Prepared for:

Trace-Mitchell Real Estate, LLC

Prepared by:

Ramboll US Consulting, Inc. Milwaukee, Wisconsin

Date:

October 15, 2021

Ramboll Project: 1690020998

NR 716 SITE INVESTIGATION

RETAIL STORE
1305 NORTH JOHNS STREET
DODGEVILLE, WISCONSIN

BRRTS NO. 02-25-587099

CONTENTS

CERTII	FICATIONiii
EXECU	TIVE SUMMARYiv
1.	INTRODUCTION1
1.1	Site Location
1.2	Involved Parties
1.3	Site Background
1.4	Purpose and Scope of Site Investigation
2.	GEOLOGY AND RECEPTORS6
2.1	Geology/Soils6
2.2	Potential Migration Pathways and Receptors
3.	SITE INVESTIGATION ACTIVITIES8
3.1	Health and Safety8
3.2	Sub-Slab Soil Vapor Probe Installation and Sampling8
3.3	Soil Boring Advancement, Screening, and Sample Analysis
3.4	Investigative Waste Management9
4.	SITE INVESTIGATION RESULTS10
4.1	Field Observations10
4.2	Laboratory Analytical Results10
4.3	Discussion of Results
5.	CONCLUSIONS AND RECOMMENDATIONS
6.	REFERENCES14

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA T +1 414 837 3607

T +1 414 837 3607 F +1 414 837 3608

www.ramboll.com

TABLES

Table 1: Soil Analytical Results

Table 2: Sub-Slab Vapor Analytical Results

FIGURES

Figure 1: Site Location Map
Figure 2: Site Layout Map

Figure 3: Geologic Cross-Section A-A' (Northwest-Northeast)

Figure 4: Soil Analytical Results

Figure 5: Sub-Slab Vapor Analytical Results

APPENDICES

Appendix A: WDNR BRRTS Documentation

Appendix B: WDNR Endangered Resources Preliminary Assessment

Appendix C: Potable Well Survey

Appendix D: Boring Logs, and Abandonment Forms

Appendix E: Soil and Vapor Laboratory Analytical Reports

CERTIFICATION

I, Jeanne Tarvin, hereby certify that I am a hydrogeologist as that term is defined in NR 712.03(1), Wis. Adm. Code, and am registered under the requirements of ch. GHSS 2, Wis. Adm. Code, or licensed under the requirements of ch. GHSS 3, Wis. Adm. Code, and that to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to NR 726, Wis. Adm. Code.

Jeanne M. Tarvin, PG, CPG

License No. G-307-13

October 15, 2021

Date

EXECUTIVE SUMMARY

Ramboll US Consulting, Inc. (Ramboll) was retained by Trace-Mitchell Real Estate, LLC to prepare this Wisconsin Administrative Code (WAC) NR 716 Site Investigation Report for the Trace-Mitchell Real Estate, LLC property located at 1305 North Johns Street, Dodgeville, Iowa County, Wisconsin (the "Site"). The site location is presented in **Figure 1**. The site layout depicting the site features is presented in **Figure 2**. This Report provides information required under WAC NR 716.

In June 2020, AEI Consultants, Inc. prepared a Phase I Environmental Site Assessment (ESA) for a potential property transaction. The ESA concluded that there was a Recognized Environmental Condition (the Site was used for dry cleaning). The prior owner stated that the dry cleaning operations used solvent-based chemicals in a closed-system machine. In July 2020, Ramboll advanced three shallow hand auger soil borings and installed six sub-slab Vapor Pins® to evaluate potential vapor intrusion beneath the building. Three volatile organic compounds (VOCs), including, tetrachloroethene (PCE), ethylbenzene, and dichlorodifluoromethane (DCDFM).¹, were detected above residential sub-slab vapor risk screening levels (VRSLs) but below small commercial VRSLs at four of the six sub-slab soil vapor sampling points. On August 28, 2020, Ramboll submitted a Notification for Hazardous Substance Discharge to the Wisconsin Department of Natural Resources (WDNR), based on the results of the sub-slab residential VRSL exceedances. The WDNR issued a Responsible Party Letter to Trace-Mitchell Real Estate, LLC on October 5, 2020, assigning Bureau for Remediation and Redevelopment Tracking System (BRRTS) Case Number 02-25-587099 to the Site.

Site investigation activities were completed at the Site between July 2020 and March 2021. Based on the site investigation activities conducted to date, Ramboll concludes the following:

- Based on six soil borings advanced at the Site, the site geology consists of fill from 2 to 8 feet below ground surface (bgs) underlain by native soils comprised primarily of silty clay to the top of bedrock. Limestone bedrock is encountered at 5 to 18 feet bgs. No odors or indications of contamination (photoionization detector readings, visual staining, etc.) were encountered during the advancement in any of the borings.
- 2. Based on a review of regional groundwater data available, groundwater in the area of the Site is documented in bedrock at 51 feet bgs with groundwater flow to the southeast and deeper groundwater flowing to the southwest. The Site is located within an area-wide chlorinated VOC (cVOC) groundwater plume.
- 3. Six soil borings were advanced at the Site to evaluate the soil for potential cVOC impacts. Boring and soil sampling were biased towards areas in and around the building where historical dry cleaning operations occurred (the dry cleaning machine was formerly located in the northeast portion of the building in the area of a floor drain). Borings were advanced at the floor drain, outside the back door (adjacent to the former dry cleaner operations), near the shed (potential dry cleaner chemical storage area), and adjacent to utility lines (underground gas, sewer, and water) to identify potential preferential pathways for vapor intrusion. Soil samples for VOC analysis were collected from depths ranging from 0.5 to 18 feet bgs. There were no VOC detections above the laboratory method detection limits (MDLs) in any of the borings except for the soil sample collected from near the drain in the northeast corner of the building (boring

¹ DCDFM was detected at concentrations above the commercial VSRLs; however, it was determined to be related to a building material artifact (observed foam insulation installed below the concrete floor slab) and not to a release or discharge of a hazardous chemical to the environment.

- SB-1). The soil sample collected from boring SB-1 documented concentrations of ethylbenzene, dichlorodifluoromethane (DCDFM), and styrene; however, at concentrations below the applicable WAC NR 720 Residual Contaminant Levels (RCLs). There were no documented cVOC analytes detected in soils at the Site.
- 4. Ramboll performed two rounds of sub-slab vapor testing at the Site, one in July 2020 (during the cooling season) and one in March 2021 (during the heating season). The July 2020 sub-slab soil vapor sampling documented PCE and ethylbenzene concentrations above the residential VRSLs in two locations in the northeast portion of the building (SS-1 and SS-2) but well below the small commercial VRSLs across the building footprint. The March 2021 sub-slab soil vapor sampling event documented PCE and ethylbenzene sub-slab soil vapor concentrations well below the residential VRSLs across the building footprint. Based on sub-slab vapor testing during both a cooling and heating season, the sub-slab soil vapor concentrations are below the applicable small commercial VRSLs. Therefore, vapor intrusion at the Site is not a threat to building occupants based on the commercial Site use, and no vapor mitigation or further testing is necessary. Given the low detections of cVOC soil vapor concentrations below the building and the absence of high cVOC soil concentrations in soil samples along the utility corridors, soil vapor migration along the utility lines is not a pathway concern.
- The Site is located within a documented area-wide cVOC groundwater plume area. The source of the cVOC groundwater plume is the adjacent east and northeast property (located at 305 County Highway YZ, Dodgeville, Wisconsin), which is currently the location of the Humane Society. This adjacent site is listed as closed WDNR BRRTS Case Number 02-25-001456 (Advanced Photonix Inc./Silicon Sensors). Based on prior site investigations of BRRTS Case Number 02-25-001456, multiple sources of contamination in the site area have been identified but did not include the subject site. A groundwater plume containing 1,1-DCE, 1,2-dichloroethane, PCE, and TCE is present in the vicinity of Dave Baker Chevrolet and monitoring well W-8, located adjacent to the Site. A second plume consisting primarily of carbon tetrachloride appears to be centered around monitoring well W-3 and extends northward beyond W-1 and southward beyond the Township Garage. A third plume consisting primarily of TCE exists around the Township Garage, the Site, and Skip's and appears to extend northward to DMW No 7. Silicon Sensors was identified as the source of cVOC contamination around W-8 and the Dave Baker well. The second plume was associated with the Joe King Landfill near W-3, which was the center of a carbon tetrachloride plume. The W-3 well is located approximately 880 feet northwest of the Site. No carbon tetrachloride was detected in either well near the Site.

In summary, the additional site investigation activities have not documented a release of VOCs on site. PCE nor its degradation products have not been detected in soil on-Site indicating no releases related to prior dry cleaning operations. Although ethylbenzene, styrene, and DCDFM were detected at the one boring (SB-1) located interior to the building near a floor drain, the concentrations detected in SB-1 are significantly below WAC NR 720 RCLs. Because no releases have been documented requiring further investigation, no further investigation or remediation is required.

The Site is located within a documented area-wide cVOC groundwater plume, which is resulting in low-level PCE sub-slab vapor concentrations to be detected. Based on the latest round of sub-slab vapor testing in March 2021, PCE and ethylbenzene were not detected above residential VRSLs. A prior sub-slab sampling event in July 2020 detected PCE slightly above the residential VSRLs in two locations (SS-1 and SS-2) in the northeast portion of the building, but significantly below the small commercial VRSLs. The sub-slab vapor testing has documented no vapor intrusion risk to building occupants as

long as the Site use remains commercial or industrial. Therefore, vapor mitigation is not required. Based on the additional site investigation data collected, the low-level cVOC impacts in sub-slab vapor are likely related to the area-wide cVOC groundwater plume; therefore, Ramboll recommends no further action for the Site. Ramboll is submitting a site investigation report review fee to WDNR along with this report for concurrence with this conclusion. Following WDNR's concurrence that no further investigation or remedial action is necessary, Ramboll will prepare and submit a WAC NR 726 case closure package under separate cover. The closure package will include adding the Site to the WDNR database with a continuing obligation stating that the Site remain for commercial/industrial use due to the July 2020 soil vapor results (unless additional testing and/or mitigation is completed).

1. INTRODUCTION

Ramboll US Consulting, Inc. (Ramboll) was retained by Trace-Mitchell Real Estate, LLC to prepare this Wisconsin Administrative Code (WAC) NR 716 Site Investigation Report (SIR) for the Trace-Mitchell Real Estate, LLC property located at 1305 North Johns Street, Dodgeville, Iowa County, Wisconsin ("Site"). The site location is presented in **Figure 1**. The site layout depicting the site features is presented in **Figure 2**. This Report provides information required under WAC NR 716.

1.1 Site Location

The Site is located in the southeast ¼ of the southwest ¼ of Section 22, Township 06N, Range 03E of the Public Land Survey System. The Site is bounded by a commercial property (north); the Humane Society (former Silicone Sensors) to the east; Brown Street (south); and North Johns Street (west). The Parcel ID number and legal description obtained from the Iowa County Land Records Web Portal is as follows:

Parcel 216-1313 (with NAPA store)

Wisconsin Transverse Mercator coordinates - X: 509679; Y: 278215

Legal Description

LOT 16 BLOCK 2 BROWN'S SUBDIVISION EXC THAT PT OF SAID LOT 16 DESC AS BEG AT THE SW CORNER OF SAID LOT 16, TH N 28 DEG 57'08"W ALONG THE EASTERLY R.O.W. OF JOHNS ST, 32.25', TH S 68 DEG 33'20"E, 41.85', TH S 61 DEG 02'52"W ALONG THE SOUTHERLY R.O.W. LINE OF BROWN ST 26.68' TO THE POB

Parcel 216-1312 (vacant lot)

Wisconsin Transverse Mercator coordinates - X: 509707; Y: 278235

Legal Description

LOT 16 BLOCK 2 BROWN'S SUBDIVISION

1.2 Involved Parties

Responsible Party/Site Owner/Operator: Marla Mitchell

Trace-Mitchell Real Estate, LLC

3903 Berg Road Dodgeville, WI 53533

Site Contact: Marla Mitchell, 608.574.5382,

mommamitchell@charter.net

Environmental Consultant: Ramboll US Consulting, Inc.

234 West Florida Street, Fifth Floor

Milwaukee, WI 53204

Contact: Richard Mazurkiewicz, 262.901.3502,

rmazurkiewicz@ramboll.com

Agency: Wisconsin Department of Natural Resources

3911 Fish Hatchery Road Fitchburg, WI 53711

Contact: Caroline Rice, 608-219-2182,

caroline.rice@wisconsin.gov

1.3 Site Background

The Site is comprised of two parcels (216-1313 [0.37 acre] and 216-1312 [0.40 acre]) located on the northeast corner of North Johns Street and Brown Street. The two parcels total 0.77 acre of land. The current single-story building (on parcel 216-1313) was constructed in 1982. There is one, one-story, building on the Site with a storage shed located at the northeast corner. The on-site building is approximately 5,000 square feet and built as a slab-on-grade foundation. Historically, the building housed dry-cleaning operations from approximately 1982 to 2003. Reportedly, the one dry-cleaning machine was a self-contained/closed-loop system. The building is currently occupied by NAPA Auto Parts, which is a retail store for automotive supplies (parts, tools, paint, etc.). The eastern portion of the Site is a vacant parcel that is entirely landscaped with grass and only contains a portion of the storage shed from the NAPA store operations (see **Figure 2**). According to the Phase I Environmental Site Assessment (ESA), cited below, the eastern parcel has always been vacant land.

In June 2020, AEI Consultants, Inc. prepared a Phase I ESA (the "2020 Phase I ESA report") for a potential sales transaction. The 2020 Phase I ESA report concluded that the Site had the following Recognized Environmental Condition (REC):

• Former Dry-Cleaner: Based on a review of historical records, a dry-cleaning facility was located on the Site from approximately 1982 to 2003. Dry-cleaning operations typically use chlorinated solvents, particularly tetrachloroethene (PCE), during the dry-cleaning process. These solvents, even when properly stored and handled, can readily migrate into the subsurface due to small releases associated with on-site operations. Chlorinated solvents are highly mobile chemicals that can easily accumulate in soil and soil gas and migrate to groundwater beneath a facility. However, according to the prior owner, Mr. Charlie King, the dry-cleaning operations used solvent-based chemicals in a closed-loop system machine. No known subsurface investigation has been performed on the Site. Based on this information, the former presence of a dry-cleaning operation on the Site represents evidence of a REC.

The June 2020 Phase I ESA report also identified the presence of an area-wide chlorinated volatile organic compound (cVOC) groundwater plume in the area. The source of the cVOC groundwater plume is the adjacent east and northeast property (located at 305 County Highway YZ, Dodgeville, Wisconsin), which is currently the location of the Humane Society. This adjacent site is listed as closed Wisconsin Department of Natural Resources (WDNR) Bureau of Remediation and Redevelopment Tracking System (BRRTS) Case Number 02-25-001456 (Advanced Photonix Inc./ Silicon Sensors). A copy of the 2020 Phase I ESA report was provided as Attachment B in Ramboll's November 13, 2020, No Action Required (NAR) request. The following paragraphs summarize Ramboll's review of BRRTS Case Number 02-25-001456 based on available online documentation.

The Silicon Sensors site had a release of trichloroethene (TCE), and other chlorinated compounds, in the late 1980s due to TCE being applied as weed control on the property. According to a 1992 *Phase I Dodgeville VOC Contamination Investigation* report prepared by STS Consultants Ltd (STS), multiple wells were sampled in the area in conjunction with the documented release including Dodgeville municipal well No 7 (DMW-7), private wells in the area, and 11 monitoring wells installed during a previous investigation in 1988-1989. Groundwater samples were analyzed for volatile organic compounds (VOCs). The monitoring wells closest to the Site, W-8 and Dave Baker Chevy and Buick private well, were located on the east and north adjoining properties, respectively. In June 1991, groundwater monitoring well W-8 had groundwater detections of 1,1-dichloroethene (1,1-DCE) at

110 micrograms per liter (μ g/L), 1,2-dichloroethane at 5.3 μ g/L, PCE at 148 μ g/L², and TCE at 2,900 μ g/L (**Appendix A**, Pg. 1). The latest sampling according to the 1992 STS report was conducted on November 20, 1991, at the Dave Baker well, and PCE was detected at 48³ μ g/L, 1,1,1-trichloroethane at 4.1 μ g/L and TCE at 200 μ g/L (**Appendix A**, Pg. 2).

The 1992 STS report identified multiple sources of contamination in the site area but did not identify the subject site as one of them. A groundwater plume containing 1,1-DCE, 1,2-dichloroethane, PCE, and TCE is present in the vicinity of Dave Baker Chevrolet and monitoring well W-8. A second plume consisting primarily of carbon tetrachloride appears to be centered around monitoring well W-3 and extends northward beyond W-1 and southward beyond the Township Garage. A third plume consisting primarily of TCE exists around the Township Garage, the Site, and Skip's and appears to extend northward to DMW No 7. Silicon Sensors was identified as the source of cVOC contamination around W-8 and the Dave Baker well (**Appendix A**, Pg. 3). The second plume was associated with the Joe King Landfill near W-3, which was the center of a carbon tetrachloride plume. The W-3 well is located approximately 880 feet northwest of the Site. No carbon tetrachloride was detected in either well near the Site.

STS identified an area-wide cVOC groundwater plume and recommended installing additional monitoring wells to determine the vertical and horizontal extent of the contamination. The groundwater table was documented to be present in bedrock at 51 feet below ground surface (bgs) with groundwater flow to the southeast (**Appendix A**, Pg. 4) and deeper groundwater flowing to the southwest (**Appendix A**, Pg. 5). In addition, fractured bedrock beneath the area trends northwest to southeast and northeast to southwest (**Appendix A**, Pg. 6), thus likely affecting groundwater flow beneath the Site. Groundwater flow can also be influenced by local topography, which is to the southwest of the Site (**Appendix A**, Pg. 7).

According to a subsequent 1993 *Dodgeville VOC Contamination Investigation Report* prepared by STS, additional investigative work focused on areas near Silicon Sensors, Municipal Well No. 7, and the Joe King Landfill. In June 1993, all groundwater monitoring wells, private wells, and DMW-7 were sampled. In June 1993, 1,1-DCE at $12 \mu g/L$, PCE at $130 \mu g/L^4$, and TCE at $13,000 \mu g/L$ were detected in W-8. At the Dave Baker well, PCE was detected at $83 \mu g/L^5$, 1,1,1-trichloroethane at 23 $\mu g/L$, and TCE at $510 \mu g/L$. Based on data from 1991 and 1993, STS identified a shallow TCE plume located in the area of W-8 and the Dave Baker well. The vertical and horizontal extent of these shallow TCE groundwater plumes were not defined in this investigation. The WAC NR 140 TCE Enforcement Standard (ES) was exceeded in samples collected from the Dave Baker and W-8 wells. PCE was detected in both the Dave Baker well and monitoring well W-8 in both 1991 and 1993. A summary of the private well data is provided in (**Appendix A**, Pg. 8).

Historically, TCE concentrations decreased in W-8 from 1989 to 1993 and increased in the Dave Baker Chevrolet well from 1991 to 1993. STS concluded in the 1993 report that the plume may be extending vertically and/or horizontally away from the Silicon Sensors source area. The fact that the Dave Baker Chevrolet potable well is impacted by PCE empirically documents groundwater

² A concentration of PCE at 148 μg/L is equivalent to 148,000 micrograms per cubic meter (μg/m³) (**Appendix B**).

³ A concentration of PCE at 48 μ g/L is equivalent to 48,000 μ g/m³ (**Appendix B**).

⁴ A concentration of PCE at 130 μ g/L is equivalent to 130,000 μ g/m³ (**Appendix B**).

⁵ A concentration of PCE at 83 μ g/L is equivalent to 83,000 μ g/m³ (**Appendix B**).

contamination at depth and is supported by area-wide data that documents negative vertical gradients (a downward groundwater flow; [Appendix A, Pg. 9]). STS recommended that the potential source of contaminants in the unsaturated zone at Silicon Sensors be delineated and remediated. Silicon Sensors appears to be the source of contamination documented in monitoring well MW-8 and the cross-gradient private Dave Baker Chevrolet potable well (Appendix A, Pg.10). No further documentation related to investigation work is in the BRRTS file.

On October 25, 2006, the Silicon Sensors site received a closure letter from the WDNR. The letter stipulates that an asphalt cap should be maintained over the impacted area and the soils must not be disturbed.

Vapor sampling was conducted in March 2019 at the Iowa County Humane Society/Former Silicon Sensors (305 County Road YZ). Five vapor samples were collected; two soil gas samples and three sub-slab samples. The samples were analyzed for VOCs. Although no compounds were detected at concentrations exceeding the commercial Vapor Risk Screening Levels (VRSLs) for the samples media/location, PCE was detected in both of the soil gas samples and two of the sub-slab vapor samples. Three compounds were present above the indoor air vapor action level standard. These included TCE and acrolein in soil gas at SG-1 and chloroform in sub-slab vapors at SS-3.

Based on Ramboll's review of the above information, the extent of groundwater contamination was not defined and well W-8, which is located 200 feet east of the Site. Potable well W-8 had elevated cVOCs including PCE and TCE in 1993 (the last sampling round based on the BRRTS document review). Therefore, Ramboll concluded that the area-wide cVOC groundwater impacts are a potential source of vapor risk to the Site. Because of the area-wide plume and the former use of the Site as a dry cleaner identified in the 2020 Phase I ESA, Ramboll recommended a Phase II ESA be conducted consisting of sub-slab vapor testing and limited soil investigation on the Site.

On July 7, 2020, Ramboll (on behalf of Motor Parts & Equipment Corporation) completed a limited Phase II ESA, based on a review of the historical site investigation activities and focusing on the historical use of the Site as a dry-cleaner. Ramboll advanced three shallow soil borings in the northeast portion of the building, where historical dry-cleaning operations occurred. Shallow soils consisted of brown sand and gravel fill down to 1 to 2.5 feet bgs were encountered underlain by silty clay. There were minimal photoionization detector (PID) measurements (0 to 3.1 instrument units [IU]⁶) in soil samples collected from all three borings (the highest were observed in soil samples collected from boring SB-1, located near the drain inside the building). There were only three VOC analytes detected in soil including dichlorodifluoromethane (DCDFM). ethylbenzene, and styrene; however, none of the VOCs were detected at concentrations above the WAC NR 720 Residual Contaminant Levels (RCLs). The detected analytes were only present in the soil sample collected from boring SB-1 (located near the drain inside the building). These analytes appear to be related to current site use activities and building materials and are not indicative of historical dry-cleaning operations. VOCs were not detected in samples collected from borings SB-2 (located outside the

⁶ I.U. are equivalent to parts per million (ppm), based on instrument calibration (100 ppm isobutylene in air standard) and lamp power (10.6 electron volts).

⁷ Determined to be related to a building material artifact (Ramboll observed foam insulation installed below the concrete floor slab) and not to a release or discharge of a hazardous chemical to the environment.

garage door at the northeast corner of the building) and SB-3 (located outside the shed door near the northeast corner of the building).

Additionally, on July 7, 2020, Ramboll installed and sampled six temporary sub-slab Vapor Pins® in locations to represent the entire slab-on-grade building floor (with extra Vapor Pins® located at the former dry-cleaning area and the northeast corner of the building). Three VOC analytes (PCE, ethylbenzene, and DCDFM) were detected above residential sub-slab vapor risk screening levels (VRSLs) at all six sub-slab sampling locations. The concentrations of PCE and ethylbenzene were detected below the applicable small commercial building VRSLs over the majority of the building footprint, except for PCE at two locations (SS-1 and SS-2) that were located in the northeast portion of the building. PCE was detected slightly above the residential VRSL of 1,400 μ g/m³ at SS-1 (1,910 μ g/m³) and SS-2 (1,410 μ g/m³), but well below the small commercial VRSL of 6,000 μ g/m³ at these two locations. Only DCDFM was detected at concentrations above the small commercial VRSL (in all six sub-slab vapor samples). However, the DCDFM found in the sub-slab soil vapor samples is related to insulating foam building materials used in construction (foamboard was observed beneath the concrete slab in boring SB-1), and not to a release or discharge of a hazardous chemical to the environment.

On August 28, 2020, Ramboll submitted a Notification for Hazardous Substance Discharge to the WDNR for the Site, based on the results of the sub-slab residential VRSL exceedances. Subsequently, the WDNR issued a Responsible Party Letter to Trace-Mitchell Real Estate, LLC on October 5, 2020, assigning BRRTS Case Number 02-25-587099 to the Site.

Ramboll submitted a NAR request to the WDNR on November 13, 2020. In a letter dated January 28, 2021, the WDNR denied Ramboll's NAR request stating that additional site investigation is required to assess the origin of the PCE vapors beneath the building at the Site. Ramboll was retained by Trace-Mitchell Real Estate, LLC to conduct further site investigative activities as discussed below.

1.4 Purpose and Scope of Site Investigation

The purpose of this report is to present a summary of the WAC NR 716 site investigation activities and assist in defining the nature, degree, and extent of contamination; define the source or sources of contamination; determine the need for an interim and/or remedial action, and provide the information needed to select an interim and/or remedial action.

2. GEOLOGY AND RECEPTORS

An evaluation of the physical setting of the Site was completed to assess the potential for migration of hazardous substances and/or VOCs onto the Site from one or more off-site source(s) and to assess the potential for releases on the Site to impact groundwater, soil, and soil gas.

2.1 Geology/Soils

Based on the topographic map (**Figure 1**), the surface elevation of the Site is approximately 1,240 feet above Mean Sea Level. The Site appears relatively level.

The Site lies in the unglaciated part of southwestern Wisconsin. According to the United States Department of Agriculture Web Soil Survey, the surficial geology in the vicinity of the Site consists of two units of the loess deposited Dodgeville silt loams. The Dodgeville silt loams consist of moderately eroded silt and silty clay loams at 0 to 2 percent slopes and 2 to 6 percent slopes. The silt loam overlies the Galena and Platteville dolomite bedrock formations. The depth of the bedrock in the area likely varies. A well log (8EP556), which is located approximately 600 feet north of the Site, was obtained from the WDNR Well Construction reports website and indicates the depth to bedrock was at 3 feet bgs (the log indicated clay from 0 to 3 feet bgs, Galena Dolomite 3 to 140 feet bgs, and Trenton Limestone 140 to 142 feet bgs.) Bedrock at the Site slopes to the southwest, based on Ramboll's site investigation activities.

No potable or site investigation wells are currently present on the Site. However, according to the 1993 Dodgeville VOC Contamination Investigation Report prepared by STS, the water table is estimated to be about 51 feet bgs in the vicinity of the Site. The water table gradient (direction of groundwater flow) was estimated to be generally to the east-southeast. However, the flow likely varies and can follow the land surface topography in the area, which is to the southwest⁸ (Appendix A, Ramboll Pg. 1) and can follow the dolomite bedrock fracture directions that are present trending in a northwest-southeast and northeast-southwest⁸ (Appendix A, Ramboll Pg. 5). In addition, historical site investigation reports of properties surrounding the site document Silicone Sensors as the source of cVOC contamination in the former Dave Baker Chevrolet potable well on the property located immediately to the north of the Site, presuming a southwest⁸ groundwater flow gradient. The depth and gradient of the water table likely also vary seasonally with changes in precipitation and response to development in the area, including impervious surfaces, storm water controls, and pumping wells (domestic, industrial, or irrigation). No surface water bodies are on the Site.

2.2 Potential Migration Pathways and Receptors

Surface Water Bodies and Sensitive Environments and Receptors

No lakes or ponds exist on the Site. The Dodge Branch of the Pecatonica River is located approximately 3,430 feet southeast of the Site's southern property boundary. The second nearest water body is Cox Hollow Lake, which is located approximately 2.25 miles to the northeast of the Site. There are no known sensitive species, habitats, or ecosystems in the vicinity of the Site.

The WDNR endangered species Natural Heritage Inventory Township Tool lists 5 birds, one butterfly, one dragonfly, one fish, two frogsseven plants, and two communities, and one turtle as either

⁸ From the former Silicone Sensors property to the Site.

endangered, threatened or a species of concern for Township 06N, Range 03E (WDNR, 10/14/2021). The entire western portion of the Site is developed, and given that there are limited residual VOC impacts in soil on the developed portion of the Site, these impacts are not expected to adversely affect endangered or threatened species at the Site. Concerning the vacant parcel portion of the Site to the east of the NAPA building, the limited residual VOC impacts in soil on the developed portion of the Site also are not expected to adversely affect endangered or threatened species at the Site. The WDNR Endangered Resources Preliminary Assessment report and Township and Range Endangered Species Table is provided in **Appendix B**.

Potable Well Survey

Ramboll performed a potable well survey for wells within 1,200 feet of the Site (WDNR, July 23, 2021). There is one record for a well within 1,200 feet of the Site. The location of this well is illustrated in Figure 1E presented in **Appendix C**. The well is located up-gradient of the Site. The well construction record is also included in **Appendix C**. The Site, and surrounding properties within 1,200 feet of the Site, are in an area serviced by the City of Dodgeville water supply. The City of Dodgeville obtains its potable water from the City of Dodgeville Water Department which obtains its water from five wells that average a depth of about 800 feet bgs.

Ramboll also reviewed the online Wisconsin Water Quantity Viewer for high-capacity wells. There were two entries located within 2 square miles around the Site (the viewer limits the location information of high-capacity well locations for homeland security purposes). The general locations of the high capacity withdrawal locations are shown on maps along with a list providing the withdrawal operators in **Appendix D**. The Site is not a threat to potable wells because the Site (and surrounding area) is provided potable water by the City of Dodgeville through an existing Boundary Agreement, the majority of the town is served by private systems.

Utilities

Underground electrical, communications, and gas services come onto the property from the north. Water, sanitary, and stormwater services come onto the property from the south. All of these utilities are situated within silty clay or fill that is present locally on the Site. These utilities are not conduits of contamination as further discussed in Section 4.3.1.

3. SITE INVESTIGATION ACTIVITIES

Based on additional information required by the WDNR (Project Manager, Caroline Rice in January 2021), and items discussed in the January 2021 WDNR NAR response letter, the objectives of this site investigation were to: 1) verify that soil vapor concentrations of PCE and ethylbenzene are below the small commercial building sub-slab VRSLs during the heating season (in comparison to Ramboll's July 2020 sub-slab soil vapor sampling); 2) evaluate the potential for deeper cVOC impacts in soil; 3) evaluate the primary soil type at the Site; 4) research the depth to groundwater and the local groundwater flow directions at nearby sites to determine if the Site lies within an area-wide cVOC groundwater plume; and 5) evaluate potential preferential pathways for vapor intrusion along utility lines.

3.1 Health and Safety

Before the implementation of field activities, Ramboll prepared a site-specific Health and Safety Plan (HASP) to address health and safety issues related to the proposed field activities. Ramboll reviewed the HASP with all field personnel before commencing the field activities. Ramboll also prepared and followed a COVID-19 safety plan that complied with state and Center for Disease Control protocols.

3.2 Sub-Slab Soil Vapor Probe Installation and Sampling

Ramboll performed a second round of sub-slab soil vapor sampling to confirm the results documented in July 2020 (i.e., to verify the concentrations of PCE and ethylbenzene are below the applicable small commercial building sub-slab VRSLs, as documented in July 2020). The second round of soil vapor sampling was completed on March 12, 2021, to monitor potential seasonal variability and to confirm that the detected July 2020 PCE sub-slab vapor concentrations continue to be below the applicable small commercial VRSLs. Ramboll installed six sub-slab Vapor Pins^{®,9} (SS-1 through SS-6) at the same locations as the July 2020 sub-slab soil vapor sampling event at the Site. The locations of the sub-slab vapor sampling points covered the entire building (with four probes) and also focused two probes near the former dry-cleaning machine that was formerly located near the northeast portion of the building. The locations of the sub-slab vapor sample locations are depicted in **Figure 2**.

Ramboll performed and documented shut-in (line leak) testing using a hand-operated vacuum pump to hold a vacuum of approximately 30 inches of mercury for 1 minute. Ramboll verified the Vapor Pin® seal using the water dam method (i.e., sealing a piece of polyvinyl chloride tube with plumbers' putty to create a mote around the Vapor Pin®). If the water level stays static during the sub-slab soil vapor sampling, the Vapor Pin® is considered sealed. All sub-slab vapor samples were analyzed for VOCs via United States Environmental Protection Agency (USEPA) Method TO-15. The Vapor Pins® were not abandoned.

3.3 Soil Boring Advancement, Screening, and Sample Analysis

Ramboll advanced three soil borings (SB-4, SB-5, and SB-6) to 20 feet bgs, or to bedrock (whichever was encountered first). The locations of the soil borings are depicted in **Figure 2**. Before mobilization for drilling activities, Diggers Hotline was contacted to mark out public utility locations on the Site. Likewise, Ramboll contracted Subsurface Radar Solutions, Inc., a private utility locator, to locate and

⁹ Vapor Pin® is a registered trademark used by Cox-Colvin & Associates located in Plain City, Ohio.

clear any on-site subsurface private utilities, structures, or obstructions within the immediate vicinity of the proposed boring locations.

All three borings were advanced to evaluate potential deeper cVOC impacts in soil and to evaluate the soil type at the Site. Borings SB-5 and SB-6 were advanced along the utility lines leading to the on-site building to evaluate potential preferential pathways for vapors (primarily PCE and ethylbenzene) to enter the building. The soil borings were advanced using a direct push drill rig to collect soil samples. Soils were continuously collected from polyvinyl chloride sleeves inside the direct-push (5 feet long, 2-inch diameter stainless steel) samplers. Soil characteristics were recorded in the field and screened for total VOCs using a PID equipped with a 10.6 electron volt lamp. The PID was calibrated and zeroed in the field according to the manufacturer's instructions, using 100 ppm isobutylene span gas and air (zero gas), and checked between each screening event for proper response. The PID readings and any organoleptic evidence of contamination were recorded on boring logs **Appendix D**. Up to two vadose zone soil samples were collected from each boring, one from the depth interval showing the greatest evidence of impacts/highest PID reading (if present) and one from the soil boring termination depth. Where no evidence of impacts was found, soil samples were collected from the depth of the utilities and one from the soil boring termination depth. All soil samples were analyzed for VOCs via USEPA Method 8260B.

3.4 Investigative Waste Management

Following soil sample collection activities, all soil borings were abandoned with the soil cuttings from each boring. The cuttings were compacted using drilling rods and any excess space in the borings was filled with 3/8-inch chipped bentonite swelling clay. Each boring was completed with a surface patch matching the surrounding material (grass). Boring abandonment forms are provided in **Appendix D**.

4. SITE INVESTIGATION RESULTS

4.1 Field Observations

4.1.1 Soil

The soil observed during the field investigations consists of fill soils (loose silty sand, silty clay, and clayey silt with variable amounts of sand, gravel, and organic material) from 2 to 8 feet bgs. Native soils consist primarily of silty clay with traces of sand to 18 feet bgs (SB-4). Limestone bedrock was encountered at 5 feet bgs in boring SB-6, 13 feet bgs in boring SB-5, and at 18 feet bgs in boring SB-4 (bedrock at the Site slopes to the southwest). No odors or other indications of contamination were encountered during the advancement of the three borings. Minimal PID measurements were measured that ranged from 0.0 to 0.3 I.U., with the highest PID reading at 2 to 3 feet bgs in boring SB-4. Low permeability silty clays would tend to impede or lessen the effects of vapor intrusion into the building at the Site. No groundwater was observed in any of the borings. A geological cross-section illustrating the subsurface features at the Site is provided in **Figure 3**.

4.1.2 Sub-Slab Soil Vapor

Pre-sub-slab vapor sampling PID screening measurements ranged from 0.5 to 2.2 I.U., with the highest PID reading identified at SS-1 (located near the northeast corner of the building). There were no obvious odors detected while completing the soil vapor testing. Vapor probe ambient flow was measured with a micromanometer in the field before sampling, measurements ranged from 0.000 to 0.010-inch of water, with the highest reading identified at SS-5.

4.2 Laboratory Analytical Results

4.2.1 Soil

In April 2021, Ramboll collected three shallow soil samples (SB-4 at 1 to 2 feet bgs), SB-5 at 1 to 2 feet bgs, and SB-6 at 1 to 2 feet bgs) and three deep soil samples just above the limestone bedrock (SB-4 at 17 to 18 feet bgs, SB-5 at 12 to 13 feet bgs, and SB-6 at 4 to 5 feet bgs). There were no VOC detections above laboratory Method Detection Limits (MDL) in soil samples collected from any of the 2021 borings. In total, the soil samples collected at the Site do not show evidence of any VOC impacts, except for the sample collected at 1 to 2 feet bgs in boring SB-1 (at the floor drain located in the northwest corner of the building. The detected ethylbenzene, styrene, and DCDFM concentrations were well below the WAC NR 720 Residual Contaminant Levels (RCLs). There is no evidence of a release from the former closed-loop dry cleaning system, based on the soil sampling performed at the Site. Neither does it appear that vapor intrusion is following potential preferential pathways along the gas, sewer, and water utility lines, based on data from borings SB-5 and SB-6 and the absence of significant soil vapor concentrations below the building. A summary of soil analytical results is included in **Table 1** and the spatial distribution of soil data is illustrated in **Figure 4**. The soil laboratory analytical report are provided in **Appendix E**.

4.2.2 Sub-Slab Soil Vapor

In March 2021 (during the heating season), Ramboll collected a second round of sub-slab soil vapor samples to confirm the results documented in July 2020 (during the cooling season), i.e. to verify that the concentrations of PCE and ethylbenzene are below the applicable small commercial building sub-slab VRSLs. Similar to the July 2020 sampling, DCDFM concentrations were detected above the applicable small commercial building sub-slab VRSLs (15,000 μ g/m³) in all of the samples: SS-1 (88,700 μ g/m³), SS-2 (101,000 μ g/m³), SS-3 (39,200 μ g/m³), SS-4 (6,7600 μ g/m³), SS-5 (60,200 μ g/m³), and SS-6 (29,100 μ g/m³). Both PCE and ethylbenzene concentrations were below

the residential VRSLs during the March 2021 heating season sub-slab sampling event (when the potential for vapor intrusion is highest in a building (i.e., when the stack effect is strongest [WDNR, January 2018]). Therefore, PCE and ethylbenzene were detected below the applicable small commercial building sub-slab VRSLs based on two rounds of vapor sampling. A summary of soil vapor analytical results is included in **Table 2**. The spatial distribution of the sub-slab soil vapor results is illustrated in **Figure 5**. The sub-slab vapor laboratory analytical report is provided in **Appendix E**.

4.3 Discussion of Results

4.3.1 Soil

Based on the shallow soil samples collected in six soil borings across the Site, PCE nor its degradation products were not detected in soil. Although ethylbenzene, styrene, and DCDFM were detected at one soil boring (SB-1) located interior to the building near a floor drain, the concentrations detected in SB-1 are significantly below WAC NR 720 RCLs. The deeper soil samples collected from the three additional soil borings completed in April 2021 indicate that there are no deep cVOC impacts in soil at the Site. The soil sampling to date has not documented a release of cVOCs on site. Additionally, based on the soil boring logs the soil below the surficial fill soil is low permeability silty clay, which should reduce the migration of soil vapors from the potentially impacted groundwater table encountered at 51 feet bgs, based on the area-wide PCE and TCE area-wide groundwater plume. The samples taken from the soil borings advanced along the utility lines around the on-site building indicate that the utility lines are not a preferential pathway for vapor intrusion.

4.3.2 Sub-Slab Soil Vapor

The second round of soil vapor sampling was completed on March 12, 2021, to monitor potential seasonal variability and to address the detected PCE sub-slab vapor concentrations that were detected in two locations in the northeast corner of the building (SS-1 and SS-2) above the residential VRSL (in July 2020) but well below the applicable small commercial VRSL. The second round of sub-slab soil vapor sampling documented concentrations of PCE and ethylbenzene below the residential sub-slab VRSLs. The DCDFM found in the sub-slab soil vapor samples is related to insulating foam (foamboard was observed beneath the concrete slab in boring SB-1), and not to a release or discharge of a hazardous chemical to the environment. The sub-slab vapor sampling conducted at the Site documents PCE and ethylbenzene concentrations are below the applicable small commercial VRSLs and vapor mitigation is not required under commercial/industrial use. Therefore, vapor intrusion is not a threat to commercial site occupants. Given the low detections of cVOC soil vapor concentrations below the building and the absence of high cVOC soil concentrations in soil samples along the utility corridors, soil vapor migration along the utility lines is not a pathway concern.

5. CONCLUSIONS AND RECOMMENDATIONS

In March and April 2021, Ramboll (on behalf of Trace-Mitchell Real Estate, LLC) completed additional soil vapor and soil sampling at the direction of the WDNR. The objectives of the additional site investigation activities were to: 1) verify that soil vapor concentrations of PCE and ethylbenzene are below the small commercial building sub-slab VRSLs during the heating season (in comparison to Ramboll's July 2020 sub-slab soil vapor sampling); 2) evaluate the potential for deeper cVOC impacts in soil; 3) evaluate the primary soil type at the Site; 4) research the depth to groundwater and the local groundwater flow directions at nearby sites to determine if the Site lies within an area-wide cVOC groundwater plume; and 5) evaluate potential preferential pathways for vapor intrusion along utility lines.

Site investigation activities were completed at the Site between July 2020 and March 2021. Based on the site investigation activities conducted to date, Ramboll concludes the following:

- Based on six soil borings advanced at the Site, the site geology consists of fill from 2 to 8 feet bgs underlain by native soils comprised primarily of silty clay to the top of bedrock. Limestone bedrock is encountered at 5 to 18 feet bgs (bedrock at the Site slopes to the southwest). No odors or indications of contamination (PID readings, visual staining, etc.) were encountered during the advancement in any of the borings.
- Based on a review of regional groundwater data available, groundwater in the area of the Site is documented in bedrock at 51 feet bgs with groundwater flow to the southeast and deeper groundwater flowing to the southwest. The Site is located within an area-wide cVOC groundwater plume.
- 3. Six soil borings were advanced at the Site to evaluate the soil for potential cVOC impacts. Boring and soil sampling was biased towards areas in and around the building where historical dry cleaning operations occurred (the dry cleaning machine was formerly located in the northeast portion of the building in the area of a floor drain). Borings were advanced at the floor drain, outside the back door (adjacent to the former dry cleaner operations), near the shed (potential dry cleaner chemical storage area), and adjacent to utility lines (underground gas, sewer, and water) to identify potential preferential pathways for vapor intrusion. Soil samples for VOC analysis were collected from depths ranging from 0.5 to 18 feet bgs. There were no VOC detections above the laboratory MDLs in any of the borings except for the soil sample collected from near the drain in the northeast corner of the building (boring SB-1). The soil sample collected from boring SB-1 documented concentrations of ethylbenzene, DCDFM, and styrene; however, at concentrations below the applicable WAC NR 720 RCLs. There were no documented cVOC analytes detected in soils at the Site.
- 4. Ramboll performed two rounds of sub-slab vapor testing at the Site, one in July 2020 (during the cooling season) and one in March 2021 (during the heating season). The July 2020 sub-slab soil vapor sampling documented PCE and ethylbenzene concentrations above the residential VRSLs in two locations in the northeast portion of the building (SS-1 and SS-2) but well below the small commercial VRSLs across the building footprint. The March 2021 sub-slab soil vapor sampling event documented PCE and ethylbenzene sub-slab soil vapor concentrations well below the residential VRSLs across the building footprint. Based on sub-slab vapor testing during both a cooling and heating season, the sub-slab soil vapor concentrations are below the applicable small commercial VRSLs. Therefore, vapor intrusion at the Site is not a threat to building occupants based on the commercial site use, and no vapor mitigation or further testing is necessary. Given

- the low detections of cVOC soil vapor concentrations below the building and the absence of high cVOC soil concentrations in soil samples along the utility corridors, soil vapor migration along the utility lines is not a pathway concern.
- The Site is located within a documented area-wide cVOC groundwater plume area. The source of the cVOC groundwater plume is the adjacent east and northeast property (located at 305 County Highway YZ, Dodgeville, Wisconsin), which is currently the location of the Humane Society. This adjacent site is listed as closed WDNR BRRTS Case Number 02-25-001456 (Advanced Photonix Inc./Silicon Sensors). Based on prior site investigations of surrounding properties, including BRRTS Case Number 02-25-001456 (Silicon Sensors), multiple sources of contamination in the site area have been identified but did not include the subject site. A groundwater plume containing 1,1-DCE, 1,2-dichloroethane, PCE, and TCE is present in the vicinity of Dave Baker Chevrolet and monitoring well W-8, located adjacent to the Site. A second plume consisting primarily of carbon tetrachloride appears to be centered around monitoring well W-3 and extends northward beyond W-1 and southward beyond the Township Garage. A third plume consisting primarily of TCE exists around the Township Garage, the Site, and Skip's and appears to extend northward to DMW No 7. Silicon Sensors was identified as the source of cVOC contamination around W-8 and the Dave Baker well (Appendix A, Pg. 3). The second plume was associated with the Joe King Landfill near W-3, which was the center of a carbon tetrachloride plume. Well W-3 is located approximately 880 feet northwest of the Site. No carbon tetrachloride was detected in either well near the Site.

In summary, the additional site investigation activities have not documented a release of VOCs on-Site. PCE nor its degradation products have not been detected in soil on site indicating no releases related to prior dry cleaning operations. Although ethylbenzene, styrene, and DCDFM were detected at the one boring (SB-1) located interior to the building near a floor drain, the concentrations detected in SB-1 are significantly below WAC NR 720 RCLs. Because no releases have been documented requiring further investigation, no further investigation or remediation is required.

The Site is located within a documented area-wide cVOC groundwater plume, which is resulting in low-level PCE sub-slab vapor concentrations to be detected. Based on the latest round of sub-slab vapor testing in March 2021, PCE and ethylbenzene were not detected above residential VRSLs. A prior sub-slab sampling event in July 2020 detected PCE slightly above the residential VSRLs in two locations (SS-1 and SS-2) in the northeast portion of the building, but significantly below the small commercial VRSLs. The sub-slab vapor testing has documented no vapor intrusion risk to building occupants as long as the site use remains commercial or industrial. Therefore, vapor mitigation is not required. Based on the additional site investigation data collected, the low-level cVOC impacts in sub-slab vapor are likely related to the area-wide cVOC groundwater plume; therefore, Ramboll recommends no further action for the Site. Ramboll is submitting a *Site Investigation Report* review fee to WDNR along with this report for concurrence with this conclusion. Following WDNR's concurrence that no further investigation or remedial action is necessary, Ramboll will prepare and submit a WAC NR 726 case closure package under separate cover. The closure package will include adding the Site to the WDNR database with a continuing obligation stating that the Site remain for commercial/industrial use due to the July 2020 soil vapor results (unless additional testing and/or mitigation is completed).

6. REFERENCES

https://dnr.wi.gov/WellConstructionSearch/#!/PublicSearch/Index. March 12, 2021.

https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm. March 12, 2021.

AEI Consultants, Inc. 2020. Phase I Environmental Site Assessment. June 19.

- Google Earth Pro 7.3.3.7786 (64-bit). (June 23, 2021). Dodgeville, Wisconsin, USA. 42°58'35.47"N, 90°07'35.51"W, Eye alt 1237 feet. DigitalGlobe 2012. http://www.earth.google.com [September 11, 2021].
- Natural Heritage Inventory data township tool, https://dnr.wi.gov/topic/NHI/Data.asp?tool=township&mode=detail&township=06N&range=0 3E&sort=category&order=asc, accessed October 14, 2021.
- Ramboll US Consulting, Inc. 2020. No Action Required Request, 1305 North Johns Street Dodgeville, Wisconsin. November 13.
- WDNR Addressing Vapor Intrusion at Remediation & Redevelopment Sites in Wisconsin. January 2018.
- WDNR Site File Silicon Sensors (0225001456_Site_File.pdf), BRRTS No. 02-25-001456, https://dnr.wi.gov/botw/Search.do. January 26, 1993.

TABLES

Table 1 Soil Analytical Results

Former Dry Cleaner 1305 N Johns Street Dodgeville, Wisconsin Ramboll Project 1690018043

		Soil RCLs		SB-1 (1-2)	SB-2 (0.5-1.5)	SB-3 (2-3)	SB-4 (1-2)	SB-4 (17-18)	SB-5 (1-2)	SB-5 (12-13)	SB-6 (1-2)	SB-6 (4-5)	
Parameters	Non-Industrial Direct Contact	Industrial Direct Contact	Groundwater Pathway	` '	7/7/2020	7/7/2020	4/23/2021	4/23/2021	4/23/2021	4/23/2021	4/23/2021	4/23/2021	
PID I.U.				3.0	1.5	0.0	0.2	0.2	0.1	0.1	0.2	0.2	
VOCs (µg/kg)													
Dichlorodifluoromethane	126,000	530,000	3,086.3	647	<25.0	<25.0	<31.4	<60.7	<32.8	<49.5	<34.5	<34.3	
Ethylbenzene	8,020	35,400	1,570	62.2 ^J	<25.0	<25.0	<17.4	<33.6	<18.1	<27.4	<19.1	<19.0	
Styrene	867,000	867,000	220	131	<25.0	<25.0	<18.7	<36.1	<19.5	<29.4	<20.5	<20.4	

Notes:

Only detected parameters are displayed in the above table.

VOCs = Volatile Organic Compounds

Sample depth (in feet below grade) shown in parenthases.

PID = Photoionization Detector.

IU = Instrument Units, equivalent to parts per million based on bulb intensity and machine calibration.

RCL = Residual Contaminant Level

μg/kg = micrograms per kilogram

Soil RCLs established by the WDNR RR program using the EPA's RSL web-calculator with WAC

NR 720 default parameters (WDNR PUB-RR-890, June 2014 - updated RCL spreadsheet,

December 2018).

J = Laboratory flag indicating that results reported between the Method Detection Limit and Limit of Quantitation (LOQ), which is a result that is less certain than results at or above the LOQ.

Table 2. Sub-Slab Vapor Analytical Results Former Dry Cleaner 1305 N Johns Street Dodgeville, Wisconsin Ramboll Project No. 1690020998

Parameters		Residential				Small Commercial				USEPA RSL Basis ⁽²⁾	SS-1		SS	S-2	SS-3		
Analyte (μg/m³) ⁽¹⁾	CAS No.	Indoor Air VAL (1 E -5)	Sub-Slab Vapor VRSL (33.3 x)	Indoor Air VAL (HI = 1)	Sub-Slab Vapor VRSL (33.3 x)	Indoor Air VAL (1 E -5)	Sub-Slab Vapor VRSL (33.3 x)	Indoor Air VAL (HI = 1)	Sub-Slab Vapor VRSL (33.3 x)		7/7/2020	3/12/2021	7/7/2020	3/12/2021	7/7/2020	3/12/2021	
Acetone	67-64-1			32000	1100000			140000	4700000	nc	2510	685 E	421	371	459	178	
Benzene	71-43-2	3.6	120	31	1000	16	530	130	4300	С	7.2	4.7	12.2	9.4	9.5	9.4	
Carbon Disulfide	75-15-0			730	24000			3100	100000	nc	< 0.33	<0.15	1.0 J	< 0.17	< 0.30	29.9	
Carbon Tetrachloride	56-23-5	4.7	160	100	3300	20	670	440	15000	С	<0.25	<0.32	0.26 J	< 0.35	< 0.23	<0.32	
Chlorobenzene	108-90-7			52	1700			220	7300	nc	20.9	12.9	48.8	34.7	37.2	17.5	
Chloroform	67-66-3	1.2	40	100	3300	5.3	180	430	14000	С	<0.32	<0.22	<0.32	<0.24	< 0.30	<0.22	
Cyclohexane	110-82-7			6300	210000			26000	870000	nc	7.2	3.0	11.3	6.7	9.5	5.0	
Dichlorobenzene, 1,2-	95-50-1			210	7000			880	29000	nc	< 0.63	<1.1	1.5 J	1.6 J	2.3	<1.1	
Dichlorobenzene, 1,3-	541-73-1										<0.79	<1.2	1.4 J	<1.4	1.5 J	<1.3	
Dichlorobenzene, 1,4-	106-46-7	2.6	87	830	28000	11	370	3500	120000	С	<1.4	<1.4	3.7 J	10.1	4.8	1.9 J	
Dichlorodifluoromethane	75-71-8			100	3300			440	15000	nc	206000 E A,B	88700 A,B	218000 E A,B	101000 A,B	217000 E A,B	39200 A,B	
Dichloroethylene, 1,2-trans-	156-60-5										1.8	0.66 J	1.3	1.3 J	1.6	1.3	
Ethanol	64-17-5										471	415	513	485	436	400	
Ethyl Acetate	141-78-6			73	2400			310	10000	nc	<0.28	3.1	1.4	< 0.20	< 0.26	<0.18	
Ethylbenzene	100-41-4	11	370	1000	33000	49	1600	4400	150000	С	624 A	199 E	955 A	331 E	916 A	210	
4-Ethyltoluene	622-96-8										11.3	12.6	10.4	11.2	12.8	2.0 J	
n-Heptane	142-82-5			420	14000			1800	60000	nc	17.4	6.1	21.0	13.0	22.7	9.6	
Hexane, N-	110-54-3			730	24000			3100	100000	nc	15.8	4.4	22.8	10.0	18.5	10.5	
Hexanone, 2-	591-78-6			31	1000			130	4300	nc	2.9	4.5 J	3.6 J	2.9 J	2.7 J	3.0 J	
Isopropanol	67-63-0			210	7000			880	29000	nc	66.4	49.8	66.9	39.2	52.2	37.1	
Methyl Ethyl Ketone (2-Butanone)	78-93-3			5200	170000			22000	730000	nc	74.5 E	56.9	95.9 E	65.3	96.4 E	40.3	
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1			3100	100000			13000	430000	nc	8.0	11.3	23.2	348 E	12.2	9.9	
Methylene Chloride	75-09-2	1000	33000	630	21000	12000	400000	2600	87000	nc	5.8	<1.8	11.5	2.1 J	1.6 J	4.2 J CH,LS,SS	
Naphthalene	91-20-3	0.83	28	3.1	100	3.6	120	13	430	С	4.5	3.7 J	4.3 J	3.1 J	3.3 J	<2.9	
Styrene	100-42-5			1000	33000			4400	150000	nc	144	79.5	597	215 E	377	27.1	
Tetrachloroethylene	127-18-4	110	3700	42	1400	470	16000	180	6000	nc	1910 A	533	1490 A	1090	117	62.6	
Tetrahydrofuran	109-99-9			2100	70000			8800	290000	nc	5.8	5.1	5.8	2.4	8.8	5.6	
Toluene	108-88-3			5200	170000			22000	730000	nc	119	56.5	130	109	188	78.7	
Trichloro-1,2,2-trifluoroethane, 1,1,2-	76-13-1			5200	170000			22000	730000	nc	31.1	101	13.0	36.0	5.7	235 CH,LS,SS	
Trichloroethylene	79-01-6	4.8	160	2.1	70	30	1000	8.8	290	nc	0.53	0.68 J	1.2	0.76 J	0.68 J	0.80 J	
Trichlorofluoromethane	75-69-4										3.7	<0.34	7.0	4.9	6.4	<0.35	
Trimethylbenzene, 1,2,4-	95-63-6			63	2100			260	8700	nc	22.2	20.3	17.1	13.5	21.2	2.5	
Trimethylbenzene, 1,3,5-	108-67-8			63	2100			260	8700	nc	6.6	6.2	5.2	4.4	6.4	1.5 J	
m&p-Xylene	179601-23-1			100	3300			440	15000	nc	353	177	232	213	433	93.4	
Xylene, o-	95-47-6			100	3300			440	15000	nc	89.2	46.2	61.2	55.8	105	23.8	

Notes:

Standards based on May 2020 USEPA Regional Screening Level (RSL) Tables.

Samples analyzed using USEPA Method TO-15. Only detected compounds are listed.

 $\mu g/m^3$ = Microgram per cubic meter

AF = Attenuation Factor

VAL= Indoor Air Vapor Action Level

VRSL = Vapor Risk Screening Level

(1) For parameters with both carcinogenic and non-carcinogenic indoor air VALs, results are compared to the most conservative subslab vapor VRSL displayed in **bold** font.

(2) The USEPA RSL Basis indicates whether the carcinogenic (c) or non-carcinogenic (nc) indoor air VAL is most stringent.

- A = Exceeds Residential VRSL
- **B** = Exceeds Small Commercial VRSL
- C = Exceeds Large Commercial/Industrial VRSL
- J = Estimated concentration at or above the level of detection (LOD) and below the level of quantification (LOQ).
- ${f E}=$ Analyte concentration exceeded the calibration range. The reported result is estimated.

CH = The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- L1 = Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- SS = This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

-- No RSL established.

Table 2. Sub-Slab Vapor Analytical Results Former Dry Cleaner 1305 N Johns Street Dodgeville, Wisconsin Ramboll Project No. 1690020998

Parameters		Residential					Small Co	mmercial		USEPA RSL Basis ⁽²⁾	SS-4		SS-5		SS-6	
Analyte (μg/m³) ⁽¹⁾	CAS No.	Indoor Air VAL (1 E -5)	Sub-Slab Vapor VRSL (33.3 x)	Indoor Air VAL (HI = 1)	Sub-Slab Vapor VRSL (33.3 x)	Indoor Air VAL (1 E -5)	Sub-Slab Vapor VRSL (33.3 x)	Indoor Air VAL (HI = 1)	Sub-Slab Vapor VRSL (33.3 x)		7/7/2020	3/12/2021	7/7/2020	3/12/2021	7/7/2020	3/12/2021
Acetone	67-64-1			32000	1100000			140000	4700000	nc	253	185	127	54.8	213	79.3
Benzene	71-43-2	3.6	120	31	1000	16	530	130	4300	С	8.0	4.7	2.2	3.9	3.5	2.5
Carbon Disulfide	75-15-0			730	24000			3100	100000	nc	<0.31	1.1	0.71 J	0.24 J	0.73 J	<0.15
Carbon Tetrachloride	56-23-5	4.7	160	100	3300	20	670	440	15000	С	<0.24	<0.32	<0.23	< 0.32	<0.23	< 0.31
Chlorobenzene	108-90-7			52	1700			220	7300	nc	51.1	24.0	8.3	11.8	27.1	13.5
Chloroform	67-66-3	1.2	40	100	3300	5.3	180	430	14000	С	< 0.31	<0.22	4.9	<0.22	< 0.30	<0.22
Cyclohexane	110-82-7			6300	210000			26000	870000	nc	7.1	5.8	4.1	5.9	5.1	3.4
Dichlorobenzene, 1,2-	95-50-1			210	7000			880	29000	nc	1.5 J	2.0	< 0.59	<1.1	0.95 J	1.1 J
Dichlorobenzene, 1,3-	541-73-1										1.5 J	2.3 J	<0.75	2.0 J	0.94 J	<1.2
Dichlorobenzene, 1,4-	106-46-7	2.6	87	830	28000	11	370	3500	120000	С	4.4]	3.9 1	<1.3	<1.5	2.1 J	2.0 1
Dichlorodifluoromethane	75-71-8			100	3300			440	15000	nc	185000 E A,B	67600 A,B	3540 E A	60200 A,B	3370 E A	29100 A,B
Dichloroethylene, 1,2-trans-	156-60-5										0.84 J	<0.25	0.47 J	<0.25	0.51 J	<0.24
Ethanol	64-17-5										286	224	233	356	270	336
Ethyl Acetate	141-78-6			73	2400			310	10000	nc	<0.27	<0.18	5.0	1.4	1.4	<0.18
Ethylbenzene	100-41-4	11	370	1000	33000	49	1600	4400	150000	С	875 A	192	121	70.9	205	67.0
4-Ethyltoluene	622-96-8										9.3	5.9	7.7	4.0	8.4	7.0
n-Heptane	142-82-5			420	14000			1800	60000	nc	10.0	5.8	5.3	8.2	7.8	6.2
Hexane, N-	110-54-3			730	24000			3100	100000	nc	10.5	5.8	18.7	9.9	12.0	4.7
Hexanone, 2-	591-78-6			31	1000			130	4300	nc	1.5 J	3.0 J	1.9 J	2.7 J	1.6 J	2.8 J
Isopropanol	67-63-0			210	7000			880	29000	nc	26.2	30.6	35.7	23.3	73.4	62.2
Methyl Ethyl Ketone (2-Butanone)	78-93-3			5200	170000			22000	730000	nc	33.4	19.7	25.8	10.0	32.9	18.4
Methyl Isobutyl Ketone (4-methyl-2-pentanone)	108-10-1			3100	100000			13000	430000	nc	3.1 J	3.7 J	4.7 J	2.0 J	6.6	7.9
Methylene Chloride	75-09-2	1000	33000	630	21000	12000	400000	2600	87000	nc	4.2 J	<1.8	107	<1.8	35.9	<1.8
Naphthalene	91-20-3	0.83	28	3.1	100	3.6	120	13	430	С	2.6 J	8.3	3.4 J	3.8 J	2.6 J	3.8 J
Styrene	100-42-5			1000	33000			4400	150000	nc	668	136	52.9	65.5	175	91.2
Tetrachloroethylene	127-18-4	110	3700	42	1400	470	16000	180	6000	nc	123	96.9	167	122	199	96.8
Tetrahydrofuran	109-99-9			2100	70000			8800	290000	nc	3.1	5.8	4.8	<0.20	2.2	3.4
Toluene	108-88-3			5200	170000			22000	730000	nc	110	59.1	62.0	21.0	71.3	25.5
Trichloro-1,2,2-trifluoroethane, 1,1,2-	76-13-1			5200	170000			22000	730000	nc	102	99.2	335	545 E	238	162
Trichloroethylene	79-01-6	4.8	160	2.1	70	30	1000	8.8	290	nc	<0.28	< 0.31	<0.28	<0.32	<0.27	3.2
Trichlorofluoromethane	75-69-4										3.3	4.0 J	4.3	5.5	4.4	2.3
Trimethylbenzene, 1,2,4-	95-63-6			63	2100			260	8700	nc	15.8	13.9	13.8	14.7	12.4	11.1
Trimethylbenzene, 1,3,5-	108-67-8			63	2100			260	8700	nc	5.7	5.0	4.2	3.5	4.3	3.3
m&p-Xylene	179601-23-1			100	3300			440	15000	nc	216	83.2	156	27.9	198	25.6
	95-47-6	1		100	3300			440	15000	nc	54.6	19.8	38.3	10.5	48.3	7.7

Notes:

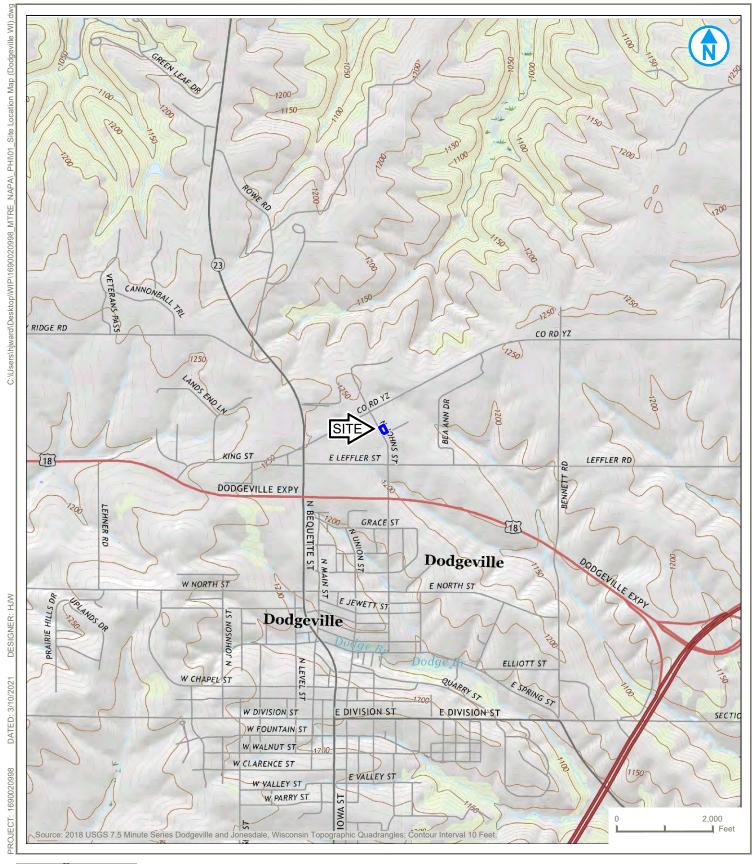
Standards based on May 2020 USEPA Regional Screening Level (RSL) Tables.

Samples analyzed using USEPA Method TO-15. Only detected compounds are listed.

μg/m³ = Microgram per cubic meter

AF = Attenuation Factor

VAL= Indoor Air Vapor Action Level


VRSL = Vapor Risk Screening Level

(1) For parameters with both carcinogenic and non-carcinogenic indoor air VALs, results are compared to the most conservative subslab vapor VRSL displayed in **bold** font.

(2) The USEPA RSL Basis indicates whether the carcinogenic (c) or non-carcinogenic (nc) indoor air VAL is most stringent.

- A = Exceeds Residential VRSL
- B = Exceeds Small Commercial VRSL
- C = Exceeds Large Commercial/Industrial VRSL
- J = Estimated concentration at or above the level of detection (LOD) and below the level of quantification (LOQ).
- ${f E}={f Analyte}$ concentration exceeded the calibration range. The reported result is estimated.
- **CH** = The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- L1 = Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.
- SS = This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.
- -- No RSL established.

FIGURES

Map Scale: 1:24,000 Map Center: 42°58'35.6664", -90°7'35.6664"

SITE LOCATION MAP

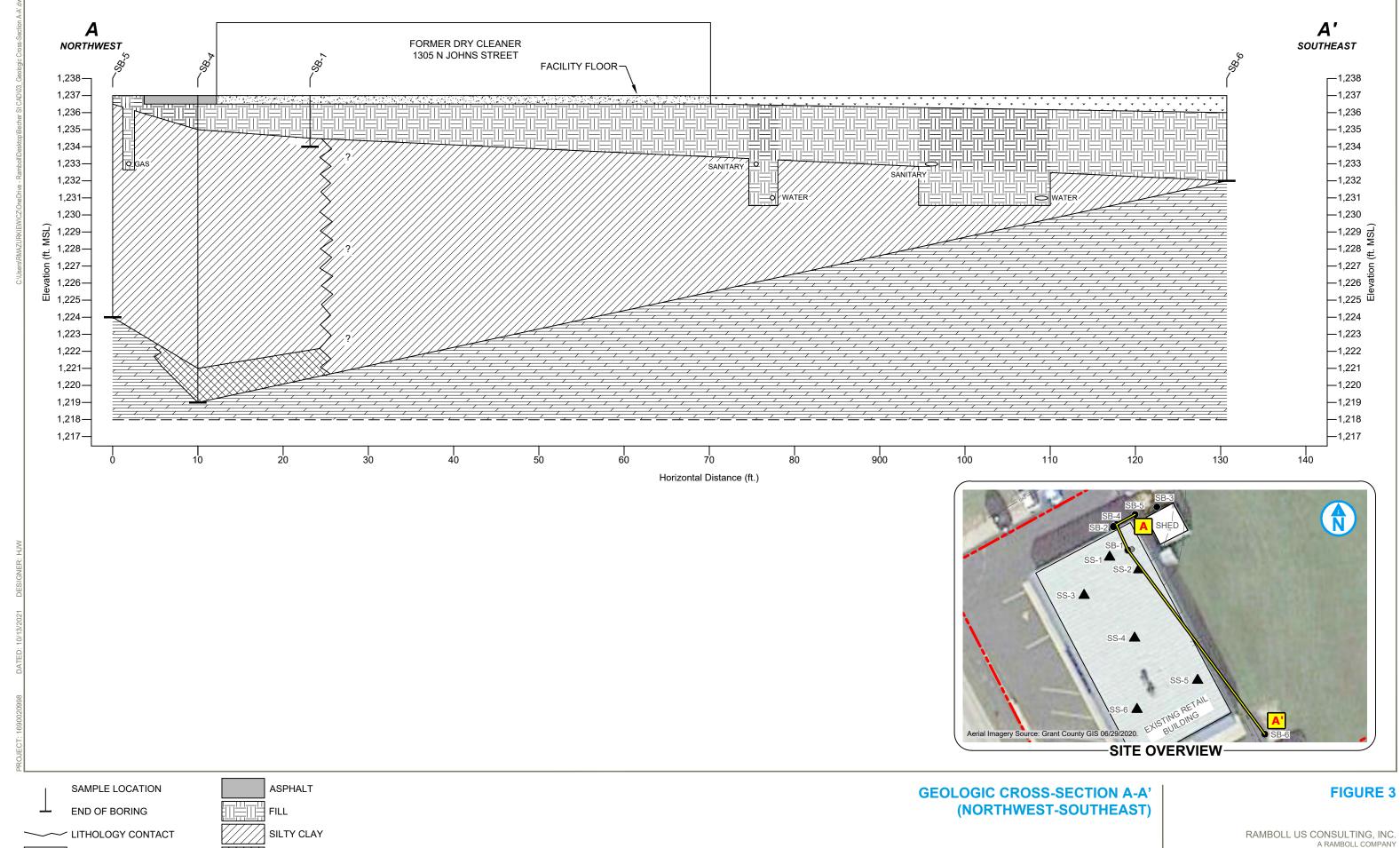
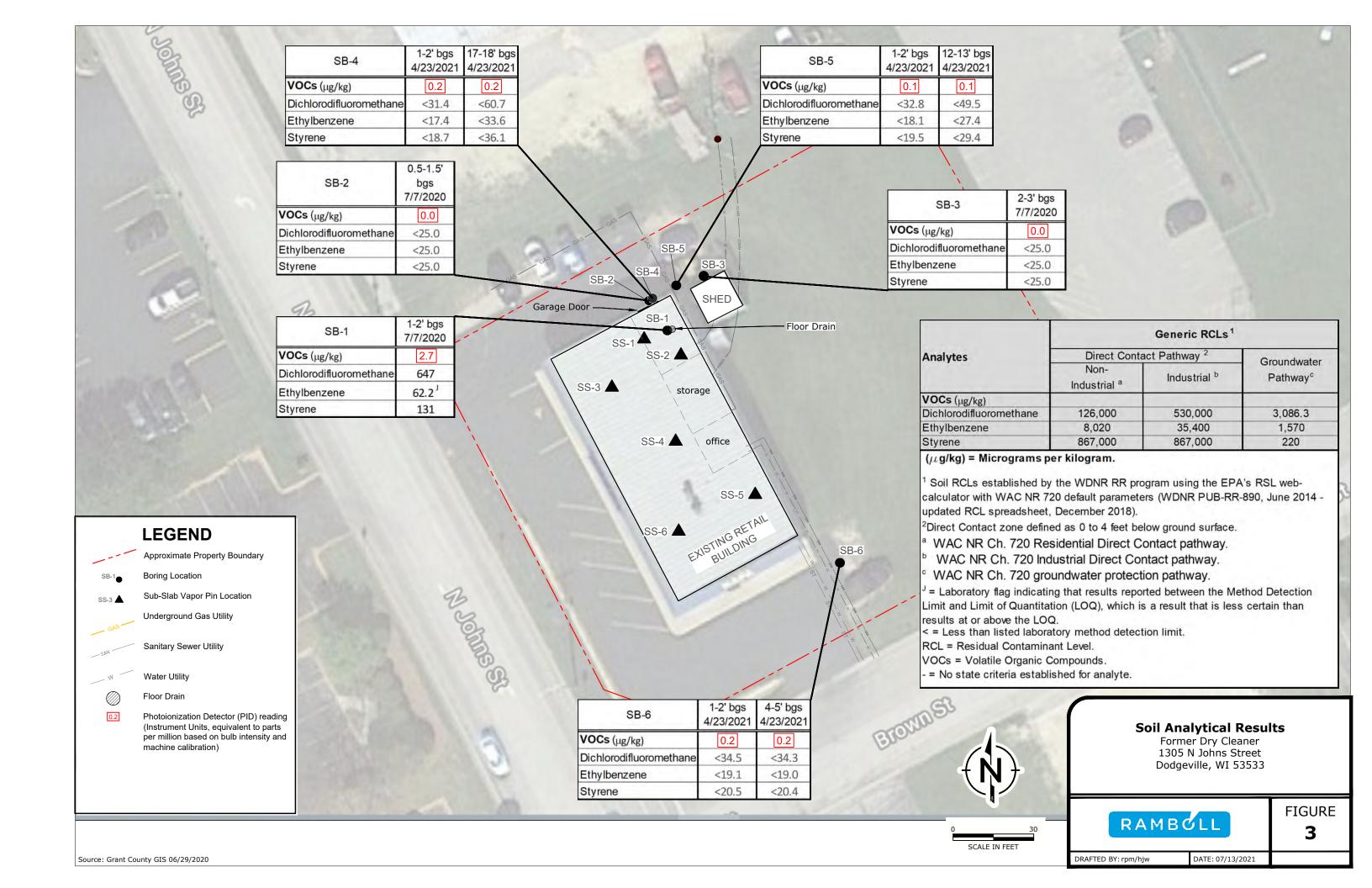

NAPA RETAIL STORE 1305 NORTH JOHNS STREET DODGEVILLE, WISCONSIN 53533

FIGURE 1

RAMBOLL US CONSULTING, INC.
A RAMBOLL COMPANY

TOPSOIL


CONCRETE

LIMESTONE BEDROCK

FORMER DRY CLEANER 1305 N JOHNS STREET

DODGEVILLE, WI 53533

RAMBOLL

APPENDIX A

WDNR BRRTS DOCUMENTATION

Wisconsin Department of Natural Resources STS Project No. 18482XF February 12, 1992

- 2. Soil gas surveys indicated one potential VOC source area; the Joe King Landfill,
- 3. Groundwater contamination observed at well W-8 is probably the direct result of disposal of solvents on the Silicon Sensors property,
- 4. Based on groundwater quality data, potential sources of VOCs may exist in the vicinity of wells W-3 (Joe King Landfill) and W-2 (Marklein Auto Body),
- 5. Hydraulic conductivity values range from 1.1 x 10⁻⁵ to 8.6 x 10⁻⁵ cm/sec with local variations being controlled by secondary porosity features (vugs and fractures) in the bedrock,
- 6. Groundwater flow at the water table appeared to be toward the east-southeast,
- 7. Vertical groundwater gradients were downward at all three well nests installed and increased with proximity to DMW No. 7, and
- 8. Downward vertical gradients near DMW No. 7 may indicate that pumping of DMW No. 7 is having an effect on hydraulic head at depth in the bedrock.

The data collected during the initial investigation indicates that several sources of VOCs may be present in the study area. However, the data did not conclude that observed soil and shallow groundwater contamination was responsible for contamination at DMW No. 7. Therefore further investigation was deemed necessary. STS Consultants Ltd. was retained by the DNR to conduct the subsequent investigation.

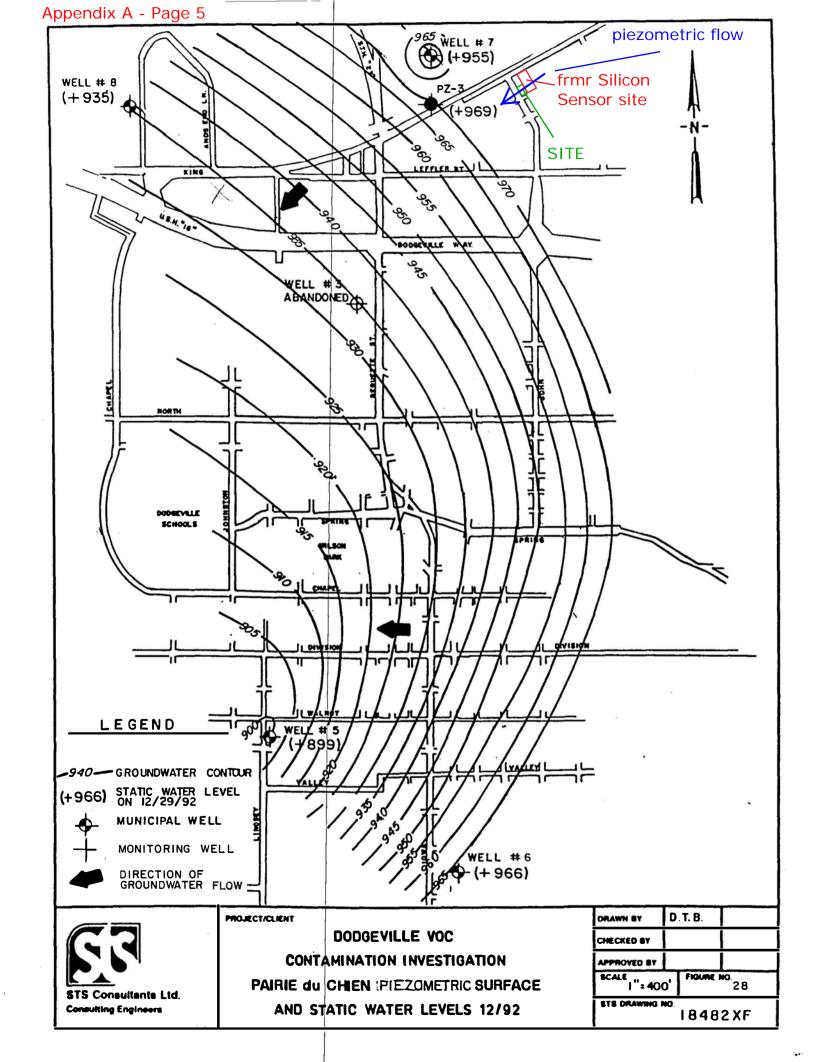
From February 12, 1992, STS Consultants, LTD Summary of Results, Phase 1 Dodgeville VOC Contamination Investigation.

Wisconsin Department of Natural Resources STS Project No. 18482XF February 12, 1992

analyses. Table 6 summarizes the results of the laboratory analyses. Laboratory reports are included in Appendix D. Data from previous sampling conducted in the study area are also included on Table 6.

The toluene detected in DMW No. 7, Collins and Hying, Dave Baker and Napa appears to be contamination introduced during sampling from adhesive tape used to secure the lead wire to the pump used during purging operations. To confirm the source of toluene, a small piece of the tape used was placed in a 40 milliliter vial of dionized water and allowed to sit for three hours. A five milliliter sample of the water was analyzed for benzene, toluene, ethylbenzene and xylenes. Three hundred and twenty seven (327) micrograms per liter toluene were detected in the water. Table 7 summarizes the tape analyses.

Four packer tests were conducted in DMW No. 7 to estimate the depth at which trichloroethene (TCE) is entering the borehole. The packer test results are summarized on Table 8. Packer test results indicate that the TCE is entering the borehole between 288 and 410 feet. The sample collected from above 410 feet contained 3 micrograms per liter TCE. It is interesting to note that the groundwater sample collected from DMW No. 7 on July 5, 1991 contained 3 micrograms per liter TCE. The similarity of concentrations acquired when the entire borehole was open to production and when an interval above 410 feet was isolated, indicate that little or no dilution of the TCE occurs after it enters the borehole. Therefore, it appears that the majority of groundwater inflow into DMW No. 7 occurs above 410 feet.


As indicated in Table 6, contaminants were also detected in monitoring wells W-1, W-3 at d W-8. W-2 was not sampled because the well was buried. Impacted private water supply wells included Dave Baker Chevrolet. Skip's Sales and Service Napa, and the Township Garage. The water sample acquired from A & W may not be representative of groundwater. The sample was acquired from a tap on the outside of the building which may be connected to the City water supply and not the private water supply well on-site.

Wisconsin Department of Natural Resources STS Project No. 18482XF February 12, 1992

Based on the groundwater chemistry data, it appears that multiple plumes are present in the study area. A plume containing 1.1-Dichloroethene, 1,2-Dichloroethane, tetrachloroethene, and TCE is present in the vicinity of Dave Baker Chevrolet and monitoring well W-8 (see Figure 17). A second plume consisting primarily of carbon tetrachloride appears to be centered around monitoring well W-3 and extends northward beyond W-1 and southward beyond the Township Garage (Figure 18). A third plume consisting primarily of TCE exists in the area of the Township Garage, Napa, and Skip's and appears to extend northward to DMW No. 7 (Figure 19).

If the historical data collected from monitoring well W-2 is considered (see Table 6) an additional plume or an extension of the carbon tetrachloride plume may exist in the area of Marklein Auto Body. Samples collected from W-2 in 1988 and 1989 contained 1.1.1-trichloroethane (1.1.1-TCA) concentrations ranging from 116 to 542 micrograms per liter. Historical data collected in 1986 and 1988 from Skip's, Township Garage and monitoring well W-3 also indicated the presence of 1.1.1-TCA. 1.1.1-TCA was not detected in the groundwater samples collected in 1991 from any of these wells, however carbon tetrachloride was detected. 1.1.1-TCA and carbon tetrachloride's elution times are very similar. Therefore the presence of carbon tetrachloride in the 1991 samples was confirmed by mass spectrometry. We have no documentation that indicates that the 1.1.1-TCA detected in the historical samples was confirmed, therefore, it is possible that the 1.1.1-TCA detected may have been either carbon tetrachloride or a combination of carbon tetrachloride and 1.1.1-TCA.

Based on the groundwater chemistry data, there appear to be multiple possible sources of groundwater contamination in the study area. Silicon Sensors appears to be the source of contamination documented in monitoring well W-8 and the private water supply well at Dave Baker Chevrolet. Monitoring well W-3 appears to be at or near the center of the carbon tetrachloride plume, therefore, it appears that the Joe King Landfill may be the source of the carbon tetrachloride. Based on the historic data collected from monitoring

Wisconsin Department of Natural Resources STS Project No. 18482XF February 12, 1992

In general, the dominant axes for the resistivity ellipses are oriented approximately north-south and just west of north-south. Other resistivity ellipse alignments occur at approximate orientations of N50E and N90E. Table 1 summarizes the interpreted major and minor AR ellipse alignments for each survey set-up.

It is not clear why the principal alignment of the north survey area 8 meter A-spacing differs so dramatically in comparison with the other survey results. In general, the low variation in resistivity levels and the shallower sensing would appear to reduce the credibility of the data for the shorter A-spacing (4m and 8m) from both survey areas.

Dominant regional fracture alignments are reported to be approximately northwest-southeast and northeast-southwest (Heyl and others, 1959). The AR data only partially correspond to the reported regional joint alignments. However, site specific fracture patterns can differ from regional trends.

The resistivity sounding data (Figures 12 and 13) illustrate steadily increasing resistivities with increasing A-spacing. An interpretation of the data from both survey areas would appear to show a slightly deeper overburden or weathered zone in the North Survey Area. The resistivity low apparent on the North Survey Area surrounding curve may indicate a perched water table, wetter conditions or more clayey materials directly above bedrock.

Observational errors were generally below 1%. Lateral and offset errors generally ranged between 5% and 20%, although larger errors were observed for some survey line orientations and/or A-spacings. The lateral and offset errors tended to be larger and more variable at the South Survey Area. This effect may be caused by variations in thickness and types of the fill materials which are reportedly present throughout the South Survey Area.

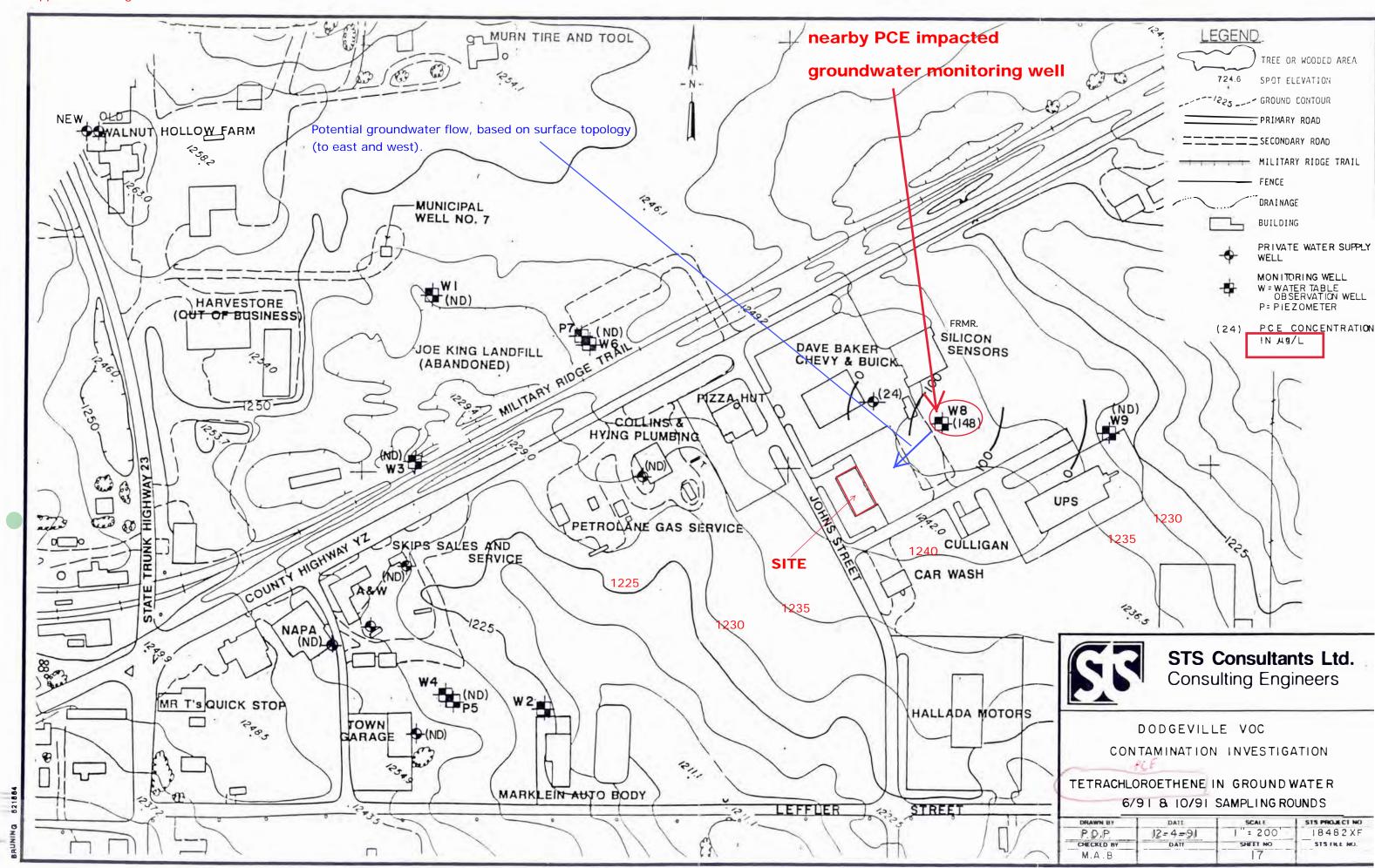


TABLE 3 Summary of Private Well Data

<u>Well</u>	Depth to Bottom of Casing (ft)	Formation Casing Set in	Total Depth (ft)	Deepest Formation Penetrated	Contamination Present	Depths Fractures Noted Δ
NAPA	37	Galena	126	Platteville	Yes	7
A & W	54	Galena	136	Decorah	Yes	_
Skips	42	Galena	83	Galena	Yes	
Collins	44	Galena	169	Platteville	No	
Dave Baker	50	Galena	216	St. Peter	Yes	58; 133–137′
Township	64	Galena	144	Platteville	Yes	
DMW #7	243	Prairie De Chien	705	Wonewoc	Yes	
Walnut Hollow Farms	48	Galena	99	Galena	No	
Mr. T's*	45	Galena	166	Platteville	No	
Little Rock*	46	Galena	235	St. Peter	Yes	
Starr*	50	Galena	310	Prairie Du Chien	No	
Morton*	50	Galena	320	Prairie Du Chien	No	

Depth to bottom of casing and total depth from well constructor's reports Fracture determination from borehole televiewer

TABLE 5
Vertical Hydraulic Gradients (1991)

			Average	Minimum Length	1	
Well Nest	<u>Date</u>	Head Diff. (feet)	Between Filter Packs (feet)	Between Filter Packs (feet)	Average Gradient (ft/ft)	Maximum Gradient (ft/ft)
W4/P5	6/91	-0.81	34.9	23.6	-0.02	-0.03
	11/91	-1.17	34.9	23.6	-0.03	-0.05
W6/P7	6/91	-15.20	36.9	25.5	-0.40	-0.60
	11/91	-11.60	36.9	25.5	-0.31	-0.45
W10/P11	6/91	-0.59	30.7	24.4	-0.02	-0.02
	11/91	-1.03	30.7	24.4	-0.03	-0.04
Note:						

Negative sign indicates downward gradient.

Appendix A - Page 10

Wisconsin Department of Natural Resources STS Project No. 18482XF August 6, 1993

groundwater contamination was greater than estimated at the inception of this project. Therefore, the number of wells deemed necessary to delineate the extent and possible sources of contamination exceeded the original scope of work developed for the investigation. Based on discussions between WDNR and STS personnel, the scope of the Phase II work was modified to focus on areas near Silicon Sensors, DMW-7, and the abandoned Joe King Landfill.

Results of Phase I indicated that trichloroethene (TCE) is entering DMW-7 between the depths of 288 and 410 feet. It also appears that the majority of groundwater flow into DMW-7 occurs across the same interval. Based on the groundwater chemistry data collected during Phase I, there appear to be multiple contaminant plumes present in the study area. These plumes appear to eminate from multiple possible sources of contamination. Silicon Sensors appears to be the source of contamination documented in Monitoring Well W-8 and the private water supply well at Dave Baker Chevrolet. Monitoring Well W-3 appears to be at or near the center of another plume of which the Joe King Landfill may be the source. Marklein Auto Body may be the source of another plume. The source of another plume present in the area of Skip's Sales and Service, the Dodgeville Township Garage, and Napa Auto Parts is not defined.

The actual Phase II work was conducted to define a hydraulic connection between Monitoring Well W-8 and the private water supply well at Dave Baker Chevrolet, determine the vertical extent of contamination at the Joe King Landfill, and to evaluate bedrock aquifer characteristics in the area around DMW-7 and the abandoned Joe King Landfill.

APPENDIX B

WDNR ENDANGERED RESOURCES PRELIMINARY ASSESSMENT

Ramboll Environment & Health

Endangered Species Table Former Dry Cleaner 1305 N Johns Street Dodgeville, Wisconsin Ramboll Project 1690020998

Scientific Name	Common Name	WI Status	Federal Status	Group
Empidonax virescens	Acadian Flycatcher	THR		Bird
<u>Vireo bellii</u>	Bell's Vireo	THR		Bird
Setophaga cerulea	Cerulean Warbler	THR	SOC	Bird
Setophaga citrina	Hooded Warbler	THR		Bird
Centronyx henslowii	Henslow's Sparrow	THR	SOC	Bird
<u>Speyeria idalia</u>	Regal Fritillary	END	SOC	Butterfly
Pine relict	Pine Relict	NA		Community
<u>Dry prairie</u>	Dry Prairie	NA		Community
<u>Argia plana</u>	Springwater Dancer	SC/N		Dragonfly~
Noturus exilis	Slender Madtom	END		Fish~
Acris blanchardi	Blanchard's Cricket Frog	END		Frog~
Lithobates palustris	Pickerel Frog	SC/H		Frog~
Arnoglossum plantagineum	Prairie Indian-plantain	SC		Plant
Paronychia canadensis	Smooth Forked Nail-wort	SC		Plant
Lespedeza violacea	Violet Bush Clover	SC		Plant
Pediomelum esculentum	Prairie Turnip	SC		Plant
Agalinis gattingeri	Roundstem Foxglove	THR		Plant
Napaea dioica	Glade Mallow	SC		Plant~
Sullivantia sullivantii	Sullivant's Cool-wort	SC		Plant~
Terrapene ornata	Ornate Box Turtle	END		Turtle

Last revised: October 13, 2021

Notes:

END = Endangered Species.

THR = Threatened Species.

SC & SOC = Species of Concern.

SC/N = no laws regulating use, possession, or harvesting.

M = Monitored.

Endangered Resources Preliminary Assessment

Created on 7/23/2021. This report is good for one year after the created date.

DNR staff will be reviewing the ER Preliminary Assessments to verify the results provided by the Public Portal. ER Preliminary Assessments are only valid if the project habitat and waterway-related questions are answered accurately based on current site conditions. If an assessment is deemed invalid, a full ER review may be required even if the assessment indicated otherwise.

Results

A search was conducted of the NHI Portal within a 1-mile buffer (for terrestrial and wetland species) and a 2-mile buffer (for aquatic species) of the project area. Based on these search results, below are your follow-up actions.

No further action is necessary.

This project is covered by the Broad Incidental Take Permit/Authorization for No/Low Impact Activities (No/Low BITP/A) (https://dnr.wi.gov/topic/ERReview/ITNoLowImpact.html). This BITP/A covers projects that the DNR has determined will have no impact or a minimal impact to endangered and threatened species in the state. Due to this coverage under the No/Low BITP/A, a formal review letter is not needed and there are no actions that need to be taken to comply with state and/or federal endangered species laws, any take that may result from the proposed project is permitted/authorized.

A copy of this document can be kept on file and submitted with any other necessary DNR permit applications to show that the need for an ER Review has been met. This notice only addresses endangered resources issues. This notice does not constitute DNR authorization of the proposed project and does not exempt the project from securing necessary permits and approvals from the DNR and/or other permitting authorities.

Project Information

Landowner name

Project address 1305 N Johns Street

Project description Retail Store: BRRTS 02-25-587099

■ Project Questions

Does the project involve a public property?	No
Is there any federal involvement with the project?	Yes
Is the project a utility, agricultural, forestry or bulk sampling (associated with mining) project?	No
Is the project property in Managed Forest Law or Managed Forest Tax Law?	No
Project involves tree removal?	No
Is project near (within 300 ft) a waterbody or a shoreline?	No
Is project within a waterbody or along the shoreline?	No

Does the project area (including access routes, staging areas, laydown yards, select sites, source/fill sites, etc.) occur **entirely within** one or more of the following habitats?

Urban/residential	Yes
Manicured lawn	No

Artificial/paved surface

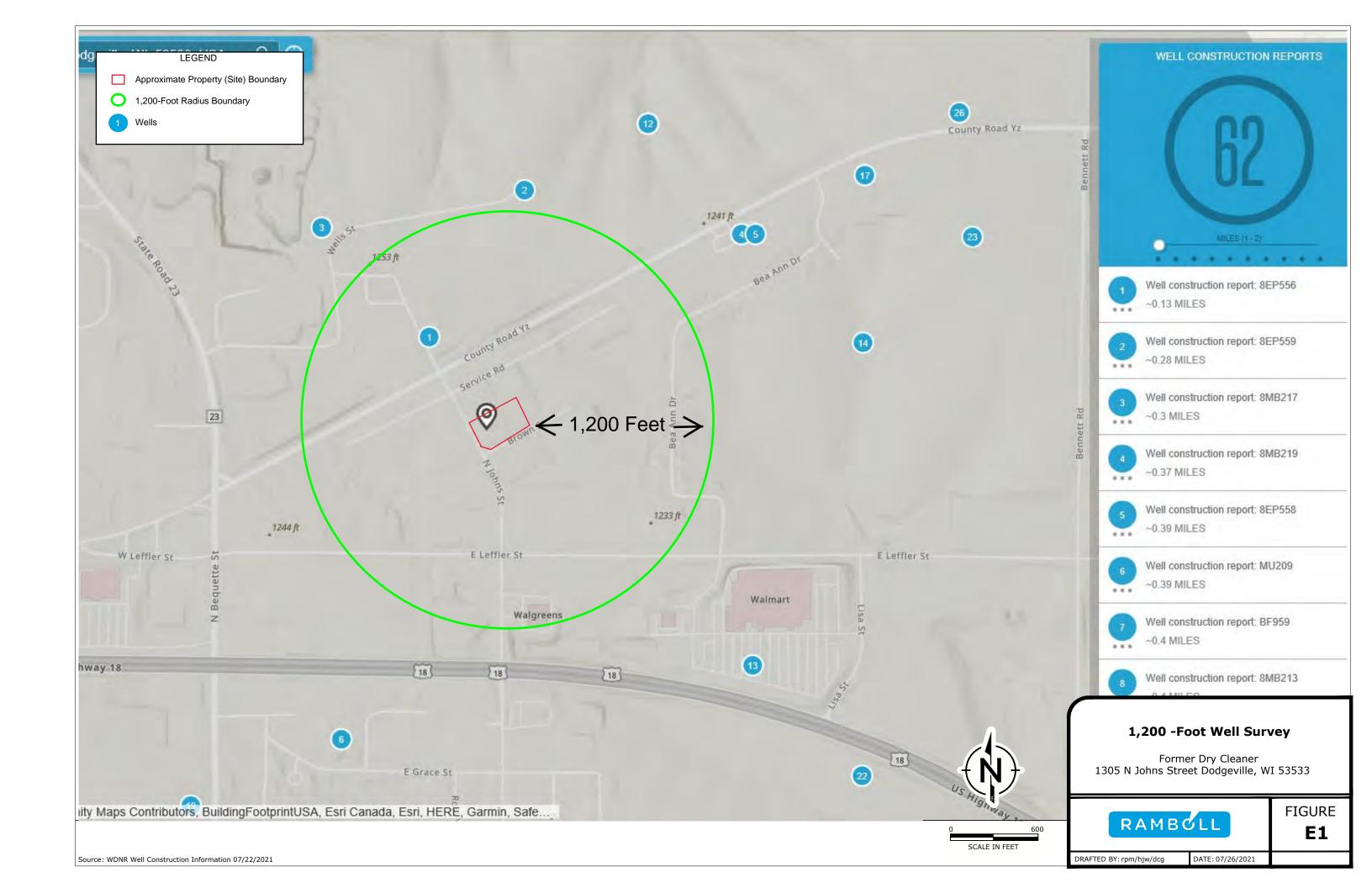
Agricultural land

Areas covered in crushed stone or gravel

No

The information shown on these maps has been obtained from various sources, and is of varying age, reliability and resolution. These maps are not intended to be used for navigation, nor are these maps an authoritative source of information about legal land ownership or public access. Users of these maps should confirm the ownership of land through other means in order to avoid trespassing. No warranty, expressed or implied, is made regarding accuracy, applicability for a particular use, completeness, or legality of the information depicted on this map. For more information, see the DNR Legal Notices web page: http://dnr.wi.gov/legal/.

https://dnrx.wisconsin.gov/nhiportal/public


101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921

APPENDIX C

POTABLE WELL SURVEY

Ramboll Environment & Health

WELL CONSTRUCTOR'S REPORT FORM 3300-15

NOTE
WHITE COPY - DIVISION'S COPY
GREEN COPY - DRILLER'S COPY

STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES Box 450 Madison, Wisconsin, 53701

									OPY — OF			17,00	(301), 141	3CO113111 DQ	,,,	
1. COUNTY	.					СН	ECK O					NAME				
	Iowa				[X	Tow	<u> </u>		Village		☐ City	Do.	dgevi	11e		
2. LOCATIO	1	Section		_ 1	Township	1	Range				TIME OF D	_				
OR – Grid or		SW_		2 t name	6N	L <u> </u>	3 <u>e</u>				Oodgevi.	lle				
OK - OIM O	street no.	ļ	Suce	t name				:	ADL	RESS						
AND -If ava	ilable subdiv	ision name	, lot &	block n	10.				POS	T OFFIC	Œ		<u> </u>			
	<u> </u>										Le, Wis	consin				
4. Distance	in feet from	m well to	neare	st:	BUILDIN		IITARY I. I.	SEWER TILE	FLOOR C. I.			INDATION DRAIN INECTED/INDEP		WASTE C. I.	WATE	R DRAIN
(Reco	ord answer in	appropria	te bloc	ck)	12					- [İ	11111
CLEAR WAT		SEPTIC 1	ANK	PRIVY	SEEPAG	R PIT	ABSO	RPTION	FIELD	BARN	SILO	ABANDONED V	VKIL S	INK HOLE		<u></u>
C. I.	TILE				<u> </u>											
		nor			<u> </u>			none				+				
OTHER POL	LUTION SO	URCES (G	ive de	scription	such as di	ump, q	uarry, d	rainage v	well, stre	am, pon	d, lake, etc.))	•			
5. Well is in	tended to	supply wa	ter fo	or:			<u> </u>			<u></u>						
		a-beach are			Pr	ivat	e res	sidenc	e		Are and a second					
6. DRILLH	OLE				_	· · ·			9. FC	RMAT	IONS					-
Dis. (in.)	From (ft.)	To (ft	.)	Dia. (in	.) Fron	n (ft.)	To (ft.)			Kind			From (f	t.}	To (ft.)
10	Surface	6 2							Clay	r de				Surface	e	3
	<u> </u>	- 			 -				<u> </u>	·	 -	- · · · · - · · · · · · · · · · · ·		-		
6	63	142	2		ĺ				g/61 e	na li	imestone	e		3		140
7. CASING	, LINER, C	URBING	, AN	D SCRI	EEN	-								<u> </u>		
Dia, (in.)	<u> </u>	Kind and V	Veight		Fron	n (ft.)	To (1	ft.)	Tre	iton 3	Lineston	ne		140	<u> </u>	142
6	New bla	ack st	d s	teel	Sur	face	63									
					·····		7				<u>-</u> _				+	
		18.97	#		-				_					<u> </u>	\dashv	
		P l air	end				<u></u>									
				'	\											
	·		- <u>-</u>		11	/								 		
						/										
8. GROUT	OR OTHE	R SEALI	NG M	ATER	IÁL /		<u> </u>		10. T	YPE OF	DRILLIN	IG MACHINE U	SED			
	Ki	ind			Fron	n (ft.)	To (f	1.)	□ Ca	ble Tool		Direct Rot	8ry	☐ Re	verse	Rotary
Neat c	m men t				\\/Surt	ace	63	,	☐ Ro	otary – a	ıir	Rotary – I	ammer	Jei	tting v	with
1.000				•				<u></u>		drilling r		with delitions				₩ ater
									Well c	onstruc	tion comp	leted on		11-2	15	9 73
11. MISCEI Yield test:	LLANEOU	S DATA	2	Hrs. a	t	1	2 (3PM	Well is	termin	ated	12 inches	<u>_</u>	abova	fir	nal grade
							50		Well d	isinfect	ed upon ex		,,	<u>x</u>	Yes	
Depth from	SULLING TO	normai w	ater i	64 0 1				ft.								
Depth to wa	iter level w	hen pump	gnic				60	ft.	Well 50	aled W	atertight u	pon completion		<u> </u>	Yes	∐ No
	Vater sample sent to Madison, Wisconsin Your opinion concerning other pollution hazards, information concer											oratory on:		11-		¹⁹ 73
Your opinion type of casing the given on the	ig joints, m	ethod of	olfuti finish	ion haz ing the	ards, info well, am	rmatio	on cond of ceme	cerning ent used	difficul I in grou	ties end Iting, bl	ountered, lasting, sub	and data relation o-surface pumpro	g to nea coms, a	arby wells ccess pits,	, scre , etc.,	ens, seals, , should
SIGNATURE	Λ.	0	-		_				COMPI	ETE MA	AIL ADDRI	SS	•			
Toler		ick	200	sd	Register	d Wel	I Drifte	r	L) arc	len.	Trio	,			
コウカヘル	17 ' "		-	~7		C1		_ 4 4	~		- • F					

Please do not write in space below

GAS – 24 HRS.

GAS - 48 HRS.

CONFIRMED

REMARKS

REV. 3-71

COLIFORM TEST RESULT

WDNR High Capacity Search Report

1. Source No, 11230

Hicap Well No, N/A

WI Unique Well No, RR872

Property No, 11001

Owner, DODGEVILLE, CITY OF – UTILITY

Operator, DODGEVILLE, CITY OF - UTILITY

Water Use Code, PS11

Well Approval Date, N/A

Well Construction Date, 03/04/2004

Pump Capacity (GPM), N/A

Approved Max Withdrawal (GPD), N/A

Description: This location contains a GPM High Capacity Well

2. Source No, 11232 11232 N/A

Hicap Well No, 79520

WI Unique Well No, BF970

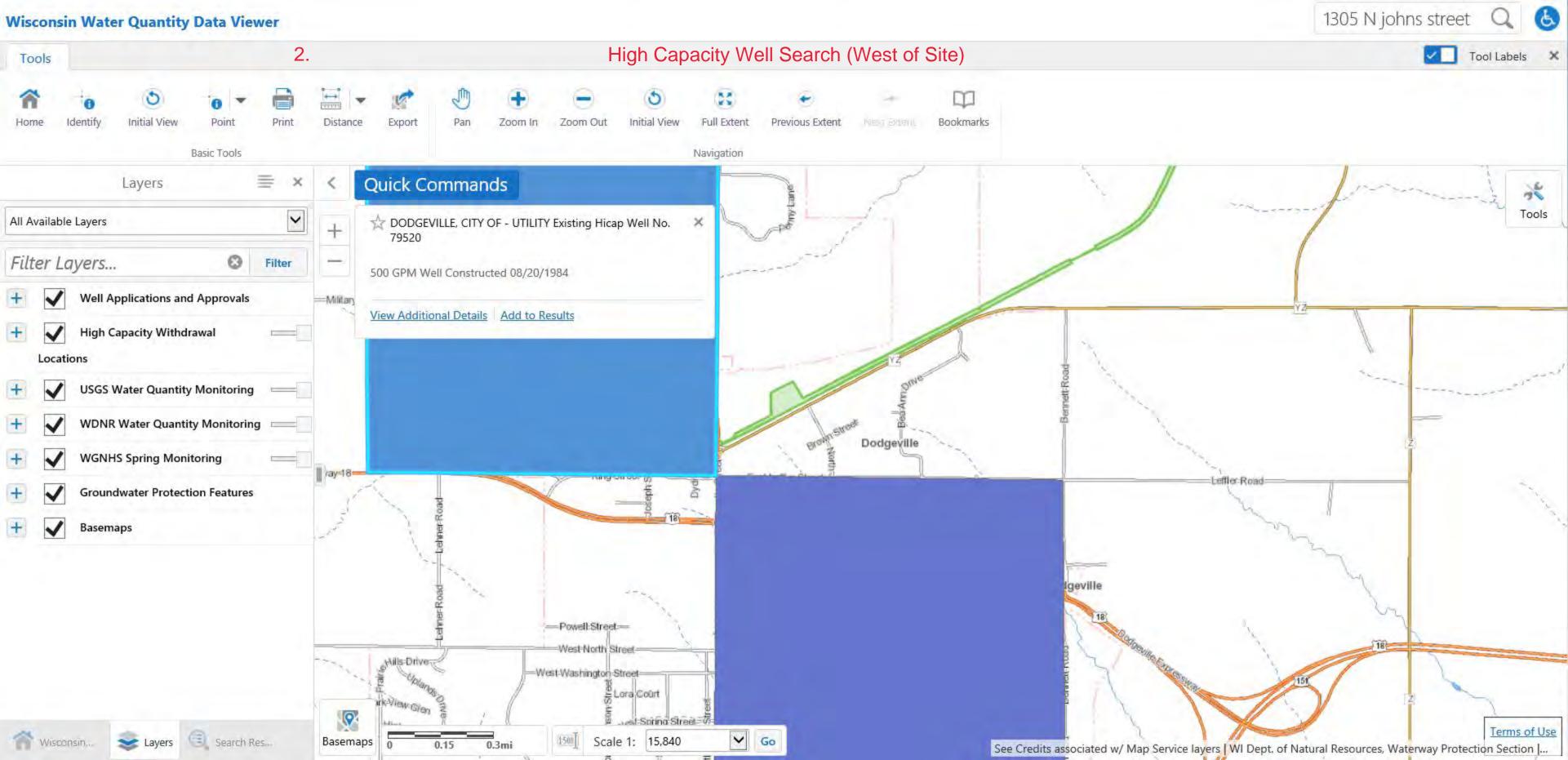
Property No, 11001

Owner, DODGEVILLE, CITY OF - UTILITY

Operator, DODGEVILLE, CITY OF - UTILITY

Water Use Code, PS11


Well Approval Date, 12/15/1983


Well Construction Date, 08/20/1984

Pump Capacity (GPM), 500

Approved Max Withdrawal (GPD), 720000

Description: This location contains a 500 GPM High Capacity Well

APPENDIX D

BORING LOGS, AND ABANDONMENT FORMS

Ramboll Environment & Health

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro		ntershed/Watershed/Watershed	astewater Redevelopment	Waste Other	Manag	ement								
														Pag	ge 1	of	1
	y/Projec							e/Permit/		ring Nu	mber		Boring	Numbe		_	
				LE STORI		4 F:		5-5870			ID-	t- D.:11:	C	1.41	SB		: M-41 1
_		-		f crew chief (fi	ırst, Iast) ar	nd Firm	Date D	rilling S	tarted		Da	te Drilli	ng Con	npietea		Drill	ing Method
	e Heir nboll	nstea	u					7/7/	2020				7/7/2	020		ha	nd auger
	nique W	ell No.		DNR Well I	D No.	Common Well Name	Final S	tatic Wa		el S	Surfac	e Elevat			Во		Diameter
								Feet I	MSL				t MSl			3.0	inches
	Grid Or	igin	(es	timated:		ing Location 🖂	1	.at	0	,	"	Local C	irid Loc				
	Plane	c CI	X7 1	/4 CG /:	N, 22,	E			0	,			Г.	□ N □ S			□ E
SE Facilit		of S	VV 1	/4 of Section Count		T 6 N, R 3 E	County C	ng Code	Civil T	own/Ci	 tv/ or V	Village	Feet	<u> </u>		-	Feet W
	,			Iowa	•		25		Dodg			8-					
San	nple						-						Soil	Prope	erties		
	8 (ii	70			Soil/Re	ock Description											
4)	vtt. d	unts	Fee			ologic Origin For						SSIVE					ıts
lber Typ	gth /	ပိ	l la			h Major Unit		CS	hic	ram Tam	[H	pre:	sture	pi .t.	ticity X	0)/ mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet					S D	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1 CS	6		_	CONCRE'	<u>TE</u>			1	9 4 9		2.7	0 02					
CS	6		-						9 4 7								
			F I						0 0 0								
2	6		-0.5	FILL: fine	to mediu	m sand, brown, mo	ist.				3.1						
2 CS	6		-			, ,		FILL									
								TILL									
3 H	6		-1.0	FILL: fine	to mediu	m sand, light brown	n to				2.5						Soil Sample
3 CS	6		-	cream, moi		in sand, fight brown	110	FIL I			2.3						1-2 ft
			-					FILL									
, H	6		-1.5	FII I . fina	to modin	m sand, trace fine					3.0						
4 CS	6 6			light brown	i to mediu i to cream	ın sand, trace iine ş ı, moist.	gravei,				3.0						
			-	C													
. H			$\begin{bmatrix} -2.0 \end{bmatrix}$					FILL									
5 CS	6		- 1								2.9						
			F														
L			-2.5														
6 CS	6		-	SILTY CL	AY, trace	e fine to coarse sandoist, slightly plastic	d,				2.8						
			F	orown, ver	<i>y</i> 50111, 111	oist, siightly plastic		CL-M	4								
			_3.0														
			3.0	End of bori	ing at 3 ft	bgs											
			1		<u> </u>	4			1								
heret Signat		y that 1	ine into	rmation on this	s form is tr	ue and correct to the b											
ngnal	uic					100	umboll U 4 W. Florid				aukee	WI 533	204				262) 901-0094 262) 901-0079

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Ro</u>			astewater Redevelopment		aste M	_	ement								
7 11.	/D :	. 3.7					1.	/D	•.,			- 1		ъ :	Pag		of	1
	y/Projec			ALE STORE	,			ense/Po 2-25-		Monito	ring N	umber		Boring	Numbe	sr SB	2	
				f crew chief (fir		nd Firm		e Drill				Da	ıte Drilli	ng Con	nleted	סט		ing Method
Kyl	e Heir nboll	-							_	2020				7/7/20				nd auger
	nique W	ell No.		DNR Well ID) No.	Common Well Nam	e Fina	ıl Stati		ter Leve	el	Surfac	e Elevat		020	Во		Diameter Diameter
								F	eet N	MSL				t MSI	_		3.0	inches
	Grid Or	igin	(es	stimated: ()		ing Location 🛛				0	,	-,-	Local C	irid Loc	cation			
State						E S/C/N		Lat							\square N			□Е
SE		of S	W 1	/4 of Section	22,	T 6 N, R 3 E		Long		<u> </u>	<u>'</u>			Feet	\square S]	Feet W
Facilit	y ID			County			Count	y Cod	le	Civil T		-	Village					
-	1			Iowa	ļ.		25			Dodg	eville)	1	G '1	<u> </u>	. •		1
San	nple													Soil	Prope	rties		-
	Length Att. & Recovered (in)	ts	set		Soil/R	ock Description							,e					
ے او	Att.	Blow Counts	Depth In Feet		And Ge	ologic Origin For					l g		SSiv	e		ty (nts
nbe Tyl	gth	S	th I		Eac	h Major Unit			CS	phic	II grar	/FII	npre ingtl	Moisture Content	uid iit	Plasticity Index	00	D/ nme
Number and Type	Len	Blo	Dep						Ω	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
1 CS	6			ASPHALT								0.0						
CS	6																	
			-															
Ш			-															
Ш			-															
, H	6		-0.5	FILL fine	to coorse	sand and gravel, s	noma					0.0						Soil Sample
2 CS	6		-	cobbles, loo	io coarse se, dry.	sand and graver, s	SOITIC					0.0						0.5-1.5 ft
			_	,	, ,													
Ш																		
Ш			-1.0						FILL									
3 CS	6		1.0						FILL			0.0						
CS	6																	
			_															
			-															
			-															
Ц			-1.5	Refusal at 3	ft bgs					<u> </u>	1	0.0						
				11010001 000	10 0 80													
hereb	y certif	y that t	the info	rmation on this	form is tr	ue and correct to the	best of n	ny kno	owledg	ge.								
Signat	ure						amboll 34 W. Flo						, WI 532	204				(62) 901-0094 (62) 901-0079

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Ro</u>		Watershed/Wa Remediation/F	astewater Redevelopment	Waste Other	_	ement								
														Pag	ge 1	of	1
	y/Projec			LE CEC			License/			ring Nu	mber		Boring	Numbe			
				ALE STO	KE (first, last) an	nd Firm	02-25 Date Dri				Dat	te Drilli	ng Con	nnleted	SB		ling Method
	e Heir	-		r crew cinici	(III3t, Iust) un	KG I IIII	Dute Di	illing 50	urted		Da	ic Dillin	ing Con	приссе			ing weilou
Rar	nboll								2020				7/7/2	020			nd auger
WI Ur	nique W	ell No		DNR Well	l ID No.	Common Well Name		itic Wa Feet I		el	Surface	Elevat	ion t MSI	r	Bo		Diameter inches
Local	Grid Or	igin	(es	stimated:) or Bori	ng Location 🛛	1	reet 1				Local G				3.0	Iliches
State	Plane		_ `		N,	E S/C/N	La	ıt	<u> </u>	<u>'</u> —				□N			□Е
SE		of S	W 1	/4 of Section		T 6 N, R 3 E	Lon		°		<u>"</u>	7:11	Feet	\square S			Feet W
Facilit	y ID				unty wa		County Co	ode	Civil To			/illage					
San	nple			10	'''		123		Doug	Vine			Soil	Prope	rties		
			+		Soil/Ro	ock Description											=
(h	Att. &	unts	Fee			ologic Origin For				_	_	ssive			_		nts
nber Typ	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Eacl	h Major Unit		CS	Graphic Log	Well Diagram	PID/FID	ngth	sture	bit it	Plasticity Index	0)/
Number and Type	Len	Blo	Dep					S O	Grap Log	Well Diagr	PID	Compressive Strength	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
1 CS	6		_	TOPSOI	<u>IL</u>				7/3 . 7/		0.0						
CS			_						7.7.7								
2 CS	6		-0.5	FILL: fir	ne to coarse	sand and gravel					0.0						
CS	6		-	(roadbase	e), tan, loose	e, dry.		FILL									
,	6		-1.0	CH TV (OI AV two or	fue to come con	1				0.0						
3 CS	6		-	brown, n	noderately s	e fine to coarse sand stiff, moist, plastic.	1,				0.0						
			_ 1.5														
4 CS	6										0.0						
			_														
5	6		-2.0					CL-MI			0.0						Soil Sample
CS	6		-														2-3 ft
6	6		-2.5								0.0						
CS	6		-								0.0						
			3.0	End of bo	oring at 3 ft	bgs					0.0						
		y that	the info	rmation on th	his form is tru	ue and correct to the b											
Signat	ure						mboll US W. Florida				aukee	WI 532	204				262) 901-0094 262) 901-0079

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Ro	oute To:	Watershed/V Remediation	Wastewater n/Redevelopn	nent I	Waste Other	_	ement								
															Pag	ge 1	of	1
	ty/Projec			ALE CT	CORE			License			ring Nu	ımber		Boring	Numbe		1	
				ALE ST	nief (first, last)	and Firm		Date Dr	5-5870 illing St			Da	ite Drilli	ng Con	npleted	SB		ing Method
Ga	ge Kap	ugi							8						1			8
					vices, Inc.		** 11 > *	T' 10		/2021				4/23/2	2021	15		rect push
WIU	nique W	ell No	•	DNR V	Well ID No.	Common V	Well Name	Final Sta	atic Wa Feet l		el	Surfac	e Elevat Fee	tion et MS	Γ.	Во		Diameter inches
	Grid Or	igin	(ea	stimated:		oring Location				0	, -	,,	Local C					<u> </u>
	Plane	- 01			N,	E \$/0		L						_	□ N			Е
SE Facili		of S	W 1	/4 of Sec	County 22,	T 6 N	, R 3 E	Lon County Co	ig ode	Civil T	own/Ci		Village	Feet	: □ S]	Feet W
	-7				Iowa			25			geville	-	8-					
Sai	nple													Soil	Prope	erties		
	% (ii)	its	set			Rock Descrip							e					
ير غو	Att	Coun	In Fe			Geologic Orig			N N	ွ	 E		essiv	ıre		ity		ents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Ea	nch Major Un	nit		SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
<u>Ź</u> w 1 ■	60	B	Ď	_ ASPH	IAI T				D	G Z	ĭ Ñ	<u> </u>	S C	Σŭ	<u> </u>	Pl In	Ъ	<u> </u>
1 CS	46		E		fine to coars	se sand, yell	low, soft, 1	moist,	FILE			0.1						0.10.1
ı			1.5	loose.					FILL			0.1						Soil Sample 1-2 ft
ı				SILT	<u>Y CLAY,</u> tra vish brown, s	ce fine to co	parse sand	, dark				0.2						
ı			-3.0	yenow	visii biowii, s	, moisi, _l	mastic.		CL-M			0.3						
ı			4.5									0.2						
2	60		- 4.5	SILT	Y CLAY, tra	ce fine to co	narse sand					0.2						
2 CS	60		6.0	brown	n, stiff, moist,	plastic.			CL-M			0.2						
ı			E	SILT reddis	Y CLAY, tra sh yellow, stif	ce fine to co	oarse sand	,	CL-M									
ı			7.5	154415	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, meies, p.e						0.1						
ı				SILT	Y CLAY, tra	ce fine to co	parse sand	,				0.2						
			9.0	yenow	vish red, stiff	, moist, pias	suc.		CL-M	4		0.2						
3	60		10.5	SILT	Y CLAY, tra	ace fine to c	oarse sand	d.				0.2						
3 CS	60		F 10.3	yellov	wish brown, s	stiff, moist,	plastic.	,				0.2						
			12.0															
									CL-M			0.2						
ı			13.5						CL-IVI			0.2						
ı			E									0.2						
4	36		15.0									0.0						
CS	36		- 16.5	CLAY	Y, with fine to	o coarse san	d. strong l	orown.	CI			0.0						
ı			-16.5	stiff, r	moist, plastic.	•			CL			0.1						Soil Sample
[J		18.0	<u>CLAY</u> √BEDF	<u>Y,</u> strong brov ROCK	wn, soft, we	t, plastic.		LL		4							17-18 ft
					al at 18 ft bgs	<u> </u>		/				0.0						
I here	by certif	v that	the info	rmation o	on this form is	true and corr	ect to the be	est of my b	nowled	ge								l
Signa	-	_J mai	IIII	iiiuuoii (on and 101111 18		т.	mboll US			T Inc						Tel: (2	(62) 901-0094
_							1141	W. Florida				aukee	, WI 532	204				.62) 901-0094 .62) 901-0079

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			<u>Ro</u>	oute To:	Watershed/W Remediation			Waste Other	_	ement								
															Pag		of	1
	y/Projec			ALE CE	ODE			License/			ring Nu	mber		Boring	Numbe		5	
				ALE STO	OKE ief (first, last) a	nd Firm		02-25 Date Dri				Da	te Drilli	ng Con	npleted	SB		ing Method
Gag	ge Kap	ugi													•			
	Site E				ices, Inc. Vell ID No.	Common I	Well Name	Final Sta		/2021	.1	Cumfoo	e Elevat	4/23/2	2021	Day		rect push Diameter
WIUI	nque w	en No) .	DINK W	veii iD No.	Common	wen Name		Feet I		21	Surrac		t MSI		BO.		inches
	Grid Or	igin	(es	stimated:		ing Location		-		0	,	,,	Local G			<u> </u>		
State SE	Plane	of S	V V 1	/4 of Sect	,	E \$\sqrt{6} N.	C/N , R 3 E	La		0	,			East	□ N □ S		,	☐ E Feet ☐ W
Facilit		01 3	VV I		County	1 0 N,	, К Э Е	Lon County Co		Civil T	own/Ci	<u></u> ty/ or \	Village	reet	<u> </u>			reet 🗀 w
]	Iowa			25		Dodg	eville		ı					1
San	nple													Soil	Prope	rties		-
	t. & (in)	nts	eet			lock Descrip							Ne					
ype	h At ⁄ered	Cou	In F			eologic Origi ch Major Un			S	iic	am	Д	ressi	ure	-	city		nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		Lac	ni wajoi On	ш		USC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
CS CS	60		E	FILL:	fine to coars	e sand and	gravel, dr	y,	Fill			<u>ц</u>	0 8	<u> </u>	пп	I I	Ь	<u> </u>
CS	54		E -1	\loose.														
			<u> </u>	brown,	Y CLAY, trace, stiff, moist,	se tine to co slightly pla	oarse sand istic.	i, dark				0.2						Soil Sample 1-2 ft
			_2						CL-MI			0.1						
			Ė,															
			_3									0.1						
			<u>-</u> 4	SILTY vellow	Y CLAY, tractish brown, st	e fine to co	oarse sand olastic.	l, dark				0.2						
			E	,	,	,, <u>r</u>			CL-MI			0.2						
2 CS	60		<u>-5</u>									0.1						
CS	60		<u>-</u> 6	~~~														
			Ė	reddish	Y CLAY, trach h yellow, stiff	e fine to co , moist, pla	oarse sand astic.	l,				0.1						
			7		•				CL-MI			0.1						
			E -8															
			E *	SILTY vellow	Y CLAY, trace rish red, stiff,	e fine to co	oarse sand	l,				0.2						
			_9	yenow	isii ica, siiii,	moist, pias	itic.		CL-MI			0.1						
			Ė ,,															
3 CS	60 39		10	SILTY	Y CLAY, tra	ce fine to c	coarse					0.1						
CS	37		-11	sand, c	dark brown, s	tiii, moist,	, piastic.					0.1						
			E						CL-MI			0.1						
			12									0.1						Soil Sample
			E ₁₃	D C	1 . 10 0 1	<i>(</i> 1 1 1)												12-13 ft
				Ketusa	al at 13 ft bgs	(bedrock)						0.1						
herel Signat	-	y that	the info	rmation o	n this form is t													
ngnat	uic							mboll US W. Florida				aukee,	WI 532	204				262) 901-0094 262) 901-0079

SOIL BORING LOG INFORMATION

Form 4400-122

Rev. 7-98

			Ro	ute To:		Wastewater		e Manag	gement								
					Remediation	n/Redevelopment	Othe	r 📙									
Facilit	y/Projec	et Nam	ie				Licens	e/Permit	/Monito	ring Nu	ımber		Boring	Pa Numb		of	1
RE'	TAIL	WHC	DLESA	ALE ST			02-2	25-587	099						SB		
		-	Name of	f crew ch	hief (first, last)	and Firm	Date I	Prilling S	tarted		Dat	e Drilli	ng Coi	npletec	l	Drill	ling Method
Gaş On-	ge Kap Site E	ougi Inviro	nmen	tal Serv	vices, Inc.			4/23	3/2021				4/23/	2021		di	rect push
WI Uı	nique W	ell No			Well ID No.	Common Well Name	e Final S	Static Wa		el	Surface			-	Bo		Diameter
Local	Grid Or	rioin	(es	timated:	or B	oring Location 🛛		Feet	MSL		1	Fee Local C	et MS			2.3	inches
State		19111		diffaced.	N,	E S/C/N]	Lat	<u> </u>	<u>'</u> —	"	Locui	JIIG LO		N		□Е
SE		of S	W 1	/4 of Sec		т 6 N, R 3 Е		ng	°	<u>'</u>			Fee	t 🗆 S			Feet W
Facilit	y ID				County Iowa		County 0	Code	Civil T	own/Ci geville	-	illage					
Sar	nple				Iowa		23			VIIIC	<u> </u>		Soil	Prop	erties		
	1	**	#		Soil	Rock Description									T		1
. e	Att.	ounts	n Fee			Geologic Origin For						ssive	မ		S		nts
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		E	ach Major Unit		SCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	9	RQD/ Comments
		Blo	Del					n s	Grap	Well Diagr	II.	Str	ಕ್ತಿ ವ	Liquid	Plastic Index	P 200	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1 CS	60 54		E	TOPS	<u>SOIL</u>				7, 7,1	1							
			_ 0.5						<u>. i i, i</u>								
			-						1/2 1/1/	:							
			-1.0	EII I	. traca fina t	o coarse sand, dark			XXXX	·/	0.2						Soil Sample
			-	yellov	wish brown,	stiff, moist, plastic.				}	0.2						1-2 ft
			1.5							}							
			-					FILI	·	1							
			2.0								0.2						
			E							\$							
			-2.5	FILL	: fine sand, b	rownish yellow, soft	, moist,	_									
			E	loose.				FILI	·	3							
			-3.0	FILL	: fine sand, y	ellow, soft, moist, lo	ose.			\$	0.2						
			E							}							
			3.5 							}							
			F					FILI	· 💥	}							
			4.0								0.2						Soil Sample 4-5 ft
			- -4.5														4-3 10
			- 4.3	BEDI	<u>ROCK</u>												
			- -5.0							\$							
			3.0	Refus	sal at 5 ft bgs						0.2						
I herel	y certif	y that	the info	rmation o	on this form is	true and correct to the	best of my	knowled	lge.								
Signat	ure			,,			amboll (262) 901-0094
		K	4	<u>/</u>		23	4 W. Flori	da St., F	ifth Floo	r Milw	aukee,	WI 53	204			Fax: (2	262) 901-0079

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

Section of the second	C30,007,002,00	Route	to DNR Bureau:						
▼ Verification Only of Fill and Seal		al 🗀	Drinking Water Waste Manageme		Watershed/Wa	Remed	Remediation/Redevelopment		
1. Well Location Infor	matian		vaste wanageme		Owner Info	-mation			
County	Facility Name		imation						
IOWA	WI Unique Well # Removed Well	f of Hicap #		PETAIL	WHOLES	PALE STOPE			
Latitude / Longitude (see i	nstructions)	Format Code	Method Code	Facility ID (FI	D or PWS)				
A STATE OF THE PARTY OF THE PAR			GPS008	NON					
		⊠DD	SCR002	License/Perm	it/Monitoring #				
90.126	W	DDM	☐OTH001	02-25	-58709	٩			
1/411/4 SE 1/4 SE	Section	Township	Range X E	Original Well					
or Gov't Lot #	22	060 N	1 03 M			ELL REAL I	STATE	LLC	
Well Street Address				Present Well		- 2.70			
1305 N JOH						ELL PETIL E	SIME	LLC	
Well City, Village or Town		1.00	I ZIP Code		ess of Present				
PODGEVILLE			73533	City of Preser	BERG R	LIAV	Tetata	ZIP Code	
Subdivision Name		Lota	#	1 2 200	VILLE		State	53533	
Decree for Decree 14	Camina han	-i \A/!I -f - 6 -				, Casing & Sea			
Reason for Removal from	D	nique Well # of R	eplacement Well		piping remove			Yes ☐ No 🔀 N/A	
SCIL BORING				Liner(s) rei				Yes No No NA	
3. Filled & Sealed We				Liner(s) pe			H	Yes No ANA	
Monitoring Well	Original C	construction Date		Screen ren				Yes No ✓ N/A	
Water Well		04/23/20	21	Casing left in place?					
Borehole / Drillhole		Construction Rep	oort is available,	Was casing cut off below surface? Yes No ✗ N/A					
	please at	tacn.		Did sealing material rise to surface?					
Construction Type:		. —		1	al settle after 2			Yes No N/A	
	Driven (Sandpoint) Di	ug	1	was hole retor		-	Yes No N/A	
✓ Other (specify): Day	PLEET PUSH		-		and the second second	sed, were they hyd	drated		
Formation Type:					from a known		×	Yes No N/A	
✓ Unconsolidated Form	nation	Bedrock		Required Me	thod of Placing	Sealing Material			
Total Well Depth From Gr	ound Surface (ft.)	Casing Diamet	er (in.)	Conduc	ctor Pipe-Gravi	ty Conductor	r Pipe-Pum	ped	
		AC.			ed & Poured	Other (Ex	plain):		
Lower Drillhole Diameter	(in.)	Casing Depth	(ft.)	Sealing Mate	nite Chips) erials				
	()	NA	(/		ement Grout		Concrete		
Z.3		Pri			Cement (Concr	ete) Grout	Bentonite		
Was well annular space gr	routed?	Yes N	o Unknown		,	fonitoring Well Bo		•	
If yes, to what depth (feet)? Dep	th to Water (feet	:)	_	ite Chips		onite - Cen	•	
					ar Bentonite		onite - San		
						No. Yards Sacks			
5. Material Used to F				From (ft.)	To (ft.)	Volume (circl	e one)	Mud Weight	
PUZE GOLD 3/8	BENTONITE	CHIPS		Surface	18	0.51 A	-3		
6. Comments									
58-4									
7. Supervision of Wo	rk						DNR Us	e Only	
Name of Person or Firm 0		ling License #	Date of F	illing & Sealing	or Verification	Date Received	3.1.1.00	Noted By	
RAMBOLL US C	_		(mm/dd/)	MYY) OHIZ	3/2021				
Street or Route			100	Telephone Num		Comments			
234 W. FLORED	A ST FIT	TH FLOCK		()					
City			P Code		Person Doing		D	ate Signed	
MILWAUKEE		WE 8	53204		11			04/23/2021	

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Plant information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

▼ Verification Only of		al		t o DNR Burea Orinking Water Vaste Managen		Watershed/\	Wastewater	Remed	diation/Redevelopment			
1. Well Location Inform	ation				2. Facility	/ Owner In	formation					
	Removed Well				Facility Nan	2. Facility / Owner Information Facility Name PEPAL WHOLESPALE STOPE						
Latitude / Longitude (see instructions) Format Code Method Code 42.976 N DD GPS008						Facility ID (FID or PWS)						
-90 176 SCR002						mit/Monitorin	g #					
1/1/	W		DM	OTH001		02-25-587099						
or Gov't Lot #	25 250						Original Well Owner TRACE - MITCHELL REAL ESTATE, LLC					
Well Street Address					Present We				,			
1305 N. JOHA	US ST				TRAC	E-MITT	THELL PEAL	ESTATE	LLC			
Well City, Village or Town			Well	ZIP Code		ress of Prese		•	7			
PODGEVILLE			5	3533	3900	BERG	ROAD					
Subdivision Name			Lot #		City of Pres	ent Owner EVILLE		State WI	ZIP Code \$3\$33			
Reason for Removal from Ser	vice WI Un	ique Well	# of Re	placement Well	4. Pump,	Liner, Scre	en, Casing & S	ealing Mat	erial			
SUIL BOFING			-		Pump and piping removed? Yes No N/A							
3. Filled & Sealed Well /	Drillhole / B	orehole	Inform	ation		Liner(s) removed?						
Monitoring Well	Original C	onstructio	n Date	mm/dd/yyyy)		Liner(s) perforated? Yes No N/A						
Water Well	04/23/2021					Screen removed? Casing left in place? Yes No V N/A Yes No V N/A						
Borehole / Drillhole	If a Well Construction Report is available						Casing left in place?					
Construction Type:						Did sealing material rise to surface?						
☐ Drilled ☐ Driv	ven (Sandpoint) マエーアしらH		Dug		If yes	Did material settle after 24 hours? Yes ✓ No ☐ N/A If yes, was hole retopped? Yes ☐ No ✓ N/A						
Formation Type: Unconsolidated Formatic	on [Bedro	ck		with wate	r from a know	used, were they had no safe source? Ing Sealing Materia	×	Yes No N/A			
Total Well Depth From Ground Surface (ft.) Casing Diameter (in.)					Condu	Conductor Pipe-Gravity Conductor Pipe-Pumped Screened & Poured (Bentonite Chips) Other (Explain):						
Lower Drillhole Diameter (in.) Z.3		Casing D	epth (ft	.)	Sealing Mat			Concrete				
Was well annular space groute	d?	Yes [No	Unknown		Cement (Cond	, ,	★ Bentonite				
If yes, to what depth (feet)?	Dept	h to Wate	r (feet)			ng Wells and nite Chips	Monitoring Well B	oreholes Only ntonite - Cem				
					Granu	ar Bentonite	Ber	ntonite - Sand	Slurry			
Material Used to Fill W	/ell / Drillhol	е			From (ft.)	To (ft₋)	No. Yards, Sack Volume (cir	s Sealant or	Mix Ratio or			
PUZE GOLD 3/8 BEI	JE LOS	LHIPS			Surface	13		3-3-3-	Mud Weight			
6. Comments SB-5												
7. Supervision of Work Name of Person or Firm Doing	Eilling 9 Carl	. 1	anc J		**II:			DNR Use				
	_		nse#		illing & Sealing		Date Received		Noted By			
PAMPOLL US CON	SULITNG.	124		(mm/dd/)		3/2021						
234 W. FLORIDA.	ST FIFT	TH FLC	CR		「elephone Num ()	nber	Comments					
City		State		Code	Signature of	Person Doing	Work	Da	te Signed			
MILWAUKEE		WF	53	204	K	11			24/23/2021			

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involutely Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

✓ Verification Only of Fill and Seal				to DNR Orinking	R Bureau: Water		liation/Redevelopment				
			v	Vaste M	lanageme						
1. Well Location Infor							y / Owner In	formation			
Towa A	WI Unique Well # of Removed Well		Hicap #		Facility Name PETATL WHOLESPALE STOPE						
Latitude / Longitude (see in 42.976	Code			Facility ID (FID or PWS)							
04			SCR002		License/Permit/Monitoring #						
1//1/					TH001	02-25-587099					
14/14 SE 14 Sau Section Tow or Gov't Lot # Z2.			nship ÖN	Range	* × E	Original Well Owner TRACE - MITCHELL REAL ESTATE, LLC					
Well Street Address						Present We				,	
1305 N. JOH	INS ST					TRA	CE - MITZ	HELL BEAL	ESTATE	HC	
Well City, Village or Town			Well	ZIP Cod	de		dress of Preser		- /		
PODGEVILLE			5	353	3	3909	9 BERG	ROAD			
Subdivision Name			Lot #			and the second second	sent Owner		State	ZIP Code 535-33	
Reason for Removal from	Service WII	Jnique Well	# of Re	nlacem	ent Well	4. Pump,	Liner, Scree	en, Casing & Se	aling Mate		
SUIL BORING			., 01110	piacoini	CITE TTOIL		nd piping remov			Yes No ⋉N/A	
3. Filled & Sealed Wel	/ Drillhole /	Borehole I	nform	nation		Liner(s)	removed?			Yes No No N/A	
Monitoring Well		Construction			уууу)	Liner(s) perforated?					
	1	04/23	1700			Screen removed? Yes No N/A					
Borehole / Drillhole	If a Well Construction Report is available,					Casing left in place?					
Construction Type:	please	attach.				4	_			Yes No N/A	
Drilled Driven (Sandpoint) Dug Other (specify): DEEXT PUSH					Did sealing material rise to surface? ✓ Yes No N/A Did material settle after 24 hours? If yes, was hole retopped? ✓ Yes No N/A Yes No N/A						
Formation Type:	aa rosi					If benton		used, were they hy	drated 🔀	Yes No N/A	
✓ Unconsolidated Forma	ation	Bedroo	ck			Required M	lethod of Placin	ng Sealing Material			
Total Well Depth From Ground Surface (ft.) Casing Diameter (in.)					Conductor Pipe-Gravity Conductor Pipe-Pumped Screened & Poured (Bentonite Chips) Other (Explain):						
Lower Drillhole Diameter (in	n.)	Casing D	epth (ft	.)		Sealing Materials					
2.3		1	74			Neat Cement Grout Concrete Sand-Cement (Concrete) Grout ■ Bentonite Chips					
Was well annular space gro	uted?	Yes [] No	u	Jnknown		•	erete) Grout X Monitoring Well Boi		•	
If yes, to what depth (feet)?	De	pth to Water	r (feet)			Bentonite Chips Bentonite - Cement Grout					
							ular Bentonite	_	onite - Sand		
5. Material Used to Fil	I Well / Drillh	ole				From (ft.)	To (ft.)	No Yards Sacks	Sealant or	Mix Ratio or	
RUZE GOLD 3/8 8						Surface		Volume (circl		Mud Weight	
TOTAL COLLEGE TIS E	312-10)0(32	Curkz				Surface	5	0.14 7	-3		
6. Comments SB-6											
7. Supervision of Wor	k								DNR Use	Only	
Name of Person or Firm Do	oing Filling & Se		nse #				g or Verificatio	n Date Received		Noted By	
PAMPOL US CO Street or Route	NSULTING	1114		10	mm/dd/yy		23/2021				
Z34 W. FLORIDA	ST FT	PTH FLO	c2		Te 1	lephone Nu	mber	Comments			
City	31 12	State		Code	-11	Signature of	f Person Doing	Work	Dat	te Signed	
MILWAUKEE		WE -			15/	11			24/23/2021		

APPENDIX E

SOIL AND VAPOR LABORATORY ANALYTICAL REPORTS

Ramboll Environment & Health

March 31, 2021

Richard Mazurkiewicz Ramboll 234 West Florida St. 5th floor Milwaukee, WI 53204

RE: Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Dear Richard Mazurkiewicz:

Enclosed are the analytical results for sample(s) received by the laboratory on March 16, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Minneapolis

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carolynne Trout carolynne.trout@pacelabs.com

Carolynne That

1(612)607-6351 Project Manager

Enclosures

cc: Kyle Heimstead, Ramboll

CERTIFICATIONS

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Pace Analytical Services, LLC - Minneapolis MN

1700 Elm Street SE, Minneapolis, MN 55414

1800 Elm Street SE, Minneapolis, MN 55414--Satellite Air

Lab

A2LA Certification #: 2926.01* Alabama Certification #: 40770

Alaska Contaminated Sites Certification #: 17-009*

Alaska DW Certification #: MN00064 Arizona Certification #: AZ0014* Arkansas DW Certification #: MN00064 Arkansas WW Certification #: 88-0680 California Certification #: 2929

Colorado Certification #: MN00064 Connecticut Certification #: PH-0256

EPA Region 8 Tribal Water Systems+Wyoming DW

Certification #: via MN 027-053-137 Florida Certification #: E87605* Georgia Certification #: 959 Hawaii Certification #: MN00064 Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification #: C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kansas Certification #: E-10167
Kentucky DW Certification #: 90062
Kentucky WW Certification #: 90062
Louisiana DEQ Certification #: AI-03086*
Louisiana DW Certification #: MN00064
Maine Certification #: MN00064*

Maryland Certification #: 322 Michigan Certification #: 9909

Minnesota Certification #: 027-053-137*

Minnesota Dept of Ag Approval: via MN 027-053-137

Minnesota Petrofund Registration #: 1240* Mississippi Certification #: MN00064 Missouri Certification #: 10100
Montana Certification #: CERT0092
Nebraska Certification #: NE-OS-18-06
Nevada Certification #: MN00064

New Hampshire Certification #: 2081* New Jersey Certification #: MN002 New York Certification #: 11647* North Carolina DW Certification #: 27700

North Carolina WW Certification #: 530 North Dakota Certification #: R-036 Ohio DW Certification #: 41244 Ohio VAP Certification (1700) #: CL101

Ohio VAP Certification (1800) #: CL110* Oklahoma Certification #: 9507*

Oregon Primary Certification #: MN300001
Oregon Secondary Certification #: MN200001*
Pennsylvania Certification #: 68-00563*
Puerto Rico Certification #: MN00064
South Carolina Certification #:74003001
Tennessee Certification #: TN02818

Texas Certification #: T104704192*
Utah Certification #: MN00064*
Vermont Certification #: VT-027053137
Virginia Certification #: 460163*
Washington Certification #: C486*
West Virginia DEP Certification #: 382

West Virginia DW Certification #: 9952 C
Wisconsin Certification #: 999407970

Wyoming UST Certification #: via A2LA 2926.01

USDA Permit #: P330-19-00208

*Please Note: Applicable air certifications are denoted with

an asterisk (*).

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10551358001	SS-1	Air	03/12/21 11:30	03/16/21 14:35
10551358002	SS-2	Air	03/12/21 12:19	03/16/21 14:35
10551358003	SS-3	Air	03/12/21 12:20	03/16/21 14:35
10551358004	SS-4	Air	03/12/21 11:28	03/16/21 14:35
10551358005	SS-5	Air	03/12/21 10:05	03/16/21 14:35
10551358006	SS-6	Air	03/12/21 10:35	03/16/21 14:35

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10551358001	SS-1	TO-15	AFV	61
10551358002	SS-2	TO-15	AFV	61
10551358003	SS-3	TO-15	AFV	61
10551358004	SS-4	TO-15	DR1	61
10551358005	SS-5	TO-15	DR1	61
10551358006	SS-6	TO-15	AFV	61

PASI-M = Pace Analytical Services - Minneapolis

PROJECT NARRATIVE

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Method: TO-15

Description: TO15 MSV AIR

Client: Ramboll Environ- WI AIR

Date: March 31, 2021

General Information:

6 samples were analyzed for TO-15 by Pace Analytical Services Minneapolis. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

QC Batch: 732054

SS: This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

- LCS (Lab ID: 3901905)
 - 1,1,2-Trichlorotrifluoroethane
 - Methylene Chloride
- SS-3 (Lab ID: 10551358003)
 - 1,1,2-Trichlorotrifluoroethane
 - Methylene Chloride

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

QC Batch: 732054

CH: The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.

- LCS (Lab ID: 3901905)
 - 1,1,2-Trichlorotrifluoroethane
 - Methylene Chloride
- SS-3 (Lab ID: 10551358003)
 - 1,1,2-Trichlorotrifluoroethane
 - Methylene Chloride

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 732054

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

• LCS (Lab ID: 3901905)

REPORT OF LABORATORY ANALYSIS

PROJECT NARRATIVE

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Method: TO-15

Description: TO15 MSV AIR

Client: Ramboll Environ- WI AIR

Date: March 31, 2021

QC Batch: 732054

L1: Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

• 1,1,2-Trichlorotrifluoroethane

• Methylene Chloride

Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

QC Batch: 731536

R1: RPD value was outside control limits.

• DUP (Lab ID: 3901718)

Ethanol

Additional Comments:

Analyte Comments: QC Batch: 731536

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

SS-5 (Lab ID: 10551358005)1,1,2-Trichlorotrifluoroethane

QC Batch: 731810

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- SS-1 (Lab ID: 10551358001)
 - Acetone
 - Ethylbenzene
- SS-2 (Lab ID: 10551358002)
 - Ethylbenzene
 - 4-Methyl-2-pentanone (MIBK)
 - Styrene

This data package has been reviewed for quality and completeness and is approved for release.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

Sample: SS-1 Lab ID: 10551358001 Collected: 03/12/21 11:30 Received: 03/16/21 14:35 Matrix: Air

Parameters	Results	Units	LOQ	LOD	DF_	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-	15						
	Pace Anal	ytical Service	es - Minneapo	lis					
Acetone	685	ug/m3	9.0	3.3	1.49		03/29/21 20:21	67-64-1	Е
Benzene	4.7	ug/m3	0.48	0.20	1.49		03/29/21 20:21		_
Benzyl chloride	<2.0	ug/m3	3.9	2.0	1.49		03/29/21 20:21		
Bromodichloromethane	<0.34	ug/m3	2.0	0.34	1.49		03/29/21 20:21		
Bromoform	<1.4	ug/m3	7.8	1.4	1.49		03/29/21 20:21		
Bromomethane	<0.27	ug/m3	1.2	0.27	1.49		03/29/21 20:21		
1,3-Butadiene	<0.16	ug/m3	0.67	0.16	1.49		03/29/21 20:21		
2-Butanone (MEK)	56.9	ug/m3	4.5	1.3	1.49		03/29/21 20:21		
Carbon disulfide	<0.15	ug/m3	0.94	0.15	1.49		03/29/21 20:21		
Carbon tetrachloride	<0.32	ug/m3	1.9	0.32	1.49		03/29/21 20:21		
Chlorobenzene	12.9	ug/m3	1.4	0.24	1.49		03/29/21 20:21		
Chloroethane	<0.21	ug/m3	0.80	0.21	1.49		03/29/21 20:21		
Chloroform	<0.22	ug/m3	0.74	0.22	1.49		03/29/21 20:21		
Chloromethane	<0.12	ug/m3	0.63	0.12	1.49		03/29/21 20:21		
Cyclohexane	3.0	ug/m3	2.6	0.27	1.49		03/29/21 20:21		
Dibromochloromethane	<0.49	ug/m3	2.6	0.49	1.49		03/29/21 20:21		
1,2-Dibromoethane (EDB)	<0.35	ug/m3	1.2	0.35	1.49		03/29/21 20:21		
1,2-Dichlorobenzene	<1.1	ug/m3	1.8	1.1	1.49		03/29/21 20:21		
1,3-Dichlorobenzene	<1.2	ug/m3	1.8	1.2	1.49		03/29/21 20:21		
1,4-Dichlorobenzene	<1.4	ug/m3	4.6	1.4	1.49		03/29/21 20:21		
Dichlorodifluoromethane	88700	ug/m3	722	392	715.2		03/30/21 11:45		
1,1-Dichloroethane	<0.19	ug/m3	1.2	0.19	1.49		03/29/21 20:21		
1,2-Dichloroethane	<0.20	ug/m3	0.61	0.20	1.49		03/29/21 20:21		
1,1-Dichloroethene	<0.19	ug/m3	1.2	0.19	1.49		03/29/21 20:21		
cis-1,2-Dichloroethene	<0.21	ug/m3	1.2	0.21	1.49		03/29/21 20:21		
trans-1,2-Dichloroethene	0.66J	ug/m3	1.2	0.25	1.49		03/29/21 20:21		
1,2-Dichloropropane	<0.27	ug/m3	1.4	0.27	1.49		03/29/21 20:21		
cis-1,3-Dichloropropene	<0.24	ug/m3	1.4	0.24	1.49		03/29/21 20:21		
trans-1,3-Dichloropropene	<0.99	ug/m3	1.4	0.99	1.49		03/29/21 20:21		
Dichlorotetrafluoroethane	<0.36	ug/m3	2.1	0.36	1.49		03/29/21 20:21		
Ethanol	415	ug/m3	2.9	0.84	1.49		03/29/21 20:21		
Ethyl acetate	3.1	ug/m3	1.1	0.18	1.49		03/29/21 20:21		
Ethylbenzene	199	ug/m3	1.3	0.23	1.49		03/29/21 20:21		Е
4-Ethyltoluene	12.6	ug/m3	3.7	0.32	1.49		03/29/21 20:21		_
n-Heptane	6.1	ug/m3	1.2	0.23	1.49		03/29/21 20:21		
Hexachloro-1,3-butadiene	<2.9	ug/m3	8.1	2.9	1.49		03/29/21 20:21		
n-Hexane	4.4	ug/m3	1.1	0.32	1.49		03/29/21 20:21		
2-Hexanone	4.5J	ug/m3	6.2	1.2	1.49		03/29/21 20:21		
Methylene Chloride	<1.8	ug/m3	5.3	1.8	1.49		03/29/21 20:21		
4-Methyl-2-pentanone (MIBK)	11.3	ug/m3	6.2	0.17	1.49		03/29/21 20:21		
Methyl-tert-butyl ether	<0.20	ug/m3	5.5	0.20	1.49		03/29/21 20:21		
Naphthalene	3.7J	ug/m3	4.0	2.8	1.49		03/29/21 20:21		
2-Propanol	49.8	ug/m3	3.7	1.3	1.49		03/29/21 20:21		
Propylene	<0.36	ug/m3	0.52	0.36	1.49		03/29/21 20:21		
1 100,10110	~0.50	ug/1110	0.02	0.50	1.49		03/29/21 20:21		

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

Sample: SS-1	Lab ID:	10551358001	Collected	d: 03/12/2	1 11:30	Received: 03	3/16/21 14:35 N	Matrix: Air	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
	Pace Ana	lytical Services	- Minneapo	is					
1,1,2,2-Tetrachloroethane	<0.32	ug/m3	1.0	0.32	1.49		03/29/21 20:2	1 70-31-5	
Tetrachloroethene	533	ug/m3	493	179	715.2		03/30/21 11:4		
Tetrahydrofuran	5.1	ug/m3	0.89	0.20	1.49		03/29/21 20:2		
Toluene	56.5	ug/m3	1.1	0.20	1.49		03/29/21 20:2		
1,2,4-Trichlorobenzene	<5.8	ug/m3	11.2	5.8	1.49		03/29/21 20:2		
1,1,1-Trichloroethane	<0.28	ug/m3	1.7	0.28	1.49		03/29/21 20:2		
1,1,2-Trichloroethane	<0.26	ug/m3	0.83	0.26	1.49		03/29/21 20:2		
Trichloroethene	0.68J	ug/m3	0.81	0.20	1.49		03/29/21 20:2		
Trichlorofluoromethane	<0.34	ug/m3	1.7	0.34	1.49		03/29/21 20:2		
1,1,2-Trichlorotrifluoroethane	101	ug/m3	2.3	0.34	1.49		03/29/21 20:2		
1,2,4-Trimethylbenzene	20.3	ug/m3	1.5	0.29	1.49		03/29/21 20:2		
1,3,5-Trimethylbenzene	6.2	ug/m3	1.5	0.30	1.49		03/29/21 20:2		
Vinyl acetate	<0.17	ug/m3	1.1	0.17	1.49		03/29/21 20:2		
Vinyl chloride	<0.13	ug/m3	0.39	0.13	1.49		03/29/21 20:2		
m&p-Xylene	177	ug/m3	2.6	0.57	1.49			1 179601-23-1	
o-Xylene	46.2	ug/m3	1.3	0.22	1.49		03/29/21 20:2		
Sample: SS-2	I ah ID:	10551259002	Collector	02/12/2	1 12.10	Pacaiyad: 03	2/16/21 11·25 N	Antriv. Air	
•		10551358002		d: 03/12/2		Received: 03		Matrix: Air	Qual
Parameters	Results	Units	LOQ	t: 03/12/2 LOD	1 12:19 DF	Prepared	8/16/21 14:35 M Analyzed	/Aatrix: Air CAS No.	Qual
Parameters	Results		LOQ						Qual
Parameters TO15 MSV AIR	Results Analytical	Units	LOQ	LOD					Qual
Parameters	Results Analytical	Units — — — — — — — — — — — — — — — — — — —	LOQ	LOD				CAS No.	Qual
Parameters TO15 MSV AIR	Results Analytical Pace Ana	Units Method: TO-15 lytical Services ug/m3	LOQ -	LOD	DF		Analyzed	CAS No.	Qual
Parameters TO15 MSV AIR Acetone	Results Analytical Pace Ana 371	Units Method: TO-15 lytical Services	LOQ - Minneapo	LOD iis	DF 1.64		Analyzed 03/29/21 20:5	CAS No. 3 67-64-1 3 71-43-2	Qual
Parameters TO15 MSV AIR Acetone Benzene	Analytical Pace Ana 371 9.4	Units Method: TO-15 lytical Services ug/m3 ug/m3	LOQ - Minneapo 9.9 0.53	LOD dis 3.6 0.22	DF 1.64 1.64		Analyzed 03/29/21 20:5: 03/29/21 20:5:	CAS No. 3 67-64-1 3 71-43-2 3 100-44-7	Qual
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride	Analytical Pace Ana 371 9.4 <2.2	Units Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3	LOQ - Minneapo 9.9 0.53 4.3	LOD dis 3.6 0.22 2.2	1.64 1.64 1.64		O3/29/21 20:5: 03/29/21 20:5: 03/29/21 20:5:	CAS No. 3 67-64-1 3 71-43-2 3 100-44-7 3 75-27-4	Qual
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane	Analytical Pace Ana 371 9.4 <2.2 <0.37	Units Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	LOQ - Minneapo 9.9 0.53 4.3 2.2	LOD is 3.6 0.22 2.2 0.37	1.64 1.64 1.64 1.64		O3/29/21 20:5 03/29/21 20:5 03/29/21 20:5 03/29/21 20:5 03/29/21 20:5	CAS No. 3 67-64-1 3 71-43-2 3 100-44-7 3 75-27-4 3 75-25-2	Qual
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5	Units Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6	LOD is 3.6 0.22 2.2 0.37 1.5	1.64 1.64 1.64 1.64 1.64		03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56	CAS No. 8 67-64-1 8 71-43-2 9 100-44-7 9 75-27-4 9 75-25-2 9 74-83-9	Qua
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30	Units Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6 1.3	LOD is 3.6 0.22 2.2 0.37 1.5 0.30	1.64 1.64 1.64 1.64 1.64 1.64		03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56	CAS No. 8 67-64-1 8 71-43-2 8 100-44-7 9 75-27-4 9 75-25-2 9 74-83-9 8 106-99-0	Qual
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK)	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18	Units Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6 1.3 0.74	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18	1.64 1.64 1.64 1.64 1.64 1.64		03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56	CAS No. 8 67-64-1 8 71-43-2 8 100-44-7 9 75-27-4 9 75-25-2 9 74-83-9 9 106-99-0 9 78-93-3	Qua
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18 65.3	Units Method: TO-15 lytical Services ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6 1.3 0.74 4.9	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18 1.4	1.64 1.64 1.64 1.64 1.64 1.64 1.64		Analyzed 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56	CAS No. 8 67-64-1 8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 9 106-99-0 9 78-93-3 8 75-15-0	Qua
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18 65.3 <0.17	Units Method: TO-15 lytical Services ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6 1.3 0.74 4.9 1.0	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18 1.4 0.17	1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64		Analyzed 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56	CAS No. 8 67-64-1 8 71-43-2 8 100-44-7 8 75-27-4 9 75-25-2 9 74-83-9 8 106-99-0 9 78-93-3 9 75-15-0 9 56-23-5	Qual
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18 65.3 <0.17 <0.35	Units Method: TO-15 lytical Services ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6 1.3 0.74 4.9 1.0 2.1	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18 1.4 0.17 0.35	1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64		Analyzed 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56	CAS No. 8 67-64-1 8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3 8 75-15-0 8 56-23-5 8 108-90-7	Qua
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18 65.3 <0.17 <0.35 34.7	Units Method: TO-15 lytical Services ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6 1.3 0.74 4.9 1.0 2.1 1.5	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18 1.4 0.17 0.35 0.26	1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64		Analyzed 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56	CAS No. 3 67-64-1 3 71-43-2 3 100-44-7 3 75-27-4 3 75-25-2 3 74-83-9 3 106-99-0 3 78-93-3 3 75-15-0 3 56-23-5 3 108-90-7 3 75-00-3	Qual
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18 65.3 <0.17 <0.35 34.7 <0.23 <0.24 <0.13	Units Method: TO-15 lytical Services ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6 1.3 0.74 4.9 1.0 2.1 1.5 0.88	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18 1.4 0.17 0.35 0.26 0.23	1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64		Analyzed 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56	CAS No. 3 67-64-1 3 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 3 74-83-9 3 106-99-0 3 78-93-3 3 75-15-0 3 56-23-5 3 108-90-7 3 75-00-3 3 67-66-3	Qua
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18 65.3 <0.17 <0.35 34.7 <0.23 <0.24 <0.13 6.7	Units Method: TO-15 lytical Services ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6 1.3 0.74 4.9 1.0 2.1 1.5 0.88 0.81 0.69 2.9	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18 1.4 0.17 0.35 0.26 0.23 0.24 0.13 0.30	1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64		Analyzed 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56	CAS No. 3 67-64-1 3 71-43-2 3 100-44-7 3 75-27-4 3 75-25-2 3 74-83-9 3 106-99-0 3 78-93-3 3 75-15-0 3 56-23-5 3 108-90-7 3 75-00-3 3 67-66-3 3 74-87-3 3 110-82-7	Qua
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18 65.3 <0.17 <0.35 34.7 <0.23 <0.24 <0.13	Units Method: TO-15 lytical Services ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6 1.3 0.74 4.9 1.0 2.1 1.5 0.88 0.81 0.69	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18 1.4 0.17 0.35 0.26 0.23 0.24 0.13	1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64		Analyzed 03/29/21 20:56	CAS No. 3 67-64-1 3 71-43-2 3 100-44-7 3 75-27-4 3 75-25-2 3 74-83-9 3 106-99-0 3 78-93-3 3 75-15-0 3 56-23-5 3 108-90-7 3 75-00-3 3 67-66-3 3 74-87-3 3 110-82-7 3 124-48-1	Qua
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18 65.3 <0.17 <0.35 34.7 <0.23 <0.24 <0.13 6.7	Units Method: TO-15 lytical Services ug/m3	LOQ 9.9 0.53 4.3 2.2 8.6 1.3 0.74 4.9 1.0 2.1 1.5 0.88 0.81 0.69 2.9	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18 1.4 0.17 0.35 0.26 0.23 0.24 0.13 0.30	1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64		Analyzed 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56 03/29/21 20:56	CAS No. 3 67-64-1 3 71-43-2 3 100-44-7 3 75-27-4 3 75-25-2 3 74-83-9 3 106-99-0 3 78-93-3 3 75-15-0 3 56-23-5 3 108-90-7 3 75-00-3 3 67-66-3 3 74-87-3 3 110-82-7 3 124-48-1	Qual
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18 65.3 <0.17 <0.35 34.7 <0.23 <0.24 <0.13 6.7 <0.54 <0.38 1.6J	Units Method: TO-15 lytical Services ug/m3 LOQ - Minneapo 9.9 0.53 4.3 2.2 8.6 1.3 0.74 4.9 1.0 2.1 1.5 0.88 0.81 0.69 2.9 2.8 1.3 2.0	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18 1.4 0.17 0.35 0.26 0.23 0.24 0.13 0.30 0.54 0.38 1.2	1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64		Analyzed 03/29/21 20:5:	CAS No. 3 67-64-1 3 71-43-2 3 100-44-7 3 75-27-4 3 75-27-4 3 75-25-2 3 74-83-9 3 106-99-0 3 78-93-3 3 75-15-0 3 56-23-5 3 108-90-7 3 75-00-3 3 67-66-3 3 74-87-3 3 110-82-7 3 124-48-1 3 106-93-4 3 95-50-1	Qual	
Parameters TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB)	Analytical Pace Ana 371 9.4 <2.2 <0.37 <1.5 <0.30 <0.18 65.3 <0.17 <0.35 34.7 <0.23 <0.24 <0.13 6.7 <0.54 <0.38	Units Method: TO-15 lytical Services ug/m3	LOQ - Minneapo 9.9 0.53 4.3 2.2 8.6 1.3 0.74 4.9 1.0 2.1 1.5 0.88 0.81 0.69 2.9 2.8 1.3	LOD is 3.6 0.22 2.2 0.37 1.5 0.30 0.18 1.4 0.17 0.35 0.26 0.23 0.24 0.13 0.30 0.54 0.38	1.64 1.64 1.64 1.64 1.64 1.64 1.64 1.64		Analyzed 03/29/21 20:5:	CAS No. 3 67-64-1 3 71-43-2 3 100-44-7 3 75-27-4 3 75-25-2 3 74-83-9 3 106-99-0 3 78-93-3 3 75-15-0 3 56-23-5 3 108-90-7 3 75-00-3 3 67-66-3 3 74-87-3 3 110-82-7 3 124-48-1 3 106-93-4 3 95-50-1 3 541-73-1	Qual

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

Sample: SS-2 Lab ID: 10551358002 Collected: 03/12/21 12:19 Received: 03/16/21 14:35 Matrix: Air

Parameters	Results	Units	LOQ	LOD	DF_	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-	15						
	Pace Anal	ytical Service	s - Minneapo	lis					
Dichlorodifluoromethane	101000	ug/m3	781	423	772.8		03/30/21 12:49	75-71-8	
1,1-Dichloroethane	<0.21	ug/m3	1.3	0.21	1.64		03/29/21 20:58	75-34-3	
1,2-Dichloroethane	<0.21	ug/m3	0.67	0.21	1.64		03/29/21 20:58	107-06-2	
1,1-Dichloroethene	<0.21	ug/m3	1.3	0.21	1.64		03/29/21 20:58	75-35-4	
cis-1,2-Dichloroethene	<0.23	ug/m3	1.3	0.23	1.64		03/29/21 20:58	156-59-2	
trans-1,2-Dichloroethene	1.3J	ug/m3	1.3	0.27	1.64		03/29/21 20:58	156-60-5	
1,2-Dichloropropane	< 0.30	ug/m3	1.5	0.30	1.64		03/29/21 20:58	78-87-5	
cis-1,3-Dichloropropene	<0.26	ug/m3	1.5	0.26	1.64		03/29/21 20:58	10061-01-5	
trans-1,3-Dichloropropene	<1.1	ug/m3	1.5	1.1	1.64		03/29/21 20:58	10061-02-6	
Dichlorotetrafluoroethane	< 0.40	ug/m3	2.3	0.40	1.64		03/29/21 20:58		
Ethanol	485	ug/m3	3.1	0.93	1.64		03/29/21 20:58		
Ethyl acetate	<0.20	ug/m3	1.2	0.20	1.64		03/29/21 20:58		
Ethylbenzene	331	ug/m3	1.4	0.25	1.64		03/29/21 20:58		Е
4-Ethyltoluene	11.2	ug/m3	4.1	0.35	1.64		03/29/21 20:58		_
n-Heptane	13.0	ug/m3	1.4	0.25	1.64		03/29/21 20:58		
Hexachloro-1,3-butadiene	<3.2	ug/m3	8.9	3.2	1.64		03/29/21 20:58		
n-Hexane	10.0	ug/m3	1.2	0.35	1.64		03/29/21 20:58		
2-Hexanone	2.9J	ug/m3	6.8	1.3	1.64		03/29/21 20:58		
Methylene Chloride	2.1J	ug/m3	5.8	2.0	1.64		03/29/21 20:58		
4-Methyl-2-pentanone (MIBK)	348	ug/m3	6.8	0.18	1.64		03/29/21 20:58		Е
Methyl-tert-butyl ether	<0.22	ug/m3	6.0	0.10	1.64		03/29/21 20:58		_
Naphthalene	3.1J	ug/m3	4.4	3.1	1.64		03/29/21 20:58		
•	39.2	ug/m3	4.4 4.1	1.4	1.64		03/29/21 20:58		
2-Propanol	<0.40	J	0.57	0.40	1.64		03/29/21 20:58		
Propylene		ug/m3			-				Е
Styrene	215	ug/m3	1.4	0.45	1.64		03/29/21 20:58		E
1,1,2,2-Tetrachloroethane	<0.35	ug/m3	1.1	0.35	1.64		03/29/21 20:58		
Tetrachloroethene	1090	ug/m3	532	193	772.8		03/30/21 12:49	_	
Tetrahydrofuran	2.4	ug/m3	0.98	0.21	1.64		03/29/21 20:58		
Toluene	109	ug/m3	1.3	0.20	1.64		03/29/21 20:58		
1,2,4-Trichlorobenzene	<6.4	ug/m3	12.4	6.4	1.64		03/29/21 20:58		
1,1,1-Trichloroethane	<0.31	ug/m3	1.8	0.31	1.64		03/29/21 20:58		
1,1,2-Trichloroethane	<0.29	ug/m3	0.91	0.29	1.64		03/29/21 20:58		
Trichloroethene	0.76J	ug/m3	0.90	0.34	1.64		03/29/21 20:58		
Trichlorofluoromethane	4.9	ug/m3	1.9	0.37	1.64		03/29/21 20:58		
1,1,2-Trichlorotrifluoroethane	36.0	ug/m3	2.6	0.38	1.64		03/29/21 20:58		
1,2,4-Trimethylbenzene	13.5	ug/m3	1.6	0.32	1.64		03/29/21 20:58		
1,3,5-Trimethylbenzene	4.4	ug/m3	1.6	0.33	1.64		03/29/21 20:58		
Vinyl acetate	<0.19	ug/m3	1.2	0.19	1.64		03/29/21 20:58		
Vinyl chloride	<0.14	ug/m3	0.43	0.14	1.64		03/29/21 20:58		
m&p-Xylene	213	ug/m3	2.9	0.63	1.64		03/29/21 20:58	179601-23-1	
o-Xylene	55.8	ug/m3	1.4	0.24	1.64		03/29/21 20:58	95-47-6	

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

Sample: SS-3 Lab ID: 10551358003 Collected: 03/12/21 12:20 Received: 03/16/21 14:35 Matrix: Air

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-	15						
	Pace Anal	ytical Service	es - Minneapo	lis					
Acetone	178	ug/m3	9.2	3.4	1.52		03/30/21 17:39	67-64-1	
Benzene	9.4	ug/m3	0.49	0.21	1.52		03/30/21 17:39		
Benzyl chloride	<2.0	ug/m3	4.0	2.0	1.52		03/30/21 17:39		
Bromodichloromethane	<0.35	ug/m3	2.1	0.35	1.52		03/30/21 17:39		
Bromoform	<1.4	ug/m3	8.0	1.4	1.52		03/30/21 17:39		
Bromomethane	<0.27	ug/m3	1.2	0.27	1.52		03/30/21 17:39		
1,3-Butadiene	<0.17	ug/m3	0.68	0.17	1.52		03/30/21 17:39		
2-Butanone (MEK)	40.3	ug/m3	4.6	1.3	1.52		03/30/21 17:39		
Carbon disulfide	29.9	ug/m3	0.96	0.16	1.52		03/30/21 17:39		
Carbon tetrachloride	<0.32	ug/m3	1.9	0.32	1.52		03/30/21 17:39		
Chlorobenzene	17.5	ug/m3	1.4	0.24	1.52		03/30/21 17:39		
Chloroethane	<0.21	ug/m3	0.81	0.21	1.52		03/30/21 17:39		
Chloroform	<0.22	ug/m3	0.75	0.22	1.52		03/30/21 17:39		
Chloromethane	<0.12	ug/m3	0.64	0.12	1.52		03/30/21 17:39		
Cyclohexane	5.0	ug/m3	2.7	0.28	1.52		03/30/21 17:39		
Dibromochloromethane	<0.50	ug/m3	2.6	0.50	1.52		03/30/21 17:39		
1,2-Dibromoethane (EDB)	<0.35	ug/m3	1.2	0.35	1.52		03/30/21 17:39		
1,2-Dichlorobenzene	<1.1	ug/m3	1.9	1.1	1.52		03/30/21 17:39		
1,3-Dichlorobenzene	<1.3	ug/m3	1.9	1.3	1.52		03/30/21 17:39		
1,4-Dichlorobenzene	1.9J	ug/m3	4.7	1.5	1.52		03/30/21 17:39		
Dichlorodifluoromethane	39200	ug/m3	5900	3200	5837		03/31/21 11:44		
1,1-Dichloroethane	<0.19	ug/m3	1.3	0.19	1.52		03/30/21 17:39		
1,2-Dichloroethane	<0.20	ug/m3	0.62	0.13	1.52		03/30/21 17:39		
1,1-Dichloroethene	<0.19	ug/m3	1.2	0.20	1.52		03/30/21 17:39		
cis-1,2-Dichloroethene	<0.13	ug/m3	1.2	0.13	1.52		03/30/21 17:39		
trans-1,2-Dichloroethene	1.3	ug/m3	1.2	0.21	1.52		03/30/21 17:39		
1,2-Dichloropropane	<0.28	ug/m3	1.4	0.28	1.52		03/30/21 17:39		
cis-1,3-Dichloropropene	<0.24	ug/m3	1.4	0.24	1.52		03/30/21 17:39		
trans-1,3-Dichloropropene	<1.0	ug/m3	1.4	1.0	1.52		03/30/21 17:39		
Dichlorotetrafluoroethane	<0.37	ug/m3	2.2	0.37	1.52		03/30/21 17:39		
Ethanol	400	ug/m3	2.2	0.86	1.52		03/30/21 17:39		
	<0.18	-	1.1	0.00	1.52		03/30/21 17:39		
Ethyl acetate	210	ug/m3 ug/m3	1.1	0.16	1.52		03/30/21 17:39		
Ethylbenzene 4. Ethyltoluopo		•							
4-Ethyltoluene	2.0J 9.6	ug/m3	3.8 1.3	0.32 0.23	1.52 1.52		03/30/21 17:39 03/30/21 17:39		
n-Heptane	9.6 <2.9	ug/m3		2.9					
Hexachloro-1,3-butadiene		ug/m3	8.2		1.52		03/30/21 17:39		
n-Hexane 2-Hexanone	10.5	ug/m3	1.1	0.33	1.52		03/30/21 17:39		
	3.0J	ug/m3	6.3	1.2	1.52		03/30/21 17:39		CH 1 4
Methylene Chloride	4.2J	ug/m3	5.4	1.8	1.52		03/30/21 17:39	75-09-2	CH,L1, SS
4-Methyl-2-pentanone (MIBK)	9.9	ug/m3	6.3	0.17	1.52		03/30/21 17:39		
Methyl-tert-butyl ether	<0.20	ug/m3	5.6	0.20	1.52		03/30/21 17:39		
Naphthalene	<2.9	ug/m3	4.0	2.9	1.52		03/30/21 17:39	91-20-3	
2-Propanol	37.1	ug/m3	3.8	1.3	1.52		03/30/21 17:39	67-63-0	
Propylene	<0.37	ug/m3	0.53	0.37	1.52		03/30/21 17:39	115-07-1	

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

Sample: SS-3	Lab ID:	10551358003	Collected	d: 03/12/2	1 12:20	Received: 03	3/16/21 14:35 N	Matrix: Air	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
	Pace Ana	lytical Services	- Minneapo	lis					
Styrene	27.1	ug/m3	1.3	0.41	1.52		03/30/21 17:3	9 100-42-5	
1,1,2,2-Tetrachloroethane	<0.33	ug/m3	1.1	0.33	1.52		03/30/21 17:3		
Tetrachloroethene	62.6	ug/m3	1.0	0.38	1.52		03/30/21 17:3		
Tetrahydrofuran	5.6	ug/m3	0.91	0.20	1.52		03/30/21 17:3		
Toluene	78.7	ug/m3	1.2	0.18	1.52		03/30/21 17:3		
1,2,4-Trichlorobenzene	<5.9	ug/m3	11.5	5.9	1.52		03/30/21 17:3		
1,1,1-Trichloroethane	<0.29	ug/m3	1.7	0.29	1.52		03/30/21 17:3		
1,1,2-Trichloroethane	0.51J	ug/m3	0.84	0.26	1.52		03/30/21 17:3	9 79-00-5	
Trichloroethene	0.80J	ug/m3	0.83	0.32	1.52		03/30/21 17:3	9 79-01-6	
Trichlorofluoromethane	< 0.35	ug/m3	1.7	0.35	1.52		03/30/21 17:3	9 75-69-4	
1,1,2-Trichlorotrifluoroethane	235	ug/m3	2.4	0.35	1.52		03/30/21 17:3	9 76-13-1	CH,L1, SS
1,2,4-Trimethylbenzene	2.5	ug/m3	1.5	0.29	1.52		03/30/21 17:3	9 95-63-6	
1,3,5-Trimethylbenzene	1.5J	ug/m3	1.5	0.31	1.52		03/30/21 17:3	9 108-67-8	
Vinyl acetate	<0.17	ug/m3	1.1	0.17	1.52		03/30/21 17:3	9 108-05-4	
Vinyl chloride	<0.13	ug/m3	0.40	0.13	1.52		03/30/21 17:3	9 75-01-4	
m&p-Xylene	93.4	ug/m3	2.7	0.59	1.52		03/30/21 17:3	9 179601-23-1	
o-Xylene	23.8	ug/m3	1.3	0.22	1.52		03/30/21 17:3	9 95-47-6	
Sample: SS-4	Lab ID:	10551358004	Collected	d: 03/12/2	1 11:28	Received: 03	3/16/21 14:35 N	Matrix: Air	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
TO15 MSV AIR	-	Method: TO-15 lytical Services	- Minneapo	lis					
TO15 MSV AIR Acetone	-	lytical Services	- Minneapo 9.0	lis 3.3	1.49		03/27/21 06:4	8 67-64-1	
	Pace Ana				1.49 1.49		03/27/21 06:4 03/27/21 06:4		
Acetone Benzene	Pace Ana	lytical Services ug/m3 ug/m3	9.0	3.3				8 71-43-2	
Acetone Benzene Benzyl chloride	Pace Ana 185 4.7	lytical Services ug/m3	9.0 0.48	3.3 0.20	1.49		03/27/21 06:4	8 71-43-2 8 100-44-7	
Acetone Benzene Benzyl chloride Bromodichloromethane	Pace Ana 185 4.7 <2.0	lytical Services ug/m3 ug/m3 ug/m3	9.0 0.48 3.9	3.3 0.20 2.0	1.49 1.49		03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4	
Acetone Benzene Benzyl chloride	Pace Ana 185 4.7 <2.0 <0.34	lytical Services ug/m3 ug/m3 ug/m3 ug/m3	9.0 0.48 3.9 2.0	3.3 0.20 2.0 0.34	1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform	Pace Ana 185 4.7 <2.0 <0.34 <1.4	lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	9.0 0.48 3.9 2.0 7.8	3.3 0.20 2.0 0.34 1.4	1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27	lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	9.0 0.48 3.9 2.0 7.8 1.2	3.3 0.20 2.0 0.34 1.4 0.27	1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK)	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27 <0.16	lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	9.0 0.48 3.9 2.0 7.8 1.2 0.67	3.3 0.20 2.0 0.34 1.4 0.27 0.16	1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27 <0.16 19.7	lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	9.0 0.48 3.9 2.0 7.8 1.2 0.67 4.5	3.3 0.20 2.0 0.34 1.4 0.27 0.16 1.3	1.49 1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3 8 75-15-0	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27 <0.16 19.7 1.1	lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	9.0 0.48 3.9 2.0 7.8 1.2 0.67 4.5	3.3 0.20 2.0 0.34 1.4 0.27 0.16 1.3 0.15	1.49 1.49 1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3 8 75-15-0 8 56-23-5	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27 <0.16 19.7 1.1 <0.32	lytical Services ug/m3	9.0 0.48 3.9 2.0 7.8 1.2 0.67 4.5 0.94	3.3 0.20 2.0 0.34 1.4 0.27 0.16 1.3 0.15	1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3 8 75-15-0 8 56-23-5 8 108-90-7	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27 <0.16 19.7 1.1 <0.32 24.0	lytical Services ug/m3	9.0 0.48 3.9 2.0 7.8 1.2 0.67 4.5 0.94 1.9	3.3 0.20 2.0 0.34 1.4 0.27 0.16 1.3 0.15 0.32 0.24 0.21	1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3 8 75-15-0 8 56-23-5 8 108-90-7 8 75-00-3	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27 <0.16 19.7 1.1 <0.32 24.0 <0.21	lytical Services ug/m3	9.0 0.48 3.9 2.0 7.8 1.2 0.67 4.5 0.94 1.9 1.4	3.3 0.20 2.0 0.34 1.4 0.27 0.16 1.3 0.15 0.32 0.24 0.21 0.22	1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3 8 75-15-0 8 56-23-5 8 108-90-7 8 75-00-3 8 67-66-3	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27 <0.16 19.7 1.1 <0.32 24.0 <0.21 <0.22	lytical Services ug/m3	9.0 0.48 3.9 2.0 7.8 1.2 0.67 4.5 0.94 1.9 1.4 0.80 0.74	3.3 0.20 2.0 0.34 1.4 0.27 0.16 1.3 0.15 0.32 0.24 0.21	1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3 8 75-15-0 8 56-23-5 8 108-90-7 8 75-00-3 8 67-66-3 8 74-87-3	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27 <0.16 19.7 1.1 <0.32 24.0 <0.21 <0.22 <0.12	lytical Services ug/m3	9.0 0.48 3.9 2.0 7.8 1.2 0.67 4.5 0.94 1.9 1.4 0.80 0.74 0.63	3.3 0.20 2.0 0.34 1.4 0.27 0.16 1.3 0.15 0.32 0.24 0.21 0.22	1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3 8 75-15-0 8 56-23-5 8 108-90-7 8 75-00-3 8 67-66-3 8 74-87-3 8 110-82-7	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB)	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27 <0.16 19.7 1.1 <0.32 24.0 <0.21 <0.22 <0.12 5.8	lytical Services ug/m3	9.0 0.48 3.9 2.0 7.8 1.2 0.67 4.5 0.94 1.9 1.4 0.80 0.74 0.63 2.6	3.3 0.20 2.0 0.34 1.4 0.27 0.16 1.3 0.15 0.32 0.24 0.21 0.22 0.12	1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3 8 75-15-0 8 56-23-5 8 108-90-7 8 75-00-3 8 67-66-3 8 74-87-3 8 110-82-7 8 124-48-1	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane	Pace Ana 185 4.7 <2.0 <0.34 <1.4 <0.27 <0.16 19.7 1.1 <0.32 24.0 <0.21 <0.22 <0.12 5.8 <0.49	lytical Services ug/m3 9.0 0.48 3.9 2.0 7.8 1.2 0.67 4.5 0.94 1.9 1.4 0.80 0.74 0.63 2.6 2.6	3.3 0.20 2.0 0.34 1.4 0.27 0.16 1.3 0.15 0.32 0.24 0.21 0.22 0.12 0.27 0.49	1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49		03/27/21 06:4 03/27/21 06:4	8 71-43-2 8 100-44-7 8 75-27-4 8 75-25-2 8 74-83-9 8 106-99-0 8 78-93-3 8 75-15-0 8 56-23-5 8 108-90-7 8 75-00-3 8 67-66-3 8 74-87-3 8 110-82-7 8 124-48-1 8 106-93-4 8 95-50-1		

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

Sample: SS-4 Lab ID: 10551358004 Collected: 03/12/21 11:28 Received: 03/16/21 14:35 Matrix: Air

Parameters	Results	Units	LOQ	LOD	DF_	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-	15						
	Pace Anal	ytical Service	es - Minneapo	lis					
1,4-Dichlorobenzene	3.9J	ug/m3	4.6	1.4	1.49		03/27/21 06:48	106-46-7	
Dichlorodifluoromethane	67600	ug/m3	1440	784	1430		03/30/21 13:30	75-71-8	
1,1-Dichloroethane	<0.19	ug/m3	1.2	0.19	1.49		03/27/21 06:48	75-34-3	
1,2-Dichloroethane	<0.20	ug/m3	0.61	0.20	1.49		03/27/21 06:48	107-06-2	
1,1-Dichloroethene	<0.19	ug/m3	1.2	0.19	1.49		03/27/21 06:48	75-35-4	
cis-1,2-Dichloroethene	<0.21	ug/m3	1.2	0.21	1.49		03/27/21 06:48	156-59-2	
trans-1,2-Dichloroethene	<0.25	ug/m3	1.2	0.25	1.49		03/27/21 06:48	156-60-5	
1,2-Dichloropropane	<0.27	ug/m3	1.4	0.27	1.49		03/27/21 06:48	78-87-5	
cis-1,3-Dichloropropene	<0.24	ug/m3	1.4	0.24	1.49		03/27/21 06:48	10061-01-5	
trans-1,3-Dichloropropene	<0.99	ug/m3	1.4	0.99	1.49		03/27/21 06:48		
Dichlorotetrafluoroethane	<0.36	ug/m3	2.1	0.36	1.49		03/27/21 06:48	-	
Ethanol	224	ug/m3	2.9	0.84	1.49		03/27/21 06:48	-	
Ethyl acetate	<0.18	ug/m3	1.1	0.18	1.49		03/27/21 06:48		
Ethylbenzene	192	ug/m3	1.3	0.23	1.49		03/27/21 06:48		
4-Ethyltoluene	5.9	ug/m3	3.7	0.32	1.49		03/27/21 06:48		
n-Heptane	5.8	ug/m3	1.2	0.23	1.49		03/27/21 06:48		
Hexachloro-1,3-butadiene	<2.9	ug/m3	8.1	2.9	1.49		03/27/21 06:48		
n-Hexane	5.8	ug/m3	1.1	0.32	1.49		03/27/21 06:48		
2-Hexanone	3.0J	ug/m3	6.2	1.2	1.49		03/27/21 06:48		
Methylene Chloride	<1.8	ug/m3	5.3	1.8	1.49		03/27/21 06:48		
4-Methyl-2-pentanone (MIBK)	3.7J	ug/m3	6.2	0.17	1.49		03/27/21 06:48		
Methyl-tert-butyl ether	<0.20	ug/m3	5.5	0.20	1.49		03/27/21 06:48		
Naphthalene	8.3	ug/m3	7.9	2.8	1.49		03/27/21 06:48		
2-Propanol	30.6	ug/m3	3.7	1.3	1.49		03/27/21 06:48		
Propylene	<0.36	ug/m3	0.52	0.36	1.49		03/27/21 06:48		
Styrene	136	ug/m3	1.3	0.41	1.49		03/27/21 06:48		
1,1,2,2-Tetrachloroethane	<0.32	ug/m3	1.0	0.32	1.49		03/27/21 06:48		
Tetrachloroethene Tetrachudrafuran	96.9 5.8	ug/m3	1.0 0.89	0.37 0.20	1.49 1.49		03/27/21 06:48 03/27/21 06:48		
Tetrahydrofuran Toluene	5.6 59.1	ug/m3 ug/m3	1.1	0.20	1.49		03/27/21 06:48		
1,2,4-Trichlorobenzene	<5.8	ug/m3	11.2	5.8	1.49		03/27/21 06:48		
1,1,1-Trichloroethane	<0.28	ug/m3	1.7	0.28	1.49		03/27/21 06:48		
1,1,2-Trichloroethane	<0.26	ug/m3	0.83	0.26	1.49		03/27/21 06:48		
Trichloroethene	<0.31	ug/m3	0.81	0.20	1.49		03/27/21 06:48		
Trichlorofluoromethane	4.0J	ug/m3	4.3	0.34	1.49		03/27/21 06:48		
1,1,2-Trichlorotrifluoroethane	99.2	ug/m3	2.3	0.34	1.49		03/27/21 06:48		
1,2,4-Trimethylbenzene	13.9	ug/m3	1.5	0.29	1.49		03/27/21 06:48		
1,3,5-Trimethylbenzene	5.0	ug/m3	1.5	0.20	1.49		03/27/21 06:48		
Vinyl acetate	<0.17	ug/m3	1.1	0.17	1.49		03/27/21 06:48		
Vinyl doctate Vinyl chloride	<0.13	ug/m3	0.39	0.17	1.49		03/27/21 06:48		
m&p-Xylene	83.2	ug/m3	2.6	0.57	1.49		03/27/21 06:48		
o-Xylene	19.8	ug/m3	1.3	0.22	1.49		03/27/21 06:48		

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

Sample: SS-5 Lab ID: 10551358005 Collected: 03/12/21 10:05 Received: 03/16/21 14:35 Matrix: Air

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-	15						
	Pace Anal	ytical Service	es - Minneapo	lis					
Acetone	54.8	ug/m3	9.2	3.4	1.52		03/27/21 07:22	67-64-1	
Benzene	3.9	ug/m3	0.49	0.21	1.52		03/27/21 07:22		
Benzyl chloride	<2.0	ug/m3	4.0	2.0	1.52		03/27/21 07:22		
Bromodichloromethane	<0.35	ug/m3	2.1	0.35	1.52		03/27/21 07:22		
Bromoform	<1.4	ug/m3	8.0	1.4	1.52		03/27/21 07:22		
Bromomethane	<0.27	ug/m3	1.2	0.27	1.52		03/27/21 07:22		
1,3-Butadiene	<0.17	ug/m3	0.68	0.17	1.52		03/27/21 07:22		
2-Butanone (MEK)	10	ug/m3	4.6	1.3	1.52		03/27/21 07:22		
Carbon disulfide	0.24J	ug/m3	0.96	0.16	1.52		03/27/21 07:22		
Carbon tetrachloride	<0.32	ug/m3	1.9	0.10	1.52		03/27/21 07:22		
Chlorobenzene	11.8	ug/m3	1.4	0.32	1.52		03/27/21 07:22		
Chloroethane	<0.21	ug/m3	0.81	0.24	1.52		03/27/21 07:22		
Chloroform	<0.21 <0.22	ug/m3	0.61	0.21	1.52		03/27/21 07:22		
Chloromethane	<0.12	-	0.73	0.22	1.52		03/27/21 07:22		
		ug/m3							
Cyclohexane	5.9	ug/m3	2.7	0.28	1.52		03/27/21 07:22		
Dibromochloromethane	<0.50	ug/m3	2.6	0.50	1.52		03/27/21 07:22	_	
1,2-Dibromoethane (EDB)	<0.35	ug/m3	1.2	0.35	1.52		03/27/21 07:22		
1,2-Dichlorobenzene	<1.1	ug/m3	1.9	1.1	1.52		03/27/21 07:22		
1,3-Dichlorobenzene	2.0J	ug/m3	4.6	1.3	1.52		03/27/21 07:22		
1,4-Dichlorobenzene	<1.5	ug/m3	4.7	1.5	1.52		03/27/21 07:22		
Dichlorodifluoromethane	60200	ug/m3	1470	800	1459		03/30/21 13:02		
1,1-Dichloroethane	<0.19	ug/m3	1.3	0.19	1.52		03/27/21 07:22		
1,2-Dichloroethane	<0.20	ug/m3	0.62	0.20	1.52		03/27/21 07:22		
1,1-Dichloroethene	<0.19	ug/m3	1.2	0.19	1.52		03/27/21 07:22		
cis-1,2-Dichloroethene	<0.21	ug/m3	1.2	0.21	1.52		03/27/21 07:22		
trans-1,2-Dichloroethene	<0.25	ug/m3	1.2	0.25	1.52		03/27/21 07:22		
1,2-Dichloropropane	<0.28	ug/m3	1.4	0.28	1.52		03/27/21 07:22		
cis-1,3-Dichloropropene	<0.24	ug/m3	1.4	0.24	1.52		03/27/21 07:22		
trans-1,3-Dichloropropene	<1.0	ug/m3	1.4	1.0	1.52		03/27/21 07:22	10061-02-6	
Dichlorotetrafluoroethane	<0.37	ug/m3	2.2	0.37	1.52		03/27/21 07:22	76-14-2	
Ethanol	356	ug/m3	2.9	0.86	1.52		03/27/21 07:22	64-17-5	
Ethyl acetate	1.4	ug/m3	1.1	0.18	1.52		03/27/21 07:22		
Ethylbenzene	70.9	ug/m3	1.3	0.24	1.52		03/27/21 07:22		
4-Ethyltoluene	4.0	ug/m3	3.8	0.32	1.52		03/27/21 07:22	622-96-8	
n-Heptane	8.2	ug/m3	1.3	0.23	1.52		03/27/21 07:22	142-82-5	
Hexachloro-1,3-butadiene	<2.9	ug/m3	8.2	2.9	1.52		03/27/21 07:22	87-68-3	
n-Hexane	9.9	ug/m3	1.1	0.33	1.52		03/27/21 07:22	110-54-3	
2-Hexanone	2.7J	ug/m3	6.3	1.2	1.52		03/27/21 07:22	591-78-6	
Methylene Chloride	<1.8	ug/m3	5.4	1.8	1.52		03/27/21 07:22	75-09-2	
4-Methyl-2-pentanone (MIBK)	2.0J	ug/m3	6.3	0.17	1.52		03/27/21 07:22	108-10-1	
Methyl-tert-butyl ether	<0.20	ug/m3	5.6	0.20	1.52		03/27/21 07:22	1634-04-4	
Naphthalene	3.8J	ug/m3	8.1	2.9	1.52		03/27/21 07:22	91-20-3	
2-Propanol	23.3	ug/m3	3.8	1.3	1.52		03/27/21 07:22	67-63-0	
Propylene	<0.37	ug/m3	0.53	0.37	1.52		03/27/21 07:22	115-07-1	
Styrene	65.5	ug/m3	1.3	0.41	1.52		03/27/21 07:22		

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

Sample: SS-5	Lab ID:	10551358005	Collected	d: 03/12/2	10:05	Received: 03	3/16/21 14:35 N	latrix: Air	
Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15							
	Pace Ana	lytical Services	- Minneapo	lis					
1,1,2,2-Tetrachloroethane	<0.33	ug/m3	1.1	0.33	1.52		03/27/21 07:22	70-34-5	
Tetrachloroethene	122	ug/m3	1.0	0.38	1.52		03/27/21 07:22		
Tetrahydrofuran	<0.20	ug/m3	0.91	0.20	1.52		03/27/21 07:22		
Toluene	21.0	ug/m3	1.2	0.18	1.52		03/27/21 07:22		
1,2,4-Trichlorobenzene	<5.9	ug/m3	11.5	5.9	1.52		03/27/21 07:22		
1,1,1-Trichloroethane	<0.29	ug/m3	1.7	0.29	1.52		03/27/21 07:22		
1,1,2-Trichloroethane	<0.26	ug/m3	0.84	0.26	1.52		03/27/21 07:22		
Trichloroethene	<0.32	ug/m3	0.83	0.32	1.52		03/27/21 07:22		
Trichlorofluoromethane	5.5	ug/m3	4.3	0.35	1.52		03/27/21 07:22		
1,1,2-Trichlorotrifluoroethane	545	ug/m3	2.4	0.35	1.52		03/27/21 07:22		Е
1,2,4-Trimethylbenzene	14.7	ug/m3	1.5	0.29	1.52		03/27/21 07:22		_
1,3,5-Trimethylbenzene	3.5	ug/m3	1.5	0.31	1.52		03/27/21 07:22		
Vinyl acetate	<0.17	ug/m3	1.1	0.17	1.52		03/27/21 07:22		
Vinyl chloride	<0.13	ug/m3	0.40	0.13	1.52		03/27/21 07:22	2 75-01-4	
m&p-Xylene	27.9	ug/m3	2.7	0.59	1.52		03/27/21 07:22	2 179601-23-1	
o-Xylene	10.5	ug/m3	1.3	0.22	1.52		03/27/21 07:22		
Sample: SS-6	Lab ID:	10551358006	Collected	d: 03/12/2 ²	10:35	Received: 03	3/16/21 14:35 N	latrix: Air	
Parameters	Deculto								
	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
		Units — — — — — — — — — — — — — — — — — — —		LOD	DF_	Prepared	Analyzed	CAS No.	- Qual
	Analytical				DF_	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical	Method: TO-15 lytical Services			DF 1.46	Prepared	Analyzed 03/29/21 21:34		Qual
TO15 MSV AIR Acetone	Analytical Pace Ana	Method: TO-15 lytical Services ug/m3	- Minneapo	lis		Prepared		4 67-64-1	Qual
TO15 MSV AIR Acetone Benzene	Analytical Pace Ana 79.3	Method: TO-15 lytical Services	- Minneapo 8.8	lis 3.2	1.46	Prepared	03/29/21 21:34	4 67-64-1 4 71-43-2	Qual
TO15 MSV AIR Acetone Benzene Benzyl chloride	Analytical Pace Ana 79.3 2.5	Method: TO-15 lytical Services ug/m3 ug/m3	- Minneapo 8.8 0.47	3.2 0.20	1.46 1.46	Prepared	03/29/21 21:3 ⁴ 03/29/21 21:3 ⁴	4 67-64-1 4 71-43-2 4 100-44-7	Qual
TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane	Analytical Pace Ana 79.3 2.5 <1.9	Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3	- Minneapo 8.8 0.47 3.8	3.2 0.20 1.9	1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4	Qual
TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform	Analytical Pace Ana 79.3 2.5 <1.9 <0.33	Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3	- Minneapo 8.8 0.47 3.8 2.0	3.2 0.20 1.9 0.33	1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2	Qual
TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3	Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7	3.2 0.20 1.9 0.33 1.3	1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9	Qual
TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26	Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7	3.2 0.20 1.9 0.33 1.3 0.26	1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0	Qual
TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK)	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16 18.4	Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66	3.2 0.20 1.9 0.33 1.3 0.26 0.16	1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3	Qual
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16	Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66 4.4	3.2 0.20 1.9 0.33 1.3 0.26 0.16 1.3	1.46 1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3 4 75-15-0	Qual
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16 18.4 <0.15	Method: TO-15 lytical Services ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3 ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66 4.4 0.92	3.2 0.20 1.9 0.33 1.3 0.26 0.16 1.3 0.15	1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3 4 75-15-0 4 56-23-5	Qual
Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16 18.4 <0.15 <0.31	Method: TO-15 lytical Services ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66 4.4 0.92 1.9	3.2 0.20 1.9 0.33 1.3 0.26 0.16 1.3 0.15 0.31	1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3 4 75-15-0 4 56-23-5 4 108-90-7	Qual
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16 18.4 <0.15 <0.31 13.5	Method: TO-15 lytical Services ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66 4.4 0.92 1.9	3.2 0.20 1.9 0.33 1.3 0.26 0.16 1.3 0.15 0.31	1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3 4 75-15-0 4 56-23-5 4 108-90-7 4 75-00-3	Qual
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16 18.4 <0.15 <0.31 13.5 <0.20	Method: TO-15 lytical Services ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66 4.4 0.92 1.9 1.4 0.78	3.2 0.20 1.9 0.33 1.3 0.26 0.16 1.3 0.15 0.31 0.24	1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3 4 75-15-0 4 56-23-5 4 108-90-7 4 75-00-3 4 67-66-3	Qual
TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16 18.4 <0.15 <0.31 13.5 <0.20 <0.22	Method: TO-15 lytical Services ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66 4.4 0.92 1.9 1.4 0.78 0.72	1is 3.2 0.20 1.9 0.33 1.3 0.26 0.16 1.3 0.15 0.31 0.24 0.20 0.22	1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3 4 75-15-0 4 56-23-5 4 108-90-7 4 75-00-3 4 67-66-3 4 74-87-3	Qual
TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16 18.4 <0.15 <0.31 13.5 <0.20 <0.22 <0.11	Method: TO-15 lytical Services ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66 4.4 0.92 1.9 1.4 0.78 0.72 0.61	1is 3.2 0.20 1.9 0.33 1.3 0.26 0.16 1.3 0.15 0.31 0.24 0.20 0.22 0.11	1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3 4 75-15-0 4 56-23-5 4 108-90-7 4 75-00-3 4 67-66-3 4 74-87-3 4 110-82-7	Qual
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroethane Chloroform Chloromethane Cyclohexane Dibromochloromethane	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16 18.4 <0.15 <0.31 13.5 <0.20 <0.22 <0.11 3.4	Method: TO-15 lytical Services ug/m3 - Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66 4.4 0.92 1.9 1.4 0.78 0.72 0.61 2.6	1 3.2 0.20 1.9 0.33 1.3 0.26 0.16 1.3 0.15 0.31 0.24 0.20 0.22 0.11	1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3 4 75-15-0 56-23-5 4 108-90-7 4 75-00-3 67-66-3 4 74-87-3 4 110-82-7 4 124-48-1	Qual	
Acetone Benzene Benzyl chloride Bromodichloromethane Bromomethane 1,3-Butadiene 2-Butanone (MEK) Carbon disulfide Carbon tetrachloride Chlorobenzene Chloroform Chloromethane Cyclohexane Dibromochloromethane 1,2-Dibromoethane (EDB)	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16 18.4 <0.15 <0.31 13.5 <0.20 <0.22 <0.11 3.4 <0.48	Method: TO-15 lytical Services ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66 4.4 0.92 1.9 1.4 0.78 0.72 0.61 2.6 2.5	1 3.2 0.20 1.9 0.33 1.3 0.26 0.16 1.3 0.15 0.31 0.24 0.20 0.22 0.11 0.27	1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3 5 75-15-0 1 56-23-5 4 108-90-7 4 75-00-3 4 67-66-3 7 74-87-3 4 110-82-7 4 124-48-1 4 106-93-4	Qual
TO15 MSV AIR Acetone Benzene Benzyl chloride Bromodichloromethane Bromoform Bromomethane 1,3-Butadiene	Analytical Pace Ana 79.3 2.5 <1.9 <0.33 <1.3 <0.26 <0.16 18.4 <0.15 <0.31 13.5 <0.20 <0.22 <0.11 3.4 <0.48 <0.34	Method: TO-15 lytical Services ug/m3	- Minneapo 8.8 0.47 3.8 2.0 7.7 1.2 0.66 4.4 0.92 1.9 1.4 0.78 0.72 0.61 2.6 2.5 1.1	3.2 0.20 1.9 0.33 1.3 0.26 0.16 1.3 0.15 0.31 0.24 0.20 0.22 0.11 0.27 0.48 0.34	1.46 1.46 1.46 1.46 1.46 1.46 1.46 1.46	Prepared	03/29/21 21:34 03/29/21 21:34	4 67-64-1 4 71-43-2 4 100-44-7 4 75-27-4 4 75-25-2 4 74-83-9 4 106-99-0 4 78-93-3 4 75-15-0 1 56-23-5 1 108-90-7 4 75-00-3 4 67-66-3 4 74-87-3 4 110-82-7 4 124-48-1 4 106-93-4 4 95-50-1	Qual

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

Sample: SS-6 Lab ID: 10551358006 Collected: 03/12/21 10:35 Received: 03/16/21 14:35 Matrix: Air

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qua
TO15 MSV AIR	Analytical	Method: TO-	15						
	Pace Anal	ytical Service	es - Minneapo	lis					
Dichlorodifluoromethane	29100	ug/m3	708	384	700.8		03/30/21 12:17	75-71-8	
1,1-Dichloroethane	<0.19	ug/m3	1.2	0.19	1.46		03/29/21 21:34	75-34-3	
1,2-Dichloroethane	<0.19	ug/m3	0.60	0.19	1.46		03/29/21 21:34	107-06-2	
1,1-Dichloroethene	<0.19	ug/m3	1.2	0.19	1.46		03/29/21 21:34	75-35-4	
cis-1,2-Dichloroethene	<0.20	ug/m3	1.2	0.20	1.46		03/29/21 21:34	156-59-2	
trans-1,2-Dichloroethene	<0.24	ug/m3	1.2	0.24	1.46		03/29/21 21:34	156-60-5	
1,2-Dichloropropane	<0.26	ug/m3	1.4	0.26	1.46		03/29/21 21:34		
cis-1,3-Dichloropropene	<0.24	ug/m3	1.3	0.24	1.46		03/29/21 21:34		
trans-1,3-Dichloropropene	<0.97	ug/m3	1.3	0.97	1.46		03/29/21 21:34	10061-02-6	
Dichlorotetrafluoroethane	<0.35	ug/m3	2.1	0.35	1.46		03/29/21 21:34		
Ethanol	336	ug/m3	2.8	0.83	1.46		03/29/21 21:34		
Ethyl acetate	<0.18	ug/m3	1.1	0.18	1.46		03/29/21 21:34		
Ethylbenzene	67.0	ug/m3	1.3	0.23	1.46		03/29/21 21:34		
4-Ethyltoluene	7.0	ug/m3	3.6	0.31	1.46		03/29/21 21:34		
n-Heptane	6.2	ug/m3	1.2	0.22	1.46		03/29/21 21:34		
Hexachloro-1,3-butadiene	<2.8	ug/m3	7.9	2.8	1.46		03/29/21 21:34		
n-Hexane	4.7	ug/m3	1.0	0.31	1.46		03/29/21 21:34		
2-Hexanone	2.8J	ug/m3	6.1	1.2	1.46		03/29/21 21:34		
Methylene Chloride	<1.8	ug/m3	5.2	1.8	1.46		03/29/21 21:34		
4-Methyl-2-pentanone (MIBK)	7.9	ug/m3	6.1	0.16	1.46		03/29/21 21:34		
, , ,	7.9 <0.19	Ū	5.3	0.16	1.46		03/29/21 21:34		
Methyl-tert-butyl ether		ug/m3							
Naphthalene	3.8J	ug/m3	3.9	2.7	1.46		03/29/21 21:34		
2-Propanol	62.2	ug/m3	3.6	1.2	1.46		03/29/21 21:34		
Propylene	<0.35	ug/m3	0.51	0.35	1.46		03/29/21 21:34		
Styrene	91.2	ug/m3	1.3	0.40	1.46		03/29/21 21:34		
1,1,2,2-Tetrachloroethane	<0.31	ug/m3	1.0	0.31	1.46		03/29/21 21:34		
Tetrachloroethene	96.8	ug/m3	1.0	0.36	1.46		03/29/21 21:34		
Tetrahydrofuran 	3.4	ug/m3	0.88	0.19	1.46		03/29/21 21:34		
Toluene	25.5	ug/m3	1.1	0.18	1.46		03/29/21 21:34		
1,2,4-Trichlorobenzene	<5.7	ug/m3	11.0	5.7	1.46		03/29/21 21:34		
1,1,1-Trichloroethane	<0.27	ug/m3	1.6	0.27	1.46		03/29/21 21:34		
1,1,2-Trichloroethane	<0.25	ug/m3	0.81	0.25	1.46		03/29/21 21:34		
Trichloroethene	3.2	ug/m3	0.80	0.31	1.46		03/29/21 21:34		
Trichlorofluoromethane	2.3	ug/m3	1.7	0.33	1.46		03/29/21 21:34		
1,1,2-Trichlorotrifluoroethane	162	ug/m3	2.3	0.34	1.46		03/29/21 21:34	76-13-1	
1,2,4-Trimethylbenzene	11.1	ug/m3	1.5	0.28	1.46		03/29/21 21:34	95-63-6	
1,3,5-Trimethylbenzene	3.3	ug/m3	1.5	0.30	1.46		03/29/21 21:34	108-67-8	
Vinyl acetate	<0.17	ug/m3	1.0	0.17	1.46		03/29/21 21:34	108-05-4	
Vinyl chloride	<0.12	ug/m3	0.38	0.12	1.46		03/29/21 21:34	75-01-4	
m&p-Xylene	25.6	ug/m3	2.6	0.56	1.46		03/29/21 21:34	179601-23-1	
o-Xylene	7.7	ug/m3	1.3	0.21	1.46		03/29/21 21:34	95-47-6	

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

QC Batch: 731536 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10551358004, 10551358005

METHOD BLANK: 3898952 Matrix: Air

Associated Lab Samples: 10551358004, 10551358005

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	<0.19	1.1	03/26/21 16:10	
1,1,2,2-Tetrachloroethane	ug/m3	<0.19	0.70	03/26/21 16:10	
1,1,2-Trichloroethane	ug/m3	<0.17	0.76	03/26/21 16:10	
1,1,2-Trichlorotrifluoroethane	ug/m3	<0.23	1.6	03/26/21 16:10	
1,1-Dichloroethane	ug/m3	<0.13	0.82	03/26/21 16:10	
1,1-Dichloroethene	ug/m3	<0.13	0.81	03/26/21 16:10	
1,2,4-Trichlorobenzene	ug/m3	<3.9	7.5	03/26/21 16:10	
1,2,4-Trimethylbenzene	ug/m3	<0.19	1.0	03/26/21 16:10	
1,2-Dibromoethane (EDB)	ug/m3	<0.23	0.78	03/26/21 16:10	
1,2-Dichlorobenzene	ug/m3	1.1J	1.2	03/26/21 16:10	
1,2-Dichloroethane	ug/m3	<0.13	0.41	03/26/21 16:10	
1,2-Dichloropropane	ug/m3	<0.18	0.94	03/26/21 16:10	
1,3,5-Trimethylbenzene	ug/m3	< 0.20	1.0	03/26/21 16:10	
1,3-Butadiene	ug/m3	<0.11	0.45	03/26/21 16:10	
1,3-Dichlorobenzene	ug/m3	<0.84	3.1	03/26/21 16:10	
1,4-Dichlorobenzene	ug/m3	< 0.97	3.1	03/26/21 16:10	
2-Butanone (MEK)	ug/m3	<0.88	3.0	03/26/21 16:10	
2-Hexanone	ug/m3	<0.80	4.2	03/26/21 16:10	
2-Propanol	ug/m3	<0.85	2.5	03/26/21 16:10	
4-Ethyltoluene	ug/m3	<0.21	2.5	03/26/21 16:10	
4-Methyl-2-pentanone (MIBK)	ug/m3	<0.11	4.2	03/26/21 16:10	
Acetone	ug/m3	<2.2	6.0	03/26/21 16:10	
Benzene	ug/m3	<0.14	0.32	03/26/21 16:10	
Benzyl chloride	ug/m3	<1.3	2.6	03/26/21 16:10	
Bromodichloromethane	ug/m3	< 0.23	1.4	03/26/21 16:10	
Bromoform	ug/m3	< 0.92	5.2	03/26/21 16:10	
Bromomethane	ug/m3	<0.18	0.79	03/26/21 16:10	
Carbon disulfide	ug/m3	<0.10	0.63	03/26/21 16:10	
Carbon tetrachloride	ug/m3	<0.21	1.3	03/26/21 16:10	
Chlorobenzene	ug/m3	<0.16	0.94	03/26/21 16:10	
Chloroethane	ug/m3	<0.14	0.54	03/26/21 16:10	
Chloroform	ug/m3	<0.15	0.50	03/26/21 16:10	
Chloromethane	ug/m3	<0.077	0.42	03/26/21 16:10	
cis-1,2-Dichloroethene	ug/m3	<0.14	0.81	03/26/21 16:10	
cis-1,3-Dichloropropene	ug/m3	<0.16	0.92	03/26/21 16:10	
Cyclohexane	ug/m3	<0.18	1.8	03/26/21 16:10	
Dibromochloromethane	ug/m3	<0.33	1.7	03/26/21 16:10	
Dichlorodifluoromethane	ug/m3	<0.55	1.0	03/26/21 16:10	
Dichlorotetrafluoroethane	ug/m3	<0.24	1.4	03/26/21 16:10	
Ethanol	ug/m3	0.91J	1.9	03/26/21 16:10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

METHOD BLANK: 3898952 Matrix: Air

Associated Lab Samples: 10551358004, 10551358005

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethyl acetate	ug/m3	<0.12	0.73	03/26/21 16:10	
Ethylbenzene	ug/m3	<0.16	0.88	03/26/21 16:10	
Hexachloro-1,3-butadiene	ug/m3	<1.9	5.4	03/26/21 16:10	
m&p-Xylene	ug/m3	<0.38	1.8	03/26/21 16:10	
Methyl-tert-butyl ether	ug/m3	<0.13	3.7	03/26/21 16:10	
Methylene Chloride	ug/m3	<1.2	3.5	03/26/21 16:10	
n-Heptane	ug/m3	<0.15	0.83	03/26/21 16:10	
n-Hexane	ug/m3	<0.21	0.72	03/26/21 16:10	
Naphthalene	ug/m3	2.7J	5.3	03/26/21 16:10	
o-Xylene	ug/m3	<0.15	0.88	03/26/21 16:10	
Propylene	ug/m3	<0.24	0.35	03/26/21 16:10	
Styrene	ug/m3	<0.27	0.87	03/26/21 16:10	
Tetrachloroethene	ug/m3	< 0.25	0.69	03/26/21 16:10	
Tetrahydrofuran	ug/m3	<0.13	0.60	03/26/21 16:10	
Toluene	ug/m3	<0.12	0.77	03/26/21 16:10	
trans-1,2-Dichloroethene	ug/m3	<0.17	0.81	03/26/21 16:10	
trans-1,3-Dichloropropene	ug/m3	<0.66	0.92	03/26/21 16:10	
Trichloroethene	ug/m3	<0.21	0.55	03/26/21 16:10	
Trichlorofluoromethane	ug/m3	<0.23	2.9	03/26/21 16:10	
Vinyl acetate	ug/m3	<0.11	0.72	03/26/21 16:10	
Vinyl chloride	ug/m3	< 0.084	0.26	03/26/21 16:10	

LABORATORY CONTROL SAMPLE:	3898953					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.2	60.1	109	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	72.5	77.4	107	70-132	
1,1,2-Trichloroethane	ug/m3	56.3	63.5	113	70-134	
1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	83.9	108	70-130	
1,1-Dichloroethane	ug/m3	42.1	43.4	103	70-133	
1,1-Dichloroethene	ug/m3	41.5	44.2	106	70-130	
1,2,4-Trichlorobenzene	ug/m3	82	102	124	69-132	
1,2,4-Trimethylbenzene	ug/m3	51.9	56.9	110	70-142	
1,2-Dibromoethane (EDB)	ug/m3	80.4	89.2	111	70-138	
1,2-Dichlorobenzene	ug/m3	66	62.6	95	70-146	
1,2-Dichloroethane	ug/m3	42.1	45.3	108	70-132	
1,2-Dichloropropane	ug/m3	47.1	49.0	104	70-134	
1,3,5-Trimethylbenzene	ug/m3	51.4	51.6	100	70-143	
1,3-Butadiene	ug/m3	23	20.5	89	70-136	
1,3-Dichlorobenzene	ug/m3	63	62.4	99	70-145	
1,4-Dichlorobenzene	ug/m3	65.5	63.1	96	70-140	
2-Butanone (MEK)	ug/m3	32.4	30.1	93	50-139	
2-Hexanone	ug/m3	41.4	42.1	102	70-148	
2-Propanol	ug/m3	27.4	31.5	115	67-135	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

LABORATORY CONTROL SAMPLE:	3898953	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
4-Ethyltoluene	ug/m3		50.4	98	70-145	
4-Methyl-2-pentanone (MIBK)	ug/m3	42.4	43.2	102	70-139	
Acetone	ug/m3	24.6	24.2	98	64-130	
Benzene	ug/m3	32.9	33.8	103	70-131	
Benzyl chloride	ug/m3	57.3	48.3	84	70-130	
Bromodichloromethane	ug/m3	69.7	78.9	113	70-133	
Bromoform	ug/m3	110	101	92	70-137	
Bromomethane	ug/m3	39.9	34.2	86	64-134	
Carbon disulfide	ug/m3	33.4	34.2	102	70-131	
Carbon tetrachloride	ug/m3	65	76.5	118	70-131	
Chlorobenzene	ug/m3	48.3	51.9	108	70-130	
Chloroethane	ug/m3	26.9	27.6	103	69-141	
Chloroform	ug/m3	48.5	51.3	106	70-130	
Chloromethane	ug/m3	21.1	20.5	97	70-130	
cis-1,2-Dichloroethene	ug/m3	41	43.8	107	70-137	
cis-1,3-Dichloropropene	ug/m3	46.9	48.7	104	70-144	
Cyclohexane	ug/m3	35.2	36.6	104	70-137	
Dibromochloromethane	ug/m3	87.3	110	125	70-132	
Dichlorodifluoromethane	ug/m3	51.3	52.7	103	70-130	
Dichlorotetrafluoroethane	ug/m3	65.1	71.2	109	70-130	
Ethanol	ug/m3	19.2	23.0	120	63-133	
Ethyl acetate	ug/m3	35.9	39.7	111	70-136	
Ethylbenzene	ug/m3	45.6	47.1	103	70-142	
Hexachloro-1,3-butadiene	ug/m3	117	125	107	70-135	
m&p-Xylene	ug/m3	45.9	48.9	106	70-141	
Methyl-tert-butyl ether	ug/m3	36.9	38.2	103	70-143	
Methylene Chloride	ug/m3	37.8	41.9	111	70-130	
n-Heptane	ug/m3	41.7	40.4	97	70-137	
n-Hexane	ug/m3	35.1	34.6	98	70-135	
Naphthalene	ug/m3	58.1	62.1	107	67-132	
o-Xylene	ug/m3	46	45.0	98	70-141	
Propylene	ug/m3	17.9	17.3	97	70-130	
Styrene	ug/m3	45.3	45.1	100	70-142	
Tetrachloroethene	ug/m3	69.9	70.9	102	70-130	
Tetrahydrofuran	ug/m3	30.1	29.5	98	70-136	
Toluene	ug/m3	39.4	42.5	108	70-138	
trans-1,2-Dichloroethene	ug/m3	40.8	42.1	103	70-130	
trans-1,3-Dichloropropene	ug/m3	48.2	47.1	98	70-145	
Trichloroethene	ug/m3	55.7	59.5	107	70-130	
Trichlorofluoromethane	ug/m3	56.5	55.6	98	69-135	
Vinyl acetate	ug/m3	38.1	47.4	124	70-146	
Vinyl chloride	ug/m3	26.6	27.1	102	70-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

SAMPLE DUPLICATE: 3901718			_		
Parameter	Units	10551134006 Result	Dup Result	RPD	Max RPD Qualifiers
1,1,1-Trichloroethane	ug/m3		<0.24		25
1,1,2,2-Tetrachloroethane	ug/m3	ND	<0.28		25
1,1,2-Trichloroethane	ug/m3	ND	< 0.23		25
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	0.38J		25
1,1-Dichloroethane	ug/m3	ND	<0.17		25
1,1-Dichloroethene	ug/m3	ND	<0.17		25
1,2,4-Trichlorobenzene	ug/m3	ND	<5.1		25
1,2,4-Trimethylbenzene	ug/m3	ND	< 0.25		25
1,2-Dibromoethane (EDB)	ug/m3	ND	< 0.30		25
1,2-Dichlorobenzene	ug/m3	ND	< 0.95		25
1,2-Dichloroethane	ug/m3	ND	<0.17		25
1,2-Dichloropropane	ug/m3	ND	< 0.24		25
1,3,5-Trimethylbenzene	ug/m3	ND	< 0.27		25
1,3-Butadiene	ug/m3	ND	< 0.14		25
1,3-Dichlorobenzene	ug/m3	ND	<1.1		25
1,4-Dichlorobenzene	ug/m3	ND	<1.3		25
2-Butanone (MEK)	ug/m3	ND	<1.1		25
2-Hexanone	ug/m3	ND	<1.0		25
2-Propanol	ug/m3	ND	<1.1		25
4-Ethyltoluene	ug/m3	ND	<0.28		25
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	< 0.14		25
Acetone	ug/m3	ND	4.3J		25
Benzene	ug/m3	1.3	1.4	6	25
Benzyl chloride	ug/m3	ND	<1.7		25
Bromodichloromethane	ug/m3	ND	< 0.30		25
Bromoform	ug/m3	ND	<1.2		25
Bromomethane	ug/m3	ND	< 0.23		25
Carbon disulfide	ug/m3	0.84	0.79J		25
Carbon tetrachloride	ug/m3	ND	<0.28		25
Chlorobenzene	ug/m3	ND	<0.21		25
Chloroethane	ug/m3	ND	<0.18		25
Chloroform	ug/m3	ND	0.28J		25
Chloromethane	ug/m3	ND	<0.10		25
cis-1,2-Dichloroethene	ug/m3	ND	<0.18		25
cis-1,3-Dichloropropene	ug/m3	ND	<0.21		25
Cyclohexane	ug/m3	7.7	9.0	15	25
Dibromochloromethane	ug/m3	ND	< 0.43		25
Dichlorodifluoromethane	ug/m3	ND	2.3		25
Dichlorotetrafluoroethane	ug/m3	ND	< 0.31		25
Ethanol	ug/m3	7.5	5.7	27	25 R1
Ethyl acetate	ug/m3	ND	<0.16		25
Ethylbenzene	ug/m3	ND	0.26J		25
Hexachloro-1,3-butadiene	ug/m3	ND	<2.5		25
m&p-Xylene	ug/m3	ND	0.85J		25
Methyl-tert-butyl ether	ug/m3	ND	<0.17		25
Methylene Chloride	ug/m3	ND	1.8J		25
n-Heptane	ug/m3	2.2	2.5	14	25

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

SAMPLE DUPLICATE: 3901718	8					
		10551134006	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
n-Hexane	ug/m3	27.4	28.7	5	25	
Naphthalene	ug/m3	ND	<2.4		25	
o-Xylene	ug/m3	ND	0.21J		25	
Propylene	ug/m3	ND	< 0.31		25	
Styrene	ug/m3	ND	< 0.35		25	
Tetrachloroethene	ug/m3	2.4	2.4	2	25	
Tetrahydrofuran	ug/m3	ND	<0.17		25	
Toluene	ug/m3	2.6	2.6	3	25	
trans-1,2-Dichloroethene	ug/m3	ND	0.37J		25	
trans-1,3-Dichloropropene	ug/m3	ND	<0.86		25	
Trichloroethene	ug/m3	3.1	3.1	0	25	
Trichlorofluoromethane	ug/m3	ND	2.2J		25	
Vinyl acetate	ug/m3	ND	<0.15		25	
Vinyl chloride	ug/m3	ND	<0.11		25	

SAMPLE DUPLICATE: 3901719						
		10551134008	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,1,1-Trichloroethane	ug/m3	ND	<0.31		25	
1,1,2,2-Tetrachloroethane	ug/m3	ND	< 0.35		25	
1,1,2-Trichloroethane	ug/m3	ND	< 0.29		25	
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	0.74J		25	
1,1-Dichloroethane	ug/m3	ND	<0.21		25	
1,1-Dichloroethene	ug/m3	ND	<0.21		25	
1,2,4-Trichlorobenzene	ug/m3	ND	<6.4		25	
1,2,4-Trimethylbenzene	ug/m3	2.0	2.0	0	25	
1,2-Dibromoethane (EDB)	ug/m3	ND	< 0.38		25	
1,2-Dichlorobenzene	ug/m3	ND	<1.2		25	
1,2-Dichloroethane	ug/m3	ND	<0.21		25	
1,2-Dichloropropane	ug/m3	ND	< 0.30		25	
1,3,5-Trimethylbenzene	ug/m3	ND	0.66J		25	
1,3-Butadiene	ug/m3	ND	<0.18		25	
1,3-Dichlorobenzene	ug/m3	ND	<1.4		25	
1,4-Dichlorobenzene	ug/m3	ND	<1.6		25	
2-Butanone (MEK)	ug/m3	ND	4.1J		25	
2-Hexanone	ug/m3	ND	<1.3		25	
2-Propanol	ug/m3	6.1	6.9	12	25	
4-Ethyltoluene	ug/m3	ND	1.3J		25	
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	5.2J		25	
Acetone	ug/m3	42.9	45.1	5	25	
Benzene	ug/m3	2.2	2.1	4	25	
Benzyl chloride	ug/m3	ND	<2.2		25	
Bromodichloromethane	ug/m3	ND	< 0.37		25	
Bromoform	ug/m3	ND	<1.5		25	
Bromomethane	ug/m3	ND	<0.30		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

SAMPLE DUPLICATE: 3901719						
		10551134008	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Carbon disulfide	ug/m3	ND	<0.17		25	
Carbon tetrachloride	ug/m3	ND	0.45J		25	
Chlorobenzene	ug/m3	ND	<0.26		25	
Chloroethane	ug/m3	ND	< 0.23		25	
Chloroform	ug/m3	ND	< 0.24		25	
Chloromethane	ug/m3	2.2	2.0	11	25	
cis-1,2-Dichloroethene	ug/m3	ND	< 0.23		25	
cis-1,3-Dichloropropene	ug/m3	ND	<0.26		25	
Cyclohexane	ug/m3	7.0	6.9	2	25	
Dibromochloromethane	ug/m3	ND	< 0.54		25	
Dichlorodifluoromethane	ug/m3	ND	2.3		25	
Dichlorotetrafluoroethane	ug/m3	ND	< 0.40		25	
Ethanol	ug/m3	47.2	48.3	2	25	
Ethyl acetate	ug/m3	ND	3.0		25	
Ethylbenzene	ug/m3	4.5	4.5	0	25	
Hexachloro-1,3-butadiene	ug/m3	ND	<3.2		25	
n&p-Xylene	ug/m3	16.5	16.5	0	25	
Methyl-tert-butyl ether	ug/m3	ND	<0.22		25	
Methylene Chloride	ug/m3	ND	<2.0		25	
n-Heptane	ug/m3	4.0	4.1	3	25	
n-Hexane	ug/m3	8.2	8.1	0	25	
Naphthalene	ug/m3	ND	<3.1		25	
o-Xylene	ug/m3	4.6	4.5	1	25	
Propylene	ug/m3	ND	< 0.40		25	
Styrene	ug/m3	ND	1.5		25	
Tetrachloroethene	ug/m3	ND	< 0.41		25	
Tetrahydrofuran	ug/m3	ND	<0.21		25	
Toluene	ug/m3	19.0	18.4	3	25	
rans-1,2-Dichloroethene	ug/m3	ND	<0.27		25	
rans-1,3-Dichloropropene	ug/m3	ND	<1.1		25	
Trichloroethene	ug/m3	ND	< 0.34		25	
Trichlorofluoromethane	ug/m3	ND	2.6J		25	
Vinyl acetate	ug/m3	ND	< 0.19		25	
Vinyl chloride	ug/m3	ND	<0.14		25	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

QC Batch: 731810 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10551358001, 10551358002, 10551358006

METHOD BLANK: 3900837 Matrix: Air

Associated Lab Samples: 10551358001, 10551358002, 10551358006

		Blank Reporting			
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	<0.094	0.56	03/29/21 19:45	
1,1,2,2-Tetrachloroethane	ug/m3	<0.11	0.35	03/29/21 19:45	
1,1,2-Trichloroethane	ug/m3	< 0.087	0.28	03/29/21 19:45	
1,1,2-Trichlorotrifluoroethane	ug/m3	<0.12	0.78	03/29/21 19:45	
1,1-Dichloroethane	ug/m3	< 0.064	0.41	03/29/21 19:45	
1,1-Dichloroethene	ug/m3	< 0.064	0.40	03/29/21 19:45	
1,2,4-Trichlorobenzene	ug/m3	<2.0	3.8	03/29/21 19:45	
1,2,4-Trimethylbenzene	ug/m3	< 0.097	0.50	03/29/21 19:45	
1,2-Dibromoethane (EDB)	ug/m3	<0.12	0.39	03/29/21 19:45	
1,2-Dichlorobenzene	ug/m3	< 0.36	0.61	03/29/21 19:45	
1,2-Dichloroethane	ug/m3	< 0.066	0.21	03/29/21 19:45	
1,2-Dichloropropane	ug/m3	< 0.090	0.47	03/29/21 19:45	
1,3,5-Trimethylbenzene	ug/m3	<0.10	0.50	03/29/21 19:45	
1,3-Butadiene	ug/m3	< 0.055	0.22	03/29/21 19:45	
1,3-Dichlorobenzene	ug/m3	< 0.42	0.61	03/29/21 19:45	
1,4-Dichlorobenzene	ug/m3	<0.48	1.5	03/29/21 19:45	
2-Butanone (MEK)	ug/m3	< 0.44	1.5	03/29/21 19:45	
2-Hexanone	ug/m3	< 0.40	2.1	03/29/21 19:45	
2-Propanol	ug/m3	< 0.43	1.2	03/29/21 19:45	
4-Ethyltoluene	ug/m3	<0.11	1.2	03/29/21 19:45	
4-Methyl-2-pentanone (MIBK)	ug/m3	< 0.056	2.1	03/29/21 19:45	
Acetone	ug/m3	<1.1	3.0	03/29/21 19:45	
Benzene	ug/m3	<0.068	0.16	03/29/21 19:45	
Benzyl chloride	ug/m3	<0.66	1.3	03/29/21 19:45	
Bromodichloromethane	ug/m3	<0.11	0.68	03/29/21 19:45	
Bromoform	ug/m3	< 0.46	2.6	03/29/21 19:45	
Bromomethane	ug/m3	< 0.090	0.39	03/29/21 19:45	
Carbon disulfide	ug/m3	< 0.052	0.32	03/29/21 19:45	
Carbon tetrachloride	ug/m3	<0.11	0.64	03/29/21 19:45	
Chlorobenzene	ug/m3	<0.080	0.47	03/29/21 19:45	
Chloroethane	ug/m3	< 0.069	0.27	03/29/21 19:45	
Chloroform	ug/m3	< 0.074	0.25	03/29/21 19:45	
Chloromethane	ug/m3	< 0.039	0.21	03/29/21 19:45	
cis-1,2-Dichloroethene	ug/m3	< 0.070	0.40	03/29/21 19:45	
cis-1,3-Dichloropropene	ug/m3	<0.080	0.46	03/29/21 19:45	
Cyclohexane	ug/m3	< 0.092	0.88	03/29/21 19:45	
Dibromochloromethane	ug/m3	<0.17	0.86	03/29/21 19:45	
Dichlorodifluoromethane	ug/m3	<0.27	0.50	03/29/21 19:45	
Dichlorotetrafluoroethane	ug/m3	<0.12	0.71	03/29/21 19:45	
Ethanol	ug/m3	<0.28	0.96	03/29/21 19:45	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

METHOD BLANK: 3900837 Matrix: Air

Associated Lab Samples: 10551358001, 10551358002, 10551358006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Ethyl acetate	ug/m3	<0.060	0.37	03/29/21 19:45	
Ethylbenzene	ug/m3	<0.078	0.44	03/29/21 19:45	
Hexachloro-1,3-butadiene	ug/m3	<0.97	2.7	03/29/21 19:45	
m&p-Xylene	ug/m3	<0.19	0.88	03/29/21 19:45	
Methyl-tert-butyl ether	ug/m3	< 0.066	1.8	03/29/21 19:45	
Methylene Chloride	ug/m3	<0.60	1.8	03/29/21 19:45	
n-Heptane	ug/m3	< 0.076	0.42	03/29/21 19:45	
n-Hexane	ug/m3	<0.11	0.36	03/29/21 19:45	
Naphthalene	ug/m3	< 0.94	1.3	03/29/21 19:45	
o-Xylene	ug/m3	< 0.073	0.44	03/29/21 19:45	
Propylene	ug/m3	<0.12	0.18	03/29/21 19:45	
Styrene	ug/m3	<0.14	0.43	03/29/21 19:45	
Tetrachloroethene	ug/m3	<0.12	0.34	03/29/21 19:45	
Tetrahydrofuran	ug/m3	< 0.066	0.30	03/29/21 19:45	
Toluene	ug/m3	< 0.060	0.38	03/29/21 19:45	
rans-1,2-Dichloroethene	ug/m3	< 0.084	0.40	03/29/21 19:45	
rans-1,3-Dichloropropene	ug/m3	< 0.33	0.46	03/29/21 19:45	
Trichloroethene	ug/m3	<0.10	0.27	03/29/21 19:45	
Trichlorofluoromethane	ug/m3	<0.11	0.57	03/29/21 19:45	
Vinyl acetate	ug/m3	< 0.057	0.36	03/29/21 19:45	
Vinyl chloride	ug/m3	< 0.042	0.13	03/29/21 19:45	

LABORATORY CONTROL SAMPLE:	3900838					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.2	47.6	86	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	72.5	67.6	93	70-132	
1,1,2-Trichloroethane	ug/m3	56.3	46.9	83	70-134	
1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	62.2	80	70-130	
1,1-Dichloroethane	ug/m3	42.1	35.3	84	70-133	
1,1-Dichloroethene	ug/m3	41.5	34.7	84	70-130	
1,2,4-Trichlorobenzene	ug/m3	82	66.4	81	69-132	
1,2,4-Trimethylbenzene	ug/m3	51.9	41.9	81	70-142	
1,2-Dibromoethane (EDB)	ug/m3	80.4	62.7	78	70-138	
1,2-Dichlorobenzene	ug/m3	66	50.5	77	70-146	
1,2-Dichloroethane	ug/m3	42.1	36.1	86	70-132	
1,2-Dichloropropane	ug/m3	47.1	45.1	96	70-134	
1,3,5-Trimethylbenzene	ug/m3	51.4	41.6	81	70-143	
1,3-Butadiene	ug/m3	23	20.3	88	70-136	
1,3-Dichlorobenzene	ug/m3	63	51.1	81	70-145	
1,4-Dichlorobenzene	ug/m3	65.5	51.3	78	70-140	
2-Butanone (MEK)	ug/m3	32.4	25.8	80	50-139	
2-Hexanone	ug/m3	41.4	36.9	89	70-148	
2-Propanol	ug/m3	27.4	23.6	86	67-135	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

LABORATORY CONTROL SAMPLE:	3900838	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
4-Ethyltoluene	ug/m3		41.3	80	70-145	
4-Methyl-2-pentanone (MIBK)	ug/m3	42.4	36.7	87	70-139	
Acetone	ug/m3	24.6	19.0	77	64-130	
Benzene	ug/m3	32.9	29.6	90	70-131	
Benzyl chloride	ug/m3	57.3	42.3	74	70-130	
Bromodichloromethane	ug/m3	69.7	64.8	93	70-133	
Bromoform	ug/m3	110	83.6	76	70-137	
Bromomethane	ug/m3	39.9	33.1	83	64-134	
Carbon disulfide	ug/m3	33.4	30.0	90	70-131	
Carbon tetrachloride	ug/m3	65	57.2	88	70-131	
Chlorobenzene	ug/m3	48.3	41.0	85	70-130	
Chloroethane	ug/m3	26.9	25.0	93	69-141	
Chloroform	ug/m3	48.5	39.7	82	70-130	
Chloromethane	ug/m3	21.1	18.7	89	70-130	
cis-1,2-Dichloroethene	ug/m3	41	37.7	92	70-137	
cis-1,3-Dichloropropene	ug/m3	46.9	41.6	89	70-144	
Cyclohexane	ug/m3	35.2	31.3	89	70-137	
Dibromochloromethane	ug/m3	87.3	66.4	76	70-132	
Dichlorodifluoromethane	ug/m3	51.3	37.4	73	70-130	
Dichlorotetrafluoroethane	ug/m3	65.1	50.9	78	70-130	
Ethanol	ug/m3	19.2	19.8	104	63-133	
Ethyl acetate	ug/m3	35.9	34.6	96	70-136	
Ethylbenzene	ug/m3	45.6	38.7	85	70-142	
Hexachloro-1,3-butadiene	ug/m3	117	91.3	78	70-135	
m&p-Xylene	ug/m3	45.9	36.5	80	70-141	
Methyl-tert-butyl ether	ug/m3	36.9	34.0	92	70-143	
Methylene Chloride	ug/m3	37.8	31.2	82	70-130	
n-Heptane	ug/m3	41.7	36.8	88	70-137	
n-Hexane	ug/m3	35.1	30.6	87	70-135	
Naphthalene	ug/m3	58.1	49.4	85	67-132	
o-Xylene	ug/m3	46	36.9	80	70-141	
Propylene	ug/m3	17.9	15.6	87	70-130	
Styrene	ug/m3	45.3	36.9	81	70-142	
Tetrachloroethene	ug/m3	69.9	59.0	84	70-130	
Tetrahydrofuran	ug/m3	30.1	25.5	85	70-136	
Toluene	ug/m3	39.4	33.0	84	70-138	
trans-1,2-Dichloroethene	ug/m3	40.8	37.1	91	70-130	
trans-1,3-Dichloropropene	ug/m3	48.2	39.5	82	70-145	
Trichloroethene	ug/m3	55.7	47.6	86	70-130	
Trichlorofluoromethane	ug/m3	56.5	44.1	78	69-135	
Vinyl acetate	ug/m3	38.1	37.6	99	70-146	
Vinyl chloride	ug/m3	26.6	23.4	88	70-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

QC Batch: 732054 Analysis Method: TO-15

QC Batch Method: TO-15 Analysis Description: TO15 MSV AIR Low Level

Laboratory: Pace Analytical Services - Minneapolis

Associated Lab Samples: 10551358003

METHOD BLANK: 3901904 Matrix: Air

Associated Lab Samples: 10551358003

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1-Trichloroethane	ug/m3	<0.094	0.56	03/30/21 10:12	
1,1,2,2-Tetrachloroethane	ug/m3	<0.11	0.35	03/30/21 10:12	
1,1,2-Trichloroethane	ug/m3	< 0.087	0.28	03/30/21 10:12	
1,1,2-Trichlorotrifluoroethane	ug/m3	<0.12	0.78	03/30/21 10:12	
1,1-Dichloroethane	ug/m3	< 0.064	0.41	03/30/21 10:12	
1,1-Dichloroethene	ug/m3	< 0.064	0.40	03/30/21 10:12	
1,2,4-Trichlorobenzene	ug/m3	<2.0	3.8	03/30/21 10:12	
1,2,4-Trimethylbenzene	ug/m3	< 0.097	0.50	03/30/21 10:12	
1,2-Dibromoethane (EDB)	ug/m3	<0.12	0.39	03/30/21 10:12	
1,2-Dichlorobenzene	ug/m3	< 0.36	0.61	03/30/21 10:12	
1,2-Dichloroethane	ug/m3	< 0.066	0.21	03/30/21 10:12	
1,2-Dichloropropane	ug/m3	< 0.090	0.47	03/30/21 10:12	
1,3,5-Trimethylbenzene	ug/m3	<0.10	0.50	03/30/21 10:12	
1,3-Butadiene	ug/m3	< 0.055	0.22	03/30/21 10:12	
1,3-Dichlorobenzene	ug/m3	< 0.42	0.61	03/30/21 10:12	
1,4-Dichlorobenzene	ug/m3	<0.48	1.5	03/30/21 10:12	
2-Butanone (MEK)	ug/m3	<0.44	1.5	03/30/21 10:12	
2-Hexanone	ug/m3	< 0.40	2.1	03/30/21 10:12	
2-Propanol	ug/m3	< 0.43	1.2	03/30/21 10:12	
4-Ethyltoluene	ug/m3	<0.11	1.2	03/30/21 10:12	
4-Methyl-2-pentanone (MIBK)	ug/m3	< 0.056	2.1	03/30/21 10:12	
Acetone	ug/m3	<1.1	3.0	03/30/21 10:12	
Benzene	ug/m3	<0.068	0.16	03/30/21 10:12	
Benzyl chloride	ug/m3	<0.66	1.3	03/30/21 10:12	
Bromodichloromethane	ug/m3	<0.11	0.68	03/30/21 10:12	
Bromoform	ug/m3	< 0.46	2.6	03/30/21 10:12	
Bromomethane	ug/m3	< 0.090	0.39	03/30/21 10:12	
Carbon disulfide	ug/m3	< 0.052	0.32	03/30/21 10:12	
Carbon tetrachloride	ug/m3	<0.11	0.64	03/30/21 10:12	
Chlorobenzene	ug/m3	<0.080	0.47	03/30/21 10:12	
Chloroethane	ug/m3	< 0.069	0.27	03/30/21 10:12	
Chloroform	ug/m3	< 0.074	0.25	03/30/21 10:12	
Chloromethane	ug/m3	< 0.039	0.21	03/30/21 10:12	
cis-1,2-Dichloroethene	ug/m3	< 0.070	0.40	03/30/21 10:12	
cis-1,3-Dichloropropene	ug/m3	<0.080	0.46	03/30/21 10:12	
Cyclohexane	ug/m3	< 0.092	0.88	03/30/21 10:12	
Dibromochloromethane	ug/m3	<0.17	0.86	03/30/21 10:12	
Dichlorodifluoromethane	ug/m3	<0.27	0.50	03/30/21 10:12	
Dichlorotetrafluoroethane	ug/m3	<0.12	0.71	03/30/21 10:12	
Ethanol	ug/m3	<0.28	0.96	03/30/21 10:12	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

METHOD BLANK: 3901904 Matrix: Air

Associated Lab Samples: 10551358003

		Blank Repo			
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Ethyl acetate	 ug/m3	<0.060	0.37	03/30/21 10:12	
Ethylbenzene	ug/m3	< 0.078	0.44	03/30/21 10:12	
Hexachloro-1,3-butadiene	ug/m3	< 0.97	2.7	03/30/21 10:12	
m&p-Xylene	ug/m3	< 0.19	0.88	03/30/21 10:12	
Methyl-tert-butyl ether	ug/m3	< 0.066	1.8	03/30/21 10:12	
Methylene Chloride	ug/m3	< 0.60	1.8	03/30/21 10:12	
n-Heptane	ug/m3	< 0.076	0.42	03/30/21 10:12	
n-Hexane	ug/m3	<0.11	0.36	03/30/21 10:12	
Naphthalene	ug/m3	< 0.94	1.3	03/30/21 10:12	
o-Xylene	ug/m3	< 0.073	0.44	03/30/21 10:12	
Propylene	ug/m3	< 0.12	0.18	03/30/21 10:12	
Styrene	ug/m3	<0.14	0.43	03/30/21 10:12	
Tetrachloroethene	ug/m3	< 0.12	0.34	03/30/21 10:12	
Tetrahydrofuran	ug/m3	< 0.066	0.30	03/30/21 10:12	
Toluene	ug/m3	< 0.060	0.38	03/30/21 10:12	
trans-1,2-Dichloroethene	ug/m3	< 0.084	0.40	03/30/21 10:12	
trans-1,3-Dichloropropene	ug/m3	< 0.33	0.46	03/30/21 10:12	
Trichloroethene	ug/m3	< 0.10	0.27	03/30/21 10:12	
Trichlorofluoromethane	ug/m3	<0.11	0.57	03/30/21 10:12	
Vinyl acetate	ug/m3	< 0.057	0.36	03/30/21 10:12	
Vinyl chloride	ug/m3	< 0.042	0.13	03/30/21 10:12	

LABORATORY CONTROL SAMPLE:	3901905					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	59.3	71.4	120	70-130	
1,1,2,2-Tetrachloroethane	ug/m3	75.4	95.3	126	70-132	
1,1,2-Trichloroethane	ug/m3	59.6	73.9	124	70-134	
1,1,2-Trichlorotrifluoroethane	ug/m3	83.6	144	172	70-130	CH,L1,SS
1,1-Dichloroethane	ug/m3	43.9	53.6	122	70-133	
1,1-Dichloroethene	ug/m3	43.5	53.8	124	70-130	
1,2,4-Trichlorobenzene	ug/m3	177	194	109	69-132	
1,2,4-Trimethylbenzene	ug/m3	54	64.9	120	70-142	
1,2-Dibromoethane (EDB)	ug/m3	82.5	101	122	70-138	
1,2-Dichlorobenzene	ug/m3	66.2	80.2	121	70-146	
1,2-Dichloroethane	ug/m3	44.4	55.5	125	70-132	
1,2-Dichloropropane	ug/m3	50.6	62.7	124	70-134	
1,3,5-Trimethylbenzene	ug/m3	53.7	62.8	117	70-143	
1,3-Butadiene	ug/m3	24.2	28.8	119	70-136	
1,3-Dichlorobenzene	ug/m3	66.3	81.1	122	70-145	
1,4-Dichlorobenzene	ug/m3	66.3	68.2	103	70-140	
2-Butanone (MEK)	ug/m3	32.3	37.5	116	50-139	
2-Hexanone	ug/m3	44.8	54.5	122	70-148	
2-Propanol	ug/m3	149	189	127	67-135	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

LABORATORY CONTROL SAMPLE:	3901905					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
4-Ethyltoluene	ug/m3	53.7	62.4	116	70-145	
4-Methyl-2-pentanone (MIBK)	ug/m3	44.9	56.2	125	70-139	
Acetone	ug/m3	128	156	122	64-130	
Benzene	ug/m3	34.8	42.3	121	70-131	
Benzyl chloride	ug/m3	57.6	58.4	101	70-130	
Bromodichloromethane	ug/m3	73.1	89.0	122	70-133	
Bromoform	ug/m3	114	128	113	70-137	
Bromomethane	ug/m3	42.5	49.7	117	64-134	
Carbon disulfide	ug/m3	34.4	41.7	121	70-131	
Carbon tetrachloride	ug/m3	69.4	79.3	114	70-131	
Chlorobenzene	ug/m3	50.2	59.0	118	70-130	
Chloroethane	ug/m3	28.8	32.7	113	69-141	
Chloroform	ug/m3	52.4	64.8	124	70-130	
Chloromethane	ug/m3	22.6	27.8	123	70-130	
cis-1,2-Dichloroethene	ug/m3	43.4	51.1	118	70-137	
cis-1,3-Dichloropropene	ug/m3	49.4	59.2	120	70-144	
Cyclohexane	ug/m3	37.4	45.0	120	70-137	
Dibromochloromethane	ug/m3	93.2	109	117	70-132	
Dichlorodifluoromethane	ug/m3	54.6	64.3	118	70-130	
Dichlorotetrafluoroethane	ug/m3	71.2	83.0	117	70-130	
Ethanol	ug/m3	124	151	122	63-133	
Ethyl acetate	ug/m3	38.9	46.7	120	70-136	
Ethylbenzene	ug/m3	47.8	58.9	123	70-142	
Hexachloro-1,3-butadiene	ug/m3	133	160	121	70-135	
m&p-Xylene	ug/m3	95.4	111	117	70-141	
Methyl-tert-butyl ether	ug/m3	39.6	49.1	124	70-143	
Methylene Chloride	ug/m3	190	349	183	70-130	CH,L1,SS
n-Heptane	ug/m3	44.6	55.9	125	70-137	
n-Hexane	ug/m3	38	45.9	121	70-135	
Naphthalene	ug/m3	65.2	71.0	109	67-132	
o-Xylene	ug/m3	47.6	55.4	116	70-141	
Propylene	ug/m3	18.9	22.4	119	70-130	
Styrene	ug/m3	47	57.6	123	70-142	
Tetrachloroethene	ug/m3	73.4	84.0	114	70-130	
Tetrahydrofuran	ug/m3	32.1	39.8	124	70-136	
Toluene	ug/m3	41.6	51.3	124	70-138	
trans-1,2-Dichloroethene	ug/m3	43.6	54.0	124	70-130	
trans-1,3-Dichloropropene	ug/m3	50.5	62.0	123	70-145	
Trichloroethene	ug/m3	58.4	69.8	119	70-130	
Trichlorofluoromethane	ug/m3	62	71.4	115	69-135	
Vinyl acetate	ug/m3	46.4	53.2	115	70-146	
Vinyl chloride	ug/m3	28	32.1	114	70-137	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 03/31/2021 02:55 PM

CH	The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased
_	high.

E Analyte concentration exceeded the calibration range. The reported result is estimated.

L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results for this analyte in associated samples may be biased high.

R1 RPD value was outside control limits.

This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 1690020998 NAPA AUTO PARTS

Pace Project No.: 10551358

Date: 03/31/2021 02:55 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10551358001	SS-1	TO-15	731810	_	
10551358002	SS-2	TO-15	731810		
10551358003	SS-3	TO-15	732054		
10551358004	SS-4	TO-15	731536		
10551358005	SS-5	TO-15	731536		
10551358006	SS-6	TO-15	731810		

AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A Required Client Information:	Section B Required Project Information:	mation:		Section C Invoice Information:	ormation:								44383	Page:	-) jo
Company: Zhinkou	Report To: KIZLHARED	0.25	いるといるとに言い	Attention:					ļ				Program	Š		
Address:	Copy To:	1 1		_	Vame:	24mBou						☐ usr ☐	L p 1		Clean	Clean Air Act
म्यार्थित न्या निर्मानित प्राप्त				Address								∇oluntary Clean Up		Dry Clean	RCRA [Other
9)			Pace Quot	Pace Quote Reference:	99						Location of		Rep	Reporting Units	, u
		SIZHG OUR	M	Pace Proje	ct Manage	Pace Project Manager/Sales Rep.						Sampling by State	State State	PPBV	1 1	^
Requested Due Date/TAT:		300 20	ANS.	Pace Profile #: 4	e#: 4	121	3					Report Level	11 III.X IV.	/ Other_	er	
Section D Required CAIR SAMI	Valid Media Codes MEDIA Tediar Bag Tediar Bag TLiter Summa Can 1LC 6 Liter Summa Can 6LC Low Yolume Puff LVP Lich Volume Duff LVP	ODE ding (Client only)		соггестер	стер		fer Pressure Field - in Hg)	ter Pressure Field - in Hg)	Summa Can	<u> </u>	Flow Control	Method:	SOON 1817 h	M LIST (Other)	Ga	
ILEM #		MEDIA C		TIME	COMPOSITE - ENDIGRAB DATE TIM	SITE - RAB TIME	(Initial	leni3)				PATO SC. FIXED TO S BTE	10-15 Full 10-15 Shot	10-15 5/10		Pace Lab ID
1-55-1		611	Bliztz	25	3/12/21	1136	-30	2	9	2 8	7		×		35	
2 55-7		bit	_	1142		6121	- 102-	7	10	2 2 1	₩ ₩		×		200	
3 58.3		eil		444			- 82-	0	7	1 2 7	0		×		603	
4 55.4		tic.		1050		8211	2	7	0.	0 - 5	6 -		×		Mos	
5.55.5		Gic.	_	2112		1005	-30	2	3 2	8 2 E	7		×	9	05	
\$5.6		bit	>	958	4	1035	-30	7.	6	300	77		×	0	ω,	
7								H				=				
88 0										3	#	105	MO#:10551358	8		1
10																
11										==	10551358					4
Comments :		RELINQUISHED BY / A	HED BY /	AFFILIATION		DATE	TIME		CEPTED	ACCEPTED BY / ÄFFILIATION	IATION	DATE	TIME	SAMPL	SAMPLE CONDITIONS	TIONS
	-4	HILL He-strond	-stran	(Promes		3/12/24	16,40	0	FRE			3/12/26			N/A	N/A
				1				19	1/1/2	The	PACE	31624	1435	1	,	,
)		0					N/A	-
											Ŋ					
				07 [2.	SAMPLER NAME A	SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: KYLE ITEEN	AND SIGNATURE KYLE ITETTINSTEMD	TURE	GHETTS					O° ni qm no bevied	lce	led Cooler
ORIGINAL	VAL			os	IGNATURE of	SIGNATURE of SAMPLER:	1 1	1	1	DATE Sig	oed (MM / DD)	DATE Signed (MM / DD / YY).			0	

Pace Analytical*

Document Name:

Sample Condition Upon Receipt (SCUR) - Air

Document No.:

ENV-FRM-MIN4-0113 Rev.00

Document Revised: 24Mar2020

Page 1 of 1

Pace Analytical Services - Minneapolis

Air Sample Condition Upon Receipt	Client Nam			Pro	ject #:	MO#	: 105	513	58	
Courier:	Fed Ex Pace 1773 7	UPS SpeeDee	USPS Comi	mercial See Exce		PM: CT1 CLIENT:	Ramboll	Due Date -WI	: 03/23/	21
Custody Seal on Cool			No	Seals Intact?	□Yes	No				-
					☐163	Mino				
Packing Material:	Bubble Wrap	Bubble	Bags For	am None	Tin	Can Other	-	Temp	Blank rec:]Yes XN
Temp. (TO17 and TO13 s Temp should be above f Type of ice Received	reezing to 6°C	Correction Fac	Corrected Te	mp (°C):		e & Initials of Po		neter Used:	□G87A9170 □G87A9159 3/7-2/0	5100842
								Comments:		
Chain of Custody Presen			7-4	Yes No		1,				
Chain of Custody Filled C	- ANTHE			Yes No		2.				
Chain of Custody Relinqu			-	Yes No		3.				
Sampler Name and/or Si		7		Yes No	□N/A	4.				
Samples Arrived within H				Yes No		5.				
Short Hold Time Analysi Rush Turn Around Time				Yes No	_	7.				
Sufficient Volume?	nequesteur			Yes No		8.				
Correct Containers Used	?			ies		0.				
(Tedlar bags not acce FO-15 or APH) -Pace Containers Used Containers Intact?		ainer for TO-		Yes No Yes No		9.				
(visual inspection/no	looks whon	nroccurized	56	Yes No		10				
Media: Air Can	Airbag	Filter	-	Yes No Passive		10.		~ i ~		
s sufficient information		- 101031		dosive		11. Indi	vidually Certi	fied Cans Y	N)(list which	ch samples)
the COC?	available to reci	onclie samples		Yes No		12.				
DO Cans need to be press DO NOT PRESSURI		TM 1946!!!		Yes No		13.				
		Gauge # [] 10AIR26	▼ 10AIR34	□10	AIR35	1097			
	Car	nisters					19	inisters		
		Flow	Initial	Final				Flow	Initial	Final
Sample Number	Can ID	Controller	Pressure	Pressure	Sami	ole Number	Can ID	Controller	Pressure	Pressure
55-1	0658	2954	-3	t5				7 11	-	
55-2	1181	2682	-5	h —						
55- 3	6121	2700	-3.5	· ·						
SS - 4	3680	1519	- 3	ii ii						
SS- 5	0327	2841	-3.5	ч			12			
SS - 6	3673	0207	-2.5							
27 - 6	.56 65	010+	-6/3							
		-						3		
CLIENT NOTIFICATION Person Co	ontacted:				_ Date	r/Time:		a Required?		lo
Project Manager Revi	ew: Cara	lumo Ti	ant			Date:	3/18/21			

April 28, 2021

Richard Mazurkiewicz Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204

RE: Project: 1690020998 MTRC Pace Project No.: 40225737

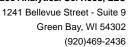
Dear Richard Mazurkiewicz:

Enclosed are the analytical results for sample(s) received by the laboratory on April 24, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

• Pace Analytical Services - Green Bay

If you have any questions concerning this report, please feel free to contact me.


Sincerely,

Steven Mleczko steve.mleczko@pacelabs.com (920)469-2436 Project Manager

Enclosures

cc: Staci Goetz, Ramboll David L. Markelz, Ramboll Erin Veder, Ramboll

CERTIFICATIONS

Project: 1690020998 MTRC

Pace Project No.: 40225737

Pace Analytical Services Green Bay

North Dakota Certification #: R-150

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky UST Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 New York Certification #: 12064 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444 USDA Soil Permit #: P330-16-00157 Federal Fish & Wildlife Permit #: LE51774A-0

(920)469-2436

SAMPLE SUMMARY

Project: 1690020998 MTRC

Pace Project No.: 40225737

Lab ID	Sample ID	Matrix	Date Collected	Date Received
40225737001	SB-4 (1-2)	Solid	04/23/21 13:10	04/24/21 09:05
40225737002	SB-4 (17-18)	Solid	04/23/21 13:15	04/24/21 09:05
40225737003	SB-5 (1-2)	Solid	04/23/21 13:45	04/24/21 09:05
40225737004	SB-5 (12-13)	Solid	04/23/21 13:50	04/24/21 09:05
40225737005	SB-6 (1-2)	Solid	04/23/21 12:30	04/24/21 09:05
40225737006	SB-6 (4-5)	Solid	04/23/21 12:35	04/24/21 09:05

SAMPLE ANALYTE COUNT

Project: 1690020998 MTRC

Pace Project No.: 40225737

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
40225737001	SB-4 (1-2)	EPA 8260	MDS	65	PASI-G
		ASTM D2974-87	MMX	1	PASI-G
40225737002	SB-4 (17-18)	EPA 8260	MDS	65	PASI-G
		ASTM D2974-87	MMX	1	PASI-G
40225737003	SB-5 (1-2)	EPA 8260	MDS	65	PASI-G
		ASTM D2974-87	MMX	1	PASI-G
40225737004	SB-5 (12-13)	EPA 8260	MDS	65	PASI-G
		ASTM D2974-87	MMX	1	PASI-G
40225737005	SB-6 (1-2)	EPA 8260	MDS	65	PASI-G
		ASTM D2974-87	MMX	1	PASI-G
40225737006	SB-6 (4-5)	EPA 8260	MDS	65	PASI-G
		ASTM D2974-87	MMX	1	PASI-G

PASI-G = Pace Analytical Services - Green Bay

SUMMARY OF DETECTION

Project: 1690020998 MTRC

Pace Project No.: 40225737

Lab Sample ID	Client Sample ID					
Method	Parameters —	Result	Units	Report Limit	Analyzed	Qualifiers
40225737001	SB-4 (1-2)					
ASTM D2974-87	Percent Moisture	18.7	%	0.10	04/24/21 13:45	
10225737002	SB-4 (17-18)					
ASTM D2974-87	Percent Moisture	40.7	%	0.10	04/24/21 13:45	
10225737003	SB-5 (1-2)					
EPA 8260	Methylene Chloride	38.0J	ug/kg	76.3	04/28/21 03:15	
ASTM D2974-87	Percent Moisture	19.1	%	0.10	04/24/21 13:45	
0225737004	SB-5 (12-13)					
ASTM D2974-87	Percent Moisture	32.3	%	0.10	04/24/21 13:45	
0225737005	SB-6 (1-2)					
ASTM D2974-87	Percent Moisture	21.2	%	0.10	04/24/21 13:45	
0225737006	SB-6 (4-5)					
ASTM D2974-87	Percent Moisture	8.0	%	0.10	04/24/21 13:45	

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-4 (1-2) Lab ID: 40225737001 Collected: 04/23/21 13:10 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	y					
1,1,1,2-Tetrachloroethane	<17.5	ug/kg	73.0	17.5	1	04/27/21 09:00	04/28/21 02:34	630-20-6	
1,1,1-Trichloroethane	<18.7	ug/kg	73.0	18.7	1	04/27/21 09:00	04/28/21 02:34		
1,1,2,2-Tetrachloroethane	<26.4	ug/kg	73.0	26.4	1	04/27/21 09:00	04/28/21 02:34		
1,1,2-Trichloroethane	<26.6	ug/kg	73.0	26.6	1	04/27/21 09:00	04/28/21 02:34		
1.1-Dichloroethane	<18.7	ug/kg	73.0	18.7	1	04/27/21 09:00	04/28/21 02:34		
1,1-Dichloroethene	<24.2	ug/kg	73.0	24.2	1	04/27/21 09:00	04/28/21 02:34		
1,1-Dichloropropene	<23.6	ug/kg	73.0	23.6	1	04/27/21 09:00	04/28/21 02:34		
1,2,3-Trichlorobenzene	<81.3	ug/kg	365	81.3	1	04/27/21 09:00	04/28/21 02:34		
1,2,3-Trichloropropane	<35.5	ug/kg	73.0	35.5	1	04/27/21 09:00	04/28/21 02:34		
1,2,4-Trichlorobenzene	<60.1	ug/kg	365	60.1	1	04/27/21 09:00	04/28/21 02:34		
1,2,4-Trimethylbenzene	<21.7	ug/kg	73.0	21.7	1	04/27/21 09:00	04/28/21 02:34		
1,2-Dibromo-3-chloropropane	<56.6	ug/kg	365	56.6	1	04/27/21 09:00	04/28/21 02:34		
1,2-Dibromoethane (EDB)	<20.0	ug/kg ug/kg	73.0	20.0	1	04/27/21 09:00	04/28/21 02:34		
1.2-Dichlorobenzene	<22.6	ug/kg ug/kg	73.0	22.6	1	04/27/21 09:00	04/28/21 02:34		
1,2-Dichloroethane	<16.8	ug/kg ug/kg	73.0	16.8	1	04/27/21 09:00	04/28/21 02:34		
1,2-Dichloropropane	<17.4	ug/kg ug/kg	73.0	17.4	1	04/27/21 09:00	04/28/21 02:34		
1,3,5-Trimethylbenzene	<23.5	ug/kg ug/kg	73.0	23.5	1	04/27/21 09:00	04/28/21 02:34		
1,3-Dichlorobenzene	<20.0	ug/kg ug/kg	73.0	20.0	1	04/27/21 09:00	04/28/21 02:34		
1,3-Dichloropropane	<15.9		73.0	15.9	1	04/27/21 09:00	04/28/21 02:34		
1,4-Dichlorobenzene	<13.9 <20.0	ug/kg ug/kg	73.0 73.0	20.0	1	04/27/21 09:00	04/28/21 02:34		
,	<20.0 <19.7		73.0 73.0	19.7	1	04/27/21 09:00	04/28/21 02:34		
2,2-Dichloropropane 2-Chlorotoluene		ug/kg	73.0 73.0	23.6	1	04/27/21 09:00	04/28/21 02:34		
	<23.6	ug/kg			1				
4-Chlorotoluene	<27.7	ug/kg	73.0	27.7 17.4	1	04/27/21 09:00	04/28/21 02:34		
Benzene	<17.4 <28.5	ug/kg	29.2 73.0	28.5	1	04/27/21 09:00	04/28/21 02:34 04/28/21 02:34		
Bromobleromethere		ug/kg		20.0	1	04/27/21 09:00	04/28/21 02:34		
Bromochloromethane	<20.0	ug/kg	73.0			04/27/21 09:00			
Bromodichloromethane Bromoform	<17.4	ug/kg	73.0	17.4 321	1	04/27/21 09:00	04/28/21 02:34		
	<321	ug/kg	365		1	04/27/21 09:00	04/28/21 02:34		
Bromomethane	<102	ug/kg	365	102	1	04/27/21 09:00	04/28/21 02:34		
Carbon tetrachloride	<16.1	ug/kg	73.0	16.1	1	04/27/21 09:00	04/28/21 02:34		
Chloropenzene	<8.7	ug/kg	73.0	8.7	1	04/27/21 09:00	04/28/21 02:34		
Chloroform	<30.8	ug/kg	365	30.8	1	04/27/21 09:00	04/28/21 02:34		
Chlorosonthana	<52.3	ug/kg	365	52.3	1	04/27/21 09:00	04/28/21 02:34		
Chloromethane	<27.7	ug/kg	73.0	27.7	1	04/27/21 09:00	04/28/21 02:34		
Dibromochloromethane	<249	ug/kg	365	249	1	04/27/21 09:00	04/28/21 02:34		
Dibromomethane	<21.6	ug/kg	73.0	21.6	1	04/27/21 09:00			
Dichlorodifluoromethane	<31.4	ug/kg	73.0	31.4	1	04/27/21 09:00	04/28/21 02:34		
Diisopropyl ether	<18.1	ug/kg	73.0	18.1	1	04/27/21 09:00			
Ethylbenzene	<17.4	ug/kg	73.0	17.4	1	04/27/21 09:00			
Hexachloro-1,3-butadiene	<145	ug/kg	365	145	1		04/28/21 02:34		
Isopropylbenzene (Cumene)	<19.7	ug/kg	73.0	19.7	1		04/28/21 02:34		
Methyl-tert-butyl ether	<21.5	ug/kg	73.0	21.5	1	04/27/21 09:00			
Methylene Chloride	<20.3	ug/kg	73.0	20.3	1		04/28/21 02:34		
Naphthalene	<22.8	ug/kg	365	22.8	1	04/27/21 09:00	04/28/21 02:34	91-20-3	

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-4 (1-2) Lab ID: 40225737001 Collected: 04/23/21 13:10 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepara	ation Metho	d: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay						
Styrene	<18.7	ug/kg	73.0	18.7	1	04/27/21 09:00	04/28/21 02:34	100-42-5	
Tetrachloroethene	<28.3	ug/kg	73.0	28.3	1	04/27/21 09:00	04/28/21 02:34	127-18-4	
Toluene	<18.4	ug/kg	73.0	18.4	1	04/27/21 09:00	04/28/21 02:34	108-88-3	
Trichloroethene	<27.3	ug/kg	73.0	27.3	1	04/27/21 09:00	04/28/21 02:34	79-01-6	
Trichlorofluoromethane	<21.2	ug/kg	73.0	21.2	1	04/27/21 09:00	04/28/21 02:34	75-69-4	
Vinyl chloride	<14.7	ug/kg	73.0	14.7	1	04/27/21 09:00	04/28/21 02:34	75-01-4	
Xylene (Total)	<52.7	ug/kg	219	52.7	1	04/27/21 09:00	04/28/21 02:34	1330-20-7	
cis-1,2-Dichloroethene	<15.6	ug/kg	73.0	15.6	1	04/27/21 09:00	04/28/21 02:34	156-59-2	
cis-1,3-Dichloropropene	<48.2	ug/kg	365	48.2	1	04/27/21 09:00	04/28/21 02:34	10061-01-5	
m&p-Xylene	<30.8	ug/kg	146	30.8	1	04/27/21 09:00	04/28/21 02:34	179601-23-1	
n-Butylbenzene	<33.4	ug/kg	73.0	33.4	1	04/27/21 09:00	04/28/21 02:34	104-51-8	
n-Propylbenzene	<17.5	ug/kg	73.0	17.5	1	04/27/21 09:00	04/28/21 02:34	103-65-1	
o-Xylene	<21.9	ug/kg	73.0	21.9	1	04/27/21 09:00	04/28/21 02:34	95-47-6	
p-Isopropyltoluene	<22.2	ug/kg	73.0	22.2	1	04/27/21 09:00	04/28/21 02:34	99-87-6	
sec-Butylbenzene	<17.8	ug/kg	73.0	17.8	1	04/27/21 09:00	04/28/21 02:34	135-98-8	
tert-Butylbenzene	<22.9	ug/kg	73.0	22.9	1	04/27/21 09:00	04/28/21 02:34	98-06-6	
trans-1,2-Dichloroethene	<15.8	ug/kg	73.0	15.8	1	04/27/21 09:00	04/28/21 02:34	156-60-5	
trans-1,3-Dichloropropene	<209	ug/kg	365	209	1	04/27/21 09:00	04/28/21 02:34	10061-02-6	
Surrogates									
Toluene-d8 (S)	112	%	67-159		1	04/27/21 09:00	04/28/21 02:34	2037-26-5	
4-Bromofluorobenzene (S)	98	%	66-153		1	04/27/21 09:00	04/28/21 02:34	460-00-4	
1,2-Dichlorobenzene-d4 (S)	106	%	82-158		1	04/27/21 09:00	04/28/21 02:34	2199-69-1	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	18.7	%	0.10	0.10	1		04/24/21 13:45		

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-4 (17-18) Lab ID: 40225737002 Collected: 04/23/21 13:15 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	\ 8260 Prepa	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,1,1,2-Tetrachloroethane	<33.9	ug/kg	141	33.9	1	04/27/21 09:00	04/28/21 02:55	630-20-6	
1,1,1-Trichloroethane	<36.1	ug/kg	141	36.1	1	04/27/21 09:00	04/28/21 02:55		
1,1,2,2-Tetrachloroethane	<51.1	ug/kg	141	51.1	1	04/27/21 09:00	04/28/21 02:55	79-34-5	
1,1,2-Trichloroethane	<51.4	ug/kg	141	51.4	1	04/27/21 09:00	04/28/21 02:55		
1.1-Dichloroethane	<36.1	ug/kg	141	36.1	1	04/27/21 09:00	04/28/21 02:55		
1,1-Dichloroethene	<46.9	ug/kg	141	46.9	1	04/27/21 09:00	04/28/21 02:55		
1,1-Dichloropropene	<45.7	ug/kg	141	45.7	1	04/27/21 09:00	04/28/21 02:55		
1,2,3-Trichlorobenzene	<157	ug/kg	706	157	1	04/27/21 09:00	04/28/21 02:55		
1,2,3-Trichloropropane	<68.6	ug/kg	141	68.6	1	04/27/21 09:00	04/28/21 02:55		
1,2,4-Trichlorobenzene	<116	ug/kg	706	116	1	04/27/21 09:00	04/28/21 02:55		
1,2,4-Trimethylbenzene	<42.1	ug/kg	141	42.1	1	04/27/21 09:00	04/28/21 02:55		
1,2-Dibromo-3-chloropropane	<110	ug/kg	706	110	1	04/27/21 09:00	04/28/21 02:55		
1,2-Dibromoethane (EDB)	<38.7	ug/kg	141	38.7	1	04/27/21 09:00	04/28/21 02:55		
1,2-Dichlorobenzene	<43.7	ug/kg	141	43.7	1	04/27/21 09:00	04/28/21 02:55		
1,2-Dichloroethane	<32.5	ug/kg	141	32.5	1	04/27/21 09:00	04/28/21 02:55		
1,2-Dichloropropane	<33.6	ug/kg ug/kg	141	33.6	1	04/27/21 09:00	04/28/21 02:55		
1,3,5-Trimethylbenzene	<45.4	ug/kg	141	45.4	1	04/27/21 09:00	04/28/21 02:55		
1,3-Dichlorobenzene	<38.7	ug/kg ug/kg	141	38.7	1	04/27/21 09:00	04/28/21 02:55		
1,3-Dichloropropane	<30.8	ug/kg ug/kg	141	30.8	1	04/27/21 09:00	04/28/21 02:55	-	
1,4-Dichlorobenzene	<38.7	ug/kg ug/kg	141	38.7	1	04/27/21 09:00	04/28/21 02:55		
2,2-Dichloropropane	<38.1	ug/kg ug/kg	141	38.1	1	04/27/21 09:00	04/28/21 02:55		
2-Chlorotoluene	<45.7	ug/kg ug/kg	141	45.7	1	04/27/21 09:00	04/28/21 02:55		
4-Chlorotoluene	<53.6	ug/kg ug/kg	141	53.6	1	04/27/21 09:00	04/28/21 02:55		
Benzene	<33.6	ug/kg ug/kg	56.4	33.6	1	04/27/21 09:00	04/28/21 02:55		
Bromobenzene	<55.0	ug/kg ug/kg	141	55.0 55.0	1	04/27/21 09:00	04/28/21 02:55		
Bromochloromethane	<38.7	ug/kg ug/kg	141	38.7	1	04/27/21 09:00	04/28/21 02:55		
Bromodichloromethane	<33.6	ug/kg ug/kg	141	33.6	1	04/27/21 09:00	04/28/21 02:55		
Bromoform	<621	ug/kg ug/kg	706	621	1	04/27/21 09:00	04/28/21 02:55		
Bromomethane	<198		706 706	198	1	04/27/21 09:00	04/28/21 02:55		
Carbon tetrachloride	<31.0	ug/kg	141	31.0	1	04/27/21 09:00	04/28/21 02:55		
Chlorobenzene	<16.9	ug/kg ug/kg	141	16.9	1	04/27/21 09:00	04/28/21 02:55		
Chloroethane	<59.6		706	59.6	1	04/27/21 09:00	04/28/21 02:55		
		ug/kg			1				
Chloromothono	<101 -53.6	ug/kg	706	101		04/27/21 09:00	04/28/21 02:55		
Chloromethane	<53.6	ug/kg	141	53.6	1	04/27/21 09:00	04/28/21 02:55		
Dibromochloromethane	<482	ug/kg	706	482	1 1	04/27/21 09:00	04/28/21 02:55 04/28/21 02:55		
Dibromomethane	<41.8	ug/kg	141	41.8		04/27/21 09:00			
Dichlorodifluoromethane	<60.7	ug/kg	141	60.7	1	04/27/21 09:00	04/28/21 02:55		
Diisopropyl ether	<35.0	ug/kg	141	35.0	1	04/27/21 09:00			
Ethylbenzene	<33.6	ug/kg	141	33.6	1	04/27/21 09:00			
Hexachloro-1,3-butadiene	<281	ug/kg	706	281	1		04/28/21 02:55		
Isopropylbenzene (Cumene)	<38.1	ug/kg	141	38.1	1		04/28/21 02:55		
Methyl-tert-butyl ether	<41.5	ug/kg	141	41.5	1	04/27/21 09:00			
Methylene Chloride	<39.2	ug/kg	141	39.2	1		04/28/21 02:55		
Naphthalene	<44.0	ug/kg	706	44.0	1	04/27/21 09:00	04/28/21 02:55	91-20-3	

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-4 (17-18) Lab ID: 40225737002 Collected: 04/23/21 13:15 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepara	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay						
Styrene	<36.1	ug/kg	141	36.1	1	04/27/21 09:00	04/28/21 02:55	100-42-5	
Tetrachloroethene	<54.8	ug/kg	141	54.8	1	04/27/21 09:00	04/28/21 02:55	127-18-4	
Toluene	<35.6	ug/kg	141	35.6	1	04/27/21 09:00	04/28/21 02:55	108-88-3	
Trichloroethene	<52.8	ug/kg	141	52.8	1	04/27/21 09:00	04/28/21 02:55	79-01-6	
Trichlorofluoromethane	<40.9	ug/kg	141	40.9	1	04/27/21 09:00	04/28/21 02:55	75-69-4	
Vinyl chloride	<28.5	ug/kg	141	28.5	1	04/27/21 09:00	04/28/21 02:55	75-01-4	
Xylene (Total)	<102	ug/kg	423	102	1	04/27/21 09:00	04/28/21 02:55	1330-20-7	
cis-1,2-Dichloroethene	<30.2	ug/kg	141	30.2	1	04/27/21 09:00	04/28/21 02:55	156-59-2	
cis-1,3-Dichloropropene	<93.1	ug/kg	706	93.1	1	04/27/21 09:00	04/28/21 02:55	10061-01-5	
m&p-Xylene	<59.6	ug/kg	282	59.6	1	04/27/21 09:00	04/28/21 02:55	179601-23-1	
n-Butylbenzene	<64.6	ug/kg	141	64.6	1	04/27/21 09:00	04/28/21 02:55	104-51-8	
n-Propylbenzene	<33.9	ug/kg	141	33.9	1	04/27/21 09:00	04/28/21 02:55	103-65-1	
o-Xylene	<42.3	ug/kg	141	42.3	1	04/27/21 09:00	04/28/21 02:55	95-47-6	
p-Isopropyltoluene	<42.9	ug/kg	141	42.9	1	04/27/21 09:00	04/28/21 02:55	99-87-6	
sec-Butylbenzene	<34.4	ug/kg	141	34.4	1	04/27/21 09:00	04/28/21 02:55	135-98-8	
tert-Butylbenzene	<44.3	ug/kg	141	44.3	1	04/27/21 09:00	04/28/21 02:55	98-06-6	
trans-1,2-Dichloroethene	<30.5	ug/kg	141	30.5	1	04/27/21 09:00	04/28/21 02:55	156-60-5	
trans-1,3-Dichloropropene	<404	ug/kg	706	404	1	04/27/21 09:00	04/28/21 02:55	10061-02-6	
Surrogates									
Toluene-d8 (S)	96	%	67-159		1	04/27/21 09:00	04/28/21 02:55	2037-26-5	
4-Bromofluorobenzene (S)	89	%	66-153		1	04/27/21 09:00	04/28/21 02:55	460-00-4	
1,2-Dichlorobenzene-d4 (S)	105	%	82-158		1	04/27/21 09:00	04/28/21 02:55	2199-69-1	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	40.7	%	0.10	0.10	1		04/24/21 13:45		

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-5 (1-2) Lab ID: 40225737003 Collected: 04/23/21 13:45 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Analytical Services - Green Bay								
1,1,1,2-Tetrachloroethane	<18.3	ug/kg	76.3	18.3	1	04/27/21 09:00	04/28/21 03:15	630-20-6	
1,1,1-Trichloroethane	<19.5	ug/kg	76.3	19.5	1	04/27/21 09:00	04/28/21 03:15		
1,1,2,2-Tetrachloroethane	<27.6	ug/kg	76.3	27.6	1	04/27/21 09:00	04/28/21 03:15		
1,1,2-Trichloroethane	<27.8	ug/kg	76.3	27.8	1	04/27/21 09:00	04/28/21 03:15		
1,1-Dichloroethane	<19.5	ug/kg	76.3	19.5	1	04/27/21 09:00	04/28/21 03:15		
1,1-Dichloroethene	<25.3	ug/kg	76.3	25.3	1	04/27/21 09:00	04/28/21 03:15		
1,1-Dichloropropene	<24.7	ug/kg	76.3	24.7	1	04/27/21 09:00	04/28/21 03:15	563-58-6	
1,2,3-Trichlorobenzene	<85.0	ug/kg	381	85.0	1	04/27/21 09:00	04/28/21 03:15		
1,2,3-Trichloropropane	<37.1	ug/kg	76.3	37.1	1	04/27/21 09:00	04/28/21 03:15		
1,2,4-Trichlorobenzene	<62.8	ug/kg	381	62.8	1	04/27/21 09:00	04/28/21 03:15		
1,2,4-Trimethylbenzene	<22.7	ug/kg	76.3	22.7	1	04/27/21 09:00	04/28/21 03:15		
1,2-Dibromo-3-chloropropane	<59.2	ug/kg	381	59.2	1	04/27/21 09:00	04/28/21 03:15		
1,2-Dibromoethane (EDB)	<20.9	ug/kg ug/kg	76.3	20.9	1	04/27/21 09:00	04/28/21 03:15		
1,2-Dichlorobenzene	<23.6	ug/kg ug/kg	76.3	23.6	1	04/27/21 09:00	04/28/21 03:15		
1,2-Dichloroethane	<17.5	ug/kg ug/kg	76.3	17.5	1	04/27/21 09:00	04/28/21 03:15		
1,2-Dichloropropane	<18.1	ug/kg ug/kg	76.3	18.1	1	04/27/21 09:00	04/28/21 03:15		
1,3,5-Trimethylbenzene	<24.6	ug/kg ug/kg	76.3	24.6	1	04/27/21 09:00	04/28/21 03:15		
1,3-Dichlorobenzene	<20.9	ug/kg ug/kg	76.3	20.9	1	04/27/21 09:00	04/28/21 03:15		
1,3-Dichloropropane	<16.6	ug/kg ug/kg	76.3 76.3	16.6	1	04/27/21 09:00	04/28/21 03:15		
1,4-Dichlorobenzene	<20.9	ug/kg ug/kg	76.3 76.3	20.9	1	04/27/21 09:00	04/28/21 03:15		
2,2-Dichloropropane	<20.6	ug/kg ug/kg	76.3 76.3	20.6	1	04/27/21 09:00	04/28/21 03:15		
2-Chlorotoluene	<24.7	ug/kg ug/kg	76.3 76.3	24.7	1	04/27/21 09:00	04/28/21 03:15		
4-Chlorotoluene	<29.0	ug/kg ug/kg	76.3 76.3	29.0	1	04/27/21 09:00	04/28/21 03:15		
Benzene	<18.1	ug/kg ug/kg	30.5	18.1	1	04/27/21 09:00	04/28/21 03:15		
Bromobenzene	<29.7	ug/kg ug/kg	76.3	29.7	1	04/27/21 09:00	04/28/21 03:15		
Bromochloromethane	<20.9	ug/kg ug/kg	76.3 76.3	20.9	1	04/27/21 09:00	04/28/21 03:15		
Bromodichloromethane	<18.1	ug/kg ug/kg	76.3 76.3	18.1	1	04/27/21 09:00	04/28/21 03:15		
Bromoform	<336	ug/kg ug/kg	381	336	1	04/27/21 09:00	04/28/21 03:15		
Bromomethane	<107		381	107	1	04/27/21 09:00	04/28/21 03:15		
Carbon tetrachloride	<10 <i>7</i> <16.8	ug/kg	76.3	16.8	1	04/27/21 09:00	04/28/21 03:15		
Chlorobenzene	<9.1	ug/kg ug/kg	76.3 76.3	9.1	1	04/27/21 09:00	04/28/21 03:15		
Chloroethane	<32.2	ug/kg ug/kg	381	32.2	1	04/27/21 09:00	04/28/21 03:15		
Chloroform	<54.6	ug/kg ug/kg	381	54.6	1	04/27/21 09:00	04/28/21 03:15		
Chloromethane	<29.0		76.3	29.0	1	04/27/21 09:00	04/28/21 03:15		
Dibromochloromethane	<29.0 <261	ug/kg	381	29.0 261	1	04/27/21 09:00	04/28/21 03:15		
Dibromomethane	<22.6	ug/kg	76.3	22.6	1	04/27/21 09:00			
		ug/kg							
Dichlorodifluoromethane	<32.8	ug/kg	76.3	32.8	1	04/27/21 09:00	04/28/21 03:15		
Diisopropyl ether	<18.9	ug/kg	76.3	18.9	1	04/27/21 09:00			
Ethylbenzene	<18.1	ug/kg	76.3	18.1	1	04/27/21 09:00			
Hexachloro-1,3-butadiene	<152	ug/kg	381	152	1		04/28/21 03:15		
Isopropylbenzene (Cumene)	<20.6	ug/kg	76.3	20.6	1		04/28/21 03:15		
Methylene Chloride	<22.4	ug/kg	76.3	22.4	1	04/27/21 09:00			
Methylene Chloride	38.0J	ug/kg	76.3	21.2	1		04/28/21 03:15		
Naphthalene	<23.8	ug/kg	381	23.8	1	04/27/21 09:00	04/28/21 03:15	91-20-3	

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-5 (1-2) Lab ID: 40225737003 Collected: 04/23/21 13:45 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepara	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay						
Styrene	<19.5	ug/kg	76.3	19.5	1	04/27/21 09:00	04/28/21 03:15	100-42-5	
Tetrachloroethene	<29.6	ug/kg	76.3	29.6	1	04/27/21 09:00	04/28/21 03:15	127-18-4	
Toluene	<19.2	ug/kg	76.3	19.2	1	04/27/21 09:00	04/28/21 03:15	108-88-3	
Trichloroethene	<28.5	ug/kg	76.3	28.5	1	04/27/21 09:00	04/28/21 03:15	79-01-6	
Trichlorofluoromethane	<22.1	ug/kg	76.3	22.1	1	04/27/21 09:00	04/28/21 03:15	75-69-4	
Vinyl chloride	<15.4	ug/kg	76.3	15.4	1	04/27/21 09:00	04/28/21 03:15	75-01-4	
Xylene (Total)	<55.1	ug/kg	229	55.1	1	04/27/21 09:00	04/28/21 03:15	1330-20-7	
cis-1,2-Dichloroethene	<16.3	ug/kg	76.3	16.3	1	04/27/21 09:00	04/28/21 03:15	156-59-2	
cis-1,3-Dichloropropene	<50.3	ug/kg	381	50.3	1	04/27/21 09:00	04/28/21 03:15	10061-01-5	
m&p-Xylene	<32.2	ug/kg	153	32.2	1	04/27/21 09:00	04/28/21 03:15	179601-23-1	
n-Butylbenzene	<34.9	ug/kg	76.3	34.9	1	04/27/21 09:00	04/28/21 03:15	104-51-8	
n-Propylbenzene	<18.3	ug/kg	76.3	18.3	1	04/27/21 09:00	04/28/21 03:15	103-65-1	
o-Xylene	<22.9	ug/kg	76.3	22.9	1	04/27/21 09:00	04/28/21 03:15	95-47-6	
p-Isopropyltoluene	<23.2	ug/kg	76.3	23.2	1	04/27/21 09:00	04/28/21 03:15	99-87-6	
sec-Butylbenzene	<18.6	ug/kg	76.3	18.6	1	04/27/21 09:00	04/28/21 03:15	135-98-8	
tert-Butylbenzene	<23.9	ug/kg	76.3	23.9	1	04/27/21 09:00	04/28/21 03:15	98-06-6	
trans-1,2-Dichloroethene	<16.5	ug/kg	76.3	16.5	1	04/27/21 09:00	04/28/21 03:15	156-60-5	
trans-1,3-Dichloropropene	<218	ug/kg	381	218	1	04/27/21 09:00	04/28/21 03:15	10061-02-6	
Surrogates									
Toluene-d8 (S)	115	%	67-159		1	04/27/21 09:00	04/28/21 03:15	2037-26-5	
4-Bromofluorobenzene (S)	106	%	66-153		1	04/27/21 09:00	04/28/21 03:15	460-00-4	
1,2-Dichlorobenzene-d4 (S)	113	%	82-158		1	04/27/21 09:00	04/28/21 03:15	2199-69-1	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	19.1	%	0.10	0.10	1		04/24/21 13:45		

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-5 (12-13) Lab ID: 40225737004 Collected: 04/23/21 13:50 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	N 8260 Prepar	ation Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
1,1,1,2-Tetrachloroethane	<27.6	ug/kg	115	27.6	1	04/27/21 09:00	04/28/21 03:35	630-20-6	
1,1,1-Trichloroethane	<29.4	ug/kg	115	29.4	1	04/27/21 09:00	04/28/21 03:35		
1,1,2,2-Tetrachloroethane	<41.6	ug/kg	115	41.6	1	04/27/21 09:00	04/28/21 03:35	79-34-5	
1,1,2-Trichloroethane	<41.9	ug/kg	115	41.9	1	04/27/21 09:00	04/28/21 03:35		
1,1-Dichloroethane	<29.4	ug/kg	115	29.4	1	04/27/21 09:00	04/28/21 03:35		
1,1-Dichloroethene	<38.2	ug/kg	115	38.2	1	04/27/21 09:00	04/28/21 03:35		
1,1-Dichloropropene	<37.3	ug/kg	115	37.3	1	04/27/21 09:00	04/28/21 03:35		
1,2,3-Trichlorobenzene	<128	ug/kg	575	128	1	04/27/21 09:00	04/28/21 03:35		
1,2,3-Trichloropropane	<55.9	ug/kg	115	55.9	1	04/27/21 09:00	04/28/21 03:35		
1,2,4-Trichlorobenzene	<94.8	ug/kg	575	94.8	1	04/27/21 09:00	04/28/21 03:35		
1,2,4-Trimethylbenzene	<34.3	ug/kg	115	34.3	1	04/27/21 09:00	04/28/21 03:35		
1,2-Dibromo-3-chloropropane	<89.3	ug/kg	575	89.3	1	04/27/21 09:00	04/28/21 03:35		
1,2-Dibromoethane (EDB)	<31.5	ug/kg	115	31.5	1	04/27/21 09:00	04/28/21 03:35		
1,2-Dichlorobenzene	<35.7	ug/kg	115	35.7	1	04/27/21 09:00	04/28/21 03:35		
1,2-Dichloroethane	<26.5	ug/kg	115	26.5	1	04/27/21 09:00	04/28/21 03:35		
1,2-Dichloropropane	<27.4	ug/kg	115	27.4	1	04/27/21 09:00	04/28/21 03:35		
1,3,5-Trimethylbenzene	<37.0	ug/kg	115	37.0	1	04/27/21 09:00	04/28/21 03:35		
1,3-Dichlorobenzene	<31.5	ug/kg	115	31.5	1	04/27/21 09:00	04/28/21 03:35		
1,3-Dichloropropane	<25.1	ug/kg	115	25.1	1	04/27/21 09:00	04/28/21 03:35		
1,4-Dichlorobenzene	<31.5	ug/kg	115	31.5	1	04/27/21 09:00	04/28/21 03:35		
2,2-Dichloropropane	<31.1	ug/kg ug/kg	115	31.1	1	04/27/21 09:00	04/28/21 03:35		
2-Chlorotoluene	<37.3	ug/kg	115	37.3	1	04/27/21 09:00	04/28/21 03:35		
4-Chlorotoluene	<43.7	ug/kg	115	43.7	1	04/27/21 09:00	04/28/21 03:35		
Benzene	<27.4	ug/kg	46.0	27.4	1	04/27/21 09:00	04/28/21 03:35		
Bromobenzene	<44.9	ug/kg	115	44.9	1	04/27/21 09:00	04/28/21 03:35		
Bromochloromethane	<31.5	ug/kg	115	31.5	1	04/27/21 09:00	04/28/21 03:35		
Bromodichloromethane	<27.4	ug/kg	115	27.4	1	04/27/21 09:00	04/28/21 03:35		
Bromoform	<506	ug/kg	575	506	1	04/27/21 09:00	04/28/21 03:35		
Bromomethane	<161	ug/kg	575	161	1	04/27/21 09:00	04/28/21 03:35		
Carbon tetrachloride	<25.3	ug/kg ug/kg	115	25.3	1	04/27/21 09:00	04/28/21 03:35		
Chlorobenzene	<13.8	ug/kg	115	13.8	1	04/27/21 09:00	04/28/21 03:35		
Chloroethane	<48.5	ug/kg	575	48.5	1	04/27/21 09:00	04/28/21 03:35		
Chloroform	<82.4	ug/kg	575	82.4	1	04/27/21 09:00	04/28/21 03:35		
Chloromethane	<43.7	ug/kg	115	43.7	1	04/27/21 09:00	04/28/21 03:35		
Dibromochloromethane	<393	ug/kg ug/kg	575	393	1	04/27/21 09:00	04/28/21 03:35		
Dibromomethane	<34.0	ug/kg ug/kg	115	34.0	1	04/27/21 09:00	04/28/21 03:35		
Dichlorodifluoromethane	<49.5	ug/kg	115	49.5	1	04/27/21 09:00	04/28/21 03:35		
Diisopropyl ether	<28.5	ug/kg ug/kg	115	28.5	1	04/27/21 09:00	04/28/21 03:35		
Ethylbenzene	<27.4	ug/kg ug/kg	115	27.4	1	04/27/21 09:00	04/28/21 03:35		
Hexachloro-1,3-butadiene	<229	ug/kg ug/kg	575	229	1	04/27/21 09:00			
Isopropylbenzene (Cumene)	<31.1	ug/kg ug/kg	115	31.1	1	04/27/21 09:00			
Methyl-tert-butyl ether	<33.8	ug/kg ug/kg	115	33.8	1	04/27/21 09:00	04/28/21 03:35		
Methylene Chloride	<32.0	ug/kg ug/kg	115	32.0	1	04/27/21 09:00	04/28/21 03:35		
Naphthalene	<35.9	ug/kg ug/kg	575	35.9	1		04/28/21 03:35		
Maphiliaiche	~33.3	ug/kg	313	35.9	1	07/21/21 03.00	0-1/20/21 03.33	J1-20-3	

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-5 (12-13) Lab ID: 40225737004 Collected: 04/23/21 13:50 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepara	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay						
Styrene	<29.4	ug/kg	115	29.4	1	04/27/21 09:00	04/28/21 03:35	100-42-5	
Tetrachloroethene	<44.6	ug/kg	115	44.6	1	04/27/21 09:00	04/28/21 03:35	127-18-4	
Toluene	<29.0	ug/kg	115	29.0	1	04/27/21 09:00	04/28/21 03:35	108-88-3	
Trichloroethene	<43.0	ug/kg	115	43.0	1	04/27/21 09:00	04/28/21 03:35	79-01-6	
Trichlorofluoromethane	<33.4	ug/kg	115	33.4	1	04/27/21 09:00	04/28/21 03:35	75-69-4	
Vinyl chloride	<23.2	ug/kg	115	23.2	1	04/27/21 09:00	04/28/21 03:35	75-01-4	
Xylene (Total)	<83.1	ug/kg	345	83.1	1	04/27/21 09:00	04/28/21 03:35	1330-20-7	
cis-1,2-Dichloroethene	<24.6	ug/kg	115	24.6	1	04/27/21 09:00	04/28/21 03:35	156-59-2	
cis-1,3-Dichloropropene	<75.9	ug/kg	575	75.9	1	04/27/21 09:00	04/28/21 03:35	10061-01-5	
m&p-Xylene	<48.5	ug/kg	230	48.5	1	04/27/21 09:00	04/28/21 03:35	179601-23-1	
n-Butylbenzene	<52.7	ug/kg	115	52.7	1	04/27/21 09:00	04/28/21 03:35	104-51-8	
n-Propylbenzene	<27.6	ug/kg	115	27.6	1	04/27/21 09:00	04/28/21 03:35	103-65-1	
o-Xylene	<34.5	ug/kg	115	34.5	1	04/27/21 09:00	04/28/21 03:35	95-47-6	
p-Isopropyltoluene	<35.0	ug/kg	115	35.0	1	04/27/21 09:00	04/28/21 03:35	99-87-6	
sec-Butylbenzene	<28.1	ug/kg	115	28.1	1	04/27/21 09:00	04/28/21 03:35	135-98-8	
tert-Butylbenzene	<36.1	ug/kg	115	36.1	1	04/27/21 09:00	04/28/21 03:35	98-06-6	
trans-1,2-Dichloroethene	<24.8	ug/kg	115	24.8	1	04/27/21 09:00	04/28/21 03:35	156-60-5	
trans-1,3-Dichloropropene	<329	ug/kg	575	329	1	04/27/21 09:00	04/28/21 03:35	10061-02-6	
Surrogates									
Toluene-d8 (S)	101	%	67-159		1	04/27/21 09:00	04/28/21 03:35	2037-26-5	
4-Bromofluorobenzene (S)	104	%	66-153		1	04/27/21 09:00	04/28/21 03:35	460-00-4	
1,2-Dichlorobenzene-d4 (S)	111	%	82-158		1	04/27/21 09:00	04/28/21 03:35	2199-69-1	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	32.3	%	0.10	0.10	1		04/24/21 13:45		

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-6 (1-2) Lab ID: 40225737005 Collected: 04/23/21 12:30 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepar	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay	/					
1,1,1,2-Tetrachloroethane	<19.2	ug/kg	80.2	19.2	1	04/27/21 09:00	04/28/21 03:55	630-20-6	
1,1,1-Trichloroethane	<20.5	ug/kg	80.2	20.5	1	04/27/21 09:00	04/28/21 03:55		
1,1,2,2-Tetrachloroethane	<29.0	ug/kg	80.2	29.0	1	04/27/21 09:00	04/28/21 03:55		
1,1,2-Trichloroethane	<29.2	ug/kg	80.2	29.2	1	04/27/21 09:00	04/28/21 03:55		
1,1-Dichloroethane	<20.5	ug/kg	80.2	20.5	1	04/27/21 09:00			
1,1-Dichloroethene	<26.6	ug/kg	80.2	26.6	1	04/27/21 09:00	04/28/21 03:55		
1,1-Dichloropropene	<26.0	ug/kg	80.2	26.0	1	04/27/21 09:00	04/28/21 03:55		
1,2,3-Trichlorobenzene	<89.3	ug/kg	401	89.3	1	04/27/21 09:00	04/28/21 03:55		
1,2,3-Trichloropropane	<39.0	ug/kg	80.2	39.0	1	04/27/21 09:00	04/28/21 03:55		
1,2,4-Trichlorobenzene	<66.1	ug/kg	401	66.1	1	04/27/21 09:00	04/28/21 03:55		
1,2,4-Trimethylbenzene	<23.9	ug/kg	80.2	23.9	1	04/27/21 09:00	04/28/21 03:55		
1,2-Dibromo-3-chloropropane	<62.2	ug/kg	401	62.2	1	04/27/21 09:00	04/28/21 03:55		
1,2-Dibromoethane (EDB)	<22.0	ug/kg	80.2	22.0	1	04/27/21 09:00	04/28/21 03:55		
1,2-Dichlorobenzene	<24.9	ug/kg	80.2	24.9	1	04/27/21 09:00	04/28/21 03:55		
1,2-Dichloroethane	<18.4	ug/kg	80.2	18.4	1	04/27/21 09:00	04/28/21 03:55		
1,2-Dichloropropane	<19.1	ug/kg	80.2	19.1	1	04/27/21 09:00	04/28/21 03:55		
1,3,5-Trimethylbenzene	<25.8	ug/kg	80.2	25.8	1	04/27/21 09:00	04/28/21 03:55		
1,3-Dichlorobenzene	<22.0	ug/kg	80.2	22.0	1	04/27/21 09:00	04/28/21 03:55		
1,3-Dichloropropane	<17.5	ug/kg	80.2	17.5	1	04/27/21 09:00	04/28/21 03:55		
1,4-Dichlorobenzene	<22.0	ug/kg	80.2	22.0	1	04/27/21 09:00	04/28/21 03:55		
2,2-Dichloropropane	<21.6	ug/kg	80.2	21.6	1	04/27/21 09:00	04/28/21 03:55		
2-Chlorotoluene	<26.0	ug/kg	80.2	26.0	1	04/27/21 09:00	04/28/21 03:55		
4-Chlorotoluene	<30.5	ug/kg	80.2	30.5	1	04/27/21 09:00	04/28/21 03:55		
Benzene	<19.1	ug/kg	32.1	19.1	1	04/27/21 09:00	04/28/21 03:55		
Bromobenzene	<31.3	ug/kg	80.2	31.3	1	04/27/21 09:00	04/28/21 03:55		
Bromochloromethane	<22.0	ug/kg	80.2	22.0	1	04/27/21 09:00	04/28/21 03:55		
Bromodichloromethane	<19.1	ug/kg	80.2	19.1	1	04/27/21 09:00	04/28/21 03:55		
Bromoform	<353	ug/kg	401	353	1	04/27/21 09:00	04/28/21 03:55		
Bromomethane	<112	ug/kg	401	112	1	04/27/21 09:00	04/28/21 03:55		
Carbon tetrachloride	<17.6	ug/kg	80.2	17.6	1	04/27/21 09:00	04/28/21 03:55		
Chlorobenzene	<9.6	ug/kg	80.2	9.6	1	04/27/21 09:00	04/28/21 03:55		
Chloroethane	<33.8	ug/kg	401	33.8	1	04/27/21 09:00	04/28/21 03:55		
Chloroform	<57.4	ug/kg	401	57.4	1	04/27/21 09:00	04/28/21 03:55		
Chloromethane	<30.5	ug/kg ug/kg	80.2	30.5	1	04/27/21 09:00	04/28/21 03:55		
Dibromochloromethane	<274	ug/kg ug/kg	401	274	1	04/27/21 09:00	04/28/21 03:55		
Dibromomethane	<23.7	ug/kg	80.2	23.7	1		04/28/21 03:55		
Dichlorodifluoromethane	<34.5	ug/kg	80.2	34.5	1		04/28/21 03:55		
Diisopropyl ether	<19.9	ug/kg ug/kg	80.2	19.9	1		04/28/21 03:55		
Ethylbenzene	<19.1	ug/kg ug/kg	80.2	19.1	1	04/27/21 09:00			
Hexachloro-1,3-butadiene	<159	ug/kg ug/kg	401	159	1		04/28/21 03:55		
Isopropylbenzene (Cumene)	<21.6	ug/kg ug/kg	80.2	21.6	1		04/28/21 03:55		
Methyl-tert-butyl ether	<23.6	ug/kg ug/kg	80.2	23.6	1		04/28/21 03:55		
Methylene Chloride	<22.3	ug/kg ug/kg	80.2	22.3	1		04/28/21 03:55		
Naphthalene	<25.0	ug/kg ug/kg	401	25.0	1	04/27/21 09:00			
Ναρπιπαισπο	\2J. 0	ug/kg	401	25.0	'	U-1/21/21 U3.00	04/20/21 03.33	J1-20-3	

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-6 (1-2) Lab ID: 40225737005 Collected: 04/23/21 12:30 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	8260 Prepara	ation Metho	od: EPA	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay						
Styrene	<20.5	ug/kg	80.2	20.5	1	04/27/21 09:00	04/28/21 03:55	100-42-5	
Tetrachloroethene	<31.1	ug/kg	80.2	31.1	1	04/27/21 09:00	04/28/21 03:55	127-18-4	
Toluene	<20.2	ug/kg	80.2	20.2	1	04/27/21 09:00	04/28/21 03:55	108-88-3	
Trichloroethene	<30.0	ug/kg	80.2	30.0	1	04/27/21 09:00	04/28/21 03:55	79-01-6	
Trichlorofluoromethane	<23.2	ug/kg	80.2	23.2	1	04/27/21 09:00	04/28/21 03:55	75-69-4	
Vinyl chloride	<16.2	ug/kg	80.2	16.2	1	04/27/21 09:00	04/28/21 03:55	75-01-4	
Xylene (Total)	<57.9	ug/kg	241	57.9	1	04/27/21 09:00	04/28/21 03:55	1330-20-7	
cis-1,2-Dichloroethene	<17.2	ug/kg	80.2	17.2	1	04/27/21 09:00	04/28/21 03:55	156-59-2	
cis-1,3-Dichloropropene	<52.9	ug/kg	401	52.9	1	04/27/21 09:00	04/28/21 03:55	10061-01-5	
m&p-Xylene	<33.8	ug/kg	160	33.8	1	04/27/21 09:00	04/28/21 03:55	179601-23-1	
n-Butylbenzene	<36.7	ug/kg	80.2	36.7	1	04/27/21 09:00	04/28/21 03:55	104-51-8	
n-Propylbenzene	<19.2	ug/kg	80.2	19.2	1	04/27/21 09:00	04/28/21 03:55	103-65-1	
o-Xylene	<24.1	ug/kg	80.2	24.1	1	04/27/21 09:00	04/28/21 03:55	95-47-6	
p-Isopropyltoluene	<24.4	ug/kg	80.2	24.4	1	04/27/21 09:00	04/28/21 03:55	99-87-6	
sec-Butylbenzene	<19.6	ug/kg	80.2	19.6	1	04/27/21 09:00	04/28/21 03:55	135-98-8	
tert-Butylbenzene	<25.2	ug/kg	80.2	25.2	1	04/27/21 09:00	04/28/21 03:55	98-06-6	
trans-1,2-Dichloroethene	<17.3	ug/kg	80.2	17.3	1	04/27/21 09:00	04/28/21 03:55	156-60-5	
trans-1,3-Dichloropropene	<229	ug/kg	401	229	1	04/27/21 09:00	04/28/21 03:55	10061-02-6	
Surrogates									
Toluene-d8 (S)	107	%	67-159		1	04/27/21 09:00	04/28/21 03:55	2037-26-5	
4-Bromofluorobenzene (S)	101	%	66-153		1	04/27/21 09:00	04/28/21 03:55	460-00-4	
1,2-Dichlorobenzene-d4 (S)	114	%	82-158		1	04/27/21 09:00	04/28/21 03:55	2199-69-1	
Percent Moisture	Analytical	Method: AST	TM D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	21.2	%	0.10	0.10	1		04/24/21 13:45		

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-6 (4-5) Lab ID: 40225737006 Collected: 04/23/21 12:35 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepai	ration Meth	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Ba	y					
1,1,1,2-Tetrachloroethane	<19.2	ug/kg	79.8	19.2	1	04/27/21 09:00	04/28/21 04:15	630-20-6	
1,1,1-Trichloroethane	<20.4	ug/kg	79.8	20.4	1	04/27/21 09:00	04/28/21 04:15		
1,1,2,2-Tetrachloroethane	<28.9	ug/kg	79.8	28.9	1	04/27/21 09:00	04/28/21 04:15		
1,1,2-Trichloroethane	<29.0	ug/kg	79.8	29.0	1	04/27/21 09:00	04/28/21 04:15		
1,1-Dichloroethane	<20.4	ug/kg	79.8	20.4	1	04/27/21 09:00	04/28/21 04:15		
1,1-Dichloroethene	<26.5	ug/kg	79.8	26.5	1	04/27/21 09:00	04/28/21 04:15		
1,1-Dichloropropene	<25.9	ug/kg	79.8	25.9	1	04/27/21 09:00	04/28/21 04:15		
1,2,3-Trichlorobenzene	<88.9	ug/kg	399	88.9	1	04/27/21 09:00	04/28/21 04:15		
1,2,3-Trichloropropane	<38.8	ug/kg	79.8	38.8	1	04/27/21 09:00	04/28/21 04:15		
1,2,4-Trichlorobenzene	<65.8	ug/kg	399	65.8	1	04/27/21 09:00	04/28/21 04:15		
1,2,4-Trimethylbenzene	<23.8	ug/kg	79.8	23.8	1	04/27/21 09:00	04/28/21 04:15		
1,2-Dibromo-3-chloropropane	<61.9	ug/kg	399	61.9	1	04/27/21 09:00	04/28/21 04:15		
1,2-Dibromoethane (EDB)	<21.9	ug/kg ug/kg	79.8	21.9	1	04/27/21 09:00	04/28/21 04:15		
1,2-Dichlorobenzene	<24.7	ug/kg ug/kg	79.8	24.7	1	04/27/21 09:00	04/28/21 04:15		
1,2-Dichloroethane	<18.4	ug/kg ug/kg	79.8	18.4	1	04/27/21 09:00	04/28/21 04:15		
1,2-Dichloropropane	<19.0	ug/kg ug/kg	79.8	19.0	1	04/27/21 09:00	04/28/21 04:15		
1,3,5-Trimethylbenzene	<25.7	ug/kg ug/kg	79.8	25.7	1	04/27/21 09:00	04/28/21 04:15		
1,3-Dichlorobenzene	<21.9	ug/kg ug/kg	79.8 79.8	21.9	1	04/27/21 09:00	04/28/21 04:15		
1,3-Dichloropropane	<17.4		79.8 79.8	17.4	1	04/27/21 09:00	04/28/21 04:15	-	
1,4-Dichlorobenzene	<17. 4 <21.9	ug/kg	79.8 79.8	21.9	1	04/27/21 09:00	04/28/21 04:15		
,	<21.5 <21.5	ug/kg	79.8 79.8	21.9	1	04/27/21 09:00	04/28/21 04:15		
2,2-Dichloropropane2-Chlorotoluene	<21.5 <25.9	ug/kg	79.8 79.8	25.9	1	04/27/21 09:00	04/28/21 04:15		
4-Chlorotoluene		ug/kg			1				
	<30.3	ug/kg	79.8	30.3 19.0	1	04/27/21 09:00	04/28/21 04:15		
Benzene	<19.0	ug/kg	31.9			04/27/21 09:00	04/28/21 04:15		
Bromobleremethane	<31.1	ug/kg	79.8	31.1	1 1	04/27/21 09:00	04/28/21 04:15 04/28/21 04:15		
Bromochloromethane	<21.9	ug/kg	79.8	21.9		04/27/21 09:00			
Bromodichloromethane	<19.0	ug/kg	79.8	19.0	1	04/27/21 09:00	04/28/21 04:15		
Bromoform	<351	ug/kg	399	351	1	04/27/21 09:00	04/28/21 04:15		
Bromomethane	<112	ug/kg	399	112	1	04/27/21 09:00	04/28/21 04:15		
Carbon tetrachloride	<17.6	ug/kg	79.8	17.6	1	04/27/21 09:00	04/28/21 04:15		
Chloropene	<9.6	ug/kg	79.8	9.6	1	04/27/21 09:00	04/28/21 04:15		
Chlorofthane	<33.7	ug/kg	399	33.7	1	04/27/21 09:00	04/28/21 04:15		
Chlorosonthana	<57.1	ug/kg	399	57.1	1	04/27/21 09:00	04/28/21 04:15		
Chloromethane	<30.3	ug/kg	79.8	30.3	1	04/27/21 09:00	04/28/21 04:15		
Dibromochloromethane	<273	ug/kg	399	273	1	04/27/21 09:00	04/28/21 04:15		
Dibromomethane	<23.6	ug/kg	79.8	23.6	1	04/27/21 09:00			
Dichlorodifluoromethane	<34.3	ug/kg	79.8	34.3	1	04/27/21 09:00	04/28/21 04:15		
Diisopropyl ether	<19.8	ug/kg	79.8	19.8	1	04/27/21 09:00			
Ethylbenzene	<19.0	ug/kg	79.8	19.0	1		04/28/21 04:15		
Hexachloro-1,3-butadiene	<159	ug/kg	399	159	1		04/28/21 04:15		
Isopropylbenzene (Cumene)	<21.5	ug/kg	79.8	21.5	1		04/28/21 04:15		
Methyl-tert-butyl ether	<23.5	ug/kg	79.8	23.5	1	04/27/21 09:00			
Methylene Chloride	<22.2	ug/kg	79.8	22.2	1		04/28/21 04:15		
Naphthalene	<24.9	ug/kg	399	24.9	1	04/27/21 09:00	04/28/21 04:15	91-20-3	

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Sample: SB-6 (4-5) Lab ID: 40225737006 Collected: 04/23/21 12:35 Received: 04/24/21 09:05 Matrix: Solid

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	LOQ	LOD	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Med Level Normal List	Analytical	Method: EPA	A 8260 Prepara	ation Metho	od: EP/	A 5035/5030B			
	Pace Anal	ytical Service	es - Green Bay						
Styrene	<20.4	ug/kg	79.8	20.4	1	04/27/21 09:00	04/28/21 04:15	100-42-5	
Tetrachloroethene	<31.0	ug/kg	79.8	31.0	1	04/27/21 09:00	04/28/21 04:15	127-18-4	
Toluene	<20.1	ug/kg	79.8	20.1	1	04/27/21 09:00	04/28/21 04:15	108-88-3	
Trichloroethene	<29.8	ug/kg	79.8	29.8	1	04/27/21 09:00	04/28/21 04:15	79-01-6	
Trichlorofluoromethane	<23.1	ug/kg	79.8	23.1	1	04/27/21 09:00	04/28/21 04:15	75-69-4	
Vinyl chloride	<16.1	ug/kg	79.8	16.1	1	04/27/21 09:00	04/28/21 04:15	75-01-4	
Xylene (Total)	<57.6	ug/kg	239	57.6	1	04/27/21 09:00	04/28/21 04:15	1330-20-7	
cis-1,2-Dichloroethene	<17.1	ug/kg	79.8	17.1	1	04/27/21 09:00	04/28/21 04:15	156-59-2	
cis-1,3-Dichloropropene	<52.7	ug/kg	399	52.7	1	04/27/21 09:00	04/28/21 04:15	10061-01-5	
m&p-Xylene	<33.7	ug/kg	160	33.7	1	04/27/21 09:00	04/28/21 04:15	179601-23-1	
n-Butylbenzene	<36.5	ug/kg	79.8	36.5	1	04/27/21 09:00	04/28/21 04:15	104-51-8	
n-Propylbenzene	<19.2	ug/kg	79.8	19.2	1	04/27/21 09:00	04/28/21 04:15	103-65-1	
o-Xylene	<23.9	ug/kg	79.8	23.9	1	04/27/21 09:00	04/28/21 04:15	95-47-6	
p-Isopropyltoluene	<24.3	ug/kg	79.8	24.3	1	04/27/21 09:00	04/28/21 04:15	99-87-6	
sec-Butylbenzene	<19.5	ug/kg	79.8	19.5	1	04/27/21 09:00	04/28/21 04:15	135-98-8	
tert-Butylbenzene	<25.1	ug/kg	79.8	25.1	1	04/27/21 09:00	04/28/21 04:15	98-06-6	
trans-1,2-Dichloroethene	<17.2	ug/kg	79.8	17.2	1	04/27/21 09:00	04/28/21 04:15	156-60-5	
trans-1,3-Dichloropropene	<228	ug/kg	399	228	1	04/27/21 09:00	04/28/21 04:15	10061-02-6	
Surrogates									
Toluene-d8 (S)	106	%	67-159		1	04/27/21 09:00	04/28/21 04:15	2037-26-5	
4-Bromofluorobenzene (S)	82	%	66-153		1	04/27/21 09:00	04/28/21 04:15	460-00-4	
1,2-Dichlorobenzene-d4 (S)	92	%	82-158		1	04/27/21 09:00	04/28/21 04:15	2199-69-1	
Percent Moisture	Analytical	Method: AST	ΓM D2974-87						
	Pace Anal	ytical Service	es - Green Bay						
Percent Moisture	8.0	%	0.10	0.10	1		04/24/21 13:45		

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

QC Batch: 383575 Analysis Method: EPA 8260

QC Batch Method: EPA 5035/5030B Analysis Description: 8260 MSV Med Level Normal List

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40225737001, 40225737002, 40225737003, 40225737004, 40225737005, 40225737006

METHOD BLANK: 2212754 Matrix: Solid

Associated Lab Samples: 40225737001, 40225737002, 40225737003, 40225737004, 40225737005, 40225737006

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/kg	<12.0	50.0	04/27/21 18:10	
1,1,1-Trichloroethane	ug/kg	<12.8	50.0	04/27/21 18:10	
1,1,2,2-Tetrachloroethane	ug/kg	<18.1	50.0	04/27/21 18:10	
1,1,2-Trichloroethane	ug/kg	<18.2	50.0	04/27/21 18:10	
1,1-Dichloroethane	ug/kg	<12.8	50.0	04/27/21 18:10	
1,1-Dichloroethene	ug/kg	<16.6	50.0	04/27/21 18:10	
1,1-Dichloropropene	ug/kg	<16.2	50.0	04/27/21 18:10	
1,2,3-Trichlorobenzene	ug/kg	<55.7	250	04/27/21 18:10	
1,2,3-Trichloropropane	ug/kg	<24.3	50.0	04/27/21 18:10	
1,2,4-Trichlorobenzene	ug/kg	<41.2	250	04/27/21 18:10	
1,2,4-Trimethylbenzene	ug/kg	<14.9	50.0	04/27/21 18:10	
1,2-Dibromo-3-chloropropane	ug/kg	<38.8	250	04/27/21 18:10	
1,2-Dibromoethane (EDB)	ug/kg	<13.7	50.0	04/27/21 18:10	
1,2-Dichlorobenzene	ug/kg	<15.5	50.0	04/27/21 18:10	
1,2-Dichloroethane	ug/kg	<11.5	50.0	04/27/21 18:10	
1,2-Dichloropropane	ug/kg	<11.9	50.0	04/27/21 18:10	
1,3,5-Trimethylbenzene	ug/kg	<16.1	50.0	04/27/21 18:10	
1,3-Dichlorobenzene	ug/kg	<13.7	50.0	04/27/21 18:10	
1,3-Dichloropropane	ug/kg	<10.9	50.0	04/27/21 18:10	
1,4-Dichlorobenzene	ug/kg	<13.7	50.0	04/27/21 18:10	
2,2-Dichloropropane	ug/kg	<13.5	50.0	04/27/21 18:10	
2-Chlorotoluene	ug/kg	<16.2	50.0	04/27/21 18:10	
4-Chlorotoluene	ug/kg	<19.0	50.0	04/27/21 18:10	
Benzene	ug/kg	<11.9	20.0	04/27/21 18:10	
Bromobenzene	ug/kg	<19.5	50.0	04/27/21 18:10	
Bromochloromethane	ug/kg	<13.7	50.0	04/27/21 18:10	
Bromodichloromethane	ug/kg	<11.9	50.0	04/27/21 18:10	
Bromoform	ug/kg	<220	250	04/27/21 18:10	
Bromomethane	ug/kg	<70.1	250	04/27/21 18:10	
Carbon tetrachloride	ug/kg	<11.0	50.0	04/27/21 18:10	
Chlorobenzene	ug/kg	<6.0	50.0	04/27/21 18:10	
Chloroethane	ug/kg	<21.1	250	04/27/21 18:10	
Chloroform	ug/kg	<35.8	250	04/27/21 18:10	
Chloromethane	ug/kg	<19.0	50.0	04/27/21 18:10	
cis-1,2-Dichloroethene	ug/kg	<10.7	50.0	04/27/21 18:10	
cis-1,3-Dichloropropene	ug/kg	<33.0	250	04/27/21 18:10	
Dibromochloromethane	ug/kg	<171	250	04/27/21 18:10	
Dibromomethane	ug/kg	<14.8	50.0	04/27/21 18:10	
Dichlorodifluoromethane	ug/kg	<21.5	50.0	04/27/21 18:10	
Diisopropyl ether	ug/kg	<12.4	50.0	04/27/21 18:10	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

METHOD BLANK: 2212754 Matrix: Solid

Associated Lab Samples: 40225737001, 40225737002, 40225737003, 40225737004, 40225737005, 40225737006

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
Ethylbenzene	ug/kg	<11.9	50.0	04/27/21 18:10	
Hexachloro-1,3-butadiene	ug/kg	<99.4	250	04/27/21 18:10	
Isopropylbenzene (Cumene)	ug/kg	<13.5	50.0	04/27/21 18:10	
m&p-Xylene	ug/kg	<21.1	100	04/27/21 18:10	
Methyl-tert-butyl ether	ug/kg	<14.7	50.0	04/27/21 18:10	
Methylene Chloride	ug/kg	<13.9	50.0	04/27/21 18:10	
n-Butylbenzene	ug/kg	<22.9	50.0	04/27/21 18:10	
n-Propylbenzene	ug/kg	<12.0	50.0	04/27/21 18:10	
Naphthalene	ug/kg	<15.6	250	04/27/21 18:10	
o-Xylene	ug/kg	<15.0	50.0	04/27/21 18:10	
p-Isopropyltoluene	ug/kg	<15.2	50.0	04/27/21 18:10	
sec-Butylbenzene	ug/kg	<12.2	50.0	04/27/21 18:10	
Styrene	ug/kg	<12.8	50.0	04/27/21 18:10	
tert-Butylbenzene	ug/kg	<15.7	50.0	04/27/21 18:10	
Tetrachloroethene	ug/kg	<19.4	50.0	04/27/21 18:10	
Toluene	ug/kg	<12.6	50.0	04/27/21 18:10	
trans-1,2-Dichloroethene	ug/kg	<10.8	50.0	04/27/21 18:10	
trans-1,3-Dichloropropene	ug/kg	<143	250	04/27/21 18:10	
Trichloroethene	ug/kg	<18.7	50.0	04/27/21 18:10	
Trichlorofluoromethane	ug/kg	<14.5	50.0	04/27/21 18:10	
Vinyl chloride	ug/kg	<10.1	50.0	04/27/21 18:10	
Xylene (Total)	ug/kg	<36.1	150	04/27/21 18:10	
1,2-Dichlorobenzene-d4 (S)	%	100	82-158	04/27/21 18:10	
4-Bromofluorobenzene (S)	%	93	66-153	04/27/21 18:10	
Toluene-d8 (S)	%	99	67-159	04/27/21 18:10	

LABORATORY CONTROL SAMPLE:	2212755					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/kg	2500	2390	95	70-130	
1,1,2,2-Tetrachloroethane	ug/kg	2500	2450	98	65-129	
1,1,2-Trichloroethane	ug/kg	2500	2290	92	70-130	
1,1-Dichloroethane	ug/kg	2500	2430	97	70-130	
1,1-Dichloroethene	ug/kg	2500	2150	86	67-120	
1,2,4-Trichlorobenzene	ug/kg	2500	2870	115	64-130	
1,2-Dibromo-3-chloropropane	ug/kg	2500	2560	102	57-119	
1,2-Dibromoethane (EDB)	ug/kg	2500	2320	93	70-130	
1,2-Dichlorobenzene	ug/kg	2500	2380	95	70-130	
1,2-Dichloroethane	ug/kg	2500	2500	100	70-130	
1,2-Dichloropropane	ug/kg	2500	2260	90	72-118	
1,3-Dichlorobenzene	ug/kg	2500	2350	94	70-130	
1,4-Dichlorobenzene	ug/kg	2500	2330	93	70-130	
Benzene	ug/kg	2500	2110	84	70-130	
Bromodichloromethane	ug/kg	2500	2200	88	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

LABORATORY CONTROL SAMPLE:	2212755					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Bromoform	ug/kg	2500	3070	123	66-130	
Bromomethane	ug/kg	2500	1410	56	13-153	
Carbon tetrachloride	ug/kg	2500	2300	92	73-134	
hlorobenzene	ug/kg	2500	2250	90	70-130	
hloroethane	ug/kg	2500	1500	60	19-170	
hloroform	ug/kg	2500	2320	93	79-120	
hloromethane	ug/kg	2500	2100	84	45-117	
is-1,2-Dichloroethene	ug/kg	2500	2170	87	70-130	
is-1,3-Dichloropropene	ug/kg	2500	2150	86	68-130	
ibromochloromethane	ug/kg	2500	2260	90	70-130	
ichlorodifluoromethane	ug/kg	2500	2610	104	15-135	
hylbenzene	ug/kg	2500	2250	90	78-120	
opropylbenzene (Cumene)	ug/kg	2500	2020	81	70-130	
&p-Xylene	ug/kg	5000	3910	78	70-130	
ethyl-tert-butyl ether	ug/kg	2500	2240	90	65-130	
ethylene Chloride	ug/kg	2500	2180	87	70-130	
Xylene	ug/kg	2500	2040	82	70-130	
yrene	ug/kg	2500	2180	87	70-130	
trachloroethene	ug/kg	2500	2240	89	70-130	
luene	ug/kg	2500	2230	89	76-120	
ns-1,2-Dichloroethene	ug/kg	2500	2340	94	70-130	
ans-1,3-Dichloropropene	ug/kg	2500	2410	96	70-130	
richloroethene	ug/kg	2500	2180	87	70-130	
richlorofluoromethane	ug/kg	2500	1950	78	49-153	
nyl chloride	ug/kg	2500	2020	81	58-121	
vlene (Total)	ug/kg	7500	5950	79	70-130	
2-Dichlorobenzene-d4 (S)	%			105	82-158	
Bromofluorobenzene (S)	%			96	66-153	
oluene-d8 (S)	%			95	67-159	

MATRIX SPIKE & MATRIX SP	PIKE DUPLIC	CATE: 2212	2212757				•					
Parameter	4 Units	0225755010 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
1,1,1-Trichloroethane	ug/kg	<19.3	1510	1510	1570	1630	104	108	70-130	4	20	
1,1,2,2-Tetrachloroethane	ug/kg	<27.3	1510	1510	1470	1630	98	108	65-129	10	20	
1,1,2-Trichloroethane	ug/kg	<27.5	1510	1510	1570	1640	104	109	70-130	4	20	
1,1-Dichloroethane	ug/kg	<19.3	1510	1510	1670	1710	111	113	70-130	2	20	
1,1-Dichloroethene	ug/kg	<25.1	1510	1510	1310	1380	87	91	64-120	5	20	
1,2,4-Trichlorobenzene	ug/kg	<62.2	1510	1510	2110	2110	140	140	64-130	0	20	M1
1,2-Dibromo-3- chloropropane	ug/kg	<58.6	1510	1510	1640	1790	108	119	57-130	9	21	
1,2-Dibromoethane (EDB)	ug/kg	<20.7	1510	1510	1480	1590	98	105	70-130	7	20	
1,2-Dichlorobenzene	ug/kg	<23.4	1510	1510	1720	1740	114	115	70-130	1	20	
1,2-Dichloroethane	ug/kg	<17.4	1510	1510	1670	1730	111	115	70-130	3	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

MATRIX SPIKE & MATRIX SP	IKE DUPLI	CATE: 2212		MOD	2212757							
		40225755010	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
1,2-Dichloropropane	ug/kg	<18.0	1510	1510	1460	1520	97	101	72-122	4	20	
1,3-Dichlorobenzene	ug/kg	<20.7	1510	1510	1650	1630	110	108	70-130	1	20	
1,4-Dichlorobenzene	ug/kg	<20.7	1510	1510	1640	1600	109	106	70-130	3	20	
Benzene	ug/kg	<18.0	1510	1510	1450	1460	96	97	70-130	1	20	
Bromodichloromethane	ug/kg	<18.0	1510	1510	1460	1490	97	99	70-130	2	20	
Bromoform	ug/kg	<332	1510	1510	1950	1980	129	131	66-130	2	20	M1
Bromomethane	ug/kg	<106	1510	1510	862	859	57	57	13-153	0	20	
Carbon tetrachloride	ug/kg	<16.6	1510	1510	1550	1560	103	104	67-134	1	20	
Chlorobenzene	ug/kg	<9.0	1510	1510	1530	1540	102	102	70-130	0	20	
Chloroethane	ug/kg	<31.8	1510	1510	1010	1000	67	66	11-195	1	20	
Chloroform	ug/kg	<54.0	1510	1510	1580	1630	105	108	79-120	3	20	
Chloromethane	ug/kg	<28.7	1510	1510	1220	1190	81	79	30-136	3	20	
cis-1,2-Dichloroethene	ug/kg	<16.1	1510	1510	1550	1510	103	100	70-130	3	20	
cis-1,3-Dichloropropene	ug/kg	<49.8	1510	1510	1430	1460	95	97	68-130	2	20	
Dibromochloromethane	ug/kg	<258	1510	1510	1450	1370	96	91	70-130	5	20	
Dichlorodifluoromethane	ug/kg	<32.4	1510	1510	1130	1190	75	79	10-158	5	25	
Ethylbenzene	ug/kg	<18.0	1510	1510	1540	1570	102	104	78-120	3	20	
sopropylbenzene (Cumene)	ug/kg	<20.4	1510	1510	1480	1480	98	98	70-130	0	20	
m&p-Xylene	ug/kg	<31.8	3020	3020	2750	2730	91	91	70-130	0	20	
Methyl-tert-butyl ether	ug/kg	<22.2	1510	1510	1520	1640	101	109	65-130	7	20	
Methylene Chloride	ug/kg	<21.0	1510	1510	1480	1450	98	96	70-130	2	20	
o-Xylene	ug/kg	<22.6	1510	1510	1370	1300	90	86	70-130	5	20	
Styrene	ug/kg	<19.3	1510	1510	1470	1470	98	98	70-130	0	20	
Tetrachloroethene	ug/kg	<29.3	1510	1510	1460	1460	97	97	70-130	0	20	
Toluene	ug/kg	<19.0	1510	1510	1460	1550	97	103	76-120	6	20	
trans-1,2-Dichloroethene	ug/kg	<16.3	1510	1510	1620	1640	107	108	70-130	1	20	
rans-1,3-Dichloropropene	ug/kg	<216	1510	1510	1540	1650	102	110	70-130	7	20	
Trichloroethene	ug/kg	<28.2	1510	1510	1470	1530	97	101	70-130	4	20	
Trichlorofluoromethane	ug/kg	<21.9	1510	1510	1240	1210	82	80	42-159	2	21	
Vinyl chloride	ug/kg	<15.2	1510	1510	1210	1220	80	81	43-137	1	20	
Xylene (Total)	ug/kg	<54.5	4530	4530	4110	4030	91	89	70-130	2		
1,2-Dichlorobenzene-d4 (S)	%						144	140	82-158			
4-Bromofluorobenzene (S)	%						129	134	66-153			
Toluene-d8 (S)	%						135	136	67-159			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(920)469-2436

QUALITY CONTROL DATA

Project: 1690020998 MTRC

Pace Project No.: 40225737

QC Batch: 383362 Analysis Method: ASTM D2974-87

QC Batch Method: ASTM D2974-87 Analysis Description: Dry Weight/Percent Moisture

Laboratory: Pace Analytical Services - Green Bay

Associated Lab Samples: 40225737001, 40225737002, 40225737003, 40225737004, 40225737005, 40225737006

SAMPLE DUPLICATE: 2211847

Date: 04/28/2021 03:05 PM

 Percent Moisture
 Wax Result
 Apple Result
 Max Result
 RPD
 Qualifiers

 Percent Moisture
 %
 5.5
 5.4
 2
 10

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: 1690020998 MTRC

Pace Project No.: 40225737

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above LOD.

J - Estimated concentration at or above the LOD and below the LOQ.

LOD - Limit of Detection adjusted for dilution factor, percent moisture, initial weight and final volume.

LOQ - Limit of Quantitation adjusted for dilution factor, percent moisture, initial weight and final volume.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected at or above the adjusted LOD.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

Date: 04/28/2021 03:05 PM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 1690020998 MTRC

Pace Project No.: 40225737

Date: 04/28/2021 03:05 PM

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
40225737001	SB-4 (1-2)	EPA 5035/5030B	383575	EPA 8260	383579
40225737002	SB-4 (17-18)	EPA 5035/5030B	383575	EPA 8260	383579
40225737003	SB-5 (1-2)	EPA 5035/5030B	383575	EPA 8260	383579
40225737004	SB-5 (12-13)	EPA 5035/5030B	383575	EPA 8260	383579
40225737005	SB-6 (1-2)	EPA 5035/5030B	383575	EPA 8260	383579
40225737006	SB-6 (4-5)	EPA 5035/5030B	383575	EPA 8260	383579
40225737001	SB-4 (1-2)	ASTM D2974-87	383362		
40225737002	SB-4 (17-18)	ASTM D2974-87	383362		
40225737003	SB-5 (1-2)	ASTM D2974-87	383362		
40225737004	SB-5 (12-13)	ASTM D2974-87	383362		
40225737005	SB-6 (1-2)	ASTM D2974-87	383362		
40225737006	SB-6 (4-5)	ASTM D2974-87	383362		

Pace Container Order #788675

40005737	7
----------	---

Add	dresses -											
Order			Ship 7	Го:			Returi	n To:				
Company	Ramboll En	viron - Wauwatosa	Company	Ramboll Environ - W	auwatos	Company	Pace Analytical Green Bay					
Contact	Glasford, D	uncan	Contact	Glasford, Duncan			 Contact	Mleczko, Steven				
Email	dglasford@	ramboll.com	Email	dglasford@ramboll.c	Email	I steve.mleczko@pacelabs.com						
Address	234 W. Flor	rida Street	Address	234 W. Florida Stree	t	Address	s 1241 Bellevue Street					
Address 2	Fifth Floor		Address 2	Fifth Floor	Address 2	Suite 9						
	Milwaukee		Citv	Milwaukee	Green Bay							
State		Zip 53204	State		WI Zip 54302							
	262901013			2629010130		 	_	(920)469-2436				
Trione	202301010		1 110110	2023010100				(020)400 2400				
Info	· —											
Proie	ct Name	odgeville NAPA Store	Due Date	03/11/2021	Profil	e 1		Quote				
Project M	Manager M	lleczko, Steven	Return Date		Carrie	Most l	Economical	Location WI				
—	1 1			- D-44-1 1 1				***				
(lanks —			Bottle Labels				ottles —				
X Inc	clude Trip B	lanks		Blank				Boxed Cases				
<u> </u>				X Pre-Printed N				Individually Wrapped				
				Pre-Printed W	vitn Sam	ipie ius		Grouped By Sample ID/Matrix				
/		g Labels ———		Misc ———								
	o Shipper			Sampling Inst	tructions			Extra Bubble Wrap				
(⊔ w	ith Shipper			X Custody Seal				Short Hold/Rush Stickers				
< COC !	Options -			Temp. Blanks				DI Water Liter(s)				
1	umber of Bla	anks 1) l		1		· · · · · · · · · · · · · · · · · · ·	USDA Regulated Soils				
I <u></u>	re-Printed			Syringes								
# of Sample	s Matrix	Test	Containe	er	Total	# of	Lot#	Notes				
7	SL	VOC 8260 Med Level Methano	ol 40mL vial,	10mL MeOH Tared Wt	7	То	B-0-242-01VB	1:				
1	SL	MEOH Trip Blanks		10mL MeOH w/custody	1	0	B-0-242-01VB					
7	SL	10g Sampling Tool	Plastic 10 g	gram cut off syringe	7	0	NA					
7	SL	dry weight	4oz poly cu	ıp	7	0	200512					
												
		·						.				
•		•										
На	zard Sh	ipping Placard In	Place : 1	NΑ			LAB	USE:				
		are typically 8am-5pm, but ma			with you	r Pace P	roject	Ship Date : 03/10/2021				
Manager.	-						Prepared By: Mai Yer Her					
'Pace Analytic 'Pace Analytic	cal reserves	the right to return hazardous the right to charge for unuse	, toxic, or rac	noactive samples to you	orage/disposal.	Verified By:						
'Payment tern	n are net 30	days.				F. 2 - 11	. •					
'Please includ	de the propo	sal number on the chain of c	ustody to insi	ure proper billing.								
9	ample						CLIENT	USE (Optional):				
36	muhie							Date Rec'd:				
								Received By:				
								Verified By:				
				Dogo 1 of 1								

F-ALL-C-009-rev.00. 19Dec2016

Page 1 of 1

Page 26 of 28

Sample Preservation Receipt Form

Lab Std #ID of preservation (if pH adjusted):

Client Name: Ramboll

Project # 4/72

Lab Lot# of pH paper:

All containers needing preservation have been checked and noted below: □Yes □No ➤ ✓A

Initial when completed:

ziploc bag

4 oz plastic jar unpres 120 mL plastic Na Thiosulfate

WPFU

SP5T

ZPLC

GN

Date/ Time:

									Ī	Lub	LOI# C	, pi i	ирог.	Π			Lui	, Ola ,	710 01	prode	ervauo	,, (ii þi	i uuju		-		*_		စ				1
				Gl	ass						Plast	ic				Vi	als				Ji	ars		Ge	enera		(>6mm)	1 52	Act pH ≥	≥12	52	djusted	Volume
Pace Lab#	AG10	BG1U	AG1H	AG4S	AG4U	AG5U	AG2S	везп	BP1U	BP3U	врзв	BP3N	BP3S	VG9A	DG9T	VG9U	V G9H	VG9M	VG9D	JGFU	JG9U	WGFU	WPFU	SP5T	ZPLC	GN	VOA Vials	H2SO4 pH	NaOH+Zn Act pH ≥9	NaOH pH ≥12	HNO3 pH ≤2	pH after adjusted	(mL)
001																																	2.5 / 5 / 10
002				5.50					\$150 m			1-1-1	100	8,000		7.40						1360	9 9								- 5-25		2.5/5/10
003																		1					1										2.5 / 5 / 10
004		100		1,800	3	4,4	1.000 1.000	all const		400 M	Section 1		8		10.000		6 - A.A. 3 - 33	l.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 3000	2.46			10011	002.21			***********		10 10 10 10 10 10 10 10 10 10 10 10 10 1			2.5/5/10
005																		l					1										2.5 / 5 / 10
006		1000										,		1112						10.1.		1	10 m		8							4 (1)	2.5 / 5 / 10
9																																	2.5 / 5 / 10
800		/	100	785		4838X		166	ly iv		d.					6.18.0	1						100						200 A 100	1.000	(a)		2.5/5/10
009																																	2.5 / 5 / 10
010										100.000						- 4					4.6		3.30		(1) X								2.5/5/10
011						<u> </u>			ļ																								2.5 / 5 / 10
012						6 0					601				333				300		5.3	82				10.0			(10)			1	2.5/5/10
013																																	2.5 / 5 / 10
014			(a) (3°.)	30,02161	Helpin (C.)	ear et	40	5800	Exercise of the second		# 75					100	- 1	1.50		1010								******	30-C				2,5 / 5 / 10
015						ļ									\geq				Nomeric		To Transfer		T TO ARREST CO. T. C.							\mathcal{L}			2.5 / 5 / 10
016						23.0		2000	Section	16.4	- Contract Contract			8000	1,000	300	- 1	4000		(Ne)(f)	144	i de la composition della comp		Service.	100				174		2.12600	24,000	2.5 / 5 / 10
017								SURFERING V												_	100 100 100				30.71.57.5			U	10	X			2.5 / 5 / 10
018										100	33-10.		87.00			2					A.C		(\$25)	ABAMAGAN.					800.00	1	1000000		2.5 / 5 / 10
019			32222000		<u> </u>				2.000,000												30.22												2.5 / 5 / 10
020		1.00	A disc	285.0	8	(8) (A)					48.00		60,700	90004		31.00	. 48	1,1420	1	10000					9				62.00	\vdash		\$	2.5/5/10
Excep	otions	s to pr	eserv	ation o	check:	VOA	, Coli	form,	TOC,	TOX,	тон,	O&G,	WI D	RO, P	henoli	ics, O	her:_			_Head	dspace	e in V	OA Via	als (>6	Smm) :	□Yes	□No	MA	*If ye	s look	in head	dspace	column
AG1U BG1U AG1H	1 lit	er cle	ar gla	ass	HCL	-		BF	P1U P3U P3B	250	r plas mL pl mL pl	lastic	unpr	es		DC	39T	40 m	ıL am	ber N	corbional The street of the st	io		JG	39U	9 oz	amb	er jar	unpres	es			

VG9H

VG9M

VG9D

40 mL clear vial MeOH

40 mL clear vial HCL

40 mL clear vial DI

AG4S 125 mL amber glass H2SO4

AG4U 120 mL amber glass unpres

AG5U 100 mL amber glass unpres

AG2S 500 mL amber glass H2SO4

BG3U 250 mL clear glass unpres

BP3N

BP3S

250 mL plastic HNO3

250 mL plastic H2SO4

Pace Analytical®
1241 Bellevue Street, Green Bay, WI 54302

Document Name:

Sample Condition Upon Receipt (SCUR)

Document No.:

Author:

Document Revised: 26Mar2020

ENV-FRM-GBAY-0014-Rev.00

Pace Green Bay Quality Office

Sample Condition Upon Receipt Form (SCUR)

0				Project #:		
Client Name: KAMPON		l MC)#:4	10225737		
Courier: FCS Logistics Fed Ex Speedee	UP	altco				
Client Pace Other:						
Tracking #: 2045 042321				4022	25737	!
Custody Seal on Cooler/Box Present: Syes no	Sea	als inta	act:	yes ☐ no		
Custody Seal on Samples Present: yes no				☐ yes ☐ no		
Packing Material: Bubble Wrap Bubble Ba	_		_			
	of Id	:e: (V	/e)	Blue Dry None	amples on Г	ice, cooling process has begun Person examining contents:
Cooler Temperature Uncorr: / O/Corr: . S			- 1 T		·	
Temp Blank Present: ☐ yes 5500	BIC	ologica	ai i	issue is Frozen: ☐ yes☐	_ no	Date: 4/24/1/Initials;
Temp should be above freezing to 6° C.' Biota Samples may be received at $\leq 0^{\circ}$ C if shipped on Dry Ice.						Labeled By Initials:
Chain of Custody Present:	s 🗆 N	io 🗆	N/A	1.		
Chain of Custody Filled Out: □Ye	s [⊅ ⊀	io □	N/A	2 Mail		4/24/21/2
Chain of Custody Relinquished:	s 🗆 N	lo 🗆 I	N/A	3.		
Sampler Name & Signature on COC:	s 🗆 N	lo 🗆 1	N/A	4.		
Samples Arrived within Hold Time:	s 🗆 N	lo		5.		
- VOA Samples frozen upon receipt □Ye	s 🗆 N	lo		Date/Time:		
Short Hold Time Analysis (<72hr): □Ye	s 5 4	Б		6.		
Rush Turn Around Time Requested: □Ye	s 1544	ю		7.		
Sufficient Volume:				8.		
For Analysis: ☑Yes ☐No MS/MSD: ☐Ye	s 🗁	6 □1	N/A		<u>.</u>	
Correct Containers Used:	s 🗆 n	lo		9.		
-Pace Containers Used:	s 🗆 N	lo 🗆 1	N/A			
-Pace IR Containers Used: □Ye	s 🗆 N	10 5 4	¶7⁄A			
Containers Intact:	s 🗆 N	lo		10.	_	
Filtered volume received for Dissolved tests □Ye	s 🗆 N	10 5	A √A	11.		
Sample Labels match COC:	s 🗆 N	lo 🗆 I	N/A	12.		
-Includes date/time/ID/Analysis Matrix:						
Trip Blank Present: □Ye	s 🖄	to 🗆	N/A	13.		
Trip Blank Custody Seals Present □Ye	s 🗆 N	10 5/4	AVA			
Pace Trip Blank Lot # (if purchased):						
Client Notification/ Resolution: Person Contacted:		Da	to/T	•	see attach	ed form for additional comments
Comments/ Resolution:		Da	ale/ I	ime:		

PM Review is documented electronically in LIMs. By releasing the project, the PM acknowledges they have reviewed the sample logir