 - 114
Benzo[a]anthracene	<5.2		1540	1420		ug/Kg	₩	92	67 - 122
Benzo[a]pyrene	<7.4		1540	1600		ug/Kg	₩	104	65 - 133
Benzo[b]fluoranthene	<8.3		1540	1620		ug/Kg	₩	105	69 - 129
Benzo[g,h,i]perylene	<12	F1	1540	902	F1	ug/Kg	₩	59	72 - 131
Benzo[k]fluoranthene	<11		1540	1890		ug/Kg	₩	123	68 - 127
Chrysene	<10		1540	1460		ug/Kg	₩	95	63 - 120
Dibenz(a,h)anthracene	<7.4		1540	1160		ug/Kg	₩	76	64 - 131
Fluoranthene	<7.1		1540	1440		ug/Kg	₩	94	62 - 120
Fluorene	<5.4		1540	1330		ug/Kg	₩	86	62 - 120
Indeno[1,2,3-cd]pyrene	<9.9		1540	1110		ug/Kg	₩	72	68 - 130
Naphthalene	<5.9		1540	1180		ug/Kg	₩	77	63 - 110
Phenanthrene	<5.4		1540	1370		ug/Kg	₩	89	62 - 120

1540

MS MS

<7.6

<8.3

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	78		43 - 145
Nitrobenzene-d5 (Surr)	68		37 - 147
Terphenyl-d14 (Surr)	97		42 - 157

Lab Sample ID: 500-214283-26 MSD Client Sample ID: SB-217 3-5 **Matrix: Solid** Prep Type: Total/NA

1580

Analysis Batch: 650798

Benzo[b]fluoranthene

Pyrene

MSD MSD %Rec RPD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 1-Methylnaphthalene <9.4 1540 1230 ₩ 80 68 - 111 2 30 ug/Kg 2-Methylnaphthalene <7.1 1540 1250 81 2 30 ug/Kg ₩ 69 - 112 Acenaphthene <6.9 1540 1250 30 ug/Kg Ö 81 65 - 124Acenaphthylene <5.1 1540 1310 85 68 - 120 30 ug/Kg ₩ Anthracene <6.4 1540 1490 96 70 - 114 30 ug/Kg Benzo[a]anthracene <5.2 1540 1450 ug/Kg ₩ 94 67 - 122 2 30 Benzo[a]pyrene <7.4 1540 1640 ug/Kg 106 65 - 133 30

1650

Eurofins Chicago

Prep Batch: 650567

Page 286 of 356

1540

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-26 MSD

Matrix: Solid

Analysis Batch: 650798

Client Sample ID: SB-217 3-5

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650567

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzo[g,h,i]perylene	<12	F1	1540	902	F1	ug/Kg	<u></u>	58	72 - 131	0	30
Benzo[k]fluoranthene	<11		1540	1900		ug/Kg	₩	123	68 - 127	0	30
Chrysene	<10		1540	1470		ug/Kg	₩	95	63 - 120	1	30
Dibenz(a,h)anthracene	<7.4		1540	1170		ug/Kg	₩	76	64 - 131	0	30
Fluoranthene	<7.1		1540	1460		ug/Kg	₩	95	62 - 120	2	30
Fluorene	<5.4		1540	1270		ug/Kg	₩	82	62 - 120	4	30
Indeno[1,2,3-cd]pyrene	<9.9		1540	1120		ug/Kg	₩	72	68 - 130	1	30
Naphthalene	<5.9		1540	1170		ug/Kg	₩	76	63 - 110	1	30
Phenanthrene	<5.4		1540	1390		ug/Kg	₩	90	62 - 120	2	30
Pyrene	<7.6		1540	1620		ug/Kg	₩	105	61 - 128	3	30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
2-Fluorobiphenyl (Surr)	81		43 - 145
Nitrobenzene-d5 (Surr)	74		37 - 147
Terphenvl-d14 (Surr)	103		42 - 157

Lab Sample ID: MB 500-650648/1-A

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 650648

MB MB

	MR	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,2,4-Trichlorobenzene	<36		170	36	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
1,2-Dichlorobenzene	<40		170	40	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
1,3-Dichlorobenzene	<37		170	37	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
1,4-Dichlorobenzene	<43		170	43	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
1-Methylnaphthalene	<8.1		67	8.1	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2,2'-oxybis[1-chloropropane]	<39		170	39	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2,4,5-Trichlorophenol	<76		330	76	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2,4,6-Trichlorophenol	<110		330	110	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2,4-Dichlorophenol	<79		330	79	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2,4-Dimethylphenol	<130		330	130	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2,4-Dinitrophenol	<590		670	590	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2,4-Dinitrotoluene	<53		170	53	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2,6-Dinitrotoluene	<65		170	65	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2-Chloronaphthalene	<37		170	37	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2-Chlorophenol	<57		170	57	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2-Methylnaphthalene	<6.1		67	6.1	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2-Methylphenol	<53		170	53	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2-Nitroaniline	<45		170	45	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
2-Nitrophenol	<79		330	79	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
3 & 4 Methylphenol	<55		170	55	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
3,3'-Dichlorobenzidine	<47		170	47	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
3-Nitroaniline	<100		330	100	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
4,6-Dinitro-2-methylphenol	<270		670	270	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
4-Bromophenyl phenyl ether	<44		170	44	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
4-Chloro-3-methylphenol	<110		330	110	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
4-Chloroaniline	<160		670	160	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
4-Chlorophenyl phenyl ether	<39		170	39	ug/Kg		04/07/22 08:57	04/08/22 08:57	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 500-650648/1-A

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650648

	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4-Nitroaniline	<140		330	140	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
4-Nitrophenol	<320		670	320	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Acenaphthene	<6.0		33	6.0	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Acenaphthylene	<4.4		33	4.4	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Anthracene	<5.6		33	5.6	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Benzo[a]anthracene	<4.5		33	4.5	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Benzo[a]pyrene	<6.4		33	6.4	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Benzo[b]fluoranthene	<7.2		33	7.2	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Benzo[g,h,i]perylene	<11		33	11	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Benzo[k]fluoranthene	<9.8		33	9.8	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Benzoic acid	<330		1700	330	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Benzyl alcohol	<330		670	330	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Bis(2-chloroethoxy)methane	<34		170	34	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Bis(2-chloroethyl)ether	<50		170	50	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Bis(2-ethylhexyl) phthalate	<61		170	61	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Butyl benzyl phthalate	<63		170	63	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Carbazole	<83		170	83	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Chrysene	<9.1		33	9.1	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Dibenz(a,h)anthracene	<6.4		33	6.4	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Dibenzofuran	<39		170	39	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Diethyl phthalate	<56		170	56	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Dimethyl phthalate	<43		170	43	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Di-n-butyl phthalate	<51		170	51	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Di-n-octyl phthalate	<54		170	54	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Fluoranthene	<6.2		33	6.2	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Fluorene	<4.7		33	4.7	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Hexachlorobenzene	<7.7		67	7.7	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Hexachlorobutadiene	<52		170	52	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Hexachlorocyclopentadiene	<190		670	190	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Hexachloroethane	<51		170	51	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Indeno[1,2,3-cd]pyrene	<8.6		33	8.6	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Isophorone	<37		170	37	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Naphthalene	<5.1		33	5.1	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Nitrobenzene	<8.3		33	8.3	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
N-Nitrosodi-n-propylamine	<41		67	41	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
N-Nitrosodiphenylamine	<39		170	39	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Pentachlorophenol	<530		670	530	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Phenanthrene	<4.6		33	4.6	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Phenol	<74		170	74	ug/Kg		04/07/22 08:57	04/08/22 08:57	1
Pyrene	<6.6		33	6.6	ug/Kg		04/07/22 08:57	04/08/22 08:57	1

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
2,4,6-Tribromophenol (Surr)	94		31 - 143	04/07/22 08:57	04/08/22 08:57	1
2-Fluorobiphenyl (Surr)	86		43 - 145	04/07/22 08:57	04/08/22 08:57	1
2-Fluorophenol (Surr)	111		31 - 166	04/07/22 08:57	04/08/22 08:57	1
Nitrobenzene-d5 (Surr)	67		37 - 147	04/07/22 08:57	04/08/22 08:57	1
Phenol-d5 (Surr)	104		30 - 153	04/07/22 08:57	04/08/22 08:57	1
Terphenyl-d14 (Surr)	97		42 - 157	04/07/22 08:57	04/08/22 08:57	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-650648/2-A

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prep Batch: 650648

Analysis Batch: 650792	0	1.00				Prep Batch: 65064
Analyte	Spike Added		LCS Qualifier	Unit	D %Rec	%Rec Limits
1,2,4-Trichlorobenzene	_ Added	1320	Qualifier	ug/Kg	$\frac{D}{99}$	66 - 117
1,2-Dichlorobenzene	1330	1160		ug/Kg ug/Kg	87	62 - 110
1,3-Dichlorobenzene	1330	1130		ug/Kg ug/Kg	85	65 - 124
1,4-Dichlorobenzene	1330	1150		ug/Kg ug/Kg	86	61 - 110
•	1330	1120				68 - 111
1-Methylnaphthalene				ug/Kg	84	
2,2'-oxybis[1-chloropropane]	1330	1030		ug/Kg	77	40 - 124 50 - 120
2,4,5-Trichlorophenol	1330	1380		ug/Kg	103	
2,4,6-Trichlorophenol	1330	1350		ug/Kg	102	57 - 120
2,4-Dichlorophenol	1330	1450		ug/Kg	109	58 - 120
2,4-Dimethylphenol	1330	1240		ug/Kg	93	60 - 110
2,4-Dinitrophenol	2670	1020		ug/Kg	38	10 - 100
2,4-Dinitrotoluene	1330	1450		ug/Kg	109	69 - 124
2,6-Dinitrotoluene	1330	1400		ug/Kg	105	70 - 123
2-Chloronaphthalene	1330	1260		ug/Kg	94	69 - 114
2-Chlorophenol	1330	1380		ug/Kg	103	64 - 110
2-Methylnaphthalene	1330	1120		ug/Kg	84	69 - 112
2-Methylphenol	1330	1320		ug/Kg	99	60 - 120
2-Nitroaniline	1330	1350		ug/Kg	101	57 - 124
2-Nitrophenol	1330	1410		ug/Kg	106	60 - 120
3 & 4 Methylphenol	1330	1210		ug/Kg	91	57 - 120
3,3'-Dichlorobenzidine	1330	1130		ug/Kg	85	35 - 128
3-Nitroaniline	1330	1030		ug/Kg	77	40 - 122
4,6-Dinitro-2-methylphenol	2670	1360		ug/Kg	51	10 - 110
4-Bromophenyl phenyl ether	1330	1360		ug/Kg	102	68 - 118
4-Chloro-3-methylphenol	1330	1240		ug/Kg	93	65 - 122
4-Chloroaniline	1330	1090		ug/Kg	81	30 - 150
4-Chlorophenyl phenyl ether	1330	1400		ug/Kg	105	62 - 119
4-Nitroaniline	1330	1310		ug/Kg	98	60 - 160
4-Nitrophenol	2670	2760		ug/Kg	104	30 - 122
Acenaphthene	1330	1290		ug/Kg	97	65 - 124
Acenaphthylene	1330	1260		ug/Kg	94	68 - 120
Anthracene	1330	1310		ug/Kg	98	70 - 114
Benzo[a]anthracene	1330	1250		ug/Kg	94	67 - 122
Benzo[a]pyrene	1330	1320		ug/Kg	99	65 - 133
Benzo[b]fluoranthene	1330	1280		ug/Kg	96	69 - 129
Benzo[g,h,i]perylene	1330	1280		ug/Kg	96	72 - 131
Benzo[k]fluoranthene	1330	1260		ug/Kg	94	68 - 127
Benzoic acid	2670	2290		ug/Kg	86	10 - 100
Benzyl alcohol	1330	979		ug/Kg	73	21 - 139
Bis(2-chloroethoxy)methane	1330	1150		ug/Kg	87	60 - 112
Bis(2-chloroethyl)ether	1330	1060		ug/Kg ug/Kg	79	55 ₋ 111
	1330	1460			109	72 - 131
Bis(2-ethylhexyl) phthalate				ug/Kg		72 - 131
Butyl benzyl phthalate	1330	1290		ug/Kg	96	
Carbazole	1330	1310		ug/Kg	98	65 - 142
Chrysene	1330	1260		ug/Kg	94	63 - 120
Dibenz(a,h)anthracene	1330	1410		ug/Kg	105	64 - 131
Dibenzofuran	1330	1300		ug/Kg	98	66 - 115
Diethyl phthalate	1330	1370		ug/Kg	102	58 - 120

Eurofins Chicago

4/15/2022

4

6

8

10

12

13

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-650648/2-A

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650648 %Rec

Analysis Batom 550752	Spike	LCS	LCS				%Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
Dimethyl phthalate	1330	1320		ug/Kg		99	69 - 116
Di-n-butyl phthalate	1330	1350		ug/Kg		101	65 - 120
Di-n-octyl phthalate	1330	1410		ug/Kg		106	68 - 134
Fluoranthene	1330	1380		ug/Kg		103	62 - 120
Fluorene	1330	1330		ug/Kg		100	62 - 120
Hexachlorobenzene	1330	1390		ug/Kg		104	63 - 124
Hexachlorobutadiene	1330	1340		ug/Kg		101	56 - 120
Hexachlorocyclopentadiene	1330	422	J	ug/Kg		32	10 - 133
Hexachloroethane	1330	1080		ug/Kg		81	60 - 114
Indeno[1,2,3-cd]pyrene	1330	1420		ug/Kg		106	68 - 130
Isophorone	1330	1080		ug/Kg		81	55 - 110
Naphthalene	1330	1190		ug/Kg		89	63 - 110
Nitrobenzene	1330	1110		ug/Kg		84	60 - 116
N-Nitrosodi-n-propylamine	1330	1050		ug/Kg		79	56 - 118
N-Nitrosodiphenylamine	1330	1230		ug/Kg		92	65 - 112
Pentachlorophenol	2670	1410		ug/Kg		53	13 - 112
Phenanthrene	1330	1280		ug/Kg		96	62 - 120
Phenol	1330	1370		ug/Kg		103	56 - 122
Pyrene	1330	1330		ug/Kg		100	61 - 128

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	116	-	31 - 143
2-Fluorobiphenyl (Surr)	100		43 - 145
2-Fluorophenol (Surr)	111		31 - 166
Nitrobenzene-d5 (Surr)	79		37 - 147
Phenol-d5 (Surr)	104		30 - 153
Terphenyl-d14 (Surr)	106		42 - 157

Lab Sample ID: 500-214283-36 MS

Matrix: Solid

Analysis Batch: 650792

Client	Sample	ID:	SB-221	0-2

Prep Type: Total/NA Prep Batch: 650648

Alialysis Dalcii. 000/32									Fieb Datcii. 000040
	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,2,4-Trichlorobenzene	<220	F1	1610	1140		ug/Kg	<u></u>	71	66 - 117
1,2-Dichlorobenzene	<250	F1	1610	965	J F1	ug/Kg	☼	60	62 - 110
1,3-Dichlorobenzene	<230	F2 F1	1610	860	J F1	ug/Kg	≎	53	60 - 110
1,4-Dichlorobenzene	<270	F1	1610	902	J F1	ug/Kg	≎	56	61 - 110
1-Methylnaphthalene	510	F2 F1	1610	3490	F1	ug/Kg	≎	185	68 - 111
2,2'-oxybis[1-chloropropane]	<240		1610	991	J	ug/Kg	≎	62	40 - 124
2,4,5-Trichlorophenol	<470		1610	1420	J	ug/Kg	≎	88	50 - 120
2,4,6-Trichlorophenol	<710		1610	1290	J	ug/Kg	≎	80	57 - 120
2,4-Dichlorophenol	<490		1610	1430	J	ug/Kg	≎	89	58 - 120
2,4-Dimethylphenol	<780	F1	1610	844	J F1	ug/Kg	≎	52	60 - 110
2,4-Dinitrophenol	<3600		3220	<3500		ug/Kg	≎	NC	10 - 100
2,4-Dinitrotoluene	<330		1610	1510		ug/Kg	≎	94	69 - 124
2,6-Dinitrotoluene	<410		1610	1520		ug/Kg	≎	94	70 - 123
2-Chloronaphthalene	<230	F1	1610	1200		ug/Kg	≎	74	69 - 114
2-Chlorophenol	<350		1610	1360		ua/Ka	₩	85	64 - 110

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283 Matrix: Solid Analysis Batch: 650792	8-36 MS							Client S	Sample ID: SB-221 0-2 Prep Type: Total/NA Prep Batch: 650648
•	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Methylnaphthalene	710	F2 F1	1610	4180	F1	ug/Kg	<u></u>	215	69 - 112
2-Methylphenol	<330		1610	1410		ug/Kg	☼	88	60 - 120
2-Nitroaniline	<280		1610	1340		ug/Kg	☼	83	57 - 124
2-Nitrophenol	<490		1610	1330	J	ug/Kg	⊅	82	60 - 120
3 & 4 Methylphenol	<340		1610	1730		ug/Kg	₩	107	57 ₋ 120
3,3'-Dichlorobenzidine	<290	F1	1610	<280	F1	ug/Kg	☼	0	35 - 128
3-Nitroaniline	<640		1610	943	J	ug/Kg	⊅	59	40 - 122
4,6-Dinitro-2-methylphenol	<1700	F1	3220	<1600	F1	ug/Kg	☼	0	10 - 110
4-Bromophenyl phenyl ether	<270		1610	1270		ug/Kg	≎	79	68 - 118

Job ID: 500-214283-1

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
2-Methylnaphthalene	710	F2 F1	1610	4180	F1	ug/Kg	<u></u>	215	69 - 112
2-Methylphenol	<330		1610	1410		ug/Kg	₩	88	60 - 120
2-Nitroaniline	<280		1610	1340		ug/Kg	₩	83	57 - 124
2-Nitrophenol	<490		1610	1330	J	ug/Kg		82	60 - 120
3 & 4 Methylphenol	<340		1610	1730		ug/Kg	₩	107	57 ₋ 120
3,3'-Dichlorobenzidine	<290	F1	1610	<280	F1	ug/Kg	₩	0	35 - 128
3-Nitroaniline	<640		1610	943		ug/Kg		59	40 - 122
4,6-Dinitro-2-methylphenol	<1700	F1	3220	<1600	F1	ug/Kg	₩	0	10 - 110
4-Bromophenyl phenyl ether	<270		1610	1270		ug/Kg	₩	79	68 - 118
4-Chloro-3-methylphenol	<700		1610	1500	J	ug/Kg	∴	93	65 - 122
4-Chloroaniline	<970	F1	1610	<940	F1	ug/Kg	₩	0	30 - 150
4-Chlorophenyl phenyl ether	<240		1610	1440		ug/Kg	₩	89	62 - 119
4-Nitroaniline	<860		1610	976		ug/Kg	 ☆	61	60 - 160
4-Nitrophenol	<2000		3220	2770		ug/Kg	⊅	86	30 - 122
Acenaphthene	100	J	1610	1460		ug/Kg		84	65 - 124
Acenaphthylene	1800		1610	3910	F1	ug/Kg	∴	129	68 - 120
Anthracene		F2 F1	1610	4680		ug/Kg		162	70 - 114
Benzo[a]anthracene	15000		1610	23500		ug/Kg		513	67 - 122
Benzo[a]pyrene	18000		1610	25000		ug/Kg	 \$	423	65 - 133
Benzo[b]fluoranthene	23000		1610	35000		ug/Kg	☆	727	69 - 129
Benzo[g,h,i]perylene		F2 F1	1610		F1 *3	ug/Kg	☆	157	72 - 131
Benzo[k]fluoranthene	8500		1610	12900		ug/Kg	· · · · · · · · · · · · · · · · · · ·	272	68 - 127
Benzoic acid	<2100	12	3220	2620		ug/Kg	₩	81	10 - 100
Benzyl alcohol	<2100		1610	<2000	J	ug/Kg	₩	NC	21 - 139
Bis(2-chloroethoxy)methane	<210		1610	1090		ug/Kg	· · · · · · · · · · · · · · · · · · ·	68	60 - 112
Bis(2-chloroethyl)ether		F2 F1	1610	1240		ug/Kg	₩	77	55 - 111
Bis(2-ethylhexyl) phthalate	<380	1211	1610	1660		ug/Kg ug/Kg	₩	103	72 - 131
Butyl benzyl phthalate	<390		1610	1710		ug/Kg	· · · · · · · · · · · · · · · · · · ·	106	71 - 129
Carbazole		J F1	1610	2380		ug/Kg ug/Kg	₩	100	65 - 142
Chrysene	13000		1610	20100	E 1	ug/Kg ug/Kg	₩	453	63 - 120
Dibenz(a,h)anthracene		F2 F1	1610	3110		ug/Kg ug/Kg	· · · · ·	89	64 - 131
Dibenzofuran	<240		1610	2030		ug/Kg	₩	126	66 - 115
Diethyl phthalate	<350		1610	1450		ug/Kg ug/Kg	₩	90	58 - 120
Dimethyl phthalate	<270		1610	1430		ug/Kg ug/Kg	· · · · ·	89	69 - 116
Di-n-butyl phthalate	<310		1610	1510		ug/Kg ug/Kg	₩	94	65 ₋ 120
Di-n-octyl phthalate	<340		1610	1390		ug/Kg ug/Kg	₩	87	68 - 134
Fluoranthene	35000	E2 E		45900				688	62 - 120
Fluorene	320	FZ C	1610 1610	1950	□ 4	ug/Kg ug/Kg	₩	101	62 - 120
Hexachlorobenzene	<48		1610	1380		ug/Kg ug/Kg	₩	86	63 - 124
Hexachlorobutadiene	<320		1610	1100				68	56 - 120
Hexachlorocyclopentadiene	<1200		1610	<1200	E1	ug/Kg ug/Kg	☼	0	10 - 133
Hexachloroethane	<310		1610	996				62	60 - 114
Indeno[1,2,3-cd]pyrene		F2 F1	1610		F1 *3	ug/Kg	 **	179	68 - 130
	<230	1451			11.3	ug/Kg	☆ *		
Isophorone Naphthalene		F2 F1	1610 1610	1160 3680	E1	ug/Kg	‡	72 189	55 - 110 63 - 110
Nitrobenzene	<52		1610	1080	11.1	ug/Kg	 	67	
N-Nitrosodi-n-propylamine		1 1				ug/Kg	☆ *		60 ₋ 116
' ''	<250		1610 1610	1110		ug/Kg	≎	69 74	56 - 118
N-Nitrosodiphenylamine	<240		1610	1190	F1	ug/Kg		74	65 - 112

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-36 MS

Lab Sample ID: 500-214283-36 MSD

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: SB-221 0-2

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650648

l		Sample	Sample	Бріке	IVIS	IVIS				%Rec	
l	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
l	Phenanthrene	5800	F2 F1	1610	11300	F1	ug/Kg	<u></u>	341	62 - 120	
١	Phenol	<460		1610	1600		ug/Kg	₩	99	56 - 122	
١	Pyrene	26000	F2 E	1610	44900	E 4	ug/Kg	₩	1199	61 - 128	

MS MS

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	98		31 - 143
2-Fluorobiphenyl (Surr)	74		43 - 145
2-Fluorophenol (Surr)	147		31 - 166
Nitrobenzene-d5 (Surr)	61		37 - 147
Phenol-d5 (Surr)	90		30 - 153
Terphenyl-d14 (Surr)	108		42 - 157

Client Sample ID: SB-221 0-2

Prep Type: Total/NA

Matrix: Solid									Prep T	ype: Tot	al/NA
Analysis Batch: 650792									Prep E	Batch: 6	50648
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit

Analysis Batch: 650792									Prep Ba	atch: 6	50648
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
1,2,4-Trichlorobenzene	<220	F1	1590	921	J F1	ug/Kg	₽	58	66 - 117	22	30
1,2-Dichlorobenzene	<250	F1	1590	743	J F1	ug/Kg	☼	47	62 - 110	26	30
1,3-Dichlorobenzene	<230	F2 F1	1590	631	J F2 F1	ug/Kg	☼	40	60 - 110	31	30
1,4-Dichlorobenzene	<270	F1	1590	675	J F1	ug/Kg	₽	42	61 - 110	29	30
1-Methylnaphthalene	510	F2 F1	1590	2090	F2	ug/Kg	₽	100	68 - 111	50	30
2,2'-oxybis[1-chloropropane]	<240		1590	818	J	ug/Kg	☼	51	40 - 124	19	30
2,4,5-Trichlorophenol	<470		1590	1350	J	ug/Kg	≎	85	50 - 120	5	30
2,4,6-Trichlorophenol	<710		1590	1230	J	ug/Kg	≎	77	57 - 120	5	30
2,4-Dichlorophenol	<490		1590	1360	J	ug/Kg	≎	85	58 - 120	5	30
2,4-Dimethylphenol	<780	F1	1590	839	J F1	ug/Kg	≎	53	60 - 110	0	30
2,4-Dinitrophenol	<3600		3180	<3500		ug/Kg	≎	NC	10 - 100	NC	30
2,4-Dinitrotoluene	<330		1590	1450		ug/Kg	☼	91	69 - 124	4	30
2,6-Dinitrotoluene	<410		1590	1390		ug/Kg	☼	88	70 - 123	9	30
2-Chloronaphthalene	<230	F1	1590	1050	F1	ug/Kg	☼	66	69 - 114	13	30
2-Chlorophenol	<350		1590	1240		ug/Kg	☼	78	64 - 110	10	30
2-Methylnaphthalene	710	F2 F1	1590	2430	F2	ug/Kg	₽	108	69 - 112	53	30
2-Methylphenol	<330		1590	1260		ug/Kg	☼	79	60 - 120	11	30
2-Nitroaniline	<280		1590	1260		ug/Kg	≎	79	57 - 124	6	30
2-Nitrophenol	<490		1590	1130	J	ug/Kg	☼	71	60 - 120	16	30
3 & 4 Methylphenol	<340		1590	1470		ug/Kg	☼	92	57 - 120	16	30
3,3'-Dichlorobenzidine	<290	F1	1590	319	J F1	ug/Kg	☼	20	35 - 128	NC	30
3-Nitroaniline	<640		1590	862	J	ug/Kg	☼	54	40 - 122	9	30
4,6-Dinitro-2-methylphenol	<1700	F1	3180	<1600	F1	ug/Kg	☼	0	10 - 110	NC	30
4-Bromophenyl phenyl ether	<270		1590	1320		ug/Kg	☼	83	68 - 118	4	30
4-Chloro-3-methylphenol	<700		1590	1430	J	ug/Kg	☼	90	65 - 122	5	30
4-Chloroaniline	<970	F1	1590	<930	F1	ug/Kg	☼	0	30 - 150	NC	30
4-Chlorophenyl phenyl ether	<240		1590	1320		ug/Kg	₩	83	62 - 119	9	30
4-Nitroaniline	<860		1590	1010	J	ug/Kg		63	60 - 160	3	30
4-Nitrophenol	<2000		3180	2520	J	ug/Kg	₽	79	30 - 122	9	30
Acenaphthene	100	J	1590	1410		ug/Kg	₽	82	65 - 124	3	30
Acenaphthylene	1800	F1	1590	5130	F1	ug/Kg	☼	207	68 - 120	27	30

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: 500-214283-36 MSD

Matrix: Solid

Analysis Batch: 650792

Client Sample ID: SB-221 0-2 Prep Type: Total/NA

Prep Batch: 650648

Job ID: 500-214283-1

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Anthracene	2100	F2 F1	1590	6840	F1 F2	ug/Kg	-	300	70 - 114	38	30
Benzo[a]anthracene	15000	F2 E	1590	36200	E 4 F2	ug/Kg	☼	1312	67 - 122	42	30
Benzo[a]pyrene	18000	F2 E	1590	40300	E 4 F2 *3	ug/Kg	☼	1394	65 - 133	47	30
Benzo[b]fluoranthene	23000	F2 E	1590	57700	E 4 F2 *3	ug/Kg	☼	2164	69 - 129	49	30
Benzo[g,h,i]perylene	3900	F2 F1	1590	9330	F1 F2 *3	ug/Kg	☼	340	72 - 131	37	30
Benzo[k]fluoranthene	8500	F2	1590	18100	E 4 F2 *3	ug/Kg	☼	602	68 - 127	34	30
Benzoic acid	<2100		3180	2510	J	ug/Kg	☼	79	10 - 100	5	30
Benzyl alcohol	<2100		1590	<2000		ug/Kg	☼	NC	21 - 139	NC	30
Bis(2-chloroethoxy)methane	<210		1590	950	J	ug/Kg	☼	60	60 - 112	14	30
Bis(2-chloroethyl)ether	<310	F2 F1	1590	852	J F2 F1	ug/Kg	☼	54	55 - 111	37	30
Bis(2-ethylhexyl) phthalate	<380		1590	1660		ug/Kg	☼	104	72 - 131	0	30
Butyl benzyl phthalate	<390		1590	1620		ug/Kg	☼	102	71 - 129	5	30
Carbazole	630	J F1	1590	2970	F1	ug/Kg	☼	147	65 - 142	22	30
Chrysene	13000	F2	1590	29400	E 4 F2	ug/Kg	☼	1040	63 - 120	37	30
Dibenz(a,h)anthracene	1700	F2 F1	1590	4680	F1 F2 *3	ug/Kg	☼	189	64 - 131	40	30
Dibenzofuran	<240	F1	1590	1670		ug/Kg	☼	105	66 - 115	19	30
Diethyl phthalate	<350		1590	1350		ug/Kg	≎	85	58 - 120	7	30
Dimethyl phthalate	<270		1590	1320		ug/Kg	☼	83	69 - 116	7	30
Di-n-butyl phthalate	<310		1590	1450		ug/Kg	☼	91	65 - 120	4	30
Di-n-octyl phthalate	<340		1590	1760		ug/Kg	☼	111	68 - 134	24	30
Fluoranthene	35000	F2 E	1590	72100	E 4 F2	ug/Kg	☼	2341	62 - 120	44	30
Fluorene	320		1590	2070		ug/Kg	☼	110	62 - 120	6	30
Hexachlorobenzene	<48		1590	1370		ug/Kg	☼	86	63 - 124	1	30
Hexachlorobutadiene	<320	F1	1590	872	JF1	ug/Kg	₽	55	56 - 120	23	30
Hexachlorocyclopentadiene	<1200	F1	1590	<1100	F1	ug/Kg	☼	0	10 - 133	NC	30
Hexachloroethane	<310	F1	1590	749	J F1	ug/Kg	☼	47	60 - 114	28	30
Indeno[1,2,3-cd]pyrene	4600	F2 F1	1590	11200	F1 F2 *3	ug/Kg	₽	418	68 - 130	40	30
Isophorone	<230		1590	1000		ug/Kg	☼	63	55 - 110	15	30
Naphthalene	640	F2 F1	1590	2140	F2	ug/Kg	☼	95	63 - 110	53	30
Nitrobenzene	<52	F1	1590	837	F1	ug/Kg	₽	53	60 - 116	26	30
N-Nitrosodi-n-propylamine	<250		1590	998		ug/Kg	☼	63	56 - 118	11	30
N-Nitrosodiphenylamine	<240		1590	1200		ug/Kg	☼	76	65 - 112	1	30
Pentachlorophenol	<3300	F1	3180	<3200		ug/Kg	☼	NC	13 - 112	NC	30
Phenanthrene	5800	F2 F1	1590	16400	E F1 F2	ug/Kg	₽	667	62 - 120	37	30
Phenol	<460		1590	1430		ug/Kg	☼	90	56 - 122	11	30
Pyrene	26000	F2 E	1590	67600	E 4 F2	ug/Kg	☼	2638	61 - 128	40	30

Surrogate	%Recovery	Qualifier	Limits
2,4,6-Tribromophenol (Surr)	93		31 - 143
2-Fluorobiphenyl (Surr)	69		43 - 145
2-Fluorophenol (Surr)	126		31 - 166
Nitrobenzene-d5 (Surr)	55		37 - 147
Phenol-d5 (Surr)	82		30 - 153
Terphenyl-d14 (Surr)	107		42 - 157

Eurofins Chicago

_

4

6

8

10

12

14

15

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8081A - Organochlorine Pesticides (GC)

MR MR

MB MB

92

Qualifier

%Recovery

Lab Sample ID: MB 500-650339/1-A

Matrix: Solid

Analysis Batch: 650373

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 650339

Job ID: 500-214283-1

	IVID I	VID							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<1.2		1.7	1.2	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
alpha-BHC	< 0.95		1.7	0.95	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
cis-Chlordane	<0.90		1.7	0.90	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
beta-BHC	<1.4		1.7	1.4	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
4,4'-DDD	<0.91		1.7	0.91	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
4,4'-DDE	<0.87		1.7	0.87	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
4,4'-DDT	<0.80		1.7	0.80	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
delta-BHC	<0.81		1.7	0.81	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Dieldrin	<0.88		1.7	0.88	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Endosulfan I	<0.91		1.7	0.91	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Endosulfan II	< 0.93		1.7	0.93	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Endosulfan sulfate	< 0.93		1.7	0.93	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Endrin	<0.86		1.7	0.86	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Endrin aldehyde	< 0.96		1.7	0.96	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Endrin ketone	<0.82		1.7	0.82	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
gamma-BHC (Lindane)	<0.84		1.7	0.84	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
trans-Chlordane	< 0.97		1.7	0.97	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Heptachlor	<0.91		1.7	0.91	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Heptachlor epoxide	<0.91		1.7	0.91	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Methoxychlor	<1.1		8.3	1.1	ug/Kg		04/05/22 16:57	04/06/22 12:52	1
Toxaphene	<6.7		17	6.7	ug/Kg		04/05/22 16:57	04/06/22 12:52	1

Limits

33 - 148

30 - 121

Tetrachloro-m-xylene 60

Lab Sample ID: LCS 500-650339/2-A **Matrix: Solid**

DCB Decachlorobiphenyl

Surrogate

Client Sample ID:	Lab C	Control Sample
	Prep	Type: Total/NA
	Drop	Potobi 650220

04/05/22 16:57 04/06/22 12:52

04/05/22 16:57 04/06/22 12:52

Analyzed

Prepared

Analysis Batch: 650373 Prep Batch: 650339 Spike LCS LCS %Rec **Analyte** Added Result Qualifier Unit %Rec Limits Aldrin 13.3 10.3 ug/Kg 77 52 - 122 alpha-BHC 13.3 68 50 - 123 9.11 ug/Kg cis-Chlordane 13.3 10.9 82 52 - 129 ug/Kg 13.9 beta-BHC 13.3 104 44 - 140 ug/Kg 4,4'-DDD 13.3 12.8 ug/Kg 96 47 - 137 4,4'-DDE 89 50 - 130 13.3 11.8 ug/Kg 4,4'-DDT 13.3 10.0 ug/Kg 75 46 - 143 delta-BHC 13.3 9.68 73 57 - 125 ug/Kg Dieldrin 13.3 13.6 ug/Kg 102 51 - 133 Endosulfan I 13.3 8.49 64 30 - 120 ug/Kg Endosulfan II 78 13.3 10.4 ug/Kg 30 - 120Endosulfan sulfate 13.3 12.5 ug/Kg 94 42 - 150 92 43 - 144 Endrin 13.3 12.3 ug/Kg Endrin aldehyde 13.3 12.2 ug/Kg 91 39 - 131 Endrin ketone 12.4 ug/Kg 93 51 - 135 13.3 gamma-BHC (Lindane) 13.3 11.3 85 50 - 122 ug/Kg trans-Chlordane 13.3 12.1 ug/Kg 90 52 - 132

Dil Fac

13.3

13.5

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 500-650339/2-A

Lab Sample ID: 500-214283-36 MS

Matrix: Solid

Analyte Heptachlor Heptachlor epoxide

Methoxychlor

Matrix: Solid

Analysis Batch: 650373

Client Sample ID: Lab Control Sample

45 - 144

101

Prep Type: Total/NA

Job ID: 500-214283-1

Spike	LCS	LCS				%Rec	•	
Added	Result	Qualifier	Unit	D	%Rec	Limits	mits	
13.3	9.71		ug/Kg		73	53 - 129	3 - 129	
13.3	10.5		ug/Kg		79	50 - 139) - 139	

ug/Kg

LCS LCS

Surrogate	%Recovery Qua	lifier Limits
DCB Decachlorobiphenyl	106	33 - 148
Tetrachloro-m-xylene	70	30 - 121

Client Sample ID: SB-221 0-2

Prep Type: Total/NA

Prep Batch: 650339

Analysis Batch: 650373	Sample	Sample	Spike	MS	MS				Prep Batch: 65033
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	<7.3	F1 F2	16.7	43.6	F1	ug/Kg	<u></u>	262	52 - 122
alpha-BHC	<5.9		16.7	14.8		ug/Kg	☼	88	50 - 123
cis-Chlordane	<5.6	F1	16.7	49.6	F1	ug/Kg	☼	297	52 - 129
beta-BHC	<8.5	F1 F2	16.7	109	F1	ug/Kg	₩	651	44 - 140
4,4'-DDD	<5.7	F1	16.7	<5.7	F1	ug/Kg	☼	0	47 - 137
4,4'-DDE	<5.4	F1	16.7	139	F1	ug/Kg	₩	836	50 - 130
4,4'-DDT	<5.0	F1	16.7	66.4	F1	ug/Kg	₩	398	46 - 143
delta-BHC	<5.0	F1	16.7	23.9	F1	ug/Kg	☼	143	57 - 125
Dieldrin	<5.5	F1	16.7	60.6	F1	ug/Kg	☼	364	51 - 133
Endosulfan I	<5.7	F1	16.7	23.2	F1	ug/Kg	₩	139	30 - 120
Endosulfan II	<5.8	F1	16.7	<5.8	F1	ug/Kg	☼	0	30 - 120
Endosulfan sulfate	<5.8	F1	16.7	<5.8	F1	ug/Kg	☼	0	42 - 150
Endrin	<5.4	F1	16.7	95.0	F1	ug/Kg	⊅	570	43 - 144
Endrin aldehyde	<6.0	F1	16.7	75.6	F1	ug/Kg	☼	453	39 - 131
Endrin ketone	<5.1	F1	16.7	<5.1	F1	ug/Kg	₩	0	51 - 135
gamma-BHC (Lindane)	<5.3		16.7	19.5		ug/Kg	⊅	117	50 - 122
trans-Chlordane	<6.1	F1	16.7	22.1	F1	ug/Kg	☼	133	52 - 132
Heptachlor	<5.7		16.7	17.7		ug/Kg	☼	106	53 - 129
Heptachlor epoxide	<5.7	F1	16.7	26.9	F1	ug/Kg	₽	161	50 - 139

16.7

16.4 J

ug/Kg

MS MS

<6.9 F1

Surrogate	%Recovery Qualifier	Limits
DCB Decachlorobiphenyl	88	33 - 148
Tetrachloro-m-xylene	132 S1+	30 - 121

Lab Sample ID: 500-214283-36 MSD

Matrix: Solid

Methoxychlor

Analysis Batch: 650373

Client Sample	ID: SB-221 0-2
Prep	Type: Total/NA

45 - 144

98

Prep Batch: 650339

											,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	<7.3	F1 F2	16.5	18.0	F2	ug/Kg	<u></u>	109	52 - 122	83	30
alpha-BHC	<5.9		16.5	14.9		ug/Kg	☼	91	50 - 123	1	30
cis-Chlordane	<5.6	F1	16.5	65.6	F1	ug/Kg	☼	398	52 - 129	28	30
beta-BHC	<8.5	F1 F2	16.5	165	F1 F2	ug/Kg	₽	1003	44 - 140	41	30
4,4'-DDD	<5.7	F1	16.5	<5.6	F1	ug/Kg	☼	0	47 - 137	NC	30

Eurofins Chicago

Page 295 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 500-214283-36 MSD

Matrix: Solid

Analysis Batch: 650373

Client Sample ID: SB-221 0-2

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650339

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
4,4'-DDE	<5.4	F1	16.5	160	F1	ug/Kg	<u></u>	968	50 - 130	13	30
4,4'-DDT	<5.0	F1	16.5	62.3	F1	ug/Kg	₽	378	46 - 143	6	30
delta-BHC	<5.0	F1	16.5	28.1	F1	ug/Kg	☼	171	57 - 125	16	30
Dieldrin	<5.5	F1	16.5	80.5	F1	ug/Kg	☼	488	51 - 133	28	30
Endosulfan I	<5.7	F1	16.5	18.2		ug/Kg	₽	110	30 - 120	24	30
Endosulfan II	<5.8	F1	16.5	<5.7	F1	ug/Kg	☼	0	30 - 120	NC	30
Endosulfan sulfate	<5.8	F1	16.5	<5.8	F1	ug/Kg	☼	0	42 - 150	NC	30
Endrin	<5.4	F1	16.5	78.3	F1	ug/Kg	☼	475	43 - 144	19	30
Endrin aldehyde	<6.0	F1	16.5	80.0	F1	ug/Kg	☼	485	39 - 131	6	30
Endrin ketone	<5.1	F1	16.5	<5.1	F1	ug/Kg	☼	0	51 - 135	NC	30
gamma-BHC (Lindane)	<5.3		16.5	16.2		ug/Kg	☼	98	50 - 122	18	30
trans-Chlordane	<6.1	F1	16.5	19.5		ug/Kg	☼	118	52 - 132	12	30
Heptachlor	<5.7		16.5	18.0		ug/Kg	☼	109	53 - 129	2	30
Heptachlor epoxide	<5.7	F1	16.5	25.4	F1	ug/Kg	☼	154	50 - 139	6	30
Methoxychlor	<6.9	F1	16.5	<6.9	F1	ug/Kg	☼	0	45 - 144	NC	30

MSD MSD

MB MB

Qualifier

Result

<1.2

< 0.95

< 0.90

<1.4

< 0.91

< 0.87

<0.80

< 0.97

< 0.91

Surrogate %Recovery Qualifier Limits DCB Decachlorobiphenyl 525 S1+ 33 - 148 Tetrachloro-m-xylene 125 S1+ 30 - 121

Lab Sample ID: MB 500-650565/1-A

Matrix: Solid

Analyte

alpha-BHC

beta-BHC

4,4'-DDD

4,4'-DDE

4,4'-DDT

trans-Chlordane

Heptachlor

cis-Chlordane

Aldrin

Analysis Batch: 651097

Client Sample ID: Method Blank Prep Type: Total/NA

Prepared

Prep Batch: 650565

Analyzed

Dil Fac

04/07/22 04:55 04/11/22 15:37 04/07/22 04:55 04/11/22 15:37 04/07/22 04:55 04/11/22 15:37 04/07/22 04:55 04/11/22 15:37 04/07/22 04:55 04/11/22 15:37 04/07/22 04:55 04/11/22 15:37

04/07/22 04:55 04/11/22 15:37

04/07/22 04:55 04/11/22 15:37

04/07/22 04:55 04/11/22 15:37

delta-BHC 04/07/22 04:55 04/11/22 15:37 < 0.81 1.7 0.81 ug/Kg Dieldrin <0.88 1.7 0.88 ug/Kg 04/07/22 04:55 04/11/22 15:37 Endosulfan I < 0.91 1.7 04/07/22 04:55 04/11/22 15:37 0.91 ug/Kg Endosulfan II < 0.93 1.7 0.93 ug/Kg 04/07/22 04:55 04/11/22 15:37 Endosulfan sulfate < 0.93 1.7 0.93 ug/Kg 04/07/22 04:55 04/11/22 15:37 Endrin 1.7 04/07/22 04:55 04/11/22 15:37 < 0.86 0.86 ug/Kg Endrin aldehvde < 0.96 1.7 0.96 ug/Kg 04/07/22 04:55 04/11/22 15:37 Endrin ketone < 0.82 1.7 0.82 ug/Kg 04/07/22 04:55 04/11/22 15:37 gamma-BHC (Lindane) < 0.84 1.7 0.84 ug/Kg 04/07/22 04:55 04/11/22 15:37

RL

1.7

1.7

1.7

1.7

1.7

17

1.7

MDL Unit

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

1.2

0.95

0.90

0.91

0.87

0.80

0.97

0.91

ug/Kg

ug/Kg

1.4 ug/Kg

04/07/22 04:55 04/11/22 15:37 Heptachlor epoxide < 0.91 1.7 0.91 ug/Kg Methoxychlor <1.1 8.3 1.1 ug/Kg 04/07/22 04:55 04/11/22 15:37 Toxaphene <6.7 17 04/07/22 04:55 04/11/22 15:37 6.7 ug/Kg

1.7

1.7

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 500-650565/1-A

Lab Sample ID: LCS 500-650565/2-A

Matrix: Solid

Analysis Batch: 651097

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650565

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyze	d Dil Fac
DCB Decachlorobiphenyl	108		33 - 148	04/07/22 04:55 04/11/22 1	5:37 1
Tetrachloro-m-xylene	97		30 - 121	04/07/22 04:55 04/11/22 1	5:37 1

Client Sample ID: Lab Control Sample

Matrix: Solid Analysis Batch: 651097							Prep Type: Total/NA Prep Batch: 650565
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	13.3	10.7		ug/Kg		80	52 - 122
alpha-BHC	13.3	13.7		ug/Kg		102	50 - 123
cis-Chlordane	13.3	10.7		ug/Kg		81	52 - 129
beta-BHC	13.3	16.2		ug/Kg		121	44 - 140
4,4'-DDD	13.3	12.4		ug/Kg		93	47 - 137

4,4'-DDE 13.3 11.5 ug/Kg 86 50 - 130 4,4'-DDT 13.3 46 - 143 12.2 ug/Kg 92 57 - 125 delta-BHC 13.3 9.00 ug/Kg 68 Dieldrin 13.3 88 51 - 133 11.7 ug/Kg 62 30 - 120 Endosulfan I 13.3 8.23 ug/Kg Endosulfan II 13.3 9.92 ug/Kg 74 30 - 120 Endosulfan sulfate 13.3 12.1 91 42 - 150 ug/Kg Endrin 13.3 12.0 90 43 - 144 ug/Kg 13.3 89 39 - 131 Endrin aldehyde 11.8

ug/Kg Endrin ketone 13.3 12.2 ug/Kg 92 51 - 135 gamma-BHC (Lindane) 13.3 13.1 98 50 - 122 ug/Kg trans-Chlordane 85 13.3 11.3 ug/Kg 52 - 132 Heptachlor 73 13.3 9.77 ug/Kg 53 - 129

Heptachlor epoxide 83 50 - 139 13.3 11.1 ug/Kg Methoxychlor 13.3 13.2 99 45 - 144 ug/Kg LCS LCS

%Recovery Qualifier Surrogate Limits DCB Decachlorobiphenyl 33 - 148 94 Tetrachloro-m-xylene 86 30 - 121

Lab Sample ID: 500-214283-43 MS Client Sample ID: SB-215 0-2 **Prep Type: Total/NA**

Matrix: Solid Analysis Batch: 651097

-	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	<13	F1	14.5	36.3	F1	ug/Kg	☆	250	52 - 122
alpha-BHC	<10	F1 F2	14.5	25.8	F1	ug/Kg	≎	178	50 - 123
beta-BHC	<15	F2	14.5	58.8		ug/Kg	≎	NC	44 - 140
4,4'-DDD	<10	F1 F2	14.5	11.4	J	ug/Kg	☆	78	47 - 137
4,4'-DDE	<9.6	F1 F2	14.5	28.1	F1	ug/Kg	≎	194	50 - 130
4,4'-DDT	<8.8	F1 F2	14.5	263	F1	ug/Kg	≎	1807	46 - 143
delta-BHC	<8.9		14.5	11.2	J	ug/Kg	≎	77	57 - 125
Dieldrin	<9.7	F1 F2	14.5	34.7	F1	ug/Kg	≎	239	51 - 133
Endosulfan I	<10	F1	14.5	<9.9	F1	ug/Kg	≎	0	30 - 120
Endosulfan II	<10	F1 F2	14.5	20.0	F1	ug/Kg	☼	138	30 - 120

Eurofins Chicago

Prep Batch: 650565

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8081A - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: 500-214283-43 MS

Matrix: Solid

Analysis Batch: 651097

Client Sample ID: SB-215 0-2

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650565

	Sample	Sample	эріке	IVIS	IVIO				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Endosulfan sulfate	<10	F1 F2	14.5	186	F1	ug/Kg	☆	1278	42 - 150	
Endrin	<9.5	F1	14.5	23.2	F1	ug/Kg	≎	160	43 - 144	
Endrin aldehyde	<11	F1	14.5	<10	F1	ug/Kg	☆	0	39 - 131	
Endrin ketone	<9.0	F1	14.5	<8.9	F1	ug/Kg	☆	0	51 - 135	
trans-Chlordane	<11	F1 F2	14.5	15.9	J	ug/Kg	☆	109	52 - 132	
Heptachlor	<10	F1	14.5	<9.9	F1	ug/Kg	☆	0	53 - 129	
Heptachlor epoxide	<10	F1 F2	14.5	38.2	F1	ug/Kg	☆	263	50 - 139	
Methoxychlor	<12	F1 F2	14.5	59.4	J F1	ug/Kg	☆	409	45 - 144	

MS MS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	674	S1+	33 - 148
Tetrachloro-m-xvlene	70		30 - 121

Client Sample ID: SB-215 0-2 Lab Sample ID: 500-214283-43 MSD

Matrix: Solid

Prep Type: Total/NA

Analysis Batch: 651097									Prep Ba	itch: 6	50565
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	<13	F1	14.5	<13	F1	ug/Kg	<u></u>	0	52 - 122	NC	30
alpha-BHC	<10	F1 F2	14.5	41.5	F1 F2	ug/Kg	₩	286	50 - 123	47	30
cis-Chlordane	<9.9	F1 F2	14.5	50.5	F1 F2	ug/Kg	₩	348	52 - 129	111	30
beta-BHC	<15	F2	14.5	28.6	F2	ug/Kg	₩	NC	44 - 140	69	30
4,4'-DDD	<10	F1 F2	14.5	22.2	F1 F2	ug/Kg	₩	153	47 - 137	65	30
4,4'-DDE	<9.6	F1 F2	14.5	88.6	F1 F2	ug/Kg	₩	611	50 - 130	104	30
4,4'-DDT	<8.8	F1 F2	14.5	60.8	F1 F2	ug/Kg	₩	419	46 - 143	125	30
delta-BHC	<8.9		14.5	9.50	J	ug/Kg	₩	66	57 - 125	16	30
Dieldrin	<9.7	F1 F2	14.5	104	F1 F2	ug/Kg	₩	718	51 - 133	100	30
Endosulfan I	<10	F1	14.5	32.7	F1	ug/Kg	₩	226	30 - 120	NC	30
Endosulfan II	<10	F1 F2	14.5	34.6	F1 F2	ug/Kg	₩	238	30 - 120	53	30
Endosulfan sulfate	<10	F1 F2	14.5	20.0	F2	ug/Kg	₩	138	42 - 150	161	30
Endrin	<9.5	F1	14.5	18.9		ug/Kg	₩	130	43 - 144	21	30
Endrin aldehyde	<11	F1	14.5	66.5	F1	ug/Kg	₩	459	39 - 131	NC	30
Endrin ketone	<9.0	F1	14.5	19.5		ug/Kg	₩	134	51 - 135	NC	30
gamma-BHC (Lindane)	<9.2	F1 F2	14.5	<9.1	F1	ug/Kg	₩	0	50 - 122	NC	30
trans-Chlordane	<11	F1 F2	14.5	26.2	F1 F2	ug/Kg	₩	181	52 - 132	49	30
Heptachlor	<10	F1	14.5	<9.9	F1	ug/Kg	₩	0	53 - 129	NC	30
Heptachlor epoxide	<10	F1 F2	14.5	21.5	F1 F2	ug/Kg	₩	149	50 - 139	56	30
Methoxychlor	<12	F1 F2	14.5	315	F1 F2	ug/Kg	₩	2170	45 - 144	136	30

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	277	S1+	33 - 148
Tetrachloro-m-xylene	81		30 - 121

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 500-649706/1-A

Matrix: Water

Analysis Batch: 649856

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649706

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Aldrin	<0.031		0.040	0.031	ug/L		03/31/22 13:17	04/01/22 11:15	1
alpha-BHC	<0.015		0.040	0.015	ug/L		03/31/22 13:17	04/01/22 11:15	1
cis-Chlordane	<0.028		0.040	0.028	ug/L		03/31/22 13:17	04/01/22 11:15	1
beta-BHC	<0.028		0.040	0.028	ug/L		03/31/22 13:17	04/01/22 11:15	1
4,4'-DDD	<0.031		0.040	0.031	ug/L		03/31/22 13:17	04/01/22 11:15	1
4,4'-DDE	<0.023		0.040	0.023	ug/L		03/31/22 13:17	04/01/22 11:15	1
4,4'-DDT	<0.032		0.040	0.032	ug/L		03/31/22 13:17	04/01/22 11:15	1
delta-BHC	<0.024		0.040	0.024	ug/L		03/31/22 13:17	04/01/22 11:15	1
Dieldrin	<0.025		0.040	0.025	ug/L		03/31/22 13:17	04/01/22 11:15	1
Endosulfan I	<0.025		0.040	0.025	ug/L		03/31/22 13:17	04/01/22 11:15	1
Endosulfan II	< 0.039		0.040	0.039	ug/L		03/31/22 13:17	04/01/22 11:15	1
Endosulfan sulfate	<0.020		0.040	0.020	ug/L		03/31/22 13:17	04/01/22 11:15	1
Endrin	<0.027		0.040	0.027	ug/L		03/31/22 13:17	04/01/22 11:15	1
Endrin aldehyde	< 0.035		0.040	0.035	ug/L		03/31/22 13:17	04/01/22 11:15	1
Endrin ketone	<0.040		0.040	0.040	ug/L		03/31/22 13:17	04/01/22 11:15	1
gamma-BHC (Lindane)	<0.033		0.040	0.033	ug/L		03/31/22 13:17	04/01/22 11:15	1
trans-Chlordane	< 0.032		0.040	0.032	ug/L		03/31/22 13:17	04/01/22 11:15	1
Heptachlor	< 0.035		0.040	0.035	ug/L		03/31/22 13:17	04/01/22 11:15	1
Heptachlor epoxide	<0.030		0.040	0.030	ug/L		03/31/22 13:17	04/01/22 11:15	1
Methoxychlor	<0.065		0.080	0.065	ug/L		03/31/22 13:17	04/01/22 11:15	1
Toxaphene	<0.39		0.40	0.39	ug/L		03/31/22 13:17	04/01/22 11:15	1
	MB	МВ							

Dil Fac Limits Prepared Surrogate %Recovery Qualifier Analyzed 30 - 130 DCB Decachlorobiphenyl 98 03/31/22 13:17 04/01/22 11:15 Tetrachloro-m-xylene 61 30 - 120

Lab Sample ID: LCS 500-649706/2-A

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 649856							Prep Batch: 649706
-	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Aldrin	0.320	0.224		ug/L		70	34 - 120
alpha-BHC	0.320	0.293		ug/L		92	65 - 120
cis-Chlordane	0.320	0.284		ug/L		89	70 - 120
beta-BHC	0.320	0.281		ug/L		88	65 - 120
4,4'-DDD	0.320	0.302		ug/L		94	69 - 124
4,4'-DDE	0.320	0.276		ug/L		86	58 - 122
4,4'-DDT	0.320	0.297		ug/L		93	62 - 127
delta-BHC	0.320	0.299		ug/L		93	70 - 122
Dieldrin	0.320	0.297		ug/L		93	68 - 120
Endosulfan I	0.320	0.230		ug/L		72	35 - 110
Endosulfan II	0.320	0.255		ug/L		80	53 - 110
Endosulfan sulfate	0.320	0.286		ug/L		89	70 - 133
Endrin	0.320	0.303		ug/L		95	60 - 132
Endrin aldehyde	0.320	0.287		ug/L		90	66 - 120
Endrin ketone	0.320	0.302		ug/L		94	63 - 130
gamma-BHC (Lindane)	0.320	0.290		ug/L		91	68 - 120
trans-Chlordane	0.320	0.275		ug/L		86	58 - 120

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCS 500-649706/2-A

Lab Sample ID: LCSD 500-649706/3-A

Matrix: Water

Analysis Batch: 649856

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649706

	Spike	LUS	LUS			70Rec	
Analyte	Added	Result	Qualifier Unit	D	%Rec	Limits	
Heptachlor	0.320	0.247	ug/L		77	40 - 120	
Heptachlor epoxide	0.320	0.290	ug/L		91	64 - 120	
Methoxychlor	0.320	0.352	ug/L		110	63 - 135	
I and the second							

LCS LCS

Surrogate	%Recovery Qua	lifier Limits
DCB Decachlorobiphenyl	93	30 - 130
Tetrachloro-m-xylene	71	30 - 120

Client Sample ID: Lab Control Sample Dup

Matrix: Water Prep Type: Total/NA Prep Batch: 649706 Analysis Batch: 649856

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Aldrin	0.320	0.224		ug/L		70	34 - 120	0	20
alpha-BHC	0.320	0.302		ug/L		95	65 - 120	3	20
cis-Chlordane	0.320	0.298		ug/L		93	70 - 120	5	20
beta-BHC	0.320	0.291		ug/L		91	65 - 120	3	20
4,4'-DDD	0.320	0.321		ug/L		100	69 - 124	6	20
4,4'-DDE	0.320	0.293		ug/L		91	58 - 122	6	20
4,4'-DDT	0.320	0.310		ug/L		97	62 - 127	5	20
delta-BHC	0.320	0.312		ug/L		98	70 - 122	4	20
Dieldrin	0.320	0.315		ug/L		98	68 - 120	6	20
Endosulfan I	0.320	0.244		ug/L		76	35 - 110	6	20
Endosulfan II	0.320	0.273		ug/L		85	53 - 110	7	20
Endosulfan sulfate	0.320	0.305		ug/L		95	70 - 133	7	20
Endrin	0.320	0.315		ug/L		99	60 - 132	4	20
Endrin aldehyde	0.320	0.308		ug/L		96	66 - 120	7	20
Endrin ketone	0.320	0.323		ug/L		101	63 - 130	7	20
gamma-BHC (Lindane)	0.320	0.294		ug/L		92	68 - 120	1	20
trans-Chlordane	0.320	0.289		ug/L		90	58 - 120	5	20
Heptachlor	0.320	0.244		ug/L		76	40 - 120	1	20
Heptachlor epoxide	0.320	0.303		ug/L		95	64 - 120	4	20

0.320

0.391

ug/L

LCSD LCSD

l	Surrogate	%Recovery	Qualifier	Limits
	DCB Decachlorobiphenyl	104		30 - 130
l	Tetrachloro-m-xylene	76		30 - 120

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 500-649706/1-A

Matrix: Water

Methoxychlor

Analysis Batch: 649859

Client Sample ID: Method Blank Prep Type: Total/NA

63 - 135

122

Prep Batch: 649706

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.067		0.40	0.067	ug/L		03/31/22 13:17	04/01/22 10:32	1
PCB-1221	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 10:32	1
PCB-1232	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 10:32	1

Eurofins Chicago

Page 300 of 356

4/15/2022

20

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 500-649706/1-A

Matrix: Water

Analysis Batch: 649859

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 649706

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1242	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 10:32	1
PCB-1248	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 10:32	1
PCB-1254	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 10:32	1
PCB-1260	<0.070		0.40	0.070	ug/L		03/31/22 13:17	04/01/22 10:32	1
PCB-1262	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 10:32	1
PCB-1268	<0.20		0.40	0.20	ug/L		03/31/22 13:17	04/01/22 10:32	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	75	30 - 120	03/31/22 13:17	04/01/22 10:32	1
DCB Decachlorobiphenyl	122	30 - 140	03/31/22 13:17	04/01/22 10:32	1

Lab Sample ID: LCS 500-649706/4-A

Matrix: Water

Analysis Batch: 649859

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 649706

LCS LCS %Rec Spike Analyte Added Result Qualifier Unit D %Rec Limits PCB-1016 4.00 4.43 ug/L 111 56 - 120 PCB-1260 4.00 4.84 ug/L 121 53 - 137

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	84	30 - 120
DCB Decachlorobiphenyl	114	30 - 140

Lab Sample ID: LCSD 500-649706/5-A

Matrix: Water

Analysis Batch: 649859

Client Sample	ID: Lab	Control	Sample Dup

Prep Type: Total/NA **Prep Batch: 649706**

Spike LCSD LCSD %Rec **RPD** Added Result Qualifier Unit Analyte D %Rec Limits RPD Limit PCB-1016 4.00 4.83 *+ 121 20 ug/L 56 - 120 9 PCB-1260 4.00 5.11 ug/L 128 53 - 137 20

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	96		30 - 120
DCB Decachlorobiphenvl	117		30 - 140

Lab Sample ID: MB 500-650339/1-A

Matrix: Solid

Analysis Batch: 650870

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 650339

N	В МВ					
Analyte Resu	It Qualifier RL	MDL	Unit	D Prepared	Analyzed	Dil Fac
PCB-1016 <0.006	0.017	0.0066	mg/Kg	04/05/22 16:57	04/08/22 16:03	1
PCB-1221 <0.006	0.017	0.0066	mg/Kg	04/05/22 16:57	04/08/22 16:03	1
PCB-1232 <0.004	5 0.017	0.0045	mg/Kg	04/05/22 16:57	04/08/22 16:03	1
PCB-1242 <0.006	5 0.017	0.0065	mg/Kg	04/05/22 16:57	04/08/22 16:03	1
PCB-1248 <0.007	9 0.017	0.0079	mg/Kg	04/05/22 16:57	04/08/22 16:03	1
PCB-1254 <0.005	0.017	0.0057	mg/Kg	04/05/22 16:57	04/08/22 16:03	1
PCB-1260 <0.006	3 0.017	0.0063	mg/Kg	04/05/22 16:57	04/08/22 16:03	1
PCB-1262 <0.005	0.017	0.0055	mg/Kg	04/05/22 16:57	04/08/22 16:03	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: MB 500-650339/1-A

Matrix: Solid

Analysis Batch: 650870

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650339

MB MB Analyte Result Qualifier **MDL** Unit Prepared Analyzed PCB-1268 <0.0097 0.017 0.0097 mg/Kg 04/05/22 16:57 04/08/22 16:03

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	80		49 - 129	04/05/22 16:57	04/08/22 16:03	1
DCB Decachlorobiphenyl	110		37 - 121	04/05/22 16:57	04/08/22 16:03	1

LCS LCS

Lab Sample ID: LCS 500-650339/3-A

Matrix: Solid

Analysis Batch: 650870

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 650339**

%Rec Limits D %Rec

Analyte Added Result Qualifier Unit PCB-1016 57 - 120 0.167 0.154 mg/Kg 93 PCB-1260 0.167 0.150 mg/Kg 90 61 - 125

Spike

LCS LCS

Surrogate	%Recovery Qualifier	Limits
Tetrachloro-m-xylene	73	49 - 129
DCB Decachlorobiphenyl	91	37 - 121

Lab Sample ID: 500-214283-36 MS

Matrix: Solid

Currente

Analysis Batch: 650870

Client Sample ID: SB-221 0-2

Prep Type: Total/NA Prep Batch: 650339

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits PCB-1016 <0.0082 0.210 0.159 <u>~</u> 76 57 - 120 mg/Kg PCB-1260 < 0.0079 0.210 0.182 mg/Kg 86 61 - 125

MS MS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	76		49 - 129
DCB Decachlorobinhenyl	109		37 - 121

Lab Sample ID: 500-214283-36 MSD

Matrix: Solid

Analysis Batch: 650870

Client Sample ID: SB-221 0-2

Prep Type: Total/NA **Prep Batch: 650339**

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Limits Limit Analyte Added Result Qualifier %Rec RPD Unit D PCB-1016 <0.0082 0.209 0.161 mg/Kg 77 57 - 120 30 PCB-1260 < 0.0079 0.209 0.179 mg/Kg 86 61 - 125 30

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	85		49 - 129
DCB Decachlorobiphenyl	109		37 - 121

Lab Sample ID: MB 500-650565/1-A

Matrix: Solid

Analysis Batch: 651243

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 650565

MB MB

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	<0.0066	0.017	0.0066	mg/Kg		04/07/22 04:55	04/12/22 08:23	1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued) Client Sample ID: Method Blank

Lab Sample ID: MB 500-650565/1-A **Matrix: Solid**

Analysis Batch: 651243

	Prep Type: Total/NA
	Prep Batch: 650565
MD MD	

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1221	<0.0066		0.017	0.0066	mg/Kg		04/07/22 04:55	04/12/22 08:23	1
PCB-1232	<0.0045		0.017	0.0045	mg/Kg		04/07/22 04:55	04/12/22 08:23	1
PCB-1242	<0.0065		0.017	0.0065	mg/Kg		04/07/22 04:55	04/12/22 08:23	1
PCB-1248	<0.0079		0.017	0.0079	mg/Kg		04/07/22 04:55	04/12/22 08:23	1
PCB-1254	<0.0057		0.017	0.0057	mg/Kg		04/07/22 04:55	04/12/22 08:23	1
PCB-1260	<0.0063		0.017	0.0063	mg/Kg		04/07/22 04:55	04/12/22 08:23	1
PCB-1262	<0.0055		0.017	0.0055	mg/Kg		04/07/22 04:55	04/12/22 08:23	1
PCB-1268	<0.0097		0.017	0.0097	mg/Kg		04/07/22 04:55	04/12/22 08:23	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Tetrachloro-m-xylene 84 49 - 129 04/07/22 04:55 04/12/22 08:23 DCB Decachlorobiphenyl 90 37 - 121 04/07/22 04:55 04/12/22 08:23

Lab Sample ID: LCS 500-650565/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 651243 Prep Batch: 650565** Spike LCS LCS %Rec

Added D %Rec Limits Analyte Result Qualifier Unit PCB-1016 0.167 0.129 mg/Kg 77 57 - 120 PCB-1260 0.167 0.136 mg/Kg 81 61 - 125

LCS LCS %Recovery Qualifier Surrogate Limits Tetrachloro-m-xylene 86 49 - 129 DCB Decachlorobiphenyl 87 37 - 121

Lab Sample ID: 500-214283-43 MS Client Sample ID: SB-215 0-2 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 651243

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	<0.0072		0.187	0.135		mg/Kg	<u></u>	72	57 - 120	
PCB-1260	< 0.0069		0.187	0.117		mg/Kg	₩	62	61 - 125	

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	80		49 - 129
DCB Decachlorobiphenyl	68		37 - 121

Lab Sample ID: 500-214283-43 MSD Client Sample ID: SB-215 0-2

Matrix: Solid

Analysis Batch: 651243									Prep Ba	tch: 65	50565
-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
PCB-1016	<0.0072		0.188	0.150		mg/Kg	— <u></u>	80	57 - 120	10	30
PCB-1260	<0.0069		0.188	0.133		mg/Kg	≎	71	61 - 125	13	30
	MSD	MSD									

Surrogate %Recovery Qualifier Limits Tetrachloro-m-xylene 88 49 - 129

Eurofins Chicago

4/15/2022

Prep Batch: 650565

Prep Type: Total/NA

Job ID: 500-214283-1

Job ID: 500-214283-1

Prep Type: Total/NA

Prep Batch: 650565

Client Sample ID: SB-215 0-2

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: 500-214283-43 MSD

Matrix: Solid

Analysis Batch: 651243

Client: Stantec Consulting Corp.

MSD MSD

%Recovery Qualifier Limits Surrogate 37 - 121 DCB Decachlorobiphenyl 75

Method: 8151A - Herbicides (GC)

Lab Sample ID: MB 500-649855/1-A

Matrix: Water

Analysis Batch: 650032

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 649855

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<0.54		1.0	0.54	ug/L		04/01/22 09:10	04/04/22 08:19	1
2,4-DB	<0.38		1.0	0.38	ug/L		04/01/22 09:10	04/04/22 08:19	1
Dicamba	<0.36		1.0	0.36	ug/L		04/01/22 09:10	04/04/22 08:19	1
Dichlorprop	<0.38		1.0	0.38	ug/L		04/01/22 09:10	04/04/22 08:19	1
Dichlorprop	<0.38		1.0	0.38	ug/L		04/01/22 09:10	04/04/22 08:19	1
Silvex (2,4,5-TP)	<0.13		1.0	0.13	ug/L		04/01/22 09:10	04/04/22 08:19	1
2,4,5-T	<0.14		1.0	0.14	ug/L		04/01/22 09:10	04/04/22 08:19	1

MB MB %Recovery Qualifier Surrogate Limits Prepared Analyzed Dil Fac DCAA 93 25 - 130 04/01/22 09:10 04/04/22 08:19 DCAA 04/01/22 09:10 04/04/22 08:19 94 25 - 130

Lab Sample ID: LCS 500-649855/2-A

Matrix: Water

Analysis Batch: 650032

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 649855

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D	10.0	6.45		ug/L		65	30 - 115	
2,4-DB	10.0	7.47		ug/L		75	35 - 115	
Dicamba	5.00	4.41		ug/L		88	43 - 110	
Dichlorprop	10.0	7.04		ug/L		70	40 - 110	
Dichlorprop	10.0	6.53		ug/L		65	40 - 110	
Silvex (2,4,5-TP)	2.50	2.06		ug/L		83	32 - 115	
2 4 5-T	2 50	1.45		ua/L		58	30 - 115	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCAA	93		25 - 130
DCAA	90		25 - 130

Lab Sample ID: LCSD 500-649855/3-A

Matrix: Water

Analysis Batch: 650032

Client Sample	ID: Lab	Control	Sample	Dup
---------------	---------	---------	--------	-----

Prep Type: Total/NA

Prep Batch: 649855

Analysis Buton: 000002							i icp be		1000
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-D	10.0	5.85		ug/L		59	30 - 115	10	20
2,4-DB	10.0	6.91		ug/L		69	35 - 115	8	20
Dicamba	5.00	4.51		ug/L		90	43 - 110	2	20
Dichlorprop	10.0	6.82		ug/L		68	40 - 110	3	20
Dichlorprop	10.0	6.54		ug/L		65	40 - 110	0	20

Eurofins Chicago

Page 304 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8151A - Herbicides (GC) (Continued)

Lab Sample ID: LCSD 500-649855/3-A

Matrix: Water

Analysis Batch: 650032

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA **Prep Batch: 649855**

Job ID: 500-214283-1

LCSD LCSD Spike %Rec **RPD** Added Result Qualifier Unit D %Rec Limits RPD Limit Silvex (2,4,5-TP) 2.50 2.06 ug/L 82 32 - 115 0 20 2,4,5-T 2.50 1.35 ug/L 54 30 - 115 20

LCSD LCSD Surrogate %Recovery Qualifier Limits DCAA 97 25 - 130 DCAA 99 25 - 130

Lab Sample ID: MB 500-650302/1-A

Matrix: Solid

Client Sample ID: Method Blank

Prep Type: Total/NA

•	MB	MB						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<79		330	79	ug/Kg		04/05/22 12:40	04/07/22 07:33	10
2,4-DB	<98		330	98	ug/Kg		04/05/22 12:40	04/07/22 07:33	10
Dicamba	<71		330	71	ug/Kg		04/05/22 12:40	04/07/22 07:33	10
Dichlorprop	<82		330	82	ug/Kg		04/05/22 12:40	04/07/22 07:33	10
Silvex (2,4,5-TP)	<75		330	75	ug/Kg		04/05/22 12:40	04/07/22 07:33	10
2,4,5-T	<66		330	66	ug/Kg		04/05/22 12:40	04/07/22 07:33	10
	МВ	МВ							

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac DCAA 84 25 - 120 04/05/22 12:40 04/07/22 07:33

Lab Sample ID: LCS 500-650302/2-A

Matrix: Solid

Analysis Batch: 650580

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 650302

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
2,4-D	1350	727		ug/Kg		54	20 - 115	
2,4-DB	1340	809		ug/Kg		60	20 - 120	
Dicamba	1340	1150		ug/Kg		86	25 - 110	
Dichlorprop	1340	754		ug/Kg		56	25 - 110	
Silvex (2,4,5-TP)	1340	957		ug/Kg		72	29 - 115	
2,4,5-T	1340	743		ug/Kg		56	25 - 115	

LCS LCS

Surrogate %Recovery Qualifier Limits DCAA 25 - 120

Lab Sample ID: MB 500-650483/1-A

Matrix: Solid

Analysis Batch: 651034

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 650483

	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
2,4-D	<79		330	79	ug/Kg		04/06/22 10:55	04/11/22 08:07	10
2,4-DB	<98		330	98	ug/Kg		04/06/22 10:55	04/11/22 08:07	10
Dicamba	<71		330	71	ug/Kg		04/06/22 10:55	04/11/22 08:07	10
Dichlorprop	<82		330	82	ug/Kg		04/06/22 10:55	04/11/22 08:07	10
Silvex (2,4,5-TP)	<75		330	75	ug/Kg		04/06/22 10:55	04/11/22 08:07	10
2,4,5-T	<66		330	66	ug/Kg		04/06/22 10:55	04/11/22 08:07	10

Eurofins Chicago

Page 305 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 8151A - Herbicides (GC) (Continued)

	MB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
DCAA	86		25 - 120	04/06/22 10:55	04/11/22 08:07	10

Lab Sample ID: LCS 500-650483/2-A

Matrix: Solid Analysis Batch: 651034							Prep Type: Total/NA Prep Batch: 650483
7 man, 6.0 2 a.c. m 60 100 1	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
2,4-D	1350	714	-	ug/Kg		53	20 - 115
2,4-DB	1340	903		ug/Kg		67	20 - 120
Dicamba	1340	1200		ug/Kg		90	25 - 110
Dichlorprop	1340	881		ug/Kg		66	25 - 110
Silvex (2,4,5-TP)	1340	1010		ug/Kg		76	29 - 115

831

ug/Kg

1340

LCS LCS

Surrogate %Recovery Qualifier Limits DCAA 88 25 - 120

Lab Sample ID: 500-214283-36 MS

Matrix: Solid

2,4,5-T

Analysis Batch: 651034

Prep Batch: 650483 Sample Sample Spike MS MS %Rec Result Qualifier Result Qualifier Limits Analyte Added Unit D %Rec 2,4-D <100 1690 41 20 - 115 695 ug/Kg ₩ 2,4-DB <120 1680 907 ug/Kg 54 20 - 120 ₩ <90 1680 1150 Dicamba ug/Kg ₩ 68 25 - 110 Dichlorprop <100 1680 848 ug/Kg ₩ 50 25 - 110 <95 1680 976 58 29 - 115 Silvex (2,4,5-TP) ug/Kg ₩ 2,4,5-T <84 1680 789 ug/Kg 47 25 - 115

MS MS

Surrogate %Recovery Qualifier Limits DCAA 25 - 120 70

Lab Sample ID: 500-214283-36 MSD

Matrix: Solid				Prep Type: Total	/NA
Analysis Batch: 651034				Prep Batch: 6504	483
	Sample Sample	Spike	MSD MSD	%Rec I	RPD

	Sample 3	Sampie	Бріке	เพอบ	M2D				%Rec		RPD
Analyte	Result (Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
2,4-D	<100		1700	752		ug/Kg	<u></u>	44	20 - 115	8	30
2,4-DB	<120		1700	962		ug/Kg	₩	57	20 - 120	6	30
Dicamba	<90		1690	1310		ug/Kg	☼	78	25 - 110	14	30
Dichlorprop	<100		1700	915		ug/Kg	₽	54	25 - 110	8	30
Silvex (2,4,5-TP)	<95		1690	1020		ug/Kg	☼	60	29 - 115	4	30
2,4,5-T	<84		1690	844		ug/Kg	☼	50	25 - 115	7	30

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
DCAA	73		25 - 120

Eurofins Chicago

Job ID: 500-214283-1

Client Sample ID: Lab Control Sample

62

25 - 115

Client Sample ID: SB-221 0-2

Client Sample ID: SB-221 0-2

Prep Type: Total/NA

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 537 (modified) - Fluorinated Alkyl Substances

Lab Sample ID: MB 320-577343/1-A

Matrix: Water

13C4 PFHpA

13C4 PFOA

13C5 PFNA

Analysis Batch: 577528

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 577343

Job ID: 500-214283-1

•	MB	МВ						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Perfluorobutanoic acid (PFBA)	<2.4		5.0	2.4	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluoropentanoic acid (PFPeA)	< 0.49		2.0	0.49	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorohexanoic acid (PFHxA)	<0.58		2.0	0.58	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluoroheptanoic acid (PFHpA)	<0.25		2.0	0.25	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorooctanoic acid (PFOA)	<0.85		2.0	0.85	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorononanoic acid (PFNA)	<0.27		2.0	0.27	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorodecanoic acid (PFDA)	<0.31		2.0	0.31	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluoroundecanoic acid (PFUnA)	<1.1		2.0	1.1	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorododecanoic acid (PFDoA)	<0.55		2.0	0.55	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorotridecanoic acid (PFTriA)	<1.3		2.0	1.3	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorotetradecanoic acid (PFTeA)	< 0.73		2.0	0.73	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluoro-n-hexadecanoic acid (PFHxDA)	<0.89		2.0	0.89	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluoro-n-octadecanoic acid (PFODA)	<0.94		2.0	0.94	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorobutanesulfonic acid (PFBS)	<0.20		2.0	0.20	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluoropentanesulfonic acid (PFPeS)	<0.30		2.0	0.30	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorohexanesulfonic acid (PFHxS)	<0.57		2.0	0.57	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluoroheptanesulfonic acid (PFHpS)	<0.19		2.0	0.19	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorooctanesulfonic acid (PFOS)	<0.54		2.0	0.54	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorononanesulfonic acid (PFNS)	<0.37		2.0	0.37	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorodecanesulfonic acid (PFDS)	< 0.32		2.0	0.32	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorododecanesulfonic acid (PFDoS)	<0.97		2.0	0.97	ng/L		04/02/22 06:51	04/03/22 22:26	1
Perfluorooctanesulfonamide (FOSA)	<0.98		2.0	0.98	ng/L		04/02/22 06:51	04/03/22 22:26	1
NEtFOSA	<0.87		2.0	0.87	ng/L		04/02/22 06:51	04/03/22 22:26	1
NMeFOSA	< 0.43		2.0	0.43	ng/L		04/02/22 06:51	04/03/22 22:26	1
NMeFOSAA	<1.2		5.0	1.2	ng/L		04/02/22 06:51	04/03/22 22:26	1
NEtFOSAA	<1.3		5.0	1.3	ng/L		04/02/22 06:51	04/03/22 22:26	1
NMeFOSE	<1.4		4.0	1.4	ng/L		04/02/22 06:51	04/03/22 22:26	1
NEtFOSE	<0.85		2.0	0.85	ng/L		04/02/22 06:51	04/03/22 22:26	1
4:2 FTS	<0.24		2.0	0.24	ng/L		04/02/22 06:51	04/03/22 22:26	1
6:2 FTS	<2.5		5.0	2.5	ng/L		04/02/22 06:51	04/03/22 22:26	1
8:2 FTS	<0.46		2.0	0.46	ng/L		04/02/22 06:51	04/03/22 22:26	1
10:2 FTS	<0.67		2.0	0.67	ng/L		04/02/22 06:51	04/03/22 22:26	1
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	<0.40		2.0	0.40	ng/L		04/02/22 06:51	04/03/22 22:26	1
HFPO-DA (GenX)	<1.5		4.0	1.5	ng/L		04/02/22 06:51	04/03/22 22:26	1
F-53B Major	<0.24		2.0	0.24	ng/L		04/02/22 06:51	04/03/22 22:26	1
F-53B Minor	<0.32		2.0	0.32	ng/L		04/02/22 06:51	04/03/22 22:26	1
	MB	MB							
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
13C4 PFBA	58		25 - 150				04/02/22 06:51	04/03/22 22:26	1
13C5 PFPeA	57		25 - 150				04/02/22 06:51	04/03/22 22:26	1
13C2 PFHxA	63		25 - 150				04/02/22 06:51	04/03/22 22:26	1

Eurofins Chicago

04/02/22 06:51 04/03/22 22:26

04/02/22 06:51 04/03/22 22:26

04/02/22 06:51 04/03/22 22:26

25 - 150

25 - 150

25 - 150

66

67

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: MB 320-577343/1-A

Matrix: Water

Analysis Batch: 577528

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 577343

Job ID: 500-214283-1

	MB	MB				
Isotope Dilution	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
13C2 PFDA	66		25 - 150	04/02/22 06:51	04/03/22 22:26	1
13C2 PFUnA	66		25 - 150	04/02/22 06:51	04/03/22 22:26	1
13C2 PFDoA	60		25 - 150	04/02/22 06:51	04/03/22 22:26	1
13C2 PFTeDA	58		25 - 150	04/02/22 06:51	04/03/22 22:26	1
13C2 PFHxDA	62		25 - 150	04/02/22 06:51	04/03/22 22:26	1
13C3 PFBS	57		25 - 150	04/02/22 06:51	04/03/22 22:26	1
1802 PFHxS	65		25 - 150	04/02/22 06:51	04/03/22 22:26	1
13C4 PFOS	65		25 - 150	04/02/22 06:51	04/03/22 22:26	1
13C8 FOSA	69		10 - 150	04/02/22 06:51	04/03/22 22:26	1
d3-NMeFOSAA	66		25 - 150	04/02/22 06:51	04/03/22 22:26	1
d5-NEtFOSAA	71		25 - 150	04/02/22 06:51	04/03/22 22:26	1
d-N-MeFOSA-M	52		10 - 150	04/02/22 06:51	04/03/22 22:26	1
d-N-EtFOSA-M	52		10 - 150	04/02/22 06:51	04/03/22 22:26	1
d7-N-MeFOSE-M	53		10 - 150	04/02/22 06:51	04/03/22 22:26	1
d9-N-EtFOSE-M	52		10 - 150	04/02/22 06:51	04/03/22 22:26	1
M2-4:2 FTS	86		25 - 150	04/02/22 06:51	04/03/22 22:26	1
M2-6:2 FTS	75		25 - 150	04/02/22 06:51	04/03/22 22:26	1
M2-8:2 FTS	80		25 - 150	04/02/22 06:51	04/03/22 22:26	1
13C3 HFPO-DA	59		25 - 150	04/02/22 06:51	04/03/22 22:26	1
13C2 10:2 FTS	70		25 - 150	04/02/22 06:51	04/03/22 22:26	1

Lab Sample ID: LCS 320-577343/2-A

Matrix: Water

(PFHxS)

Analysis Batch: 577528

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 577343

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Perfluorobutanoic acid (PFBA) 40.0 40.5 ng/L 101 60 - 135 Perfluoropentanoic acid (PFPeA) 40.0 43.1 ng/L 108 60 - 135 Perfluorohexanoic acid (PFHxA) 40.0 40.1 ng/L 100 60 - 135 Perfluoroheptanoic acid (PFHpA) 40.0 45.6 ng/L 114 60 - 135ng/L Perfluorooctanoic acid (PFOA) 40.0 43.6 109 60 - 135 Perfluorononanoic acid (PFNA) 40.0 40.6 ng/L 101 60 - 135 Perfluorodecanoic acid (PFDA) 40.0 43.9 ng/L 110 60 - 135Perfluoroundecanoic acid 40.0 42.2 ng/L 106 60 - 135 (PFUnA) 40.0 60 - 135 44.3 111 Perfluorododecanoic acid ng/L (PFDoA) Perfluorotridecanoic acid 40.0 41.9 ng/L 105 60 - 135 (PFTriA) 40.0 44.3 60 - 135 Perfluorotetradecanoic acid ng/L 111 (PFTeA) Perfluoro-n-hexadecanoic acid 40.0 39.7 ng/L 99 60 - 135 (PFHxDA) 60 - 135 40.0 103 Perfluoro-n-octadecanoic acid 41.2 ng/L (PFODA) Perfluorobutanesulfonic acid 35.4 36.6 ng/L 103 60 - 135 (PFBS) Perfluoropentanesulfonic acid 37.5 41.5 ng/L 111 60 - 135 (PFPeS) Perfluorohexanesulfonic acid 36.4 36.5 ng/L 100 60 - 135

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-577343/2-A

Matrix: Water

Analysis Batch: 577528

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 577343

Job ID: 500-214283-1

Analysis Batch. 577520	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Perfluoroheptanesulfonic acid (PFHpS)	38.1	38.3		ng/L		101	60 - 135
Perfluorooctanesulfonic acid (PFOS)	37.1	37.3		ng/L		101	60 - 135
Perfluorononanesulfonic acid (PFNS)	38.4	37.0		ng/L		96	60 - 135
Perfluorodecanesulfonic acid (PFDS)	38.6	38.4		ng/L		100	60 ₋ 135
Perfluorododecanesulfonic acid (PFDoS)	38.7	37.4		ng/L		97	60 - 135
Perfluorooctanesulfonamide (FOSA)	40.0	38.0		ng/L		95	60 - 135
NEtFOSA	40.0	41.8		ng/L		105	60 - 135
NMeFOSA	40.0	42.1		ng/L		105	60 - 135
NMeFOSAA	40.0	45.8		ng/L		115	60 - 135
NEtFOSAA	40.0	39.0		ng/L		98	60 - 135
NMeFOSE	40.0	42.1		ng/L		105	60 - 135
NEtFOSE	40.0	44.8		ng/L		112	60 - 135
4:2 FTS	37.4	44.4		ng/L		119	60 - 135
6:2 FTS	37.9	49.5		ng/L		130	60 - 135
8:2 FTS	38.3	39.8		ng/L		104	60 - 135
10:2 FTS	38.6	36.9		ng/L		96	60 - 135
4,8-Dioxa-3H-perfluorononanoic acid (ADONA)	37.7	39.8		ng/L		106	60 - 135
HFPO-DA (GenX)	40.0	43.7		ng/L		109	60 - 135
F-53B Major	37.3	37.6		ng/L		101	60 - 135
F-53B Minor	37.7	38.2		ng/L		101	60 - 135

	LCS	LCS	
Isotope Dilution	%Recovery	Qualifier	Limits
13C4 PFBA	75		25 - 150
13C5 PFPeA	72		25 - 150
13C2 PFHxA	82		25 - 150
13C4 PFHpA	84		25 - 150
13C4 PFOA	81		25 - 150
13C5 PFNA	86		25 - 150
13C2 PFDA	79		25 - 150
13C2 PFUnA	83		25 - 150
13C2 PFDoA	77		25 - 150
13C2 PFTeDA	72		25 - 150
13C2 PFHxDA	76		25 - 150
13C3 PFBS	74		25 - 150
1802 PFHxS	79		25 - 150
13C4 PFOS	83		25 - 150
13C8 FOSA	85		10 - 150
d3-NMeFOSAA	79		25 - 150
d5-NEtFOSAA	89		25 - 150
d-N-MeFOSA-M	62		10 - 150
d-N-EtFOSA-M	64		10 - 150
d7-N-MeFOSE-M	64		10 - 150
d9-N-EtFOSE-M	62		10 - 150

Eurofins Chicago

Page 309 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 537 (modified) - Fluorinated Alkyl Substances (Continued)

Lab Sample ID: LCS 320-577343/2-A

Matrix: Water

Analysis Batch: 577528

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 577343

LCS LCS

Isotope Dilution	%Recovery	Qualifier	Limits
M2-4:2 FTS	101		25 - 150
M2-6:2 FTS	85		25 - 150
M2-8:2 FTS	101		25 - 150
13C3 HFPO-DA	74		25 - 150
13C2 10:2 FTS	84		25 - 150

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 500-650362/1-A

Matrix: Solid

Analysis Batch: 650623

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 650362

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.34		1.0	0.34	mg/Kg		04/06/22 01:36	04/06/22 22:53	1
Barium	<0.11		1.0	0.11	mg/Kg		04/06/22 01:36	04/06/22 22:53	1
Cadmium	0.0432	J	0.20	0.036	mg/Kg		04/06/22 01:36	04/06/22 22:53	1
Chromium	0.732	J	1.0	0.50	mg/Kg		04/06/22 01:36	04/06/22 22:53	1
Lead	<0.23		0.50	0.23	mg/Kg		04/06/22 01:36	04/06/22 22:53	1
Selenium	<0.59		1.0	0.59	mg/Kg		04/06/22 01:36	04/06/22 22:53	1
Silver	<0.13		0.50	0.13	mg/Kg		04/06/22 01:36	04/06/22 22:53	1

Lab Sample ID: LCS 500-650362/2-A

Matrix: Solid

Analysis Batch: 650623

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 650362

LCS LCS %Rec Spike **Analyte** Added Result Qualifier Unit D %Rec Limits Arsenic 10.0 8.65 mg/Kg 86 80 - 120 200 Barium 196 mg/Kg 98 80 - 120 Cadmium 5.00 4.48 mg/Kg 90 80 - 120 Chromium 20.0 19.0 mg/Kg 95 80 - 120 Lead 10.0 8.70 mg/Kg 87 80 - 120 Silver mg/Kg 80 - 120 5.00 4.23 85

Lab Sample ID: LCS 500-650362/2-A ^2

Matrix: Solid

Analysis Batch: 650733

•	Prep Type: Total/NA Prep Batch: 650362 %Rec
 - 0/-	,

Client Sample ID: Lab Control Sample

Spike LCS LCS Analyte Added Result Qualifier Unit %Rec Limits 10.0 93 Selenium 9.30 mg/Kg 80 - 120

Lab Sample ID: 500-214283-26 MS

Matrix: Solid

Client Sample ID: SB-217 3-5

Prep Type: Total/NA on Ratch: 650362

Analysis Batch: 650623	Sample	Sample	Spike	MS	MS				%Rec	บอบ
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	1.5		10.1	10.5		mg/Kg	☆	89	75 - 125	
Lead	4 1		10.1	14 2		ma/Ka	₹ †	100	75 - 125	

MSD MSD

11.4

15.1

Result Qualifier

Unit

mg/Kg

mg/Kg

D

Spike

Added

11.1

11.1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Sample Sample

1.5

4.1

Result Qualifier

мв мв

MD MD

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 500-214283-26 MSD

Matrix: Solid

Analyte

Arsenic

Lead

Analysis Batch: 650623

Client Sample ID: SB-217 3-5 Prep Type: Total/NA Prep Batch: 650362

%Rec **RPD** %Rec Limits **RPD** Limit 89 75 - 125 9 20 99 75 - 125 20

Job ID: 500-214283-1

Lab Sample ID: 500-214283-26 DU

Matrix: Solid

Analysis Batch: 650623

Client Sample ID: SB-217 3-5

Prep Type: Total/NA Prep Batch: 650362

_	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	1.5		2.02	F5	mg/Kg	*	30	20
Barium	23		23.8		mg/Kg	₩	2	20
Cadmium	< 0.037		< 0.036		mg/Kg	₩	NC	20
Chromium	12	В	11.5		mg/Kg	₩	0.2	20
Lead	4.1		4.31		mg/Kg	₩	5	20
Selenium	<0.60	F1	<0.58		mg/Kg	₩	NC	20
Silver	<0.13		<0.13		mg/Kg	☼	NC	20

Lab Sample ID: MB 500-650364/1-A

Matrix: Solid

Analysis Batch: 650835

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 650364

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac Barium <0.11 1.0 0.11 mg/Kg 04/06/22 02:01 04/07/22 16:44 04/06/22 02:01 04/07/22 16:44 Chromium < 0.50 1.0 0.50 mg/Kg

Lab Sample ID: MB 500-650364/1-A

Matrix: Solid

Analysis Batch: 651084

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 650364

	IVID	IVID								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Arsenic	<0.34		1.0	0.34	mg/Kg		04/06/22 02:01	04/08/22 15:08	1	
Barium	<0.11		1.0	0.11	mg/Kg		04/06/22 02:01	04/08/22 15:08	1	
Cadmium	0.0550	J	0.20	0.036	mg/Kg		04/06/22 02:01	04/08/22 15:08	1	
Chromium	<0.50		1.0	0.50	mg/Kg		04/06/22 02:01	04/08/22 15:08	1	
Lead	<0.23		0.50	0.23	mg/Kg		04/06/22 02:01	04/08/22 15:08	1	
Selenium	<0.59		1.0	0.59	mg/Kg		04/06/22 02:01	04/08/22 15:08	1	
Silver	<0.13		0.50	0.13	mg/Kg		04/06/22 02:01	04/08/22 15:08	1	

Lab Sample ID: LCS 500-650364/2-A

Matrix: Solid

Analysis Batch: 650835

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 650364

-	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Barium	200	179		mg/Kg		90	80 - 120	
Chromium	20.0	16.7		mg/Kg		84	80 - 120	

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: LCS 500-650364/2-A

Matrix: Solid

Analysis Batch: 651084

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 650364

Job ID: 500-214283-1

Spike LCS LCS %Rec Added Result Qualifier Unit D %Rec Limits Analyte Cadmium 5.00 4.22 mg/Kg 84 80 - 120 Lead 10.0 8.05 mg/Kg 80 80 - 120

10.0

Lab Sample ID: LCS 500-650364/2-A ^2 Client Sample ID: Lab Control Sample

8.03

mg/Kg

Matrix: Solid

Selenium

Analysis Batch: 651175

Prep Type: Total/NA

80

80 - 120

Prep Batch: 650364

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits D 10.0 Arsenic 8.74 mg/Kg 87 80 - 120 5.00 Silver 4.60 mg/Kg 92 80 - 120

Lab Sample ID: 500-214283-36 MS Client Sample ID: SB-221 0-2

Matrix: Solid

Analysis Batch: 650835

Prep Type: Total/NA

Prep Batch: 650364

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Barium 31 244 286 ₩ 105 75 - 125 mg/Kg Chromium 9.4 F1 24.4 41.1 F1 mg/Kg 130 75 - 125

Lab Sample ID: 500-214283-36 MS Client Sample ID: SB-221 0-2

Matrix: Solid

Analysis Batch: 651084

Prep Type: Total/NA

Prep Batch: 650364

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	2.1	F1	12.2	17.1		mg/Kg	-	123	75 - 125	
Cadmium	0.20	JB	6.09	5.75		mg/Kg	₩	91	75 - 125	
Lead	38	F1	12.2	120	F1	mg/Kg	₩	673	75 - 125	
Selenium	<0.66		12.2	10.7		mg/Kg	₩	88	75 - 125	
Silver	0.17	J	6.09	5.43		mg/Kg	₩	86	75 - 125	

Lab Sample ID: 500-214283-36 MSD Client Sample ID: SB-221 0-2 **Matrix: Solid**

Silver

Analysis Batch: 650835

Prep Type: Total/NA **Prep Batch: 650364**

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Barium	31		235	281		mg/Kg	<u></u>	107	75 - 125	2	20	
Chromium	9.4	F1	23.5	43.1	F1	mg/Kg	☼	143	75 - 125	5	20	

Lab Sample ID: 500-214283-36 MSD Client Sample ID: SB-221 0-2 **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 651084

Prep Batch: 650364 Sample Sample Spike MSD MSD %Rec **RPD Analyte** Result Qualifier Added Result Qualifier Unit D %Rec Limits **RPD** Limit 2.1 F1 17.1 F1 Arsenic 11.7 mg/Kg ☼ 128 75 - 125 0 20 Cadmium 0.20 JB 5.87 5.61 mg/Kg ₩ 92 75 - 125 2 20 38 F1 mg/Kg Lead 11.7 107 F1 ₩ 591 75 - 125 11 20 20 Selenium <0.66 11.7 10.8 mg/Kg ☼ 92 75 - 125

5.35

mg/Kg

88

Ö

75 - 125

Eurofins Chicago

5.87

0.17 J

QC Sample Results

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 500-214283-36 DU

Matrix: Solid

Analysis Batch: 650835

Client Sample ID: SB-221 0-2

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650364

	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Barium	31		52.5	F3	mg/Kg	<u></u>	 52	20
Chromium	9.4	F1	14.8	F3	mg/Kg	≎	45	20

Lab Sample ID: 500-214283-36 DU

Matrix: Solid

Analysis Batch: 651084

Client Sample ID: SB-221 0-2

Prep Type: Total/NA

Prep Batch: 650364

	Sample	Sample	DU	DU			•	RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	2.1	F1	6.25	F3	mg/Kg	<u></u>	100	20
Cadmium	0.20	JB	0.322	F5	mg/Kg	₩	48	20
Lead	38	F1	110	F3	mg/Kg	₩	98	20
Selenium	<0.66		<0.65		mg/Kg	₩	NC	20
Silver	0.17	J	0.254	J F5	mg/Kg	₩	39	20

Lab Sample ID: MB 500-650365/1-A

Matrix: Solid

Analysis Batch: 651084

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 650365

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.34		1.0	0.34	mg/Kg		04/06/22 02:37	04/08/22 14:22	1
Lead	< 0.23		0.50	0.23	mg/Kg		04/06/22 02:37	04/08/22 14:22	1

Lab Sample ID: LCS 500-650365/2-A

Matrix: Solid

Analysis Batch: 651084

Sherit Sample ID. Lab Control Sample
Prep Type: Total/NA
Pron Ratch: 650365

_	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	10.0	8.40		mg/Kg		84	80 - 120	
Lead	10.0	8.39		mg/Kg		84	80 - 120	

Lab Sample ID: 500-214283-44 MS

Matrix: Solid

Matrix: Solid

Analysis Batch: 651084

Client Sample ID: SB-215 6-7

Prep Type: Total/NA **Prep Batch: 650365**

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits D Arsenic 1.0 J 9.60 9.57 mg/Kg 89 75 - 125 Lead 15 F1 9.60 20.5 F1 mg/Kg 59 75 - 125

Lab Sample ID: 500-214283-44 MSD

Analysis Batch: 651084

Client Sample ID: SB-215 6-7

Prep Type: Total/NA Prep Batch: 650365

Alialysis Dalcii. 001004									Fieh De	ilcii. Ot	JU303
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Arsenic	1.0	J	11.3	11.0		mg/Kg	<u></u>	88	75 - 125	14	20
Lead	15	F1	11.3	19.6	F1	mg/Kg	≎	42	75 - 125	5	20

QC Sample Results

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 500-214283-44 DU

Matrix: Solid

Analysis Batch: 651084

Client Sample ID: SB-215 6-7

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650365

ı		Sample	Sample	DU	DU				RPD
	Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
	Arsenic	1.0	J	 0.605	J F5	mg/Kg	<u></u>	 52	20
	Lead	15	F1	16.6		mg/Kg	₽	12	20

Lab Sample ID: MB 500-650556/1-A

Matrix: Solid

Analysis Batch: 650836

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 650556

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	<0.34		1.0	0.34	mg/Kg		04/07/22 07:00	04/07/22 22:24	1
Barium	<0.11		1.0	0.11	mg/Kg		04/07/22 07:00	04/07/22 22:24	1
Cadmium	0.0550	J	0.20	0.036	mg/Kg		04/07/22 07:00	04/07/22 22:24	1
Chromium	0.759	J	1.0	0.50	mg/Kg		04/07/22 07:00	04/07/22 22:24	1
Lead	<0.23		0.50	0.23	mg/Kg		04/07/22 07:00	04/07/22 22:24	1
Selenium	<0.59		1.0	0.59	mg/Kg		04/07/22 07:00	04/07/22 22:24	1
Silver	<0.13		0.50	0.13	mg/Kg		04/07/22 07:00	04/07/22 22:24	1

Lab Sample ID: LCS 500-650556/2-A

Matrix: Solid

Analysis Batch: 650836

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 650556

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Arsenic 10.0 88 80 - 120 8.77 mg/Kg Barium 200 193 mg/Kg 96 80 - 120 5.00 Cadmium 4.38 mg/Kg 88 80 - 120 Chromium 20.0 19.5 mg/Kg 97 80 - 120 Lead 10.0 8.43 mg/Kg 84 80 - 120 Selenium 10.0 8.10 mg/Kg 81 80 - 120 Silver 5.00 4.21 80 - 120 mg/Kg

Lab Sample ID: 500-214283-23 MS

Matrix: Solid

Analysis Batch: 650836

Client Sample ID: SB-213 10-12

Prep Type: Total/NA **Prep Batch: 650556**

%Rec

Spike MS MS Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Arsenic 0.64 J 11.8 11.3 ₩ 91 75 - 125 mg/Kg Barium 236 253 75 - 125 33 mg/Kg ₩ 93 Cadmium 0.17 JB 5.91 5.45 mg/Kg ₩ 75 - 125 Chromium 13 B 23.6 34.8 mg/Kg ₩ 91 75 - 125 Lead 3.3 11.8 13.7 mg/Kg 88 75 - 125 9.42 80 Selenium < 0.73 11.8 mg/Kg 75 - 125 Ö

5.46

mg/Kg

5.91

Lab Sample ID: 500-214283-23 MSD

<0.16

Matrix: Solid

Silver

Analysis Batch: 650836

Client Sample ID: SB-213 10-12

75 - 125

92

Prep Type: Total/NA **Prep Batch: 650556**

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Arsenic	0.64	J	10.9	10.2		mg/Kg	<u></u>	88	75 - 125	10	20	
Barium	33		217	236		mg/Kg	₩	94	75 - 125	7	20	

QC Sample Results

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 6010C - Metals (ICP) (Continued)

Lab Sample ID: 500-214283-23 MSD

Matrix: Solid

Analysis Batch: 650836

Client Sample ID: SB-213 10-12

Prep Type: Total/NA

Job ID: 500-214283-1

Prep Batch: 650556

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Cadmium	0.17	JB	5.44	5.04		mg/Kg	— <u>—</u>	90	75 - 125	8	20
Chromium	13	В	21.7	33.1		mg/Kg	₩	91	75 - 125	5	20
Lead	3.3		10.9	13.1		mg/Kg	₩	90	75 - 125	5	20
Selenium	< 0.73		10.9	8.41		mg/Kg	₩	77	75 - 125	11	20
Silver	<0.16		5.44	5.00		mg/Kg	₩	92	75 - 125	9	20

Lab Sample ID: 500-214283-23 DU

Matrix: Solid

Analysis Batch: 650836

Client Sample ID: SB-213 10-12

Prep Type: Total/NA

Prep Batch: 650556

Allalysis Datell. 000	000						i rep Dateii. o	00000
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Arsenic	0.64	J	0.495	J F5	mg/Kg	*		20
Barium	33		33.4		mg/Kg	₩	2	20
Cadmium	0.17	JB	0.110	J F5	mg/Kg	₩	41	20
Chromium	13	В	13.1		mg/Kg	₩	1	20
Lead	3.3		3.32		mg/Kg	₩	1	20
Selenium	<0.73		<0.62		mg/Kg	₩	NC	20
Silver	<0.16		<0.14		mg/Kg	₩	NC	20
-								

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 500-650541/1-A

Matrix: Water

Analysis Batch: 650728

Client Sample ID: Method Blank Prep Type: Total Recoverable

Prep Batch: 650541

Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 04/06/22 17:04 04/07/22 10:30 0.0010 Arsenic < 0.00023 0.00023 mg/L Barium 0.0025 0.00073 mg/L 04/06/22 17:04 04/07/22 10:30 < 0.00073 Cadmium 04/06/22 17:04 04/07/22 10:30 < 0.00017 0.00050 0.00017 mg/L Chromium 04/06/22 17:04 04/07/22 10:30 < 0.0011 0.0050 0.0011 mg/L Lead < 0.00019 0.00050 0.00019 mg/L 04/06/22 17:04 04/07/22 10:30 0.00098 mg/L 04/06/22 17:04 04/07/22 10:30 Selenium <0.00098 0.0025

0.00050

0.00012 mg/L

MB MB

< 0.00012

Lab Sample ID: LCS 500-650541/2-A

Matrix: Water

Silver

Analysis Batch: 650728

Client Sample ID: Lab Control Sample Prep Type: Total Recoverable

04/06/22 17:04 04/07/22 10:30

Prep Batch: 650541

7 maryolo Batom 6007 20	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	0.100	0.101		mg/L		101	80 - 120
Barium	0.500	0.523		mg/L		105	80 - 120
Cadmium	0.0500	0.0506		mg/L		101	80 - 120
Chromium	0.200	0.205		mg/L		103	80 - 120
Lead	0.100	0.0994		mg/L		99	80 - 120
Selenium	0.100	0.101		mg/L		101	80 - 120
Silver	0.0500	0.0492		mg/L		98	80 - 120

Job ID: 500-214283-1

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 500-650273/12-A Client Sample ID: Method Blank

Matrix: Water

Analysis Batch: 650513

Client: Stantec Consulting Corp.

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.00020 04/05/22 10:50 04/06/22 10:06 Mercury <0.000098 0.000098 mg/L

Lab Sample ID: LCS 500-650273/13-A **Client Sample ID: Lab Control Sample Matrix: Water** Prep Type: Total/NA

Analyte

Mercury

Analysis Batch: 650513

Spike Added 0.00200

LCS LCS 0.00216

Result Qualifier

Unit mg/L

D %Rec 108

80 - 120

%Rec Limits

Prep Type: Total/NA **Prep Batch: 650273**

Prep Batch: 650273

Prep Batch: 650632

Prep Type: Total/NA

Prep Batch: 650632

Prep Type: Total/NA

Prep Batch: 650632

Prep Type: Total/NA

Prep Batch: 650632

RPD

52

RPD

Limit

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 500-650632/12-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 650935

MB MB

Analyte

Mercury <0.0056

Result Qualifier

RL 0.017

MDL Unit 0.0056 mg/Kg

LCS LCS

Prepared

Analyzed 04/07/22 13:45 04/08/22 11:12

Dil Fac

Lab Sample ID: LCS 500-650632/13-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 650935

Analyte Mercury

Spike Added 0.167

Result Qualifier 0.165

Unit mq/Kq

D %Rec 99

80 - 120 Client Sample ID: SB-221 0-2

%Rec

Limits

Lab Sample ID: 500-214283-36 MS

Matrix: Solid

Analysis Batch: 650935

Analyte Mercury

Sample Sample Result Qualifier

Sample Sample

Result Qualifier Added 0.080 F1 F2 0.0973

Spike

Spike

Added

0.0981

Result Qualifier 0.312 F1

MS MS

MSD MSD

0.184 F2

Result Qualifier

Unit

mg/Kg

Unit mg/Kg

%Rec Limits 239

75 - 125

Client Sample ID: SB-221 0-2

%Rec

%Rec

Limits

75 - 125

Lab Sample ID: 500-214283-36 MSD

Matrix: Solid

Analysis Batch: 650935

Analyte

0.080 F1 F2 Mercury Lab Sample ID: 500-214283-36 DU

Matrix: Solid

Analysis Batch: 650935

Analyte Result Qualifier 0.080 F1 F2 Mercury

Sample Sample

DU DU 0.144 F3

Result Qualifier Unit mg/Kg

%Rec

106

D

D

Client Sample ID: SB-221 0-2

Prep Type: Total/NA **Prep Batch: 650632**

RPD RPD Limit

Eurofins Chicago

4/15/2022

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-236 3.5-5

Date Collected: 03/23/22 09:20

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-1

Matrix: Solid

Job ID: 500-214283-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650474	04/06/22 10:50	LWN	TAL CHI

Client Sample ID: SB-236 3.5-5

Date Collected: 03/23/22 09:20

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-1

Matrix: Solid Percent Solids: 76.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 09:20	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 11:59	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		5	650605	04/07/22 14:29	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		5	650373	04/06/22 13:33	SS	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8082A		1	650870	04/08/22 18:57	JBJ	TAL CHI
Total/NA	Prep	8151A			650302	04/05/22 12:40	DAK	TAL CHI
Total/NA	Analysis	8151A		10	650580	04/07/22 14:20	JBJ	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 23:16	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Total/NA	Analysis	7471B		2	650935	04/08/22 12:16	MJG	TAL CHI

Client Sample ID: SB-236 6-7

Date Collected: 03/23/22 09:25

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-2

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650474	04/06/22 10:50	LWN	TAL CHI

Client Sample ID: SB-236 6-7

Date Collected: 03/23/22 09:25

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-2 **Matrix: Solid** Percent Solids: 74.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 09:25	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 12:22	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650611	04/07/22 09:34	JSB	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 23:19	JJB	TAL CHI

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Lab Sample ID: 500-214283-3 Client Sample ID: SB-234 3.5-4.5

Date Collected: 03/23/22 09:55 Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650474	04/06/22 10:50	LWN	TAL CHI

Client Sample ID: SB-234 3.5-4.5

Lab Sample ID: 500-214283-3 Date Collected: 03/23/22 09:55 **Matrix: Solid**

Date Received: 03/29/22 10:20 Percent Solids: 72.0

		<u> </u>						
-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 09:55	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 12:44	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		5	651252	04/12/22 13:22	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		5	650373	04/06/22 13:54	SS	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8082A		1	650870	04/08/22 19:13	JBJ	TAL CHI
Total/NA	Prep	8151A			650302	04/05/22 12:40	DAK	TAL CHI
Total/NA	Analysis	8151A		10	650580	04/07/22 14:40	JBJ	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 23:32	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Total/NA	Analysis	7471B		1	650935	04/08/22 11:21	MJG	TAL CHI

Client Sample ID: SB-234 4.5-6.5

Lab Sample ID: 500-214283-4 Date Collected: 03/23/22 10:00 Matrix: Solid

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650474	04/06/22 10:50	LWN	TAL CHI

Lab Sample ID: 500-214283-4 **Client Sample ID: SB-234 4.5-6.5**

Date Collected: 03/23/22 10:00 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 83.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 10:00	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 13:07	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650611	04/07/22 09:57	JSB	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 23:35	JJB	TAL CHI

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-229 1-3

Date Collected: 03/23/22 11:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-5

Lab Sample ID: 500-214283-6

Lab

TAL CHI

Matrix: Solid

Job ID: 500-214283-1

Batch Dilution Batch **Prepared** Method **Factor** Number or Analyzed Analyst **Prep Type** Type Run Total/NA Analysis Moisture 650474 04/06/22 10:50 LWN

Client Sample ID: SB-229 1-3 Lab Sample ID: 500-214283-5

Date Collected: 03/23/22 11:10

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 87.0

		••						
-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 11:10	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 13:30	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650605	04/07/22 16:04	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		1	650373	04/06/22 14:15	SS	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
「otal/NA	Analysis	8082A		1	650870	04/08/22 19:29	JBJ	TAL CHI
Total/NA	Prep	8151A			650302	04/05/22 12:40	DAK	TAL CHI
Total/NA	Analysis	8151A		10	650580	04/07/22 14:59	JBJ	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 23:39	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Total/NA	Analysis	7471B		1	650935	04/08/22 11:24	MJG	TAL CHI

Client Sample ID: SB-229 4-5

Date Collected: 03/23/22 11:15

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650474	04/06/22 10:50	LWN	TAL CHI

Client Sample ID: SB-229 4-5 Lab Sample ID: 500-214283-6

Date Collected: 03/23/22 11:15

Date Received: 03/29/22 10:20

Matrix: Solid
Percent Solids: 86.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650611	04/07/22 10:19	JSB	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 23:42	JJB	TAL CHI

Client Sample ID: SB-229 5-7 Lab Sample ID: 500-214283-7

Date Collected: 03/23/22 11:20 Matrix: Solid

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			650474	04/06/22 10:50	LWN	TAL CHI

Eurofins Chicago

Л

5

7

40

12

14

16

Client: Stantec Consulting Corp.

Date Received: 03/29/22 10:20

Total/NA

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

8260B

Client Sample ID: SB-229 5-7

Lab Sample ID: 500-214283-7 Date Collected: 03/23/22 11:20 Matrix: Solid

649615 03/31/22 13:53

JDD

TAL CHI

TAL CHI

Percent Solids: 88.0

Job ID: 500-214283-1

Dilution Batch Ratch Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA 5035 03/23/22 11:20 WRE TAL CHI Prep 649332

Client Sample ID: SB-230 3.5-4.5 Lab Sample ID: 500-214283-8

50

Date Collected: 03/23/22 11:35 Matrix: Solid

Date Received: 03/29/22 10:20

Analysis

Batch Batch Dilution Batch **Prepared Prep Type** Method Number or Analyzed Type Run **Factor** Analyst Lab TAL CHI Total/NA Analysis Moisture 650474 04/06/22 10:50 LWN

Client Sample ID: SB-230 3.5-4.5 Lab Sample ID: 500-214283-8

Date Collected: 03/23/22 11:35 Matrix: Solid Date Received: 03/29/22 10:20 Percent Solids: 81.1

Batch Batch Dilution Batch **Prepared** Method or Analyzed Analyst Lab **Prep Type** Type Run **Factor** Number Total/NA Prep 5035 03/23/22 11:35 WRE TAL CHI 649332 Total/NA Analysis 8260B 50 649615 03/31/22 14:16 JDD TAL CHI Total/NA TAL CHI Prep 3541 650394 04/06/22 06:52 FRG Total/NA Analysis 8270D 650256 04/08/22 18:09 JSB TAL CHI Total/NA Prep 3541 650339 04/05/22 16:57 JP1 TAL CHI Total/NA Analysis 8081A 5 650373 04/06/22 14:35 SS TAL CHI Total/NA TAL CHI Prep 3541 650339 04/05/22 16:57 JP1 Total/NA 8082A 650870 04/08/22 19:45 JBJ TAL CHI Analysis 1 Total/NA 04/05/22 12:40 DAK TAL CHI Prep 8151A 650302 Total/NA 650580 TAL CHI Analysis 8151A 10 04/07/22 15:38 .IB.I Total/NA 3050B TAL CHI Prep 650362 04/06/22 01:36 WRE Total/NA 6010C 650623 04/06/22 23:45 JJB TAL CHI Analysis Total/NA 7471B 650632 04/07/22 13:45 MJG TAL CHI Prep

Client Sample ID: SB-230 4.5-6 Lab Sample ID: 500-214283-9

1

650935

04/08/22 11:26 MJG

Date Collected: 03/23/22 11:40 Date Received: 03/29/22 10:20

Analysis

7471B

Total/NA

Batch **Batch** Dilution **Prepared** Batch Method Factor or Analyzed Prep Type Type Run Number **Analyst** Lab Total/NA 650474 04/06/22 10:50 LWN TAL CHI Analysis Moisture

Client Sample ID: SB-230 4.5-6 Lab Sample ID: 500-214283-9

Date Collected: 03/23/22 11:40 Matrix: Solid Date Received: 03/29/22 10:20 Percent Solids: 92.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650611	04/07/22 10:42	JSB	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 23:49	JJB	TAL CHI

Eurofins Chicago

Page 320 of 356

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-230 8-10

Date Collected: 03/23/22 11:45

Date Received: 03/29/22 10:20

Batch Batch Dilution Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA Analysis 650474 04/06/22 10:50 LWN TAL CHI Moisture

Client Sample ID: SB-230 8-10

Date Collected: 03/23/22 11:45

Matrix: Solid Date Received: 03/29/22 10:20 Percent Solids: 86.9 Batch Batch Dilution Batch Prepared

Prep Type Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Prep 5035 649332 03/23/22 11:45 WRE TAL CHI Total/NA Analysis 8260B 50 649615 03/31/22 14:39 JDD TAL CHI

Client Sample ID: SB-231 5-7

Date Collected: 03/23/22 12:00

Date Received: 03/29/22 10:20

Dilution Batch **Batch** Batch **Prepared Prep Type** Method Run Factor Number or Analyzed Lab Type **Analyst** Total/NA 650474 04/06/22 10:50 LWN TAL CHI Analysis Moisture

Client Sample ID: SB-231 5-7

Lab Sample ID: 500-214283-11 Date Collected: 03/23/22 12:00 **Matrix: Solid** Date Received: 03/29/22 10:20 Percent Solids: 84.2

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 12:00	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 15:03	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650256	04/08/22 18:33	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		5	650373	04/06/22 14:56	SS	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8082A		1	650870	04/08/22 20:01	JBJ	TAL CHI
Total/NA	Prep	8151A			650302	04/05/22 12:40	DAK	TAL CHI
Total/NA	Analysis	8151A		10	650580	04/07/22 15:57	JBJ	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 23:52	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Total/NA	Analysis	7471B		1	650935	04/08/22 11:28	MJG	TAL CHI

Client Sample ID: SB-231 8.25-10

Date Collected: 03/23/22 12:05

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650474	04/06/22 10:50	LWN	TAL CHI

Eurofins Chicago

Matrix: Solid

Job ID: 500-214283-1

Matrix: Solid

Matrix: Solid

Lab Sample ID: 500-214283-10

Lab Sample ID: 500-214283-10

Lab Sample ID: 500-214283-11

Lab Sample ID: 500-214283-12

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-231 8.25-10

Date Collected: 03/23/22 12:05 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-12

Matrix: Solid

Percent Solids: 87.3

Job ID: 500-214283-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 12:05	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 15:26	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650611	04/07/22 11:05	JSB	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 23:55	JJB	TAL CHI

Client Sample ID: SB-224 1-3

Date Collected: 03/23/22 13:30 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-13

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture	_	1	650485	04/06/22 11:24	LWN	TAL CHI

Client Sample ID: SB-224 1-3

Date Collected: 03/23/22 13:30 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-13

Matrix: Solid

Percent Solids: 80.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 13:30	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 15:49	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		5	651252	04/12/22 14:09	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		5	650373	04/06/22 15:17	SS	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8082A		1	650870	04/08/22 20:16	JBJ	TAL CHI
Total/NA	Prep	8151A			650302	04/05/22 12:40	DAK	TAL CHI
Total/NA	Analysis	8151A		10	650580	04/07/22 16:17	JBJ	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 23:59	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Total/NA	Analysis	7471B		1	650935	04/08/22 11:31	MJG	TAL CHI

Client Sample ID: SB-224 7-8

Date Collected: 03/23/22 13:35 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-14

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650485	04/06/22 11:24	LWN	TAL CHI

Eurofins Chicago

3

5

7

10

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-224 7-8

Lab Sample ID: 500-214283-14 Date Collected: 03/23/22 13:35 Matrix: Solid

Percent Solids: 82.1

Job ID: 500-214283-1

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 13:35	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 16:12	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650611	04/07/22 11:27	JSB	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/07/22 00:02	JJB	TAL CHI

Client Sample ID: SB-222 6.5-8

Date Collected: 03/23/22 13:45 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-15

Matrix: Solid

Batch Dilution Batch **Prepared** Batch **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 650485 04/06/22 11:24 LWN TAL CHI

Client Sample ID: SB-222 6.5-8

Lab Sample ID: 500-214283-15

Date Collected: 03/23/22 13:45 Matrix: Solid Date Received: 03/29/22 10:20 Percent Solids: 90.7

Batch **Batch** Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab TAL CHI Total/NA Prep 5035 649332 03/23/22 13:45 WRE Total/NA Analysis 8260B 50 649615 03/31/22 16:35 TAL CHI Total/NA Prep 3541 650394 04/06/22 06:52 FRG TAL CHI Total/NA 8270D 50 651037 04/11/22 14:42 JSB TAL CHI Analysis Total/NA TAL CHI Prep 3541 650339 04/05/22 16:57 JP1 Total/NA 8081A 650373 TAL CHI Analysis 50 04/06/22 16:19 SS 3541 TAL CHI Total/NA Prep 650339 04/05/22 16:57 JP1 Total/NA 8082A 650870 04/08/22 20:32 JBJ TAL CHI Analysis 1 8151A 650302 04/05/22 12:40 DAK TAL CHI Total/NA Prep Total/NA 10 650580 TAL CHI Analysis 8151A 04/07/22 16:36 JBJ Total/NA Prep 3050B 650362 04/06/22 01:36 WRE TAL CHI Total/NA 650623 04/07/22 00:16 JJB TAL CHI Analysis 6010C 1 650632 04/07/22 13:45 MJG TAL CHI Total/NA Prep 7471B Analysis TAL CHI Total/NA 7471B 1 650935 04/08/22 11:33 MJG

Client Sample ID: SB-222 9-10

Lab Sample ID: 500-214283-16 Date Collected: 03/23/22 13:50 **Matrix: Solid**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650485	04/06/22 11:24	LWN	TAL CHI

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-222 9-10

Date Collected: 03/23/22 13:50 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-16

Matrix: Solid

Percent Solids: 85.4

Job ID: 500-214283-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 13:50	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 16:58	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650611	04/07/22 11:50	JSB	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/07/22 00:19	JJB	TAL CHI

Client Sample ID: SB-216 7-8

Date Collected: 03/23/22 14:15 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-17

Matrix: Solid

Batch Dilution Batch **Prepared** Batch **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 650485 04/06/22 11:24 LWN TAL CHI

Client Sample ID: SB-216 7-8

Date Collected: 03/23/22 14:15 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-17

Matrix: Solid Percent Solids: 88.9

Batch **Batch** Dilution Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab TAL CHI Total/NA Prep 3541 650394 04/06/22 06:52 FRG Total/NA Analysis 8270D 1 650256 04/08/22 19:21 JSB TAL CHI 650339 04/05/22 16:57 JP1 Total/NA Prep 3541 TAL CHI Total/NA 8081A 5 650373 04/06/22 16:39 SS TAL CHI Analysis Total/NA TAL CHI Prep 3541 650339 04/05/22 16:57 JP1 Total/NA 8082A 650870 04/08/22 20:48 JBJ Analysis 1 TAL CHI 8151A TAL CHI Total/NA Prep 650302 04/05/22 12:40 DAK Total/NA 8151A 650580 04/07/22 16:56 JBJ TAL CHI Analysis 10 Total/NA 3050B 650362 04/06/22 01:36 WRE TAL CHI Prep Total/NA 6010C 650623 04/07/22 00:22 JJB TAL CHI Analysis 1 TAL CHI Total/NA Prep 7471B 650632 04/07/22 13:45 MJG Total/NA Analysis 7471B 650935 04/08/22 11:34 MJG TAL CHI 1

Client Sample ID: SB-216 8-8.5

Date Collected: 03/23/22 14:20 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-18

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650654	04/07/22 09:48	LWN	TAL CHI

Client Sample ID: SB-216 8-8.5

Date Collected: 03/23/22 14:20

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-18 **Matrix: Solid**

Percent Solids: 78.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 14:20	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 19:16	JDD	TAL CHI

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-216 10-11

Date Collected: 03/23/22 14:25

Date Received: 03/29/22 10:20

Prepared

Batch Batch Dilution Batch Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA Analysis 650485 04/06/22 11:24 LWN TAL CHI Moisture

Client Sample ID: SB-216 10-11

Date Collected: 03/23/22 14:25 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-19 **Matrix: Solid**

Lab Sample ID: 500-214283-20

TAL CHI

Lab Sample ID: 500-214283-19

Percent Solids: 84.8

Job ID: 500-214283-1

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 14:25	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 17:21	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650611	04/07/22 12:13	JSB	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/07/22 00:26	JJB	TAL CHI

Client Sample ID: SB-237 1-2

Date Collected: 03/23/22 15:05

Lab Sample ID: 500-214283-20 **Matrix: Solid**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650485	04/06/22 11:24	LWN	TAL CHI

Client Sample ID: SB-237 1-2

Analysis

7471B

Total/NA

Date Collected Date Received								Matrix: Solid Percent Solids: 87.1
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 15:05	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 17:44	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		20	651037	04/11/22 15:06	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		1	650373	04/06/22 17:00	SS	TAL CHI

Total/NA Prep 3541 650339 04/05/22 16:57 JP1 TAL CHI Total/NA Analysis 8082A 1 650870 04/08/22 21:04 JBJ TAL CHI Total/NA Prep 8151A 650302 04/05/22 12:40 DAK TAL CHI TAL CHI Total/NA Analysis 8151A 10 650580 04/07/22 17:15 JBJ Total/NA Prep 3050B 650362 04/06/22 01:36 WRE TAL CHI TAL CHI Total/NA Analysis 6010C 1 650623 04/07/22 00:29 JJB Total/NA Prep 7471B 650632 04/07/22 13:45 MJG TAL CHI

Eurofins Chicago

1

650935 04/08/22 11:36 MJG

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-237 9-10

Date Collected: 03/23/22 15:10

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-21

Matrix: Solid

Job ID: 500-214283-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650485	04/06/22 11:24	LWN	TAL CHI

Client Sample ID: SB-237 9-10

Date Collected: 03/23/22 15:10 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-21 **Matrix: Solid**

Percent Solids: 72.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/23/22 15:10	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 18:07	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650611	04/07/22 12:35	JSB	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/07/22 00:32	JJB	TAL CHI

Client Sample ID: SB-213 0-2

Date Collected: 03/24/22 09:10

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-22

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650485	04/06/22 11:24	LWN	TAL CHI

Client Sample ID: SB-213 0-2

Date Collected: 03/24/22 09:10

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-7	22
Matrix: So	lid
Percent Solids: 70).1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/24/22 09:10	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 18:30	JDD	TAL CHI
Total/NA	Prep	3541			650394	04/06/22 06:52	FRG	TAL CHI
Total/NA	Analysis	8270D		10	651037	04/11/22 15:29	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		5	650373	04/06/22 17:21	SS	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8082A		1	650870	04/08/22 21:20	JBJ	TAL CHI
Total/NA	Prep	8151A			650302	04/05/22 12:40	DAK	TAL CHI
Total/NA	Analysis	8151A		10	650580	04/07/22 17:34	JBJ	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/07/22 00:36	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Total/NA	Analysis	7471B		1	650935	04/08/22 11:42	MJG	TAL CH

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-213 10-12

Date Collected: 03/24/22 09:15

Date Received: 03/29/22 10:20

		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	Moisture		1	650485	04/06/22 11:24	LWN	TAL CHI

Client Sample ID: SB-213 10-12

Date Collected: 03/24/22 09:15

Date Received	d: 03/29/22 1	0:20						Percent Solids: 79.2
_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649332	03/24/22 09:15	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649615	03/31/22 18:53	JDD	TAL CHI

Total/NA TAL CHI Prep 3541 650394 04/06/22 06:52 FRG Total/NA Analysis 8270D 1 650611 04/07/22 12:58 JSB TAL CHI Total/NA 3050B 650556 04/07/22 07:00 LMB TAL CHI Prep Total/NA Analysis 6010C 1 650836 04/07/22 22:30 JJB TAL CHI Lab Sample ID: 500-214283-24

Client Sample ID: SB-217 0-2

Date Collected: 03/24/22 10:10 Date Received: 03/29/22 10:20

Dilution Batch Batch **Batch Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 650485 04/06/22 11:24 LWN TAL CHI

Client Sample ID: SB-217 0-2	Lab Sample ID: 500-214283-24
Date Collected: 03/24/22 10:10	Matrix: Solid
Date Received: 03/29/22 10:20	Percent Solids: 78.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 10:10	WRE	TAL CH
Total/NA	Analysis	8260B		50	649801	04/01/22 12:25	JDD	TAL CH
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CH
Total/NA	Analysis	8270D		10	651037	04/11/22 18:15	JSB	TAL CH
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CH
Total/NA	Analysis	8081A		5	650373	04/06/22 17:41	SS	TAL CH
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CH
Total/NA	Analysis	8082A		1	650870	04/08/22 21:35	JBJ	TAL CH
Total/NA	Prep	8151A			650302	04/05/22 12:40	DAK	TAL CH
Total/NA	Analysis	8151A		10	650580	04/07/22 17:54	JBJ	TAL CH
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CH
Total/NA	Analysis	6010C		1	650835	04/07/22 17:17	JJB	TAL CH
Total/NA	Prep	3050B			650556	04/07/22 07:00	LMB	TAL CH
Total/NA	Analysis	6010C		1	650836	04/07/22 22:47	JJB	TAL CH
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CH
Total/NA	Analysis	7471B		1	650935	04/08/22 11:44	MJG	TAL CH

Eurofins Chicago

Job ID: 500-214283-1

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Sample ID: 500-214283-23

Lab Sample ID: 500-214283-23

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-217 9-10

Date Collected: 03/24/22 10:15

Lab Sample ID: 500-214283-25 **Matrix: Solid**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			650485	04/06/22 11:24	LWN	TAL CHI

Client Sample ID: SB-217 9-10

Date Collected: 03/24/22 10:15

Date Received: 03/29/22 10:20

Lab Sample	ID:	500-214283-25
•		Matrix: Solid

Percent Solids: 55.1

Job ID: 500-214283-1

Prep Type	Batch Type	Batch Method	Run	Dilution Factor	Batch Number	Prepared or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 10:15		TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 12:48		TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 14:10	JSB	TAL CHI
Total/NA	Prep	3050B			650556	04/07/22 07:00	LMB	TAL CHI
Total/NA	Analysis	6010C		1	650836	04/07/22 22:50	JJB	TAL CHI

Client Sample ID: SB-217 3-5

Date Collected: 03/24/22 10:20

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-26

Matrix: Solid

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650485	04/06/22 11:24	LWN	TAL CHI

Client Sample ID: SB-217 3-5

Date Collected: 03/24/22 10:20

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-

Lab Sample ID: 500-214283-27

Matrix: Solid

Matrix: Solid

Percent Solids: 84.4

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 10:20	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 13:11	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 14:33	JSB	TAL CHI
Total/NA	Prep	3050B			650362	04/06/22 01:36	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650623	04/06/22 22:59	JJB	TAL CHI

Client Sample ID: SB-223 4-6

Date Collected: 03/24/22 10:25

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Analysis	Moisture			650485	04/06/22 11:24	LWN	TAL CHI	_

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Job ID: 500-214283-1

Client Sample ID: SB-223 4-6

Lab Sample ID: 500-214283-27 Date Collected: 03/24/22 10:25 **Matrix: Solid** Date Received: 03/29/22 10:20

Percent Solids: 71.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 10:25	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 13:34	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		5	651037	04/11/22 16:40	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		1	650373	04/06/22 18:02	SS	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8082A		1	650870	04/08/22 21:51	JBJ	TAL CHI
Total/NA	Prep	8151A			650302	04/05/22 12:40	DAK	TAL CHI
Total/NA	Analysis	8151A		10	650580	04/07/22 18:13	JBJ	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650835	04/07/22 17:23	JJB	TAL CHI
Total/NA	Prep	3050B			650556	04/07/22 07:00	LMB	TAL CHI
Total/NA	Analysis	6010C		1	650836	04/07/22 23:00	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Total/NA	Analysis	7471B		1	650935	04/08/22 11:46	MJG	TAL CHI

Client Sample ID: FD-1 Lab Sample ID: 500-214283-28

Matrix: Solid

Date Collected: 03/24/22 10:21 Date Received: 03/29/22 10:20

Dilution Batch Batch Batch Prepared **Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Total/NA Analysis Moisture 650485 04/06/22 11:24 LWN TAL CHI

Client Sample ID: FD-1 Lab Sample ID: 500-214283-28 Date Collected: 03/24/22 10:21 **Matrix: Solid**

Date Received: 03/29/22 10:20 Percent Solids: 83.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 10:21	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 13:57	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 15:40	JSB	TAL CHI
Total/NA	Prep	3050B			650556	04/07/22 07:00	LMB	TAL CHI
Total/NA	Analysis	6010C		1	650836	04/07/22 23:03	JJB	TAL CHI

Lab Sample ID: 500-214283-29 Client Sample ID: SB-223 9-10 **Matrix: Solid**

Date Collected: 03/24/22 10:30 Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650485	04/06/22 11:24	LWN	TAL CHI

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-223 9-10

Date Collected: 03/24/22 10:30

Lab Sample ID: 500-214283-29

Matrix: Solid

Percent Solids: 78.1

Job ID: 500-214283-1

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 10:30	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 14:20	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 16:03	JSB	TAL CHI
Total/NA	Prep	3050B			650556	04/07/22 07:00	LMB	TAL CHI
Total/NA	Analysis	6010C		1	650836	04/07/22 23:07	JJB	TAL CHI

Lab Sample ID: 500-214283-30

Matrix: Solid

Date Collected: 03/24/22 11:05 Date Received: 03/29/22 10:20

Client Sample ID: SB-220 4-5

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA Analysis Moisture 650485 04/06/22 11:24 LWN TAL CHI

Client Sample ID: SB-220 4-5

Lab Sample ID: 500-214283-30

Matrix: Solid

Date Collected: 03/24/22 11:05 Date Received: 03/29/22 10:20

Percent Solids: 70.8

Γ	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 11:05	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 14:43	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650792	04/08/22 16:27	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		1	650373	04/06/22 18:22	SS	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8082A		1	650870	04/08/22 22:07	JBJ	TAL CHI
Total/NA	Prep	8151A			650302	04/05/22 12:40	DAK	TAL CHI
Total/NA	Analysis	8151A		10	650580	04/07/22 18:33	JBJ	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650835	04/07/22 17:32	JJB	TAL CHI
Total/NA	Prep	3050B			650556	04/07/22 07:00	LMB	TAL CHI
Total/NA	Analysis	6010C		1	650836	04/07/22 23:10	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Total/NA	Analysis	7471B		1	650935	04/08/22 11:48	MJG	TAL CHI

Client Sample ID: SB-220 14.75-15

Lab Sample ID: 500-214283-31

Matrix: Solid

Date Collected: 03/24/22 11:10 Date Received: 03/29/22 10:20

Batch **Batch** Dilution **Batch** Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis Moisture 650485 04/06/22 11:24 LWN TAL CHI

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-220 14.75-15

Date Collected: 03/24/22 11:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-31

Matrix: Solid

Percent Solids: 63.0

Job ID: 500-214283-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 11:10	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 15:06	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 16:26	JSB	TAL CHI
Total/NA	Prep	3050B			650556	04/07/22 07:00	LMB	TAL CHI
Total/NA	Analysis	6010C		1	650836	04/07/22 23:13	JJB	TAL CHI

Client Sample ID: SB-225 2-4

Date Collected: 03/24/22 11:25 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-32

Matrix: Solid

Dilution Batch Batch Batch **Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 650509 04/06/22 12:24 LWN TAL CHI

Client Sample ID: SB-225 2-4

Date Collected: 03/24/22 11:25 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-32

Matrix: Solid

Percent Solids: 74.2

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab TAL CHI Total/NA Prep 5035 649333 03/24/22 11:25 WRE Total/NA Analysis 8260B 50 649801 04/01/22 15:29 TAL CHI JDD Total/NA TAL CHI Prep 3541 650567 04/07/22 05:35 FRG Total/NA 8270D 5 04/11/22 17:04 JSB TAL CHI Analysis 651037 Total/NA TAL CHI Prep 3541 650339 04/05/22 16:57 JP1 Total/NA 8081A TAL CHI Analysis 1 650373 04/06/22 18:43 SS 3541 TAL CHI Total/NA Prep 650339 04/05/22 16:57 JP1 Total/NA 8082A 650870 04/08/22 22:23 JBJ TAL CHI Analysis 1 8151A 650483 04/06/22 10:55 TS TAL CHI Total/NA Prep TAL CHI Total/NA Analysis 8151A 10 651034 04/11/22 09:44 JBJ Total/NA 3050B 650364 04/06/22 02:01 WRE TAL CHI Prep Total/NA TAL CHI Analysis 6010C 1 650835 04/07/22 17:49 JJB Total/NA Prep 3050B 650556 04/07/22 07:00 LMB TAL CHI

Client Sample ID: SB-225 8-9

Analysis

Analysis

Prep

6010C

7471B

7471B

Date Collected: 03/24/22 11:30 Date Received: 03/29/22 10:20

Total/NA

Total/NA

Total/NA

Lab Sample ID: 500-214283-33

TAL CHI

TAL CHI

TAL CHI

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650509	04/06/22 12:24	LWN	TAL CHI

1

1

650836

04/07/22 23:16 JJB

650632 04/07/22 13:45 MJG

650935 04/08/22 11:50 MJG

2

4

6

8

10

12

14

16

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-225 8-9

Date Collected: 03/24/22 11:30 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-33

Matrix: Solid

Percent Solids: 69.3

Job ID: 500-214283-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 11:30	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 15:52	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 16:48	JSB	TAL CHI
Total/NA	Prep	3050B			650556	04/07/22 07:00	LMB	TAL CHI
Total/NA	Analysis	6010C		1	650836	04/07/22 23:20	JJB	TAL CHI

Client Sample ID: SB-227 4-6

Date Collected: 03/24/22 12:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-34

Matrix: Solid

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA Analysis Moisture 650509 04/06/22 12:24 LWN TAL CHI

Client Sample ID: SB-227 4-6

Date Collected: 03/24/22 12:10 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-34

Matrix: Solid

Percent Solids: 79.7

ate Receive	d. COILDILL I	0.20						10
-	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 12:10	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 16:14	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		5	651037	04/11/22 17:27	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		1	650373	04/06/22 19:04	SS	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8082A		1	650870	04/08/22 22:39	JBJ	TAL CHI
Total/NA	Prep	8151A			650483	04/06/22 10:55	TS	TAL CHI
Total/NA	Analysis	8151A		10	651034	04/11/22 10:04	JBJ	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650835	04/07/22 17:55	JJB	TAL CHI
Total/NA	Prep	3050B			650556	04/07/22 07:00	LMB	TAL CHI
Total/NA	Analysis	6010C		1	650836	04/07/22 23:23	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI

Client Sample ID: SB-227 7-8

Analysis

7471B

Date Collected: 03/24/22 12:15 Date Received: 03/29/22 10:20

Total/NA

Lab Sample ID: 500-214283-35

TAL CHI

650935 04/08/22 11:51 MJG

Matrix: Solid

Batch **Batch** Dilution **Batch** Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab Total/NA Analysis Moisture 650509 04/06/22 12:24 LWN TAL CHI

Eurofins Chicago

1

3

4

6

8

10

12

14

16

17

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-227 7-8

Date Collected: 03/24/22 12:15 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-35

Matrix: Solid

Percent Solids: 71.4

Job ID: 500-214283-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 12:15	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 16:38	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 17:11	JSB	TAL CHI
Total/NA	Prep	3050B			650556	04/07/22 07:00	LMB	TAL CHI
Total/NA	Analysis	6010C		1	650836	04/07/22 23:26	JJB	TAL CHI

Client Sample ID: SB-221 0-2

Date Collected: 03/24/22 12:50 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-36

Matrix: Solid

Batch Batch Dilution Batch **Prepared** Method or Analyzed Analyst **Prep Type** Type Run **Factor** Number Lab Total/NA Analysis Moisture 650509 04/06/22 12:24 LWN TAL CHI

Client Sample ID: SB-221 0-2

Date Collected: 03/24/22 12:50

Lab Sample ID: 500-214283-36

Matrix: Solid

Date Received: 03/29/22 10:20 Percent Solids: 78.8

Date Received	d: 03/29/22 1	0:20						Perc
	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 12:50	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649839	04/01/22 18:15	JDD	TAL CHI
Total/NA	Prep	3541			650648	04/07/22 08:57	FRG	TAL CHI
Total/NA	Analysis	8270D		5	650792	04/08/22 13:41	JSB	TAL CHI
Total/NA	Prep	3541	DL		650648	04/07/22 08:57	FRG	TAL CHI
Total/NA	Analysis	8270D	DL	25	651037	04/11/22 19:26	JSB	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8081A		5	650373	04/06/22 19:24	SS	TAL CHI
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CHI
Total/NA	Analysis	8082A		1	650870	04/08/22 22:55	JBJ	TAL CHI
Total/NA	Prep	8151A			650483	04/06/22 10:55	TS	TAL CHI
Total/NA	Analysis	8151A		10	651034	04/11/22 11:41	JBJ	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650835	04/07/22 16:51	JJB	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	651084	04/08/22 15:11	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI

Client Sample ID: SB-221 4-5

Analysis

7471B

Date Collected: 03/24/22 12:55 Date Received: 03/29/22 10:20

Total/NA

Lab Sample ID: 500-214283-37

TAL CHI

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture	-	1	650509	04/06/22 12:24	LWN	TAL CHI

650935 04/08/22 11:53 MJG

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-221 4-5

Date Collected: 03/24/22 12:55 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-37

Matrix: Solid

Percent Solids: 80.8

Job ID: 500-214283-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 12:55	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 17:00	JDD	TAL CHI
Total/NA	Prep	3541			650648	04/07/22 08:57	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 13:47	JSB	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	651084	04/08/22 15:37	JJB	TAL CHI

Client Sample ID: SB-218 2-4

Date Collected: 03/24/22 13:00 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-38

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650509	04/06/22 12:24	LWN	TAL CHI

Client Sample ID: SB-218 2-4

Date Collected: 03/24/22 13:00

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-38

Matrix: Solid

Percent Solids: 79.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 13:00	WRE	TAL CH
Total/NA	Analysis	8260B		50	649801	04/01/22 17:24	JDD	TAL CH
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CH
Total/NA	Analysis	8270D		2	651037	04/11/22 15:53	JSB	TAL CH
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CH
Total/NA	Analysis	8081A		5	650373	04/06/22 20:26	SS	TAL CH
Total/NA	Prep	3541			650339	04/05/22 16:57	JP1	TAL CH
Total/NA	Analysis	8082A		1	650870	04/08/22 23:42	JBJ	TAL CH
Total/NA	Prep	8151A			650483	04/06/22 10:55	TS	TAL CH
Total/NA	Analysis	8151A		10	651034	04/11/22 12:39	JBJ	TAL CH
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CH
Total/NA	Analysis	6010C		1	650835	04/07/22 18:04	JJB	TAL CH
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CH
Total/NA	Analysis	6010C		1	651084	04/08/22 15:41	JJB	TAL CH
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CH

Client Sample ID: FD-2

Total/NA

Date Collected: 03/24/22 13:01 Date Received: 03/29/22 10:20

Analysis

7471B

Lab Sample I	ID: 5	500·	-21	42	83-3	9

TAL CHI

650935 04/08/22 12:05 MJG

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650509	04/06/22 12:24	LWN	TAL CHI

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: FD-2 Lab Sample ID: 500-214283-39

Date Collected: 03/24/22 13:01 **Matrix: Solid** Date Received: 03/29/22 10:20 **Percent Solids: 77.7**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 13:01	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 17:47	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	651037	04/11/22 18:38	JSB	TAL CHI
Total/NA	Prep	3541			650565	04/07/22 04:55	FRG	TAL CHI
Total/NA	Analysis	8081A		1	651097	04/11/22 16:39	SS	TAL CHI
Total/NA	Prep	3541			650565	04/07/22 04:55	FRG	TAL CHI
Total/NA	Analysis	8082A		1	651243	04/12/22 13:56	JBJ	TAL CHI
Total/NA	Prep	8151A			650483	04/06/22 10:55	TS	TAL CHI
Total/NA	Analysis	8151A		10	651034	04/11/22 12:58	JBJ	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650835	04/07/22 18:08	JJB	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	651084	04/08/22 15:44	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Total/NA	Analysis	7471B		1	650935	04/08/22 12:07	MJG	TAL CHI

Client Sample ID: SB-218 5-7

Lab Sample ID: 500-214283-40 Date Collected: 03/24/22 13:05 **Matrix: Solid**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650509	04/06/22 12:24	LWN	TAL CHI

Client Sample ID: SB-218 5-7 Lab Sample ID: 500-214283-40 Date Collected: 03/24/22 13:05 **Matrix: Solid**

Date Received: 03/29/22 10:20 Percent Solids: 84.8

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649333	03/24/22 13:05	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649801	04/01/22 18:10	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 17:34	JSB	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	651084	04/08/22 15:47	JJB	TAL CHI

Client Sample ID: SB-214 0-2 Lab Sample ID: 500-214283-41 Date Collected: 03/24/22 14:00 **Matrix: Solid**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650509	04/06/22 12:24	LWN	TAL CHI

Eurofins Chicago

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-214 0-2

Date Collected: 03/24/22 14:00 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-41

Matrix: Solid

Percent Solids: 67.6

Job ID: 500-214283-1

Batch	Batch		Dilution	Batch	Prepared		
Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Prep	5035			649333	03/24/22 14:00	WRE	TAL CHI
Analysis	8260B		50	649801	04/01/22 18:33	JDD	TAL CHI
Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Analysis	8270D		5	651037	04/11/22 16:16	JSB	TAL CHI
Prep	3541			650565	04/07/22 04:55	FRG	TAL CHI
Analysis	8081A		5	651238	04/12/22 12:28	JBJ	TAL CHI
Prep	3541			650565	04/07/22 04:55	FRG	TAL CHI
Analysis	8082A		1	651243	04/12/22 14:11	JBJ	TAL CHI
Prep	8151A			650483	04/06/22 10:55	TS	TAL CHI
Analysis	8151A		10	651034	04/11/22 13:18	JBJ	TAL CHI
Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Analysis	6010C		1	650835	04/07/22 18:14	JJB	TAL CHI
Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Analysis	6010C		1	651084	04/08/22 15:50	JJB	TAL CHI
Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Analysis	7471B		5	650935	04/08/22 12:30	MJG	TAL CHI
	Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis Prep Analysis	Type Method Prep 5035 Analysis 8260B Prep 3541 Analysis 8270D Prep 3541 Analysis 8081A Prep 3541 Analysis 8082A Prep 8151A Analysis 8151A Prep 3050B Analysis 6010C Prep 3050B Analysis 6010C Prep 7471B	Type Method Run Prep 5035 Analysis 8260B Prep 3541 Analysis 8270D Prep 3541 Analysis 8081A Prep 3541 Analysis 8082A Prep 8151A Analysis 8151A Prep 3050B Analysis 6010C Prep 3050B Analysis 6010C Prep 7471B 7471B	Type Method Run Factor Prep 5035 50 Analysis 8260B 50 Prep 3541 5 Analysis 8081A 5 Prep 3541 5 Analysis 8081A 5 Prep 3541 1 Analysis 8082A 1 Prep 8151A 10 Prep 3050B 1 Analysis 6010C 1 Prep 7471B 1	Type Method Run Factor Number Prep 5035 649333 Analysis 8260B 50 649801 Prep 3541 650567 Analysis 8270D 5 651037 Prep 3541 650565 Analysis 8081A 5 651238 Prep 3541 650565 Analysis 8082A 1 651243 Prep 8151A 650483 Analysis 8151A 10 651034 Prep 3050B 650364 Analysis 6010C 1 650364 Analysis 6010C 1 651084 Prep 7471B 650632	Type Method Run Factor Number or Analyzed Prep 5035 649333 03/24/22 14:00 Analysis 8260B 50 649801 04/01/22 18:33 Prep 3541 650567 04/07/22 05:35 Analysis 8270D 5 651037 04/11/22 16:16 Prep 3541 650565 04/07/22 04:55 Analysis 8081A 5 651238 04/12/22 12:28 Prep 3541 650565 04/07/22 04:55 04/07/22 04:55 Analysis 8082A 1 651243 04/12/22 14:11 Prep 8151A 650483 04/06/22 10:55 Analysis 8151A 10 651034 04/11/22 13:18 Prep 3050B 650364 04/06/22 02:01 Analysis 6010C 1 650835 04/07/22 18:14 Prep 3050B 650364 04/06/22 02:01 Analysis 6010C 1 651084 04/08/22 15:50	Type Method Run Factor Number of Analyzed 649333 Analysed 03/24/22 14:00 Analyst WRE Prep 5035 649333 03/24/22 14:00 WRE Analysis 8260B 50 649801 04/01/22 18:33 JDD Prep 3541 650567 04/07/22 05:35 FRG Analysis 8270D 5 651037 04/11/22 16:16 JSB Prep 3541 650565 04/07/22 04:55 FRG Analysis 8081A 5 651238 04/12/22 12:28 JBJ Prep 3541 650565 04/07/22 04:55 FRG Analysis 8082A 1 651243 04/12/22 14:11 JBJ Prep 8151A 650483 04/06/22 10:55 TS Analysis 8151A 10 651034 04/11/22 13:18 JBJ Prep 3050B 650364 04/06/22 02:01 WRE Analysis 6010C 1 651084 04/06/22 02:01 WRE

Client Sample ID: SB-214 4-5

Date Collected: 03/24/22 14:05

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-42

Lab Sample ID: 500-214283-43

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650509	04/06/22 12:24	LWN	TAL CHI

Client Sample ID: SB-214 4-5

Date Collected: 03/24/22 14:05

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-42	
Matrix: Solid	
Percent Solids: 81.8	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649331	03/24/22 14:05	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649839	04/01/22 18:38	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 17:56	JSB	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	651084	04/08/22 15:53	JJB	TAL CHI

Client Sample ID: SB-215 0-2

Date Collected: 03/24/22 14:25

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	650509	04/06/22 12:24	LWN	TAL CHI

Eurofins Chicago

Matrix: Solid

_

<u>ی</u>

5

0

10

12

14

. .

17

17

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: SB-215 0-2

Date Collected: 03/24/22 14:25 Date Received: 03/29/22 10:20 Lab Sample ID: 500-214283-43

Matrix: Solid

Percent Solids: 88.2

Job ID: 500-214283-1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649331	03/24/22 14:25	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649839	04/01/22 19:01	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	651037	04/11/22 19:02	JSB	TAL CHI
Total/NA	Prep	3541			650565	04/07/22 04:55	FRG	TAL CHI
Total/NA	Analysis	8081A		10	651097	04/11/22 17:21	SS	TAL CHI
Total/NA	Prep	3541			650565	04/07/22 04:55	FRG	TAL CHI
Total/NA	Analysis	8082A		1	651243	04/12/22 14:27	JBJ	TAL CHI
Total/NA	Prep	8151A			650483	04/06/22 10:55	TS	TAL CHI
Total/NA	Analysis	8151A		10	651034	04/11/22 13:37	JBJ	TAL CHI
Total/NA	Prep	3050B			650364	04/06/22 02:01	WRE	TAL CHI
Total/NA	Analysis	6010C		1	651084	04/08/22 15:57	JJB	TAL CHI
Total/NA	Prep	7471B			650632	04/07/22 13:45	MJG	TAL CHI
Total/NA	Analysis	7471B		1	650935	04/08/22 12:11	MJG	TAL CHI

Client Sample ID: SB-215 6-7

Date Collected: 03/24/22 14:30

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-44

Matrix: Solid

Batch Batch Dilution Batch Prepared or Analyzed Analyst **Prep Type** Method Number Type Run **Factor** Lab TAL CHI Total/NA Analysis Moisture 650509 04/06/22 12:24 LWN

Client Sample ID: SB-215 6-7

Date Collected: 03/24/22 14:30

Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-44

Matrix: Solid

Percent Solids: 88.0

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			649331	03/24/22 14:30	WRE	TAL CHI
Total/NA	Analysis	8260B		50	649839	04/01/22 19:25	JDD	TAL CHI
Total/NA	Prep	3541			650567	04/07/22 05:35	FRG	TAL CHI
Total/NA	Analysis	8270D		1	650798	04/08/22 18:19	JSB	TAL CHI
Total/NA	Prep	3050B			650365	04/06/22 02:37	WRE	TAL CHI
Total/NA	Analysis	6010C		1	651084	04/08/22 14:25	JJB	TAL CHI

Client Sample ID: EB-1

Date Collected: 03/25/22 11:05

Date Received: 03/29/22 10:20

Lab	Sample	ID:	500-214283-45

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3535			577343	04/02/22 06:51	EFG	TAL SAC
Total/NA	Analysis	537 (modified)		1	577528	04/03/22 22:46	K1S	TAL SAC

Eurofins Chicago

2

Л

8

10

12

14

46

17

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: MW-231 Lab Sample ID: 500-214283-46 Date Collected: 03/25/22 11:00 **Matrix: Water**

Date Received: 03/29/22 10:20

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			649840	04/01/22 12:28	STW	TAL CHI
Total/NA	Prep	3510C			649620	03/31/22 07:48	DAK	TAL CHI
Total/NA	Analysis	8270D		1	649786	04/01/22 15:02	SS	TAL CHI
Total/NA	Prep	3510C			649706	03/31/22 13:17	DAK	TAL CHI
Total/NA	Analysis	8081B		1	649856	04/01/22 12:16	SS	TAL CHI
Total/NA	Prep	3510C			649706	03/31/22 13:17	DAK	TAL CHI
Total/NA	Analysis	8082A		1	649859	04/01/22 12:09	SS	TAL CHI
Total/NA	Prep	8151A			649855	04/01/22 09:10	DAK	TAL CHI
Total/NA	Analysis	8151A		1	650032	04/04/22 09:56	JBJ	TAL CHI
Total/NA	Prep	3535			577343	04/02/22 06:51	EFG	TAL SAC
Total/NA	Analysis	537 (modified)		1	577528	04/03/22 22:56	K1S	TAL SAC
Dissolved	Prep	3005A			650541	04/06/22 17:04	LMB	TAL CHI
Dissolved	Analysis	6020A		1	650728	04/07/22 12:35	FXG	TAL CHI
Dissolved	Prep	7470A			650273	04/05/22 10:50	MJG	TAL CHI
Dissolved	Analysis	7470A		1	650513	04/06/22 10:10	MJG	TAL CHI

Lab Sample ID: 500-214283-47 Client Sample ID: MW-234 Date Collected: 03/25/22 11:45 **Matrix: Water**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			649840	04/01/22 12:51	STW	TAL CHI
Total/NA	Prep	3510C			649620	03/31/22 07:48	DAK	TAL CHI
Total/NA	Analysis	8270D		1	649786	04/01/22 15:26	SS	TAL CHI
Total/NA	Prep	3510C			649706	03/31/22 13:17	DAK	TAL CHI
Total/NA	Analysis	8081B		1	649856	04/01/22 12:28	SS	TAL CHI
Total/NA	Prep	3510C			649706	03/31/22 13:17	DAK	TAL CHI
Total/NA	Analysis	8082A		1	649859	04/01/22 12:25	SS	TAL CHI
Total/NA	Prep	8151A			649855	04/01/22 09:10	DAK	TAL CHI
Total/NA	Analysis	8151A		1	650032	04/04/22 10:15	JBJ	TAL CHI
Total/NA	Prep	3535			577343	04/02/22 06:51	EFG	TAL SAC
Total/NA	Analysis	537 (modified)		1	577528	04/03/22 23:06	K1S	TAL SAC
Dissolved	Prep	3005A			650541	04/06/22 17:04	LMB	TAL CHI
Dissolved	Analysis	6020A		1	650728	04/07/22 12:38	FXG	TAL CHI
Dissolved	Prep	7470A			650273	04/05/22 10:50	MJG	TAL CHI
Dissolved	Analysis	7470A		1	650513	04/06/22 10:12	MJG	TAL CHI

Lab Sample ID: 500-214283-48 **Client Sample ID: TW-237** Date Collected: 03/25/22 12:17 **Matrix: Water**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	649840	04/01/22 13:15	STW	TAL CHI

Eurofins Chicago

Page 338 of 356

Job ID: 500-214283-1

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-222 Lab Sample ID: 500-214283-49 Date Collected: 03/25/22 15:30

Matrix: Water

Job ID: 500-214283-1

Date Received: 03/29/22 10:20

ı		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
	Total/NA	Analysis	8260B		1	649840	04/01/22 13:38	STW	TAL CHI

Client Sample ID: TW-227 Lab Sample ID: 500-214283-50

Date Collected: 03/25/22 17:15 **Matrix: Water**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	649840	04/01/22 14:01	STW	TAL CHI

Client Sample ID: TW-213 Lab Sample ID: 500-214283-51

Date Collected: 03/25/22 17:05 **Matrix: Water**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			649840	04/01/22 14:24	STW	TAL CHI

Client Sample ID: TW-229 Lab Sample ID: 500-214283-52

Date Collected: 03/25/22 12:05 **Matrix: Water**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	649840	04/01/22 14:47	STW	TAL CHI

Lab Sample ID: 500-214283-53 **Client Sample ID: TW-230**

Date Collected: 03/25/22 12:45 **Matrix: Water**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	649840	04/01/22 15:10	STW	TAL CHI

Client Sample ID: TW-223 Lab Sample ID: 500-214283-54

Date Collected: 03/25/22 17:25 **Matrix: Water**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	649840	04/01/22 15:33	STW	TAL CHI

Client Sample ID: TW-225 Lab Sample ID: 500-214283-55 Date Collected: 03/25/22 17:35 **Matrix: Water**

Date Received: 03/29/22 10:20

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B			649840	04/01/22 15:56	STW	TAL CHI

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Client Sample ID: TW-216

Date Collected: 03/25/22 15:40 Date Received: 03/29/22 10:20

Lab Sample ID: 500-214283-56

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Matrix: Water

Job ID: 500-214283-1

Batch Dilution Batch Batch Prepared Method or Analyzed **Prep Type** Type Run **Factor** Number **Analyst** Lab Total/NA 04/01/22 16:20 STW TAL CHI Analysis 8260B 649840

Client Sample ID: TW-215 Lab Sample ID: 500-214283-57 **Matrix: Water**

Date Collected: 03/25/22 16:00

Date Received: 03/29/22 10:20

Batch Batch Dilution **Batch Prepared Prep Type** Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis 8260B 649840 04/01/22 16:43 STW TAL CHI

Client Sample ID: TW-221 Lab Sample ID: 500-214283-58

Date Collected: 03/25/22 16:55

Date Received: 03/29/22 10:20

Batch Batch Dilution Batch **Prepared Prep Type** Method **Factor** Number or Analyzed Type Run Analyst Lab STW Total/NA Analysis 8260B 649840 04/01/22 17:06 TAL CHI

Client Sample ID: TW-214 Lab Sample ID: 500-214283-59

Date Collected: 03/25/22 16:20

Date Received: 03/29/22 10:20

Batch Batch Dilution Batch Prepared **Prep Type** Method Factor Number or Analyzed Type Run **Analyst** Lab Analysis 8260B 649840 04/01/22 17:29 STW TAL CHI Total/NA

Lab Sample ID: 500-214283-60 Client Sample ID: FD-3

Date Collected: 03/25/22 11:01

Date Received: 03/29/22 10:20

Batch Batch Dilution Batch Prepared Method Factor Number or Analyzed **Prep Type** Type Run Analyst Lab STW TAL CHI Total/NA Analysis 8260B 649840 04/01/22 17:52

Lab Sample ID: 500-214283-61 Client Sample ID: TB1

Date Collected: 03/25/22 00:00

Date Received: 03/29/22 10:20

Dilution Batch Batch Batch **Prepared** Type Method Run Factor Number or Analyzed **Prep Type** Analyst Lab TAL CHI Total/NA Analysis 8260B 649840 04/01/22 12:05 STW

Laboratory References:

TAL CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

TAL SAC = Eurofins Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Accreditation/Certification Summary

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	999580010	08-31-22

Laboratory: Eurofins Sacramento

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date			
Alaska (UST)	State	17-020	02-20-24			
ANAB	Dept. of Defense ELAP	L2468	01-20-24			
ANAB	Dept. of Energy	L2468.01	01-20-24			
ANAB	ISO/IEC 17025	L2468	01-20-24			
Arizona	State	AZ0708	08-11-22			
Arkansas DEQ	State	88-0691	06-17-22			
California	State	2897	01-31-23			
Colorado	State	CA0004	08-31-22			
Florida	NELAP	E87570	06-30-22			
Georgia	State	4040	01-30-23			
Hawaii	State	<cert no.=""></cert>	01-29-23			
Illinois	NELAP	200060	03-17-23			
Louisiana	NELAP	01944	06-30-22			
Maine	State	CA00004	04-14-22			
Michigan	State	9947	01-31-23			
Nevada	State	CA00044	08-31-22			
New Hampshire	NELAP	2997	04-18-22			
New Jersey	NELAP	CA005	06-30-22			
New York	NELAP	11666	04-02-23			
Ohio	State	41252	01-29-23			
Oregon	NELAP	4040	01-29-23			
Texas	NELAP	T104704399-19-13	05-31-22			
US Fish & Wildlife	US Federal Programs	58448	07-31-22			
USDA	US Federal Programs	P330-18-00239	01-23-23			
Utah	NELAP	CA000442021-12	03-01-22 *			
Virginia	NELAP	460278	03-14-23			
Washington	State	C581	05-05-22			
West Virginia (DW)	State	9930C	12-31-22			
Wisconsin	State	998204680	08-31-22			
Wyoming	State Program	8TMS-L	01-28-19 *			

Job ID: 500-214283-1

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

2417 Pond Street

University Park IL 60484

Chain of Custody Record

; eurofins

Phone 708 534-5200 Fax 708 534 5211					***************************************				***********						_						
Client Information	S ipier Lah PN Fredrick					Sandie	э					Čar	L. a				COC No 500-99728-43580 3				
Cilent Contact Whitney Cu I							St: edrick@eurofinset.com										Page 3 of 3				
Company Stantec Consulting Corp	PV C				Analysis Requ									Distance		Job# 500-214283					
Address 12075 Corporate Pkwy Suite 200	Due Date Requested										5(00-2142	283 CO	`		Preservation Codes					
C 'y Mequon	TAT Requested (days)			***************************************					Constitution		-	***************************************	Ushadikawasa				B NaOH C Zn Acetate	M Hexane N None L Swa02			
State Zip WI 530°2	Compliance Proje	ct A Yes	Δ No						- Constitution				**************************************				D Nitric cid E NaH5O4	Na2045 J Na290°			
Phote	PO# Add project nur	rber here											***************************************					R a200 S H7S04 TSP Docecahy	ra ata		
a: whitney ou l@stantec.com	NO#	TOTAL STREET, THE STREET, STRE	**************************************		2			7			*****		na a constitution of the c	***************************************	8	l re D Water	Acetone M 4/-	C a(r-			
Protect Name Lot 3: River Point Dist - Manitowoc	Projec.# 50006565		***************************************	**************************************	٤١٤			Lea	-	5/6			ANIMARIJONA	***************************************		containe	K ED [*] A L EDA	v p. 4 ∠ o ierupe fy			
Site	S90√#							+		Metal	hes	Les	tionidal desiration		ale de la constante de la cons	oj co	Other-				
Sample Identification	Sample Date	Sample Time		Matrix (W=water 8=sol. O=waste/olf BT Tissus A.Air)	Field Filtered Sample (Yes or Perform NS/MSD (Yes or No)	Vocs	PAHS	Arsenic	5706.		Praticides	Herbical				(Total Number	Special Ins	tructions/Note)		
SB-236 35-5	3/23/22	0120	G	Sol d	M		50V.		<u> </u>		4	++		╁┷╁		Δ					
5B-236 6-7	1101100	0125	3	Sold		$\frac{1}{X}$	爹 ×		4	X	╀	$\stackrel{X}{\vdash}$	-				THE COLUMN TWO TO BE THE SECOND AND ADMINISTRATING A THE SECOND ASSOCIATION AND ADMINISTRATION ASSOCIATION ASSOCIA				
5B-234 3.5-4.5		0955		Solid	\vdash	X	H				+	V :									
5B-234 4.5-6.5		1000		Schd		X	χ			XX	+	X	-					***************************************			
3B-229 1-3		1110		So: 1	H	X			x	ΧX	<u> </u>						***************************************				
5B-229 4-5		11.15		Sn d		1	х		<u> </u>	^	+^										
58-229 5-7		11:20		So d		Х															
SB-230 35-45		11.35		Sc d		Х			x b	(X	X	X									
5B-230 45-6	Ĭ	11:40	ľ	So d			χ	X		Ì	T						recommended of the second seco	to astronomical training			
SB-230 8-10		11.45		So d		X															
SB-231 5-7	Ψ	12:00	8	So, d		X			1	XX		.i									
Possible Hazard Identification NHazard Flammable Skin r tant Poson B Jn ov n Radiologica							Disp Returr			ee may	/ be a	ssess	ed if s a sa By L	mples			ed longer than 1 i				
Delive able Requested III Other (specify)	on b on	OV II	reaurologica	**************************************	Sp					Requ	reme	<i>D spos</i> intr	а ву г	.ap	Name of the last o	AIÇ.	h ve For	Nortrs			
Empty Kif Reiinquished by		Date			Time	***************************************			***************************************			N	ethac a	Shpine							
Reinguis, edity	uate, m	I		тра у		₹e ;e	ved by	m	λO	UOM	VUV.	di	\sim	3/29/11			1050	Cor ar EE1A	***************************************		
e a hed by	na.e.), we.			ompany		Standard Haman scelved by						w	1)	Pare/T	1	<u> </u>		Jomp 1 y			
Re na si -d by	ate, rie	***************************************		ipar	······································	e,	ver by		••••••	***************************************		***************************************		ale/ n	ie	200000000000000000000000000000000000000		r mr ny			
Custody Seals Infact Custody Sea No Yes 1 No								object Tenipersture's and ther Reliks 30+27.1.6+0.8,0.3+-0.7													

2417 Bond Street

University Park II 60484

Chain of Custody Record

eurofins

Pho. 708-534-5200 Fax 708-534 5211 Samp e C me Track₁g Nors Client Information Fredrick Sandie 500-99728-43580 4 Ulient Contact Phone State of Orig Whitney Cull sangra fredrick@eurofinset com Page 4 of 13 PWSID ∪ompa y 500-214283 Startec Consulting Corp **Analysis Requested** Due Date Requested Preservation Codes 12075 Corporate Pkwy Suite 200 TAT Requested (days) B NaOH N Notice Mequon O AsNaO2 Zn Abetate State Zip D Nitri Acid F Na2: 14 Compliance Project. A Yes A No E Nai-SO4 Q Na2SO3 WI 53092 F MACH R Na2S∠∩3 ^{Sh}one G Amc o S 1:2504 Add project number here H Ascorbii Acid T TSP Jodecahydra e J. Anetone Total Number of containers
Other DI Waler V MCAA whitney cul @stantec com Metals V 0H4-J ATC Projert# Z other specify X Ferform MS/MSD (Yes o 50006565 Lot 3 Rive Point Dist Manitowoo SSOV#. SUOUS RCRA PUBS PCBS Arsenic Matrix Sample PAHS (w=water Type (C=comp, Sample Sample Identification Sample Date Time G=grab) BT-Tissue A -Air) Special Instructions/Note Preservation Code XXX 12 05 58-231 8 25-10 3/23/22 Soild 5B-224 1-3 13:30 X XXXX Soild 7-8 SB-ZZY 13.35 Soild XXX 13:45 SB-222 65-8 Solid XXXXX 13-50 58-222 9-10 Solid x xSB-216 7-8 14 15 Solid XXXXX SB-216 8-85 14 20 X Solid XXX SB-216 14.25 10-11 Solid 58-237 1-2 15:05 XXXXX Solid SB-237 XXX 4-10 15'10 Solid Solid Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Non-Hazard Flammable Sk n irrtan Poison B Unkno vn Radiological Return To Cien D sposal By Lab Archive For Deliverable Requested I II III IV Other (specify) Special Instructions/QC Requirements Empty Kit Relinquished by Date Minid of Silpment. ⊰elinquished by Date nie stiphonie Hemonder ETA. 3129121 1020 Pe guished by Date/* me (Daf Reliquished by esel red by Date ne Cumpa C stod Seal Nu Custody Sea's Intact coole [™]em at re(s) nd Other Remiliks 1 Yes 1 No

241" Bond Street

Chain of Custody Record

eurofins

University Park IL 60484 Phone 708-534 5200 Fax 708-534 5211 Sample Carrier Trnoking No. Client Information Fredrick Sandie 500 99728-43580 5 Client U *aut Phc e State of ingin Whit, ey Culi sandra fredrick@eurofinset.com Page 5 of 13 Jab# 500-214 203 ompary **Analysis Requested** Startec Consulting Corp. Due Date Requested Preservation Codes 2075 Corporate Pkwy Sui e 200 A HCL M hexane TAT Requested (days) B NaCH N None Mequon ∪ Z Acetat⊌ A NaC2 State Z.p D N-ric Aud P 16204S Compliance Project: A Yes A No E Na 504 WI 53092 Q Na2503 F MeOH R Na2S203 Phone G Amchli S H2SO4 Add project number here TSr Dodecahydrate H. Ascurbic Acid J Acente 1 Ice Total Number of containers J ∟ ∧ater V M AA whrney culi@stantec.com KETA N ,344-5 Proiec # Z ther special L EDA Lot 3 River Point Dist Manitowoo 50006565 4 M #WC.22 3917 613 ARSENIC Matrix Sample 5 (W=water Type Spentid (C=Comp. Sample O≕waste.oil Sample Date Time G=grab) BT TISSUE, ATAIR Sample Identification Special Instructions/Note Preservation Code 3/24/22 0910 XXXX 0-7 Y 10-12 Soid $\times \times \times$ 0915 36-217 Soild 0-2 1010 X X X X X 56-217 Solid $\times \times \times$ 9-10 1015 3-5 Sond SB 217 XXX 10 26 MS/MSD 35 10 20 $\times \times \times$ 56-217 Solid MATU FOR SE-217 MS/MSD 58-223 Solid 1025 XXXXXX Solid X 1501 $\times \times$ 56-223 9 10 Solid 1030 $\times \times$ X 58-220 4-5 1105 Solid × × × × 56-220 14.75-15 1110 Solid $\times \times \times$ Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Return To Client Disposal By Lab Archive Fo Special Instructions, QC Requirements Method of 5 ipment Empty Kit Relingu shed by Date e au hed by)ate. Stephanie Hemanales 3/19/112 EEIA Pel ushed by Jate, ne pal y Pel quh b Date, he y'.sq.rc Received b Dale re o spary Custody Seals Intact Custody Seal No uoc er ligmperature(s °C and Other Flemarks Yes A No

24 7 Pond Street

Chain of Custody Record Uni rersity Park IL 60484

eurofins

Phone 708-534-5200 Fax 708-534-5211	***************************************	9019450000000000000000000000000000000000		*****		************				************	- decomposition	persona200100000	*************	******************************		***************************************							
Client Information							Sandie								*rackir	ig No.s			CCC No 500-99728-43580 6				
Chem Contact Whitney Cull	Phore E-					fred	redrick@eurofinset.com								of O igin				Page Page 6 of 13				
Com. iny Stantec Consulting Corp	PV'-JID			energe rendered by		***************************************	Analysis Requ								ed		erelisessibility on the control	000000000000000000000000000000000000000	JOD# 500-214283				
Address 12075 Corporate Pkwy Suite 200	Due Date Reques	ted		Militaria di Caracteria di			Γ			T	l	T							Preservation Co	des			
C Mequon	TAT Requested (c	fays}	00000000000000000000000000000000000000	***************************************	-										***************************************	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			HCL B NaOH C Zn Acetate	M Hexane None A NaO2			
state Zio		·																-	D Nitric Acid F NaHSO4	P Na2045			
W' 53092 Phone	Compliance Proje	7 140	#5600000mances#eensanzesatyuppy															F MeOH	Q Na2SU3 P Naz 2O5				
green constants	Add project nu	mber here			Ja				0					1				and the control of	G Amehlor H Ascorbic Acid	S H7504 T TSP Dode, ahyd ate			
a: wh tney cull@stantec com	WO #				Š				20		N	•	-					2	I ce J D₁Water K ED [™] A	U Acetone V MCAA V pH 4-			
Project Name* Lot 3 Rive Point Dist Manitowoc	Projeci # 50006565				3	ě			7		12		l a	0				aŭ.	EDA EDA	Z orner (speury			
Ste	SSOV#	70*F40*F40000000000000000000000000000000	- å	٤		-	7		META		200	865			***************************************	guas	K EDTA EDA Other						
	<u> </u>	1	T	**************************************		12	\ \	1 ~	3	, V	15	^	~	77				õ					
Sample Identification	Sample Date	Sample Time	G=grab)	Matrix (W=water S=solid O=waster III BT Tiscue A-	Field Filters	Partorm MS/MSD	707	シェ	ARSENI	SVOC	252	PCR.	PESACI	nelli				Total Number	Special I	nstructions/Note			
		25	Preserva	tion Code	\perp \mid X	X										1		_ <u> </u> X					
56-225 2-4	3/24/22	1125	5	Solid			X			X	X	×	×	X.						The state of the s			
56-225 8-9		1130		Solid			X	×	X		Ì												
5B-227 4-6		1210		Sold			χ			X	X	×	1	\times									
SB-227 7-8		1215		So d			X	×	X		1												
Sf-221 0-2		1250		So d			X			Χ	X	×	¥	4									
SB-ZZI MS/MSIS O-Z		1250		Sc d		Y	X			X	X	Х	×	×					MATL FO	R S6 ZZI M5/m			
56-221 4-5		1255		So d			X	×	X				L										
SB-Z18 Z-4		1300		So d			Χ			×	×	×	×	X	and the same of th								
局- 2		1301		So d			Χ			X	×	×	×	Х									
58-218 5-7		1305		So d			χ	X	X														
SB-Z14 U-Z		1400		So d			×				×				es de la constante de la const								
Possible Hazard Identification	P					Sar	mple	Disj	oosa	I (A	fee i	may	be a	ssess	ed if s	ample	s are i	etain	ed longer than	1 month)			
No 1-Hazard Fammable Skin ritart Pole verable Requisted I II II IV Othe (specify)	sor B — Unk	ov r	Radiologica		was constructed and			Retur str							ва Зу	Lab	L	Arc	chive For	Vo. ths			
Empty Kit Re-inquished by		Date			······································	me			***************************************	***********	***************************************				athod	Shpm	GOI						
Re p- sned by	i eTm	Date		Compa			Re	ved 3	h/	************	www.mounte		***********	ı				***************************************		VASOFIO,			
							Ľ	LIL.	homue Hemor					M	\mathcal{W}	3	2912	1	laro	EE IA			
Pering shed by	aeTie			Conipar y			Pechi eduby								U	' tate'	етн			Jornpany			
Reinrished by	ate -e			C ipar			Ker ved by:								***************************************	ate	те	6/09/9/100000000000000000000000000000000		wD?LA			
C istody Seals Intact Custody Sea No							pole Temperatulis and ther Relians																

2417 Bond Street

Chain of Custody Record

eurofins

Un versity Park IL 60484 Phone 708-534-5200 Fax 708-534-3211 Samu ei Tie Track in Nors Client Information Fredrick Sandle 500-99728-40580 7 Cl ent Contact Phone S ate of Ong n Whitney Cull sanara tredrick@eurofinset com Page 7 of 13 30 - 214283 compary DV'S D Stantec Consulting Corp **Analysis Requested** Due Date Requested Preservation Codes 2075 Corporate Pkwy Suite 200 △ HCL M Hexare TAT Requested (days) B NaOH N None Mequor C Zn Acelate O ASNLO State Zip D Ni LAcid F az-045 Compliance Project. 🛕 Yes 🛕 No WI 53092 E Na SO4 Q Na2SO3 F MeOH R Na2S2 73 Phone G Amu 5 .2504 Add projec number here CENTO H Ascorbi A-d T TSP Jedeca yd-e VO#: loe U Aceton-→ Vater whitney cul.@stantec.com V MC K EDTA pH 4-5 P olent Name roiect# ALSONICT C1065 Z other spear Lot 3 River Point Dist Manitowoo 50006565 SSO# Other: Total Number of S. HNO 663 Matrix VOC Sample (W=water Type S= olid. O=w te/oll. Sample (C=comp, Sample Date Time Sample Identification G=grab) & -Tissue, A-Air) Special Instructions/Note Preservation Code 3/24/27 SB-214 4-5 1405 Solid XXX 1425 5 Solid X XXXXX 1430 Soild X X Solid Solid Solid Solid Solid Solid Solid Solid Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Fremmable Skin mtant Poso 1 B U known Radiological Return To Cher D sposa By Lab Arch ve For Months Deliverable Requested I II III IV O er sper y Special Instructions/QC Requirements Empty Kit Rel quis ed by Date Time Method of 57 pment Rluheuby Date nie Эстра у Stiff and Him andly ompa. FETA 3/19/12 1020 Relinquished y Date/Thre ip, r kel sheup ar eceived by Date: Comp Cust idv Sea's Intact Custod Seal No ir Temper reis ind Other Remarks 1 Yes 1 No

2417 Boild Street

50\$1

51 \$2

52 \$3

53 SA

Chain of Custody Record

eurofins

Un versity Park IL 60484 Phone 708-534 5200 Fax 708-534-5211 `ample. Carrie Tracking Nus Fredrick Sandie 500 99728-43580 10 Client Information Jient Jon' ict Phc ne 'tate or inigin Whitney C I sandra fredrick@eu ofinset com Page 10 of 13 PWS'D ompany 500-214203 **Analysis Requested** Stantec Consulting Corp Due Date Requested 12075 Corporate Pkwy Suite 200 TAT Requested (days) B NaOH √ None Mequon C AsNaO2 □ Zn Acetate State Zip ⊔ N. c Acid Compliance Project A Yes A No E Natiso4 Q Na250s WI 53092 R Na2 32/13 F MANH Phone G Amchlor S H2SO4 Add project number he e PCB H 4scorbic d TSF Jodeca-ydrate U Ace e J LIV ater
K EDTA
L ELA
Other whitney cult@star tec com MUAA A 14-5 Protect # ∠ ther speary) 50006565 Lot 3 River Point Dist Manitowoo Svocs Pesticides Herbicides Dissolud SSOW# Total Number of PFAS Matrix Sample (W=water Type (C=comp Sample Onwaste, il. Sample Identification Sample Date Time G=grab) BT-Tissue, A-Air) Special Instructions/Note Preservation Code. EB-1 3/25/22 1105 Water X 1105 EB-Z 3/25/22 Water X MW-231 1100 XXXXX Water MW-234 1145 XXXX XX Water TW-237 1217 Water ĸ TW-222 1530 V ater X TW-227 1715 X Water TW-213 1705 Water TW-229 1205 X Water TW-230 1245 Water 文 TW-223 1725 X Water Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Flammable Sun Irritant Porson B Unknown Radiological Deliverable Requests 1 II III IV Other specify) Return To Client Disposal By Lab Archive For Months Special Instructions/QC Requirements Empty Kit Relinguished by Netour finament Date Peliruishe by Co span-Stupp anie Humandet EETA IDID kel ushed by Date me əmpany eli q she- y Conipar y Rec 4d by Баге, не o ipany Custody Seal No Custody Sea < Intact locies imper lifets °C and Othe F marks 1 Yes

241 Boi d Street

4001

University Park III. 60484

Chain of Custody Record

eurofins

Phone 708-534 5200 Fax 708-534 5211																					
	აampl r		PM							ie- Track:	ng Noi	elialació en enercicio	100000000000000000000000000000000000000		COC No						
Client Information	Dhena		edrick Mail	Sand										&_	500-99728-43580 9						
ulient Con' .ct Whitney Cul	Phrine:	1		ednck	ശീല്വ	ofinset	com		tat	e of Origin	י				Page Page 9 of 13						
Company			T	***************************************		saconanistranist	AND THE PERSON NAMED IN COLUMN 2 IN COLUMN	****************			No section of the sec		***************************************		Job# 50b- 214283						
Startec Consulting Corp Address						-	nana ng pangagang Malak		Analys	is R	eque	sted			and the same of th		1900-1	<u> 14'L</u> e	<u>) </u>		
Address 12075 Corporate Pkwy Suite 200	Due Date Reques	ted					*******									P	reservation Cod	es			
City	TAT Requested (lays)	***************************************	lanka kanaga maga maga maga maga maga maga maga	- 1		and the same of th								ĺ		A HCL B NaGH	M Hexane N None	ie		
City Mequor													Ì	-		10	C Zn Acetate	AsNaO			
State Zip	Compliance Proje	ot A Van	6 Blo										ĺ	1	D Nr. c Abid E NaHSO4	P Na214 Q N 1250					
WI 53092 Phone	PC#	2 162	C 10-2 7 MA													. ∦F	- MeO∺	R Na2 -24	263		
r-ione	Add project nui	mber here								***************************************	ale ale ale ale ale ale ale ale ale ale						G Amehlor → Ascorbic .cid	S .2SO4	4 odecanyd ate		
rmail rmail	VO#		ACTION AND DESCRIPTION OF THE PERSON.	One December of the Control of the C	٦Ĕ١.			l i									Ice	U Ace 4			
whitney cull@stantec.com			****************************	***************************************	jo s	2			1 1	-					2	٤١,	ال Vi ater K EPTA	v M ,A v^ pH 4-5	5		
Project Name Lot 3 River Point Dist Manitowoc	P orect #: 50006565				[8]	Š.					-					έl	_ EDA	∠ othe∈s			
Site	.50 <i>N</i> #			***************************************	무취원					*					Lio.	δo	Other				
					8) Y				-					16	áL					
			Sample	Matrix	Field Filtered Sample (Yes or Partone MS/MS/1/7/48 or kin)	1/06.6	3		***************************************						Total Number of containers	ŝΓ					
			Туре	(W=water	I≗ i	11 2	>	1			1				l ling	AU.					
	***	Sample	(C=Comp	S~solid O=waste/or	2			1	***************************************						3	Ęġ.					
Sample Identification	Sample Date	Time	Manufering Street	************		IJ		<u> </u>	<u> </u>		<u> </u>			ļ	L_	Ц.	Special Ins	structions	s/Note		
				ation Code	-12/2	\mathbb{Q}_{-}	4								2	4		See	***************************************		
TW-225	3/25/22	1735	<u>6</u>	Water		\ \ X	(and the same					
TW-216	1	1540		Water		X															
tw-215		1600		Water		X		-								1					
TW-221		1655		Water		ノ										1		***************************************	,		
TW-216 TW-215 TW-221 TW-214 AW-234 FD-3		1620		Water		×										1		····			
MW-234		+	·	Water		3		ļ	<u> </u>		<u> </u>					_					
FD-3		1101		Water		X				_						_	•••••	***************************************			
THE RESIDENCE OF THE PROPERTY	$\perp V$		$\perp V$	Water											l l		-		***************************************		
TB1			1	Water									-			1		***************************************			
				Water																	
V	- Parameter Annie - An	***************************************		Water							***************************************					***************************************					
Possible Hazard Identification	**************************************			A	Si	ampl	e Dis	posal (A fee m	ay be	asse	sed if	sampl	es are	retail	inec	d longer than 1	month)			
Non Hazard Fammable St n rntant Pos	son B 🗀 Unk	nou :	Radiologica	a <i>l</i>			Retur	n To Cl	ent	,	Dsp	osal By	Lab		$\exists_{A_{i}}$	rchi	ive Fc	Monti	ths		
Deliverable Requested 1 II III IV Ot. er (spec.fy)			TANK THE PARTY OF	***************************************	S	pec a	al Instr	uct ons	QC Rec	qui en	ents	automorphism (Control of the Control	*CONTOCON CONTOCON	***************************************	January Confession of the Conf	ANDMONES	AND DESCRIPTION OF THE PARTY OF	ACCEPTANCE AND ADDRESS OF THE PARTY OF THE P			
Empty Kit Rel nquished by		Date			Time	; ;	National Control of the Control of t	**************************************		Management of the Control	to the transport of the	Met id	of pri	ne :t	COLUMN TO THE OWNER.	and the second					
Relinquished by	Date, me			∩o bar	***************************************	Fe.	eved k	h an	11 01	MAC	ndl Dete Det					100	EETA	Y			
Relinau: 1-2d by	Dater me			pny		Rec	æ redi	Y L CAA	Mr L	1111	MIII(M)	1 STALLE				·VLV	Compar	1		

riel q ,he r	Cate T ne			ompa. y	***************************************	Red	te⊫∋d b	Эy				***************************************	Date		ROSSING AND ADDRESS OF THE PARTY OF THE PART	***************		Cor spary			
Custody Sears Intact. Custody Seal No	and the contract of the contra			·		200	er an	nper re	(s Cand	ìthe	= ∍mark	3	www.hoomoon	***************************************	200000000000000000000000000000000000000	***********	Sentimental constitution spacewish destroyations	alianotetra americano con con con con con con con con con c			
Δ Yes ω No						Į.															

_

5

7

9

11

12

14

15

10

11

500-214283 Wayb

ORIGIN ID:RRLA (262) 202-5955 STANTEC 12075 CORPORATE PKWY MEQUON, WI 53092 UNITED STATES US SAMPLE RECEIPT **EUROFINS** 2417 BOND ST.

UNIVERSITY PARK IL 60484 (262) 202 - 5966 INU: PO: REF:

RMA: ||| ||||||||

TUE - 29 MAR AA PRIORITY OVERNIGHT

60484 ORD

4120957 28Nar2022 MKEA 56DG1/1E3B/C0B8

RMA: [|]]]] FedEx Express TUE - 29 MAR AA FC 巨汉。 0221 5632 2369 1510 PRIORITY OVERNIGHT 60484 IL-US ORD 4120957 28Mar2022 NKEA 560G1/1E3B/C0B8

A ? =

500

P DATE: 16MAR22 VGT: 25.00 LB MAN 0269688/CAFE3511

ORIGIN ID:RRLA (262) &

10 SAMPLE RECEIPT

UNIVERSITY PARK IL 50484

REF:

STANTEC 12075 CORPORATE PKWY

MEQUON, WI 3092 UNITED STATE US

EUROFINS 2417 BOND ST.

4/15/2022

Page 349 of 356

a

Eurofins Chicago

2417 Bond Street

University Park, IL 60484

Phone: 708-534-5200 Fax: 708-534-5211

Chain of Custody Record

eurofins

Environment Testing

Client Information (Sub Contract Lab)	Sampler:			Lab PM: Fredrick, Sandie				Carrier Tracking No(s):				COC No: 500-158719.1				
Client Information (Sub Contract Lab) Client Contact:	Phone:			E-Mail:		, Sanc	ile .				State of Origin:				D00-108719.	-
Shipping/Receiving					_		@eurofi			Wisconsin					Page 1 of 1	
Company: Eurofins Environment Testing Northern Ca							ns Require								Job #:	
Address:	Due Date Request	ed:		-	Sta	te Pro	gram - W	viscons	sin						500-214283-1	Codes
880 Riverside Parkway, ,	4/11/2022			- 1				A	nalysis	s Requ	ueste	d			Preservation (
City: West Sacramento	TAT Requested (d.	ays):			T	(36				Ti					A - HCL B - NaOH	M - Hexane N - None
State, Zip:	1			- 1		List									C - Zn Acetate D - Nitric Acid	O - AsNaO2 P - Na2O4S
CA, 95605						No) PFAS, Standard List (36									E - NaHSO4	Q - Na2SO3
Phone: 916-373-5600(Tel) 916-372-1059(Fax)	PO #:					tano									F - MeOH G - Amchlor	R - Na2S2O3 S - H2SO4
910-373-3000(181) 910-372-1039(Fax)	WO #:				2	S, S									H - Ascorbic Aci	d T - TSP Dodecahydrate U - Acetone
				1	50	No PFA		i							J - DI Water	V - MCAA
Project Name:	Project #:				اڠ	28D									K - EDTA L - EDA	W - pH 4-5
Lot 3, River Point Dist, - Manitowoc Site:	50006565				8	PFC 2									L-EDA	Z - other (specify)
Isite:	SSOW#:				Field Filtered Sample (Y	30 C										
			I IV	atrix	S D	MS/MSD WI/3535 P										
				/=water,	ter	M M										
		Sample	1 ype	=solid, vaste/oil,	띪	E 2	[] J									
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time		=Tissue, \=Air)	<u></u>	Perform PFC_IDA_	la la								Special	Instructions/Note:
Herein and the second		><	Preservation		才	X								1	Оресна	mstructions/Note.
EB-1 (500-214283-45)	3/25/22	11:05	l v	Vater	7	>										
		Central 11:00	-		+	+	+	-		+	-	\vdash				
MW-231 (500-214283-46)	3/25/22	Central	V	Vater	1	· /		\perp							2	
MW-234 (500-214283-47)	3/25/22	11:45 Central	V	Vater		>									2	
					Т									1		
					+	_	++	+-		+	+					
					+	-	++	+		+		-		-		
					1											
					1											
					1	\top	11									
					+	-	++	+-	-	+	-		_	++		
					\perp											
Note: Since laboratory accreditations are subject to change, Eurofins Environment	nt Testing North Cent	ral, LLC place	s the ownership of n	ethod, ana	lyte	& accre	editation co	mpliance	e upon ou	t subconti	act labor	atories.	This sam	nple shipn	ent is forwarded un	der chain-of-custody. If the
laboratory does not currently maintain accreditation in the State of Origin listed al accreditation status should be brought to Eurofins Environment Testing North Ce	oove for analysis/test intral, LLC attention in	s/matrix being nmediately. If	analyzed, the sampl all requested accred	es must be litations are	ship cur	oped ba	ick to the E	urofins E n the sig	Environme ned Chair	ent Testing	g North C dv attest	entral,	LLC labora	atory or of	her instructions will Eurofins Environmen	be provided. Any changes to
Possible Hazard Identification															ined longer tha	
Unconfirmed					ľ		Return T								_	· ·
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliver	able Rank	2		+		al Instruct				sposal	ву Lа	D	Ar	chive For	Months
	T Timery Beliven	abic raine.			<u> </u>	opecia	ar instruct	110115/6	.c nequ	memen	.5.					
Empty Kit Relinquished by:		Date:			Tim	ne:					Met	nod of S	Shipment:		,	
Relinquished by:	Date/lime:	14	530 Com		_	Re	ceived by:	/	1				Date/Time	2,6	D 911	Company SAC
Relinquished by:	3/29/22 Date/Time:		Comp		_	Re	ceived by:			$-\!$			Date/Time		0) 111	Company
							7	X								,
Relinquished by:	Date/Time:		Comp	any		Re	ceived by:						Date/Time):		Company
Custody Seals Intact: Custody Seal No.:	706	1				Co	oler Tempe	rature(s)	°C and C	Other Rem	arks:			, -		

Login Sample Receipt Checklist

Client: Stantec Consulting Corp. Job Number: 500-214283-1

Login Number: 214283 List Source: Eurofins Chicago

List Number: 1

Creator: Hernandez, Stephanie

Greator. Hernandez, Stephanie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by meter.</td <td>y a survey True</td> <td></td>	y a survey True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised tampered with.	or True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.7,0.8,-0.7 Samples not frozen
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and	the COC. False	
Samples are received within Holding Time (excluding tests with im HTs)	nmediate True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any request MS/MSDs	ted True	
Containers requiring zero headspace have no headspace or bubb <6mm (1/4").	le is False	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	

N/A

2

4

6

10

12

4.1

15

17

Residual Chlorine Checked.

Login Sample Receipt Checklist

Client: Stantec Consulting Corp. Job Number: 500-214283-1

List Source: Eurofins Sacramento
List Number: 2
List Creation: 03/31/22 01:34 PM

Creator: Simmons, Jason C

		_
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	1937061
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.2c
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	False	Received project as a subcontract.
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	

True

N/A

_

3

4

6

8

10

12

13

15

10

117

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Environment Testing TestAmerica

Sacramento Sample Receiving Notes

		Tracking #: 1893 4456 1993
Job:	500-214283 Field Sheet	SO / PO / FO / SAT / 2-Day / Ground / UPS / CDO GSO / OnTrac / Goldstreak / USPS / Other

20 100 101	4.6.5
SO POTFOTSAT	/2-Day / Ground / UPS / CDO / Courie
GSO / OnTrac / Gold	dstreak / USPS / Other
900 9 1100 90K	periodic COPS / Other

Use this form to record Sample Custody Seel, Cooler Custody Seel, Temperature & corrected Temperature & other ob-

File in the job folder with the COC.		a consi custa valions.
Therm. iD: Corr. Factor lce Wet Gel Cooler Custody Seal: 1937 Cooler iD: Temp Observed:	Other	Notes:
Opening/Processing The Shipment Cooler compromised/tampered with? Cooler Temperature is acceptable? Frozen samples show signs of thaw? Initials: Date:	Yes No NA D D D D D D	
Unpacking/Labeling The Samples CoC is complete w/o discrepancies? Samples compromised/tampered with? Sample containers have legible labels? Sample custody seal? Containers are not broken or leaking? Sample date/times are provided? Appropriate containers are used?		Trizma Lot #(s):
Sample bottles are completely filled? Sample preservatives verified? Samples w/o discrepancies? Zero headspace?* Alkalinity has no headspace? Perchiorate has headspace?		Login Completion Receipt Temperature on COC? Samples received within hold time?
(Methods 314, 331, 6850) Multiphasic samples are not present? *Containers requiring zero handapase have no handapase, nitials: Date:	or bubble < 6 mm (UF)	NCM Filed? Log Release checked in TALS? Date: 3 (3)

ITACORPICORPIQAÇÃA FACILITIESISACRAMENTO-QAIDOCUMENT-MANAGEMENTY-FORMSIQA-812 SAMPLE RECEIVING NOTES.DOC

QA-812 MBB 11/06/2020

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

Method: 537 (modified) - Fluorinated Alkyl Substances

Matrix: Water Prep Type: Total/NA

Traction Tractor								ob .Jpo.	101011111
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFBA	PFPeA	PFHxA	C4PFHA	PFOA	PFNA	PFDA	PFUnA
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)
500-214283-45	EB-1	106	103	119	122	126	116	115	118
500-214283-46	MW-231	29	50	68	74	85	84	82	81
500-214283-47	MW-234	36	56	77	80	85	85	78	75
LCS 320-577343/2-A	Lab Control Sample	75	72	82	84	81	86	79	83
MB 320-577343/1-A	Method Blank	58	57	63	66	67	69	66	66
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		PFDoA	PFTDA	PFHxDA	C3PFBS	PFHxS	PFOS	PFOSA	d3NMFOS
Lab Sample ID	Client Sample ID	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(25-150)	(10-150)	(25-150)
500-214283-45	EB-1	109	103	114	101	116	120	125	117
500-214283-46	MW-231	74	64	71	67	78	80	85	79
500-214283-47	MW-234	72	66	72	67	79	80	83	69
LCS 320-577343/2-A	Lab Control Sample	77	72	76	74	79	83	85	79
MB 320-577343/1-A	Method Blank	60	58	62	57	65	65	69	66
			Perc	ent Isotope	Dilution Re	covery (Ac	ceptance L	imits)	
		d5NEFOS	dMeFOSA		NMFM	NEFM	M242FTS		M282FTS
Lab Sample ID	Client Sample ID	(25-150)	(10-150)	(10-150)	(10-150)	(10-150)	(25-150)	(25-150)	(25-150)
500-214283-45	EB-1	124	92	93	93	92	161 *5+	139	141
500-214283-46	MW-231	78	66	63	63	60	116	172 *5+	121
500-214283-47	MW-234	76	61	61	63	60	102	107	93
LCS 320-577343/2-A	Lab Control Sample	89	62	64	64	62	101	85	101
MB 320-577343/1-A	Method Blank	71	52	52	53	52	86	75	80
			Perce	ent Isotope	Dilution Re	covery (Ac	centance I	imits)	
		HFPODA	M102FTS	oni iootopo	Diracion rec	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	.coptaco =		
Lab Sample ID	Client Sample ID	(25-150)	(25-150)						
500-214283-45	EB-1	109	129						
500-214283-46	MW-231	64	91						
500-214283-47	MW-234	70	71						
LCS 320-577343/2-A	Lab Control Sample	74	84						
	•								

70

59

MB 320-577343/1-A

PFBA = 13C4 PFBA

PFPeA = 13C5 PFPeA

Method Blank

PFHxA = 13C2 PFHxA

C4PFHA = 13C4 PFHpA

PFOA = 13C4 PFOA

PFNA = 13C5 PFNA

PFDA = 13C2 PFDA

PFUnA = 13C2 PFUnA

PFDoA = 13C2 PFDoA

PFTDA = 13C2 PFTeDA

PFHxDA = 13C2 PFHxDA

C3PFBS = 13C3 PFBS

PFHxS = 18O2 PFHxS PFOS = 13C4 PFOS

PFOSA = 13C8 FOSA

d3NMFOS = d3-NMeFOSAA

d5NEFOS = d5-NEtFOSAA

dMeFOSA = d-N-MeFOSA-M

Eurofins Chicago

5

Job ID: 500-214283-1

7

9

4.6

13

15

16

17

Isotope Dilution Summary

Client: Stantec Consulting Corp.

Project/Site: Lot 3, River Point Dist. - Manitowoc 193708490

dEtFOSA = d-N-EtFOSA-M NMFM = d7-N-MeFOSE-M

NEFM = d9-N-EtFOSE-M

M242FTS = M2-4:2 FTS

M262FTS = M2-6:2 FTS M282FTS = M2-8:2 FTS

HFPODA = 13C3 HFPO-DA

M102FTS = 13C2 10:2 FTS

Job ID: 500-214283-1

5

7

9

11

12

14

1,

ANALYTICAL REPORT

PREPARED FOR

Attn: Jiyan Hatami Stantec Consulting Corp. 12080 Corporate Parkway Mequon, Wisconsin 53092

Generated 2/6/2023 10:44:31 AM

JOB DESCRIPTION

River Point Area B-1 - 193708490

JOB NUMBER

500-228345-1

Eurofins Chicago 2417 Bond Street University Park IL 60484

Eurofins Chicago

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

Results relate only to the items tested and the sample(s) as received by the laboratory. The results, detection limits (LOD) and Quantitation Limits (LOQ) have been adjusted for sample dilutions and/or solids content.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Generated 2/6/2023 10:44:31 AM

Authorized for release by Sandie Fredrick, Project Manager II Sandra.Fredrick@et.eurofinsus.com (920)261-1660

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	7
Sample Summary	8
	9
Definitions	23
QC Association	24
Surrogate Summary	27
QC Sample Results	28
Chronicle	37
Certification Summary	41
Chain of Custody	42
Receipt Checklists	45

11

12

14

15

Case Narrative

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Job ID: 500-228345-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-228345-1

Receipt

The samples were received on 1/19/2023 10:04 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.7° C.

GC/MS VOA

Method 8260B: The laboratory control sample (LCS) for 694921 and 694863 recovered outside control limits for the following analytes: Chloroethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.SB-259 (11.5-14) (500-228345-5), SB-260 (12.5-14) (500-228345-6) and FD-1 (500-228345-8)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

Method 8270D: The tailing factor for Pentachlorophenol and Benzidine failed in the DFTPP analysis. The tailing factor was acceptable in the CCVIS. This indicates the system was in control and no corrective action was required. (DFTPP 500-696233/1)

Method 8270D: The following samples were diluted due to the nature of the sample matrix: SB-255 (9-10) (500-228345-3) and SB-256 (8-9) (500-228345-4). Elevated reporting limits (RLs) are provided.

Method 8270D: The tailing factor for Pentachlorophenol failed in the DFTPP analysis. The tailing factor was acceptable in the CCVIS. This indicates the system was in control and no corrective action was required. (DFTPP 500-696251/1)

Method 8270D: The tailing factor for Pentachlorophenol failed in the DFTPP analysis. The tailing factor was acceptable in the CCVIS. This indicates the system was in control and no corrective action was required. (DFTPP 500-696455/1)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Job ID: 500-228345-1

3

5

6

8

9

11

13

14

15

Detection Summary

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-253 (8-10)

Lab Sample ID: 500-228345-1

Job ID: 500-228345-1

Analyte	Result (Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.0		1.1	0.36	mg/Kg	1	₩	6010C	Total/NA
Barium	20		1.1	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.11	J	0.21	0.038	mg/Kg	1	₩	6010C	Total/NA
Chromium	4.8		1.1	0.53	mg/Kg	1	₩	6010C	Total/NA
Lead	5.7		0.53	0.25	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.021		0.018	0.0096	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-254 (8-10)

Lab Sample ID: 500-228345-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.5		1.1	0.38	mg/Kg	1	₩	6010C	Total/NA
Barium	18		1.1	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.095	J	0.22	0.040	mg/Kg	1	₩	6010C	Total/NA
Chromium	7.0		1.1	0.54	mg/Kg	1	₩	6010C	Total/NA
Lead	2.5		0.55	0.25	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.0098	J	0.018	0.0097	mg/Kg	1	☼	7471B	Total/NA

Client Sample ID: SB-255 (9-10)

Lab Sample ID: 500-228345-3

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	7.1 J	48	6.7	ug/Kg		₩	8270D	Total/NA
Arsenic	2.3	1.3	0.44	mg/Kg	1	₩	6010C	Total/NA
Barium	93	1.3	0.15	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.33	0.26	0.046	mg/Kg	1	₩	6010C	Total/NA
Chromium	23	1.3	0.64	mg/Kg	1	₩	6010C	Total/NA
Lead	7.9	0.64	0.30	mg/Kg	1	₩	6010C	Total/NA
Silver	0.54 J	0.64	0.17	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.033	0.023	0.012	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-256 (8-9)

Lab Sample ID: 500-228345-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Phenanthrene	7.2	J	46	6.5	ug/Kg		₩	8270D	Total/NA
Arsenic	2.2		1.3	0.46	mg/Kg	1	₩	6010C	Total/NA
Barium	73		1.3	0.15	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.25	J	0.27	0.048	mg/Kg	1	☼	6010C	Total/NA
Chromium	21		1.3	0.66	mg/Kg	1	☼	6010C	Total/NA
Lead	7.3		0.67	0.31	mg/Kg	1	☼	6010C	Total/NA
Silver	0.51	J	0.67	0.17	mg/Kg	1	₩.	6010C	Total/NA
Mercury	0.045		0.022	0.012	mg/Kg	1	₽	7471B	Total/NA

Client Sample ID: SB-259 (11.5-14)

Lab Sample ID: 500-228345-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.98	J –	1.2	0.42	mg/Kg	1	₩	6010C	Total/NA
Barium	52		1.2	0.14	mg/Kg	1	☼	6010C	Total/NA
Cadmium	0.18	J	0.25	0.045	mg/Kg	1	₩	6010C	Total/NA
Chromium	14		1.2	0.61	mg/Kg	1	₩.	6010C	Total/NA
Lead	4.6		0.62	0.29	mg/Kg	1	☼	6010C	Total/NA
Silver	0.29	J	0.62	0.16	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.018	J	0.019	0.010	mg/Kg	1	 \$	7471B	Total/NA

This Detection Summary does not include radiochemical test results.

2/6/2023

Page 5 of 46

Detection Summary

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-260 (12.5-14)

Lab Sample ID: 500-228345-6

Lab Sample ID: 500-228345-7

Lab Sample ID: 500-228345-8

Job ID: 500-228345-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.67	J	1.2	0.40	mg/Kg	1	☼	6010C	Total/NA
Barium	40		1.2	0.13	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.16	J	0.24	0.043	mg/Kg	1	₩	6010C	Total/NA
Chromium	12		1.2	0.58	mg/Kg	1	₩	6010C	Total/NA
Lead	4.0		0.59	0.27	mg/Kg	1	₩	6010C	Total/NA
Silver	0.23	J	0.59	0.15	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.011	J	0.020	0.010	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: SB-261 (8-8.75)

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	1.8		1.0	0.36	mg/Kg	1	₩	6010C	Total/NA
Barium	25		1.0	0.12	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.095	J	0.21	0.038	mg/Kg	1	₩	6010C	Total/NA
Chromium	11		1.0	0.52	mg/Kg	1	₩	6010C	Total/NA
Lead	3.4		0.52	0.24	mg/Kg	1	₩	6010C	Total/NA
Silver	0.24	J	0.52	0.14	mg/Kg	1	₩	6010C	Total/NA
Mercury	0.10		0.019	0.010	mg/Kg	1	₩	7471B	Total/NA

Client Sample ID: FD-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Arsenic	0.97	J	1.3	0.43	mg/Kg	1	₩	6010C	Total/NA
Barium	55		1.3	0.14	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.18	J	0.25	0.045	mg/Kg	1	₽	6010C	Total/NA
Chromium	17		1.3	0.62	mg/Kg	1	₽	6010C	Total/NA
Lead	4.6		0.63	0.29	mg/Kg	1	₩	6010C	Total/NA
Silver	0.39	J	0.63	0.16	mg/Kg	1	₽	6010C	Total/NA
Mercury	0.017	J	0.020	0.011	mg/Kg	1	₩	7471B	Total/NA

This Detection Summary does not include radiochemical test results.

Page 6 of 46

Method Summary

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	EET CHI
8270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET CHI
6010C	Metals (ICP)	SW846	EET CHI
7471B	Mercury (CVAA)	SW846	EET CHI
9012B	Cyanide, Total andor Amenable	SW846	EET DEN
Moisture	Percent Moisture	EPA	EET CHI
3050B	Preparation, Metals	SW846	EET CHI
3541	Automated Soxhlet Extraction	SW846	EET CHI
5035	Closed System Purge and Trap	SW846	EET CHI
'471B	Preparation, Mercury	SW846	EET CHI
012B	Cyanide, Total and/or Amenable, Distillation	SW846	EET DEN

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200 EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Job ID: 500-228345-1

2

1

5

7

8

40

11

12

1 *A*

15

Sample Summary

Client: Stantec Consulting Corp. Project/Site: River Point Area B-1 - 193708490

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-228345-1	SB-253 (8-10)	Solid	01/16/23 12:55	01/19/23 10:04
500-228345-2	SB-254 (8-10)	Solid	01/17/23 11:45	01/19/23 10:04
500-228345-3	SB-255 (9-10)	Solid	01/16/23 13:35	01/19/23 10:04
500-228345-4	SB-256 (8-9)	Solid	01/17/23 11:30	01/19/23 10:04
500-228345-5	SB-259 (11.5-14)	Solid	01/17/23 12:25	01/19/23 10:04
500-228345-6	SB-260 (12.5-14)	Solid	01/17/23 13:15	01/19/23 10:04
500-228345-7	SB-261 (8-8.75)	Solid	01/17/23 13:00	01/19/23 10:04
500-228345-8	FD-1	Solid	01/17/23 13:16	01/19/23 10:04

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-253 (8-10)

Date Collected: 01/16/23 12:55 Date Received: 01/19/23 10:04

Analyte

Mercury

Analyte

General Chemistry

Cyanide, Total (SW846 9012B)

Lab Sample ID: 500-228345-1

Matrix: Solid

Percent Solids: 85.0

Job ID: 500-228345-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	<14		110	14	ug/Kg	<u></u>	01/27/23 13:12	01/30/23 11:45	
2-Methylnaphthalene	<10		110	10	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Acenaphthene	<10		56	10	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Acenaphthylene	<7.4		56	7.4	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Anthracene	<9.4		56	9.4	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Benzo[a]anthracene	<7.6		56	7.6	ug/Kg	☼	01/27/23 13:12	01/30/23 11:45	
Benzo[a]pyrene	<11		56	11	ug/Kg	☼	01/27/23 13:12	01/30/23 11:45	
Benzo[b]fluoranthene	<12		56	12	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Benzo[g,h,i]perylene	<18		56	18	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Benzo[k]fluoranthene	<17		56	17	ug/Kg	☼	01/27/23 13:12	01/30/23 11:45	
Chrysene	<15		56	15	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Dibenz(a,h)anthracene	<11		56	11	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Fluoranthene	<10		56	10	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Fluorene	<7.9		56	7.9	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Indeno[1,2,3-cd]pyrene	<15		56	15	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Naphthalene	<8.7		56	8.7	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Phenanthrene	<7.9		56	7.9	ug/Kg	₩	01/27/23 13:12	01/30/23 11:45	
Pyrene	<11		56	11	ug/Kg	☼	01/27/23 13:12	01/30/23 11:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)	85		43 - 145				01/27/23 13:12	01/30/23 11:45	
Nitrobenzene-d5 (Surr)	71		37 - 147				01/27/23 13:12	01/30/23 11:45	
Terphenyl-d14 (Surr)	100		42 - 157				01/27/23 13:12	01/30/23 11:45	
Method: SW846 6010C -	· · ·								
Analyte		Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	1.0	J	1.1		mg/Kg	₩		01/31/23 19:42	
Barium	20		1.1		mg/Kg	₩		01/31/23 19:42	
Cadmium	0.11	J	0.21		mg/Kg	₩	01/30/23 10:12		
Chromium	4.8		1.1		mg/Kg	₩	01/30/23 10:12	01/31/23 19:42	
Lead	5.7		0.53	0.25	mg/Kg	₩	01/30/23 10:12	01/31/23 19:42	
Selenium	<0.62		1.1	0.62	mg/Kg	₩	01/30/23 10:12	01/31/23 19:42	
Silver	<0.14		0.53	0.14	mg/Kg	₩	01/30/23 10:12	01/31/23 19:42	

RL

RL

0.57

0.018

MDL Unit

0.0096 mg/Kg

MDL Unit

0.28 mg/Kg

Prepared

Prepared

Analyzed

Analyzed

Dil Fac

Dil Fac

Result Qualifier

Result Qualifier

0.021

<0.28

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-254 (8-10) Lab Sample ID: 500-228345-2

Date Collected: 01/17/23 11:45 **Matrix: Solid** Date Received: 01/19/23 10:04 Percent Solids: 84.8

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<14		120	14	ug/Kg	☆	01/27/23 13:12	01/30/23 12:06	1
2-Methylnaphthalene	<11		120	11	ug/Kg	☆	01/27/23 13:12	01/30/23 12:06	1
Acenaphthene	<10		58	10	ug/Kg	☆	01/27/23 13:12	01/30/23 12:06	1
Acenaphthylene	<7.7		58	7.7	ug/Kg	☆	01/27/23 13:12	01/30/23 12:06	1
Anthracene	<9.7		58	9.7	ug/Kg	☆	01/27/23 13:12	01/30/23 12:06	1
Benzo[a]anthracene	<7.8		58	7.8	ug/Kg	☆	01/27/23 13:12	01/30/23 12:06	1
Benzo[a]pyrene	<11		58	11	ug/Kg	☆	01/27/23 13:12	01/30/23 12:06	1
Benzo[b]fluoranthene	<13		58	13	ug/Kg	☆	01/27/23 13:12	01/30/23 12:06	1
Benzo[g,h,i]perylene	<19		58	19	ug/Kg	≎	01/27/23 13:12	01/30/23 12:06	1
Benzo[k]fluoranthene	<17		58	17	ug/Kg	₽	01/27/23 13:12	01/30/23 12:06	1
Chrysene	<16		58	16	ug/Kg	₩	01/27/23 13:12	01/30/23 12:06	1
Dibenz(a,h)anthracene	<11		58	11	ug/Kg	≎	01/27/23 13:12	01/30/23 12:06	1
Fluoranthene	<11		58	11	ug/Kg	☆	01/27/23 13:12	01/30/23 12:06	1
Fluorene	<8.2		58	8.2	ug/Kg	≎	01/27/23 13:12	01/30/23 12:06	1
Indeno[1,2,3-cd]pyrene	<15		58	15	ug/Kg	☆	01/27/23 13:12	01/30/23 12:06	1
Naphthalene	<9.0		58	9.0	ug/Kg	≎	01/27/23 13:12	01/30/23 12:06	1
Phenanthrene	<8.1		58	8.1	ug/Kg	≎	01/27/23 13:12	01/30/23 12:06	1
Pyrene	<12		58	12	ug/Kg	₩	01/27/23 13:12	01/30/23 12:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	74		43 - 145				01/27/23 13:12	01/30/23 12:06	1
Nitrobenzene-d5 (Surr)	62		37 - 147				01/27/23 13:12	01/30/23 12:06	1
Terphenyl-d14 (Surr)	92		42 - 157				01/27/23 13:12	01/30/23 12:06	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.5		1.1	0.38	mg/Kg	-	01/30/23 10:12	01/31/23 19:45	1
Barium	18		1.1	0.13	mg/Kg	☼	01/30/23 10:12	01/31/23 19:45	1
Cadmium	0.095	J	0.22	0.040	mg/Kg	₩	01/30/23 10:12	01/31/23 19:45	1
Chromium	7.0		1.1	0.54	mg/Kg	₩	01/30/23 10:12	01/31/23 19:45	1
Lead	2.5		0.55	0.25	mg/Kg	₩	01/30/23 10:12	01/31/23 19:45	1
Selenium	<0.65		1.1	0.65	mg/Kg	₩	01/30/23 10:12	01/31/23 19:45	1
Silver	<0.14		0.55	0.14	mg/Kg	₩	01/30/23 10:12	01/31/23 19:45	1

Method: SW846 /4/1B - Mercu	ry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.0098	J	0.018	0.0097	mg/Kg	₩	01/27/23 13:45	01/30/23 09:58	1

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-255 (9-10)

Date Collected: 01/16/23 13:35 Date Received: 01/19/23 10:04

Lab Sample ID: 500-228345-3

Matrix: Solid

Percent Solids: 68.5

Job ID: 500-228345-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1-Methylnaphthalene	<12		97	12	ug/Kg	-	01/27/23 13:12	01/31/23 13:23	
2-Methylnaphthalene	<8.9		97	8.9	ug/Kg	₩	01/27/23 13:12	01/31/23 13:23	
Acenaphthene	<8.7		48	8.7	ug/Kg	₩	01/27/23 13:12	01/31/23 13:23	
Acenaphthylene	<6.4		48	6.4	ug/Kg	₽	01/27/23 13:12	01/31/23 13:23	
Anthracene	<8.1		48	8.1	ug/Kg	₽	01/27/23 13:12	01/31/23 13:23	
Benzo[a]anthracene	<6.5		48	6.5	ug/Kg	☼	01/27/23 13:12	01/31/23 13:23	
Benzo[a]pyrene	<9.3		48	9.3	ug/Kg	₽	01/27/23 13:12	01/31/23 13:23	
Benzo[b]fluoranthene	<10		48	10	ug/Kg	☼	01/27/23 13:12	01/31/23 13:23	
Benzo[g,h,i]perylene	<16		48	16	ug/Kg	₽	01/27/23 13:12	01/31/23 13:23	
Benzo[k]fluoranthene	<14		48	14	ug/Kg	₽	01/27/23 13:12	01/31/23 13:23	
Chrysene	<13		48	13	ug/Kg	☼	01/27/23 13:12	01/31/23 13:23	
Dibenz(a,h)anthracene	<9.3		48	9.3	ug/Kg	☼	01/27/23 13:12	01/31/23 13:23	
Fluoranthene	<8.9		48	8.9			01/27/23 13:12	01/31/23 13:23	
Fluorene	<6.8		48	6.8	ug/Kg	☼	01/27/23 13:12	01/31/23 13:23	
Indeno[1,2,3-cd]pyrene	<12		48		ug/Kg	☼	01/27/23 13:12	01/31/23 13:23	
Naphthalene	<7.4		48	7.4			01/27/23 13:12	01/31/23 13:23	
Phenanthrene	7.1	J	48	6.7	0 0	₩		01/31/23 13:23	
Pyrene	<9.6		48	9.6	ug/Kg	₩	01/27/23 13:12	01/31/23 13:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
2-Fluorobiphenyl (Surr)			43 - 145					01/31/23 13:23	
Nitrobenzene-d5 (Surr)	84		37 - 147				01/27/23 13:12	01/31/23 13:23	
Terphenyl-d14 (Surr)	98		42 - 157				01/27/23 13:12	01/31/23 13:23	
Method: SW846 6010C - Me	tals (ICP)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Arsenic	2.3		1.3	0.44	mg/Kg	-	01/30/23 10:12	01/31/23 19:48	
Barium	93		1.3	0.15	mg/Kg	☼	01/30/23 10:12	01/31/23 19:48	
Cadmium	0.33		0.26	0.046	mg/Kg	₽	01/30/23 10:12	01/31/23 19:48	
Chromium	23		1.3	0.64	mg/Kg	₽	01/30/23 10:12	01/31/23 19:48	
Lead	7.9		0.64	0.30	mg/Kg	☼	01/30/23 10:12	01/31/23 19:48	
Selenium	<0.75		1.3	0.75	mg/Kg	☼	01/30/23 10:12	01/31/23 19:48	
Silver	0.54	J	0.64	0.17	mg/Kg	ಘ	01/30/23 10:12	01/31/23 19:48	
	rcury (CVAA)								
Method: SW846 7471B - Me	J (RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
	Result	Qualifier	KL			_			
Analyte	Result 0.033	Qualifier	0.023		mg/Kg	₩	01/27/23 13:45	01/30/23 10:05	
Analyte Mercury		Qualifier			mg/Kg	<u> </u>	01/27/23 13:45	01/30/23 10:05	
Method: SW846 7471B - Me Analyte Mercury General Chemistry Analyte	0.033	Qualifier Qualifier		0.012	mg/Kg Unit		01/27/23 13:45 Prepared	01/30/23 10:05 Analyzed	Dil Fa

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-256 (8-9)

Date Collected: 01/17/23 11:30 Date Received: 01/19/23 10:04

Cadmium

Chromium

Lead

Selenium

Lab Sample ID: 500-228345-4

01/30/23 10:12 01/31/23 19:52

© 01/30/23 10:12 01/31/23 19:52

01/30/23 10:12 01/31/23 19:52

© 01/30/23 10:12 01/31/23 19:52

Matrix: Solid

Percent Solids: 70.1

Job ID: 500-228345-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<11		94	11	ug/Kg	-	01/27/23 13:12	01/31/23 13:47	1
2-Methylnaphthalene	<8.6		94	8.6	ug/Kg	☼	01/27/23 13:12	01/31/23 13:47	1
Acenaphthene	<8.4		46	8.4	ug/Kg	☼	01/27/23 13:12	01/31/23 13:47	1
Acenaphthylene	<6.2		46	6.2	ug/Kg	⊅	01/27/23 13:12	01/31/23 13:47	1
Anthracene	<7.8		46	7.8	ug/Kg	☼	01/27/23 13:12	01/31/23 13:47	1
Benzo[a]anthracene	<6.3		46	6.3	ug/Kg	₩	01/27/23 13:12	01/31/23 13:47	1
Benzo[a]pyrene	<9.0		46	9.0	ug/Kg	₩	01/27/23 13:12	01/31/23 13:47	1
Benzo[b]fluoranthene	<10		46	10	ug/Kg	☼	01/27/23 13:12	01/31/23 13:47	1
Benzo[g,h,i]perylene	<15		46	15	ug/Kg	₽	01/27/23 13:12	01/31/23 13:47	1
Benzo[k]fluoranthene	<14		46	14	ug/Kg	⊅	01/27/23 13:12	01/31/23 13:47	1
Chrysene	<13		46	13	ug/Kg	☼	01/27/23 13:12	01/31/23 13:47	1
Dibenz(a,h)anthracene	<9.0		46	9.0	ug/Kg	≎	01/27/23 13:12	01/31/23 13:47	1
Fluoranthene	<8.7		46	8.7	ug/Kg	⊅	01/27/23 13:12	01/31/23 13:47	1
Fluorene	<6.6		46	6.6	ug/Kg	☼	01/27/23 13:12	01/31/23 13:47	1
Indeno[1,2,3-cd]pyrene	<12		46	12	ug/Kg	₽	01/27/23 13:12	01/31/23 13:47	1
Naphthalene	<7.2		46	7.2	ug/Kg	≎	01/27/23 13:12	01/31/23 13:47	1
Phenanthrene	7.2	J	46	6.5	ug/Kg	₽	01/27/23 13:12	01/31/23 13:47	1
Pyrene	<9.3		46	9.3	ug/Kg	₩	01/27/23 13:12	01/31/23 13:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	69		43 - 145				01/27/23 13:12	01/31/23 13:47	1
Nitrobenzene-d5 (Surr)	78		37 - 147				01/27/23 13:12	01/31/23 13:47	1
Terphenyl-d14 (Surr)	91		42 - 157				01/27/23 13:12	01/31/23 13:47	1
Method: SW846 6010C -	Metals (ICP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	2.2		1.3	0.46	mg/Kg	₽	01/30/23 10:12	01/31/23 19:52	1
Barium	73		1.3	0.15	mg/Kg	₽	01/30/23 10:12	01/31/23 19:52	1

Silver	0.51	J	0.67	0.17	mg/Kg	₩	01/30/23 10:12	01/31/23 19:52	1
Method: SW846 7471B - Mercu	ry (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.045		0.022	0.012	mg/Kg	<u></u>	01/27/23 13:45	01/30/23 10:12	1

0.27

1.3

0.67

1.3

0.048 mg/Kg

0.66 mg/Kg

0.31 mg/Kg

0.79 mg/Kg

0.25 J

21

7.3

< 0.79

2/6/2023

3

5

7

9

11

13

14

15

1

1

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-259 (11.5-14)

Date Collected: 01/17/23 12:25 Date Received: 01/19/23 10:04 Lab Sample ID: 500-228345-5

Matrix: Solid

Percent Solids: 80.5

Job ID: 500-228345-1

Method: SW846 8260B	- Volatile Organic	Compounds (G	C/IVIS)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<35		75	35	ug/Kg		01/17/23 12:25	01/20/23 19:13	5
1,1,1-Trichloroethane	<29		75	29	ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	5
1,1,2,2-Tetrachloroethane	<30		75	30	ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	5
1,1,2-Trichloroethane	<26		75	26	ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
1,1-Dichloroethane	<31		75	31	ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
1,1-Dichloroethene	<29		75	29	ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
1,1-Dichloropropene	<22		75	22	ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
1,2,3-Trichlorobenzene	<34		75	34	ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
1,2,3-Trichloropropane	<31		150	31	ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
1,2,4-Trichlorobenzene	<26		75	26	ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	5
1,2,4-Trimethylbenzene	<27		75	27	ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
1,2-Dibromo-3-Chloropropane	<150		380	150	ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
1,2-Dibromoethane	<29		75	29	ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
1,2-Dichlorobenzene	<25		75		ug/Kg	☼	01/17/23 12:25	01/20/23 19:13	5
1,2-Dichloroethane	<29		75	29	ug/Kg	☼	01/17/23 12:25	01/20/23 19:13	5
1,2-Dichloropropane	<32		75	32	ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	5
1,3,5-Trimethylbenzene	<29		75		ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	5
1,3-Dichlorobenzene	<30		75		ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	5
1,3-Dichloropropane	<27		75		ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
1,4-Dichlorobenzene	<27		75		ug/Kg	☆	01/17/23 12:25	01/20/23 19:13	5
2,2-Dichloropropane	<33		75		ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
2-Chlorotoluene	<24		75		ug/Kg	∴	01/17/23 12:25	01/20/23 19:13	5
4-Chlorotoluene	<26		75		ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	5
Benzene	<11		19		ug/Kg	≎		01/20/23 19:13	5
Bromobenzene	<27		75		ug/Kg		01/17/23 12:25	01/20/23 19:13	5
Bromochloromethane	<32		75		ug/Kg			01/20/23 19:13	5
Dichlorobromomethane	<28		75		ug/Kg	₩		01/20/23 19:13	5
Bromoform	<36		75		ug/Kg			01/20/23 19:13	5
Bromomethane	<60		230		ug/Kg	₩		01/20/23 19:13	5
Carbon tetrachloride	<29		75		ug/Kg	₩		01/20/23 19:13	5
Chlorobenzene	<29		75		ug/Kg	∴		01/20/23 19:13	5
Chloroethane	<38	*+	75		ug/Kg	₩		01/20/23 19:13	5
Chloroform	<28		150		ug/Kg	₩		01/20/23 19:13	5
Chloromethane	<24		75		ug/Kg			01/20/23 19:13	
cis-1,2-Dichloroethene	<31		75		ug/Kg		01/17/23 12:25		5
cis-1,3-Dichloropropene	<31		75		ug/Kg	-77-		01/20/23 19:13	5
Dibromochloromethane	<37		75		ug/Kg			01/20/23 19:13	5
Dibromomethane	<20		75		ug/Kg			01/20/23 19:13	5
Dichlorodifluoromethane	<51		230		ug/Kg			01/20/23 19:13	5
Ethylbenzene	<14		19		ug/Kg			01/20/23 19:13	5
Hexachlorobutadiene	<34		75		ug/Kg	☆		01/20/23 19:13	5
Isopropyl ether	<21		75 75		ug/Kg ug/Kg	** **		01/20/23 19:13	5
Isopropylbenzene	<29		75		ug/Kg			01/20/23 19:13	5
Methyl tert-butyl ether	<30		75 75		ug/Kg ug/Kg			01/20/23 19:13	5
•	<120		380			** **		01/20/23 19:13	5
Methylene Chloride					ug/Kg				
Naphthalene n Butulbanzana	<25		75 75		ug/Kg	‡		01/20/23 19:13	5
n-Butylbenzene	<29		75 75		ug/Kg	ф.		01/20/23 19:13	5
N-Propylbenzene p-Isopropyltoluene	<31 <27		75 75		ug/Kg ug/Kg	. .		01/20/23 19:13 01/20/23 19:13	5

Eurofins Chicago

2/6/2023

3

<u>၁</u>

1

9

11

4 4

1 E

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-259 (11.5-14)

Date Collected: 01/17/23 12:25 Date Received: 01/19/23 10:04 Lab Sample ID: 500-228345-5

Matrix: Solid

Percent Solids: 80.5

Job ID: 500-228345-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<30		75	30	ug/Kg	-	01/17/23 12:25	01/20/23 19:13	50
Styrene	<29		75	29	ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	50
tert-Butylbenzene	<30		75	30	ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	50
Tetrachloroethene	<28		75	28	ug/Kg	☼	01/17/23 12:25	01/20/23 19:13	50
Toluene	<11		19	11	ug/Kg	☼	01/17/23 12:25	01/20/23 19:13	50
trans-1,2-Dichloroethene	<26		75	26	ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	50
trans-1,3-Dichloropropene	<27		75	27	ug/Kg	☼	01/17/23 12:25	01/20/23 19:13	50
Trichloroethene	<12		38	12	ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	50
Trichlorofluoromethane	<32		75	32	ug/Kg	₩	01/17/23 12:25	01/20/23 19:13	50
Vinyl chloride	<20		75	20	ug/Kg	₽	01/17/23 12:25	01/20/23 19:13	50
Xylenes, Total	<17		38	17	ug/Kg	≎	01/17/23 12:25	01/20/23 19:13	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 126				01/17/23 12:25	01/20/23 19:13	50
4-Bromofluorobenzene (Surr)	87		72 - 124				01/17/23 12:25	01/20/23 19:13	50
Dibromofluoromethane (Surr)	108		75 - 120				01/17/23 12:25	01/20/23 19:13	50
Toluene-d8 (Surr)	100		75 - 120				01/17/23 12:25	01/20/23 19:13	50

Analyte	Result Q	ualifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<14	120	14	ug/Kg	<u></u>	01/27/23 13:12	01/30/23 13:10	1
2-Methylnaphthalene	<11	120	11	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Acenaphthene	<11	59	11	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Acenaphthylene	<7.8	59	7.8	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Anthracene	<9.9	59	9.9	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Benzo[a]anthracene	<8.0	59	8.0	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Benzo[a]pyrene	<11	59	11	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Benzo[b]fluoranthene	<13	59	13	ug/Kg	☼	01/27/23 13:12	01/30/23 13:10	1
Benzo[g,h,i]perylene	<19	59	19	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Benzo[k]fluoranthene	<17	59	17	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Chrysene	<16	59	16	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Dibenz(a,h)anthracene	<11	59	11	ug/Kg	☼	01/27/23 13:12	01/30/23 13:10	1
Fluoranthene	<11	59	11	ug/Kg	≎	01/27/23 13:12	01/30/23 13:10	1
Fluorene	<8.3	59	8.3	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Indeno[1,2,3-cd]pyrene	<15	59	15	ug/Kg	₽	01/27/23 13:12	01/30/23 13:10	1
Naphthalene	<9.1	59	9.1	ug/Kg	≎	01/27/23 13:12	01/30/23 13:10	1
Phenanthrene	<8.2	59	8.2	ug/Kg	☼	01/27/23 13:12	01/30/23 13:10	1
Pyrene	<12	59	12	ug/Kg	☼	01/27/23 13:12	01/30/23 13:10	1
Surrogate	%Recovery Q	ualifier Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac	
2-Fluorobiphenyl (Surr)	83		43 - 145	01/27/23 13:12	01/30/23 13:10	1	
Nitrobenzene-d5 (Surr)	68		37 - 147	01/27/23 13:12	01/30/23 13:10	1	
Terphenyl-d14 (Surr)	96		42 - 157	01/27/23 13:12	01/30/23 13:10	1	

Method:	SW846	6010C -	Metals	(ICP)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.98	J	1.2	0.42	mg/Kg		01/30/23 10:12	01/31/23 20:01	1
Barium	52		1.2	0.14	mg/Kg	₩	01/30/23 10:12	01/31/23 20:01	1
Cadmium	0.18	J	0.25	0.045	mg/Kg	₩	01/30/23 10:12	01/31/23 20:01	1
Chromium	14		1.2	0.61	mg/Kg	₩	01/30/23 10:12	01/31/23 20:01	1

Page 14 of 46

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-259 (11.5-14)

Date Collected: 01/17/23 12:25

Date Received: 01/19/23 10:04

Lab Sample ID: 500-228345-5

Matrix: Solid

Percent Solids: 80.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.6		0.62	0.29	mg/Kg	-	01/30/23 10:12	01/31/23 20:01	1
Selenium	<0.73		1.2	0.73	mg/Kg	☼	01/30/23 10:12	01/31/23 20:01	1
Silver	0.29	J	0.62	0.16	mg/Kg	₩	01/30/23 10:12	01/31/23 20:01	1
- Method: SW846 7471	B - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.018	J	0.019	0.010	mg/Kg	<u></u>	01/27/23 13:45	01/30/23 10:13	1

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-260 (12.5-14)

Date Collected: 01/17/23 13:15 Date Received: 01/19/23 10:04 Lab Sample ID: 500-228345-6

Matrix: Solid

Percent Solids: 78.3

Job ID: 500-228345-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<36	77	36	ug/Kg	<u></u>	01/17/23 13:15	01/20/23 19:36	5
1,1,1-Trichloroethane	<29	77	29	ug/Kg	☼	01/17/23 13:15	01/20/23 19:36	5
1,1,2,2-Tetrachloroethane	<31	77	31	ug/Kg	₽	01/17/23 13:15	01/20/23 19:36	5
1,1,2-Trichloroethane	<27	77	27	ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	5
1,1-Dichloroethane	<32	77		ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	5
1,1-Dichloroethene	<30	77		ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	5
1,1-Dichloropropene	<23	77		ug/Kg	 \$	01/17/23 13:15	01/20/23 19:36	5
1,2,3-Trichlorobenzene	<35	77		ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	5
1,2,3-Trichloropropane	<32	150		ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	5
1,2,4-Trichlorobenzene	<26	77		ug/Kg	 \$	01/17/23 13:15	01/20/23 19:36	5
1,2,4-Trimethylbenzene	<28	77		ug/Kg	₩		01/20/23 19:36	5
1,2-Dibromo-3-Chloropropane	<150	390		ug/Kg	-77-		01/20/23 19:36	5
1,2-Dibromoethane	<30	77		ug/Kg	 		01/20/23 19:36	5
1,2-Dichlorobenzene	<26	77		ug/Kg	₩		01/20/23 19:36	5
1,2-Dichlorogenzene	<30	77		ug/Kg ug/Kg	₩ ₩		01/20/23 19:36	5
1,2-Dichloropropane	<33	77		ug/Kg			01/20/23 19:36	5
1,3,5-Trimethylbenzene	<29	77		ug/Kg ug/Kg	₩		01/20/23 19:36	5
•	<31	77					01/20/23 19:36	5
1,3-Dichlorobenzene	<31 <28			ug/Kg				
1,3-Dichloropropane	<28 <28	77 77		ug/Kg	₩		01/20/23 19:36	5
1,4-Dichlorobenzene		77 77		ug/Kg	*		01/20/23 19:36	5
2,2-Dichloropropane	<34	77		ug/Kg			01/20/23 19:36	5
2-Chlorotoluene	<24	77		ug/Kg	‡		01/20/23 19:36	5
4-Chlorotoluene	<27	77		ug/Kg	‡		01/20/23 19:36	5
Benzene 	<11	19		ug/Kg	. .		01/20/23 19:36	5
Bromobenzene	<28	77		ug/Kg	☼		01/20/23 19:36	5
Bromochloromethane	<33	77		ug/Kg	☼		01/20/23 19:36	5
Dichlorobromomethane	<29	77		ug/Kg			01/20/23 19:36	5
Bromoform	<37	77		ug/Kg	≎		01/20/23 19:36	5
Bromomethane	<62	230		ug/Kg	≎		01/20/23 19:36	5
Carbon tetrachloride	<30	77		ug/Kg			01/20/23 19:36	5
Chlorobenzene	<30	77		ug/Kg	₩		01/20/23 19:36	5
Chloroethane	<39 *+	77	39	ug/Kg	☼	01/17/23 13:15	01/20/23 19:36	5
Chloroform	<29	150	29	ug/Kg		01/17/23 13:15	01/20/23 19:36	5
Chloromethane	<25	77	25	ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	5
cis-1,2-Dichloroethene	<32	77	32	ug/Kg	☼	01/17/23 13:15	01/20/23 19:36	5
cis-1,3-Dichloropropene	<32	77	32	ug/Kg	☼	01/17/23 13:15	01/20/23 19:36	5
Dibromochloromethane	<38	77	38	ug/Kg	₽	01/17/23 13:15	01/20/23 19:36	5
Dibromomethane	<21	77	21	ug/Kg	☼	01/17/23 13:15	01/20/23 19:36	5
Dichlorodifluoromethane	<52	230	52	ug/Kg	₽	01/17/23 13:15	01/20/23 19:36	5
Ethylbenzene	<14	19	14	ug/Kg	₽	01/17/23 13:15	01/20/23 19:36	5
Hexachlorobutadiene	<35	77	35	ug/Kg	≎	01/17/23 13:15	01/20/23 19:36	5
Isopropyl ether	<21	77	21	ug/Kg	☼	01/17/23 13:15	01/20/23 19:36	5
Isopropylbenzene	<30	77		ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	5
Methyl tert-butyl ether	<31	77		ug/Kg	₽	01/17/23 13:15	01/20/23 19:36	5
Methylene Chloride	<130	390		ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	5
Naphthalene	<26	77		ug/Kg	 \$		01/20/23 19:36	5
n-Butylbenzene	<30	77		ug/Kg	₽		01/20/23 19:36	5
N-Propylbenzene	<32	77		ug/Kg			01/20/23 19:36	5
p-Isopropyltoluene	<28	77		ug/Kg			01/20/23 19:36	5

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-260 (12.5-14)

Date Collected: 01/17/23 13:15 Date Received: 01/19/23 10:04

Chromium

Lab Sample ID: 500-228345-6

Matrix: Solid

Percent Solids: 78.3

Job ID: 500-228345-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<31		77	31	ug/Kg	<u></u>	01/17/23 13:15	01/20/23 19:36	50
Styrene	<30		77	30	ug/Kg	☼	01/17/23 13:15	01/20/23 19:36	50
tert-Butylbenzene	<31		77	31	ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	50
Tetrachloroethene	<29		77	29	ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	50
Toluene	<11		19	11	ug/Kg	☼	01/17/23 13:15	01/20/23 19:36	50
trans-1,2-Dichloroethene	<27		77	27	ug/Kg	⊅	01/17/23 13:15	01/20/23 19:36	50
trans-1,3-Dichloropropene	<28		77	28	ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	50
Trichloroethene	<13		39	13	ug/Kg	☼	01/17/23 13:15	01/20/23 19:36	50
Trichlorofluoromethane	<33		77	33	ug/Kg	₩	01/17/23 13:15	01/20/23 19:36	50
Vinyl chloride	<20		77	20	ug/Kg	☼	01/17/23 13:15	01/20/23 19:36	50
Xylenes, Total	<17		39	17	ug/Kg	≎	01/17/23 13:15	01/20/23 19:36	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 126				01/17/23 13:15	01/20/23 19:36	50
4-Bromofluorobenzene (Surr)	91		72 - 124				01/17/23 13:15	01/20/23 19:36	50
Dibromofluoromethane (Surr)	108		75 - 120				01/17/23 13:15	01/20/23 19:36	50
Toluene-d8 (Surr)	98		75 - 120				01/17/23 13:15	01/20/23 19:36	50

Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<15		120	15	ug/Kg	-	01/27/23 13:12	01/30/23 13:31	1
2-Methylnaphthalene	<11		120	11	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Acenaphthene	<11		61	11	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Acenaphthylene	<8.1		61	8.1	ug/Kg	₽	01/27/23 13:12	01/30/23 13:31	1
Anthracene	<10		61	10	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Benzo[a]anthracene	<8.3		61	8.3	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Benzo[a]pyrene	<12		61	12	ug/Kg	₽	01/27/23 13:12	01/30/23 13:31	1
Benzo[b]fluoranthene	<13		61	13	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Benzo[g,h,i]perylene	<20		61	20	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Benzo[k]fluoranthene	<18		61	18	ug/Kg	₽	01/27/23 13:12	01/30/23 13:31	1
Chrysene	<17		61	17	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Dibenz(a,h)anthracene	<12		61	12	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Fluoranthene	<11		61	11	ug/Kg	₽	01/27/23 13:12	01/30/23 13:31	1
Fluorene	<8.7		61	8.7	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Indeno[1,2,3-cd]pyrene	<16		61	16	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Naphthalene	<9.5		61	9.5	ug/Kg	₽	01/27/23 13:12	01/30/23 13:31	1
Phenanthrene	<8.6		61	8.6	ug/Kg	☼	01/27/23 13:12	01/30/23 13:31	1
Pyrene	<12		61	12	ug/Kg	₩	01/27/23 13:12	01/30/23 13:31	1

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	2-Fluorobiphenyl (Surr)	92		43 - 145	01/27/23 13:12	01/30/23 13:31	1
	Nitrobenzene-d5 (Surr)	76		37 - 147	01/27/23 13:12	01/30/23 13:31	1
l	Terphenyl-d14 (Surr)	110		42 - 157	01/27/23 13:12	01/30/23 13:31	1

Method: SW846 6010C - Metals (ICP)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Arsenic	0.67	J	1.2	0.40	mg/Kg	<u></u>	01/30/23 10:12	01/31/23 20:05	1		
Barium	40		1.2	0.13	mg/Kg	☼	01/30/23 10:12	01/31/23 20:05	1		
Cadmium	0.16	J	0.24	0.043	mg/Kg	₩	01/30/23 10:12	01/31/23 20:05	1		

1.2

0.58 mg/Kg

12

Eurofins Chicago

© 01/30/23 10:12 01/31/23 20:05

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-260 (12.5-14) Lab Sample ID: 500-228345-6

Date Collected: 01/17/23 13:15 **Matrix: Solid**

Percent Solids: 78.3 Date Received: 01/19/23 10:04

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.0		0.59	0.27	mg/Kg	<u></u>	01/30/23 10:12	01/31/23 20:05	1
Selenium	<0.69		1.2	0.69	mg/Kg	₩	01/30/23 10:12	01/31/23 20:05	1
Silver	0.23	J	0.59	0.15	mg/Kg	☼	01/30/23 10:12	01/31/23 20:05	1
- Method: SW846 747	1B - Mercury (CVAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.011	J	0.020	0.010	mg/Kg		01/27/23 13:45	01/30/23 10:15	1

Client: Stantec Consulting Corp.

Silver

Analyte

Mercury

Selenium

Method: SW846 7471B - Mercury (CVAA)

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-261 (8-8.75) Lab Sample ID: 500-228345-7

Date Collected: 01/17/23 13:00 **Matrix: Solid** Date Received: 01/19/23 10:04 Percent Solids: 82.2

Method: SW846 8270D - 3	_	Qualifier	•	•	I Imia	_	Duamarad	A	DilEco
Analyte		Qualifier	RL 120	MDL		— <u>—</u>	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<15			15	ug/Kg	*	01/27/23 13:12		1
2-Methylnaphthalene	<11		120	11	ug/Kg	‡		01/30/23 13:52	1
Acenaphthene	<11		60	11		.		01/30/23 13:52	
Acenaphthylene	<7.9		60	7.9	0 0	☆		01/30/23 13:52	1
Anthracene	<10		60	10	ug/Kg	☆		01/30/23 13:52	1
Benzo[a]anthracene	<8.1		60	8.1	ug/Kg		01/27/23 13:12		1
Benzo[a]pyrene	<12		60		ug/Kg	₩	01/27/23 13:12		1
Benzo[b]fluoranthene	<13		60	13	ug/Kg	₩	01/27/23 13:12	01/30/23 13:52	1
Benzo[g,h,i]perylene	<19		60	19	ug/Kg	₩	01/27/23 13:12	01/30/23 13:52	1
Benzo[k]fluoranthene	<18		60	18	ug/Kg	₩	01/27/23 13:12	01/30/23 13:52	1
Chrysene	<16		60	16	ug/Kg	≎	01/27/23 13:12	01/30/23 13:52	1
Dibenz(a,h)anthracene	<12		60	12	ug/Kg	☼	01/27/23 13:12	01/30/23 13:52	1
Fluoranthene	<11		60	11	ug/Kg	₩	01/27/23 13:12	01/30/23 13:52	1
Fluorene	<8.5		60	8.5	ug/Kg	≎	01/27/23 13:12	01/30/23 13:52	1
Indeno[1,2,3-cd]pyrene	<16		60	16	ug/Kg	☆	01/27/23 13:12	01/30/23 13:52	1
Naphthalene	<9.3		60	9.3	ug/Kg	₩	01/27/23 13:12	01/30/23 13:52	1
Phenanthrene	<8.4		60	8.4	ug/Kg	☼	01/27/23 13:12	01/30/23 13:52	1
Pyrene	<12		60	12	ug/Kg	₩	01/27/23 13:12	01/30/23 13:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	81		43 - 145				01/27/23 13:12	01/30/23 13:52	1
Nitrobenzene-d5 (Surr)	65		37 - 147				01/27/23 13:12	01/30/23 13:52	1
Terphenyl-d14 (Surr)	99		42 - 157				01/27/23 13:12	01/30/23 13:52	1
Method: SW846 6010C -	Metals (ICP)								
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	1.8		1.0	0.36	mg/Kg	☆	01/30/23 10:12	01/31/23 20:08	1
Barium	25		1.0	0.12	mg/Kg	≎	01/30/23 10:12	01/31/23 20:08	1
Cadmium	0.095	J	0.21	0.038	mg/Kg	₩	01/30/23 10:12	01/31/23 20:08	1
Chromium	11		1.0		mg/Kg	₽	01/30/23 10:12	01/31/23 20:08	1
Lead	3.4		0.52		mg/Kg		01/30/23 10:12	04/04/00 00 00	1

1.0

0.52

RL

0.019

0.62 mg/Kg

0.14 mg/Kg

MDL Unit

0.010 mg/Kg

0.24 J

Result Qualifier

< 0.62

0.10

Eurofins Chicago

01/30/23 10:12 01/31/23 20:08

© 01/30/23 10:12 01/31/23 20:08

Analyzed

Dil Fac

Prepared

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: FD-1 Lab Sample ID: 500-228345-8

Date Collected: 01/17/23 13:16

Date Received: 01/19/23 10:04

Matrix: Solid
Percent Solids: 77.2

Method: SW846 8260B - Vola Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<36	78	36	ug/Kg	— <u>-</u>		01/20/23 19:59	5
1,1,1-Trichloroethane	<30	78		ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	50
I,1,2,2-Tetrachloroethane	<31	78	31	ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	5
1,1,2-Trichloroethane	<28	78		ug/Kg		01/17/23 13:16	01/20/23 19:59	50
I,1-Dichloroethane	<32	78		ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	5
1,1-Dichloroethene	<31	78		ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	50
1,1-Dichloropropene	<23	78		ug/Kg	 .☆	01/17/23 13:16	01/20/23 19:59	50
I,2,3-Trichlorobenzene	<36	78		ug/Kg	₩		01/20/23 19:59	5
1,2,3-Trichloropropane	<32	160		ug/Kg	₩		01/20/23 19:59	5
1,2,4-Trichlorobenzene	<27	78		ug/Kg		01/17/23 13:16		5
1,2,4-Trimethylbenzene	<28	78		ug/Kg			01/20/23 19:59	50
1,2-Dibromo-3-Chloropropane	<160	390		ug/Kg	~ \$		01/20/23 19:59	5
1,2-Dibromoethane	<30	78		ug/Kg		01/17/23 13:16		50
1,2-Dichlorobenzene	<26	78		ug/Kg	₩		01/20/23 19:59	50
1,2-Dichlorobenzene	<31	78		ug/Kg ug/Kg	₩		01/20/23 19:59	5
1,2-Dichloropropane	<34	78 78		ug/Kg	φ. 		01/20/23 19:59	5
1,3,5-Trimethylbenzene	<30			ug/Kg	₩.		01/20/23 19:59	5
1,3-Dichlorobenzene	<31	78		ug/Kg		01/17/23 13:16		50
1,3-Dichloropropane	<28	78		ug/Kg	₩.		01/20/23 19:59	50
1,4-Dichlorobenzene	<29	78		ug/Kg	*		01/20/23 19:59	5
2,2-Dichloropropane	<35	78		ug/Kg	<u>.</u> .		01/20/23 19:59	5
2-Chlorotoluene	<25	78		ug/Kg	☼		01/20/23 19:59	50
1-Chlorotoluene	<27	78		ug/Kg	₩		01/20/23 19:59	50
Benzene	<11	20		ug/Kg			01/20/23 19:59	
Bromobenzene	<28	78		ug/Kg	≎		01/20/23 19:59	50
Bromochloromethane	<34	78		ug/Kg	₩		01/20/23 19:59	5
Dichlorobromomethane	<29	78		ug/Kg			01/20/23 19:59	5
Bromoform	<38	78		ug/Kg	₩		01/20/23 19:59	5
Bromomethane	<62	240	62	ug/Kg	₩		01/20/23 19:59	5
Carbon tetrachloride	<30	78	30	ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	5
Chlorobenzene	<30	78	30	ug/Kg	☼	01/17/23 13:16	01/20/23 19:59	5
Chloroethane	<40 *+	78	40	ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	5
Chloroform	<29	160	29	ug/Kg	☼	01/17/23 13:16	01/20/23 19:59	5
Chloromethane	<25	78	25	ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	5
cis-1,2-Dichloroethene	<32	78	32	ug/Kg	☼	01/17/23 13:16	01/20/23 19:59	5
cis-1,3-Dichloropropene	<33	78	33	ug/Kg	☼	01/17/23 13:16	01/20/23 19:59	5
Dibromochloromethane	<38	78	38	ug/Kg	₽	01/17/23 13:16	01/20/23 19:59	5
Dibromomethane	<21	78	21	ug/Kg	≎	01/17/23 13:16	01/20/23 19:59	5
Dichlorodifluoromethane	<53	240	53	ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	5
Ethylbenzene	<14	20	14	ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	5
- Hexachlorobutadiene	<35	78		ug/Kg	☆		01/20/23 19:59	5
sopropyl ether	<22	78		ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	5
sopropylbenzene	<30	78		ug/Kg	 		01/20/23 19:59	5
Methyl tert-butyl ether	<31	78		ug/Kg	 \$		01/20/23 19:59	5
Methylene Chloride	<130	390		ug/Kg			01/20/23 19:59	5
Naphthalene	<26	78		ug/Kg			01/20/23 19:59	5
i-Butylbenzene	<30	78		ug/Kg ug/Kg	₩		01/20/23 19:59	5
-								
N-Propylbenzene o-Isopropyltoluene	<32 <28	78 78		ug/Kg ug/Kg			01/20/23 19:59 01/20/23 19:59	50 50

Eurofins Chicago

Job ID: 500-228345-1

2

1

6

7

9

11

41

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: FD-1 Lab Sample ID: 500-228345-8

Date Collected: 01/17/23 13:16 **Matrix: Solid** Percent Solids: 77.2 Date Received: 01/19/23 10:04

Method: SW846 8260B - Vo	latile Organic	Compoun	ds (GC/MS) (Continu	ed)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<31		78	31	ug/Kg	☆	01/17/23 13:16	01/20/23 19:59	50
Styrene	<30		78	30	ug/Kg	☆	01/17/23 13:16	01/20/23 19:59	50
tert-Butylbenzene	<31		78	31	ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	50
Tetrachloroethene	<29		78	29	ug/Kg	☆	01/17/23 13:16	01/20/23 19:59	50
Toluene	<12		20	12	ug/Kg	☆	01/17/23 13:16	01/20/23 19:59	50
trans-1,2-Dichloroethene	<27		78	27	ug/Kg	☆	01/17/23 13:16	01/20/23 19:59	50
trans-1,3-Dichloropropene	<28		78	28	ug/Kg	☆	01/17/23 13:16	01/20/23 19:59	50
Trichloroethene	<13		39	13	ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	50
Trichlorofluoromethane	<34		78	34	ug/Kg	☆	01/17/23 13:16	01/20/23 19:59	50
Vinyl chloride	<21		78	21	ug/Kg	☆	01/17/23 13:16	01/20/23 19:59	50
Xylenes, Total	<17		39	17	ug/Kg	₩	01/17/23 13:16	01/20/23 19:59	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	107		75 - 126				01/17/23 13:16	01/20/23 19:59	50
4-Bromofluorobenzene (Surr)	89		72 - 124				01/17/23 13:16	01/20/23 19:59	50
Dibromofluoromethane (Surr)	106		75 - 120				01/17/23 13:16	01/20/23 19:59	50
Toluene-d8 (Surr)	97		75 - 120				01/17/23 13:16	01/20/23 19:59	50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<15		130	15	ug/Kg	<u></u>	01/27/23 13:12	01/30/23 14:13	1
2-Methylnaphthalene	<11		130	11	ug/Kg	☆	01/27/23 13:12	01/30/23 14:13	1
Acenaphthene	<11		62	11	ug/Kg	☆	01/27/23 13:12	01/30/23 14:13	1
Acenaphthylene	<8.2		62	8.2	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Anthracene	<10		62	10	ug/Kg	≎	01/27/23 13:12	01/30/23 14:13	1
Benzo[a]anthracene	<8.4		62	8.4	ug/Kg	≎	01/27/23 13:12	01/30/23 14:13	1
Benzo[a]pyrene	<12		62	12	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Benzo[b]fluoranthene	<13		62	13	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Benzo[g,h,i]perylene	<20		62	20	ug/Kg	≎	01/27/23 13:12	01/30/23 14:13	1
Benzo[k]fluoranthene	<18		62	18	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Chrysene	<17		62	17	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Dibenz(a,h)anthracene	<12		62	12	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Fluoranthene	<12		62	12	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Fluorene	<8.7		62	8.7	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Indeno[1,2,3-cd]pyrene	<16		62	16	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Naphthalene	<9.6		62	9.6	ug/Kg	☆	01/27/23 13:12	01/30/23 14:13	1
Phenanthrene	<8.7		62	8.7	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Pyrene	<12		62	12	ug/Kg	₩	01/27/23 13:12	01/30/23 14:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	87		43 - 145				01/27/23 13:12	01/30/23 14:13	1

Surrogate	701 TECOVERY	Quanner	Lilling	i repareu	Allalyzea	Diriac	
2-Fluorobiphenyl (Surr)	87		43 - 145	01/27/23 13:12	01/30/23 14:13	1	
Nitrobenzene-d5 (Surr)	69		37 - 147	01/27/23 13:12	01/30/23 14:13	1	
Terphenyl-d14 (Surr)	109		42 - 157	01/27/23 13:12	01/30/23 14:13	1	

Method: SW846 6010C	Method: SW846 6010C - Metals (ICP)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Arsenic	0.97	J	1.3	0.43	mg/Kg	☆	01/30/23 10:12	01/31/23 20:11	1			
Barium	55		1.3	0.14	mg/Kg	☼	01/30/23 10:12	01/31/23 20:11	1			
Cadmium	0.18	J	0.25	0.045	mg/Kg	₩	01/30/23 10:12	01/31/23 20:11	1			
Chromium	17		1.3	0.62	mg/Kg	₽	01/30/23 10:12	01/31/23 20:11	1			

Eurofins Chicago

Page 21 of 46

Client: Stantec Consulting Corp. Job ID: 500-228345-1

Project/Site: River Point Area B-1 - 193708490

Mercury

Lab Sample ID: 500-228345-8 **Client Sample ID: FD-1**

Matrix: Solid

Date Collected: 01/17/23 13:16 Date Received: 01/19/23 10:04 Percent Solids: 77.2

Analyte	OC - Metals (ICP) (Co Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Lead	4.6		0.63	0.29	mg/Kg	— <u></u>	01/30/23 10:12	01/31/23 20:11	1
Selenium	<0.74		1.3	0.74	mg/Kg	☼	01/30/23 10:12	01/31/23 20:11	1
Silver	0.39	J	0.63	0.16	mg/Kg	≎	01/30/23 10:12	01/31/23 20:11	1
_ Method: SW846 7471	B - Mercury (CVAA)								
Analyte	• • •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

0.020

0.017 J

0.011 mg/Kg

Definitions/Glossary

Client: Stantec Consulting Corp. Job ID: 500-228345-1

Project/Site: River Point Area B-1 - 193708490

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

LCS and/or LCSD is outside acceptance limits, high biased.

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value. J

GC/MS Semi VOA

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

Qualifier **Qualifier Description**

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dilution Factor Dil Fac

Detection Limit (DoD/DOE) DΙ

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit**

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Chicago

2/6/2023

Page 23 of 46

QC Association Summary

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

GC/MS VOA

Prep Batch: 694863

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-5	SB-259 (11.5-14)	Total/NA	Solid	5035	
500-228345-6	SB-260 (12.5-14)	Total/NA	Solid	5035	
500-228345-8	FD-1	Total/NA	Solid	5035	
LB3 500-694863/4-A	Method Blank	Total/NA	Solid	5035	
LCS 500-694863/5-A	Lab Control Sample	Total/NA	Solid	5035	

Analysis Batch: 694921

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-5	SB-259 (11.5-14)	Total/NA	Solid	8260B	694863
500-228345-6	SB-260 (12.5-14)	Total/NA	Solid	8260B	694863
500-228345-8	FD-1	Total/NA	Solid	8260B	694863
LB3 500-694863/4-A	Method Blank	Total/NA	Solid	8260B	694863
MB 500-694921/8	Method Blank	Total/NA	Solid	8260B	
LCS 500-694863/5-A	Lab Control Sample	Total/NA	Solid	8260B	694863
LCS 500-694921/5	Lab Control Sample	Total/NA	Solid	8260B	

GC/MS Semi VOA

Prep Batch: 696071

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-1	SB-253 (8-10)	Total/NA	Solid	3541	_
500-228345-2	SB-254 (8-10)	Total/NA	Solid	3541	
500-228345-3	SB-255 (9-10)	Total/NA	Solid	3541	
500-228345-4	SB-256 (8-9)	Total/NA	Solid	3541	
500-228345-5	SB-259 (11.5-14)	Total/NA	Solid	3541	
500-228345-6	SB-260 (12.5-14)	Total/NA	Solid	3541	
500-228345-7	SB-261 (8-8.75)	Total/NA	Solid	3541	
500-228345-8	FD-1	Total/NA	Solid	3541	
MB 500-696071/1-A	Method Blank	Total/NA	Solid	3541	
LCS 500-696071/2-A	Lab Control Sample	Total/NA	Solid	3541	

Analysis Batch: 696233

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-1	SB-253 (8-10)	Total/NA	Solid	8270D	696071
500-228345-2	SB-254 (8-10)	Total/NA	Solid	8270D	696071
500-228345-5	SB-259 (11.5-14)	Total/NA	Solid	8270D	696071
500-228345-6	SB-260 (12.5-14)	Total/NA	Solid	8270D	696071
500-228345-7	SB-261 (8-8.75)	Total/NA	Solid	8270D	696071
500-228345-8	FD-1	Total/NA	Solid	8270D	696071

Analysis Batch: 696251

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 500-696071/1-A	Method Blank	Total/NA	Solid	8270D	696071
LCS 500-696071/2-A	Lab Control Sample	Total/NA	Solid	8270D	696071

Analysis Batch: 696455

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-3	SB-255 (9-10)	Total/NA	Solid	8270D	696071
500-228345-4	SB-256 (8-9)	Total/NA	Solid	8270D	696071

Eurofins Chicago

2/6/2023

QC Association Summary

Client: Stantec Consulting Corp. Project/Site: River Point Area B-1 - 193708490

Metals

Prep Batch: 696001

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-1	SB-253 (8-10)	Total/NA	Solid	7471B	
500-228345-2	SB-254 (8-10)	Total/NA	Solid	7471B	
500-228345-3	SB-255 (9-10)	Total/NA	Solid	7471B	
500-228345-4	SB-256 (8-9)	Total/NA	Solid	7471B	
500-228345-5	SB-259 (11.5-14)	Total/NA	Solid	7471B	
500-228345-6	SB-260 (12.5-14)	Total/NA	Solid	7471B	
500-228345-7	SB-261 (8-8.75)	Total/NA	Solid	7471B	
500-228345-8	FD-1	Total/NA	Solid	7471B	
MB 500-696001/12-A	Method Blank	Total/NA	Solid	7471B	
LCS 500-696001/13-A	Lab Control Sample	Total/NA	Solid	7471B	
500-228345-2 MS	SB-254 (8-10)	Total/NA	Solid	7471B	
500-228345-2 MSD	SB-254 (8-10)	Total/NA	Solid	7471B	
500-228345-2 DU	SB-254 (8-10)	Total/NA	Solid	7471B	

Prep Batch: 696285

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-1	SB-253 (8-10)	Total/NA	Solid	3050B	<u> </u>
500-228345-2	SB-254 (8-10)	Total/NA	Solid	3050B	
500-228345-3	SB-255 (9-10)	Total/NA	Solid	3050B	
500-228345-4	SB-256 (8-9)	Total/NA	Solid	3050B	
500-228345-5	SB-259 (11.5-14)	Total/NA	Solid	3050B	
500-228345-6	SB-260 (12.5-14)	Total/NA	Solid	3050B	
500-228345-7	SB-261 (8-8.75)	Total/NA	Solid	3050B	
500-228345-8	FD-1	Total/NA	Solid	3050B	
MB 500-696285/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-696285/2-A ^2	Lab Control Sample	Total/NA	Solid	3050B	

Analysis Batch: 696300

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-1	SB-253 (8-10)	Total/NA	Solid	7471B	696001
500-228345-2	SB-254 (8-10)	Total/NA	Solid	7471B	696001
500-228345-3	SB-255 (9-10)	Total/NA	Solid	7471B	696001
500-228345-4	SB-256 (8-9)	Total/NA	Solid	7471B	696001
500-228345-5	SB-259 (11.5-14)	Total/NA	Solid	7471B	696001
500-228345-6	SB-260 (12.5-14)	Total/NA	Solid	7471B	696001
500-228345-7	SB-261 (8-8.75)	Total/NA	Solid	7471B	696001
500-228345-8	FD-1	Total/NA	Solid	7471B	696001
MB 500-696001/12-A	Method Blank	Total/NA	Solid	7471B	696001
LCS 500-696001/13-A	Lab Control Sample	Total/NA	Solid	7471B	696001
500-228345-2 MS	SB-254 (8-10)	Total/NA	Solid	7471B	696001
500-228345-2 MSD	SB-254 (8-10)	Total/NA	Solid	7471B	696001
500-228345-2 DU	SB-254 (8-10)	Total/NA	Solid	7471B	696001

Analysis Batch: 696598

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-1	SB-253 (8-10)	Total/NA	Solid	6010C	696285
500-228345-2	SB-254 (8-10)	Total/NA	Solid	6010C	696285
500-228345-3	SB-255 (9-10)	Total/NA	Solid	6010C	696285
500-228345-4	SB-256 (8-9)	Total/NA	Solid	6010C	696285
500-228345-5	SB-259 (11.5-14)	Total/NA	Solid	6010C	696285
500-228345-6	SB-260 (12.5-14)	Total/NA	Solid	6010C	696285

Eurofins Chicago

Page 25 of 46 2/6/2023

QC Association Summary

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Metals (Continued)

Analysis Batch: 696598 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-7	SB-261 (8-8.75)	Total/NA	Solid	6010C	696285
500-228345-8	FD-1	Total/NA	Solid	6010C	696285
MB 500-696285/1-A	Method Blank	Total/NA	Solid	6010C	696285
LCS 500-696285/2-A ^2	Lab Control Sample	Total/NA	Solid	6010C	696285

General Chemistry

Prep Batch: 600211

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-1	SB-253 (8-10)	Total/NA	Solid	9012B	
500-228345-3	SB-255 (9-10)	Total/NA	Solid	9012B	
MB 280-600211/4-A	Method Blank	Total/NA	Solid	9012B	
HLCS 280-600211/1-A	Lab Control Sample	Total/NA	Solid	9012B	
LCS 280-600211/3-A	Lab Control Sample	Total/NA	Solid	9012B	
LLCS 280-600211/2-A	Lab Control Sample	Total/NA	Solid	9012B	

Analysis Batch: 600285

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-1	SB-253 (8-10)	Total/NA	Solid	9012B	600211
500-228345-3	SB-255 (9-10)	Total/NA	Solid	9012B	600211
MB 280-600211/4-A	Method Blank	Total/NA	Solid	9012B	600211
HLCS 280-600211/1-A	Lab Control Sample	Total/NA	Solid	9012B	600211
LCS 280-600211/3-A	Lab Control Sample	Total/NA	Solid	9012B	600211
LLCS 280-600211/2-A	Lab Control Sample	Total/NA	Solid	9012B	600211

Analysis Batch: 695894

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228345-1	SB-253 (8-10)	Total/NA	Solid	Moisture	
500-228345-2	SB-254 (8-10)	Total/NA	Solid	Moisture	
500-228345-3	SB-255 (9-10)	Total/NA	Solid	Moisture	
500-228345-4	SB-256 (8-9)	Total/NA	Solid	Moisture	
500-228345-5	SB-259 (11.5-14)	Total/NA	Solid	Moisture	
500-228345-6	SB-260 (12.5-14)	Total/NA	Solid	Moisture	
500-228345-7	SB-261 (8-8.75)	Total/NA	Solid	Moisture	
500-228345-8	FD-1	Total/NA	Solid	Moisture	

Surrogate Summary

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recove					
		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)		
500-228345-5	SB-259 (11.5-14)	110	87	108	100		
500-228345-6	SB-260 (12.5-14)	111	91	108	98		
500-228345-8	FD-1	107	89	106	97		
LB3 500-694863/4-A	Method Blank	108	89	106	99		
LCS 500-694863/5-A	Lab Control Sample	104	87	103	101		
LCS 500-694921/5	Lab Control Sample	100	86	102	103		
MB 500-694921/8	Method Blank	106	89	105	100		

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Matrix: Solid Prep Type: Total/NA

		Percent Surrog				
		FBP	NBZ	TPHL		
Lab Sample ID	Client Sample ID	(43-145)	(37-147)	(42-157)		
500-228345-1	SB-253 (8-10)	85	71	100		
500-228345-2	SB-254 (8-10)	74	62	92		
500-228345-3	SB-255 (9-10)	77	84	98		
500-228345-4	SB-256 (8-9)	69	78	91		
500-228345-5	SB-259 (11.5-14)	83	68	96		
500-228345-6	SB-260 (12.5-14)	92	76	110		
500-228345-7	SB-261 (8-8.75)	81	65	99		
500-228345-8	FD-1	87	69	109		
LCS 500-696071/2-A	Lab Control Sample	90	84	99		
MB 500-696071/1-A	Method Blank	88	74	98		

Surrogate Legend

FBP = 2-Fluorobiphenyl (Surr)

NBZ = Nitrobenzene-d5 (Surr)

TPHL = Terphenyl-d14 (Surr)

Page 27 of 46

QC Sample Results

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LB3 500-694863/4-A

Matrix: Solid

Analysis Batch: 694921

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 694863

Job ID: 500-228345-1

	LB3	LB3						•	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<23		50	23	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,1,1-Trichloroethane	<19		50	19	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,1,2,2-Tetrachloroethane	<20		50	20	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,1,2-Trichloroethane	<18		50	18	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,1-Dichloroethane	<21		50	21	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,1-Dichloroethene	<20		50	20	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,1-Dichloropropene	<15		50	15	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,2,3-Trichlorobenzene	<23		50	23	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,2,3-Trichloropropane	<21		100	21	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,2,4-Trichlorobenzene	<17		50	17	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,2,4-Trimethylbenzene	<18		50	18	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,2-Dibromo-3-Chloropropane	<100		250	100	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,2-Dibromoethane	<19		50	19	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,2-Dichlorobenzene	<17		50	17	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,2-Dichloroethane	<20		50	20	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,2-Dichloropropane	<21		50	21	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,3,5-Trimethylbenzene	<19		50	19	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,3-Dichlorobenzene	<20		50	20	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,3-Dichloropropane	<18		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
1,4-Dichlorobenzene	<18		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
2,2-Dichloropropane	<22		50	22	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
2-Chlorotoluene	<16		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
4-Chlorotoluene	<18		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Benzene	<7.3		13	7.3	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Bromobenzene	<18		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Bromochloromethane	<21		50				01/19/23 22:20	01/20/23 18:50	50
Dichlorobromomethane	<19		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Bromoform	<24		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Bromomethane	<40		150		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Carbon tetrachloride	<19		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Chlorobenzene	<19		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Chloroethane	<25		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Chloroform	<19		100		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Chloromethane	<16		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
cis-1,2-Dichloroethene	<20		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
cis-1,3-Dichloropropene	<21		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Dibromochloromethane	<24		50		ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Dibromomethane	<14		50		ug/Kg			01/20/23 18:50	50
Dichlorodifluoromethane	<34		150		ug/Kg			01/20/23 18:50	50
Ethylbenzene	<9.2		13		ug/Kg			01/20/23 18:50	50
Hexachlorobutadiene	<22		50		ug/Kg			01/20/23 18:50	50
Isopropyl ether	<14		50		ug/Kg			01/20/23 18:50	50
Isopropylbenzene	<19		50		ug/Kg			01/20/23 18:50	50
Methyl tert-butyl ether	<20		50		ug/Kg			01/20/23 18:50	50
Methylene Chloride	<82		250		ug/Kg			01/20/23 18:50	50
Naphthalene	<17		50		ug/Kg			01/20/23 18:50	50
n-Butylbenzene	<19		50		ug/Kg			01/20/23 18:50	50
N-Propylbenzene	<21		50		ug/Kg			01/20/23 18:50	50

Eurofins Chicago

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LB3 500-694863/4-A

Matrix: Solid

Analysis Batch: 694921

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 694863

Job ID: 500-228345-1

	LD3	LD3							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<18		50	18	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
sec-Butylbenzene	<20		50	20	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Styrene	<19		50	19	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
tert-Butylbenzene	<20		50	20	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Tetrachloroethene	<19		50	19	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Toluene	<7.4		13	7.4	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
trans-1,2-Dichloroethene	<18		50	18	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
trans-1,3-Dichloropropene	<18		50	18	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Trichloroethene	<8.2		25	8.2	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Trichlorofluoromethane	<21		50	21	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Vinyl chloride	<13		50	13	ug/Kg		01/19/23 22:20	01/20/23 18:50	50
Xylenes, Total	<11		25	11	ug/Kg		01/19/23 22:20	01/20/23 18:50	50

LB3 LB3

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108	75 - 126	01/19/23 22:20	01/20/23 18:50	50
4-Bromofluorobenzene (Surr)	89	72 - 124	01/19/23 22:20	01/20/23 18:50	50
Dibromofluoromethane (Surr)	106	75 - 120	01/19/23 22:20	01/20/23 18:50	50
Toluene-d8 (Surr)	99	75 - 120	01/19/23 22:20	01/20/23 18:50	50

Lab Sample ID: LCS 500-694863/5-A

Matrix: Solid

Analysis Batch: 694921

Client Sample ID: Lab Control Sample

Prep Type: Total/NA **Prep Batch: 694863**

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 2500 1,1,1,2-Tetrachloroethane 2400 70 - 125 ug/Kg 96 2500 1,1,1-Trichloroethane 2500 ug/Kg 100 70 - 125 2500 2230 1,1,2,2-Tetrachloroethane ug/Kg 89 62 - 1402500 2630 105 71 - 130 1,1,2-Trichloroethane ug/Kg 2500 2630 1,1-Dichloroethane ug/Kg 105 70 - 125 1,1-Dichloroethene 2500 2540 ug/Kg 102 67 - 122 1,1-Dichloropropene 2500 2530 101 70 - 121ug/Kg 1,2,3-Trichlorobenzene 2500 1800 72 51 - 145 ug/Kg 2500 1,2,3-Trichloropropane 2360 ug/Kg 94 50 - 133 1,2,4-Trichlorobenzene 2500 1960 78 57 - 137 ug/Kg 1,2,4-Trimethylbenzene 2500 2320 93 70 - 123 ug/Kg 2500 79 1,2-Dibromo-3-Chloropropane 1980 ug/Kg 56 - 123 1,2-Dibromoethane 2500 2370 ug/Kg 95 70 - 125 1,2-Dichlorobenzene 2500 2440 98 70 - 125 ug/Kg 1.2-Dichloroethane 2500 2810 ug/Kg 112 68 - 127 1,2-Dichloropropane 2500 2560 ug/Kg 102 67 - 1301,3,5-Trimethylbenzene 2500 2280 ug/Kg 91 70 - 123 2500 94 1,3-Dichlorobenzene 2340 70 - 125 ug/Kg 1,3-Dichloropropane 2500 2560 102 62 - 136 ug/Kg 1,4-Dichlorobenzene 2500 2370 ug/Kg 95 70 - 120 2,2-Dichloropropane 2500 2100 ug/Kg 84 58 - 139 2500 93 70 - 125 2-Chlorotoluene 2320 ug/Kg 4-Chlorotoluene 2500 2380 ug/Kg 95 68 - 124Benzene 2500 2640 ug/Kg 106 70 - 120

Eurofins Chicago

Page 29 of 46

Spike

LCS LCS

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-694863/5-A

Matrix: Solid

Analysis Batch: 694921

Client Sample ID: Lab Control Sample

%Rec

Prep Type: Total/NA Prep Batch: 694863

Job ID: 500-228345-1

Analyte	Added	Result Qualifi	er Unit	D %Rec	Limits	
Bromobenzene	2500	2300	ug/Kg	92	70 - 122	
Bromochloromethane	2500	2710	ug/Kg	109	65 - 122	
Dichlorobromomethane	2500	2690	ug/Kg	108	69 - 120	
Bromoform	2500	2560	ug/Kg	102	56 - 132	
Bromomethane	2500	3460	ug/Kg	138	40 - 152	
Carbon tetrachloride	2500	2700	ug/Kg	108	59 - 133	
Chlorobenzene	2500	2580	ug/Kg	103	70 - 120	
Chloroethane	2500	4020 *+	ug/Kg	161	48 - 136	
Chloroform	2500	2660	ug/Kg	106	70 - 120	
Chloromethane	2500	1490	ug/Kg	60	56 - 152	
cis-1,2-Dichloroethene	2500	2670	ug/Kg	107	70 - 125	
cis-1,3-Dichloropropene	2500	2340	ug/Kg	94	64 - 127	
Dibromochloromethane	2500	2580	ug/Kg	103	68 - 125	
Dibromomethane	2500	2580	ug/Kg	103	70 - 120	
Dichlorodifluoromethane	2500	1090	ug/Kg	44	40 - 159	
Ethylbenzene	2500	2320	ug/Kg	93	70 - 123	
Hexachlorobutadiene	2500	2110	ug/Kg	84	51 - 150	
Isopropylbenzene	2500	2170	ug/Kg	87	70 - 126	
Methyl tert-butyl ether	2500	2360	ug/Kg	94	55 - 123	
Methylene Chloride	2500	2760	ug/Kg	110	69 - 125	
Naphthalene	2500	1680	ug/Kg	67	53 - 144	
n-Butylbenzene	2500	2330	ug/Kg	93	68 - 125	
N-Propylbenzene	2500	2350	ug/Kg	94	69 - 127	
p-Isopropyltoluene	2500	2270	ug/Kg	91	70 - 125	
sec-Butylbenzene	2500	2340	ug/Kg	93	70 - 123	
Styrene	2500	2620	ug/Kg	105	70 - 120	
tert-Butylbenzene	2500	2170	ug/Kg	87	70 - 121	
Tetrachloroethene	2500	2510	ug/Kg	100	70 - 128	
Toluene	2500	2420	ug/Kg	97	70 - 125	

2500

2500

2500

2500

2500

5000

2630

2200

2460

2510

1830

4980

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

ug/Kg

105

88

98

101

73

100

70 - 125

62 - 128

70 - 125

55 - 128

64 - 126

70 - 125

Client Sample ID: Method Blank

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		75 - 126
4-Bromofluorobenzene (Surr)	87		72 - 124
Dibromofluoromethane (Surr)	103		75 - 120
Toluene-d8 (Surr)	101		75 - 120

Lab Sample ID: MB 500-694921/8

Matrix: Solid

trans-1,2-Dichloroethene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

Xylenes, Total

trans-1,3-Dichloropropene

Analysis Batch: 694921

мв мв

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46 ug/Kg			01/20/23 13:30	1

Prep Type: Total/NA

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-694921/8

Matrix: Solid

Analysis Batch: 694921

Client Sample ID: Method Blank

Job ID: 500-228345-1

Chorte Campio IB: Motrica Blank	
Prep Type: Total/NA	

Analyte	MB Result	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.38		1.0	0.38		<u>-</u> -	Tropurcu	01/20/23 13:30	1
1,1,2,2-Tetrachloroethane	<0.40		1.0		ug/Kg			01/20/23 13:30	1
1,1,2-Trichloroethane	<0.35		1.0		ug/Kg			01/20/23 13:30	·
1.1-Dichloroethane	<0.41		1.0		ug/Kg			01/20/23 13:30	1
1,1-Dichloroethene	<0.39		1.0		ug/Kg			01/20/23 13:30	1
1,1-Dichloropropene	<0.30		1.0		ug/Kg			01/20/23 13:30	1
1,2,3-Trichlorobenzene	0.526	1	1.0		ug/Kg			01/20/23 13:30	1
1,2,3-Trichloropropane	<0.41	J	2.0		ug/Kg			01/20/23 13:30	1
1,2,4-Trichlorobenzene	<0.34		1.0		ug/Kg			01/20/23 13:30	
1,2,4-Trimethylbenzene	<0.36		1.0		ug/Kg			01/20/23 13:30	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0		ug/Kg			01/20/23 13:30	1
1,2-Dibromoethane	<0.39		1.0		ug/Kg			01/20/23 13:30	
1,2-Dichlorobenzene	<0.33		1.0		ug/Kg			01/20/23 13:30	1
1,2-Dichloroethane	<0.39		1.0		ug/Kg			01/20/23 13:30	1
1,2-Dichloropropane	<0.43		1.0		ug/Kg			01/20/23 13:30	
1,3,5-Trimethylbenzene	<0.43		1.0		ug/Kg ug/Kg			01/20/23 13:30	1
1,3-Dichlorobenzene	<0.40		1.0		ug/Kg ug/Kg			01/20/23 13:30	1
	<0.40							01/20/23 13:30	1
1,3-Dichloropropane 1,4-Dichlorobenzene	<0.36		1.0 1.0		ug/Kg ug/Kg			01/20/23 13:30	1
*									
2,2-Dichloropropane 2-Chlorotoluene	<0.44		1.0		ug/Kg ug/Kg			01/20/23 13:30	1
	<0.31		1.0					01/20/23 13:30 01/20/23 13:30	1
4-Chlorotoluene	< 0.35		1.0		ug/Kg				1
Benzene	<0.15		0.25		ug/Kg			01/20/23 13:30	1
Bromobenzene	< 0.36		1.0		ug/Kg			01/20/23 13:30	1
Bromochloromethane	<0.43		1.0 1.0		ug/Kg			01/20/23 13:30	1
Dichlorobromomethane	<0.37				ug/Kg			01/20/23 13:30	
Bromoform	<0.48		1.0		ug/Kg			01/20/23 13:30	1
Bromomethane	<0.80		3.0		ug/Kg			01/20/23 13:30	1
Carbon tetrachloride	<0.38		1.0		ug/Kg			01/20/23 13:30	
Chlorobenzene	<0.39		1.0		ug/Kg			01/20/23 13:30	1
Chloroethane	<0.50		1.0		ug/Kg			01/20/23 13:30	1
Chloroform	<0.37		2.0		ug/Kg			01/20/23 13:30	
Chloromethane	<0.32		1.0		ug/Kg			01/20/23 13:30	1
cis-1,2-Dichloroethene	<0.41		1.0		ug/Kg			01/20/23 13:30	1
cis-1,3-Dichloropropene	<0.42		1.0		ug/Kg			01/20/23 13:30	
Dibromochloromethane	<0.49		1.0		ug/Kg			01/20/23 13:30	1
Dibromomethane	<0.27		1.0		ug/Kg			01/20/23 13:30	1
Dichlorodifluoromethane	<0.67		3.0		ug/Kg			01/20/23 13:30	1
Ethylbenzene	<0.18		0.25		ug/Kg			01/20/23 13:30	1
Hexachlorobutadiene	<0.45		1.0		ug/Kg			01/20/23 13:30	1
Isopropyl ether	<0.28		1.0		ug/Kg			01/20/23 13:30	
Isopropylbenzene	<0.38		1.0		ug/Kg			01/20/23 13:30	1
Methyl tert-butyl ether	<0.39		1.0		ug/Kg			01/20/23 13:30	1
Methylene Chloride	<1.6		5.0		ug/Kg			01/20/23 13:30	. · · · · · · .
Naphthalene	<0.33		1.0		ug/Kg			01/20/23 13:30	1
n-Butylbenzene	<0.39		1.0		ug/Kg			01/20/23 13:30	1
N-Propylbenzene	<0.41		1.0		ug/Kg			01/20/23 13:30	
p-Isopropyltoluene	<0.36		1.0		ug/Kg			01/20/23 13:30	1
sec-Butylbenzene	< 0.40		1.0	0.40	ug/Kg			01/20/23 13:30	1

Eurofins Chicago

2/6/2023

Page 31 of 46

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-694921/8

Matrix: Solid

Analysis Batch: 694921

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-228345-1

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<0.39		1.0	0.39	ug/Kg			01/20/23 13:30	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/Kg			01/20/23 13:30	1
Tetrachloroethene	<0.37		1.0	0.37	ug/Kg			01/20/23 13:30	1
Toluene	<0.15		0.25	0.15	ug/Kg			01/20/23 13:30	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/Kg			01/20/23 13:30	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/Kg			01/20/23 13:30	1
Trichloroethene	<0.16		0.50	0.16	ug/Kg			01/20/23 13:30	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/Kg			01/20/23 13:30	1
Vinyl chloride	<0.26		1.0	0.26	ug/Kg			01/20/23 13:30	1
Xylenes, Total	<0.22		0.50	0.22	ug/Kg			01/20/23 13:30	1

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 106 75 - 126 01/20/23 13:30 72 - 124 4-Bromofluorobenzene (Surr) 89 01/20/23 13:30 Dibromofluoromethane (Surr) 105 75 - 120 01/20/23 13:30 Toluene-d8 (Surr) 100 75 - 120 01/20/23 13:30

Lab Sample ID: LCS 500-694921/5

Matrix: Solid

Client Sample	ID:	Lab	Control	Sample
		Dro	a Tunai '	Total/NIA

Prep Type: Total/NA

Analysis Batch: 694921								
	Spike	LCS					%Rec	
Analyte	Added		Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	50.3		ug/Kg		101	70 - 125	
1,1,1-Trichloroethane	50.0	55.5		ug/Kg		111	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	50.1		ug/Kg		100	62 - 140	
1,1,2-Trichloroethane	50.0	55.9		ug/Kg		112	71 - 130	
1,1-Dichloroethane	50.0	54.8		ug/Kg		110	70 - 125	
1,1-Dichloroethene	50.0	61.2		ug/Kg		122	67 - 122	
1,1-Dichloropropene	50.0	57.6		ug/Kg		115	70 - 121	
1,2,3-Trichlorobenzene	50.0	40.3		ug/Kg		81	51 - 145	
1,2,3-Trichloropropane	50.0	49.3		ug/Kg		99	50 - 133	
1,2,4-Trichlorobenzene	50.0	44.0		ug/Kg		88	57 - 137	
1,2,4-Trimethylbenzene	50.0	51.5		ug/Kg		103	70 - 123	
1,2-Dibromo-3-Chloropropane	50.0	45.4		ug/Kg		91	56 - 123	
1,2-Dibromoethane	50.0	53.0		ug/Kg		106	70 - 125	
1,2-Dichlorobenzene	50.0	51.6		ug/Kg		103	70 - 125	
1,2-Dichloroethane	50.0	55.5		ug/Kg		111	68 - 127	
1,2-Dichloropropane	50.0	53.0		ug/Kg		106	67 - 130	
1,3,5-Trimethylbenzene	50.0	50.8		ug/Kg		102	70 - 123	
1,3-Dichlorobenzene	50.0	51.0		ug/Kg		102	70 - 125	
1,3-Dichloropropane	50.0	53.7		ug/Kg		107	62 - 136	
1,4-Dichlorobenzene	50.0	52.4		ug/Kg		105	70 - 120	
2,2-Dichloropropane	50.0	48.5		ug/Kg		97	58 - 139	
2-Chlorotoluene	50.0	50.9		ug/Kg		102	70 - 125	
4-Chlorotoluene	50.0	52.1		ug/Kg		104	68 - 124	
Benzene	50.0	54.5		ug/Kg		109	70 - 120	
Bromobenzene	50.0	49.8		ug/Kg		100	70 - 122	
Bromochloromethane	50.0	55.6		ug/Kg		111	65 - 122	

Project/Site: River Point Area B-1 - 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-694921/5

Matrix: Solid

Analysis Batch: 694921

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-228345-1

	Spike	LCS	LCS			%Rec	
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	
Dichlorobromomethane	50.0	55.1		ug/Kg		69 - 120	_
Bromoform	50.0	56.3		ug/Kg	113	56 - 132	
Bromomethane	50.0	72.3		ug/Kg	145	40 - 152	
Carbon tetrachloride	50.0	60.6		ug/Kg	121	59 - 133	
Chlorobenzene	50.0	54.9		ug/Kg	110	70 - 120	
Chloroethane	50.0	71.4	*+	ug/Kg	143	48 - 136	
Chloroform	50.0	54.1		ug/Kg	108	70 - 120	
Chloromethane	50.0	40.1		ug/Kg	80	56 - 152	
cis-1,2-Dichloroethene	50.0	54.5		ug/Kg	109	70 - 125	
cis-1,3-Dichloropropene	50.0	51.2		ug/Kg	102	64 - 127	
Dibromochloromethane	50.0	55.6		ug/Kg	111	68 - 125	
Dibromomethane	50.0	56.8		ug/Kg	114	70 - 120	
Dichlorodifluoromethane	50.0	45.8		ug/Kg	92	40 - 159	
Ethylbenzene	50.0	51.4		ug/Kg	103	70 - 123	
Hexachlorobutadiene	50.0	49.0		ug/Kg	98	51 - 150	
Isopropylbenzene	50.0	50.3		ug/Kg	101	70 - 126	
Methyl tert-butyl ether	50.0	48.9		ug/Kg	98	55 - 123	
Methylene Chloride	50.0	60.6		ug/Kg	121	69 - 125	
Naphthalene	50.0	39.2		ug/Kg	78	53 - 144	
n-Butylbenzene	50.0	55.7		ug/Kg	111	68 - 125	
N-Propylbenzene	50.0	53.7		ug/Kg	107	69 - 127	
p-Isopropyltoluene	50.0	51.8		ug/Kg	104	70 - 125	
sec-Butylbenzene	50.0	54.3		ug/Kg	109	70 - 123	
Styrene	50.0	55.5		ug/Kg	111	70 - 120	
tert-Butylbenzene	50.0	50.1		ug/Kg	100	70 - 121	
Tetrachloroethene	50.0	57.1		ug/Kg	114	70 - 128	
Toluene	50.0	52.1		ug/Kg	104	70 - 125	
trans-1,2-Dichloroethene	50.0	58.2		ug/Kg	116	70 - 125	
trans-1,3-Dichloropropene	50.0	49.6		ug/Kg	99	62 - 128	
Trichloroethene	50.0	53.4		ug/Kg	107	70 - 125	
Trichlorofluoromethane	50.0	54.2		ug/Kg	108	55 - 128	
Vinyl chloride	50.0	48.7		ug/Kg	97	64 - 126	
Xylenes, Total	100	108		ug/Kg	108	70 - 125	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		75 - 126
4-Bromofluorobenzene (Surr)	86		72 - 124
Dibromofluoromethane (Surr)	102		75 - 120
Toluene-d8 (Surr)	103		75 - 120

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-696071/1-A

Matrix: Solid

Analysis Batch: 696251

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 696071

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1-Methylnaphthalene	<8.1		67	8.1	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
2-Methylnaphthalene	<6.1		67	6.1	ug/Kg		01/27/23 13:12	01/30/23 10:54	1

Eurofins Chicago

Page 33 of 46

2

3

6

0

10

12

4 4

a E

Project/Site: River Point Area B-1 - 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-696071/1-A

Matrix: Solid

Analysis Batch: 696251

Client Sample ID: Method Blank

Prep Type: Total/NA

Job ID: 500-228345-1

Prep Batch: 696071

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthene	<6.0		33	6.0	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Acenaphthylene	<4.4		33	4.4	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Anthracene	<5.6		33	5.6	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Benzo[a]anthracene	<4.5		33	4.5	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Benzo[a]pyrene	<6.4		33	6.4	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Benzo[b]fluoranthene	<7.2		33	7.2	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Benzo[g,h,i]perylene	<11		33	11	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Benzo[k]fluoranthene	<9.8		33	9.8	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Chrysene	<9.1		33	9.1	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Dibenz(a,h)anthracene	<6.4		33	6.4	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Fluoranthene	<6.2		33	6.2	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Fluorene	<4.7		33	4.7	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Indeno[1,2,3-cd]pyrene	<8.6		33	8.6	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Naphthalene	<5.1		33	5.1	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Phenanthrene	<4.6		33	4.6	ug/Kg		01/27/23 13:12	01/30/23 10:54	1
Pyrene	<6.6		33	6.6	ug/Kg		01/27/23 13:12	01/30/23 10:54	1

MB MB

%Recovery Qualifier

90

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
2-Fluorobiphenyl (Surr)	88	43 - 145	01/27/23 13:12	01/30/23 10:54	1
Nitrobenzene-d5 (Surr)	74	37 - 147	01/27/23 13:12	01/30/23 10:54	1
Terphenyl-d14 (Surr)	98	42 - 157	01/27/23 13:12	01/30/23 10:54	1

Lab Sample ID: LCS 500-696071/2-A

Matrix: Solid

Surrogate

2-Fluorobiphenyl (Surr)

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Analysis Batch: 696251	Spike	LCS	1.08				Prep Batch: 696071 %Rec
Analyte	Added		Qualifier	Unit	D	%Rec	Limits
1-Methylnaphthalene	1330	1180		ug/Kg		88	68 - 111
2-Methylnaphthalene	1330	1200		ug/Kg		90	69 - 112
Acenaphthene	1330	1280		ug/Kg		96	65 - 124
Acenaphthylene	1330	1300		ug/Kg		97	68 - 120
Anthracene	1330	1300		ug/Kg		97	70 - 114
Benzo[a]anthracene	1330	1350		ug/Kg		101	67 - 122
Benzo[a]pyrene	1330	1350		ug/Kg		101	65 - 133
Benzo[b]fluoranthene	1330	1510		ug/Kg		113	69 - 129
Benzo[g,h,i]perylene	1330	1350		ug/Kg		101	72 - 131
Benzo[k]fluoranthene	1330	1320		ug/Kg		99	68 - 127
Chrysene	1330	1290		ug/Kg		97	63 - 120
Dibenz(a,h)anthracene	1330	1470		ug/Kg		111	64 - 131
Fluoranthene	1330	1370		ug/Kg		103	62 - 120
Fluorene	1330	1280		ug/Kg		96	62 - 120
Indeno[1,2,3-cd]pyrene	1330	1520		ug/Kg		114	68 - 130
Naphthalene	1330	1200		ug/Kg		90	63 - 110
Phenanthrene	1330	1290		ug/Kg		97	62 - 120
Pyrene	1330	1330		ug/Kg		99	61 - 128
LCS	S LCS						

Eurofins Chicago

Limits

43 - 145

Project/Site: River Point Area B-1 - 193708490

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-696071/2-A

Matrix: Solid

Analysis Batch: 696251

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Job ID: 500-228345-1

Prep Batch: 696071

LCS LCS

< 0.13

MB MB

<0.0088

Result Qualifier

%Recovery Qualifier Surrogate Limits 37 - 147 Nitrobenzene-d5 (Surr) 84 Terphenyl-d14 (Surr) 99 42 - 157

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 500-696285/1-A

Matrix: Solid

Analysis Batch: 696598

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 696285

MB MB **Analyte** Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 0.34 mg/Kg Arsenic < 0.34 1.0 01/30/23 10:12 01/31/23 18:44 01/30/23 10:12 01/31/23 18:44 Barium < 0.11 1.0 0.11 mg/Kg 1 Cadmium <0.036 0.20 01/30/23 10:12 01/31/23 18:44 0.036 mg/Kg Chromium < 0.50 0.50 mg/Kg 01/30/23 10:12 01/31/23 18:44 1.0 Lead 0.50 0.23 mg/Kg 01/30/23 10:12 01/31/23 18:44 < 0.23 Selenium < 0.59 1.0 0.59 mg/Kg 01/30/23 10:12 01/31/23 18:44

0.50

0.13 mg/Kg

MDL Unit

0.0088 mg/Kg

Lab Sample ID: LCS 500-696285/2-A ^2

Matrix: Solid

Silver

Client Sample ID: Lab Control Sample

01/30/23 10:12 01/31/23 18:44

Prep Type: Total/NA

Analysis Batch: 696598	Spike	LCS	LCS				Prep Batch: 696285 %Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Arsenic	10.0	8.82		mg/Kg		88	80 - 120
Barium	200	195		mg/Kg		98	80 - 120
Cadmium	5.00	4.65		mg/Kg		93	80 - 120
Chromium	20.0	18.8		mg/Kg		94	80 - 120
Lead	10.0	9.17		mg/Kg		92	80 - 120
Selenium	10.0	8.24		mg/Kg		82	80 - 120
Silver	5.00	4.49		mg/Kg		90	80 - 120

RL

0.017

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 500-696001/12-A

Matrix: Solid

Analyte

Mercury

Analysis Batch: 696300

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 696001

Dil Fac Analyzed

Lab Sample ID: LCS 500-696001/13-A

Matrix: Solid

Analysis Batch: 696300

Client Sample ID: Lab Control Sample

01/27/23 13:45 01/30/23 09:03

Prepared

Prep Type: Total/NA **Prep Batch: 696001**

%Rec

Limits

Spike LCS LCS Added Analyte Result Qualifier Unit %Rec Mercury 0.165 0.152 92 80 - 120 mg/Kg

Eurofins Chicago

Client: Stantec Consulting Corp. Job ID: 500-228345-1

0.0912

0.0909

Project/Site: River Point Area B-1 - 193708490

Method: 7471B - Mercury (CVAA) (Continued)

0.0098 J

0.0098 J

Lab Sample ID: 500-228345-2 MS	Client Sample ID: SB-254 (8-10)

Matrix: Solid

Analyte

Mercury

Analysis Batch: 696300

Prep Type: Total/NA **Prep Batch: 696001** Sample Sample Spike MS MS %Rec Result Qualifier Result Qualifier Added Limits Unit D %Rec

mg/Kg

104

100

75 - 125

75 - 125

Prep Batch: 600211

0.105

0.101

Lab Sample ID: 500-228345-2 MSD Client Sample ID: SB-254 (8-10) **Matrix: Solid** Prep Type: Total/NA **Prep Batch: 696001 Analysis Batch: 696300** Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Analyte

Mercury mg/Kg Lab Sample ID: 500-228345-2 DU Client Sample ID: SB-254 (8-10) **Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 696300 Prep Batch: 696001** Sample Sample DU DU **RPD** Analyte Result Qualifier Result Qualifier **RPD** Limit Unit Mercury 0.0098 J 0.0112 J 20 mg/Kg

Method: 9012B - Cyanide, Total andor Amenable

Lab Sample ID: MB 280-600211/4-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 600285

MB MB

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Cyanide, Total <0.24 0.50 0.24 mg/Kg 01/24/23 09:37 01/24/23 14:56

Lab Sample ID: HLCS 280-600211/1-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA Analysis Batch: 600285** Prep Batch: 600211 HLCS HLCS %Rec Spike Analyte Added Result Qualifier Unit Limits Cyanide, Total 17.5 17.5 mg/Kg 90 - 110

Lab Sample ID: LCS 280-600211/3-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Analysis Batch: 600285** Prep Batch: 600211 LCS LCS Spike %Rec Added Analyte Result Qualifier Unit %Rec Limits Cyanide, Total 5.00 4.64 93 90 - 110 mg/Kg

Lab Sample ID: LLCS 280-600211/2-A Client Sample ID: Lab Control Sample Matrix: Solid **Prep Type: Total/NA Analysis Batch: 600285 Prep Batch: 600211** Spike LLCS LLCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Cyanide, Total 5.00 4.89 mg/Kg 98 90 - 110

Eurofins Chicago

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-253 (8-10)

Lab Sample ID: 500-228345-1 Date Collected: 01/16/23 12:55 Date Received: 01/19/23 10:04

Matrix: Solid

Batch Batch Dilution Batch Prepared Method **Factor** Number Analyst or Analyzed **Prep Type** Type Run Lab 01/26/23 15:43 Total/NA Analysis Moisture 695894 LWN EET CHI

Client Sample ID: SB-253 (8-10)

Lab Sample ID: 500-228345-1 Date Collected: 01/16/23 12:55 Matrix: Solid

Date Received: 01/19/23 10:04 Percent Solids: 85.0

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3541			696071	EK	EET CHI	01/27/23 13:12 - 01/27/23 21:00 ¹
Total/NA	Analysis	8270D		1	696233	SS	EET CHI	01/30/23 11:45
Total/NA	Prep	3050B			696285	BDE	EET CHI	01/30/23 10:12 - 01/30/23 10:42 1
Total/NA	Analysis	6010C		1	696598	CMS	EET CHI	01/31/23 19:42
Total/NA	Prep	7471B			696001	MJG	EET CHI	01/27/23 13:45
Total/NA	Analysis	7471B		1	696300	MJG	EET CHI	01/30/23 09:56
Total/NA	Prep	9012B			600211	ZPM	EET DEN	01/24/23 09:37
Total/NA	Analysis	9012B		1	600285	ZPM	EET DEN	01/24/23 15:58

Client Sample ID: SB-254 (8-10)

Lab Sample ID: 500-228345-2 Date Collected: 01/17/23 11:45 **Matrix: Solid**

Date Received: 01/19/23 10:04

Batch Batch Dilution **Prepared** Batch **Prep Type** Type Method Run Factor **Number Analyst** Lab or Analyzed 01/26/23 15:43 Total/NA Analysis Moisture 695894 LWN **EET CHI**

Client Sample ID: SB-254 (8-10) Lab Sample ID: 500-228345-2

Date Collected: 01/17/23 11:45 Matrix: Solid Date Received: 01/19/23 10:04 Percent Solids: 84.8

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3541			696071	EK	EET CHI	01/27/23 13:12 - 01/27/23 21:00 ¹
Total/NA	Analysis	8270D		1	696233	SS	EET CHI	01/30/23 12:06
Total/NA	Prep	3050B			696285	BDE	EET CHI	01/30/23 10:12 - 01/30/23 10:42 1
Total/NA	Analysis	6010C		1	696598	CMS	EET CHI	01/31/23 19:45
Total/NA	Prep	7471B			696001	MJG	EET CHI	01/27/23 13:45
Total/NA	Analysis	7471B		1	696300	MJG	EET CHI	01/30/23 09:58

Lab Sample ID: 500-228345-3 Client Sample ID: SB-255 (9-10)

Date Collected: 01/16/23 13:35 Date Received: 01/19/23 10:04

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number A	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture			695894 L	LWN	EET CHI	01/26/23 15:43

Matrix: Solid

Job ID: 500-228345-1

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-255 (9-10)

Date Collected: 01/16/23 13:35 Date Received: 01/19/23 10:04 Lab Sample ID: 500-228345-3

Matrix: Solid

Percent Solids: 68.5

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3541			696071	EK	EET CHI	01/27/23 13:12 - 01/27/23 21:00 ¹
Total/NA	Analysis	8270D		1	696455	JSB	EET CHI	01/31/23 13:23
Total/NA	Prep	3050B			696285	BDE	EET CHI	01/30/23 10:12 - 01/30/23 10:42 1
Total/NA	Analysis	6010C		1	696598	CMS	EET CHI	01/31/23 19:48
Total/NA	Prep	7471B			696001	MJG	EET CHI	01/27/23 13:45
Total/NA	Analysis	7471B		1	696300	MJG	EET CHI	01/30/23 10:05
Total/NA	Prep	9012B			600211	ZPM	EET DEN	01/24/23 09:37
Total/NA	Analysis	9012B		1	600285	ZPM	EET DEN	01/24/23 16:00

Client Sample ID: SB-256 (8-9)

Date Collected: 01/17/23 11:30

Date Received: 01/19/23 10:04

Lab Sample ID: 500-228345-4

Matrix: Solid

l		Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
l	Total/NA	Analysis	Moisture		1	695894	LWN	EET CHI	01/26/23 15:43

Client Sample ID: SB-256 (8-9)

Date Collected: 01/17/23 11:30 Date Received: 01/19/23 10:04

Lab Sample ID: 500-228345-4

Matrix: Solid Percent Solids: 70.1

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3541			696071	EK	EET CHI	01/27/23 13:12 - 01/27/23 21:00 ¹
Total/NA	Analysis	8270D		1	696455	JSB	EET CHI	01/31/23 13:47
Total/NA	Prep	3050B			696285	BDE	EET CHI	01/30/23 10:12 - 01/30/23 10:42 1
Total/NA	Analysis	6010C		1	696598	CMS	EET CHI	01/31/23 19:52
Total/NA	Prep	7471B			696001	MJG	EET CHI	01/27/23 13:45
Total/NA	Analysis	7471B		1	696300	MJG	EET CHI	01/30/23 10:12

Client Sample ID: SB-259 (11.5-14)

Date Collected: 01/17/23 12:25

Date Received: 01/19/23 10:04

Lab Sample ID: 500-228345-5

Matrix: Solid

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture			695894 LWN	EET CHI	01/26/23 15:43

Client Sample ID: SB-259 (11.5-14)

Date Collected: 01/17/23 12:25

Date Received: 01/19/23 10:04

Lab Sample ID: 500-228345-5

Matrix: Solid Percent Solids: 80.5

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			694863	WRE	EET CHI	01/17/23 12:25
Total/NA	Analysis	8260B		50	694921	PMF	EET CHI	01/20/23 19:13
Total/NA	Prep	3541			696071	EK	EET CHI	01/27/23 13:12 - 01/27/23 21:00 1
Total/NA	Analysis	8270D		1	696233	SS	EET CHI	01/30/23 13:10
Total/NA	Prep	3050B			696285	BDE	EET CHI	01/30/23 10:12 - 01/30/23 10:42 1
Total/NA	Analysis	6010C		1	696598	CMS	EET CHI	01/31/23 20:01

Eurofins Chicago

Page 38 of 46

Lab Chronicle

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: SB-259 (11.5-14)

Date Collected: 01/17/23 12:25 Date Received: 01/19/23 10:04 Lab Sample ID: 500-228345-5

Matrix: Solid

Percent Solids: 80.5

Job ID: 500-228345-1

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7471B			696001	MJG	EET CHI	01/27/23 13:45
Total/NA	Analysis	7471B		1	696300	MJG	EET CHI	01/30/23 10:13

Client Sample ID: SB-260 (12.5-14)

Date Collected: 01/17/23 13:15 Date Received: 01/19/23 10:04

Lab Sample ID: 500-228345-6

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture	-	1	695894	LWN	EET CHI	01/26/23 15:43

Client Sample ID: SB-260 (12.5-14)

Date Collected: 01/17/23 13:15

Lab Sample ID: 500-228345-6

Matrix: Solid

Date Received: 01/19/23 10:04 Percent Solids: 78.3

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			694863	WRE	EET CHI	01/17/23 13:15
Total/NA	Analysis	8260B		50	694921	PMF	EET CHI	01/20/23 19:36
Total/NA	Prep	3541			696071	EK	EET CHI	01/27/23 13:12 - 01/27/23 21:00 1
Total/NA	Analysis	8270D		1	696233	SS	EET CHI	01/30/23 13:31
Total/NA	Prep	3050B			696285	BDE	EET CHI	01/30/23 10:12 - 01/30/23 10:42 1
Total/NA	Analysis	6010C		1	696598	CMS	EET CHI	01/31/23 20:05
Total/NA	Prep	7471B			696001	MJG	EET CHI	01/27/23 13:45
Total/NA	Analysis	7471B		1	696300	MJG	EET CHI	01/30/23 10:15

Client Sample ID: SB-261 (8-8.75)

Date Collected: 01/17/23 13:00

Date Received: 01/19/23 10:04

Lab Sample	ID: 500-228345-7	,
------------	------------------	---

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	Moisture		1	695894	LWN	EET CHI	01/26/23 15:43

Client Sample ID: SB-261 (8-8.75)

Date Collected: 01/17/23 13:00 Date Received: 01/19/23 10:04

Lab Sample ID: 500-228345-7 **Matrix: Solid**

Percent Solids: 82.2

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	3541			696071	EK	EET CHI	01/27/23 13:12 - 01/27/23 21:00 ¹
Total/NA	Analysis	8270D		1	696233	SS	EET CHI	01/30/23 13:52
Total/NA	Prep	3050B			696285	BDE	EET CHI	01/30/23 10:12 - 01/30/23 10:42 1
Total/NA	Analysis	6010C		1	696598	CMS	EET CHI	01/31/23 20:08
Total/NA	Prep	7471B			696001	MJG	EET CHI	01/27/23 13:45
Total/NA	Analysis	7471B		1	696300	MJG	EET CHI	01/30/23 10:17

Page 39 of 46

Lab Chronicle

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Client Sample ID: FD-1 Lab Sample ID: 500-228345-8 **Matrix: Solid**

Date Collected: 01/17/23 13:16 Date Received: 01/19/23 10:04

Batch Batch Dilution Batch **Prepared**

Prep Type Method Run **Factor** Number Analyst or Analyzed Type Lab 01/26/23 15:43 Total/NA Analysis Moisture 695894 LWN EET CHI

Client Sample ID: FD-1 Lab Sample ID: 500-228345-8 Date Collected: 01/17/23 13:16 **Matrix: Solid**

Date Received: 01/19/23 10:04 Percent Solids: 77.2

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			694863	WRE	EET CHI	01/17/23 13:16
Total/NA	Analysis	8260B		50	694921	PMF	EET CHI	01/20/23 19:59
Total/NA	Prep	3541			696071	EK	EET CHI	01/27/23 13:12 - 01/27/23 21:00
Total/NA	Analysis	8270D		1	696233	SS	EET CHI	01/30/23 14:13
Total/NA	Prep	3050B			696285	BDE	EET CHI	01/30/23 10:12 - 01/30/23 10:42
Total/NA	Analysis	6010C		1	696598	CMS	EET CHI	01/31/23 20:11
Total/NA	Prep	7471B			696001	MJG	EET CHI	01/27/23 13:45
Total/NA	Analysis	7471B		1	696300	MJG	EET CHI	01/30/23 10:19

^{*}Completion dates and times are reported or not reported per method requirements or individual lab discretion.

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200 EET DEN = Eurofins Denver, 4955 Yarrow Street, Arvada, CO 80002, TEL (303)736-0100

Accreditation/Certification Summary

Client: Stantec Consulting Corp.

Project/Site: River Point Area B-1 - 193708490

Job ID: 500-228345-1

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

	Authority	Program	Identification Number	Expiration Date
L	Wisconsin	State	999580010	08-31-23

Laboratory: Eurofins Denver

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	999615430	08-31-23

Eurofins Chicago

2417 Bond Street

Chain of Custody Record

💸 eurofins

Environm int Tisting Ameria

st ng

University Park, IL 60484 Phone (708) 534-5200 Phone (708) 534-5211	`	Onam	oi Gus	itouy i	100	Oi (A													Arret a	
Client Information	Sampler J Hatami			Lab Fre	PM edrick, S	Sanc	die					Car	rrier Tra	cking	No(s):			T	COC No		
Client Contact:	Phone 262 278 0154			E-M		-4-101	-@at	rof		com		Sta	te of O	rigin					Page.		
Jiyan Hatami Company	262-278-9154		PWSID	Sai	ndra.fre	Barick	(wer.	euron	insus	.Com		VV						_	Page 1 of 1	0004	,
Stantec Consulting Corp Address.									A	nalys	is Ro	eque	sted	sted					500-2	1283A	5
12080 Corporate Pkwy Suite 200	Due Date Request										_		, 1	ENDED.				- 6	Preservation Cod A HCL	les M Hexane	
City Mequon	TAT Requested (d	lays) 10															w.Colonian	B NaOH C Zn Acetate	N None O AsNaO2		
State Zip	Compliance Project	ct: A Yes	∧ No		+1						1					! !	ľ		D Nitric Acid E NaHSO4	P Na2O4S Q Na2SO3	
WI, 53092 Phone:	PO# 193708490				11								500-	228:	345 C	oc			F MeOH G Amchlor	R Na2S2O3 S H2SO4	
Email jiyan hatami@stantec.com	WO#					5							1	Į		ı	2	- 1	H Ascorbic Acid I Ice J DI Water	T TSP Dode U Acetone V MCAA	ecahydrate;
Project Name	Project #									1 1							j	5	K EDTA L EDA	W pH 4-5	noifu)
River Point Area B-1 Site	50006565 SSOW#	50006565				8		<u>s</u>	8									튑	Other [.]	Z other (sper	:City)
Manitowoc, Wisconsin	333				T Sam			Metals	Cyanic									<u>ۋ</u>	• 11/		
		Samala	Sample Type	Matrix (W=water S=solid,	Filters	B - VOC	D-PAH	C - RCRA	B - Total Cyanide									Number			
Sample Identification	Sample Date	Sample Time	(C=comp, G=grab)	O=waste/oil, BT=Tissue, A=Air		8260B -	8270D	6010C	9012B		1		}					夏	Special In:	structions/N	Note
Cample account		><		ition Code:	XX	₫ F			N								1	X			
5B-253(8-10)	1/16/2023	1255	G	Soil	N N	1	ኦ	X	X									1			
58-254(8-10)	1/17/2023	1145	G	Soil	NN	1	X	K										1			
5B-255 (9-10)	1/16/2023		G	Soil	N N	1	>	X	Х												
58-256(8-9)	1/17/2023	1130	G	Soil	N N	1	X	X										1			
58-259(11.5-14)		1225	G	Soil	N N	۱ X	: X	X				L						3			
58-260 (125-14)		1315	G	Soil	N N	۱ X	X	x										3			
48-261 (8-8.75)		1300	G	Soil	N N	1	X	X				floor						1			
FD-1	7	1316	G	Soil	N N	X	×	X									3	3			
			G	Soil	N N	1						_				\perp					
			G	Soil	N N	1					\perp					\perp					
			G	Soil	N N			$oxed{oxed}$										1			
Possible Hazard Identification		_			Sa				-						-	are	7		d longer than 1 i		
Non-Hazard Flammable Skin Irritant Poison B Unknown Radiological Deliverable Requested 1 II III, IV Other (specify)							Return						osal B			744		chiv	ve For	Months	
Empty Kit Relinquished by Date Time							l Instr	uction	ns/Q(C Requ	uireme	ent	A CONTRACTOR OF THE PARTY OF TH		#4(
						reived t	nv.					<u></u>	2	Date/T			_		Company		
Relinquished by	1/18/202	Date/Time			ود	Rec	eived	<u>i'ha</u>	M	elt	W	am	W	μ	Date/T		12	<u>ን</u>	1005	Company EEIA Company	
						V L															
Relinquished by	Date/Time	Date/Time Compan				Received by Date/Time							Company								
Custody Seals Intact: Custody Seal No				Cooler Temperature(s) °C and Other Remarks. 2.6+1.7																	

ORIGIN ID:RRLA (262) 202-5955
JIYAN HATAMI
STANTEC
12080 CORPORATE PARKWAY
SUITE 200
MEQUON, WI 53092
UNITED STATES US

SHIP DATE: 13DEC22 ACTWGT: 25.00 LB MAN CAD: 0269688/CAFE3616

500-228345 Waybi

SAMPLE RECEIPT **EUROFINS** 2417 BOND ST.

UNIVERSITY PARK IL 60484 (262) 202-5955 INU: P0:

RMA: || ||||||

Fed 32. 6155 6317 5476

THU - 19 JAN AA PRIORITY OVERNIGHT NSR

60484 IL-US

ORD

3145395 18Jan2023 MKEA 58162/D297/C0B8

Page 43 of 46

Eurofins Chicago

2417 Bond Street

University Park, IL 60484 Phone: 708-534-5200 Fax: 708-534-5211

Chain of Custody Record

🔆 eurofins

Environment Testing

Client Information (Sub Contract Lab)	Sampler: Lab PM: Fredrick, Sar				andi					Carrier T	racking	No(s):				COC No: 500-169967.1				
Client Contact: Shipping/Receiving	Phone:				-Mail: Sandra	a.Fre	edrick	@et.eur	ofinsus	s.com		State of Wiscor						Page: Page 1 of 1		
Company: TestAmerica Laboratories, Inc.				•	Ac	credi	itation	s Required sconsin;	(See no	ite):								Job #: 500-228345-1		
Address: 4955 Yarrow Street,	Due Date Request	ed:			Ť	iato	***	300110111,						-			_	Preservation Code		
City:	TAT Requested (d	ays):			+	Т	Т	П	T An	alysis	Req	ueste	a	Т					M - Hexane N - None	
Arvada State, Zip:	-									İ						1		C - Zn Acetate	O - AsNaO2 P - Na2O4S	
CO, 80002 Phone:	PO #:				_									1				E - NaHSO4	Q - Na2SO3 R - Na2S2O3 S - H2SO4	
303-736-0100(Tel) 303-431-7171(Fax)					<u>_</u>	ŀ												G - Amenior	T - TSP Dodec U - Acetone	ahydrate
	WO #:				Sor	Ŝ.	Total			ŀ				1			ě	J - DI Water	V - MCAA W - pH 4-5	
Project Name: River Point Area B-1 - 193708490	Project #: 50006565					S or	Cyanide,					ŀ					containers	K-EDIA	Y - Trizma Z - other (speci	if.v)
Site:	SSOW#:					SD (3												Other:	Z Galler (specia	y <i>,</i>
Sample Identification - Client ID (Lab ID)	Sample Date	Sample	Sample Type (C=comp,	(W=water S=solid, O=waste/o BT=Tissue	Filtere	rform MS/N	9012B/9012B_Prep										Total Number of			
Sample Identification - Gliefit ID (Lab ID)	Sample Date	Time	G=grab) Preservat	A=Air) ion Code	: X	ķ	8	-	+			_				-	팃	Special Ins	tructions/No	ote:
SB-253 (8-10) (500-228345-1)	1/16/23	12:55 Central		Solid			×									Ť	1			
SB-255 (9-10) (500-228345-3)	1/16/23	13:35 Central		Solid	1	Γ	×		\Box								1			
		Ceriliai			T					+		+			_	+				
						\vdash			H	-	H	+			\dashv	\dashv	\dashv			
					-	┢			+	+	++	-			1	\dashv	-			
					+	┝			\vdash		++	+	+	i		\dashv	-			
					+	\vdash			+	_	++	-	+			+				
					+	_			\vdash	_			+			4	_			
					_				\vdash	_	+	-	1			4	_			
																	1			
Note: Since laboratory accreditations are subject to change, Eurofins Chicago pla maintain accreditation in the State of Origin listed above for analysis/tests/matrix l attention immediately. If all requested accreditations are current to date, return th								contract lab ratory or of	oratorie ther insti	s. This s ructions v	ample s vill be pr	nipment ovided.	is forwa Any cha	rded u inges t	nder c o accr	hain-c editat	of-cus ion st	stody. If the laborator	y does not curre ht to Eurofins C	ently Hicago
Possible Hazard Identification						Sar	mple	Disposa	al (A f	ee may	be as	sesse	d if sa	mple			aine	ed longer than 1 i	month)	
Unconfirmed Deliverable Requested: I, II, III, IV, Other (specify)	Deles Deli					L		eturn To					By La	b		□ _A	rchi	ive For	Months	
	Primary Delivera		2			Ĺ	ecial	Instructio	ns/QC	Requi	rement	s:								
Empty Kit Relinquished by:		Date:	- 10		Tir	me:						Met	thod of S							
Relinquished by: Accell 2. (Library) Relinquished by:	Date/Time:	14:4	\supset	ompany				ved by:	LI					Date/T Date/T	- 1/1	23	3		Company Company	EN
Relinquished by:	Date/Time:			ompany				ved by:												
			C	опрапу				,						Date/T	ime:				Company	
Custody Seals Intact: Custody Seal No.:							Coole	r Tempera	ture(s) °(C and Oth	ner Rem	arks:	00	244	IV	4	2			

Page 44 of 46

Login Sample Receipt Checklist

Client: Stantec Consulting Corp. Job Number: 500-228345-1

Login Number: 228345 List Source: Eurofins Chicago

List Number: 1

Creator: Hernandez, Stephanie

Creator: Hernandez, Stephanie		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survemeter.</td <td>ey True</td> <td></td>	ey True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC	. True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

-

4

9

11

12

4 4

1!

Login Sample Receipt Checklist

Client: Stantec Consulting Corp. Job Number: 500-228345-1

List Source: Eurofins Denver
List Number: 2
List Creation: 01/21/23 05:18 PM

Creator: Roehsner, Karen P

Creator: Roehsner, Karen P		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	N/A	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

8

10

10

13

11 12

14

15

ANALYTICAL REPORT

PREPARED FOR

Attn: Harris Byers Stantec Consulting Corp. 12080 Corporate Parkway Mequon, Wisconsin 53092

Generated 2/2/2023 2:53:25 PM

JOB DESCRIPTION

Lot 3, 193708490

JOB NUMBER

500-228379-1

Eurofins Chicago 2417 Bond Street University Park IL 60484

Eurofins Chicago

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

Results relate only to the items tested and the sample(s) as received by the laboratory. The results, detection limits (LOD) and Quantitation Limits (LOQ) have been adjusted for sample dilutions and/or solids content.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Generated 2/2/2023 2:53:25 PM

Authorized for release by Sandie Fredrick, Project Manager II Sandra.Fredrick@et.eurofinsus.com (920)261-1660

4

5

0

8

10

13

14

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	14
QC Association	15
Surrogate Summary	16
QC Sample Results	17
Chronicle	20
Certification Summary	21
Chain of Custody	22
Receipt Checklists	23

_

1

5

7

9

10

12

14

Case Narrative

Client: Stantec Consulting Corp.
Project/Site: Lot 3, 193708490

Job ID: 500-228379-1

Job ID: 500-228379-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-228379-1

Receipt

The samples were received on 1/20/2023 9:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.3° C.

GC/MS VOA

Method 8260B: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed within the 7-day holding time specified for unpreserved samples: MW-165 (500-228379-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

٥

5

6

Я

9

12

12

Detection Summary

Client: Stantec Consulting Corp. Job ID: 500-228379-1

Project/Site: Lot 3, 193708490

Client Sample ID: MW-165 Lab Sample ID: 500-228379-1

No Detections.

Lab Sample ID: 500-228379-2 Client Sample ID: MW-231

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
cis-1,2-Dichloroethene	16	1.0	0.41 ug/L	1 8260B	Total/NA

Client Sample ID: MW-234 Lab Sample ID: 500-228379-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
cis-1,2-Dichloroethene	1.4	1.0	0.41 ug/L	1 8260B	Total/NA
Vinyl chloride	4.2	1.0	0.20 ug/L	1 8260B	Total/NA

Method Summary

Client: Stantec Consulting Corp. Project/Site: Lot 3, 193708490

Method Description

Purge and Trap

Volatile Organic Compounds (GC/MS)

Job ID: 500-228379-1

EET CHI

Protocol	
Protocol	Laboratory
SW846	EET CHI

SW846

Protocol References:

Method

8260B

5030B

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

E

5

7

Ö

10

11

13

14

Sample Summary

Client: Stantec Consulting Corp. Project/Site: Lot 3, 193708490

Job ID: 500-228379-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-228379-1	MW-165	Water	01/17/23 09:55 01	/20/23 09:30
500-228379-2	MW-231	Water	01/17/23 10:15 01	/20/23 09:30
500-228379-3	MW-234	Water	01/17/23 10:55 01	/20/23 09:30

Client: Stantec Consulting Corp. Job ID: 500-228379-1

Project/Site: Lot 3, 193708490

Lab Sample ID: 500-228379-1 **Client Sample ID: MW-165** Date Collected: 01/17/23 09:55

Matrix: Water

Date Received: 01/20/23 09:30

Analyte	Result Qualifier	RL		Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			01/22/23 15:40	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			01/22/23 15:40	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			01/22/23 15:40	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			01/22/23 15:40	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			01/22/23 15:40	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			01/22/23 15:40	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			01/22/23 15:40	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			01/22/23 15:40	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			01/22/23 15:40	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			01/22/23 15:40	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			01/22/23 15:40	
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			01/22/23 15:40	
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			01/22/23 15:40	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			01/22/23 15:40	
1,2-Dichloroethane	<0.39	1.0		ug/L			01/22/23 15:40	
1,2-Dichloropropane	<0.43	1.0		ug/L			01/22/23 15:40	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			01/22/23 15:40	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			01/22/23 15:40	
1,3-Dichloropropane	<0.36	1.0		ug/L			01/22/23 15:40	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			01/22/23 15:40	
2,2-Dichloropropane	<0.44	1.0		ug/L			01/22/23 15:40	
2-Chlorotoluene	<0.31	1.0		ug/L			01/22/23 15:40	
4-Chlorotoluene	<0.35	1.0		ug/L			01/22/23 15:40	
Benzene	<0.15	0.50		ug/L			01/22/23 15:40	
Bromobenzene	<0.36	1.0		ug/L			01/22/23 15:40	
Bromochloromethane	<0.43	1.0		ug/L			01/22/23 15:40	
Dichlorobromomethane	<0.37	1.0		ug/L			01/22/23 15:40	
Bromoform	<0.48	1.0		ug/L			01/22/23 15:40	
Bromomethane	<0.80	3.0		ug/L			01/22/23 15:40	
Carbon tetrachloride	<0.38	1.0		ug/L			01/22/23 15:40	
Chlorobenzene	<0.39	1.0		ug/L			01/22/23 15:40	
Chloroethane	<0.51	1.0		ug/L			01/22/23 15:40	
Chloroform	<0.37	2.0		ug/L			01/22/23 15:40	
Chloromethane	<0.32	1.0		ug/L			01/22/23 15:40	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			01/22/23 15:40	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			01/22/23 15:40	
Dibromochloromethane	<0.49	1.0		ug/L			01/22/23 15:40	
Dibromomethane	<0.27	1.0		ug/L			01/22/23 15:40	
Dichlorodifluoromethane	<0.27	3.0		ug/L ug/L			01/22/23 15:40	
Ethylbenzene	<0.18	0.50		ug/L ug/L			01/22/23 15:40	
Eurybenzene Hexachlorobutadiene	<0.45	1.0		ug/L ug/L			01/22/23 15:40	
	<0.43	1.0		-			01/22/23 15:40	
Isopropyl ether Isopropylbenzene	<0.39			ug/L			01/22/23 15:40	
,		1.0		ug/L				
Methyl tert-butyl ether	<0.39 <1.6	1.0 5.0		ug/L			01/22/23 15:40	
Methylene Chloride		5.0		ug/L			01/22/23 15:40	
Naphthalene	<0.34	1.0		ug/L			01/22/23 15:40	
n-Butylbenzene	<0.39	1.0		ug/L			01/22/23 15:40	
N-Propylbenzene p-Isopropyltoluene	<0.41 <0.36	1.0 1.0		ug/L ug/L			01/22/23 15:40 01/22/23 15:40	

Eurofins Chicago

Page 8 of 23 2/2/2023

Client: Stantec Consulting Corp.

Project/Site: Lot 3, 193708490

Job ID: 500-228379-1

Client Sample ID: MW-165

Lab Sample ID: 500-228379-1

Matrix: Water

Date Collected: 01/17/23 09:55 Date Received: 01/20/23 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			01/22/23 15:40	1
Styrene	<0.39		1.0	0.39	ug/L			01/22/23 15:40	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			01/22/23 15:40	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			01/22/23 15:40	1
Toluene	<0.15		0.50	0.15	ug/L			01/22/23 15:40	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			01/22/23 15:40	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			01/22/23 15:40	1
Trichloroethene	<0.16		0.50	0.16	ug/L			01/22/23 15:40	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			01/22/23 15:40	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			01/22/23 15:40	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			01/22/23 15:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	105		75 - 126			•		01/22/23 15:40	1
4-Bromofluorobenzene (Surr)	88		72 - 124					01/22/23 15:40	1
Dibromofluoromethane (Surr)	106		75 - 120					01/22/23 15:40	1
Toluene-d8 (Surr)	100		75 - 120					01/22/23 15:40	1

Eurofins Chicago

2/2/2023

Page 9 of 23

2

5

5

7

8

10

11

13

Client: Stantec Consulting Corp. Job ID: 500-228379-1

Client: Stantec Consulting Corp. Project/Site: Lot 3, 193708490

Client Sample ID: MW-231 Lab Sample ID: 500-228379-2

Date Collected: 01/17/23 10:15 Matrix: Water Date Received: 01/20/23 09:30

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L		<u> </u>	01/22/23 16:03	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			01/22/23 16:03	
1,1,2,2-Tetrachloroethane	<0.40	1.0		ug/L			01/22/23 16:03	
1,1,2-Trichloroethane	<0.35	1.0		ug/L			01/22/23 16:03	
1,1-Dichloroethane	<0.41	1.0	0.41	-			01/22/23 16:03	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			01/22/23 16:03	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			01/22/23 16:03	
1,2,3-Trichlorobenzene	<0.46	1.0		ug/L			01/22/23 16:03	
1,2,3-Trichloropropane	<0.41	2.0		ug/L			01/22/23 16:03	
1,2,4-Trichlorobenzene	<0.34	1.0		ug/L			01/22/23 16:03	
1,2,4-Trimethylbenzene	<0.36	1.0		ug/L			01/22/23 16:03	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			01/22/23 16:03	
1,2-Dibromoethane	<0.39	1.0		ug/L			01/22/23 16:03	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			01/22/23 16:03	
1,2-Dichloroethane	<0.39	1.0		ug/L			01/22/23 16:03	
1,2-Dichloropropane	<0.43	1.0		ug/L			01/22/23 16:03	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			01/22/23 16:03	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			01/22/23 16:03	
1,3-Dichloropropane	<0.36	1.0		ug/L			01/22/23 16:03	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			01/22/23 16:03	
2,2-Dichloropropane	<0.44	1.0		ug/L			01/22/23 16:03	
2-Chlorotoluene	<0.31	1.0		ug/L			01/22/23 16:03	
4-Chlorotoluene	<0.35	1.0		ug/L			01/22/23 16:03	
Benzene	<0.15	0.50		ug/L			01/22/23 16:03	
Bromobenzene	<0.36	1.0		ug/L			01/22/23 16:03	
Bromochloromethane	<0.43	1.0		ug/L			01/22/23 16:03	
Dichlorobromomethane	<0.37	1.0		ug/L			01/22/23 16:03	
Bromoform	<0.48	1.0		ug/L			01/22/23 16:03	
Bromomethane	<0.80	3.0		ug/L			01/22/23 16:03	
Carbon tetrachloride	<0.38	1.0		ug/L			01/22/23 16:03	
Chlorobenzene	<0.39	1.0		ug/L			01/22/23 16:03	
Chloroethane	<0.51	1.0		ug/L			01/22/23 16:03	
Chloroform	<0.37	2.0		ug/L			01/22/23 16:03	
Chloromethane	<0.32	1.0		ug/L			01/22/23 16:03	
cis-1,2-Dichloroethene	16	1.0		ug/L			01/22/23 16:03	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			01/22/23 16:03	
Dibromochloromethane	<0.49	1.0		ug/L			01/22/23 16:03	
Dibromomethane	<0.27	1.0		ug/L			01/22/23 16:03	
Dichlorodifluoromethane	<0.67	3.0		ug/L			01/22/23 16:03	
Ethylbenzene	<0.18	0.50		ug/L			01/22/23 16:03	
Hexachlorobutadiene	<0.45	1.0		ug/L			01/22/23 16:03	
sopropyl ether	<0.28	1.0		ug/L			01/22/23 16:03	
sopropylbenzene	<0.39	1.0		ug/L ug/L			01/22/23 16:03	
Sopropyibenzene Methyl tert-butyl ether	<0.39	1.0		ug/L ug/L			01/22/23 16:03	
Methylene Chloride	<1.6			-				
		5.0		ug/L			01/22/23 16:03	
Naphthalene	<0.34	1.0		ug/L			01/22/23 16:03	
n-Butylbenzene	<0.39	1.0		ug/L			01/22/23 16:03	
N-Propylbenzene p-Isopropyltoluene	<0.41 <0.36	1.0		ug/L ug/L			01/22/23 16:03 01/22/23 16:03	

Eurofins Chicago

2/2/2023

Client: Stantec Consulting Corp. Job ID: 500-228379-1 Project/Site: Lot 3, 193708490

Lab Sample ID: 500-228379-2 Client Sample ID: MW-231

Date Collected: 01/17/23 10:15 **Matrix: Water** Date Received: 01/20/23 09:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			01/22/23 16:03	1
Styrene	<0.39		1.0	0.39	ug/L			01/22/23 16:03	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			01/22/23 16:03	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			01/22/23 16:03	1
Toluene	<0.15		0.50	0.15	ug/L			01/22/23 16:03	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			01/22/23 16:03	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			01/22/23 16:03	1
Trichloroethene	<0.16		0.50	0.16	ug/L			01/22/23 16:03	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			01/22/23 16:03	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			01/22/23 16:03	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			01/22/23 16:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		75 - 126			-		01/22/23 16:03	1
4-Bromofluorobenzene (Surr)	88		72 - 124					01/22/23 16:03	1
Dibromofluoromethane (Surr)	103		75 - 120					01/22/23 16:03	1
Toluene-d8 (Surr)	100		75 - 120					01/22/23 16:03	1

Client: Stantec Consulting Corp. Project/Site: Lot 3, 193708490 Job ID: 500-228379-1

Client Sample ID: MW-234

Lab Sample ID: 500-228379-3

Date Collected: 01/17/23 10:55 **Matrix: Water** Date Received: 01/20/23 09:30

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			01/22/23 16:26	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			01/22/23 16:26	•
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			01/22/23 16:26	•
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			01/22/23 16:26	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			01/22/23 16:26	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			01/22/23 16:26	•
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			01/22/23 16:26	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			01/22/23 16:26	•
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			01/22/23 16:26	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			01/22/23 16:26	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			01/22/23 16:26	
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			01/22/23 16:26	
1,2-Dibromoethane	<0.39	1.0	0.39	ug/L			01/22/23 16:26	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			01/22/23 16:26	
1,2-Dichloroethane	<0.39	1.0		ug/L			01/22/23 16:26	
1,2-Dichloropropane	<0.43	1.0		ug/L			01/22/23 16:26	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			01/22/23 16:26	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			01/22/23 16:26	
1,3-Dichloropropane	<0.36	1.0		ug/L			01/22/23 16:26	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			01/22/23 16:26	
2,2-Dichloropropane	<0.44	1.0		ug/L			01/22/23 16:26	
2-Chlorotoluene	<0.31	1.0		ug/L			01/22/23 16:26	
4-Chlorotoluene	<0.35	1.0		ug/L			01/22/23 16:26	
Benzene	<0.15	0.50		ug/L			01/22/23 16:26	
Bromobenzene	<0.36	1.0		ug/L			01/22/23 16:26	
Bromochloromethane	<0.43	1.0		ug/L			01/22/23 16:26	
Dichlorobromomethane	<0.37	1.0		ug/L			01/22/23 16:26	
Bromoform	<0.48	1.0		ug/L			01/22/23 16:26	
Bromomethane	<0.80	3.0		ug/L			01/22/23 16:26	
Carbon tetrachloride	<0.38	1.0		ug/L			01/22/23 16:26	
Chlorobenzene	<0.39	1.0		ug/L			01/22/23 16:26	
Chloroethane	<0.51	1.0		ug/L			01/22/23 16:26	
Chloroform	<0.37	2.0		ug/L ug/L			01/22/23 16:26	
Chloromethane	<0.32	1.0		ug/L ug/L			01/22/23 16:26	
cis-1,2-Dichloroethene	1.4	1.0		ug/L ug/L			01/22/23 16:26	
•				-				
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			01/22/23 16:26	
Dibromochloromethane	<0.49	1.0		ug/L			01/22/23 16:26	
Dibromomethane	<0.27	1.0		ug/L			01/22/23 16:26	
Dichlorodifluoromethane	<0.67	3.0		ug/L			01/22/23 16:26	
Ethylbenzene	<0.18	0.50		ug/L			01/22/23 16:26	
	<0.45	1.0		ug/L			01/22/23 16:26	
sopropyl ether	<0.28	1.0		ug/L			01/22/23 16:26	
sopropylbenzene	<0.39	1.0		ug/L			01/22/23 16:26	
Methyl tert-butyl ether	<0.39	1.0		ug/L			01/22/23 16:26	
Methylene Chloride	<1.6	5.0		ug/L			01/22/23 16:26	
Naphthalene	<0.34	1.0		ug/L			01/22/23 16:26	•
n-Butylbenzene	<0.39	1.0		ug/L			01/22/23 16:26	•
N-Propylbenzene	<0.41	1.0	0.41	ug/L			01/22/23 16:26	•

Eurofins Chicago

2/2/2023

Page 12 of 23

Client: Stantec Consulting Corp. Job ID: 500-228379-1 Project/Site: Lot 3, 193708490

Client Sample ID: MW-234

Date Received: 01/20/23 09:30

Lab Sample ID: 500-228379-3 Date Collected: 01/17/23 10:55

Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			01/22/23 16:26	1
Styrene	<0.39		1.0	0.39	ug/L			01/22/23 16:26	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			01/22/23 16:26	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			01/22/23 16:26	1
Toluene	<0.15		0.50	0.15	ug/L			01/22/23 16:26	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			01/22/23 16:26	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			01/22/23 16:26	1
Trichloroethene	<0.16		0.50	0.16	ug/L			01/22/23 16:26	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			01/22/23 16:26	1
Vinyl chloride	4.2		1.0	0.20	ug/L			01/22/23 16:26	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			01/22/23 16:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		75 - 126			-		01/22/23 16:26	1
4-Bromofluorobenzene (Surr)	84		72 - 124					01/22/23 16:26	1
Dibromofluoromethane (Surr)	106		75 - 120					01/22/23 16:26	1
Toluene-d8 (Surr)	101		75 - 120					01/22/23 16:26	1

Definitions/Glossary

Client: Stantec Consulting Corp. Job ID: 500-228379-1

Project/Site: Lot 3, 193708490

Qualifiers

GC/MS VOA

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
_	Listed and a the UDU column to deciment that the account is non-set of an endounciality to all

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

2/2/2023

Page 14 of 23

QC Association Summary

Client: Stantec Consulting Corp.

Project/Site: Lot 3, 193708490

Job ID: 500-228379-1

GC/MS VOA

Analysis Batch: 695121

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-228379-1	MW-165	Total/NA	Water	8260B	
500-228379-2	MW-231	Total/NA	Water	8260B	
500-228379-3	MW-234	Total/NA	Water	8260B	
MB 500-695121/8	Method Blank	Total/NA	Water	8260B	
LCS 500-695121/5	Lab Control Sample	Total/NA	Water	8260B	

2

4

6

8

9

10

12

4 4

Surrogate Summary

Client: Stantec Consulting Corp. Job ID: 500-228379-1

Project/Site: Lot 3, 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water Prep Type: Total/NA

		Percent Surrogate Recovery (Acce					
		DCA	BFB	DBFM	TOL		
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)		
500-228379-1	MW-165	105	88	106	100		
500-228379-2	MW-231	104	88	103	100		
500-228379-3	MW-234	108	84	106	101		
LCS 500-695121/5	Lab Control Sample	98	91	99	105		
MB 500-695121/8	Method Blank	103	88	104	102		
Currente Legend							

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

3

...

6

0

9

10

. .

13

14

Client: Stantec Consulting Corp.

Project/Site: Lot 3, 193708490

Job ID: 500-228379-1

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 500-695121/8

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

-	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			01/22/23 13:00	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			01/22/23 13:00	1
1,1,2,2-Tetrachloroethane	< 0.40		1.0	0.40	ug/L			01/22/23 13:00	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			01/22/23 13:00	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			01/22/23 13:00	1
1,1-Dichloroethene	< 0.39		1.0	0.39	ug/L			01/22/23 13:00	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L			01/22/23 13:00	1
1,2,3-Trichlorobenzene	0.499	J	1.0	0.46	ug/L			01/22/23 13:00	1
1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/L			01/22/23 13:00	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			01/22/23 13:00	1
1,2,4-Trimethylbenzene	< 0.36		1.0	0.36	ug/L			01/22/23 13:00	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			01/22/23 13:00	1
1,2-Dibromoethane	<0.39		1.0	0.39	ug/L			01/22/23 13:00	1
1,2-Dichlorobenzene	< 0.33		1.0	0.33	ug/L			01/22/23 13:00	1
1,2-Dichloroethane	< 0.39		1.0	0.39	ug/L			01/22/23 13:00	1
1,2-Dichloropropane	<0.43		1.0	0.43	ug/L			01/22/23 13:00	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	-			01/22/23 13:00	1
1,3-Dichlorobenzene	<0.40		1.0	0.40	-			01/22/23 13:00	1
1,3-Dichloropropane	<0.36		1.0	0.36				01/22/23 13:00	
1,4-Dichlorobenzene	<0.36		1.0	0.36	-			01/22/23 13:00	
2,2-Dichloropropane	<0.44		1.0	0.44	-			01/22/23 13:00	
2-Chlorotoluene	<0.31		1.0	0.31				01/22/23 13:00	
4-Chlorotoluene	<0.35		1.0	0.35	-			01/22/23 13:00	1
Benzene	<0.15		0.50	0.15	-			01/22/23 13:00	
Bromobenzene	<0.36		1.0	0.36	-			01/22/23 13:00	
Bromochloromethane	<0.43		1.0	0.43				01/22/23 13:00	,
Dichlorobromomethane	<0.37		1.0	0.37	-			01/22/23 13:00	
Bromoform	<0.48		1.0	0.48				01/22/23 13:00	1
Bromomethane	<0.80		3.0	0.80	_			01/22/23 13:00	
Carbon tetrachloride	<0.38		1.0	0.38	_			01/22/23 13:00	
Chlorobenzene	<0.39		1.0	0.39				01/22/23 13:00	,
Chloroethane	<0.51		1.0	0.51	-			01/22/23 13:00	
Chloroform	<0.37		2.0	0.37	-			01/22/23 13:00	
Chloromethane	<0.32		1.0	0.32				01/22/23 13:00	
cis-1,2-Dichloroethene	<0.41		1.0	0.41				01/22/23 13:00	
cis-1,3-Dichloropropene	<0.42		1.0	0.42	-			01/22/23 13:00	
Dibromochloromethane	<0.49		1.0		ug/L			01/22/23 13:00	
Dibromomethane	<0.27		1.0		ug/L			01/22/23 13:00	1
Dichlorodifluoromethane	<0.67		3.0	0.67	-			01/22/23 13:00	1
Ethylbenzene	<0.18		0.50		ug/L			01/22/23 13:00	
Hexachlorobutadiene	<0.45		1.0		ug/L			01/22/23 13:00	1
Isopropyl ether	<0.43		1.0		ug/L			01/22/23 13:00	,
Isopropylbenzene	<0.39		1.0		ug/L			01/22/23 13:00	
Methyl tert-butyl ether	<0.39		1.0	0.39				01/22/23 13:00	
Methylene Chloride	<1.6		5.0		ug/L ug/L			01/22/23 13:00	,
Naphthalene	0.469		1.0	0.34				01/22/23 13:00	
n-Butylbenzene	<0.39	J	1.0	0.34				01/22/23 13:00	
N-Propylbenzene	<0.39		1.0		ug/L ug/L			01/22/23 13:00	1

Eurofins Chicago

Page 17 of 23

6

3

5

7

8

10

12

Client: Stantec Consulting Corp. Job ID: 500-228379-1 Project/Site: Lot 3, 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-695121/8 **Matrix: Water**

Analysis Batch: 695121

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			01/22/23 13:00	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			01/22/23 13:00	1
Styrene	< 0.39		1.0	0.39	ug/L			01/22/23 13:00	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			01/22/23 13:00	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			01/22/23 13:00	1
Toluene	<0.15		0.50	0.15	ug/L			01/22/23 13:00	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			01/22/23 13:00	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			01/22/23 13:00	1
Trichloroethene	<0.16		0.50	0.16	ug/L			01/22/23 13:00	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			01/22/23 13:00	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			01/22/23 13:00	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			01/22/23 13:00	1

MB MB

Surrogate	%Recovery (Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103	75 - 126		01/22/23 13:00	1
4-Bromofluorobenzene (Surr)	88	72 - 124		01/22/23 13:00	1
Dibromofluoromethane (Surr)	104	75 - 120		01/22/23 13:00	1
Toluene-d8 (Surr)	102	75 - 120		01/22/23 13:00	1

Lab Sample ID: LCS 500-695121/5

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 695121								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	48.2		ug/L		96	70 - 125	
1,1,1-Trichloroethane	50.0	51.7		ug/L		103	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	46.5		ug/L		93	62 - 140	
1,1,2-Trichloroethane	50.0	51.6		ug/L		103	71 - 130	
1,1-Dichloroethane	50.0	51.2		ug/L		102	70 - 125	
1,1-Dichloroethene	50.0	56.0		ug/L		112	67 - 122	
1,1-Dichloropropene	50.0	52.8		ug/L		106	70 - 121	
1,2,3-Trichlorobenzene	50.0	36.9		ug/L		74	51 - 145	
1,2,3-Trichloropropane	50.0	44.7		ug/L		89	50 - 133	
1,2,4-Trichlorobenzene	50.0	41.3		ug/L		83	57 - 137	
1,2,4-Trimethylbenzene	50.0	48.7		ug/L		97	70 - 123	
1,2-Dibromo-3-Chloropropane	50.0	38.9		ug/L		78	56 - 123	
1,2-Dibromoethane	50.0	48.0		ug/L		96	70 - 125	
1,2-Dichlorobenzene	50.0	49.0		ug/L		98	70 - 125	
1,2-Dichloroethane	50.0	50.1		ug/L		100	68 - 127	
1,2-Dichloropropane	50.0	47.9		ug/L		96	67 - 130	
1,3,5-Trimethylbenzene	50.0	48.8		ug/L		98	70 - 123	
1,3-Dichlorobenzene	50.0	48.1		ug/L		96	70 - 125	
1,3-Dichloropropane	50.0	49.3		ug/L		99	62 - 136	
1,4-Dichlorobenzene	50.0	48.9		ug/L		98	70 - 120	
2,2-Dichloropropane	50.0	46.5		ug/L		93	58 - 139	
2-Chlorotoluene	50.0	48.6		ug/L		97	70 - 125	
4-Chlorotoluene	50.0	49.8		ug/L		100	68 - 124	
Benzene	50.0	50.3		ug/L		101	70 - 120	

Eurofins Chicago

Page 18 of 23

QC Sample Results

Client: Stantec Consulting Corp. Job ID: 500-228379-1 Project/Site: Lot 3, 193708490

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-695121/5

Matrix: Water

Analysis Batch: 695121

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Allalysis Batch. 693121	Spike	LCS	LCS		%Rec
Analyte	Added	Result	Qualifier Un	t D %Rec	Limits
Bromobenzene	50.0	46.9	ug/	L 94	70 - 122
Bromochloromethane	50.0	50.3	ug/	L 101	65 - 122
Dichlorobromomethane	50.0	49.9	ug/	L 100	69 - 120
Bromoform	50.0	52.9	ug/	L 106	56 - 132
Bromomethane	50.0	59.1	ug/	L 118	40 - 152
Carbon tetrachloride	50.0	56.1	ug/	L 112	59 - 133
Chlorobenzene	50.0	50.6	ug/	L 101	70 - 120
Chloroethane	50.0	59.8	ug/	L 120	48 - 136
Chloroform	50.0	49.6	ug/	L 99	70 - 120
Chloromethane	50.0	38.1	ug/	L 76	56 - 152
cis-1,2-Dichloroethene	50.0	50.0	ug/	L 100	70 - 125
cis-1,3-Dichloropropene	50.0	48.2	ug/	L 96	64 - 127
Dibromochloromethane	50.0	51.5	ug/	L 103	68 - 125
Dibromomethane	50.0	50.2	ug/	L 100	70 - 120
Dichlorodifluoromethane	50.0	37.2	ug/	L 74	40 - 159
Ethylbenzene	50.0	47.7	ug/	L 95	70 - 123
Hexachlorobutadiene	50.0	46.5	ug/	L 93	51 - 150
Isopropylbenzene	50.0	47.8	ug/	L 96	70 - 126
Methyl tert-butyl ether	50.0	44.2	ug/	L 88	55 - 123
Methylene Chloride	50.0	51.1	ug/	L 102	69 - 125
Naphthalene	50.0	34.4	ug/	L 69	53 - 144
n-Butylbenzene	50.0	53.0	ug/	L 106	68 - 125
N-Propylbenzene	50.0	51.1	ug/	L 102	69 - 127
p-Isopropyltoluene	50.0	49.7	ug/	L 99	70 - 125
sec-Butylbenzene	50.0	52.0	ug/	L 104	70 - 123
Styrene	50.0	51.7	ug/	L 103	70 - 120
tert-Butylbenzene	50.0	47.8	ug/	L 96	70 - 121
Tetrachloroethene	50.0	54.5	ug/	L 109	70 - 128
Toluene	50.0	49.0	ug/	L 98	70 - 125
trans-1,2-Dichloroethene	50.0	54.3	ug/	L 109	70 - 125
trans-1,3-Dichloropropene	50.0	45.8	ug/	L 92	62 - 128
Trichloroethene	50.0	48.7	ug/	L 97	70 - 125
Trichlorofluoromethane	50.0	54.4	ug/	L 109	55 - 128
Vinyl chloride	50.0	45.6	ug/	L 91	64 - 126
Xylenes, Total	100	102	ug/	L 102	70 - 125

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		75 - 126
4-Bromofluorobenzene (Surr)	91		72 - 124
Dibromofluoromethane (Surr)	99		75 - 120
Toluene-d8 (Surr)	105		75 - 120

Lab Chronicle

Client: Stantec Consulting Corp. Project/Site: Lot 3, 193708490

Job ID: 500-228379-1

Lab Sample ID: 500-228379-1

Matrix: Water

Client Sample ID: MW-165 Date Collected: 01/17/23 09:55

Date Received: 01/20/23 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	695121	W1T	EET CHI	01/22/23 15:40

Client Sample ID: MW-231 Lab Sample ID: 500-228379-2

Date Collected: 01/17/23 10:15 **Matrix: Water**

Date Received: 01/20/23 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	695121	W1T	EET CHI	01/22/23 16:03

Lab Sample ID: 500-228379-3 **Client Sample ID: MW-234**

Date Collected: 01/17/23 10:55 **Matrix: Water**

Date Received: 01/20/23 09:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B		1	695121	W1T	EET CHI	01/22/23 16:26

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

2/2/2023

Accreditation/Certification Summary

Client: Stantec Consulting Corp. Job ID: 500-228379-1

Project/Site: Lot 3, 193708490

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	999580010	08-31-23

......

3

6

8

10

11

13

14

15

Eurofins Chicago

241 Bond Street

Chain of Custody Record

← eurofins

University Park - IL 60484 Phone "08-534-5200 Fax 708-534-5214	,	Guain	or cu:	swuy i	160	·UI	u									
Client Information 500-228379 COC	rhone (262	· ou	J. HAT	90 8A41 Fre	PM edrick	Sano	die	*****************	www.coops.googs.googs.googs.googs	9607607446 ⁶ 9775686694678036040	Ca ert.	acking N	S.	***************************************	500 No 5 00 10 1072 1	
Flent Contact Harris Byers	1 thone (767	7719-	4741	E M	ndra E	rodru	~~ @ A	t aurat	finsus co	122	State of	rigin / ^	۷۱		Page	1061
Tranta byers Stantec Consulting Corp		Laurinianianianianianianianianianianianiania	F SID		Tiona i	10011	CH (C)	COIC	CONTRACTOR OF THE STATE OF THE	TO SECULIAR PROPERTY AND ADDRESS OF THE PERSON NAMED IN COLUMN TWO PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TRANSP	quested	and announcement was		SOURCE STATE OF TH	100 to -	228379
Address 12080 Corporate Parkway	Due Date Reques	ted	in Proceedings of the Contract on page 1982												Preservation Co	des
Try	TAT Requested (***************************************	***************************************	11					Constitution of the Consti				ring of the second	A H-L B NaOH	M Hexane N vone
Mequon Safe Zip	-	10	DAY				***************************************			***************************************	iver expedit			William	C 7n Acetate D Nitric Acid	O AsNe J2 P Na2O4S
WI 55092	Compliance Proje	ct. A Yes	7 No		1			American and a second		***************************************					E NaHSO4 F MeOH	Q Na25:03 R N. 5203
Phone	PO# 193708490								ļ						G Amchior H Ascorbic Acid	S H2504 T TS Dorle-ahyd ate
īma: harris byers@stantec.com	W^#		and a second second second second second second second second second second second second second second second		Ö	Ĉ.	-		-		,		***************************************	190	I ce	Acetone V MCAA ✓ pH 4-5
Project Name LOT 3, 1937-08-490	Project #: 50006565	***************************************	***************************************	***************************************	٤١٤		8270D							aute	r edta L EDA	Y Trizma Z other (sperfy
Rhos Pout Minor Hy M. III 1985 55 150 Site	550vV#:	***************************************	Marrowski appears (************************************	anananananan jaroon ka ka ka ka ka ka ka ka ka ka ka ka ka	ample		8082A 82	Total	***************************************	***************************************	***************************************			ofcont	Y EDTA L EDA Other	Z O her tape by
		Sample	Sample Type (C=comp	Matrix (Wewater Shoolid, Dhwasterol BT-Tilisue Anali	Field Filtered Sample	8260B - VOC	m	9012B Cyanide	. encourage property justice and the second	***************************************			***************************************	Total Number of		
Sample Identification	Sample Date	Time													Special Ir	nstructions/Note
				ation Code	$\langle Y \rangle$	_	-	N		\vdash	-	 -	++	<u> </u>		
MW-165	1/17/23	0955	Gn	W Soliet	NA	_		-		<u> </u>				3		COLLEGIO DE PORTO CONTO PERSONA, POPO NOVE RELEGIO DE PERSONA DE LA COLLEGIO DE L
MW-Z31		1015		Solle	444	X					ļ			3		
MW-234	1	1055		U SOFFE	6	/ ×			1					3		
				So. J		-										
				So d												
				>o-d		***************************************					***					
				Sc d	Ш											
		-		Sc d												
				So d												hanganggalakhannan angkannangganggan manangganggan
		THE PARTY AND ADDRESS OF THE PARTY AND ADDRESS		So d					I							
				Sod	T	1									***************************************	***************************************
Possible Hazard Identification			I		S	ampl	e Dis	posal	(A fee	max be	essed	if sampl	es are i	retain:	ed longer than	month)
Non-Hazard Flam rable Sk.n Imta + Pois	or B 🗀 Unki	10W)	Radiologica	21		MONOYOU WANTE	AND DESCRIPTION OF THE PARTY OF	η To :	CONTRACTOR OF THE PARTY OF THE		D sposai	Ву саб		_Arc	hive For	Morths
Deliverable Requested II II IV Other (specify)					S	pecia	ı. nstr	ruction	is/QC Re	equireme	ents	(,	MSA	# 4	40411	
Empty Kit Re-inquished by		Date			Time	Licenson and the control of the con		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			Meth	od if ihip	ANTONIO CONTRACTOR ANTONIO CONT			
Reinquished by Sull	are.Time: 1/19/207	3 13	00	Company STANTO	きく	٦	erved y	L	198	De	mi	1-	70°	-28	3 0930	ър гу
Re nq⊿ishediy	ate/Time	,		Corr any	***************************************	Re	19	y C	10			Pate	Time			JC Pany
ie: \quished by	'a e/ 've			עי מי		Rec	ei «c				***************************************	ate	9/ 'Me	неголиция доўняго компас	economics de departement conservativos de partementos en conservativos estas estas en conservativos estas esta	C sparry
Custody Seals Intact Custody Sea No			Withous access with the second paper and	THE STATE OF THE S	***************************************	Ccc	le Ten	n eratu	re C	d Other R	emar [:]	1/2	8 –	/,	3	na dipengangan pakan menangangan kanaman naggan pangan menangan pangan sabutah di

Login Sample Receipt Checklist

Client: Stantec Consulting Corp. Job Number: 500-228379-1

Login Number: 228379 List Source: Eurofins Chicago

List Number: 1

Creator: James, Jeff A

Creator. James, Jen A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.3
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	sample 1-1vial rec'd broken
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

9

6

R

11

12

14

15

ATTACHMENT E AECOM SUPPLIED DOCUMENTS

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Rc</u>			ed/Wastewa tion/Redeve	iter 🗌 Flopment 🗵		Manag	gement								
Riv	y/Proje er Poi	nt Dis	strict 7	Turntable	LSI (Pa	rcel #3)		License							PB-1	er	of	1
		-	Name o	of crew chief	f (first, las	st) and Firm	1	Date Drilling	Started	l Date I	Orilling	g Comp	leted	Drillin	g Meth	od		
On-	y Kap Site E	inviro			11 ID N		W. II N.	8/19/2022			/2022			geopro	be		1.1	D: 4
WI Ui	nique W	eli No	•	DNR We	ell ID No.	Common	Well Name	Final St	atic wa Feet l		el	Surface		tion et MS]	Г	Bo		Diameter 2.25
Local	Grid O	rigin	(e	stimated:) or	Boring Loc	cation	1	°	,		,,		Grid Lo				2.23
State	Plane 1/4	of	1	44.09 1 1/4 of Section	N, -87.	.66 E T	S/C/N N, R	Lat Long						Feet	□ N : □ S			☐ E Feet ☐ W
Facilit				Со	ounty		,	County C	ode	Civil T		•	_					
				l M	l anitowo	oc		36		City	of Ma	nitowo	ос					т
_Sar	nple													Soil	Prope	erties		_
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			oil/Rock De d Geologic (Each Majo	Origin For		USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	60 52			FILL: For SAND wi	undry sand ith silt and ith clay ar	I, black (10) I with gravel gravel, dark ad gravel, bl eet bgs	black (10Y)	R 2/1), odor TR 3/3)	Fill Fill SP SP			3.4						Sampled 1-2 at 1140 Sampled 3-4 at 1150
I herel		fy that	the info	ormation on	this form	is true and	l To	he best of my	knowle	dge.								
Signa	uic						1 11111	AECOM										Tel:

SOIL BORING LOG INFORMATION

form 4400-122 Rev. 7-98

							velopment [2								Pag	ge 1	of	1
	y/Projec			Turntak	ole LSI (Pa	rcel #3)	1	License	/Permit	/Monito	ring Nu	ımber		Boring 1	Numb			
Boring	g Drille	d By:			chief (first, las			Date Drilling	g Starte	d Date I	Orilling	Compl	eted	Drillin				
Ton On-	y Kap Site E	ugi nviro	nment	al				8/19/2022		8/19	/2022			geopro	be			
	ique W				Well ID No.	Commo	n Well Name	Final St		ter Leve		Surface	Eleva	tion		Вс		Diameter
	Grid O	rigin	(e		l: 🗌) or			 _T ,	Feet :	WISL ,		<u>"</u>]		et MS Grid Lo				2.25
State	Plane 1/4	of	1	44.(4 of Se	09 N, -87.	.66 E T	S/C/N N, R	Lat Long						Feet	□ N : □ S			☐ E Feet ☐ W
Facilit		01		7 1 01 50	County		11,10	County C	ode	Civil T		-	_	1 001				1 cct 🗀 👯
San	nple				Manitow	oc		36		City	of Mai	nitowo	oc	Soil	Prope	erties		
	1	£	et		So	oil/Rock I	Description						á					
er ype	Length Att. & Recovered (in	Blow Counts	Depth In Feet		And	d Geologi Each Ma	c Origin For		S	iic	am	<u> </u>	ressiv gth	ure	-	city		nents
Number and Type	Length Att. & Recovered (in)	Blow	Depth			Each Ma	ijor Omi		USC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	60 54		_	FILL:	: Sand with cla	y and gra	vel, brown (10	YR 4/3)	Fill									
			-1	FILL:	Foundry sand	l with silt	and gravel, bla	ck (10YR				15.9						
			-	2/1),	odor		g ,	(Sampled 1-2 at 1120
			<u>-2</u>						Fill									1120
			_3	SANI) with silt and	oravel da	ark brown (10\)	/R 3/3) odor										
			_	57 11 11	o with the time	graver, a	an orown (101	11(3/3), 0401										Sampled 3-4 at 1130
			- 4						SP			91						1130
			_ 5	End o	of boring at 5 f	aat has					-							
				Lilu	n bornig at 3 i	cet ogs												
I herel	-	fy that	the info	ormation	on this form	is true a	Ir.	the best of my	knowle	dge.								
Signat							1 11111	AECOM										Tel:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

					Ren	nediati	on/Rede	velopment D	Othe	· 🗆							1	0	1
	y/Projecter Poi			Γurntal	ble LS	I (Par	cel #3)		Licens	e/Permit	/Monito	ring N	ımber			Pag Numb PB-3	er	of	1
					chief (fir				Date Drillin	g Starte	d Date 1	Drilling	Comp	leted	Drillin	g Meth	od		
	у Кар			1					0/10/202	,	0/10	V2022				_			
	Site È				Well II	D No	Commo	n Well Name	8/19/202 Final S	z tatic Wa		0/2022	Surface		geopro	be	Bo	rehole	Diameter
WICI	nque **	CH I VO	•	DIVI	C WOII IL	D 110.	Commo	ii wen wanie	1 mar s	Feet 1			Surface		et MS	L			2.25
	Grid Oı	rigin	(e		d: 🔲)			ocation		0			,,		Grid Lo				
State					09 N,	-87.0		S/C/N	Lat							□ N			□Е
Facilit	1/4	of		1/4 of S	County	,	T	N, R	Long		Civil T	oven/Ci		7:110.00	Fee	t 🗌 S			Feet W
гасш	уЮ					y itowo	ıc.		36	ode			nitow	_					
Sar	nple				IVIGIT	110 110			130			1	Intovi		Soil	Prop	erties		
	1		1			So	il/Rock I	Description											
•	tt. &	nnts	Depth In Feet					c Origin For						sive					ıts
lber Гур	th A	°C '	h In				Each Ma	_		CS	hic	ram	FID	pres	sture ent	bi t	icity		mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Dept							S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	60		F	FILL	.: Well gr	raded sa	and with	gravel, brown	(10YR 4/3)	Fill				0 32	-				
	48		E		.: Gravel,					Fill									
			-1	FILL	.: Sand w	vith silt	and grave	el, dark brown	(10YR 3/3)			\$	0.0						
			E							Fill		}							Sampled 1-2 at
			-2									}							1100
			E	FILL	.: Foundr	v sand	and grave	el, black (10Y	R 2/1)		\longrightarrow	1							
			-3			J Sulle	and grave	., (101		Fill		\$							
			E	SAN	D with cl	lav and	oravel d	ark vellowish	brown (10YR										
			-4	3/6)	D Willie	iay ana	. graver, a	ark yenewish	010111 (10111	SP			0.7						
			E																Sampled 4-5 at
L			-5	End	of boring	at 5 fe	et bgs				1. (2.1.2)	<u>.</u>							1110
							Ü												
I herel	ov certi	fy that	the info	ormatio	n on this	s form	is true ar	nd correct to t	he best of my	knowle	dge.	1	1	1	1	1	1	<u> </u>	ı
Signat	-	J						l m·	AECOM		0								Tel:
_									ALCOM										Tel:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Rc</u>	ute To:	•		tewater development		_	gement									
	y/Projecer Poi			Turntal	ble LSI (Parcel #	3)	License	e/Permit	/Monito	ring Nı	ımber		Boring	Pag Numb PB-4	er	of	1	
Boring	g Drille	d By:			chief (first,			Date Drilling	g Starte	d Date l	Drilling	Comp	leted	Drillin	g Meth	od			
	y Kap Site E		nment	a1				8/19/2022	2	8/19	/2022	,		geopro	he				
	ique W				Well ID	No. Comm	non Well Name	I	tatic Wa	ater Leve		Surface			, oc	Вс		Diameter	
Local	Grid O			******	1. 🗆 🗎	an Danin	g Location		Feet 1	MSL		-		et MS Grid Lo				2.25	
State		rigin	(e		u: □) (09 N, -{		S/C/N	Lat				_"	Local	JIIG LO	cation	I		□Е	
	1/4	of	1	/4 of Se	ection	_		Long				"		Feet				Feet W	
Facilit	y ID				County Manito	MACC		County C	Code	City		ty/ or V nitowo	_						
Sar	nple				Iviaiiiu)WOC		30		City	oi ivia	Intowe		Soil	Prope	erties			
	1	70	 			Soil/Rocl	k Description												
. o	Att. e	ounts	л Fее				ogic Origin For						SSIVE	မ		>		nts	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Each l	Major Unit		SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments	
Nu		Blc	De						n S	Grap Log	Well	PII	Col	§ 5 ∑	Liquid Limit	Plastic Index	P 2	Co RQ	
1	60 36		_ _ _ _ 1				black (10YR 2/1		Fill										
			_2	-2 FI 5/	FILL with b	: Sand with black (10Y	silt and gr R 2/1), odd	avel, dark brown or	(10YR 3/3)	Fill			5.0						Sampled 1-2 at 1200
				FILL 5/8),	: Sand with	silt and gr	avel, strong brow	n (7.5YR	Fill			68.7						1200	
			_3	FILL	: Foundry s	and with g	ravel and wood fi	ragments,	1									Sampled 2-3 at 1210	
			F	ыаск	(10YR 2/1	1)													
			_ 4						Fill										
	-		5	End c	of boring at	5 feet has					1								
				Lina	or borning at	J icci ogs													
I herel	y certi	fy that	the info	rmation	n on this fo	orm is true	and correct to t	the best of my	knowle	dge.									
Signat	ure						Firm	AECOM										Tel:	

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Ro</u>		ned/Wastewater ation/Redevelopment		Manage	ement								
	y/Proje			Furntable LSI (Pa	arcel #3)	License	/Permit/l	Monito	ring N	umber		Boring		ge 1 er	of	1
				of crew chief (first, la		Date Drilling	Started	Date I	Orilling	g Comp	leted	Drillin		od		
On-	y Kap Site E	nviro	nment			8/19/2022		8/19	/2022			geopro	be			
WI Ur	ique W	ell No	•	DNR Well ID No	. Common Well Name	Final St			el	Surface			r	Вс		Diameter
ocal	Grid O	rioin	☐ (e	stimated:) or	Boring Location		Feet N	MSL_				et MS Grid Lo				2.25
State		_	_ `	44.09 N, -87		Lat Long	_				Local		□ N □ S			☐ E Feet ☐ W
Facilit				County Manitow		County C	ode			ity/ or \ initow	_					<u> </u>
San	nple									T		Soil	Prope	erties		
	_	· .	₁₅	S	Soil/Rock Description						0)					
. o	Att.	ount	л Рес	Ar	nd Geologic Origin For				_		SSIVe	. .		>		nts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Each Major Unit		USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	60		E	FILL: Topsoil with	n gravel, black (10YR 2/1)	Fill				0 0,					
	48		E.	FILL: Sand with si with black (10YR	ilt and gravel, dark brown 2/1)	(10YR 3/3)	Fill									
			<u> </u>	FILL: Foundry san	nd with gravel, black (10Y	TR 2/1)				0.2						
			2				Fill									Sampled 1-2 at 1220
			_3													
			- - -4 -	SAND with silt an	d gravel, brown (10YR 4/	3)	SP-SM			0.2						Sampled 3-4 at 1230
			_ 5													
[herek	by certi	fy that		End of boring at 5	feet bgs n is true and correct to t	he best of my	knowled	ge.								
Signat		,				AECOM		<i>.</i>								Tel:
																Ears.

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Ro</u>		ned/Wastewater ation/Redevelopment	Waste Other	_	ement								
	y/Proje er Poi			Furntable LSI (Pa	arcel #3)	License/	Permit/	Monito	ring N	umber		Boring			of	1
			Name o	f crew chief (first, la	ast) and Firm	Date Drilling	Started	Date I	Drilling	g Comp	leted	Drillin	g Meth	od		
On-	y Kap Site E	nviro	nment			8/19/2022		1	/2022			geopro	be			
WI Ur	ique W	ell No.		DNR Well ID No	. Common Well Name	Final Sta	itic Wai Feet N		el	Surface		ation et MSI	r	Bo		Diameter 2.25
Local State	Grid On Plane	rigin	(es	stimated: (1) or 44.09 N, -87	Boring Location 7.66 E S/C/N	Lat	- °-	<u>'</u>				Grid Lo	cation			□ E
D 114		of	1	/4 of Section ,	T N, R	Long		<u>'</u>		"	7'11		: S			Feet W
Facilit		1		County Manitov	/oc	County Co	ode			ity/ or V initow	_					_
San	nple											Soil	Prope	rties		_
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Soil/Rock Description ad Geologic Origin For Each Major Unit		USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strenoth	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
$\frac{ \vec{X} }{ \vec{A} }$	60 36	B		FILL: Foundry sar FILL: Gravel, ligh FILL: Foundry sar 2/1)	d and wood fragments, bla	R 2/1) ack (10YR	Fill Fill Fill	<u>5</u>	M (I)	0.1	Ŏ Ø	O W		Id I	d b	Sampled 1-2 at 1240 Sampled 2-3 at 1250
		fy that	the info	rmation on this form	m is true and correct to t		nowled	lge.								
Signat	ure				Firm	AECOM										Tel:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Rc</u>	oute To:			ewater levelopment		_	ement								
	y/Projecter Poi			 Furntal	ble LSI (Parcel #3	5)	License	Permit/	'Monito	ring Nı	umber			Pag Numb PB-7	er	of	1
Boring	g Drilleo	d By:			chief (first,			Date Drilling	Started	l Date I	Orilling	Comp	leted	Drillin	g Meth	od		
Tor On-	y Kap Site E	ugi nviro	nment	·a1				8/19/2022		8/19	/2022	,		geopro	ha			
	ique W				Well ID N	lo. Comm	on Well Name					Surface			000	Вс	rehole	Diameter
- 1	0:10								Feet 1	MSL				et MS				2.25
Local	Grid Oi Plane	rıgın	☐ (e		d: 🗌) o 09 N, -8		Location S/C/N	Lat	_			_"	Local (Grid Lo	cation \[\begin{array}{c} array	т		□Е
	1/4	of	1	1/4 of Se		_	N, R	Long		'		"		Feet	t 🗆 S			Feet W
Facilit	y ID				County			County C	ode	Civil To		•	_					
Sor	nple				Manito	woc		36	1	City	of Ma	nitowo	oc 	Soil	Prope	ortios		
	1					Soil/Rock	Description							3011	Порс	lics		_
•	Length Att. & Recovered (in)	unts	Oepth In Feet		A		gic Origin For						Compressive Strength					ıts
lber Type	gth A	Blow Counts	th In				lajor Unit		CS	Graphic Log	Well Diagram	PID/FID	npres ngth	sture tent	pi ii	Plasticity Index	0)/
Number and Type	Leng	Blov	Dep						S O	Grap Log	Well Diagr	PID	Compress Strength	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
1	60 48		_	FILL 2/1)	: Topsoil wi	th foundry	sand and gravel	, black (10YR	Fill									
			-1	FILL	: Foundry s	and, black (10YR 2/1)		E:11			0.1						
			E				vel, brown (10Y	7D 4/3)	Fill									Sampled 1-2 at
			-2	FILL	. Sana wini	siit aliu gra	vei, blowii (101	K 4/3)	Fill									1300
			E						1111									
			_3	SILT	Y SAND, y	ellowish br	own (10YR 5/4)), loose, moist										
			_4						SP-SN									Sampled 3-4 at 1310
			 						51 -5IV			0.1						
			<u>-</u> 5]							
				End o	of boring at	5 feet bgs												
I herel	y certif	fy that	the info	ormation	n on this fo	rm is true	and correct to t	the best of my	knowled	dge.	<u> </u>			1		<u> </u>		<u> </u>
Signat	-	-					Ir.	AECOM										Tel:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>R</u>	oute To:		ed/Wastewat tion/Redevel			te Manag r 🔲	gement								
Facilit	y/Proje	et Nan	10					Licens	e/Permit	/Monito	ring Ni	ımber		Boring	Pag Numb		of	1
Riv	er Poi	nt Dis	strict '	Turntable	LSI (Pa	rcel #3)		Licens	or crima	Wionito	ing ive	umoci			PB-8			
		-	Name	of crew chie	ef (first, la	st) and Firm		Date Drillin	ng Started	d Date l	Drilling	g Comp	leted	Drillin	g Meth	od		
	ıy Kap Site E		nmen	tal				8/19/202	2	8/19	/2022	2		geopro	be			
WI Uı	nique W	ell No		DNR W	ell ID No.	Common V	Well Name	Final S	Static Wa		el	Surfac	e Eleva	ation		Вс		Diameter
Local	Grid O	rigin		estimated:) or	Boring Loca	ation		Feet 1					et MS Grid Lo				2.25
	Plane			44.09	N, -87		S/C/N	Lat	°_			_"						□ E
Facilit	1/4 v ID	of		1/4 of Secti	on ,	T	N, R	Long	 Code	Civil T	own/Ci	" ity/ or V	/illage		t 🗌 S			Feet W
I delli	, 1D				Manitow	oc		36	C0 40	City		-	_					
Sar	nple													Soil	Prope	erties		
	% (ii)	ıts	eet			oil/Rock Des	•						ve					
er ype	h Att	Cou	In F		An	d Geologic C Each Major	_		S	iic	am	Д	ressi	ure	-	city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Each Major	OIII		USC	Graphic Log	Well Diagram	PID/FID	Compressive	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	60	Щ		FILL: Sa	and with cla	y and gravel,	, brown (10	YR 4/3)	+-				0 0			H	Щ.	<u> </u>
	42		F.						25:11									
			- 1						Fill			0.2						
			_2															Sampled 1-2 at 1040
			<u> </u>	FILL: Fo	oundry sand	d with gravel,	black (10Y	R 2/1)	Fill									
			_3	FILL: Sa	and with cla	ny, brown (10	YR 4/3)		Fill									
			F	EII I . Co	ام طعینالم ما	y and gravel	dowle veallor	rrich huarra	FIII									Sampled 3-4 at
			-4	(10YR 3	/6)	iy and gravei,	, dark yellov	VISII DIOWII	Fill			0.2						1050
			<u> </u>						'''									
	1		-5	End of bo	oring at 5 f	eet bgs												
I herel	by certi	fy that	the inf	ormation or	n this form	is true and	correct to the	he best of my	/ knowle	dge.	1	1	1	'	1	1		
Signat	ure						Firm	AECOM										Tel: Fax:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	oute To:			ewater levelopment		_	gement								
	y/Proje er Poi			Furntal	ble LSI (Parcel #3	3)	License	e/Permit	/Monito	ring Nı	ımber		Boring]	Pag Numb PB-9	er	of	1
Boring	g Drille	d By:			chief (first,			Date Drillin	g Starte	d Date I	Drilling	Comp	leted	Drillin	g Meth	od		
Ton	y Kap Site F	ugi nviro	nment	·a1				8/19/2022	,	8/19	/2022	,		geopro	ha			
	ique W				Well ID N	lo. Comm	on Well Name	1		iter Leve		Surface			<i></i>	Вс	rehole	Diameter
T 1	C.:10			-4:4	1. 🗆 🗎	Di.	I		Feet	MSL				et MS				2.25
State	Grid O Plane	rıgın	☐ (e		d: 🗌) o 09 N, -8		Location S/C/N	Lat				_"	Local	Grid Lo	cation \square N	Г		□Е
	1/4	of		1/4 of S	ection ,	T	N, R	Long				"		Feet				Feet W
Facilit	y ID				County Manito	Woc		County C	Code	City (ty/ or \ nitow	_					
San	nple				Iviainto	woc		30		City	JI IVIA	Intow		Soil	Prope	erties		
	_	S.	 			Soil/Rock	Description						1)					
e L	Att.	ount	n Fe		1	And Geolo	gic Origin For		N N		g L		ssive	e 1		5		ints
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			Each N	Iajor Unit		SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
ang N	60 Fe 60	Ble	Ď	EILI	. Ciltro aand	and anaral	brown (10YR 5	(2)	D	Grap Log	Well Diagr	PII	St.	<u> × 3</u>	Ľ.	Pla	P 2	S S
1	36		F				·	•	Fill									
			-1	FILL	: Sand With	ciay and gi	ravel, brown (10	Y K 4/3)				0.2						
			E						Fill									Sampled 1-2 at
			-2									0.3						0900
			E ₂	FILL	: Sand with	clay, brow	n (10YR 4/3)											Sampled 2-3 at 0910
			_3															0510
			_4						Fill									
			-															
			_ ₅		61	5 C . 1				\longrightarrow								
				End o	of boring at	5 feet bgs												
I herel	y certi	fy that	the info	ormation	n on this fo	rm is true	and correct to t	he best of my	knowle	dge.								
Signat	ure						Firm	AECOM										Tel:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>R</u>	oute To:		ed/Wastewater tion/Redevelop			e Manag	gement								
Facilit	y/Projec	ct Nan	ne					Licens	e/Permit	/Monito	ring N	umber	Т	Boring	Pag Numb		of	1
Riv	er Poi	nt Dis	strict		e LSI (Pa									j	PB-1	0		
	g Drilled Iy Kap	-	Name	of crew ch	ief (first, las	st) and Firm		Date Drillin	ig Started	d Date 1	Drilling	g Comp	leted	Drillin	g Meth	.od		
On-	Site È	nviro						8/19/202			/2022			geopro	be	_		
WI Ur	nique W	ell No		DNR V	Vell ID No.	Common Wo	ell Name	Final S	Static Wa Feet 1		el	Surfac		ation et MS]	Ι.	Bo		Diameter 2.25
	Grid Oı	rigin				Boring Locat		Lot	0	,		,,		Grid Lo				
State	Plane 1/4	of		44.09 1/4 of Sect	N, -87.		/C/N N, R	Lat Long		,				Feet	□ N t □ S			☐ E Feet ☐ W
Facilit		01			County	1	IN, K	County	Code	Civil T	own/Ci	ity/ or V	Village		<u> з</u>	·		reet 🔲 w
			1		Manitow	oc		36		City	of Ma	nitow	oc	~ '1				T
San	nple				9	1/0 1 0								Soil	Prope	erties 		-
	Length Att. & Recovered (in)	unts	Feet			oil/Rock Descr d Geologic Or	•						sive					ts.
ıber Type	gth A	Blow Counts	Depth In Feet		7 111	Each Major U	_		CS	ohic	Well Diagram	PID/FID	Compressive Strength	Moisture Content	<u>ب</u> . نِتِ	Plasticity Index	0	RQD/ Comments
Number and Type	Leng	Blov	Dep						S N	Graphic Log	Well Diagr	PID,	Con	Moisture Content	Liquid Limit	Plastic Index	P 200	RQI
1	60 48		-	FILL: S	Silty sand an	d gravel, brown	n (10YR 5	/3)	Fill									
			<u>-</u> 1	FILL: C	Gravel with s	and, light gray	(10YR 7/	['] 1)										
			Ē						Fill		}							Sampled 1-2 at
			_2	FILL: S	Sand with cla	ıy and gravel, b	orown (10	YR 4/3)				0.3						1020
						, ,		- /	Fill									
			_3															
			_4			vel, dark grayis		(10YR 4/2)	Fill									Sampled 3-4 at 1030
			<u> </u>			l, black (10YR y sand, light ye		own (10VR	Fill			0.2						
			_ 5	_6/4)			AIOWISH OF	OWII (1011K	Fill	XXX								
				End of t	boring at 5 f	eet bgs												
I herel	v certit	fy that	the int	ormation of	on this form	is true and co	orrect to t	he hest of m	knowle	doe		1						<u> </u>
Signat	-	.y mat	1111	omanon (uno 10111.	is irac and d	In:	AECOM	KIIOWIC	50.								Tel:
																		Fax:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Ro</u>	oute To:			ewater levelopment		_	gement								
	y/Proje er Poi			Furntal	ole LSI (I	Parcel #3	5)	License	/Permit	/Monito	ring Nı	ımber		Boring	Pag Numb PB-1	er	of	1
		-	Name c	of crew of	chief (first,	last) and I	Firm	Date Drilling	Starte	d Date	Drilling	Comp	leted	Drillin	g Meth	od		
	y Kap Site E		nment	al				8/19/2022		8/19	/2022	,		geopro	he			
	nique W				Well ID N	o. Comm	on Well Name		atic Wa	ater Lev		Surface			, oc	Вс		Diameter
Local	Grid O			-tit	d: 🗌) o	n Domino	I agation		Feet	MSL				et MS Grid Lo				2.25
State		rigin	☐ (e		ı: □) 0 09 N, -8		Location S/C/N	Lat	_	'		_"	Local	JIIU LO	cation	I		□Е
	1/4	of	1	1/4 of S	ection ,	T	N, R	Long	_			"		Feet				Feet W
Facilit	y ID				County Manito	Woo		County C	ode	City		ty/ or V nitow	_					
Sar	nple				Maiito	woc		30	T	City	oi ivia	IIIOW		Soil	Prope	erties		
	1					Soil/Rock	Description											
. 0	ت ندا	Blow Counts	Depth In Feet				gic Origin For				_		Compressive Strength	a		>		nts
Number and Type	Length Att. Recovered (Č.	oth Ir			Each M	Iajor Unit		CS	Graphic Log	Well Diagram	PID/FID	Compress Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
Nu		Blo	Dep						n S	Grap	Well Diagr	PII	Cor	° Z	Liquid Limit	Plastic Index	P 2	RQ Co Co
1	60 60		E	FILL	: Silty sand	and gravel,	brown (10YR 5	5/3)	Fill									
			-1	FILL	: Sand with	clay and gr	avel, brown (10	YR 4/3)	+			0.0						
			E						Fill			0.0						Sampled 1-2 at
			_2	FILL	: Sand with	silt and gra	vel, dark brown	(10YR 3/3)	+			0.5						0920
			E	with l	black (10YF	R 2/1), mois	st to dry, wood f	ragments at										Sampled 2-3 at
			_3						Fill									0930
			E.															
			-4															
			_5		: Foundry sa	and with wo	ood fragments, b	lack (10YR	Fill									
				2/1) End o	of boring at :	5 feet bgs		/										
I b am-1		G, +1+	the in f	 	a an thia f	ma ia t	and comment to t	ha haat af ar-	len overl -	daa								
Signat	-	ıy ınat	me into	лтпаног	i on this to	im is true	and correct to t	-	KIIOWIE	age.								T. 1
								AECOM										Tel:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Rc</u>		d/Wastewater on/Redevelopment	Waste 1	_	ement								
	y/Proje er Poi			Furntable LSI (Par	rcel #3)	License/I	Permit/	Monito	ring Nu	ımber		Boring			of	1
Boring	g Drille	d By:		f crew chief (first, las		Date Drilling	Started	Date I	Orilling	Comp	leted	Drillin	g Meth	od		
On-	y Kap Site E	inviro	nment			8/19/2022			/2022			geopro	be			
WI Ur	nique W	ell No		DNR Well ID No.	Common Well Name	Final Sta	tic Wa Feet N		el	Surface		ition et MSI	r	Bo		Diameter 2.25
	Grid O Plane	rigin	(e	stimated:		Lat	° –	<u> '</u>				Grid Lo				□ E
		of	1	/4 of Section ,	T N, R	Long				"		Feet	□ s			Feet W
Facilit	-			County Manitowo	oc	County Co	de	Civil To		ty/ or \ nitow	_					_
San	nple											Soil	Prope	rties		-
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	And	il/Rock Description Geologic Origin For Each Major Unit		USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	60 54			FILL: Sand and grav		ine to medium (R 6/4), very	Fill Fill Fill Fill			0.2						Sampled 1-2 at 0940 Sampled 3-4 at 0950
		fy that	the info	ormation on this form	is true and correct to the	he best of my k	nowled	lge.								
Signat	ure				Firm	AECOM										Tel:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Rc</u>	oute To:		d/Wastewat ion/Redevel			_	gement								
Riv	y/Proje er Poi	nt Dis	strict 7	Γurntable	LSI (Par	rcel #3)		License/	Permit	/Monito	ring N	umber			Paş Numb PB-1	er	of	1
		-	Name o	of crew chie	ef (first, las	t) and Firm		Date Drilling	Started	d Date I	Drilling	g Comp	leted	Drillin	g Meth	.od		
On-	y Kap Site E iique W	nviro			all ID No	Common V	V-11 N	8/19/2022			/2022			geopro	be	l Da	ماء ماء	Diameter
WIUi	nque w	eli No	•	DNK W	eli ID No.	Common V	Well Name	Final Sta	Feet 1		eı	Surface		ition et MS	T	Во		2.25
Local	Grid O	rigin	(e	stimated: [) or	Boring Loca	ation	1	0	,		,,		Grid Lo				2.23
State	Plane 1/4	of	j	44.09 1/4 of Section	N, -87.	66 E T	S/C/N N, R	Lat Long	_					Fee	□ N t □ S			☐ E Feet ☐ W
Facilit	y ID			I	ounty Manitowo	oc.	·	County Co	ode			ity/ or V initow	_					
Sar	nple			1	viamtowe	<u> </u>		30		City	JI IVIA			Soil	Prop	erties		
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		And	oil/Rock Des d Geologic C Each Major	Origin For		USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength			ity	P 200	RQD/ Comments
	60 54	H	-1 -2 -3 -4 -5	FILL: Gr FILL: Fo	and with cla	gravel, browny and gravel, and, light grawl with wood for the bys	brown (10°)	YR 4/3)	Fill Fill			0.2						Sampled 1-2 at 1000 Sampled 3-4 at 1010
I herel	y certi	fy that	the info	ormation or	n this form	is true and	correct to the	he best of my l	nowle	dge.		1		<u> </u>		<u> </u>		
Signat							Tr.	AECOM										Tel:

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro		d/Wastewater □ on/Redevelopment ▷		Manage	ement								
													Pag		of	2
-	y/Projec			Furntable LSI (Par	aal #2)	License/	Permit/	Monito	ring Nı	umber		Boring I	Number Num			
				f crew chief (first, last		Date Drilling	Started	Date I	Orilling	2 Comp	leted		g Meth			
Ton On-	y Kap Site E	ugi nviro	nment	al		8/19/2022			/2022			geopro				
	ique W				Common Well Name	Final Sta		ter Leve		Surface	e Eleva	tion		Вс		Diameter
00011	Grid Oı	ni orin		stimated: or 1	Paring Lagation		Feet N	MSL				et MSI Grid Lo				2.25
State 1	Plane			44.09 N, -87.0	62 E S/C/N	Lat	_				Local		□N			□ E
Facilit	1/4 v ID	of	1	/4 of Section ,	T N, R	Long	nde.	Civil T	own/Ci	ity/ or V	/illage	Feet	: S			Feet W
uciii.	, ID			Manitowo	c	36	Jac			nitow	_					
San	nple			'		<u>'</u>						Soil	Prope	erties		
	& (in)	ts	j j	Soi	il/Rock Description						é					
r pe	Att.	onu	In Fe	And	Geologic Origin For		\ \sigma	ပ	 E		essiv h	l e t		ty		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet]	Each Major Unit		SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
<u>z u</u>	9 Z 8	BI	Ď	EII I . Cilty good with	n gravel, brown (10YR 5	5/2)	□ Fill	Grap X Log	₩ Di	II	ညီ ညီ	žΰ	<u> </u>	Pla	P ?	<u> </u>
1	54			•	and gravel, dark brown		FIII									
			-1	with black (10YR 2/	1)	`	Fill									
			_				1111									Sampled 1-2 at
			-2	FILL: Asphalt/found	ry sand, light red (2.5YI	R 8/4),	Fill			0.3						1320
				\hardened \	and gravel, dark grayish	/										
			_3	(10YR 4/2)	and graver, dark grayion	lolowii										
			E				Fill									Sampled 3-4 at 1330
			-4							0.1						1330
2	60 54		<u>-5</u>	FILL: Silty sand with dry to moist	n gravel, yellowish brow	rn (10YR 5/4),										
	34		-6	dry to moist			Fill									
			-				1111									
			_ 7													
					and gravel, dark brown (1), moist to wet to moist											
			-8													
			_9	Wet at 9 feet												
			-	Wet at y leet			Fill									
3	60		-10													
	60															
			-11													
			12	FILL: Lean clay, bla	ck (10YR 2/1), moist		Fill									
hereb	y certif	fy that	1	ormation on this form	is true and correct to the	he best of my l	cnowled	lge.	<u> </u>	1		1		<u> </u>		
Signat	-				lp:	AECOM										Tel:

Boring Number	PB-	Use only as an attachment to Form 4400-	122.						Pag	ge 2	of	2
Sample								Soil	Prope	rties		
& (in)	et	Soil/Rock Description					o					
Att.	n Fe	And Geologic Origin For			c	\circ	ssiv	ي رو		.y		nts
Number and Type Length Att. & Recovered (ii Blow Counts	Depth In Feet	Each Major Unit	CS	phic	gran	ÆII	Compressive Strength	Moisture Content	uid iit	Plasticity Index	00	D/ nme
Number and Type Length Att. & Recovered (in) Blow Counts	Dep		S O	Graphic Log	well Diagram	PID/FID	Compress Strength	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
		FILL: Lean clay with wood fragments, light blue (GLEY 1 4/5G_1)										
	F	4/3U_1)										
	_13		Fill									
	F											
	14											
	E	FILL: Sand with clay and wood fragments, dark gray (10YR 4/1)	Fill									
4	-15	End of boring at 15 feet bgs		XXXXX								
1 1		I	I	1 1	ı			l	l			l

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Ro</u>		ed/Wastewater ition/Redevelopment		Manage	ement								
													Pag		of	2
	y/Proje				4 1125	License	/Permit/	Monito	ring Nı	ımber		Boring				
				Curntable LSI (Pa		Data Duillin	- Ctautad	D-4-1	>.:11:	C	1.4.1		PB-1:			
_	y Kap	-	ivanic o	i ciew cilici (ilist, ia	ist) and Tilli	Date Drilling	g Started	Date	Jrilling	Comp	leted	Drillin	g Meth	oa		
On-	Site È	Inviro	nment			8/19/2022	2	8/19	/2022	2		geopro	be			
WI Un	ique W	/ell No		DNR Well ID No.	. Common Well Name	Final S	tatic Wa		el	Surface				Вс		Diameter
ocal	Grid O	rioin	☐ (es	stimated: \(\square \) or	Boring Location		Feet N	MSL				et MSI Grid Lo				2.25
State		115111	☐ (c.	44.09 N, -87		Lat	_	'		_"	Locar	ond Lo				□Е
	1/4	of	1	/4 of Section ,	T N, R	Long	_	'		"		Feet	\Box s			Feet W
Facilit	y ID			County		County C	ode	Civil T		-	_					
Con	1-		1	Manitow	/oc	36		City	of Ma	nitow	oc T	Cail	Prope			
San	nple	1			1/D 1 D							5011	Ргоре	rues		_
	Length Att. & Recovered (in)	ınts	Depth In Feet		oil/Rock Description ad Geologic Origin For						ive					, so
ber Jype	th A	Co.	ı In	All	Each Major Unit		CS	hic	am	E E	oress oth	ture	<u>ت</u>	city		/ nent
Number and Type	eng Seco	Blow Counts)eptl		Zwen majer eme		O S O	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	60	Н Н	+ "	FILL: Topsoil with	foundry sand, black (10	YR 2/1)	+ -	$\overline{\mathbb{X}}$		<u> </u>				H	Н	
	36		E				Fill									
			-1	EII I . Cond with ail	lt and gravel, black (10Y)	D 2/1)										
			E	FILL. Sand with Si	it and graver, black (1011	K 2/1)										Sampled 1-2 at
			-2							0.5						1340
			F.				Fill									
			_3													
			F .													Sampled 4-5 at 1350
			- 4													1330
			-	FILL: Sand with silwith black (10YR 2	lt and ravel, dark brown (2/1), dry to moist	10YR 3/3)										
2	60		<u>-5</u>	(10111	2/1), 417 to 1110100					0.4						
	48		-													
			-6													
			<u> </u>				F:11									
			- 7				Fill									
			F.													
			8													
			F.													
			<u>-9</u>													
			F 10	FILL: Lean clay, w	vood fragments, light blue	(GLEY1										
3	60 60		-10	4/5G_1), soft to me	edium, moist											
	00		- 11				Fill									
			-11													
			<u></u>													
herel	v corti	fy that	the info	rmation on this farm	n is true and correct to t	he heet of my	knowles	lae	<u> </u>				<u> </u>			
Signat	-	ıy ınal	ane iiiiC	mation on this form	17:		KHOWIEC	ige.								m 1
٠٠						AECOM										Tel:

Boring Number	PB-	Use only as an attachment to Form 4400-1	122.						Pag	ge 2	of .	2
Sample								Soil	Prope	erties		_
Number and Type Length Att. & Recovered (in) Blow Counts	et	Soil/Rock Description					o,					
r pe Att.	n Fe	And Geologic Origin For	S	0	я	Q	essiv h	e _		ty		ents
Number and Type Length Att. & Recovered (ii	Depth In Feet	Each Major Unit	SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	00	RQD/ Comments
Nu and Let Rec Blc Blc	De		5 D	Grap Log	Well Diagr	III	Col	So Mo	Liquid Limit	Plastic Index	P 200	
	-	FILL: Sand with clay and wood fragments, dark gray (10YR 4/1)										
	_ 13											
	- 13		Fill									
	<u>-</u> 14		1111									
	ļ ''											
Ц	_ 15											
		End of boring at 15 feet bgs										
	1											

September 01, 2022

Lanette Altenbach AECOM, Inc. 1555 N River Center Drive Suite 214 Milwaukee, WI 53212

RE: Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Dear Lanette Altenbach:

Enclosed are the analytical results for sample(s) received by the laboratory on August 23, 2022. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Christopher Hyska christopher.hyska@pacelabs.com (920)469-2436

Chuskpher Hyske

Project Manager

Enclosures

CERTIFICATIONS

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Pace Analytical Services Green Bay

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334

New York Certification #: 12064 North Dakota Certification #: R-150 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157

Federal Fish & Wildlife Permit #: LE51774A-0

SAMPLE SUMMARY

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

A0250229002 PB-1 (3'-4') Solid 08/19/22 11:50 08/23/22 08:10	Lab ID	Sample ID	Matrix	Date Collected	Date Received
A0250229003 TB-01 Solid 08/19/22 11:50 08/23/22 08:10	40250229001	PB-1 (1'-2')	Solid	08/19/22 11:40	08/23/22 08:10
A0250229004 PB-2 (1'-2') Solid 08/19/22 11:20 08/23/22 08:10	40250229002	PB-1 (3'-4')	Solid	08/19/22 11:50	08/23/22 08:10
Record R	40250229003	TB-01	Solid	08/19/22 11:50	08/23/22 08:10
PB-3 (1'-2') Solid 08/19/22 11:00 08/23/22 08:10	40250229004	PB-2 (1'-2')	Solid	08/19/22 11:20	08/23/22 08:10
PB-3 (4'-5') Solid 08/19/22 11:10 08/23/22 08:10 A0250229008 PB-4 (1'-2') Solid 08/19/22 12:00 08/23/22 08:10 A0250229009 PB-4 (2'-3') Solid 08/19/22 12:10 08/23/22 08:10 A0250229010 PB-5 (1'-2') Solid 08/19/22 12:20 08/23/22 08:10 A0250229011 PB-5 (3'-4') Solid 08/19/22 12:30 08/23/22 08:10 A0250229012 PB-6 (1'-2') Solid 08/19/22 12:40 08/23/22 08:10 A0250229013 PB-6 (2'-3') Solid 08/19/22 12:50 08/23/22 08:10 A0250229014 PB-7 (1'-2') Solid 08/19/22 13:00 08/23/22 08:10 A0250229015 PB-7 (3'-4') Solid 08/19/22 13:10 08/23/22 08:10 A0250229016 PB-8 (1'-2') Solid 08/19/22 10:40 08/23/22 08:10 A0250229017 PB-8 (3'-4') Solid 08/19/22 10:50 08/23/22 08:10 A0250229018 PB-9 (1'-2') Solid 08/19/22 10:50 08/23/22 08:10 A0250229019 PB-9 (2'-3') Solid 08/19/22 09:00 08/23/22 08:10 A0250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 A0250229021 PB-10 (3'-4') Solid 08/19/22 10:20 08/23/22 08:10 A0250229022 PB-11 (1'-2') Solid 08/19/22 10:30 08/23/22 08:10 A0250229023 PB-11 (2'-3') Solid 08/19/22 09:20 08/23/22 08:10 A0250229024 PB-12 (1'-2') Solid 08/19/22 09:30 08/23/22 08:10 A0250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 A0250229026 PB-13 (1'-2') Solid 08/19/22 09:50 08/23/22 08:10 A0250229027 PB-13 (3'-4') Solid 08/19/22 10:00 08/23/22 08:10 A0250229028 PB-14 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 A0250229029 PB-14 (3'-4') Solid 08/19/22 10:00 08/23/22 08:10 A0250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 A0250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 A0250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 A0250229029 PB-14 (3'-4') Solid 08/19/22 13:40 08/23/22 08:10 A0250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229005	PB-2 (3'-4')	Solid	08/19/22 11:30	08/23/22 08:10
PB-4 (1'-2') Solid 08/19/22 12:00 08/23/22 08:10 A0250229009 PB-4 (2'-3') Solid 08/19/22 12:10 08/23/22 08:10 A0250229010 PB-5 (1'-2') Solid 08/19/22 12:20 08/23/22 08:10 A0250229011 PB-5 (3'-4') Solid 08/19/22 12:20 08/23/22 08:10 A0250229012 PB-6 (1'-2') Solid 08/19/22 12:30 08/23/22 08:10 A0250229013 PB-6 (2'-3') Solid 08/19/22 12:50 08/23/22 08:10 A0250229014 PB-7 (1'-2') Solid 08/19/22 13:00 08/23/22 08:10 A0250229015 PB-7 (3'-4') Solid 08/19/22 13:10 08/23/22 08:10 A0250229016 PB-8 (1'-2') Solid 08/19/22 10:40 08/23/22 08:10 A0250229017 PB-8 (3'-4') Solid 08/19/22 10:50 08/23/22 08:10 A0250229018 PB-9 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 A0250229019 PB-9 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 A0250229019 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 A025022902 PB-10 (3'-4') Solid 08/19/22 10:20 08/23/22 08:10 A025022902 PB-11 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 A025022902 PB-11 (2'-3') Solid 08/19/22 09:00 08/23/22 08:10 A025022902 PB-11 (2'-3') Solid 08/19/22 09:00 08/23/22 08:10 A025022902 PB-11 (2'-3') Solid 08/19/22 09:00 08/23/22 08:10 A025022902 PB-13 (3'-4') Solid 08/19/22 09:00 08/23/22 08:10 A025022902 PB-13 (3'-4') Solid 08/19/22 09:00 08/23/22 08:10 A025022902 PB-13 (3'-4') Solid 08/19/22 10:00 08/23/22 08:10 A025022902 PB-13 (3'-4') Solid 08/19/22 10:00 08/23/22 08:10 A025022902 PB-14 (3'-4') Solid 08/19/22 10:00 08/23/22 08:10 A025022902 PB-14 (3'-4') Solid 08/19/22 10:00 08/23/22 08:10 A025022902 PB-14 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 A025022902 PB-15 (1'-2') Solid 08/19/22 10:30 08/23/22 08:10 A025022902 PB-15 (1'-2') Solid 08/19/22 10:30 08/23/22 08:10 A0250229020 PB-15 (1'-2') Solid 08/19/22 10:30 08/23/22 08:10 A0250229020	40250229006	PB-3 (1'-2')	Solid	08/19/22 11:00	08/23/22 08:10
A0250229009 PB-4 (2'-3') Solid 08/19/22 12:10 08/23/22 08:10	40250229007	PB-3 (4'-5')	Solid	08/19/22 11:10	08/23/22 08:10
A0250229010 PB-5 (1'-2') Solid 08/19/22 12:20 08/23/22 08:10 A0250229011 PB-5 (3'-4') Solid 08/19/22 12:30 08/23/22 08:10 A0250229012 PB-6 (1'-2') Solid 08/19/22 12:40 08/23/22 08:10 A0250229013 PB-6 (2'-3') Solid 08/19/22 12:50 08/23/22 08:10 A0250229014 PB-7 (1'-2') Solid 08/19/22 13:00 08/23/22 08:10 A0250229015 PB-7 (3'-4') Solid 08/19/22 13:10 08/23/22 08:10 A0250229016 PB-8 (1'-2') Solid 08/19/22 10:40 08/23/22 08:10 A0250229017 PB-8 (3'-4') Solid 08/19/22 10:50 08/23/22 08:10 A0250229018 PB-9 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 A0250229019 PB-9 (2'-3') Solid 08/19/22 09:00 08/23/22 08:10 A0250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 A0250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 A0250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 A0250229023 PB-11 (2'-3') Solid 08/19/22 09:20 08/23/22 08:10 A0250229024 PB-12 (1'-2') Solid 08/19/22 09:30 08/23/22 08:10 A0250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 A0250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 A0250229027 PB-13 (3'-4') Solid 08/19/22 10:00 08/23/22 08:10 A0250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 A0250229028 PB-14 (1'-2') Solid 08/19/22 10:10 08/23/22 08:10 A0250229029 PB-14 (3'-4') Solid 08/19/22 13:20 08/23/22 08:10 A0250229029 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 A0250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 A0250229029 PB-15 (1'-2') Solid 08/19/22 13:30 08/23/22 08:10 A0250229029 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10 A0250229029 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10 A0250229029 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10 A0250229030 PB-15 (1'-2') Solid 08/19/22 13:40 0	40250229008	PB-4 (1'-2')	Solid	08/19/22 12:00	08/23/22 08:10
40250229011 PB-5 (3'-4') Solid 08/19/22 12:30 08/23/22 08:10 40250229012 PB-6 (1'-2') Solid 08/19/22 12:50 08/23/22 08:10 40250229013 PB-6 (2'-3') Solid 08/19/22 12:50 08/23/22 08:10 40250229014 PB-7 (1'-2') Solid 08/19/22 13:00 08/23/22 08:10 40250229015 PB-7 (3'-4') Solid 08/19/22 10:40 08/23/22 08:10 40250229016 PB-8 (1'-2') Solid 08/19/22 10:50 08/23/22 08:10 40250229017 PB-8 (3'-4') Solid 08/19/22 10:50 08/23/22 08:10 40250229018 PB-9 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 40250229019 PB-9 (2'-3') Solid 08/19/22 09:00 08/23/22 08:10 40250229020 PB-10 (2'-3') Solid 08/19/22 09:00 08/23/22 08:10 40250229021 PB-10 (3'-4') Solid 08/19/22 10:20 08/23/22 08:10 40250229022 PB-11 (1'-2') Solid 08/19/22 09:30 08/23/22 08:10 40250229023 PB-12 (3'-4	40250229009	PB-4 (2'-3')	Solid	08/19/22 12:10	08/23/22 08:10
40250229012 PB-6 (1'-2') Solid 08/19/22 12:40 08/23/22 08:10 40250229013 PB-6 (2'-3') Solid 08/19/22 12:50 08/23/22 08:10 40250229014 PB-7 (1'-2') Solid 08/19/22 13:00 08/23/22 08:10 40250229015 PB-7 (3'-4') Solid 08/19/22 10:40 08/23/22 08:10 40250229016 PB-8 (1'-2') Solid 08/19/22 10:50 08/23/22 08:10 40250229017 PB-8 (3'-4') Solid 08/19/22 10:50 08/23/22 08:10 40250229018 PB-9 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 40250229019 PB-9 (2'-3') Solid 08/19/22 09:10 08/23/22 08:10 40250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 40250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 40250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-12 (1'-2') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (3'-	40250229010	PB-5 (1'-2')	Solid	08/19/22 12:20	08/23/22 08:10
40250229013 PB-6 (2'-3') Solid 08/19/22 12:50 08/23/22 08:10 40250229014 PB-7 (1'-2') Solid 08/19/22 13:00 08/23/22 08:10 40250229015 PB-7 (3'-4') Solid 08/19/22 10:40 08/23/22 08:10 40250229016 PB-8 (1'-2') Solid 08/19/22 10:50 08/23/22 08:10 40250229017 PB-8 (3'-4') Solid 08/19/22 09:00 08/23/22 08:10 40250229018 PB-9 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 40250229019 PB-9 (2'-3') Solid 08/19/22 09:10 08/23/22 08:10 40250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 40250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 40250229022 PB-11 (2'-3') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-12 (1'-2') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229025 PB-13 (1'	40250229011	PB-5 (3'-4')	Solid	08/19/22 12:30	08/23/22 08:10
40250229014 PB-7 (1'-2') Solid 08/19/22 13:00 08/23/22 08:10 40250229015 PB-7 (3'-4') Solid 08/19/22 13:10 08/23/22 08:10 40250229016 PB-8 (1'-2') Solid 08/19/22 10:40 08/23/22 08:10 40250229017 PB-8 (3'-4') Solid 08/19/22 10:50 08/23/22 08:10 40250229018 PB-9 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 40250229019 PB-9 (2'-3') Solid 08/19/22 09:10 08/23/22 08:10 40250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 40250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 40250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-12 (1'-2') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229025 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3	40250229012	PB-6 (1'-2')	Solid	08/19/22 12:40	08/23/22 08:10
40250229015 PB-7 (3'-4') Solid 08/19/22 13:10 08/23/22 08:10 40250229016 PB-8 (1'-2') Solid 08/19/22 10:40 08/23/22 08:10 40250229017 PB-8 (3'-4') Solid 08/19/22 01:50 08/23/22 08:10 40250229018 PB-9 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 40250229019 PB-9 (2'-3') Solid 08/19/22 09:10 08/23/22 08:10 40250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 40250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 40250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-11 (2'-3') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (1'-2') Solid 08/19/22 09:40 08/23/22 08:10 40250229025 PB-13 (1'-2') Solid 08/19/22 09:50 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (40250229013	PB-6 (2'-3')	Solid	08/19/22 12:50	08/23/22 08:10
40250229016 PB-8 (1'-2') Solid 08/19/22 10:40 08/23/22 08:10 40250229017 PB-8 (3'-4') Solid 08/19/22 10:50 08/23/22 08:10 40250229018 PB-9 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 40250229019 PB-9 (2'-3') Solid 08/19/22 09:10 08/23/22 08:10 40250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 40250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 40250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-11 (2'-3') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (1'-2') Solid 08/19/22 09:50 08/23/22 08:10 40250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229028 PB-14	40250229014	PB-7 (1'-2')	Solid	08/19/22 13:00	08/23/22 08:10
#0250229017 PB-8 (3'-4') Solid 08/19/22 10:50 08/23/22 08:10 40250229018 PB-9 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 40250229019 PB-9 (2'-3') Solid 08/19/22 09:10 08/23/22 08:10 40250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 40250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 40250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-11 (2'-3') Solid 08/19/22 09:20 08/23/22 08:10 40250229024 PB-12 (1'-2') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (1'-2') Solid 08/19/22 09:40 08/23/22 08:10 40250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229029 PB-15 (1'-2') Solid 08/19/22 13:30 08/23/22 08:10 40250229029 PB-15 (1'-2') Solid 08/19/22 13:30 08/23/22 08:10	40250229015	PB-7 (3'-4')	Solid	08/19/22 13:10	08/23/22 08:10
#0250229018 PB-9 (1'-2') Solid 08/19/22 09:00 08/23/22 08:10 40250229019 PB-9 (2'-3') Solid 08/19/22 09:10 08/23/22 08:10 40250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 40250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 40250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-11 (2'-3') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (1'-2') Solid 08/19/22 09:40 08/23/22 08:10 40250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:40 08/23/22 08:10 40250229029 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229016	PB-8 (1'-2')	Solid	08/19/22 10:40	08/23/22 08:10
#0250229019 PB-9 (2'-3') Solid 08/19/22 09:10 08/23/22 08:10 40250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 40250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 40250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-11 (2'-3') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (1'-2') Solid 08/19/22 09:40 08/23/22 08:10 40250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:00 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229029 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229017	PB-8 (3'-4')	Solid	08/19/22 10:50	08/23/22 08:10
#0250229020 PB-10 (2'-3') Solid 08/19/22 10:20 08/23/22 08:10 40250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 40250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-11 (2'-3') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (1'-2') Solid 08/19/22 09:40 08/23/22 08:10 40250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:00 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 10:10 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229029 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229018	PB-9 (1'-2')	Solid	08/19/22 09:00	08/23/22 08:10
40250229021 PB-10 (3'-4') Solid 08/19/22 10:30 08/23/22 08:10 40250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-11 (2'-3') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (1'-2') Solid 08/19/22 09:40 08/23/22 08:10 40250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229019	PB-9 (2'-3')	Solid	08/19/22 09:10	08/23/22 08:10
40250229022 PB-11 (1'-2') Solid 08/19/22 09:20 08/23/22 08:10 40250229023 PB-11 (2'-3') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (1'-2') Solid 08/19/22 09:40 08/23/22 08:10 40250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229020	PB-10 (2'-3')	Solid	08/19/22 10:20	08/23/22 08:10
40250229023 PB-11 (2'-3') Solid 08/19/22 09:30 08/23/22 08:10 40250229024 PB-12 (1'-2') Solid 08/19/22 09:40 08/23/22 08:10 40250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229021	PB-10 (3'-4')	Solid	08/19/22 10:30	08/23/22 08:10
40250229024 PB-12 (1'-2') Solid 08/19/22 09:40 08/23/22 08:10 40250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229022	PB-11 (1'-2')	Solid	08/19/22 09:20	08/23/22 08:10
40250229025 PB-12 (3'-4') Solid 08/19/22 09:50 08/23/22 08:10 40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229023	PB-11 (2'-3')	Solid	08/19/22 09:30	08/23/22 08:10
40250229026 PB-13 (1'-2') Solid 08/19/22 10:00 08/23/22 08:10 40250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229024	PB-12 (1'-2')	Solid	08/19/22 09:40	08/23/22 08:10
40250229027 PB-13 (3'-4') Solid 08/19/22 10:10 08/23/22 08:10 40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229025	PB-12 (3'-4')	Solid	08/19/22 09:50	08/23/22 08:10
40250229028 PB-14 (1'-2') Solid 08/19/22 13:20 08/23/22 08:10 40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229026	PB-13 (1'-2')	Solid	08/19/22 10:00	08/23/22 08:10
40250229029 PB-14 (3'-4') Solid 08/19/22 13:30 08/23/22 08:10 40250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229027	PB-13 (3'-4')	Solid	08/19/22 10:10	08/23/22 08:10
40250229030 PB-15 (1'-2') Solid 08/19/22 13:40 08/23/22 08:10	40250229028	PB-14 (1'-2')	Solid	08/19/22 13:20	08/23/22 08:10
	40250229029	PB-14 (3'-4')	Solid	08/19/22 13:30	08/23/22 08:10
40250229031 PB-15 (4'-5') Solid 08/19/22 13:50 08/23/22 08:10	40250229030	PB-15 (1'-2')	Solid	08/19/22 13:40	08/23/22 08:10
	40250229031	PB-15 (4'-5')	Solid	08/19/22 13:50	08/23/22 08:10

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40250229001	PB-1 (1'-2')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229002	PB-1 (3'-4')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229003	TB-01	EPA 8260	ALD	65	PASI-G
0250229004	PB-2 (1'-2')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
	EPA 8270E by SIM	RJN	20	PASI-G	
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229005	PB-2 (3'-4')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229006	PB-3 (1'-2')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229007	PB-3 (4'-5')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229008	PB-4 (1'-2')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
10250229009	PB-4 (2'-3')	EPA 6010D	SIS	7	PASI-G

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

PA 5471	Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
PB-5 (1'-2') PB-7 (1'-2') PB-7			EPA 7471	AJT	1	PASI-G
ASTM D2974-87 PDV 1 PASI-G 40250229010 PB-5 (1'-2') PB-5 (1'-2') PB-5 (1'-2') PB-5 (1'-2') PB-5 (1'-2') PB-5 (1'-2') PB-5 (1'-2') PB-5 (3'-4') PB-5 (3'-4') PB-5 (3'-4') PB-5 (3'-4') PB-6 (1'-2') PB-6 (1'-2') PB-6 (1'-2') PB-6 (1'-2') PB-6 (1'-2') PB-6 (2'-3') PB-7 (1'-2') PB-8 (2'-3') PB-8 (2'-3') PB-9			EPA 8270E by SIM	RJN	20	PASI-G
PB-5 (1-2')			EPA 8260	ALD	65	PASI-G
Pacific Paci			ASTM D2974-87	PDV	1	PASI-G
Pacific Paci	40250229010	PB-5 (1'-2')	EPA 8082A	BLM	10	PASI-G
PB-5 (3'-4') PB-5			EPA 6010D	SIS	7	PASI-G
ASTM D2974-87 PDV 1 PASI-G 10250229011 PB-5 (3'-4')			EPA 7471	AJT	1	PASI-G
10250229011 PB-5 (3'-4') EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8082A BLM 10 PASI-G EPA 80741 AJT 1 PASI-G EPA 80741 AJT 1 PASI-G EPA 80741 AJT 1 PASI-G EPA 80741 AJT 1 PASI-G EPA 80741 AJT 1 PASI-G EPA 80741 AJT 1 PASI-G EPA 80741 AJT 1 PASI-G EPA 80741 AJT 1 PASI-G EPA 80741 AJT 1 PASI-G EPA 80741 AJT 1 PASI-G EPA 8010D SIS 7 PASI-G EPA 8010D SIS 7 PASI-G EPA 8010D SIS 7 PASI-G EPA 8010D SIS 7 PASI-G EPA 8010D SIS 7 PASI-G EPA 80741 AJT 1 PASI-G EPA 8074471 AJT 1 PASI-G EPA 8074471 AJT 1 PASI-G EPA 8074471 AJT 1 PASI-G EPA 8074471 AJT 1 PASI-G EPA 8074471 AJT 1 PASI-G EPA 8070 D2974-87 PDV 1 PASI			EPA 8270E by SIM	RJN	20	PASI-G
PB-6 (1'-2')			ASTM D2974-87	PDV	1	PASI-G
EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G I0250229012 PB-6 (1'-2') EPA 8082A BLM 10 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8070D SIS 7 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G I0250229013 PB-6 (2'-3') EPA 8082A BLM 10 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G	10250229011	PB-5 (3'-4')	EPA 8082A	BLM	10	PASI-G
PB-6 (1'-2') PB-7 (1'-2') PB-7			EPA 6010D	SIS	7	PASI-G
ASTM D2974-87 PDV 1 PASI-G EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 7471 AJT 1 PASI-G EPA 870E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 8010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 807471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8074-87 PDV 1 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8070E by SIM RJN 20 PASI-G EPA 8070E by SIM RJN 20 PASI-G EPA 8070E by SIM RJN 20 PASI-G EPA 8070E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8070E by SIM RJN 20 PASI-G EPA 8070E by SIM RJN			EPA 7471	AJT	1	PASI-G
### PB-6 (1'-2') ### A00250229012 PB-6 (1'-2') ### A00250229013 PB-6 (1'-2') ### A00250229013 PB-6 (2'-3') ### A00250229013 PB-6 (2'-3') ### A00250229014 PB-7 (1'-2') ### A00250229014 PB-7 (1'-2') ### A00250229015 PB-7 (3'-4') ### A00250229016 PB-8 (1'-2') ### A00250229			EPA 8270E by SIM	RJN	20	PASI-G
EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 870E by SIM RJN 20 PASI-G EPA 870E by SIM RJN 20 PASI-G EPA 870E by SIM RJN 20 PASI-G EPA 870E by SIM RJN 20 PASI-G EPA 870E by SIM RJN 20 PASI-G EPA 870E by SIM RJN 20 PASI-G EPA 870E by SIM RJN 20 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 870E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 870E by SIM RJN 20 PASI-G EPA 870E by SIM 20 PASI-G EPA 870E by SIM 20 PASI-G EPA 870E by SIM 20 PASI-G EPA 870E by SIM 20 PASI-G EPA 870E by SIM 20 PASI-G EPA 870E by SIM 20 PASI-G EPA 870E by SIM 20 PASI-G EPA 870E by SIM 20 PASI-G EPA 870E by SIM 20 PASI-G EPA 870E b				PDV	1	PASI-G
EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G	10250229012	PB-6 (1'-2')	EPA 8082A	BLM	10	PASI-G
PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-6 (2'-3') PB-7 (1'-2') PB-7 (3'-4') PB-7			EPA 6010D	SIS	7	PASI-G
ASTM D2974-87 PDV 1 PASI-G EPA 8082A BLM 10 PASI-G EPA 7471 AJT 1 PASI-G EPA 8070E by SIM RJN 20 PASI-G EPA 8074-87 PDV 1 PASI-G EPA 8070E by SIM RJN 20 PASI-G EPA 8082A BLM 10 PASI-G EPA 8070E by SIM RJN 20 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270			EPA 7471	AJT	1	PASI-G
PB-6 (2'-3') PB-6 (2'-3') EPA 8082A BLM 10 PASI-G			EPA 8270E by SIM	RJN	20	PASI-G
EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G			ASTM D2974-87	PDV	1	PASI-G
EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G 10250229014 PB-7 (1'-2') EPA 8082A BLM 10 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8082A BLM 10 PASI-G EPA 80270E by SIM RJN 20 PASI-G EPA 80200 BLM 10 PASI-G EPA 8010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by SIM 20 PASI-G EPA 8270E by S	10250229013	PB-6 (2'-3')	EPA 8082A	BLM	10	PASI-G
EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G BPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 8082A BLM 10 PASI-G EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G			EPA 6010D	SIS	7	PASI-G
ASTM D2974-87 PDV 1 PASI-G 40250229014 PB-7 (1'-2') EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 7471 AJT 1 PASI-G			EPA 7471	AJT	1	PASI-G
PB-7 (1'-2') EPA 8082A BLM 10			EPA 8270E by SIM	RJN	20	PASI-G
EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G			ASTM D2974-87	PDV	1	PASI-G
EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G EPA 7471 AJT 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G	10250229014	PB-7 (1'-2')	EPA 8082A	BLM	10	PASI-G
EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G 40250229015 PB-7 (3'-4') EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G			EPA 6010D	SIS	7	PASI-G
ASTM D2974-87 PDV 1 PASI-G 10250229015 PB-7 (3'-4') EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G			EPA 7471	AJT	1	PASI-G
#0250229015 PB-7 (3'-4') EPA 8082A BLM 10 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 7471 AJT 1 PASI-G			EPA 8270E by SIM	RJN	20	PASI-G
EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G A0250229016 PB-8 (1'-2') EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G			ASTM D2974-87	PDV	1	PASI-G
EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G ASTM D2974-87 PDV 1 PASI-G EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G	0250229015	PB-7 (3'-4')	EPA 8082A	BLM	10	PASI-G
EPA 8270E by SIM RJN 20 PASI-G ASTM D2974-87 PDV 1 PASI-G 40250229016 PB-8 (1'-2') EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G			EPA 6010D	SIS	7	PASI-G
ASTM D2974-87 PDV 1 PASI-G 40250229016 PB-8 (1'-2') EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G			EPA 7471	AJT	1	PASI-G
ASTM D2974-87 PDV 1 PASI-G 40250229016 PB-8 (1'-2') EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G			EPA 8270E by SIM	RJN	20	
PB-8 (1'-2') EPA 6010D SIS 7 PASI-G EPA 7471 AJT 1 PASI-G			•		1	
EPA 7471 AJT 1 PASI-G	40250229016	PB-8 (1'-2')	EPA 6010D	SIS	7	
					1	
			EPA 8270E by SIM		20	PASI-G

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229017	PB-8 (3'-4')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229018	PB-9 (1'-2')	EPA 6010D	SIS	7	PASI-G
	• •	EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229019	PB-9 (2'-3')	EPA 6010D	SIS	7	PASI-G
	, ,	EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229020	PB-10 (2'-3')	EPA 6010D	SIS	7	PASI-G
	,	EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229021	PB-10 (3'-4')	EPA 6010D	SIS	7	PASI-G
	,	EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229022	PB-11 (1'-2')	EPA 6010D	SIS	7	PASI-G
	,	EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229023	PB-11 (2'-3')	EPA 6010D	SIS	7	PASI-G
	· - /	EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40250229024	PB-12 (1'-2')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
10250229025	PB-12 (3'-4')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229026	PB-13 (1'-2')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229027	PB-13 (3'-4')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229028	PB-14 (1'-2')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229029	PB-14 (3'-4')	EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		EPA 8270E by SIM	RJN	20	PASI-G
		EPA 8260	ALD	65	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229030	PB-15 (1'-2')	EPA 8082A	BLM	10	PASI-G
		EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		ASTM D2974-87	PDV	1	PASI-G
0250229031	PB-15 (4'-5')	EPA 8082A	BLM	10	PASI-G
		EPA 6010D	SIS	7	PASI-G
		EPA 7471	AJT	1	PASI-G
		ASTM D2974-87	PDV	1	PASI-G

PASI-G = Pace Analytical Services - Green Bay

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
10250229001	PB-1 (1'-2')					
EPA 6010D	Arsenic	1.8J	mg/kg	2.7	08/26/22 15:58	
EPA 6010D	Barium	53.1	mg/kg	0.55	08/26/22 15:58	M0,R1
EPA 6010D	Cadmium	0.58	mg/kg	0.55	08/26/22 15:58	
EPA 6010D	Chromium	11.4	mg/kg	1.1	08/26/22 15:58	
EPA 6010D	Lead	270	mg/kg	21.9	08/29/22 17:28	P6,R1
EPA 7471	Mercury	0.12	mg/kg	0.038	08/26/22 07:29	
EPA 8270E by SIM	Acenaphthene	909	ug/kg	369	08/26/22 11:19	
EPA 8270E by SIM	Acenaphthylene	598	ug/kg	369	08/26/22 11:19	
EPA 8270E by SIM	Anthracene	3530	ug/kg	369	08/26/22 11:19	
PA 8270E by SIM	Benzo(a)anthracene	6230	ug/kg	369	08/26/22 11:19	
PA 8270E by SIM	Benzo(a)pyrene	6670	ug/kg	369	08/26/22 11:19	
PA 8270E by SIM	Benzo(b)fluoranthene	7390	ug/kg	369	08/26/22 11:19	
EPA 8270E by SIM	Benzo(g,h,i)perylene	4200	ug/kg	369	08/26/22 11:19	
EPA 8270E by SIM	Benzo(k)fluoranthene	3160	ug/kg	369	08/26/22 11:19	
EPA 8270E by SIM	Chrysene	6810	ug/kg	369	08/26/22 11:19	
EPA 8270E by SIM	Dibenz(a,h)anthracene	757	ug/kg	369	08/26/22 11:19	
EPA 8270E by SIM	Fluoranthene	17200	ug/kg	369	08/26/22 11:19	
EPA 8270E by SIM	Fluorene	1600	ug/kg	369	08/26/22 11:19	
PA 8270E by SIM	Indeno(1,2,3-cd)pyrene	3310	ug/kg	369	08/26/22 11:19	
EPA 8270E by SIM	1-Methylnaphthalene	239J	ug/kg ug/kg	369	08/26/22 11:19	
,	2-Methylnaphthalene	313J		369	08/26/22 11:19	
EPA 8270E by SIM EPA 8270E by SIM		758	ug/kg	369	08/26/22 11:19	
•	Naphthalene Phenanthrene	13500	ug/kg	369	08/26/22 11:19	
EPA 8270E by SIM			ug/kg			
EPA 8270E by SIM	Pyrene	14900	ug/kg	369	08/26/22 11:19	
EPA 8260	Naphthalene	38.7J	ug/kg	301	08/25/22 19:17	
EPA 8260	Toluene	17.7J	ug/kg	60.3	08/25/22 19:17	
STM D2974-87	Percent Moisture	9.3	%	0.10	08/24/22 16:37	
0250229002	PB-1 (3'-4')	50.4		- 4	00/00/00 47 00	
PA 6010D	Barium	53.4	mg/kg	5.4	08/29/22 17:38	
PA 6010D	Chromium	10.9	mg/kg	10.8	08/29/22 17:38	
PA 6010D	Lead	24500	mg/kg	21.7	08/29/22 17:38	
PA 7471	Mercury	0.093	mg/kg	0.036	08/26/22 07:36	
PA 8270E by SIM	Acenaphthene	196	ug/kg	74.4		
PA 8270E by SIM	Acenaphthylene	28.0J	ug/kg	74.4	08/26/22 20:10	
EPA 8270E by SIM	Anthracene	211	ug/kg	74.4	08/26/22 20:10	
EPA 8270E by SIM	Benzo(a)anthracene	199	ug/kg	74.4	08/26/22 20:10	
PA 8270E by SIM	Benzo(a)pyrene	195	ug/kg	74.4		
PA 8270E by SIM	Benzo(b)fluoranthene	309	ug/kg	74.4	08/26/22 20:10	
PA 8270E by SIM	Benzo(g,h,i)perylene	96.7	ug/kg	74.4	08/26/22 20:10	
PA 8270E by SIM	Benzo(k)fluoranthene	96.5	ug/kg	74.4	08/26/22 20:10	
PA 8270E by SIM	Chrysene	248	ug/kg	74.4		
PA 8270E by SIM	Dibenz(a,h)anthracene	28.1J	ug/kg	74.4	08/26/22 20:10	
PA 8270E by SIM	Fluoranthene	596	ug/kg	74.4	08/26/22 20:10	
PA 8270E by SIM	Fluorene	161	ug/kg	74.4	08/26/22 20:10	
PA 8270E by SIM	Indeno(1,2,3-cd)pyrene	80.4	ug/kg	74.4	08/26/22 20:10	
PA 8270E by SIM	1-Methylnaphthalene	118	ug/kg	74.4	08/26/22 20:10	
EPA 8270E by SIM	2-Methylnaphthalene	144	ug/kg	74.4	08/26/22 20:10	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
0250229002	PB-1 (3'-4')					
EPA 8270E by SIM	Naphthalene	241	ug/kg	74.4	08/26/22 20:10	
EPA 8270E by SIM	Phenanthrene	608	ug/kg	74.4	08/26/22 20:10	
EPA 8270E by SIM	Pyrene	483	ug/kg	74.4	08/26/22 20:10	
EPA 8260	Ethylbenzene	59.2J	ug/kg	61.3	08/25/22 19:37	
EPA 8260	Isopropylbenzene (Cumene)	39.3J	ug/kg	61.3	08/25/22 19:37	
EPA 8260	Naphthalene	372	ug/kg	307	08/25/22 19:37	
EPA 8260	n-Propylbenzene	50.1J	ug/kg	61.3	08/25/22 19:37	
EPA 8260	Toluene	91.5	ug/kg	61.3	08/25/22 19:37	
EPA 8260	1,2,4-Trimethylbenzene	126	ug/kg	61.3	08/25/22 19:37	
EPA 8260	1,3,5-Trimethylbenzene	68.6	ug/kg	61.3	08/25/22 19:37	
EPA 8260	Xylene (Total)	211	ug/kg	184	08/25/22 19:37	
EPA 8260	m&p-Xylene	117J	ug/kg	123	08/25/22 19:37	
EPA 8260	o-Xylene	93.8	ug/kg	61.3	08/25/22 19:37	
ASTM D2974-87	Percent Moisture	10.2	%	0.10	08/24/22 16:37	
0250229004	PB-2 (1'-2')					
PA 6010D	Arsenic	3.5	mg/kg	2.6	08/26/22 16:17	
EPA 6010D	Barium	44.0	mg/kg	0.52	08/26/22 16:17	
PA 6010D	Cadmium	1.0	mg/kg	0.52	08/26/22 16:17	
PA 6010D	Chromium	24.1	mg/kg	1.0	08/26/22 16:17	
EPA 6010D	Lead	49.4	mg/kg	2.1	08/26/22 16:17	
PA 7471	Mercury	0.024J	mg/kg	0.036	08/26/22 07:38	
EPA 8270E by SIM	Acenaphthene	17.5J	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Anthracene	38.0J	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Benzo(a)anthracene	110	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Benzo(a)pyrene	178	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Benzo(b)fluoranthene	251	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Benzo(g,h,i)perylene	102	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Benzo(k)fluoranthene	129	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Chrysene	229	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Dibenz(a,h)anthracene	21.5J	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Fluoranthene	313	ug/kg	93.5		
EPA 8270E by SIM	Fluorene	13.4J	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	65.8J	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	2-Methylnaphthalene	14.1J	ug/kg	93.5	08/26/22 20:27	
EPA 8270E by SIM	Naphthalene	15.8J	ug/kg	93.5	08/26/22 20:27	D3
EPA 8270E by SIM	Phenanthrene	174	ug/kg		08/26/22 20:27	-
EPA 8270E by SIM	Pyrene	298	ug/kg		08/26/22 20:27	
ASTM D2974-87	Percent Moisture	10.6	%		08/24/22 16:37	
0250229005	PB-2 (3'-4')					
EPA 6010D	Arsenic	1.9J	mg/kg	2.6	08/26/22 16:22	
EPA 6010D	Barium	19.6	mg/kg	0.53		
EPA 6010D	Chromium	7.2	mg/kg	1.1	08/26/22 16:22	
EPA 6010D	Lead	15.2	mg/kg	2.1	08/26/22 16:22	
EPA 7471	Mercury	0.029J	mg/kg	0.037	08/26/22 07:40	
EPA 8270E by SIM	Acenaphthene	95.8	ug/kg	91.7		
EPA 8270E by SIM	Acenaphthylene	18.1J	ug/kg		08/26/22 17:35	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
10250229005	PB-2 (3'-4')					
EPA 8270E by SIM	Anthracene	167	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Benzo(a)anthracene	350	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Benzo(a)pyrene	440	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Benzo(b)fluoranthene	635	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Benzo(g,h,i)perylene	277	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Benzo(k)fluoranthene	258	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Chrysene	567	ug/kg	91.7	08/26/22 17:35	
PA 8270E by SIM	Dibenz(a,h)anthracene	72.8J	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Fluoranthene	1140	ug/kg	91.7	08/26/22 17:35	
PA 8270E by SIM	Fluorene	86.5J	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	205	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	1-Methylnaphthalene	35.7J	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	2-Methylnaphthalene	43.8J	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Naphthalene	44.7J	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Phenanthrene	865	ug/kg	91.7	08/26/22 17:35	
EPA 8270E by SIM	Pyrene	880	ug/kg	91.7	08/26/22 17:35	
ASTM D2974-87	Percent Moisture	8.9	%	0.10	08/24/22 16:38	
0250229006	PB-3 (1'-2')					
EPA 6010D	Arsenic	1.6J	mg/kg	2.6	08/26/22 16:24	
EPA 6010D	Barium	23.2	mg/kg	0.52		
PA 6010D	Chromium	7.9	mg/kg	1.0	08/26/22 16:24	
PA 6010D	Lead	26.1	mg/kg	2.1	08/26/22 16:24	
EPA 7471	Mercury	0.031J	mg/kg	0.034	08/26/22 07:43	
EPA 8270E by SIM	Acenaphthene	8.0J	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Acenaphthylene	11.4J	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Anthracene	22.9	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Benzo(a)anthracene	52.6	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Benzo(a)pyrene	64.6	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Benzo(b)fluoranthene	87.6	ug/kg	18.0	08/26/22 16:26	
PA 8270E by SIM	Benzo(g,h,i)perylene	45.0	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Benzo(k)fluoranthene	28.5	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Chrysene	64.9	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Dibenz(a,h)anthracene	11.4J	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Fluoranthene	119	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Fluorene	7.7J	ug/kg	18.0	08/26/22 16:26	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	35.4	ug/kg ug/kg		08/26/22 16:26	
EPA 8270E by SIM	1-Methylnaphthalene	9.7J	ug/kg ug/kg		08/26/22 16:26	
EPA 8270E by SIM	2-Methylnaphthalene	12.1J	ug/kg ug/kg	18.0		
•	Naphthalene			18.0	08/26/22 16:26	
PA 8270E by SIMPA 8270E by SIM	Phenanthrene	16.5J 72.3	ug/kg ug/kg	18.0	08/26/22 16:26	
•		72.3 129			08/26/22 16:26	
EPA 8270E by SIM ASTM D2974-87	Pyrene Percent Moisture	7.3	ug/kg %	18.0 0.10		
0250229007	PB-3 (4'-5')	1.3	/0	0.10	00/24/22 10.00	
	, ,	101	ma/ka	20	08/26/22 16:27	
EPA 6010D EPA 6010D	Arsenic Barium	1.8J 33.4	mg/kg	2.8	08/26/22 16:27 08/26/22 16:27	
			mg/kg	0.57		
EPA 6010D	Cadmium	0.25J	mg/kg	0.57	08/26/22 16:27	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
10250229007	PB-3 (4'-5')					
EPA 6010D	Chromium	11.8	mg/kg	1.1	08/26/22 16:27	
EPA 6010D	Lead	11.1	mg/kg	2.3	08/26/22 16:27	
EPA 7471	Mercury	0.019J	mg/kg	0.040	08/26/22 07:45	
EPA 8270E by SIM	Acenaphthene	6.6J	ug/kg	19.2	08/26/22 17:52	
EPA 8270E by SIM	Acenaphthylene	5.4J	ug/kg	19.2	08/26/22 17:52	
EPA 8270E by SIM	Anthracene	8.0J	ug/kg	19.2	08/26/22 17:52	
EPA 8270E by SIM	Benzo(a)anthracene	44.6	ug/kg	19.2	08/26/22 17:52	
EPA 8270E by SIM	Benzo(a)pyrene	56.1	ug/kg	19.2	08/26/22 17:52	
EPA 8270E by SIM	Benzo(b)fluoranthene	86.8	ug/kg	19.2	08/26/22 17:52	
EPA 8270E by SIM	Benzo(g,h,i)perylene	36.8	ug/kg	19.2	08/26/22 17:52	
EPA 8270E by SIM	Benzo(k)fluoranthene	30.8	ug/kg	19.2	08/26/22 17:52	
EPA 8270E by SIM	Chrysene	63.6	ug/kg	19.2	08/26/22 17:52	
EPA 8270E by SIM	Dibenz(a,h)anthracene	10.1J	ug/kg		08/26/22 17:52	
EPA 8270E by SIM	Fluoranthene	93.6	ug/kg	19.2		
EPA 8270E by SIM	Fluorene	4.1J	ug/kg		08/26/22 17:52	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	29.4	ug/kg	19.2	08/26/22 17:52	
EPA 8270E by SIM	1-Methylnaphthalene	70.2	ug/kg		08/26/22 17:52	
EPA 8270E by SIM	2-Methylnaphthalene	80.8	ug/kg		08/26/22 17:52	
EPA 8270E by SIM	Naphthalene	53.2	ug/kg	-	08/26/22 17:52	
EPA 8270E by SIM	Phenanthrene	61.3	ug/kg	_	08/26/22 17:52	
EPA 8270E by SIM	Pyrene	85.2	ug/kg	19.2	08/26/22 17:52	
ASTM D2974-87	Percent Moisture	12.9	%	0.10	08/24/22 16:38	
0250229008	PB-4 (1'-2')					
EPA 6010D	Barium	24.1	mg/kg	0.54	08/26/22 16:29	
EPA 6010D	Chromium	5.1	mg/kg	1.1	08/26/22 16:29	
EPA 6010D	Lead	14.2	mg/kg	2.2	08/26/22 16:29	
EPA 7471	Mercury	0.021J	mg/kg	0.038	08/26/22 07:47	
EPA 8270E by SIM	Acenaphthene	22.8J	ug/kg		08/26/22 18:10	
EPA 8270E by SIM	Acenaphthylene	53.3J	ug/kg		08/26/22 18:10	
EPA 8270E by SIM	Anthracene	46.7J	ug/kg	91.2	08/26/22 18:10	
EPA 8270E by SIM	Benzo(a)anthracene	124	ug/kg		08/26/22 18:10	
EPA 8270E by SIM	Benzo(a)pyrene	106	ug/kg	91.2	08/26/22 18:10	
EPA 8270E by SIM	Benzo(b)fluoranthene	153	ug/kg		08/26/22 18:10	
EPA 8270E by SIM	Benzo(g,h,i)perylene	47.8J	ug/kg		08/26/22 18:10	
EPA 8270E by SIM	Benzo(k)fluoranthene	49.0J	ug/kg		08/26/22 18:10	
EPA 8270E by SIM	Chrysene	146	ug/kg		08/26/22 18:10	
EPA 8270E by SIM	Dibenz(a,h)anthracene	16.5J	ug/kg	-	08/26/22 18:10	
EPA 8270E by SIM	Fluoranthene	210	ug/kg		08/26/22 18:10	
EPA 8270E by SIM	Fluorene	38.6J	ug/kg		08/26/22 18:10	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	39.9J	ug/kg ug/kg		08/26/22 18:10	
EPA 8270E by SIM	1-Methylnaphthalene	932	ug/kg ug/kg		08/26/22 18:10	
EPA 8270E by SIM	2-Methylnaphthalene	1170			08/26/22 18:10	
EPA 8270E by SIM	Naphthalene	858	ug/kg ug/kg		08/26/22 18:10	
EPA 8270E by SIM	Phenanthrene	547	ug/kg ug/kg		08/26/22 18:10	
EPA 8270E by SIM		211				
•	Pyrene	24.2	ug/kg		08/26/22 18:10 08/26/22 17:58	
EPA 8260	Benzene		ug/kg	23.7		
EPA 8260	Ethylbenzene	38.8J	ug/kg	59.3	08/26/22 17:58	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40250229008	PB-4 (1'-2')					
EPA 8260	Isopropylbenzene (Cumene)	18.8J	ug/kg	59.3	08/26/22 17:58	
EPA 8260	Naphthalene	101J	ug/kg	297	08/26/22 17:58	
EPA 8260	n-Propylbenzene	27.2J	ug/kg	59.3	08/26/22 17:58	
EPA 8260	Toluene	141	ug/kg	59.3	08/26/22 17:58	
EPA 8260	1,2,4-Trimethylbenzene	32.5J	ug/kg	59.3	08/26/22 17:58	
EPA 8260	Xylene (Total)	179	ug/kg	178	08/26/22 17:58	
EPA 8260	m&p-Xylene	104J	ug/kg	119	08/26/22 17:58	
EPA 8260	o-Xylene	74.4	ug/kg	59.3	08/26/22 17:58	
ASTM D2974-87	Percent Moisture	8.5	%	0.10	08/24/22 16:38	
0250229009	PB-4 (2'-3')					
EPA 6010D	Arsenic	87.9	mg/kg	34.1	08/29/22 17:43	
EPA 6010D	Barium	23.9	mg/kg	6.8	08/29/22 17:43	
EPA 6010D	Chromium	20.1	mg/kg	13.6	08/29/22 17:43	
EPA 6010D	Lead	23.8J	mg/kg	27.2		D3
EPA 7471	Mercury	0.093	mg/kg	0.043	08/26/22 07:49	
EPA 8270E by SIM	Acenaphthene	186	ug/kg	115	08/29/22 12:19	
EPA 8270E by SIM	Acenaphthylene	55.6J	ug/kg	115	08/29/22 12:19	
PA 8270E by SIM	Anthracene	352	ug/kg	115	08/29/22 12:19	
PA 8270E by SIM	Benzo(a)anthracene	355	ug/kg	115	08/29/22 12:19	
PA 8270E by SIM	Benzo(a)pyrene	253	ug/kg	115	08/29/22 12:19	
EPA 8270E by SIM	Benzo(b)fluoranthene	344	ug/kg	115	08/29/22 12:19	
EPA 8270E by SIM	Benzo(g,h,i)perylene	143	ug/kg	115	08/29/22 12:19	
PA 8270E by SIM	Benzo(k)fluoranthene	140	ug/kg	115	08/29/22 12:19	
EPA 8270E by SIM	Chrysene	424	ug/kg	115	08/29/22 12:19	
PA 8270E by SIM	Dibenz(a,h)anthracene	52.8J	ug/kg	115	08/29/22 12:19	
PA 8270E by SIM	Fluoranthene	838	ug/kg	115	08/29/22 12:19	
EPA 8270E by SIM	Fluorene	200	ug/kg	115	08/29/22 12:19	
PA 8270E by SIM	Indeno(1,2,3-cd)pyrene	121	ug/kg	115	08/29/22 12:19	
PA 8270E by SIM	1-Methylnaphthalene	833	ug/kg	115	08/29/22 12:19	
PA 8270E by SIM	2-Methylnaphthalene	1060	ug/kg	115	08/29/22 12:19	
PA 8270E by SIM	Naphthalene	779	ug/kg	115	08/29/22 12:19	
EPA 8270E by SIM	Phenanthrene	1510	ug/kg	115	08/29/22 12:19	
EPA 8270E by SIM	Pyrene	604	ug/kg	115	08/29/22 12:19	
ASTM D2974-87	Percent Moisture	27.6	%	0.10	08/24/22 16:38	
0250229010	PB-5 (1'-2')					
EPA 6010D	Arsenic	6.4	mg/kg	2.8		
EPA 6010D	Barium	36.6	mg/kg	0.56	08/26/22 16:34	
EPA 6010D	Cadmium	0.17J	mg/kg	0.56	08/26/22 16:34	
EPA 6010D	Chromium	8.2	mg/kg	1.1	08/26/22 16:34	
PA 6010D	Lead	45.0	mg/kg	2.2		
PA 7471	Mercury	0.046	mg/kg	0.038	08/26/22 07:52	
PA 8270E by SIM	Acenaphthene	52.6J	ug/kg	375		
EPA 8270E by SIM	Acenaphthylene	123J	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	Anthracene	113J	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	Benzo(a)anthracene	273J	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	Benzo(a)pyrene	119J	ug/kg	375	08/26/22 19:52	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
10250229010	PB-5 (1'-2')					
EPA 8270E by SIM	Benzo(b)fluoranthene	177J	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	Benzo(k)fluoranthene	63.9J	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	Chrysene	321J	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	Fluoranthene	262J	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	Fluorene	59.6J	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	1-Methylnaphthalene	3840	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	2-Methylnaphthalene	4710	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	Naphthalene	3430	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	Phenanthrene	1800	ug/kg	375	08/26/22 19:52	
EPA 8270E by SIM	Pyrene	362J	ug/kg	375	08/26/22 19:52	
ASTM D2974-87	Percent Moisture	10.9	%	0.10	08/24/22 16:38	
0250229011	PB-5 (3'-4')					
EPA 6010D	Arsenic	2.1J	mg/kg	3.0	08/26/22 16:37	
EPA 6010D	Barium	22.9	mg/kg	0.59	08/26/22 16:37	
EPA 6010D	Chromium	15.6	mg/kg	1.2	08/26/22 16:37	
EPA 6010D	Lead	4.9	mg/kg	2.4	08/26/22 16:37	
EPA 7471	Mercury	0.015J	mg/kg	0.039	08/26/22 07:54	
ASTM D2974-87	Percent Moisture	18.9	//////////////////////////////////////	0.10	08/24/22 16:38	
0250229012	PB-6 (1'-2')					
EPA 8082A	PCB-1260 (Aroclor 1260)	19.0J	ug/kg	53.9	08/25/22 11:37	
EPA 8082A	PCB, Total	19.0J	ug/kg	53.9	08/25/22 11:37	
EPA 6010D	•	16.2			08/26/22 16:44	
	Arsenic		mg/kg	2.5	08/26/22 16:44	
EPA 6010D	Barium	92.6	mg/kg	0.49		
EPA 6010D	Cadmium	0.40J	mg/kg	0.49	08/26/22 16:44	
EPA 6010D	Chromium	24.7	mg/kg	0.99	08/26/22 16:44	
EPA 6010D	Lead	318	mg/kg	2.0	08/26/22 16:44	
EPA 6010D	Selenium	3.0J	mg/kg	3.9	08/26/22 16:44	
EPA 6010D	Silver	0.48J	mg/kg	0.99	08/26/22 16:44	
EPA 7471	Mercury	0.12	mg/kg	0.035	08/26/22 07:56	
EPA 8270E by SIM	Acenaphthene	29.4J	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Acenaphthylene	57.8J	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Anthracene	65.8J	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Benzo(a)anthracene	136	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Benzo(a)pyrene	77.1J	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Benzo(b)fluoranthene	148	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Benzo(g,h,i)perylene	34.6J	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Benzo(k)fluoranthene	45.4J	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Chrysene	181	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Dibenz(a,h)anthracene	16.1J	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Fluoranthene	172	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Fluorene	31.9J	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	30.2J	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	1-Methylnaphthalene	1610	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	2-Methylnaphthalene	1970	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Naphthalene	1430	ug/kg	90.3	08/26/22 19:35	
EPA 8270E by SIM	Phenanthrene	846	ug/kg ug/kg	90.3	08/26/22 19:35	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40250229012	PB-6 (1'-2')					
EPA 8270E by SIM	Pyrene	204	ug/kg	90.3	08/26/22 19:35	
ASTM D2974-87	Percent Moisture	7.5	%	0.10	08/24/22 16:38	
40250229013	PB-6 (2'-3')					
EPA 6010D	Arsenic	11.3	mg/kg	2.8	08/26/22 16:46	
EPA 6010D	Barium	110	mg/kg	0.56	08/26/22 16:46	
EPA 6010D	Cadmium	0.58	mg/kg	0.56	08/26/22 16:46	
EPA 6010D	Chromium	10.7	mg/kg	1.1	08/26/22 16:46	
EPA 6010D	Lead	162	mg/kg	2.3	08/26/22 16:46	
EPA 6010D	Selenium	2.2J	mg/kg	4.5	08/26/22 16:46	
EPA 6010D	Silver	0.36J	mg/kg	1.1	08/26/22 16:46	
EPA 7471	Mercury	0.043	mg/kg	0.040	08/26/22 08:03	
EPA 8270E by SIM	Acenaphthylene	57.6J	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Anthracene	43.1J	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Benzo(a)anthracene	97.7	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Benzo(a)pyrene	61.9J	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Benzo(b)fluoranthene	186	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Benzo(g,h,i)perylene	64.1J	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Benzo(k)fluoranthene	58.2J	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Chrysene	188	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Dibenz(a,h)anthracene	21.2J	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Fluoranthene	221	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Fluorene	19.0J	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	51.5J	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	1-Methylnaphthalene	741	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	2-Methylnaphthalene	909	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Naphthalene	701	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Phenanthrene	573	ug/kg	79.5	08/26/22 18:27	
EPA 8270E by SIM	Pyrene	191	ug/kg	79.5	08/26/22 18:27	
ASTM D2974-87	Percent Moisture	16.0	%	0.10	08/24/22 16:38	
		10.0	70	0.10	00/24/22 10:30	
10250229014	PB-7 (1'-2')	0.4.0		0.54	00/00/00 40 40	
EPA 6010D	Barium	24.6	mg/kg	0.54	08/26/22 16:49	
EPA 6010D	Cadmium	0.69	mg/kg	0.54	08/26/22 16:49	
EPA 6010D	Chromium	9.4	mg/kg	1.1	08/26/22 16:49	
EPA 6010D	Lead	50.9	mg/kg	2.2	08/26/22 16:49	
EPA 7471	Mercury	0.15	mg/kg	0.035	08/26/22 08:06	
EPA 8270E by SIM	Anthracene	3.4J	ug/kg		08/26/22 17:01	
EPA 8270E by SIM	Benzo(a)anthracene	8.0J	ug/kg	18.4	08/26/22 17:01	
EPA 8270E by SIM	Benzo(a)pyrene	7.8J	ug/kg	18.4	08/26/22 17:01	
EPA 8270E by SIM	Benzo(b)fluoranthene	9.7J	ug/kg	18.4	08/26/22 17:01	
EPA 8270E by SIM	Benzo(g,h,i)perylene	4.5J	ug/kg	18.4	08/26/22 17:01	
EPA 8270E by SIM	Benzo(k)fluoranthene	4.6J	ug/kg	18.4	08/26/22 17:01	
EPA 8270E by SIM	Chrysene	13.3J	ug/kg	18.4	08/26/22 17:01	
EPA 8270E by SIM	Fluoranthene	18.0J	ug/kg	18.4	08/26/22 17:01	
EPA 8270E by SIM	1-Methylnaphthalene	10.2J	ug/kg	18.4	08/26/22 17:01	
EPA 8270E by SIM	2-Methylnaphthalene	13.0J	ug/kg	18.4	08/26/22 17:01	
EPA 8270E by SIM	Naphthalene	9.6J	ug/kg	18.4	08/26/22 17:01	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40250229014	PB-7 (1'-2')					
EPA 8270E by SIM	Phenanthrene	17.3J	ug/kg	18.4	08/26/22 17:01	
EPA 8270E by SIM	Pyrene	25.9	ug/kg	18.4	08/26/22 17:01	
ASTM D2974-87	Percent Moisture	9.2	%	0.10	08/25/22 11:53	
40250229015	PB-7 (3'-4')					
EPA 6010D	Barium	30.5	mg/kg	0.61	08/26/22 16:51	
EPA 6010D	Cadmium	0.16J	mg/kg	0.61	08/26/22 16:51	
EPA 6010D	Chromium	14.4	mg/kg	1.2	08/26/22 16:51	
EPA 6010D	Lead	4.3	mg/kg	2.4	08/26/22 16:51	
ASTM D2974-87	Percent Moisture	18.5	%	0.10	08/25/22 11:53	
10250229016	PB-8 (1'-2')					
EPA 6010D	Arsenic	1.7J	mg/kg	2.6	08/26/22 16:54	
EPA 6010D	Barium	75.2	mg/kg	0.51	08/26/22 16:54	
EPA 6010D	Cadmium	0.19J	mg/kg	0.51	08/26/22 16:54	
EPA 6010D	Chromium	19.9	mg/kg	1.0	08/26/22 16:54	
EPA 6010D	Lead	7.7	mg/kg	2.1	08/26/22 16:54	
EPA 7471	Mercury	0.020J	mg/kg	0.036	08/26/22 08:10	
EPA 8270E by SIM	Acenaphthylene	4.9J	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Anthracene	7.6J	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Benzo(a)anthracene	37.7	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Benzo(a)pyrene	60.9	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Benzo(b)fluoranthene	95.1	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Benzo(g,h,i)perylene	46.5	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Benzo(k)fluoranthene	35.1	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Chrysene	67.2	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Dibenz(a,h)anthracene	11.3J	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Fluoranthene	93.4	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Fluorene	2.9J	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	32.2	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	2-Methylnaphthalene	3.8J	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Naphthalene	2.6J	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Phenanthrene	32.9	ug/kg	18.7	08/26/22 18:44	
EPA 8270E by SIM	Pyrene	75.5	ug/kg	18.7	08/26/22 18:44	
ASTM D2974-87	Percent Moisture	10.6	%	0.10	08/25/22 11:53	
0250229017	PB-8 (3'-4')					
EPA 6010D	Arsenic	2.8	mg/kg	2.8	08/26/22 16:56	
EPA 6010D	Barium	83.3	mg/kg	0.56	08/26/22 16:56	
EPA 6010D	Cadmium	0.22J	mg/kg	0.56	08/26/22 16:56	
EPA 6010D	Chromium	26.7	mg/kg	1.1	08/26/22 16:56	
EPA 6010D	Lead	22.7	mg/kg	2.2	08/26/22 16:56	
EPA 7471	Mercury	0.057	mg/kg	0.042	08/26/22 08:17	В
EPA 8270E by SIM	Acenaphthene	37.1J	ug/kg	202	08/26/22 19:01	
EPA 8270E by SIM	Anthracene	131J	ug/kg	202	08/26/22 19:01	
EPA 8270E by SIM	Benzo(a)anthracene	658	ug/kg	202		
EPA 8270E by SIM	Benzo(a)pyrene	940	ug/kg	202	08/26/22 19:01	
EPA 8270E by SIM	Benzo(b)fluoranthene	1390	ug/kg	202	08/26/22 19:01	
EPA 8270E by SIM	Benzo(g,h,i)perylene	614	ug/kg	202	08/26/22 19:01	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0250229017	PB-8 (3'-4')					
EPA 8270E by SIM	Benzo(k)fluoranthene	593	ug/kg	202	08/26/22 19:01	
EPA 8270E by SIM	Chrysene	1010	ug/kg	202	08/26/22 19:01	
EPA 8270E by SIM	Dibenz(a,h)anthracene	165J	ug/kg		08/26/22 19:01	
PA 8270E by SIM	Fluoranthene	1900	ug/kg	202	08/26/22 19:01	
EPA 8270E by SIM	Fluorene	40.8J	ug/kg	202	08/26/22 19:01	
PA 8270E by SIM	Indeno(1,2,3-cd)pyrene	514	ug/kg	202	08/26/22 19:01	
PA 8270E by SIM	Phenanthrene	812	ug/kg	202	08/26/22 19:01	
PA 8270E by SIM	Pyrene	1600	ug/kg	202	08/26/22 19:01	
STM D2974-87	Percent Moisture	17.2	%	0.10	08/25/22 11:53	
250229018	PB-9 (1'-2')					
PA 6010D	Arsenic	2.9	mg/kg	2.7		
PA 6010D	Barium	68.8	mg/kg	0.53	08/26/22 16:58	
PA 6010D	Cadmium	0.91	mg/kg	0.53	08/26/22 16:58	
PA 6010D	Chromium	18.4	mg/kg	1.1	08/26/22 16:58	
PA 6010D	Lead	141	mg/kg	2.1	08/26/22 16:58	
PA 7471	Mercury	0.11	mg/kg	0.037	08/26/22 08:24	В
PA 8270E by SIM	Acenaphthene	51.1J	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Anthracene	135	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Benzo(a)anthracene	361	ug/kg	95.0		
PA 8270E by SIM	Benzo(a)pyrene	470	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Benzo(b)fluoranthene	652	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Benzo(g,h,i)perylene	252	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Benzo(k)fluoranthene	282	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Chrysene	503	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Dibenz(a,h)anthracene	74.3J	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Fluoranthene	960	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Fluorene	48.0J	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Indeno(1,2,3-cd)pyrene	217	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	1-Methylnaphthalene	21.4J	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	2-Methylnaphthalene	28.0J	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Naphthalene	39.4J	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Phenanthrene	617	ug/kg	95.0	08/26/22 19:18	
PA 8270E by SIM	Pyrene	903	ug/kg	95.0	08/26/22 19:18	
STM D2974-87	Percent Moisture	12.2	%	0.10		
0250229019	PB-9 (2'-3')					
PA 6010D	Arsenic	3.4	mg/kg	2.8	08/26/22 17:01	
PA 6010D	Barium	67.0	mg/kg	0.56	08/26/22 17:01	
PA 6010D	Cadmium	0.17J	mg/kg	0.56	08/26/22 17:01	
PA 6010D	Chromium	28.1	mg/kg	1.1	08/26/22 17:01	
PA 6010D	Lead	9.9	mg/kg	2.3	08/26/22 17:01	
PA 7471	Mercury	0.14	mg/kg	0.040	08/26/22 08:35	В
PA 8270E by SIM	Benzo(a)anthracene	2.8J	ug/kg	19.7	08/26/22 17:18	
PA 8270E by SIM	Benzo(a)pyrene	3.1J	ug/kg	19.7	08/26/22 17:18	
PA 8270E by SIM	Benzo(b)fluoranthene	5.7J	ug/kg	19.7	08/26/22 17:18	
PA 8270E by SIM	Benzo(g,h,i)perylene	3.8J	ug/kg	19.7	08/26/22 17:18	
EPA 8270E by SIM	Benzo(k)fluoranthene	3.2J	ug/kg	19.7		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

ab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0250229019	PB-9 (2'-3')					
EPA 8270E by SIM	Chrysene	5.2J	ug/kg	19.7	08/26/22 17:18	
PA 8270E by SIM	Fluoranthene	4.2J	ug/kg	19.7	08/26/22 17:18	
PA 8270E by SIM	Phenanthrene	2.8J	ug/kg	19.7	08/26/22 17:18	
PA 8270E by SIM	Pyrene	3.9J	ug/kg	19.7	08/26/22 17:18	
ASTM D2974-87	Percent Moisture	15.1	%	0.10	08/25/22 11:54	
0250229020	PB-10 (2'-3')					
PA 6010D	Arsenic	2.0J	mg/kg	2.8	08/26/22 17:03	
EPA 6010D	Barium	72.6	mg/kg	0.56	08/26/22 17:03	
PA 6010D	Cadmium	0.19J	mg/kg	0.56	08/26/22 17:03	
PA 6010D	Chromium	28.4	mg/kg	1.1	08/26/22 17:03	
PA 6010D	Lead	8.9	mg/kg	2.2	08/26/22 17:03	
PA 7471	Mercury	0.036J	mg/kg	0.037	08/26/22 08:38	В
PA 8270E by SIM	Acenaphthylene	4.9J	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Anthracene	7.3J	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Benzo(a)anthracene	28.2	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Benzo(a)pyrene	34.1	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Benzo(b)fluoranthene	45.3	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Benzo(g,h,i)perylene	28.6	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Benzo(k)fluoranthene	19.9	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Chrysene	38.5	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Dibenz(a,h)anthracene	7.8J	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Fluoranthene	60.9	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Fluorene	3.0J	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Indeno(1,2,3-cd)pyrene	20.1	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	1-Methylnaphthalene	6.0J	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	2-Methylnaphthalene	9.2J	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Naphthalene	4.7J	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Phenanthrene	28.8	ug/kg	19.3	08/29/22 17:28	
PA 8270E by SIM	Pyrene	50.0	ug/kg	19.3	08/29/22 17:28	
STM D2974-87	Percent Moisture	13.8	%	0.10	08/25/22 11:54	
0250229021	PB-10 (3'-4')					
PA 6010D	Arsenic	2.6	mg/kg	2.6	08/26/22 17:06	
PA 6010D	Barium	61.6	mg/kg	0.51	08/26/22 17:06	
PA 6010D	Cadmium	1.1	mg/kg	0.51	08/26/22 17:06	
PA 6010D	Chromium	15.2	mg/kg	1.0	08/26/22 17:06	
PA 6010D	Lead	200	mg/kg	2.1	08/26/22 17:06	
PA 7471	Mercury	0.093	mg/kg	0.035		В
PA 8270E by SIM	Acenaphthene	1310J	ug/kg	3150	08/29/22 18:20	
PA 8270E by SIM	Anthracene	4390	ug/kg	3150	08/29/22 18:20	
PA 8270E by SIM	Benzo(a)anthracene	14300	ug/kg	3150	08/29/22 18:20	
PA 8270E by SIM	Benzo(a)pyrene	17700	ug/kg	3150	08/29/22 18:20	
PA 8270E by SIM	Benzo(b)fluoranthene	24800	ug/kg ug/kg	3150	08/29/22 18:20	
PA 8270E by SIM	Benzo(g,h,i)perylene	13000	ug/kg ug/kg	3150	08/29/22 18:20	
PA 8270E by SIM	Benzo(g,n,n)perylene Benzo(k)fluoranthene	10400	ug/kg ug/kg	3150	08/29/22 18:20	
•	Chrysene	20500	ug/kg ug/kg	3150	08/29/22 18:20	
PA 8270E by SIM						

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
10250229021	PB-10 (3'-4')					
EPA 8270E by SIM	Fluoranthene	41500	ug/kg	3150	08/29/22 18:20	
EPA 8270E by SIM	Fluorene	1590J	ug/kg	3150	08/29/22 18:20	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	10700	ug/kg	3150	08/29/22 18:20	
EPA 8270E by SIM	Phenanthrene	20500	ug/kg	3150	08/29/22 18:20	
EPA 8270E by SIM	Pyrene	32100	ug/kg	3150	08/29/22 18:20	
EPA 8260	Benzene	343	ug/kg	23.1	08/26/22 19:55	
EPA 8260	Ethylbenzene	88.3	ug/kg	57.8	08/26/22 19:55	
EPA 8260	Isopropylbenzene (Cumene)	31.4J	ug/kg	57.8	08/26/22 19:55	
EPA 8260	Naphthalene	435	ug/kg	289	08/26/22 19:55	
PA 8260	n-Propylbenzene	42.3J	ug/kg	57.8	08/26/22 19:55	
PA 8260	Toluene	1100	ug/kg	57.8	08/26/22 19:55	
EPA 8260	1,2,4-Trimethylbenzene	202	ug/kg	57.8	08/26/22 19:55	
EPA 8260	1,3,5-Trimethylbenzene	42.9J	ug/kg	57.8	08/26/22 19:55	
EPA 8260	Xylene (Total)	854	ug/kg	173	08/26/22 19:55	
EPA 8260	m&p-Xylene	556	ug/kg	116	08/26/22 19:55	
EPA 8260	o-Xylene	298	ug/kg	57.8	08/26/22 19:55	
ASTM D2974-87	Percent Moisture	7.2	%	0.10	08/25/22 11:54	
0250229022		7.2	70	0.10	00/20/22 11:04	
EPA 6010D	PB-11 (1'-2') Arsenic	3.4J	mg/kg	5.3	08/30/22 17:33	D3
EPA 6010D						DS
	Barium Chromium	38.7	mg/kg	1.1	08/30/22 17:33 08/30/22 17:33	
PA 6010D		13.6	mg/kg	2.1		
EPA 6010D	Lead	26.0	mg/kg	4.2	08/30/22 17:33	Б
PA 7471	Mercury	0.080	mg/kg	0.036	08/26/22 08:42	В
EPA 8270E by SIM	Acenaphthene	19.8J	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Acenaphthylene	14.3J	ug/kg	75.3	08/29/22 20:56	
EPA 8270E by SIM	Anthracene	96.1	ug/kg	75.3	08/29/22 20:56	
EPA 8270E by SIM	Benzo(a)anthracene	292	ug/kg	75.3	08/29/22 20:56	
EPA 8270E by SIM	Benzo(a)pyrene	350	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Benzo(b)fluoranthene	502	ug/kg	75.3	08/29/22 20:56	
EPA 8270E by SIM	Benzo(g,h,i)perylene	234	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Benzo(k)fluoranthene	171	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Chrysene	388	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Dibenz(a,h)anthracene	66.9J	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Fluoranthene	743	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Fluorene	22.0J	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Indeno(1,2,3-cd)pyrene	191	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	1-Methylnaphthalene	63.4J	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	2-Methylnaphthalene	72.6J	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Naphthalene	55.5J	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Phenanthrene	388	ug/kg	75.3	08/29/22 20:56	
PA 8270E by SIM	Pyrene	621	ug/kg	75.3	08/29/22 20:56	
EPA 8260	Benzene	33.6	ug/kg	25.2	08/29/22 11:50	
PA 8260	Ethylbenzene	34.9J	ug/kg	62.9	08/29/22 11:50	
PA 8260	Naphthalene	66.3J	ug/kg	315	08/29/22 11:50	
PA 8260	n-Propylbenzene	25.7J	ug/kg	62.9	08/29/22 11:50	
EPA 8260	Toluene	227	ug/kg	62.9	08/29/22 11:50	
EPA 8260	1,2,4-Trimethylbenzene	27.6J	ug/kg	62.9	08/29/22 11:50	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40250229022	PB-11 (1'-2')					
EPA 8260	Xylene (Total)	144J	ug/kg	189	08/29/22 11:50	
EPA 8260	m&p-Xylene	81.2J	ug/kg	126	08/29/22 11:50	
EPA 8260	o-Xylene	63.0	ug/kg	62.9	08/29/22 11:50	
ASTM D2974-87	Percent Moisture	11.5	%	0.10	08/25/22 11:54	
0250229023	PB-11 (2'-3')					
EPA 6010D	Arsenic	2.1J	mg/kg	2.8	08/29/22 21:32	
EPA 6010D	Barium	51.1	mg/kg	0.55	08/29/22 21:32	
EPA 6010D	Cadmium	0.25J	mg/kg	0.55	08/29/22 21:32	
EPA 6010D	Chromium	18.3	mg/kg	1.1	08/29/22 21:32	
EPA 6010D	Lead	25.2	mg/kg	2.2	08/29/22 21:32	
EPA 7471	Mercury	0.15	mg/kg	0.036	08/26/22 08:45	
EPA 8270E by SIM	Acenaphthene	35.8J	ug/kg	76.1	08/29/22 21:13	
EPA 8270E by SIM	Acenaphthylene	17.3J	ug/kg	76.1	08/29/22 21:13	
EPA 8270E by SIM	Anthracene	110	ug/kg	76.1	08/29/22 21:13	
EPA 8270E by SIM	Benzo(a)anthracene	237	ug/kg	76.1	08/29/22 21:13	
PA 8270E by SIM	Benzo(a)pyrene	250	ug/kg	76.1	08/29/22 21:13	
PA 8270E by SIM	Benzo(b)fluoranthene	313	ug/kg	76.1	08/29/22 21:13	
PA 8270E by SIM	Benzo(g,h,i)perylene	146	ug/kg	76.1	08/29/22 21:13	
PA 8270E by SIM	Benzo(k)fluoranthene	133	ug/kg	76.1	08/29/22 21:13	
PA 8270E by SIM	Chrysene	305	ug/kg	76.1	08/29/22 21:13	
PA 8270E by SIM	Dibenz(a,h)anthracene	43.0J	ug/kg	76.1	08/29/22 21:13	
PA 8270E by SIM	Fluoranthene	590	ug/kg	76.1	08/29/22 21:13	
EPA 8270E by SIM	Fluorene	32.9J	ug/kg	76.1	08/29/22 21:13	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	117	ug/kg	76.1	08/29/22 21:13	
EPA 8270E by SIM	1-Methylnaphthalene	44.8J	ug/kg	76.1	08/29/22 21:13	
EPA 8270E by SIM	2-Methylnaphthalene	52.1J	ug/kg	76.1	08/29/22 21:13	
PA 8270E by SIM	Naphthalene	40.5J	ug/kg	76.1	08/29/22 21:13	
EPA 8270E by SIM	Phenanthrene	434	ug/kg	76.1	08/29/22 21:13	
EPA 8270E by SIM	Pyrene	513	ug/kg	76.1	08/29/22 21:13	
ASTM D2974-87	Percent Moisture	12.4	%	0.10	08/25/22 12:35	
0250229024	PB-12 (1'-2')					
PA 6010D	Arsenic	6.4	mg/kg	5.3	08/30/22 17:35	
EPA 6010D	Barium	74.8	mg/kg	1.1	08/30/22 17:35	
EPA 6010D	Cadmium	1.6	mg/kg	1.1	08/30/22 17:35	
EPA 6010D	Chromium	21.9	mg/kg	2.1	08/30/22 17:35	
PA 6010D	Lead	236	mg/kg	4.3	08/30/22 17:35	
PA 7471	Mercury	0.13	mg/kg	0.036	08/26/22 08:47	В
PA 8270E by SIM	Acenaphthene	82.0J	ug/kg	358	08/29/22 21:30	
PA 8270E by SIM	Anthracene	264J	ug/kg	358	08/29/22 21:30	
PA 8270E by SIM	Benzo(a)anthracene	634	ug/kg	358	08/29/22 21:30	
EPA 8270E by SIM	Benzo(a)pyrene	881	ug/kg	358	08/29/22 21:30	
EPA 8270E by SIM	Benzo(b)fluoranthene	1150	ug/kg	358	08/29/22 21:30	
EPA 8270E by SIM	Benzo(g,h,i)perylene	537	ug/kg	358	08/29/22 21:30	
EPA 8270E by SIM	Benzo(k)fluoranthene	516	ug/kg	358	08/29/22 21:30	
EPA 8270E by SIM	Chrysene	1090	ug/kg	358	08/29/22 21:30	
EPA 8270E by SIM	Dibenz(a,h)anthracene	147J	ug/kg	358	08/29/22 21:30	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
0250229024	PB-12 (1'-2')					
EPA 8270E by SIM	Fluoranthene	1950	ug/kg	358	08/29/22 21:30	
EPA 8270E by SIM	Fluorene	75.8J	ug/kg	358	08/29/22 21:30	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	441	ug/kg	358	08/29/22 21:30	
EPA 8270E by SIM	1-Methylnaphthalene	83.5J	ug/kg	358	08/29/22 21:30	
PA 8270E by SIM	2-Methylnaphthalene	98.5J	ug/kg	358	08/29/22 21:30	
PA 8270E by SIM	Naphthalene	97.5J	ug/kg	358	08/29/22 21:30	
PA 8270E by SIM	Phenanthrene	1130	ug/kg	358	08/29/22 21:30	
PA 8270E by SIM	Pyrene	1660	ug/kg	358	08/29/22 21:30	
STM D2974-87	Percent Moisture	6.7	%	0.10	08/25/22 12:35	
0250229025	PB-12 (3'-4')					
PA 6010D	Barium	19.7	mg/kg	1.1	08/30/22 17:38	
PA 6010D	Chromium	7.4	mg/kg	2.1	08/30/22 17:38	
PA 6010D	Lead	14.0	mg/kg	4.3	08/30/22 17:38	
PA 7471	Mercury	0.023J	mg/kg	0.038	08/26/22 08:49	В
PA 8270E by SIM	Acenaphthylene	2.6J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Anthracene	2.4J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Benzo(a)anthracene	6.1J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Benzo(a)pyrene	8.9J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Benzo(b)fluoranthene	12.0J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Benzo(g,h,i)perylene	8.1J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Benzo(k)fluoranthene	5.5J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Chrysene	10.6J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Fluoranthene	12.4J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Indeno(1,2,3-cd)pyrene	4.9J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	1-Methylnaphthalene	3.7J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	2-Methylnaphthalene	4.8J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Naphthalene	6.0J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Phenanthrene	9.1J	ug/kg	18.5	08/29/22 18:37	
PA 8270E by SIM	Pyrene	18.4J	ug/kg	18.5	08/29/22 18:37	
STM D2974-87	Percent Moisture	10.43	%	0.10	08/25/22 10:37	
0250229026	PB-13 (1'-2')					
PA 6010D	Arsenic	2.4J	mg/kg	2.6	08/29/22 21:44	
PA 6010D	Barium	60.7	mg/kg	0.52	08/29/22 21:44	
PA 6010D	Cadmium	0.25J	mg/kg	0.52	08/29/22 21:44	
PA 6010D	Chromium	18.8	mg/kg	1.0	08/29/22 21:44	
PA 6010D	Lead	24.3	mg/kg	2.1	08/29/22 21:44	
PA 6010D	Silver	0.34J	mg/kg	1.0		
PA 7471	Mercury	0.057	mg/kg	0.035	08/26/22 08:51	В
PA 8270E by SIM	Acenaphthylene	686	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Anthracene	1220	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Benzo(a)anthracene	2470	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Benzo(a)pyrene	2360	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Benzo(b)fluoranthene	2570	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Benzo(g,h,i)perylene	1170	ug/kg ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Benzo(k)fluoranthene	1070	ug/kg ug/kg	367	08/29/22 21:47	
I A OZI OL DY SIIVI	Denzo(k)ndorantinene	1070	ug/kg ug/kg	307	00123122 21.41	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
0250229026	PB-13 (1'-2')					
EPA 8270E by SIM	Dibenz(a,h)anthracene	298J	ug/kg	367	08/29/22 21:47	
EPA 8270E by SIM	Fluoranthene	6100	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Fluorene	244J	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Indeno(1,2,3-cd)pyrene	974	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	1-Methylnaphthalene	65.4J	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	2-Methylnaphthalene	148J	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Naphthalene	298J	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Phenanthrene	2260	ug/kg	367	08/29/22 21:47	
PA 8270E by SIM	Pyrene	5800	ug/kg	367	08/29/22 21:47	
ASTM D2974-87	Percent Moisture	9.0	%	0.10	08/25/22 12:35	
0250229027	PB-13 (3'-4')					
PA 6010D	Arsenic	2.1J	mg/kg	2.7	08/29/22 21:47	
EPA 6010D	Barium	54.1	mg/kg	0.53	08/29/22 21:47	
PA 6010D	Cadmium	0.32J	mg/kg	0.53	08/29/22 21:47	
PA 6010D	Chromium	18.0	mg/kg	1.1	08/29/22 21:47	
PA 6010D	Lead	24.5	mg/kg	2.1	08/29/22 21:47	
PA 6010D	Silver	0.41J	mg/kg	1.1	08/29/22 21:47	
PA 7471	Mercury	0.075	mg/kg	0.038	08/26/22 08:54	В
PA 8270E by SIM	Acenaphthene	8.4J	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Acenaphthylene	25.3	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Anthracene	40.8	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Benzo(a)anthracene	224	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Benzo(a)pyrene	172	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Benzo(b)fluoranthene	488	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Benzo(g,h,i)perylene	95.7	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Benzo(k)fluoranthene	222	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Chrysene	283	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Dibenz(a,h)anthracene	21.3	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Fluoranthene	407	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Fluorene	10.9J	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Indeno(1,2,3-cd)pyrene	90.4	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	1-Methylnaphthalene	79.7	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	2-Methylnaphthalene	112	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Naphthalene	76.7	ug/kg	18.6	08/30/22 17:27	
PA 8270E by SIM	Phenanthrene	155	ug/kg	18.6	08/30/22 17:27	
EPA 8270E by SIM	Pyrene	414	ug/kg		08/30/22 17:27	
STM D2974-87	Percent Moisture	10.3	%	0.10	08/25/22 12:35	
0250229028	PB-14 (1'-2')					
EPA 6010D	Arsenic	2.9	mg/kg	2.8	08/26/22 18:12	
PA 6010D	Barium	49.3	mg/kg	0.56	08/26/22 18:12	
PA 6010D	Cadmium	0.55J	mg/kg	0.56	08/26/22 18:12	
PA 6010D	Chromium	10.1	mg/kg	1.1	08/26/22 18:12	
PA 6010D	Lead	113	mg/kg	2.2		
EPA 7471	Mercury	0.084	mg/kg	0.039	08/26/22 08:56	В
PA 8270E by SIM	Acenaphthene	48.7	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Acenaphthylene	35.1J	ug/kg		08/31/22 18:56	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifier
0250229028	PB-14 (1'-2')					
EPA 8270E by SIM	Anthracene	128	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Benzo(a)anthracene	267	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Benzo(a)pyrene	246	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Benzo(b)fluoranthene	347	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Benzo(g,h,i)perylene	167	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Benzo(k)fluoranthene	107	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Chrysene	284	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Dibenz(a,h)anthracene	52.0	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Fluoranthene	575	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Fluorene	59.0	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	131	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	1-Methylnaphthalene	149	ug/kg		08/31/22 18:56	
EPA 8270E by SIM	2-Methylnaphthalene	188	ug/kg	39.6		
EPA 8270E by SIM	Naphthalene	156	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Phenanthrene	520	ug/kg	39.6	08/31/22 18:56	
EPA 8270E by SIM	Pyrene	439	ug/kg	39.6	08/31/22 18:56	
ASTM D2974-87	Percent Moisture	15.5	% %	0.10		
0250229029	PB-14 (3'-4')	10.0	70	0.10	00/20/22 12:00	
EPA 6010D	Arsenic	1.5J	ma/ka	2.5	08/26/22 18:14	
EPA 6010D			mg/kg		08/26/22 18:14	
	Barium	50.1	mg/kg	0.50		
EPA 6010D	Cadmium	0.18J	mg/kg	0.50	08/26/22 18:14	
EPA 6010D	Chromium	10.4	mg/kg	1.0	08/26/22 18:14 08/26/22 18:14	
EPA 6010D	Lead	31.0	mg/kg	2.0		Б
EPA 7471	Mercury	0.052	mg/kg	0.038	08/26/22 09:03	Б
EPA 8270E by SIM	Acenaphthene	24.9	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	Acenaphthylene	28.2	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	Anthracene	56.0	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	Benzo(a)anthracene	208	ug/kg	18.4		
EPA 8270E by SIM	Benzo(a)pyrene	229	ug/kg	18.4		
EPA 8270E by SIM	Benzo(b)fluoranthene	340	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	Benzo(g,h,i)perylene	98.0	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	Benzo(k)fluoranthene	133	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	Chrysene	221	ug/kg	18.4		
EPA 8270E by SIM	Dibenz(a,h)anthracene	23.5	ug/kg	18.4		
EPA 8270E by SIM	Fluoranthene	384	ug/kg	18.4		
EPA 8270E by SIM	Fluorene	21.3	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	Indeno(1,2,3-cd)pyrene	82.0	ug/kg	18.4		
EPA 8270E by SIM	1-Methylnaphthalene	73.8	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	2-Methylnaphthalene	98.2	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	Naphthalene	84.5	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	Phenanthrene	199	ug/kg	18.4	08/30/22 17:44	
EPA 8270E by SIM	Pyrene	369	ug/kg	18.4	08/30/22 17:44	
PA 8260	Naphthalene	69.7J	ug/kg	306	08/29/22 12:49	
EPA 8260	1,2,4-Trimethylbenzene	25.3J	ug/kg	61.2	08/29/22 12:49	
EPA 8260	m&p-Xylene	41.7J	ug/kg	122	08/29/22 12:49	
ASTM D2974-87	Percent Moisture	9.2	%	0.10	08/25/22 12:35	

(920)469-2436

SUMMARY OF DETECTION

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
40250229030	PB-15 (1'-2')					
EPA 6010D	Arsenic	3.8	mg/kg	2.7	08/26/22 18:17	
EPA 6010D	Barium	80.4	mg/kg	0.54	08/26/22 18:17	
EPA 6010D	Chromium	9.6	mg/kg	1.1	08/26/22 18:17	
EPA 6010D	Lead	84.7	mg/kg	2.2	08/26/22 18:17	
EPA 6010D	Selenium	2.4J	mg/kg	4.3	08/26/22 18:17	
EPA 7471	Mercury	0.050	mg/kg	0.040	08/26/22 09:05	В
ASTM D2974-87	Percent Moisture	15.4	%	0.10	08/25/22 12:35	
10250229031	PB-15 (4'-5')					
EPA 6010D	Barium	32.9	mg/kg	0.59	08/26/22 18:19	
EPA 6010D	Chromium	11.4	mg/kg	1.2	08/26/22 18:19	
EPA 6010D	Lead	39.3	mg/kg	2.4	08/26/22 18:19	
EPA 7471	Mercury	0.055	mg/kg	0.038	08/26/22 09:08	В
ASTM D2974-87	Percent Moisture	18.3	%	0.10	08/25/22 12:36	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-1 (1'-2') Lab ID: 40250229001 Collected: 08/19/22 11:40 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	\ 6010D Prepa	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay	/					
Arsenic	1.8J	mg/kg	2.7	1.6	1	08/25/22 06:01	08/26/22 15:58	7440-38-2	
Barium	53.1	mg/kg	0.55	0.16	1	08/25/22 06:01	08/26/22 15:58	7440-39-3	M0,R1
Cadmium	0.58	mg/kg	0.55	0.15	1	08/25/22 06:01	08/26/22 15:58		-,
Chromium	11.4	mg/kg	1.1	0.30	1	08/25/22 06:01	08/26/22 15:58	7440-47-3	
Lead	270	mg/kg	21.9	6.6	10	08/25/22 06:01	08/29/22 17:28	7439-92-1	P6,R1
Selenium	<1.4	mg/kg	4.4	1.4	1	08/25/22 06:01	08/26/22 15:58		-,
Silver	<0.34	mg/kg	1.1	0.34	1	08/25/22 06:01	08/26/22 15:58	7440-22-4	
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ation Metho	od: EP	A 7471			
•	Pace Anal	ytical Service	es - Green Bay	/					
Mercury	0.12	mg/kg	0.038	0.011	1	08/25/22 08:19	08/26/22 07:29	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SIM	M Preparat	ion Me	thod: EPA 3546			
	-		es - Green Bay						
Acenaphthene	909	ug/kg	369	47.8	20	08/26/22 07:47	08/26/22 11:19	83-32-9	
Acenaphthylene	598	ug/kg	369	46.5	20	08/26/22 07:47	08/26/22 11:19	208-96-8	
Anthracene	3530	ug/kg	369	45.7	20	08/26/22 07:47	08/26/22 11:19	120-12-7	
Benzo(a)anthracene	6230	ug/kg	369	47.6	20	08/26/22 07:47	08/26/22 11:19	56-55-3	
Benzo(a)pyrene	6670	ug/kg	369	41.9	20	08/26/22 07:47	08/26/22 11:19	50-32-8	
Benzo(b)fluoranthene	7390	ug/kg	369	51.2	20	08/26/22 07:47	08/26/22 11:19	205-99-2	
Benzo(g,h,i)perylene	4200	ug/kg	369	64.7	20	08/26/22 07:47	08/26/22 11:19	191-24-2	
Benzo(k)fluoranthene	3160	ug/kg	369	47.1	20	08/26/22 07:47	08/26/22 11:19	207-08-9	
Chrysene	6810	ug/kg	369	69.5	20	08/26/22 07:47	08/26/22 11:19	218-01-9	
Dibenz(a,h)anthracene	757	ug/kg	369	51.0	20	08/26/22 07:47	08/26/22 11:19	53-70-3	
Fluoranthene	17200	ug/kg	369	43.6	20	08/26/22 07:47	08/26/22 11:19	206-44-0	
Fluorene	1600	ug/kg	369	44.2	20	08/26/22 07:47	08/26/22 11:19	86-73-7	
Indeno(1,2,3-cd)pyrene	3310	ug/kg	369	76.8	20	08/26/22 07:47	08/26/22 11:19	193-39-5	
1-Methylnaphthalene	239J	ug/kg	369	53.8	20	08/26/22 07:47	08/26/22 11:19	90-12-0	
2-Methylnaphthalene	313J	ug/kg	369	53.9	20	08/26/22 07:47	08/26/22 11:19	91-57-6	
Naphthalene	758	ug/kg	369	35.9	20	08/26/22 07:47	08/26/22 11:19	91-20-3	
Phenanthrene	13500	ug/kg	369	42.2	20	08/26/22 07:47	08/26/22 11:19	85-01-8	
Pyrene	14900	ug/kg	369	54.2	20	08/26/22 07:47	08/26/22 11:19	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	51	%	41-98		20	08/26/22 07:47	08/26/22 11:19		
Terphenyl-d14 (S)	60	%	37-106		20	08/26/22 07:47	08/26/22 11:19	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepar	ation Meth	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
Benzene	<14.3	ug/kg	24.1	14.3	1	08/25/22 08:00	08/25/22 19:17	71-43-2	
Bromobenzene	<23.5	ug/kg	60.3	23.5	1	08/25/22 08:00	08/25/22 19:17	108-86-1	
Bromochloromethane	<16.5	ug/kg	60.3	16.5	1	08/25/22 08:00	08/25/22 19:17	74-97-5	
Bromodichloromethane	<14.3	ug/kg	60.3	14.3	1	08/25/22 08:00	08/25/22 19:17	75-27-4	
Bromoform	<265	ug/kg	301	265	1	08/25/22 08:00	08/25/22 19:17	75-25-2	
Bromomethane	<84.5	ug/kg	301	84.5	1	08/25/22 08:00	08/25/22 19:17	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-1 (1'-2') Lab ID: 40250229001 Collected: 08/19/22 11:40 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
n-Butylbenzene	<27.6	ug/kg	60.3	27.6	1	08/25/22 08:00	08/25/22 19:17	104-51-8	
sec-Butylbenzene	<14.7	ug/kg	60.3	14.7	1	08/25/22 08:00	08/25/22 19:17		
tert-Butylbenzene	<18.9	ug/kg	60.3	18.9	1	08/25/22 08:00	08/25/22 19:17		
Carbon tetrachloride	<13.3	ug/kg	60.3	13.3	1	08/25/22 08:00	08/25/22 19:17		
Chlorobenzene	<7.2	ug/kg	60.3	7.2	1	08/25/22 08:00	08/25/22 19:17		
Chloroethane	<25.4	ug/kg	301	25.4	1	08/25/22 08:00	08/25/22 19:17		
Chloroform	<43.2	ug/kg	301	43.2	1	08/25/22 08:00	08/25/22 19:17		
Chloromethane	<22.9	ug/kg	60.3	22.9	1	08/25/22 08:00	08/25/22 19:17		
2-Chlorotoluene	<19.5	ug/kg	60.3	19.5	1	08/25/22 08:00	08/25/22 19:17		
4-Chlorotoluene	<22.9	ug/kg	60.3	22.9	1	08/25/22 08:00	08/25/22 19:17		
1,2-Dibromo-3-chloropropane	<46.8	ug/kg	301	46.8	1	08/25/22 08:00	08/25/22 19:17		
Dibromochloromethane	<206	ug/kg	301	206	1	08/25/22 08:00	08/25/22 19:17		
1,2-Dibromoethane (EDB)	<16.5	ug/kg	60.3	16.5	1	08/25/22 08:00	08/25/22 19:17		
Dibromomethane	<17.8	ug/kg	60.3	17.8	1	08/25/22 08:00	08/25/22 19:17		
1,2-Dichlorobenzene	<18.7	ug/kg	60.3	18.7	1	08/25/22 08:00	08/25/22 19:17		
1,3-Dichlorobenzene	<16.5	ug/kg	60.3	16.5	1	08/25/22 08:00	08/25/22 19:17		
1,4-Dichlorobenzene	<16.5	ug/kg	60.3	16.5	1	08/25/22 08:00	08/25/22 19:17		
Dichlorodifluoromethane	<25.9	ug/kg	60.3	25.9	1	08/25/22 08:00	08/25/22 19:17		
1.1-Dichloroethane	<15.4	ug/kg	60.3	15.4	1	08/25/22 08:00	08/25/22 19:17		
1,2-Dichloroethane	<13.9	ug/kg	60.3	13.9	1	08/25/22 08:00	08/25/22 19:17		
1,1-Dichloroethene	<20.0	ug/kg	60.3	20.0	1	08/25/22 08:00	08/25/22 19:17		
cis-1,2-Dichloroethene	<12.9	ug/kg	60.3	12.9	1	08/25/22 08:00	08/25/22 19:17		
trans-1,2-Dichloroethene	<13.0	ug/kg	60.3	13.0	1	08/25/22 08:00	08/25/22 19:17		
1,2-Dichloropropane	<14.3	ug/kg	60.3	14.3	1	08/25/22 08:00	08/25/22 19:17		
1,3-Dichloropropane	<13.1	ug/kg	60.3	13.1	1	08/25/22 08:00	08/25/22 19:17		
2,2-Dichloropropane	<16.3	ug/kg	60.3	16.3	1	08/25/22 08:00	08/25/22 19:17		
1,1-Dichloropropene	<19.5	ug/kg	60.3	19.5	1	08/25/22 08:00	08/25/22 19:17		
cis-1,3-Dichloropropene	<39.8	ug/kg	301	39.8	1	08/25/22 08:00	08/25/22 19:17		
trans-1,3-Dichloropropene	<172	ug/kg	301	172	1	08/25/22 08:00	08/25/22 19:17		
Diisopropyl ether	<15.0	ug/kg	60.3	15.0	1	08/25/22 08:00	08/25/22 19:17		
Ethylbenzene	<14.3	ug/kg	60.3	14.3	1	08/25/22 08:00	08/25/22 19:17		
Hexachloro-1,3-butadiene	<120	ug/kg	301	120	1	08/25/22 08:00	08/25/22 19:17		
Isopropylbenzene (Cumene)	<16.3	ug/kg	60.3	16.3	1	08/25/22 08:00	08/25/22 19:17		
p-Isopropyltoluene	<18.3	ug/kg	60.3	18.3	1	08/25/22 08:00	08/25/22 19:17		
Methylene Chloride	<16.8	ug/kg	60.3	16.8	1	08/25/22 08:00	08/25/22 19:17		
Methyl-tert-butyl ether	<17.7	ug/kg ug/kg	60.3	17.7	1	08/25/22 08:00			
Naphthalene	38.7J	ug/kg	301	18.8	1	08/25/22 08:00	08/25/22 19:17		
n-Propylbenzene	<14.5	ug/kg ug/kg	60.3	14.5	1	08/25/22 08:00	08/25/22 19:17		
Styrene	<15.4	ug/kg ug/kg	60.3	15.4	1	08/25/22 08:00			
1,1,1,2-Tetrachloroethane	<14.5	ug/kg ug/kg	60.3	14.5	1	08/25/22 08:00			
1,1,2,2-Tetrachloroethane	<21.8	ug/kg ug/kg	60.3	21.8	1	08/25/22 08:00			
Tetrachloroethene	<23.4	ug/kg ug/kg	60.3	23.4	1	08/25/22 08:00	08/25/22 19:17		
Toluene	17.7J	ug/kg ug/kg	60.3	15.2	1	08/25/22 08:00			
1,2,3-Trichlorobenzene	<67.2	ug/kg ug/kg	301	67.2	1		08/25/22 19:17		
1,2,0-111011010001120110	<01.Z	ug/kg	301	07.2	1	00/23/22 00.00	00/20/22 19.17	07-01-0	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-1 (1'-2') Lab ID: 40250229001 Collected: 08/19/22 11:40 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepai	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	У					
1,2,4-Trichlorobenzene	<49.7	ug/kg	301	49.7	1	08/25/22 08:00	08/25/22 19:17	120-82-1	
1,1,1-Trichloroethane	<15.4	ug/kg	60.3	15.4	1	08/25/22 08:00	08/25/22 19:17	71-55-6	
1,1,2-Trichloroethane	<21.9	ug/kg	60.3	21.9	1	08/25/22 08:00	08/25/22 19:17	79-00-5	
Trichloroethene	<22.5	ug/kg	60.3	22.5	1	08/25/22 08:00	08/25/22 19:17	79-01-6	
Trichlorofluoromethane	<17.5	ug/kg	60.3	17.5	1	08/25/22 08:00	08/25/22 19:17	75-69-4	
1,2,3-Trichloropropane	<29.3	ug/kg	60.3	29.3	1	08/25/22 08:00	08/25/22 19:17	96-18-4	
1,2,4-Trimethylbenzene	<18.0	ug/kg	60.3	18.0	1	08/25/22 08:00	08/25/22 19:17	95-63-6	
1,3,5-Trimethylbenzene	<19.4	ug/kg	60.3	19.4	1	08/25/22 08:00	08/25/22 19:17	108-67-8	
Vinyl chloride	<12.2	ug/kg	60.3	12.2	1	08/25/22 08:00	08/25/22 19:17	75-01-4	
Xylene (Total)	<43.5	ug/kg	181	43.5	1	08/25/22 08:00	08/25/22 19:17	1330-20-7	
m&p-Xylene	<25.4	ug/kg	121	25.4	1	08/25/22 08:00	08/25/22 19:17	179601-23-1	
o-Xylene	<18.1	ug/kg	60.3	18.1	1	08/25/22 08:00	08/25/22 19:17	95-47-6	
Surrogates									
Toluene-d8 (S)	130	%	69-153		1	08/25/22 08:00	08/25/22 19:17	2037-26-5	
4-Bromofluorobenzene (S)	131	%	68-156		1	08/25/22 08:00	08/25/22 19:17	460-00-4	
1,2-Dichlorobenzene-d4 (S)	123	%	71-161		1	08/25/22 08:00	08/25/22 19:17	2199-69-1	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	У					
Percent Moisture	9.3	%	0.10	0.10	1		08/24/22 16:37		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-1 (3'-4') Lab ID: 40250229002 Collected: 08/19/22 11:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	y					
Arsenic	<15.9	mg/kg	27.1	15.9	10	08/25/22 06:01	08/29/22 17:38	7440-38-2	D3
Barium	53.4	mg/kg	5.4	1.6	10	08/25/22 06:01	08/29/22 17:38		
Cadmium	<1.4	mg/kg	5.4	1.4	10	08/25/22 06:01	08/29/22 17:38		D3
Chromium	10.9	mg/kg	10.8	3.0	10	08/25/22 06:01	08/29/22 17:38		
Lead	24500	mg/kg	21.7	6.5	10	08/25/22 06:01	08/29/22 17:38		
Selenium	<14.2	mg/kg	43.4	14.2	10	08/25/22 06:01	08/29/22 17:38		D3
Silver	<3.3	mg/kg	10.8	3.3	10	08/25/22 06:01	08/29/22 17:38	7440-22-4	D3
7471 Mercury	Analytical	Method: EPA	A 7471 Prepa	ration Meth	od: EP	A 7471			
	Pace Anal	ytical Service	es - Green Ba	y					
Mercury	0.093	mg/kg	0.036	0.010	1	08/25/22 08:19	08/26/22 07:36	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SI	M Preparat	ion Me	thod: EPA 3546			
•	-		es - Green Ba						
Acenaphthene	196	ug/kg	74.4	9.7	4	08/26/22 07:47	08/26/22 20:10	83-32-9	
Acenaphthylene	28.0J	ug/kg	74.4	9.4	4	08/26/22 07:47	08/26/22 20:10	208-96-8	
Anthracene	211	ug/kg	74.4	9.2	4	08/26/22 07:47	08/26/22 20:10	120-12-7	
Benzo(a)anthracene	199	ug/kg	74.4	9.6	4	08/26/22 07:47	08/26/22 20:10	56-55-3	
Benzo(a)pyrene	195	ug/kg	74.4	8.5	4	08/26/22 07:47	08/26/22 20:10	50-32-8	
Benzo(b)fluoranthene	309	ug/kg	74.4	10.3	4	08/26/22 07:47	08/26/22 20:10	205-99-2	
Benzo(g,h,i)perylene	96.7	ug/kg	74.4	13.1	4	08/26/22 07:47	08/26/22 20:10	191-24-2	
Benzo(k)fluoranthene	96.5	ug/kg	74.4	9.5	4	08/26/22 07:47	08/26/22 20:10	207-08-9	
Chrysene	248	ug/kg	74.4	14.0	4	08/26/22 07:47	08/26/22 20:10	218-01-9	
Dibenz(a,h)anthracene	28.1J	ug/kg	74.4	10.3	4	08/26/22 07:47	08/26/22 20:10	53-70-3	
Fluoranthene	596	ug/kg	74.4	8.8	4	08/26/22 07:47	08/26/22 20:10	206-44-0	
Fluorene	161	ug/kg	74.4	8.9	4	08/26/22 07:47	08/26/22 20:10	86-73-7	
Indeno(1,2,3-cd)pyrene	80.4	ug/kg	74.4	15.5	4	08/26/22 07:47	08/26/22 20:10	193-39-5	
1-Methylnaphthalene	118	ug/kg	74.4	10.9	4	08/26/22 07:47	08/26/22 20:10	90-12-0	
2-Methylnaphthalene	144	ug/kg	74.4	10.9	4	08/26/22 07:47	08/26/22 20:10	91-57-6	
Naphthalene	241	ug/kg	74.4	7.2	4	08/26/22 07:47	08/26/22 20:10	91-20-3	
Phenanthrene	608	ug/kg	74.4	8.5	4	08/26/22 07:47	08/26/22 20:10	85-01-8	
Pyrene	483	ug/kg	74.4	10.9	4	08/26/22 07:47	08/26/22 20:10	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	46	%	41-98		4	08/26/22 07:47			
Terphenyl-d14 (S)	57	%	37-106		4	08/26/22 07:47	08/26/22 20:10	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
Benzene	<14.6	ug/kg	24.5	14.6	1	08/25/22 08:00	08/25/22 19:37	71-43-2	
Bromobenzene	<23.9	ug/kg	61.3	23.9	1	08/25/22 08:00	08/25/22 19:37	108-86-1	
Bromochloromethane	<16.8	ug/kg	61.3	16.8	1	08/25/22 08:00	08/25/22 19:37	74-97-5	
Bromodichloromethane	<14.6	ug/kg	61.3	14.6	1	08/25/22 08:00	08/25/22 19:37	75-27-4	
Bromoform	<270	ug/kg	307	270	1	08/25/22 08:00	08/25/22 19:37	75-25-2	
Bromomethane	<86.0	ug/kg	307	86.0	1	08/25/22 08:00	08/25/22 19:37	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-1 (3'-4') Lab ID: 40250229002 Collected: 08/19/22 11:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepar	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
n-Butylbenzene	<28.1	ug/kg	61.3	28.1	1	08/25/22 08:00	08/25/22 19:37	104-51-8	
sec-Butylbenzene	<15.0	ug/kg	61.3	15.0	1	08/25/22 08:00	08/25/22 19:37		
tert-Butylbenzene	<19.3	ug/kg	61.3	19.3	1	08/25/22 08:00	08/25/22 19:37		
Carbon tetrachloride	<13.5	ug/kg	61.3	13.5	1	08/25/22 08:00	08/25/22 19:37		
Chlorobenzene	<7.3	ug/kg	61.3	7.3	1	08/25/22 08:00	08/25/22 19:37		
Chloroethane	<25.9	ug/kg	307	25.9	1	08/25/22 08:00	08/25/22 19:37		
Chloroform	<43.9	ug/kg	307	43.9	1	08/25/22 08:00	08/25/22 19:37		
Chloromethane	<23.3	ug/kg	61.3	23.3	1	08/25/22 08:00	08/25/22 19:37		
2-Chlorotoluene	<19.9	ug/kg	61.3	19.9	1	08/25/22 08:00	08/25/22 19:37		
4-Chlorotoluene	<23.3	ug/kg	61.3	23.3	1	08/25/22 08:00	08/25/22 19:37		
1,2-Dibromo-3-chloropropane	<47.6	ug/kg	307	47.6	1	08/25/22 08:00	08/25/22 19:37		
Dibromochloromethane	<210	ug/kg	307	210	1	08/25/22 08:00	08/25/22 19:37		
1,2-Dibromoethane (EDB)	<16.8	ug/kg	61.3	16.8	1	08/25/22 08:00	08/25/22 19:37		
Dibromomethane	<18.2	ug/kg	61.3	18.2	1	08/25/22 08:00	08/25/22 19:37		
1,2-Dichlorobenzene	<19.0	ug/kg	61.3	19.0	1	08/25/22 08:00	08/25/22 19:37		
1,3-Dichlorobenzene	<16.8	ug/kg	61.3	16.8	1	08/25/22 08:00	08/25/22 19:37		
1,4-Dichlorobenzene	<16.8	ug/kg	61.3	16.8	1	08/25/22 08:00	08/25/22 19:37		
Dichlorodifluoromethane	<26.4	ug/kg	61.3	26.4	1	08/25/22 08:00	08/25/22 19:37		
1.1-Dichloroethane	<15.7	ug/kg	61.3	15.7	1	08/25/22 08:00	08/25/22 19:37		
1,2-Dichloroethane	<14.1	ug/kg	61.3	14.1	1	08/25/22 08:00	08/25/22 19:37		
1,1-Dichloroethene	<20.4	ug/kg	61.3	20.4	1	08/25/22 08:00	08/25/22 19:37		
cis-1,2-Dichloroethene	<13.1	ug/kg	61.3	13.1	1	08/25/22 08:00	08/25/22 19:37		
trans-1,2-Dichloroethene	<13.2	ug/kg	61.3	13.2	1	08/25/22 08:00	08/25/22 19:37		
1,2-Dichloropropane	<14.6	ug/kg	61.3	14.6	1	08/25/22 08:00	08/25/22 19:37		
1,3-Dichloropropane	<13.4	ug/kg	61.3	13.4	1	08/25/22 08:00	08/25/22 19:37		
2,2-Dichloropropane	<16.6	ug/kg	61.3	16.6	1	08/25/22 08:00	08/25/22 19:37		
1,1-Dichloropropene	<19.9	ug/kg	61.3	19.9	1	08/25/22 08:00	08/25/22 19:37		
cis-1,3-Dichloropropene	<40.5	ug/kg	307	40.5	1	08/25/22 08:00	08/25/22 19:37		
trans-1,3-Dichloropropene	<175	ug/kg	307	175	1	08/25/22 08:00	08/25/22 19:37		
Diisopropyl ether	<15.2	ug/kg	61.3	15.2	1	08/25/22 08:00	08/25/22 19:37		
Ethylbenzene	59.2J	ug/kg	61.3	14.6	1	08/25/22 08:00	08/25/22 19:37		
Hexachloro-1,3-butadiene	<122	ug/kg	307	122	1	08/25/22 08:00	08/25/22 19:37		
Isopropylbenzene (Cumene)	39.3J	ug/kg	61.3	16.6	1	08/25/22 08:00	08/25/22 19:37		
p-Isopropyltoluene	<18.6	ug/kg	61.3	18.6	1	08/25/22 08:00	08/25/22 19:37		
Methylene Chloride	<17.0	ug/kg	61.3	17.0	1	08/25/22 08:00	08/25/22 19:37		
Methyl-tert-butyl ether	<18.0	ug/kg	61.3	18.0	1		08/25/22 19:37		
Naphthalene	372	ug/kg	307	19.1	1		08/25/22 19:37		
n-Propylbenzene	50.1J	ug/kg	61.3	14.7	1		08/25/22 19:37		
Styrene	<15.7	ug/kg	61.3	15.7	1	08/25/22 08:00			
1,1,1,2-Tetrachloroethane	<14.7	ug/kg	61.3	14.7	1		08/25/22 19:37		
1,1,2,2-Tetrachloroethane	<22.2	ug/kg	61.3	22.2	1	08/25/22 08:00			
Tetrachloroethene	<23.8	ug/kg	61.3	23.8	1	08/25/22 08:00	08/25/22 19:37		
Toluene	91.5	ug/kg	61.3	15.5	1	08/25/22 08:00			
1,2,3-Trichlorobenzene	<68.3	ug/kg	307	68.3	1	08/25/22 08:00			
.,=,=		~9'9	551	00.0	•			•. •	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-1 (3'-4') Lab ID: 40250229002 Collected: 08/19/22 11:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepai	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
1,2,4-Trichlorobenzene	<50.5	ug/kg	307	50.5	1	08/25/22 08:00	08/25/22 19:37	120-82-1	
1,1,1-Trichloroethane	<15.7	ug/kg	61.3	15.7	1	08/25/22 08:00	08/25/22 19:37	71-55-6	
1,1,2-Trichloroethane	<22.3	ug/kg	61.3	22.3	1	08/25/22 08:00	08/25/22 19:37	79-00-5	
Trichloroethene	<22.9	ug/kg	61.3	22.9	1	08/25/22 08:00	08/25/22 19:37	79-01-6	
Trichlorofluoromethane	<17.8	ug/kg	61.3	17.8	1	08/25/22 08:00	08/25/22 19:37	75-69-4	
1,2,3-Trichloropropane	<29.8	ug/kg	61.3	29.8	1	08/25/22 08:00	08/25/22 19:37	96-18-4	
1,2,4-Trimethylbenzene	126	ug/kg	61.3	18.3	1	08/25/22 08:00	08/25/22 19:37	95-63-6	
1,3,5-Trimethylbenzene	68.6	ug/kg	61.3	19.7	1	08/25/22 08:00	08/25/22 19:37	108-67-8	
Vinyl chloride	<12.4	ug/kg	61.3	12.4	1	08/25/22 08:00	08/25/22 19:37	75-01-4	
Xylene (Total)	211	ug/kg	184	44.3	1	08/25/22 08:00	08/25/22 19:37	1330-20-7	
m&p-Xylene	117J	ug/kg	123	25.9	1	08/25/22 08:00	08/25/22 19:37	179601-23-1	
o-Xylene	93.8	ug/kg	61.3	18.4	1	08/25/22 08:00	08/25/22 19:37	95-47-6	
Surrogates									
Toluene-d8 (S)	127	%	69-153		1	08/25/22 08:00	08/25/22 19:37	2037-26-5	
4-Bromofluorobenzene (S)	136	%	68-156		1	08/25/22 08:00	08/25/22 19:37	460-00-4	
1,2-Dichlorobenzene-d4 (S)	124	%	71-161		1	08/25/22 08:00	08/25/22 19:37	2199-69-1	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	10.2	%	0.10	0.10	1		08/24/22 16:37		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: TB-01 Lab ID: 40250229003 Collected: 08/19/22 11:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "wet-weight" basis

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
Benzene	<11.9	ug/kg	20.0	11.9	1	08/26/22 07:45	08/26/22 13:41	71-43-2	
Bromobenzene	<19.5	ug/kg	50.0	19.5	1	08/26/22 07:45	08/26/22 13:41		
Bromochloromethane	<13.7	ug/kg	50.0	13.7	1	08/26/22 07:45	08/26/22 13:41	74-97-5	
Bromodichloromethane	<11.9	ug/kg	50.0	11.9	1	08/26/22 07:45	08/26/22 13:41	75-27-4	
Bromoform	<220	ug/kg	250	220	1	08/26/22 07:45	08/26/22 13:41	75-25-2	
Bromomethane	<70.1	ug/kg	250	70.1	1	08/26/22 07:45	08/26/22 13:41	74-83-9	
n-Butylbenzene	<22.9	ug/kg	50.0	22.9	1	08/26/22 07:45	08/26/22 13:41	104-51-8	
sec-Butylbenzene	<12.2	ug/kg	50.0	12.2	1	08/26/22 07:45	08/26/22 13:41	135-98-8	
tert-Butylbenzene	<15.7	ug/kg	50.0	15.7	1	08/26/22 07:45	08/26/22 13:41	98-06-6	
Carbon tetrachloride	<11.0	ug/kg	50.0	11.0	1	08/26/22 07:45	08/26/22 13:41	56-23-5	
Chlorobenzene	<6.0	ug/kg	50.0	6.0	1	08/26/22 07:45	08/26/22 13:41		
Chloroethane	<21.1	ug/kg	250	21.1	1	08/26/22 07:45	08/26/22 13:41	75-00-3	
Chloroform	<35.8	ug/kg	250	35.8	1	08/26/22 07:45	08/26/22 13:41		
Chloromethane	<19.0	ug/kg	50.0	19.0	1	08/26/22 07:45	08/26/22 13:41		
2-Chlorotoluene	<16.2	ug/kg	50.0	16.2	1	08/26/22 07:45	08/26/22 13:41		
4-Chlorotoluene	<19.0	ug/kg	50.0	19.0	1	08/26/22 07:45	08/26/22 13:41		
1,2-Dibromo-3-chloropropane	<38.8	ug/kg	250	38.8	1	08/26/22 07:45	08/26/22 13:41		
Dibromochloromethane	<171	ug/kg	250	171	1	08/26/22 07:45	08/26/22 13:41		
1,2-Dibromoethane (EDB)	<13.7	ug/kg	50.0	13.7	1	08/26/22 07:45	08/26/22 13:41		
Dibromomethane	<14.8	ug/kg	50.0	14.8	1	08/26/22 07:45	08/26/22 13:41		
1,2-Dichlorobenzene	<15.5	ug/kg	50.0	15.5	1	08/26/22 07:45	08/26/22 13:41		
1,3-Dichlorobenzene	<13.7	ug/kg	50.0	13.7	1	08/26/22 07:45	08/26/22 13:41		
1,4-Dichlorobenzene	<13.7	ug/kg	50.0	13.7	1	08/26/22 07:45	08/26/22 13:41		
Dichlorodifluoromethane	<21.5	ug/kg	50.0	21.5	1	08/26/22 07:45	08/26/22 13:41		
1,1-Dichloroethane	<12.8	ug/kg	50.0	12.8	1	08/26/22 07:45	08/26/22 13:41		
1,2-Dichloroethane	<11.5	ug/kg	50.0	11.5	1	08/26/22 07:45	08/26/22 13:41		
1,1-Dichloroethene	<16.6	ug/kg	50.0	16.6	1	08/26/22 07:45	08/26/22 13:41		
cis-1,2-Dichloroethene	<10.7	ug/kg	50.0	10.7	1	08/26/22 07:45	08/26/22 13:41		
trans-1,2-Dichloroethene	<10.8	ug/kg	50.0	10.8	1	08/26/22 07:45	08/26/22 13:41		
1,2-Dichloropropane	<11.9	ug/kg	50.0	11.9	1	08/26/22 07:45	08/26/22 13:41		
1,3-Dichloropropane	<10.9	ug/kg	50.0	10.9	1	08/26/22 07:45	08/26/22 13:41		
2,2-Dichloropropane	<13.5	ug/kg	50.0	13.5	1	08/26/22 07:45	08/26/22 13:41		
1,1-Dichloropropene	<16.2	ug/kg	50.0	16.2	1	08/26/22 07:45	08/26/22 13:41		
cis-1,3-Dichloropropene	<33.0	ug/kg	250	33.0	1	08/26/22 07:45	08/26/22 13:41	10061-01-5	
trans-1,3-Dichloropropene	<143	ug/kg	250	143	1	08/26/22 07:45	08/26/22 13:41	10061-02-6	
Diisopropyl ether	<12.4	ug/kg	50.0	12.4	1	08/26/22 07:45	08/26/22 13:41		
Ethylbenzene	<11.9	ug/kg	50.0	11.9	1	08/26/22 07:45	08/26/22 13:41	100-41-4	
Hexachloro-1,3-butadiene	<99.4	ug/kg	250	99.4	1	08/26/22 07:45	08/26/22 13:41		
Isopropylbenzene (Cumene)	<13.5	ug/kg	50.0	13.5	1	08/26/22 07:45	08/26/22 13:41		
p-Isopropyltoluene	<15.2	ug/kg ug/kg	50.0	15.2	1	08/26/22 07:45			
Methylene Chloride	<13.9	ug/kg ug/kg	50.0	13.9	1	08/26/22 07:45	08/26/22 13:41		
Methyl-tert-butyl ether	<14.7	ug/kg ug/kg	50.0	14.7	1	08/26/22 07:45	08/26/22 13:41		
Naphthalene	<15.6	ug/kg ug/kg	250	15.6	1	08/26/22 07:45	08/26/22 13:41		
n-Propylbenzene	<12.0	ug/kg ug/kg	50.0	12.0	1	08/26/22 07:45			
11 1 Topyibonzono	~12.U	ug/kg	50.0	12.0	'	50/20/22 01.43	00/20/22 10.41	100-00-1	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: TB-01 Lab ID: 40250229003 Collected: 08/19/22 11:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "wet-weight" basis

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepa	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
Styrene	<12.8	ug/kg	50.0	12.8	1	08/26/22 07:45	08/26/22 13:41	100-42-5	
1,1,1,2-Tetrachloroethane	<12.0	ug/kg	50.0	12.0	1	08/26/22 07:45	08/26/22 13:41	630-20-6	
1,1,2,2-Tetrachloroethane	<18.1	ug/kg	50.0	18.1	1	08/26/22 07:45	08/26/22 13:41	79-34-5	
Tetrachloroethene	<19.4	ug/kg	50.0	19.4	1	08/26/22 07:45	08/26/22 13:41	127-18-4	
Toluene	<12.6	ug/kg	50.0	12.6	1	08/26/22 07:45	08/26/22 13:41	108-88-3	
1,2,3-Trichlorobenzene	<55.7	ug/kg	250	55.7	1	08/26/22 07:45	08/26/22 13:41	87-61-6	
1,2,4-Trichlorobenzene	<41.2	ug/kg	250	41.2	1	08/26/22 07:45	08/26/22 13:41	120-82-1	
1,1,1-Trichloroethane	<12.8	ug/kg	50.0	12.8	1	08/26/22 07:45	08/26/22 13:41	71-55-6	
1,1,2-Trichloroethane	<18.2	ug/kg	50.0	18.2	1	08/26/22 07:45	08/26/22 13:41	79-00-5	
Trichloroethene	<18.7	ug/kg	50.0	18.7	1	08/26/22 07:45	08/26/22 13:41	79-01-6	
Trichlorofluoromethane	<14.5	ug/kg	50.0	14.5	1	08/26/22 07:45	08/26/22 13:41	75-69-4	
1,2,3-Trichloropropane	<24.3	ug/kg	50.0	24.3	1	08/26/22 07:45	08/26/22 13:41	96-18-4	
1,2,4-Trimethylbenzene	<14.9	ug/kg	50.0	14.9	1	08/26/22 07:45	08/26/22 13:41	95-63-6	
1,3,5-Trimethylbenzene	<16.1	ug/kg	50.0	16.1	1	08/26/22 07:45	08/26/22 13:41	108-67-8	
Vinyl chloride	<10.1	ug/kg	50.0	10.1	1	08/26/22 07:45	08/26/22 13:41	75-01-4	
Xylene (Total)	<36.1	ug/kg	150	36.1	1	08/26/22 07:45	08/26/22 13:41	1330-20-7	
m&p-Xylene	<21.1	ug/kg	100	21.1	1	08/26/22 07:45	08/26/22 13:41	179601-23-1	
o-Xylene	<15.0	ug/kg	50.0	15.0	1	08/26/22 07:45	08/26/22 13:41	95-47-6	
Surrogates									
Toluene-d8 (S)	104	%	69-153		1	08/26/22 07:45	08/26/22 13:41	2037-26-5	
4-Bromofluorobenzene (S)	104	%	68-156		1	08/26/22 07:45	08/26/22 13:41	460-00-4	
1,2-Dichlorobenzene-d4 (S)	104	%	71-161		1	08/26/22 07:45	08/26/22 13:41	2199-69-1	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-2 (1'-2') Lab ID: 40250229004 Collected: 08/19/22 11:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	6010D Prepa	aration Met	hod: E	PA 3050B			
	-		es - Green Bay						
Arsenic	3.5	mg/kg	2.6	1.5	1	08/25/22 06:01	08/26/22 16:17	7440-38-2	
Barium	44.0	mg/kg	0.52	0.16	1	08/25/22 06:01	08/26/22 16:17		
Cadmium	1.0	mg/kg	0.52	0.14	1	08/25/22 06:01			
Chromium	24.1	mg/kg	1.0	0.29	1	08/25/22 06:01	08/26/22 16:17		
Lead	49.4	mg/kg	2.1	0.63	1	08/25/22 06:01	08/26/22 16:17		
Selenium	<1.4	mg/kg	4.2	1.4	1	08/25/22 06:01	08/26/22 16:17		
Silver	<0.32	mg/kg	1.0	0.32	1	08/25/22 06:01	08/26/22 16:17		
7471 Mercury	Analytical	Method: EPA	.7471 Prepar	ation Metho	od: EP/	A 7471			
, ,	•		es - Green Bay						
Mercury	0.024J	mg/kg	0.036	0.010	1	08/25/22 08:19	08/26/22 07:38	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SIN	√ Preparat	ion Me	thod: EPA 3546			
•	-		es - Green Bay						
Acenaphthene	17.5J	ug/kg	93.5	12.1	5	08/26/22 07:47	08/26/22 20:27	83-32-9	
Acenaphthylene	<11.8	ug/kg	93.5	11.8	5	08/26/22 07:47	08/26/22 20:27	208-96-8	
Anthracene	38.0J	ug/kg	93.5	11.6	5	08/26/22 07:47	08/26/22 20:27	120-12-7	
Benzo(a)anthracene	110	ug/kg	93.5	12.1	5	08/26/22 07:47	08/26/22 20:27	56-55-3	
Benzo(a)pyrene	178	ug/kg	93.5	10.6	5	08/26/22 07:47	08/26/22 20:27	50-32-8	
Benzo(b)fluoranthene	251	ug/kg	93.5	13.0	5	08/26/22 07:47	08/26/22 20:27	205-99-2	
Benzo(g,h,i)perylene	102	ug/kg	93.5	16.4	5	08/26/22 07:47	08/26/22 20:27	191-24-2	
Benzo(k)fluoranthene	129	ug/kg	93.5	12.0	5	08/26/22 07:47	08/26/22 20:27	207-08-9	
Chrysene	229	ug/kg	93.5	17.6	5	08/26/22 07:47	08/26/22 20:27	218-01-9	
Dibenz(a,h)anthracene	21.5J	ug/kg	93.5	12.9	5	08/26/22 07:47	08/26/22 20:27	53-70-3	
Fluoranthene	313	ug/kg	93.5	11.1	5	08/26/22 07:47	08/26/22 20:27	206-44-0	
Fluorene	13.4J	ug/kg	93.5	11.2	5	08/26/22 07:47	08/26/22 20:27	86-73-7	
Indeno(1,2,3-cd)pyrene	65.8J	ug/kg	93.5	19.5	5	08/26/22 07:47	08/26/22 20:27	193-39-5	
1-Methylnaphthalene	<13.7	ug/kg	93.5	13.7	5	08/26/22 07:47	08/26/22 20:27	90-12-0	
2-Methylnaphthalene	14.1J	ug/kg	93.5	13.7	5	08/26/22 07:47	08/26/22 20:27	91-57-6	
Naphthalene	15.8J	ug/kg	93.5	9.1	5	08/26/22 07:47			D3
Phenanthrene	174	ug/kg	93.5	10.7	5	08/26/22 07:47	08/26/22 20:27	85-01-8	
Pyrene	298	ug/kg	93.5	13.7	5		08/26/22 20:27		
Surrogates		0 0							
2-Fluorobiphenyl (S)	62	%	41-98		5	08/26/22 07:47	08/26/22 20:27	321-60-8	
Terphenyl-d14 (S)	76	%	37-106		5	08/26/22 07:47	08/26/22 20:27	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepar	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	′					
Benzene	<30.4	ug/kg	51.0	30.4	1	08/26/22 07:45	08/26/22 18:24	71-43-2	
Bromobenzene	<49.8	ug/kg	128	49.8	1	08/26/22 07:45	08/26/22 18:24	108-86-1	
Bromochloromethane	<35.0	ug/kg	128	35.0	1	08/26/22 07:45	08/26/22 18:24	74-97-5	
Bromodichloromethane	<30.4	ug/kg	128	30.4	1		08/26/22 18:24		
Bromoform	<561	ug/kg	638	561	1		08/26/22 18:24		
Bromomethane	<179	ug/kg	638	179	1	08/26/22 07:45			

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-2 (1'-2') Lab ID: 40250229004 Collected: 08/19/22 11:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepar	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
n-Butylbenzene	<58.4	ug/kg	128	58.4	1	08/26/22 07:45	08/26/22 18:24	104-51-8	
sec-Butylbenzene	<31.1	ug/kg	128	31.1	1	08/26/22 07:45	08/26/22 18:24		
tert-Butylbenzene	<40.1	ug/kg	128	40.1	1	08/26/22 07:45	08/26/22 18:24		
Carbon tetrachloride	<28.1	ug/kg	128	28.1	1	08/26/22 07:45	08/26/22 18:24		
Chlorobenzene	<15.3	ug/kg	128	15.3	1	08/26/22 07:45	08/26/22 18:24		
Chloroethane	<53.8	ug/kg	638	53.8	1	08/26/22 07:45	08/26/22 18:24		
Chloroform	<91.4	ug/kg	638	91.4	1	08/26/22 07:45	08/26/22 18:24		
Chloromethane	<48.5	ug/kg	128	48.5	1	08/26/22 07:45	08/26/22 18:24		
2-Chlorotoluene	<41.3	ug/kg	128	41.3	1	08/26/22 07:45	08/26/22 18:24		
4-Chlorotoluene	<48.5	ug/kg	128	48.5	1	08/26/22 07:45	08/26/22 18:24		
1,2-Dibromo-3-chloropropane	<99.0	ug/kg	638	99.0	1	08/26/22 07:45	08/26/22 18:24		
Dibromochloromethane	<436	ug/kg	638	436	1	08/26/22 07:45	08/26/22 18:24		
1,2-Dibromoethane (EDB)	<35.0	ug/kg	128	35.0	1	08/26/22 07:45	08/26/22 18:24		
Dibromomethane	<37.8	ug/kg	128	37.8	1	08/26/22 07:45	08/26/22 18:24		
1.2-Dichlorobenzene	<39.6	ug/kg	128	39.6	1	08/26/22 07:45	08/26/22 18:24		
1,3-Dichlorobenzene	<35.0	ug/kg	128	35.0	1	08/26/22 07:45	08/26/22 18:24		
1,4-Dichlorobenzene	<35.0	ug/kg	128	35.0	1	08/26/22 07:45	08/26/22 18:24		
Dichlorodifluoromethane	<54.9	ug/kg	128	54.9	1	08/26/22 07:45	08/26/22 18:24		
1,1-Dichloroethane	<32.7	ug/kg	128	32.7	1	08/26/22 07:45	08/26/22 18:24		
1,2-Dichloroethane	<29.3	ug/kg	128	29.3	1	08/26/22 07:45	08/26/22 18:24		
1,1-Dichloroethene	<42.4	ug/kg	128	42.4	1	08/26/22 07:45	08/26/22 18:24		
cis-1,2-Dichloroethene	<27.3	ug/kg	128	27.3	1	08/26/22 07:45	08/26/22 18:24		
trans-1,2-Dichloroethene	<27.6	ug/kg	128	27.6	1	08/26/22 07:45	08/26/22 18:24		
1,2-Dichloropropane	<30.4	ug/kg	128	30.4	1	08/26/22 07:45	08/26/22 18:24		
1,3-Dichloropropane	<27.8	ug/kg	128	27.8	1	08/26/22 07:45	08/26/22 18:24		
2,2-Dichloropropane	<34.4	ug/kg	128	34.4	1	08/26/22 07:45	08/26/22 18:24		
1,1-Dichloropropene	<41.3	ug/kg	128	41.3	1	08/26/22 07:45	08/26/22 18:24		
cis-1,3-Dichloropropene	<84.2	ug/kg	638	84.2	1	08/26/22 07:45	08/26/22 18:24		
trans-1,3-Dichloropropene	<365	ug/kg	638	365	1	08/26/22 07:45	08/26/22 18:24		
Diisopropyl ether	<31.6	ug/kg	128	31.6	1	08/26/22 07:45	08/26/22 18:24		
Ethylbenzene	<30.4	ug/kg	128	30.4	1	08/26/22 07:45	08/26/22 18:24		
Hexachloro-1,3-butadiene	<254	ug/kg	638	254	1	08/26/22 07:45	08/26/22 18:24		
Isopropylbenzene (Cumene)	<34.4	ug/kg	128	34.4	1	08/26/22 07:45	08/26/22 18:24		
p-Isopropyltoluene	<38.8	ug/kg	128	38.8	1	08/26/22 07:45	08/26/22 18:24		
Methylene Chloride	<35.5	ug/kg	128	35.5	1	08/26/22 07:45	08/26/22 18:24		
Methyl-tert-butyl ether	<37.5	ug/kg	128	37.5	1		08/26/22 18:24		
Naphthalene	<39.8	ug/kg	638	39.8	1		08/26/22 18:24		
n-Propylbenzene	<30.6	ug/kg	128	30.6	1		08/26/22 18:24		
Styrene	<32.7	ug/kg	128	32.7	1		08/26/22 18:24		
1,1,1,2-Tetrachloroethane	<30.6	ug/kg	128	30.6	1		08/26/22 18:24		
1,1,2,2-Tetrachloroethane	<46.2	ug/kg	128	46.2	1		08/26/22 18:24		
Tetrachloroethene	<49.5	ug/kg	128	49.5	1		08/26/22 18:24		
Toluene	<32.2	ug/kg	128	32.2	1		08/26/22 18:24		
1,2,3-Trichlorobenzene	<142	ug/kg	638	142	1		08/26/22 18:24		
, ,		39			-		· · · ·		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-2 (1'-2') Lab ID: 40250229004 Collected: 08/19/22 11:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepa	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<105	ug/kg	638	105	1	08/26/22 07:45	08/26/22 18:24	120-82-1	
1,1,1-Trichloroethane	<32.7	ug/kg	128	32.7	1	08/26/22 07:45	08/26/22 18:24	71-55-6	
1,1,2-Trichloroethane	<46.4	ug/kg	128	46.4	1	08/26/22 07:45	08/26/22 18:24	79-00-5	
Trichloroethene	<47.7	ug/kg	128	47.7	1	08/26/22 07:45	08/26/22 18:24	79-01-6	
Trichlorofluoromethane	<37.0	ug/kg	128	37.0	1	08/26/22 07:45	08/26/22 18:24	75-69-4	
1,2,3-Trichloropropane	<62.0	ug/kg	128	62.0	1	08/26/22 07:45	08/26/22 18:24	96-18-4	
1,2,4-Trimethylbenzene	<38.0	ug/kg	128	38.0	1	08/26/22 07:45	08/26/22 18:24	95-63-6	
1,3,5-Trimethylbenzene	<41.1	ug/kg	128	41.1	1	08/26/22 07:45	08/26/22 18:24	108-67-8	
Vinyl chloride	<25.8	ug/kg	128	25.8	1	08/26/22 07:45	08/26/22 18:24	75-01-4	
Xylene (Total)	<92.1	ug/kg	383	92.1	1	08/26/22 07:45	08/26/22 18:24	1330-20-7	
m&p-Xylene	<53.8	ug/kg	255	53.8	1	08/26/22 07:45	08/26/22 18:24	179601-23-1	
o-Xylene	<38.3	ug/kg	128	38.3	1	08/26/22 07:45	08/26/22 18:24	95-47-6	
Surrogates									
Toluene-d8 (S)	117	%	69-153		1	08/26/22 07:45	08/26/22 18:24	2037-26-5	
4-Bromofluorobenzene (S)	132	%	68-156		1	08/26/22 07:45	08/26/22 18:24	460-00-4	
1,2-Dichlorobenzene-d4 (S)	119	%	71-161		1	08/26/22 07:45	08/26/22 18:24	2199-69-1	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	10.6	%	0.10	0.10	1		08/24/22 16:37		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-2 (3'-4') Lab ID: 40250229005 Collected: 08/19/22 11:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	y					
Arsenic	1.9J	mg/kg	2.6	1.5	1	08/25/22 06:01	08/26/22 16:22	7440-38-2	
Barium	19.6	mg/kg	0.53	0.16	1	08/25/22 06:01	08/26/22 16:22	7440-39-3	
Cadmium	<0.14	mg/kg	0.53	0.14	1	08/25/22 06:01	08/26/22 16:22	7440-43-9	
Chromium	7.2	mg/kg	1.1	0.29	1	08/25/22 06:01	08/26/22 16:22	7440-47-3	
Lead	15.2	mg/kg	2.1	0.63	1	08/25/22 06:01	08/26/22 16:22	7439-92-1	
Selenium	<1.4	mg/kg	4.2	1.4	1	08/25/22 06:01	08/26/22 16:22	7782-49-2	
Silver	<0.32	mg/kg	1.1	0.32	1	08/25/22 06:01	08/26/22 16:22	7440-22-4	
7471 Mercury	Analytical	Method: EPA	A 7471 Prepa	ration Meth	od: EP	A 7471			
,	-		es - Green Ba						
Mercury	0.029J	mg/kg	0.037	0.011	1	08/25/22 08:19	08/26/22 07:40	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SII	M Preparat	ion Me	thod: EPA 3546			
•			es - Green Ba						
Acenaphthene	95.8	ug/kg	91.7	11.9	5	08/26/22 07:47	08/26/22 17:35	83-32-9	
Acenaphthylene	18.1J	ug/kg	91.7	11.6	5	08/26/22 07:47	08/26/22 17:35	208-96-8	
Anthracene	167	ug/kg	91.7	11.4	5	08/26/22 07:47	08/26/22 17:35	120-12-7	
Benzo(a)anthracene	350	ug/kg	91.7	11.9	5	08/26/22 07:47	08/26/22 17:35	56-55-3	
Benzo(a)pyrene	440	ug/kg	91.7	10.4	5	08/26/22 07:47	08/26/22 17:35	50-32-8	
Benzo(b)fluoranthene	635	ug/kg	91.7	12.7	5	08/26/22 07:47	08/26/22 17:35	205-99-2	
Benzo(g,h,i)perylene	277	ug/kg	91.7	16.1	5	08/26/22 07:47	08/26/22 17:35	191-24-2	
Benzo(k)fluoranthene	258	ug/kg	91.7	11.7	5	08/26/22 07:47	08/26/22 17:35	207-08-9	
Chrysene	567	ug/kg	91.7	17.3	5	08/26/22 07:47	08/26/22 17:35	218-01-9	
Dibenz(a,h)anthracene	72.8J	ug/kg	91.7	12.7	5	08/26/22 07:47	08/26/22 17:35	53-70-3	
Fluoranthene	1140	ug/kg	91.7	10.9	5	08/26/22 07:47	08/26/22 17:35	206-44-0	
Fluorene	86.5J	ug/kg	91.7	11.0	5	08/26/22 07:47	08/26/22 17:35	86-73-7	
Indeno(1,2,3-cd)pyrene	205	ug/kg	91.7	19.1	5	08/26/22 07:47	08/26/22 17:35	193-39-5	
1-Methylnaphthalene	35.7J	ug/kg	91.7	13.4	5	08/26/22 07:47	08/26/22 17:35	90-12-0	
2-Methylnaphthalene	43.8J	ug/kg	91.7	13.4	5	08/26/22 07:47	08/26/22 17:35	91-57-6	
Naphthalene	44.7J	ug/kg	91.7	8.9	5	08/26/22 07:47	08/26/22 17:35	91-20-3	
Phenanthrene	865	ug/kg	91.7	10.5	5	08/26/22 07:47	08/26/22 17:35	85-01-8	
Pyrene	880	ug/kg	91.7	13.5	5	08/26/22 07:47	08/26/22 17:35	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	53	%	41-98		5	08/26/22 07:47	08/26/22 17:35	321-60-8	
Terphenyl-d14 (S)	63	%	37-106		5	08/26/22 07:47	08/26/22 17:35	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepa	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
Benzene	<16.0	ug/kg	26.9	16.0	1	08/26/22 07:45	08/26/22 18:44	71-43-2	
Bromobenzene	<26.2	ug/kg	67.2	26.2	1	08/26/22 07:45	08/26/22 18:44	108-86-1	
Bromochloromethane	<18.4	ug/kg	67.2	18.4	1	08/26/22 07:45	08/26/22 18:44	74-97-5	
Bromodichloromethane	<16.0	ug/kg	67.2	16.0	1		08/26/22 18:44		
Bromoform	<296	ug/kg	336	296	1	08/26/22 07:45	08/26/22 18:44	75-25-2	
Bromomethane	<94.3	ug/kg	336	94.3	1		08/26/22 18:44		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-2 (3'-4') Lab ID: 40250229005 Collected: 08/19/22 11:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepar	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
n-Butylbenzene	<30.8	ug/kg	67.2	30.8	1	08/26/22 07:45	08/26/22 18:44	104-51-8	
sec-Butylbenzene	<16.4	ug/kg	67.2	16.4	1	08/26/22 07:45	08/26/22 18:44		
tert-Butylbenzene	<21.1	ug/kg	67.2	21.1	1	08/26/22 07:45	08/26/22 18:44		
Carbon tetrachloride	<14.8	ug/kg	67.2	14.8	1	08/26/22 07:45	08/26/22 18:44		
Chlorobenzene	<8.1	ug/kg	67.2	8.1	1	08/26/22 07:45	08/26/22 18:44		
Chloroethane	<28.4	ug/kg	336	28.4	1	08/26/22 07:45	08/26/22 18:44		
Chloroform	<48.1	ug/kg	336	48.1	1	08/26/22 07:45	08/26/22 18:44	67-66-3	
Chloromethane	<25.6	ug/kg	67.2	25.6	1	08/26/22 07:45	08/26/22 18:44	74-87-3	
2-Chlorotoluene	<21.8	ug/kg	67.2	21.8	1	08/26/22 07:45	08/26/22 18:44		
4-Chlorotoluene	<25.6	ug/kg	67.2	25.6	1	08/26/22 07:45	08/26/22 18:44		
1,2-Dibromo-3-chloropropane	<52.2	ug/kg	336	52.2	1	08/26/22 07:45	08/26/22 18:44		
Dibromochloromethane	<230	ug/kg	336	230	1	08/26/22 07:45	08/26/22 18:44		
1,2-Dibromoethane (EDB)	<18.4	ug/kg	67.2	18.4	1	08/26/22 07:45	08/26/22 18:44		
Dibromomethane	<19.9	ug/kg	67.2	19.9	1	08/26/22 07:45	08/26/22 18:44		
1,2-Dichlorobenzene	<20.8	ug/kg	67.2	20.8	1	08/26/22 07:45	08/26/22 18:44		
1,3-Dichlorobenzene	<18.4	ug/kg	67.2	18.4	1	08/26/22 07:45	08/26/22 18:44		
1,4-Dichlorobenzene	<18.4	ug/kg	67.2	18.4	1	08/26/22 07:45	08/26/22 18:44		
Dichlorodifluoromethane	<28.9	ug/kg	67.2	28.9	1	08/26/22 07:45	08/26/22 18:44		
1.1-Dichloroethane	<17.2	ug/kg	67.2	17.2	1	08/26/22 07:45	08/26/22 18:44		
1,2-Dichloroethane	<15.5	ug/kg	67.2	15.5	1	08/26/22 07:45	08/26/22 18:44		
1.1-Dichloroethene	<22.3	ug/kg	67.2	22.3	1	08/26/22 07:45	08/26/22 18:44		
cis-1,2-Dichloroethene	<14.4	ug/kg	67.2	14.4	1	08/26/22 07:45	08/26/22 18:44		
trans-1,2-Dichloroethene	<14.5	ug/kg	67.2	14.5	1	08/26/22 07:45	08/26/22 18:44		
1,2-Dichloropropane	<16.0	ug/kg	67.2	16.0	1	08/26/22 07:45	08/26/22 18:44		
1,3-Dichloropropane	<14.7	ug/kg	67.2	14.7	1	08/26/22 07:45	08/26/22 18:44		
2,2-Dichloropropane	<18.2	ug/kg	67.2	18.2	1	08/26/22 07:45	08/26/22 18:44		
1,1-Dichloropropene	<21.8	ug/kg	67.2	21.8	1	08/26/22 07:45	08/26/22 18:44		
cis-1,3-Dichloropropene	<44.4	ug/kg	336	44.4	1	08/26/22 07:45	08/26/22 18:44		
trans-1,3-Dichloropropene	<192	ug/kg	336	192	1	08/26/22 07:45	08/26/22 18:44		
Diisopropyl ether	<16.7	ug/kg	67.2	16.7	1	08/26/22 07:45	08/26/22 18:44		
Ethylbenzene	<16.0	ug/kg	67.2	16.0	1	08/26/22 07:45	08/26/22 18:44		
Hexachloro-1,3-butadiene	<134	ug/kg	336	134	1	08/26/22 07:45	08/26/22 18:44		
Isopropylbenzene (Cumene)	<18.2	ug/kg	67.2	18.2	1	08/26/22 07:45	08/26/22 18:44		
p-Isopropyltoluene	<20.4	ug/kg	67.2	20.4	1	08/26/22 07:45	08/26/22 18:44		
Methylene Chloride	<18.7	ug/kg	67.2	18.7	1	08/26/22 07:45	08/26/22 18:44		
Methyl-tert-butyl ether	<19.8	ug/kg	67.2	19.8	1		08/26/22 18:44		
Naphthalene	<21.0	ug/kg	336	21.0	1	08/26/22 07:45	08/26/22 18:44		
n-Propylbenzene	<16.1	ug/kg	67.2	16.1	1	08/26/22 07:45	08/26/22 18:44		
Styrene	<17.2	ug/kg	67.2	17.2	1		08/26/22 18:44		
1,1,1,2-Tetrachloroethane	<16.1	ug/kg	67.2	16.1	1		08/26/22 18:44		
1,1,2,2-Tetrachloroethane	<24.3	ug/kg	67.2	24.3	1		08/26/22 18:44		
Tetrachloroethene	<26.1	ug/kg	67.2	26.1	1		08/26/22 18:44		
Toluene	<16.9	ug/kg	67.2	16.9	1		08/26/22 18:44		
1,2,3-Trichlorobenzene	<74.9	ug/kg	336	74.9	1		08/26/22 18:44		
, ,		33			-				

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-2 (3'-4') Lab ID: 40250229005 Collected: 08/19/22 11:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	\ 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<55.4	ug/kg	336	55.4	1	08/26/22 07:45	08/26/22 18:44	120-82-1	
1,1,1-Trichloroethane	<17.2	ug/kg	67.2	17.2	1	08/26/22 07:45	08/26/22 18:44	71-55-6	
1,1,2-Trichloroethane	<24.5	ug/kg	67.2	24.5	1	08/26/22 07:45	08/26/22 18:44	79-00-5	
Trichloroethene	<25.2	ug/kg	67.2	25.2	1	08/26/22 07:45	08/26/22 18:44	79-01-6	
Trichlorofluoromethane	<19.5	ug/kg	67.2	19.5	1	08/26/22 07:45	08/26/22 18:44	75-69-4	
1,2,3-Trichloropropane	<32.7	ug/kg	67.2	32.7	1	08/26/22 07:45	08/26/22 18:44	96-18-4	
1,2,4-Trimethylbenzene	<20.0	ug/kg	67.2	20.0	1	08/26/22 07:45	08/26/22 18:44	95-63-6	
1,3,5-Trimethylbenzene	<21.7	ug/kg	67.2	21.7	1	08/26/22 07:45	08/26/22 18:44	108-67-8	
Vinyl chloride	<13.6	ug/kg	67.2	13.6	1	08/26/22 07:45	08/26/22 18:44	75-01-4	
Xylene (Total)	<48.6	ug/kg	202	48.6	1	08/26/22 07:45	08/26/22 18:44	1330-20-7	
m&p-Xylene	<28.4	ug/kg	134	28.4	1	08/26/22 07:45	08/26/22 18:44	179601-23-1	
o-Xylene	<20.2	ug/kg	67.2	20.2	1	08/26/22 07:45	08/26/22 18:44	95-47-6	
Surrogates									
Toluene-d8 (S)	123	%	69-153		1	08/26/22 07:45	08/26/22 18:44	2037-26-5	
4-Bromofluorobenzene (S)	132	%	68-156		1	08/26/22 07:45	08/26/22 18:44	460-00-4	
1,2-Dichlorobenzene-d4 (S)	121	%	71-161		1	08/26/22 07:45	08/26/22 18:44	2199-69-1	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	8.9	%	0.10	0.10	1		08/24/22 16:38		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-3 (1'-2') Lab ID: 40250229006 Collected: 08/19/22 11:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay	y					
Arsenic	1.6J	mg/kg	2.6	1.5	1	08/25/22 06:01	08/26/22 16:24	7440-38-2	
Barium	23.2	mg/kg	0.52	0.16	1	08/25/22 06:01	08/26/22 16:24		
Cadmium	<0.14	mg/kg	0.52	0.14	1	08/25/22 06:01			
Chromium	7.9	mg/kg	1.0	0.29	1	08/25/22 06:01	08/26/22 16:24	7440-47-3	
Lead	26.1	mg/kg	2.1	0.63	1	08/25/22 06:01	08/26/22 16:24	7439-92-1	
Selenium	<1.4	mg/kg	4.2	1.4	1	08/25/22 06:01	08/26/22 16:24	7782-49-2	
Silver	<0.32	mg/kg	1.0	0.32	1	08/25/22 06:01	08/26/22 16:24	7440-22-4	
7471 Mercury	Analytical	Method: EPA	A 7471 Prepai	ration Metho	od: EP	A 7471			
•	-		es - Green Ba						
Mercury	0.031J	mg/kg	0.034	0.0098	1	08/25/22 08:19	08/26/22 07:43	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SII	M Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Ba	y					
Acenaphthene	8.0J	ug/kg	18.0	2.3	1	08/26/22 07:47	08/26/22 16:26	83-32-9	
Acenaphthylene	11.4J	ug/kg	18.0	2.3	1	08/26/22 07:47	08/26/22 16:26	208-96-8	
Anthracene	22.9	ug/kg	18.0	2.2	1	08/26/22 07:47	08/26/22 16:26	120-12-7	
Benzo(a)anthracene	52.6	ug/kg	18.0	2.3	1	08/26/22 07:47	08/26/22 16:26	56-55-3	
Benzo(a)pyrene	64.6	ug/kg	18.0	2.0	1	08/26/22 07:47	08/26/22 16:26	50-32-8	
Benzo(b)fluoranthene	87.6	ug/kg	18.0	2.5	1	08/26/22 07:47	08/26/22 16:26	205-99-2	
Benzo(g,h,i)perylene	45.0	ug/kg	18.0	3.2	1	08/26/22 07:47	08/26/22 16:26	191-24-2	
Benzo(k)fluoranthene	28.5	ug/kg	18.0	2.3	1	08/26/22 07:47	08/26/22 16:26	207-08-9	
Chrysene	64.9	ug/kg	18.0	3.4	1	08/26/22 07:47	08/26/22 16:26	218-01-9	
Dibenz(a,h)anthracene	11.4J	ug/kg	18.0	2.5	1	08/26/22 07:47	08/26/22 16:26	53-70-3	
Fluoranthene	119	ug/kg	18.0	2.1	1	08/26/22 07:47	08/26/22 16:26	206-44-0	
Fluorene	7.7J	ug/kg	18.0	2.2	1	08/26/22 07:47	08/26/22 16:26	86-73-7	
Indeno(1,2,3-cd)pyrene	35.4	ug/kg	18.0	3.8	1		08/26/22 16:26		
1-Methylnaphthalene	9.7J	ug/kg	18.0	2.6	1		08/26/22 16:26		
2-Methylnaphthalene	12.1J	ug/kg	18.0	2.6	1	08/26/22 07:47	08/26/22 16:26	91-57-6	
Naphthalene	16.5J	ug/kg	18.0	1.8	1	08/26/22 07:47			
Phenanthrene	72.3	ug/kg	18.0	2.1	1	08/26/22 07:47	08/26/22 16:26	85-01-8	
Pyrene	129	ug/kg	18.0	2.6	1	08/26/22 07:47	08/26/22 16:26	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	67	%	41-98		1	08/26/22 07:47			
Terphenyl-d14 (S)	79	%	37-106		1	08/26/22 07:47	08/26/22 16:26	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepai	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
Benzene	<13.8	ug/kg	23.2	13.8	1	08/26/22 07:45	08/26/22 19:04	71-43-2	
Bromobenzene	<22.6	ug/kg	57.9	22.6	1	08/26/22 07:45	08/26/22 19:04	108-86-1	
Bromochloromethane	<15.9	ug/kg	57.9	15.9	1	08/26/22 07:45	08/26/22 19:04	74-97-5	
Bromodichloromethane	<13.8	ug/kg	57.9	13.8	1	08/26/22 07:45	08/26/22 19:04	75-27-4	
Bromoform	<255	ug/kg	290	255	1	08/26/22 07:45	08/26/22 19:04	75-25-2	
Bromomethane	<81.2	ug/kg	290	81.2	1	08/26/22 07:45	08/26/22 19:04	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-3 (1'-2') Lab ID: 40250229006 Collected: 08/19/22 11:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
n-Butylbenzene	<26.5	ug/kg	57.9	26.5	1	08/26/22 07:45	08/26/22 19:04	104-51-8	
sec-Butylbenzene	<14.1	ug/kg	57.9	14.1	1	08/26/22 07:45	08/26/22 19:04		
tert-Butylbenzene	<18.2	ug/kg	57.9	18.2	1	08/26/22 07:45	08/26/22 19:04	98-06-6	
Carbon tetrachloride	<12.7	ug/kg	57.9	12.7	1	08/26/22 07:45	08/26/22 19:04		
Chlorobenzene	<6.9	ug/kg	57.9	6.9	1	08/26/22 07:45	08/26/22 19:04		
Chloroethane	<24.4	ug/kg	290	24.4	1	08/26/22 07:45	08/26/22 19:04		
Chloroform	<41.5	ug/kg	290	41.5	1	08/26/22 07:45	08/26/22 19:04		
Chloromethane	<22.0	ug/kg	57.9	22.0	1	08/26/22 07:45	08/26/22 19:04		
2-Chlorotoluene	<18.8	ug/kg	57.9	18.8	1	08/26/22 07:45	08/26/22 19:04		
4-Chlorotoluene	<22.0	ug/kg	57.9	22.0	1	08/26/22 07:45	08/26/22 19:04		
1,2-Dibromo-3-chloropropane	<44.9	ug/kg	290	44.9	1	08/26/22 07:45	08/26/22 19:04		
Dibromochloromethane	<198	ug/kg	290	198	1	08/26/22 07:45	08/26/22 19:04		
1,2-Dibromoethane (EDB)	<15.9	ug/kg	57.9	15.9	1	08/26/22 07:45	08/26/22 19:04		
Dibromomethane	<17.1	ug/kg	57.9	17.1	1	08/26/22 07:45	08/26/22 19:04		
1,2-Dichlorobenzene	<18.0	ug/kg	57.9	18.0	1	08/26/22 07:45	08/26/22 19:04		
1,3-Dichlorobenzene	<15.9	ug/kg	57.9	15.9	1	08/26/22 07:45	08/26/22 19:04		
1,4-Dichlorobenzene	<15.9	ug/kg	57.9	15.9	1	08/26/22 07:45	08/26/22 19:04		
Dichlorodifluoromethane	<24.9	ug/kg	57.9	24.9	1	08/26/22 07:45	08/26/22 19:04		
1.1-Dichloroethane	<14.8	ug/kg	57.9	14.8	1	08/26/22 07:45	08/26/22 19:04		
1,2-Dichloroethane	<13.3	ug/kg	57.9	13.3	1	08/26/22 07:45	08/26/22 19:04		
1,1-Dichloroethene	<19.2	ug/kg	57.9	19.2	1	08/26/22 07:45	08/26/22 19:04		
cis-1,2-Dichloroethene	<12.4	ug/kg	57.9	12.4	1	08/26/22 07:45	08/26/22 19:04		
trans-1,2-Dichloroethene	<12.5	ug/kg	57.9	12.5	1	08/26/22 07:45	08/26/22 19:04		
1,2-Dichloropropane	<13.8	ug/kg	57.9	13.8	1	08/26/22 07:45	08/26/22 19:04		
1,3-Dichloropropane	<12.6	ug/kg	57.9	12.6	1	08/26/22 07:45	08/26/22 19:04		
2,2-Dichloropropane	<15.6	ug/kg	57.9	15.6	1	08/26/22 07:45	08/26/22 19:04		
1,1-Dichloropropene	<18.8	ug/kg	57.9	18.8	1	08/26/22 07:45	08/26/22 19:04		
cis-1,3-Dichloropropene	<38.2	ug/kg	290	38.2	1	08/26/22 07:45	08/26/22 19:04		
trans-1,3-Dichloropropene	<166	ug/kg	290	166	1	08/26/22 07:45	08/26/22 19:04		
Diisopropyl ether	<14.4	ug/kg	57.9	14.4	1	08/26/22 07:45	08/26/22 19:04		
Ethylbenzene	<13.8	ug/kg	57.9	13.8	1	08/26/22 07:45	08/26/22 19:04		
Hexachloro-1,3-butadiene	<115	ug/kg	290	115	1	08/26/22 07:45	08/26/22 19:04		
Isopropylbenzene (Cumene)	<15.6	ug/kg	57.9	15.6	1	08/26/22 07:45	08/26/22 19:04		
p-Isopropyltoluene	<17.6	ug/kg	57.9	17.6	1	08/26/22 07:45	08/26/22 19:04		
Methylene Chloride	<16.1	ug/kg	57.9	16.1	1	08/26/22 07:45	08/26/22 19:04		
Methyl-tert-butyl ether	<17.0	ug/kg	57.9	17.0	1		08/26/22 19:04		
Naphthalene	<18.1	ug/kg	290	18.1	1	08/26/22 07:45	08/26/22 19:04		
n-Propylbenzene	<13.9	ug/kg	57.9	13.9	1	08/26/22 07:45	08/26/22 19:04		
Styrene	<14.8	ug/kg	57.9	14.8	1		08/26/22 19:04		
1,1,1,2-Tetrachloroethane	<13.9	ug/kg	57.9	13.9	1		08/26/22 19:04		
1,1,2,2-Tetrachloroethane	<21.0	ug/kg ug/kg	57.9	21.0	1		08/26/22 19:04		
Tetrachloroethene	<22.5	ug/kg	57.9	22.5	1		08/26/22 19:04		
Toluene	<14.6	ug/kg ug/kg	57.9	14.6	1		08/26/22 19:04		
1,2,3-Trichlorobenzene	<64.5	ug/kg ug/kg	290	64.5	1		08/26/22 19:04		
1,2,0 1110111010001120110	~07.0	ug/Ng	200	07.0	'	30,20,22 01.40	30/20/22 13.04	37 31 3	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-3 (1'-2') Lab ID: 40250229006 Collected: 08/19/22 11:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	\ 8260 Prepa	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<47.7	ug/kg	290	47.7	1	08/26/22 07:45	08/26/22 19:04	120-82-1	
1,1,1-Trichloroethane	<14.8	ug/kg	57.9	14.8	1	08/26/22 07:45	08/26/22 19:04	71-55-6	
1,1,2-Trichloroethane	<21.1	ug/kg	57.9	21.1	1	08/26/22 07:45	08/26/22 19:04	79-00-5	
Trichloroethene	<21.7	ug/kg	57.9	21.7	1	08/26/22 07:45	08/26/22 19:04	79-01-6	
Trichlorofluoromethane	<16.8	ug/kg	57.9	16.8	1	08/26/22 07:45	08/26/22 19:04	75-69-4	
1,2,3-Trichloropropane	<28.1	ug/kg	57.9	28.1	1	08/26/22 07:45	08/26/22 19:04	96-18-4	
1,2,4-Trimethylbenzene	<17.3	ug/kg	57.9	17.3	1	08/26/22 07:45	08/26/22 19:04	95-63-6	
1,3,5-Trimethylbenzene	<18.6	ug/kg	57.9	18.6	1	08/26/22 07:45	08/26/22 19:04	108-67-8	
Vinyl chloride	<11.7	ug/kg	57.9	11.7	1	08/26/22 07:45	08/26/22 19:04	75-01-4	
Xylene (Total)	<41.8	ug/kg	174	41.8	1	08/26/22 07:45	08/26/22 19:04	1330-20-7	
m&p-Xylene	<24.4	ug/kg	116	24.4	1	08/26/22 07:45	08/26/22 19:04	179601-23-1	
o-Xylene	<17.4	ug/kg	57.9	17.4	1	08/26/22 07:45	08/26/22 19:04	95-47-6	
Surrogates									
Toluene-d8 (S)	129	%	69-153		1	08/26/22 07:45	08/26/22 19:04	2037-26-5	
4-Bromofluorobenzene (S)	136	%	68-156		1	08/26/22 07:45	08/26/22 19:04	460-00-4	
1,2-Dichlorobenzene-d4 (S)	125	%	71-161		1	08/26/22 07:45	08/26/22 19:04	2199-69-1	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	у					
Percent Moisture	7.3	%	0.10	0.10	1		08/24/22 16:38		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-3 (4'-5') Lab ID: 40250229007 Collected: 08/19/22 11:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	у					
Arsenic	1.8J	mg/kg	2.8	1.7	1	08/25/22 06:01	08/26/22 16:27	7440-38-2	
Barium	33.4	mg/kg	0.57	0.17	1	08/25/22 06:01	08/26/22 16:27		
Cadmium	0.25J	mg/kg	0.57	0.15	1	08/25/22 06:01	08/26/22 16:27		
Chromium	11.8	mg/kg	1.1	0.31	1	08/25/22 06:01			
Lead	11.1	mg/kg	2.3	0.68	1	08/25/22 06:01	08/26/22 16:27		
Selenium	<1.5	mg/kg	4.5	1.5	1	08/25/22 06:01			
Silver	<0.35	mg/kg	1.1	0.35	1	08/25/22 06:01	08/26/22 16:27	7440-22-4	
7471 Mercury	Analytical	Method: EPA	A 7471 Prepa	ration Meth	od: EP/	A 7471			
	Pace Anal	ytical Service	es - Green Ba	у					
Mercury	0.019J	mg/kg	0.040	0.011	1	08/25/22 08:19	08/26/22 07:45	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SI	M Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Ba	у					
Acenaphthene	6.6J	ug/kg	19.2	2.5	1	08/26/22 07:47	08/26/22 17:52	83-32-9	
Acenaphthylene	5.4J	ug/kg	19.2	2.4	1	08/26/22 07:47	08/26/22 17:52	208-96-8	
Anthracene	8.0J	ug/kg	19.2	2.4	1	08/26/22 07:47	08/26/22 17:52	120-12-7	
Benzo(a)anthracene	44.6	ug/kg	19.2	2.5	1	08/26/22 07:47	08/26/22 17:52	56-55-3	
Benzo(a)pyrene	56.1	ug/kg	19.2	2.2	1	08/26/22 07:47	08/26/22 17:52	50-32-8	
Benzo(b)fluoranthene	86.8	ug/kg	19.2	2.7	1	08/26/22 07:47	08/26/22 17:52	205-99-2	
Benzo(g,h,i)perylene	36.8	ug/kg	19.2	3.4	1	08/26/22 07:47	08/26/22 17:52	191-24-2	
Benzo(k)fluoranthene	30.8	ug/kg	19.2	2.4	1	08/26/22 07:47	08/26/22 17:52	207-08-9	
Chrysene	63.6	ug/kg	19.2	3.6	1	08/26/22 07:47	08/26/22 17:52	218-01-9	
Dibenz(a,h)anthracene	10.1J	ug/kg	19.2	2.7	1	08/26/22 07:47	08/26/22 17:52	53-70-3	
Fluoranthene	93.6	ug/kg	19.2	2.3	1	08/26/22 07:47	08/26/22 17:52	206-44-0	
Fluorene	4.1J	ug/kg	19.2	2.3	1	08/26/22 07:47	08/26/22 17:52	86-73-7	
Indeno(1,2,3-cd)pyrene	29.4	ug/kg	19.2	4.0	1	08/26/22 07:47	08/26/22 17:52	193-39-5	
1-Methylnaphthalene	70.2	ug/kg	19.2	2.8	1	08/26/22 07:47	08/26/22 17:52	90-12-0	
2-Methylnaphthalene	80.8	ug/kg	19.2	2.8	1	08/26/22 07:47	08/26/22 17:52	91-57-6	
Naphthalene	53.2	ug/kg	19.2	1.9	1	08/26/22 07:47	08/26/22 17:52	91-20-3	
Phenanthrene	61.3	ug/kg	19.2	2.2	1	08/26/22 07:47	08/26/22 17:52	85-01-8	
Pyrene	85.2	ug/kg	19.2	2.8	1	08/26/22 07:47	08/26/22 17:52	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	58	%	41-98		1	08/26/22 07:47			
Terphenyl-d14 (S)	66	%	37-106		1	08/26/22 07:47	08/26/22 17:52	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	у					
Benzene	<17.1	ug/kg	28.8	17.1	1	08/26/22 07:45	08/26/22 19:24	71-43-2	
Bromobenzene	<28.1	ug/kg	72.0	28.1	1	08/26/22 07:45	08/26/22 19:24	108-86-1	
Bromochloromethane	<19.7	ug/kg	72.0	19.7	1	08/26/22 07:45	08/26/22 19:24	74-97-5	
Bromodichloromethane	<17.1	ug/kg	72.0	17.1	1		08/26/22 19:24		
Bromoform	<317	ug/kg	360	317	1		08/26/22 19:24		
Bromomethane	<101	ug/kg	360	101	1	08/26/22 07:45			

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-3 (4'-5') Lab ID: 40250229007 Collected: 08/19/22 11:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
n-Butylbenzene	<33.0	ug/kg	72.0	33.0	1	08/26/22 07:45	08/26/22 19:24	104-51-8	
sec-Butylbenzene	<17.6	ug/kg	72.0	17.6	1	08/26/22 07:45	08/26/22 19:24		
tert-Butylbenzene	<22.6	ug/kg	72.0	22.6	1	08/26/22 07:45	08/26/22 19:24		
Carbon tetrachloride	<15.8	ug/kg	72.0	15.8	1	08/26/22 07:45	08/26/22 19:24		
Chlorobenzene	<8.6	ug/kg	72.0	8.6	1	08/26/22 07:45	08/26/22 19:24		
Chloroethane	<30.4	ug/kg	360	30.4	1	08/26/22 07:45	08/26/22 19:24		
Chloroform	<51.5	ug/kg	360	51.5	1	08/26/22 07:45	08/26/22 19:24	67-66-3	
Chloromethane	<27.3	ug/kg	72.0	27.3	1	08/26/22 07:45	08/26/22 19:24		
2-Chlorotoluene	<23.3	ug/kg	72.0	23.3	1	08/26/22 07:45	08/26/22 19:24		
4-Chlorotoluene	<27.3	ug/kg	72.0	27.3	1	08/26/22 07:45	08/26/22 19:24		
1,2-Dibromo-3-chloropropane	<55.8	ug/kg	360	55.8	1	08/26/22 07:45	08/26/22 19:24		
Dibromochloromethane	<246	ug/kg	360	246	1	08/26/22 07:45	08/26/22 19:24		
1,2-Dibromoethane (EDB)	<19.7	ug/kg	72.0	19.7	1	08/26/22 07:45	08/26/22 19:24		
Dibromomethane	<21.3	ug/kg	72.0	21.3	1	08/26/22 07:45	08/26/22 19:24		
1,2-Dichlorobenzene	<22.3	ug/kg	72.0	22.3	1	08/26/22 07:45	08/26/22 19:24		
1,3-Dichlorobenzene	<19.7	ug/kg	72.0	19.7	1	08/26/22 07:45	08/26/22 19:24		
1,4-Dichlorobenzene	<19.7	ug/kg	72.0	19.7	1	08/26/22 07:45	08/26/22 19:24		
Dichlorodifluoromethane	<30.9	ug/kg	72.0	30.9	1	08/26/22 07:45	08/26/22 19:24		
1.1-Dichloroethane	<18.4	ug/kg	72.0	18.4	1	08/26/22 07:45	08/26/22 19:24		
1,2-Dichloroethane	<16.6	ug/kg	72.0	16.6	1	08/26/22 07:45	08/26/22 19:24		
1,1-Dichloroethene	<23.9	ug/kg	72.0	23.9	1	08/26/22 07:45	08/26/22 19:24		
cis-1,2-Dichloroethene	<15.4	ug/kg	72.0	15.4	1	08/26/22 07:45	08/26/22 19:24		
trans-1,2-Dichloroethene	<15.5	ug/kg	72.0	15.5	1	08/26/22 07:45	08/26/22 19:24		
1,2-Dichloropropane	<17.1	ug/kg	72.0	17.1	1	08/26/22 07:45	08/26/22 19:24		
1,3-Dichloropropane	<15.7	ug/kg	72.0	15.7	1	08/26/22 07:45	08/26/22 19:24		
2,2-Dichloropropane	<19.4	ug/kg	72.0	19.4	1	08/26/22 07:45	08/26/22 19:24		
1,1-Dichloropropene	<23.3	ug/kg	72.0	23.3	1	08/26/22 07:45	08/26/22 19:24		
cis-1,3-Dichloropropene	<47.5	ug/kg	360	47.5	1	08/26/22 07:45	08/26/22 19:24		
trans-1,3-Dichloropropene	<206	ug/kg	360	206	1	08/26/22 07:45	08/26/22 19:24		
Diisopropyl ether	<17.8	ug/kg	72.0	17.8	1	08/26/22 07:45	08/26/22 19:24		
Ethylbenzene	<17.1	ug/kg	72.0	17.1	1	08/26/22 07:45	08/26/22 19:24		
Hexachloro-1,3-butadiene	<143	ug/kg	360	143	1	08/26/22 07:45	08/26/22 19:24		
Isopropylbenzene (Cumene)	<19.4	ug/kg	72.0	19.4	1	08/26/22 07:45	08/26/22 19:24		
p-Isopropyltoluene	<21.9	ug/kg	72.0	21.9	1	08/26/22 07:45	08/26/22 19:24		
Methylene Chloride	<20.0	ug/kg	72.0	20.0	1	08/26/22 07:45	08/26/22 19:24		
Methyl-tert-butyl ether	<21.2	ug/kg	72.0	21.2	1		08/26/22 19:24		
Naphthalene	<22.5	ug/kg	360	22.5	1	08/26/22 07:45	08/26/22 19:24		
n-Propylbenzene	<17.3	ug/kg ug/kg	72.0	17.3	1		08/26/22 19:24		
Styrene	<18.4	ug/kg	72.0	18.4	1		08/26/22 19:24		
1,1,1,2-Tetrachloroethane	<17.3	ug/kg ug/kg	72.0	17.3	1		08/26/22 19:24		
1,1,2,2-Tetrachloroethane	<26.0	ug/kg ug/kg	72.0	26.0	1		08/26/22 19:24		
Tetrachloroethene	<27.9	ug/kg ug/kg	72.0	27.9	1		08/26/22 19:24		
Toluene	<18.1	ug/kg ug/kg	72.0	18.1	1		08/26/22 19:24		
1,2,3-Trichlorobenzene	<80.2	ug/kg ug/kg	360	80.2	1		08/26/22 19:24		
1,2,0 1110111010001120110	~UU.L	ug/Ng	300	50.2	'	30,20,22 01.40	30/20/22 13.24	37 31 3	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-3 (4'-5') Lab ID: 40250229007 Collected: 08/19/22 11:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<59.3	ug/kg	360	59.3	1	08/26/22 07:45	08/26/22 19:24	120-82-1	
1,1,1-Trichloroethane	<18.4	ug/kg	72.0	18.4	1	08/26/22 07:45	08/26/22 19:24	71-55-6	
1,1,2-Trichloroethane	<26.2	ug/kg	72.0	26.2	1	08/26/22 07:45	08/26/22 19:24	79-00-5	
Trichloroethene	<26.9	ug/kg	72.0	26.9	1	08/26/22 07:45	08/26/22 19:24	79-01-6	
Trichlorofluoromethane	<20.9	ug/kg	72.0	20.9	1	08/26/22 07:45	08/26/22 19:24	75-69-4	
1,2,3-Trichloropropane	<35.0	ug/kg	72.0	35.0	1	08/26/22 07:45	08/26/22 19:24	96-18-4	
1,2,4-Trimethylbenzene	<21.4	ug/kg	72.0	21.4	1	08/26/22 07:45	08/26/22 19:24	95-63-6	
1,3,5-Trimethylbenzene	<23.2	ug/kg	72.0	23.2	1	08/26/22 07:45	08/26/22 19:24	108-67-8	
Vinyl chloride	<14.5	ug/kg	72.0	14.5	1	08/26/22 07:45	08/26/22 19:24	75-01-4	
Xylene (Total)	<52.0	ug/kg	216	52.0	1	08/26/22 07:45	08/26/22 19:24	1330-20-7	
m&p-Xylene	<30.4	ug/kg	144	30.4	1	08/26/22 07:45	08/26/22 19:24	179601-23-1	
o-Xylene	<21.6	ug/kg	72.0	21.6	1	08/26/22 07:45	08/26/22 19:24	95-47-6	
Surrogates									
Toluene-d8 (S)	119	%	69-153		1	08/26/22 07:45	08/26/22 19:24	2037-26-5	
4-Bromofluorobenzene (S)	127	%	68-156		1	08/26/22 07:45	08/26/22 19:24	460-00-4	
1,2-Dichlorobenzene-d4 (S)	118	%	71-161		1	08/26/22 07:45	08/26/22 19:24	2199-69-1	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	12.9	%	0.10	0.10	1		08/24/22 16:38		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-4 (1'-2') Lab ID: 40250229008 Collected: 08/19/22 12:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	y					
Arsenic	<1.6	mg/kg	2.7	1.6	1	08/25/22 06:01	08/26/22 16:29	7440-38-2	
Barium	24.1	mg/kg	0.54	0.16	1	08/25/22 06:01	08/26/22 16:29		
Cadmium	<0.14	mg/kg	0.54	0.14	1	08/25/22 06:01	08/26/22 16:29		
Chromium	5.1	mg/kg	1.1	0.30	1	08/25/22 06:01	08/26/22 16:29		
_ead	14.2	mg/kg	2.2	0.65	1	08/25/22 06:01	08/26/22 16:29		
Selenium	<1.4	mg/kg	4.3	1.4	1	08/25/22 06:01	08/26/22 16:29		
Silver	<0.33	mg/kg	1.1	0.33	1	08/25/22 06:01			
7471 Mercury	Analytical	Method: EPA	A 7471 Prepai	ration Metho	od: EP	A 7471			
,	-		es - Green Ba						
Mercury	0.021J	mg/kg	0.038	0.011	1	08/25/22 08:19	08/26/22 07:47	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SII	M Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Ba	У					
Acenaphthene	22.8J	ug/kg	91.2	11.8	5	08/26/22 07:47	08/26/22 18:10	83-32-9	
Acenaphthylene	53.3J	ug/kg	91.2	11.5	5	08/26/22 07:47	08/26/22 18:10	208-96-8	
Anthracene	46.7J	ug/kg	91.2	11.3	5	08/26/22 07:47	08/26/22 18:10	120-12-7	
Benzo(a)anthracene	124	ug/kg	91.2	11.8	5	08/26/22 07:47	08/26/22 18:10	56-55-3	
Benzo(a)pyrene	106	ug/kg	91.2	10.4	5	08/26/22 07:47	08/26/22 18:10	50-32-8	
Benzo(b)fluoranthene	153	ug/kg	91.2	12.7	5	08/26/22 07:47	08/26/22 18:10	205-99-2	
Benzo(g,h,i)perylene	47.8J	ug/kg	91.2	16.0	5	08/26/22 07:47	08/26/22 18:10	191-24-2	
Benzo(k)fluoranthene	49.0J	ug/kg	91.2	11.7	5	08/26/22 07:47	08/26/22 18:10	207-08-9	
Chrysene	146	ug/kg	91.2	17.2	5	08/26/22 07:47	08/26/22 18:10	218-01-9	
Dibenz(a,h)anthracene	16.5J	ug/kg	91.2	12.6	5	08/26/22 07:47	08/26/22 18:10	53-70-3	
Fluoranthene	210	ug/kg	91.2	10.8	5	08/26/22 07:47	08/26/22 18:10	206-44-0	
Fluorene	38.6J	ug/kg	91.2	10.9	5	08/26/22 07:47	08/26/22 18:10	86-73-7	
ndeno(1,2,3-cd)pyrene	39.9J	ug/kg	91.2	19.0	5	08/26/22 07:47	08/26/22 18:10	193-39-5	
-Methylnaphthalene	932	ug/kg	91.2	13.3	5	08/26/22 07:47	08/26/22 18:10	90-12-0	
2-Methylnaphthalene	1170	ug/kg	91.2	13.3	5	08/26/22 07:47	08/26/22 18:10	91-57-6	
Naphthalene	858	ug/kg	91.2	8.9	5	08/26/22 07:47			
Phenanthrene	547	ug/kg	91.2	10.4	5	08/26/22 07:47			
Pyrene	211	ug/kg	91.2	13.4	5		08/26/22 18:10		
Surrogates		-9.1.9			-				
2-Fluorobiphenyl (S)	65	%	41-98		5	08/26/22 07:47	08/26/22 18:10	321-60-8	
Ferphenyl-d14 (S)	75	%	37-106		5	08/26/22 07:47	08/26/22 18:10	1718-51-0	
260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepai	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	У					
Benzene	24.2	ug/kg	23.7	14.1	1	08/26/22 10:00	08/26/22 17:58	71-43-2	
Bromobenzene	<23.1	ug/kg	59.3	23.1	1	08/26/22 10:00	08/26/22 17:58	108-86-1	
Bromochloromethane	<16.3	ug/kg	59.3	16.3	1	08/26/22 10:00	08/26/22 17:58	74-97-5	
Bromodichloromethane	<14.1	ug/kg	59.3	14.1	1	08/26/22 10:00	08/26/22 17:58	75-27-4	
Bromoform	<261	ug/kg	297	261	1	08/26/22 10:00	08/26/22 17:58	75-25-2	
Bromomethane	<83.2	ug/kg	297	83.2	1		08/26/22 17:58		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-4 (1'-2') Lab ID: 40250229008 Collected: 08/19/22 12:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
n-Butylbenzene	<27.2	ug/kg	59.3	27.2	1	08/26/22 10:00	08/26/22 17:58	104-51-8	
sec-Butylbenzene	<14.5	ug/kg	59.3	14.5	1	08/26/22 10:00	08/26/22 17:58		
tert-Butylbenzene	<18.6	ug/kg	59.3	18.6	1	08/26/22 10:00	08/26/22 17:58		
Carbon tetrachloride	<13.0	ug/kg	59.3	13.0	1	08/26/22 10:00	08/26/22 17:58		
Chlorobenzene	<7.1	ug/kg	59.3	7.1	1	08/26/22 10:00	08/26/22 17:58		
Chloroethane	<25.0	ug/kg	297	25.0	1	08/26/22 10:00	08/26/22 17:58		
Chloroform	<42.5	ug/kg	297	42.5	1	08/26/22 10:00	08/26/22 17:58		
Chloromethane	<22.5	ug/kg	59.3	22.5	1	08/26/22 10:00	08/26/22 17:58		
2-Chlorotoluene	<19.2	ug/kg	59.3	19.2	1	08/26/22 10:00	08/26/22 17:58		
4-Chlorotoluene	<22.5	ug/kg	59.3	22.5	1	08/26/22 10:00	08/26/22 17:58		
1,2-Dibromo-3-chloropropane	<46.0	ug/kg	297	46.0	1	08/26/22 10:00	08/26/22 17:58		
Dibromochloromethane	<203	ug/kg	297	203	1	08/26/22 10:00	08/26/22 17:58		
1,2-Dibromoethane (EDB)	<16.3	ug/kg	59.3	16.3	1	08/26/22 10:00	08/26/22 17:58		
Dibromomethane	<17.6	ug/kg	59.3	17.6	1	08/26/22 10:00	08/26/22 17:58		
1,2-Dichlorobenzene	<18.4	ug/kg	59.3	18.4	1	08/26/22 10:00	08/26/22 17:58		
1,3-Dichlorobenzene	<16.3	ug/kg	59.3	16.3	1	08/26/22 10:00	08/26/22 17:58		
1,4-Dichlorobenzene	<16.3	ug/kg	59.3	16.3	1	08/26/22 10:00	08/26/22 17:58		
Dichlorodifluoromethane	<25.5	ug/kg	59.3	25.5	1	08/26/22 10:00	08/26/22 17:58		
1.1-Dichloroethane	<15.2	ug/kg	59.3	15.2	1	08/26/22 10:00	08/26/22 17:58		
1.2-Dichloroethane	<13.6	ug/kg	59.3	13.6	1	08/26/22 10:00	08/26/22 17:58		
1,1-Dichloroethene	<19.7	ug/kg	59.3	19.7	1	08/26/22 10:00	08/26/22 17:58		
cis-1,2-Dichloroethene	<12.7	ug/kg	59.3	12.7	1	08/26/22 10:00	08/26/22 17:58		
trans-1,2-Dichloroethene	<12.8	ug/kg	59.3	12.8	1	08/26/22 10:00	08/26/22 17:58		
1,2-Dichloropropane	<14.1	ug/kg	59.3	14.1	1	08/26/22 10:00	08/26/22 17:58		
1,3-Dichloropropane	<12.9	ug/kg	59.3	12.9	1	08/26/22 10:00	08/26/22 17:58		
2,2-Dichloropropane	<16.0	ug/kg	59.3	16.0	1	08/26/22 10:00	08/26/22 17:58		
1,1-Dichloropropene	<19.2	ug/kg	59.3	19.2	1	08/26/22 10:00	08/26/22 17:58		
cis-1,3-Dichloropropene	<39.1	ug/kg	297	39.1	1	08/26/22 10:00	08/26/22 17:58		
trans-1,3-Dichloropropene	<170	ug/kg	297	170	1	08/26/22 10:00	08/26/22 17:58		
Diisopropyl ether	<14.7	ug/kg	59.3	14.7	1	08/26/22 10:00	08/26/22 17:58	108-20-3	
Ethylbenzene	38.8J	ug/kg	59.3	14.1	1	08/26/22 10:00	08/26/22 17:58		
Hexachloro-1,3-butadiene	<118	ug/kg	297	118	1	08/26/22 10:00	08/26/22 17:58		
Isopropylbenzene (Cumene)	18.8J	ug/kg	59.3	16.0	1	08/26/22 10:00	08/26/22 17:58		
p-Isopropyltoluene	<18.0	ug/kg	59.3	18.0	1	08/26/22 10:00	08/26/22 17:58		
Methylene Chloride	<16.5	ug/kg	59.3	16.5	1	08/26/22 10:00	08/26/22 17:58		
Methyl-tert-butyl ether	<17.4	ug/kg	59.3	17.4	1	08/26/22 10:00			
Naphthalene	101J	ug/kg	297	18.5	1	08/26/22 10:00	08/26/22 17:58		
n-Propylbenzene	27.2J	ug/kg	59.3	14.2	1	08/26/22 10:00	08/26/22 17:58		
Styrene	<15.2	ug/kg	59.3	15.2	1	08/26/22 10:00			
1,1,1,2-Tetrachloroethane	<14.2	ug/kg	59.3	14.2	1	08/26/22 10:00			
1,1,2,2-Tetrachloroethane	<21.5	ug/kg	59.3	21.5	1		08/26/22 17:58		
Tetrachloroethene	<23.0	ug/kg	59.3	23.0	1	08/26/22 10:00			
Toluene	141	ug/kg	59.3	14.9	1	08/26/22 10:00			
1,2,3-Trichlorobenzene	<66.1	ug/kg	297	66.1	1		08/26/22 17:58		
.,=,= 1110111010001120110	400.1	~9, N9	201	50.1	•	55,25,22 10.00	55/25/22 17.00	3. 3. 0	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-4 (1'-2') Lab ID: 40250229008 Collected: 08/19/22 12:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepai	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
1,2,4-Trichlorobenzene	<48.9	ug/kg	297	48.9	1	08/26/22 10:00	08/26/22 17:58	120-82-1	
1,1,1-Trichloroethane	<15.2	ug/kg	59.3	15.2	1	08/26/22 10:00	08/26/22 17:58	71-55-6	
1,1,2-Trichloroethane	<21.6	ug/kg	59.3	21.6	1	08/26/22 10:00	08/26/22 17:58	79-00-5	
Trichloroethene	<22.2	ug/kg	59.3	22.2	1	08/26/22 10:00	08/26/22 17:58	79-01-6	
Trichlorofluoromethane	<17.2	ug/kg	59.3	17.2	1	08/26/22 10:00	08/26/22 17:58	75-69-4	
1,2,3-Trichloropropane	<28.8	ug/kg	59.3	28.8	1	08/26/22 10:00	08/26/22 17:58	96-18-4	
1,2,4-Trimethylbenzene	32.5J	ug/kg	59.3	17.7	1	08/26/22 10:00	08/26/22 17:58	95-63-6	
1,3,5-Trimethylbenzene	<19.1	ug/kg	59.3	19.1	1	08/26/22 10:00	08/26/22 17:58	108-67-8	
Vinyl chloride	<12.0	ug/kg	59.3	12.0	1	08/26/22 10:00	08/26/22 17:58	75-01-4	
Xylene (Total)	179	ug/kg	178	42.8	1	08/26/22 10:00	08/26/22 17:58	1330-20-7	
m&p-Xylene	104J	ug/kg	119	25.0	1	08/26/22 10:00	08/26/22 17:58	179601-23-1	
o-Xylene	74.4	ug/kg	59.3	17.8	1	08/26/22 10:00	08/26/22 17:58	95-47-6	
Surrogates									
Toluene-d8 (S)	109	%	69-153		1	08/26/22 10:00	08/26/22 17:58	2037-26-5	
4-Bromofluorobenzene (S)	129	%	68-156		1	08/26/22 10:00	08/26/22 17:58	460-00-4	
1,2-Dichlorobenzene-d4 (S)	114	%	71-161		1	08/26/22 10:00	08/26/22 17:58	2199-69-1	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	8.5	%	0.10	0.10	1		08/24/22 16:38		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-4 (2'-3') Lab ID: 40250229009 Collected: 08/19/22 12:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6010D MET ICP	Analytical	Method: EPA	\ 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	y					
Arsenic	87.9	mg/kg	34.1	20.0	10	08/25/22 06:01	08/29/22 17:43	7440-38-2	
Barium	23.9	mg/kg	6.8	2.0	10	08/25/22 06:01	08/29/22 17:43		
Cadmium	<1.8	mg/kg	6.8	1.8	10	08/25/22 06:01	08/29/22 17:43		D3
Chromium	20.1	mg/kg	13.6	3.8	10	08/25/22 06:01	08/29/22 17:43	7440-47-3	
₋ead	23.8J	mg/kg	27.2	8.2	10	08/25/22 06:01	08/29/22 17:43	7439-92-1	D3
Selenium	<17.8	mg/kg	54.5	17.8	10	08/25/22 06:01	08/29/22 17:43	7782-49-2	D3
Silver	<4.2	mg/kg	13.6	4.2	10	08/25/22 06:01	08/29/22 17:43	7440-22-4	D3
471 Mercury	Analytical	Method: EPA	A 7471 Prepai	ration Metho	od: EP	A 7471			
•	Pace Anal	ytical Service	es - Green Bay	y					
Mercury	0.093	mg/kg	0.043	0.012	1	08/25/22 08:19	08/26/22 07:49	7439-97-6	
3270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SII	M Preparat	ion Me	thod: EPA 3546			
•	-		es - Green Ba						
Acenaphthene	186	ug/kg	115	15.0	5	08/26/22 07:47	08/29/22 12:19	83-32-9	
Acenaphthylene	55.6J	ug/kg	115	14.5	5	08/26/22 07:47	08/29/22 12:19	208-96-8	
Anthracene	352	ug/kg	115	14.3	5	08/26/22 07:47	08/29/22 12:19	120-12-7	
Benzo(a)anthracene	355	ug/kg	115	14.9	5	08/26/22 07:47	08/29/22 12:19	56-55-3	
Benzo(a)pyrene	253	ug/kg	115	13.1	5	08/26/22 07:47	08/29/22 12:19	50-32-8	
Benzo(b)fluoranthene	344	ug/kg	115	16.0	5	08/26/22 07:47	08/29/22 12:19	205-99-2	
Benzo(g,h,i)perylene	143	ug/kg	115	20.2	5	08/26/22 07:47	08/29/22 12:19	191-24-2	
Benzo(k)fluoranthene	140	ug/kg	115	14.7	5	08/26/22 07:47	08/29/22 12:19	207-08-9	
Chrysene	424	ug/kg	115	21.8	5	08/26/22 07:47	08/29/22 12:19	218-01-9	
Dibenz(a,h)anthracene	52.8J	ug/kg	115	16.0	5	08/26/22 07:47	08/29/22 12:19	53-70-3	
Fluoranthene	838	ug/kg	115	13.6	5	08/26/22 07:47	08/29/22 12:19	206-44-0	
Fluorene	200	ug/kg	115	13.8	5	08/26/22 07:47	08/29/22 12:19	86-73-7	
ndeno(1,2,3-cd)pyrene	121	ug/kg	115	24.0	5		08/29/22 12:19		
-Methylnaphthalene	833	ug/kg	115	16.8	5	08/26/22 07:47	08/29/22 12:19	90-12-0	
2-Methylnaphthalene	1060	ug/kg	115	16.9	5	08/26/22 07:47	08/29/22 12:19	91-57-6	
Naphthalene	779	ug/kg	115	11.2	5	08/26/22 07:47	08/29/22 12:19	91-20-3	
Phenanthrene	1510	ug/kg	115	13.2	5	08/26/22 07:47	08/29/22 12:19	85-01-8	
Pyrene	604	ug/kg	115	17.0	5	08/26/22 07:47	08/29/22 12:19	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	54	%	41-98		5	08/26/22 07:47			
Ferphenyl-d14 (S)	60	%	37-106		5	08/26/22 07:47	08/29/22 12:19	1718-51-0	
260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
Benzene	<21.1	ug/kg	35.5	21.1	1	08/26/22 10:00	08/26/22 18:17	71-43-2	
Bromobenzene	<34.6	ug/kg	88.8	34.6	1	08/26/22 10:00	08/26/22 18:17	108-86-1	
Bromochloromethane	<24.3	ug/kg	88.8	24.3	1	08/26/22 10:00	08/26/22 18:17	74-97-5	
Bromodichloromethane	<21.1	ug/kg	88.8	21.1	1	08/26/22 10:00	08/26/22 18:17	75-27-4	
Bromoform	<391	ug/kg	444	391	1	08/26/22 10:00	08/26/22 18:17	75-25-2	
Bromomethane	<124	ug/kg	444	124	1	08/26/22 10:00	08/26/22 18:17	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-4 (2'-3') Lab ID: 40250229009 Collected: 08/19/22 12:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	\ 8260 Prepar	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
n-Butylbenzene	<40.7	ug/kg	88.8	40.7	1	08/26/22 10:00	08/26/22 18:17	104-51-8	
sec-Butylbenzene	<21.7	ug/kg	88.8	21.7	1	08/26/22 10:00	08/26/22 18:17		
tert-Butylbenzene	<27.9	ug/kg	88.8	27.9	1	08/26/22 10:00	08/26/22 18:17		
Carbon tetrachloride	<19.5	ug/kg	88.8	19.5	1	08/26/22 10:00	08/26/22 18:17		
Chlorobenzene	<10.6	ug/kg	88.8	10.6	1	08/26/22 10:00	08/26/22 18:17		
Chloroethane	<37.5	ug/kg	444	37.5	1	08/26/22 10:00	08/26/22 18:17		
Chloroform	<63.6	ug/kg	444	63.6	1	08/26/22 10:00	08/26/22 18:17		
Chloromethane	<33.7	ug/kg	88.8	33.7	1	08/26/22 10:00	08/26/22 18:17		
2-Chlorotoluene	<28.8	ug/kg	88.8	28.8	1	08/26/22 10:00	08/26/22 18:17		
4-Chlorotoluene	<33.7	ug/kg	88.8	33.7	1	08/26/22 10:00	08/26/22 18:17		
1,2-Dibromo-3-chloropropane	<68.9	ug/kg ug/kg	444	68.9	1	08/26/22 10:00	08/26/22 18:17		
Dibromochloromethane	<303	ug/kg ug/kg	444	303	1	08/26/22 10:00	08/26/22 18:17		
1,2-Dibromoethane (EDB)	<24.3	ug/kg ug/kg	88.8	24.3	1	08/26/22 10:00	08/26/22 18:17		
Dibromomethane	<26.3	ug/kg ug/kg	88.8	26.3	1	08/26/22 10:00	08/26/22 18:17		
1,2-Dichlorobenzene	<27.5	ug/kg ug/kg	88.8	27.5	1	08/26/22 10:00	08/26/22 18:17		
1,3-Dichlorobenzene	<24.3	ug/kg ug/kg	88.8	24.3	1	08/26/22 10:00	08/26/22 18:17		
1,4-Dichlorobenzene	<24.3	ug/kg	88.8	24.3	1	08/26/22 10:00	08/26/22 18:17		
Dichlorodifluoromethane	<38.2	ug/kg	88.8	38.2	1	08/26/22 10:00	08/26/22 18:17		
1,1-Dichloroethane	<22.7	ug/kg ug/kg	88.8	22.7	1	08/26/22 10:00	08/26/22 18:17		
1,2-Dichloroethane	<20.4	ug/kg ug/kg	88.8	20.4	1	08/26/22 10:00	08/26/22 18:17		
1,1-Dichloroethene	<29.5	ug/kg ug/kg	88.8	29.5	1	08/26/22 10:00	08/26/22 18:17		
cis-1,2-Dichloroethene	<19.0	ug/kg ug/kg	88.8	19.0	1	08/26/22 10:00	08/26/22 18:17		
trans-1,2-Dichloroethene	<19.2	ug/kg ug/kg	88.8	19.0	1	08/26/22 10:00	08/26/22 18:17		
1,2-Dichloropropane	<21.1	ug/kg ug/kg	88.8	21.1	1	08/26/22 10:00	08/26/22 18:17		
1,3-Dichloropropane	<19.3	ug/kg ug/kg	88.8	19.3	1	08/26/22 10:00	08/26/22 18:17		
2,2-Dichloropropane	<24.0	ug/kg ug/kg	88.8	24.0	1	08/26/22 10:00	08/26/22 18:17		
1,1-Dichloropropene	<28.8	ug/kg ug/kg	88.8	28.8	1	08/26/22 10:00	08/26/22 18:17		
cis-1,3-Dichloropropene	<58.6	ug/kg ug/kg	444	58.6	1	08/26/22 10:00	08/26/22 18:17		
trans-1,3-Dichloropropene	<254	ug/kg ug/kg	444	254	1	08/26/22 10:00	08/26/22 18:17		
Diisopropyl ether	<22.0	ug/kg ug/kg	88.8	22.0	1	08/26/22 10:00	08/26/22 18:17		
Ethylbenzene	<21.1	ug/kg ug/kg	88.8	21.1	1	08/26/22 10:00	08/26/22 18:17		
Hexachloro-1,3-butadiene	<176	ug/kg ug/kg	444	176	1	08/26/22 10:00	08/26/22 18:17		
Isopropylbenzene (Cumene)	<24.0	ug/kg ug/kg	88.8	24.0	1	08/26/22 10:00	08/26/22 18:17		
p-Isopropyltoluene	<27.0	ug/kg ug/kg	88.8	27.0	1	08/26/22 10:00	08/26/22 18:17		
	<24.7		88.8	24.7	1	08/26/22 10:00	08/26/22 18:17		
Methylene Chloride Methyl-tert-butyl ether	<24.7 <26.1	ug/kg	88.8	24.7 26.1	1		08/26/22 18:17		
•	<20.1 <27.7	ug/kg		27.7	1		08/26/22 18:17		
Naphthalene	<21.7 <21.3	ug/kg	444 88.8	21.7			08/26/22 18:17		
n-Propylbenzene		ug/kg			1				
Styrene	<22.7	ug/kg	88.8	22.7	1	08/26/22 10:00	08/26/22 18:17 08/26/22 18:17		
1,1,1,2-Tetrachloroethane	<21.3	ug/kg	88.8	21.3	1				
1,1,2,2-Tetrachloroethane	<32.1	ug/kg	88.8	32.1	1	08/26/22 10:00			
Tetrachloroethene	<34.4	ug/kg	88.8	34.4	1	08/26/22 10:00			
Toluene	<22.4	ug/kg	88.8	22.4	1	08/26/22 10:00			
1,2,3-Trichlorobenzene	<98.9	ug/kg	444	98.9	1	08/26/22 10:00	08/26/22 18:17	0/-01-6	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-4 (2'-3') Lab ID: 40250229009 Collected: 08/19/22 12:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepar	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
1,2,4-Trichlorobenzene	<73.1	ug/kg	444	73.1	1	08/26/22 10:00	08/26/22 18:17	120-82-1	
1,1,1-Trichloroethane	<22.7	ug/kg	88.8	22.7	1	08/26/22 10:00	08/26/22 18:17	71-55-6	
1,1,2-Trichloroethane	<32.3	ug/kg	88.8	32.3	1	08/26/22 10:00	08/26/22 18:17	79-00-5	
Trichloroethene	<33.2	ug/kg	88.8	33.2	1	08/26/22 10:00	08/26/22 18:17	79-01-6	
Trichlorofluoromethane	<25.7	ug/kg	88.8	25.7	1	08/26/22 10:00	08/26/22 18:17	75-69-4	
1,2,3-Trichloropropane	<43.1	ug/kg	88.8	43.1	1	08/26/22 10:00	08/26/22 18:17	96-18-4	
1,2,4-Trimethylbenzene	<26.5	ug/kg	88.8	26.5	1	08/26/22 10:00	08/26/22 18:17	95-63-6	
1,3,5-Trimethylbenzene	<28.6	ug/kg	88.8	28.6	1	08/26/22 10:00	08/26/22 18:17	108-67-8	
Vinyl chloride	<17.9	ug/kg	88.8	17.9	1	08/26/22 10:00	08/26/22 18:17	75-01-4	
Xylene (Total)	<64.1	ug/kg	266	64.1	1	08/26/22 10:00	08/26/22 18:17	1330-20-7	
m&p-Xylene	<37.5	ug/kg	178	37.5	1	08/26/22 10:00	08/26/22 18:17	179601-23-1	
o-Xylene	<26.6	ug/kg	88.8	26.6	1	08/26/22 10:00	08/26/22 18:17	95-47-6	
Surrogates									
Toluene-d8 (S)	113	%	69-153		1	08/26/22 10:00	08/26/22 18:17	2037-26-5	
4-Bromofluorobenzene (S)	139	%	68-156		1	08/26/22 10:00	08/26/22 18:17	460-00-4	
1,2-Dichlorobenzene-d4 (S)	120	%	71-161		1	08/26/22 10:00	08/26/22 18:17	2199-69-1	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Bay	/					
Percent Moisture	27.6	%	0.10	0.10	1		08/24/22 16:38		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-5 (1'-2') Lab ID: 40250229010 Collected: 08/19/22 12:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	hod: Ef	PA 3541			
	Pace Anal	ytical Service	s - Green Bay	,					
PCB-1016 (Aroclor 1016)	<17.1	ug/kg	56.1	17.1	1	08/24/22 07:03	08/25/22 10:53	12674-11-2	
PCB-1221 (Aroclor 1221)	<17.1	ug/kg ug/kg	56.1	17.1	1	08/24/22 07:03	08/25/22 10:53		
PCB-1232 (Aroclor 1232)	<17.1	ug/kg ug/kg	56.1	17.1	1		08/25/22 10:53		
PCB-1242 (Aroclor 1242)	<17.1	ug/kg	56.1	17.1	1	08/24/22 07:03			
PCB-1248 (Aroclor 1248)	<17.1	ug/kg	56.1	17.1	1	08/24/22 07:03			
PCB-1254 (Aroclor 1254)	<17.1	ug/kg	56.1	17.1	1	08/24/22 07:03			
PCB-1260 (Aroclor 1260)	<17.1	ug/kg	56.1	17.1	1	08/24/22 07:03	08/25/22 10:53		
PCB, Total	<17.1	ug/kg	56.1	17.1	1	08/24/22 07:03			
Surrogates		0 0							
Tetrachloro-m-xylene (S)	56	%	50-99		1	08/24/22 07:03	08/25/22 10:53	877-09-8	
Decachlorobiphenyl (S)	61	%	38-95		1	08/24/22 07:03	08/25/22 10:53	2051-24-3	
6010D MET ICP	Analytical	Method: EPA	6010D Prepa	aration Met	hod: El	PA 3050B			
	Pace Anal	ytical Service	s - Green Bay	′					
Arsenic	6.4	mg/kg	2.8	1.6	1	08/25/22 06:01	08/26/22 16:34	7440-38-2	
Barium	36.6	mg/kg	0.56	0.17	1	08/25/22 06:01	08/26/22 16:34	7440-39-3	
Cadmium	0.17J	mg/kg	0.56	0.15	1	08/25/22 06:01	08/26/22 16:34		
Chromium	8.2	mg/kg	1.1	0.31	1	08/25/22 06:01	08/26/22 16:34	7440-47-3	
Lead	45.0	mg/kg	2.2	0.67	1	08/25/22 06:01	08/26/22 16:34	7439-92-1	
Selenium	<1.5	mg/kg	4.5	1.5	1	08/25/22 06:01	08/26/22 16:34	7782-49-2	
Silver	<0.34	mg/kg	1.1	0.34	1	08/25/22 06:01	08/26/22 16:34	7440-22-4	
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ation Metho	od: EPA	A 7471			
	Pace Anal	ytical Service	s - Green Bay	′					
Mercury	0.046	mg/kg	0.038	0.011	1	08/25/22 08:19	08/26/22 07:52	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SI	Л Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	s - Green Bay	,					
Acenaphthene	52.6J	ug/kg	375	48.6	20	08/26/22 07:47	08/26/22 19:52	83-32-9	
Acenaphthylene	123J	ug/kg	375	47.2	20	08/26/22 07:47			
Anthracene	113J	ug/kg	375	46.5	20	08/26/22 07:47	08/26/22 19:52		
Benzo(a)anthracene	273J	ug/kg	375	48.4	20	08/26/22 07:47	08/26/22 19:52	56-55-3	
Benzo(a)pyrene	119J	ug/kg	375	42.6	20		08/26/22 19:52		
Benzo(b)fluoranthene	177J	ug/kg	375	52.0	20		08/26/22 19:52		
Benzo(g,h,i)perylene	<65.8	ug/kg	375	65.8	20	08/26/22 07:47			
Benzo(k)fluoranthene	63.9J	ug/kg	375	47.9	20	08/26/22 07:47	08/26/22 19:52	207-08-9	
Chrysene	321J	ug/kg	375	70.7	20	08/26/22 07:47	08/26/22 19:52	218-01-9	
Dibenz(a,h)anthracene	<51.9	ug/kg	375	51.9	20	08/26/22 07:47	08/26/22 19:52	53-70-3	
Fluoranthene	262J	ug/kg	375	44.4	20	08/26/22 07:47	08/26/22 19:52	206-44-0	
Fluorene	59.6J	ug/kg	375	44.9	20	08/26/22 07:47	08/26/22 19:52	86-73-7	
Indeno(1,2,3-cd)pyrene	<78.1	ug/kg	375	78.1	20	08/26/22 07:47	08/26/22 19:52	193-39-5	
1-Methylnaphthalene	3840	ug/kg	375	54.7	20	08/26/22 07:47	08/26/22 19:52	90-12-0	
2-Methylnaphthalene	4710	ug/kg	375	54.8 36.5	20	08/26/22 07:47	08/26/22 19:52 08/26/22 19:52		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-5 (1'-2') Lab ID: 40250229010 Collected: 08/19/22 12:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SIN	/ Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Bay						
Phenanthrene	1800	ug/kg	375	42.9	20	08/26/22 07:47	08/26/22 19:52	85-01-8	
Pyrene	362J	ug/kg	375	55.1	20	08/26/22 07:47	08/26/22 19:52	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	45	%	41-98		20	08/26/22 07:47	08/26/22 19:52	321-60-8	
Terphenyl-d14 (S)	60	%	37-106		20	08/26/22 07:47	08/26/22 19:52	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	10.9	%	0.10	0.10	1		08/24/22 16:38		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-5 (3'-4') Lab ID: 40250229011 Collected: 08/19/22 12:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Robe Analytical Method: EPA 8082A Preparation Method: EPA 3541 Pace Analytical Services - Green Bay	Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
PCB-1016 (Aroclor 1016)	8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	hod: El	PA 3541			
PCB-1221 (Árodor 1221)		Pace Anal	ytical Service	s - Green Bay	/					
PCB-1221 (Áncolor 1221)	PCB-1016 (Aroclor 1016)	<18.7	ua/ka	61.5	18.7	1	08/24/22 07:03	08/25/22 11:15	12674-11-2	
PCB-1232 (Aroclor 1232)	,									
PCB-1242 (Ancolor 1242)	,		0 0							
PCB-1248 (Aroclor 1248)										
PCB-1264 (Arcolor 1264)	` ,		0 0							
PCB-1260 (Arcolor 1260)			0 0							
PCB, Total	,	<18.7			18.7	1			11096-82-5	
Surrogates Tetrachioro-mxylene (S) 68 % 50-99 1 08/24/22 07:03 08/25/22 11:15 877-09-8 Boceachioro-biphenyl (S) 69 % 38-95 1 08/24/22 07:03 08/25/22 11:15 2051-24-3 6010D MET ICP Analytical Method: EPA 6010D Preparation Method: EPA 3050B Pace Analytical Services - Green Bay EPA 3050B 2000 No. 10	,	<18.7		61.5		1	08/24/22 07:03	08/25/22 11:15	1336-36-3	
Tetrachioro-m-xylene (\$) 68	-		3.3							
Analytical Method: EPA 6010D Preparation Method: EPA 3050B Pace Analytical Services - Green Bay		68	%	50-99		1	08/24/22 07:03	08/25/22 11:15	877-09-8	
Arsenic 2.1	Decachlorobiphenyl (S)	69	%	38-95		1	08/24/22 07:03	08/25/22 11:15	2051-24-3	
Arsenic 2.1 J mg/kg 3.0 1.7 1 08/25/22 06:01 08/26/22 16:37 7440-38-2 Barium 22.9 mg/kg 0.59 0.18 1 08/25/22 06:01 08/26/22 16:37 7440-39-3 Cadmium 40.16 mg/kg 0.59 0.16 1 08/25/22 06:01 08/26/22 16:37 7440-43-9 Chromium 15.6 mg/kg 1.2 0.33 1 08/25/22 06:01 08/26/22 16:37 7440-47-3 Lead 4.9 mg/kg 1.2 0.36 1 08/25/22 06:01 08/26/22 16:37 7440-47-3 Selenium <1.5 mg/kg 4.7 1.5 1 08/25/22 06:01 08/26/22 16:37 7439-92-1 Silver <0.36 mg/kg 1.2 0.36 1 08/25/22 06:01 08/26/22 16:37 7439-92-1 Silver Analytical Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 </td <td>6010D MET ICP</td> <td>Analytical</td> <td>Method: EPA</td> <td>6010D Prepa</td> <td>aration Met</td> <td>hod: E</td> <td>PA 3050B</td> <td></td> <td></td> <td></td>	6010D MET ICP	Analytical	Method: EPA	6010D Prepa	aration Met	hod: E	PA 3050B			
Barium 22.9 mg/kg 0.59 0.18 1 08/25/22 06:01 08/26/22 16:37 7440-39-3 Cadmium <0.16 mg/kg 0.59 0.16 1 08/25/22 06:01 08/26/22 16:37 7440-43-9 Chromium 15.6 mg/kg 1.2 0.33 1 08/25/22 06:01 08/26/22 16:37 7440-47-3 Lead 4.9 mg/kg 2.4 0.71 1 08/25/22 06:01 08/26/22 16:37 7430-92-1 Selenium <1.5 mg/kg 4.7 1.5 1 08/25/22 06:01 08/26/22 16:37 7430-92-1 Silver <0.36 mg/kg 4.7 1.5 1 08/25/22 06:01 08/26/22 16:37 7440-42-3 Type Mg/kg 4.7 1.5 1 08/25/22 06:01 08/26/22 16:37 7440-22-4 7471 Mercury Analytical Method: EPA 471 Preparation Method: EPA 471 Preparation Method: EPA 471 Preparation Method: EPA 471 Preparation Method: EPA 471 Preparation Method: EPA 3546 Preparation Method: EPA 3546 <th< td=""><td></td><td>Pace Anal</td><td>ytical Service</td><td>es - Green Bay</td><td>/</td><td></td><td></td><td></td><td></td><td></td></th<>		Pace Anal	ytical Service	es - Green Bay	/					
Barium	Arsenic	2.1J	mg/kg	3.0	1.7	1	08/25/22 06:01	08/26/22 16:37	7440-38-2	
Cadmium							08/25/22 06:01	08/26/22 16:37	7440-39-3	
Chromium 15.6 mg/kg 1.2 0.33 1 08/25/22 06:01 08/26/22 16:37 7440-47-3 Lead 4.9 mg/kg 2.4 0.71 1 08/25/22 06:01 08/26/22 16:37 7439-92-1 Selenium <1.5 mg/kg 4.7 1.5 1 08/25/22 06:01 08/26/22 16:37 7439-92-1 Silver <0.36 mg/kg 4.7 1.5 1 08/25/22 06:01 08/26/22 16:37 7440-22-4 7471 Mercury Analytical Method: EPA 4711 Preparation Method: EPA 57471 Preparation Method: EPA 57471 Mercury 0.015J mg/kg 0.039 0.011 1 08/25/22 08:19 08/26/22 07:54 7439-97-6 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 8270E by SIM Preparation Method: EPA 3546 Pace Analytical Method: EPA 8270E by SIM Preparation Method: EPA 8270E by SIM Preparation Method: EPA 8270E by SIM Nation Method: EPA 8270E by SIM Natio			0 0							
Lead 4.9 mg/kg 2.4 0.71 1 08/25/22 06:01 08/26/22 16:37 7439-92-1 Selenium <1.5 mg/kg 4.7 1.5 1 08/25/22 06:01 08/26/22 16:37 7782-49-2 Silver <0.36 mg/kg 4.7 1.5 1 08/25/22 06:01 08/26/22 16:37 7430-92-1 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 3540 Preparation Method: EPA 3540 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>						1				
Selenium 41.5 mg/kg 4.7 1.5 1 08/25/22 06:01 08/26/22 16:37 7782-49-2 Silver 40.36 mg/kg 1.2 0.36 1 08/25/22 06:01 08/26/22 16:37 7440-22-4 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 3540 98/26/22 07:54 7439-97-6 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3540 Prepar										
Silver 40.36 mg/kg 1.2 0.36 1 08/25/22 06:01 08/26/22 16:37 7440-22-4 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 Freparation Method: EPA 7471 Preparation Method: EPA 7471 Pre										
Pace Analytical Services - Green Bay Mercury 0.015J mg/kg 0.039 0.011 1 08/25/22 08:19 08/26/22 07:54 7439-97-6 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Preparation Method: EPA 3546 Pace Analytical Services - Green Bay Acenaphthene <2.7 ug/kg 20.6 2.7 1 08/26/22 07:47 08/26/22 16:43 83-32-9 Acenaphthylene <2.6 ug/kg 20.6 2.6 1 08/26/22 07:47 08/26/22 16:43 208-96-8 Anthracene <2.6 ug/kg 20.6 2.6 1 08/26/22 07:47 08/26/22 16:43 20-12-7 Benzo(a)anthracene <2.7 ug/kg 20.6 2.6 1 08/26/22 07:47 08/26/22 16:43 20-12-7 Benzo(a)pyrene <2.3 ug/kg 20.6 2.3 1 08/26/22 07:47 08/26/22 16:43 20-32-8 Benzo(b)fluoranthene <2.9 ug/kg 20.6 2.9 1 08/26/22 07:47 08/26/22 16:43 205-99-	Silver	<0.36				1				
Mercury 0.015J mg/kg 0.039 0.011 1 08/25/22 08:19 08/26/22 07:54 7439-97-6 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Acenaphthene 42.7 ug/kg 20.6 2.7 1 08/26/22 07:47 08/26/22 16:43 83-32-9 Acenaphthylene 42.6 ug/kg 20.6 2.6 1 08/26/22 07:47 08/26/22 16:43 208-96-8 Anthracene 42.6 ug/kg 20.6 2.6 1 08/26/22 07:47 08/26/22 16:43 208-96-8 Anthracene 42.6 ug/kg 20.6 2.6 1 08/26/22 07:47 08/26/22 16:43 209-96-8 Anthracene 42.7 ug/kg 20.6 2.7 1 08/26/22 07:47 08/26/22 16:43 209-96-8 Benzo(a)anthracene 42.3 ug/kg 20.6 2.7 1 08/26/22 07:47 08/26/22 16:43 50-35-3 Benzo(b)fluoranthene 42.9 ug/kg <td>7471 Mercury</td> <td>Analytical</td> <td>Method: EPA</td> <td>7471 Prepar</td> <td>ation Meth</td> <td>od: EP/</td> <td>A 7471</td> <td></td> <td></td> <td></td>	7471 Mercury	Analytical	Method: EPA	7471 Prepar	ation Meth	od: EP/	A 7471			
8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Acenaphthene <2.7 ug/kg 20.6 2.7 1 08/26/22 07:47 08/26/22 16:43 83-32-9 Acenaphthene <2.6		Pace Anal	ytical Service	es - Green Bay	/					
Acenaphthene	Mercury	0.015J	mg/kg	0.039	0.011	1	08/25/22 08:19	08/26/22 07:54	7439-97-6	
Acenaphthene	8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SI	M Prepara	tion Me	thod: EPA 3546			
Acenaphthylene <2.6 ug/kg 20.6 2.6 1 08/26/22 07:47 08/26/22 16:43 208-96-8 Anthracene <2.6		Pace Anal	ytical Service	es - Green Bay	/					
Acenaphthylene <2.6 ug/kg 20.6 2.6 1 08/26/22 07:47 08/26/22 16:43 208-96-8 Anthracene <2.6	Acenaphthene	<2.7	ua/ka	20.6	2.7	1	08/26/22 07:47	08/26/22 16:43	83-32-9	
Anthracene <2.6 ug/kg 20.6 2.6 1 08/26/22 07:47 08/26/22 16:43 120-12-7 Benzo(a)anthracene <2.7	•			20.6	2.6	1	08/26/22 07:47	08/26/22 16:43	208-96-8	
Benzo(a)anthracene <2.7 ug/kg 20.6 2.7 1 08/26/22 07:47 08/26/22 16:43 56-55-3 Benzo(a)pyrene <2.3	• •				2.6	1	08/26/22 07:47	08/26/22 16:43	120-12-7	
Benzo(a)pyrene <2.3 ug/kg 20.6 2.3 1 08/26/22 07:47 08/26/22 16:43 50-32-8 Benzo(b)fluoranthene <2.9	Benzo(a)anthracene		ug/kg	20.6	2.7	1	08/26/22 07:47	08/26/22 16:43	56-55-3	
Benzo(b)fluoranthene <2.9 ug/kg 20.6 2.9 1 08/26/22 07:47 08/26/22 16:43 205-99-2 Benzo(g,h,i)perylene <3.6	Benzo(a)pyrene	<2.3		20.6	2.3	1	08/26/22 07:47	08/26/22 16:43	50-32-8	
Benzo(g,h,i)perylene <3.6	Benzo(b)fluoranthene	<2.9		20.6	2.9	1	08/26/22 07:47	08/26/22 16:43	205-99-2	
Chrysene <3.9 ug/kg 20.6 3.9 1 08/26/22 07:47 08/26/22 16:43 218-01-9 Dibenz(a,h)anthracene <2.9		<3.6		20.6	3.6	1	08/26/22 07:47	08/26/22 16:43	191-24-2	
Chrysene <3.9 ug/kg 20.6 3.9 1 08/26/22 07:47 08/26/22 16:43 218-01-9 Dibenz(a,h)anthracene <2.9	Benzo(k)fluoranthene	<2.6	ug/kg	20.6	2.6	1	08/26/22 07:47	08/26/22 16:43	207-08-9	
Dibenz(a,h)anthracene <2.9 ug/kg 20.6 2.9 1 08/26/22 07:47 08/26/22 16:43 53-70-3 Fluoranthene <2.4 ug/kg 20.6 2.4 1 08/26/22 07:47 08/26/22 16:43 206-44-0 Fluorene <2.5 ug/kg 20.6 2.5 1 08/26/22 07:47 08/26/22 16:43 86-73-7	Chrysene	<3.9		20.6	3.9	1	08/26/22 07:47	08/26/22 16:43	218-01-9	
Fluoranthene	Dibenz(a,h)anthracene			20.6		1	08/26/22 07:47	08/26/22 16:43	53-70-3	
Fluorene <2.5 ug/kg 20.6 2.5 1 08/26/22 07:47 08/26/22 16:43 86-73-7		<2.4		20.6	2.4	1	08/26/22 07:47	08/26/22 16:43	206-44-0	
	Fluorene	<2.5		20.6	2.5	1	08/26/22 07:47	08/26/22 16:43	86-73-7	
Indeno(1,2,3-cd)pyrene <4.3 ug/kg 20.6 4.3 1 08/26/22 07:47 08/26/22 16:43 193-39-5	Indeno(1,2,3-cd)pyrene	<4.3	ug/kg	20.6	4.3	1	08/26/22 07:47	08/26/22 16:43	193-39-5	
1-Methylnaphthalene <3.0 ug/kg 20.6 3.0 1 08/26/22 07:47 08/26/22 16:43 90-12-0	1-Methylnaphthalene	<3.0		20.6	3.0	1	08/26/22 07:47	08/26/22 16:43	90-12-0	
2-Methylnaphthalene <3.0 ug/kg 20.6 3.0 1 08/26/22 07:47 08/26/22 16:43 91-57-6	2-Methylnaphthalene	<3.0	ug/kg	20.6	3.0	1	08/26/22 07:47	08/26/22 16:43	91-57-6	
Naphthalene <2.0 ug/kg 20.6 2.0 1 08/26/22 07:47 08/26/22 16:43 91-20-3	Naphthalene	<2.0	ug/kg	20.6	2.0	1	08/26/22 07:47	08/26/22 16:43	91-20-3	

(920)469-2436

ANALYTICAL RESULTS

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-5 (3'-4') Lab ID: 40250229011 Collected: 08/19/22 12:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	,		A 8270E by SIM es - Green Bay		ion Me	ethod: EPA 3546			
Phenanthrene	<2.4	ug/kg	20.6	2.4	1	08/26/22 07:47	08/26/22 16:43	85-01-8	
Pyrene Surrogates	<3.0	ug/kg	20.6	3.0	1	08/26/22 07:47	08/26/22 16:43	129-00-0	
2-Fluorobiphenyl (S)	57	%	41-98		1	08/26/22 07:47	08/26/22 16:43	321-60-8	
Terphenyl-d14 (S)	68	%	37-106		1	08/26/22 07:47	08/26/22 16:43	1718-51-0	
Percent Moisture	,		TM D2974-87 es - Green Bay						
Percent Moisture	18.9	%	0.10	0.10	1		08/24/22 16:38		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-6 (1'-2') Lab ID: 40250229012 Collected: 08/19/22 12:40 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

8082A GCS PCB	Analytical								
		Method: EPA	8082A Prepa	aration Met	nod: El	PA 3541			
	Pace Anal	ytical Service	s - Green Bay	,					
PCB-1016 (Aroclor 1016)	<16.4	ug/kg	53.9	16.4	1	08/24/22 07:03	08/25/22 11:37	12674-11-2	
PCB-1221 (Aroclor 1221)	<16.4	ug/kg	53.9	16.4	1	08/24/22 07:03	08/25/22 11:37		
PCB-1232 (Aroclor 1232)	<16.4	ug/kg	53.9	16.4	1		08/25/22 11:37		
PCB-1242 (Aroclor 1242)	<16.4	ug/kg	53.9	16.4	1	08/24/22 07:03			
PCB-1248 (Aroclor 1248)	<16.4	ug/kg	53.9	16.4	1	08/24/22 07:03			
PCB-1254 (Aroclor 1254)	<16.4	ug/kg	53.9	16.4	1	08/24/22 07:03			
PCB-1260 (Aroclor 1260)	19.0J	ug/kg	53.9	16.4	1	08/24/22 07:03	08/25/22 11:37		
PCB, Total	19.0J	ug/kg	53.9	16.4	1	08/24/22 07:03			
Surrogates		- 3- 3							
Tetrachloro-m-xylene (S)	51	%	50-99		1	08/24/22 07:03	08/25/22 11:37	877-09-8	
Decachlorobiphenyl (S)	57	%	38-95		1	08/24/22 07:03	08/25/22 11:37	2051-24-3	
6010D MET ICP	Analytical	Method: EPA	6010D Prepa	aration Met	hod: El	PA 3050B			
	Pace Anal	ytical Service	s - Green Bay	′					
Arsenic	16.2	mg/kg	2.5	1.4	1	08/25/22 06:01	08/26/22 16:44	7440-38-2	
Barium	92.6	mg/kg	0.49	0.15	1	08/25/22 06:01	08/26/22 16:44	7440-39-3	
Cadmium	0.40J	mg/kg	0.49	0.13	1	08/25/22 06:01	08/26/22 16:44		
Chromium	24.7	mg/kg	0.99	0.27	1	08/25/22 06:01	08/26/22 16:44	7440-47-3	
Lead	318	mg/kg	2.0	0.59	1	08/25/22 06:01	08/26/22 16:44		
Selenium	3.0J	mg/kg	3.9	1.3	1	08/25/22 06:01	08/26/22 16:44		
Silver	0.48J	mg/kg	0.99	0.30	1	08/25/22 06:01	08/26/22 16:44	7440-22-4	
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ation Metho	od: EPA	A 7471			
	Pace Anal	ytical Service	s - Green Bay	′					
Mercury	0.12	mg/kg	0.035	0.010	1	08/25/22 08:19	08/26/22 07:56	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SIM	Л Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	s - Green Bay	,					
Acenaphthene	29.4J	ug/kg	90.3	11.7	5	08/26/22 07:47	08/26/22 19:35	83-32-9	
Acenaphthylene	57.8J	ug/kg	90.3	11.4	5	08/26/22 07:47	08/26/22 19:35	208-96-8	
Anthracene	65.8J	ug/kg	90.3	11.2	5	08/26/22 07:47	08/26/22 19:35	120-12-7	
Benzo(a)anthracene	136	ug/kg	90.3	11.7	5	08/26/22 07:47	08/26/22 19:35	56-55-3	
Benzo(a)pyrene	77.1J	ug/kg	90.3	10.3	5	08/26/22 07:47	08/26/22 19:35	50-32-8	
Benzo(b)fluoranthene	148	ug/kg	90.3	12.5	5	08/26/22 07:47	08/26/22 19:35	205-99-2	
Benzo(g,h,i)perylene	34.6J	ug/kg	90.3	15.8	5	08/26/22 07:47	08/26/22 19:35	191-24-2	
Benzo(k)fluoranthene	45.4J	ug/kg	90.3	11.5	5	08/26/22 07:47	08/26/22 19:35	207-08-9	
Chrysene	181	ug/kg	90.3	17.0	5	08/26/22 07:47	08/26/22 19:35	218-01-9	
Dibenz(a,h)anthracene	16.1J	ug/kg	90.3	12.5	5	08/26/22 07:47	08/26/22 19:35	53-70-3	
Fluoranthene	172	ug/kg	90.3	10.7	5	08/26/22 07:47	08/26/22 19:35	206-44-0	
Fluorene	31.9J	ug/kg	90.3	10.8	5	08/26/22 07:47	08/26/22 19:35	86-73-7	
Indeno(1,2,3-cd)pyrene	30.2J	ug/kg	90.3	18.8	5	08/26/22 07:47	08/26/22 19:35	193-39-5	
1-Methylnaphthalene	1610	ug/kg	90.3	13.2	5	08/26/22 07:47	08/26/22 19:35	90-12-0	
2-Methylnaphthalene	1970	ug/kg	90.3	13.2	5	08/26/22 07:47	08/26/22 19:35	91-57-6	
Naphthalene	1430	ug/kg	90.3	8.8	5	08/26/22 07:47	08/26/22 19:35	91-20-3	

(920)469-2436

ANALYTICAL RESULTS

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-6 (1'-2') Lab ID: 40250229012 Collected: 08/19/22 12:40 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	•		•	•	ion Me	ethod: EPA 3546			
	Pace Anal	ytical Service	es - Green Bay	/					
Phenanthrene	846	ug/kg	90.3	10.3	5	08/26/22 07:47	08/26/22 19:35	85-01-8	
Pyrene	204	ug/kg	90.3	13.3	5	08/26/22 07:47	08/26/22 19:35	129-00-0	
Surrogates		0 0							
2-Fluorobiphenyl (S)	56	%	41-98		5	08/26/22 07:47	08/26/22 19:35	321-60-8	
Terphenyl-d14 (S)	67	%	37-106		5	08/26/22 07:47	08/26/22 19:35	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Bay	/					
Percent Moisture	7.5	%	0.10	0.10	1		08/24/22 16:38		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-6 (2'-3') Lab ID: 40250229013 Collected: 08/19/22 12:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

8082A GCS PCB					DF	Prepared	Analyzed	CAS No.	Qual
OUOLA GOOT OD	Analytical	Method: EPA	8082A Prepa	aration Met	hod: El	PA 3541			
	Pace Anal	ytical Service	s - Green Bay	,					
PCB-1016 (Aroclor 1016)	<18.1	ug/kg	59.6	18.1	1	08/24/22 07:03	08/25/22 11:58	12674-11-2	
PCB-1221 (Aroclor 1221)	<18.1	ug/kg ug/kg	59.6	18.1	1	08/24/22 07:03		11104-28-2	
PCB-1232 (Aroclor 1232)	<18.1	ug/kg ug/kg	59.6	18.1	1	08/24/22 07:03			
PCB-1242 (Aroclor 1242)	<18.1	ug/kg ug/kg	59.6	18.1	1	08/24/22 07:03			
PCB-1248 (Aroclor 1248)	<18.1	ug/kg ug/kg	59.6	18.1	1	08/24/22 07:03			
PCB-1254 (Aroclor 1254)	<18.1	ug/kg ug/kg	59.6	18.1	1	08/24/22 07:03			
PCB-1260 (Aroclor 1260)	<18.1	ug/kg	59.6	18.1	1	08/24/22 07:03		11096-82-5	
PCB, Total	<18.1	ug/kg	59.6	18.1	1	08/24/22 07:03			
Surrogates	1.0	~g/g	33.3		•	00/2 1/22 07 100	00/20/2200	.000 00 0	
Tetrachloro-m-xylene (S)	53	%	50-99		1	08/24/22 07:03	08/25/22 11:58	877-09-8	
Decachlorobiphenyl (S)	59	%	38-95		1	08/24/22 07:03	08/25/22 11:58	2051-24-3	
6010D MET ICP	Analytical	Method: EPA	.6010D Prepa	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	s - Green Bay	′					
Arsenic	11.3	mg/kg	2.8	1.7	1	08/25/22 06:01	08/26/22 16:46	7440-38-2	
Barium	110	mg/kg	0.56	0.17	1	08/25/22 06:01	08/26/22 16:46	7440-39-3	
Cadmium	0.58	mg/kg	0.56	0.15	1	08/25/22 06:01	08/26/22 16:46	7440-43-9	
Chromium	10.7	mg/kg	1.1	0.31	1	08/25/22 06:01	08/26/22 16:46	7440-47-3	
Lead	162	mg/kg	2.3	0.68	1	08/25/22 06:01	08/26/22 16:46	7439-92-1	
Selenium	2.2J	mg/kg	4.5	1.5	1	08/25/22 06:01	08/26/22 16:46	7782-49-2	
Silver	0.36J	mg/kg	1.1	0.35	1	08/25/22 06:01	08/26/22 16:46	7440-22-4	
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ation Meth	od: EP/	A 7471			
	Pace Anal	ytical Service	s - Green Bay	′					
Mercury	0.043	mg/kg	0.040	0.012	1	08/25/22 08:19	08/26/22 08:03	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SIM	Л Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	s - Green Bay	′					
Acenaphthene	<10.3	ug/kg	79.5	10.3	4	08/26/22 07:47	08/26/22 18:27	83-32-9	
Acenaphthylene	57.6J	ug/kg	79.5	10.0	4	08/26/22 07:47	08/26/22 18:27	208-96-8	
Anthracene	43.1J	ug/kg	79.5	9.9	4	08/26/22 07:47	08/26/22 18:27	120-12-7	
Benzo(a)anthracene	97.7	ug/kg	79.5	10.3	4	08/26/22 07:47	08/26/22 18:27	56-55-3	
Benzo(a)pyrene	61.9J	ug/kg	79.5	9.0	4	08/26/22 07:47	08/26/22 18:27	50-32-8	
Benzo(b)fluoranthene	186	ug/kg	79.5	11.0	4	08/26/22 07:47	08/26/22 18:27	205-99-2	
Benzo(g,h,i)perylene	64.1J	ug/kg	79.5	13.9	4	08/26/22 07:47	08/26/22 18:27	191-24-2	
Benzo(k)fluoranthene	58.2J	ug/kg	79.5	10.2	4	08/26/22 07:47	08/26/22 18:27	207-08-9	
Chrysene	188	ug/kg	79.5	15.0	4	08/26/22 07:47	08/26/22 18:27	218-01-9	
Dibenz(a,h)anthracene	21.2J	ug/kg	79.5	11.0	4	08/26/22 07:47	08/26/22 18:27	53-70-3	
Fluoranthene	221	ug/kg	79.5	9.4	4	08/26/22 07:47	08/26/22 18:27	206-44-0	
Fluorene	19.0J	ug/kg	79.5	9.5	4	08/26/22 07:47	08/26/22 18:27	86-73-7	
Indeno(1,2,3-cd)pyrene	51.5J	ug/kg	79.5	16.6	4	08/26/22 07:47	08/26/22 18:27	193-39-5	
1-Methylnaphthalene	741	ug/kg	79.5	11.6	4	08/26/22 07:47	08/26/22 18:27	90-12-0	
2-Methylnaphthalene	909	ug/kg	79.5	11.6	4	08/26/22 07:47	08/26/22 18:27	91-57-6	
Naphthalene	701	ug/kg	79.5	7.7	4	08/26/22 07:47	08/26/22 18:27	91-20-3	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-6 (2'-3') Lab ID: 40250229013 Collected: 08/19/22 12:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	,		8270E by SIM	•	ion Me	ethod: EPA 3546			
		•	,						
Phenanthrene	573	ug/kg	79.5	9.1	4	08/26/22 07:47	08/26/22 18:27	85-01-8	
Pyrene	191	ug/kg	79.5	11.7	4	08/26/22 07:47	08/26/22 18:27	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	52	%	41-98		4	08/26/22 07:47	08/26/22 18:27	321-60-8	
Terphenyl-d14 (S)	63	%	37-106		4	08/26/22 07:47	08/26/22 18:27	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Bay	<i>'</i>					
Percent Moisture	16.0	%	0.10	0.10	1		08/24/22 16:38		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-7 (1'-2') Lab ID: 40250229014 Collected: 08/19/22 13:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Method: EPA 8082A Preparation Method: EPA 3541 Pace Analytical Services - Green Bay PCB-1016 (Arcolor 1021) -16.8 ug/kg 55.0 16.8 1 08/24/22 07:03 08/25/22 12:20 11104-12-12-12-12-12-12-12-12-12-12-12-12-12-	Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
PCB-1016 (Aroclor 1016)	8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	hod: El	PA 3541			
PCB-1221 (Aroclor 1221)		Pace Anal	ytical Service	s - Green Bay	y					
PCB-1221 (Áncolor 1221)	PCB-1016 (Aroclor 1016)	<16.8	ua/ka	55.0	16.8	1	08/24/22 07:03	08/25/22 12:20	12674-11-2	
PCB-1232 (Aroclor 1232)	,									
PCB-1242 (Ancolor 1242 16.8 ug/kg 55.0 16.8 1 08/24/22 07:03 08/25/22 12:20 53469-21-9 PCB-1254 (Ancolor 1264) 416.8 ug/kg 55.0 16.8 1 08/24/22 07:03 08/25/22 12:20 1097-69-1 PCB-1260 (Ancolor 1260) 416.8 ug/kg 55.0 16.8 1 08/24/22 07:03 08/25/22 12:20 11097-69-1 PCB-1260 (Ancolor 1260) 416.8 ug/kg 55.0 16.8 1 08/24/22 07:03 08/25/22 12:20 11096-82-5 PCB-1260 (Ancolor 1260) 416.8 ug/kg 55.0 16.8 1 08/24/22 07:03 08/25/22 12:20 11096-82-5 PCB-1260 (Ancolor 1260) 75.0 7	*		0 0							
PCB-1248 (Aroclor 1248)										
PCB-1254 (Aroclor 1254)	` ,									
			0 0			1			11097-69-1	
PCB, Total	,	<16.8		55.0	16.8	1			11096-82-5	
Surrogates Tetrachioro-m-xylene (S) 59 % 50-99 1 08/24/22 07:03 08/25/22 12:20 877-09-8 Decachioro-m-xylene (S) 63 % 38-95 1 08/24/22 07:03 08/25/22 12:20 2051-24-3 6010D MET ICP Analytical Method: EPA 6010D Preparation Method: EPA 3050B Pace Analytical Services - Green Bay EPA 3050B 24.6 mg/kg 2.7 1.6 1 08/25/22 06:01 08/26/22 16:49 7440-38-2 Barium 24.6 mg/kg 0.54 0.16 1 08/25/22 06:01 08/26/22 16:49 7440-39-3 0.04 0.16 08/25/22 06:01 08/26/22 16:49 7440-39-3 0.04 0.1 08/25/22 06:01 08/26/22 16:49 7440-47-3 0.04 0.0 08/25/22 06:01 08/26/22 16:49 7440-47-3 0.04 0.0 08/25/22 06:01 08/26/22 16:49 7440-47-3 0.04 0.0 08/25/22 06:01 08/26/22 16:49 7440-47-3 0.04 0.0 08/26/22 06:01 08/26/22 16:49 7440-47-3 0.04 0.0 0.025/22 06:01 08/26/22	*	<16.8		55.0		1	08/24/22 07:03	08/25/22 12:20	1336-36-3	
Decachlorobiphenyl (S) 63 % 38-95 1 08/24/22 07:03 08/25/22 12:20 2051-24-3 6010D MET ICP Analytical Method: EPA 6010D Preparation Method: EPA 3050B Pace Analytical Services - Green Bay Arsenic 41.6 mg/kg 2.7 1.6 1 08/25/22 06:01 08/26/22 16:49 7440-38-2 Barium 24.6 mg/kg 0.54 0.16 1 08/25/22 06:01 08/26/22 16:49 7440-39-3 Cadmium 0.69 mg/kg 0.54 0.14 1 08/25/22 06:01 08/26/22 16:49 7440-43-9 Chromium 9.4 mg/kg 1.1 0.30 1 08/25/22 06:01 08/26/22 16:49 7440-47-3 Lead 50.9 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7440-47-3 Selenium -1.4 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7440-42-3 Selenium -1.4 mg/kg 4.3 1.4 1 08/25/22 06:01	-		0 0							
Analytical Method: EPA 6010D Prepartion Method: EPA 3050B Pace Analytical Services - Green Bay	Tetrachloro-m-xylene (S)	59	%	50-99		1	08/24/22 07:03	08/25/22 12:20	877-09-8	
Pace Analytical Services - Green Bay Arsenic <1.6 mg/kg 2.7 1.6 1 08/25/22 06:01 08/26/22 16:49 7440-38-2 Barium 24.6 mg/kg 0.54 0.16 1 08/25/22 06:01 08/26/22 16:49 7440-39-3 Cadmium 0.69 mg/kg 0.54 0.14 1 08/25/22 06:01 08/26/22 16:49 7440-43-9 Chromium 9.4 mg/kg 1.1 0.30 1 08/25/22 06:01 08/26/22 16:49 7440-43-9 Lead 50.9 mg/kg 2.2 0.65 1 08/25/22 06:01 08/26/22 16:49 7439-92-1 Selenium <1.4	Decachlorobiphenyl (S)	63	%	38-95		1	08/24/22 07:03	08/25/22 12:20	2051-24-3	
Arsenic <1.6 mg/kg 2.7 1.6 1 08/25/22 06:01 08/26/22 16:49 7440-38-2 Barium 24.6 mg/kg 0.54 0.16 1 08/25/22 06:01 08/26/22 16:49 7440-39-3 Cadmium 0.69 mg/kg 0.54 0.14 1 08/25/22 06:01 08/26/22 16:49 7440-43-9 Chromium 9.4 mg/kg 1.1 0.30 1 08/25/22 06:01 08/26/22 16:49 7440-47-3 Lead 50.9 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7439-92-1 Selenium <1.4	6010D MET ICP	Analytical	Method: EPA	6010D Prep	aration Met	hod: E	PA 3050B			
Barium 24.6 mg/kg 0.54 0.16 1 08/25/22 06:01 08/26/22 16:49 7440-39-3 Cadmium 0.69 mg/kg 0.54 0.14 1 08/25/22 06:01 08/26/22 16:49 7440-43-9 Chromium 9.4 mg/kg 1.1 0.30 1 08/25/22 06:01 08/26/22 16:49 7440-47-39 Lead 50.9 mg/kg 2.2 0.65 1 08/25/22 06:01 08/26/22 16:49 7430-93-1 Selenium <1.4 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7430-92-1 Silver -1.4 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7440-22-4 Type and t		Pace Anal	ytical Service	es - Green Bay	У					
Barium 24.6 mg/kg 0.54 0.16 1 08/25/22 06:01 08/26/22 16:49 7440-39-3 Cadmium 0.69 mg/kg 0.54 0.14 1 08/25/22 06:01 08/26/22 16:49 7440-39-9 Chromium 9.4 mg/kg 1.1 0.30 1 08/25/22 06:01 08/26/22 16:49 7440-47-39 Lead 50.9 mg/kg 2.2 0.65 1 08/25/22 06:01 08/26/22 16:49 7430-49-2 Selenium <1.4 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7430-92-1 Silver -1.4 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7440-22-4 Type analytical Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 08/25/22 08:09 08/26/22 08:09 7439-97-6 A 1.3 mg/kg 0.035 0.010 1 08/25/22 08:10 08/26/22 08:06 7439-97-6 A 2.3 </td <td>Arsenic</td> <td><1.6</td> <td>mg/kg</td> <td>2.7</td> <td>1.6</td> <td>1</td> <td>08/25/22 06:01</td> <td>08/26/22 16:49</td> <td>7440-38-2</td> <td></td>	Arsenic	<1.6	mg/kg	2.7	1.6	1	08/25/22 06:01	08/26/22 16:49	7440-38-2	
Cadmium 0.69 mg/kg 0.54 0.14 1 08/25/22 06:01 08/26/22 16:49 7440-43-9 Chromium 9.4 mg/kg 1.1 0.30 1 08/25/22 06:01 08/26/22 16:49 7440-47-3 Lead 50.9 mg/kg 2.2 0.65 1 08/25/22 06:01 08/26/22 16:49 7439-92-1 Selenium <1.4 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7439-92-1 Silver <0.33 mg/kg 4.1 0.33 1 08/25/22 06:01 08/26/22 16:49 7439-92-1 Silver <0.33 mg/kg 1.1 0.33 1 08/25/22 06:01 08/26/22 16:49 7440-22-4 7471 Mercury Analytical Wethod: EPA 7471 Preparation Method: EPA 7471	Barium	24.6		0.54	0.16	1	08/25/22 06:01	08/26/22 16:49	7440-39-3	
Chromium 9.4 mg/kg 1.1 0.30 1 08/25/22 06:01 08/26/22 16:49 7440-47-3 Lead 50.9 mg/kg 2.2 0.65 1 08/25/22 06:01 08/26/22 16:49 7439-92-1 Selenium <1.4 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7439-92-1 Silver <0.33 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7440-22-4 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 Preparation Method: EPA 7471 Pace Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Pace Masky PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Pace Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Pace Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Pace Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Pace Analytical Method: EPA 827	Cadmium	0.69	mg/kg	0.54		1	08/25/22 06:01	08/26/22 16:49	7440-43-9	
Lead 50.9 mg/kg 2.2 0.65 1 08/25/22 06:01 08/26/22 16:49 7439-92-1 Selenium 41.4 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7439-92-1 Silver 40.33 mg/kg 4.3 1.4 1 08/25/22 06:01 08/26/22 16:49 7430-92-1 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 EPA FACTOR Bay Mercury Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Method: Metho	Chromium	9.4		1.1	0.30	1		08/26/22 16:49	7440-47-3	
Selenium California Calif	Lead	50.9				1	08/25/22 06:01	08/26/22 16:49	7439-92-1	
Silver 40.33 mg/kg 1.1 0.33 1 08/25/22 06:01 08/26/22 16:49 7440-22-4 7471 Mercury Analytical Method: EPA 7471 Preparative Method: EPA 7471 Freparative Method: EPA 7471 Mercury 0.15 mg/kg 0.035 0.010 1 08/25/22 08:19 08/26/22 08:06 7439-97-6 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparative Method: EPA 8270E by SIM Preparative Method: EPA 3546 Page Analytical Services Services Preparative Method: EPA 3546 Page Analytical Services Preparative Method: EPA 3546 Page Analytical Services Preparative Method: EPA 3546 Page Analytical Services Preparative Method: EPA 3546 Preparative Method: EPA 3546 Page Analytical Services Page Analytical	Selenium	<1.4			1.4	1		08/26/22 16:49	7782-49-2	
Pace Analytical Services - Green Bay Mercury 0.15 mg/kg 0.035 0.010 1 08/25/22 08:19 08/26/22 08:06 7439-97-6 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Preparation Method: EPA 3546 Pace Analytical Services - Green Bay Acenaphthene <2.4 ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 83-32-9 Acenaphthylene <2.3 ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 208-96-8 Anthracene 3.4J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 208-96-8 Anthracene 3.0J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 201-2-7 Benzo(a)anthracene 7.8J ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 50-32-8 Benzo(b)fluoranthene 9.7J ug/kg 18.4 2.6 1 08/26/22 07:47 08/26/22 17:01 205-99-2 <td>Silver</td> <td><0.33</td> <td></td> <td>1.1</td> <td>0.33</td> <td>1</td> <td>08/25/22 06:01</td> <td>08/26/22 16:49</td> <td>7440-22-4</td> <td></td>	Silver	<0.33		1.1	0.33	1	08/25/22 06:01	08/26/22 16:49	7440-22-4	
Mercury 0.15 mg/kg 0.035 0.010 1 08/25/22 08:19 08/26/22 08:06 7439-97-6 8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Preparation Method: EPA 3546 Preparation Method: EPA 3546 Acenaphthene <2.4 ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 83-32-9 Acenaphthylene <2.3 ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 208-96-8 Anthracene 3.4J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 208-96-8 Anthracene 3.4J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 209-12-17 Benzo(a)anthracene 8.0J ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 56-55-3 Benzo(a)pyrene 7.8J ug/kg 18.4 2.1 1 08/26/22 07:47 08/26/22 17:01 50-32-8 Benzo(b)fluoranthene 9.7J ug/kg	7471 Mercury	Analytical	Method: EPA	7471 Prepar	ration Meth	od: EP/	A 7471			
8270E MSSV PAH by SIM Analytical Method: EPA 8270E by SIM Preparation Method: EPA 3546 Acenaphthene <2.4 ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 83-32-9 Acenaphthylene <2.3 ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 208-96-8 Anthracene 3.4J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 120-12-7 Benzo(a)anthracene 8.0J ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 120-12-7 Benzo(a)pyrene 7.8J ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 50-32-8 Benzo(b)fluoranthene 9.7J ug/kg 18.4 2.6 1 08/26/22 07:47 08/26/22 17:01 50-32-8 Benzo(k)fluoranthene 4.6J ug/kg 18.4 2.6 1 08/26/22 07:47 08/26/22 17:01 207-08-9 Chrysene 13.3J ug/kg 18.4 2.5 1		Pace Anal	ytical Service	es - Green Bay	У					
Pace Analytical Services - Green Bay Acenaphthene <2.4 ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 83-32-9 Acenaphthylene <2.3	Mercury	0.15	mg/kg	0.035	0.010	1	08/25/22 08:19	08/26/22 08:06	7439-97-6	
Acenaphthene	8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SII	M Prepara	ion Me	thod: EPA 3546			
Acenaphthylene <2.3 ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 208-96-8 Anthracene 3.4J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 120-12-7 Benzo(a)anthracene 8.0J ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 56-55-3 Benzo(a)pyrene 7.8J ug/kg 18.4 2.1 1 08/26/22 07:47 08/26/22 17:01 56-55-3 Benzo(b)fluoranthene 9.7J ug/kg 18.4 2.6 1 08/26/22 07:47 08/26/22 17:01 205-99-2 Benzo(g,h,i)perylene 4.5J ug/kg 18.4 3.2 1 08/26/22 07:47 08/26/22 17:01 191-24-2 Benzo(k)fluoranthene 4.6J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 207-08-9 Chrysene 13.3J ug/kg 18.4 3.5 1 08/26/22 07:47 08/26/22 17:01 218-01-9 Dibenz(a,h)anthracene		Pace Anal	ytical Service	s - Green Bay	y					
Acenaphthylene <2.3 ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 208-96-8 Anthracene 3.4J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 120-12-7 Benzo(a)anthracene 8.0J ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 56-55-3 Benzo(a)pyrene 7.8J ug/kg 18.4 2.1 1 08/26/22 07:47 08/26/22 17:01 56-55-3 Benzo(b)fluoranthene 9.7J ug/kg 18.4 2.6 1 08/26/22 07:47 08/26/22 17:01 205-99-2 Benzo(g,h,i)perylene 4.5J ug/kg 18.4 3.2 1 08/26/22 07:47 08/26/22 17:01 191-24-2 Benzo(k)fluoranthene 4.6J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 207-08-9 Chrysene 13.3J ug/kg 18.4 3.5 1 08/26/22 07:47 08/26/22 17:01 218-01-9 Dibenz(a,h)anthracene	Acenaphthene	<2.4	ug/kg	18.4	2.4	1	08/26/22 07:47	08/26/22 17:01	83-32-9	
Anthracene 3.4J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 120-12-7 Benzo(a)anthracene 8.0J ug/kg 18.4 2.4 1 08/26/22 07:47 08/26/22 17:01 56-55-3 Benzo(a)pyrene 7.8J ug/kg 18.4 2.1 1 08/26/22 07:47 08/26/22 17:01 50-32-8 Benzo(b)fluoranthene 9.7J ug/kg 18.4 2.6 1 08/26/22 07:47 08/26/22 17:01 205-99-2 Benzo(g,h,i)perylene 4.5J ug/kg 18.4 3.2 1 08/26/22 07:47 08/26/22 17:01 191-24-2 Benzo(k)fluoranthene 4.6J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 207-08-9 Chrysene 13.3J ug/kg 18.4 3.5 1 08/26/22 07:47 08/26/22 17:01 218-01-9 Dibenz(a,h)anthracene 2.5 ug/kg 18.4 2.5 1 08/26/22 07:47 08/26/22 17:01 53-70-3 Fluoranthene 18.0J ug/kg 18.4 2.2 1 08/26/22 07:47 08/	•			18.4	2.3	1	08/26/22 07:47	08/26/22 17:01	208-96-8	
Benzo(a)pyrene 7.8J ug/kg 18.4 2.1 1 08/26/22 07:47 08/26/22 17:01 50-32-8 Benzo(b)fluoranthene 9.7J ug/kg 18.4 2.6 1 08/26/22 07:47 08/26/22 17:01 205-99-2 Benzo(g,h,i)perylene 4.5J ug/kg 18.4 3.2 1 08/26/22 07:47 08/26/22 17:01 191-24-2 Benzo(k)fluoranthene 4.6J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 207-08-9 Chrysene 13.3J ug/kg 18.4 3.5 1 08/26/22 07:47 08/26/22 17:01 218-01-9 Dibenz(a,h)anthracene <2.5	• •	3.4J		18.4	2.3	1	08/26/22 07:47	08/26/22 17:01	120-12-7	
Benzo(a)pyrene 7.8J ug/kg 18.4 2.1 1 08/26/22 07:47 08/26/22 17:01 50-32-8 Benzo(b)fluoranthene 9.7J ug/kg 18.4 2.6 1 08/26/22 07:47 08/26/22 17:01 205-99-2 Benzo(g,h,i)perylene 4.5J ug/kg 18.4 3.2 1 08/26/22 07:47 08/26/22 17:01 191-24-2 Benzo(k)fluoranthene 4.6J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 207-08-9 Chrysene 13.3J ug/kg 18.4 3.5 1 08/26/22 07:47 08/26/22 17:01 218-01-9 Dibenz(a,h)anthracene <2.5	Benzo(a)anthracene	8.0J	ug/kg	18.4	2.4	1	08/26/22 07:47	08/26/22 17:01	56-55-3	
Benzo(b)fluoranthene 9.7J ug/kg 18.4 2.6 1 08/26/22 07:47 08/26/22 17:01 205-99-2 Benzo(g,h,i)perylene 4.5J ug/kg 18.4 3.2 1 08/26/22 07:47 08/26/22 17:01 191-24-2 Benzo(k)fluoranthene 4.6J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 207-08-9 Chrysene 13.3J ug/kg 18.4 3.5 1 08/26/22 07:47 08/26/22 17:01 218-01-9 Dibenz(a,h)anthracene <2.5	Benzo(a)pyrene	7.8J		18.4	2.1	1	08/26/22 07:47	08/26/22 17:01	50-32-8	
Benzo(g,h,i)perylene 4.5J ug/kg 18.4 3.2 1 08/26/22 07:47 08/26/22 17:01 191-24-2 Benzo(k)fluoranthene 4.6J ug/kg 18.4 2.3 1 08/26/22 07:47 08/26/22 17:01 207-08-9 Chrysene 13.3J ug/kg 18.4 3.5 1 08/26/22 07:47 08/26/22 17:01 218-01-9 Dibenz(a,h)anthracene <2.5	Benzo(b)fluoranthene	9.7J		18.4	2.6	1	08/26/22 07:47	08/26/22 17:01	205-99-2	
Chrysene 13.3J ug/kg 18.4 3.5 1 08/26/22 07:47 08/26/22 17:01 218-01-9 Dibenz(a,h)anthracene <2.5		4.5J		18.4	3.2	1	08/26/22 07:47	08/26/22 17:01	191-24-2	
Chrysene 13.3J ug/kg 18.4 3.5 1 08/26/22 07:47 08/26/22 17:01 218-01-9 Dibenz(a,h)anthracene <2.5	Benzo(k)fluoranthene	4.6J		18.4	2.3	1	08/26/22 07:47	08/26/22 17:01	207-08-9	
Dibenz(a,h)anthracene <2.5 ug/kg 18.4 2.5 1 08/26/22 07:47 08/26/22 17:01 53-70-3 Fluoranthene 18.0J ug/kg 18.4 2.2 1 08/26/22 07:47 08/26/22 17:01 206-44-0 Fluorene <2.2	Chrysene	13.3J		18.4	3.5	1	08/26/22 07:47	08/26/22 17:01	218-01-9	
Fluoranthene 18.0J ug/kg 18.4 2.2 1 08/26/22 07:47 08/26/22 17:01 206-44-0 Fluorene 18.0J ug/kg 18.4 2.2 1 08/26/22 07:47 08/26/22 17:01 86-73-7	Dibenz(a,h)anthracene		ug/kg	18.4		1	08/26/22 07:47	08/26/22 17:01	53-70-3	
Fluorene <2.2 ug/kg 18.4 2.2 1 08/26/22 07:47 08/26/22 17:01 86-73-7		18.0J		18.4		1	08/26/22 07:47	08/26/22 17:01	206-44-0	
	Fluorene	<2.2		18.4		1	08/26/22 07:47	08/26/22 17:01	86-73-7	
Indeno(1,2,3-cd)pyrene <3.8 ug/kg 18.4 3.8 1 08/26/22 07:47 08/26/22 17:01 193-39-5	Indeno(1,2,3-cd)pyrene	<3.8	ug/kg	18.4	3.8	1	08/26/22 07:47			
1-Methylnaphthalene 10.2J ug/kg 18.4 2.7 1 08/26/22 07:47 08/26/22 17:01 90-12-0	1-Methylnaphthalene	10.2J		18.4		1	08/26/22 07:47	08/26/22 17:01	90-12-0	
2-Methylnaphthalene 13.0J ug/kg 18.4 2.7 1 08/26/22 07:47 08/26/22 17:01 91-57-6	2-Methylnaphthalene	13.0J	ug/kg	18.4	2.7	1	08/26/22 07:47	08/26/22 17:01	91-57-6	
Naphthalene 9.6J ug/kg 18.4 1.8 1 08/26/22 07:47 08/26/22 17:01 91-20-3		9.6J		18.4	1.8	1	08/26/22 07:47	08/26/22 17:01	91-20-3	

(920)469-2436

ANALYTICAL RESULTS

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-7 (1'-2') Lab ID: 40250229014 Collected: 08/19/22 13:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	•		A 8270E by SIM es - Green Bay	•	ion Me	ethod: EPA 3546			
Phenanthrene	17.3J	ug/kg	18.4	2.1	1	08/26/22 07:47	08/26/22 17:01	85-01-8	
Pyrene Surrogates	25.9	ug/kg	18.4	2.7	1	08/26/22 07:47	08/26/22 17:01	129-00-0	
2-Fluorobiphenyl (S)	59	%	41-98		1	08/26/22 07:47	08/26/22 17:01	321-60-8	
Terphenyl-d14 (S)	75	%	37-106		1	08/26/22 07:47	08/26/22 17:01	1718-51-0	
Percent Moisture	•		TM D2974-87 es - Green Bay						
Percent Moisture	9.2	%	0.10	0.10	1		08/25/22 11:53		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-7 (3'-4') Lab ID: 40250229015 Collected: 08/19/22 13:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prepa	aration Met	nod: El	PA 3541			
	Pace Anal	ytical Service	s - Green Bay	/					
PCB-1016 (Aroclor 1016)	<18.7	ug/kg	61.3	18.7	1	08/24/22 07:03	08/25/22 12:42	12674-11-2	
PCB-1221 (Aroclor 1221)	<18.7	ug/kg	61.3	18.7	1	08/24/22 07:03	08/25/22 12:42		
PCB-1232 (Aroclor 1232)	<18.7	ug/kg	61.3	18.7	1		08/25/22 12:42		
PCB-1242 (Aroclor 1242)	<18.7	ug/kg	61.3	18.7	1		08/25/22 12:42		
PCB-1248 (Aroclor 1248)	<18.7	ug/kg	61.3	18.7	1	08/24/22 07:03			
PCB-1254 (Aroclor 1254)	<18.7	ug/kg	61.3	18.7	1	08/24/22 07:03			
PCB-1260 (Aroclor 1260)	<18.7	ug/kg	61.3	18.7	1	08/24/22 07:03	08/25/22 12:42	11096-82-5	
PCB, Total	<18.7	ug/kg	61.3	18.7	1	08/24/22 07:03	08/25/22 12:42	1336-36-3	
Surrogates		0 0							
Tetrachloro-m-xylene (S)	64	%	50-99		1	08/24/22 07:03	08/25/22 12:42	877-09-8	
Decachlorobiphenyl (S)	67	%	38-95		1	08/24/22 07:03	08/25/22 12:42	2051-24-3	
6010D MET ICP	Analytical	Method: EPA	6010D Prepa	aration Met	hod: El	PA 3050B			
	Pace Anal	ytical Service	s - Green Bay	/					
Arsenic	<1.8	mg/kg	3.0	1.8	1	08/25/22 06:01	08/26/22 16:51	7440-38-2	
Barium	30.5	mg/kg	0.61	0.18	1	08/25/22 06:01	08/26/22 16:51		
Cadmium	0.16J	mg/kg	0.61	0.16	1	08/25/22 06:01	08/26/22 16:51		
Chromium	14.4	mg/kg	1.2	0.34	1	08/25/22 06:01	08/26/22 16:51		
Lead	4.3	mg/kg	2.4	0.73	1	08/25/22 06:01	08/26/22 16:51		
Selenium	<1.6	mg/kg	4.8	1.6	1	08/25/22 06:01	08/26/22 16:51		
Silver	<0.37	mg/kg	1.2	0.37	1	08/25/22 06:01	08/26/22 16:51		
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ation Metho	od: EPA	A 7471			
	Pace Anal	ytical Service	s - Green Bay	/					
Mercury	<0.011	mg/kg	0.039	0.011	1	08/25/22 08:19	08/26/22 08:08	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SIM	√ Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	s - Green Bay	/					
Acenaphthene	<2.7	ug/kg	20.5	2.7	1	08/26/22 07:47	08/26/22 10:27	83-32-9	
Acenaphthylene	<2.6	ug/kg	20.5	2.6	1	08/26/22 07:47			
Anthracene	<2.5	ug/kg	20.5	2.5	1		08/26/22 10:27		
Benzo(a)anthracene	<2.6	ug/kg	20.5	2.6	1	08/26/22 07:47	08/26/22 10:27	56-55-3	
Benzo(a)pyrene	<2.3	ug/kg	20.5	2.3	1	08/26/22 07:47	08/26/22 10:27	50-32-8	
Benzo(b)fluoranthene	<2.8	ug/kg	20.5	2.8	1	08/26/22 07:47	08/26/22 10:27	205-99-2	
Benzo(g,h,i)perylene	<3.6	ug/kg	20.5	3.6	1	08/26/22 07:47	08/26/22 10:27	191-24-2	
Benzo(k)fluoranthene	<2.6	ug/kg	20.5	2.6	1	08/26/22 07:47			
Chrysene	<3.9	ug/kg	20.5	3.9	1	08/26/22 07:47	08/26/22 10:27	218-01-9	
Dibenz(a,h)anthracene	<2.8	ug/kg	20.5	2.8	1	08/26/22 07:47	08/26/22 10:27	53-70-3	
Fluoranthene	<2.4	ug/kg	20.5	2.4	1	08/26/22 07:47	08/26/22 10:27	206-44-0	
Fluorene	<2.5	ug/kg	20.5	2.5	1	08/26/22 07:47	08/26/22 10:27	86-73-7	
Indeno(1,2,3-cd)pyrene	<4.3	ug/kg	20.5	4.3	1		08/26/22 10:27		
1-Methylnaphthalene	<3.0	ug/kg	20.5	3.0	1	08/26/22 07:47	08/26/22 10:27	90-12-0	
		-							
2-Methylnaphthalene	<3.0	ug/kg	20.5	3.0	1	08/26/22 07:47	08/26/22 10:27	91-57-6	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-7 (3'-4') Lab ID: 40250229015 Collected: 08/19/22 13:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8270E MSSV PAH by SIM	•		•	•	ion Me	ethod: EPA 3546			
	Pace Anai	yticai Service	es - Green Bay						
Phenanthrene	<2.3	ug/kg	20.5	2.3	1	08/26/22 07:47	08/26/22 10:27	85-01-8	
Pyrene	<3.0	ug/kg	20.5	3.0	1	08/26/22 07:47	08/26/22 10:27	129-00-0	
Surrogates		0 0							
2-Fluorobiphenyl (S)	66	%	41-98		1	08/26/22 07:47	08/26/22 10:27	321-60-8	
Terphenyl-d14 (S)	74	%	37-106		1	08/26/22 07:47	08/26/22 10:27	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	18.5	%	0.10	0.10	1		08/25/22 11:53		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-8 (1'-2') Lab ID: 40250229016 Collected: 08/19/22 10:40 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	у					
Arsenic	1.7J	mg/kg	2.6	1.5	1	08/25/22 06:01	08/26/22 16:54	7440-38-2	
Barium	75.2	mg/kg	0.51	0.15	1	08/25/22 06:01	08/26/22 16:54		
Cadmium	0.19J	mg/kg	0.51	0.14	1	08/25/22 06:01	08/26/22 16:54		
Chromium	19.9	mg/kg	1.0	0.29	1	08/25/22 06:01	08/26/22 16:54	7440-47-3	
Lead	7.7	mg/kg	2.1	0.61	1	08/25/22 06:01	08/26/22 16:54		
Selenium	<1.3	mg/kg	4.1	1.3	1	08/25/22 06:01	08/26/22 16:54		
Silver	<0.32	mg/kg	1.0	0.32	1	08/25/22 06:01	08/26/22 16:54	7440-22-4	
7471 Mercury	Analytical	Method: EPA	A 7471 Prepa	ration Meth	od: EP/	A 7471			
	Pace Anal	ytical Service	es - Green Ba	у					
Mercury	0.020J	mg/kg	0.036	0.010	1	08/25/22 08:19	08/26/22 08:10	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SI	M Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Ba	у					
Acenaphthene	<2.4	ug/kg	18.7	2.4	1	08/26/22 07:47	08/26/22 18:44	83-32-9	
Acenaphthylene	4.9J	ug/kg	18.7	2.4	1	08/26/22 07:47	08/26/22 18:44	208-96-8	
Anthracene	7.6J	ug/kg	18.7	2.3	1	08/26/22 07:47	08/26/22 18:44	120-12-7	
Benzo(a)anthracene	37.7	ug/kg	18.7	2.4	1	08/26/22 07:47	08/26/22 18:44	56-55-3	
Benzo(a)pyrene	60.9	ug/kg	18.7	2.1	1	08/26/22 07:47	08/26/22 18:44	50-32-8	
Benzo(b)fluoranthene	95.1	ug/kg	18.7	2.6	1	08/26/22 07:47	08/26/22 18:44	205-99-2	
Benzo(g,h,i)perylene	46.5	ug/kg	18.7	3.3	1	08/26/22 07:47	08/26/22 18:44	191-24-2	
Benzo(k)fluoranthene	35.1	ug/kg	18.7	2.4	1	08/26/22 07:47	08/26/22 18:44	207-08-9	
Chrysene	67.2	ug/kg	18.7	3.5	1	08/26/22 07:47	08/26/22 18:44	218-01-9	
Dibenz(a,h)anthracene	11.3J	ug/kg	18.7	2.6	1	08/26/22 07:47	08/26/22 18:44	53-70-3	
Fluoranthene	93.4	ug/kg	18.7	2.2	1	08/26/22 07:47	08/26/22 18:44	206-44-0	
Fluorene	2.9J	ug/kg	18.7	2.2	1	08/26/22 07:47	08/26/22 18:44	86-73-7	
Indeno(1,2,3-cd)pyrene	32.2	ug/kg	18.7	3.9	1	08/26/22 07:47	08/26/22 18:44	193-39-5	
1-Methylnaphthalene	<2.7	ug/kg	18.7	2.7	1	08/26/22 07:47	08/26/22 18:44	90-12-0	
2-Methylnaphthalene	3.8J	ug/kg	18.7	2.7	1	08/26/22 07:47	08/26/22 18:44	91-57-6	
Naphthalene	2.6J	ug/kg	18.7	1.8	1	08/26/22 07:47	08/26/22 18:44	91-20-3	
Phenanthrene	32.9	ug/kg	18.7	2.1	1	08/26/22 07:47	08/26/22 18:44	85-01-8	
Pyrene	75.5	ug/kg	18.7	2.7	1	08/26/22 07:47	08/26/22 18:44	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	56	%	41-98		1	08/26/22 07:47			
Terphenyl-d14 (S)	64	%	37-106		1	08/26/22 07:47	08/26/22 18:44	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Meth	od: EP/	A 5035/5030B			
			es - Green Ba						
Benzene	<14.7	ug/kg	24.7	14.7	1	08/26/22 10:00	08/26/22 18:37	71-43-2	
Bromobenzene	<24.1	ug/kg	61.9	24.1	1	08/26/22 10:00	08/26/22 18:37	108-86-1	
Bromochloromethane	<16.9	ug/kg	61.9	16.9	1	08/26/22 10:00	08/26/22 18:37	74-97-5	
Bromodichloromethane	<14.7	ug/kg	61.9	14.7	1	08/26/22 10:00	08/26/22 18:37	75-27-4	
Bromoform	<272	ug/kg	309	272	1		08/26/22 18:37		
Bromomethane	<86.7	ug/kg	309	86.7	1		08/26/22 18:37		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-8 (1'-2') Lab ID: 40250229016 Collected: 08/19/22 10:40 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepar	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
n-Butylbenzene	<28.3	ug/kg	61.9	28.3	1	08/26/22 10:00	08/26/22 18:37	104-51-8	
sec-Butylbenzene	<15.1	ug/kg	61.9	15.1	1	08/26/22 10:00	08/26/22 18:37		
tert-Butylbenzene	<19.4	ug/kg	61.9	19.4	1	08/26/22 10:00	08/26/22 18:37		
Carbon tetrachloride	<13.6	ug/kg	61.9	13.6	1	08/26/22 10:00	08/26/22 18:37		
Chlorobenzene	<7.4	ug/kg	61.9	7.4	1	08/26/22 10:00	08/26/22 18:37		
Chloroethane	<26.1	ug/kg	309	26.1	1	08/26/22 10:00	08/26/22 18:37		
Chloroform	<44.3	ug/kg	309	44.3	1	08/26/22 10:00	08/26/22 18:37		
Chloromethane	<23.5	ug/kg	61.9	23.5	1	08/26/22 10:00	08/26/22 18:37		
2-Chlorotoluene	<20.0	ug/kg	61.9	20.0	1	08/26/22 10:00	08/26/22 18:37		
4-Chlorotoluene	<23.5	ug/kg	61.9	23.5	1	08/26/22 10:00	08/26/22 18:37		
1,2-Dibromo-3-chloropropane	<48.0	ug/kg	309	48.0	1	08/26/22 10:00	08/26/22 18:37		
Dibromochloromethane	<211	ug/kg	309	211	1	08/26/22 10:00	08/26/22 18:37		
1,2-Dibromoethane (EDB)	<16.9	ug/kg	61.9	16.9	1	08/26/22 10:00	08/26/22 18:37		
Dibromomethane	<18.3	ug/kg	61.9	18.3	1	08/26/22 10:00	08/26/22 18:37		
1,2-Dichlorobenzene	<19.2	ug/kg	61.9	19.2	1	08/26/22 10:00	08/26/22 18:37		
1,3-Dichlorobenzene	<16.9	ug/kg	61.9	16.9	1	08/26/22 10:00	08/26/22 18:37		
1,4-Dichlorobenzene	<16.9	ug/kg	61.9	16.9	1	08/26/22 10:00	08/26/22 18:37		
Dichlorodifluoromethane	<26.6	ug/kg	61.9	26.6	1	08/26/22 10:00	08/26/22 18:37		
1.1-Dichloroethane	<15.8	ug/kg	61.9	15.8	1	08/26/22 10:00	08/26/22 18:37		
1,2-Dichloroethane	<14.2	ug/kg	61.9	14.2	1	08/26/22 10:00	08/26/22 18:37		
1,1-Dichloroethene	<20.5	ug/kg	61.9	20.5	1	08/26/22 10:00	08/26/22 18:37		
cis-1,2-Dichloroethene	<13.2	ug/kg	61.9	13.2	1	08/26/22 10:00	08/26/22 18:37		
trans-1,2-Dichloroethene	<13.4	ug/kg	61.9	13.4	1	08/26/22 10:00	08/26/22 18:37		
1,2-Dichloropropane	<14.7	ug/kg	61.9	14.7	1	08/26/22 10:00	08/26/22 18:37		
1,3-Dichloropropane	<13.5	ug/kg	61.9	13.5	1	08/26/22 10:00	08/26/22 18:37		
2,2-Dichloropropane	<16.7	ug/kg	61.9	16.7	1	08/26/22 10:00	08/26/22 18:37		
1,1-Dichloropropene	<20.0	ug/kg	61.9	20.0	1	08/26/22 10:00	08/26/22 18:37		
cis-1,3-Dichloropropene	<40.8	ug/kg	309	40.8	1	08/26/22 10:00	08/26/22 18:37		
trans-1,3-Dichloropropene	<177	ug/kg	309	177	1	08/26/22 10:00	08/26/22 18:37		
Diisopropyl ether	<15.3	ug/kg	61.9	15.3	1	08/26/22 10:00	08/26/22 18:37		
Ethylbenzene	<14.7	ug/kg	61.9	14.7	1	08/26/22 10:00	08/26/22 18:37		
Hexachloro-1,3-butadiene	<123	ug/kg	309	123	1	08/26/22 10:00	08/26/22 18:37		
Isopropylbenzene (Cumene)	<16.7	ug/kg	61.9	16.7	1	08/26/22 10:00	08/26/22 18:37		
p-Isopropyltoluene	<18.8	ug/kg	61.9	18.8	1	08/26/22 10:00	08/26/22 18:37		
Methylene Chloride	<17.2	ug/kg	61.9	17.2	1	08/26/22 10:00	08/26/22 18:37		
Methyl-tert-butyl ether	<18.2	ug/kg	61.9	18.2	1		08/26/22 18:37		
Naphthalene	<19.3	ug/kg	309	19.3	1		08/26/22 18:37		
n-Propylbenzene	<14.8	ug/kg	61.9	14.8	1		08/26/22 18:37		
Styrene	<15.8	ug/kg	61.9	15.8	1	08/26/22 10:00			
1,1,1,2-Tetrachloroethane	<14.8	ug/kg	61.9	14.8	1		08/26/22 18:37		
1,1,2,2-Tetrachloroethane	<22.4	ug/kg	61.9	22.4	1	08/26/22 10:00			
Tetrachloroethene	<24.0	ug/kg	61.9	24.0	1	08/26/22 10:00			
Toluene	<15.6	ug/kg	61.9	15.6	1	08/26/22 10:00			
1,2,3-Trichlorobenzene	<68.9	ug/kg	309	68.9	1	08/26/22 10:00			
.,=,0 1110111010001120110	400.0	49, Ng	000	55.5	•	30,20,22 10.00	30,20,22 10.01	3, 3, 5	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-8 (1'-2') Lab ID: 40250229016 Collected: 08/19/22 10:40 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepai	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
1,2,4-Trichlorobenzene	<51.0	ug/kg	309	51.0	1	08/26/22 10:00	08/26/22 18:37	120-82-1	
1,1,1-Trichloroethane	<15.8	ug/kg	61.9	15.8	1	08/26/22 10:00	08/26/22 18:37	71-55-6	
1,1,2-Trichloroethane	<22.5	ug/kg	61.9	22.5	1	08/26/22 10:00	08/26/22 18:37	79-00-5	
Trichloroethene	<23.1	ug/kg	61.9	23.1	1	08/26/22 10:00	08/26/22 18:37	79-01-6	
Trichlorofluoromethane	<17.9	ug/kg	61.9	17.9	1	08/26/22 10:00	08/26/22 18:37	75-69-4	
1,2,3-Trichloropropane	<30.1	ug/kg	61.9	30.1	1	08/26/22 10:00	08/26/22 18:37	96-18-4	
1,2,4-Trimethylbenzene	<18.4	ug/kg	61.9	18.4	1	08/26/22 10:00	08/26/22 18:37	95-63-6	
1,3,5-Trimethylbenzene	<19.9	ug/kg	61.9	19.9	1	08/26/22 10:00	08/26/22 18:37	108-67-8	
Vinyl chloride	<12.5	ug/kg	61.9	12.5	1	08/26/22 10:00	08/26/22 18:37	75-01-4	
Xylene (Total)	<44.7	ug/kg	186	44.7	1	08/26/22 10:00	08/26/22 18:37	1330-20-7	
m&p-Xylene	<26.1	ug/kg	124	26.1	1	08/26/22 10:00	08/26/22 18:37	179601-23-1	
o-Xylene	<18.6	ug/kg	61.9	18.6	1	08/26/22 10:00	08/26/22 18:37	95-47-6	
Surrogates									
Toluene-d8 (S)	108	%	69-153		1	08/26/22 10:00	08/26/22 18:37	2037-26-5	
4-Bromofluorobenzene (S)	127	%	68-156		1	08/26/22 10:00	08/26/22 18:37	460-00-4	
1,2-Dichlorobenzene-d4 (S)	115	%	71-161		1	08/26/22 10:00	08/26/22 18:37	2199-69-1	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	10.6	%	0.10	0.10	1		08/25/22 11:53		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-8 (3'-4') Lab ID: 40250229017 Collected: 08/19/22 10:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6010D MET ICP	Analytical	Method: EPA	6010D Prepa	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	s - Green Bay	/					
Arsenic	2.8	mg/kg	2.8	1.6	1	08/25/22 06:01	08/26/22 16:56	7440-38-2	
Barium	83.3	mg/kg	0.56	0.17	1	08/25/22 06:01	08/26/22 16:56		
Cadmium	0.22J	mg/kg	0.56	0.15	1	08/25/22 06:01	08/26/22 16:56		
Chromium	26.7	mg/kg	1.1	0.31	1	08/25/22 06:01	08/26/22 16:56		
_ead	22.7	mg/kg	2.2	0.67	1	08/25/22 06:01	08/26/22 16:56		
Selenium	<1.5	mg/kg	4.5	1.5	1	08/25/22 06:01	08/26/22 16:56		
Silver	<0.34	mg/kg	1.1	0.34	1	08/25/22 06:01	08/26/22 16:56		
7471 Mercury	Analytical	Method: EPA	.7471 Prepar	ation Metho	od: EP/	A 7471			
	-		s - Green Bay						
Mercury	0.057	mg/kg	0.042	0.012	1	08/25/22 09:14	08/26/22 08:17	7439-97-6	В
3270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SI	M Preparat	ion Me	thod: EPA 3546			
	-		es - Green Bay						
cenaphthene	37.1J	ug/kg	202	26.2	10	08/26/22 07:47	08/26/22 19:01	83-32-9	
Acenaphthylene	<25.5	ug/kg	202	25.5	10	08/26/22 07:47	08/26/22 19:01	208-96-8	
Inthracene	131J	ug/kg	202	25.1	10	08/26/22 07:47	08/26/22 19:01	120-12-7	
Benzo(a)anthracene	658	ug/kg	202	26.1	10	08/26/22 07:47	08/26/22 19:01	56-55-3	
Benzo(a)pyrene	940	ug/kg	202	22.9	10	08/26/22 07:47	08/26/22 19:01	50-32-8	
Benzo(b)fluoranthene	1390	ug/kg	202	28.0	10	08/26/22 07:47	08/26/22 19:01	205-99-2	
Benzo(g,h,i)perylene	614	ug/kg	202	35.4	10	08/26/22 07:47	08/26/22 19:01	191-24-2	
Benzo(k)fluoranthene	593	ug/kg	202	25.8	10	08/26/22 07:47	08/26/22 19:01	207-08-9	
Chrysene	1010	ug/kg	202	38.1	10	08/26/22 07:47	08/26/22 19:01	218-01-9	
Dibenz(a,h)anthracene	165J	ug/kg	202	27.9	10	08/26/22 07:47	08/26/22 19:01	53-70-3	
Fluoranthene	1900	ug/kg	202	23.9	10	08/26/22 07:47	08/26/22 19:01	206-44-0	
luorene	40.8J	ug/kg	202	24.2	10	08/26/22 07:47	08/26/22 19:01	86-73-7	
ndeno(1,2,3-cd)pyrene	514	ug/kg	202	42.1	10	08/26/22 07:47	08/26/22 19:01	193-39-5	
-Methylnaphthalene	<29.5	ug/kg	202	29.5	10	08/26/22 07:47	08/26/22 19:01	90-12-0	
P-Methylnaphthalene	<29.5	ug/kg	202	29.5	10	08/26/22 07:47	08/26/22 19:01	91-57-6	
Naphthalene	<19.7	ug/kg	202	19.7	10	08/26/22 07:47	08/26/22 19:01	91-20-3	
Phenanthrene	812	ug/kg	202	23.1	10	08/26/22 07:47	08/26/22 19:01	85-01-8	
Pyrene	1600	ug/kg	202	29.7	10	08/26/22 07:47	08/26/22 19:01	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	57	%	41-98		10	08/26/22 07:47	08/26/22 19:01	321-60-8	
erphenyl-d14 (S)	68	%	37-106		10	08/26/22 07:47	08/26/22 19:01	1718-51-0	
260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepar	ation Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
Benzene	<16.9	ug/kg	28.3	16.9	1	08/26/22 10:00	08/26/22 15:02		
Bromobenzene	<27.6	ug/kg	70.8	27.6	1	08/26/22 10:00	08/26/22 15:02	108-86-1	
Bromochloromethane	<19.4	ug/kg	70.8	19.4	1	08/26/22 10:00	08/26/22 15:02	74-97-5	
Bromodichloromethane	<16.9	ug/kg	70.8	16.9	1	08/26/22 10:00	08/26/22 15:02	75-27-4	
Bromoform	<312	ug/kg	354	312	1	08/26/22 10:00	08/26/22 15:02	75-25-2	
Bromomethane	<99.3	ug/kg	354	99.3	1	08/26/22 10:00	08/26/22 15:02	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-8 (3'-4') Lab ID: 40250229017 Collected: 08/19/22 10:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	У					
n-Butylbenzene	<32.4	ug/kg	70.8	32.4	1	08/26/22 10:00	08/26/22 15:02	104-51-8	
sec-Butylbenzene	<17.3	ug/kg	70.8	17.3	1	08/26/22 10:00	08/26/22 15:02		
tert-Butylbenzene	<22.2	ug/kg	70.8	22.2	1	08/26/22 10:00	08/26/22 15:02		
Carbon tetrachloride	<15.6	ug/kg	70.8	15.6	1	08/26/22 10:00	08/26/22 15:02		
Chlorobenzene	<8.5	ug/kg	70.8	8.5	1	08/26/22 10:00	08/26/22 15:02		
Chloroethane	<29.9	ug/kg	354	29.9	1	08/26/22 10:00	08/26/22 15:02		
Chloroform	<50.7	ug/kg	354	50.7	1	08/26/22 10:00	08/26/22 15:02		
Chloromethane	<26.9	ug/kg	70.8	26.9	1	08/26/22 10:00	08/26/22 15:02		
2-Chlorotoluene	<22.9	ug/kg	70.8	22.9	1	08/26/22 10:00	08/26/22 15:02		
4-Chlorotoluene	<26.9	ug/kg	70.8	26.9	1	08/26/22 10:00	08/26/22 15:02		
1,2-Dibromo-3-chloropropane	<55.0	ug/kg	354	55.0	1	08/26/22 10:00	08/26/22 15:02		
Dibromochloromethane	<242	ug/kg	354	242	1	08/26/22 10:00	08/26/22 15:02		
1,2-Dibromoethane (EDB)	<19.4	ug/kg	70.8	19.4	1	08/26/22 10:00	08/26/22 15:02		
Dibromomethane	<21.0	ug/kg	70.8	21.0	1	08/26/22 10:00	08/26/22 15:02		
1,2-Dichlorobenzene	<22.0	ug/kg	70.8	22.0	1	08/26/22 10:00	08/26/22 15:02		
1,3-Dichlorobenzene	<19.4	ug/kg	70.8	19.4	1	08/26/22 10:00	08/26/22 15:02		
1,4-Dichlorobenzene	<19.4	ug/kg	70.8	19.4	1	08/26/22 10:00	08/26/22 15:02		
Dichlorodifluoromethane	<30.5	ug/kg	70.8	30.5	1	08/26/22 10:00	08/26/22 15:02		
1.1-Dichloroethane	<18.1	ug/kg ug/kg	70.8	18.1	1	08/26/22 10:00	08/26/22 15:02		
1,2-Dichloroethane	<16.3	ug/kg ug/kg	70.8	16.3	1	08/26/22 10:00	08/26/22 15:02		
1,1-Dichloroethene	<23.5	ug/kg ug/kg	70.8	23.5	1	08/26/22 10:00	08/26/22 15:02		
cis-1,2-Dichloroethene	<15.2	ug/kg ug/kg	70.8	15.2	1	08/26/22 10:00	08/26/22 15:02		
trans-1,2-Dichloroethene	<15.3	ug/kg	70.8	15.3	1	08/26/22 10:00	08/26/22 15:02		
1,2-Dichloropropane	<16.9	ug/kg	70.8	16.9	1	08/26/22 10:00	08/26/22 15:02		
1,3-Dichloropropane	<15.4	ug/kg ug/kg	70.8	15.4	1	08/26/22 10:00	08/26/22 15:02		
2,2-Dichloropropane	<19.1	ug/kg	70.8	19.1	1	08/26/22 10:00	08/26/22 15:02		
1,1-Dichloropropene	<22.9	ug/kg ug/kg	70.8	22.9	1	08/26/22 10:00	08/26/22 15:02		
cis-1,3-Dichloropropene	<46.7	ug/kg	354	46.7	1	08/26/22 10:00	08/26/22 15:02		
trans-1,3-Dichloropropene	<203	ug/kg	354	203	1	08/26/22 10:00	08/26/22 15:02		
Diisopropyl ether	<17.6	ug/kg ug/kg	70.8	17.6	1	08/26/22 10:00	08/26/22 15:02		
Ethylbenzene	<16.9	ug/kg ug/kg	70.8	16.9	1	08/26/22 10:00	08/26/22 15:02		
Hexachloro-1,3-butadiene	<141	ug/kg ug/kg	354	141	1	08/26/22 10:00	08/26/22 15:02		
Isopropylbenzene (Cumene)	<19.1	ug/kg	70.8	19.1	1	08/26/22 10:00	08/26/22 15:02		
p-Isopropyltoluene	<21.5	ug/kg ug/kg	70.8	21.5	1	08/26/22 10:00	08/26/22 15:02		
Methylene Chloride	<19.7	ug/kg ug/kg	70.8	19.7	1	08/26/22 10:00	08/26/22 15:02		
Methyl-tert-butyl ether	<20.8	ug/kg ug/kg	70.8	20.8	1		08/26/22 15:02		
Naphthalene	<22.1	ug/kg ug/kg	354	22.1	1	08/26/22 10:00	08/26/22 15:02		
n-Propylbenzene	<17.0	ug/kg ug/kg	70.8	17.0	1	08/26/22 10:00			
Styrene	<17.0 <18.1	ug/kg ug/kg	70.8 70.8	17.0	1		08/26/22 15:02		
1,1,1,2-Tetrachloroethane	<10.1 <17.0		70.8 70.8	17.0	1	08/26/22 10:00			
1,1,2,2-Tetrachloroethane	<17.0 <25.6	ug/kg ug/kg	70.8 70.8	25.6	1		08/26/22 15:02		
Tetrachloroethene	<27.5	ug/kg ug/kg	70.8 70.8	27.5	1	08/26/22 10:00			
Toluene	<27.5 <17.8		70.8 70.8		1	08/26/22 10:00			
1,2,3-Trichlorobenzene		ug/kg	70.8 354	17.8			08/26/22 15:02		
1,2,3-THCHIOTODENZENE	<78.9	ug/kg	354	78.9	1	00/20/22 10:00	00/20/22 15:02	01-01-0	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-8 (3'-4') Lab ID: 40250229017 Collected: 08/19/22 10:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	\ 8260 Prepa	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<58.4	ug/kg	354	58.4	1	08/26/22 10:00	08/26/22 15:02	120-82-1	
1,1,1-Trichloroethane	<18.1	ug/kg	70.8	18.1	1	08/26/22 10:00	08/26/22 15:02	71-55-6	
1,1,2-Trichloroethane	<25.8	ug/kg	70.8	25.8	1	08/26/22 10:00	08/26/22 15:02	79-00-5	
Trichloroethene	<26.5	ug/kg	70.8	26.5	1	08/26/22 10:00	08/26/22 15:02	79-01-6	
Trichlorofluoromethane	<20.5	ug/kg	70.8	20.5	1	08/26/22 10:00	08/26/22 15:02	75-69-4	
1,2,3-Trichloropropane	<34.4	ug/kg	70.8	34.4	1	08/26/22 10:00	08/26/22 15:02	96-18-4	
1,2,4-Trimethylbenzene	<21.1	ug/kg	70.8	21.1	1	08/26/22 10:00	08/26/22 15:02	95-63-6	
1,3,5-Trimethylbenzene	<22.8	ug/kg	70.8	22.8	1	08/26/22 10:00	08/26/22 15:02	108-67-8	
Vinyl chloride	<14.3	ug/kg	70.8	14.3	1	08/26/22 10:00	08/26/22 15:02	75-01-4	
Xylene (Total)	<51.1	ug/kg	212	51.1	1	08/26/22 10:00	08/26/22 15:02	1330-20-7	
m&p-Xylene	<29.9	ug/kg	142	29.9	1	08/26/22 10:00	08/26/22 15:02	179601-23-1	
o-Xylene	<21.2	ug/kg	70.8	21.2	1	08/26/22 10:00	08/26/22 15:02	95-47-6	
Surrogates									
Toluene-d8 (S)	128	%	69-153		1	08/26/22 10:00	08/26/22 15:02	2037-26-5	
4-Bromofluorobenzene (S)	148	%	68-156		1	08/26/22 10:00	08/26/22 15:02	460-00-4	
1,2-Dichlorobenzene-d4 (S)	132	%	71-161		1	08/26/22 10:00	08/26/22 15:02	2199-69-1	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	17.2	%	0.10	0.10	1		08/25/22 11:53		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-9 (1'-2') Lab ID: 40250229018 Collected: 08/19/22 09:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay	y					
Arsenic	2.9	mg/kg	2.7	1.6	1	08/25/22 06:01	08/26/22 16:58	7440-38-2	
Barium	68.8	mg/kg	0.53	0.16	1	08/25/22 06:01	08/26/22 16:58		
Cadmium	0.91	mg/kg	0.53	0.14	1	08/25/22 06:01	08/26/22 16:58		
Chromium	18.4	mg/kg	1.1	0.30	1	08/25/22 06:01	08/26/22 16:58		
.ead	141	mg/kg	2.1	0.64	1	08/25/22 06:01	08/26/22 16:58		
Selenium	<1.4	mg/kg	4.3	1.4	1	08/25/22 06:01	08/26/22 16:58		
Silver	<0.33	mg/kg	1.1	0.33	1	08/25/22 06:01			
471 Mercury	Analytical	Method: EPA	A 7471 Prepai	ration Metho	od: EP	A 7471			
	Pace Anal	ytical Service	es - Green Bay	y					
Mercury	0.11	mg/kg	0.037	0.010	1	08/25/22 09:14	08/26/22 08:24	7439-97-6	В
3270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SII	M Preparat	ion Me	thod: EPA 3546			
-	Pace Anal	ytical Service	es - Green Ba	y					
Acenaphthene	51.1J	ug/kg	95.0	12.3	5	08/26/22 07:47	08/26/22 19:18	83-32-9	
Acenaphthylene	<12.0	ug/kg	95.0	12.0	5	08/26/22 07:47	08/26/22 19:18	208-96-8	
Inthracene	135	ug/kg	95.0	11.8	5	08/26/22 07:47	08/26/22 19:18	120-12-7	
Benzo(a)anthracene	361	ug/kg	95.0	12.3	5	08/26/22 07:47	08/26/22 19:18	56-55-3	
Benzo(a)pyrene	470	ug/kg	95.0	10.8	5	08/26/22 07:47	08/26/22 19:18	50-32-8	
Benzo(b)fluoranthene	652	ug/kg	95.0	13.2	5	08/26/22 07:47	08/26/22 19:18	205-99-2	
Benzo(g,h,i)perylene	252	ug/kg	95.0	16.7	5	08/26/22 07:47	08/26/22 19:18	191-24-2	
Benzo(k)fluoranthene	282	ug/kg	95.0	12.1	5	08/26/22 07:47	08/26/22 19:18	207-08-9	
Chrysene	503	ug/kg	95.0	17.9	5	08/26/22 07:47	08/26/22 19:18	218-01-9	
Dibenz(a,h)anthracene	74.3J	ug/kg	95.0	13.2	5	08/26/22 07:47	08/26/22 19:18	53-70-3	
Fluoranthene	960	ug/kg	95.0	11.2	5	08/26/22 07:47	08/26/22 19:18	206-44-0	
Fluorene	48.0J	ug/kg	95.0	11.4	5	08/26/22 07:47	08/26/22 19:18	86-73-7	
ndeno(1,2,3-cd)pyrene	217	ug/kg	95.0	19.8	5	08/26/22 07:47	08/26/22 19:18	193-39-5	
-Methylnaphthalene	21.4J	ug/kg	95.0	13.9	5	08/26/22 07:47	08/26/22 19:18	90-12-0	
2-Methylnaphthalene	28.0J	ug/kg	95.0	13.9	5	08/26/22 07:47	08/26/22 19:18	91-57-6	
laphthalene	39.4J	ug/kg	95.0	9.3	5	08/26/22 07:47	08/26/22 19:18	91-20-3	
Phenanthrene	617	ug/kg	95.0	10.9	5	08/26/22 07:47	08/26/22 19:18	85-01-8	
Pyrene	903	ug/kg	95.0	14.0	5	08/26/22 07:47	08/26/22 19:18	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	54	%	41-98		5	08/26/22 07:47	08/26/22 19:18		
Terphenyl-d14 (S)	67	%	37-106		5	08/26/22 07:47	08/26/22 19:18	1718-51-0	
260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
Benzene	<17.0	ug/kg	28.7	17.0	1	08/26/22 10:00	08/26/22 18:56	71-43-2	
Bromobenzene	<27.9	ug/kg	71.6	27.9	1	08/26/22 10:00	08/26/22 18:56	108-86-1	
Bromochloromethane	<19.6	ug/kg	71.6	19.6	1	08/26/22 10:00	08/26/22 18:56	74-97-5	
Bromodichloromethane	<17.0	ug/kg	71.6	17.0	1	08/26/22 10:00	08/26/22 18:56	75-27-4	
Bromoform	<315	ug/kg	358	315	1	08/26/22 10:00	08/26/22 18:56	75-25-2	
Bromomethane	<100	ug/kg	358	100	1	08/26/22 10:00	08/26/22 18:56	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-9 (1'-2') Lab ID: 40250229018 Collected: 08/19/22 09:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepar	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
n-Butylbenzene	<32.8	ug/kg	71.6	32.8	1	08/26/22 10:00	08/26/22 18:56	104-51-8	
sec-Butylbenzene	<17.5	ug/kg	71.6	17.5	1	08/26/22 10:00	08/26/22 18:56		
tert-Butylbenzene	<22.5	ug/kg	71.6	22.5	1	08/26/22 10:00	08/26/22 18:56		
Carbon tetrachloride	<15.8	ug/kg	71.6	15.8	1	08/26/22 10:00	08/26/22 18:56		
Chlorobenzene	<8.6	ug/kg	71.6	8.6	1	08/26/22 10:00	08/26/22 18:56		
Chloroethane	<30.2	ug/kg	358	30.2	1	08/26/22 10:00	08/26/22 18:56		
Chloroform	<51.3	ug/kg	358	51.3	1	08/26/22 10:00	08/26/22 18:56		
Chloromethane	<27.2	ug/kg	71.6	27.2	1	08/26/22 10:00	08/26/22 18:56		
2-Chlorotoluene	<23.2	ug/kg	71.6	23.2	1	08/26/22 10:00	08/26/22 18:56		
4-Chlorotoluene	<27.2	ug/kg	71.6	27.2	1	08/26/22 10:00	08/26/22 18:56		
1,2-Dibromo-3-chloropropane	<55.6	ug/kg	358	55.6	1	08/26/22 10:00	08/26/22 18:56		
Dibromochloromethane	<245	ug/kg	358	245	1	08/26/22 10:00	08/26/22 18:56		
1,2-Dibromoethane (EDB)	<19.6	ug/kg	71.6	19.6	1	08/26/22 10:00	08/26/22 18:56		
Dibromomethane	<21.2	ug/kg	71.6	21.2	1	08/26/22 10:00	08/26/22 18:56		
1,2-Dichlorobenzene	<22.2	ug/kg	71.6	22.2	1	08/26/22 10:00	08/26/22 18:56		
1,3-Dichlorobenzene	<19.6	ug/kg	71.6	19.6	1	08/26/22 10:00	08/26/22 18:56		
1,4-Dichlorobenzene	<19.6	ug/kg	71.6	19.6	1	08/26/22 10:00	08/26/22 18:56		
Dichlorodifluoromethane	<30.8	ug/kg	71.6	30.8	1	08/26/22 10:00	08/26/22 18:56		
1,1-Dichloroethane	<18.3	ug/kg	71.6	18.3	1	08/26/22 10:00	08/26/22 18:56		
1,2-Dichloroethane	<16.5	ug/kg	71.6	16.5	1	08/26/22 10:00	08/26/22 18:56		
1,1-Dichloroethene	<23.8	ug/kg	71.6	23.8	1	08/26/22 10:00	08/26/22 18:56		
cis-1,2-Dichloroethene	<15.3	ug/kg	71.6	15.3	1	08/26/22 10:00	08/26/22 18:56		
trans-1,2-Dichloroethene	<15.5	ug/kg	71.6	15.5	1	08/26/22 10:00	08/26/22 18:56		
1,2-Dichloropropane	<17.0	ug/kg	71.6	17.0	1	08/26/22 10:00	08/26/22 18:56		
1,3-Dichloropropane	<15.6	ug/kg	71.6	15.6	1	08/26/22 10:00	08/26/22 18:56		
2,2-Dichloropropane	<19.3	ug/kg	71.6	19.3	1	08/26/22 10:00	08/26/22 18:56		
1,1-Dichloropropene	<23.2	ug/kg	71.6	23.2	1	08/26/22 10:00	08/26/22 18:56		
cis-1,3-Dichloropropene	<47.3	ug/kg	358	47.3	1	08/26/22 10:00	08/26/22 18:56		
trans-1,3-Dichloropropene	<205	ug/kg	358	205	1	08/26/22 10:00	08/26/22 18:56		
Diisopropyl ether	<17.8	ug/kg	71.6	17.8	1	08/26/22 10:00	08/26/22 18:56		
Ethylbenzene	<17.0	ug/kg	71.6	17.0	1	08/26/22 10:00	08/26/22 18:56		
Hexachloro-1,3-butadiene	<142	ug/kg	358	142	1	08/26/22 10:00	08/26/22 18:56		
Isopropylbenzene (Cumene)	<19.3	ug/kg	71.6	19.3	1	08/26/22 10:00	08/26/22 18:56		
p-Isopropyltoluene	<21.8	ug/kg	71.6	21.8	1	08/26/22 10:00	08/26/22 18:56		
Methylene Chloride	<19.9	ug/kg	71.6	19.9	1	08/26/22 10:00	08/26/22 18:56		
Methyl-tert-butyl ether	<21.1	ug/kg	71.6	21.1	1		08/26/22 18:56		
Naphthalene	<22.3	ug/kg	358	22.3	1		08/26/22 18:56		
n-Propylbenzene	<17.2	ug/kg	71.6	17.2	1		08/26/22 18:56		
Styrene	<18.3	ug/kg	71.6	18.3	1	08/26/22 10:00			
1,1,1,2-Tetrachloroethane	<17.2	ug/kg	71.6	17.2	1		08/26/22 18:56		
1,1,2,2-Tetrachloroethane	<25.9	ug/kg	71.6	25.9	1	08/26/22 10:00			
Tetrachloroethene	<27.8	ug/kg	71.6	27.8	1	08/26/22 10:00			
Toluene	<18.1	ug/kg	71.6	18.1	1	08/26/22 10:00			
1,2,3-Trichlorobenzene	<79.8	ug/kg	358	79.8	1	08/26/22 10:00			
.,=,0 1110111010001120110	41 0.0	49, Ng	000	70.0	•	30,20,22 10.00	35/25/22 10.00	3, 3, 5	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-9 (1'-2') Lab ID: 40250229018 Collected: 08/19/22 09:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepai	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<59.0	ug/kg	358	59.0	1	08/26/22 10:00	08/26/22 18:56	120-82-1	
1,1,1-Trichloroethane	<18.3	ug/kg	71.6	18.3	1	08/26/22 10:00	08/26/22 18:56	71-55-6	
1,1,2-Trichloroethane	<26.1	ug/kg	71.6	26.1	1	08/26/22 10:00	08/26/22 18:56	79-00-5	
Trichloroethene	<26.8	ug/kg	71.6	26.8	1	08/26/22 10:00	08/26/22 18:56	79-01-6	
Trichlorofluoromethane	<20.8	ug/kg	71.6	20.8	1	08/26/22 10:00	08/26/22 18:56	75-69-4	
1,2,3-Trichloropropane	<34.8	ug/kg	71.6	34.8	1	08/26/22 10:00	08/26/22 18:56	96-18-4	
1,2,4-Trimethylbenzene	<21.3	ug/kg	71.6	21.3	1	08/26/22 10:00	08/26/22 18:56	95-63-6	
1,3,5-Trimethylbenzene	<23.1	ug/kg	71.6	23.1	1	08/26/22 10:00	08/26/22 18:56	108-67-8	
Vinyl chloride	<14.5	ug/kg	71.6	14.5	1	08/26/22 10:00	08/26/22 18:56	75-01-4	
Xylene (Total)	<51.7	ug/kg	215	51.7	1	08/26/22 10:00	08/26/22 18:56	1330-20-7	
m&p-Xylene	<30.2	ug/kg	143	30.2	1	08/26/22 10:00	08/26/22 18:56	179601-23-1	
o-Xylene	<21.5	ug/kg	71.6	21.5	1	08/26/22 10:00	08/26/22 18:56	95-47-6	
Surrogates									
Toluene-d8 (S)	124	%	69-153		1	08/26/22 10:00	08/26/22 18:56	2037-26-5	
4-Bromofluorobenzene (S)	152	%	68-156		1	08/26/22 10:00	08/26/22 18:56	460-00-4	
1,2-Dichlorobenzene-d4 (S)	136	%	71-161		1	08/26/22 10:00	08/26/22 18:56	2199-69-1	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	12.2	%	0.10	0.10	1		08/25/22 11:54		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-9 (2'-3') Lab ID: 40250229019 Collected: 08/19/22 09:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	\ 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	y					
Arsenic	3.4	mg/kg	2.8	1.7	1	08/25/22 06:01	08/26/22 17:01	7440-38-2	
Barium	67.0	mg/kg	0.56	0.17	1	08/25/22 06:01	08/26/22 17:01	7440-39-3	
Cadmium	0.17J	mg/kg	0.56	0.15	1	08/25/22 06:01	08/26/22 17:01	7440-43-9	
Chromium	28.1	mg/kg	1.1	0.31	1	08/25/22 06:01	08/26/22 17:01	7440-47-3	
Lead	9.9	mg/kg	2.3	0.68	1	08/25/22 06:01	08/26/22 17:01	7439-92-1	
Selenium	<1.5	mg/kg	4.5	1.5	1	08/25/22 06:01	08/26/22 17:01	7782-49-2	
Silver	<0.35	mg/kg	1.1	0.35	1	08/25/22 06:01	08/26/22 17:01	7440-22-4	
7471 Mercury	Analytical	Method: EPA	A 7471 Prepa	ration Meth	od: EP	A 7471			
	Pace Anal	ytical Service	es - Green Ba	y					
Mercury	0.14	mg/kg	0.040	0.011	1	08/25/22 09:14	08/26/22 08:35	7439-97-6	В
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SI	M Preparat	ion Me	thod: EPA 3546			
·	Pace Anal	ytical Service	es - Green Ba	y					
Acenaphthene	<2.6	ug/kg	19.7	2.6	1	08/26/22 07:47	08/26/22 17:18	83-32-9	
Acenaphthylene	<2.5	ug/kg	19.7	2.5	1	08/26/22 07:47	08/26/22 17:18	208-96-8	
Anthracene	<2.4	ug/kg	19.7	2.4	1	08/26/22 07:47	08/26/22 17:18	120-12-7	
Benzo(a)anthracene	2.8J	ug/kg	19.7	2.5	1	08/26/22 07:47	08/26/22 17:18	56-55-3	
Benzo(a)pyrene	3.1J	ug/kg	19.7	2.2	1	08/26/22 07:47	08/26/22 17:18	50-32-8	
Benzo(b)fluoranthene	5.7J	ug/kg	19.7	2.7	1	08/26/22 07:47	08/26/22 17:18	205-99-2	
Benzo(g,h,i)perylene	3.8J	ug/kg	19.7	3.5	1	08/26/22 07:47	08/26/22 17:18	191-24-2	
Benzo(k)fluoranthene	3.2J	ug/kg	19.7	2.5	1	08/26/22 07:47	08/26/22 17:18	207-08-9	
Chrysene	5.2J	ug/kg	19.7	3.7	1	08/26/22 07:47	08/26/22 17:18	218-01-9	
Dibenz(a,h)anthracene	<2.7	ug/kg	19.7	2.7	1	08/26/22 07:47	08/26/22 17:18	53-70-3	
Fluoranthene	4.2J	ug/kg	19.7	2.3	1	08/26/22 07:47	08/26/22 17:18	206-44-0	
Fluorene	<2.4	ug/kg	19.7	2.4	1	08/26/22 07:47	08/26/22 17:18	86-73-7	
Indeno(1,2,3-cd)pyrene	<4.1	ug/kg	19.7	4.1	1	08/26/22 07:47	08/26/22 17:18	193-39-5	
1-Methylnaphthalene	<2.9	ug/kg	19.7	2.9	1	08/26/22 07:47	08/26/22 17:18	90-12-0	
2-Methylnaphthalene	<2.9	ug/kg	19.7	2.9	1	08/26/22 07:47	08/26/22 17:18	91-57-6	
Naphthalene	<1.9	ug/kg	19.7	1.9	1	08/26/22 07:47	08/26/22 17:18	91-20-3	
Phenanthrene	2.8J	ug/kg	19.7	2.3	1	08/26/22 07:47	08/26/22 17:18	85-01-8	
Pyrene	3.9J	ug/kg	19.7	2.9	1	08/26/22 07:47	08/26/22 17:18	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	56	%	41-98		1	08/26/22 07:47	08/26/22 17:18	321-60-8	
Terphenyl-d14 (S)	69	%	37-106		1	08/26/22 07:47	08/26/22 17:18	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
Benzene	<16.1	ug/kg	27.1	16.1	1	08/26/22 10:00	08/26/22 19:16	71-43-2	
Bromobenzene	<26.4	ug/kg	67.8	26.4	1	08/26/22 10:00	08/26/22 19:16	108-86-1	
Bromochloromethane	<18.6	ug/kg	67.8	18.6	1	08/26/22 10:00	08/26/22 19:16	74-97-5	
Bromodichloromethane	<16.1	ug/kg	67.8	16.1	1	08/26/22 10:00	08/26/22 19:16	75-27-4	
Bromoform	<298	ug/kg	339	298	1	08/26/22 10:00	08/26/22 19:16	75-25-2	
Bromomethane	<95.1	ug/kg	339	95.1	1	08/26/22 10:00	08/26/22 19:16	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-9 (2'-3') Lab ID: 40250229019 Collected: 08/19/22 09:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
n-Butylbenzene	<31.1	ug/kg	67.8	31.1	1	08/26/22 10:00	08/26/22 19:16	104-51-8	
sec-Butylbenzene	<16.5	ug/kg	67.8	16.5	1	08/26/22 10:00	08/26/22 19:16		
tert-Butylbenzene	<21.3	ug/kg	67.8	21.3	1	08/26/22 10:00	08/26/22 19:16	98-06-6	
Carbon tetrachloride	<14.9	ug/kg	67.8	14.9	1	08/26/22 10:00	08/26/22 19:16		
Chlorobenzene	<8.1	ug/kg	67.8	8.1	1	08/26/22 10:00	08/26/22 19:16		
Chloroethane	<28.6	ug/kg	339	28.6	1	08/26/22 10:00	08/26/22 19:16		
Chloroform	<48.5	ug/kg	339	48.5	1	08/26/22 10:00	08/26/22 19:16		
Chloromethane	<25.8	ug/kg	67.8	25.8	1	08/26/22 10:00	08/26/22 19:16	74-87-3	
2-Chlorotoluene	<22.0	ug/kg	67.8	22.0	1	08/26/22 10:00	08/26/22 19:16		
4-Chlorotoluene	<25.8	ug/kg	67.8	25.8	1	08/26/22 10:00	08/26/22 19:16		
1,2-Dibromo-3-chloropropane	<52.6	ug/kg	339	52.6	1	08/26/22 10:00	08/26/22 19:16		
Dibromochloromethane	<232	ug/kg	339	232	1	08/26/22 10:00	08/26/22 19:16		
1,2-Dibromoethane (EDB)	<18.6	ug/kg	67.8	18.6	1	08/26/22 10:00	08/26/22 19:16		
Dibromomethane	<20.1	ug/kg	67.8	20.1	1	08/26/22 10:00	08/26/22 19:16		
1,2-Dichlorobenzene	<21.0	ug/kg	67.8	21.0	1	08/26/22 10:00	08/26/22 19:16		
1,3-Dichlorobenzene	<18.6	ug/kg	67.8	18.6	1	08/26/22 10:00	08/26/22 19:16		
1,4-Dichlorobenzene	<18.6	ug/kg	67.8	18.6	1	08/26/22 10:00	08/26/22 19:16		
Dichlorodifluoromethane	<29.2	ug/kg	67.8	29.2	1	08/26/22 10:00	08/26/22 19:16		
1.1-Dichloroethane	<17.4	ug/kg	67.8	17.4	1	08/26/22 10:00	08/26/22 19:16		
1,2-Dichloroethane	<15.6	ug/kg	67.8	15.6	1	08/26/22 10:00	08/26/22 19:16		
1,1-Dichloroethene	<22.5	ug/kg	67.8	22.5	1	08/26/22 10:00	08/26/22 19:16		
cis-1,2-Dichloroethene	<14.5	ug/kg	67.8	14.5	1	08/26/22 10:00	08/26/22 19:16		
trans-1,2-Dichloroethene	<14.6	ug/kg	67.8	14.6	1	08/26/22 10:00	08/26/22 19:16		
1,2-Dichloropropane	<16.1	ug/kg	67.8	16.1	1	08/26/22 10:00	08/26/22 19:16		
1,3-Dichloropropane	<14.8	ug/kg	67.8	14.8	1	08/26/22 10:00	08/26/22 19:16		
2,2-Dichloropropane	<18.3	ug/kg	67.8	18.3	1	08/26/22 10:00	08/26/22 19:16		
1,1-Dichloropropene	<22.0	ug/kg	67.8	22.0	1	08/26/22 10:00	08/26/22 19:16		
cis-1,3-Dichloropropene	<44.8	ug/kg	339	44.8	1	08/26/22 10:00	08/26/22 19:16		
trans-1,3-Dichloropropene	<194	ug/kg	339	194	1	08/26/22 10:00	08/26/22 19:16		
Diisopropyl ether	<16.8	ug/kg	67.8	16.8	1	08/26/22 10:00	08/26/22 19:16		
Ethylbenzene	<16.1	ug/kg	67.8	16.1	1	08/26/22 10:00	08/26/22 19:16		
Hexachloro-1,3-butadiene	<135	ug/kg	339	135	1	08/26/22 10:00	08/26/22 19:16		
Isopropylbenzene (Cumene)	<18.3	ug/kg	67.8	18.3	1	08/26/22 10:00	08/26/22 19:16		
p-Isopropyltoluene	<20.6	ug/kg	67.8	20.6	1	08/26/22 10:00	08/26/22 19:16		
Methylene Chloride	<18.8	ug/kg	67.8	18.8	1	08/26/22 10:00	08/26/22 19:16		
Methyl-tert-butyl ether	<19.9	ug/kg	67.8	19.9	1	08/26/22 10:00			
Naphthalene	<21.2	ug/kg	339	21.2	1	08/26/22 10:00	08/26/22 19:16		
n-Propylbenzene	<16.3	ug/kg	67.8	16.3	1	08/26/22 10:00			
Styrene	<17.4	ug/kg	67.8	17.4	1	08/26/22 10:00			
1,1,1,2-Tetrachloroethane	<16.3	ug/kg ug/kg	67.8	16.3	1	08/26/22 10:00			
1,1,2,2-Tetrachloroethane	<24.5	ug/kg ug/kg	67.8	24.5	1		08/26/22 19:16		
Tetrachloroethene	<26.3	ug/kg	67.8	26.3	1	08/26/22 10:00			
Toluene	<17.1	ug/kg ug/kg	67.8	17.1	1	08/26/22 10:00			
1,2,3-Trichlorobenzene	<75.5	ug/kg ug/kg	339	75.5	1		08/26/22 19:16		
1,2,0 1110111010001120110	~10.0	ug/Ng	555	70.0	'	55,25,22 10.00	JUIZUIZZ 1J.10	57 51 5	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-9 (2'-3') Lab ID: 40250229019 Collected: 08/19/22 09:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	\ 8260 Prepa	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<55.9	ug/kg	339	55.9	1	08/26/22 10:00	08/26/22 19:16	120-82-1	
1,1,1-Trichloroethane	<17.4	ug/kg	67.8	17.4	1	08/26/22 10:00	08/26/22 19:16	71-55-6	
1,1,2-Trichloroethane	<24.7	ug/kg	67.8	24.7	1	08/26/22 10:00	08/26/22 19:16	79-00-5	
Trichloroethene	<25.4	ug/kg	67.8	25.4	1	08/26/22 10:00	08/26/22 19:16	79-01-6	
Trichlorofluoromethane	<19.7	ug/kg	67.8	19.7	1	08/26/22 10:00	08/26/22 19:16	75-69-4	
1,2,3-Trichloropropane	<33.0	ug/kg	67.8	33.0	1	08/26/22 10:00	08/26/22 19:16	96-18-4	
1,2,4-Trimethylbenzene	<20.2	ug/kg	67.8	20.2	1	08/26/22 10:00	08/26/22 19:16	95-63-6	
1,3,5-Trimethylbenzene	<21.8	ug/kg	67.8	21.8	1	08/26/22 10:00	08/26/22 19:16	108-67-8	
Vinyl chloride	<13.7	ug/kg	67.8	13.7	1	08/26/22 10:00	08/26/22 19:16	75-01-4	
Xylene (Total)	<49.0	ug/kg	203	49.0	1	08/26/22 10:00	08/26/22 19:16	1330-20-7	
m&p-Xylene	<28.6	ug/kg	136	28.6	1	08/26/22 10:00	08/26/22 19:16	179601-23-1	
o-Xylene	<20.3	ug/kg	67.8	20.3	1	08/26/22 10:00	08/26/22 19:16	95-47-6	
Surrogates									
Toluene-d8 (S)	122	%	69-153		1	08/26/22 10:00	08/26/22 19:16	2037-26-5	
4-Bromofluorobenzene (S)	139	%	68-156		1	08/26/22 10:00	08/26/22 19:16	460-00-4	
1,2-Dichlorobenzene-d4 (S)	120	%	71-161		1	08/26/22 10:00	08/26/22 19:16	2199-69-1	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	15.1	%	0.10	0.10	1		08/25/22 11:54		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-10 (2'-3') Lab ID: 40250229020 Collected: 08/19/22 10:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6010D MET ICP	Analytical	Method: EPA	\ 6010D Prepa	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay	/					
Arsenic	2.0J	mg/kg	2.8	1.6	1	08/25/22 06:01	08/26/22 17:03	7440-38-2	
Barium	72.6	mg/kg	0.56	0.17	1	08/25/22 06:01	08/26/22 17:03		
Cadmium	0.19J	mg/kg	0.56	0.17	1	08/25/22 06:01	08/26/22 17:03		
Chromium	28.4	mg/kg	1.1	0.31	1	08/25/22 06:01	08/26/22 17:03		
_ead	8.9	mg/kg	2.2	0.67	1	08/25/22 06:01	08/26/22 17:03		
Selenium	<1.5	mg/kg	4.5	1.5	1	08/25/22 06:01	08/26/22 17:03		
Silver	<0.35	mg/kg	1.1	0.35	1	08/25/22 06:01	08/26/22 17:03		
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ation Metho	od: EP/	A 7471			
	-		es - Green Bay						
Mercury	0.036J	mg/kg	0.037	0.010	1	08/25/22 09:14	08/26/22 08:38	7439-97-6	В
3270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SI	M Preparat	ion Me	thod: EPA 3546			
•	-		es - Green Bay						
Acenaphthene	<2.5	ug/kg	19.3	2.5	1	08/29/22 06:43	08/29/22 17:28	83-32-9	
Acenaphthylene	4.9J	ug/kg	19.3	2.4	1	08/29/22 06:43	08/29/22 17:28	208-96-8	
anthracene	7.3J	ug/kg	19.3	2.4	1	08/29/22 06:43	08/29/22 17:28	120-12-7	
Benzo(a)anthracene	28.2	ug/kg	19.3	2.5	1	08/29/22 06:43	08/29/22 17:28	56-55-3	
Benzo(a)pyrene	34.1	ug/kg	19.3	2.2	1	08/29/22 06:43	08/29/22 17:28	50-32-8	
Benzo(b)fluoranthene	45.3	ug/kg	19.3	2.7	1	08/29/22 06:43	08/29/22 17:28	205-99-2	
Benzo(g,h,i)perylene	28.6	ug/kg	19.3	3.4	1	08/29/22 06:43	08/29/22 17:28	191-24-2	
Benzo(k)fluoranthene	19.9	ug/kg	19.3	2.5	1	08/29/22 06:43	08/29/22 17:28	207-08-9	
Chrysene	38.5	ug/kg	19.3	3.6	1	08/29/22 06:43	08/29/22 17:28	218-01-9	
Dibenz(a,h)anthracene	7.8J	ug/kg	19.3	2.7	1	08/29/22 06:43	08/29/22 17:28	53-70-3	
Fluoranthene	60.9	ug/kg	19.3	2.3	1	08/29/22 06:43	08/29/22 17:28	206-44-0	
Fluorene	3.0J	ug/kg	19.3	2.3	1	08/29/22 06:43	08/29/22 17:28	86-73-7	
ndeno(1,2,3-cd)pyrene	20.1	ug/kg	19.3	4.0	1	08/29/22 06:43	08/29/22 17:28	193-39-5	
-Methylnaphthalene	6.0J	ug/kg	19.3	2.8	1	08/29/22 06:43	08/29/22 17:28	90-12-0	
2-Methylnaphthalene	9.2J	ug/kg	19.3	2.8	1	08/29/22 06:43	08/29/22 17:28	91-57-6	
Naphthalene	4.7J	ug/kg	19.3	1.9	1	08/29/22 06:43	08/29/22 17:28	91-20-3	
Phenanthrene	28.8	ug/kg	19.3	2.2	1	08/29/22 06:43	08/29/22 17:28	85-01-8	
Pyrene	50.0	ug/kg	19.3	2.8	1	08/29/22 06:43	08/29/22 17:28	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	61	%	41-98		1	08/29/22 06:43	08/29/22 17:28		
Terphenyl-d14 (S)	74	%	37-106		1	08/29/22 06:43	08/29/22 17:28	1718-51-0	
3260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepar	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
Benzene	<15.7	ug/kg	26.4	15.7	1	08/26/22 10:00	08/26/22 19:36		
Bromobenzene	<25.7	ug/kg	66.0	25.7	1	08/26/22 10:00	08/26/22 19:36	108-86-1	
Bromochloromethane	<18.1	ug/kg	66.0	18.1	1	08/26/22 10:00	08/26/22 19:36	74-97-5	
Bromodichloromethane	<15.7	ug/kg	66.0	15.7	1	08/26/22 10:00	08/26/22 19:36	75-27-4	
Bromoform	<290	ug/kg	330	290	1	08/26/22 10:00	08/26/22 19:36	75-25-2	
Bromomethane	<92.5	ug/kg	330	92.5	1	08/26/22 10:00	08/26/22 19:36	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-10 (2'-3') Lab ID: 40250229020 Collected: 08/19/22 10:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Metho	od: EPA	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
n-Butylbenzene	<30.2	ug/kg	66.0	30.2	1	08/26/22 10:00	08/26/22 19:36	104-51-8	
sec-Butylbenzene	<16.1	ug/kg	66.0	16.1	1	08/26/22 10:00	08/26/22 19:36		
tert-Butylbenzene	<20.7	ug/kg	66.0	20.7	1	08/26/22 10:00	08/26/22 19:36		
Carbon tetrachloride	<14.5	ug/kg	66.0	14.5	1	08/26/22 10:00	08/26/22 19:36		
Chlorobenzene	<7.9	ug/kg	66.0	7.9	1	08/26/22 10:00	08/26/22 19:36		
Chloroethane	<27.9	ug/kg	330	27.9	1	08/26/22 10:00	08/26/22 19:36		
Chloroform	<47.3	ug/kg	330	47.3	1	08/26/22 10:00	08/26/22 19:36		
Chloromethane	<25.1	ug/kg	66.0	25.1	1	08/26/22 10:00	08/26/22 19:36		
2-Chlorotoluene	<21.4	ug/kg	66.0	21.4	1	08/26/22 10:00	08/26/22 19:36		
4-Chlorotoluene	<25.1	ug/kg	66.0	25.1	1	08/26/22 10:00	08/26/22 19:36		
1,2-Dibromo-3-chloropropane	<51.2	ug/kg	330	51.2	1	08/26/22 10:00	08/26/22 19:36		
Dibromochloromethane	<226	ug/kg	330	226	1	08/26/22 10:00	08/26/22 19:36		
1,2-Dibromoethane (EDB)	<18.1	ug/kg	66.0	18.1	1	08/26/22 10:00	08/26/22 19:36		
Dibromomethane	<19.5	ug/kg	66.0	19.5	1	08/26/22 10:00	08/26/22 19:36		
1,2-Dichlorobenzene	<20.5	ug/kg	66.0	20.5	1	08/26/22 10:00	08/26/22 19:36		
1,3-Dichlorobenzene	<18.1	ug/kg	66.0	18.1	1	08/26/22 10:00	08/26/22 19:36		
1,4-Dichlorobenzene	<18.1	ug/kg	66.0	18.1	1	08/26/22 10:00	08/26/22 19:36		
Dichlorodifluoromethane	<28.4	ug/kg	66.0	28.4	1	08/26/22 10:00	08/26/22 19:36		
1.1-Dichloroethane	<16.9	ug/kg	66.0	16.9	1	08/26/22 10:00	08/26/22 19:36		
1,2-Dichloroethane	<15.2	ug/kg ug/kg	66.0	15.2	1	08/26/22 10:00	08/26/22 19:36		
1,1-Dichloroethene	<21.9	ug/kg ug/kg	66.0	21.9	1	08/26/22 10:00	08/26/22 19:36		
cis-1,2-Dichloroethene	<14.1	ug/kg ug/kg	66.0	14.1	1	08/26/22 10:00	08/26/22 19:36		
trans-1,2-Dichloroethene	<14.3	ug/kg ug/kg	66.0	14.3	1	08/26/22 10:00	08/26/22 19:36		
1,2-Dichloropropane	<15.7	ug/kg ug/kg	66.0	15.7	1	08/26/22 10:00	08/26/22 19:36		
1,3-Dichloropropane	<14.4	ug/kg ug/kg	66.0	14.4	1	08/26/22 10:00	08/26/22 19:36		
2,2-Dichloropropane	<17.8	ug/kg ug/kg	66.0	17.8	1	08/26/22 10:00	08/26/22 19:36		
1,1-Dichloropropene	<21.4	ug/kg ug/kg	66.0	21.4	1	08/26/22 10:00	08/26/22 19:36		
cis-1,3-Dichloropropene	<43.6	ug/kg ug/kg	330	43.6	1	08/26/22 10:00	08/26/22 19:36		
trans-1,3-Dichloropropene	<189	ug/kg ug/kg	330	189	1	08/26/22 10:00	08/26/22 19:36		
Diisopropyl ether	<16.4	ug/kg ug/kg	66.0	16.4	1	08/26/22 10:00	08/26/22 19:36		
Ethylbenzene	<15.7	ug/kg ug/kg	66.0	15.7	1	08/26/22 10:00	08/26/22 19:36		
Hexachloro-1,3-butadiene	<13.7	ug/kg ug/kg	330	13.7	1	08/26/22 10:00	08/26/22 19:36		
Isopropylbenzene (Cumene)	<17.8	ug/kg ug/kg	66.0	17.8	1	08/26/22 10:00	08/26/22 19:36		
p-Isopropyltoluene	<20.1	ug/kg ug/kg	66.0	20.1	1	08/26/22 10:00	08/26/22 19:36		
	<18.3		66.0	18.3	1	08/26/22 10:00	08/26/22 19:36		
Methylene Chloride Methyl-tert-butyl ether	<10.3 <19.4	ug/kg	66.0	19.4	1		08/26/22 19:36		
Naphthalene	<20.6	ug/kg	330	20.6	1		08/26/22 19:36		
•	<20.6 <15.8	ug/kg	66.0	20.6 15.8			08/26/22 19:36		
n-Propylbenzene		ug/kg			1				
Styrene	<16.9	ug/kg	66.0	16.9	1	08/26/22 10:00			
1,1,1,2-Tetrachloroethane	<15.8	ug/kg	66.0	15.8	1		08/26/22 19:36		
1,1,2,2-Tetrachloroethane	<23.9	ug/kg	66.0	23.9	1	08/26/22 10:00			
Tetrachloroethene	<25.6	ug/kg	66.0	25.6	1	08/26/22 10:00			
Toluene	<16.6	ug/kg	66.0	16.6	1	08/26/22 10:00			
1,2,3-Trichlorobenzene	<73.5	ug/kg	330	73.5	1	08/26/22 10:00	08/26/22 19:36	0/-01-6	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-10 (2'-3') Lab ID: 40250229020 Collected: 08/19/22 10:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepa	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<54.4	ug/kg	330	54.4	1	08/26/22 10:00	08/26/22 19:36	120-82-1	
1,1,1-Trichloroethane	<16.9	ug/kg	66.0	16.9	1	08/26/22 10:00	08/26/22 19:36	71-55-6	
1,1,2-Trichloroethane	<24.0	ug/kg	66.0	24.0	1	08/26/22 10:00	08/26/22 19:36	79-00-5	
Trichloroethene	<24.7	ug/kg	66.0	24.7	1	08/26/22 10:00	08/26/22 19:36	79-01-6	
Trichlorofluoromethane	<19.1	ug/kg	66.0	19.1	1	08/26/22 10:00	08/26/22 19:36	75-69-4	
1,2,3-Trichloropropane	<32.1	ug/kg	66.0	32.1	1	08/26/22 10:00	08/26/22 19:36	96-18-4	
1,2,4-Trimethylbenzene	<19.7	ug/kg	66.0	19.7	1	08/26/22 10:00	08/26/22 19:36	95-63-6	
1,3,5-Trimethylbenzene	<21.3	ug/kg	66.0	21.3	1	08/26/22 10:00	08/26/22 19:36	108-67-8	
Vinyl chloride	<13.3	ug/kg	66.0	13.3	1	08/26/22 10:00	08/26/22 19:36	75-01-4	
Xylene (Total)	<47.7	ug/kg	198	47.7	1	08/26/22 10:00	08/26/22 19:36	1330-20-7	
m&p-Xylene	<27.9	ug/kg	132	27.9	1	08/26/22 10:00	08/26/22 19:36	179601-23-1	
o-Xylene	<19.8	ug/kg	66.0	19.8	1	08/26/22 10:00	08/26/22 19:36	95-47-6	
Surrogates									
Toluene-d8 (S)	117	%	69-153		1	08/26/22 10:00	08/26/22 19:36	2037-26-5	
4-Bromofluorobenzene (S)	143	%	68-156		1	08/26/22 10:00	08/26/22 19:36	460-00-4	
1,2-Dichlorobenzene-d4 (S)	123	%	71-161		1	08/26/22 10:00	08/26/22 19:36	2199-69-1	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	у					
Percent Moisture	13.8	%	0.10	0.10	1		08/25/22 11:54		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-10 (3'-4') Lab ID: 40250229021 Collected: 08/19/22 10:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	-		\ 6010D Prep		hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	у					
Arsenic	2.6	mg/kg	2.6	1.5	1	08/25/22 06:01	08/26/22 17:06	7440-38-2	
Barium	61.6	mg/kg	0.51	0.15	1	08/25/22 06:01	08/26/22 17:06	7440-39-3	
Cadmium	1.1	mg/kg	0.51	0.14	1	08/25/22 06:01	08/26/22 17:06	7440-43-9	
Chromium	15.2	mg/kg	1.0	0.29	1	08/25/22 06:01	08/26/22 17:06	7440-47-3	
Lead	200	mg/kg	2.1	0.62	1	08/25/22 06:01	08/26/22 17:06	7439-92-1	
Selenium	<1.3	mg/kg	4.1	1.3	1	08/25/22 06:01	08/26/22 17:06		
Silver	<0.32	mg/kg	1.0	0.32	1	08/25/22 06:01	08/26/22 17:06	7440-22-4	
7471 Mercury	Analytical	Method: EPA	A 7471 Prepa	ration Meth	od: EP	A 7471			
	Pace Anal	ytical Service	es - Green Ba	у					
Mercury	0.093	mg/kg	0.035	0.010	1	08/25/22 09:14	08/26/22 08:40	7439-97-6	В
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SI	M Preparat	ion Me	thod: EPA 3546			
-	Pace Anal	ytical Service	es - Green Ba	у					
Acenaphthene	1310J	ug/kg	3150	409	5	08/29/22 06:43	08/29/22 18:20	83-32-9	
Acenaphthylene	<397	ug/kg	3150	397	5	08/29/22 06:43	08/29/22 18:20	208-96-8	
Anthracene	4390	ug/kg	3150	391	5	08/29/22 06:43	08/29/22 18:20	120-12-7	
Benzo(a)anthracene	14300	ug/kg	3150	407	5	08/29/22 06:43	08/29/22 18:20	56-55-3	
Benzo(a)pyrene	17700	ug/kg	3150	358	5	08/29/22 06:43	08/29/22 18:20	50-32-8	
Benzo(b)fluoranthene	24800	ug/kg	3150	437	5	08/29/22 06:43	08/29/22 18:20	205-99-2	
Benzo(g,h,i)perylene	13000	ug/kg	3150	553	5	08/29/22 06:43	08/29/22 18:20	191-24-2	
Benzo(k)fluoranthene	10400	ug/kg	3150	403	5	08/29/22 06:43	08/29/22 18:20	207-08-9	
Chrysene	20500	ug/kg	3150	594	5	08/29/22 06:43	08/29/22 18:20	218-01-9	
Dibenz(a,h)anthracene	3550	ug/kg	3150	436	5	08/29/22 06:43	08/29/22 18:20	53-70-3	
Fluoranthene	41500	ug/kg	3150	373	5	08/29/22 06:43	08/29/22 18:20	206-44-0	
Fluorene	1590J	ug/kg	3150	378	5	08/29/22 06:43	08/29/22 18:20	86-73-7	
Indeno(1,2,3-cd)pyrene	10700	ug/kg	3150	657	5	08/29/22 06:43	08/29/22 18:20	193-39-5	
1-Methylnaphthalene	<460	ug/kg	3150	460	5	08/29/22 06:43	08/29/22 18:20	90-12-0	
2-Methylnaphthalene	<461	ug/kg	3150	461	5	08/29/22 06:43	08/29/22 18:20		
Naphthalene	<307	ug/kg	3150	307	5	08/29/22 06:43	08/29/22 18:20		
Phenanthrene	20500	ug/kg	3150	361	5	08/29/22 06:43	08/29/22 18:20		
Pyrene	32100	ug/kg	3150	463	5	08/29/22 06:43			
Surrogates		-9.1.9			-				
2-Fluorobiphenyl (S)	0	%	41-98		5	08/29/22 06:43	08/29/22 18:20	321-60-8	S4
Terphenyl-d14 (S)	73	%	37-106		5	08/29/22 06:43	08/29/22 18:20	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	у					
Benzene	343	ug/kg	23.1	13.8	1	08/26/22 10:00	08/26/22 19:55	71-43-2	
Bromobenzene	<22.5	ug/kg	57.8	22.5	1	08/26/22 10:00	08/26/22 19:55	108-86-1	
Bromochloromethane	<15.8	ug/kg	57.8	15.8	1	08/26/22 10:00	08/26/22 19:55	74-97-5	
Bromodichloromethane	<13.8	ug/kg	57.8	13.8	1	08/26/22 10:00	08/26/22 19:55	75-27-4	
Bromoform	<254	ug/kg	289	254	1	08/26/22 10:00	08/26/22 19:55	75-25-2	
Bromomethane	<81.1	ug/kg	289	81.1	1		08/26/22 19:55		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-10 (3'-4') Lab ID: 40250229021 Collected: 08/19/22 10:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
n-Butylbenzene	<26.5	ug/kg	57.8	26.5	1	08/26/22 10:00	08/26/22 19:55	104-51-8	
sec-Butylbenzene	<14.1	ug/kg	57.8	14.1	1	08/26/22 10:00	08/26/22 19:55		
tert-Butylbenzene	<18.2	ug/kg	57.8	18.2	1	08/26/22 10:00	08/26/22 19:55		
Carbon tetrachloride	<12.7	ug/kg	57.8	12.7	1	08/26/22 10:00	08/26/22 19:55		
Chlorobenzene	<6.9	ug/kg	57.8	6.9	1	08/26/22 10:00	08/26/22 19:55		
Chloroethane	<24.4	ug/kg	289	24.4	1	08/26/22 10:00	08/26/22 19:55		
Chloroform	<41.4	ug/kg	289	41.4	1	08/26/22 10:00	08/26/22 19:55		
Chloromethane	<22.0	ug/kg	57.8	22.0	1	08/26/22 10:00	08/26/22 19:55		
2-Chlorotoluene	<18.7	ug/kg	57.8	18.7	1	08/26/22 10:00	08/26/22 19:55	95-49-8	
4-Chlorotoluene	<22.0	ug/kg	57.8	22.0	1	08/26/22 10:00	08/26/22 19:55		
1,2-Dibromo-3-chloropropane	<44.9	ug/kg	289	44.9	1	08/26/22 10:00	08/26/22 19:55		
Dibromochloromethane	<198	ug/kg	289	198	1	08/26/22 10:00	08/26/22 19:55		
1,2-Dibromoethane (EDB)	<15.8	ug/kg	57.8	15.8	1	08/26/22 10:00	08/26/22 19:55		
Dibromomethane	<17.1	ug/kg	57.8	17.1	1	08/26/22 10:00	08/26/22 19:55		
1,2-Dichlorobenzene	<17.9	ug/kg	57.8	17.9	1	08/26/22 10:00	08/26/22 19:55		
1,3-Dichlorobenzene	<15.8	ug/kg	57.8	15.8	1	08/26/22 10:00	08/26/22 19:55		
1,4-Dichlorobenzene	<15.8	ug/kg	57.8	15.8	1	08/26/22 10:00	08/26/22 19:55		
Dichlorodifluoromethane	<24.9	ug/kg	57.8	24.9	1	08/26/22 10:00	08/26/22 19:55		
1.1-Dichloroethane	<14.8	ug/kg	57.8	14.8	1	08/26/22 10:00	08/26/22 19:55		
1,2-Dichloroethane	<13.3	ug/kg	57.8	13.3	1	08/26/22 10:00	08/26/22 19:55		
1,1-Dichloroethene	<19.2	ug/kg	57.8	19.2	1	08/26/22 10:00	08/26/22 19:55		
cis-1,2-Dichloroethene	<12.4	ug/kg	57.8	12.4	1	08/26/22 10:00	08/26/22 19:55		
trans-1,2-Dichloroethene	<12.5	ug/kg	57.8	12.5	1	08/26/22 10:00	08/26/22 19:55		
1,2-Dichloropropane	<13.8	ug/kg	57.8	13.8	1	08/26/22 10:00	08/26/22 19:55		
1,3-Dichloropropane	<12.6	ug/kg	57.8	12.6	1	08/26/22 10:00	08/26/22 19:55		
2,2-Dichloropropane	<15.6	ug/kg	57.8	15.6	1	08/26/22 10:00	08/26/22 19:55		
1,1-Dichloropropene	<18.7	ug/kg	57.8	18.7	1	08/26/22 10:00	08/26/22 19:55		
cis-1,3-Dichloropropene	<38.2	ug/kg	289	38.2	1	08/26/22 10:00	08/26/22 19:55		
trans-1,3-Dichloropropene	<165	ug/kg	289	165	1	08/26/22 10:00	08/26/22 19:55		
Diisopropyl ether	<14.3	ug/kg	57.8	14.3	1	08/26/22 10:00	08/26/22 19:55		
Ethylbenzene	88.3	ug/kg	57.8	13.8	1	08/26/22 10:00	08/26/22 19:55		
Hexachloro-1,3-butadiene	<115	ug/kg	289	115	1	08/26/22 10:00	08/26/22 19:55		
Isopropylbenzene (Cumene)	31.4J	ug/kg	57.8	15.6	1	08/26/22 10:00	08/26/22 19:55		
p-Isopropyltoluene	<17.6	ug/kg	57.8	17.6	1	08/26/22 10:00	08/26/22 19:55		
Methylene Chloride	<16.1	ug/kg	57.8	16.1	1	08/26/22 10:00	08/26/22 19:55		
Methyl-tert-butyl ether	<17.0	ug/kg	57.8	17.0	1	08/26/22 10:00			
Naphthalene	435	ug/kg	289	18.0	1	08/26/22 10:00	08/26/22 19:55		
n-Propylbenzene	42.3J	ug/kg	57.8	13.9	1	08/26/22 10:00	08/26/22 19:55		
Styrene	<14.8	ug/kg	57.8	14.8	1	08/26/22 10:00			
1,1,1,2-Tetrachloroethane	<13.9	ug/kg ug/kg	57.8	13.9	1	08/26/22 10:00			
1,1,2,2-Tetrachloroethane	<20.9	ug/kg ug/kg	57.8	20.9	1		08/26/22 19:55		
Tetrachloroethene	<22.4	ug/kg	57.8	22.4	1	08/26/22 10:00			
Toluene	1100	ug/kg ug/kg	57.8	14.6	1	08/26/22 10:00			
1,2,3-Trichlorobenzene	<64.4	ug/kg ug/kg	289	64.4	1		08/26/22 19:55		
1,2,0 1110111010001120110	~~~	ug/Ng	200	07.7	'	55,25,22 10.00	JUIZUIZZ 10.00	57 51 5	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-10 (3'-4') Lab ID: 40250229021 Collected: 08/19/22 10:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	\ 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<47.6	ug/kg	289	47.6	1	08/26/22 10:00	08/26/22 19:55	120-82-1	
1,1,1-Trichloroethane	<14.8	ug/kg	57.8	14.8	1	08/26/22 10:00	08/26/22 19:55	71-55-6	
1,1,2-Trichloroethane	<21.0	ug/kg	57.8	21.0	1	08/26/22 10:00	08/26/22 19:55	79-00-5	
Trichloroethene	<21.6	ug/kg	57.8	21.6	1	08/26/22 10:00	08/26/22 19:55	79-01-6	
Trichlorofluoromethane	<16.8	ug/kg	57.8	16.8	1	08/26/22 10:00	08/26/22 19:55	75-69-4	
1,2,3-Trichloropropane	<28.1	ug/kg	57.8	28.1	1	08/26/22 10:00	08/26/22 19:55	96-18-4	
1,2,4-Trimethylbenzene	202	ug/kg	57.8	17.2	1	08/26/22 10:00	08/26/22 19:55	95-63-6	
1,3,5-Trimethylbenzene	42.9J	ug/kg	57.8	18.6	1	08/26/22 10:00	08/26/22 19:55	108-67-8	
Vinyl chloride	<11.7	ug/kg	57.8	11.7	1	08/26/22 10:00	08/26/22 19:55	75-01-4	
Xylene (Total)	854	ug/kg	173	41.7	1	08/26/22 10:00	08/26/22 19:55	1330-20-7	
m&p-Xylene	556	ug/kg	116	24.4	1	08/26/22 10:00	08/26/22 19:55	179601-23-1	
o-Xylene	298	ug/kg	57.8	17.3	1	08/26/22 10:00	08/26/22 19:55	95-47-6	
Surrogates									
Toluene-d8 (S)	120	%	69-153		1	08/26/22 10:00	08/26/22 19:55	2037-26-5	
4-Bromofluorobenzene (S)	147	%	68-156		1	08/26/22 10:00	08/26/22 19:55	460-00-4	
1,2-Dichlorobenzene-d4 (S)	128	%	71-161		1	08/26/22 10:00	08/26/22 19:55	2199-69-1	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	7.2	%	0.10	0.10	1		08/25/22 11:54		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-11 (1'-2') Lab ID: 40250229022 Collected: 08/19/22 09:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	у					
Arsenic	3.4J	mg/kg	5.3	3.1	2	08/25/22 06:01	08/30/22 17:33	7440-38-2	D3
Barium	38.7	mg/kg	1.1	0.32	2	08/25/22 06:01	08/30/22 17:33		
Cadmium	<0.28	mg/kg	1.1	0.28	2	08/25/22 06:01	08/30/22 17:33		D3
Chromium	13.6	mg/kg	2.1	0.59	2	08/25/22 06:01	08/30/22 17:33	7440-47-3	
_ead	26.0	mg/kg	4.2	1.3	2	08/25/22 06:01	08/30/22 17:33	7439-92-1	
Selenium	<2.8	mg/kg	8.4	2.8	2	08/25/22 06:01	08/30/22 17:33	7782-49-2	D3
Silver	<0.65	mg/kg	2.1	0.65	2	08/25/22 06:01	08/30/22 17:33	7440-22-4	D3
471 Mercury	Analytical	Method: EPA	A 7471 Prepa	ration Meth	od: EP	A 7471			
-	Pace Anal	ytical Service	es - Green Ba	у					
Mercury	0.080	mg/kg	0.036	0.010	1	08/25/22 09:14	08/26/22 08:42	7439-97-6	В
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SI	M Preparat	ion Me	thod: EPA 3546			
•	-		es - Green Ba						
Acenaphthene	19.8J	ug/kg	75.3	9.8	4	08/29/22 06:43	08/29/22 20:56	83-32-9	
Acenaphthylene	14.3J	ug/kg	75.3	9.5	4	08/29/22 06:43	08/29/22 20:56	208-96-8	
Anthracene	96.1	ug/kg	75.3	9.3	4	08/29/22 06:43	08/29/22 20:56	120-12-7	
Benzo(a)anthracene	292	ug/kg	75.3	9.7	4	08/29/22 06:43	08/29/22 20:56	56-55-3	
Benzo(a)pyrene	350	ug/kg	75.3	8.6	4	08/29/22 06:43	08/29/22 20:56	50-32-8	
Benzo(b)fluoranthene	502	ug/kg	75.3	10.5	4	08/29/22 06:43	08/29/22 20:56	205-99-2	
Benzo(g,h,i)perylene	234	ug/kg	75.3	13.2	4	08/29/22 06:43	08/29/22 20:56	191-24-2	
Benzo(k)fluoranthene	171	ug/kg	75.3	9.6	4	08/29/22 06:43	08/29/22 20:56	207-08-9	
Chrysene	388	ug/kg	75.3	14.2	4	08/29/22 06:43	08/29/22 20:56	218-01-9	
Dibenz(a,h)anthracene	66.9J	ug/kg	75.3	10.4	4	08/29/22 06:43	08/29/22 20:56	53-70-3	
Fluoranthene	743	ug/kg	75.3	8.9	4	08/29/22 06:43	08/29/22 20:56	206-44-0	
Fluorene	22.0J	ug/kg	75.3	9.0	4	08/29/22 06:43	08/29/22 20:56	86-73-7	
ndeno(1,2,3-cd)pyrene	191	ug/kg	75.3	15.7	4	08/29/22 06:43	08/29/22 20:56	193-39-5	
I-Methylnaphthalene	63.4J	ug/kg	75.3	11.0	4	08/29/22 06:43	08/29/22 20:56	90-12-0	
2-Methylnaphthalene	72.6J	ug/kg	75.3	11.0	4	08/29/22 06:43	08/29/22 20:56	91-57-6	
Naphthalene	55.5J	ug/kg	75.3	7.3	4	08/29/22 06:43	08/29/22 20:56	91-20-3	
Phenanthrene	388	ug/kg	75.3	8.6	4	08/29/22 06:43	08/29/22 20:56	85-01-8	
Pyrene	621	ug/kg	75.3	11.1	4	08/29/22 06:43	08/29/22 20:56	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	66	%	41-98		4	08/29/22 06:43	08/29/22 20:56		
Terphenyl-d14 (S)	73	%	37-106		4	08/29/22 06:43	08/29/22 20:56	1718-51-0	
3260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepa	ration Meth	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	у					
Benzene	33.6	ug/kg	25.2	15.0	1	08/26/22 10:00	08/29/22 11:50	71-43-2	
Bromobenzene	<24.5	ug/kg	62.9	24.5	1	08/26/22 10:00	08/29/22 11:50	108-86-1	
Bromochloromethane	<17.2	ug/kg	62.9	17.2	1	08/26/22 10:00	08/29/22 11:50	74-97-5	
Bromodichloromethane	<15.0	ug/kg	62.9	15.0	1	08/26/22 10:00	08/29/22 11:50	75-27-4	
Bromoform	<277	ug/kg	315	277	1	08/26/22 10:00	08/29/22 11:50	75-25-2	
Bromomethane	<88.2	ug/kg	315	88.2	1	08/26/22 10:00	08/29/22 11:50	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-11 (1'-2') Lab ID: 40250229022 Collected: 08/19/22 09:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepar	ration Metho	od: EPA	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
n-Butylbenzene	<28.8	ug/kg	62.9	28.8	1	08/26/22 10:00	08/29/22 11:50	104-51-8	
sec-Butylbenzene	<15.4	ug/kg	62.9	15.4	1	08/26/22 10:00	08/29/22 11:50		
tert-Butylbenzene	<19.8	ug/kg	62.9	19.8	1	08/26/22 10:00	08/29/22 11:50		
Carbon tetrachloride	<13.8	ug/kg	62.9	13.8	1	08/26/22 10:00	08/29/22 11:50		
Chlorobenzene	<7.5	ug/kg	62.9	7.5	1	08/26/22 10:00	08/29/22 11:50		
Chloroethane	<26.6	ug/kg	315	26.6	1	08/26/22 10:00	08/29/22 11:50		
Chloroform	<45.1	ug/kg	315	45.1	1	08/26/22 10:00	08/29/22 11:50		
Chloromethane	<23.9	ug/kg	62.9	23.9	1	08/26/22 10:00	08/29/22 11:50		
2-Chlorotoluene	<20.4	ug/kg	62.9	20.4	1	08/26/22 10:00	08/29/22 11:50		
4-Chlorotoluene	<23.9	ug/kg	62.9	23.9	1	08/26/22 10:00	08/29/22 11:50		
1,2-Dibromo-3-chloropropane	<48.8	ug/kg	315	48.8	1	08/26/22 10:00	08/29/22 11:50		
Dibromochloromethane	<215	ug/kg	315	215	1	08/26/22 10:00	08/29/22 11:50		
1,2-Dibromoethane (EDB)	<17.2	ug/kg ug/kg	62.9	17.2	1	08/26/22 10:00	08/29/22 11:50		
Dibromomethane	<18.6	ug/kg	62.9	18.6	1	08/26/22 10:00	08/29/22 11:50		
1,2-Dichlorobenzene	<19.5	ug/kg	62.9	19.5	1	08/26/22 10:00	08/29/22 11:50		
1,3-Dichlorobenzene	<17.2	ug/kg	62.9	17.2	1	08/26/22 10:00	08/29/22 11:50		
1,4-Dichlorobenzene	<17.2	ug/kg	62.9	17.2	1	08/26/22 10:00	08/29/22 11:50		
Dichlorodifluoromethane	<27.1	ug/kg	62.9	27.1	1	08/26/22 10:00	08/29/22 11:50		
1,1-Dichloroethane	<16.1	ug/kg	62.9	16.1	1	08/26/22 10:00	08/29/22 11:50		
1,2-Dichloroethane	<14.5	ug/kg ug/kg	62.9	14.5	1	08/26/22 10:00	08/29/22 11:50		
1,1-Dichloroethene	<20.9	ug/kg ug/kg	62.9	20.9	1	08/26/22 10:00	08/29/22 11:50		
cis-1,2-Dichloroethene	<13.5	ug/kg ug/kg	62.9	13.5	1	08/26/22 10:00	08/29/22 11:50		
trans-1,2-Dichloroethene	<13.6	ug/kg ug/kg	62.9	13.6	1	08/26/22 10:00	08/29/22 11:50		
1,2-Dichloropropane	<15.0	ug/kg ug/kg	62.9	15.0	1	08/26/22 10:00	08/29/22 11:50		
1,3-Dichloropropane	<13.7	ug/kg ug/kg	62.9	13.7	1	08/26/22 10:00	08/29/22 11:50		
2,2-Dichloropropane	<17.0	ug/kg ug/kg	62.9	17.0	1	08/26/22 10:00	08/29/22 11:50		
1,1-Dichloropropene	<20.4	ug/kg ug/kg	62.9	20.4	1	08/26/22 10:00	08/29/22 11:50		
cis-1,3-Dichloropropene	<41.5	ug/kg ug/kg	315	41.5	1	08/26/22 10:00	08/29/22 11:50		
trans-1,3-Dichloropropene	<180	ug/kg ug/kg	315	180	1	08/26/22 10:00	08/29/22 11:50	10061-01-6	
Diisopropyl ether	<15.6	ug/kg ug/kg	62.9	15.6	1	08/26/22 10:00	08/29/22 11:50		
Ethylbenzene	34.9J	ug/kg ug/kg	62.9	15.0	1	08/26/22 10:00	08/29/22 11:50		
Hexachloro-1,3-butadiene	<125	ug/kg ug/kg	315	125	1	08/26/22 10:00	08/29/22 11:50		
Isopropylbenzene (Cumene)	<17.0	ug/kg ug/kg	62.9	17.0	1	08/26/22 10:00	08/29/22 11:50		
p-Isopropyltoluene	<19.1	ug/kg ug/kg	62.9	19.1	1	08/26/22 10:00	08/29/22 11:50		
Methylene Chloride	<17.5	ug/kg ug/kg	62.9	17.5	1	08/26/22 10:00	08/29/22 11:50		
Methyl-tert-butyl ether	<18.5	ug/kg ug/kg	62.9	18.5	1		08/29/22 11:50		
Naphthalene	66.3J	ug/kg ug/kg	315	19.6	1		08/29/22 11:50		
n-Propylbenzene	25.7J	ug/kg ug/kg	62.9	15.1	1		08/29/22 11:50		
Styrene	25.75 <16.1	ug/kg ug/kg	62.9	16.1	1	08/26/22 10:00			
1,1,1,2-Tetrachloroethane	<15.1 <15.1	ug/kg ug/kg	62.9	15.1	1		08/29/22 11:50		
1,1,2,2-Tetrachloroethane	<15.1 <22.8	ug/kg ug/kg	62.9	22.8	1	08/26/22 10:00			
Tetrachloroethene	<22.6 <24.4		62.9 62.9		1	08/26/22 10:00			
Toluene	<24.4 227	ug/kg	62.9 62.9	24.4 15.9	1	08/26/22 10:00			
		ug/kg							
1,2,3-Trichlorobenzene	<70.1	ug/kg	315	70.1	1	08/26/22 10:00	08/29/22 11:50	01-10-10	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-11 (1'-2') Lab ID: 40250229022 Collected: 08/19/22 09:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepa	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<51.9	ug/kg	315	51.9	1	08/26/22 10:00	08/29/22 11:50	120-82-1	
1,1,1-Trichloroethane	<16.1	ug/kg	62.9	16.1	1	08/26/22 10:00	08/29/22 11:50	71-55-6	
1,1,2-Trichloroethane	<22.9	ug/kg	62.9	22.9	1	08/26/22 10:00	08/29/22 11:50	79-00-5	
Trichloroethene	<23.5	ug/kg	62.9	23.5	1	08/26/22 10:00	08/29/22 11:50	79-01-6	
Trichlorofluoromethane	<18.2	ug/kg	62.9	18.2	1	08/26/22 10:00	08/29/22 11:50	75-69-4	
1,2,3-Trichloropropane	<30.6	ug/kg	62.9	30.6	1	08/26/22 10:00	08/29/22 11:50	96-18-4	
1,2,4-Trimethylbenzene	27.6J	ug/kg	62.9	18.8	1	08/26/22 10:00	08/29/22 11:50	95-63-6	
1,3,5-Trimethylbenzene	<20.3	ug/kg	62.9	20.3	1	08/26/22 10:00	08/29/22 11:50	108-67-8	
Vinyl chloride	<12.7	ug/kg	62.9	12.7	1	08/26/22 10:00	08/29/22 11:50	75-01-4	
Xylene (Total)	144J	ug/kg	189	45.4	1	08/26/22 10:00	08/29/22 11:50	1330-20-7	
m&p-Xylene	81.2J	ug/kg	126	26.6	1	08/26/22 10:00	08/29/22 11:50	179601-23-1	
o-Xylene	63.0	ug/kg	62.9	18.9	1	08/26/22 10:00	08/29/22 11:50	95-47-6	
Surrogates									
Toluene-d8 (S)	120	%	69-153		1	08/26/22 10:00	08/29/22 11:50	2037-26-5	
4-Bromofluorobenzene (S)	142	%	68-156		1	08/26/22 10:00	08/29/22 11:50	460-00-4	
1,2-Dichlorobenzene-d4 (S)	134	%	71-161		1	08/26/22 10:00	08/29/22 11:50	2199-69-1	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	11.5	%	0.10	0.10	1		08/25/22 11:54		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-11 (2'-3') Lab ID: 40250229023 Collected: 08/19/22 09:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	\ 6010D Prep	aration Met	hod: El	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay	/					
Arsenic	2.1J	mg/kg	2.8	1.6	1	08/25/22 06:01	08/29/22 21:32	7440-38-2	
Barium	51.1	mg/kg	0.55	0.17	1	08/25/22 06:01	08/29/22 21:32		
Cadmium	0.25J	mg/kg	0.55	0.15	1	08/25/22 06:01	08/29/22 21:32		
Chromium	18.3	mg/kg	1.1	0.31	1	08/25/22 06:01	08/29/22 21:32		
Lead	25.2	mg/kg	2.2	0.66	1	08/25/22 06:01	08/29/22 21:32		
Selenium	<1.5	mg/kg	4.4	1.5	1	08/25/22 06:01	08/29/22 21:32		
Silver	<0.34	mg/kg	1.1	0.34	1	08/25/22 06:01	08/29/22 21:32	7440-22-4	
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ation Metho	od: EPA	\ 7471			
	Pace Anal	ytical Service	es - Green Bay	/					
Mercury	0.15	mg/kg	0.036	0.010	1	08/25/22 09:14	08/26/22 08:45	7439-97-6	
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SII	M Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Bay	/					
Acenaphthene	35.8J	ug/kg	76.1	9.9	4	08/29/22 06:43	08/29/22 21:13	83-32-9	
Acenaphthylene	17.3J	ug/kg	76.1	9.6	4	08/29/22 06:43	08/29/22 21:13	208-96-8	
Anthracene	110	ug/kg	76.1	9.4	4	08/29/22 06:43	08/29/22 21:13	120-12-7	
Benzo(a)anthracene	237	ug/kg	76.1	9.8	4	08/29/22 06:43	08/29/22 21:13	56-55-3	
Benzo(a)pyrene	250	ug/kg	76.1	8.6	4	08/29/22 06:43	08/29/22 21:13	50-32-8	
Benzo(b)fluoranthene	313	ug/kg	76.1	10.6	4	08/29/22 06:43	08/29/22 21:13	205-99-2	
Benzo(g,h,i)perylene	146	ug/kg	76.1	13.4	4	08/29/22 06:43	08/29/22 21:13	191-24-2	
Benzo(k)fluoranthene	133	ug/kg	76.1	9.7	4	08/29/22 06:43	08/29/22 21:13	207-08-9	
Chrysene	305	ug/kg	76.1	14.4	4	08/29/22 06:43	08/29/22 21:13	218-01-9	
Dibenz(a,h)anthracene	43.0J	ug/kg	76.1	10.5	4	08/29/22 06:43	08/29/22 21:13	53-70-3	
Fluoranthene	590	ug/kg	76.1	9.0	4	08/29/22 06:43	08/29/22 21:13	206-44-0	
Fluorene	32.9J	ug/kg	76.1	9.1	4	08/29/22 06:43	08/29/22 21:13	86-73-7	
Indeno(1,2,3-cd)pyrene	117	ug/kg	76.1	15.9	4	08/29/22 06:43	08/29/22 21:13	193-39-5	
1-Methylnaphthalene	44.8J	ug/kg	76.1	11.1	4	08/29/22 06:43	08/29/22 21:13	90-12-0	
2-Methylnaphthalene	52.1J	ug/kg	76.1	11.1	4	08/29/22 06:43	08/29/22 21:13	91-57-6	
Naphthalene	40.5J	ug/kg	76.1	7.4	4	08/29/22 06:43	08/29/22 21:13	91-20-3	
Phenanthrene	434	ug/kg	76.1	8.7	4	08/29/22 06:43	08/29/22 21:13	85-01-8	
Pyrene	513	ug/kg	76.1	11.2	4	08/29/22 06:43	08/29/22 21:13	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	61	%	41-98		4	08/29/22 06:43	08/29/22 21:13	321-60-8	
Terphenyl-d14 (S)	70	%	37-106		4	08/29/22 06:43	08/29/22 21:13	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepar	ation Metho	od: EPA	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
Benzene	<15.3	ug/kg	25.6	15.3	1	08/26/22 10:00	08/29/22 12:09	71-43-2	
Bromobenzene	<25.0	ug/kg	64.1	25.0	1	08/26/22 10:00	08/29/22 12:09	108-86-1	
Bromochloromethane	<17.6	ug/kg	64.1	17.6	1	08/26/22 10:00	08/29/22 12:09	74-97-5	
Bromodichloromethane	<15.3	ug/kg	64.1	15.3	1	08/26/22 10:00	08/29/22 12:09	75-27-4	
Bromoform	<282	ug/kg	320	282	1	08/26/22 10:00	08/29/22 12:09	75-25-2	
Bromomethane	<89.9	ug/kg	320	89.9	1	08/26/22 10:00	08/29/22 12:09	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-11 (2'-3') Lab ID: 40250229023 Collected: 08/19/22 09:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepa	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
n-Butylbenzene	<29.4	ug/kg	64.1	29.4	1	08/26/22 10:00	08/29/22 12:09	104-51-8	
sec-Butylbenzene	<15.6	ug/kg	64.1	15.6	1	08/26/22 10:00	08/29/22 12:09		
tert-Butylbenzene	<20.1	ug/kg	64.1	20.1	1	08/26/22 10:00	08/29/22 12:09	98-06-6	
Carbon tetrachloride	<14.1	ug/kg	64.1	14.1	1	08/26/22 10:00	08/29/22 12:09		
Chlorobenzene	<7.7	ug/kg	64.1	7.7	1	08/26/22 10:00	08/29/22 12:09		
Chloroethane	<27.0	ug/kg	320	27.0	1	08/26/22 10:00	08/29/22 12:09		
Chloroform	<45.9	ug/kg	320	45.9	1	08/26/22 10:00	08/29/22 12:09		
Chloromethane	<24.4	ug/kg	64.1	24.4	1	08/26/22 10:00	08/29/22 12:09		
2-Chlorotoluene	<20.8	ug/kg	64.1	20.8	1	08/26/22 10:00	08/29/22 12:09	95-49-8	
4-Chlorotoluene	<24.4	ug/kg	64.1	24.4	1	08/26/22 10:00	08/29/22 12:09		
1,2-Dibromo-3-chloropropane	<49.7	ug/kg	320	49.7	1	08/26/22 10:00	08/29/22 12:09		
Dibromochloromethane	<219	ug/kg	320	219	1	08/26/22 10:00	08/29/22 12:09		
1,2-Dibromoethane (EDB)	<17.6	ug/kg	64.1	17.6	1	08/26/22 10:00	08/29/22 12:09		
Dibromomethane	<19.0	ug/kg	64.1	19.0	1	08/26/22 10:00	08/29/22 12:09		
1,2-Dichlorobenzene	<19.9	ug/kg	64.1	19.9	1	08/26/22 10:00	08/29/22 12:09		
1,3-Dichlorobenzene	<17.6	ug/kg	64.1	17.6	1	08/26/22 10:00	08/29/22 12:09		
1,4-Dichlorobenzene	<17.6	ug/kg	64.1	17.6	1	08/26/22 10:00	08/29/22 12:09		
Dichlorodifluoromethane	<27.6	ug/kg	64.1	27.6	1	08/26/22 10:00	08/29/22 12:09		
1.1-Dichloroethane	<16.4	ug/kg	64.1	16.4	1	08/26/22 10:00	08/29/22 12:09		
1,2-Dichloroethane	<14.7	ug/kg	64.1	14.7	1	08/26/22 10:00	08/29/22 12:09		
1,1-Dichloroethene	<21.3	ug/kg	64.1	21.3	1	08/26/22 10:00	08/29/22 12:09		
cis-1,2-Dichloroethene	<13.7	ug/kg	64.1	13.7	1	08/26/22 10:00	08/29/22 12:09		
trans-1,2-Dichloroethene	<13.8	ug/kg	64.1	13.8	1	08/26/22 10:00	08/29/22 12:09		
1,2-Dichloropropane	<15.3	ug/kg	64.1	15.3	1	08/26/22 10:00	08/29/22 12:09		
1,3-Dichloropropane	<14.0	ug/kg	64.1	14.0	1	08/26/22 10:00	08/29/22 12:09		
2,2-Dichloropropane	<17.3	ug/kg	64.1	17.3	1	08/26/22 10:00	08/29/22 12:09		
1,1-Dichloropropene	<20.8	ug/kg	64.1	20.8	1	08/26/22 10:00	08/29/22 12:09		
cis-1,3-Dichloropropene	<42.3	ug/kg	320	42.3	1	08/26/22 10:00	08/29/22 12:09		
trans-1,3-Dichloropropene	<183	ug/kg	320	183	1	08/26/22 10:00	08/29/22 12:09		
Diisopropyl ether	<15.9	ug/kg	64.1	15.9	1	08/26/22 10:00	08/29/22 12:09	108-20-3	
Ethylbenzene	<15.3	ug/kg	64.1	15.3	1	08/26/22 10:00	08/29/22 12:09		
Hexachloro-1,3-butadiene	<127	ug/kg	320	127	1	08/26/22 10:00	08/29/22 12:09		
Isopropylbenzene (Cumene)	<17.3	ug/kg	64.1	17.3	1	08/26/22 10:00	08/29/22 12:09		
p-Isopropyltoluene	<19.5	ug/kg	64.1	19.5	1	08/26/22 10:00	08/29/22 12:09		
Methylene Chloride	<17.8	ug/kg	64.1	17.8	1	08/26/22 10:00	08/29/22 12:09		
Methyl-tert-butyl ether	<18.8	ug/kg	64.1	18.8	1	08/26/22 10:00			
Naphthalene	<20.0	ug/kg	320	20.0	1	08/26/22 10:00	08/29/22 12:09		
n-Propylbenzene	<15.4	ug/kg	64.1	15.4	1	08/26/22 10:00	08/29/22 12:09		
Styrene	<16.4	ug/kg	64.1	16.4	1	08/26/22 10:00			
1,1,1,2-Tetrachloroethane	<15.4	ug/kg	64.1	15.4	1	08/26/22 10:00			
1,1,2,2-Tetrachloroethane	<23.2	ug/kg	64.1	23.2	1		08/29/22 12:09		
Tetrachloroethene	<24.9	ug/kg	64.1	24.9	1	08/26/22 10:00			
Toluene	<16.2	ug/kg	64.1	16.2	1	08/26/22 10:00			
1,2,3-Trichlorobenzene	<71.4	ug/kg	320	71.4	1		08/29/22 12:09		
1,2,0 1110111010001120110	₹11. ∓	ug/Ng	320	/ 1. -	'	55,25,22 10.00	30/20/22 12.03	57 51 5	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-11 (2'-3') Lab ID: 40250229023 Collected: 08/19/22 09:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepai	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
1,2,4-Trichlorobenzene	<52.8	ug/kg	320	52.8	1	08/26/22 10:00	08/29/22 12:09	120-82-1	
1,1,1-Trichloroethane	<16.4	ug/kg	64.1	16.4	1	08/26/22 10:00	08/29/22 12:09	71-55-6	
1,1,2-Trichloroethane	<23.3	ug/kg	64.1	23.3	1	08/26/22 10:00	08/29/22 12:09	79-00-5	
Trichloroethene	<24.0	ug/kg	64.1	24.0	1	08/26/22 10:00	08/29/22 12:09	79-01-6	
Trichlorofluoromethane	<18.6	ug/kg	64.1	18.6	1	08/26/22 10:00	08/29/22 12:09	75-69-4	
1,2,3-Trichloropropane	<31.1	ug/kg	64.1	31.1	1	08/26/22 10:00	08/29/22 12:09	96-18-4	
1,2,4-Trimethylbenzene	<19.1	ug/kg	64.1	19.1	1	08/26/22 10:00	08/29/22 12:09	95-63-6	
1,3,5-Trimethylbenzene	<20.6	ug/kg	64.1	20.6	1	08/26/22 10:00	08/29/22 12:09	108-67-8	
Vinyl chloride	<12.9	ug/kg	64.1	12.9	1	08/26/22 10:00	08/29/22 12:09	75-01-4	
Xylene (Total)	<46.3	ug/kg	192	46.3	1	08/26/22 10:00	08/29/22 12:09	1330-20-7	
m&p-Xylene	<27.0	ug/kg	128	27.0	1	08/26/22 10:00	08/29/22 12:09	179601-23-1	
o-Xylene	<19.2	ug/kg	64.1	19.2	1	08/26/22 10:00	08/29/22 12:09	95-47-6	
Surrogates									
Toluene-d8 (S)	125	%	69-153		1	08/26/22 10:00	08/29/22 12:09	2037-26-5	
4-Bromofluorobenzene (S)	156	%	68-156		1	08/26/22 10:00	08/29/22 12:09	460-00-4	
1,2-Dichlorobenzene-d4 (S)	146	%	71-161		1	08/26/22 10:00	08/29/22 12:09	2199-69-1	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	12.4	%	0.10	0.10	1		08/25/22 12:35		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-12 (1'-2') Lab ID: 40250229024 Collected: 08/19/22 09:40 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prepa	ration Met	hod: El	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay						
Arsenic	6.4	mg/kg	5.3	3.1	2	08/25/22 06:01	08/30/22 17:35	7440-38-2	
Barium	74.8	mg/kg	1.1	0.32	2	08/25/22 06:01	08/30/22 17:35	7440-39-3	
Cadmium	1.6	mg/kg	1.1	0.28	2	08/25/22 06:01	08/30/22 17:35	7440-43-9	
Chromium	21.9	mg/kg	2.1	0.59	2	08/25/22 06:01	08/30/22 17:35	7440-47-3	
Lead	236	mg/kg	4.3	1.3	2	08/25/22 06:01	08/30/22 17:35	7439-92-1	
Selenium	<2.8	mg/kg	8.5	2.8	2	08/25/22 06:01	08/30/22 17:35	7782-49-2	D3
Silver	<0.66	mg/kg	2.1	0.66	2	08/25/22 06:01	08/30/22 17:35	7440-22-4	D3
7471 Mercury	Analytical	Method: EPA	7471 Prepara	ation Metho	od: EPA	A 7471			
	Pace Anal	ytical Service	es - Green Bay						
Mercury	0.13	mg/kg	0.036	0.010	1	08/25/22 09:14	08/26/22 08:47	7439-97-6	В
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SIM	1 Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Bay						
Acenaphthene	82.0J	ug/kg	358	46.5	20	08/29/22 06:43	08/29/22 21:30	83-32-9	
Acenaphthylene	<45.1	ug/kg	358	45.1	20	08/29/22 06:43	08/29/22 21:30	208-96-8	
Anthracene	264J	ug/kg	358	44.4	20	08/29/22 06:43	08/29/22 21:30	120-12-7	
Benzo(a)anthracene	634	ug/kg	358	46.3	20	08/29/22 06:43	08/29/22 21:30	56-55-3	
Benzo(a)pyrene	881	ug/kg	358	40.7	20	08/29/22 06:43	08/29/22 21:30	50-32-8	
Benzo(b)fluoranthene	1150	ug/kg	358	49.7	20	08/29/22 06:43	08/29/22 21:30	205-99-2	
Benzo(g,h,i)perylene	537	ug/kg	358	62.8	20	08/29/22 06:43	08/29/22 21:30	191-24-2	
Benzo(k)fluoranthene	516	ug/kg	358	45.8	20	08/29/22 06:43	08/29/22 21:30	207-08-9	
Chrysene	1090	ug/kg	358	67.5	20	08/29/22 06:43	08/29/22 21:30	218-01-9	
Dibenz(a,h)anthracene	147J	ug/kg	358	49.6	20	08/29/22 06:43	08/29/22 21:30	53-70-3	
Fluoranthene	1950	ug/kg	358	42.4	20	08/29/22 06:43	08/29/22 21:30	206-44-0	
Fluorene	75.8J	ug/kg	358	42.9	20	08/29/22 06:43	08/29/22 21:30	86-73-7	
Indeno(1,2,3-cd)pyrene	441	ug/kg	358	74.6	20	08/29/22 06:43	08/29/22 21:30	193-39-5	
1-Methylnaphthalene	83.5J	ug/kg	358	52.3	20	08/29/22 06:43	08/29/22 21:30	90-12-0	
2-Methylnaphthalene	98.5J	ug/kg	358	52.4	20	08/29/22 06:43	08/29/22 21:30	91-57-6	
Naphthalene	97.5J	ug/kg	358	34.9	20	08/29/22 06:43			
Phenanthrene	1130	ug/kg	358	41.0	20	08/29/22 06:43	08/29/22 21:30		
Pyrene	1660	ug/kg	358	52.6	20	08/29/22 06:43	08/29/22 21:30		
Surrogates					-				
2-Fluorobiphenyl (S)	62	%	41-98		20	08/29/22 06:43	08/29/22 21:30	321-60-8	
Terphenyl-d14 (S)	72	%	37-106		20	08/29/22 06:43	08/29/22 21:30	1718-51-0	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	6.7	%	0.10	0.10	1		08/25/22 12:35		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-12 (3'-4') Lab ID: 40250229025 Collected: 08/19/22 09:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prepa	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay	/					
Arsenic	<3.1	mg/kg	5.3	3.1	2	08/25/22 06:01	08/30/22 17:38	7440-38-2	D3
Barium	19.7	mg/kg	1.1	0.32	2	08/25/22 06:01	08/30/22 17:38	7440-39-3	
Cadmium	<0.28	mg/kg	1.1	0.28	2	08/25/22 06:01	08/30/22 17:38	7440-43-9	D3
Chromium	7.4	mg/kg	2.1	0.59	2	08/25/22 06:01	08/30/22 17:38	7440-47-3	
Lead	14.0	mg/kg	4.3	1.3	2	08/25/22 06:01	08/30/22 17:38	7439-92-1	
Selenium	<2.8	mg/kg	8.5	2.8	2	08/25/22 06:01	08/30/22 17:38	7782-49-2	D3
Silver	<0.65	mg/kg	2.1	0.65	2	08/25/22 06:01	08/30/22 17:38	7440-22-4	D3
7471 Mercury	•		7471 Prepar		od: EP/	A 7471			
	Pace Anai	ytical Service	es - Green Bay	/					
Mercury	0.023J	mg/kg	0.038	0.011	1	08/25/22 09:14	08/26/22 08:49	7439-97-6	В
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SIM	M Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Bay	/					
Acenaphthene	<2.4	ug/kg	18.5	2.4	1	08/29/22 06:43	08/29/22 18:37	83-32-9	
Acenaphthylene	2.6J	ug/kg	18.5	2.3	1	08/29/22 06:43	08/29/22 18:37	208-96-8	
Anthracene	2.4J	ug/kg	18.5	2.3	1	08/29/22 06:43	08/29/22 18:37	120-12-7	
Benzo(a)anthracene	6.1J	ug/kg	18.5	2.4	1	08/29/22 06:43	08/29/22 18:37	56-55-3	
Benzo(a)pyrene	8.9J	ug/kg	18.5	2.1	1	08/29/22 06:43	08/29/22 18:37	50-32-8	
Benzo(b)fluoranthene	12.0J	ug/kg	18.5	2.6	1	08/29/22 06:43	08/29/22 18:37	205-99-2	
Benzo(g,h,i)perylene	8.1J	ug/kg	18.5	3.3	1	08/29/22 06:43	08/29/22 18:37	191-24-2	
Benzo(k)fluoranthene	5.5J	ug/kg	18.5	2.4	1	08/29/22 06:43	08/29/22 18:37	207-08-9	
Chrysene	10.6J	ug/kg	18.5	3.5	1	08/29/22 06:43	08/29/22 18:37	218-01-9	
Dibenz(a,h)anthracene	<2.6	ug/kg	18.5	2.6	1	08/29/22 06:43	08/29/22 18:37	53-70-3	
Fluoranthene	12.4J	ug/kg	18.5	2.2	1	08/29/22 06:43	08/29/22 18:37	206-44-0	
Fluorene	<2.2	ug/kg	18.5	2.2	1	08/29/22 06:43	08/29/22 18:37	86-73-7	
Indeno(1,2,3-cd)pyrene	4.9J	ug/kg	18.5	3.9	1	08/29/22 06:43	08/29/22 18:37	193-39-5	
1-Methylnaphthalene	3.7J	ug/kg	18.5	2.7	1	08/29/22 06:43	08/29/22 18:37	90-12-0	
2-Methylnaphthalene	4.8J	ug/kg	18.5	2.7	1	08/29/22 06:43	08/29/22 18:37	91-57-6	
Naphthalene	6.0J	ug/kg	18.5	1.8	1	08/29/22 06:43	08/29/22 18:37	91-20-3	
Phenanthrene	9.1J	ug/kg	18.5	2.1	1	08/29/22 06:43	08/29/22 18:37	85-01-8	
Pyrene	18.4J	ug/kg	18.5	2.7	1	08/29/22 06:43	08/29/22 18:37	129-00-0	
Surrogates		-							
2-Fluorobiphenyl (S)	61	%	41-98		1	08/29/22 06:43	08/29/22 18:37	321-60-8	
Terphenyl-d14 (S)	72	%	37-106		1	08/29/22 06:43	08/29/22 18:37	1718-51-0	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Bay	/					
Percent Moisture	10.0	%	0.10	0.10	1		08/25/22 12:35		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-13 (1'-2') Lab ID: 40250229026 Collected: 08/19/22 10:00 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prepa	aration Met	hod: El	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay						
Arsenic	2.4J	mg/kg	2.6	1.5	1	08/25/22 06:01	08/29/22 21:44	7440-38-2	
Barium	60.7	mg/kg	0.52	0.16	1	08/25/22 06:01	08/29/22 21:44		
Cadmium	0.25J	mg/kg	0.52	0.14	1	08/25/22 06:01	08/29/22 21:44	7440-43-9	
Chromium	18.8	mg/kg	1.0	0.29	1	08/25/22 06:01	08/29/22 21:44	7440-47-3	
Lead	24.3	mg/kg	2.1	0.63	1	08/25/22 06:01	08/29/22 21:44	7439-92-1	
Selenium	<1.4	mg/kg	4.2	1.4	1	08/25/22 06:01	08/29/22 21:44	7782-49-2	
Silver	0.34J	mg/kg	1.0	0.32	1	08/25/22 06:01	08/29/22 21:44	7440-22-4	
7471 Mercury	•		7471 Prepara		od: EP/	A 7471			
	Pace Anal	ytıcal Service	es - Green Bay						
Mercury	0.057	mg/kg	0.035	0.010	1	08/25/22 09:14	08/26/22 08:51	7439-97-6	В
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SIN	1 Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Bay						
Acenaphthene	<47.6	ug/kg	367	47.6	20	08/29/22 06:43	08/29/22 21:47	83-32-9	
Acenaphthylene	686	ug/kg	367	46.3	20	08/29/22 06:43	08/29/22 21:47	208-96-8	
Anthracene	1220	ug/kg	367	45.5	20	08/29/22 06:43	08/29/22 21:47	120-12-7	
Benzo(a)anthracene	2470	ug/kg	367	47.4	20	08/29/22 06:43	08/29/22 21:47	56-55-3	
Benzo(a)pyrene	2360	ug/kg	367	41.7	20	08/29/22 06:43	08/29/22 21:47	50-32-8	
Benzo(b)fluoranthene	2570	ug/kg	367	50.9	20	08/29/22 06:43	08/29/22 21:47	205-99-2	
Benzo(g,h,i)perylene	1170	ug/kg	367	64.4	20	08/29/22 06:43	08/29/22 21:47	191-24-2	
Benzo(k)fluoranthene	1070	ug/kg	367	46.9	20	08/29/22 06:43	08/29/22 21:47	207-08-9	
Chrysene	2450	ug/kg	367	69.2	20	08/29/22 06:43	08/29/22 21:47	218-01-9	
Dibenz(a,h)anthracene	298J	ug/kg	367	50.8	20	08/29/22 06:43	08/29/22 21:47	53-70-3	
Fluoranthene	6100	ug/kg	367	43.4	20	08/29/22 06:43	08/29/22 21:47	206-44-0	
Fluorene	244J	ug/kg	367	44.0	20	08/29/22 06:43	08/29/22 21:47	86-73-7	
Indeno(1,2,3-cd)pyrene	974	ug/kg	367	76.4	20	08/29/22 06:43	08/29/22 21:47	193-39-5	
1-Methylnaphthalene	65.4J	ug/kg	367	53.6	20	08/29/22 06:43	08/29/22 21:47	90-12-0	
2-Methylnaphthalene	148J	ug/kg	367	53.7	20	08/29/22 06:43	08/29/22 21:47	91-57-6	
Naphthalene	298J	ug/kg	367	35.7	20	08/29/22 06:43	08/29/22 21:47	91-20-3	
Phenanthrene	2260	ug/kg	367	42.0	20	08/29/22 06:43	08/29/22 21:47	85-01-8	
Pyrene	5800	ug/kg	367	53.9	20	08/29/22 06:43	08/29/22 21:47	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	71	%	41-98		20	08/29/22 06:43	08/29/22 21:47	321-60-8	
Terphenyl-d14 (S)	86	%	37-106		20	08/29/22 06:43	08/29/22 21:47	1718-51-0	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	9.0	%	0.10	0.10	1		08/25/22 12:35		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-13 (3'-4') Lab ID: 40250229027 Collected: 08/19/22 10:10 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	6010D Prepa	aration Met	hod: El	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay	•					
Arsenic	2.1J	mg/kg	2.7	1.6	1	08/25/22 06:01	08/29/22 21:47	7440-38-2	
Barium	54.1	mg/kg	0.53	0.16	1	08/25/22 06:01	08/29/22 21:47	7440-39-3	
Cadmium	0.32J	mg/kg	0.53	0.14	1	08/25/22 06:01	08/29/22 21:47	7440-43-9	
Chromium	18.0	mg/kg	1.1	0.30	1	08/25/22 06:01	08/29/22 21:47	7440-47-3	
Lead	24.5	mg/kg	2.1	0.64	1	08/25/22 06:01	08/29/22 21:47	7439-92-1	
Selenium	<1.4	mg/kg	4.3	1.4	1	08/25/22 06:01	08/29/22 21:47	7782-49-2	
Silver	0.41J	mg/kg	1.1	0.33	1	08/25/22 06:01	08/29/22 21:47	7440-22-4	
7471 Mercury	•		7471 Prepar		od: EP/	A 7471			
		yucai Service	es - Green Bay						
Mercury	0.075	mg/kg	0.038	0.011	1	08/25/22 09:14	08/26/22 08:54	7439-97-6	В
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E by SIN	/ Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Bay	,					
Acenaphthene	8.4J	ug/kg	18.6	2.4	1	08/29/22 06:43	08/30/22 17:27	83-32-9	
Acenaphthylene	25.3	ug/kg	18.6	2.3	1	08/29/22 06:43	08/30/22 17:27	208-96-8	
Anthracene	40.8	ug/kg	18.6	2.3	1	08/29/22 06:43	08/30/22 17:27	120-12-7	
Benzo(a)anthracene	224	ug/kg	18.6	2.4	1	08/29/22 06:43	08/30/22 17:27	56-55-3	
Benzo(a)pyrene	172	ug/kg	18.6	2.1	1	08/29/22 06:43	08/30/22 17:27	50-32-8	
Benzo(b)fluoranthene	488	ug/kg	18.6	2.6	1	08/29/22 06:43	08/30/22 17:27	205-99-2	
Benzo(g,h,i)perylene	95.7	ug/kg	18.6	3.3	1	08/29/22 06:43	08/30/22 17:27	191-24-2	
Benzo(k)fluoranthene	222	ug/kg	18.6	2.4	1	08/29/22 06:43	08/30/22 17:27	207-08-9	
Chrysene	283	ug/kg	18.6	3.5	1	08/29/22 06:43	08/30/22 17:27	218-01-9	
Dibenz(a,h)anthracene	21.3	ug/kg	18.6	2.6	1	08/29/22 06:43	08/30/22 17:27	53-70-3	
Fluoranthene	407	ug/kg	18.6	2.2	1	08/29/22 06:43	08/30/22 17:27	206-44-0	
Fluorene	10.9J	ug/kg	18.6	2.2	1	08/29/22 06:43	08/30/22 17:27	86-73-7	
Indeno(1,2,3-cd)pyrene	90.4	ug/kg	18.6	3.9	1	08/29/22 06:43	08/30/22 17:27	193-39-5	
1-Methylnaphthalene	79.7	ug/kg	18.6	2.7	1	08/29/22 06:43	08/30/22 17:27	90-12-0	
2-Methylnaphthalene	112	ug/kg	18.6	2.7	1	08/29/22 06:43	08/30/22 17:27	91-57-6	
Naphthalene	76.7	ug/kg	18.6	1.8	1	08/29/22 06:43	08/30/22 17:27	91-20-3	
Phenanthrene	155	ug/kg	18.6	2.1	1	08/29/22 06:43	08/30/22 17:27		
Pyrene	414	ug/kg	18.6	2.7	1	08/29/22 06:43			
Surrogates		5 5							
2-Fluorobiphenyl (S)	62	%	41-98		1	08/29/22 06:43	08/30/22 17:27	321-60-8	
Terphenyl-d14 (S)	75	%	37-106		1	08/29/22 06:43	08/30/22 17:27	1718-51-0	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Bay	,					
Percent Moisture	10.3	%	0.10	0.10	1		08/25/22 12:35		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-14 (1'-2') Lab ID: 40250229028 Collected: 08/19/22 13:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
6010D MET ICP	Analytical	Method: EPA	A 6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	y					
Arsenic	2.9	mg/kg	2.8	1.6	1	08/25/22 06:01	08/26/22 18:12	7440-38-2	
Barium	49.3	mg/kg	0.56	0.17	1	08/25/22 06:01	08/26/22 18:12		
Cadmium	0.55J	mg/kg	0.56	0.15	1	08/25/22 06:01			
Chromium	10.1	mg/kg	1.1	0.31	1	08/25/22 06:01	08/26/22 18:12	7440-47-3	
Lead	113	mg/kg	2.2	0.67	1	08/25/22 06:01		7439-92-1	
Selenium	<1.5	mg/kg	4.5	1.5	1	08/25/22 06:01	08/26/22 18:12	7782-49-2	
Silver	<0.34	mg/kg	1.1	0.34	1	08/25/22 06:01	08/26/22 18:12	7440-22-4	
7471 Mercury	Analytical	Method: EPA	A 7471 Prepa	ration Metho	od: EP/	A 7471			
	Pace Anal	ytical Service	es - Green Ba	y					
Mercury	0.084	mg/kg	0.039	0.011	1	08/25/22 09:14	08/26/22 08:56	7439-97-6	В
8270E MSSV PAH by SIM	Analytical	Method: EPA	A 8270E by SI	M Preparat	ion Me	thod: EPA 3546			
	Pace Anal	ytical Service	es - Green Ba	у					
Acenaphthene	48.7	ug/kg	39.6	5.1	2	08/31/22 08:04	08/31/22 18:56	83-32-9	
Acenaphthylene	35.1J	ug/kg	39.6	5.0	2	08/31/22 08:04	08/31/22 18:56	208-96-8	
Anthracene	128	ug/kg	39.6	4.9	2	08/31/22 08:04	08/31/22 18:56	120-12-7	
Benzo(a)anthracene	267	ug/kg	39.6	5.1	2	08/31/22 08:04	08/31/22 18:56	56-55-3	
Benzo(a)pyrene	246	ug/kg	39.6	4.5	2	08/31/22 08:04	08/31/22 18:56	50-32-8	
Benzo(b)fluoranthene	347	ug/kg	39.6	5.5	2	08/31/22 08:04	08/31/22 18:56	205-99-2	
Benzo(g,h,i)perylene	167	ug/kg	39.6	6.9	2	08/31/22 08:04	08/31/22 18:56	191-24-2	
Benzo(k)fluoranthene	107	ug/kg	39.6	5.1	2	08/31/22 08:04	08/31/22 18:56	207-08-9	
Chrysene	284	ug/kg	39.6	7.5	2	08/31/22 08:04	08/31/22 18:56	218-01-9	
Dibenz(a,h)anthracene	52.0	ug/kg	39.6	5.5	2	08/31/22 08:04	08/31/22 18:56	53-70-3	
Fluoranthene	575	ug/kg	39.6	4.7	2	08/31/22 08:04	08/31/22 18:56	206-44-0	
Fluorene	59.0	ug/kg	39.6	4.7	2	08/31/22 08:04	08/31/22 18:56	86-73-7	
Indeno(1,2,3-cd)pyrene	131	ug/kg	39.6	8.2	2	08/31/22 08:04	08/31/22 18:56	193-39-5	
1-Methylnaphthalene	149	ug/kg	39.6	5.8	2	08/31/22 08:04			
2-Methylnaphthalene	188	ug/kg	39.6	5.8	2	08/31/22 08:04	08/31/22 18:56	91-57-6	
Naphthalene	156	ug/kg	39.6	3.9	2	08/31/22 08:04	08/31/22 18:56		
Phenanthrene	520	ug/kg	39.6	4.5	2	08/31/22 08:04	08/31/22 18:56		
Pyrene	439	ug/kg	39.6	5.8	2	08/31/22 08:04	08/31/22 18:56	129-00-0	
Surrogates					_				
2-Fluorobiphenyl (S)	55	%	41-98		2	08/31/22 08:04	08/31/22 18:56		
Terphenyl-d14 (S)	59	%	37-106		2	08/31/22 08:04	08/31/22 18:56	1718-51-0	
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepa	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
Benzene	<16.3	ug/kg	27.3	16.3	1	08/26/22 10:00	08/29/22 12:29	71-43-2	
Bromobenzene	<26.6	ug/kg	68.3	26.6	1	08/26/22 10:00	08/29/22 12:29	108-86-1	
Bromochloromethane	<18.7	ug/kg	68.3	18.7	1	08/26/22 10:00	08/29/22 12:29	74-97-5	
Bromodichloromethane	<16.3	ug/kg	68.3	16.3	1	08/26/22 10:00	08/29/22 12:29	75-27-4	
Bromoform	<301	ug/kg	342	301	1	08/26/22 10:00	08/29/22 12:29	75-25-2	
Bromomethane	<95.8	ug/kg	342	95.8	1	08/26/22 10:00	08/29/22 12:29	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-14 (1'-2') Lab ID: 40250229028 Collected: 08/19/22 13:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
n-Butylbenzene	<31.3	ug/kg	68.3	31.3	1	08/26/22 10:00	08/29/22 12:29	104-51-8	
sec-Butylbenzene	<16.7	ug/kg	68.3	16.7	1	08/26/22 10:00	08/29/22 12:29		
tert-Butylbenzene	<21.5	ug/kg	68.3	21.5	1	08/26/22 10:00	08/29/22 12:29	98-06-6	
Carbon tetrachloride	<15.0	ug/kg	68.3	15.0	1	08/26/22 10:00	08/29/22 12:29		
Chlorobenzene	<8.2	ug/kg	68.3	8.2	1	08/26/22 10:00	08/29/22 12:29		
Chloroethane	<28.8	ug/kg	342	28.8	1	08/26/22 10:00	08/29/22 12:29		
Chloroform	<48.9	ug/kg	342	48.9	1	08/26/22 10:00	08/29/22 12:29		
Chloromethane	<26.0	ug/kg	68.3	26.0	1	08/26/22 10:00	08/29/22 12:29		
2-Chlorotoluene	<22.1	ug/kg	68.3	22.1	1	08/26/22 10:00	08/29/22 12:29	95-49-8	
4-Chlorotoluene	<26.0	ug/kg	68.3	26.0	1	08/26/22 10:00	08/29/22 12:29		
1,2-Dibromo-3-chloropropane	<53.0	ug/kg	342	53.0	1	08/26/22 10:00	08/29/22 12:29		
Dibromochloromethane	<234	ug/kg	342	234	1	08/26/22 10:00	08/29/22 12:29		
1,2-Dibromoethane (EDB)	<18.7	ug/kg	68.3	18.7	1	08/26/22 10:00	08/29/22 12:29		
Dibromomethane	<20.2	ug/kg	68.3	20.2	1	08/26/22 10:00	08/29/22 12:29		
1,2-Dichlorobenzene	<21.2	ug/kg	68.3	21.2	1	08/26/22 10:00	08/29/22 12:29		
1,3-Dichlorobenzene	<18.7	ug/kg	68.3	18.7	1	08/26/22 10:00	08/29/22 12:29		
1,4-Dichlorobenzene	<18.7	ug/kg	68.3	18.7	1	08/26/22 10:00	08/29/22 12:29		
Dichlorodifluoromethane	<29.4	ug/kg	68.3	29.4	1	08/26/22 10:00	08/29/22 12:29		
1.1-Dichloroethane	<17.5	ug/kg	68.3	17.5	1	08/26/22 10:00	08/29/22 12:29		
1,2-Dichloroethane	<15.7	ug/kg	68.3	15.7	1	08/26/22 10:00	08/29/22 12:29		
1,1-Dichloroethene	<22.7	ug/kg	68.3	22.7	1	08/26/22 10:00	08/29/22 12:29		
cis-1,2-Dichloroethene	<14.6	ug/kg	68.3	14.6	1	08/26/22 10:00	08/29/22 12:29		
trans-1,2-Dichloroethene	<14.8	ug/kg	68.3	14.8	1	08/26/22 10:00	08/29/22 12:29		
1,2-Dichloropropane	<16.3	ug/kg	68.3	16.3	1	08/26/22 10:00	08/29/22 12:29		
1,3-Dichloropropane	<14.9	ug/kg	68.3	14.9	1	08/26/22 10:00	08/29/22 12:29		
2,2-Dichloropropane	<18.4	ug/kg	68.3	18.4	1	08/26/22 10:00	08/29/22 12:29		
1,1-Dichloropropene	<22.1	ug/kg	68.3	22.1	1	08/26/22 10:00	08/29/22 12:29		
cis-1,3-Dichloropropene	<45.1	ug/kg	342	45.1	1	08/26/22 10:00	08/29/22 12:29		
trans-1,3-Dichloropropene	<195	ug/kg	342	195	1	08/26/22 10:00	08/29/22 12:29		
Diisopropyl ether	<16.9	ug/kg	68.3	16.9	1	08/26/22 10:00	08/29/22 12:29	108-20-3	
Ethylbenzene	<16.3	ug/kg	68.3	16.3	1	08/26/22 10:00	08/29/22 12:29		
Hexachloro-1,3-butadiene	<136	ug/kg	342	136	1	08/26/22 10:00	08/29/22 12:29		
Isopropylbenzene (Cumene)	<18.4	ug/kg	68.3	18.4	1	08/26/22 10:00	08/29/22 12:29		
p-Isopropyltoluene	<20.8	ug/kg	68.3	20.8	1	08/26/22 10:00	08/29/22 12:29		
Methylene Chloride	<19.0	ug/kg	68.3	19.0	1	08/26/22 10:00	08/29/22 12:29		
Methyl-tert-butyl ether	<20.1	ug/kg	68.3	20.1	1	08/26/22 10:00			
Naphthalene	<21.3	ug/kg	342	21.3	1	08/26/22 10:00	08/29/22 12:29		
n-Propylbenzene	<16.4	ug/kg	68.3	16.4	1	08/26/22 10:00	08/29/22 12:29		
Styrene	<17.5	ug/kg	68.3	17.5	1	08/26/22 10:00			
1,1,1,2-Tetrachloroethane	<16.4	ug/kg	68.3	16.4	1	08/26/22 10:00			
1,1,2,2-Tetrachloroethane	<24.7	ug/kg	68.3	24.7	1		08/29/22 12:29		
Tetrachloroethene	<26.5	ug/kg ug/kg	68.3	26.5	1	08/26/22 10:00			
Toluene	<17.2	ug/kg	68.3	17.2	1	08/26/22 10:00			
1,2,3-Trichlorobenzene	<76.1	ug/kg	342	76.1	1		08/29/22 12:29		
.,=,= 1110111010001120110	41 011	~9, Ng	072	70.1	•	55,25,22 10.00	30,20,22 12.20	3. 3. 0	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-14 (1'-2') Lab ID: 40250229028 Collected: 08/19/22 13:20 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	\ 8260 Prepa	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<56.3	ug/kg	342	56.3	1	08/26/22 10:00	08/29/22 12:29	120-82-1	
1,1,1-Trichloroethane	<17.5	ug/kg	68.3	17.5	1	08/26/22 10:00	08/29/22 12:29	71-55-6	
1,1,2-Trichloroethane	<24.9	ug/kg	68.3	24.9	1	08/26/22 10:00	08/29/22 12:29	79-00-5	
Trichloroethene	<25.6	ug/kg	68.3	25.6	1	08/26/22 10:00	08/29/22 12:29	79-01-6	
Trichlorofluoromethane	<19.8	ug/kg	68.3	19.8	1	08/26/22 10:00	08/29/22 12:29	75-69-4	
1,2,3-Trichloropropane	<33.2	ug/kg	68.3	33.2	1	08/26/22 10:00	08/29/22 12:29	96-18-4	
1,2,4-Trimethylbenzene	<20.4	ug/kg	68.3	20.4	1	08/26/22 10:00	08/29/22 12:29	95-63-6	
1,3,5-Trimethylbenzene	<22.0	ug/kg	68.3	22.0	1	08/26/22 10:00	08/29/22 12:29	108-67-8	
Vinyl chloride	<13.8	ug/kg	68.3	13.8	1	08/26/22 10:00	08/29/22 12:29	75-01-4	
Xylene (Total)	<49.3	ug/kg	205	49.3	1	08/26/22 10:00	08/29/22 12:29	1330-20-7	
m&p-Xylene	<28.8	ug/kg	137	28.8	1	08/26/22 10:00	08/29/22 12:29	179601-23-1	
o-Xylene	<20.5	ug/kg	68.3	20.5	1	08/26/22 10:00	08/29/22 12:29	95-47-6	
Surrogates									
Toluene-d8 (S)	120	%	69-153		1	08/26/22 10:00	08/29/22 12:29	2037-26-5	
4-Bromofluorobenzene (S)	155	%	68-156		1	08/26/22 10:00	08/29/22 12:29	460-00-4	
1,2-Dichlorobenzene-d4 (S)	146	%	71-161		1	08/26/22 10:00	08/29/22 12:29	2199-69-1	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Ba	у					
Percent Moisture	15.5	%	0.10	0.10	1		08/25/22 12:35		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-14 (3'-4') Lab ID: 40250229029 Collected: 08/19/22 13:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
6010D MET ICP	Analytical	Method: EPA	A 6010D Prepa	aration Met	hod: El	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay	,					
Arsenic	1.5J	mg/kg	2.5	1.5	1	08/25/22 06:01	08/26/22 18:14	7440-38-2	
Barium	50.1	mg/kg	0.50	0.15	1	08/25/22 06:01	08/26/22 18:14		
Cadmium	0.18J	mg/kg	0.50	0.13	1	08/25/22 06:01	08/26/22 18:14		
Chromium	10.4	mg/kg	1.0	0.28	1	08/25/22 06:01	08/26/22 18:14		
_ead	31.0	mg/kg	2.0	0.60	1	08/25/22 06:01	08/26/22 18:14		
Selenium	<1.3	mg/kg	4.0	1.3	1	08/25/22 06:01	08/26/22 18:14		
Silver	<0.31	mg/kg	1.0	0.31	1	08/25/22 06:01	08/26/22 18:14		
7471 Mercury	Analytical	Method: EPA	7471 Prepar	ation Metho	od: EPA	٦ 7471			
•	•		es - Green Bay						
Mercury	0.052	mg/kg	0.038	0.011	1	08/25/22 09:14	08/26/22 09:03	7439-97-6	В
8270E MSSV PAH by SIM	Analytical	Method: EPA	8270E bv SIN	/ Preparat	ion Me	thod: EPA 3546			
	-		es - Green Bay			-			
Acenaphthene	24.9	ug/kg	18.4	2.4	1	08/29/22 06:43	08/30/22 17:44	83-32-9	
Acenaphthylene	28.2	ug/kg	18.4	2.3	1	08/29/22 06:43	08/30/22 17:44	208-96-8	
Anthracene	56.0	ug/kg	18.4	2.3	1	08/29/22 06:43	08/30/22 17:44	120-12-7	
Benzo(a)anthracene	208	ug/kg	18.4	2.4	1	08/29/22 06:43	08/30/22 17:44	56-55-3	
Benzo(a)pyrene	229	ug/kg	18.4	2.1	1	08/29/22 06:43	08/30/22 17:44	50-32-8	
Benzo(b)fluoranthene	340	ug/kg	18.4	2.5	1	08/29/22 06:43	08/30/22 17:44	205-99-2	
Benzo(g,h,i)perylene	98.0	ug/kg	18.4	3.2	1	08/29/22 06:43	08/30/22 17:44	191-24-2	
Benzo(k)fluoranthene	133	ug/kg	18.4	2.3	1	08/29/22 06:43	08/30/22 17:44	207-08-9	
Chrysene	221	ug/kg	18.4	3.5	1	08/29/22 06:43	08/30/22 17:44	218-01-9	
Dibenz(a,h)anthracene	23.5	ug/kg	18.4	2.5	1	08/29/22 06:43	08/30/22 17:44	53-70-3	
Fluoranthene	384	ug/kg	18.4	2.2	1	08/29/22 06:43	08/30/22 17:44	206-44-0	
Fluorene	21.3	ug/kg	18.4	2.2	1	08/29/22 06:43	08/30/22 17:44	86-73-7	
ndeno(1,2,3-cd)pyrene	82.0	ug/kg	18.4	3.8	1	08/29/22 06:43	08/30/22 17:44	193-39-5	
-Methylnaphthalene	73.8	ug/kg	18.4	2.7	1	08/29/22 06:43	08/30/22 17:44	90-12-0	
2-Methylnaphthalene	98.2	ug/kg	18.4	2.7	1	08/29/22 06:43	08/30/22 17:44	91-57-6	
Naphthalene	84.5	ug/kg	18.4	1.8	1	08/29/22 06:43	08/30/22 17:44	91-20-3	
Phenanthrene	199	ug/kg	18.4	2.1	1	08/29/22 06:43	08/30/22 17:44	85-01-8	
Pyrene	369	ug/kg	18.4	2.7	1	08/29/22 06:43	08/30/22 17:44	129-00-0	
Surrogates									
2-Fluorobiphenyl (S)	65	%	41-98		1	08/29/22 06:43	08/30/22 17:44		
Terphenyl-d14 (S)	76	%	37-106		1	08/29/22 06:43	08/30/22 17:44	1718-51-0	
3260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepar	ation Metho	od: EPA	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	′					
Benzene	<14.6	ug/kg	24.5	14.6	1	08/26/22 10:00	08/29/22 12:49	71-43-2	
Bromobenzene	<23.9	ug/kg	61.2	23.9	1	08/26/22 10:00	08/29/22 12:49	108-86-1	
Bromochloromethane	<16.8	ug/kg	61.2	16.8	1	08/26/22 10:00	08/29/22 12:49	74-97-5	
Bromodichloromethane	<14.6	ug/kg	61.2	14.6	1	08/26/22 10:00	08/29/22 12:49	75-27-4	
Bromoform	<269	ug/kg	306	269	1	08/26/22 10:00	08/29/22 12:49	75-25-2	
Bromomethane	<85.8	ug/kg	306	85.8	1	08/26/22 10:00	08/29/22 12:49	74-83-9	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-14 (3'-4') Lab ID: 40250229029 Collected: 08/19/22 13:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepar	ration Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
n-Butylbenzene	<28.0	ug/kg	61.2	28.0	1	08/26/22 10:00	08/29/22 12:49	104-51-8	
sec-Butylbenzene	<14.9	ug/kg	61.2	14.9	1	08/26/22 10:00	08/29/22 12:49		
tert-Butylbenzene	<19.2	ug/kg	61.2	19.2	1	08/26/22 10:00	08/29/22 12:49		
Carbon tetrachloride	<13.5	ug/kg	61.2	13.5	1	08/26/22 10:00	08/29/22 12:49		
Chlorobenzene	<7.3	ug/kg	61.2	7.3	1	08/26/22 10:00	08/29/22 12:49		
Chloroethane	<25.8	ug/kg	306	25.8	1	08/26/22 10:00	08/29/22 12:49		
Chloroform	<43.8	ug/kg	306	43.8	1	08/26/22 10:00	08/29/22 12:49		
Chloromethane	<23.3	ug/kg	61.2	23.3	1	08/26/22 10:00	08/29/22 12:49		
2-Chlorotoluene	<19.8	ug/kg	61.2	19.8	1	08/26/22 10:00	08/29/22 12:49		
4-Chlorotoluene	<23.3	ug/kg	61.2	23.3	1	08/26/22 10:00	08/29/22 12:49		
1,2-Dibromo-3-chloropropane	<47.5	ug/kg	306	47.5	1	08/26/22 10:00	08/29/22 12:49		
Dibromochloromethane	<209	ug/kg	306	209	1	08/26/22 10:00	08/29/22 12:49		
1,2-Dibromoethane (EDB)	<16.8	ug/kg	61.2	16.8	1	08/26/22 10:00	08/29/22 12:49		
Dibromomethane	<18.1	ug/kg	61.2	18.1	1	08/26/22 10:00	08/29/22 12:49		
1,2-Dichlorobenzene	<19.0	ug/kg	61.2	19.0	1	08/26/22 10:00	08/29/22 12:49		
1,3-Dichlorobenzene	<16.8	ug/kg	61.2	16.8	1	08/26/22 10:00	08/29/22 12:49		
1,4-Dichlorobenzene	<16.8	ug/kg	61.2	16.8	1	08/26/22 10:00	08/29/22 12:49		
Dichlorodifluoromethane	<26.3	ug/kg	61.2	26.3	1	08/26/22 10:00	08/29/22 12:49		
1.1-Dichloroethane	<15.7	ug/kg	61.2	15.7	1	08/26/22 10:00	08/29/22 12:49		
1,2-Dichloroethane	<14.1	ug/kg	61.2	14.1	1	08/26/22 10:00	08/29/22 12:49		
1,1-Dichloroethene	<20.3	ug/kg	61.2	20.3	1	08/26/22 10:00	08/29/22 12:49		
cis-1,2-Dichloroethene	<13.1	ug/kg	61.2	13.1	1	08/26/22 10:00	08/29/22 12:49		
trans-1,2-Dichloroethene	<13.2	ug/kg	61.2	13.2	1	08/26/22 10:00	08/29/22 12:49		
1,2-Dichloropropane	<14.6	ug/kg	61.2	14.6	1	08/26/22 10:00	08/29/22 12:49		
1,3-Dichloropropane	<13.3	ug/kg	61.2	13.3	1	08/26/22 10:00	08/29/22 12:49		
2,2-Dichloropropane	<16.5	ug/kg	61.2	16.5	1	08/26/22 10:00	08/29/22 12:49		
1,1-Dichloropropene	<19.8	ug/kg	61.2	19.8	1	08/26/22 10:00	08/29/22 12:49		
cis-1,3-Dichloropropene	<40.4	ug/kg	306	40.4	1	08/26/22 10:00	08/29/22 12:49		
trans-1,3-Dichloropropene	<175	ug/kg	306	175	1	08/26/22 10:00	08/29/22 12:49		
Diisopropyl ether	<15.2	ug/kg	61.2	15.2	1	08/26/22 10:00	08/29/22 12:49		
Ethylbenzene	<14.6	ug/kg	61.2	14.6	1	08/26/22 10:00	08/29/22 12:49		
Hexachloro-1,3-butadiene	<122	ug/kg	306	122	1	08/26/22 10:00	08/29/22 12:49		
Isopropylbenzene (Cumene)	<16.5	ug/kg	61.2	16.5	1	08/26/22 10:00	08/29/22 12:49		
p-Isopropyltoluene	<18.6	ug/kg	61.2	18.6	1	08/26/22 10:00	08/29/22 12:49		
Methylene Chloride	<17.0	ug/kg	61.2	17.0	1	08/26/22 10:00	08/29/22 12:49		
Methyl-tert-butyl ether	<18.0	ug/kg	61.2	18.0	1		08/29/22 12:49		
Naphthalene	69.7J	ug/kg	306	19.1	1		08/29/22 12:49		
n-Propylbenzene	<14.7	ug/kg	61.2	14.7	1		08/29/22 12:49		
Styrene	<15.7	ug/kg	61.2	15.7	1	08/26/22 10:00			
1,1,1,2-Tetrachloroethane	<14.7	ug/kg	61.2	14.7	1		08/29/22 12:49		
1,1,2,2-Tetrachloroethane	<22.2	ug/kg	61.2	22.2	1	08/26/22 10:00			
Tetrachloroethene	<23.8	ug/kg	61.2	23.8	1	08/26/22 10:00			
Toluene	<15.4	ug/kg	61.2	15.4	1	08/26/22 10:00			
1,2,3-Trichlorobenzene	<68.2	ug/kg	306	68.2	1	08/26/22 10:00			
.,=,=		~9'9	550	33. L	•			•. •	

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-14 (3'-4') Lab ID: 40250229029 Collected: 08/19/22 13:30 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepai	ration Metho	od: EP	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,2,4-Trichlorobenzene	<50.4	ug/kg	306	50.4	1	08/26/22 10:00	08/29/22 12:49	120-82-1	
1,1,1-Trichloroethane	<15.7	ug/kg	61.2	15.7	1	08/26/22 10:00	08/29/22 12:49	71-55-6	
1,1,2-Trichloroethane	<22.3	ug/kg	61.2	22.3	1	08/26/22 10:00	08/29/22 12:49	79-00-5	
Trichloroethene	<22.9	ug/kg	61.2	22.9	1	08/26/22 10:00	08/29/22 12:49	79-01-6	
Trichlorofluoromethane	<17.8	ug/kg	61.2	17.8	1	08/26/22 10:00	08/29/22 12:49	75-69-4	
1,2,3-Trichloropropane	<29.8	ug/kg	61.2	29.8	1	08/26/22 10:00	08/29/22 12:49	96-18-4	
1,2,4-Trimethylbenzene	25.3J	ug/kg	61.2	18.2	1	08/26/22 10:00	08/29/22 12:49	95-63-6	
1,3,5-Trimethylbenzene	<19.7	ug/kg	61.2	19.7	1	08/26/22 10:00	08/29/22 12:49	108-67-8	
Vinyl chloride	<12.4	ug/kg	61.2	12.4	1	08/26/22 10:00	08/29/22 12:49	75-01-4	
Xylene (Total)	<44.2	ug/kg	184	44.2	1	08/26/22 10:00	08/29/22 12:49	1330-20-7	
m&p-Xylene	41.7J	ug/kg	122	25.8	1	08/26/22 10:00	08/29/22 12:49	179601-23-1	
o-Xylene	<18.4	ug/kg	61.2	18.4	1	08/26/22 10:00	08/29/22 12:49	95-47-6	
Surrogates									
Toluene-d8 (S)	126	%	69-153		1	08/26/22 10:00	08/29/22 12:49	2037-26-5	
4-Bromofluorobenzene (S)	146	%	68-156		1	08/26/22 10:00	08/29/22 12:49	460-00-4	
1,2-Dichlorobenzene-d4 (S)	137	%	71-161		1	08/26/22 10:00	08/29/22 12:49	2199-69-1	
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	9.2	%	0.10	0.10	1		08/25/22 12:35		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-15 (1'-2') Lab ID: 40250229030 Collected: 08/19/22 13:40 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	\ 8082A Prepa	aration Metl	nod: El	PA 3541			
	Pace Anal	ytical Service	es - Green Bay	/					
PCB-1016 (Aroclor 1016)	<18.0	ug/kg	59.0	18.0	1	08/24/22 07:03	08/25/22 13:04	12674-11-2	
PCB-1221 (Aroclor 1221)	<18.0	ug/kg	59.0	18.0	1	08/24/22 07:03	08/25/22 13:04	11104-28-2	
PCB-1232 (Aroclor 1232)	<18.0	ug/kg	59.0	18.0	1	08/24/22 07:03	08/25/22 13:04	11141-16-5	
PCB-1242 (Aroclor 1242)	<18.0	ug/kg	59.0	18.0	1	08/24/22 07:03	08/25/22 13:04	53469-21-9	
PCB-1248 (Aroclor 1248)	<18.0	ug/kg	59.0	18.0	1	08/24/22 07:03	08/25/22 13:04	12672-29-6	
PCB-1254 (Aroclor 1254)	<18.0	ug/kg	59.0	18.0	1	08/24/22 07:03	08/25/22 13:04	11097-69-1	
PCB-1260 (Aroclor 1260)	<18.0	ug/kg	59.0	18.0	1	08/24/22 07:03	08/25/22 13:04	11096-82-5	
PCB, Total	<18.0	ug/kg	59.0	18.0	1	08/24/22 07:03	08/25/22 13:04	1336-36-3	
Surrogates									
Tetrachloro-m-xylene (S)	56	%	50-99		1	08/24/22 07:03	08/25/22 13:04		
Decachlorobiphenyl (S)	61	%	38-95		1	08/24/22 07:03	08/25/22 13:04	2051-24-3	
6010D MET ICP	Analytical	Method: EPA	4 6010D Prepa	aration Met	hod: El	PA 3050B			
	Pace Anal	ytical Service	es - Green Bay	/					
Arsenic	3.8	mg/kg	2.7	1.6	1	08/25/22 06:01	08/26/22 18:17	7440-38-2	
Barium	80.4	mg/kg	0.54	0.16	1	08/25/22 06:01	08/26/22 18:17	7440-39-3	
Cadmium	<0.14	mg/kg	0.54	0.14	1	08/25/22 06:01	08/26/22 18:17	7440-43-9	
Chromium	9.6	mg/kg	1.1	0.30	1	08/25/22 06:01	08/26/22 18:17	7440-47-3	
Lead	84.7	mg/kg	2.2	0.65	1	08/25/22 06:01	08/26/22 18:17	7439-92-1	
Selenium	2.4J	mg/kg	4.3	1.4	1	08/25/22 06:01	08/26/22 18:17	7782-49-2	
Silver	<0.33	mg/kg	1.1	0.33	1	08/25/22 06:01	08/26/22 18:17	7440-22-4	
7471 Mercury	Analytical	Method: EPA	A 7471 Prepar	ation Metho	od: EP/	A 7471			
·	Pace Anal	ytical Service	es - Green Bay	/					
Mercury	0.050	mg/kg	0.040	0.011	1	08/25/22 09:14	08/26/22 09:05	7439-97-6	В
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Bay	/					
Percent Moisture	15.4	%	0.10	0.10	1		08/25/22 12:35		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Sample: PB-15 (4'-5') Lab ID: 40250229031 Collected: 08/19/22 13:50 Received: 08/23/22 08:10 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8082A GCS PCB	Analytical	Method: EPA	8082A Prep	aration Met	nod: El	PA 3541			
	Pace Anal	ytical Service	es - Green Ba	y					
PCB-1016 (Aroclor 1016)	<18.6	ug/kg	61.2	18.6	1	08/24/22 07:03	08/25/22 13:26	12674-11-2	
PCB-1221 (Aroclor 1221)	<18.6	ug/kg	61.2	18.6	1	08/24/22 07:03	08/25/22 13:26	11104-28-2	
PCB-1232 (Aroclor 1232)	<18.6	ug/kg	61.2	18.6	1	08/24/22 07:03	08/25/22 13:26	11141-16-5	
PCB-1242 (Aroclor 1242)	<18.6	ug/kg	61.2	18.6	1	08/24/22 07:03	08/25/22 13:26	53469-21-9	
PCB-1248 (Aroclor 1248)	<18.6	ug/kg	61.2	18.6	1	08/24/22 07:03	08/25/22 13:26	12672-29-6	
PCB-1254 (Aroclor 1254)	<18.6	ug/kg	61.2	18.6	1	08/24/22 07:03	08/25/22 13:26	11097-69-1	
PCB-1260 (Aroclor 1260)	<18.6	ug/kg	61.2	18.6	1	08/24/22 07:03	08/25/22 13:26	11096-82-5	
PCB, Total	<18.6	ug/kg	61.2	18.6	1	08/24/22 07:03	08/25/22 13:26	1336-36-3	
Surrogates									
Tetrachloro-m-xylene (S)	62	%	50-99		1	08/24/22 07:03	08/25/22 13:26		
Decachlorobiphenyl (S)	66	%	38-95		1	08/24/22 07:03	08/25/22 13:26	2051-24-3	
6010D MET ICP	Analytical	Method: EPA	6010D Prep	aration Met	hod: E	PA 3050B			
	Pace Anal	ytical Service	es - Green Ba	у					
Arsenic	<1.7	mg/kg	3.0	1.7	1	08/25/22 06:01	08/26/22 18:19	7440-38-2	
Barium	32.9	mg/kg	0.59	0.18	1	08/25/22 06:01	08/26/22 18:19	7440-39-3	
Cadmium	<0.16	mg/kg	0.59	0.16	1	08/25/22 06:01	08/26/22 18:19	7440-43-9	
Chromium	11.4	mg/kg	1.2	0.33	1	08/25/22 06:01	08/26/22 18:19	7440-47-3	
Lead	39.3	mg/kg	2.4	0.71	1	08/25/22 06:01	08/26/22 18:19	7439-92-1	
Selenium	<1.6	mg/kg	4.7	1.6	1	08/25/22 06:01	08/26/22 18:19	7782-49-2	
Silver	<0.36	mg/kg	1.2	0.36	1	08/25/22 06:01	08/26/22 18:19	7440-22-4	
7471 Mercury	Analytical	Method: EPA	7471 Prepa	ration Metho	od: EP/	A 7471			
•	Pace Anal	ytical Service	es - Green Ba	y					
Mercury	0.055	mg/kg	0.038	0.011	1	08/25/22 09:14	08/26/22 09:08	7439-97-6	В
Percent Moisture	Analytical	Method: AST	M D2974-87						
	Pace Anal	ytical Service	es - Green Ba	y					
Percent Moisture	18.3	%	0.10	0.10	1		08/25/22 12:36		

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

QC Batch: 424378 Analysis Method: EPA 7471

QC Batch Method: EPA 7471 Analysis Description: 7471 Mercury

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229001, 40250229002, 40250229004, 40250229005, 40250229006, 40250229007, 40250229008,

40250229009, 40250229010, 40250229011, 40250229012, 40250229013, 40250229014, 40250229015,

40250229016

METHOD BLANK: 2443793 Matrix: Solid

Associated Lab Samples: 40250229001, 40250229002, 40250229004, 40250229005, 40250229006, 40250229007, 40250229008,

40250229009, 40250229010, 40250229011, 40250229012, 40250229013, 40250229014, 40250229015,

40250229016

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersMercurymg/kg<0.010</td>0.03508/26/22 07:08

LABORATORY CONTROL SAMPLE: 2443794

Date: 09/01/2022 04:00 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury 0.83 0.92 111 85-115 mg/kg

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2443795 2443796

MSD MS 40250215001 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Mercury 0.029J 0.98 0.98 0.99 0.99 85-115 20 mg/kg 99 98

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

QC Batch: 424381 Analysis Method: EPA 7471

QC Batch Method: EPA 7471 Analysis Description: 7471 Mercury

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229017, 40250229018, 40250229019, 40250229020, 40250229021, 40250229022, 40250229023,

40250229024, 40250229025, 40250229026, 40250229027, 40250229028, 40250229029, 40250229030,

40250229031

METHOD BLANK: 2443805 Matrix: Solid

Associated Lab Samples: 40250229017, 40250229018, 40250229019, 40250229020, 40250229021, 40250229022, 40250229023,

40250229024, 40250229025, 40250229026, 40250229027, 40250229028, 40250229029, 40250229030,

40250229031

ParameterUnitsBlank ResultReporting LimitAnalyzedQualifiersMercurymg/kg0.014J0.03508/26/22 08:13

LABORATORY CONTROL SAMPLE: 2443806

Date: 09/01/2022 04:00 PM

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Mercury 0.83 0.90 108 85-115 mg/kg

MS

MSD

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2443807 2443808

40250229017 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual Mercury 0.057 0.99 1.1 1.0 101 85-115 5 20 mg/kg 96

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

QC Batch: 424240 Analysis Method: EPA 6010D
QC Batch Method: EPA 3050B Analysis Description: 6010D MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229022, 40250229023, 40250229024, 40250229025, 40250229026, 40250229027, 40250229028,

40250229029, 40250229030, 40250229031

METHOD BLANK: 2443047 Matrix: Solid

Associated Lab Samples: 40250229022, 40250229023, 40250229024, 40250229025, 40250229026, 40250229027, 40250229028,

40250229029, 40250229030, 40250229031

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Arsenic	mg/kg	<1.5	2.5	08/29/22 20:40	
Barium	mg/kg	<0.15	0.50	08/29/22 20:40	
Cadmium	mg/kg	<0.13	0.50	08/29/22 20:40	
Chromium	mg/kg	<0.28	1.0	08/29/22 20:40	
Lead	mg/kg	< 0.60	2.0	08/29/22 20:40	
Selenium	mg/kg	<1.3	4.0	08/29/22 20:40	
Silver	mg/kg	<0.31	1.0	08/29/22 20:40	

LABORATORY CONTROL SAMPLE:	2443048					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Arsenic	mg/kg	25	24.1	96	80-120	
Barium	mg/kg	25	25.7	103	80-120	
Cadmium	mg/kg	25	25.4	102	80-120	
Chromium	mg/kg	25	25.4	102	80-120	
Lead	mg/kg	25	25.6	102	80-120	
Selenium	mg/kg	25	25.4	102	80-120	
Silver	mg/kg	12.5	12.4	99	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 2443	049 MS	MSD	2443050							
Parameter	Units	40250269003 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
												— Quai
Arsenic	mg/kg	<1.5	24.9	24.9	23.5	23.3	94	94	75-125	1	20	
Barium	mg/kg	34.8	24.9	24.9	71.1	69.6	146	140	75-125	2	20	M0
Cadmium	mg/kg	0.17J	24.9	24.9	25.0	24.7	100	99	75-125	1	20	
Chromium	mg/kg	8.4	24.9	24.9	36.4	37.2	112	116	75-125	2	20	
Lead	mg/kg	2.1	24.9	24.9	27.5	26.7	102	99	75-125	3	20	
Selenium	mg/kg	<1.3	24.9	24.9	25.1	24.6	101	99	75-125	2	20	
Silver	mg/kg	<0.31	12.5	12.4	12.4	12.2	99	97	75-125	2	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

QC Batch: 424316 Analysis Method: EPA 6010D QC Batch Method: EPA 3050B Analysis Description: 6010D MET

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229001, 40250229002, 40250229004, 40250229005, 40250229006, 40250229007, 40250229008,

 $40250229009,\,40250229010,\,40250229011,\,40250229012,\,40250229013,\,40250229014,\,40250229015,\,40250229014,\,40250229014,\,40250229015,\,40250229014,\,40250229014,\,40250229014,\,40250229015,\,40250229014,\,402$

40250229016, 40250229017, 40250229018, 40250229019, 40250229020, 40250229021

METHOD BLANK: 2443522 Matrix: Solid

Associated Lab Samples: 40250229001, 40250229002, 40250229004, 40250229005, 40250229006, 40250229007, 40250229008,

40250229009, 40250229010, 40250229011, 40250229012, 40250229013, 40250229014, 40250229015,

40250229016, 40250229017, 40250229018, 40250229019, 40250229020, 40250229021

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Arsenic	mg/kg	<1.5	2.5	08/26/22 15:53	
Barium	mg/kg	<0.15	0.50	08/26/22 15:53	
Cadmium	mg/kg	<0.13	0.50	08/26/22 15:53	
Chromium	mg/kg	<0.28	1.0	08/26/22 15:53	
Lead	mg/kg	< 0.60	2.0	08/26/22 15:53	
Selenium	mg/kg	<1.3	4.0	08/26/22 15:53	
Silver	mg/kg	<0.31	1.0	08/26/22 15:53	

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Arsenic	mg/kg		23.9	96	80-120	
Barium	mg/kg	25	24.0	96	80-120	
Cadmium	mg/kg	25	24.9	100	80-120	
Chromium	mg/kg	25	24.9	100	80-120	
Lead	mg/kg	25	25.5	102	80-120	
Selenium	mg/kg	25	25.3	101	80-120	
Silver	mg/kg	12.5	12.6	101	80-120	

MATRIX SPIKE & MATRIX	SPIKE DUPLIC	ATE: 2443	524		2443525							
Parameter	4 Units	0250229001 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Arsenic	mg/kg	1.8J	27.4	27.5	32.6	29.8	113	102	75-125	9	20	
Barium	mg/kg	53.1	27.4	27.5	77.5	101	89	176	75-125	27	20	M0,R1
Cadmium	mg/kg	0.58	27.4	27.5	28.5	28.6	102	102	75-125	0	20	
Chromium	mg/kg	11.4	27.4	27.5	40.8	43.4	107	117	75-125	6	20	
Lead	mg/kg	270	27.4	27.5	120	164	-548	-387	75-125	31	20	P6,R1
Selenium	mg/kg	<1.4	27.4	27.5	28.0	27.4	102	100	75-125	2	20	
Silver	mg/kg	< 0.34	13.7	13.7	14.8	14.6	106	104	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

QC Batch: 424392 Analysis Method: EPA 8260

QC Batch Method: EPA 5035/5030B Analysis Description: 8260 MSV Med Level Normal List

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229001, 40250229002

METHOD BLANK: 2443913 Matrix: Solid

Associated Lab Samples: 40250229001, 40250229002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	<12.0	50.0	08/25/22 09:39	
1,1,1-Trichloroethane	ug/kg	<12.8	50.0	08/25/22 09:39	
1,1,2,2-Tetrachloroethane	ug/kg	<18.1	50.0	08/25/22 09:39	
1,1,2-Trichloroethane	ug/kg	<18.2	50.0	08/25/22 09:39	
1,1-Dichloroethane	ug/kg	<12.8	50.0	08/25/22 09:39	
1,1-Dichloroethene	ug/kg	<16.6	50.0	08/25/22 09:39	
1,1-Dichloropropene	ug/kg	<16.2	50.0	08/25/22 09:39	
1,2,3-Trichlorobenzene	ug/kg	<55.7	250	08/25/22 09:39	
1,2,3-Trichloropropane	ug/kg	<24.3	50.0	08/25/22 09:39	
1,2,4-Trichlorobenzene	ug/kg	<41.2	250	08/25/22 09:39	
1,2,4-Trimethylbenzene	ug/kg	<14.9	50.0	08/25/22 09:39	
1,2-Dibromo-3-chloropropane	ug/kg	<38.8	250	08/25/22 09:39	
1,2-Dibromoethane (EDB)	ug/kg	<13.7	50.0	08/25/22 09:39	
1,2-Dichlorobenzene	ug/kg	<15.5	50.0	08/25/22 09:39	
1,2-Dichloroethane	ug/kg	<11.5	50.0	08/25/22 09:39	
1,2-Dichloropropane	ug/kg	<11.9	50.0	08/25/22 09:39	
1,3,5-Trimethylbenzene	ug/kg	<16.1	50.0	08/25/22 09:39	
1,3-Dichlorobenzene	ug/kg	<13.7	50.0	08/25/22 09:39	
1,3-Dichloropropane	ug/kg	<10.9	50.0	08/25/22 09:39	
1,4-Dichlorobenzene	ug/kg	<13.7	50.0	08/25/22 09:39	
2,2-Dichloropropane	ug/kg	<13.5	50.0	08/25/22 09:39	
2-Chlorotoluene	ug/kg	<16.2	50.0	08/25/22 09:39	
4-Chlorotoluene	ug/kg	<19.0	50.0	08/25/22 09:39	
Benzene	ug/kg	<11.9	20.0	08/25/22 09:39	
Bromobenzene	ug/kg	<19.5	50.0	08/25/22 09:39	
Bromochloromethane	ug/kg	<13.7	50.0	08/25/22 09:39	
Bromodichloromethane	ug/kg	<11.9	50.0	08/25/22 09:39	
Bromoform	ug/kg	<220	250	08/25/22 09:39	
Bromomethane	ug/kg	<70.1	250	08/25/22 09:39	
Carbon tetrachloride	ug/kg	<11.0	50.0	08/25/22 09:39	
Chlorobenzene	ug/kg	<6.0	50.0	08/25/22 09:39	
Chloroethane	ug/kg	<21.1	250	08/25/22 09:39	
Chloroform	ug/kg	<35.8	250	08/25/22 09:39	
Chloromethane	ug/kg	<19.0	50.0	08/25/22 09:39	
cis-1,2-Dichloroethene	ug/kg	<10.7	50.0	08/25/22 09:39	
cis-1,3-Dichloropropene	ug/kg	<33.0	250	08/25/22 09:39	
Dibromochloromethane	ug/kg	<171	250	08/25/22 09:39	
Dibromomethane	ug/kg	<14.8	50.0	08/25/22 09:39	
Dichlorodifluoromethane	ug/kg	<21.5	50.0	08/25/22 09:39	
Diisopropyl ether	ug/kg	<12.4	50.0	08/25/22 09:39	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

METHOD BLANK: 2443913 Matrix: Solid

Associated Lab Samples: 40250229001, 40250229002

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Ethylbenzene	ug/kg	<11.9	50.0	08/25/22 09:39	
Hexachloro-1,3-butadiene	ug/kg	<99.4	250	08/25/22 09:39	
Isopropylbenzene (Cumene)	ug/kg	<13.5	50.0	08/25/22 09:39	
m&p-Xylene	ug/kg	<21.1	100	08/25/22 09:39	
Methyl-tert-butyl ether	ug/kg	<14.7	50.0	08/25/22 09:39	
Methylene Chloride	ug/kg	<13.9	50.0	08/25/22 09:39	
n-Butylbenzene	ug/kg	<22.9	50.0	08/25/22 09:39	
n-Propylbenzene	ug/kg	<12.0	50.0	08/25/22 09:39	
Naphthalene	ug/kg	<15.6	250	08/25/22 09:39	
o-Xylene	ug/kg	<15.0	50.0	08/25/22 09:39	
p-Isopropyltoluene	ug/kg	<15.2	50.0	08/25/22 09:39	
sec-Butylbenzene	ug/kg	<12.2	50.0	08/25/22 09:39	
Styrene	ug/kg	<12.8	50.0	08/25/22 09:39	
tert-Butylbenzene	ug/kg	<15.7	50.0	08/25/22 09:39	
Tetrachloroethene	ug/kg	<19.4	50.0	08/25/22 09:39	
Toluene	ug/kg	<12.6	50.0	08/25/22 09:39	
trans-1,2-Dichloroethene	ug/kg	<10.8	50.0	08/25/22 09:39	
trans-1,3-Dichloropropene	ug/kg	<143	250	08/25/22 09:39	
Trichloroethene	ug/kg	<18.7	50.0	08/25/22 09:39	
Trichlorofluoromethane	ug/kg	<14.5	50.0	08/25/22 09:39	
Vinyl chloride	ug/kg	<10.1	50.0	08/25/22 09:39	
Xylene (Total)	ug/kg	<36.1	150	08/25/22 09:39	
1,2-Dichlorobenzene-d4 (S)	%	106	71-161	08/25/22 09:39	
4-Bromofluorobenzene (S)	%	112	68-156	08/25/22 09:39	
Toluene-d8 (S)	%	111	69-153	08/25/22 09:39	

LABORATORY CONTROL SAMPLE:	2443914					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2570	103	70-130	_
1,1,2,2-Tetrachloroethane	ug/kg	2500	2730	109	70-130	
1,1,2-Trichloroethane	ug/kg	2500	2630	105	70-130	
1,1-Dichloroethane	ug/kg	2500	2530	101	70-130	
1,1-Dichloroethene	ug/kg	2500	2410	97	77-120	
1,2,4-Trichlorobenzene	ug/kg	2500	2540	102	67-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2490	100	70-130	
1,2-Dibromoethane (EDB)	ug/kg	2500	2590	104	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2700	108	70-130	
1,2-Dichloroethane	ug/kg	2500	2520	101	70-130	
1,2-Dichloropropane	ug/kg	2500	2490	100	80-123	
1,3-Dichlorobenzene	ug/kg	2500	2690	108	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2610	104	70-130	
Benzene	ug/kg	2500	2550	102	70-130	
Bromodichloromethane	ug/kg	2500	2510	100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

LABORATORY CONTROL SAMPLE:	2443914					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
romoform	ug/kg	2500	2590	104	60-130	
romomethane	ug/kg	2500	1820	73	45-153	
arbon tetrachloride	ug/kg	2500	2600	104	70-130	
nlorobenzene	ug/kg	2500	2670	107	70-130	
loroethane	ug/kg	2500	1710	68	55-160	
loroform	ug/kg	2500	2470	99	80-120	
nloromethane	ug/kg	2500	2070	83	47-130	
s-1,2-Dichloroethene	ug/kg	2500	2460	98	70-130	
-1,3-Dichloropropene	ug/kg	2500	2510	100	70-130	
oromochloromethane	ug/kg	2500	2500	100	70-130	
chlorodifluoromethane	ug/kg	2500	1380	55	16-83	
nylbenzene	ug/kg	2500	2610	104	80-120	
propylbenzene (Cumene)	ug/kg	2500	2540	102	70-130	
&p-Xylene	ug/kg	5000	5080	102	70-130	
thyl-tert-butyl ether	ug/kg	2500	2550	102	65-130	
thylene Chloride	ug/kg	2500	2500	100	70-130	
(ylene	ug/kg	2500	2540	102	70-130	
rene	ug/kg	2500	2590	104	70-130	
rachloroethene	ug/kg	2500	2630	105	70-130	
uene	ug/kg	2500	2620	105	80-120	
ns-1,2-Dichloroethene	ug/kg	2500	2500	100	70-130	
ns-1,3-Dichloropropene	ug/kg	2500	2520	101	70-130	
chloroethene	ug/kg	2500	2590	104	70-130	
chlorofluoromethane	ug/kg	2500	2150	86	70-130	
nyl chloride	ug/kg	2500	2260	90	59-114	
ene (Total)	ug/kg	7500	7620	102	70-130	
-Dichlorobenzene-d4 (S)	%			103	71-161	
romofluorobenzene (S)	%			115	68-156	
luene-d8 (S)	%			112	69-153	

MATRIX SPIKE & MATRIX SP	PIKE DUPLI	CATE: 2443	915		2443916							
Parameter	Units	40250138009 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1,1-Trichloroethane	ug/kg	<17.1	1330	1330	1120	1100	84	83	69-130	2	20	
1,1,2,2-Tetrachloroethane	ug/kg	<24.1	1330	1330	1490	1420	111	106	70-130	5	20	
1,1,2-Trichloroethane	ug/kg	<24.3	1330	1330	1330	1330	100	100	70-130	0	20	
1,1-Dichloroethane	ug/kg	<17.1	1330	1330	1300	1240	97	93	70-130	4	20	
1,1-Dichloroethene	ug/kg	<22.1	1330	1330	1080	1080	81	81	55-120	0	22	
1,2,4-Trichlorobenzene	ug/kg	<55.0	1330	1330	1530	1460	114	109	67-130	5	20	
1,2-Dibromo-3- chloropropane	ug/kg	<51.8	1330	1330	1310	1230	98	92	70-130	6	22	
1,2-Dibromoethane (EDB)	ug/kg	<18.3	1330	1330	1320	1320	99	99	70-130	0	20	
1,2-Dichlorobenzene	ug/kg	<20.7	1330	1330	1450	1400	109	105	70-130	4	20	
1,2-Dichloroethane	ug/kg	<15.3	1330	1330	1280	1280	96	96	70-130	0	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

MATRIX SPIKE & MATRIX SP	IKE DUPI	LICATE: 2443	915		2443916							
			MS	MSD								
		40250138009	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,2-Dichloropropane	ug/kg	<15.9	1330	1330	1280	1250	96	94	80-123	2	20	
1,3-Dichlorobenzene	ug/kg	<18.3	1330	1330	1420	1370	107	103	70-130	4	20	
1,4-Dichlorobenzene	ug/kg	<18.3	1330	1330	1300	1270	97	95	70-130	2	20	
Benzene	ug/kg	<15.9	1330	1330	1320	1300	99	97	70-130	2	20	
Bromodichloromethane	ug/kg	<15.9	1330	1330	1230	1210	92	90	70-130	2	20	
Bromoform	ug/kg	<294	1330	1330	1200	1220	90	92	60-130	2	20	
Bromomethane	ug/kg	<93.5	1330	1330	926	892	69	67	38-153	4	20	
Carbon tetrachloride	ug/kg	<14.7	1330	1330	1090	1030	82	77	62-130	6	20	
Chlorobenzene	ug/kg	<8.0	1330	1330	1330	1310	100	98	70-130	2	20	
Chloroethane	ug/kg	<28.2	1330	1330	862	865	65	65	53-160	0	24	
Chloroform	ug/kg	<47.8	1330	1330	1280	1250	96	93	80-120	2	20	
Chloromethane	ug/kg	<25.3	1330	1330	885	815	66	61	10-130	8	20	
cis-1,2-Dichloroethene	ug/kg	<14.3	1330	1330	1260	1280	94	96	70-130	2	20	
cis-1,3-Dichloropropene	ug/kg	<44.0	1330	1330	1220	1200	92	90	70-130	2	20	
Dibromochloromethane	ug/kg	<228	1330	1330	1190	1200	89	90	70-130	1	20	
Dichlorodifluoromethane	ug/kg	<28.7	1330	1330	337	322	25	24	10-83	5	31	
Ethylbenzene	ug/kg	<15.9	1330	1330	1260	1230	94	92	80-120	2	20	
sopropylbenzene Cumene)	ug/kg	<18.0	1330	1330	1250	1190	94	89	70-130	5	20	
m&p-Xylene	ug/kg	<28.2	2670	2670	2520	2490	95	93	70-130	1	20	
Methyl-tert-butyl ether	ug/kg	<19.6	1330	1330	1350	1310	101	98	66-130	3	20	
Methylene Chloride	ug/kg	<18.5	1330	1330	1320	1310	99	98	70-130	1	20	
o-Xylene	ug/kg	<20.0	1330	1330	1260	1280	94	96	70-130	2	20	
Styrene	ug/kg	<17.1	1330	1330	1280	1240	96	93	70-130	3	20	
Tetrachloroethene	ug/kg	<25.9	1330	1330	1250	1150	93	86	69-130	8	20	
Toluene	ug/kg	<16.8	1330	1330	1290	1280	97	96	79-120	1	20	
rans-1,2-Dichloroethene	ug/kg	<14.4	1330	1330	1250	1210	93	90	70-130	3	20	
rans-1,3-Dichloropropene	ug/kg	<191	1330	1330	1240	1200	93	90	69-130	4	20	
Trichloroethene	ug/kg	<24.9	1330	1330	1280	1230	96	92	70-130	4	20	
Trichlorofluoromethane	ug/kg	<19.3	1330	1330	801	762	60	57	50-130	5	22	
Vinyl chloride	ug/kg	<13.5	1330	1330	885	833	66	62	26-114	6	20	
Xylene (Total)	ug/kg	<48.2	4000	4000	3780	3760	94	94	70-130	0	20	
1,2-Dichlorobenzene-d4 (S)	%						124	124	71-161			
4-Bromofluorobenzene (S)	%						136	135	68-156			
Toluene-d8 (S)	%						132	129	69-153			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

QC Batch: 424500 Analysis Method: EPA 8260

QC Batch Method: EPA 5035/5030B Analysis Description: 8260 MSV Med Level Normal List

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229003, 40250229004, 40250229005, 40250229006, 40250229007

METHOD BLANK: 2444476 Matrix: Solid

Associated Lab Samples: 40250229003, 40250229004, 40250229005, 40250229006, 40250229007

	223003, 40230223004	Blank	Reporting	20022007	
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	<12.0	50.0	08/26/22 10:29	
1,1,1-Trichloroethane	ug/kg	<12.8	50.0	08/26/22 10:29	
1,1,2,2-Tetrachloroethane	ug/kg	<18.1	50.0	08/26/22 10:29	
1,1,2-Trichloroethane	ug/kg	<18.2	50.0	08/26/22 10:29	
1,1-Dichloroethane	ug/kg	<12.8	50.0	08/26/22 10:29	
1,1-Dichloroethene	ug/kg	<16.6	50.0	08/26/22 10:29	
1,1-Dichloropropene	ug/kg	<16.2	50.0	08/26/22 10:29	
1,2,3-Trichlorobenzene	ug/kg	<55.7	250	08/26/22 10:29	
1,2,3-Trichloropropane	ug/kg	<24.3	50.0	08/26/22 10:29	
1,2,4-Trichlorobenzene	ug/kg	<41.2	250	08/26/22 10:29	
1,2,4-Trimethylbenzene	ug/kg	<14.9	50.0	08/26/22 10:29	
1,2-Dibromo-3-chloropropane	ug/kg	<38.8	250	08/26/22 10:29	
1,2-Dibromoethane (EDB)	ug/kg	<13.7	50.0	08/26/22 10:29	
1,2-Dichlorobenzene	ug/kg	<15.5	50.0	08/26/22 10:29	
1,2-Dichloroethane	ug/kg	<11.5	50.0	08/26/22 10:29	
1,2-Dichloropropane	ug/kg	<11.9	50.0	08/26/22 10:29	
1,3,5-Trimethylbenzene	ug/kg	<16.1	50.0	08/26/22 10:29	
1,3-Dichlorobenzene	ug/kg	<13.7	50.0	08/26/22 10:29	
1,3-Dichloropropane	ug/kg	<10.9	50.0	08/26/22 10:29	
1,4-Dichlorobenzene	ug/kg	<13.7	50.0	08/26/22 10:29	
2,2-Dichloropropane	ug/kg	<13.5	50.0	08/26/22 10:29	
2-Chlorotoluene	ug/kg	<16.2	50.0	08/26/22 10:29	
4-Chlorotoluene	ug/kg	<19.0	50.0	08/26/22 10:29	
Benzene	ug/kg	<11.9	20.0	08/26/22 10:29	
Bromobenzene	ug/kg	<19.5	50.0	08/26/22 10:29	
Bromochloromethane	ug/kg	<13.7	50.0	08/26/22 10:29	
Bromodichloromethane	ug/kg	<11.9	50.0	08/26/22 10:29	
Bromoform	ug/kg	<220	250	08/26/22 10:29	
Bromomethane	ug/kg	<70.1	250	08/26/22 10:29	
Carbon tetrachloride	ug/kg	<11.0	50.0	08/26/22 10:29	
Chlorobenzene	ug/kg	<6.0	50.0	08/26/22 10:29	
Chloroethane	ug/kg	<21.1	250	08/26/22 10:29	
Chloroform	ug/kg	<35.8	250	08/26/22 10:29	
Chloromethane	ug/kg	<19.0	50.0	08/26/22 10:29	
cis-1,2-Dichloroethene	ug/kg	<10.7	50.0	08/26/22 10:29	
cis-1,3-Dichloropropene	ug/kg	<33.0	250	08/26/22 10:29	
Dibromochloromethane	ug/kg	<171	250	08/26/22 10:29	
Dibromomethane	ug/kg	<14.8	50.0	08/26/22 10:29	
Dichlorodifluoromethane	ug/kg	<21.5	50.0	08/26/22 10:29	
Diisopropyl ether	ug/kg	<12.4	50.0	08/26/22 10:29	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

METHOD BLANK: 2444476 Matrix: Solid

Associated Lab Samples: 40250229003, 40250229004, 40250229005, 40250229006, 40250229007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethylbenzene	ug/kg	<11.9	50.0	08/26/22 10:29	
Hexachloro-1,3-butadiene	ug/kg	<99.4	250	08/26/22 10:29	
Isopropylbenzene (Cumene)	ug/kg	<13.5	50.0	08/26/22 10:29	
m&p-Xylene	ug/kg	<21.1	100	08/26/22 10:29	
Methyl-tert-butyl ether	ug/kg	<14.7	50.0	08/26/22 10:29	
Methylene Chloride	ug/kg	<13.9	50.0	08/26/22 10:29	
n-Butylbenzene	ug/kg	<22.9	50.0	08/26/22 10:29	
n-Propylbenzene	ug/kg	<12.0	50.0	08/26/22 10:29	
Naphthalene	ug/kg	<15.6	250	08/26/22 10:29	
o-Xylene	ug/kg	<15.0	50.0	08/26/22 10:29	
p-Isopropyltoluene	ug/kg	<15.2	50.0	08/26/22 10:29	
sec-Butylbenzene	ug/kg	<12.2	50.0	08/26/22 10:29	
Styrene	ug/kg	<12.8	50.0	08/26/22 10:29	
tert-Butylbenzene	ug/kg	<15.7	50.0	08/26/22 10:29	
Tetrachloroethene	ug/kg	<19.4	50.0	08/26/22 10:29	
Toluene	ug/kg	<12.6	50.0	08/26/22 10:29	
trans-1,2-Dichloroethene	ug/kg	<10.8	50.0	08/26/22 10:29	
trans-1,3-Dichloropropene	ug/kg	<143	250	08/26/22 10:29	
Trichloroethene	ug/kg	<18.7	50.0	08/26/22 10:29	
Trichlorofluoromethane	ug/kg	<14.5	50.0	08/26/22 10:29	
Vinyl chloride	ug/kg	<10.1	50.0	08/26/22 10:29	
Xylene (Total)	ug/kg	<36.1	150	08/26/22 10:29	
1,2-Dichlorobenzene-d4 (S)	%	102	71-161	08/26/22 10:29	
4-Bromofluorobenzene (S)	%	108	68-156	08/26/22 10:29	
Toluene-d8 (S)	%	108	69-153	08/26/22 10:29	

LABORATORY CONTROL SAMPLE:	2444477					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2710	108	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2630	105	70-130	
1,1,2-Trichloroethane	ug/kg	2500	2650	106	70-130	
1,1-Dichloroethane	ug/kg	2500	2640	105	70-130	
1,1-Dichloroethene	ug/kg	2500	2600	104	77-120	
1,2,4-Trichlorobenzene	ug/kg	2500	2450	98	67-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2330	93	70-130	
1,2-Dibromoethane (EDB)	ug/kg	2500	2540	101	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2640	106	70-130	
1,2-Dichloroethane	ug/kg	2500	2640	105	70-130	
1,2-Dichloropropane	ug/kg	2500	2600	104	80-123	
1,3-Dichlorobenzene	ug/kg	2500	2660	106	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2600	104	70-130	
Benzene	ug/kg	2500	2650	106	70-130	
Bromodichloromethane	ug/kg	2500	2640	106	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

ABORATORY CONTROL SAMPLE:	2444477					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
romoform	ug/kg	2500	2560	103	60-130	
romomethane	ug/kg	2500	1930	77	45-153	
arbon tetrachloride	ug/kg	2500	2830	113	70-130	
lorobenzene	ug/kg	2500	2700	108	70-130	
oroethane	ug/kg	2500	1770	71	55-160	
oroform	ug/kg	2500	2560	103	80-120	
loromethane	ug/kg	2500	2040	82	47-130	
-1,2-Dichloroethene	ug/kg	2500	2590	103	70-130	
-1,3-Dichloropropene	ug/kg	2500	2520	101	70-130	
romochloromethane	ug/kg	2500	2490	99	70-130	
hlorodifluoromethane	ug/kg	2500	1380	55	16-83	
ylbenzene	ug/kg	2500	2800	112	80-120	
propylbenzene (Cumene)	ug/kg	2500	2840	114	70-130	
p-Xylene	ug/kg	5000	5790	116	70-130	
thyl-tert-butyl ether	ug/kg	2500	2560	102	65-130	
thylene Chloride	ug/kg	2500	2620	105	70-130	
ylene	ug/kg	2500	2800	112	70-130	
rene	ug/kg	2500	2830	113	70-130	
achloroethene	ug/kg	2500	2520	101	70-130	
uene	ug/kg	2500	2480	99	80-120	
ns-1,2-Dichloroethene	ug/kg	2500	2610	105	70-130	
ns-1,3-Dichloropropene	ug/kg	2500	2520	101	70-130	
chloroethene	ug/kg	2500	2700	108	70-130	
chlorofluoromethane	ug/kg	2500	2440	98	70-130	
yl chloride	ug/kg	2500	2330	93	59-114	
ene (Total)	ug/kg	7500	8590	115	70-130	
-Dichlorobenzene-d4 (S)	%			107	71-161	
romofluorobenzene (S)	%			116	68-156	
luene-d8 (S)	%			109	69-153	

MATRIX SPIKE & MATRIX SP	PIKE DUPL	ICATE: 2444	478		2444479							
Parameter	Units	40250090005 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1,1-Trichloroethane	ug/kg	<18.5	1440	1440	1210	1190	84	82	69-130	2	20	
1,1,2,2-Tetrachloroethane	ug/kg	<26.1	1440	1440	1630	1520	113	105	70-130	7	20	
1,1,2-Trichloroethane	ug/kg	<26.3	1440	1440	1560	1430	108	99	70-130	9	20	
1,1-Dichloroethane	ug/kg	<18.5	1440	1440	1370	1360	95	94	70-130	1	20	
1,1-Dichloroethene	ug/kg	<24.0	1440	1440	1200	1040	83	72	55-120	14	22	
1,2,4-Trichlorobenzene	ug/kg	<59.5	1440	1440	1780	1610	123	112	67-130	10	20	
1,2-Dibromo-3- chloropropane	ug/kg	<56.0	1440	1440	1480	1410	102	98	70-130	4	22	
1,2-Dibromoethane (EDB)	ug/kg	<19.8	1440	1440	1420	1400	99	97	70-130	2	20	
1,2-Dichlorobenzene	ug/kg	<22.4	1440	1440	1690	1560	117	108	70-130	8	20	
1,2-Dichloroethane	ug/kg	<16.6	1440	1440	1400	1410	97	97	70-130	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	LICATE: 2444	478		2444479							
			MS	MSD								
		40250090005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,2-Dichloropropane	ug/kg	<17.2	1440	1440	1360	1360	94	94	80-123	0	20	
1,3-Dichlorobenzene	ug/kg	<19.8	1440	1440	1600	1520	111	105	70-130	5	20	
1,4-Dichlorobenzene	ug/kg	<19.8	1440	1440	1540	1400	107	97	70-130	9	20	
Benzene	ug/kg	<17.2	1440	1440	1410	1410	98	98	70-130	0	20	
Bromodichloromethane	ug/kg	<17.2	1440	1440	1340	1330	93	92	70-130	1	20	
Bromoform	ug/kg	<318	1440	1440	1350	1290	94	89	60-130	5	20	
Bromomethane	ug/kg	<101	1440	1440	969	959	67	66	38-153	1	20	
Carbon tetrachloride	ug/kg	<15.9	1440	1440	1200	1140	83	79	62-130	5	20	
Chlorobenzene	ug/kg	<8.6	1440	1440	1480	1450	102	101	70-130	1	20	
Chloroethane	ug/kg	<30.5	1440	1440	824	970	57	67	53-160	16	24	
Chloroform	ug/kg	<51.7	1440	1440	1370	1310	95	91	80-120	4	20	
Chloromethane	ug/kg	<27.4	1440	1440	854	855	59	59	10-130	0	20	
cis-1,2-Dichloroethene	ug/kg	<15.4	1440	1440	1340	1290	93	89	70-130	4	20	
cis-1,3-Dichloropropene	ug/kg	<47.6	1440	1440	1270	1290	88	89	70-130	2	20	
Dibromochloromethane	ug/kg	<247	1440	1440	1350	1320	94	91	70-130	3	20	
Dichlorodifluoromethane	ug/kg	<31.0	1440	1440	341	325	24	22	10-83	5	31	
Ethylbenzene	ug/kg	18.8J	1440	1440	1400	1370	96	93	80-120	2	20	
sopropylbenzene (Cumene)	ug/kg	<19.5	1440	1440	1430	1320	99	92	70-130	8	20	
m&p-Xylene	ug/kg	41.1J	2880	2880	2830	2700	97	92	70-130	5	20	
Methyl-tert-butyl ether	ug/kg	<21.2	1440	1440	1430	1410	99	97	66-130	2	20	
Methylene Chloride	ug/kg	<20.1	1440	1440	1400	1400	97	97	70-130	0	20	
o-Xylene	ug/kg	<21.7	1440	1440	1440	1390	100	96	70-130	3	20	
Styrene	ug/kg	<18.5	1440	1440	1420	1360	98	94	70-130	5	20	
Tetrachloroethene	ug/kg	<28.0	1440	1440	1350	1260	93	88	69-130	6	20	
Toluene	ug/kg	<18.2	1440	1440	1410	1400	97	97	79-120	0	20	
rans-1,2-Dichloroethene	ug/kg	<15.6	1440	1440	1320	1320	91	92	70-130	1	20	
rans-1,3-Dichloropropene	ug/kg	<206	1440	1440	1290	1280	89	89	69-130	1	20	
Trichloroethene	ug/kg	<27.0	1440	1440	1350	1300	94	90	70-130	4	20	
Trichlorofluoromethane	ug/kg	<20.9	1440	1440	934	824	65	57	50-130	13	22	
√inyl chloride	ug/kg	<14.6	1440	1440	921	889	64	62	26-114	4	20	
Xylene (Total)	ug/kg	<52.1	4320	4320	4270	4100	98	94	70-130	4	20	
1,2-Dichlorobenzene-d4 (S)	%						125	124	71-161			
4-Bromofluorobenzene (S)	%						135	135	68-156			
Toluene-d8 (S)	%						130	130	69-153			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Reporting

60679770 RIVERPOINT Project:

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

QC Batch: 424525 Analysis Method: EPA 8260

QC Batch Method: EPA 5035/5030B Analysis Description: 8260 MSV Med Level Normal List

> Laboratory: Pace Analytical Services - Green Bay

40250229008, 40250229009, 40250229016, 40250229017, 40250229018, 40250229019, 40250229020, Associated Lab Samples:

40250229021, 40250229022, 40250229023, 40250229028, 40250229029

METHOD BLANK: 2444649 Matrix: Solid

40250229008, 40250229009, 40250229016, 40250229017, 40250229018, 40250229019, 40250229020, Associated Lab Samples:

 $40250229021,\,40250229022,\,40250229023,\,40250229028,\,40250229029$ Blank

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	<12.0	50.0	08/26/22 10:29	
1,1,1-Trichloroethane	ug/kg	<12.8	50.0	08/26/22 10:29	
1,1,2,2-Tetrachloroethane	ug/kg	<18.1	50.0	08/26/22 10:29	
1,1,2-Trichloroethane	ug/kg	<18.2	50.0	08/26/22 10:29	
1,1-Dichloroethane	ug/kg	<12.8	50.0	08/26/22 10:29	
1,1-Dichloroethene	ug/kg	<16.6	50.0	08/26/22 10:29	
1,1-Dichloropropene	ug/kg	<16.2	50.0	08/26/22 10:29	
1,2,3-Trichlorobenzene	ug/kg	<55.7	250	08/26/22 10:29	
1,2,3-Trichloropropane	ug/kg	<24.3	50.0	08/26/22 10:29	
1,2,4-Trichlorobenzene	ug/kg	<41.2	250	08/26/22 10:29	
1,2,4-Trimethylbenzene	ug/kg	<14.9	50.0	08/26/22 10:29	
1,2-Dibromo-3-chloropropane	ug/kg	<38.8	250	08/26/22 10:29	
1,2-Dibromoethane (EDB)	ug/kg	<13.7	50.0	08/26/22 10:29	
1,2-Dichlorobenzene	ug/kg	<15.5	50.0	08/26/22 10:29	
1,2-Dichloroethane	ug/kg	<11.5	50.0	08/26/22 10:29	
1,2-Dichloropropane	ug/kg	<11.9	50.0	08/26/22 10:29	
1,3,5-Trimethylbenzene	ug/kg	<16.1	50.0	08/26/22 10:29	
1,3-Dichlorobenzene	ug/kg	<13.7	50.0	08/26/22 10:29	
1,3-Dichloropropane	ug/kg	<10.9	50.0	08/26/22 10:29	
1,4-Dichlorobenzene	ug/kg	<13.7	50.0	08/26/22 10:29	
2,2-Dichloropropane	ug/kg	<13.5	50.0	08/26/22 10:29	
2-Chlorotoluene	ug/kg	<16.2	50.0	08/26/22 10:29	
4-Chlorotoluene	ug/kg	<19.0	50.0	08/26/22 10:29	
Benzene	ug/kg	<11.9	20.0	08/26/22 10:29	
Bromobenzene	ug/kg	<19.5	50.0	08/26/22 10:29	
Bromochloromethane	ug/kg	<13.7	50.0	08/26/22 10:29	
Bromodichloromethane	ug/kg	<11.9	50.0	08/26/22 10:29	
Bromoform	ug/kg	<220	250	08/26/22 10:29	
Bromomethane	ug/kg	<70.1	250	08/26/22 10:29	
Carbon tetrachloride	ug/kg	<11.0	50.0	08/26/22 10:29	
Chlorobenzene	ug/kg	<6.0	50.0	08/26/22 10:29	
Chloroethane	ug/kg	<21.1	250	08/26/22 10:29	
Chloroform	ug/kg	<35.8	250	08/26/22 10:29	
Chloromethane	ug/kg	<19.0	50.0	08/26/22 10:29	
cis-1,2-Dichloroethene	ug/kg	<10.7	50.0	08/26/22 10:29	
cis-1,3-Dichloropropene	ug/kg	<33.0	250	08/26/22 10:29	
Dibromochloromethane	ug/kg	<171	250	08/26/22 10:29	
Dibromomethane	ug/kg	<14.8	50.0	08/26/22 10:29	
Dichlorodifluoromethane	ug/kg	<21.5	50.0	08/26/22 10:29	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

METHOD BLANK: 2444649 Matrix: Solid

Associated Lab Samples: 40250229008, 40250229009, 40250229016, 40250229017, 40250229018, 40250229019, 40250229020,

40250229021, 40250229022, 40250229023, 40250229028, 40250229029

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Diisopropyl ether	ug/kg	<12.4	50.0	08/26/22 10:29	
Ethylbenzene	ug/kg	<11.9	50.0	08/26/22 10:29	
Hexachloro-1,3-butadiene	ug/kg	<99.4	250	08/26/22 10:29	
Isopropylbenzene (Cumene)	ug/kg	<13.5	50.0	08/26/22 10:29	
m&p-Xylene	ug/kg	<21.1	100	08/26/22 10:29	
Methyl-tert-butyl ether	ug/kg	<14.7	50.0	08/26/22 10:29	
Methylene Chloride	ug/kg	<13.9	50.0	08/26/22 10:29	
n-Butylbenzene	ug/kg	<22.9	50.0	08/26/22 10:29	
n-Propylbenzene	ug/kg	<12.0	50.0	08/26/22 10:29	
Naphthalene	ug/kg	<15.6	250	08/26/22 10:29	
o-Xylene	ug/kg	<15.0	50.0	08/26/22 10:29	
p-Isopropyltoluene	ug/kg	<15.2	50.0	08/26/22 10:29	
sec-Butylbenzene	ug/kg	<12.2	50.0	08/26/22 10:29	
Styrene	ug/kg	<12.8	50.0	08/26/22 10:29	
tert-Butylbenzene	ug/kg	<15.7	50.0	08/26/22 10:29	
Tetrachloroethene	ug/kg	<19.4	50.0	08/26/22 10:29	
Toluene	ug/kg	<12.6	50.0	08/26/22 10:29	
trans-1,2-Dichloroethene	ug/kg	<10.8	50.0	08/26/22 10:29	
trans-1,3-Dichloropropene	ug/kg	<143	250	08/26/22 10:29	
Trichloroethene	ug/kg	<18.7	50.0	08/26/22 10:29	
Trichlorofluoromethane	ug/kg	<14.5	50.0	08/26/22 10:29	
Vinyl chloride	ug/kg	<10.1	50.0	08/26/22 10:29	
Xylene (Total)	ug/kg	<36.1	150	08/26/22 10:29	
1,2-Dichlorobenzene-d4 (S)	%	117	71-161	08/26/22 10:29	
4-Bromofluorobenzene (S)	%	127	68-156	08/26/22 10:29	
Toluene-d8 (S)	%	103	69-153	08/26/22 10:29	

LABORATORY CONTROL SAMPLE:	2444650					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2550	102	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	2500	3060	123	70-130	
1,1,2-Trichloroethane	ug/kg	2500	2670	107	70-130	
1,1-Dichloroethane	ug/kg	2500	2700	108	70-130	
1,1-Dichloroethene	ug/kg	2500	2430	97	77-120	
1,2,4-Trichlorobenzene	ug/kg	2500	2550	102	67-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	3170	127	70-130	
1,2-Dibromoethane (EDB)	ug/kg	2500	2650	106	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2910	117	70-130	
1,2-Dichloroethane	ug/kg	2500	2930	117	70-130	
1,2-Dichloropropane	ug/kg	2500	2700	108	80-123	
1,3-Dichlorobenzene	ug/kg	2500	2770	111	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2730	109	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

LABORATORY CONTROL SAMPLE:	2444650					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
enzene	ug/kg	2500	2450	98	70-130	
romodichloromethane	ug/kg	2500	2560	102	70-130	
Bromoform	ug/kg	2500	2350	94	60-130	
romomethane	ug/kg	2500	3010	121	45-153	
arbon tetrachloride	ug/kg	2500	2720	109	70-130	
nlorobenzene	ug/kg	2500	2510	100	70-130	
nloroethane	ug/kg	2500	3250	130	55-160	
hloroform	ug/kg	2500	2780	111	80-120	
hloromethane	ug/kg	2500	2050	82	47-130	
s-1,2-Dichloroethene	ug/kg	2500	2530	101	70-130	
s-1,3-Dichloropropene	ug/kg	2500	2490	100	70-130	
bromochloromethane	ug/kg	2500	2550	102	70-130	
chlorodifluoromethane	ug/kg	2500	1350	54	16-83	
nylbenzene	ug/kg	2500	2540	101	80-120	
propylbenzene (Cumene)	ug/kg	2500	2560	102	70-130	
&p-Xylene	ug/kg	5000	5140	103	70-130	
thyl-tert-butyl ether	ug/kg	2500	2280	91	65-130	
thylene Chloride	ug/kg	2500	2640	105	70-130	
Kylene	ug/kg	2500	2540	101	70-130	
rene	ug/kg	2500	2680	107	70-130	
rachloroethene	ug/kg	2500	2430	97	70-130	
uene	ug/kg	2500	2520	101	80-120	
ns-1,2-Dichloroethene	ug/kg	2500	2560	102	70-130	
ns-1,3-Dichloropropene	ug/kg	2500	2460	98	70-130	
chloroethene	ug/kg	2500	2600	104	70-130	
chlorofluoromethane	ug/kg	2500	2580	103	70-130	
nyl chloride	ug/kg	2500	2250	90	59-114	
lene (Total)	ug/kg	7500	7680	102	70-130	
2-Dichlorobenzene-d4 (S)	%			115	71-161	
Bromofluorobenzene (S)	%			128	68-156	
luene-d8 (S)	%			105	69-153	

MATRIX SPIKE & MATRIX SI	PIKE DUPLIC	ATE: 2444	651		2444652							
Parameter	4 Units	0250229017 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max RPD	Qual
1,1,1-Trichloroethane	ug/kg	<18.1	1410	1410	1260	1120	89	79	69-130	12		
1,1,2,2-Tetrachloroethane	ug/kg	<25.6	1410	1410	1630	1600	115	113	70-130	2	_	
1,1,2-Trichloroethane	ug/kg	<25.8	1410	1410	1450	1410	103	100	70-130	3	20	
1,1-Dichloroethane	ug/kg	<18.1	1410	1410	1410	1360	99	96	70-130	3	20	
1,1-Dichloroethene	ug/kg	<23.5	1410	1410	1150	1090	81	77	55-120	6	22	
1,2,4-Trichlorobenzene	ug/kg	<58.4	1410	1410	1390	1340	98	95	67-130	3	20	
1,2-Dibromo-3- chloropropane	ug/kg	<55.0	1410	1410	1620	1730	114	122	70-130	7	22	
1,2-Dibromoethane (EDB)	ug/kg	<19.4	1410	1410	1470	1410	104	100	70-130	4	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

MATRIX SPIKE & MATRIX SP	IKE DUPL	LICATE: 2444			2444652							
		1005000017	MS	MSD	140	MOD	140	MOD	0/ D			
Parameter	Units	40250229017 Result	Spike Conc.	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qua
												- Qua
1,2-Dichlorobenzene	ug/kg	<22.0	1410	1410	1540	1490	109	105	70-130	3		
1,2-Dichloroethane	ug/kg	<16.3	1410	1410	1590	1580	112	112	70-130	0		
1,2-Dichloropropane	ug/kg	<16.9	1410	1410	1490	1410	105	99	80-123	6		
1,3-Dichlorobenzene	ug/kg	<19.4	1410	1410	1460	1380	103	98	70-130	5		
1,4-Dichlorobenzene	ug/kg	<19.4	1410	1410	1340	1350	95	95	70-130	0	-	
Benzene	ug/kg	<16.9	1410	1410	1340	1260	95	89	70-130	6	20	
Bromodichloromethane	ug/kg	<16.9	1410	1410	1320	1310	93	92	70-130	1	20	
Bromoform	ug/kg	<312	1410	1410	1170	1110	83	78	60-130	5	20	
3romomethane	ug/kg	<99.3	1410	1410	1570	1590	111	112	38-153	1	20	
Carbon tetrachloride	ug/kg	<15.6	1410	1410	1030	1040	73	73	62-130	1	20	
Chlorobenzene	ug/kg	<8.5	1410	1410	1380	1340	98	95	70-130	3	20	
Chloroethane	ug/kg	<29.9	1410	1410	1720	1640	122	116	53-160	5	24	
Chloroform	ug/kg	<50.7	1410	1410	1500	1520	106	108	80-120	1	20	
Chloromethane	ug/kg	<26.9	1410	1410	937	883	66	62	10-130	6	20	
cis-1,2-Dichloroethene	ug/kg	<15.2	1410	1410	1330	1270	94	90	70-130	4	20	
cis-1,3-Dichloropropene	ug/kg	<46.7	1410	1410	1270	1240	89	88	70-130	2	20	
Dibromochloromethane	ug/kg	<242	1410	1410	1320	1250	93	88	70-130	5	20	
Dichlorodifluoromethane	ug/kg	<30.5	1410	1410	283	317	20	22	10-83	11	31	
Ethylbenzene	ug/kg	<16.9	1410	1410	1360	1270	96	90	80-120	7	20	
sopropylbenzene	ug/kg	<19.1	1410	1410	1310	1210	92	85	70-130	8	20	
(Cumene)	/1	-20.0	2830	2830	2050	2580	94	91	70-130	3	20	
m&p-Xylene	ug/kg	<29.9 <20.8	2630 1410	1410	2650 1270	1250	90	91 89	66-130	ა 1	20	
Methyl-tert-butyl ether	ug/kg		_	-							_	
Methylene Chloride	ug/kg	<19.7	1410	1410	1600	1460	113	103	70-130	10		
o-Xylene	ug/kg	<21.2	1410	1410	1370	1290	97	91	70-130	6	20	
Styrene	ug/kg	<18.1	1410	1410	1390	1330	98	94	70-130	4	-	
Tetrachloroethene	ug/kg	<27.5	1410	1410	1250	1070	89	75	69-130	16		
Toluene	ug/kg	<17.8	1410	1410	1380	1330	97	94	79-120	3		
rans-1,2-Dichloroethene	ug/kg	<15.3	1410	1410	1340	1240	95	88	70-130	8	20	
rans-1,3-Dichloropropene	ug/kg	<203	1410	1410	1310	1300	93	91	69-130	1	20	
Frichloroethene	ug/kg	<26.5	1410	1410	1360	1320	96	93	70-130	3		
Trichlorofluoromethane	ug/kg	<20.5	1410	1410	930	952	66	67	50-130	2		
/inyl chloride	ug/kg	<14.3	1410	1410	878	889	62	63	26-114	1	20	
(Ylene (Total)	ug/kg	<51.1	4250	4250	4030	3860	95	91	70-130	4	20	
,2-Dichlorobenzene-d4 (S)	%						136	136	71-161			
1-Bromofluorobenzene (S)	%						147	155	68-156			
Toluene-d8 (S)	%						129	128	69-153			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

QC Batch: 424283 Analysis Method: EPA 8082A
QC Batch Method: EPA 3541 Analysis Description: 8082 GCS PCB

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229010, 40250229011, 40250229012, 40250229013, 40250229014, 40250229015, 40250229030,

40250229031

METHOD BLANK: 2443227 Matrix: Solid

Associated Lab Samples: 40250229010, 40250229011, 40250229012, 40250229013, 40250229014, 40250229015, 40250229030,

40250229031

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg	<15.2	50.0	08/25/22 08:20	_
PCB-1221 (Aroclor 1221)	ug/kg	<15.2	50.0	08/25/22 08:20	
PCB-1232 (Aroclor 1232)	ug/kg	<15.2	50.0	08/25/22 08:20	
PCB-1242 (Aroclor 1242)	ug/kg	<15.2	50.0	08/25/22 08:20	
PCB-1248 (Aroclor 1248)	ug/kg	<15.2	50.0	08/25/22 08:20	
PCB-1254 (Aroclor 1254)	ug/kg	<15.2	50.0	08/25/22 08:20	
PCB-1260 (Aroclor 1260)	ug/kg	<15.2	50.0	08/25/22 08:20	
Decachlorobiphenyl (S)	%	74	38-95	08/25/22 08:20	
Tetrachloro-m-xylene (S)	%	67	50-99	08/25/22 08:20	

LABORATORY CONTROL SAMPLE:	2443228					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
PCB-1016 (Aroclor 1016)	ug/kg		<15.2			
PCB-1221 (Aroclor 1221)	ug/kg		<15.2			
PCB-1232 (Aroclor 1232)	ug/kg		<15.2			
PCB-1242 (Aroclor 1242)	ug/kg		<15.2			
PCB-1248 (Aroclor 1248)	ug/kg		<15.2			
PCB-1254 (Aroclor 1254)	ug/kg		<15.2			
PCB-1260 (Aroclor 1260)	ug/kg	500	368	74	71-104	
Decachlorobiphenyl (S)	%			75	38-95	
Tetrachloro-m-xylene (S)	%			70	50-99	

MATRIX SPIKE & MATRIX S	PIKE DUPLIC	CATE: 2443			2443230							
Parameter	4 Units	0250229014 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
PCB-1016 (Aroclor 1016)	ug/kg	<16.8			<16.8	<16.7					20	
PCB-1221 (Aroclor 1221)	ug/kg	<16.8			<16.8	<16.7					20	
PCB-1232 (Aroclor 1232)	ug/kg	<16.8			<16.8	<16.7					20	
PCB-1242 (Aroclor 1242)	ug/kg	<16.8			<16.8	<16.7					20	
PCB-1248 (Aroclor 1248)	ug/kg	<16.8			<16.8	<16.7					20	
PCB-1254 (Aroclor 1254)	ug/kg	<16.8			<16.8	<16.7					20	
PCB-1260 (Aroclor 1260)	ug/kg	<16.8	551	550	378	378	69	69	42-109	0	20	
Decachlorobiphenyl (S)	%						69	70	38-95			
Tetrachloro-m-xylene (S)	%						64	64	50-99			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

QC Batch: 424489 Analysis Method: EPA 8270E by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270E/3546 MSSV PAH by SIM

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229001, 40250229002, 40250229004, 40250229005, 40250229006, 40250229007, 40250229008,

 $40250229009,\,40250229010,\,40250229011,\,40250229012,\,40250229013,\,40250229014,\,40250229015,\,40250229014,\,40250229014,\,40250229015,\,40250229014,\,402$

40250229016, 40250229017, 40250229018, 40250229019

METHOD BLANK: 2444447 Matrix: Solid

Associated Lab Samples: 40250229001, 40250229002, 40250229004, 40250229005, 40250229006, 40250229007, 40250229008,

40250229009, 40250229010, 40250229011, 40250229012, 40250229013, 40250229014, 40250229015,

40250229016, 40250229017, 40250229018, 40250229019

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	<2.4	16.7	08/26/22 09:53	
2-Methylnaphthalene	ug/kg	<2.4	16.7	08/26/22 09:53	
Acenaphthene	ug/kg	<2.2	16.7	08/26/22 09:53	
Acenaphthylene	ug/kg	<2.1	16.7	08/26/22 09:53	
Anthracene	ug/kg	<2.1	16.7	08/26/22 09:53	
Benzo(a)anthracene	ug/kg	<2.2	16.7	08/26/22 09:53	
Benzo(a)pyrene	ug/kg	<1.9	16.7	08/26/22 09:53	
Benzo(b)fluoranthene	ug/kg	<2.3	16.7	08/26/22 09:53	
Benzo(g,h,i)perylene	ug/kg	<2.9	16.7	08/26/22 09:53	
Benzo(k)fluoranthene	ug/kg	<2.1	16.7	08/26/22 09:53	
Chrysene	ug/kg	<3.1	16.7	08/26/22 09:53	
Dibenz(a,h)anthracene	ug/kg	<2.3	16.7	08/26/22 09:53	
Fluoranthene	ug/kg	<2.0	16.7	08/26/22 09:53	
Fluorene	ug/kg	<2.0	16.7	08/26/22 09:53	
Indeno(1,2,3-cd)pyrene	ug/kg	<3.5	16.7	08/26/22 09:53	
Naphthalene	ug/kg	<1.6	16.7	08/26/22 09:53	
Phenanthrene	ug/kg	<1.9	16.7	08/26/22 09:53	
Pyrene	ug/kg	<2.5	16.7	08/26/22 09:53	
2-Fluorobiphenyl (S)	%	65	41-98	08/26/22 09:53	
Terphenyl-d14 (S)	%	87	37-106	08/26/22 09:53	

LABORATORY CONTROL SAMPLE:	2444448					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	334	259	78	64-110	
2-Methylnaphthalene	ug/kg	334	258	77	60-110	
Acenaphthene	ug/kg	334	261	78	69-120	
Acenaphthylene	ug/kg	334	261	78	63-120	
Anthracene	ug/kg	334	293	88	71-112	
Benzo(a)anthracene	ug/kg	334	263	79	62-120	
Benzo(a)pyrene	ug/kg	334	321	96	71-111	
Benzo(b)fluoranthene	ug/kg	334	273	82	59-112	
Benzo(g,h,i)perylene	ug/kg	334	306	92	64-115	
Benzo(k)fluoranthene	ug/kg	334	313	94	72-117	
Chrysene	ug/kg	334	340	102	75-120	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

LABORATORY CONTROL SAMPLE:	2444448					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Dibenz(a,h)anthracene	ug/kg	334	297	89	67-114	
luoranthene	ug/kg	334	285	85	70-110	
luorene	ug/kg	334	267	80	64-104	
ndeno(1,2,3-cd)pyrene	ug/kg	334	294	88	71-114	
phthalene	ug/kg	334	250	75	62-120	
enanthrene	ug/kg	334	259	78	59-106	
rene	ug/kg	334	299	90	69-120	
Fluorobiphenyl (S)	%			76	41-98	
rphenyl-d14 (S)	%			90	37-106	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	CATE: 2444	449		2444450	ı						
			MS	MSD								
	4	0250229015	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/kg	<3.0	410	410	338	361	82	88	51-110	7	34	
2-Methylnaphthalene	ug/kg	<3.0	410	410	309	321	75	78	45-110	4	29	
Acenaphthene	ug/kg	<2.7	410	410	316	325	77	79	52-120	3	26	
Acenaphthylene	ug/kg	<2.6	410	410	318	326	78	80	46-120	3	22	
Anthracene	ug/kg	<2.5	410	410	323	338	79	82	50-112	5	25	
Benzo(a)anthracene	ug/kg	<2.6	410	410	296	315	72	77	41-120	6	37	
Benzo(a)pyrene	ug/kg	<2.3	410	410	348	367	85	90	44-114	5	33	
Benzo(b)fluoranthene	ug/kg	<2.8	410	410	311	322	76	79	41-112	4	43	
Benzo(g,h,i)perylene	ug/kg	<3.6	410	410	276	271	67	66	40-115	2	36	
Benzo(k)fluoranthene	ug/kg	<2.6	410	410	347	362	85	88	56-117	4	30	
Chrysene	ug/kg	<3.9	410	410	366	387	89	94	45-120	5	28	
Dibenz(a,h)anthracene	ug/kg	<2.8	410	410	302	291	74	71	44-114	4	33	
Fluoranthene	ug/kg	<2.4	410	410	328	343	80	83	55-110	5	43	
Fluorene	ug/kg	<2.5	410	410	325	331	79	81	47-104	2	27	
Indeno(1,2,3-cd)pyrene	ug/kg	<4.3	410	410	288	279	70	68	45-114	3	33	
Naphthalene	ug/kg	<2.0	410	410	299	323	73	78	47-120	8	26	
Phenanthrene	ug/kg	<2.3	410	410	306	309	74	75	38-106	1	24	
Pyrene	ug/kg	<3.0	410	410	335	359	82	87	51-120	7	41	
2-Fluorobiphenyl (S)	%						71	68	41-98			
Terphenyl-d14 (S)	%						78	79	37-106			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

QC Batch: 424579 Analysis Method: EPA 8270E by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270E/3546 MSSV PAH by SIM

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229020, 40250229021, 40250229022, 40250229023, 40250229024, 40250229025, 40250229026,

40250229027, 40250229029

METHOD BLANK: 2445249 Matrix: Solid

Associated Lab Samples: 40250229020, 40250229021, 40250229022, 40250229023, 40250229024, 40250229025, 40250229026,

40250229027, 40250229029

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	<2.4	16.7	08/29/22 10:35	
2-Methylnaphthalene	ug/kg	<2.4	16.7	08/29/22 10:35	
Acenaphthene	ug/kg	<2.2	16.7	08/29/22 10:35	
Acenaphthylene	ug/kg	<2.1	16.7	08/29/22 10:35	
Anthracene	ug/kg	<2.1	16.7	08/29/22 10:35	
Benzo(a)anthracene	ug/kg	<2.2	16.7	08/29/22 10:35	
Benzo(a)pyrene	ug/kg	<1.9	16.7	08/29/22 10:35	
Benzo(b)fluoranthene	ug/kg	<2.3	16.7	08/29/22 10:35	
Benzo(g,h,i)perylene	ug/kg	<2.9	16.7	08/29/22 10:35	
Benzo(k)fluoranthene	ug/kg	<2.1	16.7	08/29/22 10:35	
Chrysene	ug/kg	<3.1	16.7	08/29/22 10:35	
Dibenz(a,h)anthracene	ug/kg	<2.3	16.7	08/29/22 10:35	
Fluoranthene	ug/kg	<2.0	16.7	08/29/22 10:35	
Fluorene	ug/kg	<2.0	16.7	08/29/22 10:35	
Indeno(1,2,3-cd)pyrene	ug/kg	<3.5	16.7	08/29/22 10:35	
Naphthalene	ug/kg	<1.6	16.7	08/29/22 10:35	
Phenanthrene	ug/kg	<1.9	16.7	08/29/22 10:35	
Pyrene	ug/kg	<2.4	16.7	08/29/22 10:35	
2-Fluorobiphenyl (S)	%	66	41-98	08/29/22 10:35	
Terphenyl-d14 (S)	%	86	37-106	08/29/22 10:35	

LABORATORY CONTROL SAMPLE:	2445250					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	334	268	80	64-110	
2-Methylnaphthalene	ug/kg	334	267	80	60-110	
Acenaphthene	ug/kg	334	280	84	69-120	
Acenaphthylene	ug/kg	334	263	79	63-120	
Anthracene	ug/kg	334	302	91	71-112	
Benzo(a)anthracene	ug/kg	334	253	76	62-120	
Benzo(a)pyrene	ug/kg	334	323	97	71-111	
Benzo(b)fluoranthene	ug/kg	334	286	86	59-112	
Benzo(g,h,i)perylene	ug/kg	334	301	90	64-115	
Benzo(k)fluoranthene	ug/kg	334	300	90	72-117	
Chrysene	ug/kg	334	350	105	75-120	
Dibenz(a,h)anthracene	ug/kg	334	291	87	67-114	
Fluoranthene	ug/kg	334	282	85	70-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

LABORATORY CONTROL SAMPLE:	2445250					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Fluorene	ug/kg	334	269	81	64-104	
Indeno(1,2,3-cd)pyrene	ug/kg	334	287	86	71-114	
Naphthalene	ug/kg	334	256	77	62-120	
Phenanthrene	ug/kg	334	253	76	59-106	
Pyrene	ug/kg	334	297	89	69-120	
2-Fluorobiphenyl (S)	%			73	41-98	
Terphenyl-d14 (S)	%			87	37-106	

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	CATE: 2445	251		2445252							
			MS	MSD								
	4	0250146001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/kg	104J	390	389	253J	292J	38	49	51-110		34	M1
2-Methylnaphthalene	ug/kg	88.4J	390	389	266J	296J	46	53	45-110		29	
Acenaphthene	ug/kg	71.6J	390	389	282J	318J	54	63	52-120		26	
Acenaphthylene	ug/kg	92.4J	390	389	339J	353J	63	67	46-120		22	
Anthracene	ug/kg	112J	390	389	268J	292J	40	46	50-112		25	M1
Benzo(a)anthracene	ug/kg	<63.0	390	389	201J	169J	43	35	41-120		37	M1
Benzo(a)pyrene	ug/kg	<55.3	390	389	222J	250J	51	58	44-114		33	
Benzo(b)fluoranthene	ug/kg	101J	390	389	261J	270J	41	43	41-112		43	
Benzo(g,h,i)perylene	ug/kg	<85.5	390	389	202J	201J	44	44	40-115		36	
Benzo(k)fluoranthene	ug/kg	<62.3	390	389	257J	288J	60	68	56-117		30	
Chrysene	ug/kg	553	390	389	734	733	46	46	45-120	0	28	
Dibenz(a,h)anthracene	ug/kg	<67.4	390	389	189J	186J	46	45	44-114		33	
Fluoranthene	ug/kg	95.5J	390	389	370J	394J	70	77	55-110		43	
Fluorene	ug/kg	92.2J	390	389	276J	288J	47	50	47-104		27	
Indeno(1,2,3-cd)pyrene	ug/kg	<102	390	389	193J	198J	47	49	45-114		33	
Naphthalene	ug/kg	<47.5	390	389	206J	225J	47	52	47-120		26	
Phenanthrene	ug/kg	997	390	389	1100	1190	25	48	38-106	8	24	M1
Pyrene	ug/kg	428J	390	389	566	542	35	29	51-120	4	41	M1
2-Fluorobiphenyl (S)	%						47	48	41-98			
Terphenyl-d14 (S)	%						54	58	37-106			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

QC Batch: 424836 Analysis Method: EPA 8270E by SIM

QC Batch Method: EPA 3546 Analysis Description: 8270E/3546 MSSV PAH by SIM

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229028

METHOD BLANK: 2446527 Matrix: Solid

Associated Lab Samples: 40250229028

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1-Methylnaphthalene	ug/kg	<2.4	16.7	08/31/22 10:19	
2-Methylnaphthalene	ug/kg	<2.4	16.7	08/31/22 10:19	
Acenaphthene	ug/kg	<2.2	16.7	08/31/22 10:19	
Acenaphthylene	ug/kg	<2.1	16.7	08/31/22 10:19	
Anthracene	ug/kg	<2.1	16.7	08/31/22 10:19	
Benzo(a)anthracene	ug/kg	<2.2	16.7	08/31/22 10:19	
Benzo(a)pyrene	ug/kg	<1.9	16.7	08/31/22 10:19	
Benzo(b)fluoranthene	ug/kg	<2.3	16.7	08/31/22 10:19	
Benzo(g,h,i)perylene	ug/kg	<2.9	16.7	08/31/22 10:19	
Benzo(k)fluoranthene	ug/kg	<2.1	16.7	08/31/22 10:19	
Chrysene	ug/kg	<3.2	16.7	08/31/22 10:19	
Dibenz(a,h)anthracene	ug/kg	<2.3	16.7	08/31/22 10:19	
Fluoranthene	ug/kg	<2.0	16.7	08/31/22 10:19	
Fluorene	ug/kg	<2.0	16.7	08/31/22 10:19	
Indeno(1,2,3-cd)pyrene	ug/kg	<3.5	16.7	08/31/22 10:19	
Naphthalene	ug/kg	<1.6	16.7	08/31/22 10:19	
Phenanthrene	ug/kg	<1.9	16.7	08/31/22 10:19	
Pyrene	ug/kg	<2.5	16.7	08/31/22 10:19	
2-Fluorobiphenyl (S)	%	71	41-98	08/31/22 10:19	
Terphenyl-d14 (S)	%	90	37-106	08/31/22 10:19	

LABORATORY CONTROL SAMPLE:	2446528					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1-Methylnaphthalene	ug/kg	334	249	75	64-110	
2-Methylnaphthalene	ug/kg	334	243	73	60-110	
Acenaphthene	ug/kg	334	255	76	69-120	
Acenaphthylene	ug/kg	334	253	76	63-120	
Anthracene	ug/kg	334	297	89	71-112	
Benzo(a)anthracene	ug/kg	334	275	82	62-120	
Benzo(a)pyrene	ug/kg	334	313	94	71-111	
Benzo(b)fluoranthene	ug/kg	334	316	95	59-112	
Benzo(g,h,i)perylene	ug/kg	334	303	91	64-115	
Benzo(k)fluoranthene	ug/kg	334	277	83	72-117	
Chrysene	ug/kg	334	330	99	75-120	
Dibenz(a,h)anthracene	ug/kg	334	302	91	67-114	
Fluoranthene	ug/kg	334	291	87	70-110	
Fluorene	ug/kg	334	264	79	64-104	
Indeno(1,2,3-cd)pyrene	ug/kg	334	299	90	71-114	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

LABORATORY CONTROL SAMPLE: 2446528 Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Naphthalene ug/kg 334 237 71 62-120 80 59-106 Phenanthrene ug/kg 334 267 Pyrene ug/kg 334 300 90 69-120 2-Fluorobiphenyl (S) % 70 41-98 Terphenyl-d14 (S) % 88 37-106

MATRIX SPIKE & MATRIX S	SPIKE DUPLIC	ATE: 2446	529		2446530	ı						
			MS	MSD								
	4	0250394001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1-Methylnaphthalene	ug/kg	<2.8	388	387	292	202	75	52	51-110	36	34	R1
2-Methylnaphthalene	ug/kg	<2.8	388	387	269	204	69	52	45-110	28	29	
Acenaphthene	ug/kg	<2.5	388	387	287	199	74	51	52-120	36	26	M1,R1
Acenaphthylene	ug/kg	<2.4	388	387	281	191	72	49	46-120	38	22	R1
Anthracene	ug/kg	<2.4	388	387	319	199	82	51	50-112	46	25	R1
Benzo(a)anthracene	ug/kg	<2.5	388	387	286	170	74	44	41-120	51	37	R1
Benzo(a)pyrene	ug/kg	<2.2	388	387	331	210	85	54	44-114	45	33	R1
Benzo(b)fluoranthene	ug/kg	<2.7	388	387	327	208	84	54	41-112	44	43	R1
Benzo(g,h,i)perylene	ug/kg	<3.4	388	387	315	202	81	52	40-115	44	36	R1
Benzo(k)fluoranthene	ug/kg	<2.5	388	387	309	193	80	50	56-117	46	30	M1,R1
Chrysene	ug/kg	<3.7	388	387	355	235	91	60	45-120	41	28	R1
Dibenz(a,h)anthracene	ug/kg	<2.7	388	387	313	195	81	50	44-114	46	33	R1
Fluoranthene	ug/kg	<2.3	388	387	311	193	80	50	55-110	47	43	M1,R1
Fluorene	ug/kg	<2.3	388	387	296	182	76	47	47-104	48	27	R1
Indeno(1,2,3-cd)pyrene	ug/kg	<4.0	388	387	306	193	79	50	45-114	45	33	R1
Naphthalene	ug/kg	<1.9	388	387	257	218	66	56	47-120	16	26	
Phenanthrene	ug/kg	<2.2	388	387	285	173	73	45	38-106	49	24	R1
Pyrene	ug/kg	<2.9	388	387	315	195	81	50	51-120	47	41	M1,R1
2-Fluorobiphenyl (S)	%						64	49	41-98			
Terphenyl-d14 (S)	%						78	49	37-106			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

QC Batch: 424351 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229001, 40250229002, 40250229004, 40250229005, 40250229006, 40250229007, 40250229008,

40250229009, 40250229010, 40250229011, 40250229012, 40250229013

SAMPLE DUPLICATE: 2443711

Date: 09/01/2022 04:00 PM

		40250222001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Percent Moisture	%	5.4	5.6	3	10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

QC Batch: 424425 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40250229014, 40250229015, 40250229016, 40250229017, 40250229018, 40250229019, 40250229020,

40250229021, 40250229022

SAMPLE DUPLICATE: 2444098

Date: 09/01/2022 04:00 PM

40250313008 Dup Max Parameter Units Result Result **RPD RPD** Qualifiers Percent Moisture % 22.8 22.4 2 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Green Bay, WI 54302 (920)469-2436

QUALITY CONTROL DATA

Project:

60679770 RIVERPOINT

Pace Project No.:

40250229

QC Batch: QC Batch Method:

424429

ASTM D2974-87

Analysis Method:

ASTM D2974-87

RPD

Analysis Description:

Dry Weight/Percent Moisture

Laboratory:

Pace Analytical Services - Green Bay

40250229023, 40250229024, 40250229025, 40250229026, 40250229027, 40250229028, 40250229029,

40250229030, 40250229031

SAMPLE DUPLICATE: 2444122

Date: 09/01/2022 04:00 PM

Associated Lab Samples:

40250295015

Result

Dup Result

Max **RPD**

Qualifiers

Parameter Percent Moisture

Units %

22.0

3 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 09/01/2022 04:00 PM

В	Analyte was detected in the associated method blank.
D3	Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
MO	Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
M1	Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
P6	Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.
R1	RPD value was outside control limits.
S4	Surrogate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
40250229010	PB-5 (1'-2')	EPA 3541	424283	EPA 8082A	424309
0250229011	PB-5 (3'-4')	EPA 3541	424283	EPA 8082A	424309
0250229012	PB-6 (1'-2')	EPA 3541	424283	EPA 8082A	424309
0250229013	PB-6 (2'-3')	EPA 3541	424283	EPA 8082A	424309
0250229014	PB-7 (1'-2')	EPA 3541	424283	EPA 8082A	424309
0250229015	PB-7 (3'-4')	EPA 3541	424283	EPA 8082A	424309
0250229030	PB-15 (1'-2')	EPA 3541	424283	EPA 8082A	424309
0250229031	PB-15 (4'-5')	EPA 3541	424283	EPA 8082A	424309
0250229001	PB-1 (1'-2')	EPA 3050B	424316	EPA 6010D	424455
0250229002	PB-1 (3'-4')	EPA 3050B	424316	EPA 6010D	424455
0250229004	PB-2 (1'-2')	EPA 3050B	424316	EPA 6010D	424455
0250229005	PB-2 (3'-4')	EPA 3050B	424316	EPA 6010D	424455
0250229006	PB-3 (1'-2')	EPA 3050B	424316	EPA 6010D	424455
0250229007	PB-3 (4'-5')	EPA 3050B	424316	EPA 6010D	424455
0250229008	PB-4 (1'-2')	EPA 3050B	424316	EPA 6010D	424455
0250229009	PB-4 (2'-3')	EPA 3050B	424316	EPA 6010D	424455
0250229010	PB-5 (1'-2')	EPA 3050B	424316	EPA 6010D	424455
0250229011	PB-5 (3'-4')	EPA 3050B	424316	EPA 6010D	424455
0250229012	PB-6 (1'-2')	EPA 3050B	424316	EPA 6010D	424455
0250229013	PB-6 (2'-3')	EPA 3050B	424316	EPA 6010D	424455
250229014	PB-7 (1'-2')	EPA 3050B	424316	EPA 6010D	424455
250229015	PB-7 (3'-4')	EPA 3050B	424316	EPA 6010D	424455
0250229016	PB-8 (1'-2')	EPA 3050B	424316	EPA 6010D	424455
0250229017	PB-8 (3'-4')	EPA 3050B	424316	EPA 6010D	424455
0250229018	PB-9 (1'-2')	EPA 3050B	424316	EPA 6010D	424455
0250229019	PB-9 (2'-3')	EPA 3050B	424316	EPA 6010D	424455
0250229020	PB-10 (2'-3')	EPA 3050B	424316	EPA 6010D	424455
0250229021	PB-10 (3'-4')	EPA 3050B	424316	EPA 6010D	424455
0250229022	PB-11 (1'-2')	EPA 3050B	424240	EPA 6010D	424456
0250229023	PB-11 (2'-3')	EPA 3050B	424240	EPA 6010D	424456
0250229024	PB-12 (1'-2')	EPA 3050B	424240	EPA 6010D	424456
0250229025	PB-12 (3'-4')	EPA 3050B	424240	EPA 6010D	424456
0250229026	PB-13 (1'-2')	EPA 3050B	424240	EPA 6010D	424456
0250229027	PB-13 (3'-4')	EPA 3050B	424240	EPA 6010D	424456
0250229028	PB-14 (1'-2')	EPA 3050B	424240	EPA 6010D	424456
0250229029	PB-14 (3'-4')	EPA 3050B	424240	EPA 6010D	424456
0250229030	PB-15 (1'-2')	EPA 3050B	424240	EPA 6010D	424456
0250229031	PB-15 (4'-5')	EPA 3050B	424240	EPA 6010D	424456
0250229001	PB-1 (1'-2')	EPA 7471	424378	EPA 7471	424430
0250229002	PB-1 (3'-4')	EPA 7471	424378	EPA 7471	424430
0250229004	PB-2 (1'-2')	EPA 7471	424378	EPA 7471	424430
0250229005	PB-2 (3'-4')	EPA 7471	424378	EPA 7471	424430
0250229006	PB-3 (1'-2')	EPA 7471	424378	EPA 7471	424430
0250229007	PB-3 (4'-5')	EPA 7471	424378	EPA 7471	424430
0250229008	PB-4 (1'-2')	EPA 7471	424378	EPA 7471	424430
0250229009	PB-4 (2'-3')	EPA 7471	424378	EPA 7471	424430
0250229010	PB-5 (1'-2')	EPA 7471	424378	EPA 7471	424430

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
10250229011	PB-5 (3'-4')	EPA 7471	424378	— —————————— EPA 7471	424430
10250229012	PB-6 (1'-2')	EPA 7471	424378	EPA 7471	424430
0250229013	PB-6 (2'-3')	EPA 7471	424378	EPA 7471	424430
0250229014	PB-7 (1'-2')	EPA 7471	424378	EPA 7471	424430
0250229015	PB-7 (3'-4')	EPA 7471	424378	EPA 7471	424430
0250229016	PB-8 (1'-2')	EPA 7471	424378	EPA 7471	424430
0250229017	PB-8 (3'-4')	EPA 7471	424381	EPA 7471	424432
0250229018	PB-9 (1'-2')	EPA 7471	424381	EPA 7471	424432
0250229019	PB-9 (2'-3')	EPA 7471	424381	EPA 7471	424432
0250229020	PB-10 (2'-3')	EPA 7471	424381	EPA 7471	424432
0250229021	PB-10 (3'-4')	EPA 7471	424381	EPA 7471	424432
0250229022	PB-11 (1'-2')	EPA 7471	424381	EPA 7471	424432
0250229023	PB-11 (2'-3')	EPA 7471	424381	EPA 7471	424432
0250229024	PB-12 (1'-2')	EPA 7471	424381	EPA 7471	424432
0250229025	PB-12 (3'-4')	EPA 7471	424381	EPA 7471	424432
0250229026	PB-13 (1'-2')	EPA 7471	424381	EPA 7471	424432
0250229027	PB-13 (3'-4')	EPA 7471	424381	EPA 7471	424432
0250229028	PB-14 (1'-2')	EPA 7471	424381	EPA 7471	424432
0250229029	PB-14 (3'-4')	EPA 7471	424381	EPA 7471	424432
0250229030	PB-15 (1'-2')	EPA 7471	424381	EPA 7471	424432
0250229031	PB-15 (4'-5')	EPA 7471	424381	EPA 7471	424432
0250229001	PB-1 (1'-2')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229002	PB-1 (3'-4')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229004	PB-2 (1'-2')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229005	PB-2 (3'-4')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229006	PB-3 (1'-2')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229007	PB-3 (4'-5')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229008	PB-4 (1'-2')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229009	PB-4 (2'-3')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229010	PB-5 (1'-2')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229010	PB-5 (3'-4')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229011	PB-6 (1'-2')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229012	PB-6 (2'-3')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229013	PB-7 (1'-2')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229014	PB-7 (3'-4')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229015	PB-7 (3 -4) PB-8 (1'-2')	EPA 3546	424489	EPA 8270E by SIM	424518
0250229016	PB-8 (3'-4')	EPA 3546	424489 424489	EPA 8270E by SIM	424518
0250229017 0250229018	PB-6 (3 -4) PB-9 (1'-2')	EPA 3546	424489 424489	•	424518
0250229018 0250229019	PB-9 (1-2) PB-9 (2'-3')	EPA 3546 EPA 3546	424489 424489	EPA 8270E by SIM EPA 8270E by SIM	424518
0250229020	PB-10 (2'-3')	EPA 3546	424579	EPA 8270E by SIM	424633
0250229020	PB-10 (2'-3')	EPA 3546	424579	EPA 8270E by SIM	424633
0250229021	PB-11 (1'-2')	EPA 3546	424579	EPA 8270E by SIM	424633
0250229022	PB-11 (1'-2') PB-11 (2'-3')	EPA 3546	424579 424579	EPA 8270E by SIM	424633
0250229023 0250229024	PB-11 (2-3) PB-12 (1'-2')	EPA 3546	424579 424579	EPA 8270E by SIM	424633
				EPA 8270E by SIM	424633
0250229025 0250229026	PB-12 (3'-4')	EPA 3546	424579 424579	EPA 8270E by SIM	
0250229026	PB-13 (1'-2') PB-13 (3'-4')	EPA 3546	424579	EPA 8270E by SIM	424633

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

_ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
0250229028	PB-14 (1'-2')	EPA 3546	424836	EPA 8270E by SIM	424864
0250229029	PB-14 (3'-4')	EPA 3546	424579	EPA 8270E by SIM	424633
0250229001	PB-1 (1'-2')	EPA 5035/5030B	424392	EPA 8260	424397
0250229002	PB-1 (3'-4')	EPA 5035/5030B	424392	EPA 8260	424397
0250229003	TB-01	EPA 5035/5030B	424500	EPA 8260	424502
0250229004	PB-2 (1'-2')	EPA 5035/5030B	424500	EPA 8260	424502
0250229005	PB-2 (3'-4')	EPA 5035/5030B	424500	EPA 8260	424502
0250229006	PB-3 (1'-2')	EPA 5035/5030B	424500	EPA 8260	424502
0250229007	PB-3 (4'-5')	EPA 5035/5030B	424500	EPA 8260	424502
0250229008	PB-4 (1'-2')	EPA 5035/5030B	424525	EPA 8260	424527
0250229009	PB-4 (2'-3')	EPA 5035/5030B	424525	EPA 8260	424527
0250229016	PB-8 (1'-2')	EPA 5035/5030B	424525	EPA 8260	424527
0250229017	PB-8 (3'-4')	EPA 5035/5030B	424525	EPA 8260	424527
0250229018	PB-9 (1'-2')	EPA 5035/5030B	424525	EPA 8260	424527
0250229019	PB-9 (2'-3')	EPA 5035/5030B	424525	EPA 8260	424527
0250229020	PB-10 (2'-3')	EPA 5035/5030B	424525	EPA 8260	424527
0250229020	PB-10 (2'-3')	EPA 5035/5030B	424525	EPA 8260	424527
0250229021	PB-10 (3 -4) PB-11 (1'-2')	EPA 5035/5030B	424525	EPA 8260	424527
0250229022	• •		424525	EPA 8260	
)250229023)250229028	PB-11 (2'-3')	EPA 5035/5030B EPA 5035/5030B	424525 424525		424527
0250229029	PB-14 (1'-2') PB-14 (3'-4')	EPA 5035/5030B	424525	EPA 8260 EPA 8260	424527 424527
0250229001	PB-1 (1'-2')	ASTM D2974-87	424351		
0250229002	PB-1 (3'-4')	ASTM D2974-87	424351		
0250229004	PB-2 (1'-2')	ASTM D2974-87	424351		
0250229005	PB-2 (3'-4')	ASTM D2974-87	424351		
0250229006	PB-3 (1'-2')	ASTM D2974-87	424351		
0250229000	PB-3 (1-2) PB-3 (4'-5')	ASTM D2974-87 ASTM D2974-87	424351		
0250229007	PB-3 (4 -3) PB-4 (1'-2')	ASTM D2974-87 ASTM D2974-87	424351		
0250229009	PB-4 (2'-3')	ASTM D2974-87	424351		
0250229010	PB-5 (1'-2')	ASTM D2974-87	424351		
0250229011	PB-5 (3'-4')	ASTM D2974-87	424351		
0250229012	PB-6 (1'-2')	ASTM D2974-87	424351		
0250229013	PB-6 (2'-3')	ASTM D2974-87	424351		
0250229014	PB-7 (1'-2')	ASTM D2974-87	424425		
0250229015	PB-7 (3'-4')	ASTM D2974-87	424425		
0250229016	PB-8 (1'-2')	ASTM D2974-87	424425		
0250229017	PB-8 (3'-4')	ASTM D2974-87	424425		
250229018	PB-9 (1'-2')	ASTM D2974-87	424425		
250229019	PB-9 (2'-3')	ASTM D2974-87	424425		
250229020	PB-10 (2'-3')	ASTM D2974-87	424425		
0250229021	PB-10 (3'-4')	ASTM D2974-87	424425		
0250229022	PB-11 (1'-2')	ASTM D2974-87	424425		
0250229023	PB-11 (2'-3')	ASTM D2974-87	424429		
0250229024	PB-12 (1'-2')	ASTM D2974-87	424429		
0250229025	PB-12 (3'-4')	ASTM D2974-87	424429		

(920)469-2436

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 60679770 RIVERPOINT

Pace Project No.: 40250229

Date: 09/01/2022 04:00 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40250229026	PB-13 (1'-2')	ASTM D2974-87	424429		
40250229027	PB-13 (3'-4')	ASTM D2974-87	424429		
40250229028	PB-14 (1'-2')	ASTM D2974-87	424429		
40250229029	PB-14 (3'-4')	ASTM D2974-87	424429		
40250229030	PB-15 (1'-2')	ASTM D2974-87	424429		
40250229031	PB-15 (4'-5')	ASTM D2974-87	424429		

Pace Analytical*	CHAIN-	OF-CU:	STODY	Analyti	cal Req	uest Do	cument			LAI	B USE C	ONLY- A	ffix Wo	de l'acceptable		bel Here or Lis Number Here	st Pace Workorder Number or		
/	Chain-o	f-Custody	is a LEGAL I		T - Comple	te all relever	nt fields										40258229		
Company: AECON			1 -		WA.	m \									AREAS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	AB USE ONLY		
Address: 1555 NRiver Car	ver Pri	Ve_		see	Lane	He)	·	3	U		ntainer	r Preser\	vative T	ype **		Lab Proje	ct Manager: Chris Hyska		
Report To:	1ten back	<u> </u>	Email To:	te.all	Leabor	L@ A5	COM. L	(6)								chloric acid, (4)	sodium hydroxide, (5) zinc acetate, rbic acid, (B) ammonium sulfate,		
Сору То:			Site Collec	tion Info/A	Address: A	L@AG	YOUR S	(c)				, (D) TSP,	(U) Unpr		l, (O) Other				
Customer Project Name/Number:	Riverpe		State:	County/Ci	ity: Ti	me Zone Col] PT [] MT	llected:	26500				Analys	ses				ample Receipt Checklist:		
	Site/Facility ID	#:	1 - 1	· 1		ce Monitorir										Custo	dy Seals Present/Intact Y N NA dy Signatures Present Y N NA		
Email: Kcifh Nelsen@A	Ecom.com				[] Yes	[] No							7/36			Collect Bottle	ctor Signature Present Y N NA es Intact		
Collected By (print):	Purchase Orde Quote #:	r#:			DW PWS	ID #: tion Code:			1	-						Correct Suffic	ct Bottles cient Volume N NA		
Collected By (signature):	Turnaround Da	ite Require	:d:			tion Code: tely Packed o	n lce:			15	1					Sample	es Received on Ice X Y N NA Headspace Acceptable Y N NA		
3		quiit			[X Yes	[] No	_			12				4.0		USDA F	Regulated Soils Y N NA es in Holding Time Y N NA		
Sample Disposal:	Rush:	ne Da	[] North		Field Filte	ered (if applic	cable):			13						Residu	ual Chloripe /Present Y N NA		
[] Dispose as appropriate [] Return [] Archive:	[] San [] 2 Day [[] Next Da [] 4 Day		[] Yes	Na										Sample	rips: e pH Acceptable Y N NA		
[] Hold:	(E)	xpedite Cha	rges Apply)		Allalysis:			_		1						ph Sti Sulfic	rips: V N NA Acetate Strips:		
* Matrix Codes (Insert in Matrix box Product (P), Soil/Solid (SL), Oil (OL	•	Air (AR), Tis	ssue (TS), Bi	ioassay (B)	• •			_	A#3	CR	_^				(6.3%	LAB y	SK DILY:		
Customer Sample ID	Matrix *	Comp / Grab		ite Start)	<u> </u>	osite End		of this	A A	8						Lab/Sa	am bié # / Comments:		
PB-1 (1'-2')	SL	G	Date	Time	Date Date	Time //40	 -	2	+-	1	+-1		1/4	- 1 (A)	15.55 A	1001			
PB-1 (31-47)	SL	ī			10/11	1150		2		ti			-		+++	(772			
TB-01	OT				1	0800	 	2	T				- 1			(XX			
PB-2 (1'-2')	SL				17	1120		Z	1	T				AP OC.		CVL			
PB-Z (31-41)	_1					1130		2						24.	Sea Se	<u> </u>			
93-3 (1-27)						1166		2		1					11	CUL			
PB-3 (4'-5')	1.0				\coprod	1110		<u>2</u>	1	1		ČČL ŠAVA				Cuj			
P6-4 (1'-2')						1200		W X	1 1	<u></u>		35.5		\$17. \$2.50 \$2.50		CUS			
PB-4 (2'-3')						1210		Z	1	1		28.675			27.300.00	009			
PB-5 (1:-21)	V	Y			<u> </u>	1220			1	1						070	Lange and the same		
Customer Remarks / Special Conditi	ions / Possible H	lazards:	19.002	COLOR DESIGNATION	1. 74190 1 1 1	Blue Dry	y None		200	er en en en en en en en en en en en en en	otter community	RESENT	(<72 ho	ours):	Y N N	V/A	Lab Sample Temperature Info: Temp Blank Received: Y N NA		
			Packing M	aterial Use	ed:	1			Lab	Tracki	ing #:	_28	328	385	6		Therm ID#: Cooler 1 Temp Upop Receipt:oC		
1 of 4		.*	Radchem s	sample(s) s	creeped (<	:500 cpm):	Y N	NA .	San	nples re	eceivec X U		Client	Couri	er Pac	e Courier	Cooler 1 Therm Corr Factor:oC Cooler 1 Corrected Temp:oC		
Relinquished by/Company: (Signatur	re)	Date	/Time: •		Received b	oy/Company:	: (Signature	<u> </u>	14.38	Date/			-,,cnt		ITJL LAB US		Comments:		
Relinquished by/Company: (Signatu	ECOM	Œ	Time: 3/27/3/163	22				-	Ì				i l	Table #:					
Relinquished by/Company: (Signatu	re)	11)ate	/lime		Received h	oy/Company:	: (Signature	1		Date/	/Time:		12	Acctnum		- 1446	Trin Plank Passical V V V		
Cologistics	·	8	2322	2810	\ \ \ \	MIL		_	_ !	الصا		.081	n 18	Templat Prelogin		1000	Trip Blank Received: Y N NA HCL MeOH TSP Other		
Relinquished by/Company: (Signatu	re)	Date	:/Time:	, ~	Received b)			/Time:		P	PM: PB:			Non Conformance(s): Page:Page 129 of 13				

Pace Analytical*		F-CUSTODY Analy	·		MTJL Log-in Number Here										
Company: AECOM		Billing Information							ALL S	HADED .	AREAS a	are for LA	B USE ONLY		
Address: N hiver Ce	nter Acive		lanetre	2)						tive Type **			t Manager:		
Report To: Lane He A	Henback	Email To:	altenbach	n CAGCOM. C	*** P	reservat Tethano	tive Typ 1, (7) so	oes: (1) odium h	nitric acid, pisulfate, (8	(2) sulfuric ac) sodium thio	id, (3) hydroc sulfate, (9) he	hloric acid, (4) so xane, (A) ascorb	odium hydroxide, (5) zinc acetate, vic acid, (B) ammonium sulfate,		
Сору То:		Site Collection Info	/Address:	- & York St	(C) a	ımmoniı	um hydi	roxide,	, (D) TSP, (U	J) Unpreserve	d, (O) Other _				
Customer Project Name/Number:	Krodat	State: County/	City: Time Zo	one Collected:					Analyses	<u> </u>			/Line: mple Receipt Checklist; y Seals Present/Intact Y N NA		
Phone:262.758.9414	Site/Facility ID #:		Compliance M	lonitoring?	7							Custody	y Signatures Present Y N MA		
Email: Kcith. niclson Checot		·		[]No	1		1				1000	Bottles	tor Signature Present Y NA s Intact N NA		
Collected By (print): KEH Nielsen	Purchase Order #: Quote #:		DW PWS ID #: DW Location C				12					Suffic	t Bottles Y N NA ient Volume Y N NA		
Collected By (signature):	Turnaround Date	Required:	Immediately Pa		1		1					VOA - I	s Received on Ice Y N NA Headspace Acceptable Y N NA		
A do				[] No			1					USDA Re Samples	egulated Soils YN NA s in Holding Time YN NA		
Sample Disposal:	Rush:	Day [] Next Day	Field Filtered (Residua Cl Str	al Chlorine Present Y N NA		
[] Dispose as appropriate [] Return [] Archive:	[] 2 Day [] 3	3 Day [] 4 Day [] 5 Da	iv	[] No			ابلرا			200			pH Acceptable Y N NA		
[] Hold:	(Expe	edite Charges Apply)	Analysis:		1 ~		2					Sulfide	e Present Y N NA		
* Matrix Codes (Insert in Matrix box Product (P), Soil/Solid (SL), Oil (OL	L), Wipe (WP), Air ((AR), Tissue (TS), Bioassay (ner (OT)	٥٥	H,	R	4				LAB US	cetal Srips:		
Customer Sample ID		Comp / Collected (or Grab Composite Start)	Composite	End Res # of Ctns	15	PA	(47)	7					mple # / Comments:		
		Date Time	Date T	Time	A 253	1	w		2.54	\$100			<u> ઇચ્કોપ</u>		
PB-5 (3'-4')	SL	6	08/19 / 2	230	1 m		1			age of the second	. 1/2/1999 1/2/1999	(22.	TOIL		
PB-6 (1-27)			2	.40			<u> </u>					101	2		
DB-6 (21-31)			12	250			1		\$1.55 <u> </u>				7		
PB-7 (1'-21)				300		1	L	1				019			
PB-7 (3'-4')				316	parties in		1				10.00	OI.	<u> </u>		
PB-8 (1-21)				040	1				Learn Code			On			
PB-8 (31-41)				50	1		1					01			
18-9 (1-21)			\rightarrow	900	12	1	1					(2) 8			
PB-9 (2:-3)				910	2		1		20,572			OF			
PB-10 (1-3')	₩	V		20	2		1					M	0		
Customer Remarks / Special Conditi	ions / Possible Haza	ards: Type of Ice Used:	Wet Blue	and the second of the second s	A MARINE OF THE		RT HO	LDS PI	RESENT (<	72 hours):	YNN		Lab Sample Temperature Info:		
		Packing Material U	sed:	6		Lab	Trackir	ng#:	28	8288	157		Temp Blank Received: Y N NA Therm ID#:oC Cooler 1 Temp Upon Receipt:oC		
2 of 4		Radchem sample(s) screened <500 c	cpm): Y N NA	١	. 3 4 3 3 5 5 6 6 6 6	ples re			ant -	rior) Court's	Cooler 1 Therm Corr. Factor:oC		
- ' '	re) _ 1	1 min 1 min	and the second	ompany: (Signature)		10.7	FEDEX Date/T	A THE PLANE REPORT OF	ro Cli	ent Cou	rier Pace MTJL LAB US	e Courier SE ONLY	Cooler 1 Corrected Temp:oC Comments:		
Relinquished by/Company: (Signatur	EN	Date/Time:	neceived by/Co	Ampany: (Signature)			Date/T	mne:		Table #					
	660M	@ 1430						F7:		Acctnu	AND AND A TOTAL WINDOWS IN IN				
Relinquished by/Company: (Signatur	irej	Date/Time:	1	ompany: (Signature)		1	Date/T	1	5810	Templa Prelogi	ate:		Arip Blank Received: Y N NA HCL MeOH TSP Other		
Relinquished by/Company: (Signatur	ire)	Date/Time:		ompany: (Signature)	-	_	Date/T	_		Prelogi PM:			Non Conformance(s): Page: Page 130 YES / NO of:		

Pace Analytical*	CHAIN-OF	-CUSTODY Analyt	uest Do	cument			LAE	3 USE C	ONLY- A	Affix V			el Here or List Number Here	Pace Workorder Number or 402502201	
/ 1	Chain-of-Cu	stody is a LEGAL DOCUME	NT - Comple	te all relever	nt fields										1025UP
Company:		Billing Information:								ALL	SHA	ADED A	REAS a	ire for LA	B USE ONLY
Address:			5				1	Coi	ntainer	r Preser	vative	Type **	Towns:	Lab Projec	t Manager:
Report To:		Email No:				** P	reserva	tive Ty	pes: (1)	nitric ac	id, (2)	sulfuric acid	l, (3) hydrocl	hloric acid, (4) so	odium hydroxide, (5) zinc acetate,
Сору То:		Site collection Info/	Address:	<u> </u>						, (D) TSP	, (U) U	npreserved,			oic acid, (B) ammonium sulfate,
Customer Project Name/Number:	100	State: County/0		me Zone Col	lected: []CT []E	_				Analy	rses			Lab Profile Lab Sa	/Line: mple Receipt Checklist:
Phone: Email:	Sit /Facility ID #:			ice Monitorii										Custod Collec	y Seals Present/Intact Y NA y Signatures Present Y N NA tor Signature Present Y N NA s Intact Y N NA
Collected By (print):	Purchase Order #: Quote #:		DW PWS DW Local	ID #: tion Code:				2						Correc Suffic	ient Volume S Received on Zee Y N NA Y N NA Y N NA
Collected By (signature):	Turnaround Date Ro	equired:	Immediat	tely Packed o	on Ice:			19						VOA - USDA R	Headspace Acceptable Y N NA egulated Sodis Y N NA s in Holding Time Y N NA
Sample Disposal: [] Dispose as appropriate [] Return [] Archive:	[] 2 Day [] 3	ay [] Next Day Day []4 Day []5 Day te Charges Apply)	Field Filte	ered (if applic	cable):			1A A1						Residu Cl Str Sample pH Str Sulfid	al Chlorine Present Y N NA ips: pH Acceptable Y N NA ips: pH Acceptable Y N NA ips:
* Matrix Codes (Insert in Matrix bo Product (P), Soil/Solid (SL), Oil (O	L), Wipe (WP), Air (A	R), Tissue (TS), Bioassay (E				\ \ \ \	11,5	978	Bs					Lead A	etale Strips: E ONLY:
Customer Sample ID	1	mp / Collected (or rab Composite Start) Date Time	Compo	osite End Time	Res # o Cl Ctr		8	80						Lab Sa	mple # / Comments:
PB-10 (31-41)	SLC	â //	08/19	1030		2	1	1				10800000	est & Section 1	021	Section of the sectio
PB-11 (1'-2')				0970	-	2	1	1						022	
PB-11 (21-31)				0930		2	1	1				No see		$\bigcirc 23$	
PB-12 (1-21)				0940		74.77 84.17	Ш	1						QJ7	
PB-12 (31-41)				0950		313		1		14			1	Ori	
PB-13 (1-2')			1Γ	1000			1	1						Orlo	
PB-13 (3'-4')			1	2010			1	1					34	(27	
PG-14 (1'-2')			1	1320		2	1	1						(728	
PB-14 (3'-4')	1		11.	1330		2	1	, t						029	
PB-15 (1'-2')	V		1 V	1340				1	1					030	
Customer Remarks / Special Condit		ds: Type of Ice Used: Packing Material Us	Wet ed:		-	RT HC Tracki	2010/2010/2010	na Pikala Yasa	Mayora	hours): 288	44701 001	/A	Lab Sample Temperature Info: Temp Blank Received: Y N NA Therm ID#: Cooler 1 Temp Joon Receipt: oC		
3 of 4		Radchem sample(s)	screened (<	IA .	2014 1 (2014/597 G)	CARONIC (2772)	eceived		Client	Courie	er Pace	· Courier	Cooler 1 Corrected Temp:oC		
Relinquished by/Company: (Signatu	AECON AECON	Date/Time: 08/22/82 @ 1630	Received b	oy/Company	: (Signature)	-	Date/Time:					M [*] Table #:	TJL LAB US	E ONLY	Comprents:
Relinquished by/Company: (Signatu	ıre)	Date/Time:	Received by/Company: (Signature)							081	5	Acctnum Template Prelogin	e:		Trip Blank Received: Y N NA HCL MeOH TSP Other
Relinquished by/Company: (Signatu		Date/Time:	e) Date/Time: PM: Non Conformance(s): Page: Page								Non Conformance(s): Page: Page 131 YES / NO of:				

Pace Analytical*	CHAIN-			-	_			nt			LAE	3 USE C	ONLY- A	ffix Wo	SALES SHARE SA	ALCOHOLD CONTRACT		Here or Li	e	Vorkorder I			70
Company:	Chain-c	f-Custody	is a LEGAL I		T - Complet	e all releve	nt fields						ALL	SHA	DED A	ARE <i>A</i>	\S ar	e for L		AU 3 E ONLY	トン	ULC	-
Address:			1/0	75					96811		Cor	ntainer	r Preser			erningt.		Lab Proje	**(2.7 ** **	**************************************			
Report To:			Email To:				-	\longrightarrow	** -					9		566	de:	1000			7100000	•	Section .
	_, \ \ c	8							(6) m	nethano	ol, (7) s	odium t	bisulfate,	, (8) sodi	ium thios	sulfate,	(9) hexaı			ydroxide, (5) B) ammoniu		.c,	
Сору То:			Site Collec	tion Info/A	ddress:				(C) a	mmoni	ium hyc	droxide,	, (D) TSP, Analys		preserved	d, (O) O	ther	Lab Profi	le/Line			ing juganus	
Customer Project Name/Number:			State: /	County/Ci	•	me Zone Co] PT [] MT		[]ET					l l					Lab S Custo	ample F	eceipt Ch	t/Intact	1 1 3 3 3 1	
Email:	Site/Facility ID			* ,	[] Yes	ce Monitori [] No	ng?				ι _ν							Custo Colle Bottl	ody Sign ector Si es Inta	atures Pi gnature I ct	resent	AN W Y AN N Y AN N Y	
Collected By (print):	Purchase Orde Quote #:	r#:	. = = = = = = = = = = = = = = = = = = =		DW PWS I DW Locati	ion Code:					46							Corre Suffi	ct Bott cient \	:les	196	Y N NA Y N NA Y N NA	
Collected By (signature):	Turnaround Da	ate Requir	ed:		[] Yes	ely Packed o					الح							VOA - USDA	· Heads; Regulat	ace Accer ed Soils	stable	Y N NA Y N NA Y N NA	
Sample Disposal: [] Dispose as appropriate [] Return [] Archive: [] Hold:	[] 2 Day [] 3 Day	[] Next Da [] 4 Day Irges Apply)	•	Field Filter [] Yes Analysis: _	red (if appli	cable):			The state of the s	イダ							C1 St Sampl pH St	rips:	ceptable		Y N NA Y N NA	
* Matrix Codes (Insert in Matrix bo Product (P), Soil/Solid (SL), Oil (O									کار	AHS	2	38						Lead LAB U	Acetate	Strips:			
Customer Sample ID	Matrix *	Comp / Grab		te Start)	<u> </u>	site End	Res Cl	# of Ctns	2	PA	8	3						Lab/S	Sample :	f / Comme	nts:		
PB-15 (41-51)	SL	G	Date	Time	Date	7350		<u> </u>				. 1			7.607/01	-		103	<u>\$[</u>				- 14
								\vdash	100 (S)			\vdash					#	BOOKERS.		1000			**************************************
			 -				 	+	(4) (5) (4)	+				\dashv				\$ 1. The		2000 2001 2000 2001			Maria A
													4		301	8/19	122	# 1					
	1		· ·				 	+		-			1	#	\Rightarrow			0000					
	1		:		<u> </u>				5000				2.22			Ŧ	-	155		45.4.25000			
							 	\top	53450	T				- 			N.						
			<u> </u>			L											Č.						
Customer Remarks / Special Condit	tions / Possible H	lazards:	Type of Ice	Used:	Wet F	Blue Dr	y No	one		SHO	ORT HC	OLDS P	RESENT	(<72 h	ours):	Y N	N/A	<u> </u>		mple Temp		10 4 10 10 V	
	Packing Material Used:										Lab Tracking #: 28				524	12			The Cod	np Blank Re erm ID#: bler 1 Temp	Upop Re		IA _oC
444					creened (<	yta sa	Y N	0.0.15%	diselenti Maria		FEDEX			Client	Cour		Pace C		Coo	oler 1 Thern oler 1 Corre	or. Fa	ctor:	oC oC
elinquished by/Company: (Signatu	TAGEN	Date	#/Time: 8/24/ 8_16	30 l	Received b	y/Company	r: (Signat	ure)			Date/	Time:			Table #	oteen diduction when	AB USE I	ONLY	^c °	nmepts:			
Relinquished by/Company: (Signatu			e/Time: 23/12 ()	810	Received b	y/Company M L	v: (Signat	ure)			Date/	Time:	081	5	Acctnui Templa Prelogii	ate:			14 1 4 4 W 15 1 W 10	Blank Rece MeOH		/ N N Other	NA :
Relinquished by/Company: (Signatu											Date/	Time:	<u> </u>		Preiogi PM:	a1•				Conforman	and the second	Page: Page	e 132

Effective Date: 8/16/2022

All c	lier ontai	it Na ners r	ame: needin	g pres	EC servati	Or on ha	∩	een ch	necked Lab		noted of pH		:	San □Ye		Pres ject □No) _	- 14 7.	n Re A #ID o				H adju	2 <i>C</i>	9					tial wh			Date/ Time:	
			I	Glas						Plas							als					ars			Gen	eral		/OA Vials (>6mm) *	PH 52	JaOH+Zn Act pH ≥9	H ≥12	H 52	after adjusted	Volume (mL)
Pace Lab#	AG1U	BG1U	AG1H	AG4S	AG5U	AG2S	везп	BP1U	BP3U	BP3B	BP3N	BP3S	BP2Z	VG9C	DG9T	VG9U	VG9H	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN 1	GN 2	/OA Via	42SO4 pH s2	VaOH+Z	NaOH pH ≥12	HNO3 pH <2	он аве	
001							Ι			Τ	T =	Γ	T			1		2		2						Ĭ	Ť		<u> </u>					2.5 / 5
002	1 1		27.4	N.J. W			5-100.7					5.9	48.7	1230	29 MAR 924 108 99 94 108 98 94	1725		2		2			10000	Handrig To Sept	726	1513			3040		1		100140	2.5 / 5
003																		2																2.5/5
004	माम्बर्ग		73	1,000	1-46 JK K				100		2,35	1100.70		游涛	'AAAA			2	i i điện	2	130	\$ 12.00°	经遗址		100		er er efter		E SPAIL		(tolks)		Ersz Com	2.5 / 5
005																		2		2														2.5 / 5
006	1950	7. 8	1111	elete.	e yriyey	1.49	193		747A.	27.9	1111	\$55.5 34.0						2	0.500	2			400 AR	新 线	清澈		1907	100	18			Special Control		2.5 / 5
007]					2		2							, ,							2.5 / 5
80	1000	10.00	840.4	SP 1.		3,87	i en in	18.5	0.8700	21/20	466	, Alice 1	1 Silvastus (1	4414.00	2.3.7	choles dig to	25.00	100		2	Lighter Haller S	12000	1000 AND	15.Luive	0.5 (0.5) 9.50 (0.5)		3,0	USS (4)		100,440	(ZA)		Ellen)	2.5 / 5
009	- (4)		1000	20.20				E8 85.3										2	ļ	2														2.5 / 5
110	1000	100	40.50					, ka		- Figure	10.000	PLO GA			15,450		21551.			2	100		G. 100 h				1000		1,1,121 (1)			are seed.	NATION AND	2.5 / 5
011	ALCONSOL.	430000	Notes Silvania	a Police Tarr		7 380	de rata	G GLAPA	. 1 5000 35.50	70.1828	16650		1 11 22				4 minus	7.273.	in ar agus	2		1	100 VS.	Sandara San		CHURS.	e senciro	201 Kid Jul	200.000.0000		10000	Capital Shareda	525 S.40 S.40	2.5 / 5
)12					1 Dife.a	0.355		Baser		223	6.4.2	3.55.3	354.7	100000	9/4(1)	2004	832	4040	t dakat	2		3 10	ARE S	1.100	18867	March 1				1.2.2				2.5 / 5
)13	1200		Circio is			100	-40,0 144	F 445,60	- Jasta,	vi .8524.155	r discusi	s. Activismos	à shifterin	Africa Cal	- al-ter signific	indication	- Marcons		1.0.40	てつ	 					- A. 4	Appetic to	to contract to	5.7 (4.5)	11.00		A POP EL TORY	નોસ્થા <u>લ</u> ેલા પ્ર	2.5 / 5
014 015			200			2012		1083	2/2/3/2		1528		200.2	X 6. 6	10/328	10000	19496	24920	1 (25,24,3)	7	.u.rh.skid	1	(Make)	ÇAZ-MIĞÎ	46.4.44	i iz Killi	35.5.1	45.48	15					2.5 / 5
)16					M. Box			12.00	1 Marian						Total Section	20,530	200	7	1001100	2	Section 2	1.855	2256					Superior	800720					2.5 / 5
)17		·		9.663	60.00	23 Sat				14400						p said		17	0.000	2		588488	2,84%					Closer	690000	10000000				2.5 / 5
)18									10.3.4							2 / 3	n e	17	10.00	7		200	43/49/				10000		ASSESS A					2.5 / 5
119	Separate			100500000	1,000,000,000	152000050				- 1-42-007-86-41-8				1 94500 31355	100000000000000000000000000000000000000		9/805-20	5		Z		1927 A.S. 195 A.S.	V. 100 10	F-6-8120was					5.50,751.05-2	11903009-003			14-04-00-00	2.5 / 5
020									62.30 mg	33.50				Nega	13,50	95.075		2		2		2000	2,3 43.3		4.7	1.241		2,750	to the sale	1000				2.5/5
G1U G1U G1H G4S G5U	1 lite 1 lite 1 lite 125 100 500	er am er cle er am mL a mL a mL a	ber g ar gla ber g mber mber mber	lass ss lass H glass glass	ICL H2Se unpr	O4 es O4	BI BI BI BI		1 lite 250 250 250 250	er plas mL pl mL pl mL pl mL pl	astic un astic astic astic astic	pres unpre NaOH HNO3 H2SC	s H B	Phenol	ics, O	VC VC	39C 39T 39U 39H 39M	40 m 40 m 40 m 40 m	nL cle nL am nL cle nL cle nL cle nL cle	ber N ar vial ar vial ar vial	corbic a Thio I unpro I HCL I MeO	w/ H() es		JC JC WC WI	ials (>6 3FU 39U GFU PFU P5T	4 oz 9 oz 4 oz 4 oz 120	ambe ambe clear plasti	erjar (erjar (jar ur cjar (astic	unpres	S S		s look	in hea	ndspace colu
G3U	250	mL c	lear g	lass (inpres	3			•															1	N 1 N 2								Pa	age <u>1</u> of

DC#_Title: ENV-FRM-GBAY-0035 v03_Sample Preservation Receipt Form

Effective Date: 8/16/2022

DC#_Title: ENV-FRM-GBAY-0014 v03_SCUR

Effective Date: 8/17/2022

Sample Condition Upon Receipt Form (SCUR)

	Project #:
Client Name: AECOM	WO#: 40250229
Courier: ☐ CS Logistics ☐ Fed Ex ☐ Speedee ☐ UPS ☐ V	
Client Pace Other:	
Tracking #:	40250229
Custody Seal on Cooler/Box Present:yes no Seals intac	
	t: yeş_no
Packing Material: Bubble Wrap Bubble Bags Nor	
Thermometer Used SR - 120 Type of Ice: West Cooler Temperature Uncorr: () ()	Blue Dry None Meltwater Only Person examining contents:
	Tissue is Frozen: yes no Date 23/2 /Initials: mt
Temp should be above freezing to 6°C.	Date: 12 100 //miliais: // W
Biota Samples may be received at ≤ 0°C if shipped on Dry Ice.	Labeled By Initials:
Chain of Custody Present:	1.
Chain of Custody Filled Out: ☐Yes ☐No ☐N/F	2.
Chain of Custody Relinquished: ☐Yes ☐No ☐N/F	3.
Sampler Name & Signature on COC: description descript	4.
Samples Arrived within Hold Time: ✓☐Yes ☐No	5.
- DI VOA Samples frozen upon receipt ☐Yes ☐No	Date/Time:
Short Hold Time Analysis (<72hr): □Yes ♣ No	6.
Rush Turn Around Time Requested: □Yes ☑No	7.
Sufficient Volume:	8.
For Analysis: ☑Yes ☐No MS/MSD: ☐Yes ☐No ☑N/	
Correct Containers Used: ☐Yes ☐No	9.
Correct Type: Race Green Bay, Pace IR, Non-Pace	
Containers Intact: —☐Yes □No	10.
Filtered volume received for Dissolved tests	11.
Sample Labels match COC:	12.
-Includes date/time/ID/Analysis Matrix:	
Trip Blank Present:	13.
Trip Blank Custody Seals Present □Yes □No ゼッ/۶	
Pace Trip Blank Lot # (if purchased):	
Client Notification/ Resolution:	If checked, see attached form for additional comments
Person Contacted: Date Comments/ Resolution:	/Time:
PM Review is documented electronically in LIMs. By releasing the	e project, the PM acknowledges they have reviewed the sample logic
	Page 2 of 2
•	3 3