P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Engineers • Consultants • Inspectors

April 1, 2023

Ms. Josie Schultz Wisconsin Department of Natural Resources 2984 Shawano Avenue Green Bay, Wisconsin 54313

SUBJECT: **STATUS UPDATE REPORT 2**

> The Solberg Co - Site 2 1520 Brookfield Avenue Village of Howard, Wisconsin

GEC Project Number: 2-0919-397B BRRTS Number: 02-05-587486 (PFAS)

Dear Ms. Schultz,

Attached is a Status Update 2 for the Site Investigation Activity at The Solberg Company - Site 2, located at 1520 Brookfield Avenue in the Village of Howard, Wisconsin.

Sincerely yours,

GENERAL ENGINEERING COMPANY

Brian Youngwirth, P.G. Senior Geologist

Lynn M. Bradley

Environmental Department Manager

Mr. Mitch Hubert (Perimeter Solutions) C:

File

P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Page

Engineers • Consultants • Inspectors

TABLE OF CONTENTS THE SOLBERG CO – SITE 2

INTRODUCTION	1
General	
Purpose	
• Scope	
SITE FEATURES AND BACKGROUND	1-6
Site Features	
Background	
FIELD ACTIVITIES AND PROCEDURES	6-7
Scope Summary	
Field Exploration	
Field Volatile Vapor Emission Screening Sail Samula Callaction and Brancastion	
Soil Sample Collection and Preparation	
DESCRIPTION OF SUBSURFACE CONDITIONS	7
General	
Soil Conditions	
GROUNDWATER WATER MONITORING ACTIVITIES	7-8
Well Development	
Groundwater Sampling	
Groundwater Well Elevations and Hydraulic Conductivity Testing	
POTABLE WELL RECONNAISSANCE AND POND OUTFLOW OBSERVATIONS	9
Potable Well Reconnaissance	
Pond Outflow Observations	
FIELD AND ANALYTICAL TESTING RESULTS	9-10
NR 720 Soil Standards	
Laboratory Soil Results	
Groundwater Quality Standards	
Laboratory Groundwater Results	
CONCLUSIONS	11
GENERAL COMMENTS	11-12

P.O. Box 340 916 Silver Lake Drive Portage, WI 53901

608-742-2169 (Office) 608-742-2592 (Fax) gec@generalengineering.net www.generalengineering.net

Engineers • Consultants • Inspectors

APPENDICES

APPENDIX A

- Figure 1 Site Location Map
- Figure 2 Current Site Plan
- Figure 3 Soil Boring and Monitoring Well Location Map
- Figure 4 Estimated Extent of Remedial Excavation and Confirmation Soil Sample Location Map June 2019
- Figure 4A- Estimated Extent of Remedial Excavation and Confirmation Soil Sample Location Map May 2021
- Figure 5 Groundwater Elevation Contour and Flow Direction Map (July 12, 2022)

APPENDIX B

- Table A.1 Groundwater Analytical Results
- Table A.2 Soil Analytical Results Table
- Table A.6 Water Level Elevations

APPENDIX C

Soil Boring Logs, Well Construction and Development Forms

APPENDIX D

Soil and Groundwater Analytical Reports Chain-of-Custody Documentation

APPENDIX E

• Potable Well Construction Records

APPENDIX F

Pond Photographs

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 1

INTRODUCTION

General

This report presents a summary of the findings and conclusions of the additional subsurface investigation activities performed at The Solberg Company – Site 2 located at 1520 Brookfield Avenue in the Village of Howard, Brown County, Wisconsin (Site) since completion of Status Update 1 (GEC, September 13, 2021). The activities were performed at the request and authorization of Mr. Mitch Hubert, an authorized representative of Perimeter Solutions (formerly The Solberg Company).

Purpose

The purpose of the performed investigation activities was to further evaluate the degree and extent of soil and groundwater contaminated with per-and polyfluoroalkyl substances (PFAS) resulting from the use of these chemicals on the Site. It should be noted that Ms. Pamela Havelka-Rivard, the research and development manager for Perimeter Solutions has indicated that the Site plant still produces PFAS-containing Aqueous Film Forming Foam (AFFF) and Alcohol Resistant Aqueous Film Forming Foam (AR-FFF) in the plant, but is no longer performing testing on fire suppression PFAS-containing chemicals in the "testing building" at the Site, which was the ultimate source of this release. It should also be noted that according to Ms. Havelka-Rivard, perfluoroctanesulfonic acid (PFOS) is not a compound that has ever been utilized at the Site.

Scope

The scope of the additional investigation activities included: the advancement of 7 soil borings, which were converted to 6 monitoring wells and 1 piezometer; collection of soil samples from selected borings; monitoring well surveying and development; collection of groundwater samples from 17 monitoring wells, 2 piezometers, a tank sump and an on-site pond; laboratory analysis of selected soil samples; laboratory analysis of groundwater samples at 3 separate laboratories (requested by the client); the performance of hydraulic conductivity testing at 2 monitoring wells, observation of the on-site pond outflow construction, potable well reconnaissance, and preparation of this report. The investigation activities were structured specifically to address the presence of PFAS. The testing should not be considered an all-inclusive search for hazardous substances across the Site.

SITE FEATURES AND BACKGROUND

Site Features

The Site is an approximate 10-acre parcel of land (Parcel Number VH-3175) owned by Perimeter Solutions, LP. The Site is located at 1520 Brookfield Avenue in the Village of Howard, Brown County, Wisconsin, and is situated on the east side of Brookfield Avenue, approximately ½ mile south of County Road M (Lineville Road) within the northwest ¼ of the southeast ¼ of Section 3, Township 24 North, Range 20 East. A Site Location Map is included as Figure 1 in Appendix A.

Based on a review of aerial photographs, the Site was utilized as agricultural land from the at least the 1930s to May of 2011 and was developed with the current facility between May and October of 2011. It should be noted that suspected manure spreading occurred on the Site and surrounding properties to the north and south based on a review of a 2010 aerial photograph, and suspected manure spreading on the adjoining property to the north occurred based on a review of a 2020 aerial photograph. It is not known whether other biosolids, such as sewage sludge, were regularly applied to the agricultural land. The Site is currently developed with two buildings including an office, laboratory, and production plant located on the western portion of the Site parcel, and a fire-fighting testing building, with a small contiguous mechanical building to the east. An underground oil/water separator tank system is located just east of the mechanical building. A Current Site Plan Map is included as Figure 2, Appendix

Portage

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 2

A. The Site obtains potable water services from the Village of Howard from the municipal system. Utility locations are shown within the area of the former release to the extent they have been mapped to date.

The unused gasoline and fluids generated during fire suppression testing exercises were historically collected in a drain that was piped below grade to the east of the building to a below grade oil/water separator system. The oil/water separator system is comprised of 3 underground tanks including a central 3-section oil/water tank with weirs to separate petroleum products and water, a northern product collection tank, and a southern water storage tank. The product tank was generally filled annually, and the product was routinely removed and recycled. The water tank was pumped into an on-site tank, where it was treated and shipped out for proper disposal by Perimeter Solutions.

The surface of the Site is relatively flat and is situated in a region that gently slopes to the south and east toward Green Bay (Lake Michigan), located approximately 1 mile southeast of the Site. The surface of the Site is covered primarily by grass, with asphalt and parking areas present south of the office building. An asphalt drive also extends from the parking area toward the east-northeast to the south side of the fire suppression testing building. A storm water detention pond is located to the south of the testing building along the southern boundary of the Site. Pond outfall exits the southwest end of the pond through a polyvinyl chloride (PVC) pipe that is directed southwest to a drainage swale covered by overgrown vegetation along the south end of the Site, where outfall water migrates westward to the ditch line along Brookfield Avenue. Overgrown vegetation is present on the far eastern portion of the Site and along the northern boundary of the Site.

The Site parcel is bordered to the north and east by vacant land and residential properties, to the south by commercial property followed by vacant agricultural land, and to the west by Brookfield Avenue, across which are commercial and residential properties.

There does not appear to be the potential for impacts to threatened or endangered species; sensitive species, habitat, or ecosystems; outstanding or exceptional resource waters; or sites of historical or archaeological significance.

Background

On March 18, 2019, the Wisconsin Department of Natural Resources (WDNR) was notified of a spill at the Solberg Company located at 1520 Brookfield Avenue in the Village of Howard, Brown County, Wisconsin. The spill was the result of flood water from significant rain events flooding the entire eastern portion of the Site, causing the sump pump used to remove high groundwater from the oil/water separator underground storage tank (UST) system backfill to fail. As a result, the oil/water separator tank system subsequently failed, filled with water, and released an estimated 100 gallons of gasoline through the top manway to the surface flood waters surrounding the UST system.

Valley Environmental Response (VER) responded to the spill, surrounded the area impacted with gasoline around the UST system with petroleum absorbent boom and pom-poms, and pumped the fluids remaining in the UST system into a frac tank. At that time the use of the compromised UST system was discontinued until repairs could be made.

As the result of the very wet spring, multiple UST or UST backfill dewatering events were conducted during the system repairs, with water collected and containerized in on-site frac tanks during each event. Final repairs to the UST system and excavation of petroleum impacted soils could not be completed until June 2019. On June 24th, 2019, the area around the UST system was dewatered into frac tanks and the final system repairs were made. In total, greater than 40,000 gallons of gasoline-impacted water were pumped into frac tanks and treated by a carbon filtration system. Groundwater samples were collected (Frac 1, 2, 3, 4, Water Tank and Sump Above Oil Tank) to dispose of the collected water at the Green Bay Metro Sewerage District.

After the final UST system repairs, VER conducted the excavation of gasoline-impacted surface soils surrounding the UST system. On June 25th through 26th, 2019, excavation of approximately 133 tons of gasoline-impacted

Portage

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 3

soils were conducted by VER, with soil disposed of at Waste Management - Ridgeview Security Landfill located in Whitelaw, Wisconsin.

Under the direction of the WDNR, excavated soils were field-screened using a photoionization detector (PID) to assist in confirmation that gasoline-impacted soils were removed. Excavation depths ranged from 4 to 12 inches below ground surface (bgs) except for areas excavated to make the final water UST repair, where the excavation extended to approximately 3 feet bgs. In total, 13 soil samples were collected approximately every 30 feet along the base of the excavation. Soil samples were analyzed for petroleum volatile organic compounds (PVOCs) and naphthalene. Soil sample results did not identify any residual soil exceeding Wisconsin Administrative Code (WAC) NR 720 standards. The estimated extent of the remedial excavation and confirmation soil sample locations are shown on Figure 4, Appendix A.

Shallow groundwater was present at the Site at approximately 16 inches bgs. As directed by the WDNR, three test pits were created just outside the excavation limits on June 25th, 2019. Water samples were collected from the test pits (GW-1 to GW-3) and the UST excavation (GW UST) adjacent to the water tank, prior to backfill on June 26th, 2019. Water samples were analyzed for PVOCs and naphthalene. Analytical results from the groundwater samples collected from the test pits did not exceed WAC NR 140 standards. The water samples collected from the UST backfill near the water tank (GW UST), contained benzene (95 micrograms per liter (µg/L)), naphthalene (186 J ug/L), toluene (1,380 ug/L), total trimethylbenzenes (1,266 ug/L) and total xylenes (3,210 µg/L), all exceeding the WAC NR 140 enforcement standards (ES).

As a result of the impacted water identified in the UST system backfill, the WDNR created a case for the spill, issued a Responsible Party (RP) letter, dated August 14th, 2019, and General Engineering Company (GEC) was subsequently retained to perform a site investigation.

Three soil borings (B-1 to B-3) were advanced on the Site on November 19th, 2019. The borings were advanced just beyond the tank system and converted to NR 141 compliant monitoring wells designated MW-1 to MW-3, respectively. The monitoring wells were developed on November 26th, 2019. The soil boring and monitoring well locations are shown on Figure 3, Appendix A.

The surface at the soil borings consisted of 18 inches of topsoil at B-1 and B-2, and 12 inches of sand and gravel at B-3. The surface materials were generally underlain by natural soils consisting of tan or brown silty fine sand to depths of 10 feet to 12.5 feet bgs. Reddish brown silty clay soils were encountered at B-1 at depths of 8.5 to 10 feet bgs; at B-2 at depths of 1.5 feet to 2.5 feet bgs and 9 feet to 12.5 feet bgs; and B-3 at depths of 10 to 12.5 feet bgs. Brown sand was also encountered at B-2 at depths ranging from approximately 6.5 feet to 9 feet bgs.

Soil samples for laboratory analysis were collected from B-1 to B-3 at depths ranging from 2.5 feet to 5 feet bgs. The soil samples collected did not report detectable concentrations of PVOCs or naphthalene.

Groundwater samples were collected from the monitoring wells and tank sump on December 13th, 2019, March 24th, 2020, June 11th, 2020, and October 12th, 2020. The groundwater samples collected at monitoring wells MW-1 and MW-2 reported low concentrations of benzene above the WAC NR 140 preventive action limit (PAL) during a few of the sampling rounds and the groundwater samples collected from the sump reported benzene concentrations exceeding the WAC NR 140 ES during the initial 3 sampling rounds but no WAC NR 140 ES exceedances in the final sampling round were reported.

A Closure Request for the leaking underground storage tank (LUST) petroleum case was subsequently submitted to the WDNR during June of 2021. The LUST petroleum case was closed by the WDNR on July 1st, 2021 (The Solberg Co. BRRTS No. 03-05-584180). However, as part of the petroleum site investigation under WAC NR 716, emerging contaminants were evaluated at the Site. Due to the Site operations at that time, which included the testing of various fire suppression foams (known to contain PFAS), during the October 12th, 2020, groundwater sampling event, groundwater samples were also collected from MW-1, MW-3, and the tank sump and analyzed by the Wisconsin State Laboratory of Hygiene in Madison, Wisconsin for the presence of PFAS. The groundwater samples collected from monitoring wells MW-1 and MW-3 and the tank sump reported

Portage • Black River Falls • La Crosse

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 4

concentrations of several PFAS. The highest concentrations were detected at MW-3. The most notable were Perfluorohexanoic Acid (C6) (PFHxA), Perfluoropentanoic Acid (C5) (PFPeA), and 6:2 fluorotelomer sulfonate (6:2 FTSA) with concentrations of 43,900 nanograms per liter (ng/L), 48,000 ng/L, and 1,320,000 ng/L, respectively.

Therefore, an additional case was opened by the WDNR with PFAS as the contaminants of concern (The Solberg Co. – Site 2, BRRTS No. 02-05-587486).

Prior to the performance of the initial site investigation activities for the PFAS investigation, Valley Environmental Response (VER) was contracted by the Solberg Company/Perimeter Solutions to respond to and clean up impacts from a gasoline spill resulting from a line failure while transferring gasoline from an UST into the testing building. According to the Spill Report, (VER, August 18, 2021), it was estimated that approximately 300-gallons of a solution of gasoline mixed with water spilled onto the ground north and west of the concrete pad located above the gasoline UST, and ran over ground to the west, toward the Site building, and to the south around the edge of the concrete pad where it soaked into the ground surface. The tank area is surrounded by concrete bumper guards. VER dispatched to the Site on May 13, 2021, to evaluate the situation, surrounded the spill location with petroleum-absorbent booms and determined the resources that would be necessary to properly respond to the release. On May 19th through the 27th, 2021, VER mobilized staff to the Site to complete the response actions associated with the gasoline spill, which included spill containment, surface cleaning efforts and remedial excavation activities.

As indicated in the Spill Report, on May 19th, 21st, 22nd, 26th and 27th, 2021, under direction of WDNR Northeast Region Spills Coordinator, Maizie Reif, , gasoline-impacted soils were assessed and excavated until there was no remaining evidence of the presence of gasoline in the soil samples, with the exception of the location just north of the UST system within the concrete bumpers at sample location SS-4, where excavation to water occurred. The majority of the shallow soils in the location of the spill were assessed by using visual and olfactory evidence, and by field screening soils utilizing a PID. Thirteen soil samples (S-1 to S-13) were collected for PID confirmation sampling. Select soil samples located to the north of the UST system, where the vast majority of the gasoline and water pooled during the spill were collected from the sidewalls and bottom of the excavation (SS-1 to SS-4). Based on the petroleum odors and PID results at SS-4, it was apparent during excavation in this location that complete excavation of impacted soils could not be completed.

The excavation limits reportedly extended north of the concrete pad located over the UST system, beyond the bumpers (approximately 20 feet north of the concrete), west to the site building (approximately 65 feet), south to the south side of the concrete pad where fuel had migrated during the spill (approximately 12 inches wide along the south side of the pad); and to a depth of approximately 18 inches bgs. The Estimated Limits of the Remedial Excavation and the Confirmation Soil Sampling Locations are shown on Figure 4A, Appendix A.

Soil samples SS-1 to SS-4 were evaluated for laboratory analysis for the presence of PVOCs and naphthalene. The soil samples collected at SS-1 to SS-3 did not report detectable concentration of PVOCs and naphthalene. The soil sample collected at SS-4 from the bottom of the excavation, between the concrete pad and the bumpers, at the soil/water interface, identified PVOCs and naphthalene exceeding the WAC NR 720 soil to groundwater pathway and/or cancer and direct contact residual contaminant levels (RCLs). Specifically, the soil sample reported concentrations of benzene (10,800 micrograms per kilogram (μ g/kg)), ethylbenzene (9,600 μ g/kg), naphthalene (3,400 μ g/kg), toluene (24,300 μ g/kg), total trimethylbenzenes (29,100 μ g/kg), and total xylenes (48,600 μ g/kg).

Due to the known presence of PFAS at the Site (The Solberg Co – Site 2, WDNR BRRTS # 02-05-587486), the WDNR did not require PFAS soil sample analysis associated with this spill. A profile sample was collected for soil disposal and due to the presence of PFAS, soils were required to be disposed of as impacted with both gasoline and PFAS.

Portage

La Crosse

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 5

In total, approximately 94 tons of gasoline and PFAS-impacted soils, were excavated and disposed at Waste Management Columbia Ridge Landfill in Arlington, Oregon. Additionally, three cubic yard boxes of gasoline and PFAS-impacted absorbents and plastic were also disposed at Waste Management Columbia Ridge Landfill.

An additional LUST petroleum case was opened by the WDNR on August 27, 2021 (The Solberg Co- PVOC BRRTS No. 03-05-588286).

Nine soil borings (B-4 to B-12) were advanced on the Site on May 25th and 26th, 2021. Soil borings B-4 to B-11 were advanced beyond MW-1 to MW-3 to the north, south, east, and west of the UST area. Soil boring B-12 was advanced within a few feet of MW-3. Soil samples were collected continuously by driving a 5-foot plastic sleeve into undisturbed soils to depths of approximately 13.5 feet to 30 feet bgs. Subsequent to soil sampling, soil borings B-4 to B-11 were converted to WAC NR 141 compliant monitoring wells designated MW-4 to MW-11, respectively. Soil boring B-12 was converted to a WAC NR 141 compliant piezometer PZ-1. The monitoring wells were advanced to depths of 13.5 feet to 28 feet bgs utilizing 4.25-inch diameter (8-inch borehole) augers. Soil boring and monitoring well locations are shown on Figure 3, Appendix A.

The surface of the investigation area consisted of grass or overgrown vegetation, except for B-12, which consisted of sand and gravel. The surface materials, except for B-12, were underlain by topsoil ranging in depths from approximately 3-inches to 1.25 feet bgs. The near-surface sand and gravel at B-12 and topsoil at the remaining locations were underlain by variable natural soils primarily consisting of silt and sand mixtures in the upper to central portions of the borings to depths of approximately 5 feet bgs to 12 feet bgs. The upper sand and silt layer was generally underlain by finer-grain soils consisting of silty clay or clayey silt to boring termini ranging from 13 feet to 28.5 feet bgs. Groundwater was encountered within a few feet of the ground surface.

Monitoring wells MW-4 to MW-11 and piezometer PZ-1 were developed on May 26th and 27th, 2021. One round of groundwater samples was collected from monitoring wells MW-1 to MW-11, piezometer PZ-1, the tank sump, and the on-site pond on June 2nd, 2021 and submitted for laboratory analyses of PFAS at three independent laboratories (Wisconsin State Laboratory of Hygiene in Madison, Wisconsin (WSLH), Pace Analytical in Green Bay, Wisconsin (Pace), and SGS – AXYS Analytical Services in Sydney, British Columbia, Canada (SGS)).

Soil samples were collected for laboratory analysis from B-4 to B-12 at depths ranging from 0.25 feet to 3 feet bgs. Perfluoroheptanoic Acid (C7) (PFHpA), PFHxA, PFPeA, and 6:2 FTSA were reported in six of the nine soil samples submitted for laboratory analyses (B-5, B-7, B-8, B-10, B-11, and B-12). Soil boring B-9 reported PFOS PFHpA, PFHxA, and PFPeA. Soil boring B-6 reported PFPeA and 6:2 FTSA, and B-8 and B-11 also reported Perfluoroburanoic Acid (C4) (PFBA). One of the soil samples did not report detectable concentrations of PFAS (B-4). The concentrations of detected PFAS ranged from 1.13 ng/g to 15.2ng/g (PFPeA), 1.15 ng/g to 9.9 ng/g (PFHxA), 0.56 ng/g to 9.34 ng/g (PFHpA), 0.54 ng/g to 63.8 ng/g (6:2 FTSA), and 0.929 ng/g to 3.3 ng/g (PFBA). PFOS was found in one sample (B-9) at a concentration of 0.446F ng/g. The "F" indicates the parameter was detection above the detection limit but below the limit of quantitation. PFOS is the only PFAS compound with an established WAC NR 720 RCL (16,400 ng/g, industrial direct contact RCL, and 1,260 ng/g, non-industrial direct contact RCL). The highest total concentrations of PFAS were identified in B-12 (70.96 ng/g), and B-11 (38.38 ng/g). The results of the chemical analyses of the soil samples are summarized in Table A.2.

The groundwater samples collected from MW-1 to MW-11, the tank sump and the on-site pond reported significant detections of PFHpA, PFHxA, PFBA, PFPeA, and 6:2 FTSA as well as other PFAS. The highest concentrations from the groundwater samples submitted for laboratory analysis at the SWLH were detected within the groundwater samples collected from source area monitoring well MW-3, which reported Perfluoroctanoic Acid (C8) (PFOA) (79.9 ng/L), Perfluorobutanesulfonic Acid (C4) (PFBS) (12.6 ng/L), PFHpA (926 ng/L), PFHxA (13,300 ng/L), PFBA (2,590 ng/L), PFPeA (19,700 ng/L), 4:2 fluorotelomer sulfonate (C6) (4:2 FTSA) (79.2 ng/L), and 6:2 FTSA (3,000 ng/L). The concentration of 6:2 FTSA failed the qualitative control limit at MW-3 but ranged from 243,000 ng/L to 460,000 ng/L in the sample results reported by SGS and Pace, respectively.

Regarding the deeper groundwater results, the groundwater sample collected from PZ-1 reported 6:2 FTSA (36 ng/L) and PFHxA (1.2J ng/L). The results of the chemical analyses of the groundwater samples are summarized

Portage

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 6

in Table A.1 in Appendix B. Since the extent of PFAS-contaminated soil and groundwater had not been defined, the work discussed herein was subsequently performed.

FIELD ACTIVITIES AND PROCEDURES

Scope Summary

The planned scope of services included the performance of a total of 7 soil borings which were converted to 6 monitoring wells and 1 piezometer, collection of soil samples from the borings, monitoring well development and surveying, collection of groundwater samples from the 17 monitoring wells, the 2 piezometers, the tank system sump, and the on-site pond, submittal of the soil samples to a State certified laboratory (WSLH), submittal of the groundwater samples to two additional laboratories (Pace and SCS) (requested by the client), hydraulic conductivity testing at 2 of the monitoring wells, observation of the outflow of the on-site pond, potable well reconnaissance, and preparation of this report. Five of the soil borings, 4 of the monitoring wells and the piezometer were all performed off-site. The soil and groundwater samples were submitted for laboratory analysis for the presence of PFAS.

It should be noted that due to the numerous compounds within the PFAS testing list, only the primary detections will be discussed within this report. All detections can be found on the soil and groundwater tables and within the analytical results included in this report. The primary detections within groundwater are considered to include PFHpA, PFHxA, PFBA, PFPeA, and 6:2 FTSA, which correlate with source area soil analytical results with the exception of PFBA, which was not detected within the source area soil samples, but was detected in one sample location to the south (B-8). The groundwater samples were provided to 3 different laboratories at the request of the client. The groundwater results discussed within this report are associated with the WSLH, who also reported the results of the soil sampling. The other two laboratories' results pertaining to groundwater are summarized on the groundwater tables.

Field Exploration

Seven soil borings (B-13 to B-19) were advanced on the Site and adjoining northern and southern off-site properties on July 11, 2022, and converted to 6 WAC NR 141 compliant monitoring wells and a piezometer. Soil borings B-13 and B-14 were advanced on the northern portion of the northern adjoining off-site property and converted to monitoring wells MW-12 and MW-13, respectively. Soil borings B-15 and B-18 were performed on the western and eastern portions of the Site, respectively, and converted to monitoring wells MW-14 and MW-17, respectively. Soil borings B-16 and B-17 were performed on the southern adjoining off-site property and converted to monitoring wells MW-15 and MW-16, respectively. Soil boring B-19 was performed within a few of MW-15 and converted to piezometer PZ-2. The soil borings were performed by On-Site Environmental Services of Sun Prairie, Wisconsin. The borings were performed with two track-mounted Geoprobe® units. Soil samples were collected continuously by driving a 5-foot plastic sleeve into undisturbed soils to depths of approximately 13 feet to 28.5 feet bgs with the exception of B-16/MW-15, which was performed within a few of B-19/PZ-2. After the soil probing and sampling, borings were advanced to depths of 13.5 feet to 28.5 feet bgs utilizing 4.25-inch diameter (8-inch borehole) augers. The sampling equipment was decontaminated with a pressure washer The soil cuttings generated were placed into Wisconsin Department of between sampling locations. Transportation (WDOT) 55-gallon drums, which remain on-site while disposal is coordinated. The soil boring and monitoring well locations are shown of Figure 3, Appendix A.

The monitoring well construction consisted of a 10-foot section (the piezometer is a 5-foot section) of 2-inch diameter, machine-slotted PVC screen placed at or near the bottom of the borehole. The PVC casing was surrounded by a properly graded granular filter medium in the annular space, with un-slotted riser pipe extending from the screened section to a few feet above the ground surface. An approximate 2-foot-thick bentonite seal was placed above the granular filter medium to the ground surface. The wells are protected by pro top stick-up or flush-mounted covers. Monitoring well construction forms are included in Appendix C.

Portage

La Crosse

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 7

Field Volatile Vapor Emission Screening

Soil samples collected from the soil probes were screened for volatile organic vapor emissions with a Honeywell ppbRae 3000+ PID. This PID is an electronic instrument that measures the relative concentration of volatile organic vapor emissions in the headspace of a container in part per billion (ppb). The meter serves as one tool is selecting samples for analytical testing. The soil samples were placed in a plastic bag and permitted to equilibrate to at least 70 degrees Fahrenheit for a period of at least 15 minutes, based upon the ambient outdoor temperature. The screening was then performed by inserting the probe in the bag and measuring the headspace. The response of the instrument is dependent upon volatility, temperature, and the ionization potential of the compounds measured.

Soil Sample Collection and Preparation

The soil samples for chemical analyses were selected from the borings, based upon visual and olfactory observations, the direct contact risk, and the depth to groundwater to document the encountered soil conditions. The samples were submitted for laboratory analysis for the presence of PFAS.

The soil samples submitted for laboratory analysis for the presence of PFAs were extracted from the soils utilizing sterile laboratory provided sampling kits, which included 100 milliliter unpreserved digi-tubes for each soil sample. The samples were immediately placed on ice, and chain-of-custody procedures were initiated. The samples were then submitted to the WSLH, for laboratory analysis.

DESCRIPTION OF SUBSURFACE CONDITIONS

General

A description of the subsurface conditions encountered at the soil boring locations is shown on the soil boring logs included in Appendix C. The lines of demarcation shown on the logs represent an approximate boundary between the various soil classifications, but the transition is likely to be more gradual. It must be recognized that the soil descriptions are considered representative for the specific location, and that variations may occur between and beyond the sampling intervals and probing locations. A summary of the major soil profile components is described in the following paragraphs.

Soil Conditions

The surface at the sample locations consisted of grass or overgrown vegetation. The surface materials, except for B-17 and B-18, were underlain by topsoil ranging in depths from approximately 6-inches to 2.25 feet bgs. The near surface vegetation at B-17 was underlain by gray and black silty sand topsoil fill with varying amounts of gravel to a depth of 5 feet bgs. The surface vegetation at B-18 was underlain by grayish brown clayey silt. The fill at B-17, clayey silt at B-18, and topsoil at the remaining borings were underlain by natural soils primarily consisting of light brown, tan, tannish brown, and orangish brown silty sand to depths of approximately 7 feet to 12.5 feet bgs. The silty sand was underlain by tannish-gray, grayish-brown, and reddish-brown silty clay and clayey silt to the termination depths of the borings from 15 feet to 28.5 feet bgs. Groundwater was encountered within a few feet of the ground surface.

GROUNDWATER MONITORING ACTIVITIES

Well Development

Portage

Monitoring wells MW-12 to MW-17 and PZ-2 were developed on July 11, 2022. The monitoring wells were developed by purging and/or surging with a pump. Monitoring wells MW-12, MW-13, MW-14, MW-15, and piezometer PZ-2 were purged and dried several times until relatively sediment free water was produced. Monitoring wells MW-15 and MW-16 did not dry and were purged/surged until relatively sediment free water was

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 8

produced. The development water was containerized within WDOT 55-gallon drums and disposed by Perimeter Solutions as part of their facilities waste. The well development and other pertinent details are shown on the monitoring well development forms (Form 4400-113B), included in Appendix C.

Groundwater Sampling

One round of groundwater samples was collected from monitoring wells MW-1 to MW-17, piezometers PZ-1 and PZ-2, the tank sump, and the on-site pond on July 12, 2022. The groundwater samples were submitted for laboratory analysis for the presence of PFAS. The groundwater samples were collected by purging 4 well volumes from each monitoring well utilizing dedicated PFAS-free pumps and PFAS-free tubing. The pond sample was collected by dipping a sampling bottle into the pond at the surface, as requested by the WDNR.

Samples submitted for PFAS analysis were transferred into a laboratory provided testing kits from 3 separate labs as requested by the client. The sample containers were immediately placed on ice and standard chain-of-custody procedures were initiated. The groundwater samples were submitted to WSLH, Pace, and SGS.

Groundwater Well Elevations and Hydraulic Conductivity Testing

Groundwater level measurements were performed at MW-1 through MW-3 on December 13th, 2019, March 24th, 2020, June 11th, 2020, October 12th, 2020, June 2nd, 2021, May 13th, 2022, and July 12th, 2022; at MW-4 through MW-11, and PZ-1 on May 26th, or 27th, 2021, June 2nd, 2021, and July 12th, 2022; and at MW-12 through MW-17 and PZ-2 on July 11th, 2022, and July 12th, 2022.

Groundwater fluctuations appear to be influenced by seasonal precipitation. Static groundwater levels ranged from 1.57 below top of casing (TOC) at MW-14 (EL. 586.43) on July 11th, 2022, to 6.69 feet below TOC at MW-2 and MW-3 (EL. 584.15 and EL. 584.19, respectively) on October 12th, 2020. Groundwater elevations ranged from EL. 584.15 at MW-1 and MW-2 on October 12th, 2020, to EL 588.02 at MW-1 on November 26th, 2019.

With regard to the piezometers, static groundwater levels have ranged from 4.40 feet below TOC at PZ-1 (EL. 586.52) on June 2, 2021, to 5.39 feet below TOC at PZ-1 (EL. 585.53) on May 27, 2021. Horizontal groundwater flow within the two piezometers was toward the southeast during the July 12, 2022, sampling round; however, an additional piezometer would be necessary to evaluate deeper groundwater flow more accurately. The vertical gradient between monitoring wells/piezometers MW-3/PZ-1 and MW-15/PZ-2 was slightly downward during the most recent sampling round at 0.006 and 0.002, respectively.

Groundwater elevation data is summarized on Table A.6 in Appendix B. Based on the initial groundwater elevations from all monitoring wells, the groundwater flow appears to be primarily toward the north in close proximity to the release and to a lesser extent towards the southeast beyond the southern boundary of the Site. Groundwater elevations and the flow direction are likely affected by the on-site pond and intermittent flooding that may occur. Vertical groundwater flow appears minimally downward. Long term monitoring of the groundwater monitoring wells would be necessary to further evaluate the groundwater elevations and flow direction. A groundwater elevation contour and flow direction map for July 12, 2022, is provided in Figure 5, Appendix A.

Hydraulic conductivity testing was performed within the monitoring wells MW-1 and MW-9 where variable natural soils consisting of silty clay, clayey silt, and silty fine sand were encountered. The hydraulic conductivity value was calculated by performing a draw down test and recording recharging water levels every half second with an Onset Data Logger with barometric pressure sensor. The information (time and drawdown) was then plotted on semi-log paper and the conductivities were calculated using the Bouwer and Rice method. The hydraulic conductivities at MW-1 and MW-9 were calculated to be 4.48 x 10^-5 centimeters (cm)/second and 7.65 x 10^-5 cm/second, respectively.

Portage

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 9

POTABLE WELL RECONNAISSANCE AND POND OUTFLOW OBSERVATIONS

Potable Well Reconnaissance

According to a review of the WDNR Well Construction Information System database, several potable wells may be located within approximately 1,200 feet of the source area of the release. Potable well construction records for 15 wells reportedly located within approximately 2,000 feet of the Site are included in Appendix E. It should be noted that the closest identified well (Village of Howard municipal well-BF215) is depicted on the western boundary of the Site but appears to be located approximately 3,000 feet northwest of the Site on Cornell Road. Additionally, several of the identified potable wells are associated with old farmsteads that are no longer present, therefore several of the wells may no longer be present. As indicated in a subsequent section of this report, deeper groundwater at PZ-1 and PZ-2 does not appear to have been substantially impacted with reported concentrations below applicable standards. Therefore, GEC is not planning to perform any additional potable well reconnaissance or testing at this time, subject to the concurrence of the WDNR.

Pond Outflow Observations

A detention pond is present on the southern portion of the Site, which reportedly is lined with a Type A or B liner. GEC has not been able to confirm the construction of the pond liner as of the date of this report. The pond is approximately 530 feet long and ranges from approximately 65 feet in width along the eastern end (approximately 6-foot depth) to up to 105 feet in width along the western end (approximately 8-foot depth). The pond rim is surrounded by rock rip rap. Water is supplied to the pond by surface runoff and also from a foundation drain system extending from the western building on the Site to the east and then southeast through piping and a drainage swale to the north end of the widest portion of the pond. Highwater outflow from the pond extends from the southwestern limits of the pond into an 8-inch PVC pipe that extends southwest to a drainage swale covered by overgrown grass along the south end of the Site, south of the access driveway. The water discharges from the 8-inch pipe along the eastern ditch line of Brookfield Avenue. Photographs of the pond area are included in Appendix F.

On March 31, 2023, GEC observed the pond outfall during a period of highwater. The pond outflow appeared to discharge to the eastern ditch line along Brookfield Avenue immediately south of the Site drive entrance. Surface water was observed flowing from north of the Site along the eastern ditch line where it intersected the pond outfall from the Site and flowed southward. The ditch line appeared to collect surface water runoff from several of the properties located south of the Site. The ditch line is also in close proximity to several other detention ponds associated with the other commercial properties located south of the Site. The ditch line flow was observed to cross under Lakeview Drive, located approximately 2,300 feet south of the Site drive entrance. A few hundred feet south of Lakeview Drive the ditch flow appeared to enter and intermittent creek toward the east.

FIELD AND ANALYTICAL TESTING RESULTS

NR 720 Soil Standards

There are currently no WAC NR 720 soil to groundwater standards for PFAS. There are currently WAC NR 720 Industrial and non-Industrial Direct Contact RCLs for the following PFAS: PFBS (16,400,000 ng/g and 1,260,000 ng/g), PFOA (16, 300 ng/g and 1,260 ng/g), and PFOS (16,400 ng/g and 1,260 ng/g), respectively.

Laboratory Soil Results

Portage

Soil samples for laboratory analysis were collected from B-13, B-14, B-17, B-18, and B-19 at depths ranging from 0.5 feet to 1-foot bgs. The collected soil samples did not report detectable concentrations of PFAS.

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 10

The results of the chemical analyses of the soil samples are summarized in Table A.2 included in Appendix B. Laboratory analytical results and chain-of-custody forms are included in Appendix D.

Groundwater Quality Standards

According to Wisconsin State Legislature Rule CR21-088, the drinking water standards for PFOS and PFOA are 70 ng/L individually and in total. According to Wisconsin State Legislature Rule CR21-083, the level of public health significance for PFOS in all waters except those that cannot naturally support fish is 8 ng/L. According to Wisconsin State Legislature Rule CR21-083, the level of public health significance for PFOA in waters classified as public water supplies under WAC NR 104 is 20 ng/L, and is 95 ng/L for other surface waters. It should be noted that the U.S. Environmental Protection Agency (EPA) has recently (March, 2023) announced drinking water standards for 6 individual PFAS, which may affect the WDNR 140 groundwater standards in the future.

Laboratory Groundwater Results

The groundwater samples collected from Site monitoring wells MW-1 to MW-11 the tank sump, pond, and off-site monitoring wells MW-15 and MW-16 reported significant detections of PFHpA, PFHxA, PFBA, PFPeA, and 6:2 FTSA as well as other PFAS. The highest concentrations were detected within the groundwater samples collected from source area monitoring well MW-3, which reported PFHpA (1,870D ng/L), PFHxA (19,800D ng/L), PFBA (4,480D ng/L), PFPeA (28,200D ng/L), and 6:2 FTSA (552,000D ng/L). By comparison the detections of those compounds within off-site monitoring wells MW15 and MW-16 reported PFHpA (19.9 ng/L and 75.9 µg/L) PFHxA (99.7 ng/L and 294 ng/L), PFBA (51.5 ng/L and 121 ng/L), PFPeA (164 ng/L and 473 ng/L), and 6:2 FTSA (70.6 ng/L and 283 ng/L). ("D" indicates that the laboratory methods required the sample to be diluted.)

The groundwater samples collected from off-site locations MW-12, MW-13 and Site monitoring well MW-14 reported lesser concentrations of PFHpA (<1.5 ng/L to 4.84F ng/L), PFHxA (6.42F ng/L to 18.4 ng/L), PFBA (16.2 ng/L to 77.6 ng/L), PFPeA (8.07F ng/L to 27.2 ng/L), and 6:2 FTSA (<2.72 ng/L to 7.54F ng/L). At Site monitoring well MW-17, only PFBA (4.79F ng/L) was reported.

Regarding the deeper groundwater results, the groundwater samples collected from PZ-1 reported only 6:2 FTSA (5.24F ng/L) and the groundwater results from PZ -2 reported only PFOA at a concentration of 1.68F ng/L. "F" indicates that this constituent was identified above the laboratory limit of detection but below the laboratory limit of quantitation. The 6:2 FTSSA was also indicated to have been detected in the field reagent blank.

The results of the chemical analyses of the groundwater samples are summarized in Table A.1 in Appendix B. Laboratory analytical results and chain-of-custody forms are included in Appendix D.

It should be noted that the 3 laboratories generally detected the same compounds in the submitted samples. The comparison of the data from the 3 laboratories was generally consistent between the 3 labs with the following exceptions:

The groundwater samples collected from MW-3 and the pond that were tested by Pace did not correlate with the other two labs and may have been reported in error by either a labeling mistake by GEC or a lab error. The sample labels were checked, and the samples were re-run by the lab, but similar results were reported to the initial run. Therefore, GEC believes that the results at MW-3 and the pond provided by Pace are not accurate and should not be utilized in the assessment of this data.

The reporting results for 6:2 FTSA reported by Pace Analytical at MW-1, MW-2, MW-3, MW-5, and MW-8 to MW-ranged from 2x to 5x lower than those form the other labs.

Portage

La Crosse

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 11

CONCLUSIONS

The soil samples collected from the most recent soil borings did not report detectable concentrations of PFAS. Based on the soil testing performed to date and detection of total PFAS in the soil samples collected at B-5 to B-12 ranging from 2.28 ng/g to 70.96 ng/g, it appears that the extent of unsaturated soil contamination has been defined and that the concentrations in the source area are well below the individual Industrial and non-Industrial direct contact standards for PFBS, PFOA, and PFOS. It should be noted that the WDNR has requested that a confirmation soil sample be collected in the vicinity of B-9 to confirm the presence of PFOS in a prior test at that location. According to the Site personnel, PFOS has never been utilized at this Site. Additionally, the level detected at B-9 is well below its current standards. It also appears unlikely that PFOS would be detected within soil at a location beyond the prior spill area but not in any of the source area test locations in closer proximity to the release (i.e., B-12) where higher concentrations of PFAS were detected.

Relatively high concentrations of PFAS (primarily PFHpA, PFHxA, PFBA, PFPeA, and 6:2 FTSA) have been detected within groundwater near the source area of the release at MW-1 to MW-11, the tank sump, and the pond. The highest concentrations have been detected at MW-3. The concentrations detected within off-site monitoring well MW-16, are also elevated with respect to the remaining outlying monitoring wells (MW-12, MW-13, MW-14, MW-15, and MW-17). Based on the soil and groundwater contaminant concentrations, it appears unlikely that all of the PFAS groundwater contamination identified at the testing points for this case are the result of the two spills at the Site. PFAS have been detected in off-site monitoring wells 700 feet to the north/northeast of the source area (MW-12 and MW-13), 700 feet west of the source area (MW-14), and 550 feet southeast of the source area (MW-15) which does not appear plausible considering the soil types (silty clay, clayey silt, and silty sand), and the operation of this facility for only 11 years with no known releases until 2019. It should be noted that the Site and surrounding properties were utilized as agricultural land from the 1930s until at least 2011 and that manure and/or bio-solids spreading likely occurred for several decades on the Site and off-site properties, which appeared evident in reviewed aerial photographs from the years 2010 and 2020. Bio-solids spreading has been linked with the spread of PFAS. Therefore, it is possible that the PFAS identified in shallow groundwater at the outlying wells is from a different source and is typical of background level in the area.

With regard to the groundwater results at PZ-1 and PZ-2, only low concentrations of PFAS were reported (6:2 FTSA (5.24F ng/L at PZ-1)) and PFOA (1.68F ng/L at PZ-2)). Based on the groundwater results at source area piezometer PZ-1 and off-site piezometer PZ-2, no additional piezometers are recommended at the present time, subject to the concurrence of the WDNR.

As indicated previously, PFAS-containing materials are no longer utilized within the testing building where the two petroleum/PFAS spills occurred. Since these materials are no longer being utilized, further degradation of the soil or groundwater appears unlikely. It is recommended that annual groundwater sampling be performed for a period of two years (2023 and 2024). If similar groundwater results are observed, it is recommended that Site Investigation Report and Closure Request be prepared.

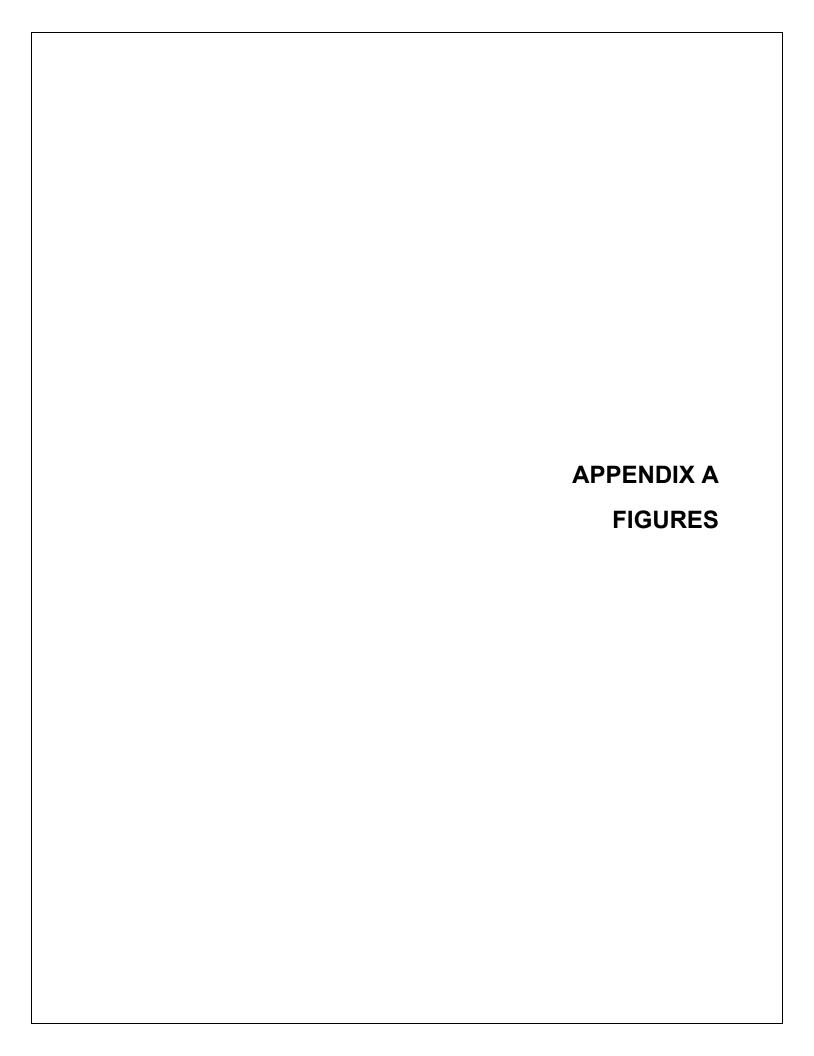
GENERAL COMMENTS

Portage

The investigative activities have been conducted in a manner consistent with that level of care ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. The findings, recommendations and opinions contained herein have been promulgated in accordance with generally accepted practice in similar fields. No other representations expressed or implied, and no warranty or guarantee is included or intended in this report.

The conclusions presented in this report were formulated from the data obtained during the course of exploratory work on the site, which may result in a redirection of conclusions and interpretations where new information is obtained. The regulatory climate and interpretation may also influence the outcome of the environmental investigation for this site. The information contained in this report may have an effect on the value of the property

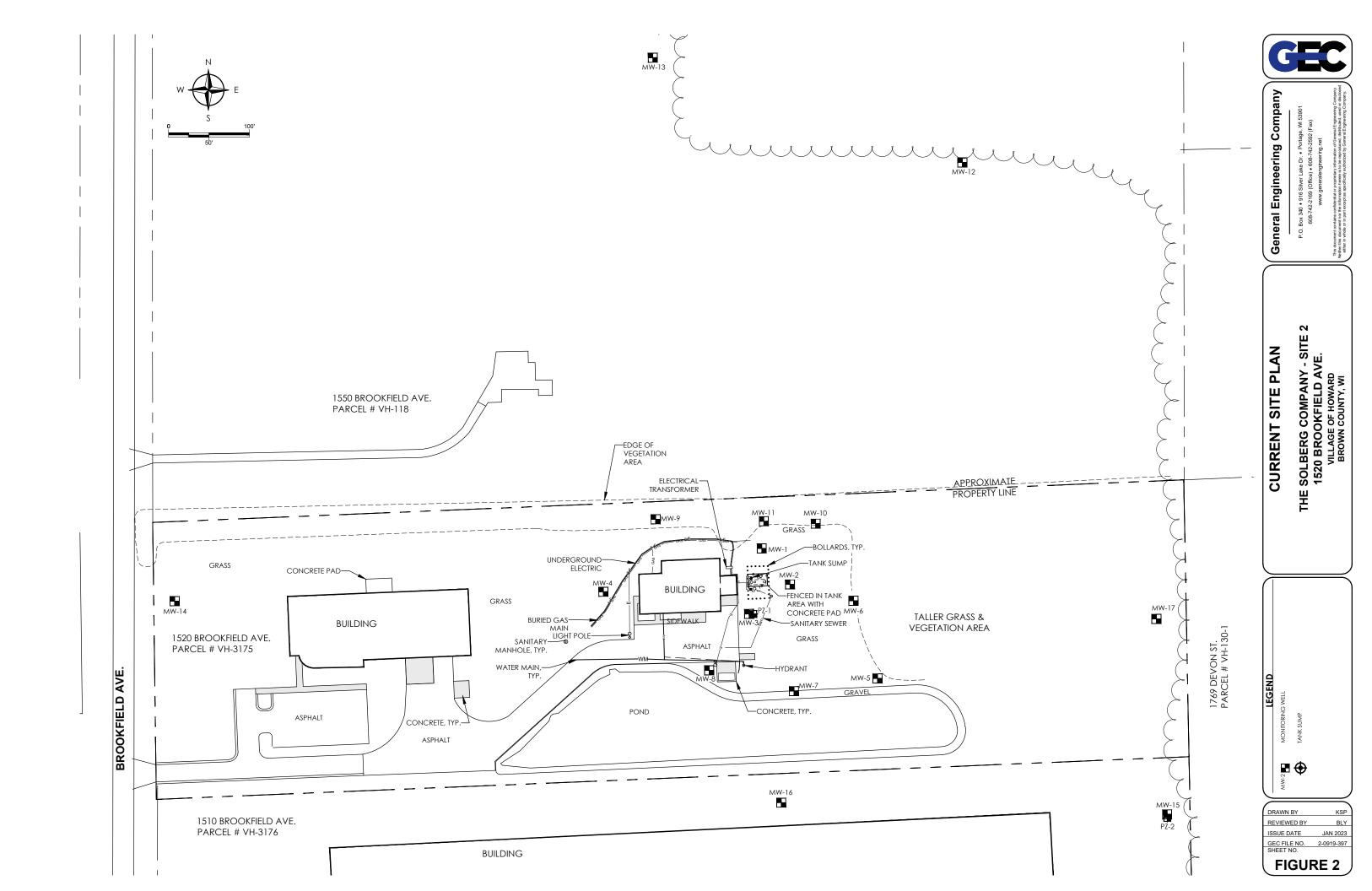
La Crosse

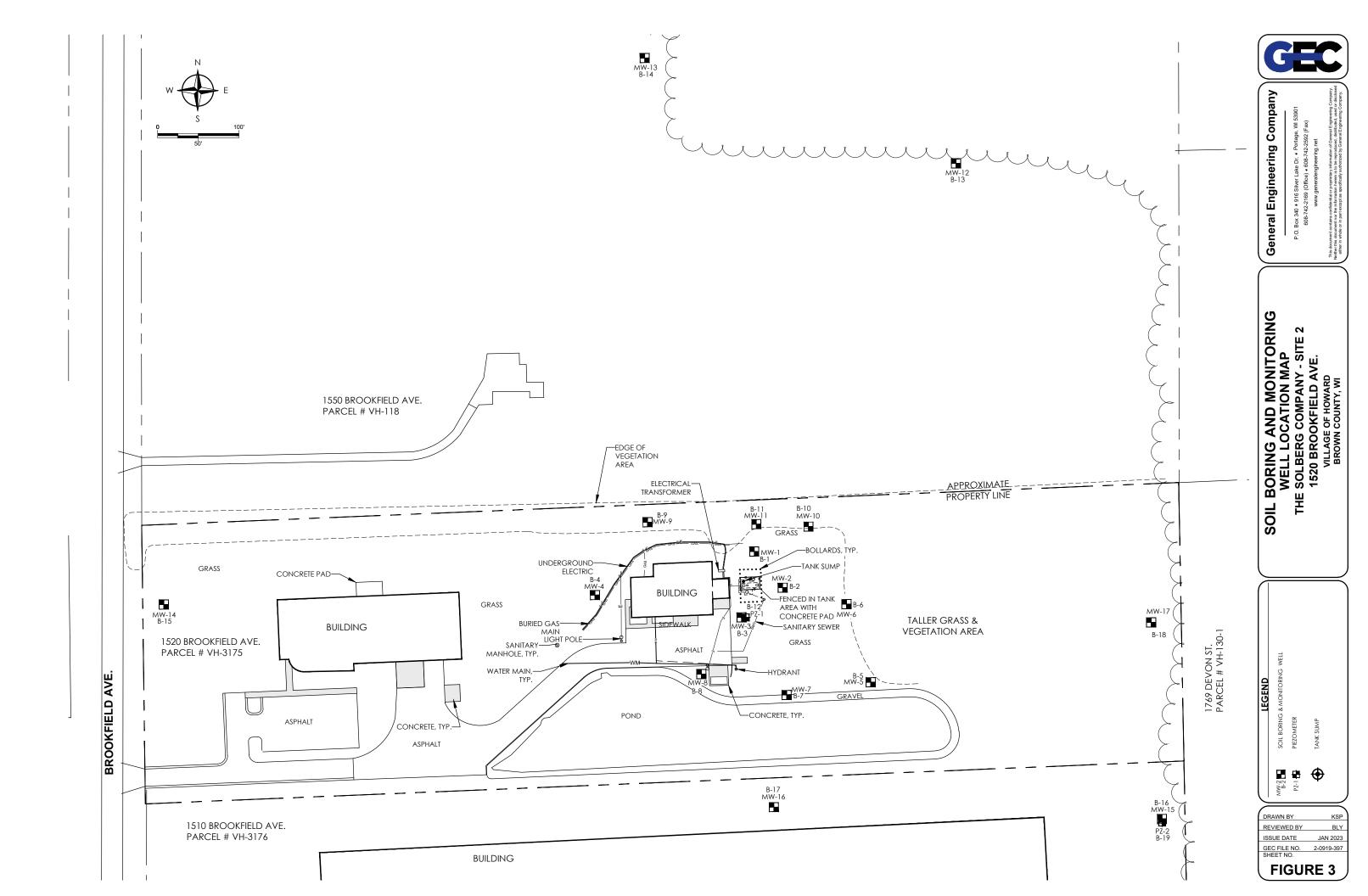

The Solberg Co – Site 2 Village of Howard, Wisconsin Page 12

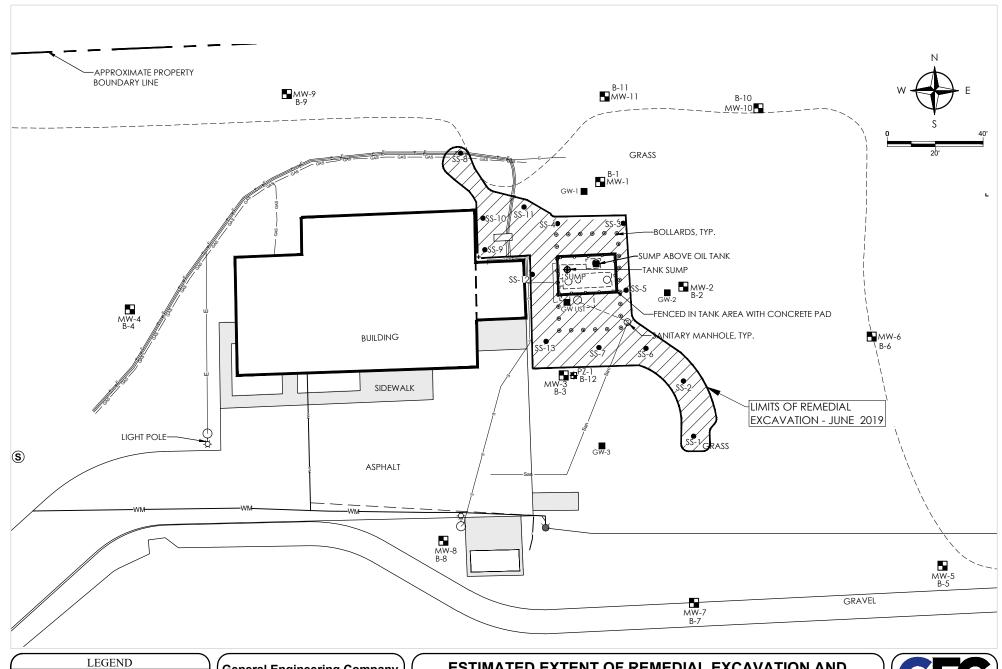
and is considered confidential. Copies of this report will be submitted to others only with authorization from the client.

Portage

P.O. Box 340 • 916 Silver Lake Dr. • Portage, WI 53901 608-742-2169 (Office) • 608-742-2592 (Fax) www.generalengineering.net


This document contains confidential or proprietary information of General Engineering Company. Neither this document nor the information herein is to be reproduced, distributed, used or disclosed either in whole or in part except as specifically authorized by General Engineering Company.


SITE LOCATION MAP

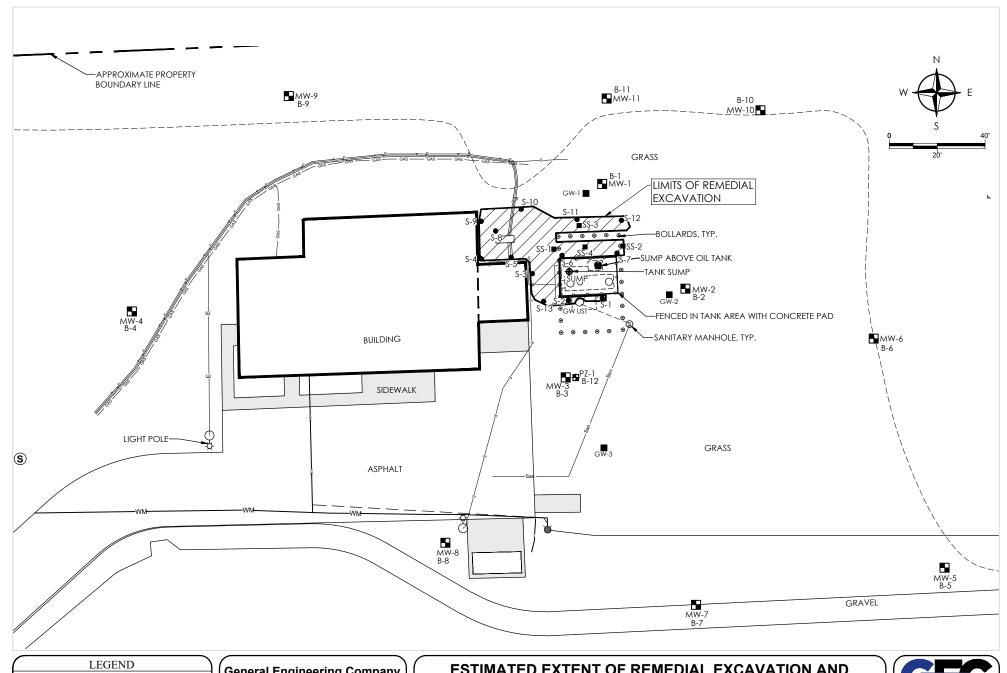

THE SOLBERG COMPANY - SITE 2 1520 BROOKFIELD AVE.

> VILLAGE OF HOWARD BROWN COUNTY, WI

SOIL BORING & MONITORING WELL PZ-1 PIEZOMETER TANK SUMP SS-8 CONFIRMATION SOIL SAMPLE - JUNE 2019 GW-3 TEST PIT GROUNDWATER SAMPLE LIMITS OF EXCAVATION - JUNE 2019

General Engineering Company

P.O. Box 340 • 916 Silver Lake Dr. • Portage, WI 53901 608-742-2169 (Office) • 608-742-2592 (Fax) www.generalengineering.net


This document contains confidential or proprietary information of General Engineering Company. Neither this document nor the information herein is to be reproduced, distributed, used or disclosed either in whole or in part except as specifically authorized by General Engineering Company.

ESTIMATED EXTENT OF REMEDIAL EXCAVATION AND CONFIRMATION SOIL SAMPLE LOCATION MAP - JUNE 2019

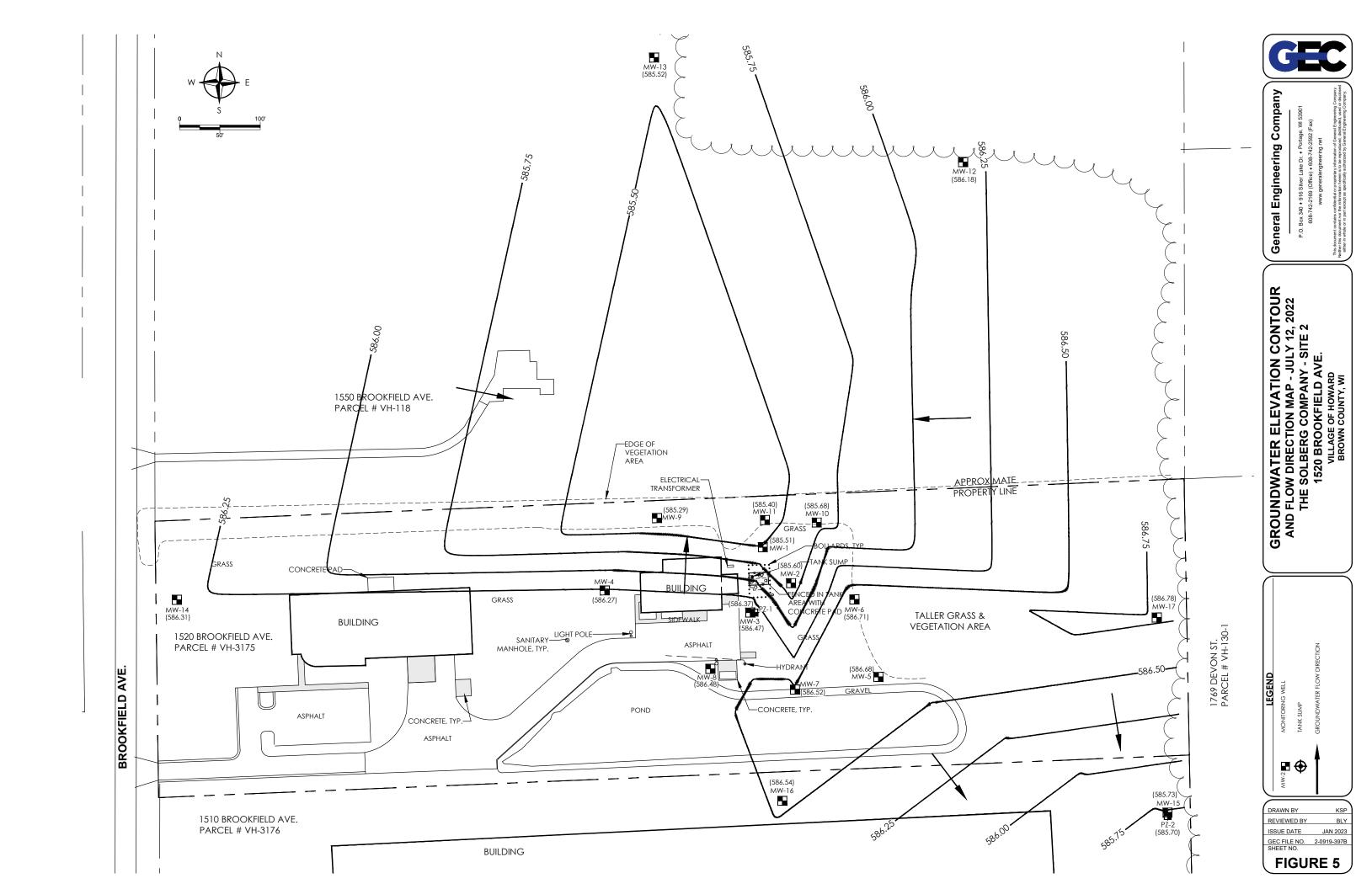
THE SOLBERG COMPANY - SITE 2 1520 BROOKFIELD AVE.

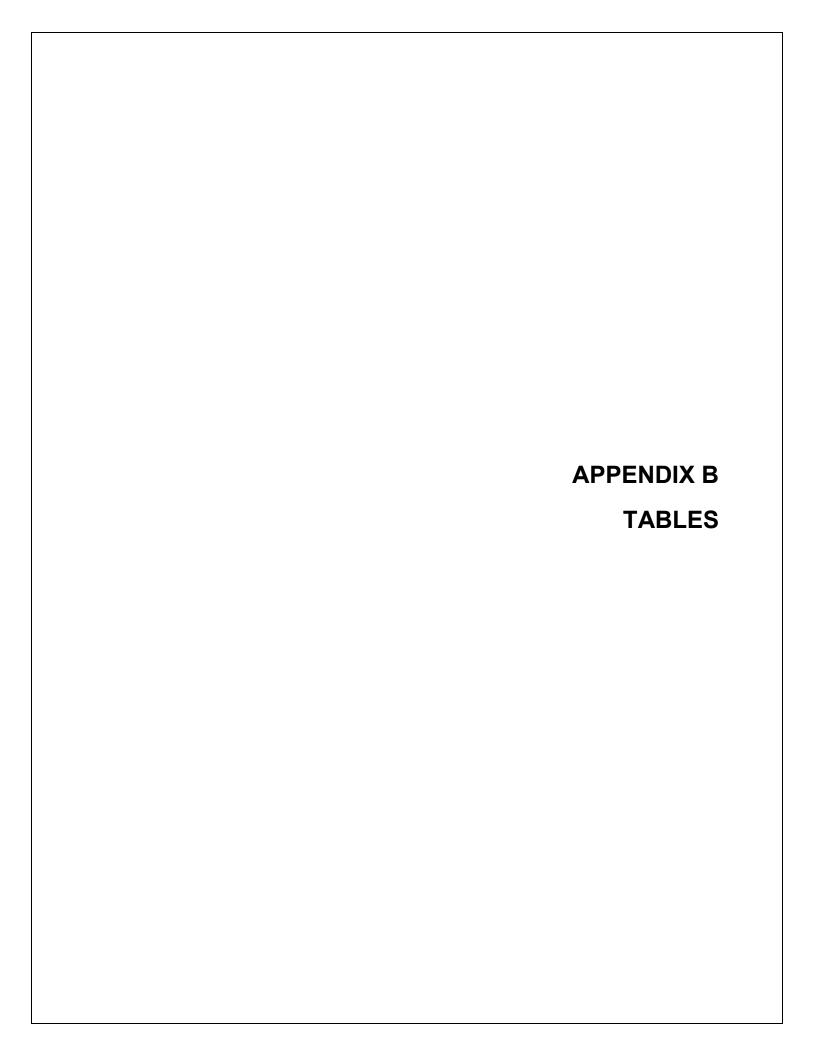
> VILLAGE OF HOWARD BROWN COUNTY, WI

ΛW-2 B-2 SOIL BORING & MONITORING WELL PIEZOMETER PZ-1 TANK SUMP CONFIRMATION SOIL SAMPLE - MAY 2021 TEST PIT GROUNDWATER SAMPLE LIMITS OF EXCAVATION - MAY 2021

General Engineering Company

P.O. Box 340 • 916 Silver Lake Dr. • Portage, WI 53901 608-742-2169 (Office) • 608-742-2592 (Fax) www.generalengineering.net


This document contains confidential or proprietary information of General Engineering Company. Neither this document nor the information herein is to be reproduced, distributed, used or disclosed either in whole or in part except as specifically authorized by General Engineering Company.


ESTIMATED EXTENT OF REMEDIAL EXCAVATION AND CONFIRMATION SOIL SAMPLE LOCATION MAP - MAY 2021

THE SOLBERG COMPANY - SITE 2 1520 BROOKFIELD AVE.

> VILLAGE OF HOWARD **BROWN COUNTY, WI**

Boring			B-4	B-5	B-6	B-7	B-8	B-9	B-10	B-11	B-12
Depth	Industrial	Non-Industrial Direct Contact	1-1.5 (U/S)	0.5-1 (U)	2.5-3 (S)	0.5-1 (U/S)	0.5-1 (U)	0.25-1 (U)	0.5-1 (U)	0.5 - 1 (U)	2-2.5 (U/S)
Sampling Date	RCL	RCL	5/26/2021	5/25/2021	5/25/2021	5/25/2021	5/26/2021	5/26/2021	5/26/2021	5/26/2021	5/26/2021
PERFLUOROALK			SUBSTANCES	(PFAS) (na/a U	NITS)						
PFPeA	NE	NE	<0.366	1.13	0.312F	3.82	6.53	3.29	2.66	15.2	1.96
PFBS	16,400,000	1,260,000	<0.288	<0.263	<0.236	<0.285	<0.265	<0.279	<0.295	< 0.363	<0.299
4:2 FTSA	NE	NE	<0.266	<0.243	<0.217	<0.263	<0.244	<0.257	<0.273	< 0.335	<0.276
PFHxA	NE	NE	< 0.363	1.15	<0.296	2.28	3.3	3.8	3.29	9.19	3.97
PFPeS	NE	NE	<0.311	<0.284	<0.254	< 0.307	<0.285	<0.300	<0.318	<0.392	<0.322
PFHpA	NE	NE	<0.343	0.565F	<0.280	0.639F	1.25	1.85	2.59	9.34	1.23
HFPO-DA (GenX)	NE	NE	<0.267	<0.244	<0.218	<0.264	<0.245	<0.258	<0.274	< 0.337	<0.277
PFHxS	NE	NE	<0.346	< 0.316	<0.282	<0.341	<0.318	< 0.334	< 0.354	< 0.436	< 0.359
DONA	NE	NE	<0.320	<0.293	<0.262	< 0.316	<0.294	< 0.310	<0.328	<0.404	< 0.332
6:2 FTSA	NE	NE	< 0.336	0.543F	0.766F	2.01	33.8	< 0.325	0.654F	1.35	63.8
PFOA	16,400	1,260	< 0.339	<0.310	<0.277	< 0.335	< 0.312	<0.328	<0.348	<0.428	< 0.352
PFHpS	NE	NE	<0.368	< 0.336	<0.3	< 0.363	<0.338	< 0.356	< 0.377	<0.464	<0.382
PFOS	16,400	1,260	< 0.363	< 0.331	<0.296	<0.358	< 0.333	0.446F	< 0.371	< 0.457	< 0.376
PFNA	NE	NE	<0.308	<0.281	<0.251	< 0.303	<0.282	<0.297	< 0.315	<0.388	< 0.319
9CI-PF3ONS	NE	NE	<0.343	<0.313	<0.280	<0.338	<0.315	< 0.331	< 0.351	<0.432	< 0.355
8:2 FTSA	NE	NE	<0.421	<0.385	< 0.344	<0.415	<0.387	< 0.407	<0.431	<0.530	< 0.437
PFDA	NE	NE	<0.346	<0.316	<0.282	< 0.341	<0.318	< 0.334	< 0.354	<0.436	< 0.359
PFNS	NE	NE	<0.306	<0.280	<0.250	< 0.302	<0.281	<0.296	< 0.314	<0.386	<0.318
N-MeFOSAA	NE	NE	<0.481	<0.440	< 0.393	< 0.475	<0.442	< 0.466	< 0.493	<0.607	< 0.499
N-EtFOSAA	NE	NE	< 0.303	<0.277	<0.248	<0.299	<0.279	<0.293	< 0.311	<0.382	< 0.315
FOSA	NE	NE	< 0.347	< 0.317	<0.283	< 0.342	<0.319	< 0.335	< 0.355	<0.437	< 0.360
PFUnA	NE	NE	<0.289	<0.264	<0.236	<0.286	<0.266	<0.280	<0.297	< 0.365	< 0.300
PFDS	NE	NE	<0.308	<0.281	<0.251	< 0.303	<0.282	<0.297	< 0.315	<0.388	< 0.319
11CI-PF3OUdS	NE	NE	<0.328	<0.299	<0.268	< 0.323	<0.301	< 0.317	< 0.336	<0.413	<0.340
PFDoA	NE	NE	<0.405	< 0.370	< 0.331	< 0.400	< 0.372	< 0.392	< 0.415	<0.510	<0.420
10:2 FTSA	NE	NE	NR	NR	NR	NR	NR	NR	NR	NR	NR
PFDoS	NE	NE	<0.387	< 0.354	< 0.316	<0.382	< 0.356	< 0.374	< 0.396	<0.488	<0.402
PFTrDA	NE	NE	< 0.365	< 0.333	<0.298	< 0.360	< 0.335	< 0.353	< 0.374	<0.460	<0.378
N-MeFOSA	NE	NE	<0.394	< 0.360	< 0.322	<0.389	< 0.362	<0.382	<0.404	<0.497	<0.409
N-MeFOSE	NE	NE	<0.468	<0.427	<0.382	<0.461	<0.430	< 0.452	<0.479	<0.589	<0.485
N-EtFOSA	NE	NE	<0.252	<0.231	<0.206	<0.249	<0.232	<0.244	<0.259	<0.318	<0.262
N-EtFOSE	NE	NE	<0.378	< 0.345	<0.308	< 0.372	<0.347	< 0.365	<0.387	<0.476	<0.392
PFTeDA	NE	NE	<0.367	< 0.335	<0.300	<0.362	< 0.337	< 0.355	<0.376	<0.476	<0.381
PFHxDA	NE	NE	NR	NR	NR	NR	NR	NR	NR	NR	NR
PFODA	NE	NE	NR	NR	NR	NR	NR	NR	NR	NR	NR
PFBA	NE NE	NE	<0.616	<0.563	<0.503	<0.608	0.929F	<0.596	<0.631	3.30F	<0.639

NE - Standard Not Established NR-Not Reported

ng/g - parts per billion U=Unsaturated S=Saturated

< = compound below laboratory detection limit

Bold indicates laboratory detections

F=Result Is Between Limit of Detection and Limit of Quantitation

Boring			B-13	B-14	B-17	B-18	B-19
Depth (Feet)	Industrial	Non-Industrial Direct Contact	1 (U)	0.5 (U)	1 (U)	0.5 (U)	0.5 (U)
Sampling Date	RCL	RCL	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022
PERFLUOROALK	YL & POLYFL	UOROALKYL S	UBSTANCES	(PFAS) (ng/g L	INITS)		
PFPeA	NE	NE	<0.368	<0.405	< 0.325	<0.402	<0.361
PFBS	16,400,000	1,260,000	<0.290	< 0.319	<0.256	< 0.317	<0.285
4:2 FTSA	NE	NE	<0.268	<0.294	<0.236	<0.292	< 0.263
PFHxA	NE	NE	< 0.365	<0.401	< 0.322	<0.398	<0.358
PFPeS	NE	NE	<0.313	<0.344	<0.276	<0.341	< 0.307
PFHpA	NE	NE	<0.345	< 0.379	<0.304	< 0.376	<0.338
HFPO-DA (GenX)	NE	NE	<0.269	<0.295	<0.237	<0.294	<0.264
PFHxS	NE	NE	<0.348	<0.382	< 0.307	<0.380	<0.341
DONA	NE	NE	<0.322	< 0.354	<0.284	< 0.352	<0.316
6:2 FTSA	NE	NE	<0.338	< 0.372	<0.298	< 0.369	< 0.332
PFOA	16,400	1,260	<0.341	< 0.375	<0.301	< 0.373	< 0.335
PFHpS	NE	NE	< 0.370	<0.407	< 0.327	<0.404	< 0.363
PFOS	16,400	1,260	< 0.365	<0.401	< 0.322	<0.398	<0.358
PFNA	NE	NE	<0.309	<0.340	<0.273	<0.338	<0.304
9CI-PF3ONS	NE	NE	<0.345	< 0.379	< 0.304	< 0.376	<0.338
8:2 FTSA	NE	NE	<0.424	<0.466	< 0.374	<0.463	<0.416
PFDA	NE	NE	<0.348	<0.382	< 0.307	<0.380	<0.341
PFNS	NE	NE	<0.308	< 0.339	<0.272	< 0.337	< 0.303
N-MeFOSAA	NE	NE	<0.484	<0.532	<0.427	<0.529	<0.475
N-EtFOSAA	NE	NE	<0.305	< 0.335	<0.269	< 0.333	<0.299
FOSA	NE	NE	<0.349	<0.383	<0.308	<0.381	< 0.342
PFUnA	NE	NE	<0.291	< 0.320	<0.257	<0.318	<0.286
PFDS	NE	NE	<0.309	<0.340	<0.273	<0.338	<0.304
11CI-PF3OUdS	NE	NE	<0.330	< 0.362	<0.291	< 0.360	< 0.323
PFDoA	NE	NE	<0.408	<0.448	< 0.360	<0.445	<0.400
10:2 FTSA	NE	NE	NR	NR	NR	NR	NR
PFDoS	NE	NE	<0.390	<0.428	<0.344	<0.425	<0.382
PFTrDA	NE	NE	<0.367	<0.403	<0.324	<0.401	< 0.360
N-MeFOSA	NE	NE	<0.397	< 0.436	< 0.350	<0.433	<0.389
N-MeFOSE	NE	NE	<0.471	<0.517	<0.415	<0.514	<0.462
N-EtFOSA	NE	NE	<0.254	<0.279	<0.224	<0.277	<0.249
N-EtFOSE	NE	NE	<0.380	<0.417	< 0.335	<0.415	< 0.373
PFTeDA	NE	NE	< 0.369	<0.406	<0.326	<0.403	<0.362
PFHxDA	NE	NE	NR	NR	NR	NR	NR
PFODA	NE	NE	NR	NR	NR	NR	NR
PFBA	NE	NE	<0.620	<0.681	<0.547	<0.677	<0.608

NE - Standard Not Established NR-Not Reported

ng/g - parts per billion U=Unsaturated S=Saturated

< = compound below laboratory detection limit

Bold indicates laboratory detections

Monitoring Well			•	MW-1		·	
Lab		State Lab of Hygiene		Pace A	Analytical	S	GS
Sampling Date	10/12/2020	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
PERFLUOROALKYL &	POLYFLUOROALKYL SUBS	STANCES (PFAS) (ng/L)					
PFOA	11.1	15.9	11.9	<79	9.5	17.9J	11J
PFOS	<3.36	2.11F	<1.43	<190	1J	<6.06	<2.96
PFBS	22.8	18.5	10.4	<40	13	15.8J	11.2J
PFHpA	800	934	558	1,000	460D	701	527
PFHxS	<4.06	<1.02	<1.42	<53	1.2J	<6.06	<2.96
PFNA	<4.27	1.97F	<1.48	<44	2J	<6.06	<2.96
PFDA	<3.89	<1.65	3.15F	<50	0.85J	<6.06	<2.96
PFDoA	<3.8	<2.81	<2.71	<45	<0.48	<6.06	<2.37
PFHxA	38,800	4,770	4,320D	6,100	3,100D	3,600	3,300
PFTeDA	<3.51	<5.43	<1.75	<57	<0.47	<6.06	<2.96
PFTrDA	<3.97	<2.69	<1.93	<50	<0.62	<6.06	<2.96
PFUnA	<4.03	<2.07	<2.22	<380	<0.54	<6.06	<2.96
N-EtFOSA	<6.52	<3.46	<6.94	<130	<0.61	<15.1	<8.28
I-EtFOSAA	<4.24	<3.25	<2.12	<72	< 0.55	<6.06	<2.96
I-MeFOSAA	<5.31	<2.15	<2.19	<89	<0.43	<6.06	<2.96
PFBA	NR	924	706	1,300	760D	830	915
PFPeA	50,400	6,300	5,550D	8,600	4,400D	4,940	4,930
PFPeS	<2.68	< 0.926	<1.36	<57	<0.47	<6.09	<2.97
PFHpS	5.10F	<1.23	<1.90	<48	<0.41	<6.06	<2.96
PFNS	<4.95	<2.09	<1.82	<68	<0.44	<6.06	<2.96
PFDS	<4.51	<2.17	<2.57	<74	<0.45	<6.06	<2.96
PFDoS	<5.12	<9.83	<2.47	<100	<0.46	<6.06	<2.96
OSA	<40.3	<9.58	<1.55	<58	<0.81	<6.06	<2.96
I-MeFOSA	<7.96	<5.10	<10	<120	<0.51	<6.97	<2.96
I-MeFOSE	<4.01	<4.74	<2.81	<120	< 0.33	<60.6	<29.6
I-EtFOSE	<4.09	<5.37	<2.12	<91	<0.5	<45.3	<29.6
:2 FTSA	14	17.1	11.9	<83	12	<24.2	<11.8
:2 FTSA	154,000	35,900	21,600D	35,000	3,700D	25,200	16,800D
:2 FTSA	7.44F	4.95F	9.19F	<150	11	<24.2	11.2J
0:2 FTSA	<4.29	NR	NR	NR	NR	NR	NR
ONA	<4.16	<1.12	<1.28	<46	<0.51	<24.2	<11.8
GenX (HPFO-DA)	<5.22	<1.61	<1.92	<200	< 0.53	<23	<11.8
CI-PF3ONS	<4.15	<1.58	<1.82	<46	<0.3	<24.3	<11.9
1CI-PF3OUdS	<3.90	<1.55	<1.49	<63	< 0.43	<24.3	<11.8

10/12/20 It should be noted the samples were shipped and received next day but analyzed past 30 days holding time

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit

D= Sample Dilution

Bold indicates laboratory detections B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

NR = Not reported. 10/12/20 The lab reported the PFBA results were suspect due to a large interference peak that elutes at the same time. As a result, PFBA has been removed from their list since they cannot stand behind the results. New run methods will be put in place to be able to report the PFBA more accurately in the future.

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
PFBS (375-73-5) Perfluorocbutanesulfonic Acid (C4)
PFHpA = (375-85-9) Perfluorobeptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononancia Acid (C9)
PFDA (335-76-2) Perfluorodecanoic Acid (C10)
PFDoA (307-55-1) Perfluorodecanoic Acid (C12)
PFHxA (307-24-4) Perfluorodexanoic Acid (C6)

PFDa (307-55-1) Perfluorodotecanoic Acid (C12)
PFHx8 (307-24-4) Perfluorothexanoic Acid (C6)
PFTeDa (376-66-7) Perfluorothexanoic Acid (C14)
PFTTDA (72629-94-8) Perfluorothexanoic Acid (C14)
PFTDA (72629-94-8) Perfluorothexanoic Acid (C13)
PFUnA (2085-94-8) Perfluorothecanoic Acid (C11)
N-EIFOSAA (2991-95-6) N-ethylperfluorocotanesulfonamidoacetic Acid (C12)
N-MeFOSAA (2951-95-6) N-ethylperfluorocotanesulfonamidoacetic Acid (C12)
PFBA (375-92-4) Perfluorotheranoic Acid (C3)
PFPBS (375-92-8) Perfluorotheranoic Acid (C5)
PFPBS (375-92-8) Perfluorotheranoic Acid (C7)
PFPS (3629-92-12) Perfluoronanesulfonic Acid (C7)
PFDS (375-92-8) Perfluorotheranesulfonic Acid (C10)
PFDS (375-92-8) Perfluorodecanesulfonic Acid (C10)
PFDS (375-93-9-7) Perfluorodecanesulfonic Acid (C10)
PFDS (375-93-9-7) Perfluorodecanesulfonic Acid (C12)
FOSA (754-91-8) Perfluorocdanesulfonamide (C10)
N-EIFOSE (4151-50-2) N-ethylperfluorocotanesulfonamide (C10)
N-MeFOSA (5156-93-2) N-ethylperfluorocotanesulfonamide (C10)
N-MeFOSE (24448-95-7) N-methylperfluorocatanesulfonamide (C10)
N-EIFOSE (1961-99-2) N-ethylperfluorocotanesulfonamide (C10)
N-EIFOSE (3619-99-2) Perfluorodecimer sulfonate (C8)
2-FTSA (27519-47-2) 2-2 fluorotelomer sulfonate (C8)
2-FTSA (27519-47-2) 2-2 fluorotelomer sulfonate (C1)
10-2-FTSA (1902-66-00) 10-2 fluorotelomer sulfonate (C12)
CDONA (919005-14-4) 4-8 fluorotelomer sulfonate (C10)
10-2-FTSA (1902-66-00) 10-2 fluorotelomer sulfonate (C10)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3-oxanudecane-1-sulfonic acid (C10)

Monitoring Well			MW	1-2		
Lab	State Lab	of Hygiene	Pace An	alytical	S	GS
Sampling Date	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)				
PFOA	10.9	10.3	<37	12	6.85J	9.85J
PFOS	<1.23	<1.43	<89	0.73J	14.3B	<2.94
PFBS	23.6	15.7	23J	15	23.2	15.9
PFHpA	793	834	1,100	610D	1,000	665
PFHxS	1.59F	<1.42	<25	1.5J	<3.10	<2.94
PFNA	<1.47	<1.48	<21	1.2J	<3.10	<2.94
PFDA	<1.42	<1.63	<23	<0.56	<3.10	<2.94
PFDoA	<2.42	<2.71	<21	<0.48	<3.10	<2.36
PFHxA	3,820	3,050D	5,200	3,300D	4,740	3,740
PFTeDA	<4.67	<1.75	<27	<0.47	<3.10	<2.94
PFTrDA	<2.32	<1.93	<24	<0.62	<3.10	<2.94
PFUnA	<1.78	<2.22	<28	<0.53	<3.10	<2.94
N-EtFOSA	<2.97	<6.94	<60	<0.6	<7.74	<8.24
N-EtFOSAA	<2.80	<2.12	<33	<0.55	<3.10	<2.94
N-MeFOSAA	<1.84	<2.19	<42	<0.43	<3.10	<2.94
PFBA	838	873	1,100	710D	959	966
PFPeA	5,610	4,290D	8,000	4,600D	6,790	5,830
PFPeS	<0.796	<1.36	<27	<0.47	<3.11	<2.96
PFHpS	<1.05	<1.90	<22	<0.41	<3.10	<2.94
PFNS	<1.80	<1.82	<32	<0.44	<3.10	<2.94
PFDS	<1.86	<2.57	<35	<0.45	<3.10	<2.94
PFDoS	<8.45	<2.47	<47	<0.46	<3.10	<2.94
FOSA	<8.24	<1.55	<27	<0.81	4.81J, B	<2.94
N-MeFOSA	<4.39	<10	<56	<0.51	<3.56	<2.94
N-MeFOSE	<4.08	<2.81	<57	<0.33	<31	<29.4
N-EtFOSE	<4.62	<2.12	<43	<0.49	<23.2	<29.4
4:2 FTSA	14.8	12.7	<39	12	12.7J	15.8
6:2 FTSA	12,900	16,000D	16,000	3,300D	11,800	14,700D
8:2 FTSA	<1.25	<2.62	<72	3.4	<12.4	<10
10:2 FTSA	NR	NR	NR	NR	NR	NR
DONA	<0.960	<1.28	<22	<0.51	<12.4	<11.8
GenX (HPFO-DA)	<1.38	<1.92	<93	<0.52	<11.8	<11.8
9CI-PF3ONS	<1.36	<1.82	<22	<0.3	<12.4	<11.8
11CI-PF3OUdS	<1.34	<1.49	<30	<0.43	<12.4	<11.8

ng/L = nanograms per liter (parts per trillion)
< = compound below laboratory detection limit

Bold indicates laboratory detections B=analyte detected in the field blank D=Sample Dilution

F/J = result is between laboratory limit of detection and laboratory limit of quantitation PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11) N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5) PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10) PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8) N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12) DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

Monitoring Well				MW-3			
Lab		State Lab of Hygiene		Pace Ar	nalytical	SO	GS
Sampling Date	10/12/2020	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
ERFLUOROALKYL	& POLYFLUOROALKYL SUBS	STANCES (PFAS) (ng/L)					
FOA	133	79.9	143	<1,500	1.9J	28.2	<130
PFOS	<3.36	<1.38	<1.43	<3,700	1.7J	<6.35	<130
PFBS	11.6	12.6	12.5	<760	14	16.4J	<130
PFHpA	<4660	926	1,870D	1,200J	110	618	2,370D
FHxS	<4.05	<0.982	2.5F	<1,000	<0.51	<6.35	<130
FNA	<4.27	<1.64	<1.48	<840	0.87J	<6.35	<130
FDA	<3.89	<1.59	<1.63	<960	<0.56	<6.35	<130
FDoA	<3.80	<2.70	<2.71	<860	<0.48	<6.35	<104
PFHxA	43,900	13,300	19,800D	13,000	360D	6,860	28,100D
FTeDA	<3.51	<5.22	<1.75	<1,100	<0.47	<6.35	<130
FTrDA	<3.97	<2.59	<1.93	<970	<0.62	<6.35	<130
FUnA	<4.03	<1.99	<2.22	<1,100	<0.54	<6.35	<130
I-EtFOSA	<6.51	<3.32	<6.94	<2,500	<0.61	<15.9	<363
I-EtFOSAA	<4.24	<3.13	<2.12	<1,400	<0.55	<6.35	<130
I-MeFOSAA	<5.31	<2.06	<2.19	<1,700	< 0.43	<6.35	<130
FBA	<19600	2,590	4,480D	3,300J	110	1,900	7,420D
PFPeA	48,000	19,700	28,200D	20,000	520D	10,600	41,200D
FPeS	6.9	<0.890	<1.36	<1,100	<0.47	<6.38	<130
PFHpS	33.8	<1.18	<1.90	<910	<0.41	<6.35	<130
FNS	<4.95	<2.01	<1.82	<1,300	<0.44	<6.35	<130
FDS	<4.51	<2.08	<2.57	<1,400	< 0.45	<6.35	<130
FDoS	<5.12	<9.45	<2.47	<1,900	<0.46	<6.35	<130
OSA	<40.3	<9.21	<1.55	<1,100	<0.82	<6.35	<130
I-MeFOSA	<7.95	<4.90	<10	<2,300	<0.51	<7.30	<130
I-MeFOSE	<4.01	<4.56	<2.81	<2,300	<0.33	<63.5	<1300
I-EtFOSE	<4.08	<5.17	<2.12	<1,700	<0.5	<47.5	<1300
:2 FTSA	292	79.2	125	<1,600	<0.56	44.6J	<519
:2 FTSA	1,320,000	3000*	552,000D	460,000	530D	243,000	586,000D
:2 FTSA	<4.42	<1.4	<2.62	<2,900	<0.65	<25.4	<441
0:2 FTSA	<4.29	NR	NR	NR	NR	NR	NR
ONA	<4.16	<1.07	<1.28	<880	<0.51	<25.4	<519
GenX (HPFO-DA)	<5.22	<1.55	<1.92	<3,800	<0.53	<24.1	<519
CI-PF3ONS	<4.15	<1.52	<1.82	<880	<0.3	<25.5	<520
1CI-PF3OUdS	<3.90	<1.49	<1.49	<1,200	< 0.43	<25.4	<520

10/12/20 It should be noted the samples were shipped and received next day but analyzed past 30 days holding time

ng/L = nanograms per liter (parts per trillion)
< = compound below laboratory detection limit

D=Sample Dilution

Bold indicates laboratory detections B=Analyte detected in the field blank *= QC Limit Failed

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

NR = Not reported. 10/12/20 The lab reported the PFBA results were suspect due to a large interference peak that elutes at the same time. As a result, PFBA has been removed from their list since they cannot stand behind the results. New run methods will be put in place to be able to report the PFBA more accurately in the future.

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBS (375-73-5) Perfluoroctanesulfonic Acid (C8)
PFBS (375-73-5) Perfluoroctanesulfonic Acid (C4)
PFHDA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHS = (375-86-4) Perfluoroheptanoic Acid (C8)
PFNA (375-95-1) Perfluorodecanoic Acid (C9)
PFDA (337-56-1) Perfluorodecanoic Acid (C10)
PFDA (307-56-1) Perfluorodecanoic Acid (C112)
PFHA (307-24-4) Perfluoroheptanoic Acid (C6)
PFEPA (376-67) Perfluorofecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
PFHA3 (307-244) Perfluorohexanoic Acid (C6)
PFTEDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFTDA (726-29-48) Perfluorotetradecanoic Acid (C14)
PFTDA (726-99-48) Perfluorondecanoic Acid (C11)
PFUnA (2058-94-8) Perfluorondecanoic Acid (C11)
N-EIFCSAA (2991-50-6) N-ethylperfluorocanessulfonamidoacetic Acid (C12)
N-MeFCSAA (2355-31-9) N-erthylperfluorocanessulfonamidoacetic Acid (C11)
PFBA (375-22-4) Perfluoropentanoic Acid (C4)
PFPBA (2706-90-4) Perfluoropentanoic Acid (C5)
PFHSB (375-92-8) Perfluoroheptanesulfonic Acid (C7)
PFPSS (375-92-8) Perfluoroheptanesulfonic Acid (C7)
PFNS (88259-12-1) Perfluorodecanesulfonic Acid (C10)
PFDS (375-92-8) Perfluorodecanesulfonic Acid (C10)
PFDS (375-92-8) Perfluorodecanesulfonic Acid (C12)
FCSA (754-91-6) Perfluorocotanesulfonic Acid (C12)
FCSA (754-91-6) Perfluorocotanesulfonamide (C10)
N-EIFCSA (4151-50-2) N-ethylperfluorocctanesulfonamide (C10)
N-EIFCSE (1691-99-2) N-ethylperfluorocctanesulfonamidechanol (C11)
N-EIFCSE (1691-99-2) N-ethylperfluorocctanesulfonamidechanol (C12)
4.2 FTSA (7571-472-4) A 2 (Inorotelomer sulfonamidechanol (C12)
4.2 FTSA (7571-472-4) 2-1 (Inorotelomer sulfonamidechanol (C12)
4.2 FTSA (7571-472-4) 2-1 (Inorotelomer sulfonamidechanol (C8)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10) 10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12)

DONA (191905-14-4) 4.B-Diosa-3H-perfluorononanoic acid (C7)
GenX (13252-13-6) Hexaffluoropropylene oxide dimer acid (C6)
9CLPS 20NS (76842-58-1) 9-clorohexadecaffluoro-3-oxaneonane-1-sulfonic acid (C1)
11CLPF30UdS (763051-92-9) 11-chloroelicosaffluoro-3-oxaneonane-1-sulfonic acid (C10)

Monitoring Well			MV	N-4		
Lab	State Lab	of Hygiene	Pace A	nalytical	S	S
Sampling Date	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
PERFLUOROALKYL & POLYI	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)				
PFOA	2.78F	1.23F	2.9J	5	2.73	3.54
PFOS	<1.18	<1.43	<1.8	0.74J	0.753J, B	0.519J
PFBS	549	580	600	170	580	262
PFHpA	19.2	50.5	20	14	22	16.3
PFHxS	<0.837	<1.42	<0.51	2	< 0.369	1.2J
PFNA	<1.40	<1.48	0.46J	<0.72	0.539J	<0.372
PFDA	<1.35	<1.63	<0.48	<0.55	< 0.369	<0.372
PFDoA	<2.31	<2.71	<0.43	<0.47	< 0.369	<0.297
PFHxA	58	118	60	51	49.7	55.3
PFTeDA	<4.45	<1.75	<0.55	<0.47	< 0.369	<0.372
PFTrDA	<2.21	<1.93	<0.48	<0.61	< 0.369	<0.372
PFUnA	<1.70	<2.22	<0.57	<0.33	< 0.369	<0.372
N-EtFOSA	<2.83	<6.94	<1.2	<0.59	<0.922	<1.04
N-EtFOSAA	<2.66	<2.12	< 0.69	<0.54	< 0.369	<0.372
N-MeFOSAA	<1.76	<2.19	<0.85	<0.42	< 0.369	<0.372
PFBA	54.5F	101	74	51	65.3	62.8
PFPeA	118	250	140	100	120	131
PFPeS	<0.759	<1.36	<0.54	<0.46	<0.370	<0.374
PFHpS	<1	<1.90	<0.46	<0.4	< 0.369	<0.372
PFNS	<1.71	<1.82	<0.65	<0.44	< 0.369	<0.372
PFDS	<1.78	<2.57	<0.71	<0.44	< 0.369	<0.372
PFDoS	<8.06	<2.47	<0.96	<0.45	< 0.369	<0.372
FOSA	<7.85	<1.55	<0.56	<0.8	< 0.369	< 0.372
N-MeFOSA	<4.18	<10	<1.2	<0.5	<0.424	<0.372
N-MeFOSE	<3.88	<2.81	<1.2	<0.32	<3.69	<3.72
N-EtFOSE	<4.4	<2.12	<0.87	<0.49	<2.76	<3.72
4:2 FTSA	3.17F	<1.90	3.6J	1.6J	2.41J	<1.49
6:2 FTSA	63.5	522	42	79	49.1B	104
8:2 FTSA	<1.19	<2.62	<1.5	<0.64	<1.47	<1.26
10:2 FTSA	NR	NR	NR	NR	NR	NR
DONA	<0.915	<1.28	<0.44	<0.5	<1.47	<1.49
GenX (HPFO-DA)	<1.32	<1.92	<1.9	<0.52	<1.40	<1.49
9CI-PF3ONS	<1.29	<1.82	<0.44	<0.3	<1.48	<1.49
11CI-PF3OUdS	<1.27	<1.49	<0.61	<0.43	<1.48	<1.49

ng/L = nanograms per liter (parts per trillion)
< = compound below laboratory detection limit

Bold indicates laboratory detections B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11) N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5) PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10) PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8) N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12) DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

Monitoring Well			MW	-5		
Lab	State Lal	b of Hygiene	Pace An	alytical	S	3S
Sampling Date	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	S (PFAS) (ng/L)				
PFOA	2.44F	5.98F	11J	7.1J,D	8.55J	6.19J
PFOS	<1.32	<1.43	<18	<5.4D	122B	<3
PFBS	4.76F	14.1	12J	30D	12.6J	13.9
PFHpA	216	644	490	410D	463	401
PFHxS	<0.942	<1.42	<5	<5D	3.81 J,B	<3.02
PFNA	<1.58	<1.48	<4.2	<7.3D	<3.18	<3
PFDA	<1.52	<1.63	<4.7	<5.6D	<3.18	<3
PFDoA	<2.59	<2.71	<4.3	<4.8D	<3.18	<2.4
PFHxA	734	1,580D	1,600	1,300D	1,470	1,550
PFTeDA	<5.01	<1.75	<5.4	<4.7D	<3.18	<3
PFTrDA	<2.48	<1.93	<4.8	<6.2D	<3.18	<3
PFUnA	<1.91	<2.22	<5.7	<5.4D	<3.18	<3
N-EtFOSA	<3.19	<6.94	<12	36D	<7.95	<8.41
N-EtFOSAA	<3	<2.12	<6.8	<5.5D	<3.18	<3
N-MeFOSAA	<1.98	<2.19	<8.4	<4.3D	<3.18	<3
PFBA	108	403	310	360D	324	389
PFPeA	1,280	2,410D	2,500	1,900D	2,460	2,750
PFPeS	< 0.854	<1.36	<5.4	<4.7D	<3.2	<3
PFHpS	<1.13	<1.90	<4.5	<4.1D	<3.18	<3
PFNS	<1.93	<1.82	<6.4	<4.4D	<3.18	<3
PFDS	<2	<2.57	<7	<4.5D	<3.18	<3
PFDoS	<9.07	<2.47	<9.4	<4.6D	<3.18	<3
FOSA	<8.83	<1.55	<5.5	<8.1D	5.87 J,B	<3
N-MeFOSA	<4.71	<10	<11	<5.1D	<3.66	<3
N-MeFOSE	<4.37	<2.81	<12	<3.3D	<31.8	<30
N-EtFOSE	<4.96	<2.12	<8.6	<4.9D	<23.8	<30
4:2 FTSA	<2.23	<1.90	<7.9	<5.5D	<12.7	<12
6:2 FTSA	1,500	2,890D	2,100	1,600D	2,750	2,700
8:2 FTSA	<1.34	<2.62	<14	<6.5D	<12.7	<10.2
10:2 FTSA	NR	NR	NR	NR	NR	NR
DONA	<1.03	<1.28	<4.4	<5.1D	<12.7	<12
GenX (HPFO-DA)	<1.48	<1.92	<19	<5.2D	<12.1	<12
9CI-PF3ONS	<1.45	<1.82	<4.4	<3D	<12.8	<12
11CI-PF3OUdS	<1.43	<1.49	<6	<4.3D	<12.7	<12

ng/L = nanograms per liter (parts per trillion)
< = compound below laboratory detection limit

Bold indicates laboratory detections B=analyte detected in the field blank D=Sample Dilution

F/J = result is between laboratory limit of detection and laboratory limit of quantitation PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11) N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5) PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10) PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8) N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12) DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

Monitoring Well			MW	'-6		
Lab	State Lab	of Hygiene	Pace An	alytical	SC	3S
Sampling Date	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)				
PFOA	3.48F	6.06F	<37	8.7J,D	9.51	5.63J
PFOS	<1.21	<1.43	<90	<5.5D	2.59 J,B	<2.97
PFBS	14.1	20.4	27J	38D	24	14.4
PFHpA	658	1,060	1,000	760D	1,050	544
PFHxS	<0.861	<1.42	<25	<5.1D	1.98 J,B	<2.97
PFNA	<1.44	<1.48	<21	<7.4D	<1.59	<2.97
PFDA	<1.39	<1.63	<24	<5.7D	<1.59	<2.97
PFDoA	<2.37	<2.71	<21	<4.9D	<1.59	<2.38
PFHxA	2,200	3,180D	3,800	3,400D	3,500	2,470
PFTeDA	<4.58	<1.75	<27	<4.8D	<1.59	<2.97
PFTrDA	<2.27	<1.93	<24	<6.2D	<1.59	<2.97
PFUnA	<1.74	<2.22	<28	<5.4D	<1.59	<2.97
N-EtFOSA	<2.92	<6.94	<61	<6.1D	<1.59	<8.32
N-EtFOSAA	<2.74	<2.12	<34	<5.6D	<1.59	<2.97
N-MeFOSAA	<1.81	<2.19	<42	<4.4D	<1.59	<2.97
PFBA	455	729	820	650D	697	587
PFPeA	3,490	4,710D	6,600	5,700D	5,440	4,260
PFPeS	<0.781	<1.36	<27	<4.8D	<1.6	<2.99
PFHpS	<1.03	<1.90	<22	<4.1D	<1.59	<2.97
PFNS	<1.76	<1.82	<32	<4.5D	<1.59	<2.97
PFDS	<1.83	<2.57	<35	<4.5D	<1.59	<2.97
PFDoS	<8.29	<2.47	<47	<4.6D	<1.59	<2.97
FOSA	<8.08	<1.55	<27	<8.2D	4.2 J,B	<2.97
N-MeFOSA	<4.30	<10	<56	<5.1D	<1.83	<2.97
N-MeFOSE	<4	<2.81	<58	<3.3D	<15.9	<29.7
N-EtFOSE	<4.53	<2.12	<43	<5D	<11.9	<29.7
4:2 FTSA	<2.04	<1.90	<39	<5.6D	<6.36	<11.9
6:2 FTSA	1,450	1,720D	3,000	1,400D	3,120	1,030
8:2 FTSA	<1.23	<2.62	<72	<6.6D	<6.36	<10.1
10:2 FTSA	NR	NR	NR	NR	NR	NR
DONA	<0.942	<1.28	<22	<5.2D	<6.36	<11.9
GenX (HPFO-DA)	<1.36	<1.92	<93	<5.3D	<6.04	<11.9
9CI-PF3ONS	<1.33	<1.48	<22	<3.1D	<6.37	<11.9
11CI-PF3OUdS	<1.31	<1.49	<30	<4.4D	<6.36	<11.9

ng/L = nanograms per liter (parts per trillion)
< = compound below laboratory detection limit

Bold indicates laboratory detections B=analyte detected in the field blank D=Sample Dilution

F/J = result is between laboratory limit of detection and laboratory limit of quantitation PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11) N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5) PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10) PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8) N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12) DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

Monitoring Well			M\	N-7		
Lab	State Lab	of Hygiene	Pace A	nalytical	S	GS
Sampling Date	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
PERFLUOROALKYL & POLYI	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)				
PFOA	2.99F	5.38F	5.4J	4.6	4.83	5.01J
PFOS	1.73F	6.07F	<9.6	3.8	2.68 J,B	5.62J
PFBS	8.93	9.44F	8.3J	10	11.1	7.71J
PFHpA	207	157	190	130	193	126
PFHxS	<0.718	<1.42	<2.6	0.57J	1.31 J,B	<2.99
PFNA	<1.2	2.44F	2.9J	1.7J	1.78J	3.32J
PFDA	<1.16	<1.63	<2.5	<0.56	<0.736	<2.99
PFDoA	<1.98	<2.71	<2.3	<0.48	<0.736	<2.39
PFHxA	808	641	860	600D	785	550
PFTeDA	<3.82	<1.75	<2.9	<0.47	<0.736	<2.99
PFTrDA	<1.89	<1.93	<2.5	<0.62	<0.736	<2.99
PFUnA	<1.45	<2.22	<3	<0.54	<0.736	<2.99
N-EtFOSA	<2.43	<6.94	<6.5	<0.60	<1.84	<8.37
N-EtFOSAA	<2.29	<2.12	<3.6	<0.55	<0.736	<2.99
N-MeFOSAA	<1.51	<2.19	<4.5	<0.43	<0.736	<2.99
PFBA	174	183	210	160	208	167
PFPeA	1,340	1,010	1,500	860D	1,410	931
PFPeS	<0.651	<1.36	<2.8	<0.47	<0.74	<3
PFHpS	<0.862	<1.90	<2.4	<0.41	<0.736	<2.99
PFNS	<1.47	<1.82	<3.4	<0.44	<0.736	<2.99
PFDS	<1.52	<2.57	<3.7	<0.45	<0.736	<2.99
PFDoS	<6.91	<2.47	<5	<0.46	<0.736	<2.99
FOSA	<6.73	<1.55	<2.9	<0.81	<0.736	<2.99
N-MeFOSA	<3.59	<10	<6	<0.51	<0.847	<2.99
N-MeFOSE	<3.33	<2.81	<6.2	<0.33	<7.36	<29.9
N-EtFOSE	<3.78	<2.12	<4.6	<0.49	<5.51	<29.9
4:2 FTSA	<1.70	<1.90	<4.2	1.1J	<2.94	<12
6:2 FTSA	623	800	750	550D	696	1,010
8:2 FTSA	<1.02	<2.62	<7.7	<0.65	<2.94	<10.2
10:2 FTSA	NR	NR	NR	NR	NR	NR
DONA	<0.785	<1.28	<2.3	<0.51	<2.94	<12
GenX (HPFO-DA)	<1.13	<1.92	<9.9	< 0.53	<2.80	<12
9CI-PF3ONS	<1.11	<1.82	<2.3	<0.3	<2.95	<12
11CI-PF3OUdS	<1.09	<1.49	<3.2	<0.43	<2.95	<12

ng/L = nanograms per liter (parts per trillion)
< = compound below laboratory detection limit

Bold indicates laboratory detections B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11) N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5) PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10) PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8) N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12) DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

Monitoring Well			MW	7-8		
Lab	State Lab	of Hygiene	Pace An	alytical	SC	3S
Sampling Date	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
PERFLUOROALKYL & POLYF	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)				
PFOA	20.7	14.7	<150	24D	21.4J	16.9
PFOS	<1.15	<1.43	<370	<5.5D	24.9 B	<2.95
PFBS	4.84F	6.18F	<77	24D	<6.11	6.06J
PFHpA	1,560	1,820D	2,100	3,400D	1,860	1,840
PFHxS	9.63	6.45F	<100	11 J,D	7.97 J,B	6.69J
PFNA	1.40F	<1.48	<86	<7.5D	<6.11	2.96 R,J
PFDA	<1.32	<1.63	<98	<5.7D	<6.11	<2.95
PFDoA	<2.25	<2.71	<88	<4.9D	<6.11	<2.36
PFHxA	5,390	5,350D	7,000	8,600D	4,360	6580D
PFTeDA	<4.34	<1.75	<110	<4.8D	<6.11	<2.95
PFTrDA	<2.15	<1.93	<98	<6.3D	<6.11	<2.95
PFUnA	<1.65	<2.22	<120	<5.5D	<6.11	<2.95
N-EtFOSA	<2.77	<6.94	<250	<6.1D	<15.3	<8.27
N-EtFOSAA	<2.60	<2.12	<140	<5.6D	<6.11	<2.95
N-MeFOSAA	<1.72	<2.19	<170	<4.4D	<6.11	<2.95
PFBA	1,350F	2,120	2,300	2,800D	1,130	2,600
PFPeA	13,500	12,300D	19,000	17,000D	8,510	17,500D
PFPeS	1.08F	<1.36	<110	<4.8D	<6.14	<2.97
PFHpS	<0.980	<1.90	<93	<4.1D	<6.11	<2.95
PFNS	<1.67	<1.82	<130	<4.5D	<6.11	<2.95
PFDS	<1.73	<2.57	<140	<4.5D	<6.11	<2.95
PFDoS	<7.86	<2.47	<190	<4.6D	<6.11	<2.95
FOSA	<7.66	<1.55	<110	<8.3D	7.81 J,B	<2.95
N-MeFOSA	<4.08	<10	<230	<5.2D	<7.02	<2.95
N-MeFOSE	<3.79	<2.81	<240	<3.3D	<6.11	<29.5
N-EtFOSE	<4.30	<2.12	<180	<5D	<45.7	<29.5
4:2 FTSA	10.7	12	<160	13 J,D	24.4	11.9J
6:2 FTSA	33,600	17,800D	34,000	3,600D	25,400	20,800D
8:2 FTSA	<1.16	<2.62	<300	<6.6D	<24.4	<10
10:2 FTSA	NR	NR	NR	NR	NR	NR
DONA	< 0.893	<1.28	<90	<5.2D	<24.4	<11.8
GenX (HPFO-DA)	<1.29	<1.92	<390	<5.3D	<23.2	<11.8
9CI-PF3ONS	<1.26	<1.82	<90	<3.1D	<24.5	<11.8
11CI-PF3OUdS	<1.24	<1.49	<120	<4.4D	<24.5	<11.8

ng/L = nanograms per liter (parts per trillion)
< = compound below laboratory detection limit

Bold indicates laboratory detections B=Analyte detected in the field blank

D=Sample Dilution

F/J = result is between laboratory limit of detection and laboratory limit of quantitation PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11) N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5) PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10) PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8) N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9) N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12) DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

Monitoring Well			MV	<i>I-</i> 9		
Lab	State Lab	of Hygiene	Pace Ar	alytical	SC	3S
Sampling Date	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
PERFLUOROALKYL & POLY	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)				
PFOA	5.41F	10.8	<15	15 J,D	5.65J	8.85J
PFOS	<1.19	1.98F	<35	<5.5D	<3.05	<2.99
PFBS	22.8	19.3	27J	42D	11.3J	17.4
PFHpA	547	1,200	760	880D	386	738
PFHxS	<0.849	2.42F	<9.7	5.2 J,D	<3.05	<2.99
PFNA	<1.42	<1.48	<8.1	<7.4D	<3.05	<2.99
PFDA	<1.37	<1.63	<9.2	<5.6D	<3.05	<2.99
PFDoA	<2.34	<2.71	<8.3	<4.8D	<3.05	<2.39
PFHxA	4,060	8,560D	3,100	8,500D	1,360	8,460D
PFTeDA	<4.51	<1.75	<11	<4.8D	<3.05	<2.99
PFTrDA	<2.24	<1.93	<9.3	<6.2D	<3.05	<2.99
PFUnA	<1.72	<2.22	<11	<5.4D	<3.05	<2.99
N-EtFOSA	<2.87	<6.94	<24	<6.1D	<7.62	<8.36
N-EtFOSAA	<2.70	<2.12	<13	<5.5D	<3.05	<2.99
N-MeFOSAA	<1.78	<2.19	<16	<4.3D	<3.05	<2.99
PFBA	450	1,670	590	1,300D	222	1,540
PFPeA	6,900	7,010D	5,700	6,800D	1,940	7,040
PFPeS	<0.770	<1.36	<10	<4.7D	<3.06	<3
PFHpS	6.70F	<1.90	<8.8	<4.1D	<3.05	<2.99
PFNS	<1.74	<1.82	<13	<4.5D	<3.05	<2.99
PFDS	<1.80	<2.57	<14	<4.5D	<3.05	<2.99
PFDoS	<8.17	<2.47	<18	<4.6D	<3.05	<2.99
FOSA	<7.96	<1.55	<11	<8.2D	4.58 J,B	<2.99
N-MeFOSA	<4.24	<10	<22	<5.1D	<3.51	<2.99
N-MeFOSE	<3.94	<2.81	<23	<3.3D	<30.5	<29.9
N-EtFOSE	<4.47	<2.12	<17	<5D	<22.8	<29.9
4:2 FTSA	6.02F	227	<15	220D	<12.2	170
6:2 FTSA	7,590	14,200D	6,100	3,300D	3,770	13,200
8:2 FTSA	<1.21	<2.62	<28	<6.5D	<12.2	<10.2
10:2 FTSA	NR	NR	NR	NR	NR	NR
DONA	<0.928	<1.28	<8.5	<5.1D	<12.2	<11.9
GenX (HPFO-DA)	<1.34	<1.92	<37	<5.3D	<11.6	<11.9
9CI-PF3ONS	<1.31	<1.82	<8.5	<3D	<12.2	<12
11CI-PF3OUdS	<1.29	<1.49	<12	<4.4D	<12.2	<12

ng/L = nanograms per liter (parts per trillion)
< = compound below laboratory detection limit

Bold indicates laboratory detections B=Analyte detected in the field blank

D=Sample Dilution

F/J = result is between laboratory limit of detection and laboratory limit of quantitation PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6) PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11) N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5) PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10) PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8) N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9) N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12) DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

Monitoring Well	MW-10							
Lab	State Lab of Hygiene		Pace Analytical		SGS			
Sampling Date	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022		
PERFLUOROALKYL & POLY	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)						
PFOA	14	15.3	<38	18 J,D	9.92J	12.2J		
PFOS	<1.27	<1.43	<91	<5.6D	16.4B	<6.16		
PFBS	64.3	40.8	44J	54D	25.8	34.7		
PFHpA	1,200	1,360D	1,500	1,000D	1,050	1,270		
PFHxS	1.70F	<1.42	<25	<5.2D	<3.15	<6.16		
PFNA	2.00F	<1.48	<21	<7.5D	<3.15	<6.16		
PFDA	<1.46	<1.63	<24	<5.7D	<3.15	<6.16		
PFDoA	<2.49	<2.71	<22	<4.9D	<3.15	<4.92		
PFHxA	7,590	6,470D	8,700	6,200D	3,940	6,320		
PFTeDA	<4.80	<1.75	<27	<4.8D	<3.15	<6.16		
PFTrDA	<2.38	<1.93	<24	<6.3D	<3.15	<6.16		
PFUnA	<1.83	<2.22	<29	<5.5D	<3.15	<6.16		
N-EtFOSA	<3.06	<6.94	<62	<6.2D	<7.88	<17.2		
N-EtFOSAA	<2.88	<2.12	<34	<5.6D	<3.15	<6.16		
N-MeFOSAA	<1.90	<2.19	<43	<4.4D	<3.15	<6.16		
PFBA	918F	1,260	1,500	1,100D	485	1,290		
PFPeA	13,300	9,110D	15,000	9,500D	5,140	11,200		
PFPeS	0.947F	<1.36	<27	<4.8D	<3.17	<0.619		
PFHpS	<1.08	<1.90	<23	<4.2D	<3.15	<6.16		
PFNS	<1.85	<1.82	<32	<4.5D	<3.15	<6.16		
PFDS	<1.92	<2.57	<35	<4.6D	<3.15	<6.16		
PFDoS	<8.70	<2.47	<48	<4.7D	<3.15	<6.16		
FOSA	<8.48	<1.55	<28	<8.3D	5.43 J,B	<6.16		
N-MeFOSA	<4.51	<10	<57	<5.2	<3.62	<6.16		
N-MeFOSE	<4.19	<2.81	<59	<3.3D	<31.5	<61.6		
N-EtFOSE	<4.76	<2.12	<43	<5D	<23.6	<61.6		
4:2 FTSA	13.8	12.4	<40	15 J,D	<12.6	<24.6		
6:2 FTSA	12,900	8,280D	11,000	3,300D	9,880	9,790		
8:2 FTSA	<1.29	<2.62	<73	<6.6D	<12.6	<20.9		
10:2 FTSA	NR	NR	NR	NR	NR	NR		
DONA	<0.988	<1.28	<22	<5.2D	<12.6	<24.6		
GenX (HPFO-DA)	<1.42	<1.92	<95	<5.4D	<12	<24.6		
9CI-PF3ONS	<1.39	<1.82	<22	<3.1D	<12.6	<24.7		
11CI-PF3OUdS	<1.38	<1.49	<30	<4.4D	<12.6	<24.7		

ng/L = nanograms per liter (parts per trillion)
< = compound below laboratory detection limit

Bold indicates laboratory detections B=Analyte detected in the field blank

D=Sample Dilution

F/J = result is between laboratory limit of detection and laboratory limit of quantitation PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11) N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5) PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10) PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8) N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9) N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12) DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

Monitoring Well	oring Well MW-11							
Lab Sampling Date	State Lab of Hygiene		Pace Analytical		SGS			
	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022		
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)						
PFOA	13	15.3	<38	18 J,D	13.7	10.3J		
PFOS	1.58F	1.86F	<91	<5.4D	<3.14	<2.98		
PFBS	34	19.3	39J	46D	21.2	23.8		
PFHpA	946	837	910	730D	583	691		
PFHxS	1.38F	<1.42	<25	<5D	<3.14	<2.98		
PFNA	1.79F	2.01F	<21	<7.3	<3.14	<2.98		
PFDA	<1.47	<1.63	<24	<5.6D	<3.14	<2.98		
PFDoA	<2.50	<2.71	<22	<4.8D	<3.14	<2.38		
PFHxA	4,180	3,430D	5,800	4,200D	3,330	4,550		
PFTeDA	<4.82	<1.75	<27	<4.7D	<3.14	<2.98		
PFTrDA	<2.39	<1.93	<24	<6.1D	<3.14	<2.98		
PFUnA	<1.84	<2.22	<29	<5.3D	<3.14	<2.98		
N-EtFOSA	<3.07	<6.94	<62	<6D	<7.84	<8.34		
N-EtFOSAA	<2.89	<2.12	<34	<5.5D	<3.14	<2.98		
N-MeFOSAA	<1.91	<2.19	<43	<4.3D	<3.14	<2.98		
PFBA	839	900	1,200	930D	583	1,040		
PFPeA	6,050	5,210D	9,500	7,700D	4,500	7,660		
PFPeS	<0.823	<1.36	<27	<4.7D	<3.15	<2.99		
PFHpS	<1.09	<1.90	<23	<4.1D	<3.14	<2.98		
PFNS	<1.86	<1.82	<32	<4.4D	<3.14	<2.98		
PFDS	<1.93	<2.57	<35	<4.4D	<3.14	<2.98		
PFDoS	<8.73	<2.47	<48	<4.5D	<3.14	<2.98		
FOSA	<8.51	<1.55	<28	<8.1D	3.77J, B	<2.98		
N-MeFOSA	<4.53	<10	<57	<5D	<3.61	<2.98		
N-MeFOSE	<4.21	<2.81	<59	<3.2D	<31.4	<29.8		
N-EtFOSE	<4.77	<2.12	<43	<4.9D	<23.5	<29.8		
4:2 FTSA	12.2	12	<40	12D	<12.5	12		
6:2 FTSA	25,100	18,500D	19,000	3,500D	20,100	18,200D		
8:2 FTSA	1.59F	3.15F	<73	<6.4D	<12.5	<10.1		
10:2 FTSA	NR	NR	NR	NR	NR	NR		
DONA	<0.992	<1.28	<22	<5.1D	<12.5	<11.9		
GenX (HPFO-DA)	<1.43	<1.92	<95	<5.2D	<11.9	<11.9		
9CI-PF3ONS	<1.40	<1.82	<22	<3D	<12.6	<11.9		
11CI-PF3OUdS	<1.38	<1.49	<30	<4.3D	<12.6	<11.9		

ng/L = nanograms per liter (parts per trillion)
< = compound below laboratory detection limit

Bold indicates laboratory detections B=Analyte detected in the field blank

D=Sample Dilution

F/J = result is between laboratory limit of detection and laboratory limit of quantitation PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11) N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5) PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10) PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8) N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9) N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12) DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

Monitoring Well		MW-12	
Lab	State Lab of Hygiene	Pace Analytical	SGS
Sampling Date		7/12/2022	
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
PFOA	6.22F	5.5	4.97J
PFOS	<1.43	<0.55	<2.92
PFBS	4.58F	8.3	6.76J
PFHpA	4.84F	6.7	5.2J
PFHxS	<1.42	1.6J	<2.92
PFNA	<1.48	<0.74	<2.92
PFDA	<1.63	<0.57	<2.92
PFDoA	<2.71	<0.49	<2.33
PFHxA	12.3	17	16.1
PFTeDA	<1.75	<0.48	<2.92
PFTrDA	<1.93	<0.63	<2.92
PFUnA	<2.22	<0.54	<2.92
N-EtFOSA	<6.94	<0.61	<8.16
N-EtFOSAA	<2.12	<0.56	<2.92
N-MeFOSAA	<2.19	<0.44	<2.92
PFBA	77.6	140	148
PFPeA	13.4	21	20.5J
PFPeS	<1.36	1.2J	<2.93
PFHpS	<1.90	<0.41	<2.92
PFNS	<1.82	<0.45	<2.92
PFDS	<2.57	<0.45	<2.92
PFDoS	<2.47	<0.46	<2.92
FOSA	<1.55	<0.82	<2.92
N-MeFOSA	<10	<0.51	<2.92
N-MeFOSE	<2.81	<0.33	<29.2
N-EtFOSE	<2.12	<0.5	<29.2
4:2 FTSA	<1.90	<0.56	<11.7
6:2 FTSA	<2.72	<0.65	<10.5
8:2 FTSA	<2.62	<0.66	<9.91
10:2 FTSA	NR	NR	NR
DONA	<1.28	<0.52	<11.7
GenX (HPFO-DA)	<1.92	<0.53	<11.7
9CI-PF3ONS	<1.82	<0.31	<11.7
11CI-PF3OUdS	<1.49	<0.44	<11.7

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)

PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4) PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)

PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9)

PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12)

PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)

PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)

PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)

PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)

PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8)

N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)

N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11) N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)

4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)

8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12)

DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)

9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)

Monitoring Well		MW-13	
Lab	State Lab of Hygiene	Pace Analytical	SGS
Sampling Date		7/12/2022	
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES (PFAS) (ng/L)	
PFOA	2.05F	2J	1.78
PFOS	<1.43	<0.54	<0.375
PFBS	3.73F	4.6B	4.25
PFHpA	<1.50	1.7J	1.21J
PFHxS	<1.42	0.53J	0.533J
PFNA	<1.48	<0.73	<0.375
PFDA	<1.63	<0.56	<0.375
PFDoA	<2.71	<0.48	<0.300
PFHxA	6.42F	7.6	6.18
PFTeDA	<1.75	<0.47	<0.375
PFTrDA	<1.93	<0.61	<0.375
PFUnA	<2.22	<0.53	<0.375
N-EtFOSA	<6.94	<0.6	<1.05
N-EtFOSAA	<2.12	<0.55	<0.375
N-MeFOSAA	<2.19	<0.5	<0.375
PFBA	53.4	61	61.3
PFPeA	8.07F	9.9	8.81
PFPeS	<1.36	<0.47	0.523J
PFHpS	<1.90	<0.41	<0.375
PFNS	<1.82	<0.44	<0.375
PFDS	<2.57	<0.44	<0.375
PFDoS	<2.47	<0.45	<0.375
FOSA	<1.55	<0.81	<0.375
N-MeFOSA	<10	<0.43	<0.375
N-MeFOSE	<2.81	<0.32	<3.75
N-EtFOSE	<2.12	<0.49	<3.75
4:2 FTSA	<1.90	<0.55	<1.5
6:2 FTSA	<2.72	<0.64	<1.35
8:2 FTSA	<2.62	<0.65	<1.27
10:2 FTSA	NR	NR	NR
DONA	<1.28	<0.51	<1.5
GenX (HPFO-DA)	<1.92	<0.52	<1.5
9CI-PF3ONS	<1.82	<0.3	<1.5
11CI-PF3OUdS	<1.49	<0.43	<1.5

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)

PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)

PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9)

PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12)

PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)

PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)

PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)

PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)

PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12) FOSA (754-91-6) Perfluorooctainesulfonamide (C8)

N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)

N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)

4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)

8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12)

DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)

9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

 ${\tt 11CI-PF3OUdS~(763051-92-9)~11-chloroeicosafluoro-3oxaundecane-1-sulfonic~acid~(C10)}\\$

Monitoring Well		MW-14	
Lab	State Lab of Hygiene	Pace Analytical	SGS
Sampling Date		7/12/2022	
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
PFOA	5.77F	14	9.65J
PFOS	3.17F	14	9.69J
PFBS	<2.31	5.0B	3.64J
PFHpA	4.57F	15	7.28J
PFHxS	4.56F	11	7.63J
PFNA	<1.48	1.3J	<2.95
PFDA	<1.63	<0.57	<2.95
PFDoA	<2.71	<0.49	<2.36
PFHxA	18.4	40	24
PFTeDA	<1.75	<0.48	<2.95
PFTrDA	<1.93	<0.63	<2.95
PFUnA	<2.22	<0.54	<2.95
N-EtFOSA	<6.94	<0.61	<8.25
N-EtFOSAA	<2.12	<0.56	<2.95
N-MeFOSAA	<2.19	<0.44	<2.95
PFBA	16.2	35	31.7J
PFPeA	27.2	63	38.4
PFPeS	<1.36	0.79J	<2.96
PFHpS	<1.90	<0.41	<2.95
PFNS	<1.82	<0.45	<2.95
PFDS	<2.57	<0.45	<2.95
PFDoS	<2.47	<0.46	<2.95
FOSA	<1.55	<0.82	<2.95
N-MeFOSA	<10	<0.52	<2.95
N-MeFOSE	<2.81	<0.33	<29.5
N-EtFOSE	<2.12	<0.50	<29.5
4:2 FTSA	<1.90	<0.56	<11.8
6:2 FTSA	7.54F	23	13.1J
8:2 FTSA	<2.62	<0.66	<10
10:2 FTSA	NR	NR	NR
DONA	<1.28	<0.52	<11.8
GenX (HPFO-DA)	<1.92	<0.53	<11.8
9CI-PF3ONS	<1.82	<0.31	<11.8
11CI-PF3OUdS	<1.49	<0.44	<11.8

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)

PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)

PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9)

PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12)

PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)

PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)

PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)

PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)

PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8)

N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)

N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11) N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)

4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)

8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12)

DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)

Monitoring Well		MW-15	
Lab	State Lab of Hygiene	Pace Analytical	SGS
Sampling Date		7/12/2022	
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
PFOA	2.3F	3.3	<3.01
PFOS	<1.43	<0.54	<3.01
PFBS	2.46F	5.2B	4.15J
PFHpA	19.9	18	13.9
PFHxS	<1.42	3.9	3.15J
PFNA	<1.48	<0.73	<3.01
PFDA	<1.63	<0.56	<3.01
PFDoA	<2.71	<0.48	<2.41
PFHxA	99.7	110	87.9
PFTeDA	<1.75	<0.47	<3.01
PFTrDA	<1.93	<0.62	<3.01
PFUnA	<2.22	<0.54	<3.01
N-EtFOSA	<6.94	<0.6	<8.42
N-EtFOSAA	<2.12	<0.55	<3.01
N-MeFOSAA	<2.19	<0.43	<3.01
PFBA	51.5	94	85.9
PFPeA	164	180	169
PFPeS	<1.36	1.2J	<3.02
PFHpS	<1.9	<0.41	<3.01
PFNS	<1.82	<0.44	<3.01
PFDS	<2.57	<0.45	<3.01
PFDoS	<2.47	<0.46	<3.01
FOSA	<1.55	<0.81	<3.01
N-MeFOSA	<10	<0.51	<3.01
N-MeFOSE	<2.81	<0.33	<30.1
N-EtFOSE	<2.12	<0.49	<30.1
4:2 FTSA	<1.90	<0.55	<12
6:2 FTSA	70.6	57	51.1
8:2 FTSA	<2.62	<0.65	<10.2
10:2 FTSA	NR	NR	NR
DONA	<1.28	<0.51	<12
GenX (HPFO-DA)	<1.92	<0.52	<12
9CI-PF3ONS	<1.82	<0.3	<12.1
11CI-PF3OUdS	<1.49	<0.43	<12

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)

PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)

PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9)

PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12)

PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)

PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)

PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFNS (66259-12-1) Periluorononanesulionic Acid (CS

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)

PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8)

N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)

N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11) N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)

4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)

8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12)

DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)

 $9 \hbox{CI-PF3ONS (756426-58-1) 9-clorohexadeca fluoro-3-oxane on an e-1-sulfonic acid (C8)}\\$

 ${\tt 11CI-PF3OUdS~(763051-92-9)~11-chloroeicosafluoro-3oxaundecane-1-sulfonic~acid~(C10)}\\$

Monitoring Well		MW-16	
Lab	State Lab of Hygiene	Pace Analytical	SGS
Sampling Date		7/12/2022	
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
PFOA	3.99F	5.6	4.01
PFOS	<1.43	1.4J	1.17J
PFBS	5.14F	6.6B	5.4
PFHpA	75.9	80	65.1
PFHxS	<1.42	0.59J	0.464J
PFNA	<1.48	1.2J	0.779J
PFDA	<1.63	<0.59	<0.373
PFDoA	<2.71	<0.51	<0.298
PFHxA	294	290D	276
PFTeDA	<1.75	<0.66	<0.373
PFTrDA	<1.93	<0.50	<0.373
PFUnA	<2.22	<0.57	<0.373
N-EtFOSA	<6.94	<0.64	<1.04
N-EtFOSAA	<2.12	<0.58	<0.373
N-MeFOSAA	<2.19	<0.46	<0.373
PFBA	121	120	144
PFPeA	473	500D	524
PFPeS	<1.36	<0.50	<0.374
PFHpS	<1.90	<0.43	<0.373
PFNS	<1.82	<0.47	<0.373
PFDS	<2.57	<0.47	<0.373
PFDoS	<2.47	<0.48	<0.373
FOSA	<1.55	<0.86	<0.373
N-MeFOSA	<10	<0.54	<0.373
N-MeFOSE	<2.81	<0.35	<0.373
N-EtFOSE	<2.12	<0.52	<0.373
4:2 FTSA	<1.90	1.2J	<1.49
6:2 FTSA	283	310D	292
8:2 FTSA	<2.62	<0.69	<1.27
10:2 FTSA	NR	NR	NR
DONA	<1.28	<0.54	<1.49
GenX (HPFO-DA)	<1.92	<0.56	<1.49
9CI-PF3ONS	<1.82	<0.32	<1.49
11CI-PF3OUdS	<1.49	<0.46	<1.49

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)

PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4) PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)

PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9)

PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12)

PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)

PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)

PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)

PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)

PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8)

N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)

N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)

8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12)

DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)

9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)

Monitoring Well		MW-17	
Lab	State Lab of Hygiene	Pace Analytical	SGS
Sampling Date		7/12/2022	
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES (PFAS) (ng/L)	
PFOA	<1.08	0.68J	<2.99
PFOS	<1.43	<0.54	<2.99
PFBS	<2.31	1.8B	<2.99
PFHpA	<1.5	<0.55	<2.99
PFHxS	<1.42	<0.5	<2.99
PFNA	<1.48	<0.73	<2.99
PFDA	<1.63	<0.56	<2.99
PFDoA	<2.71	<0.48	<2.39
PFHxA	<2.04	0.6J	<2.99
PFTeDA	<1.75	<0.47	<2.99
PFTrDA	<1.93	<0.62	<2.99
PFUnA	<2.22	<0.54	<2.99
N-EtFOSA	<6.94	<0.60	<8.36
N-EtFOSAA	<2.12	<0.55	<2.99
N-MeFOSAA	<2.19	<0.43	<2.99
PFBA	4.79F	11	<11.9
PFPeA	<1.50	0.82J	<5.97
PFPeS	<1.36	<0.47	<3
PFHpS	<1.90	<0.41	<2.99
PFNS	<1.82	<0.44	<2.99
PFDS	<2.57	<0.45	<2.99
PFDoS	<2.47	<0.46	<2.99
FOSA	<1.55	<0.81	<2.99
N-MeFOSA	<10	<0.51	<2.99
N-MeFOSE	<2.81	<0.33	<29.9
N-EtFOSE	<2.12	<0.49	<29.9
4:2 FTSA	<1.90	<0.55	<11.9
6:2 FTSA	<2.72	<0.64	<10.8
8:2 FTSA	<2.62	<0.65	<10.2
10:2 FTSA	NR	NR	NR
DONA	<1.28	<0.51	<11.9
GenX (HPFO-DA)	<1.92	<0.52	<11.9
9CI-PF3ONS	<1.82	<0.3	<12
11CI-PF3OUdS	<1.49	<0.43	<12

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)

PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)

PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9)

PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12)

PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)

PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)

PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)

PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)

PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8)

N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)

 $\hbox{N-MeFOSE (24448-09-7) N-methylperfluorooctane sulfon a midoethanol (C11)}\\$

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)

4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)

8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12)

DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)

 $9 \hbox{CI-PF3ONS (756426-58-1) 9-clorohexadeca fluoro-3-oxane on an e-1-sulfonic acid (C8)}\\$

 ${\tt 11CI-PF3OUdS~(763051-92-9)~11-chloroeicosafluoro-3oxaundecane-1-sulfonic~acid~(C10)}\\$

Monitoring Well	PZ-1							
Lab	State Lab of	State Lab of Hygiene		nalytical	SC	GS		
Sampling Date	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022		
PERFLUOROALKYL 8	POLYFLUOROALKYL SUBS	TANCES (PFAS) (ng/L)						
PFOA	<2.03	<1.08	<1.1	<0.65	<0.887	<3.39		
PFOS	<1.36	<1.43	<2.7	0.73J	<0.887	<3.39		
PFBS	<1.62	<2.31	<0.55	<0.53	<0.887	<3.39		
PFHpA	<1.08	<1.50	< 0.59	<0.61	<0.887	<3.39		
PFHxS	<0.969	<1.42	<0.73	<0.57	<0.887	<3.39		
PFNA	<1.62	<1.48	<0.61	<0.82	<0.887	<3.39		
PFDA	<1.57	<1.63	<0.7	< 0.63	<0.887	<3.39		
PFDoA	<2.67	<2.71	< 0.63	<0.54	<0.887	<3.16		
PFHxA	<1.40	<2.04	1.2J	0.72J	<0.887	<3.39		
PFTeDA	<5.15	<1.75	<0.8	<0.53	<0.887	NQ		
PFTrDA	<2.556	<1.93	<0.7	< 0.69	<0.887	NQ		
PFUnA	<1.96	<2.22	<0.83	<0.60	<0.887	<3.39		
N-EtFOSA	<3.28	<6.94	<1.8	<0.68	<2.22	NQ		
N-EtFOSAA	<3.09	<2.12	<1	<0.62	<0.887	<3.39		
N-MeFOSAA	<2.04	<2.19	<1.2	<0.48	<0.887	<3.39		
PFBA	<29.1	<3.46	<0.8	<0.49	<3.55	<13.5		
PFPeA	<2.5	<1.5	<0.72	0.49J	<1.77	<6.77		
PFPeS	<0.879	<1.36	<0.79	<0.53	<0.891	<3.40		
PFHpS	<1.16	<1.90	<0.66	<0.46	<0.887	<3.39		
PFNS	<1.98	<1.82	<0.95	<0.5	<0.887	<3.39		
PFDS	<2.06	<2.57	<1	<0.5	<0.887	<3.39		
PFDoS	<9.33	<3.98	<1.4	<0.51	<0.887	<3.39		
FOSA	<9.09	<1.55	<0.82	<0.91	<0.887	<3.39		
N-MeFOSA	<4.84	<10	<1.7	<0.57	<1.02	NQ		
N-MeFOSE	NR	<2.81	<1.7	<0.37	<8.87	<33.9		
N-EtFOSE	NR	<2.12	<1.3	<0.55	<6.63	<33.9		
4:2 FTSA	<2.3	<1.90	<1.2	<0.62	<3.55	<13.5		
6:2 FTSA	2.3F	5.24F	36	11	<3.20	<12.2		
8:2 FTSA	<1.38	<2.62	<2.1	<0.73	<3.55	<11.5		
10:2 FTSA	NR	NR	NR	NR	NR	NR		
DONA	<1.06	<1.28	<0.64	<0.57	<3.55	<13.5		
GenX (HPFO-DA)	<1.53	<1.92	<2.8	<0.59	<3.37	<13.5		
9CI-PF3ONS	<1.50	<1.82	<0.64	<0.34	<3.55	<13.6		
11CI-PF3OUdS	<1.48	<1.49	<0.88	<0.49	<3.55	<13.6		

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit Bold indicates laboratory detections

B=Analyte detected in the field blank

F /J= result is between laboratory limit of detection and laboratory limit of quantitation

PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)

PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PEDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12)

PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)

PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9) PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)

PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12) FOSA (754-91-6) Perfluorooctainesulfonamide (C8)

N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9) N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)

8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12)

DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7) GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)

9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8) 11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)

Monitoring Well		PZ-2	
Lab	State Lab of Hygiene	Pace Analytical	SGS
Sampling Date		7/12/2022	
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES (F	PFAS) (ng/L)	
PFOA	1.68F	<0.62	<4.26
PFOS	<1.43	<0.58	<4.26
PFBS	<2.31	<0.50	<4.26
PFHpA	<1.50	<0.59	<4.26
PFHxS	<1.42	<0.54	<4.26
PFNA	<1.48	<0.79	<4.26
PFDA	<1.63	<0.60	<4.26
PFDoA	<2.71	<0.52	<3.41
PFHxA	<2.04	<0.47	<4.26
PFTeDA	<1.75	<0.51	<22.3
PFTrDA	<1.93	<0.66	<4.26
PFUnA	<2.22	<0.58	<4.26
N-EtFOSA	<6.94	<0.65	NR
N-EtFOSAA	<2.12	<0.59	<4.26
N-MeFOSAA	<2.19	<0.46	<4.26
PFBA	<3.46	0.60J	<17
PFPeA	<1.5	<0.47	<8.52
PFPeS	<1.36	<0.51	<4.28
PFHpS	<1.90	<0.44	<4.26
PFNS	<1.82	<0.48	<4.26
PFDS	<2.57	<0.48	<4.26
PFDoS	<3.98	<0.49	<4.26
FOSA	<1.55	<0.87	<4.26
N-MeFOSA	<10	<0.55	<5.65
N-MeFOSE	<2.81	<0.35	<42.6
N-EtFOSE	<2.12	<0.53	<42.6
4:2 FTSA	<1.90	<0.60	<17
6:2 FTSA	<2.72	<0.69	<15.4
8:2 FTSA	<2.62	<0.70	<14.5
10:2 FTSA	NR	NR	NR
DONA	<1.28	<0.55	<17
GenX (HPFO-DA)	<1.92	<0.56	<17
9CI-PF3ONS	<1.82	<0.33	<17.1
11CI-PF3OUdS	<1.49	<0.47	<17.1

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)

PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)

PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9)

PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12)

PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)

PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)

PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)

PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)

PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)

PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12) FOSA (754-91-6) Perfluorooctainesulfonamide (C8)

N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)

 $\hbox{N-MeFOSE (24448-09-7) N-methylperfluorooctane sulfon a midoethanol (C11)}\\$

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)

4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)

8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12)

DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)

9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

 ${\tt 11CI-PF3OUdS~(763051-92-9)~11-chloroeicosafluoro-3oxaundecane-1-sulfonic~acid~(C10)}\\$

Monitoring Well				SUMP		•	•
Lab	State Lab of Hygiene			Pace Ana		SG	S
Sampling Date	10/12/2020	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
ERFLUOROALKYL	. & POLYFLUOROALKYL SUBS	STANCES (PFAS) (ng/L)					
PFOA	7.47F	27	1.35F	53J	1.3J	26.9	0.821J
PFOS	<3.40	<1.26	<1.43	<93	0.71J	4.19 J,B	4.98
PFBS	6.65F	7.47F	<2.31	<19	1.3J	<3	< 0.372
PFHpA	434	757	21.5	980	27	1,090	< 0.372
PFHxS	<4.10	< 0.896	<1.42	<26	<0.48	<3	< 0.372
PFNA	<4.32	4.17F	<1.48	<22	1.3J	4.77J	< 0.372
PFDA	<3.93	<1.45	<1.63	<24	1J	<3	< 0.372
PFDoA	<3.84	<2.47	<2.71	<22	<0.46	<3	< 0.297
PFHxA	7,040	3,070	79.7	4,200	73	4,290	< 0.372
PFTeDA	<3.55	<4.77	<1.75	<28	<0.45	<3	< 0.372
PFTrDA	<4.01	<2.36	<1.93	<25	<0.59	<3	< 0.372
PFUnA	<4.07	<1.82	<2.22	<29	<0.51	<3	< 0.372
I-EtFOSA	<6.59	<3.04	<6.94	<63	<0.58	<7.49	<1.04
I-EtFOSAA	<4.29	<2.85	<2.12	<35	< 0.53	<3	< 0.372
I-MeFOSAA	<5.37	<1.88	<2.19	<43	<0.41	<3	< 0.372
PFBA	NR	809	26.4	910	33	990	<1.49
PFPeA	7,480	3,900	119	5,900	110	5,810	< 0.743
PFPeS	<2.72	<0.813	<1.36	<28	<0.45	<3.01	< 0.373
PFHpS	5.3F	<1.08	<1.90	<23	<0.39	<3	< 0.372
PFNS	<5	<1.84	<1.82	<33	<0.42	<3	< 0.372
PFDS	<4.56	<1.90	<2.57	<36	<0.43	<3	< 0.372
PFDoS	<5.18	<8.63	<2.47	<49	<0.44	<3	< 0.372
OSA	<40.7	<8.41	<1.55	<29	<0.78	3.83J	0.960J
N-MeFOSA	<8.05	<4.48	<10	<59	<0.49	<3.45	< 0.372
N-MeFOSE	<4.05	<4.16	<2.81	<60	<0.31	<30	< 0.372
N-EtFOSE	<4.13	<4.72	<2.12	<44	<0.47	<22.4	< 0.372
:2 FTSA	14.7	3.52F	<1.90	<41	<0.53	<12	<1.49
i:2 FTSA	47,800	11,700	232	9,000	270D	11,000	<1.34
:2 FTSA	6.54F	12	<2.62	<75	1.6J	13.1 J,B	<1.26
0:2 FTSA	<4.34	NR	NR	NR	NR	NR	NR
ONA	<4.21	<0.980	<1.28	<23	<0.49	<12	<1.49
GenX (HPFO-DA)	<5.28	<1.41	<1.92	<97	<0.5	<11.4	<1.49
CI-PF3ONS	<4.20	<1.38	<1.82	<22	<0.29	<12	<1.49
11CI-PF3OUdS	<3.94	<1.36	<1.49	<31	<0.42	<12	<1.49

10/12/20 It should be noted the samples were shipped and received next day but analyzed past 30 days holding time

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit

Bold indicates laboratory detections B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

NR = Not reported. 10/12/20 The lab reported the PFBA results were suspect due to a large interference peak that elutes at the same time. As a result, PFBA has been removed from their list since they cannot stand behind the results. New run methods will be put in place to be able to report the PFBA more accurately in the future.

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
PFBS (375-73-5) Perfluorocbutanesulfonic Acid (C4)
PFHpA = (375-85-9) Perfluorobeptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononancia Acid (C9)
PFDA (335-76-2) Perfluorodecanoic Acid (C10)
PFDoA (307-55-1) Perfluorodecanoic Acid (C12)
PFHxA (307-24-4) Perfluorodexanoic Acid (C6)

PFDa (307-55-1) Perfluorodotecanoic Acid (C12)
PFHx8 (307-24-4) Perfluorothexanoic Acid (C6)
PFTeDa (376-66-7) Perfluorothexanoic Acid (C14)
PFTTDA (72629-94-8) Perfluorothexanoic Acid (C14)
PFTDA (72629-94-8) Perfluorothexanoic Acid (C13)
PFUnA (2085-94-8) Perfluorothecanoic Acid (C11)
N-EIFOSAA (2991-95-6) N-ethylperfluorocotanesulfonamidoacetic Acid (C12)
N-MeFOSAA (2951-95-6) N-ethylperfluorocotanesulfonamidoacetic Acid (C12)
PFBA (375-92-4) Perfluorotheranoic Acid (C3)
PFPBS (375-92-8) Perfluorotheranoic Acid (C5)
PFPBS (375-92-8) Perfluorotheranoic Acid (C7)
PFPS (3629-92-12) Perfluoronanesulfonic Acid (C7)
PFDS (375-92-8) Perfluorotheranesulfonic Acid (C10)
PFDS (375-92-8) Perfluorodecanesulfonic Acid (C10)
PFDS (375-93-9-7) Perfluorodecanesulfonic Acid (C10)
PFDS (375-93-9-7) Perfluorodecanesulfonic Acid (C12)
FOSA (754-91-8) Perfluorocdanesulfonamide (C10)
N-EIFOSE (4151-50-2) N-ethylperfluorocotanesulfonamide (C10)
N-MeFOSA (5156-93-2) N-ethylperfluorocotanesulfonamide (C10)
N-MeFOSE (24448-95-7) N-methylperfluorocatanesulfonamide (C11)
N-EIFOSE (1916-99-2) N-ethylperfluorocotanesulfonamide (C10)
N-EIFOSE (3619-99-2) Perfluorodecimer sulfonate (C8)
2-FTSA (27519-47-2) 2-2 fluorotelomer sulfonate (C8)
2-FTSA (27519-47-2) 2-2 fluorotelomer sulfonate (C1)
10-2-FTSA (192226-60-0) 10-2 fluorotelomer sulfonate (C12)
CDONA (919005-14-4) 4-8 fluorotelomer sulfonate (C10)
10-2-FTSA (192226-60-0) 10-2 fluorotelomer sulfonate (C10)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3-oxanudecane-1-sulfonic acid (C10)

Monitoring Well			PC	OND		
Lab	State Lal	b of Hygiene	Pace A	nalytical	S	3S
Sampling Date	6/2/2021	7/12/2022	6/2/2021	7/12/2022	6/2/2021	7/12/2022
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)				
PFOA	2.75F	3.79F	4.7J	83	4.18	<0.375
PFOS	1.84F	<1.43	<8.8	1.9	28.8 B	<0.375
PFBS	13.8	11.3	12J	14	15.8	< 0.375
PFHpA	187	117	190	2,600D	191	<0.375
PFHxS	<0.897	<1.42	<2.4	4	5.01 B	<0.375
PFNA	<1.5	1.63F	<2	1.6J	1.21J	< 0.375
PFDA	<1.45	1.86F	<2.3	<0.55	<0.370	<0.375
PFDoA	<2.47	<2.71	<2.1	<0.47	<0.370	<0.300
PFHxA	634	338	640	17,000 I,D	494	<0.375
PFTeDA	<4.77	<1.75	<2.6	<0.46	0.409J	<0.375
PFTrDA	<2.37	<1.93	<2.3	<0.61	<0.370	<0.375
PFUnA	<1.82	<2.22	<2.8	<0.53	<0.370	<0.375
N-EtFOSA	<3.04	<6.94	<6	<0.59	<0.925	<1.05
N-EtFOSAA	<2.86	<2.12	<3.3	<0.54	<0.370	< 0.375
N-MeFOSAA	<1.88	<2.19	<4.1	<0.42	<0.370	< 0.375
PFBA	147	112	180	5,600D	197	<1.5
PFPeA	888	486	980	35,000D	850	<0.750
PFPeS	<0.813	<1.36	<2.6	<0.46	0.501J	<0.377
PFHpS	<1.08	<1.90	<2.2	<0.4	<0.370	<0.375
PFNS	<1.84	<1.82	<3.1	<0.44	<0.370	< 0.375
PFDS	<1.90	<2.57	<3.4	<0.44	<0.370	<0.375
PFDoS	<8.63	<2.47	<4.6	<0.45	<0.370	<0.375
FOSA	<8.41	<1.55	<2.7	<0.8	<0.370	0.627J
N-MeFOSA	<4.48	<10	<5.6	<0.5	<0.425	<0.375
N-MeFOSE	<4.16	<2.81	<5.7	<0.32	<3.70	<3.75
N-EtFOSE	<4.72	<2.12	<4.2	<0.48	<2.77	<3.75
4:2 FTSA	<2.13	<1.90	<3.9	99	<1.48	<1.5
6:2 FTSA	574	248	470	4,200D	418	<1.35
8:2 FTSA	<1.28	<2.62	<7.1	<0.64	<1.48	<1.28
10:2 FTSA	NR	NR	NR	NR	NR	NR
DONA	<0.981	<1.28	<2.1	<0.5	<1.48	<1.50
GenX (HPFO-DA)	<1.41	<1.92	<9.2	0.64J	<1.41	<1.50
9CI-PF3ONS	<1.38	<1.82	<2.1	<0.3	<1.48	<1.50
11CI-PF3OUdS	<1.37	<1.49	<2.9	<0.43	<1.48	<1.50

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit

B=Analyte detected in the field blank D=Sample Dilution F/J = result is between laboratory limit of detection and laboratory limit of quantitation

PFOA (355-67-1) Perfluoroctanoic Acid (C8)

PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)

PFHpA = (375-85-9) Perfluoroheptanoic Acid (C7)
PFHxS = (355-46-4) Perfluorohexanesulfonic Acid (C6)

PFNA (375-95-1) Perfluorononanoic Acid (C9) PFDA (335-76-2) Perfluorodecanoic Acid (C10)

PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6)

PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14) PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)

PFUNA (2058-94-8) Perfluoroundecanoic Acid (C11) N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)

N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA (375-22-4) Perfluoroburanoic Acid (C4)

PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)

PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10) PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)

FOSA (754-91-6) Perfluorooctainesulfonamide (C8) N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)

N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9) N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)

N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)

6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)

10:2 FTSA (120226-60-0) 10:2 fluorotelomer sulfonate (C12) DONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)

GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)

11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)

TABLE A.6 WATER LEVEL ELEVATIONS THE SOLBERG COMPANY

1520 BROOKFIELD AVENUE, VILLAGE OF HOWARD, WISCONSIN

Monitoring Well Number	Top of Well Casing Elevation (MSL)	Ground Surface Elevation (MSL)	Screened Interval Elevation (MSL)	Date Measured	Depth To Water Below Top Of Casing (Ft.)	Groundwate Elevation (Ft.) (MSL)
	1			11/26/2019	2.61	588.02
		585.58	12/13/2019	2.70	587.93	
		588.80		3/24/2020	2.65	587.98
MW-1	590.63		575.58	6/11/2020	2.68	587.95
IVI VV - I	590.63			10/12/2020	6.48	584.15
				6/2/2021	4.12	586.51
				5/13/2022	4.55	586.08
				7/12/2022	5.12	585.51
				11/26/2019	3.01	587.83
			585.79	12/13/2019	3.03	587.81
		588.96		3/24/2020	3.00	587.84
MW-2	590.84		575.79	6/11/2020	3.06	587.78
IVI VV-Z	590.64			10/12/2020	6.69	584.15
				6/2/2021	3.85	586.99
				5/13/2022	4.85	585.99
				7/12/2022	5.24	585.60
				11/26/2019	3.01	587.87
			585.83	12/13/2019	3.03	587.85
		588.95	j	3/24/2020	3.00	587.88
MW-3	590.88		575.83	6/11/2020	3.06	587.82
INIAA-2	350.00			10/12/2020	6.69	584.19
			j	6/2/2021	3.98	586.90
				5/13/2022	4.35	586.53
				7/12/2022	4.41	586.47
				5/26/2021	3.65	586.28
			583.27	6/2/2021	3.12	586.81
MW-4	589.93	587.62		7/12/2022	3.66	586.27
			573.27			
		588.06		5/26/2021	2.94	586.84
			585.48	6/2/2021	2.65	587.13
MW-5	589.78			7/12/2022	3.10	586.68
			575.48			
				5/26/2021	3.12	586.78
			583.13	6/2/2021	2.32	587.58
MW-6	589.9	588.09		7/12/2022	3.19	586.71
			573.13	7712,2022	5.10	000.71
				5/26/2021	2.95	586.66
			584.68	6/2/2021	2.85	586.76
MW-7	589.61	587.31	33 2.00	7/12/2022	3.09	586.52
		557.57	574.68	111212022	0.00	000.02
				5/26/2021	4.06	586.21
			585.33	6/2/2021	3.49	586.78
MW-8	590.27	588.4		7/12/2022	3.79	586.48
-			575.33			
				5/26/2021	5.01	585.19
			585.33	6/2/2021	4.08	586.12
MW-9	590.2	588.02	333.00	7/12/2022	4.91	585.29
-			575.33	.,.L,L0LL		000.20
				5/27/2024	5.60	504.70
			585.37	5/27/2021 6/2/2021	5.69 3.84	584.72 586.57
MW-10 590.41	590.41	588.3	303.37	7/12/2022	3.84 4.73	585.68
	220.71	588.3	575.37	1112/2022	4.13	300.00
				E /27/2024	5.20	E0E 40
			505.47	5/27/2021	5.30	585.16
M10/ 44	E00.46	500.4	585.47	6/2/2021	4.21	586.25
MW-11	590.46	588.4	F7F /-	5/13/2022	4.55	585.91
			575.47	7/12/2022	5.06	585.40

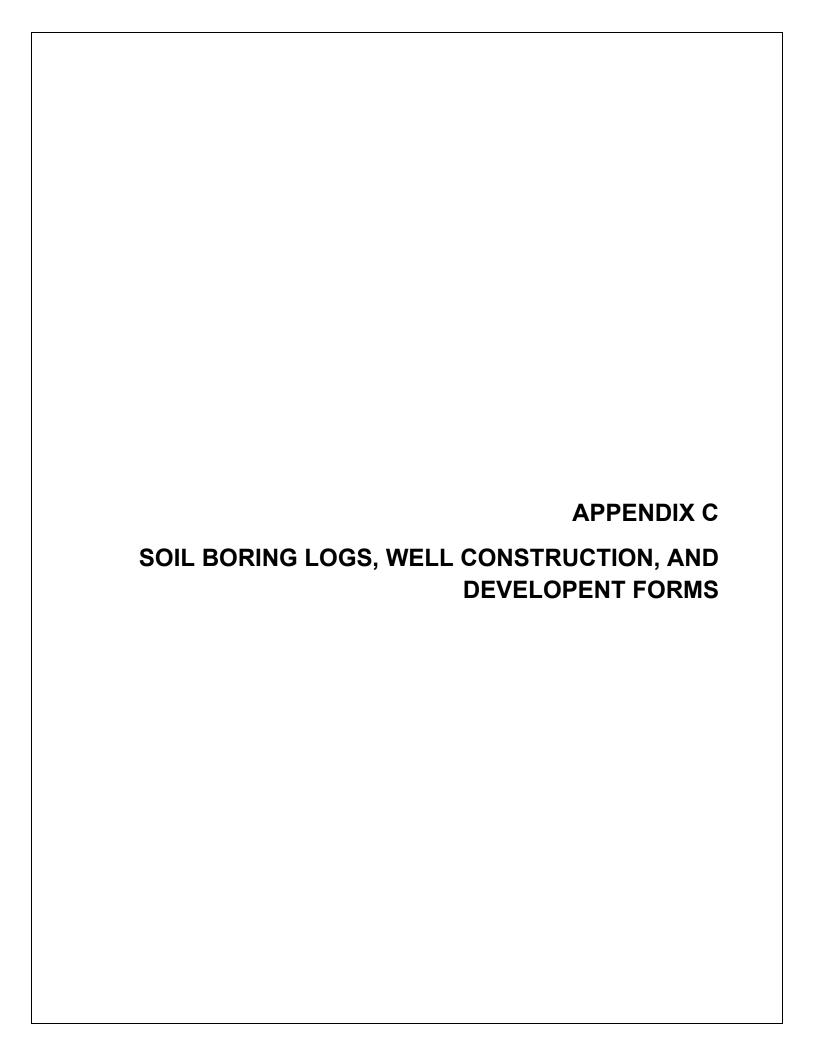

Elevations are referenced to Mean Sea Level (MSL). ft = feet

TABLE A.6 WATER LEVEL ELEVATIONS THE SOLBERG COMPANY

1520 BROOKFIELD AVENUE, VILLAGE OF HOWARD, WISCONSIN

Monitoring Well Number	Top of Well Casing Elevation (MSL)	Ground Surface Elevation (MSL)	Screened Interval Elevation (MSL)	Date Measured	Depth To Water Below Top Of Casing (Ft.)	Groundwater Elevation (Ft.) (MSL)
			585.22	7/11/2022	4.40	586.34
MW-12	590.74	588.37		7/12/2022	4.56	586.18
			575.2 2			
			585.19	7/11/2022	5.26	585.60
MW-13	590.86	588.32		7/12/2022	5.34	585.52
	000.00	000.02	575.19			
			586.73	7/11/2022	1.57	586.43
BANA/ 4 4	500	500.40		7/12/2022	1.69	586.31
MW-14	588	588.43	Ī			
			576.73			
			584.8	7/11/2022	1.88	585.85
MW-15	587.73	588.24	<u> </u>	7/12/2022	2.00	585.73
	007.110	000.24	`			
			574.8			
			586.03	7/11/2022	7.85	583.78
MW-16	591.63	589.46	-	7/12/2022	5.09	586.54
			576.03			
			584.74	7/11/2022	3.50	587.02
MW-17	590.52	589.46		7/12/2022	3.74	586.78
			574.74			
			566.47	5/27/2021	5.39	585.53
PZ-1	590.92	588.56	Ţ	6/2/2021	4.40	586.52
PZ-1	590.92	500.50		7/12/2022	4.55	586.37
			561.47			
			565.05	7/11/2022	11.35	579.33
PZ-2	590.68	588.32		7/12/2022	4.98	585.70
			560.05			

Elevations are referenced to Mean Sea Level (MSL).

Route To:	
Solid Waste	
Emergency Response	
Mactowator	\Box

Haz. Waste Underground Tanks Water Resources

Soil Boring Log Information Form 4400-122

					□Other									Page 1 of 1				
		ct Name		GE	C Project No.	Wis. Uni	que N	о.	Boring	y Num	ber							
The Solberg Company - Site 2					2-0919-397B N/A Drilling Method Borehole Diameter													
Boring Drilled By (Firm name and name of crew chief) On-Site Environmental					•	B-13 / MW-12												
					Direct Push	D-10/ WW-12												
	Kapu		Date Drilling Ended	& HSA	ie N,	E		WTI	101		DND (County	Code					
Date L	_				ing Location State Plan			Х	6742			DINK	Journey					
	7/11	/2022	7/11/2022	ΝV	V- SE, Sect. 3, T24N	I, R20E		Ŷ	4585					5				
Local	Grid Lo	cation (If applica	ble)	Cou	inty			Civil T	own / 0		illage							
Feet S	;	Feet	W	Bro	own			Villad	ge of Howard									
				v mag	, o o	T T		Ī										
•	n Below e/Elev. (ft)	VIS	SUAL SOIL CLAS			Sample No.	uscs	Graphic Log	Well	Blow Count	N value	Odor	PID (ppm)	Remarks				
0440	, ,	Disale Cite CAN	Ground Surface E															
-		-	D with organics, moist (T	opso	ll)		OL	1333										
1 —	-1.0	Tan, Silty SAND	, moist to wet					ł I I ł						Lab sample				
-								ΗIIΗ						Sample				
2 —	-2.0							ffff.						_				
_	_	Tannish gray, Si	ilty SAND , wet			SS-1		 				No	0	-				
3 —	-3.0							†II†	ΙH					_				
_	_								ΙД					_				
4 —	-4.0							† † † †	l H					_				
_							SM	T ± ± T						_				
5 —	-5.0								lΒ					_				
_	_							T ł ł T	l A					_				
6 —	-6.0							† I I †										
_	-							† 	l A					-				
7 —	-7.0 							†II†	Ш				_	_				
_	-					SS2		† I I †	l H			No	0	=				
8 —	-8.0 —							†II†						_				
-	_							†	lΗ					-				
9 —	-9.0	Tannish gray, Si	ilty CLAY, wet					777	10									
-	-							[]]]	l A					-				
10 —	-10 —							<i>!///</i>	П					_				
11 —	11.0							///	Ш					=				
··· -	-11.0 							7777	l A					_				
12	-12.0						CL	V///	Ш									
-	-					SS-3	0_	1777	ΙH			No	0	-				
13 —	-13.0							[77]	B			''	Ŭ					
-	_							[///						-				
14.0 —	-14.0							[///										
-	-							[]//						-				
15 —	-15							///										
-	-		END OF BORIN	IG: 1	15.0'									<u>-</u>				
16.0	-16.0													-				
_	_													_				
17.0	-17.0													_				
_	_																	
18.0	-18.0													_				
-																		
l herel	ov certify	that the informat	tion on this form is true and	corr	act to the heet of my know	/ledge						<u> </u>						
Signat					Brian Youngwirth		G	enera	l Engi	ineer	ina C	ompa	anv					
-		Brian	Goungwirth						lver Lak		_	-	-					
			0							ge WI								

State of Wisconsin
Department of Natural Resources

Route To:	
Solid Waste	
Emergency Response	
Wastewater	

11 147	
Haz. Waste	
Underground Tank	(S
Water Resources	
0.11	

Soil Boring Log Information Form 4400-122

7-9°

Page 1 of 1

														rage rorr					
		ct Name			C Project No.	Wis. Un	ique N	No.	Boring	g Num	ber								
The Solberg Company - Site 2					2-0919-397B N/A														
			and name of crew chief)	Drilling Method Borehole Diameter						B-14 / MW-13									
		/ironmental			Direct Push				- ı -	/ IV		13							
	e Kapu		_	& H S A 2" / 8"															
Date I	Orilling S	Started	Date Drilling Ended	ing Location State Pl	ane N,	Е		WTI			DNR (County	Code						
	7/11	/2022	7/11/2022	NΜ	/- SE, Sect. 3, T24	IN, R20E	<u> </u>	X	6742			5							
								Y	4585										
Locai Feet S		cation (If applica		Cou	-				own / 0	-	_								
Feet S Feet W Brown Village of Howard											d								
Dont	h Below	VII	SUAL SOIL CLAS	201	ICATION .	Sample		Graphic		Blow			PID						
	e/Elev. (ft)	V 1.				No.	uscs	Log	Well	Count	N value	Odor	(ppm)	Remarks					
	I	Black Silty SAN	Ground Surface E ID with organics, moist (1)				 	ATT			<u> </u>								
-	1 -	Black, City CAI	With Organios, moist (1	ороо	'/		OL	1355						[
1 —	-1.0 —	Gray, Silty SAN I	D. maiat					1333	4					Lab sample					
-	<u> </u>	Gray, Silly SAN	D, Moist					 †↓↓†						Sample					
2 —	-2.0	T 016 . 04 NB						11111						_					
-	-	Tan, Silty SAND), wet			SS-1		1+11+				No	0	_					
3 —	-3.0 —							1111	Н					_					
-	-						SM	‡‡	H					_					
4 —	-4.0							11111						<u> </u>					
-	-							11111	H					_					
5 —	-5.0 						_	$\prod_{i \in I} \prod_{j \in I} a_j$						_					
٠ <u> </u>	-5.0	Tannish gray, Si	ilty SAND , wet					II+I	IH					_					
-								[] [_					
0-	-6.0 		SILT with organics, wet				OL	1333	1 🛛					_					
		Tannish gray, Si	ilty SAND , wet				SM	 ‡‡‡‡	H					-					
7—	-7.0 	Tannish gray, Si	ilty CLAY, wet					777	10										
-	-					SS2		Y///	H			No	0	-					
8 —	-8.0							<i>[///</i> /						_					
-								$V//_{2}$	IA					-					
9 —	-9.0 —							ľ///	H					_					
] [$V//_{I}$											
10 —	-10 —						1	V///	H					_					
_	1 -							V//,											
11 —	-11.0 —						CL	1999						_					
-	1 -							ľ///						-					
12 —	-12.0 —							l///						_					
-	-					SS-3		1///	lН			No	0	_					
13 —	-13.0							1777						_					
-	-							[///						-					
14.0 —	-14.0							<i>[///</i> /						_					
-	-							$V//_{I}$						-					
15 —	-15 							111						_					
-			END OF BORIN	NG: 1	5.0'									_					
- 16.0 —	-16.0 						1												
-0.0	-10.0						1							_					
17 O	17.0						1							-					
17.0 —	-17.0 						1							_					
-	ا													-					
18.0 —	-18.0																		
-	-													_					
l herel	by certify	that the informat	tion on this form is true and	d corre	ect to the best of mv kn	owledae		1	-										
Signat					Brian Youngwir		G	enera	l Ena	ineer	ing C	ompa	any						
-		Baine	(lame with	•	J				lver Lal		_	_	-						
		vruin	Goungwirth	•						ae WI									

State of Wisconsin
Department of Natural Resources

Route To:	
Solid Waste	□Ha
Emergency Response	Un
Mactowator	□\\/ _*

Haz. Waste
Underground Tanks
Water Resources
ا م

Soil Boring Log Information Form 4400-122

					□Other									Page 1 of 1			
		ct Name		GE	C Project No.	Wis. Uni	que N	lo.	Boring	g Num	ber						
The Solberg Company - Site 2					2-0919-397B N/A												
			and name of crew chief)	Drilling Method Borehole Diameter						R	-15	/ M	/ MW-14				
		vironmental ·			Direct Push												
	Kapu		In. c. p. w	I	& HSA		" / 8"	1	\A/TI	104		IDND (IR County Code				
Date L	Orilling S		Date Drilling Ended		ing Location State Plan		Е		WTI 6742			DNK	Jounty	Code			
	7/11	/2022	7/11/2022	N۷	V- SE, Sect. 3, T24N	l, R20E		X	4585					5			
Local	Grid Lo	cation (If applica	able)	Cou	ınty			Civil T			illage	1					
Feet S		Feet			own				I Town / City / Village age of Howard								
	1			T	1	villag	1	Towar									
	n Below e/Elev. (ft)	VIS	SUAL SOIL CLAS	SSIF	FICATION	Sample No.	uscs	Graphic Log	Well	Blow Count	N value	Odor	PID (ppm)	Remarks			
Suriace			Ground Surface E			140.		Log		Count			(ppiii)				
-	-	Black, Silty SAN	ID with organics, moist (T	opso	il)		OL	1533						_			
1 —	-1.0	_						1333									
-	-	Tan, Silty SAND), moist to wet														
2 —	-2.0													_			
-	-	Tannish gray, Si	iltv SAND. wet			SS-1						No	0	=			
3 —	-3.0	3 7,	,					I†↓↓†	ΙН					_			
-] _								Ш					_			
4 —	-4.0						SM	l∔Ï Ĭ∔	ΙA					<u> </u>			
_]							IJŦŦIJ	Ш					=			
5 —	-5.0					-			l A					_			
_]]							‡‡	Ш					_			
6 —	-6.0 —								l H								
_]								Ш					_			
7 —	-7.0 —	Gray, Clayey SI	IT wet					1111	łΗ								
_]]					SS2	ML		J			No	0	_ _			
8 —	-8.0 —	Gray, Silty SAN I	SILT with organics, wet			_	OL	1333	ł A								
_]]	Oray, Only Or at	5 , 11 50				SM	l† Į Į†	П					_			
9 —	-9.0							† ‡ ‡ †	l A								
_]]	Tannish gray, Si	ilty CLAY, wet					77/	18					_			
10 —	-10 —							Y///	ΙН					_			
_]							V//.	ΙA					=			
11 —	-11.0 —							V//,	Ш					_			
-	-							[///,	l H					_			
12 —	-12.0 						CL	M//,	Ш			l	_				
-						SS-3		M///	lΒ			No	0	-			
13 —	-13.0 —							V///						_			
14.0	14.0							[/// <i>]</i>						-			
14.0 —	-14.0 -							V//,						_			
15 —	_15 _							<u>///</u> /	<u></u>					_			
15 —	-15 —		END OF BORIN	G: 1	15.0'									_			
16.0 —	-16.0 																
.0.0	-10.0													_			
- 17.0 —	-17.0 													<u>-</u>			
														_			
- 18.0 —	-18.0 													_			
-														-			
_	<u> </u>													_			
		that the informat	tion on this form is true and	corr													
Signat	ure	8.	Clause it		Brian Youngwirth	⊢irm	G	enera	_		_	-	-				
		v ruin	Goungwirth					910 51	lver Lal Porta	ge WI		UN 34(J				
		1.	, -						. Orta	J~ **!	J J J J J						

Route To:	
Solid Waste	□н
Emergency Response	Πu
Wastewater	

☐ Haz. Waste
☐ Underground Tanks
☐ Water Resources
☐ Other

Soil Boring Log Information Form 4400-122

7-9

Page 1 of 1

Facility / Project Name				GF	C Project No.	Wis U	nique l	No.	Boring Number									
The Solberg Company - Site 2				GEC Project No. Wis. Unique No. 2-0919-397B N/A					20g Hullisol									
Boring	Drilled	By (Firm name a	and name of crew chief)	Drilling Method Borehole Diameter						- D 46 / NAVA 45								
		vironmental		Direct Push 2" / 8"						B-16 / MW-15								
	Kapug		T		& HSA													
Date D	rilling S	started	Date Drilling Ended	Bor	ing Location State Pla	ine N,	Е		WTI			DNR County Code						
	7/11	/2022	7/11/2022	N۷	V- SE, Sect. 3, T24	N, R20	Ε	X	6742 4585				5					
Local	Grid Lo	cation (If applica	ble)	Cou	unty						illage	<u> </u>						
Feet S		Feet			own			Civil Town / City / Village Village of Howard										
								villa	1	TOwar	u							
	Below Elev. (ft)	VIS	SUAL SOIL CLAS	SSII	FICATION	Sampl No.	uscs	Graphic Log	Well	Blow Count	N value	Odor	PID (ppm)	Remarks				
Surrace	/Elev. (II)	D 11 1 11 1	Ground Surface E	levat	ion:	140.		Log		Count			(ppiii)					
-	-	Drilled without sa	ampling to 13.0 feet											=				
1—	-1.0													_				
-	-													-				
2 —	-2.0																	
_	-																	
3 —	-3.0								ΙH					_				
-									П					-				
4 —	-4.0 —								lΗ					_				
-									lB					=				
5 —	-5.0								ΙП					_				
_									lB					-				
6—	-6.0 													_				
-	-7.0 								lΒ					=				
′ –	-1.0								ΙB					-				
8	-8.0													_				
_	-								l H					-				
9 —	-9.0 													_				
-	-								lΒ					-				
10 —	-10								l B					_				
_	_								Ш					_				
11 —	-11.0 —								Н					_				
	-								1 Ш					-				
12 —	-12.0								Ш					_				
1]								ΙĦ					7				
13 —	-13.0		END OF BORIN	ıG· ′	13.0'									_				
44.0	44.0		D O. DOM		. ÷.•									-				
14.0 —	-14.0 ——							1										
15 —	-15 							1										
-	-13													7				
16.0 —	-16.0 —																	
_	-													-				
17.0 —	-17.0							1										
-	_							1						=				
18.0	-18.0													_				
_														_				
l horal	W cortifi.	that the informat	ion on this form is true and	1 00=	ect to the boot of my long	wledge	<u> </u>	1		<u> </u>								
Signat	uro			a 0011	Brian Youngwirth		G	enera	l Eng	ineer	na C	ompa	anv					
Ü	2	Brian G	loungwirth				•		ilver Lal									
		0	U							ge WI								

Route To:	
Solid Waste	
Emergency Response	
Wastewater	

-
Haz. Waste
Underground Tanks
Water Resources
1

Soil Boring Log Information Form 4400-122

					□Other									Page 1 of 1
		ct Name		GE	C Project No.	Wis. Un	ique N	lo.	Boring	g Num	ber			
The	Solbe	erg Compar	ny - Site 2	2-0	919-397B	N/A								
			and name of crew chief)	•	Drilling Method	Boreho	e Dia	neter		D	17	/ R/	I\A/	16
On-S	ite Env	rironmental			Direct Push	,	2" / 8'	1		D	- 1 /	/ N	I V V -	10
Tony	Kapug	ji			& HSA	4	. / 0							
Date D	Prilling S	tarted	Date Drilling Ended	Bor	ing Location State Pla	ne N,	Е		WT	W91		DNR (County	/ Code
	7/11	/2022	7/11/2022	NIV	V- SE, Sect. 3, T24	N DONE		X	6742	99				5
	7/11	12022	7/11/2022	INV	V- 3E, 3ect. 3, 124	N, NZUL	-	Υ	4585	37				5
Local	Grid Lo	cation (If applica		Cou	ınty			Civil T	own / 0	City / V	'illage			
Feet S	i	Feet	W	Bro	own			Villad	ge of H	lowar	d			
							ī) · · T	1		1	ı	I
	Below	VIS	SUAL SOIL CLAS	SSIF	FICATION	Sample No.	uscs	Graphic Log	Well	Blow Count	N value	Odor	PID (ppm)	Remarks
Surrace	e/Elev. (ft)		Ground Surface E			NO.		Log		Count			(ppiii)	
_	_	Black, Silty SAN	D with organics, moist (T	opso	il Fill)			1333						-
								1533						Lab
1 —	-1.0 —						OL	1777						sample
_	_							1451						-
2 —	-2.0							1335						_
	_	Gray and black,	Silty SAND , trace gravel, ı	moist	(FILL)	SS-1						No	0	_
3 —	-3.0								ΙH					_
_							FILL		Ш					
4 —	-4.0						'		I A					_
_	-								H					-
5 —	-5.0								1 🛮					
Ť -	-	Tan, Silty SAND	, wet]	ΙH					-
-	-6.0								lН					-
_	-0.0								П					_
_	_							* *	H					-
7—	-7.0							╽┧╏╏╽						
_	_	Tannish gray, Si	lty SAND , wet			SS2		🛉 🛉	ΙД			No	0	_
8 —	-8.0							† †	H					_
_							SM	▍▍▋▋						_
9 —	-9.0						"		ΙH					_
-	-							† †						-
10 —	-10							† †	П					
-	-							\111	H					-
11 —	-11.0							╽╽╏╏						
-	-							• •	ΙH					-
40	-12.0							† †						-
12 —	-12.0							1771	18			NI-		
<u>-</u>	-	Tannish gray, Si	ilty CLAY , wet			SS-3		I <i>///</i>	18			No	0	-
13 —	-13.0							ľ ////						
_	_						CL	$W///_{J}$						_
14.0 —	-14.0							V//.						_
_]							1777]]
15 —	-15					-	-	1			-			
_			END OF BORIN	IG: 1	15.0'] = = = = = = = = = = = = = = = = = = =
16.0 —	-16.0													-
_	-													-
17.0 	-17.0													
-	_													-
- 18.0 	-19.0													-
10.0	-18.0 —													
_	-													-
herek	y certify	that the informat	ion on this form is true and	d corr	ect to the best of my kno	wledge	-		•	-	•		•	•
Signat					Brian Youngwirth		G	enera	I Eng	ineer	ing C	ompa	any	
•		Bring.	Joungwirth		J				ilver Lal		_	-	-	
		s court of	July Will							ge WI				

State of Wisconsin
Department of Natural Resources

Route To:	
Solid Waste	
Emergency Response	Ī
1 \A/ 4 - · · · - 4 - · ·	Ē

Haz. Waste	
Underground Tanks	
Water Resources	
704	

Soil Boring Log Information Form 4400-122

7-9°

Page 1 of 1

														rage rorr
		ct Name			Project No.	Wis. Un	ique N	lo.	Boring	y Num	ber			
		erg Compar		2-0	919-397B	N/A								
			and name of crew chief)		Drilling Method	Borehol	e Diar	neter		R	_18	/ M	IW-	17
		/ironmental			Direct Push	2	." / 8"	i			. 0	, 14		• •
	Kapug		Data Dalling Forder	le:	& HSA			1	\ <u>\</u>	104		מעם	3-11-1	Cada
Date I	Orilling S	started	Date Drilling Ended	Bor	ing Location State Pla	ane N,	Е		WTI 6742			DNK	Jounty	Code
	7/11	/2022	7/11/2022	N۷	/- SE, Sect. 3, T24	N, R20E		X	4585					5
Local	Grid I o	cation (If applica	hble)	Cou	ıntv			Civil T	own / 0		illage			
Feet S		Feet			-					-	_			
				BIC	own			villag	je of ⊦	iowai	a			
	h Below	VIS	SUAL SOIL CLAS	SSIF	FICATION	Sample	uscs	Graphic	Well	Blow	N value	Odor	PID	Remarks
Surface	e/Elev. (ft)		Ground Surface E	Elevat	ion:	No.	0000	Log		Count	raido	040.	(ppm)	Romano
	_	Grayish brown,	Clayey SILT , wet											-
-	-	Brown and oran	gish brown, Silty SAND , w	et				↓↓	ПГ					Lab
1	-1.0							† †						sample
-	-							I I I I I						-
2 —	-2.0							ll t t l					_	<u> </u>
-	-					SS-1		l ∤ ∏ ∤				No	0	-
3 —	-3.0							! † † !	Ш					
-] -							+ +	ΙH					_
4 —	-4.0							╽╏┇┇	Ш					
_] [SM	∐∳∳Ĭ	ΙД					
5 —	-5.0	Grayish brown,	Silty SAND wet				- 0	† †	l A					_
_] [o. ay.o 2. o,	oy o,					\}\$\	ΙД					_
6 —	-6.0							┃ ┆ ┃┃┃┃	H					
_	1 -													_
7 —	-7.0							+ +	ΙH					
_	1 :					SS2			Ш			No	0	
8 —	-8.0							∐∳∳Ĩ	ΙH					
-	j <u> </u>							†	Ш					<u>-</u>
9 —	-9.0	O		NI ANZ	Ol Oll Tt			777	H					
-	_	Grayish brown a	and Reddish brown, Silty C	LAY	and Clayey SIL1, wet			V//,	ΙН					_
10 —	-10 —						4	V//,	ΙA					
-	1 -							V//.	ΙН					-
11 —	-11.0							1///	ΙП					
-	- 1							V//	ΙH					-
12 —	-12.0						CL	$V//_{J}$	ΙД					<u> </u>
-	-					SS-3		V//,	H			No	0	-
13 —	-13.0							V//;	B					_
-	-							ľ///						=
14.0	-14.0							[/// <i>]</i>						_
-	-							$V//_{I}$						-
15 —	-15							1///						_
-	∮ -		END OF BORIN	NG: 1	5.0'									-
16.0 —	-16.0													_
-														<u>-</u>
17.0 —	-17.0													_
-	-													-
18.0 —	-18.0													<u>-</u>
-0.0 -	-													
_	<u> </u>													-
		that the informat	tion on this form is true an	d corre		_								
Signat	ture			,	Brian Youngwirt	h Firm	G	enera	_		_	_	_	
		Brian	e Goungwirth	é				916 Si	lver Lal			OX 340)	
			// //			1			Porta	ae WI	53901			

State of Wisconsin
Department of Natural Resources

Route 10:	
Solid Waste	☐ Haz. Waste
Emergency Response	Underground Tanl
Vastewater	☐ Water Resources

Soil Boring Log Information Form 4400-122

7-91

Page 1 of 1

														Page 1011
		ct Name			C Project No.	Wis. Uni	que N	lo.	Boring	g Numl	ber			
		erg Compar		2-0	919-397B	N/A								
			and name of crew chief)		Drilling Method	Borehol	e Diar	neter			R ₋ 1	9/	P7 .	.2
On-Site Environmental				Direct Push	2	2" / 8"		B-19 / PZ-2						
	Kapug		1	_	& HSA				L					
Date D	rilling S	tarted	Date Drilling Ended	Bor	ing Location State Pla	ane N,	Е		WTI			DNR (County	/ Code
	5/26	/2021	5/26/2021	NW	- SE, Sect. 3, T24N,	R20E		X	6742					5
l agal C	rid Lo	cation (If applica	hlo)	Col	untu.			Civil T	4585		illogo			
Feet S	oriu Loc	Feet	,	Cou	-					-	_			
		. 551	•	Bro	own			Villaç	ge of	Howa	ırd			
Depth	Below	VIS	SUAL SOIL CLAS	SSIF	ICATION	Sample		Graphic	Graphic Blow					
Surface/	Elev. (ft)		Ground Surface E			No.	USCS	Log	Well	Count	N value	Odor	(ppm)	Remarks
	_	Dark brown, Sar	ndy SILT , moist (Topsoil)				OL							Lab sample _
1—	-1 —	Orangish brown	and light brown, Silty SAN	ND, w	et									_
2 —	-2					SS-1		† †	ĦF			N0	0	_
3 —	-3 —							╽╁╎╎╁						
4 —	-4 —						SM							<u> </u>
5	-5	Light brown, Silt	V SAND Wet					╽┇┩┩╽						_
6 —	-6	Light brown, one	, 0, 112 , 110 1					╽ ╽┆┆						
7	-7					00.0		† †				NO	_]
8	-8	D. J.E. L. L.	Ol			SS-2		7 7				N0	0]
9	-9	Readish brown,	Clayey SILT , wet				ML]
10	-10													
11	-11 -	Brown and redd	ish brown, Silty CLAY and	Clay	ey SILT, wet			I///.]
12	-12 -							ľ///.]]
13 -	-13 -					SS-3		ľ///				No	0	ت ا
14 -	-14 -							///						
-	-							V///,						_
15	-15							I///,						
16 -	-16 -							M//.						
17	-17 –					SS-4	CL	V/7.				No	0	
18 -	-18 -							I///,						_
19 -	-19 -							I///,						
20	-20							M///,						
21	-21							M///						
22	-22					SS-5		V//				No	0	
23 -	-23					00-3		V//)	Ш			140		_ _
24 -	-24							V///	B]
25	-25	Drillod without s	ampling to 28.5 feet					177	l A					
26	-26	Dillied Without S	ampling to 20.5 leet						l A]
27	-27					SS-6						No	0]
28 -	-28]
29	-29		END OF BORIN	G: 2	28.5']
30	-30													
31	-31 -]
32	-32													
33 -	-33													
34	-34													
-	-													_
		that the informat	ion on this form is true an	d corr				· ·	l C		C			
Signatu	ıe	Rin	u Clamanini	4	Brian Youngwirt	⊓∣Firm	G	eneral	_		_	-	-	
		viii	n Goungwirt	10				916 Sil				UA 341	J	
			U -						runa	ge WI	JJ801			

MONITORING WELL CONSTRUCTION

Route To: Env. Respon	<u> </u>	water Other
Facility / Project Name	Local Grid Location of Well	Well Name
The Solberg Company - Site 2	Feet S Feet W	MW-12
License /Permit /GEC Project No.	Grid Origin Location	Wis. Unique No.
2-0919-397B		N/A
Type Of Well	Section Location of Waste / Source	Date Well Installed
Water Table Observatio X 11	NW - SE, Section 3, T24N, R20E	7/11/2022
Piezometer 12 Distance Well is From Waste/Source Boundary		Well Installed By: (Persons Name & Firm)
Distance Well is From Wasterbource Boundary		On-Site Environmental
Is Well a Point of Enforcement Std. Application		Gage Kapugi
Yes No	d downgradient n Not Shown	Cago (apagi
	1. Can and Look?	X Yes No
A. Protective pipe, top elevation	ft. MSL 1. Cap and Lock? 2. Protective cover p	
	a. Inside diamete	er: 4 in
B. Well casing, top elevation	ft. MSL b. Length: C. Material	4 ft Steel X 4
C. Land surface elevation	ft. MSL	Steel X 4 Other
	d. Additional pro	tection? X Yes No
D. Surface seal, bottom ft. MSL 0.5	ft. If yes, describe:	Expandable locking plug
	3. Surface seal:	Bentonite X 30
12. USCS Classification of soil near screen:		Concrete 1
GP GM GW SW SW SM X SC ML CL X	SP	Concrete Other
Bedrock		well casing and protective pipe:
40.0:		Bentonite X 30
13.Sieve analysis attached? Yes X	No Service Ser	Annular space seal Other
14. Drilling method used: Rotary	50	
Hollow stem auger		
Direct Push Other		mud weightBentonite-sand slurry 35 mud weightBentonite slurry 31
15. Drilling fluid used: Water 02 Air	50	oniteBentonite-cement grout 50
Drilling Mud 🔲 03 None		me added for any of the above
16. Drilling additives used? Yes X	No f. How installed:	Tremie 1 Tremie pumped 2
Describe		Gravity X 8
17. Source of water (attach analysis)	, 6. Bentonite seal:	a. Bentonite Granules X 33
17. Codioc of water (attach analysis)		3/8 in. 1/2 in Bentonite pellets 32
	/	Other
E. Bentonite seal, top ft. MSL or	0.5 ft. 7.7. Fine sand mate	rial: Manufacture, product name and mesh size
	a. Sidley#7	
F. Fine sand, topft. MSL or	2.0 ft. V. Volume added	0.5 bags ft3
G. Filter pack, topft. MSL or	2.5 ft. 8. Filter pack mate a. Sidley #5	rial: Manufacture, product name and mesh size
H. Screen joint, topft. MSL or		5 Bags ft3
I. Well bottomft. MSL or	13.0 ft. 9.Well casing:	Flush threaded PVC schedule 40 X 23 Flush threaded PVC schedule 80 24
J. Filter pack , bottomft. MSL or	15.0 ft.	Other
K. Borehole, bottomft. MSL or	15.0 ft. 10. screen Materia a: Screen type:	l: Factory Cut X 11
L. Borehole, diameter 8 in		Continuous slot 1 Other 1
M. O.D. Well casing <u>2.375</u> in	b: Manufacture	Hole Products
N. I.D. Well casing 2.067 in	c: Slot size: d. Slotted length	0.01 In. 10 It.
	11.Backfill Materia	l: None X 14 Other

MONITORING WELL CONSTRUCTION

Department of Natural Resor		•		Form 4400-113		Re	ev. 4-90
	Route To: Env. Respon	Solid Waste se & Repair	Haz. Waste Undergroun		ewater L		
Facility / Project Name		Local Grid Location	on of Well		Well Name		
The Solberg Comp		Feet S Fe	et W		MW-13		
License /Permit /GEC Proje	ect No.	Grid Origin Locati	on		Wis. Unique	No.	
2-0919-397B					N/A		
Type Of Well Water Table O	Observatio X 11	Section Location			Date Well In		
Piezometer	12	NW - SE, Secti				7/11/2022	
Distance Well is From Was	te/Source Boundary	l <u>—</u>	ell Relative to \			d By: (Persons Name	e & Firm)
Is Well a Point of Enforcem	nent Std. Application	u Upgradier	nt s	Sidegradient	_	nvironmental	
Yes	No	d downgrad	ient n	Not Shown	Gage Kap	ugi	
			_	1. Cap and Lock?		X Yes	□ No
A. Protective pipe, top elevation		_ft. MSL _		2. Protective cover			_
B. Well casing, top elevation		ft. MSL		a. Inside diameb. Length:	ter:	4 in 4 ft	
				C. Material		Steel	4
C. Land surface elevation		_ft. MSL	-	d. Additional pr	otection?	Other X Yes	∐ No
D. Surface seal, bottom	ft. MSL 0.5	<u>5</u> ft.		If yes, describe	:	Expandable locking	g plug
12. USCS Classification of soil	near screen:	711		3. Surface seal:		Bentonite X Concrete] 30] 1
GP GM	GW SW	SP 🔲 📗			Concrete	Other	j '
SM X SC Bedrock	ML CL X	СН	×	4. Material between	well casing and	nrotective nine	
13.Sieve analysis attached?	☐ Yes X	No		4. Material between	· ·	Bentonite X	30
						Other	j
14. Drilling method used:	Rotary Hollow stem auger			5. Annular space se	eal a.	. Granular Bentonite X] 33
Direct Push	Other			b Lbs/g	al mud weightB	entonite-sand slurry	35
15. Drilling fluid used:	Water 02 Air	· 50			-	Bentonite slurry ntonite-cement grout] 31] 50
	ng Mud 🔲 03 None	41		e Ft3 vo	lume added for any	of the above	-
16. Drilling additives used?	☐ Yes 🗓	No		f. How installed:		Tremie] 1] 2
Describe						Gravity X	=
17. Source of water (attach a	nalysis)			6. Bentonite seal:	a.	Bentonite Granules X	33
		-/		b ½ in.X	3/8 in ½ in	Bentonite pellets	32
						Other [J
E. Bentonite seal, top	ft. MSL or	0.5 ft. /		7. Fine sand mate a. Sidley # 7	erial: Manufacture	e, product name and me	sh size
F. Fine sand, top	ft. MSL or	2.0 ft. / (/////		v. Volume added	0.5 bags	ft3	
G. Filter pack, top	ft. MSL or	2.5 ft.		8. Filter pack mat a. Sidley #5	erial: Manufacture	e, product name and me	esh size
H. Screen joint, top	ft. MSL or	3.0 ft.		v. Volume added	5 Bags	ft3	
I. Well bottom	ft. MSL or	13.0 ft.		9.Well casing:		PVC schedule 40 PVC schedule 80	23
J. Filter pack , bottom	ft. MSL or	15.0 ft.				Other _	
K. Borehole, bottom	ft. MSL or	15.0 ft.		10. screen Materi		Factory Cut	(11
L. Borehole, diameter	<u>8</u> in			a. 30,3611 type.		Continuous slot Other	1 1
M. O.D. Well casing	2.375 in			b: Manufacture c: Slot size:	Hole F	Products 0.01 in	
N. I.D. Well casing	2.067 in			d. Slotted lengt	h:	10 II	
			\	11.Backfill Materi	al:	None X] 14]

MONITORING WELL CONSTRUCTION

Department of Natural Resource	Route To: Env. Respons	Solid Waste se & Repair	Haz. Waste Undergroun		ewater Other	Rev. 4-90
Facility / Project Name		Local Grid Locatio	n of Well		Well Name	
The Solberg Compar	ny - Site 2	Feet S Fee	et W		MW-14	
License /Permit /GEC Project		Grid Origin Location	n		Wis. Unique No.	
2-0919-397B					N/A	
Type Of Well		Section Location o	f Waste / Sou	irce	Date Well Installed	
Water Table Obs Piezometer	ervatio <u> X </u> 11 12	NW - SE, Section	on 3, T24N,	R20E	7/11/2022	2
Distance Well is From Waste/	Source Boundary	Location to We	II Relative to	Waste/Source	Well Installed By: (Persons	Name & Firm)
		u Upgradien	t s	Sidegradient	On-Site Environment	:al
Is Well a Point of Enforcemen		d downgradi	ent n	Not Shown	Gage Kapugi	
Yes	No	<u> </u>			<u> </u>	
A. Protective pipe, top elevation		ft. MSL	/,	Cap and Lock? Protective cover Protective diameter	•	No No
B. Well casing, top elevation		ft. MSL		a. Inside diameb. Length:		9 in 1 ft
0				C. Material	Ste	
C. Land surface elevation		_ft. MSL	┩ (d. Additional pro	Otheotection?	er No
D. Surface seal, bottom	ft. MSL 0.5	ft.		If yes, describe	Expandable lo	
12. USCS Classification of soil nea	ar screen:	\sim		3. Surface seal:	Bentonite Concrete	X 30 1
	sw sw	SP 🔲 📗			Concrete Other	
SM X SC Bedrock	ML X CL X	СН	×	. 4 Material hetween	well casing and protective pipe	٥.
Dedrock				4. Material between	Bentonit	
13.Sieve analysis attached?	Yes X	No			Annular space sea	=
14. Drilling method used:	Rotary	50			Oth	# []
Direct Push	Hollow stem auger			5. Annular space se		=
Direct Push	Other				al mud weightBentonite-sand slur I mud weightBentonite slur	
S	/ater 02 Air ⁄/ud 03 None	50 X 41			toniteBentonite-cement gro	out 50
Drilling N	wuu os None			e Ft3 voi f. How installed:	ume added for any of the above Trem	nie 1
16. Drilling additives used?	Yes X	No			Tremie pumpe	=
Describe					Gravi	ity X 8
17. Source of water (attach analy	/sis)		/	6. Bentonite seal:	a. Bentonite Granule	=
		7		b ½ in. X	3/8 in. 1/2 in Bentonite pelle Oth	=
E. Bentonite seal, top	ft. MSL or	0.5 ft.	1010A	7. Fine sand mate	erial: Manufacture, product name ar	_
F. Fine sand, top	ft. MSL or	2.0 ft.		a. Sidley # 7 v. Volume added	0.5 bags	ft3
G. Filter pack, top	ft. MSL or	2.5 ft.		8. Filter pack mate	erial: Manufacture, product name a	nd mesh size
H. Screen joint, top	ft. MSL or	3.0 ft.	7/		5 Bags	ft3
I. Well bottom	ft. MSL or	13.0 ft.		9.Well casing:	Flush threaded PVC schedule 4 Flush threaded PVC schedule 8	=
J. Filter pack , bottom	ft. MSL or	15.0 ft.			Othe	er 🔲
K. Borehole, bottom	ft. MSL or	15.0 ft.		 10. screen Materi a: Screen type: 	al: Factory Ci	ut X 11
L. Borehole, diameter	<u>8</u> in			a. 00/00/1 type.	Continuous slo	ot 🔲 1
M. O.D. Well casing	2.375 in			b: Manufacture		_ _{in}
N. I.D. Well casing	2.067 in			c: Slot size: d. Slotted lengtl	0.01 h: 10	in. tt.
			\	\11.Backfill Materia	al: Nor Othe	=

MONITORING WELL CONSTRUCTION

Department of Natural Resources	Route To: Env. Respons	Solid Waste	_	łaz. Waste Indergrour		ewater Other		ev. 4-90
Facility / Project Name		Local Grid Loc	cation of	f Well		Well Name		
The Solberg Company	- Site 2	Feet S	Feet W			MW-15		
License /Permit /GEC Project No.		Grid Origin Lo	cation			Wis. Unique	No.	
2-0919-397B						N/A		
Type Of Well		Section Locat	ion of W	aste / Sοι	ırce	Date Well Ins	stalled	
Water Table Observa Piezometer	12	NW - SE, S					7/11/2022	
Distance Well is From Waste/Sou	rce Boundary			elative to	Waste/Source		d By: (Persons Name	& Firm)
Is Well a Point of Enforcement St	d Application	u Upgra	adient	s	Sidegradient		nvironmental	
Yes No	u. Application	d down	gradient	n	Not Shown	Gage Kapı	ugi	
						<u> </u>	<u> </u>	
A. Protective pipe, top elevation		ft. MSL 、			 Cap and Lock? Protective cover 		X Yes	No
The residence pipe, top electation		-1 1		//	a. Inside diame		9 in	
B. Well casing, top elevation	-	ft. MSL		$\frac{4}{3}$	b. Length:		1 ft	7 4
C. Land surface elevation		ft. MSL、		V	C. Material		Steel <u>)</u> Other	4
	-	-			d. Additional pr		X Yes	No
D. Surface seal, bottom ft. M	ISL 0.5	ft.		1	If yes, describe		Expandable lockin	g plug
					- 3. Surface seal:		Bentonite X] 30
12. USCS Classification of soil near sci		$\mathcal{N}_{\mathcal{A}}$				0 1	Concrete] 1
GP GM GW	SW X	SP CHI				Concrete	Other	J
Bedrock	<u></u> <u></u>			~	4. Material between	well casing and	· · · · —	_
13.Sieve analysis attached?	Yes X	No				Δni	Bentonite X nular space seal] 30]
10.0icve analysis attached:						AIII	Other	j
14. Drilling method used:	•	50			4 F. Ammulan angas as	· al	- 	1 00
Direct Push	ollow stem auger Other				 5. Annular space se b. Lbs/a; 		Granular Bentonite X entonite-sand slurry] 33] 35
	_	_ :::			c Lbs/ga	I mud weight	Bentonite slurry	31
15. Drilling fluid used: Water Drilling Mud		50 X 41				toniteBent ume added for any	tonite-cement grout	50
Brilling Widd	00 140110				f. How installed:	unic added for any	Tremie] 1
16. Drilling additives used?	Yes X	No					Tremie pumped	2
Describe							Gravity X	8
17. Source of water (attach analysis)					6. Bentonite seal:	a.	Bentonite Granules X	33
					b 1/4 in. X	3/8 in. 1/2 in	Bentonite pellets Other] 32]
E. Bentonite seal, top	ft. MSL or	0.5 ft.			7. Fine sand mate	erial: Manufacture	- <u>-</u>	J sh siza
E. Bertonic scal, top	Tt. MOE Of				a. Sidley#7	Tran. Manarastars,	, product name and me	511 5120
F. Fine sand, top	ft. MSL or	2.0 ft.			v. Volume added	0.5 bags	ft3	
G. Filter pack, top	ft. MSL or	2.5 ft.	960 - 6 880 - 8		 8. Filter pack mat a. Sidley #5 	erial: Manufacture	e, product name and me	esh size
H. Screen joint, top	ft. MSL or	3.0 ft.			v. Volume added	5 Bags	ft3	
I. Well bottom	ft. MSL or	13.0 ft.	\exists	969 km 049 km 048 km	9.Well casing:		PVC schedule 40 D	23 24
J. Filter pack , bottom	ft. MSL or	15.0 ft.	\mathbb{H}^{2}				Other [
K. Borehole, bottom	ft. MSL or	15.0 ft.			10. screen Materi a: Screen type:	al:	Factory Cut >	11
L. Borehole, diameter	<u>8</u> in						Continuous slot Other	1
M. O.D. Well casing 2.3	75 in				b: Manufacture c: Slot size:	Hole P	roducts 0.01 in	1.
N. I.D. Well casing 2.0	67 in				d. Slotted lengt	h:	10 tt	
					\11.Backfill Materia	al:	None X] 14]

MONITORING WELL CONSTRUCTION

Department of Natural Resou		C-15-1 W	Form 4400	
	Route To: Env. Respons	Solid Waste se & Repair	Haz. Waste	/astewater ☐ Other ☐
Facility / Project Name		Local Grid Location	of Well	Well Name
The Solberg Comp		Feet S Feet	W	MW-16
License /Permit /GEC Proje	ect No.	Grid Origin Location	l	Wis. Unique No.
2-0919-397B				N/A
Type Of Well Water Table C	Observatio X 11	Section Location of		Date Well Installed
Piezometer	12	NW - SE, Section		7/11/2022
Distance Well is From Was	te/Source Boundary	u Upgradient	Relative to Waste/Source s Sidegradien	
Is Well a Point of Enforcem	_	d downgradier	_ v	Gage Kapugi
Yes	No	a aomigradion	ii ii ii iii ii ii ii ii ii ii ii ii ii	
A. Protective pipe, top elevation		ft. MSL 、	1. Cap and Loc 2. Protective co	
_	-	•	a. Inside di	ameter: 4 in
B. Well casing, top elevation		ft. MSL	b. Length: C. Material	4 ft Steel X 4
C. Land surface elevation		ft. MSL	d Addition:	Other Other No
D. Surface seal, bottom	ft. MSL 0.5	_ft.	If yes, desc	
12. USCS Classification of soil	near screen.	7111	3. Surface seal	: Bentonite X 30 Concrete 1
GP GM	GW SW	SP 🔲		Concrete Other
SM X SC Bedrock	ML CL X	СН	4. Material betw	veen well casing and protective pipe: Bentonite X 30
13.Sieve analysis attached?	Yes X	No		Annular space seal Other
14. Drilling method used:	Rotary Hollow stem auger	50	✓ 5. Annular spac	ce seal a. Granular Bentonite X 33
Direct Push	Other			bs/gal mud weightBentonite-sand slurry 35
15. Drilling fluid used:	Water 02 Air			bs/gal mud weightBentonite slurry 31 BentoniteBentonite-cement grout 50
		X 41		t3 volume added for any of the above
16. Drilling additives used?	☐ Yes χ	No	f. How install	ed: Tremie 1 Tremie pumped 2
Describe				Gravity X 8
17. Source of water (attach a	nalysis)		6. Bentonite se	
			b 1/4 in.[.	X 3/8 in. 1/2 in Bentonite pellets 32 Other
E. Bentonite seal, top	ft. MSL or	0.5 ft.	7. Fine sand r	material: Manufacture, product name and mesh size
F. Fine sand, top	ft. MSL or	2.0 ft.	· · / · / · / · · · · · · · · · · · · ·	0.5 bags ft3
G. Filter pack, top	ft. MSL or	2.5 ft.	8. Filter pack a. Sidley	material: Manufacture, product name and mesh size
H. Screen joint, top	ft. MSL or	3.0 ft.	v. Volume ad	
I. Well bottom	ft. MSL or	13.0 ft.	9.Well casing	Flush threaded PVC schedule 40 X 23 Flush threaded PVC schedule 80 24
J. Filter pack , bottom	ft. MSL or	15.0 ft.		Other
K. Borehole, bottom	ft. MSL or	15.0 ft.	10. screen Ma	
L. Borehole, diameter	<u>8</u> in		a. Screen t	ype: Factory Cut X 11 Continuous slot 1 Other
M. O.D. Well casing	2.375 in		b: Manufac c: Slot size	ture Hole Products
N. I.D. Well casing	2.067 in		d. Slotted le	
			11.Backfill Ma	terial: None X 14 Other

MONITORING WELL CONSTRUCTION

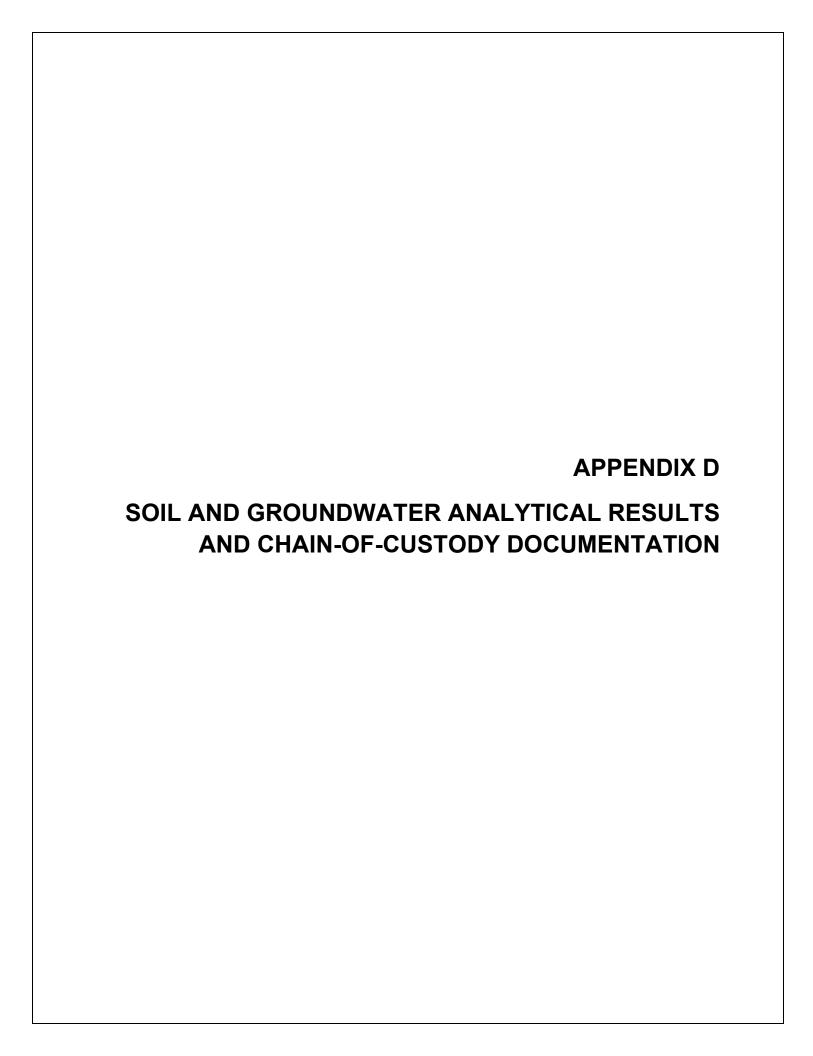
Department of Natural Resou	urces Route To: Env. Respons	_	Form 4400-113 az. Waste Waste Nderground Tanks	A Rev. 4-90 ewater Other
Facility / Dual act Name			· <u> </u>	
Facility / Project Name	any Sito 2	Local Grid Location of Feet S Feet W	vveii	Well Name MW-17
The Solberg Comp		Grid Origin Location		Wis. Unique No.
2-0919-397B		ona ongm zooanon		N/A
Type Of Well		Section Location of Wa	aste / Source	Date Well Installed
Water Table C Piezometer	<u> </u>	NW - SE, Section 3		7/11/2022
Distance Well is From Was	te/Source Boundary		elative to Waste/Source	Well Installed By: (Persons Name & Firm)
Is Well a Point of Enforcem	ent Std. Application	u Upgradient	s Sidegradient	On-Site Environmental
Yes	No	d downgradient	n Not Shown	Gage Kapugi
A. Protective pipe, top elevation B. Well casing, top elevation		ft. MSL ft. MSL	1. Cap and Lock? 2. Protective cover particular diame b. Length: C. Material	
C. Land surface elevation		ft. MSL	d Additional on	Other No.
D. Surface seal, bottom	ft. MSL 0.5	_ft.	d. Additional pro	
12. USCS Classification of soil GP GM SM X SC Bedrock	near screen: GW SW ML X CL	SP CH	3. Surface seal: 4. Material between	Bentonite X 30 Concrete 1 Other 1 well casing and protective pipe:
13.Sieve analysis attached?	Yes X	No		Bentonite X 30 Annular space seal ☐ Other ☐
14. Drilling method used: <u>Direct Push</u> 15. Drilling fluid used: Drillir	Rotary Hollow stem auger Other Water 02 Air ng Mud 03 None	X 41	cLbs/gal d% Bent	al a. Granular Bentonite X 33 al mud weightBentonite-sand slurry 35 Il mud weightBentonite slurry 31 toniteBentonite-cement grout 50 ume added for any of the above
16. Drilling additives used? Describe	Yes X	No	f. How installed:	Tremie
17. Source of water (attach a	nalysis)		6. Bentonite seal:	a. Bentonite Granules X 33 3/8 in. Bentonite pellets 32 Other
E. Bentonite seal, top	ft. MSL or	0.5 ft. ///////////////////////////////////	7. Fine sand mate	erial: Manufacture, product name and mesh size
F. Fine sand, top	ft. MSL or	2.0 ft.		0.5 bags ft3
G. Filter pack, top	ft. MSL or	2.5 ft.	8. Filter pack mate	erial: Manufacture, product name and mesh size
H. Screen joint, top	ft. MSL or	3.0 ft.	v. Volume added	5 Bags ft3
I. Well bottom	ft. MSL or	13.0 ft.	9.Well casing:	Flush threaded PVC schedule 40 X 23 Flush threaded PVC schedule 80 24
J. Filter pack , bottom	ft. MSL or	15.0 ft.		Other
K. Borehole, bottom	ft. MSL or	15.0 ft.	10. screen Materia	al: Factory Cut X 11
L. Borehole, diameter	<u>8</u> in		<u>.</u>	Continuous slot 1 Other
M. O.D. Well casing	2.375 in		b: Manufacture c: Slot size:	Hole Products 0.01 in.
N. I.D. Well casing	2.067 in		d. Slotted lengtl	
			11.Backfill Materia	al: None X 14 Other

MONITORING WELL CONSTRUCTION

Department of Natural Resor	urces	_	_		Form 4400-113		R	lev. 4-90
	Route To: Env. Respon	Solid Waste L se & Repair	_	Waste erground	Wast d Tanks <u></u>	ewater L		
Facility / Project Name		Local Grid Lo	ocation of We	ell		Well Name		
The Solberg Comp	any - Site 2	Feet S	Feet W			PZ-2		
License /Permit /GEC Proje	ect No.	Grid Origin L	ocation			Wis. Unique	No.	
2-0919-397B						N/A		
Type Of Well Water Table C	Observatio X 11	Section Loca				Date Well In		
Piezometer	12	NW - SE, S					7/11/2022	
Distance Well is From Was	te/Source Boundary				Vaste/Source		ed By: (Persons Nam nvironmental	e & Firm)
Is Well a Point of Enforcem	nent Std. Application	1 ' '		` <u> </u>	Sidegradient	Gage Kap		
Yes	No	d dow	ngradient	1 <u> </u>	Not Shown	3-1-1-		
					1. Cap and Lock?		X Yes	No
A. Protective pipe, top elevation		ft. MSL		//	Protective cover a. Inside diame		4 ir	1
B. Well casing, top elevation		_ft. MSL			b. Length:		4 ft	
C. Land surface elevation		ft. MSL	ᡮ	,	C. Material		Steel Other	<u>X</u> 4
D. Surface seal, bottom	ft. MSL 0.5	ift.	$I \cap I$		d. Additional prIf yes, describe		X Yes [Expandable locking	No No
	11. WOL	$\frac{1}{2}$	`	Ĭ	-			_
12. USCS Classification of soil	near screen:	\mathcal{A}			3. Surface seal:		Bentonite X Concrete	[] 30] 1
GP GM	GW SW	SP	<u> </u>			Concrete	Other	j
SM X SC Bedrock	ML X CL X	CH		X	4. Material betweer	well casing and	_	77 00
13.Sieve analysis attached?	Yes X	No				Ar	Bentonite ☐ nnular space seal ☐ Other ☐	30
14. Drilling method used:	Rotary							
Direct Push	Hollow stem auge Othe				 Annular space se b. Lbs/g 		i. Granular Bentonite \(\) Bentonite-sand slurry	(<u> </u>
15. Drilling fluid used:	Water 02 Air	50				-	Bentonite slurry	31 50
		X 41		:		lume added for any	_	_ 30
16. Drilling additives used?	☐ Yes 🗓	No -			f. How installed:		Tremie Tremie Tremie Tremie pumped] 1] 2
Describe							Gravity 2	=
17. Source of water (attach a	nalysis)	[:		/	6. Bentonite seal:	a.	. Bentonite Granules 🔀	33
			<i>z</i> ====		b ¼ in. X	3/8 in ½ ir	n Bentonite pellets Other	32
E. Bentonite seal, top	ft. MSL or	0.5 ft.	Z 03 0302	/ /	7. Fine sand mate	erial: Manufacture	_	esh size
F. Fine sand, top	ft. MSL or	21.0 ft.			a. Sidley # 7 v. Volume added	1 bags	ft:	3
G. Filter pack, top	ft. MSL or	22.0 ft.			8. Filter pack mat	erial: Manufactur	re, product name and m	nesh size
H. Screen joint, top	ft. MSL or	_23.0 ft.	一日 /		a. Sidley #5 v. Volume added	3 Bags	ft:	3
I. Well bottom	ft. MSL or	28.0 ft.		/	9.Well casing:		I PVC schedule 40 [X 23 24
J. Filter pack , bottom	ft. MSL or	28.5 ft.				r idsir tiricaded	Other [
K. Borehole, bottom	ft. MSL or	28.5 ft.		`	10. screen Mater			<u>v</u>
L. Borehole, diameter	<u>8</u> in]	a: Screen type:		Factory Cut Continuous slot Other	X 11 1
M. O.D. Well casing	2.375 in		`		b: Manufacture	Hole F	Products	
N. I.D. Well casing	2.067 in				c: Slot size: d. Slotted lengt	h:	0.0.	n. t.
				\	11.Backfill Materi	al:	None [] Other [X 14

Department of Natural Resources				Forn	n 4400-113E	3		Rev. 4-90		
	Route To:	:	¬	\\\\-	\\/ t t	_				
Env. Response & Repair		id Waste [derground Ta		Waste	Wastewate	Γ				
		3		<u> </u>		_				
Facility / Project Name	Cou	unty Name				Well Na	me			
The Solberg Company - Site	2		Brown			MW-	MW-12			
Facility License/ Permit No./GEC Project	No.	County	/ Code Wis. Unique Well Number			er	r DNR Well Number			
2-0919-397B			68		n/a		n/a			
1. Can this well be purged dry?	X Yes	No		Before De	velopmen	t	After Develo	pment_		
2. Well development method	_		11. Dept	h to water	4.4	ft.	a ft.			
surge with bailer and bailed surged with bailer and pumped surged with block and bailed	☐ 41 ☐ 61 ☐ 42		From Date	n top of well casing 7/11/22	b.		b. 7/11/22			
surged with block and pumped surge with block, bailed and pumped compressed air	 62 70 20		Time	11:38	C.	p.m. X a.m.	c. 2:45	X p.m.☐ a.m.		
bailed only pumped only pumped slowly Other	☐ 10 ☐ 51 ☐ 50			ment in well ttom		inches		inches		
2. Time aport developing well		187 min.	13.Wate	r clarity						
Time spent developing well Depth of Well (from top of casing)		15.52 ft.		Clear Turbid (Describe)	X] 10] 15	Clear Turbid (Describe)	X 10 15		
5. Inside diameter of well		2.00 in.		(Describe)	Cloudy		(Describe)			
6.Volume of water in filter pack and well casir	ng	10.12 gal.	Fill in if	fluids were use	ed and wells	is at solid	waste facility:	l		
7. Volume of water removed from well		50 gal.					, I			
8. Volume of water added (if any)		0 gal.		l suspended blids	N/A	mg/l	N/A	mg/l		
9. Source of water added None										
			15. COD	ı	N/A	mg/l	N/A	mg/l		
10. Analysis performed on water added? (If yes, attach results)	☐ Yes	□ No								
16. Additional comments on development										
Well developed by: Person's Name and Firm			I hereby	certify that the al	oove informati	ion is true a	and correct to the best of my	knowledge.		
, ,			Signatu	-			•	J		
Name: Brian Youngwirth	_				The state of	- Journ	gwirth			
			Print Ini	tials: <u>2</u>	3 Cf	_				
Firm General Engineering Comp	any		Firm:		General E	Engineerin	g Company			

Department of Natural Resources				Form	4400-113	В		Rev. 4-90
	Route T	o: Solid Waste	П Нат	. Waste	Wastewate	er		
Env. Response & Repair		Underground Ta		Other	vvasiowaii	Ci		
						_		
Facility / Project Name	_	County Name				Well Nar		
The Solberg Company - Site			Brown			MW-	13	
Facility License/ Permit No./GEC Project	t No.	County	y Code	Wis. Unique	Well Numl	ber	DNR Well Number	
2-0919-397B			68		n/a		n/	'a
1. Can this well be purged dry?	X Yes	No		Before Dev	/elopmei	nt	After Deve	lopment
2. Well development method			11. Dep	th to water	5.26	ft.	a. ft.	
surge with bailer and bailed	☐ 41		Fro	m top of well casing				
surged with bailer and pumped surged with block and bailed	☐ 61 ☐ 42		Date	7/11/22	b.		b. 7/11/22	
surged with block and pumped	☐ 72 ∑ 62		Date	1/11/22	D.		D. 7711722	
surge with block, bailed and pumped	<u> </u>		Time	10:28	C.	p.m.	c. 12:15	X p.m.
compressed air	☐ 20 ☐ 40					X a.m.		a.m.
bailed only pumped only	☐ 10 ☐ 51		12. Sed	liment in well				
pumped slowly	☐ 50		b	ottom		inches		inches
Other								·
2. Time apont developing well		107 min.	13.Wate	er clarity				
3. Time spent developing well		107 111111.		Clear		10	Clear	X 10
4. Depth of Well (from top of casing)		15.67 ft.		Turbid	X	15	Turbid	15
				(Describe)	o		(Describe)	
5. Inside diameter of well		2.00 in.			Cloudy			-
6.Volume of water in filter pack and well casis	ng	9.47 gal.				ı		'
7. Volume of water removed from well		50 gal.	Fill in if	fluids were use	d and wells	s is at solid v	waste facility:	
7. Volume of water removed from well		oo gai.				Ī		
8. Volume of water added (if any)		0 gal.		al suspended				
9. Source of water added None			s	olids	N/A	mg/l	N/	'A mg/l
<u></u>								
			15. COI	ס	N/A	mg/l	N/	'A mg/l
10. Analysis performed on water added? (If yes, attach results)		Yes No						
(,,,			ı					
16 Additional comments on development								
16. Additional comments on development								
Well developed by: Person's Name and Firm			I hereby	certify that the ab	ove informa	ition is true ar	nd correct to the best of m	ny knowledge.
Duine Variante			Signati	ure:	sian.	Claure	nwirth	
Name: Brian Youngwirth	_				au l	Journey		
			Print In	nitials: ${\cal B}$	G			
					0			
Firm General Engineering Comp	any	-	Firm:		General	Engineering	ı Company	
			Firm:		General	Linginicetiing	, company	


Department of Natural Resources				For	m 4400-113E	3		Rev. 4-90		
	Route To:	Г	-	ш. П						
Env. Response & Repair		lid Waste [derground Ta		Waste	Wastewate	r				
Liv. Nesponse a Nepan		acigiouna ra	IIK3			_				
Facility / Project Name	Co	unty Name				Well Na	me			
The Solberg Company - Site	2		Brown			MW-	₩-14			
Facility License/ Permit No./GEC Project	No.	County	Code	Wis. Unique	Well Numb	er	DNR Well Number			
2-0919-397B			68		n/a		n/a			
1. Can this well be purged dry?	X Yes	No		Before De	velopmen	t	After Develo	pment		
2. Well development method surge with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surge with block, bailed and pumped compressed air	41 61 42 62 70 20			th to water n top of well casing 7/11/22 2:30	1.57 b. c.	ft. X p.m. a.m.	a ft. b. 7/11/22 c. 4:00	X p.m.☐ a.m.		
bailed only pumped only pumped slowly Other	☐ 10 ☐ 51 ☐ 50			ment in well ttom r clarity		inches		inches		
3. Time spent developing well		90 min.		O.		٦.,		X 10		
4. Depth of Well (from top of casing)		11.70 ft.		Clear Turbid (Describe)	X] 10] 15	Clear Turbid (Describe)	15		
5. Inside diameter of well		2.00 in.			Cloudy		-			
6.Volume of water in filter pack and well casis	ng	9.22 gal.	Fill in if	fluids were us	ed and wells	is at solid	waste facility:	I		
7. Volume of water removed from well		50 gal.					, I			
8. Volume of water added (if any)		0 gal.		l suspended olids	N/A	mg/l	N/A	mg/l		
9. Source of water added None						·				
10. Analysis performed on water added? (If yes, attach results)	Yes	s No	15. COD		N/A	mg/l	N/A	mg/l		
16. Additional comments on development										
Well developed by: Person's Name and Firm			I hereby	certify that the a	bove informati	ion is true a	and correct to the best of my	knowledge.		
Name: Brian Youngwirth	_		Signatu	re: <u>8</u>	rian G	foung	zwirth			
Fig. 2 Company Fig. 1 (1) C			Print Ini	tials: <u>2</u>	3 G	_				
Firm General Engineering Comp	any		Firm:		General E	Engineerin	g Company			

Department of Natural Resources				Form	4400-113E	3		Rev. 4-90		
	Route To:	л	—	,	M					
Env. Response & Repair	Solid \	waste [ground Ta		Waste	Wastewate	Γ				
		5		<u> </u>		_				
Facility / Project Name	Count	ty Name				Well Na	me			
The Solberg Company - Site	2		Brown			MW-	MW-15			
Facility License/ Permit No./GEC Project	No.	County	/ Code Wis. Unique Well Number			er	r DNR Well Number			
2-0919-397B		(68		n/a		n.	/a		
1. Can this well be purged dry?	X Yes	No		Before Dev	elopmen	t	After Deve	elopment		
2. Well development method surge with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surge with block, bailed and pumped compressed air	☐ 41 ☐ 61 ☐ 42 ☑ 62 ☐ 70 ☐ 20			th to water in top of well casing 7/11/22 2:00	1.88 b. c.	ft. X p.m. a.m.	a ft. b. 7/11/22 c. 3:30	∑ p.m.		
bailed only pumped only pumped slowly Other	☐ 10 ☐ 51 ☐ 50			ment in well ttom r clarity		inches		inches		
3. Time spent developing well	,	90 min.		Clear		10	Clear	X 10		
4. Depth of Well (from top of casing)	12.	93 ft.		Turbid (Describe)	X	15	Turbid (Describe)	15		
5. Inside diameter of well	2.0	00 in.			Cloudy		1			
6.Volume of water in filter pack and well casir	ıg	10 gal.	F:11 : :£	f:	d d U-	:41:-1		·		
7. Volume of water removed from well		50 gal.		fluids were use	u and wells	is at solid	waste facility.			
8. Volume of water added (if any)		0 gal.		l suspended blids	N/A	mg/l	N	/A mg/l		
9. Source of water added None		_								
10. Analysis performed on water added? (If yes, attach results)	Yes	No	15. COD		N/A	mg/l	N	/A mg/I		
16. Additional comments on development										
Well developed by: Person's Name and Firm			I hereby	certify that the ab	ove informati	ion is true a	and correct to the best of n	ny knowledge.		
Name: Brian Youngwirth	_		Signatu	re:	rian G	foun	gwirth			
			Print Ini	tials: E	3 G	_				
Firm General Engineering Comp	any		Firm:		General E	Engineerin	g Company			

Department of Natural Resources				Forn	n 4400-113I	В		Rev. 4-90		
	Route To:	olid Waste	П нат	Waste	Wastewate	ar.				
Env. Response & Repair		nderground Ta		Other	Wasiewaie	žI				
Facility / Project Name	С	ounty Name	ne Well N			Well Na	ame			
The Solberg Company - Site	2		Br	own		MW-	-16			
Facility License/ Permit No./GEC Project	l No.	County	y Code Wis. Unique Well Number			er	r DNR Well Number			
2-0919-397B			68		n/a		n/a			
1. Can this well be purged dry?	Yes	X No		Before Dev	velopmen	nt	After Develo	ppment		
2. Well development method			11. Dep	th to water	7.85	ft.	a ft.			
surge with bailer and bailed surged with bailer and pumped surged with block and bailed	☐ 41 ☐ 61 ☐ 42		Froi	m top of well casing 7/11/22	b.		b. 7/11/22			
surged with block and pumped surge with block, bailed and pumped compressed air	 62 70 20		Time	3:00	C.	X p.m.	c. 4:00	Х р.т. а.т.		
bailed only pumped only pumped slowly Other	☐ 10 ☐ 51 ☐ 50			iment in well ottom		inches		inches		
3. Time spent developing well		60 min.	13.Wate	er clarity						
4. Depth of Well (from top of casing)		15.60 ft.		Clear Turbid (Describe)	X	10 15	Clear Turbid (Describe)	X 10 15		
5. Inside diameter of well		2.00 in.		(Boodingo)	Cloudy		(Bessinge)			
6.Volume of water in filter pack and well casi	ng	7.05 gal.	Fill in if	fluids were use	d and wells	is at solid	waste facility:	l		
7. Volume of water removed from well		50 gal.					ı			
8. Volume of water added (if any)		0 gal.		ıl suspended olids	N/A	mg/l	N/A	mg/l		
9. Source of water added None										
10. Analysis performed on water added?		es 🗌 No	15. COD)	N/A	mg/l	N/A	mg/l		
(If yes, attach results)	<u></u>	es 🔲 No								
16. Additional comments on development										
Well developed by: Person's Name and Firm			I hereby	certify that the ab	ove informat	tion is true a	and correct to the best of my	knowledge.		
. ,			Signatu	•			-	3		
Name: Brian Youngwirth	_		Print In	itials:	3 G	-	gwirth			
Firm General Engineering Comp	any		Firm:		General E	- Engineerin	g Company			
			1							

Department of Natural Resources				Form	4400-113E	3		Rev. 4-90		
	Route To:	olid Waste	_ ⊔от	Waste	Wastewate	.r				
Env. Response & Repair		nderground Ta		Other	vvasiewaie	:1				
				· <u>—</u>		_				
Facility / Project Name	C	ounty Name	ne We			Well Na	/ell Name			
The Solberg Company - Site	2		Br	own		MW-	-17			
Facility License/ Permit No./GEC Project	No.	County	y Code Wis. Unique Well Numbe			er	er DNR Well Number			
2-0919-397B			68		n/a		n/a			
1. Can this well be purged dry?	Yes	X No		Before Dev	elopmen	nt	After Develo	pment		
Well development method surge with bailer and bailed	<u> </u>		-	th to water	3.5	ft.	a. ft.			
surged with bailer and pumped surged with block and bailed surged with block and pumped	☐ 61 ☐ 42 ☑ 62		Date	7/11/22	b.		b. 7/11/22			
surge with block, bailed and pumped compressed air bailed only	70 20 10		Time	3:30	C.	X p.m.	c. 4:30	X p.m. a.m.		
pumped only pumped slowly Other	51 50			ment in well ttom		inches		inches		
	_		13.Wate	r clarity						
Time spent developing well Depth of Well (from top of casing)		60 min. 15.78 ft.		Clear Turbid	 X] 10] 15	Clear Turbid	X 10		
5. Inside diameter of well		2.00 in.		(Describe)	Cloudy	_	(Describe)			
S. Molad diameter of from		2.00 III.			Oloddy		†			
6.Volume of water in filter pack and well casir	ng	11.17 gal.	Fill in if	fluids were use	d and wells	is at solid	waste facility:			
7. Volume of water removed from well		50 gal.					, I			
8. Volume of water added (if any)		0 gal.		l suspended blids	N/A	mg/l	N/A	mg/l		
9. Source of water added None										
			15. COD	l	N/A	mg/l	N/A	mg/l		
10. Analysis performed on water added? (If yes, attach results)	☐ Ye	es No								
16. Additional comments on development							L			
Well developed by: Person's Name and Firm			l hereby	certify that the ab	ove informat	ion is true o	and correct to the best of my	knowledge		
as respect by a strong frame and filli			Погору				·			
Name: Brian Youngwirth	_		Signatu	re:	rian	Goun	egwirth			
			Print Ini	tials: 2	3 y	<u> </u>				
Firm General Engineering Comp	any		Firm:		General E	Engineerin	g Company			

Department of Natural Resources				Form	4400-113E	3		Rev. 4-90
	Route To	: Solid Waste [П цот	Waste .	Wastewate	.r		
Env. Response & Repair		Underground Ta		Other	vasiewaie	:1		
	_			<u>—</u>		_		
Facility / Project Name		County Name				Well Na	me	
The Solberg Company - Site	2		Bro	own		PZ-2	2	
Facility License/ Permit No./GEC Project	No.	County	y Code Wis. Unique Well Number			er	DNR Well Number	
2-0919-397B			68		n/a		n/a	a
1. Can this well be purged dry?	X Yes	No		Before Dev	elopmen	ıt	After Deve	opment
2. Well development method surge with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surge with block, bailed and pumped compressed air bailed only pumped only pumped slowly	41		Date Time	h to water n top of well casing 7/11/22 1:50 ment in well ttom	11.35 b. c.	ft. X p.m. a.m.	a ft. b. 7/11/22 c. 3:15	
Other			12 Water	r alarity				
3. Time spent developing well		85 min.	13.Water	cianty				
4. Depth of Well (from top of casing)		30.63 ft.		Clear Turbid (Describe)	X] 10] 15	Clear Turbid (Describe)	X 10 15
5. Inside diameter of well		2.00 in.			Cloudy			
6.Volume of water in filter pack and well casir	ng	17.5 gal.					I	l
7. Volume of water removed from well		50 gal.	Fill in if	fluids were used	d and wells	is at solid	waste facility:	
8. Volume of water added (if any)		0 gal.		suspended	N/A	mg/l	N//	A mg/I
9. Source of water added None			45.000		NI/A		N//	N
10. Analysis performed on water added? (If yes, attach results)		Yes No	15. COD		N/A	mg/l	N//	A mg/l
16. Additional comments on development								
Well developed by: Person's Name and Firm			I hereby	certify that the abo	ove informat	ion is true a	and correct to the best of m	y knowledge.
Name: Brian Youngwirth	_		Signatu	re:	rian	Goun	egwirth	
			Print Ini	tials: \mathcal{E}	3 cf (_	-	
Firm General Engineering Comp	any		Firm:		General E	Engineerin	g Company	

Wisconsin State Laboratory of Hygiene 2601 Agriculture Drive, PO Box 7996 Madison, WI 53707-7996 (800)442-4618 - FAX (608)224-6213 http://www.slh.wisc.edu

Laboratory Report

Environmental Health Division

WSLH Sample: 629917001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: B-14/SS-1

Project No: BRIAN YOUNGWIRTH

Collection End: 7/11/2022 9:18:00 AM

Collection Start:

Collected By: BETH MCCORMICK Date Received: 7/12/2022 Date Reported: 7/25/2022

Sample Reason:

ID#: NA

Sample Location: 1520 BROOKFIELD

Sample Description:

Sample Type: SO-SOIL

Waterbody:
Point or Outfall:
Sample Depth: 1F
Program Code:
Region Code:

County: 5

Sample Comments

Sample results are reported based on the dry weight of the sample. Results have been adjusted to account for the sample's moisture content.

PFAS in Solids

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 11:10	Analysis Date: 07/21/22 11:1	7			
PFBA (375-22-4)	WSLH PFAS in Solids	<0.681	ng/g	0.681	2.93
PFPeA (2706-90-3)	WSLH PFAS in Solids	<0.405	ng/g	0.405	1.17
PFBS (375-73-5)	WSLH PFAS in Solids	<0.319	ng/g	0.319	1.17
4:2 FTSA (757124-72-4)	WSLH PFAS in Solids	<0.294	ng/g	0.294	1.17
PFHxA (307-24-4)	WSLH PFAS in Solids	<0.401	ng/g	0.401	1.17
PFPeS (2706-91-4)	WSLH PFAS in Solids	<0.344	ng/g	0.344	1.17
HFPO-DA (13252-13-6)	WSLH PFAS in Solids	<0.295	ng/g	0.295	1.17
PFHpA (375-85-9)	WSLH PFAS in Solids	<0.379	ng/g	0.379	1.17
PFHxS (355-46-4)	WSLH PFAS in Solids	<0.382	ng/g	0.382	1.17
DONA (919005-14-4)	WSLH PFAS in Solids	<0.354	ng/g	0.354	1.17
6:2 FTSA (27619-97-2)	WSLH PFAS in Solids	<0.372	ng/g	0.372	1.17
PFOA (335-67-1)	WSLH PFAS in Solids	<0.375	ng/g	0.375	1.17

Laboratory Report

Environmental Health Division

WSLH Sample: 629917001

PFAS in Solids

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 11:10	Analysis Date: 07/21/22 11:1	7			
PFHpS (375-92-8)	WSLH PFAS in Solids	<0.407	ng/g	0.407	1.17
PFOS (1763-23-1)	WSLH PFAS in Solids	<0.401	ng/g	0.401	1.17
PFNA (375-95-1)	WSLH PFAS in Solids	<0.340	ng/g	0.340	1.17
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Solids	<0.379	ng/g	0.379	1.17
8:2 FTSA (39108-34-4)	WSLH PFAS in Solids	<0.466	ng/g	0.466	1.17
PFDA (335-76-2)	WSLH PFAS in Solids	<0.382	ng/g	0.382	1.17
PFNS (68259-12-1)	WSLH PFAS in Solids	<0.339	ng/g	0.339	1.17
N-MeFOSAA (2355-31-9)	WSLH PFAS in Solids	<0.532	ng/g	0.532	1.17
N-EtFOSAA (2991-50-6)	WSLH PFAS in Solids	<0.335	ng/g	0.335	1.17
FOSA (754-91-6)	WSLH PFAS in Solids	<0.383	ng/g	0.383	1.17
PFUnA (2058-94-8)	WSLH PFAS in Solids	<0.320	ng/g	0.320	1.17
PFDS (335-77-3)	WSLH PFAS in Solids	<0.340	ng/g	0.340	1.17
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Solids	<0.362	ng/g	0.362	1.17
PFDoA (307-55-1)	WSLH PFAS in Solids	<0.448	ng/g	0.448	1.17
PFDoS (79780-39-5)	WSLH PFAS in Solids	<0.428	ng/g	0.428	1.17
PFTrDA (72629-94-8)	WSLH PFAS in Solids	<0.403	ng/g	0.403	1.17
N-MeFOSA (31506-32-8)	WSLH PFAS in Solids	< 0.436	ng/g	0.436	1.17
N-MeFOSE (24448-09-7)	WSLH PFAS in Solids	<0.517	ng/g	0.517	1.17
N-EtFOSA (4151-50-2)	WSLH PFAS in Solids	<0.279	ng/g	0.279	1.17
N-EtFOSE (1691-99-2)	WSLH PFAS in Solids	<0.417	ng/g	0.417	1.17
PFTeDA (376-06-7)	WSLH PFAS in Solids	<0.406	ng/g	0.406	1.17
Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 10:45	Analysis Date: 07/19/22 10:4	5			
PERCENT SOLIDS	EPA 160.3	79.7	%	0.00200	0.00200

Laboratory Report

Environmental Health Division

WSLH Sample: 629917001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Previous Reports

This sample was previously reported under the following report ID(s): 9923523

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230

Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Monday, July 25, 2022 2:21:13 PM Page 3 of 15

Laboratory Report

Environmental Health Division

WSLH Sample: 629917003

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: B-19/6INCH

Project No: BRIAN YOUNGWIRTH Collection End: 7/11/2022 7:29:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/12/2022 Date Reported: 7/25/2022 Sample Reason:

ID#:

Sample Location:
Sample Description:

Sample Type: SO-SOIL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:

Region Code: County:

Sample Comments

Sample results are reported based on the dry weight of the sample. Results have been adjusted to account for the sample's moisture content.

PFAS in Solids

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 11:10	Analysis Date: 07/21/22 11:4	5			
PFBA (375-22-4)	WSLH PFAS in Solids	<0.608	ng/g	0.608	2.62
PFPeA (2706-90-3)	WSLH PFAS in Solids	<0.361	ng/g	0.361	1.05
PFBS (375-73-5)	WSLH PFAS in Solids	<0.285	ng/g	0.285	1.05
4:2 FTSA (757124-72-4)	WSLH PFAS in Solids	<0.263	ng/g	0.263	1.05
PFHxA (307-24-4)	WSLH PFAS in Solids	<0.358	ng/g	0.358	1.05
PFPeS (2706-91-4)	WSLH PFAS in Solids	<0.307	ng/g	0.307	1.05
HFPO-DA (13252-13-6)	WSLH PFAS in Solids	<0.264	ng/g	0.264	1.05
PFHpA (375-85-9)	WSLH PFAS in Solids	<0.338	ng/g	0.338	1.05
PFHxS (355-46-4)	WSLH PFAS in Solids	<0.341	ng/g	0.341	1.05
DONA (919005-14-4)	WSLH PFAS in Solids	<0.316	ng/g	0.316	1.05
6:2 FTSA (27619-97-2)	WSLH PFAS in Solids	<0.332	ng/g	0.332	1.05
PFOA (335-67-1)	WSLH PFAS in Solids	<0.335	ng/g	0.335	1.05

ge 4 of 15 Report ID: 9923667

Laboratory Report

Environmental Health Division

WSLH Sample: 629917003

PFAS in Solids

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 11:10	Analysis Date: 07/21/22 11:45	5			
PFHpS (375-92-8)	WSLH PFAS in Solids	<0.363	ng/g	0.363	1.05
PFOS (1763-23-1)	WSLH PFAS in Solids	<0.358	ng/g	0.358	1.05
PFNA (375-95-1)	WSLH PFAS in Solids	<0.304	ng/g	0.304	1.05
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Solids	<0.338	ng/g	0.338	1.05
8:2 FTSA (39108-34-4)	WSLH PFAS in Solids	<0.416	ng/g	0.416	1.05
PFDA (335-76-2)	WSLH PFAS in Solids	<0.341	ng/g	0.341	1.05
PFNS (68259-12-1)	WSLH PFAS in Solids	<0.303	ng/g	0.303	1.05
N-MeFOSAA (2355-31-9)	WSLH PFAS in Solids	<0.475	ng/g	0.475	1.05
N-EtFOSAA (2991-50-6)	WSLH PFAS in Solids	<0.299	ng/g	0.299	1.05
FOSA (754-91-6)	WSLH PFAS in Solids	<0.342	ng/g	0.342	1.05
PFUnA (2058-94-8)	WSLH PFAS in Solids	<0.286	ng/g	0.286	1.05
PFDS (335-77-3)	WSLH PFAS in Solids	<0.304	ng/g	0.304	1.05
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Solids	<0.323	ng/g	0.323	1.05
PFDoA (307-55-1)	WSLH PFAS in Solids	<0.400	ng/g	0.400	1.05
PFDoS (79780-39-5)	WSLH PFAS in Solids	<0.382	ng/g	0.382	1.05
PFTrDA (72629-94-8)	WSLH PFAS in Solids	<0.360	ng/g	0.360	1.05
N-MeFOSA (31506-32-8)	WSLH PFAS in Solids	<0.389	ng/g	0.389	1.05
N-MeFOSE (24448-09-7)	WSLH PFAS in Solids	<0.462	ng/g	0.462	1.05
N-EtFOSA (4151-50-2)	WSLH PFAS in Solids	<0.249	ng/g	0.249	1.05
N-EtFOSE (1691-99-2)	WSLH PFAS in Solids	<0.373	ng/g	0.373	1.05
PFTeDA (376-06-7)	WSLH PFAS in Solids	<0.362	ng/g	0.362	1.05
Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 10:45	Analysis Date: 07/19/22 10:4	5			
PERCENT SOLIDS	EPA 160.3	83.1	%	0.00200	0.00200

Laboratory Report

Environmental Health Division

WSLH Sample: 629917003

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Previous Reports

This sample was previously reported under the following report ID(s): 9923523

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239

Radiochemistry: David Webb, Division Director 608-224-6227

Monday, July 25, 2022 2:21:14 PM Page 6 of 15

Laboratory Report

Environmental Health Division

WSLH Sample: 629917004

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

Sample Location: 1520 BROOKFIELD

PORTAGE, WI 53901 Customer ID: 336628

Field #: B-13/SS-1

Project No: **BRIAN YOUNGWIRTH**

Collection End: 7/11/2022 10:45:00 AM

Collection Start:

Sample Reason:

Collected By: BETH MCCORMICK Date Received: 7/12/2022 Date Reported: 7/25/2022

Waterbody: Point or Outfall: Sample Depth: 1F Program Code: Region Code: County: 5

Sample Description:

Sample Type: SO-SOIL

ID#: NA

Sample Comments

BOTTLE LABLED B-13/MW12

Sample results are reported based on the dry weight of the sample. Results have been adjusted to account for the sample's moisture content.

PFAS in Solids

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 11:10	Analysis Date: 07/21/22 12:1	2			
PFBA (375-22-4)	WSLH PFAS in Solids	<0.620	ng/g	0.620	2.67
PFPeA (2706-90-3)	WSLH PFAS in Solids	<0.368	ng/g	0.368	1.07
PFBS (375-73-5)	WSLH PFAS in Solids	<0.290	ng/g	0.290	1.07
4:2 FTSA (757124-72-4)	WSLH PFAS in Solids	<0.268	ng/g	0.268	1.07
PFHxA (307-24-4)	WSLH PFAS in Solids	<0.365	ng/g	0.365	1.07
PFPeS (2706-91-4)	WSLH PFAS in Solids	<0.313	ng/g	0.313	1.07
HFPO-DA (13252-13-6)	WSLH PFAS in Solids	<0.269	ng/g	0.269	1.07
PFHpA (375-85-9)	WSLH PFAS in Solids	<0.345	ng/g	0.345	1.07
PFHxS (355-46-4)	WSLH PFAS in Solids	<0.348	ng/g	0.348	1.07
DONA (919005-14-4)	WSLH PFAS in Solids	<0.322	ng/g	0.322	1.07
6:2 FTSA (27619-97-2)	WSLH PFAS in Solids	<0.338	ng/g	0.338	1.07

Laboratory Report

Environmental Health Division

WSLH Sample: 629917004

PFAS in Solids

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 11:10	Analysis Date: 07/21/22 12:1	2			
PFOA (335-67-1)	WSLH PFAS in Solids	<0.341	ng/g	0.341	1.07
PFHpS (375-92-8)	WSLH PFAS in Solids	<0.370	ng/g	0.370	1.07
PFOS (1763-23-1)	WSLH PFAS in Solids	<0.365	ng/g	0.365	1.07
PFNA (375-95-1)	WSLH PFAS in Solids	<0.309	ng/g	0.309	1.07
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Solids	<0.345	ng/g	0.345	1.07
8:2 FTSA (39108-34-4)	WSLH PFAS in Solids	<0.424	ng/g	0.424	1.07
PFDA (335-76-2)	WSLH PFAS in Solids	<0.348	ng/g	0.348	1.07
PFNS (68259-12-1)	WSLH PFAS in Solids	<0.308	ng/g	0.308	1.07
N-MeFOSAA (2355-31-9)	WSLH PFAS in Solids	<0.484	ng/g	0.484	1.07
N-EtFOSAA (2991-50-6)	WSLH PFAS in Solids	<0.305	ng/g	0.305	1.07
FOSA (754-91-6)	WSLH PFAS in Solids	<0.349	ng/g	0.349	1.07
PFUnA (2058-94-8)	WSLH PFAS in Solids	<0.291	ng/g	0.291	1.07
PFDS (335-77-3)	WSLH PFAS in Solids	<0.309	ng/g	0.309	1.07
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Solids	<0.330	ng/g	0.330	1.07
PFDoA (307-55-1)	WSLH PFAS in Solids	<0.408	ng/g	0.408	1.07
PFDoS (79780-39-5)	WSLH PFAS in Solids	<0.390	ng/g	0.390	1.07
PFTrDA (72629-94-8)	WSLH PFAS in Solids	<0.367	ng/g	0.367	1.07
N-MeFOSA (31506-32-8)	WSLH PFAS in Solids	<0.397	ng/g	0.397	1.07
N-MeFOSE (24448-09-7)	WSLH PFAS in Solids	<0.471	ng/g	0.471	1.07
N-EtFOSA (4151-50-2)	WSLH PFAS in Solids	<0.254	ng/g	0.254	1.07
N-EtFOSE (1691-99-2)	WSLH PFAS in Solids	<0.380	ng/g	0.380	1.07
PFTeDA (376-06-7)	WSLH PFAS in Solids	<0.369	ng/g	0.369	1.07
Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 10:45	Analysis Date: 07/19/22 10:4	5			
PERCENT SOLIDS	EPA 160.3	86.0	%	0.00200	0.00200

Laboratory Report

Environmental Health Division

WSLH Sample: 629917004

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Previous Reports

This sample was previously reported under the following report ID(s): 9923523

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239

Radiochemistry: David Webb, Division Director 608-224-6237

Monday, July 25, 2022 2:21:16 PM Page 9 of 15

Laboratory Report

Environmental Health Division

WSLH Sample: 629917005

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: B-18/6INCH

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/11/2022 1:25:00 PM

Collection Start:

Date Received: 7/12/2022 Date Reported: 7/25/2022 Sample Reason:

Collected By: BRIAN YOUNGWIRTH

ID#:

Sample Location: Sample Description:

Sample Type: SO-SOIL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code:

County:

Sample Comments

Sample results are reported based on the dry weight of the sample. Results have been adjusted to account for the sample's moisture content.

PFAS in Solids

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 11:10	Analysis Date: 07/21/22 12:4	0			
PFBA (375-22-4)	WSLH PFAS in Solids	<0.677	ng/g	0.677	2.91
PFPeA (2706-90-3)	WSLH PFAS in Solids	<0.402	ng/g	0.402	1.17
PFBS (375-73-5)	WSLH PFAS in Solids	<0.317	ng/g	0.317	1.17
4:2 FTSA (757124-72-4)	WSLH PFAS in Solids	<0.292	ng/g	0.292	1.17
PFHxA (307-24-4)	WSLH PFAS in Solids	<0.398	ng/g	0.398	1.17
PFPeS (2706-91-4)	WSLH PFAS in Solids	<0.341	ng/g	0.341	1.17
HFPO-DA (13252-13-6)	WSLH PFAS in Solids	<0.294	ng/g	0.294	1.17
PFHpA (375-85-9)	WSLH PFAS in Solids	<0.376	ng/g	0.376	1.17
PFHxS (355-46-4)	WSLH PFAS in Solids	<0.380	ng/g	0.380	1.17
DONA (919005-14-4)	WSLH PFAS in Solids	<0.352	ng/g	0.352	1.17
6:2 FTSA (27619-97-2)	WSLH PFAS in Solids	<0.369	ng/g	0.369	1.17
PFOA (335-67-1)	WSLH PFAS in Solids	<0.373	ng/g	0.373	1.17

Laboratory Report

Environmental Health Division

WSLH Sample: 629917005

PFAS in Solids

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 11:10	Analysis Date: 07/21/22 12:4	0			
PFHpS (375-92-8)	WSLH PFAS in Solids	<0.404	ng/g	0.404	1.17
PFOS (1763-23-1)	WSLH PFAS in Solids	<0.398	ng/g	0.398	1.17
PFNA (375-95-1)	WSLH PFAS in Solids	<0.338	ng/g	0.338	1.17
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Solids	<0.376	ng/g	0.376	1.17
8:2 FTSA (39108-34-4)	WSLH PFAS in Solids	<0.463	ng/g	0.463	1.17
PFDA (335-76-2)	WSLH PFAS in Solids	<0.380	ng/g	0.380	1.17
PFNS (68259-12-1)	WSLH PFAS in Solids	<0.337	ng/g	0.337	1.17
N-MeFOSAA (2355-31-9)	WSLH PFAS in Solids	<0.529	ng/g	0.529	1.17
N-EtFOSAA (2991-50-6)	WSLH PFAS in Solids	<0.333	ng/g	0.333	1.17
FOSA (754-91-6)	WSLH PFAS in Solids	<0.381	ng/g	0.381	1.17
PFUnA (2058-94-8)	WSLH PFAS in Solids	<0.318	ng/g	0.318	1.17
PFDS (335-77-3)	WSLH PFAS in Solids	<0.338	ng/g	0.338	1.17
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Solids	<0.360	ng/g	0.360	1.17
PFDoA (307-55-1)	WSLH PFAS in Solids	<0.445	ng/g	0.445	1.17
PFDoS (79780-39-5)	WSLH PFAS in Solids	<0.425	ng/g	0.425	1.17
PFTrDA (72629-94-8)	WSLH PFAS in Solids	<0.401	ng/g	0.401	1.17
N-MeFOSA (31506-32-8)	WSLH PFAS in Solids	<0.433	ng/g	0.433	1.17
N-MeFOSE (24448-09-7)	WSLH PFAS in Solids	<0.514	ng/g	0.514	1.17
N-EtFOSA (4151-50-2)	WSLH PFAS in Solids	<0.277	ng/g	0.277	1.17
N-EtFOSE (1691-99-2)	WSLH PFAS in Solids	<0.415	ng/g	0.415	1.17
PFTeDA (376-06-7)	WSLH PFAS in Solids	<0.403	ng/g	0.403	1.17
Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 10:45	Analysis Date: 07/19/22 10:4	5			
PERCENT SOLIDS	EPA 160.3	82.5	%	0.00200	0.00200

Laboratory Report

Environmental Health Division

WSLH Sample: 629917005

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Previous Reports

This sample was previously reported under the following report ID(s): 9923523

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239

Radiochemistry: David Webb, Division Director 608-224-6227

Monday, July 25, 2022 2:21:18 PM Page 12 of 15

Laboratory Report

Environmental Health Division

WSLH Sample: 629917006

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: B-17/MW-16

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/11/2022 3:06:00 PM

Collection Start:

Collected By: BETH MCCORMICK Date Received: 7/12/2022 Date Reported: 7/25/2022

Sample Reason:

Sample Type: SO-SOIL Waterbody:

> Sample Depth: 1F Program Code:

Sample Location:

Sample Description:

Region Code:

Point or Outfall:

County:

ID#:

Sample Comments

Sample results are reported based on the dry weight of the sample. Results have been adjusted to account for the sample's moisture content.

PFAS in Solids

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 11:10	Analysis Date: 07/21/22 13:3	6			
PFBA (375-22-4)	WSLH PFAS in Solids	<0.547	ng/g	0.547	2.35
PFPeA (2706-90-3)	WSLH PFAS in Solids	<0.325	ng/g	0.325	0.941
PFBS (375-73-5)	WSLH PFAS in Solids	<0.256	ng/g	0.256	0.941
4:2 FTSA (757124-72-4)	WSLH PFAS in Solids	<0.236	ng/g	0.236	0.941
PFHxA (307-24-4)	WSLH PFAS in Solids	<0.322	ng/g	0.322	0.941
PFPeS (2706-91-4)	WSLH PFAS in Solids	<0.276	ng/g	0.276	0.941
HFPO-DA (13252-13-6)	WSLH PFAS in Solids	<0.237	ng/g	0.237	0.941
PFHpA (375-85-9)	WSLH PFAS in Solids	<0.304	ng/g	0.304	0.941
PFHxS (355-46-4)	WSLH PFAS in Solids	<0.307	ng/g	0.307	0.941
DONA (919005-14-4)	WSLH PFAS in Solids	<0.284	ng/g	0.284	0.941
6:2 FTSA (27619-97-2)	WSLH PFAS in Solids	<0.298	ng/g	0.298	0.941
PFOA (335-67-1)	WSLH PFAS in Solids	<0.301	ng/g	0.301	0.941

Page 13 of 15 Report ID: 9923667

Laboratory Report

Environmental Health Division

WSLH Sample: 629917006

PFAS in Solids

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 11:10	Analysis Date: 07/21/22 13:3	6			
PFHpS (375-92-8)	WSLH PFAS in Solids	<0.327	ng/g	0.327	0.941
PFOS (1763-23-1)	WSLH PFAS in Solids	<0.322	ng/g	0.322	0.941
PFNA (375-95-1)	WSLH PFAS in Solids	<0.273	ng/g	0.273	0.941
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Solids	< 0.304	ng/g	0.304	0.941
8:2 FTSA (39108-34-4)	WSLH PFAS in Solids	< 0.374	ng/g	0.374	0.941
PFDA (335-76-2)	WSLH PFAS in Solids	<0.307	ng/g	0.307	0.941
PFNS (68259-12-1)	WSLH PFAS in Solids	<0.272	ng/g	0.272	0.941
N-MeFOSAA (2355-31-9)	WSLH PFAS in Solids	<0.427	ng/g	0.427	0.941
N-EtFOSAA (2991-50-6)	WSLH PFAS in Solids	<0.269	ng/g	0.269	0.941
FOSA (754-91-6)	WSLH PFAS in Solids	<0.308	ng/g	0.308	0.941
PFUnA (2058-94-8)	WSLH PFAS in Solids	<0.257	ng/g	0.257	0.941
PFDS (335-77-3)	WSLH PFAS in Solids	<0.273	ng/g	0.273	0.941
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Solids	<0.291	ng/g	0.291	0.941
PFDoA (307-55-1)	WSLH PFAS in Solids	<0.360	ng/g	0.360	0.941
PFDoS (79780-39-5)	WSLH PFAS in Solids	<0.344	ng/g	0.344	0.941
PFTrDA (72629-94-8)	WSLH PFAS in Solids	<0.324	ng/g	0.324	0.941
N-MeFOSA (31506-32-8)	WSLH PFAS in Solids	<0.350	ng/g	0.350	0.941
N-MeFOSE (24448-09-7)	WSLH PFAS in Solids	<0.415	ng/g	0.415	0.941
N-EtFOSA (4151-50-2)	WSLH PFAS in Solids	<0.224	ng/g	0.224	0.941
N-EtFOSE (1691-99-2)	WSLH PFAS in Solids	< 0.335	ng/g	0.335	0.941
PFTeDA (376-06-7)	WSLH PFAS in Solids	<0.326	ng/g	0.326	0.941
Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 10:45	Analysis Date: 07/19/22 10:4	5			
PERCENT SOLIDS	EPA 160.3	86.4	%	0.0020	0 0.00200

Laboratory Report

Environmental Health Division

WSLH Sample: 629917006

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Previous Reports

This sample was previously reported under the following report ID(s): 9923523

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239

Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Monday, July 25, 2022 2:21:19 PM Page 15 of 15

Laboratory Report

Environmental Health Division

WSLH Sample: 630519001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-1

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 1:45:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/13/2022

Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code:

Region Code: County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 09:5	4			
PFBA (375-22-4)	WSLH PFAS in Water	706	ng/L	3.46	10.0
PFBS (375-73-5)	WSLH PFAS in Water	10.4	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	11.9	ng/L	1.90	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	558	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
PFOA (335-67-1)	WSLH PFAS in Water	11.9	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0

Report ID: 10012586 Page 1 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630519001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40 Analy	vsis Date: 07/26/22 09:5	4			
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	9.19F	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	3.15F	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0
The Laboratory Control Spike (LCS) doe	s not meet the upper QC limit				
Prep Date: 07/19/22 08:40 Analy	sis Date: 07/26/22 16:3	7			
PFPeA (2706-90-3)	WSLH PFAS in Water	5550	ng/L	37.5	250
Results for this analyte were reported fro approximate.	m a diluted sample extract. Ti	rue isotope dilution was not	achieved. Results are		
PFHxA (307-24-4)	WSLH PFAS in Water	4320	ng/L	51.0	250
Results for this analyte were reported fro approximate.	m a diluted sample extract. Ti	rue isotope dilution was not	achieved. Results are		
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	21600	ng/L	68.0	250
Results for this analyte were reported fro	m a diluted sample extract. Ti	rue isotope dilution was not	achieved Results are		

Laboratory Report

Environmental Health Division

WSLH Sample: 630519001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012586

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630519002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 1:45:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code: County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 14:4	8			
PFBA (375-22-4)	WSLH PFAS in Water	<0.340	ng/L	0.340	0.982
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.982
PFBS (375-73-5)	WSLH PFAS in Water	<0.227	ng/L	0.227	0.982
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.982
PFHxA (307-24-4)	WSLH PFAS in Water	<0.200	ng/L	0.200	0.982
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.134	ng/L	0.134	0.982
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.982
PFHpA (375-85-9)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.982
PFHxS (355-46-4)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.982
DONA (919005-14-4)	WSLH PFAS in Water	<0.126	ng/L	0.126	0.982
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.267	ng/L	0.267	0.982
PFOA (335-67-1)	WSLH PFAS in Water	<0.106	ng/L	0.106	0.982
PFHpS (375-92-8)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.982

Laboratory Report

Environmental Health Division

WSLH Sample: 630519002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 14:4	8			_
PFOS (1763-23-1)	WSLH PFAS in Water	<0.140	ng/L	0.140	0.982
PFNA (375-95-1)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.982
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.982
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.257	ng/L	0.257	0.982
PFDA (335-76-2)	WSLH PFAS in Water	<0.160	ng/L	0.160	0.982
PFNS (68259-12-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.982
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.215	ng/L	0.215	0.982
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.208	ng/L	0.208	0.982
FOSA (754-91-6)	WSLH PFAS in Water	<0.152	ng/L	0.152	0.982
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.218	ng/L	0.218	0.982
PFDS (335-77-3)	WSLH PFAS in Water	<0.252	ng/L	0.252	0.982
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.982
PFDoA (307-55-1)	WSLH PFAS in Water	<0.266	ng/L	0.266	0.982
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.243	ng/L	0.243	0.982
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.190	ng/L	0.190	0.982
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.982	ng/L	0.982	1.96
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.276	ng/L	0.276	0.982
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.682	ng/L	0.682	1.96
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.208	ng/L	0.208	0.982
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.172	ng/L	0.172	0.982

Report ID: 10012586

The Laboratory Control Spike (LCS) does not meet the upper QC limit.

Laboratory Report

Environmental Health Division

WSLH Sample: 630519002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:41:40 AM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630520001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-2

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 1:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 10:2	5			
PFBA (375-22-4)	WSLH PFAS in Water	873	ng/L	3.46	10.0
PFBS (375-73-5)	WSLH PFAS in Water	15.7	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	12.7	ng/L	1.90	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	834	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
PFOA (335-67-1)	WSLH PFAS in Water	10.3	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0

Report ID: 10012589 Page 1 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630520001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40 Analy	ysis Date: 07/26/22 10:2	5			
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0
The Laboratory Control Spike (LCS) doe	es not meet the upper QC limit				
Prep Date: 07/19/22 08:40 Analy	ysis Date: 07/26/22 16:5	2			
PFPeA (2706-90-3)	WSLH PFAS in Water	4290	ng/L	37.5	250
Results for this analyte were reported from a diluted sample extract. True isotope dilution was not achieved. Results are approximate.					
PFHxA (307-24-4)	WSLH PFAS in Water	3050	ng/L	51.0	250
Results for this analyte were reported fro approximate.	om a diluted sample extract. To	rue isotope dilution was not	achieved. Results are		
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	16000	ng/L	68.0	250
Results for this analyte were reported fro	om a diluted sample extract. To	rue isotope dilution was not	achieved Results are		

Laboratory Report

Environmental Health Division

WSLH Sample: 630520001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:41:45 AM Page 3 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630520002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340 PORTAGE, WI 53901

Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 1:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 15:0	4			
PFBA (375-22-4)	WSLH PFAS in Water	<0.337	ng/L	0.337	0.975
PFPeA (2706-90-3)	WSLH PFAS in Water	0.246F	ng/L	0.146	0.975
PFBS (375-73-5)	WSLH PFAS in Water	<0.225	ng/L	0.225	0.975
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.185	ng/L	0.185	0.975
PFHxA (307-24-4)	WSLH PFAS in Water	<0.199	ng/L	0.199	0.975
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.133	ng/L	0.133	0.975
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.975
PFHpA (375-85-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.975
PFHxS (355-46-4)	WSLH PFAS in Water	<0.138	ng/L	0.138	0.975
DONA (919005-14-4)	WSLH PFAS in Water	<0.125	ng/L	0.125	0.975
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	7.96	ng/L	0.265	0.975
PFOA (335-67-1)	WSLH PFAS in Water	<0.105	ng/L	0.105	0.975
PFHpS (375-92-8)	WSLH PFAS in Water	<0.185	ng/L	0.185	0.975

age 4 of 6 Report ID: 10012589

Laboratory Report

Environmental Health Division

WSLH Sample: 630520002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 15:0	4			_
PFOS (1763-23-1)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.975
PFNA (375-95-1)	WSLH PFAS in Water	<0.144	ng/L	0.144	0.975
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.177	ng/L	0.177	0.975
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.255	ng/L	0.255	0.975
PFDA (335-76-2)	WSLH PFAS in Water	<0.159	ng/L	0.159	0.975
PFNS (68259-12-1)	WSLH PFAS in Water	<0.177	ng/L	0.177	0.975
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.214	ng/L	0.214	0.975
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.975
FOSA (754-91-6)	WSLH PFAS in Water	<0.151	ng/L	0.151	0.975
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.216	ng/L	0.216	0.975
PFDS (335-77-3)	WSLH PFAS in Water	<0.251	ng/L	0.251	0.975
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.975
PFDoA (307-55-1)	WSLH PFAS in Water	<0.264	ng/L	0.264	0.975
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.241	ng/L	0.241	0.975
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.188	ng/L	0.188	0.975
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	< 0.975	ng/L	0.975	1.95
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.274	ng/L	0.274	0.975
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.677	ng/L	0.677	1.95
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.975
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.171	ng/L	0.171	0.975

Report ID: 10012589

The Laboratory Control Spike (LCS) does not meet the upper QC limit.

Laboratory Report

Environmental Health Division

WSLH Sample: 630520002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012589

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630521001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-3

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 1:45:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location:
Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:

Region Code: County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 10:50	6			
PFBS (375-73-5)	WSLH PFAS in Water	12.5	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	125	ng/L	1.90	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	2.50F	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
PFOA (335-67-1)	WSLH PFAS in Water	143	ng/L	1.08	10.0
The internal standard QC limit ha	as failed low.				
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0

age 1 of 7 Report ID: 10012600

Laboratory Report

Environmental Health Division

WSLH Sample: 630521001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40 Analys	sis Date: 07/26/22 10:5	6			
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0
The Laboratory Control Spike (LCS) does	not meet the upper QC limit				
Prep Date: 07/19/22 08:40 Analys	sis Date: 07/26/22 17:0	8			
PFBA (375-22-4)	WSLH PFAS in Water	4480	ng/L	173	500
Results for this analyte were reported fror approximate.	n a diluted sample extract. Tr	rue isotope dilution was not	achieved. Results are		
PFPeA (2706-90-3)	WSLH PFAS in Water	28200	ng/L	75.0	500
Results for this analyte were reported fror approximate.	n a diluted sample extract. Tr	ue isotope dilution was not	achieved. Results are		
PFHxA (307-24-4)	WSLH PFAS in Water	19800	ng/L	102	500
Results for this analyte were reported fror approximate.	n a diluted sample extract. Tr	rue isotope dilution was not	achieved. Results are		
PFHpA (375-85-9)	WSLH PFAS in Water	1870	ng/L	75.0	500
Results for this analyte were reported from a diluted sample extract. True isotope dilution was not achieved. Results are approximate.					
Prep Date: 07/19/22 08:40 Analys	sis Date: 07/29/22 12:1	5			
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	552000	ng/L	1360	5000

Report ID: 10012600

0000.25.2.WSLH.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630521001

PFAS in Water

Analyte Analysis Method Result Units LOD LOQ

Report ID: 10012600

Prep Date: 07/19/22 08:40 Analysis Date: 07/29/22 12:15

Results are approximate, above upper calibration range.

Results for this analyte were reported from a diluted sample extract. True isotope dilution was not achieved. Results are approximate.

0000.25.2.WSLH.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630521001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012600

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630521002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE **PO BOX 340**

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 1:45:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code: County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 15:1	9			
PFBA (375-22-4)	WSLH PFAS in Water	<0.341	ng/L	0.341	0.986
PFPeA (2706-90-3)	WSLH PFAS in Water	0.695F	ng/L	0.148	0.986
PFBS (375-73-5)	WSLH PFAS in Water	<0.228	ng/L	0.228	0.986
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.986
PFHxA (307-24-4)	WSLH PFAS in Water	0.503F	ng/L	0.201	0.986
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.134	ng/L	0.134	0.986
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.986
PFHpA (375-85-9)	WSLH PFAS in Water	<0.148	ng/L	0.148	0.986
PFHxS (355-46-4)	WSLH PFAS in Water	<0.140	ng/L	0.140	0.986
DONA (919005-14-4)	WSLH PFAS in Water	<0.126	ng/L	0.126	0.986
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	17.4	ng/L	0.268	0.986
PFOA (335-67-1)	WSLH PFAS in Water	<0.106	ng/L	0.106	0.986
PFHpS (375-92-8)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.986

Laboratory Report

Environmental Health Division

WSLH Sample: 630521002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 15:1	9			_
PFOS (1763-23-1)	WSLH PFAS in Water	<0.141	ng/L	0.141	0.986
PFNA (375-95-1)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.986
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.986
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.258	ng/L	0.258	0.986
PFDA (335-76-2)	WSLH PFAS in Water	<0.161	ng/L	0.161	0.986
PFNS (68259-12-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.986
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.216	ng/L	0.216	0.986
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.209	ng/L	0.209	0.986
FOSA (754-91-6)	WSLH PFAS in Water	<0.153	ng/L	0.153	0.986
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.219	ng/L	0.219	0.986
PFDS (335-77-3)	WSLH PFAS in Water	<0.253	ng/L	0.253	0.986
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.986
PFDoA (307-55-1)	WSLH PFAS in Water	<0.267	ng/L	0.267	0.986
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.243	ng/L	0.243	0.986
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.190	ng/L	0.190	0.986
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.986	ng/L	0.986	1.97
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.277	ng/L	0.277	0.986
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.684	ng/L	0.684	1.97
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.209	ng/L	0.209	0.986
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.173	ng/L	0.173	0.986

Report ID: 10012600

The Laboratory Control Spike (LCS) does not meet the upper QC limit.

Laboratory Report

Environmental Health Division

WSLH Sample: 630521002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:41:55 AM Page 7 of 7

Laboratory Report

Environmental Health Division

WSLH Sample: 630522001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-4

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 9:45:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 11:2	7			
PFBA (375-22-4)	WSLH PFAS in Water	101	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	250	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	580	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	118	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	50.5	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	522	ng/L	2.72	10.0
PFOA (335-67-1)	WSLH PFAS in Water	1.23F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630522001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 11:2	7			
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Report ID: 10012580

The Laboratory Control Spike (LCS) does not meet the upper QC limit.

Laboratory Report

Environmental Health Division

WSLH Sample: 630522001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:41:53 AM Page 3 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630522002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901 Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901

Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 9:45:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 15:3	5			
PFBA (375-22-4)	WSLH PFAS in Water	<0.341	ng/L	0.341	0.986
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.148	ng/L	0.148	0.986
PFBS (375-73-5)	WSLH PFAS in Water	<0.228	ng/L	0.228	0.986
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.986
PFHxA (307-24-4)	WSLH PFAS in Water	<0.201	ng/L	0.201	0.986
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.134	ng/L	0.134	0.986
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.986
PFHpA (375-85-9)	WSLH PFAS in Water	<0.148	ng/L	0.148	0.986
PFHxS (355-46-4)	WSLH PFAS in Water	<0.140	ng/L	0.140	0.986
DONA (919005-14-4)	WSLH PFAS in Water	<0.126	ng/L	0.126	0.986
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	0.771F	ng/L	0.268	0.986
PFOA (335-67-1)	WSLH PFAS in Water	<0.106	ng/L	0.106	0.986
PFHpS (375-92-8)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.986

Report ID: 10012580 0000.25.2.WSLH.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630522002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 15:3	5			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.141	ng/L	0.141	0.986
PFNA (375-95-1)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.986
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.986
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.258	ng/L	0.258	0.986
PFDA (335-76-2)	WSLH PFAS in Water	<0.161	ng/L	0.161	0.986
PFNS (68259-12-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.986
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.216	ng/L	0.216	0.986
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.209	ng/L	0.209	0.986
FOSA (754-91-6)	WSLH PFAS in Water	<0.153	ng/L	0.153	0.986
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.219	ng/L	0.219	0.986
PFDS (335-77-3)	WSLH PFAS in Water	<0.253	ng/L	0.253	0.986
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.986
PFDoA (307-55-1)	WSLH PFAS in Water	<0.267	ng/L	0.267	0.986
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.243	ng/L	0.243	0.986
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.190	ng/L	0.190	0.986
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.986	ng/L	0.986	1.97
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.277	ng/L	0.277	0.986
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.684	ng/L	0.684	1.97
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.209	ng/L	0.209	0.986
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.172	ng/L	0.172	0.986

Report ID: 10012580

The Laboratory Control Spike (LCS) does not meet the upper QC limit.

Laboratory Report

Environmental Health Division

WSLH Sample: 630522002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:41:55 AM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630523001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-5

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 9:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 11:58	3			
PFBA (375-22-4)	WSLH PFAS in Water	403	ng/L	3.46	10.0
PFBS (375-73-5)	WSLH PFAS in Water	14.1	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	644	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
PFOA (335-67-1)	WSLH PFAS in Water	5.98F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630523001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40 Analy	vsis Date: 07/26/22 11:5	8			
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0
The Laboratory Control Spike (LCS) doe	s not meet the upper QC limit	t.			
Prep Date: 07/19/22 08:40 Analy	sis Date: 07/26/22 17:2	3			
PFPeA (2706-90-3)	WSLH PFAS in Water	2410	ng/L	37.5	250
Results for this analyte were reported fro approximate.	m a diluted sample extract. T	rue isotope dilution was not	t achieved. Results are		
PFHxA (307-24-4)	WSLH PFAS in Water	1580	ng/L	51.0	250
Results for this analyte were reported fro approximate.	om a diluted sample extract. T	rue isotope dilution was not	t achieved. Results are		
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	2890	ng/L	68.0	250
Results for this analyte were reported fro	m a diluted sample extract. T	rue isotope dilution was not	t achieved. Results are		

Results for this analyte were reported from a diluted sample extract. True isotope dilution was not achieved. Results are approximate.

Laboratory Report

Environmental Health Division

WSLH Sample: 630523001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012592

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630523002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 9:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 15:5	0			
PFBA (375-22-4)	WSLH PFAS in Water	<0.336	ng/L	0.336	0.971
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.971
PFBS (375-73-5)	WSLH PFAS in Water	<0.224	ng/L	0.224	0.971
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.184	ng/L	0.184	0.971
PFHxA (307-24-4)	WSLH PFAS in Water	<0.198	ng/L	0.198	0.971
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.132	ng/L	0.132	0.971
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.971
PFHpA (375-85-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.971
PFHxS (355-46-4)	WSLH PFAS in Water	<0.138	ng/L	0.138	0.971
DONA (919005-14-4)	WSLH PFAS in Water	<0.124	ng/L	0.124	0.971
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.264	ng/L	0.264	0.971
PFOA (335-67-1)	WSLH PFAS in Water	<0.105	ng/L	0.105	0.971
PFHpS (375-92-8)	WSLH PFAS in Water	<0.184	ng/L	0.184	0.971

Report ID: 10012592 0000.25.2.WSLH.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630523002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 15:5	0			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.971
PFNA (375-95-1)	WSLH PFAS in Water	<0.144	ng/L	0.144	0.971
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.177	ng/L	0.177	0.971
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.254	ng/L	0.254	0.971
PFDA (335-76-2)	WSLH PFAS in Water	<0.158	ng/L	0.158	0.971
PFNS (68259-12-1)	WSLH PFAS in Water	<0.177	ng/L	0.177	0.971
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.213	ng/L	0.213	0.971
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.206	ng/L	0.206	0.971
FOSA (754-91-6)	WSLH PFAS in Water	<0.150	ng/L	0.150	0.971
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.216	ng/L	0.216	0.971
PFDS (335-77-3)	WSLH PFAS in Water	<0.250	ng/L	0.250	0.971
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.971
PFDoA (307-55-1)	WSLH PFAS in Water	<0.263	ng/L	0.263	0.971
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.240	ng/L	0.240	0.971
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.971
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.971	ng/L	0.971	1.94
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.273	ng/L	0.273	0.971
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.674	ng/L	0.674	1.94
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.206	ng/L	0.206	0.971
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.170	ng/L	0.170	0.971

Report ID: 10012592

The Laboratory Control Spike (LCS) does not meet the upper QC limit.

Laboratory Report

Environmental Health Division

WSLH Sample: 630523002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:42:02 AM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630524001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-6

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 9:30:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code:

Region Code: County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40	Analysis Date: 07/26/22 12:2	9			
PFBA (375-22-4)	WSLH PFAS in Water	729	ng/L	3.46	10.0
PFBS (375-73-5)	WSLH PFAS in Water	20.4	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	1060	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
PFOA (335-67-1)	WSLH PFAS in Water	6.06F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630524001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/19/22 08:40 Analy	ysis Date: 07/26/22 12:2	9			
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0
The Laboratory Control Spike (LCS) doe	s not meet the upper QC limit				
Prep Date: 07/19/22 08:40 Analy	sis Date: 07/26/22 17:3	9			
PFHxA (307-24-4)	WSLH PFAS in Water	3180	ng/L	51.0	250
Results for this analyte were reported fro approximate.	om a diluted sample extract. To	rue isotope dilution was not	achieved. Results are		
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	1720	ng/L	68.0	250
Results for this analyte were reported fro approximate.	om a diluted sample extract. To	rue isotope dilution was not	achieved. Results are		
PFPeA (2706-90-3)	WSLH PFAS in Water	4710	ng/L	37.5	250
Results for this analyte were reported fro	om a diluted sample extract. To	rue isotope dilution was not	achieved Results are		

Laboratory Report

Environmental Health Division

WSLH Sample: 630524001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012617

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630524002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 9:30:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 17:5	4			
PFBA (375-22-4)	WSLH PFAS in Water	<0.340	ng/L	0.340	0.983
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.148	ng/L	0.148	0.983
PFBS (375-73-5)	WSLH PFAS in Water	<0.227	ng/L	0.227	0.983
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.983
PFHxA (307-24-4)	WSLH PFAS in Water	<0.201	ng/L	0.201	0.983
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.134	ng/L	0.134	0.983
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.983
PFHpA (375-85-9)	WSLH PFAS in Water	<0.148	ng/L	0.148	0.983
PFHxS (355-46-4)	WSLH PFAS in Water	<0.140	ng/L	0.140	0.983
DONA (919005-14-4)	WSLH PFAS in Water	<0.126	ng/L	0.126	0.983
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.267	ng/L	0.267	0.983
PFOA (335-67-1)	WSLH PFAS in Water	<0.106	ng/L	0.106	0.983
PFHpS (375-92-8)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.983

Laboratory Report

Environmental Health Division

WSLH Sample: 630524002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 17:54	4			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.141	ng/L	0.141	0.983
PFNA (375-95-1)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.983
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.983
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.258	ng/L	0.258	0.983
PFDA (335-76-2)	WSLH PFAS in Water	<0.160	ng/L	0.160	0.983
PFNS (68259-12-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.983
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.215	ng/L	0.215	0.983
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.208	ng/L	0.208	0.983
FOSA (754-91-6)	WSLH PFAS in Water	<0.152	ng/L	0.152	0.983
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.218	ng/L	0.218	0.983
PFDS (335-77-3)	WSLH PFAS in Water	<0.253	ng/L	0.253	0.983
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.983
PFDoA (307-55-1)	WSLH PFAS in Water	<0.267	ng/L	0.267	0.983
The Laboratory Control Spike (LC	CS) does not meet the upper QC limit.				
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.243	ng/L	0.243	0.983
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.190	ng/L	0.190	0.983
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.983	ng/L	0.983	1.97
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.276	ng/L	0.276	0.983
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.683	ng/L	0.683	1.97
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.208	ng/L	0.208	0.983
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.172	ng/L	0.172	0.983

Laboratory Report

Environmental Health Division

WSLH Sample: 630524002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012617

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630525001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE **PO BOX 340**

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-7

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 11:00:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#: Sample Location:

Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 13:1	4			
PFBA (375-22-4)	WSLH PFAS in Water	183	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	1010	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	9.44F	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	641	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	157	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	800	ng/L	2.72	10.0
PFOA (335-67-1)	WSLH PFAS in Water	5.38F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630525001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 13:1	4			
PFOS (1763-23-1)	WSLH PFAS in Water	6.07F	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	2.44F	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
The Laboratory Control Spike (LCS) does not meet the upper QC limit	t.			
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630525001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012620

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630525002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 11:00:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/12/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 18:0	9			
PFBA (375-22-4)	WSLH PFAS in Water	< 0.337	ng/L	0.337	0.974
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.974
PFBS (375-73-5)	WSLH PFAS in Water	<0.225	ng/L	0.225	0.974
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.185	ng/L	0.185	0.974
PFHxA (307-24-4)	WSLH PFAS in Water	<0.199	ng/L	0.199	0.974
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.133	ng/L	0.133	0.974
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.974
PFHpA (375-85-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.974
PFHxS (355-46-4)	WSLH PFAS in Water	<0.138	ng/L	0.138	0.974
DONA (919005-14-4)	WSLH PFAS in Water	<0.125	ng/L	0.125	0.974
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.265	ng/L	0.265	0.974
PFOA (335-67-1)	WSLH PFAS in Water	<0.105	ng/L	0.105	0.974
PFHpS (375-92-8)	WSLH PFAS in Water	<0.185	ng/L	0.185	0.974

Laboratory Report

Environmental Health Division

WSLH Sample: 630525002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 18:0	9			_
PFOS (1763-23-1)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.974
PFNA (375-95-1)	WSLH PFAS in Water	<0.144	ng/L	0.144	0.974
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.177	ng/L	0.177	0.974
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.255	ng/L	0.255	0.974
PFDA (335-76-2)	WSLH PFAS in Water	<0.159	ng/L	0.159	0.974
PFNS (68259-12-1)	WSLH PFAS in Water	<0.177	ng/L	0.177	0.974
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.213	ng/L	0.213	0.974
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.974
FOSA (754-91-6)	WSLH PFAS in Water	<0.151	ng/L	0.151	0.974
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.216	ng/L	0.216	0.974
PFDS (335-77-3)	WSLH PFAS in Water	<0.250	ng/L	0.250	0.974
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.974
PFDoA (307-55-1)	WSLH PFAS in Water	<0.264	ng/L	0.264	0.974
The Laboratory Control Spike (LCS) does not meet the upper QC limit	t.			
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.241	ng/L	0.241	0.974
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.188	ng/L	0.188	0.974
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.974	ng/L	0.974	1.95
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.274	ng/L	0.274	0.974
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.676	ng/L	0.676	1.95
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.974
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.170	ng/L	0.170	0.974

Laboratory Report

Environmental Health Division

WSLH Sample: 630525002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:42:04 AM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630526001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-8

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 10:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/12/2022

Date Reported: 8/18/2022 Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code:

Region Code: County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 14:1	6			
PFBA (375-22-4)	WSLH PFAS in Water	2120	ng/L	3.46	10.0
PFBS (375-73-5)	WSLH PFAS in Water	6.18F	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	12.0	ng/L	1.90	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	6.45F	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
PFOA (335-67-1)	WSLH PFAS in Water	14.7	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630526001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00 Analy	ysis Date: 08/01/22 14:1	6			
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
The Laboratory Control Spike (LCS) doe	es not meet the upper QC limit				
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0
Prep Date: 07/20/22 08:00 Analy	ysis Date: 08/02/22 07:5	1			
PFPeA (2706-90-3)	WSLH PFAS in Water	12300	ng/L	37.5	250
Results for this analyte were reported fro approximate.	om a diluted sample extract. T	rue isotope dilution was not	achieved. Results are		
PFHxA (307-24-4)	WSLH PFAS in Water	5350	ng/L	51.0	250
Results for this analyte were reported fro approximate.	om a diluted sample extract. T	rue isotope dilution was not	achieved. Results are		
PFHpA (375-85-9)	WSLH PFAS in Water	1820	ng/L	37.5	250
Results for this analyte were reported fro approximate.	om a diluted sample extract. T	rue isotope dilution was not	achieved. Results are		
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	17800	ng/L	68.0	250
Results for this analyte were reported fro	om a diluted sample extract. T	rue isotope dilution was not	achieved. Results are		

Laboratory Report

Environmental Health Division

WSLH Sample: 630526001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012634

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630526002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901

Invoice To:

Sample Type: MW-MONITORING WELL

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE **PO BOX 340**

336628

PORTAGE, WI 53901 Customer ID:

Field #: FRB2

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 10:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/12/2022 Date Reported: 8/18/2022 Sample Reason:

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code:

Sample Location:

Sample Description:

County:

ID#:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 18:2	5			
PFBA (375-22-4)	WSLH PFAS in Water	<0.340	ng/L	0.340	0.983
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.983
PFBS (375-73-5)	WSLH PFAS in Water	<0.227	ng/L	0.227	0.983
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.983
PFHxA (307-24-4)	WSLH PFAS in Water	<0.201	ng/L	0.201	0.983
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.134	ng/L	0.134	0.983
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.983
PFHpA (375-85-9)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.983
PFHxS (355-46-4)	WSLH PFAS in Water	<0.140	ng/L	0.140	0.983
DONA (919005-14-4)	WSLH PFAS in Water	<0.126	ng/L	0.126	0.983
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.267	ng/L	0.267	0.983
PFOA (335-67-1)	WSLH PFAS in Water	<0.106	ng/L	0.106	0.983
PFHpS (375-92-8)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.983

Laboratory Report

Environmental Health Division

WSLH Sample: 630526002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	nalysis Date: 08/01/22 18:2	25			_
PFOS (1763-23-1)	WSLH PFAS in Water	<0.141	ng/L	0.141	0.983
PFNA (375-95-1)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.983
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.983
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.258	ng/L	0.258	0.983
PFDA (335-76-2)	WSLH PFAS in Water	<0.160	ng/L	0.160	0.983
PFNS (68259-12-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.983
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.215	ng/L	0.215	0.983
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.208	ng/L	0.208	0.983
FOSA (754-91-6)	WSLH PFAS in Water	<0.152	ng/L	0.152	0.983
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.218	ng/L	0.218	0.983
PFDS (335-77-3)	WSLH PFAS in Water	<0.253	ng/L	0.253	0.983
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.983
PFDoA (307-55-1)	WSLH PFAS in Water	<0.266	ng/L	0.266	0.983
The Laboratory Control Spike (LCS) does not meet the upper QC limit	t.			
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.243	ng/L	0.243	0.983
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.190	ng/L	0.190	0.983
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.983	ng/L	0.983	1.97
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.276	ng/L	0.276	0.983
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.682	ng/L	0.682	1.97
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.208	ng/L	0.208	0.983
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.172	ng/L	0.172	0.983

Laboratory Report

Environmental Health Division

WSLH Sample: 630526002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:42:14 AM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630531001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-9

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 11:30:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code:

Region Code: County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 14:4	7			
PFBA (375-22-4)	WSLH PFAS in Water	1670	ng/L	3.46	10.0
PFBS (375-73-5)	WSLH PFAS in Water	19.3	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	227	ng/L	1.90	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	1200	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	2.42F	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
PFOA (335-67-1)	WSLH PFAS in Water	10.8	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	1.98F	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630531001

PFAS in Water

Analysis Method	Result	Units	LOD	LOQ
sis Date: 08/01/22 14:47	7			
WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
not meet the upper QC limit.				
WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
WSLH PFAS in Water	<1.75	ng/L	1.75	10.0
sis Date: 08/02/22 08:06	6			
WSLH PFAS in Water	7010	ng/L	37.5	250
n a diluted sample extract. Tr	ue isotope dilution was not	achieved. Results are		
WSLH PFAS in Water	8560	ng/L	51.0	250
n a diluted sample extract. Tr	ue isotope dilution was not	achieved. Results are		
WSLH PFAS in Water	14200	ng/L	68.0	250
	sis Date: 08/01/22 14:4: WSLH PFAS in Water The Additional Control of the Control	wslh PFAs in Water <2.62 Wslh PFAs in Water <1.63 Wslh PFAs in Water <1.82 Wslh PFAs in Water <2.19 Wslh PFAs in Water <2.12 Wslh PFAs in Water <1.55 Wslh PFAs in Water <1.55 Wslh PFAs in Water <2.22 Wslh PFAs in Water <2.57 Wslh PFAs in Water <1.49 Wslh PFAs in Water <1.49 Wslh PFAs in Water <2.71 not meet the upper QC limit. Wslh PFAs in Water <1.93 Wslh PFAs in Water <1.93 Wslh PFAs in Water <1.00 Wslh PFAs in Water <2.81 Wslh PFAs in Water <2.81 Wslh PFAs in Water <2.12 Wslh PFAs in Water <1.75 sis Date: 08/02/22 08:06 Wslh PFAs in Water 7010 In a diluted sample extract. True isotope dilution was not wslh PFAs in Water 8560 In a diluted sample extract. True isotope dilution was not	## Sis Date: 08/01/22 14:47 ## WSLH PFAS in Water	Sis Date: 08/01/22 14:47 WSLH PFAS in Water

Results for this analyte were reported from a diluted sample extract. True isotope dilution was not achieved. Results are approximate.

Laboratory Report

Environmental Health Division

WSLH Sample: 630531001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012637

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239

Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630531002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PO BOX 340 PORTAGE, WI 53901

Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 11:30:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 18:4	0			
PFBA (375-22-4)	WSLH PFAS in Water	<0.334	ng/L	0.334	0.965
PFPeA (2706-90-3)	WSLH PFAS in Water	0.568F	ng/L	0.145	0.965
PFBS (375-73-5)	WSLH PFAS in Water	<0.223	ng/L	0.223	0.965
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.183	ng/L	0.183	0.965
PFHxA (307-24-4)	WSLH PFAS in Water	0.424F	ng/L	0.197	0.965
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.131	ng/L	0.131	0.965
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.185	ng/L	0.185	0.965
PFHpA (375-85-9)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.965
PFHxS (355-46-4)	WSLH PFAS in Water	<0.137	ng/L	0.137	0.965
DONA (919005-14-4)	WSLH PFAS in Water	<0.124	ng/L	0.124	0.965
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	6.51	ng/L	0.262	0.965
PFOA (335-67-1)	WSLH PFAS in Water	<0.104	ng/L	0.104	0.965
PFHpS (375-92-8)	WSLH PFAS in Water	<0.183	ng/L	0.183	0.965

ge 4 of 6 Report ID: 10012637

Laboratory Report

Environmental Health Division

WSLH Sample: 630531002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	analysis Date: 08/01/22 18:4	.0			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.138	ng/L	0.138	0.965
PFNA (375-95-1)	WSLH PFAS in Water	<0.143	ng/L	0.143	0.965
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.176	ng/L	0.176	0.965
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.253	ng/L	0.253	0.965
PFDA (335-76-2)	WSLH PFAS in Water	<0.157	ng/L	0.157	0.965
PFNS (68259-12-1)	WSLH PFAS in Water	<0.176	ng/L	0.176	0.965
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.211	ng/L	0.211	0.965
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.205	ng/L	0.205	0.965
FOSA (754-91-6)	WSLH PFAS in Water	<0.150	ng/L	0.150	0.965
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.214	ng/L	0.214	0.965
PFDS (335-77-3)	WSLH PFAS in Water	<0.248	ng/L	0.248	0.965
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.144	ng/L	0.144	0.965
PFDoA (307-55-1)	WSLH PFAS in Water	<0.261	ng/L	0.261	0.965
The Laboratory Control Spike (LCS) does not meet the upper QC limit	t.			
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.238	ng/L	0.238	0.965
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.965
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.965	ng/L	0.965	1.93
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.271	ng/L	0.271	0.965
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.670	ng/L	0.670	1.93
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.205	ng/L	0.205	0.965
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.169	ng/L	0.169	0.965

Laboratory Report

Environmental Health Division

WSLH Sample: 630531002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012637

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630532001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-10

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 11:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 15:1	8			
PFBA (375-22-4)	WSLH PFAS in Water	1260	ng/L	3.46	10.0
PFBS (375-73-5)	WSLH PFAS in Water	40.8	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	12.4	ng/L	1.90	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
PFOA (335-67-1)	WSLH PFAS in Water	15.3	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0

of 6 Report ID: 10012640 0000.25.2.WSLH

Laboratory Report

Environmental Health Division

WSLH Sample: 630532001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00 Analy	sis Date: 08/01/22 15:18	3			
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
The Laboratory Control Spike (LCS) does	s not meet the upper QC limit.				
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0
Prep Date: 07/20/22 08:00 Analy	sis Date: 08/02/22 08:22	2			
PFPeA (2706-90-3)	WSLH PFAS in Water	9110	ng/L	37.5	250
Results for this analyte were reported from approximate.	m a diluted sample extract. Tr	ue isotope dilution was not	achieved. Results are		
PFHxA (307-24-4)	WSLH PFAS in Water	6470	ng/L	51.0	250
Results for this analyte were reported from approximate.	m a diluted sample extract. Tr	ue isotope dilution was not	achieved. Results are		
PFHpA (375-85-9)	WSLH PFAS in Water	1360	ng/L	37.5	250
Results for this analyte were reported from approximate.	m a diluted sample extract. Tr	ue isotope dilution was not	achieved. Results are		
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	8280	ng/L	68.0	250
Results for this analyte were reported from approximate.	m a diluted sample extract. Tr	ue isotope dilution was not	achieved. Results are		

Report ID: 10012640 0000.25.2.WSLH.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630532001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012640

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630532002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901 Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 11:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022 Sample Reason: ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 18:5	6			
PFBA (375-22-4)	WSLH PFAS in Water	<0.338	ng/L	0.338	0.978
PFPeA (2706-90-3)	WSLH PFAS in Water	0.512F	ng/L	0.147	0.978
PFBS (375-73-5)	WSLH PFAS in Water	<0.226	ng/L	0.226	0.978
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.978
PFHxA (307-24-4)	WSLH PFAS in Water	0.441F	ng/L	0.200	0.978
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.133	ng/L	0.133	0.978
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.188	ng/L	0.188	0.978
PFHpA (375-85-9)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.978
PFHxS (355-46-4)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.978
DONA (919005-14-4)	WSLH PFAS in Water	<0.125	ng/L	0.125	0.978
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	0.914F	ng/L	0.266	0.978
PFOA (335-67-1)	WSLH PFAS in Water	<0.106	ng/L	0.106	0.978
PFHpS (375-92-8)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.978

Report ID: 10012640 0000.25.2.WSLH.

Laboratory Report

Environmental Health Division

WSLH Sample: 630532002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00 Analy	ysis Date: 08/01/22 18:5	6			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.140	ng/L	0.140	0.978
PFNA (375-95-1)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.978
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.178	ng/L	0.178	0.978
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.256	ng/L	0.256	0.978
PFDA (335-76-2)	WSLH PFAS in Water	<0.159	ng/L	0.159	0.978
PFNS (68259-12-1)	WSLH PFAS in Water	<0.178	ng/L	0.178	0.978
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.214	ng/L	0.214	0.978
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.978
FOSA (754-91-6)	WSLH PFAS in Water	<0.152	ng/L	0.152	0.978
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.217	ng/L	0.217	0.978
PFDS (335-77-3)	WSLH PFAS in Water	<0.251	ng/L	0.251	0.978
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.978
PFDoA (307-55-1)	WSLH PFAS in Water	<0.265	ng/L	0.265	0.978
The Laboratory Control Spike (LCS) doe	es not meet the upper QC limit	t.			
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.242	ng/L	0.242	0.978
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.978
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.978	ng/L	0.978	1.96
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.275	ng/L	0.275	0.978
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.679	ng/L	0.679	1.96
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.978
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.171	ng/L	0.171	0.978

Laboratory Report

Environmental Health Division

WSLH Sample: 630532002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10012640

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630534001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-11

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 12:06:00 PM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code:

Region Code: County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 15:4	9			
PFBA (375-22-4)	WSLH PFAS in Water	900	ng/L	3.46	10.0
PFBS (375-73-5)	WSLH PFAS in Water	19.3	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	12.0	ng/L	1.90	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	837	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
PFOA (335-67-1)	WSLH PFAS in Water	15.3	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	1.86F	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	2.01F	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0

Report ID: 10012643 Page 1 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630534001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00 Analys	sis Date: 08/01/22 15:49	9			
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	3.15F	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
The Laboratory Control Spike (LCS) does	not meet the upper QC limit.				
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0
Prep Date: 07/20/22 08:00 Analys	sis Date: 08/02/22 08:38	3			
PFPeA (2706-90-3)	WSLH PFAS in Water	5210	ng/L	37.5	250
Results for this analyte were reported from approximate.	n a diluted sample extract. Tr	ue isotope dilution was not	achieved. Results are		
PFHxA (307-24-4)	WSLH PFAS in Water	3430	ng/L	51.0	250
Results for this analyte were reported from approximate.	n a diluted sample extract. Tr	ue isotope dilution was not	achieved. Results are		
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	18500	ng/L	68.0	250

Laboratory Report

Environmental Health Division

WSLH Sample: 630534001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:42:19 AM Page 3 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630534002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOY 340

PO BOX 340 PORTAGE, WI 53901

Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 12:06:00 PM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 19:1	1			
PFBA (375-22-4)	WSLH PFAS in Water	<0.339	ng/L	0.339	0.978
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.978
PFBS (375-73-5)	WSLH PFAS in Water	<0.226	ng/L	0.226	0.978
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.978
PFHxA (307-24-4)	WSLH PFAS in Water	<0.200	ng/L	0.200	0.978
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.133	ng/L	0.133	0.978
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.188	ng/L	0.188	0.978
PFHpA (375-85-9)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.978
PFHxS (355-46-4)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.978
DONA (919005-14-4)	WSLH PFAS in Water	<0.125	ng/L	0.125	0.978
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.266	ng/L	0.266	0.978
PFOA (335-67-1)	WSLH PFAS in Water	<0.106	ng/L	0.106	0.978
PFHpS (375-92-8)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.978

Laboratory Report

Environmental Health Division

WSLH Sample: 630534002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 19:11	1			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.140	ng/L	0.140	0.978
PFNA (375-95-1)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.978
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.178	ng/L	0.178	0.978
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.256	ng/L	0.256	0.978
PFDA (335-76-2)	WSLH PFAS in Water	<0.159	ng/L	0.159	0.978
PFNS (68259-12-1)	WSLH PFAS in Water	<0.178	ng/L	0.178	0.978
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.214	ng/L	0.214	0.978
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.978
FOSA (754-91-6)	WSLH PFAS in Water	<0.152	ng/L	0.152	0.978
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.217	ng/L	0.217	0.978
PFDS (335-77-3)	WSLH PFAS in Water	<0.251	ng/L	0.251	0.978
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.978
PFDoA (307-55-1)	WSLH PFAS in Water	<0.265	ng/L	0.265	0.978
The Laboratory Control Spike (LC	CS) does not meet the upper QC limit.				
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.242	ng/L	0.242	0.978
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.978
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.978	ng/L	0.978	1.96
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.275	ng/L	0.275	0.978
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.679	ng/L	0.679	1.96
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.978
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.171	ng/L	0.171	0.978

Laboratory Report

Environmental Health Division

WSLH Sample: 630534002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:42:21 AM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630537001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-12

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 6:45:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/13/2022 Date Reported: 8/18/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 16:2	0			
PFBA (375-22-4)	WSLH PFAS in Water	77.6	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	13.4	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	4.58F	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	12.3	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	4.84F	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<2.72	ng/L	2.72	10.0
PFOA (335-67-1)	WSLH PFAS in Water	6.22F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630537001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00 Ana	alysis Date: 08/01/22 16:2	20			
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
The Laboratory Control Spike (LCS) do	pes not meet the upper QC limit	t.			
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630537001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:42:18 AM Page 3 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630537002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901 Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 6:45:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/18/2022 Sample Reason: ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 19:2	7			
PFBA (375-22-4)	WSLH PFAS in Water	<0.339	ng/L	0.339	0.981
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.981
PFBS (375-73-5)	WSLH PFAS in Water	<0.227	ng/L	0.227	0.981
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.981
PFHxA (307-24-4)	WSLH PFAS in Water	<0.200	ng/L	0.200	0.981
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.133	ng/L	0.133	0.981
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.188	ng/L	0.188	0.981
PFHpA (375-85-9)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.981
PFHxS (355-46-4)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.981
DONA (919005-14-4)	WSLH PFAS in Water	<0.126	ng/L	0.126	0.981
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.267	ng/L	0.267	0.981
PFOA (335-67-1)	WSLH PFAS in Water	<0.106	ng/L	0.106	0.981
PFHpS (375-92-8)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.981

Laboratory Report

Environmental Health Division

WSLH Sample: 630537002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/20/22 08:00	Analysis Date: 08/01/22 19:2	7			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.140	ng/L	0.140	0.981
PFNA (375-95-1)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.981
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.981
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.257	ng/L	0.257	0.981
PFDA (335-76-2)	WSLH PFAS in Water	<0.160	ng/L	0.160	0.981
PFNS (68259-12-1)	WSLH PFAS in Water	<0.179	ng/L	0.179	0.981
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.215	ng/L	0.215	0.981
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.208	ng/L	0.208	0.981
FOSA (754-91-6)	WSLH PFAS in Water	<0.152	ng/L	0.152	0.981
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.218	ng/L	0.218	0.981
PFDS (335-77-3)	WSLH PFAS in Water	<0.252	ng/L	0.252	0.981
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.981
PFDoA (307-55-1)	WSLH PFAS in Water	<0.266	ng/L	0.266	0.981
The Laboratory Control Spike (LC	CS) does not meet the upper QC limit				
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.242	ng/L	0.242	0.981
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.981
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.981	ng/L	0.981	1.96
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.276	ng/L	0.276	0.981
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.681	ng/L	0.681	1.96
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.208	ng/L	0.208	0.981
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.172	ng/L	0.172	0.981

Laboratory Report

Environmental Health Division

WSLH Sample: 630537002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Thursday, August 18, 2022 7:42:21 AM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630538001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-13

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 6:25:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/13/2022 Date Reported: 8/24/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 11:0	9			
PFBA (375-22-4)	WSLH PFAS in Water	53.4	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	8.07F	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	3.73F	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	6.42F	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	<1.50	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<2.72	ng/L	2.72	10.0
PFOA (335-67-1)	WSLH PFAS in Water	2.05F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0

Page 1 of 6 Report ID: 10036020

Laboratory Report

Environmental Health Division

WSLH Sample: 630538001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 11:09	9			
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630538001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10036020

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630538002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 6:25:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/24/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/29/22 08:45	Analysis Date: 08/02/22 02:1	0			
PFBA (375-22-4)	WSLH PFAS in Water	<0.336	ng/L	0.336	0.970
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.970
PFBS (375-73-5)	WSLH PFAS in Water	<0.224	ng/L	0.224	0.970
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.184	ng/L	0.184	0.970
PFHxA (307-24-4)	WSLH PFAS in Water	<0.198	ng/L	0.198	0.970
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.132	ng/L	0.132	0.970
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.970
PFHpA (375-85-9)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.970
PFHxS (355-46-4)	WSLH PFAS in Water	<0.138	ng/L	0.138	0.970
DONA (919005-14-4)	WSLH PFAS in Water	<0.124	ng/L	0.124	0.970
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.264	ng/L	0.264	0.970
PFOA (335-67-1)	WSLH PFAS in Water	<0.105	ng/L	0.105	0.970
PFHpS (375-92-8)	WSLH PFAS in Water	<0.184	ng/L	0.184	0.970

Page 4 of 6 Report ID: 10036020

Laboratory Report

Environmental Health Division

WSLH Sample: 630538002

PFAS in Water

Analysis Method	Result	Units	LOD	LOQ
Analysis Date: 08/02/22 02:1	0			
WSLH PFAS in Water	<0.139	ng/L	0.139	0.970
WSLH PFAS in Water	<0.144	ng/L	0.144	0.970
WSLH PFAS in Water	<0.177	ng/L	0.177	0.970
WSLH PFAS in Water	<0.254	ng/L	0.254	0.970
WSLH PFAS in Water	<0.158	ng/L	0.158	0.970
WSLH PFAS in Water	<0.177	ng/L	0.177	0.970
WSLH PFAS in Water	<0.212	ng/L	0.212	0.970
WSLH PFAS in Water	<0.206	ng/L	0.206	0.970
WSLH PFAS in Water	<0.150	ng/L	0.150	0.970
WSLH PFAS in Water	<0.215	ng/L	0.215	0.970
WSLH PFAS in Water	<0.249	ng/L	0.249	0.970
WSLH PFAS in Water	<0.145	ng/L	0.145	0.970
WSLH PFAS in Water	<0.263	ng/L	0.263	0.970
WSLH PFAS in Water	<0.240	ng/L	0.240	0.970
WSLH PFAS in Water	<0.187	ng/L	0.187	0.970
WSLH PFAS in Water	<0.970	ng/L	0.970	1.94
WSLH PFAS in Water	<0.273	ng/L	0.273	0.970
WSLH PFAS in Water	<0.673	ng/L	0.673	1.94
WSLH PFAS in Water	<0.206	ng/L	0.206	0.970
WSLH PFAS in Water	<0.170	ng/L	0.170	0.970
	Analysis Date: 08/02/22 02:1 WSLH PFAS in Water WSLH PFAS in Water	Analysis Date: 08/02/22 02:10 WSLH PFAS in Water	Analysis Date: 08/02/22 02:10 WSLH PFAS in Water	Analysis Date: 08/02/22 02:10 WSLH PFAS in Water

Laboratory Report

Environmental Health Division

WSLH Sample: 630538002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10036020

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630541001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PO BOX 340 PORTAGE, WI 53901

Customer ID: 336628

Field #: MW-14

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 8:45:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/13/2022

Date Reported: 8/24/2022 Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 11:4	0			
PFBA (375-22-4)	WSLH PFAS in Water	16.2	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	27.2	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	<2.31	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	18.4	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	4.57F	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	4.56F	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	7.54F	ng/L	2.72	10.0
PFOA (335-67-1)	WSLH PFAS in Water	5.77F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0

Page 1 of 6 Report ID: 10036023

Laboratory Report

Environmental Health Division

WSLH Sample: 630541001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 11:40	0			
PFOS (1763-23-1)	WSLH PFAS in Water	3.17F	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630541001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10036023

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630541002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 8:45:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/24/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/29/22 08:45	Analysis Date: 08/02/22 02:2	5			
PFBA (375-22-4)	WSLH PFAS in Water	<0.345	ng/L	0.345	0.996
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.149	ng/L	0.149	0.996
PFBS (375-73-5)	WSLH PFAS in Water	<0.230	ng/L	0.230	0.996
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.996
PFHxA (307-24-4)	WSLH PFAS in Water	<0.203	ng/L	0.203	0.996
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.135	ng/L	0.135	0.996
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.191	ng/L	0.191	0.996
PFHpA (375-85-9)	WSLH PFAS in Water	<0.149	ng/L	0.149	0.996
PFHxS (355-46-4)	WSLH PFAS in Water	<0.141	ng/L	0.141	0.996
DONA (919005-14-4)	WSLH PFAS in Water	<0.128	ng/L	0.128	0.996
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.271	ng/L	0.271	0.996
PFOA (335-67-1)	WSLH PFAS in Water	<0.108	ng/L	0.108	0.996
PFHpS (375-92-8)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.996

Page 4 of 6 Report ID: 10036023

Laboratory Report

Environmental Health Division

WSLH Sample: 630541002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/29/22 08:45	Analysis Date: 08/02/22 02:2	5			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.142	ng/L	0.142	0.996
PFNA (375-95-1)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.996
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.181	ng/L	0.181	0.996
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.261	ng/L	0.261	0.996
PFDA (335-76-2)	WSLH PFAS in Water	<0.162	ng/L	0.162	0.996
PFNS (68259-12-1)	WSLH PFAS in Water	<0.181	ng/L	0.181	0.996
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.218	ng/L	0.218	0.996
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.211	ng/L	0.211	0.996
FOSA (754-91-6)	WSLH PFAS in Water	<0.154	ng/L	0.154	0.996
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.221	ng/L	0.221	0.996
PFDS (335-77-3)	WSLH PFAS in Water	<0.256	ng/L	0.256	0.996
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.148	ng/L	0.148	0.996
PFDoA (307-55-1)	WSLH PFAS in Water	<0.270	ng/L	0.270	0.996
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.246	ng/L	0.246	0.996
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.192	ng/L	0.192	0.996
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.996	ng/L	0.996	1.99
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.280	ng/L	0.280	0.996
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.691	ng/L	0.691	1.99
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.211	ng/L	0.211	0.996
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.174	ng/L	0.174	0.996

Laboratory Report

Environmental Health Division

WSLH Sample: 630541002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Wednesday, August 24, 2022 12:58:50 PM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630543001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-15

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 7:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/13/2022

Date Reported: 8/24/2022 Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 12:1	1			
PFBA (375-22-4)	WSLH PFAS in Water	51.5	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	164	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	2.46F	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	99.7	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	19.9	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	70.6	ng/L	2.72	10.0
PFOA (335-67-1)	WSLH PFAS in Water	2.30F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0

Report ID: 10036026 Page 1 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630543001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 12:1	1			
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630543001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Wednesday, August 24, 2022 12:58:48 PM Page 3 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630543002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 7:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/24/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/29/22 08:45	Analysis Date: 08/02/22 02:4	1			
PFBA (375-22-4)	WSLH PFAS in Water	<0.345	ng/L	0.345	0.998
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.150	ng/L	0.150	0.998
PFBS (375-73-5)	WSLH PFAS in Water	<0.231	ng/L	0.231	0.998
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.190	ng/L	0.190	0.998
PFHxA (307-24-4)	WSLH PFAS in Water	<0.204	ng/L	0.204	0.998
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.136	ng/L	0.136	0.998
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.192	ng/L	0.192	0.998
PFHpA (375-85-9)	WSLH PFAS in Water	<0.150	ng/L	0.150	0.998
PFHxS (355-46-4)	WSLH PFAS in Water	<0.142	ng/L	0.142	0.998
DONA (919005-14-4)	WSLH PFAS in Water	<0.128	ng/L	0.128	0.998
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.271	ng/L	0.271	0.998
PFOA (335-67-1)	WSLH PFAS in Water	<0.108	ng/L	0.108	0.998
PFHpS (375-92-8)	WSLH PFAS in Water	<0.190	ng/L	0.190	0.998

Page 4 of 6 Report ID: 10036026

Laboratory Report

Environmental Health Division

WSLH Sample: 630543002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/29/22 08:45	Analysis Date: 08/02/22 02:4	1			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.143	ng/L	0.143	0.998
PFNA (375-95-1)	WSLH PFAS in Water	<0.148	ng/L	0.148	0.998
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.182	ng/L	0.182	0.998
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.261	ng/L	0.261	0.998
PFDA (335-76-2)	WSLH PFAS in Water	<0.163	ng/L	0.163	0.998
PFNS (68259-12-1)	WSLH PFAS in Water	<0.182	ng/L	0.182	0.998
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.219	ng/L	0.219	0.998
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.212	ng/L	0.212	0.998
FOSA (754-91-6)	WSLH PFAS in Water	<0.155	ng/L	0.155	0.998
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.222	ng/L	0.222	0.998
PFDS (335-77-3)	WSLH PFAS in Water	<0.256	ng/L	0.256	0.998
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.149	ng/L	0.149	0.998
PFDoA (307-55-1)	WSLH PFAS in Water	<0.270	ng/L	0.270	0.998
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.246	ng/L	0.246	0.998
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.193	ng/L	0.193	0.998
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.998	ng/L	0.998	2.00
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.280	ng/L	0.280	0.998
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.693	ng/L	0.693	2.00
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.212	ng/L	0.212	0.998
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.175	ng/L	0.175	0.998

Laboratory Report

Environmental Health Division

WSLH Sample: 630543002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10036026

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630546001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: MW-16

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 8:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/13/2022

Date Reported: 8/24/2022 Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 12:4	2			
PFBA (375-22-4)	WSLH PFAS in Water	121	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	473	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	5.14F	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	294	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	75.9	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	283	ng/L	2.72	10.0
PFOA (335-67-1)	WSLH PFAS in Water	3.99F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0

Report ID: 10036029 Page 1 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630546001

PFAS in Water

Analysis Method	Result	Units	LOD	LOQ
Analysis Date: 08/02/22 12:4	2			
WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
WSLH PFAS in Water	<1.75	ng/L	1.75	10.0
	Analysis Date: 08/02/22 12:4 WSLH PFAS in Water WSLH PFAS in Water	Analysis Date: 08/02/22 12:42 WSLH PFAS in Water <1.43 WSLH PFAS in Water <1.48 WSLH PFAS in Water <1.82 WSLH PFAS in Water <2.62 WSLH PFAS in Water <1.63 WSLH PFAS in Water <1.82 WSLH PFAS in Water <2.19 WSLH PFAS in Water <2.19 WSLH PFAS in Water <2.12 WSLH PFAS in Water <1.55 WSLH PFAS in Water <2.22 WSLH PFAS in Water <2.22 WSLH PFAS in Water <2.57 WSLH PFAS in Water <1.49 WSLH PFAS in Water <2.71 WSLH PFAS in Water <2.47 WSLH PFAS in Water <1.93 WSLH PFAS in Water <1.00 WSLH PFAS in Water <2.81 WSLH PFAS in Water <6.94 WSLH PFAS in Water <6.94 WSLH PFAS in Water <2.12	Analysis Date: 08/02/22 12:42 WSLH PFAS in Water	Analysis Date: 08/02/22 12:42 WSLH PFAS in Water

Laboratory Report

Environmental Health Division

WSLH Sample: 630546001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10036029

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239

Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630546002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 8:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/24/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/29/22 08:45	Analysis Date: 08/02/22 02:5	6			
PFBA (375-22-4)	WSLH PFAS in Water	<0.348	ng/L	0.348	1.00
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.151	ng/L	0.151	1.00
PFBS (375-73-5)	WSLH PFAS in Water	<0.232	ng/L	0.232	1.00
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.191	ng/L	0.191	1.00
PFHxA (307-24-4)	WSLH PFAS in Water	<0.205	ng/L	0.205	1.00
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.137	ng/L	0.137	1.00
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.193	ng/L	0.193	1.00
PFHpA (375-85-9)	WSLH PFAS in Water	<0.151	ng/L	0.151	1.00
PFHxS (355-46-4)	WSLH PFAS in Water	<0.143	ng/L	0.143	1.00
DONA (919005-14-4)	WSLH PFAS in Water	<0.129	ng/L	0.129	1.00
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.273	ng/L	0.273	1.00
PFOA (335-67-1)	WSLH PFAS in Water	<0.109	ng/L	0.109	1.00
PFHpS (375-92-8)	WSLH PFAS in Water	<0.191	ng/L	0.191	1.00

Page 4 of 6 Report ID: 10036029

Laboratory Report

Environmental Health Division

WSLH Sample: 630546002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/29/22 08:45	Analysis Date: 08/02/22 02:5	6			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.144	ng/L	0.144	1.00
PFNA (375-95-1)	WSLH PFAS in Water	<0.149	ng/L	0.149	1.00
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.183	ng/L	0.183	1.00
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.263	ng/L	0.263	1.00
PFDA (335-76-2)	WSLH PFAS in Water	<0.164	ng/L	0.164	1.00
PFNS (68259-12-1)	WSLH PFAS in Water	<0.183	ng/L	0.183	1.00
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.220	ng/L	0.220	1.00
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.213	ng/L	0.213	1.00
FOSA (754-91-6)	WSLH PFAS in Water	<0.156	ng/L	0.156	1.00
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.223	ng/L	0.223	1.00
PFDS (335-77-3)	WSLH PFAS in Water	<0.258	ng/L	0.258	1.00
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.150	ng/L	0.150	1.00
PFDoA (307-55-1)	WSLH PFAS in Water	<0.272	ng/L	0.272	1.00
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.248	ng/L	0.248	1.00
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.194	ng/L	0.194	1.00
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<1.00	ng/L	1.00	2.01
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.282	ng/L	0.282	1.00
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.697	ng/L	0.697	2.01
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.213	ng/L	0.213	1.00
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.176	ng/L	0.176	1.00

Laboratory Report

Environmental Health Division

WSLH Sample: 630546002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Wednesday, August 24, 2022 12:58:59 PM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630551001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901 Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Customer ID: 336628

Field #: MW-17

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 7:55:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/12/2022

Date Reported: 8/24/2022 Sample Reason: ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 13:1	3			
PFBA (375-22-4)	WSLH PFAS in Water	4.79F	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	<1.50	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	<2.31	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	<2.04	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	<1.50	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<2.72	ng/L	2.72	10.0
PFOA (335-67-1)	WSLH PFAS in Water	<1.08	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0

Page 1 of 6 Report ID: 10036015

Laboratory Report

Environmental Health Division

WSLH Sample: 630551001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 13:1	3			
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630551001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10036015

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630551002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 7:55:00 AM

Collection Start: Collected By:

Date Received: 7/12/2022 Date Reported: 8/24/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/29/22 08:45	Analysis Date: 08/02/22 03:4	3			
PFBA (375-22-4)	WSLH PFAS in Water	<0.338	ng/L	0.338	0.977
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.977
PFBS (375-73-5)	WSLH PFAS in Water	<0.226	ng/L	0.226	0.977
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.977
PFHxA (307-24-4)	WSLH PFAS in Water	<0.199	ng/L	0.199	0.977
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.133	ng/L	0.133	0.977
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.188	ng/L	0.188	0.977
PFHpA (375-85-9)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.977
PFHxS (355-46-4)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.977
DONA (919005-14-4)	WSLH PFAS in Water	<0.125	ng/L	0.125	0.977
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.266	ng/L	0.266	0.977
PFOA (335-67-1)	WSLH PFAS in Water	<0.106	ng/L	0.106	0.977
PFHpS (375-92-8)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.977

Laboratory Report

Environmental Health Division

WSLH Sample: 630551002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/29/22 08:45	Analysis Date: 08/02/22 03:4	-3			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.140	ng/L	0.140	0.977
PFNA (375-95-1)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.977
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.178	ng/L	0.178	0.977
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.256	ng/L	0.256	0.977
PFDA (335-76-2)	WSLH PFAS in Water	<0.159	ng/L	0.159	0.977
PFNS (68259-12-1)	WSLH PFAS in Water	<0.178	ng/L	0.178	0.977
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.214	ng/L	0.214	0.977
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.977
FOSA (754-91-6)	WSLH PFAS in Water	<0.151	ng/L	0.151	0.977
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.217	ng/L	0.217	0.977
PFDS (335-77-3)	WSLH PFAS in Water	<0.251	ng/L	0.251	0.977
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.977
PFDoA (307-55-1)	WSLH PFAS in Water	<0.265	ng/L	0.265	0.977
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.241	ng/L	0.241	0.977
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.189	ng/L	0.189	0.977
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.977	ng/L	0.977	1.95
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.275	ng/L	0.275	0.977
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.678	ng/L	0.678	1.95
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.977
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.171	ng/L	0.171	0.977

Laboratory Report

Environmental Health Division

WSLH Sample: 630551002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10036015

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630552001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: P2-1

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 1:00:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/12/2022

Date Reported: 8/30/2022 Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code:

Region Code: County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/04/22 11:15	Analysis Date: 08/05/22 10:3	37			
PFBA (375-22-4)	WSLH PFAS in Water	<3.46	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	<1.50	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	<2.31	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	<2.04	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	<1.50	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	5.24F	ng/L	2.72	10.0
Compound detected in field r	reagent blank (FRB).				
PFOA (335-67-1)	WSLH PFAS in Water	<1.08	ng/L	1.08	10.0

Report ID: 10053909 Page 1 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630552001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/04/22 11:15	Analysis Date: 08/05/22 10:3	7			
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<3.98	ng/L	3.98	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630552001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Tuesday, August 30, 2022 8:48:23 AM Page 3 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630552002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901 Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 1:00:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/12/2022 Date Reported: 8/30/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 07/29/22 08:45	Analysis Date: 08/02/22 03:5	8			
PFBA (375-22-4)	WSLH PFAS in Water	<0.338	ng/L	0.338	0.978
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.978
PFBS (375-73-5)	WSLH PFAS in Water	<0.226	ng/L	0.226	0.978
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.978
PFHxA (307-24-4)	WSLH PFAS in Water	<0.200	ng/L	0.200	0.978
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.133	ng/L	0.133	0.978
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.188	ng/L	0.188	0.978
PFHpA (375-85-9)	WSLH PFAS in Water	<0.147	ng/L	0.147	0.978
PFHxS (355-46-4)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.978
DONA (919005-14-4)	WSLH PFAS in Water	<0.125	ng/L	0.125	0.978
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	0.967F	ng/L	0.266	0.978
PFOA (335-67-1)	WSLH PFAS in Water	<0.106	ng/L	0.106	0.978
PFHpS (375-92-8)	WSLH PFAS in Water	<0.186	ng/L	0.186	0.978

Laboratory Report

Environmental Health Division

WSLH Sample: 630552002

PFAS in Water

PFNA (375-95-1) WSLH PFAS in Water <0.145	0.978 0.978 0.978 0.978
PFNA (375-95-1) WSLH PFAS in Water <0.145 ng/L 0.145 9CI-PF3ONS (756426-58-1) WSLH PFAS in Water <0.178	0.978 0.978
9CI-PF3ONS (756426-58-1) WSLH PFAS in Water <0.178 ng/L 0.178 8:2 FTSA (39108-34-4) WSLH PFAS in Water <0.256 ng/L 0.256	0.978
8:2 FTSA (39108-34-4) WSLH PFAS in Water <0.256 ng/L 0.256	
, , , , , , , , , , , , , , , , , , , ,	0.978
DEDA (905 70.9)	
PFDA (335-76-2) WSLH PFAS in Water <0.159 ng/L 0.159	0.978
PFNS (68259-12-1) WSLH PFAS in Water <0.178 ng/L 0.178	0.978
N-MeFOSAA (2355-31-9) WSLH PFAS in Water <0.214 ng/L 0.214	0.978
N-EtFOSAA (2991-50-6) WSLH PFAS in Water <0.207 ng/L 0.207	0.978
FOSA (754-91-6) WSLH PFAS in Water <0.152 ng/L 0.152	0.978
PFUnA (2058-94-8) WSLH PFAS in Water <0.217 ng/L 0.217	0.978
PFDS (335-77-3) WSLH PFAS in Water <0.251 ng/L 0.251	0.978
11CI-PF3OUdS (763051-92-9) WSLH PFAS in Water <0.146 ng/L 0.146	0.978
PFDoA (307-55-1) WSLH PFAS in Water <0.265 ng/L 0.265	0.978
PFDoS (79780-39-5) WSLH PFAS in Water <0.242 ng/L 0.242	0.978
PFTrDA (72629-94-8) WSLH PFAS in Water <0.189 ng/L 0.189	0.978
N-MeFOSA (31506-32-8) WSLH PFAS in Water <0.978 ng/L 0.978	1.96
N-MeFOSE (24448-09-7) WSLH PFAS in Water <0.275 ng/L 0.275	0.978
N-EtFOSA (4151-50-2) WSLH PFAS in Water <0.679 ng/L 0.679	1.96
N-EtFOSE (1691-99-2) WSLH PFAS in Water <0.207 ng/L 0.207	0.978
PFTeDA (376-06-7) WSLH PFAS in Water <0.171 ng/L 0.171	0.978

Laboratory Report

Environmental Health Division

WSLH Sample: 630552002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Tuesday, August 30, 2022 8:48:27 AM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630557001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: P2-2

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 7:30:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/13/2022

Date Reported: 8/24/2022 Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code:

Region Code: County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/04/22 11:15	Analysis Date: 08/05/22 11:0	8			
PFBA (375-22-4)	WSLH PFAS in Water	<3.46	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	<1.50	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	<2.31	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	<2.04	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	<1.50	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<2.72	ng/L	2.72	10.0
PFOA (335-67-1)	WSLH PFAS in Water	1.68F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0

Report ID: 10036032 Page 1 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630557001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/04/22 11:15	Analysis Date: 08/05/22 11:0	8			
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<3.98	ng/L	3.98	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630557001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Wednesday, August 24, 2022 12:59:05 PM Page 3 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630557002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE **PO BOX 340**

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 7:30:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/24/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code: County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 16:5	0			
PFBA (375-22-4)	WSLH PFAS in Water	<0.347	ng/L	0.347	1.00
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.151	ng/L	0.151	1.00
PFBS (375-73-5)	WSLH PFAS in Water	<0.232	ng/L	0.232	1.00
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.191	ng/L	0.191	1.00
PFHxA (307-24-4)	WSLH PFAS in Water	<0.205	ng/L	0.205	1.00
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.137	ng/L	0.137	1.00
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.193	ng/L	0.193	1.00
PFHpA (375-85-9)	WSLH PFAS in Water	<0.151	ng/L	0.151	1.00
PFHxS (355-46-4)	WSLH PFAS in Water	<0.143	ng/L	0.143	1.00
DONA (919005-14-4)	WSLH PFAS in Water	<0.128	ng/L	0.128	1.00
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.273	ng/L	0.273	1.00
PFOA (335-67-1)	WSLH PFAS in Water	<0.108	ng/L	0.108	1.00
PFHpS (375-92-8)	WSLH PFAS in Water	<0.191	ng/L	0.191	1.00

Laboratory Report

Environmental Health Division

WSLH Sample: 630557002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 16:5	0			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.144	ng/L	0.144	1.00
PFNA (375-95-1)	WSLH PFAS in Water	<0.149	ng/L	0.149	1.00
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.183	ng/L	0.183	1.00
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.263	ng/L	0.263	1.00
PFDA (335-76-2)	WSLH PFAS in Water	<0.164	ng/L	0.164	1.00
PFNS (68259-12-1)	WSLH PFAS in Water	<0.183	ng/L	0.183	1.00
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.220	ng/L	0.220	1.00
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.213	ng/L	0.213	1.00
FOSA (754-91-6)	WSLH PFAS in Water	<0.156	ng/L	0.156	1.00
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.223	ng/L	0.223	1.00
PFDS (335-77-3)	WSLH PFAS in Water	<0.258	ng/L	0.258	1.00
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.150	ng/L	0.150	1.00
PFDoA (307-55-1)	WSLH PFAS in Water	<0.272	ng/L	0.272	1.00
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.248	ng/L	0.248	1.00
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.194	ng/L	0.194	1.00
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<1.00	ng/L	1.00	2.01
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.282	ng/L	0.282	1.00
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.697	ng/L	0.697	2.01
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.213	ng/L	0.213	1.00
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.176	ng/L	0.176	1.00

Laboratory Report

Environmental Health Division

WSLH Sample: 630557002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Wednesday, August 24, 2022 12:59:07 PM Page 6 of 6

Laboratory Report

Environmental Health Division

WSLH Sample: 630566001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901 Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: POND

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 2:00:00 AM

Collection Start:

Sample Reason:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/14/2022 Date Reported: 8/24/2022

ID#:

Sample Location: Sample Description:

Sample Type: SU-SURFACE WATER

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:

County:

Sample Comments

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 15:1	7			
PFBA (375-22-4)	WSLH PFAS in Water	112	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	486	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	11.3	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	338	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	117	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	248	ng/L	2.72	10.0
PFOA (335-67-1)	WSLH PFAS in Water	3.79F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0

Page 1 of 6 Report ID: 10036040

Laboratory Report

Environmental Health Division

WSLH Sample: 630566001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 15:1	7			
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	1.63F	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	1.86F	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630566001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10036040

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630566002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901 Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340 PORTAGE, WI 53901

Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 2:00:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/14/2022 Date Reported: 8/24/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: SU-SURFACE WATER

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 17:2	1			
PFBA (375-22-4)	WSLH PFAS in Water	<0.336	ng/L	0.336	0.972
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.972
PFBS (375-73-5)	WSLH PFAS in Water	<0.224	ng/L	0.224	0.972
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.185	ng/L	0.185	0.972
PFHxA (307-24-4)	WSLH PFAS in Water	<0.198	ng/L	0.198	0.972
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.132	ng/L	0.132	0.972
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.972
PFHpA (375-85-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.972
PFHxS (355-46-4)	WSLH PFAS in Water	<0.138	ng/L	0.138	0.972
DONA (919005-14-4)	WSLH PFAS in Water	<0.124	ng/L	0.124	0.972
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.264	ng/L	0.264	0.972
PFOA (335-67-1)	WSLH PFAS in Water	<0.105	ng/L	0.105	0.972
PFHpS (375-92-8)	WSLH PFAS in Water	<0.185	ng/L	0.185	0.972

Page 4 of 6 Report ID: 10036040

Laboratory Report

Environmental Health Division

WSLH Sample: 630566002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 17:2	1			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.972
PFNA (375-95-1)	WSLH PFAS in Water	<0.144	ng/L	0.144	0.972
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.177	ng/L	0.177	0.972
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.255	ng/L	0.255	0.972
PFDA (335-76-2)	WSLH PFAS in Water	<0.158	ng/L	0.158	0.972
PFNS (68259-12-1)	WSLH PFAS in Water	<0.177	ng/L	0.177	0.972
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.213	ng/L	0.213	0.972
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.206	ng/L	0.206	0.972
FOSA (754-91-6)	WSLH PFAS in Water	<0.151	ng/L	0.151	0.972
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.216	ng/L	0.216	0.972
PFDS (335-77-3)	WSLH PFAS in Water	<0.250	ng/L	0.250	0.972
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.972
PFDoA (307-55-1)	WSLH PFAS in Water	<0.263	ng/L	0.263	0.972
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.240	ng/L	0.240	0.972
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.188	ng/L	0.188	0.972
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.972	ng/L	0.972	1.94
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.273	ng/L	0.273	0.972
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.674	ng/L	0.674	1.94
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.206	ng/L	0.206	0.972
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.170	ng/L	0.170	0.972

Laboratory Report

Environmental Health Division

WSLH Sample: 630566002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10036040

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630563001

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE

PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: SUMP

Project No: **BRIAN YOUNGWIRTH** Collection End: 7/12/2022 2:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH Date Received: 7/13/2022

Date Reported: 8/24/2022 Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody: Point or Outfall: Sample Depth: Program Code: Region Code:

County:

Sample Comments

SUMP

Sample was subsampled due to high PFAS concentration/excess sample volume.

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 14:4	6			
PFBA (375-22-4)	WSLH PFAS in Water	26.4	ng/L	3.46	10.0
PFPeA (2706-90-3)	WSLH PFAS in Water	119	ng/L	1.50	10.0
PFBS (375-73-5)	WSLH PFAS in Water	<2.31	ng/L	2.31	10.0
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFHxA (307-24-4)	WSLH PFAS in Water	79.7	ng/L	2.04	10.0
PFPeS (2706-91-4)	WSLH PFAS in Water	<1.36	ng/L	1.36	10.0
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<1.92	ng/L	1.92	10.0
PFHpA (375-85-9)	WSLH PFAS in Water	21.5	ng/L	1.50	10.0
PFHxS (355-46-4)	WSLH PFAS in Water	<1.42	ng/L	1.42	10.0
DONA (919005-14-4)	WSLH PFAS in Water	<1.28	ng/L	1.28	10.0
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	232	ng/L	2.72	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630563001

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 14:4	6			
PFOA (335-67-1)	WSLH PFAS in Water	1.35F	ng/L	1.08	10.0
PFHpS (375-92-8)	WSLH PFAS in Water	<1.90	ng/L	1.90	10.0
PFOS (1763-23-1)	WSLH PFAS in Water	<1.43	ng/L	1.43	10.0
PFNA (375-95-1)	WSLH PFAS in Water	<1.48	ng/L	1.48	10.0
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<2.62	ng/L	2.62	10.0
PFDA (335-76-2)	WSLH PFAS in Water	<1.63	ng/L	1.63	10.0
PFNS (68259-12-1)	WSLH PFAS in Water	<1.82	ng/L	1.82	10.0
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<2.19	ng/L	2.19	10.0
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
FOSA (754-91-6)	WSLH PFAS in Water	<1.55	ng/L	1.55	10.0
PFUnA (2058-94-8)	WSLH PFAS in Water	<2.22	ng/L	2.22	10.0
PFDS (335-77-3)	WSLH PFAS in Water	<2.57	ng/L	2.57	10.0
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<1.49	ng/L	1.49	10.0
PFDoA (307-55-1)	WSLH PFAS in Water	<2.71	ng/L	2.71	10.0
PFDoS (79780-39-5)	WSLH PFAS in Water	<2.47	ng/L	2.47	10.0
PFTrDA (72629-94-8)	WSLH PFAS in Water	<1.93	ng/L	1.93	10.0
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<10.0	ng/L	10.0	20.0
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<2.81	ng/L	2.81	10.0
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<6.94	ng/L	6.94	20.0
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<2.12	ng/L	2.12	10.0
PFTeDA (376-06-7)	WSLH PFAS in Water	<1.75	ng/L	1.75	10.0

Laboratory Report

Environmental Health Division

WSLH Sample: 630563001

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.

Report ID: 10036036

Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Laboratory Report

Environmental Health Division

WSLH Sample: 630563002

Report To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901

Invoice To:

BRIAN YOUNGWIRTH GENERAL ENGINEERING 916 SILVER LAKE DRIVE PO BOX 340

PORTAGE, WI 53901 Customer ID: 336628

Field #: FRB2

Project No: BRIAN YOUNGWIRTH Collection End: 7/12/2022 2:15:00 AM

Collection Start:

Collected By: BRIAN YOUNGWIRTH

Date Received: 7/13/2022 Date Reported: 8/24/2022

Sample Reason:

ID#:

Sample Location: Sample Description:

Sample Type: MW-MONITORING WELL

Waterbody:
Point or Outfall:
Sample Depth:
Program Code:
Region Code:
County:

Sample Comments

FIELD REAGENT BLANK (FRB)

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 17:0	6			
PFBA (375-22-4)	WSLH PFAS in Water	<0.338	ng/L	0.338	0.976
PFPeA (2706-90-3)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.976
PFBS (375-73-5)	WSLH PFAS in Water	<0.225	ng/L	0.225	0.976
4:2 FTSA (757124-72-4)	WSLH PFAS in Water	<0.185	ng/L	0.185	0.976
PFHxA (307-24-4)	WSLH PFAS in Water	<0.199	ng/L	0.199	0.976
PFPeS (2706-91-4)	WSLH PFAS in Water	<0.133	ng/L	0.133	0.976
HFPO-DA (13252-13-6)	WSLH PFAS in Water	<0.187	ng/L	0.187	0.976
PFHpA (375-85-9)	WSLH PFAS in Water	<0.146	ng/L	0.146	0.976
PFHxS (355-46-4)	WSLH PFAS in Water	<0.139	ng/L	0.139	0.976
DONA (919005-14-4)	WSLH PFAS in Water	<0.125	ng/L	0.125	0.976
6:2 FTSA (27619-97-2)	WSLH PFAS in Water	<0.266	ng/L	0.266	0.976
PFOA (335-67-1)	WSLH PFAS in Water	<0.105	ng/L	0.105	0.976
PFHpS (375-92-8)	WSLH PFAS in Water	<0.185	ng/L	0.185	0.976

Page 4 of 6 Report ID: 10036036

Laboratory Report

Environmental Health Division

WSLH Sample: 630563002

PFAS in Water

Analyte	Analysis Method	Result	Units	LOD	LOQ
Prep Date: 08/01/22 10:25	Analysis Date: 08/02/22 17:0	6			
PFOS (1763-23-1)	WSLH PFAS in Water	<0.140	ng/L	0.140	0.976
PFNA (375-95-1)	WSLH PFAS in Water	<0.144	ng/L	0.144	0.976
9CI-PF3ONS (756426-58-1)	WSLH PFAS in Water	<0.178	ng/L	0.178	0.976
8:2 FTSA (39108-34-4)	WSLH PFAS in Water	<0.256	ng/L	0.256	0.976
PFDA (335-76-2)	WSLH PFAS in Water	<0.159	ng/L	0.159	0.976
PFNS (68259-12-1)	WSLH PFAS in Water	<0.178	ng/L	0.178	0.976
N-MeFOSAA (2355-31-9)	WSLH PFAS in Water	<0.214	ng/L	0.214	0.976
N-EtFOSAA (2991-50-6)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.976
FOSA (754-91-6)	WSLH PFAS in Water	<0.151	ng/L	0.151	0.976
PFUnA (2058-94-8)	WSLH PFAS in Water	<0.217	ng/L	0.217	0.976
PFDS (335-77-3)	WSLH PFAS in Water	<0.251	ng/L	0.251	0.976
11CI-PF3OUdS (763051-92-9)	WSLH PFAS in Water	<0.145	ng/L	0.145	0.976
PFDoA (307-55-1)	WSLH PFAS in Water	<0.265	ng/L	0.265	0.976
PFDoS (79780-39-5)	WSLH PFAS in Water	<0.241	ng/L	0.241	0.976
PFTrDA (72629-94-8)	WSLH PFAS in Water	<0.188	ng/L	0.188	0.976
N-MeFOSA (31506-32-8)	WSLH PFAS in Water	<0.976	ng/L	0.976	1.95
N-MeFOSE (24448-09-7)	WSLH PFAS in Water	<0.274	ng/L	0.274	0.976
N-EtFOSA (4151-50-2)	WSLH PFAS in Water	<0.677	ng/L	0.677	1.95
N-EtFOSE (1691-99-2)	WSLH PFAS in Water	<0.207	ng/L	0.207	0.976
PFTeDA (376-06-7)	WSLH PFAS in Water	<0.171	ng/L	0.171	0.976

Laboratory Report

Environmental Health Division

WSLH Sample: 630563002

WDNR LAB ID:113133790 NELAP LAB ID:2091

EPA LAB ID:WI00007, WI00008 WI DATCP ID:105-415

List of Abbreviations:

LOD = Level of detection
LOQ = Level of quantification (for PFAS the LOQ = MRL)
ND = None detected. Results are less than the LOD
F next to result = Result is between LOD and LOQ
Z next to result = Result is between 0 (zero) and LOD
if LOD=LOQ, Limits were not statistically derived

Test results for NELAP accredited tests are certified to meet the requirements of the NELAC standards. For a list of accredited analytes

see http://www.slh.wisc.edu/about/compliance/nelac-laboratory-accreditation

Results, LOD and LOQ values have been adjusted for analytical dilutions and percent moisture where applicable.

Results relate only to the items tested.

This Laboratory Report shall not be reproduced except in full, without written approval of the laboratory.

The water microbiology unit analyzes samples as received and not all samples are tested for preservation before analysis is performed.


Responsible Party

Inorganic Chemistry: Graham Anderson, Supervisor 608-224-6281

Metals: Graham Anderson, Supervisor 608-224-6281 Organics: Erin Mani, Supervisor 608-224-6269

Environmental Toxicology: Dawn Perkins, Supervisor 608-224-6230 Water Microbiology: Martin Collins, Supervisor 608-224-6239 Radiochemistry: David Webb, Division Director 608-224-6227

Wednesday, August 24, 2022 12:59:08 PM Page 6 of 6

State of Wisconsin Department of Natural Resources Rox 7921

Madison, Wisconsin 53707

NOTE:

Division's Copy White Copy Green Copy Driller's Copy

WELL CONSTRUCTOR'S REPORT Form 3300-15 Rev. 12-76

MAY 2 9 1981 Yellow Copy Owner's Copy 1. COUNTY Name CHECK (V) ONE: HOWARD BROWN **™** Village 🔲 Town City ■ OWNER AGENT AT TIME OF DRILLING CHECK (4) ONE Range 3. NAME Section Township % Section 24 N 20 E EONARD 2. LOCATION ADDRESS Street Name Grid or Street No. POST OFFICE AND - If available subdivision name, lot & block No. Floor Drain Connected To: 4. Distance in feet from well Building Sanitary Bldg, Drain Sanitary Bldg. Sewer Storm Bldg, Drain Storm Bldg, Sewer C.I. Other C.I. Sewer | Other Sewer! C.I. Other C.1. Other to nearest: (Record CJ. Other answer in appropriate 10 block) Sewage Absorption Unit Other Sewers Sewage Sump Holding Street Sewer Foundation Drain Connected to: Clearwater Septic Sump Tank Tank C.I. Other Sewage Seepage Pit Sewer San. Storm C.I. **Other** Sump Seepage Bed Clearwater Clearwater Seepage Trench Sump Dr. Glass Lined | Silo Pit: Nonconforming Existing Earthen Silage Privy Subsurface Pumproom Barn Animal Animal Silo Pet Storage Trench Or Pit With Pit Storage Facility Yard w/o Waste Gutter Batn Nonconforming Existing Well Pit Pit Pen Pump Tank Other (Give Description) Temporary Watertight Solid Manure Subsurface Waste Pond or Land Liquid Manure Gasoline or Disposal Unit Manure Storage Stack Tank Structure Oil Tank (Specify Type) 9. FORMATIONS 5. Well is intended to supply water for: COMMERCIAL From (ft.) To (ft.) Kind 6. DRILLHOLE Dia. (in.) From (tt.) To (ft.) Dia. (in.) From (ft.) To (ft.) Surface 9 Surface 165 CASING, LINER, CURBING AND SCREEN Material, Weight, Specification 6 To (ft.). & Method of Assembly Dia. (in.) From (ft.) 6 NEW BLACK STEEL Surface PLAIN END 18974 97 ASTM YOUNG STOWN 10. TYPE OF DRILLING MACHINE USED Rotary-hammer w/drilling mud & air Jetting with ... Cable Tool GROUT OR OTHER SEALING MATERIAL Аîг Rotary-air Rotary-hammer To (ft.) Kind From (ft.) ☐ & air w/drilling mud Water Rotary-w/drilling mud 91 Reverse Rotary DRILLING MUD Surface Well construction completed on MISCELLANEOUS DATA above final grade below **GPM** Well is terminated inches Hrs. at Yield Test: X Yes No 40 Well disinfected upon completion Ft. Depth from surface to normal water level Depth of water level Yes No Well sealed watertight upon completion Yes l Stabilized when pumping 19 8/ laboratory on MADISON Water sample sent to Your opinion concerning other pollution hazards, information concerning difficulties encountered, and data relating to nearby wells, screens, seals, method of finishing the well, amount of cement used in grouting, blasting, etc., should be given on reverse side. Complete Mail Address Signature R5 SHORT OR DEPERE, W1. 54115 A///Kegistered Well Driller

State of Wisconsin Department of Natural Resources Box 450

NOTE:

White Copy Green Copy Dívision's CopyDriller's Copy WELL CONSTRUCTOR Form 3300-15

Rev. 10-75

15N 2 2 1070

	Madison	, W18001	nsun 33701	1		Yellow Cop	y – (Owner's C	ору					JHK (N N 131	3
1. CO	_			· · · · · ·	I	(√) ONE:	_			Nat	me	· · · <u>-</u>			·	
TV 6 70	BRO	لبلي		 _	□ Tow	<u>n [XX]</u>	Village		City			<u>aro</u>				
	SE N		ection	Section	Township	Range	1.	NAME (Z OWN	IER 🗔					ING CHE	CK (4) ONE
	CATION	-+	37	3	24~	206		0	AVIC	2	PL	ATT	EN			
OR	– G	rid or S	treet No.	Street Name	;		1	ADDRESS	5			. ,				
_			_	ARad	KFIE	10	- 1		-5 v	181	va.	4				
AN	D - If	availab	le subdivis	ion name, lot	& block No.			POST OF	FICE /			•		_		
						•			11	22	, 1	304		.) /		
4. Dist	ance in f	feet fro	m well	Building S	anitary Bldg, I	Drain Sanit	ary Bidg	ı. Sewer	F	loor Dr	ain		•	dg. Drain	Stor	m Bidg, Sewe
to n	enrest:	(Rec	ord	·	 	Other C,I		Other		nnected		 -	کیا <u>.</u>	Other		Other
ansv bloc	wer in ap -k)	propria	ite	14'			·				50		****	0 (,1(6)		Other.
	t Sewer	Oth	er Sewers	Foundation	Drain Connec	ted to: Sewage	Sump	Clearw	ater Se	eptic H	lolding	Sewage	Abso	rption Ur	 \1+	
San.	Storm	C.I.	Other	Sewer	Sewage	C.1.	Other	Sum	_	ank	Tank	Seepag		- Priori Ga	, , , , , , , , , , , , , , , , , , ,	
				Clearwater	Sump	er!		1		cor,		Seepag	e Bed	- -		
Sul	D+4	 	ļ <u>.</u>	Dr.	Sump			 	,	111		Seepag	e Tren	ıch		
Privy	Pet Waste		lonconfort	ming Existing	 ^-	Pumproom	Barn Gutter		Animal Yard	Silo With	Gia Pit Sto	ss Lined srage	Silo w/o		n Silage e Trench ()r
	Pit	Pump	- 		Nonconfor	ming Existing		Pen			Fac	ility	Pit	Pit	o rrandir (
i		Tank	- -		†			ļ	!							
Tempo Manur		Watert	ight Manure	olid Manure	Subsurface	Waste Pond o		Other (ive Desc	cription	·)			-		
Stack	• [Tank	Migitinie	Storage St ruct ure	Gasoline or Oil Tank	(Specify Typ	e)									
	[1													
5. Well	l is inten	ded to	supply wat	ter for:			19.	FORMA'	TIONS							
					Hom	5	1	1 01411/11	210110	V:_4			ı	B 4	a North Control	T- (%)
<u> </u>	ILLHOI	107			77074	<u> </u>	\dashv			Kind				From (f	1	To (ft.)
•	•		ITC - 464)	In in	Les ess	L == 20.5								A STANSON OF THE PARTY OF THE P		
D13. (1	in.) Fro	m (II.)	To (ft.)	Dia, (in.)	From (ft.)	To (ft.)					SAA	<i>V</i> G		Surface		10
	ŀ		1.								_	_	A STATE OF THE STA			_
/0	Su	urface	20							<	CLA	Yester		10	_	56
		_	ļ]	,										
_ 6	1.1	0	63		i					1	11/12	570	₩	56		63
7. CA!	SING, L	NER,	URBING	AND SCREE	Ň	<u> </u>		•···						~~		Ψ • · · · · ·
Dia. (i	Ma mil	iterial, V & Mot	Weight, Spa Thod of Ass	ecification	I From (ft)	To (64.)				ALCO DE LA CONTRACTOR D					,	
Dia. (I					From (ft.)	To (ft.)	+						 -			
,		_	_	K STERL		ارسر ا										
			asm &		Surface	56			/			•				
	1		45 4/1	_				ر 11800ء د	r. El Mint Tá Má	m SIM TIN	N OTHER WORK		-			
	_		STED	1800 As 1.	<u> </u>				CAND DA PA		N BOOK HOLL					
	•	A:	stm t	9-53		-				11 III III	1 jil ad					
	ŀ	RI	PUBLI	C STEAL	•			/ 'w'	B N 4	6 6	5					
											•					•
							X									
		·					110	TADE	D DD II	I DIC I	4467111	un men				
						/	110.	TYPE C	P DKIL	LING N		NE USE! Stary-har				
0 00						-1- /	 	(S)	ioaT efc		w/	drilling		. l r	7	g with
8. GR (QUT QK			VG MATERIA	1	1 /				!						_
		Ki	nd		From (ft.)	/Yo (ft.)			tary-air Irilling m	านดี	□ <u>&</u> '	otary-hai air	mmer			Air
		Λ	_			T		— Ro	tary-w/d	rillina						Water
		Po!	OOLE	O CLAY	Surface	30		տև	d ´		L Re	everse R	otary			
				•												
					1		Wel	li construc	ction con	npleted	on	11		19	1	19 78
11.	MISCE	LLAN	EOUS D	ATA		· · · · · · · · · · · · · · · · · · ·				-		· · · · · · · · · · · · · · · · · · ·	K	above	/	
	Yield To		8		Hrs. at	/¢GP	พ ไพ∞	ll is termir	hotes	18"	· :	ches		below	final grad	le
•					THP 41	Gr	177	a 19 164 11111	TT TOTAL		<u> </u>	C1108		JUIUW		
	Denst 4	***	dans to so	rmal water lev	rel . 30) Ft.	Wall	l disinfect	ad usas	comala	tion		Ľ Z I ·	Yes 🗆	No	
	-			THE WATER IC	101 ·	<u>/ Fu</u>	11.61	1 (1841) Tect	og upon	comple			بعب	169 -	110	
	Depth o		**	% -	,	ran						•	(1777)	<u> </u>	3. 7	
	when	pumpin	g <u>#</u>	O FL	Stabilized	X Yes 🗆	No Well	scaled w	atertight	upon c	omplet	ion	ſ Ž J	Yes 🗀	No	
						•							1	. ~	,	
	Water s	ımple s	ent to	M	10150N				lal	boratory	y on _	18	/ /	18	/	19 <u>28</u>
Your	opinion o	concern	ing other r	collution haza	rds, informati	on concerning	difficulti	es encoun	tered, an	d data	relating	to near	by wel	lls, screen	s, scals, m	ethod of
finishi	ng the w	ell, amo	ount of cer	ment used in g	grouting, blast	ing, etc., should	be give	n on rever	se side.		•		-		-	
Signatu	re /)					Con	mplete Ma	il Addre	ee						
- Misaid		•		MA	8 181	7	0	mhiere Mis	∧uule 	اُ ج	عمير) — 1	OR			
	I		1	. 11 h	welk!	ed Well Drifler				200	DE		,	54//	~	
	1) 10				A COUNTRY OF	OF ACII DIMEL				12.52	<u> </u>	<u>, w</u>	7 x .	27//		
				•	~ ~											

oct 1 1 1973 STATE OF WISCONSIN DEPARTMENT OF NATURAL RESOURCES NOTE Box 450 WHITE COPY - DIVISION'S COPY GREEN COPY - DRILLER'S COPY - WELLOW COPY - OWNER'S COPY Madison, Wisconsin 53701 CHECK ONE NAME

1 COUNTY	CHECK ON	 E	NAME	<u> </u>	
30 mown	Town	☐ Village ☐	_ ^ `\	BARRE	
5 1 5 5 4 Th = 1 1 / 5	ownship Range		TIME OF DRILLING	~ ++ ext	
1114 31	リリカフへ	C 1-60	\ \		١
OR - Grid or street no Street name		ADDRLSS		1 9 U'N 8+	+ -
		, ADDRESS	8 1	•	
AND -I f available subdivision name, lot & block no	·	POST OFFIC	T		
Transcor acceptation name, for & crock in	J	rostorric			
4 Distance in feet from well to nearest:	BUILDING SANITARY S	EWER FLOOR DRAIN	FOUNDATION DR		TER DRAIN
4 Distance in feet from well to hearest.			EWER CONNECTED IND		TILE
(Record answer in appropriate block)	20		/		
CLEAR WATER DRAIN SEPTIC TANK PRIVY	SEEPAGE PIT ABSOR	PIION FIELD BARN	- CHO (ARANDONE	<u> 201</u>	
C. I. TILE	SEEFAGE FIT ABSOR	PTION FIELD BARN	SILO ABANDONE	D WELL SINK HOLE	
- 126		= 4	+/		\
OTHER POLLUTION SOURCES (Give description	such as dump, quarry dra	inage well, stream, pond	, lake, etc)		
	NOW	1 Cz			3.
5. Well is intended to supply water for:			、 /	•	
	Shirt 2	10 5 F	* ove	-	
6. DRILLHOLE		9. FORMATI	q/vs		, ,
Dia (in) From (ft) To (ft) Dia (in	From (ft) To (ft)	/ Kind	From (ft)	To (ft)
				1	
1 O Surface	1	-		Surface	Con
	· - · · ·		144-47	AM G Surface	$+\omega \cup$
67000		\mathcal{I}_{α}	MAISSE	1 _	167
7. CASING, LINER, CURBING, AND SCRE	FN	-\	11400 t	——————————————————————————————————————	\Q . \(\(\)
4	1	. \	1		105
Dia (in) Kind and Weight	From (ft) To (ft	'\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-	1 Mg 570	ouz 6/	100
<i>A A A A A A A A A A</i>	Surface				
6 NEW BI. 3TL	- Q	-{ -/	<u> </u>		<u> </u>
Α					
1Horndoneoup.	<u> </u>		<u>-</u>		<u> </u>
	_				
P.D. 10:45	S				
y y			IBIO BIIIB BIIIB BIII IBBI	į	
		- I teenet heliti til til			
		0 N 4	6 6 6		
8 GROUT OR OTHER SEALING MATERI.	AL.	10, TYPE-OF	DRILLING MACHINI	E USED	
Kind	From (ft) To (ft)	Cable Tool		Rotary Rayer	se Rotary
		Cable 1001	Dect .	TOTAL THEVEL	se notary
Soristing mud	Surface	Rotary — au		,	g with
		w/drilling m	with drillin	ng mud & air	r 🔲 Water
		Well construct	ion completed on	10/5	197
11. MISCELLANEOUS DATA	- 			/ _above	~
Yield test: Hrs. at	· / 5 G	Mell is termina	ited 1 🚄 inch		final grade
110.0 10.01					
Donth from surface to normal water level	ゲイ	ft. Well disinfecte	d upon completion	<u> </u>	No.
Depth from surface to normal water level	_		<u> </u>		
	PE	. Well sealed wa	tertight upon completi	on I Ve	s No
Depth to water level when pumping	<u> </u>	ft vven seared wa			
Water sample sent to	a b a		laboratory on	10/11	10 77
water sample sent to	70150	N	1aboratory on	////	1923
Your opinion concerning other pollution haza	rds, information conce	rning difficulties ence	ountered, and data rela	ting to nearby wells, so	creens, seals,
type of casing joints, method of finishing the	well, amount of cemen	t used in grouting, bla	asting, sub-surface pum	prooms, access pits, et	c., should
be given on reverse side.		VA	KI DE VACUT DO		-
SIGNATURE		COMPLETE MA	ELL DRILLING		
		W .	CLL DKILLING	. 16	
Jeo ambegadi	Registered Well Driller	21	78 DOROTHY LA	NE .	
	Please do not	t write in space be	EEN BAY, WIS.	54304	
COLIFORM TEST RESULT		GAS – 48 HRS	CONFIRMED	REMARKS	
*					

State of Wisconsin Department of Natural Resources Box 7921 Madison, Wisconsin 53707

NOTE:

Driller's Copy

Owner's Copy

White Copy

Green Copy

Yellow Copy

Division's Copy

WELL CONSTRUCTOR'S REPORT Rev 12-76

Form 3300-15

BN-663-U

1 COUNTY CHECK (V) ONE Name Brown Howard X Village __ Town L City ¼ Section √ OWNER AGENT AT TIME OF DRILLING CHECK (4) ONE Section 3. NAME Range Township SE = NE = 24N 20E & J Homes LOCATION OR Grid or Street No. Street Name **ADDRESS** 190 Sun-Lite Dr. AND - If available subdivision name, lot & block No. POST OFFICE Wis. 54155 Oneida. Floor Drain Connected To Distance in feet from well Building Sanitary Bldg, Drain Sanitary Bldg Sewer Storm Bldg, Drain Storm Bldg Sewer to nearest: (Record C.t C I Sewer Other Sewer Other C I Other Other C.I CI. Other 10 answer in appropriate 50 block) Foundation Drain Connected to: Street Sewer Other Sewers Sewage Sump Sewage Absorption Unit Clearwater Holding Septic Sump Tank Tank Sewage Other C 1 Seepage Pit C.I San Other Storm Sewer Sump Seepage Bed Clearwater Clearwater 60 Sump Dr. Seepage Trench Privy Pet Nonconforming Existing Subsurface Pumproom Animat Glass Lined Barn Animal Silo Silo Earthen Silage Waste With Pit Storage Storage Trench Or Barn Yard w/o Pit Gutter Well Nonconforming Existing Pit Pen Facility Pump Tank Watertight Solid Manure Temporary Other (Give Description) Subsurface Waste Pond or Land Liquid Manure Storage Gasofine or Manure Disposal Unit Resident (Specify Type) Stack Tank Structure 5. Well is intended to supply water for: **FORMATIONS** Home To (ft.) From (ft.) Kind DRILLHOLE 16 Sand Dia (in) From (tt) To (ft.) Dia (in) From (ft.) To (ft.) Surface 16 22 Clay 66 Surface 22 26 Sand 185 66 7. CASING, LINER, CURBING AND SCREEN Material, Weight, Specification & Stones 26 Clay 51 & Method of Assembly Dia (in) From (ft.) To (ft) New, black steel 6 18.97 lbs/ft. 66 64 Hard Pari 51 Surface A 53 Grade B PE64 165 Limestone Sumitomo Metal I. 165 185 Sandstone TYPE OF DRILLING MACHINE USED Rotary-hammer w/drilling mud & air Cable Tool Jetting with GROUT OR OTHER SEALING MATERIAL Rotary-air w/drilling mud Kınd To (ft) From (ft) Rotary-hammer Air □ & air Water Rotary-w/drilling 66 Mud & Cuttings Surface Reverse Rotary mud Feb. 24 1978 Well construction completed on MISCELLANEOUS DATA above final grade Well is terminated **GPM** Yield Test: _ Hrs. at below 20 Depth from surface to normal water level Ft. Well disinfected upon completion Yes Depth of water level 45 X X Ft. Stabilized No Well sealed watertight upon completion Yes No Yes when pumping Madison, Wis. 19 78 Feb. 27 laboratory on pollution hazards, information concerning difficulties encountered, and data relating to nearby wells, screens, seals, method of ement used in grouting, blasting, etc., should be given on reverse side. Signature, Complete Mail Address 425 Muehl St. amet Seymour, Wis. 54165

Registered Well Driller

WELL CONSTRUCTION REPORT

WISCONSIN STATE BOARD OF HEALTH

WELL CONSTRUCTION DIVISION

FEB 26 1945

Note: Section 31 of the Wisconsin Well Construction Code, having the force and effect of law, provides that within thirty days after completion of every well the driller shall submit a report covering all essential details of construction to the State Board of Health on a form provided by the Board.

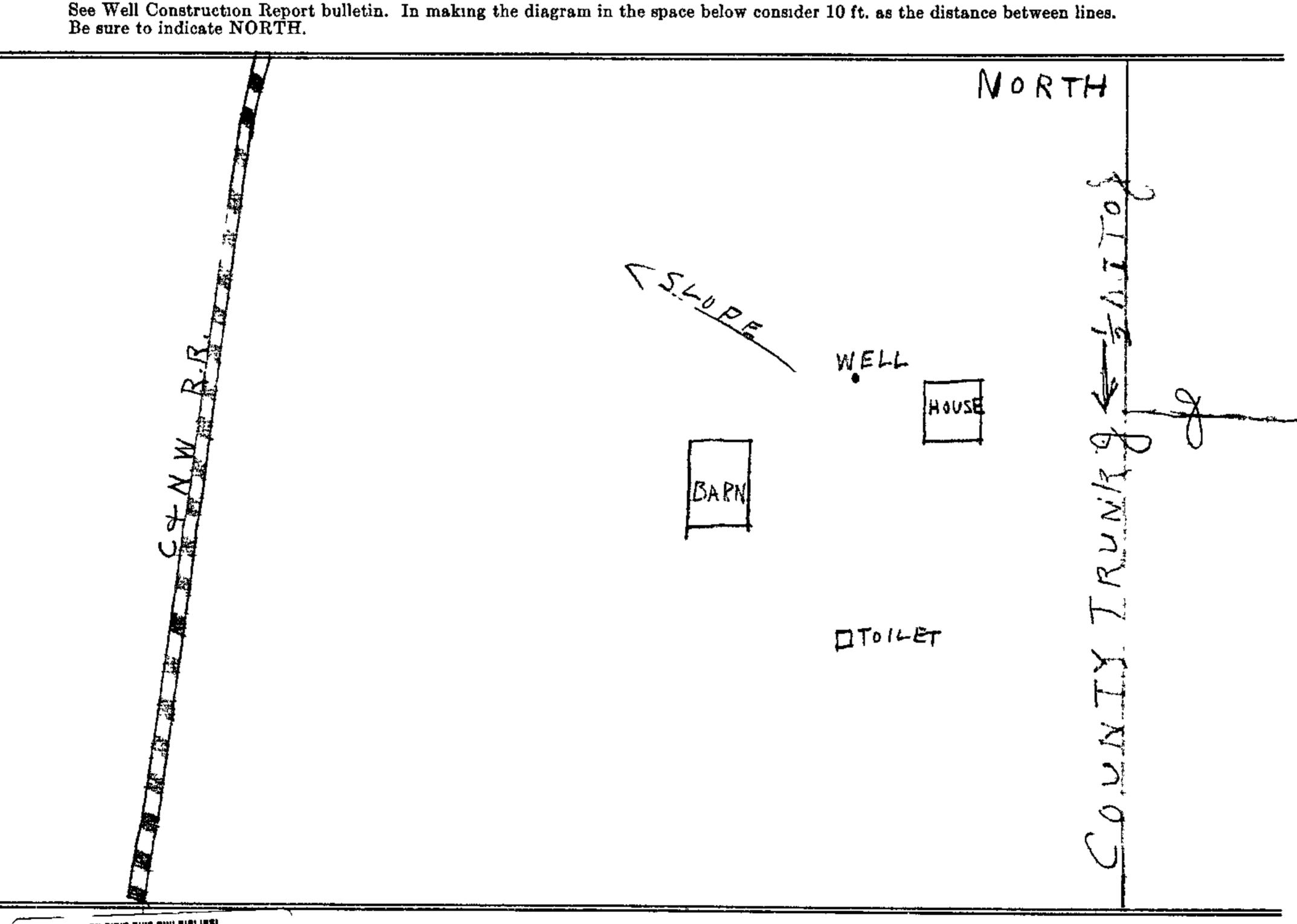
Owner John Jankowski Driller Landy & Lleason

Street or RFD 4 Post Office Health Bay Wis

Date April 26-114 Permit No. 14

LOCATION OF PREMISES

The square below represents a section of land divided into 40 acre tracts. Mark the position of the premises in the section.


Describe further by subdivision, plat, district, lake, lot.

Twp. North 24 N

Block, nearest principal highway, etc., whichever apply.

Range 20 { E

DIAGRAM OF PREMISES

WELL LOG and REPORT

In this column indicate the kind of casing, liner, shoe and •ther accessories used.	WELL DIAGRAM Use a red line to show or liner pipe. Use black for or borehole.		In this column state the kind of formations penetrated, their thickness in feet and if water bearing.	Record of FINAL Pumping test
6"STD, W. T.	Inches Diameter 2 3 4 5 6 8 10121416	Depth	SAND20'	Duration of test Hours
pip E. 61.		ا مو 25		Pumping rate G.P.M. / D
FORGED DRIVE			BLUECLAY 55'	Depth of pump in well. Ft. /8
STEEL-DRIVE SHOE		50 61	CLAYEY GRAVEL	Standing water-level (from surface) Ft. 7
		75 80'	LIMESTONE	Water-level when pumping Ft. 10
		100		Water. End of test. Clear X Cloudy Turbid
	·	150		Was the well sterilized? YesNo
		200		To which laboratory was sample sent? See Bay Wis Date April 27 - 1149
		400		Was the well sealed on completion? Yes
		800		How high did you leave the casing-pipe above grade?
•		1200		Well Constructor
4664-2	Draw the diagram to show full diameter and right section well only.	the		Well Constructor Landry + Gleacen Signsture

WELL CONSTRUCTION REPORT WISCONSIN STATE BOARD OF HEALTH WELL CONSTRUCTION DIVISION

Note: Section 31 of the Wisconsin Well Construction Code, having the force and effect of law, provides that within thirty days after completion of every well the driller shall submit a report covering all essential details of construction to the State Board of Health on a form provided

FEB 21 1944

by the Board. Owner Leo Hallam

Driller Olfice Freen Bay 8

Street or RFD 4

Post Office Freen Bay 8 LOCATION OF PREMISES The square below represents a section of land divided into 40 acre tracts. Mark the position of the premises in the section. SWNE Sec. No. FARM - U.S. HIGHWAY 41 15 ThE

Describe further by subdivision, plat, district, lake, lot. **X**: Twp. North 2 4N NEAREST PRIDGIDAL HIGHWAY, block, nearest principal highway, etc., whichever apply. Range 20 { E DIAGRAM OF PREMISES See Well Construction Report bulletin. In making the diagram in the space below consider 10 ft. as the distance between lines. Be sure to indicate NORTH. BARN ☐ TOILET H 0.

WELL LOG and REPORT

For method of making report, refer to bulletin entitled "Well Construction Report," 7-5-39. Accuracy is essential. Record of WELL DIAGRAM In this column state the kind of In this column indicate the kind Use a red line to show casing FINAL formations penetrated, their thickness in of casing, liner, shoe and other or liner pipe. Use black for drill Pumping test feet and if water bearing. accessories used. or borehole. STD-WEIGHT-PIPE Diameter Inches Depth 2 3 4 5 6 8 10121416 SAND Duration of test FORGED.STEEL 5 HOE BLUE CLAY Pumping rate CLAYEY GRAVEL Depth of pump in well. Ft. 30 53 53 Standing water-level (from surface) Ft.__/_Q__ LIMESTONE 28' Water-level when **75** pumping Ft. 14 81 Water. End of test. 100 Cloudy. Turbid__ Was the well sterilized? 150 ·To which laboratory was sample sent?? 200 Was the well sealed on completion? 400 How high did you leave the casing-pipe above grade? 10 isso 800 Well was completed Date /2 -2 - 43 1200

Draw the diagram to show the

full diameter and right section of well only.

BN 4667-2

Well Construct WISCONSIN U			ER.	AA	ιH2	224		Depar	tmei		Groundwa al Resour			Form 3	3300-077A
Property ALLEN L Owner	EE INVESTM	ENTS LLC		·	Pho	ne#		1. Wel	l Lo	cation				Fire # (if	avail.)
	OOKFIELD A\	/F STF A						Village	of H	HOWARD					
Address	OOKI ILLD AV	LOILA						Street	Add	ress or Ro	ad Name a	nd Numb	er		
City GREEN BAY			State W	I Zip C	ode	54313		BROO	KFI	ELD AVEN	UE				
County	Co. Permit #	Notification	n #		Co	ompleted		Subdiv	isior	Name			Lot	# B	lock #
Brown		82662242	202		02	2-11-2021	l								
Well Constructor (B	usiness Name)	Lic. #	Facility II	D # (F	Public We	lls)	Latitud	de / I	_ongitude i	n Decimal	Degree (DD)	Method	Code
VAN DE YACHT LE	O WELL DRIL	LING INC	6097					44.58	7	°N	-88.058	5	°W	GPS008	3
				Well Plan	n App	roval #		SI	Ν	NE	Section	Townsh	ip	Range	
Address 4007 LAI	/E\/!E\/ DD							or Gov	t Lo	#	3	24	N	20	Е
	KEVIEW DR BAY WI 5431	3		Approva	l Date	(mm-dd-yy	уу)	2. Wel	ΙТу	e New \	Vell				
								of prev	ious	unique we	ell#	cc	onstruct	ted in	
Hicap Permanent W	/ell #	Common W	ell#	Specific	Capa	city		Reaso	n for	replaced o	or reconstru	ucted we	II ?		
				8.0											
3. Well serves 1	# of BUILDIN	G		Hicap W	ell?	No									
Non-community				Hicap Pr	operty	y? No									
Heat Exchange	_# of drillholes			Hicap Po	table	? No		Constr	uctio	n Type D	rilled				
4. Potential Contain	IDE			•											
5. Drillhole Dimens	sions and Cor	nstruction Me	ethod				8.	Geolog	ıy						
Dia. (in.) From (ft.)	To (ft.)	per Enlarged			Low	er Open		ology		8. Geolog			F	rom (ft.)	To (ft.)
9 Surface	83 Dr	illhole				Bedrock	Cod	les		Caving/No Hardness	oncaving, (Color,			
6 83		<u> </u>	ud Circulat			<u>No</u>		S		S-SAND				Surface	10
-	No.	· .	ir			<u>Yes</u>		С		C-CLAY				10	60
	No.		ir & Foam .			<u>No</u>		Z		Z-CLAY	& GRAVEI	L		60	82
	No No	_	gh Casing otary	паншен				L	Н		STONE/DO	LOMITE	H-	82	150
	No.		Bitin.	. dia		No		N		SHALEY N-SAND	STONE			150	181
	No		ry			No		IN		IN-SAIND	STONE			130	101
	No	Temp. Out	ter Casing	in. dia	ì										
	No			pth ft. (If N	0										
		explain on	back side)				┝					-			
6. Casing, Liner, S								Static V					11. We		
Dia. (in.) Material, \	Neight, Specifi urer & Method			Fror	n (ft.)	To (ft.)	_			ound surfac	ce			above gr	
	CK STEEL PL		IDED	Cu	rface	02		Pump					Develo	•	Yes
	31EEE FE 33B 18.97# PE			Su	пасе	03				60 ft. below				ected?	Yes
Dia. (in.) Screen typ	pe, material &	slot size		Fror	n (ft.)	To (ft.)				GP M for 2			Cappe	d?	Yes
							Pur	nping N	letho	od? Airlif	t				
7. Grout or Other S	Sealing Materi	al					12.	Notified	l Ow	ner of need	d to fill & se	eal?			No
Method TREMIE F	PIPE - PUMPE	D													
Kind of Sealing Mat	erial	From	(ft.) To	(ft.) # \$	Sacks	Cement		100		147 117)					
HIGH SOLIDS BEN	ITONITE	Surf	ace	83		4 S	Fille	ed & Se	aled	Well(s) as	needed?				No
							13	Conetri	ıctor	/ Supervis	ory Driller	Lic #	ŧ	Date	Signed
							TLV		ال	, Cupervis	ory Dilliel	6378			
							_		oros	or					3-2021 Signed
							KZ	Rig Op	eral	UI			r Reg #		Signed
							r\Ζ					736	J	03-2	3-2021

Type Supplies Potable And ITS a Comment Spele or Holding, or POWTS Tank = 70 Comment YES IT IS PRIVATE POTABLE AND ITS A COMMERCIAL BUSINESS BUILDING 4/2321 (IDNR REVIEWER) SERVICE CATEGORY CHANGED TO NON-COMMUNITY, DUE TO INFORMATION PROVIDED THAT IT IT IS A COMMERCIAL BUSINESS BUILDING Water Quantity Text: Difficulty Toxt: Created On: 03-23-2021 Created by: EVANDEVACHT Updated On: 04-23-2021 Updated by: WELL PROCESS Created On: 03-23-2021 Created by: EVANDEVACHT Updated On: 04-23-2021 Updated by: WELL PROCESS	4a. Potential	Contami	nation Sour	rces	Is the well locat	ed in flood	plain ? No				
Comment: YES IT IS PRIVATE POTABLE AND ITS A COMMERCIAL BUSINESS BUILDING 4/23/21 (DNR REVIEWER) SERVICE CATEGORY CHANGED TO NON-COMMUNITY, DUE TO INFORMATION PROVIDED THAT IT IS A COMMERCIAL BUSINESS BUILDING Water Quality Text: Difficulty Text:							Туре			Qualifier	Distance
4/23/21 (DNR REVIEWER) SERVICE CATEGORY CHANGED TO NON-COMMUNITY, DUE TO INFORMATION PROVIDED THAT IT IS A COMMERCIAL BUSINESS BUILDING Water Quality Text: Unificulty Text:							Septic or H	olding, or POWT	S Tank	=	70
4/23/21 (DNR REVIEWER) SERVICE CATEGORY CHANGED TO NON-COMMUNITY, DUE TO INFORMATION PROVIDED THAT IT IS A COMMERCIAL BUSINESS BUILDING Water Quality Text: Unificulty Text:	Comment:		YES IT IS	PRIVATE PO	OTABLE AND IT	TS A COM	MERCIAL BUS	SINESS BUILDIN	IG		
Water Quantity Text: Difficulty Text:			4/23/21 (D	NR REVIEW	(ER) SERVICE	CATEGOR	RY CHANGED			INFORMATION	PROVIDED
Difficulty Text:	Water Qualit	y Text:									
	Water Quant	tity Text:									
Created On: 03-23-2021 Created by: EVANDEYACHT Updated On: 04-23-2021 Updated by: WELL PROCESS	Difficulty Tex	ct:									
Created On: 03-23-2021 Created by: EVANDEYACHT Updated On: 04-23-2021 Updated by: WELL PROCESS											
	Created On:	03-23-20)21 C	created by:	EVANDEYAC	HT	Updated On:	04-23-2021	Updated by:	WELL PROCE	ESS

		ion Repo VIQUE W		NUMBEI	R	BF2	15		Depart	ng Water an ment of Na on WI 53707	d Groundwa ural Resou	ater - DG/5 rces, Box 7	7921	Form 3	300-077A
Property Owner	HOWARI), VILLAGE	OF				one # 20)434-407	'5	1. Well	Location			Fir	e # (if	avail.)
Mailing Address	1336 COI	RNELL RD				()			Village	of HOWAR)				
City HO	WARD			5	State WI	Zip Code	54313								
County		Co. Permit	#	Notification	#		Completed		Subdivi	sion Name			Lot #	В	lock #
Brown							08-10-1980								
	structor (Bu	ısiness Nam	e)		Lic. # Fa		(Public We						M	ethod (Code
	`	AND PUMP	1			05046840	(. 000 110	,,						PS008	
				Į.		ell Plan Ap	pproval #				Section	Township		Range	
Address						81174			or Govt	Lot #	3	24 N		20	E
					Ap	oproval Da	te (mm-dd-yy	yy)	2. Well	Type Nev	v Well				
					1	1-10-1978			of previ	ous unique	well #	con	structed	l in	
Hicap Pe	rmanent W	ell #	Co	ommon Wel	I# Sp	pecific Cap	acity		Reasor	for replace	d or reconstr	ucted well '	?		
75585			00	3	3	.6									
3. Well s	erves #	of			Hi	cap Well ?									
Municipa	I/Communit	v				· cap Prope									
		, # of drillhole	s.			cap Potab			Constru	uction Type	Drilled				
		nination So		- ON REV		•				71.					
5. Drillho	le Dimens	ions and C	onstr	uction Met	hod			8.	Geolog	у					
Dia. (in.)	From (ft.) Surface		Jpper Orillho	Enlarged		Lo	wer Open Bedrock	Geo	ology		ogy Type, Noncaving,	Color,	Fro	m (ft.)	To (ft.)
22	83		<u>′es</u>	Rotary - Mu	d Circulation						ss, etc				70
15	400		<u>′es</u>	Rotary - Air					С	CLAY	AITE CAL DI	Λ . Τ	Si	urface	70
13	400	700		Rotary - Air	& Foam				L		MITE GAL PL	_A I	_	70	160
				Drill-Through	n Casing Ha	mmer		Н	N		TONE STP			160	250
				Reverse Ro	•				L N		MITE PDC STONE CAM	D		250 355	355 775
		-	<u>es</u>	Cable-tool B					Q		MBRIAN RO			775	780
				Dual Rotary Temp. Outer					Q	FREG	IIVIDRIAIN RC	JOR		113	700
				Removed?	?depth	ft. (If NO									
				explain on b	ack side)			L						_	
6. Casing	g, Liner, So	reen								ater Level			1. Well		
Dia. (in.)		Veight, Spector & Metho				From (ft	.) To (ft.)		below (ground surfa	ice		2 in. ab Develope	ŭ	ade
24		W BLACK F BLA BARGE				Surfac	e 83	Pun	nping le	vel 392 ft. be	elow surface	D	Disinfect	ed ?	Yes
		G STEEL A						Pun	nping at	1400 GP M	for 12 Hrs.	C	capped '	?	Yes
16	LA BARGE	INC				8	3 400	Pur	nping M	ethod?					
Dia. (in.)	Screen typ	e, material	& slot	size		From (ft	.) To (ft.)	12.	Notified	Owner of no	ed to fill & s	eal?			
7. Grout	or Other S	ealing Mate	rial												
Method	PRESSUR	Ε						Fille	ed & Sea	aled Well(s)	as needed?				
Kind of S	ealing Mate	erial		From (f	t.) To (f	t.) # Sac	ks Cement								
CEMENT	•			Surfa	ce 40	00									
								13.	Constru	ctor / Super	visory Driller	Lic#		Date	Signed
								AL							
								Drill	l Rig Op	erator		Lic or	Reg #	Date	Signed

4a. Potential	Contamination So	ources	Is the well located in floor	dplain ?			
Comment:							
Water Quality	y Text:						
Water Quant	ity Text:						
Difficulty Tex	t:						
Created On:	11-05-1998	Created by:	HFRC LOAD	Updated On:	07-12-2021	Updated by:	WGNHS Exchange

	ruction Repo N <i>UNIQUE WI</i>		ī R	DT0	91		Departi	g Water and ment of Natu on WI 53707	Groundwa ral Resour	ter - DG/s ces, Box	5 7921	Form 3	3300-077A
Property HAV Owner	ERKORN, MIKE				hone #	,	1. Well	Location			F	ire # (if	avail.)
Mailing 2852	NORTHWOOD	RD		(4	14)434-952	2	Village	of HOWARD					
Address				T				Address or Ro	ad Name a	and Numbe	er		
City GREEN E			State WI	Zip Code				(FIELD AVE			1		
County	Co. Permit	# Notification	า #		Completed		Subdivi	sion Name			Lot #	: B	lock #
Brown					10-27-1993								
	or (Business Nam	•		Facility ID #	(Public We	ells)	Latitud	e / Longitude	in Decimal	Degree (E	.	/lethod	
VAN DE YACH	T LEO WELL DR	ILLING I	6097					°N			°W	GPS008	3
			\	Vell Plan A	pproval #		SE		Section	Township	' I	Range	
Address 3383	OAK FOREST D	DR					or Govt		3	24	N	20	E
GRE	EN BAY WI 543	13	<i>F</i>	Approval Da	ate (mm-dd-yy		2. Well						
								ous unique we			nstructe	d in	
Hicap Permane	ent Well #	Common We	ell# S	Specific Cap	oacity			for replaced	or reconstr	ucted well	?		
				0.6			WAREH	HOUSE					
3. Well serves	1 # of WAREH	HOUSE	F	Hicap Well ?	? No								
Private,potable			F	Hicap Prope	erty? No								
Heat Exchange	# of drillhole	s	F	licap Potab	le?		Constru	ction Type [Drilled				
4. Potential Co	ntamination Sou	rces - ON REV	ERSE SII	DE									
5. Drillhole Dir	nensions and Co	onstruction Me	thod			8. 0	Geology	у					
Dia. (in.) From	(ft.) To (ft.)	Jpper Enlarged		Lo	wer Open	Geo		8. Geolo	gy Type,		Fr	om (ft.)	To (ft.)
9 Sui		Prillhole			Bedrock	Cod	es	Caving/N Hardness	oncaving, (Color,			
6	82 182 <u>\</u>	<u>es</u> Rotary - Mu	id Circulatio	on			s	SAND	, 610			Surface	20
	<u> </u>	<u>es</u> Rotary - Air					С	CLAY				20	75
		Rotary - Air					Р	HARDPA	N		_	75	82
		Drill-Throug	,	ammer			L	LIMESTO				82	
		Reverse Ro	•	dia			N	SANDST				160	
		Cable-tool I Dual Rotary						07 11 12 0 1					.02
		Temp. Oute											
		Removed	_	h ft. (If NO									
		explain on I	pack side)										
6. Casing, Line	er, Screen					9. S	tatic W	ater Level			11. We	l Is	
	ial, Weight, Spec			From (f	t.) To (ft.)	80 f	t. below	ground surfa	ce		12 in. a	bove gra	ade
Manu	facturer & Method	d of Assembly				10.	Pump T	est			Develop	ed?	Yes
	BLACK STEEL F 1-A-53B 18.97#PI			Surfac	ce 82	Pum	ping lev	el 120 ft. belo	w surface	I	Disinfed	ted?	Yes
	en type, material 8			From (f	t.) To (ft.)	Pum	ping at	25 GP M for 2	2 Hrs.		Capped	?	Yes
Dia. (iii.) Coroc	m typo, matorial c	. 0.01 0.20		110111 (11	., 10 (1)		nping M	ethod ?					
7. Grout or Ot	ner Sealing Mate	rial				12. 1	Notified	Owner of nee	d to fill & se	eal ?			
Method	g												
Kind of Sealing	Material	From (ft.) To	(ft.) # Sac	ks Cement								
DRILL SLURR		Surfa	· /	82	no Comon	Fille	d & Sea	led Well(s) as	needed?				No
DIVILL GLOTAR	•	Ounc	100	02		N/A	PP						
						13. (Constru	ctor / Supervis	sory Driller	Lic #		Date	Signed
						LV						10-27	7-1993
						Drill	Rig Ope	erator		Lic or	Reg#	Date	Signed
						TV						10-27	7-1993
						-							

4a. Potential	Contamination	Sources	Is the well located in fl	oodplain ? <u>No</u>				
				Туре			Qualifier	Distance
				Building Ove	rhang			12
Comment:								
Water Quality	y Text:							
Water Quant	tity Text:							
Difficulty Tex								
Created On:	02-04-1994	Created by:	HFRC LOAD	Updated On:	02-04-1994	Updated by:	MIGRATION	

Well Construct WISCONSIN U			R	JC1	47		Departi	ng Water and ment of Natu on WI 53707				Form 3	300-077A
Property BROWN Owner	CO SPORTSM	MAN CLUB		F	Phone #		1. Well	Location			Fi	re # (if	avail.)
Mailing ROUTE	4						Town o	of HOWARE					
Address							Street /	Address or Ro	ad Name a	and Numbe	r		
City GREEN BAY			State WI	Zip Cod	le 54304								
County	Co. Permit #	Notification	n #		Completed		Subdivi	ision Name			Lot #	В	lock #
Brown					01-30-196								
Well Constructor (B	usiness Name		Lic. # Fa	acility ID #	# (Public We	ells)	Latitud	le / Longitude	in Decimal			ethod (
RAY GLEASON			4	05050360	0			°N				PS008	
			W	ell Plan A	Approval #		NE		Section	Township		Range	
Address 224 S. R	OOSEVELT S	Γ					or Govt		3	24	1	20	E
GREEN	BAY WI 5430	1	Ap	oproval D	ate (mm-dd-yy	уу)	2. Well				-11	C.	
5								ious unique w			structed	d in	
Hicap Permanent W	/ell #	Common We	-'	oecific Ca	apacity		Reason	for replaced	or reconstr	ucted well	?		
				.3									
	# of CLUB			cap Well									
Non-community			Hi	cap Prop	erty? No								
Heat Exchange	_# of drillholes			cap Potal	ble?		Constru	uction Type [Orilled				
4. Potential Contai	mination Sour	ces - ON REV	ERSE SID	E									
5. Drillhole Dimens	sions and Con	struction Met	thod			8.	Geolog	у					
Dia. (in.) From (ft.)		per Enlarged		L	ower Open	_	ology	8. Geolo		Color	Fro	m (ft.)	To (ft.)
10 Surface	20	illhole Rotany Mu	d Circulation		Bedrock	Coo	ies	Hardness	oncaving, (s, etc	JOIOI ,			
6 20	104 No				<u>No</u> No		S	SAND			S	urface	40
	No.		& Foam		No		С	CLAY				40	74
	No.		h Casing Ha		110		L	LIMESTO	NE			74	104
	No.		_										
	No		Bitin. di	a	<u>No</u>								
		Dual Rotary	·										
	<u>No</u>	Temp. Oute	r Casing	_in. dia									
	<u>No</u>	Removed explain on b	?depth	ft. (If NO									
		oxpiaii oii s	aun oluo,				N-4:- \A/	ater Level		I_1	1. Well	le.	
6. Casing, Liner, S				F /	(r.) - (r.)			ground surfa	20		0 in. ab		ada
Dia. (in.) Material, \ Manufacto	Weight, Specifi urer & Method			From (π.) Ιο (π.)	_	Pump 1				Develope	J	No
6 STEEL 19	9.45			Surfa	ace 74	1	-	vel 20 ft. belov	v curfoco		Disinfect		Yes
Dia. (in.) Screen type		slot size		From (14 GP for 3 l			Capped		Yes
	,				(11)				115.		appeu	f	162
7. Grout or Other S	Sealing Materi	al				Ъ—	nping M						
Method						12.	Notified	Owner of nee	d to fill & so	eal?			
Kind of Sealing Mat	erial	From (ft.) To (f	t.) # Sa	cks Cement								
PUDDLED CLAY		Surfa	, ,	20		1	nd & Spa	aled Well(s) as	needed?				No
				-		i ilic	u & Sea	aled Well(s) as	needed:				INO
						13.	Constru	ctor / Supervis	sory Driller	Lic #		Date	Signed
								., .					J
						Drill	Rig Ope	erator		Licor	Reg#	Date	Signed
							3 - 1-						<u> </u>

4a. Potential Contamination Sources	s the well loca	ted in floodpla	ain ? <u>No</u>		
Туре	Qualifier	Distance	Туре	Qualifier	Distance
Building Drain - Sanitary		20	Sewer - Building Sanitary		10
Building Overhang		6	Septic or Holding, or POWTS Tank		52

Comment:

Water Quality Text:

Water Quantity Text:

Difficulty Text:

Created On: 05-31-2001 Created by: DENZES Updated On: 04-19-2013 Updated by: PWS TRANSFER

		ion Report VIQUE WE		R	KS	08	0		Depart	ng Water ar ment of Na on WI 5370	nd Groundw tural Resou 7	ater - DG/ rces, Box	5 7921	Form 3	3300-077A
Property Owner	MIKE HA	VERKORN CO	DNST				ne # .)434-398:	2	1. Well	Location				Fire # (if	avail.)
Mailing Address	2852 NOI	RTHWOOD R	D			(414)434-398	3	- 0	of HOWAR					
	EEN DAY			Ctoto M	I Zin Ca	- do	E 4242				Road Name : -	and Numb	er		
	EEN BAY	Co. Permit #		State W	I ZIP Co		54313			KFIELD AV	Ξ		1	" b	11-11
County		Co. Permit #	Notification	11 #			ompleted		Subdiv	ision Name			Lot	# B	lock #
Brown				1 1			1-16-1996								
	`	usiness Name		Lic. #	Facility ID) # (F	Public We	lls)	Latitud	_	de in Decimal	Degree (I		Method	
VAN DE	YACHT LE	O WELL DRIL	LING I	6097							'N		°W	GPS008	3
					Well Plan	App	roval #		SE			Townshi	.	Range	
Address	3383 OA	K FOREST DF	?						or Gov		3	24	N	20	E
7 1441 555		BAY WI 5431			Approval	Date	(mm-dd-yy	уу)	2. Well		w Well				
									of prev	ious unique	well #	CO	nstruc	ted in	
Hicap Pe	rmanent W	ell#	Common We	ell#	Specific C	Capa	city		Reasor	n for replace	d or reconsti	ucted well	?		
					0.7				WARE	HOUSE					
3. Well s	erves 1	# of WAREHO	USE		Hicap We	ell ?	No								
Private,po	otable				Hicap Pro	perty	y? No								
Heat Exc	hange	# of drillholes			Hicap Pot	table	?		Constru	uction Type	Drilled				
4. Potent	Well serves 1 # of WAREHOUSE ivate,potable Potential Contamination Sources - ON REVERSE SIDE Prillhole Dimensions and Construction Method a. (in.) From (ft.) To (ft.) 9 Surface 79 6 79 222 Upper Enlarged Drillhole Yes Rotary - Mud Circulation Rotary - Air & Foam Drill-Through Casing Hammer						-								
5. Drillho	le Dimens			8. (Geolog	v									
Dia. (in.)	From (ft.)	To (ft.)	ner Enlarged			Low	er Open		logy	-	logy Type,		F	rom (ft.)	To (ft.)
, ,	` '	Dr.				LOW	Bedrock			Caving	/Noncaving,	Color,			()
6	79	222 <u>Ye</u>	s Rotary - Mu	ud Circulat	ion				s	SAND	555, 610		-	Surface	10
			s Rotary - Air	r					C	CLAY			-	10	70
			Rotary - Air	& Foam					P	HARD	DANI		-	70	79
			Drill-Throug	gh Casing	Hammer				L	LIMES			-	70	140
			Reverse Ro	•				\vdash	N				-	140	
			Cable-tool						IN.	SAND	STONE			140	222
			Dual Rotary												
			Temp. Oute	_	in. dia oth ft. (If NC										
			explain on		ourn. (ii ive										
6. Casing	g, Liner, So	creen								ater Level			11. W	ell Is	
Dia. (in.)		Veight, Specifi			From	n (ft.)	To (ft.)	40 f	t. below	ground su	face		12 in.	above gra	ade
6		rer & Method		LDED	Sur	face	79		Pump		elow surface			oped ? ected ?	Yes Yes
	ASTM A53	BB 18 97LB PE	R FT SAWHI	LL PIPE						40 GP M fo			Cappe		Yes
Dia. (in.)	Screen typ	e, material &	slot size		From	n (ft.)	To (ft.)	l	-		<i>n</i> 21113.		Сарре	u:	163
								┡		ethod ?	1				
7. Grout	or Other S	ealing Materi	al					12.	Notified	Owner of n	eed to fill & s	eal?			
Method															
Kind of S	ealing Mate	erial	From	(ft.) To	(ft.) # S	Sacks	Cement	Fillo	d & So	alad Wall(e)	as needed?				
DRILL SL	URRY		Surfa	ace	79			i ilie	u & Sea	aled Well(s)	as needed:				
								13. (Constru	ctor / Supe	visory Driller	Lic #	:	Date	Signed
								LV							6-1996
								_	Rig Op	erator		Lic o	r Reg i		Signed
								TV	3 - 6	-			- 3 '		6-1996
								' [']						01-10	. 1330

4a. Potential Contamination Sources	Is the well loca	ted in floodpla	ain? <u>No</u>		
Туре	Qualifier	Distance	Туре	Qualifier	Distance
Building Overhang		10	Collector Sewer - San or Storm		75
Clearwater Sump		30	Foundation Drain to Clearwater		12
			Sewer - Building Sanitary		50

Comment:

Water Quality Text:

Water Quantity Text:

Difficulty Text:

Created On: 05-10-1996 Created by: HFRC LOAD Updated On: 10-24-2002 Updated by: WELL PROCESS

	onstruct DNSIN UI			NUMBE	R	N	Q1	53		Depart	ng Water and ment of Natu on WI 53707	Groundwa ral Resour	ater - DG/ ces, Box	/5 : 7921	Form 3	3300-077A
Property Owner	MIKE HA	VERKORN	CONS	ST				one #		1. Well	Location				Fire # (if	avail.)
Mailing	2852 NOI	RTHWOOL) RD				(92)	0)434-398	اده ا	Village	of HOWARD					
Address										Street	Address or Ro	ad Name a	and Numb	oer		
City GR	EEN BAY			8	State W	I Zip	Code	54313		BROO	KFIELD RD					
County		Co. Permi	t #	Notification	ı #		C	Completed		Subdiv	ision Name			Lot	Lot # BI	
Brown							C	9-21-199	9							
Well Con	structor (Bu	usiness Na	me)		Lic. #	Facility	y ID # (Public We	ells)	Latitud	de / Longitude	in Decimal	Degree (DD)	Method	Code
VAN DE	YACHT LE	O WELL D	RILLIN	G INC	6097						°N			°W	GPS008	3
				I.		Well P	lan Ap	proval #		SE	E NW	Section	Townsh	ip	Range	
Λ -l -l	2202 041	/ FODEST	DD							or Gov	t Lot #	3	24	N	20	E
Address		K FOREST BAY WI 54				Approv	val Dat	e (mm-dd-yy	yy)	2. Well	Type New	Well				
										of prev	ious unique w	ell#	CC	onstruc	ted in	
Hicap Pe	rmanent W	ell#	Co	ommon Wel	II #	Specif	ic Capa	acity		Reason	n for replaced	or reconstr	ucted wel	II ?		
						0.5				WARE	HOUSE					
3. Well s	erves 1	# of				Hicap '	Well?	No								
Private,po	otable					Hicap	Proper	ty? No								
Heat Exc	hange	# of drillho	les			Hicap	Potable	e ?		Constr	uction Type I	Drilled				
		nination S	ources	- ON REV				-								
5. Drillho	le Dimens	ions and (Constr	uction Met	hod				8.	Geolog	ıv					
	From (ft.)			Enlarged			Lov	wer Open		ology		gy Type,			From (ft.)	To (ft.)
9	Surface	83	Drillho				LOV	Bedrock	_		Caving/N	oncaving,	Color,			()
6	83	202	<u>Yes</u>	Rotary - Mu	d Circulat	on				s	Hardness	s, etc			Surface	35
			<u>Yes</u>	Rotary - Air						C	CLAY				35	
				Rotary - Air	& Foam					Р	HARDPA	N			78	
				Drill-Through	h Casing	Hamme	r			L	LIMESTO				83	
				Reverse Ro	-					N	SANDST			-	135	
				Cable-tool B Dual Rotary						114	SANDOT	ONL			133	202
				Temp. Outer												
				Removed?	_	oth ft. (If										
				explain on b		`										
6. Casing	g, Liner, So	creen									ater Level			11. W	ell Is	
	Material, V					Fr	om (ft.) To (ft.)	40 f	t. below	v ground surfa	ce		12 in.	above gr	ade
	Manufactu	rer & Meth	od of A	ssembly					10.	Pump '	Test			Devel	oped?	Yes
6				END WEL FT. SAWHI			Surface	83	Pun	nping le	vel 120 ft. beld	ow surface		Disinf	ected?	Yes
Dia. (in.)	Screen typ					_	om (ft.) To (ft.)	Pun	nping at	40 GP M for 2	2 Hrs.		Cappe	ed?	Yes
()		-,					(11)	, , , , , , , , , , , , , , , , , , , ,		nping M	lethod?					
7. Grout	or Other S	ealing Ma	terial						12.	Notified	Owner of nee	ed to fill & se	eal?			
Method																
Kind of S	ealing Mate	erial		From (f	ft.) To	(ft.)	# Sack	s Cement								
DRILL SL				Surfa	-	83			Fille	d & Sea	aled Well(s) as	needed?				No
									N/A	PP						
									<u> </u>				1.		1 -	
									_	Constru	ıctor / Supervi	sory Driller	Lic #	#		Signed
									LV						09-2	1-1999
										Rig Op	erator		Lic o	r Reg	# Date	Signed
									KS						09-2	1-1999

4a. Potential	Contamination S	ources	Is the well located in floodplain ? No									
				Туре			Qualifier	Distance				
				Building Ove	erhang			4				
Comment:												
Water Quality	/ Text:											
Water Quant	ity Text:											
Difficulty Tex	t:											
Created On:	12-17-1999	Created by:	WELL CONST LOAD	Updated On:	12-17-1999	Updated by:	WELL PROCE	≣SS				

	onstruct DNSIN UI			NUMBEI	R	RG	218	38		Depar	ing Water tment of	of Natur	Groundwa al Resour	ter - DG ces, Box	/5 c 792 1		3300-077A
Property Owner	MIKE HA	VERKORN	CONS	ST				ne #	2	1. Wel	II Locat	tion				Fire # (if	avail.)
Mailing	1601 BR	OOKFIELD	AVE				(920)434-398	3	Village	e of HO	WARD					
Address										Street Address or Road Name and Number							
City GR	EEN BAY			S	State WI	Zip C	ode	54313		1681 E	BROOK	FIELD A	VE				
County		Co. Permi	t #	Notification	#		C	ompleted		Subdiv	vision N	lame			Lo	t # E	Block #
Brown							07	7-01-2003	3						4		
Well Con	structor (Bu	ısiness Na	me)		Lic. # F	acility I	D # (F	Public We	ells)	Latitu	de / Lor	ngitude ii	n Decimal	Degree ((DD)	Method	Code
VAN DE	YACHT LE	O WELL D	RILLIN	IG INC	6097							°N			°W	GPS008	3
					١	Vell Pla	n App	roval #		S	E	NE	Section	Townsh	iip	Range	
Address	2352 I INI	EVILLE RD	`							or Gov	vt Lot #		3	24	N	20	E
Address		BAY WI 54			<i>A</i>	Approva	I Date	(mm-dd-yy	уу)	2. Wel	II Type	New V	Vell				
										of prev	vious ur	nique we	II #	CC	onstruc	cted in	
Hicap Pe	rmanent W	ell#	Co	ommon Wel	1# 5	Specific	Capa	city		Reaso	n for re	placed c	r reconstr	ucted we	II ?		
						1											
3. Well s	erves 1	# of SHOP)		F	licap W	ell?	No		1							
Private,po	otable				F	licap Pr	operty	y? No									
Heat Exc	hange	# of drillho	les		F	licap Po	otable	?		Consti	ruction '	Type D	rilled				
4. Potent	tial Contan	nination S	ources	- ON REV	ERSE SII	DE				<u> </u>							
5. Drillho	le Dimens	ions and (Constr	uction Met	hod				8.	Geolog	av						
	From (ft.)			Enlarged			Low	er Open	_	ology	-	. Geolog	v Type.			From (ft.)	To (ft.)
9	` ,	83	Drillho				LOW	Bedrock	_		C	aving/No	ncaving, (Color,			()
6	83	182	<u>Yes</u>	Rotary - Mud	d Circulatio	n		<u>No</u>		- S		ardness, AND	etc		-	Surface	20
			<u>No</u>	Rotary - Air				<u>Yes</u>		- C	-	LAY			-	20	-
				Rotary - Air	& Foam					- C		ARDPAI	J		-	75	
				Drill-Through	•	ammer				- L		IMESTO			-	83	
				Reverse Rot	•					- N		ANDSTO			-	140	
				Cable-tool B Dual Rotary								ANDOTO) NL			140	102
				Temp. Outer													
				Removed?	_	h ft. (If N											
				explain on b	ack side)	`											
6. Casing	g, Liner, So	creen									Vater L				11. W	lell Is	
Dia. (in.)	Material, V					Fror	n (ft.)	To (ft.)	80	ft. belov	w grour	nd surfac	е		12 in.	above gr	ade
	Manufactu	rer & Meth	od of A	ssembly					10.	Pump	Test				Devel	loped?	Yes
6				I END WEL WHEATLA			ırface	83	Pur	nping le	evel 120	oft. belo	w surface		Disinf	ected?	Yes
Dia (in)	Screen typ					_	n (ft.)	To (ft.)	Pur	nping a	t 40 GF	M for 2	Hrs.		Сарр	ed?	Yes
Dia: (III.)	Corcon typ	o, matorial	G 0.01	0120		1101	()	10 (11.)		mping N	Method	?					
7. Grout	or Other S	ealing Ma	terial						12.	Notified	d Owne	r of need	I to fill & se	eal?	•		
Method																	
	ealing Mate	erial		From (f	t.) To	(ft) # !	Sacks	Cement									
DRILL SI		Jilai		Surfac		83	Ouone	Comon	Fille	ed & Se	ealed W	'ell(s) as	needed?				No
DIVILL OF	-01111			Curia					N/A	NPP							
									13.	Constr	uctor / S	Supervis	ory Driller	Lic #	#	Date	Signed
									ΤV							07-0	1-2003
									Dril	l Rig O	perator			Lic c	or Reg	# Date	Signed
									KS							07-0	1-2003

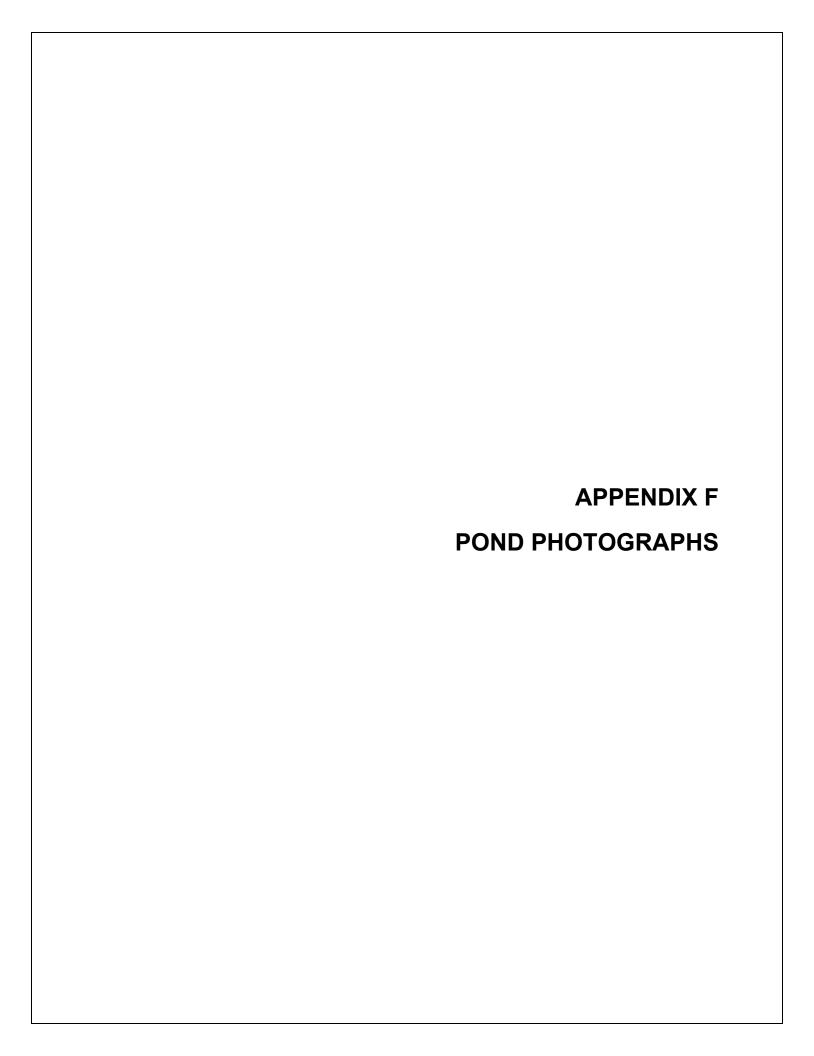
4a. Potential Contamination Sources	Is the well loca	ited in floodpla	ain ? <u>No</u>		
Туре	Qualifier	Distance	Туре	Qualifier	Distance
Building Overhang		8	Collector Sewer - San or Storm		100
Clearwater Sump		30	Foundation Drain to Clearwater		10
			Sewer - Building Sanitary		20

Comment:

Water Quality Text:

Water Quantity Text:

Difficulty Text:


Created On: 10-08-2003 Created by: WELL CONST LOAD Updated On: 02-18-2008 Updated by: HERSHS

	onstruct DNSIN UI			. NUMBE	R	WI	442	2		Dej	par	tme	Vater and nt of Natur	Groundwa al Resour	ter - DG ces, Bo	s/5 x 792		3300-077A
Property Owner	VDY Prop	perties						ne #)434-296	9	1. V	Nel	l Lo	cation				Fire # (i	f avail.)
Mailing	2352 Line	eville Rd					(===,	,		Τον	wn	of H	OWARD					
Address										Str	eet	Add	lress or Ro	ad Name a	ind Num	ber		
City Gre	en Bay			, ,	State WI	Zip Co	ode	54313		BR	.00	KFII	ELD					
County		Co. Permi	t #	Notification	n #		Co	ompleted		Sub	bdiv	rision	n Name			Lo	ot #	Block #
Brown				25239350			03	3-06-2007	7									
Well Con	structor (Bu	ısiness Naı	me)		Lic. #	Facility ID) # (P	ublic We	ells)	La	titud	de /	Longitude i	n Decimal	Degree	(DD)	Method	Code
VAN DE	YACHT LE	O WELL D	RILLIN	NG INC	6097					44	.583	348	°N	-88.050	15	°W	GPS00	6
					'	Well Plan	App	roval #			S		NE	Section	Townsl	•	Range	
Address	2352 LIN	EVILLE RD)				_			_		t Lo		3	24	N	19	E
		BAY WI 54			'	Approval	Date	(mm-dd-yy	уу)			l Ty∣	•					
							_						s unique we				ucted in	
Hicap Pe	rmanent W	ell#	С	ommon We		Specific (Capa	city		Rea	aso	n for	r replaced o	or reconstru	ucted we	ell?		
						0.2				l								
3. Well s	erves 1	# of test we	ell			Hicap We		No										
						Hicap Pro	perty	/? No										
Heat Exc	hange	# of drillho	les			Hicap Po	table	?		Cor	nstr	uctio	on Type D	rilled				
4. Potent	tial Contan	nination So	ource	s - ON REV	ERSE SI	DE												
5. Drillho	ole Dimens	ions and C	Const	ruction Met	hod				8.	Geo	olog	Jy						
Dia. (in.)	From (ft.) Surface	To (ft.)	Uppe Drillh	er Enlarged ole				er Open Bedrock	_	ology des	y		8. Geolog Caving/No Hardness	oncaving, (Color,		From (ft.	To (ft.)
6	81	202	<u>Yes</u>	Rotary - Mu				<u>No</u>	-	-	s	-	Sand	, 0.0			Surface	9 15
			<u>No</u>	Rotary - Air				<u>Yes</u>	-	-	С	-	Clay				15	
			<u>No</u>	Rotary - Air				<u>No</u>	-	-	Z	-	Clay & Gr	avel			60	
			<u>No</u>	Drill-Throug	_	Hammer			-	-	Р	-	Hardpan				75	5 80
			No No	Reverse Ro Cable-tool B	-	dia		No	ļ-	-	L	-	Limestone	e/Dolomite			80	85
			<u>No</u>	Dual Rotary				<u>No</u>	-	-	N	-	Sandston	е			8	5 90
			<u>No</u>	Temp. Oute					-	-	L	-	Limestone	e/Dolomite			90	150
			No	•	?dep				-	-	N	-	Sandston	е			150	202
				explain on b	ack side)	`												'
6. Casing	g, Liner, So	reen							9.	Stati	ic V	/ate	r Level			11. V	Well Is	
Dia. (in.)	Material, V					From	n (ft.)	To (ft.)	60	ft. be	elov	v gro	ound surfac	е		12 in	n. above g	rade
	Manufactu	rer & Metho	od of A	Assembly					10.	Pur	mp	Tes	t			Deve	eloped?	Yes
6		steel plain wheatland		velded astm	a 53b 18	3 Sur	face	81	Pui	mpin	g le	vel	120 ft. belo	w surface		Disir	nfected?	Yes
Dia. (in.)	Screen typ		•	t size		From	n (ft.)	To (ft.)	Pui	mpin	g a	t 10	GP M for 2	Hrs.		Cap	ped?	Yes
J.a. ()	00.00	,	0.0.0	. 0.20			. ()	()	Pu	mpin	ng M	1eth	od ?					
7. Grout	or Other S	ealing Mat	erial						12.	Noti	ified	Ow	ner of nee	d to fill & se	eal?	-		
Method		3																
Kind of S	ealing Mate	erial		From (ft.) To	(ft.) # S	Sacks	Cement	Fille	2 he	Se	aled	l Well(s) as	needed?				No
Drill Slurr	У			Surfa	ce	81			n/a			aioa	1 11011(0) 40	nocaca.				110
									"/"	ı								
									13.	Con	nstru	ıctoı	r / Supervis	ory Driller	Lic	#	Date	e Signed
									TL۱					-				3-2007
									_	l Rig	ı Or	erat	tor		Lic	or Reg		Signed
1									SC	9	, -1							3-2007

4a. Potential	Contamination S	ources	Is the well located in floo	dplain ? <u>No</u>			
Comment:							
Water Qualit	y Text:						
Water Quant	tity Text:						
Difficulty Tex	rt:						
Created On:	04-05-2007	Created by:	WELL CONST LOAD	Updated On:	04-05-2007	Updated by:	WELL PROCESS

Well Construct WISCONSIN U			Ē R	ZT	298	8		Depart	ng Water and ment of Natur on WI 53707				Form 3	300-077A
Property RON SIN	ICLAIR CONS	TRUCTION			Pho	ne#		1. Well	Location			F	ire # (if	avail.)
3	LLOW JASMIN	IE WAY						Town	of HOWARD					
Address								Street	Address or Ro	ad Name a	nd Numb	er		
City GREEN BAY			State WI	Zip C	ode	54313		BROO	KFIELD					
County	Co. Permit #	Notificatio	n #		Co	ompleted		Subdiv	ision Name			Lot #	В	lock #
Brown		74448050	004		11	-15-2018	3							
Well Constructor (B	usiness Name)	Lic. #	Facility II	D # (P	ublic We	lls)	Latitud	le / Longitude	in Decimal	Degree (I	DD) N	1ethod (Code
VAN DE YACHT LE	O WELL DRIL	LING INC	6097					44.587	76 °N	-88.058	5	°W (SPS008	
				Well Plar	n App	roval #		S۱	V NE	Section	Townshi	р	Range	
Address 1267 LA	KEVIEW DR							or Gov		3	24	N	20	Е
	BAY WI 5431	3		Approval	Date	(mm-dd-yy	yy)	2. Well	Type New '	Well				
								of prev	ious unique we	ell#	СО	nstructe	d in	
Hicap Permanent W	/ell #	Common W	ell#	Specific (Capa	city		Reason	n for replaced	or reconstru	ucted well	?		
				0.4										
3. Well serves 1	# of BUILDING	3		Hicap We	ell?	No								
Private,potable				Hicap Pro	operty	/? No								
Heat Exchange	_# of drillholes			Hicap Po	table	? No		Constr	uction Type D	Drilled				
4. Potential Contar	mination Sour	ces - ON RE	VERSE SI	DE										
5. Drillhole Dimens	sions and Cor	struction Me	ethod				8.	Geolog	у					
Dia. (in.) From (ft.)		per Enlarged			Low	er Open		ology	8. Geolog			Fr	om (ft.)	To (ft.)
9 Surface	83 Dr	illhole				Bedrock	Cod	les	Caving/N Hardness	oncaving, C	Color,			
6 83		·	ud Circulati			<u>No</u>		S	S-SAND			5	Surface	15
	<u>Nc</u>	·	r			<u>Yes</u>		С	C-CLAY	•			15	70
	No.		r & Foam			<u>No</u>		Р	P-HARD	PAN			70	83
	No.		gh Casing I	⊣ammer				L	L-LIMES	STONE/DO	LOMITE		83	140
	No No		Bitin.	dia		No		N	N-SAND	STONE			140	182
	No.		y			No.								
	No.	-	er Casing _			110								
	No.	_	d?dep											
		explain on	back side)											
6. Casing, Liner, S	creen								ater Level			11. Wel		
Dia. (in.) Material, \	Neight, Specifiurer & Method			Fron	n (ft.)	To (ft.)			ground surfac	ce		12 in. al	Ū	
	CK STEEL PL		LDED	Su.	rface	02		Pump '				Develop		Yes
	3B 18 97# PE			Su	nace	03			vel 100 ft. belo			Disinfec		Yes
Dia. (in.) Screen type	pe, material &	slot size		Fron	n (ft.)	To (ft.)			40 GP M for 2			Capped	?	Yes
									lethod? Airlif					
7. Grout or Other S	Sealing Materi	al					12.	Notified	Owner of nee	d to fill & se	eal?			No
Method														
Kind of Sealing Mat	erial	From	(ft.) To	(ft.) # S	Sacks	Cement	Fillo	4 6 60		noodod2				No
DRILLING MUD & 0	CUTTINGS	Surf	ace	83			rille	u a se	aled Well(s) as	needed?				NO
							13.	Constru	ictor / Supervis	sory Driller	Lic #	:	Date	Signed
							TLV	,			6378	3	11-16	5-2018
							Drill	Rig Op	erator		Lic o	r Reg #	Date	Signed

4a. Potential	Contamination	Sources	Is the well located in floodplain ? No										
				Туре			Qualifier	Distance					
				Septic or Holdi	ng, or POWTS	S Tank	=	35					
Comment:													
Water Quality	y Text:												
Water Quant	ity Text:												
Difficulty Tex	t:												
Created On:	11-16-2018	Created by:	EVANDEYACHT	Updated On: 1	1-28-2018	Updated by:	WELL PROCE	ESS					

PHOTOGRAPH OF FOUNDATION DRAIN AREA AND SWALE EAST OF OFFICE/PLANT/LAB BUILDING VIEWING WEST

PHOTOGRAPH OF DRAINAGE SWALE EXTENDING SOUTHEAST TOWARD POND

Page 1 of 4

PHOTOGRAPH OF POND AND DRIANAGE SWALE OUTLET TO THE POND VIEWING SOUTHEAST

PHOTOGRAPH OF HIGHWATER POND OUTFALL AND DRAINAGE SWALE WITH OVERGROWN VEGETATION ALONG SOUTHERN BOUNDARY OF THE SITE

PHOTOGRAPH OF DITCH LINE EXTENDING SOUTH FROM THE SITE AND WATER DETENTION POND ON THE SOUTHERN ADJOINING PROPERTY

PHOTOGRAPH OF DITCH LINE ON ALONG WEST END OF SITE VIEWING NORTH
Page 3 of 4

PHOTOGRAPH OF DITCH LINE EXTENDING NORTH FROM THE SITE TOWARD NORTHERN ADJOINING PROPERTY