

March 14, 2024

Ms. Josie Schultz Remediation and Redevelopment Program Wisconsin Department of Natural Resources 2984 Shawano Avenue Green Bay, Wisconsin 54313-6727

RE: SITE INVESTIGATION WORK PLAN

The Solberg Co – Site 2 1520 Brookfield Avenue Village of Howard, Wisconsin CLSE Project Number: E2305.27 BRRTS Number: 02-05-587486 (PFAS)

Dear Ms. Schultz:

Introduction

Carow Land Surveying & Environmental (CLSE) is pleased to submit this Site Investigation Work Plan for the advancement of four soil borings, which will be converted to three monitoring wells and a piezometer at The Solberg Co. – Site 2, located at 1520 Brookfield Avenue, in the Village of Howard, Brown County, Wisconsin (Site). The proposed site investigation activities are further to define the extent of groundwater contamination at the Site resulting from the use of per-and polyfluoroalkyl substances (PFAS). The initial site investigation activities completed by General Engineering Company (GEC) are also summarized within this report.

This Work Plan has been prepared in general accordance with Wisconsin Administrative Code (WAC) NR 716.09.

Responsible Party and Consultant

Site Name and Location:

The Solberg Co. – Site 2 1520 Brookfield Avenue Village of Howard, Wisconsin Brown County, Wisconsin Northwest ¼ of the Southeast ¼ of Section 3, Township 24 North, Range 20 East

Site Operations:

The Site is utilized as an office, laboratory, and production plant for

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

	PFAS containing fire-fighting foams within the building on the western portion of the Site and as a fire-fighting testing building within the eastern building on the Site.
Responsible Party:	Perimeters Solutions c/o Pamela Havelka-Rivard 1520 Brookfield Avenue Village of Howard, Wisconsin 54313 Phone (920) 593-9445 pamela.havelka-rivard@perimeter-solutions.com
Consultant:	Carow Land Surveying & Environmental 615 North Lynndale Drive Appleton, Wisconsin 54914 Phone: (920) 731-4168
Project Manager:	Brian Youngwirth Carow Land Surveying & Environmental 615 North Lynndale Drive Appleton, Wisconsin 54914 Phone: (920) 731-4168 <u>brian@clse.pro</u>
Project Geologist:	Brian Youngwirth Carow Land Surveying & Environmental 615 North Lynndale Drive Appleton, Wisconsin 54914 Phone: (920) 731-4168 <u>brian@clse.pro</u>

Authorization

Authorization to prepare this Site Investigation Work Plan was provided by Mr. Craig McDonnell, an authorized representative of Perimeter Solutions, the owner of the Site and the responsible party (RP) for the release.

Site Features

The Site is an approximate 10-acre parcel of land (Parcel Number VH-3175) owned by Perimeter Solutions, LP. The Site is situated on the east side of Brookfield Avenue, approximately ½ mile south of County Road M (Lineville Road). A Site Location Map is included in Figure 1 in Attachment A.

Based on a review of aerial photographs, the Site was utilized as agricultural land from the at least the 1930s to May of 2011, and was developed with the current facility between May and October of 2011. It should be noted that suspected manure spreading occurred on the Site and surrounding properties to the north and south based on a review of a 2010 aerial photograph. Additionally, manure spreading appeared to have occurred on the northern adjoining property based on a review of a 2020 aerial photograph. It is not known whether other biosolids, such as sewage sludge, were regularly applied to the agricultural land.

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

The Site is currently developed with two buildings including an office, laboratory, and production plant (primary building) located on the western portion of the Site parcel, and a fire-fighting testing building, with a small contiguous mechanical building to the east. An underground oil/water separator tank system is located just east of the mechanical building. A Current Site Plan is included in Figure 2, Attachment A.

The eastern portion of the primary building contains a production plant with four 5,000-gallon aboveground storage tanks (ASTs) for blending, two of which contain PFAS containing materials. The AST area is located within a concrete basin. Surface spills, drips, and leaks are collected within the basin along with any water utilized to wash down the floor, which is recollected in totes and disposed of properly with the facilities waste stream.

At the fire testing building, unused gasoline and fluids generated during fire suppression testing exercises were historically collected in a drain that was piped below grade to the east of the building to a below grade oil/water separator system. The oil/water separator system is comprised of 3 underground storage tanks (USTs) including a central 3-section oil/water tank with weirs to separate petroleum products and water, a northern product collection tank, and a southern water storage tank. The product tank was generally filled annually, and the product was routinely removed and recycled. The water tank was pumped into an on-site tank, where it was treated and shipped out for proper disposal by Perimeter Solutions.

The surface of the Site is relatively flat and is situated in a region that gently slopes to the south and east toward Green Bay (Lake Michigan), located approximately 1 mile southeast of the Site. The surface of the Site is covered primarily by grass, with asphalt and parking areas present south of the office building. An asphalt drive also extends from the parking area toward the east-northeast to the south side of the fire suppression testing building. Overgrown vegetation is present on the far eastern portion of the Site and along the northern boundary of the Site.

A stormwater detention pond is present on the southern portion of the Site, which is reportedly lined with a Type A or B liner. The pond is approximately 530 feet long and ranges from approximately 65 feet in width along the eastern end (approximately 6-foot depth) to up to 105 feet in width along the western end (approximately 8-foot depth). The pond rim is surrounded by rock rip rap. Water is supplied to the pond by surface runoff and also from a foundation drain system extending from the western building on the Site to the east and then southeast through piping and a drainage swale to the north end of the widest portion of the pond. Highwater outflow from the pond extends from the southwestern limits of the pond into an 8-inch PVC pipe that extends southwest to a drainage swale covered by overgrown vegetation on the south end of the Site, south of the access driveway. The water discharges from the 8-inch pipe along the eastern ditch line of Brookfield Avenue. Photographs of the pond area were included within *Status Update Report 2* (GEC, April 2023).

On March 31, 2023, GEC personnel observed the pond outfall during a period of highwater. The pond outflow reportedly discharged to the eastern ditch line along Brookfield Avenue immediately south of the Site drive entrance. Surface water was observed flowing from north of the Site along the eastern ditch line where it intersected the pond outfall from the Site and flowed southward. The ditch line appeared to collect surface water runoff from several of the properties located south of the Site. The ditch line is also in close proximity to several other detention ponds associated with the other commercial properties located south of the Site. The ditch line flow was observed to cross under Lakeview Drive, located approximately 2,300 feet south of the Site drive entrance. A few hundred feet south of Lakeview Drive the ditch flow appeared to enter and intermittent creek flowing toward the east.

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

The Site obtains potable water services from the Village of Howard municipal system. It is understood that the properties north/northwest and east of the Site do not receive water from the Village of Howard municipal system and have private wells. At least twelve potable wells may be located within 1,200 feet of the Site. Potable well reconnaissance may be necessary for the potable wells located north/northwest of the Site, pending the results of the additional recommended testing. It should also be noted that based on a review of the Wisconsin Department of Natural Resources (WDNR) Well Drill View and Well Construction Reports databases a municipal well is indicated to be located near the Site (BF215). According to the WDNR, the icon is purposely located beyond the location of the actual well and the municipal well is actually located approximately 3,000 feet from the Site. Utility locations on the Site are shown within the area of the former release to the extent they have been mapped to date.

The Site parcel is bordered to the north by agricultural and wooded land, to the east by wooded land and residential properties, to the south by commercial properties, and to the west/northwest by Brookfield Avenue, across which are commercial and residential properties.

There does not appear to be the potential for impacts to threatened or endangered species; sensitive species, habitat, or ecosystems; outstanding or exceptional resource waters; or sites of historical or archaeological significance with regard to the release of PFAS at the Site.

Background

On March 18, 2019, the WDNR was notified of a spill at the Site. The spill was the result of flood water from significant rain events flooding the entire eastern portion of the Site, causing the sump pump used to remove high groundwater from the oil/water separator UST system backfill to fail. As a result, the oil/water separator tank system subsequently failed, filled with water, and released an estimated 100 gallons of gasoline through the top manway to the surface flood waters surrounding the UST system.

Valley Environmental Response (VER) responded to the spill, surrounded the area impacted with gasoline around the UST system with petroleum absorbent boom and pom-poms, and pumped the fluids remaining in the UST system into a frac tank. At that time the use of the compromised UST system was discontinued until repairs could be made.

As the result of the very wet spring, multiple UST or UST backfill dewatering events were conducted during the system repairs, with water collected and containerized in on-site frac tanks during each event. Final repairs to the UST system and excavation of petroleum impacted soils could not be completed until June 2019. On June 24th, 2019, the area around the UST system was dewatered into frac tanks and the final system repairs were made. In total, approximately 40,000 gallons of gasoline-impacted water were pumped into frac tanks and treated by a carbon filtration system. Groundwater samples were collected (Frac 1, 2, 3, 4, Water Tank and Sump Above Oil Tank) to dispose of the collected water at the Green Bay Metro Sewerage District.

After the final UST system repairs, VER conducted the excavation of gasoline-impacted surface soils surrounding the UST system. On June 25th through 26th, 2019, excavation of approximately 133 tons of gasoline-impacted soils were conducted by VER, with soil disposed of at Waste Management - Ridgeview Security Landfill located in Whitelaw, Wisconsin.

Under the direction of the WDNR, excavated soils were field-screened using a photoionization detector (PID) to assist in confirmation that gasoline-impacted soils were removed. Excavation depths ranged from 4 to 12 inches below ground surface (bgs) except for areas excavated to make the final water UST

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

repair, where the excavation extended to approximately 3 feet bgs. In total, 13 soil samples were collected approximately every 30 feet along the base of the excavation. Soil samples were analyzed for petroleum volatile organic compounds (PVOCs) and naphthalene. Soil sample results did not identify residual soil exceeding Wisconsin Administrative Code (WAC) NR 720 standards. The estimated extent of the remedial excavation and confirmation soil sample locations (June, 2019) are shown on Figure 4, Attachment A.

Shallow groundwater was present at the Site at approximately 16-inches bgs. As directed by the WDNR, three test pits were created just outside the excavation limits on June 25th, 2019. Water samples were collected from the test pits (GW-1 to GW-3) and the UST excavation (GW UST) adjacent to the water tank, prior to backfill on June 26th, 2019. Water samples were analyzed for PVOCs and naphthalene. Analytical results from the groundwater samples collected from the test pits did not exceed WAC NR 140 standards. The water samples collected from the UST backfill near the water tank (GW UST), contained benzene (95 micrograms per liter (μ g/L)), naphthalene (186 J ug/L), toluene (1,380 ug/L), total trimethylbenzenes (1,266 ug/L) and total xylenes (3,210 μ g/L), at concentrations exceeding their respective WAC NR 140 enforcement standards (ES).

As a result of the impacted water identified in the UST system backfill, the WDNR created a case for the spill, issued an RP letter, dated August 14th, 2019. was subsequently retained to perform a site investigation.

Three soil borings (B-1 to B-3) were advanced on the Site on November 19th, 2019. The borings were advanced just beyond the tank system and converted to NR 141 compliant monitoring wells designated MW-1 to MW-3, respectively. The monitoring wells were developed on November 26th, 2019.

Soil samples for laboratory analysis were collected from B-1 to B-3 at depths ranging from 2.5 feet to 5 feet bgs. The soil samples collected did not report detectable concentrations of PVOCs or naphthalene.

Groundwater samples were collected from the monitoring wells and tank sump on December 13th, 2019, March 24th, 2020, June 11th, 2020, and October 12th, 2020. The groundwater samples collected at monitoring wells MW-1 and MW-2 reported concentrations of benzene above the WAC NR 140 preventive action limit (PAL) during a few of the sampling rounds (but below its ES), and the groundwater samples collected from the sump reported benzene concentrations exceeding the WAC NR 140 ES during the initial three sampling rounds but no WAC NR 140 ES exceedances were reported in the final sampling round.

A Closure Request for the leaking underground storage tank (LUST) petroleum case was subsequently submitted to the WDNR during June of 2021. The LUST petroleum case was closed by the WDNR on July 1st, 2021 (The Solberg Co. BRRTS No. 03-05-584180). However, as part of the petroleum site investigation under WAC NR 716, emerging contaminants were evaluated at the Site. Due to the Site operations at that time, which included the testing of various fire suppression foams known to contain PFAS, groundwater samples were also collected from MW-1, MW-3, and the tank sump and analyzed by the Wisconsin State Laboratory of Hygiene in Madison, Wisconsin for the presence of PFAS during the October 12th, 2020 groundwater sampling event. The groundwater samples collected from monitoring wells MW-1 and MW-3 and the tank sump reported concentrations of several PFAS. The highest concentrations were detected at MW-3. The most notable were Perfluorohexanoic Acid (C6) (PFHxA), Perfluoropentanoic Acid (C5) (PFPeA), and 6:2 fluorotelomer sulfonate (6:2 FTSA) with concentrations of 43,900 nanograms per liter (ng/L), 48,000 ng/L, and 1,320,000 ng/L, respectively.

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

Therefore, an additional case was opened by the WDNR with PFAS as the contaminants of concern (The Solberg Co. – Site 2, BRRTS No. 02-05-587486).

On May 13, 2021, prior to the performance of the initial site investigation activities for the PFAS investigation, Valley Environmental Response (VER) was contracted by the Solberg Company/Perimeter Solutions to respond to and clean up impacts from a gasoline spill resulting from a line failure while transferring gasoline from the product UST into the testing building. According to the Spill Report, (VER, August 18, 2021), it was estimated that approximately 300-gallons of a solution of gasoline mixed with water spilled onto the ground north and west of the concrete pad located above the gasoline UST, and ran over ground to the west, toward the Site building, and to the south around the edge of the concrete pad where it soaked into the ground surface. The tank area is surrounded by concrete bumper guards. VER dispatched to the Site on May 13, 2021, to evaluate the situation, surrounded the spill location with petroleum-absorbent booms and determined the resources that would be necessary to properly respond to the release. On May 19th through May 27th, 2021, VER mobilized staff to the Site to complete the response actions associated with the gasoline spill, which included spill containment, surface cleaning efforts, and remedial excavation activities.

As indicated in the Spill Report, between May 19th and May 27th, 2021, under direction of WDNR Northeast Region Spills Coordinator, Maizie Reif, gasoline-impacted soils were assessed and excavated until there was no remaining evidence of the presence of gasoline in the soil samples, with the exception of the location just north of the UST system within the concrete bumpers at sample location SS-4, where excavation to water occurred. The majority of the shallow soils in the location of the spill were assessed by using visual and olfactory evidence, and by field screening soils utilizing a PID. Thirteen soil samples (S-1 to S-13) were collected for PID confirmation sampling. Select soil samples located to the north of the UST system, where the vast majority of the gasoline and water pooled during the spill were collected from the sidewalls and bottom of the excavation (SS-1 to SS-4). Based on the petroleum odors and PID results at SS-4, it was apparent during excavation in this location that complete excavation of impacted soils could not be completed.

The excavation limits reportedly extended north of the concrete pad located over the UST system, beyond the bumpers (approximately 20 feet north of the concrete), west to the site building (approximately 65 feet), south to the south side of the concrete pad where fuel had migrated during the spill (approximately 12 inches wide along the south side of the pad); and to a depth of approximately 18 inches bgs. The Estimated Limits of the Remedial Excavation and the Confirmation Soil Sampling Locations (May, 2021) are shown on Figure 4A, Attachment A.

Soil samples SS-1 to SS-4 were evaluated for laboratory analysis for the presence of PVOCs and naphthalene. The soil samples collected at SS-1 to SS-3 did not report detectable concentration of PVOCs and naphthalene. The soil sample collected at SS-4 from the bottom of the excavation, between the concrete pad and the bumpers, at the soil/water interface, identified PVOCs and naphthalene exceeding the WAC NR 720 soil to groundwater pathway and/or cancer and direct contact residual contaminant levels (RCLs). Specifically, the soil sample reported concentrations of benzene (10,800 micrograms per kilogram (μ g/kg)), ethylbenzene (9,600 μ g/kg), naphthalene (3,400 μ g/kg), toluene (24,300 μ g/kg), total trimethylbenzenes (29,100 μ g/kg), and total xylenes (48,600 μ g/kg).

Due to the known presence of PFAS at the Site (The Solberg Co – Site 2, WDNR BRRTS # 02-05-587486), the WDNR did not require PFAS soil sample analysis associated with this spill. A profile sample was collected for soil disposal and due to the presence of PFAS, soils were required to be disposed of as impacted with both gasoline and PFAS.

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

In total, approximately 94 tons of gasoline and PFAS-impacted soils, were excavated and disposed at Waste Management Columbia Ridge Landfill in Arlington, Oregon. Additionally, three cubic yard boxes of gasoline and PFAS-impacted absorbents and plastic were also disposed at Waste Management Columbia Ridge Landfill.

An additional LUST petroleum case was opened by the WDNR on August 27, 2021 (The Solberg Co-PVOC BRRTS No. 03-05-588286), and subsequent groundwater monitoring by GEC and Carow was performed for the LUST petroleum case from May 2022 through October 2023. Status Updates for the LUST case were submitted to the WDNR (GEC, September 26, 2022 and CLSE, August 23, 2023). CLSE was retained to perform the site investigation activities for the LUST case during June of 2023. It should be noted that the USTs associated with the fire testing building are planned to be removed during 2024. Subsequent to the removal and the removal of additional petroleum contaminated soils, a Site Investigation Report and Closure Request will be prepared for the LUST case.

Nine soil borings (B-4 to B-12) were advanced on the Site on May 25th and 26th, 2021 under the direction of GEC to evaluate PFAS contamination. Soil borings B-4 to B-11 were advanced beyond MW-1 to MW-3 to the north, south, east, and west of the UST area. Soil boring B-12 was advanced within a few feet of MW-3. Soil samples were collected continuously by driving a 5-foot plastic sleeve into undisturbed soils to depths of approximately 13.5 feet to 30 feet bgs. Subsequent to soil sampling, soil borings B-4 to B-11 were converted to WAC NR 141 compliant monitoring wells designated MW-4 to MW-11, respectively. Soil boring B-12 was converted to 28 feet bgs utilizing 4.25-inch diameter (8-inch borehole) augers.

Soil samples were collected for laboratory analysis from B-4 to B-12 at depths ranging from 0.25 feet to 3 feet bas. Two or more PFAS were identified in eight of the nine soil samples submitted for laboratory analyses. Only B-4 reported no concentrations above the laboratory method detection limits. The identified compounds were Perfluoroheptanoic Acid (C7) (PFHpA), PFHxA. PFPeA. Perflurooctanesulfonic Acid (PFOS), Perfluoroburanoic Acid (C4) (PFBA), and 6:2 FTSA. The concentrations of detected PFAS ranged from 0.312F nanograms per gram (ng/g) to 15.2ng/g (PFPeA), 1.15 ng/g to 9.19 ng/g (PFHxA), 0.565 ng/g to 9.34 ng/g (PFHpA), 0.543 ng/g to 63.8 ng/g (6:2 FTSA), and 0.929 ng/g to 3.3 ng/g (PFBA). PFOS was reported in one sample (B-9) at a concentration of 0.446F ng/g. The "F" quantifier indicates the parameter was identified above the laboratory detection limit but below the limit of quantitation. PFOS is the only PFAS compound with an established WAC NR 720 RCL (16,400 ng/g, industrial direct contact RCL, and 1,260 ng/g, non-industrial direct contact RCL). The highest total concentrations of PFAS were reported in B-12 (70.96 ng/g), and B-11 (38.38 ng/g).

Monitoring wells MW-4 to MW-11 and piezometer PZ-1 were developed by GEC on May 26th and 27th, 2021. One round of groundwater samples was collected from monitoring wells MW-1 to MW-11, piezometer PZ-1, the tank sump, and the on-site pond by GEC on June 2nd, 2021 and submitted for laboratory analyses of PFAS at three independent laboratories (Wisconsin State Laboratory of Hygiene in Madison, Wisconsin (WSLH), Pace Analytical Services LLC in Green Bay, Wisconsin (Pace), and SGS – AXYS Analytical Services in Sydney, British Columbia, Canada (SGS)). The results discussed below in the "Background Section" of this report reflect those reported by the WSLH.

The groundwater samples collected from MW-1 to MW-11, the tank sump and the on-site pond reported significant detections of PFHpA, PFHxA, PFBA, PFPeA, and 6:2 FTSA as well as other PFAS. The highest concentrations from the groundwater samples submitted for laboratory analysis at the WSLH were detected within the groundwater samples collected from source area monitoring well MW-3, which reported Perfluoroctanoic Acid (C8) (PFOA) (79.9 ng/L), Perfluorobutanesulfonic Acid (C4) (PFBS) (12.6 ng/L), PFHpA (926 ng/L), PFHxA (13,300 ng/L), PFBA (2,590 ng/L), PFPeA (19,700 ng/L), 4:2

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

fluorotelomer sulfonate (C6) (4:2 FTSA) (79.2 ng/L), and 6:2 FTSA (3,000 ng/L). The concentration of 6:2 FTSA failed the qualitative control limit at MW-3 but ranged from 243,000 ng/L to 460,000 ng/L in the sample results reported by SGS and Pace, respectively.

The groundwater sample collected from PZ-1 reported 6:2 FTSA (2.3F ng/L) in the sample analyzed by the WSLH. PFHxA (1.2J ng/L) and 6:2 FTSA (36 ng/L) were reported in the sample analyzed by Pace. GEC submitted *Status Update 1* to the WDNR summarizing the site investigation activities (GEC, September 13, 2021). Since the extent of PFAS-contaminated soil and groundwater had not been defined, the report recommended the installation of additional soil borings/monitoring wells.

Seven soil borings (B-13 to B-19) were advanced on the Site and adjoining northern and southern properties on July 11, 2022 under the direction of GEC, and converted to 6 WAC NR 141 compliant monitoring wells and a piezometer. Soil borings B-13 and B-14 were advanced on the northern portion of the northern adjoining property and converted to monitoring wells MW-12 and MW-13, respectively. Soil borings B-15 and B-18 were performed on the western and eastern portions of the Site, respectively, and converted to monitoring wells MW-14 and MW-17, respectively. Soil borings B-16 and B-17 were performed on the southern adjoining property and converted to monitoring wells MW-15 and MW-16, respectively. Soil boring B-19 was performed within a few of MW-15 and converted to piezometer PZ-2. Soil samples were collected continuously by driving a 5-foot plastic sleeve into undisturbed soils to depths of approximately 13 feet to 28.5 feet bgs with the exception of B-16/MW-15, which was performed within a few of B-19/PZ-2. After soil sample collection, the soil borings were advanced to depths of 13.5 feet to 28.5 feet bgs utilizing 4.25-inch diameter (8-inch borehole) augers, and WAC NR 141 compliant monitoring wells were installed.

Soil samples for laboratory analysis were collected from B-13, B-14, B-17, B-18, and B-19 at depths ranging from 0.5 feet to 1-foot bgs. The collected soil samples did not report detectable concentrations of PFAS.

Monitoring wells MW-12 to MW-17 and PZ-2 were developed by GEC on July 11, 2022. One round of groundwater samples was collected by GEC personnel from monitoring wells MW-1 to MW-17, piezometers PZ-1 and PZ-2, the tank sump, and the on-site pond on July 12, 2022. The groundwater samples were collected by purging 4 well volumes from each monitoring well utilizing dedicated PFAS-free pumps and PFAS-free tubing. The pond sample was collected by dipping a sampling bottle into the pond at the surface, as requested by the WDNR. The groundwater samples were submitted for laboratory analyses of PFAS at three independent laboratories (WSLH, Pace, and SGS). The results discussed below are associated with the WSLH.

Soil samples for laboratory analysis were collected from B-13, B-14, B-17, B-18, and B-19 at depths ranging from 0.5 feet to 1-foot bgs. The collected soil samples did not report detectable concentrations of PFAS.

The groundwater samples collected from Site monitoring wells MW-1 to MW-11 the tank sump, pond, and off-site monitoring wells MW-15 and MW-16 reported significant detections of PFHpA, PFHxA, PFBA, PFPeA, and 6:2 FTSA as well as other PFAS. The highest concentrations from the groundwater samples submitted for laboratory analysis at the WSLH were detected within the groundwater sample collected from source area monitoring well MW-3, which reported PFOA (143 ng/L), PFBS (12.5 ng/L), PFHpA (1,870D ng/L), Perfluorohexanesulfonic Acid (PFHxS) (2.5F ng/L), PFHxA (19,800D ng/L), PFBA (4,480D ng/L), PFPeA (28,200D ng/L), 4:2 FTSA (125 ng/L), and 6:2 FTSA (552,000D ng/L). By comparison the detections of those compounds within off-site monitoring wells MW-15 and MW-16 reported PFOA (2.3F ng/L and 3.99 ng/L), PFBS (2.46F ng/L, and 5.14 ng/L), PFHpA (19.9 ng/L and 75.9 µg/L) PFHxA (99.7

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

ng/L and 294 ng/L), PFBA (51.5 ng/L and 121 ng/L), PFPeA (164 ng/L and 473 ng/L), and 6:2 FTSA (70.6 ng/L and 283 ng/L). The "D" indicates that the laboratory methods required the sample to be diluted.

The groundwater samples collected from off-site locations MW-12, MW-13 and Site monitoring well MW-14 reported lesser concentrations of five to eight PFAS ranging from 2.05F ng/L to 6.22F ng/L (PFOA), <1.43 ng/L to 3.17F ng/L (PFOS), <2.31 ng/L to 4.58F ng/L (PFBS), <1.50 ng/L to 4.84F ng/L (PFHpA), <1.42 ng/L to 4.56F ng/L (PFHxS), 6.42F ng/L to 18.4 ng/L (PFHxA), 16.2 ng/L to 77.6 ng/L (PFBA) , 8.07F ng/L to 27.2 ng/L (PFPeA) , and <2.72 ng/L to 7.54F ng/L (6:2 FTSA) . Only PFBA (4.79F ng/L) was reported at Site monitoring well MW-17 in the State Laboratory of Hygiene analyses.

The groundwater sample collected from PZ-1 reported only 6:2 FTSA (5.24F ng/L) and the groundwater sample collected from PZ -2 reported only PFOA at a concentration of 1.68F ng/L. "F" indicates that this constituent was identified above the laboratory limit of detection but below the laboratory limit of quantitation.

It should be noted that the three laboratories generally detected the same compounds in the submitted samples. The comparison of the data from the laboratories was generally consistent with the following exceptions noted by GEC:

The groundwater samples collected from MW-3 and the pond (July 11, 2023) that were tested by Pace did not correlate with the other two laboratories, and may have been reported in error by either a labeling mistake during collection or at the laboratory. The sample labels were checked, and the samples were re-run by the lab, but similar results were reported to the initial run. Therefore, GEC believed that the results at MW-3 and the pond provided by Pace were not accurate and should not be utilized in the assessment of the July 11, 2023 data (which appears to have been corroborated by the test results from the most recent sampling round on July 24, 2023).

The reporting results for 6:2 FTSA reported by Pace at MW-1, MW-2, MW-3, MW-5, and MW-8 to MW-ranged from 2x to 5x lower than those form the other labs.

Hydraulic conductivity testing was performed by GEC within the monitoring wells MW-1 and MW-9 where variable natural soils consisting of silty clay, clayey silt, and silty fine sand were encountered. The hydraulic conductivity value was calculated by performing a draw down test and recording recharging water levels every half second with an Onset Data Logger with barometric pressure sensor. The information (time and drawdown) was then plotted on semi-log paper and the conductivities were calculated using the Bouwer and Rice method. The hydraulic conductivities at MW-1 and MW-9 were calculated to be 4.48×10^{-5} centimeters (cm)/second and 7.65×10^{-5} cm/second, respectively.

The site investigation activities were summarized in the *Status Update 2* Report (GEC, April 1, 2023). CLSE was subsequently retained to perform the remainder of the site investigation activities on June 27, 2023.

Groundwater samples were collected from monitoring wells MW-1 to MW-17, piezometers PZ-1 and PZ-2, the tank sump, and the on-site pond on July 24, 2023. The groundwater samples were submitted to Pace for laboratory analysis for the presence of PFAS.

The groundwater samples collected from Site monitoring wells MW-1 to MW-11 the tank sump, pond, and off-site monitoring wells MW-15 and MW-16 reported significant detections of PFHpA, PFHxA, PFBA, PFPeA, and 6:2 FTSA as well as other PFAS. The highest concentrations were detected within the groundwater samples collected from source area monitoring well MW-3, which reported PFOA (57.2

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

ng/L), PFBS (10.1 ng/L), PFHpA (1,950D ng/L), PFHxS (5.9 ng/L), PFHxA (16,900D ng/L), PFBA (3,550D ng/L), PFPeA (30,400D ng/L), 4:2 FTSA (65.6 ng/L), and 6:2 FTSA (15,800D ng/L). By comparison the detections of those compounds within off-site monitoring wells MW15 and MW-16 reported PFOA (1.1J ng/L, and 2.6 ng/L), PFOS (<0.68 ng/L to 0.79J ng/L), PFBS (3.3 ng/L to 5.5 ng/L), PFHpA (19 ng/L and 64.5 μ g/L) PFHxS (< 0.53 ng/L to 0.89J ng/L), PFHxA (105 ng/L and 353D ng/L), PFBA (52.3 ng/L and 150 ng/L), PFPeA (190 ng/L and 633D ng/L), and 6:2 FTSA (45.7 ng/L and 224D ng/L). The "D" indicates that the laboratory methods required the sample to be diluted.

The groundwater samples collected from off-site locations MW-12, MW-13 and Site monitoring well MW-14 reported lesser concentrations of four to nine PFAS ranging from <1.8 ng/L to 4.8 ng/L (PFOA), <1.4 ng/L to 3.6 ng/L (PFOS), 1.9 ng/L to 5.1 ng/L (PFBS), <1.4 ng/L to 4.3 ng/L (PFHpA), <1.1 ng/L to 4.3 ng/L (PFHxS), 5.8 ng/L to 17.4 ng/L (PFHxA), 17.5 ng/L to 87.3 ng/L (PFBA), 6.6 ng/L to 25.2 ng/L (PFPeA), and <1.4 ng/L to 4.7 ng/L (6:2 FTSA). Only PFBS (1.4J ng/L) and PFBA (14.7 ng/L) were reported at Site monitoring well MW-17.

The results of the groundwater samples collected from PZ-1 reported only 6:2 FTSA (7.1J ng/L) and the groundwater results from PZ -2 did not report detectable concentrations of PFAS.

The individual and total concentrations drinking water standard of 70 ng/L for PFOS and PFOA were not exceeded at any of the test locations.

The results of the groundwater sampling round were submitted to the WDNR within *Status Update* 3 (CLSE, September 5, 2023). During a phone conversation on October 19, 2023, Perimeter Solutions personnel requested that 3 additional soil borings/monitoring wells around the area of the production plant.

On November 14, 2023, three soil borings (B-20 to B-22) were advanced on the Site to the south, east, and north, respectively, of the production building and converted to monitoring wells MW-18 to MW-20, respectively. Soil samples were collected from each boring at depths of 0.5 to 2 feet bgs.

Each soil sample reported concentrations of PFPeA (0.68 ng/g to 3.2 ng/g), PFHxA (0.47 ng/g to 3.3 ng/g, PFHpA (0.3 ng/g to 4.2 ng/g), PFOS (0.044J ng/g to 0.13 ng/g), and PFBA (0.21 ng/g to 0.61 ng/g), which are well below their direct contact standards, where established. The soil samples collected from B-20 also reported concentrations of PFBS (0.071J ng/g), 6:2 FTSA (3.4 ng/g), PFOA (0.081J ng/g), and PFNA (0.052J ng/g), which are also well below their direct contact standards, where established.

Monitoring wells MW-18 to MW-20 were developed on November 16, 2023. Groundwater samples were collected from MW-18 to MW-20 on November 29, 2023.

The groundwater samples collected from monitoring wells MW-18 to MW-20 reported detections of 4:2 FTSA (9.2 ng/L to 97.5 ng/L), 6:2 FTSA (2,190 ng/L to 3,510 ng/L), PFBA (996 ng/L to 2,030 ng/L), PFPeA (5,450 ng/L to 7,330 ng/L), PFBS (7.4 ng/L to 43.1 ng/L), PFHpA (293 ng/L to 527 ng/L), PFHxS (0.72J ng/L to 82.9 ng/L), PFHxA (1,740 ng/L to 2,830 ng/L), and PFOA (2.7 ng/L to 11 ng/L). The groundwater sample collected from MW-20 also reported PFOS at a concentration of 94.5 ng/L. The compounds detected were similar to those within source area near the fire testing building with the exception of the PFOS concentration detected at MW-20, which had been detected at a maximum concentration of 14 ng/L at MW-14 (Pace) during 2022.

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

The soil boring and monitoring well locations are shown on Figure 3, Attachment A. The results of the chemical analyses of the groundwater and soil samples are summarized in Tables A.1 and A.2, respectively, in Attachment B. Water Level Elevations are summarized on Table A.6, Attachment B.

The results of the additional soil and groundwater sampling round were submitted to the WDNR within *Status Update 4* (CLSE, February 20, 2024). The report recommended that three additional groundwater monitoring wells be installed on and off-site and that an additional piezometer be installed. The Site Investigation Work Plan discussed herein was subsequently prepared.

Site Geology

The surface at soil borings B-1 to B-3 consisted of grass followed by 18-inches of topsoil at B-1 and B-2, and 12 inches of sand and gravel at B-3. The surface materials were generally underlain by natural soils consisting of tan or brown silty fine sand to depths of 10 feet to 12.5 feet bgs. Reddish brown silty clay soils were encountered at B-1 at depths of 8.5 to 10 feet bgs; at B-2 at depths of 1.5 feet to 2.5 feet bgs and 9 feet to 12.5 feet bgs; and B-3 at depths of 10 to 12.5 feet bgs. Brown sand was also encountered at B-2 at depths ranging from approximately 6.5 feet to 9 feet bgs.

The surface at soil borings B-4 to B-12 consisted of grass or overgrown vegetation, except for B-12, which consisted of sand and gravel. The surface materials, except for B-12, were underlain by topsoil ranging in depths from approximately 3-inches to 1.25 feet bgs. The near-surface sand and gravel at B-12 and topsoil at the remaining locations were underlain by variable natural soils primarily consisting of silt and sand mixtures in the upper to central portions of the borings to depths of approximately 5 feet bgs to 12 feet bgs. The upper sand and silt layer was generally underlain by finer-grain soils consisting of silty clay or clayey silt to boring termini ranging from 13 feet to 28.5 feet bgs.

The surface at soil borings B-13 to B-19 consisted of grass or overgrown vegetation. The surface materials, except for B-17 and B-18, were underlain by topsoil ranging in depths from approximately 6-inches to 2.25 feet bgs. The near surface vegetation at B-17 was underlain by gray and black silty sand topsoil fill with varying amounts of gravel to a depth of 5 feet bgs. The surface vegetation at B-18 was underlain by grayish brown clayey silt. The fill at B-17, clayey silt at B-18, and topsoil at the remaining borings were underlain by natural soils primarily consisting of light brown, tan, tannish brown, and orangish brown silty sand to depths of approximately 7 feet to 12.5 feet bgs. The silty sand was underlain by tannish-gray, grayish-brown, and reddish-brown silty clay and clayey silt to the termination depths of the borings from 15 feet to 28.5 feet bgs.

The surface at soil borings B-20 to B-22 consisted of grass. The surface materials were underlain by 6 to 10-inches of topsoil fill. At B-21, the topsoil fill was underlain by light brown silty sand and dark brown sandy silt fill to a depth of 4 feet bgs and by 3/8-inch crushed gravel fill to depths of 6 feet bgs. The topsoil fill at B-20 and B-22 and fill at B-21 were underlain by variable natural soils primarily consisting of light brown, brown, yellowish brown, and orangish brown silty sand with varying amounts of clay to depths of 14 feet bgs. At B-20 and B-21 the silty sand was underlain by reddish brown silty clay, trace sand and gravel, and gray and black silt and silty clay, respectively, to the termination depths of the borings at 15 feet bgs.

Regional Geology/Hydrogeology/Topography

The regional geology of Brown County in the relative vicinity of the Site consists of Quaternary-age unconsolidated glacial deposits described as the Tedrow loamy fine sand, which is associated with drainageways and has a parent material of sandy glaciolacustrine deposits (United States Department of

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

Agriculture (USDA) Web Soil Survey, September 7, 2023). According to the Bedrock Geologic Map of Wisconsin (Mudrey, M.G. et at., 1982) bedrock beneath the Site is described as Ordovician age dolomite with some limestone and shale of the Sinnipee Group and occurs within 50 to 100 feet bgs. The well construction reports for the twelve closest wells identified on the WDNR Well Construction Reports and Well Driller Viewer databases are included in Attachment C.

Topography in the vicinity of the Site is relatively flat. The elevation of the Site is approximately 589 feet above Mean Sea Level (MSL) and slopes down to the east/southeast toward Lake Michigan, located approximately 1-mile to the southeast at an elevation near 580 MSL. Groundwater flow has been primarily toward the north during the groundwater sampling rounds performed, but may be impacted by the Site pond.

Potential Receptors

CLSE will document the locations of public utilities identified during the planned site investigation activities to further evaluate whether utility corridors are a potential conduit for the identified contamination. A private utility contractor may also be hired to document the location of private utility lines located near the planned boring locations. Based on a review the WDNR Well Construction Reports database, at least 12 potable wells appear to be present within 1,200 feet of the Site. CLSE with further evaluate the presence of off-site wells and locations subsequent to the performance of the additional site investigation activities.

The Site is located within a commercial and residential area of the Village of Howard. No sensitive species, habitat, ecosystem, wetlands, or outstanding resource waters are located in the direct vicinity of the known affected area.

Scope of Work

The field exploration for this phase will include the advancement of 3 soil borings to depths of 13 feet bgs, which will be converted to monitoring wells, and 1 soil boring to a depth of approximately 30 feet bgs, which will be converted to a piezometer. The purpose of the proposed monitoring wells and piezometers will be to further evaluate the horizontal and vertical extent of contaminated groundwater. The locations of the proposed soil borings and monitoring wells are shown on Figure 5, Attachment A.

The soil borings will be advanced with a track-mounted Geoprobe[®] unit, and soil samples will be secured continuously at 5-foot intervals utilizing a steel sampler with a new disposable plastic sleeve inserted into the sampler for each interval. After the completion of the soil sampling activities, 4.25" ID hollow stem augers will be utilized to auger 8-inch diameter boreholes for installation of the planned monitoring well depths. The augers will be decontaminated with a pressure washer between sampling locations. The installation of the monitoring wells, and the sample collection and analysis will be performed in general accordance with the guidelines and codes utilized by the WDNR (NR 141 WAC).

Soil samples will be screened in the field utilizing visual and olfactory observations and with a Honeywell ppbRAE 3000+ PID. Soil cuttings generated during the drilling activities will be placed into 55-gallon drums and remain on site until proper disposal can be arranged. Soil sampling tools will be cleaned with a non-phosphate detergent solution and potable water followed with multiple rinses of distilled water prior to development of each well. Selected soil samples from the upper 2 feet will be submitted for to Pace for laboratory analysis of PFAS (Method ASTM D2974 ENV-SOP-MIN4-0178). Soil samples submitted for PFAS analysis will be transferred into laboratory provided 250-milliliter HPDE plastic containers. The sample containers will be immediately placed on ice and standard chain-of-custody procedures will be

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

initiated.

The monitoring well construction will consist of a 10-foot section of 0.010-inch 2-inch diameter, schedule 40 PVC screen placed at or near the bottom of the borehole. The piezometer construction will consist of a 5-foot section of 0.010-inch 2-inch diameter, schedule 40 PVC screen placed at or near the bottom of the borehole. A coarse sand filter pack will be placed surrounding the slotted PVC to approximately 2 feet above the screen, followed by fine sand topped with chipped bentonite. Steel flush-mounted or stick up covers will be used to protect the wells. The covers will be set in place by 2-foot by 2-foot concrete pads.

New wells will be developed by alternately surging and purging with a pump. Based on the observed geology, it is anticipated that the newly installed monitoring wells will not purge dry and that the piezometer will purge dry. To confirm the wells cannot be purged dry, the wells will be first only pumped to limit agitation. The wells will be developed for a minimum of 30 minutes or until they produce relatively sediment-free water. The development water will be placed into drums until after receipt of the testing results of the wells. Well development tools will be cleaned with a non-phosphate detergent solution and potable water followed with multiple rinses of distilled water prior to development of each well.

Two rounds of groundwater sampling will be performed subsequent to installation and development of the new monitoring wells (April and October 2024). The groundwater samples will be collected by purging 4 well volumes from each monitoring well utilizing dedicated PFAS-free pumps and PFAS-free tubing. Groundwater samples submitted for PFAS analysis will be transferred into laboratory provided 250-milliliter HPDE plastic containers. The sample containers will be immediately placed on ice and standard chain-of-custody procedures will be initiated. The groundwater samples will be submitted to Pace (Method ENV-SOP-MIN4-0178).

Groundwater elevations and the top of casing (TOC) elevations at each monitoring well will be established by CLSE. The monitoring well TOC will be referenced to MSL. Static groundwater levels within the wells will be measured to the nearest 0.01 feet, prior to obtaining the samples for analysis.

Following the completion of each groundwater sampling round and receipt of the analytical results, status update reports will be prepared in general accordance with standards set forth by the WDNR.

General

The soil borings and monitoring wells are scheduled to be performed during the first week of April, 2024. If you have any questions, please contact CLSE at (920) 229-8600.

Sincerely,

CAROW LAND SURVEYING & ENVIRONMENTAL

Brian Youngwirth, P.G.

Brian Youngwirth, P.G. Senior Geologist

cc: Perimeter Solutions

615 N Lynndale Drive Appleton, WI 54914 920-731-4168

Certification of Professional(s)

"I Brian Youngwirth, hereby certify that I am a hydrogeologist as that term is denied in s. NR 712.03 (1), Wisconsin Administrative Code, am registered in accordance with the requirements of ch. GHSS 2, Wis. Adm. Code, or licensed in accordance with the requirements of ch. GHSS 3, Wis. Adm. Code, and that, to the best of my knowledge, all the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code."

Brian younger

Brian Youngwirth, PG Senior Geologist

3/14/24

Attachment A: Figures

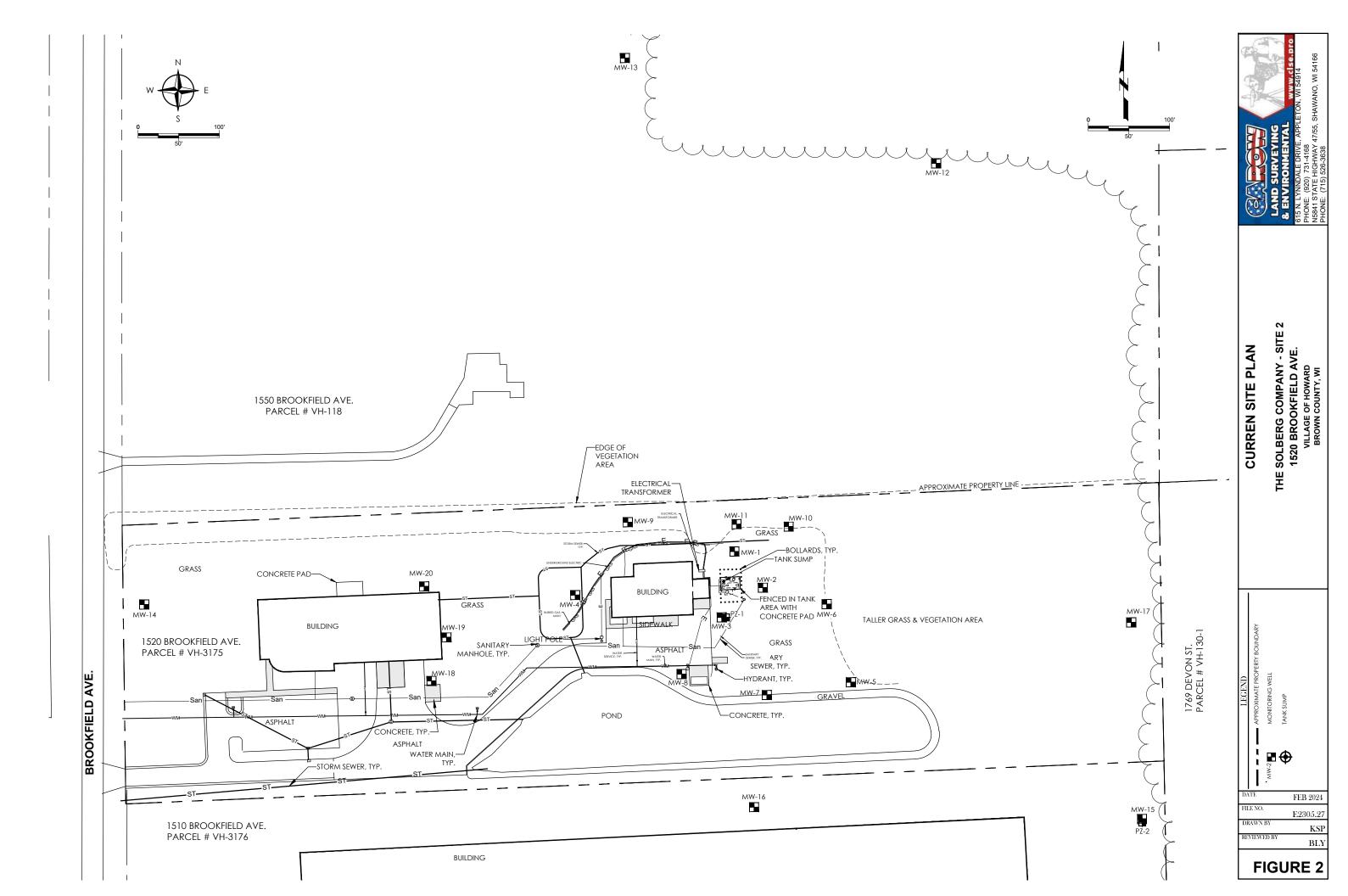
- Figure 1 Site Location Map
- Figure 2 Current Site Plan
- Figure 3 Soil Boring and Monitoring Well Location Map
- Figure 4 Estimated Extent of Remedial Excavation & Confirmation Soil Sample Location Map June 2019
- Figure 4A Estimated Extent of Remedial Excavation & Confirmation Soil Sample Location Map – May 2021
- Figure 5 Proposed Soil Boring, Monitoring Well, and Piezometer Location Map

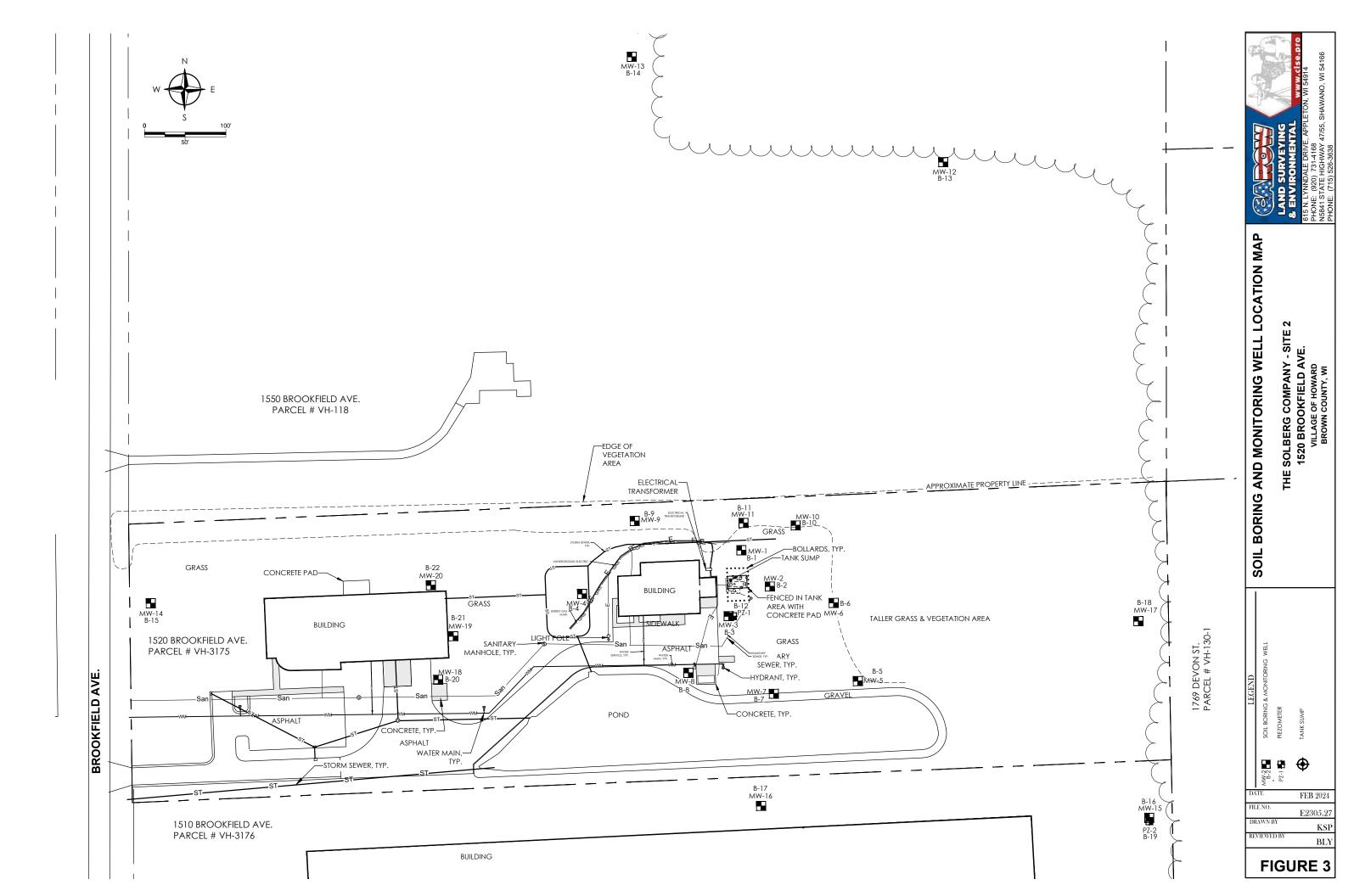
Attachment B: Tables

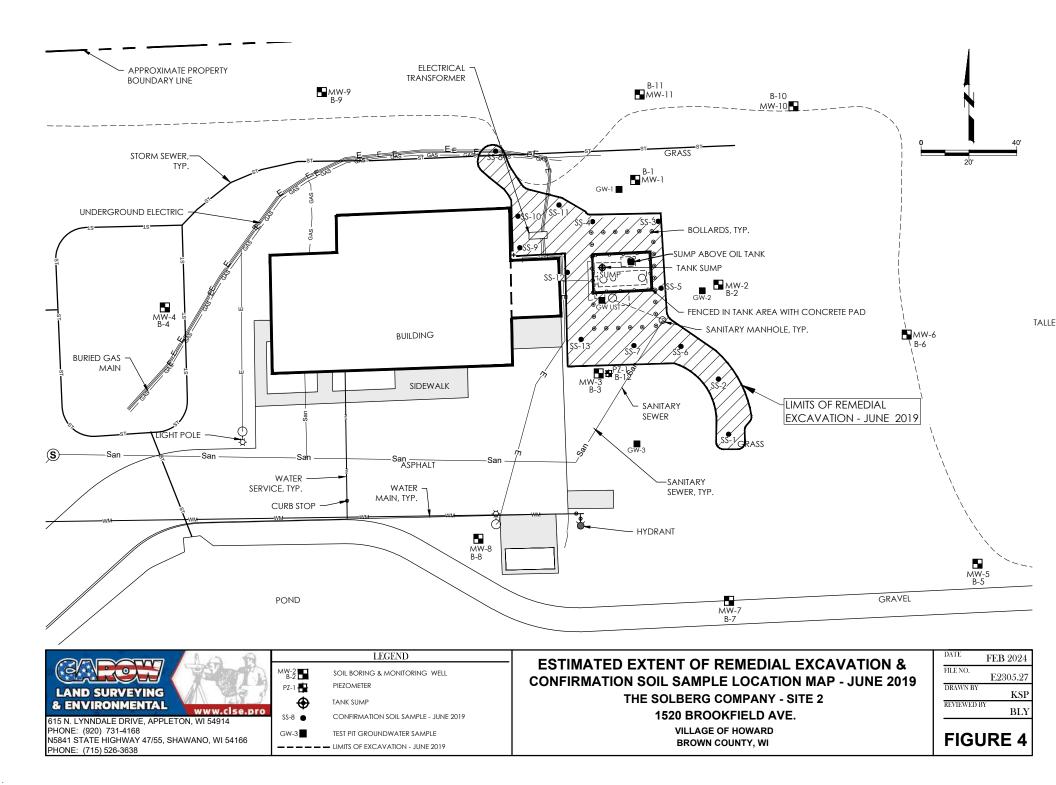
- Table A.1 Groundwater Analytical Results Table
- Table A.2 Soil Analytical Results Table
- Table A.6 Water Level Elevations

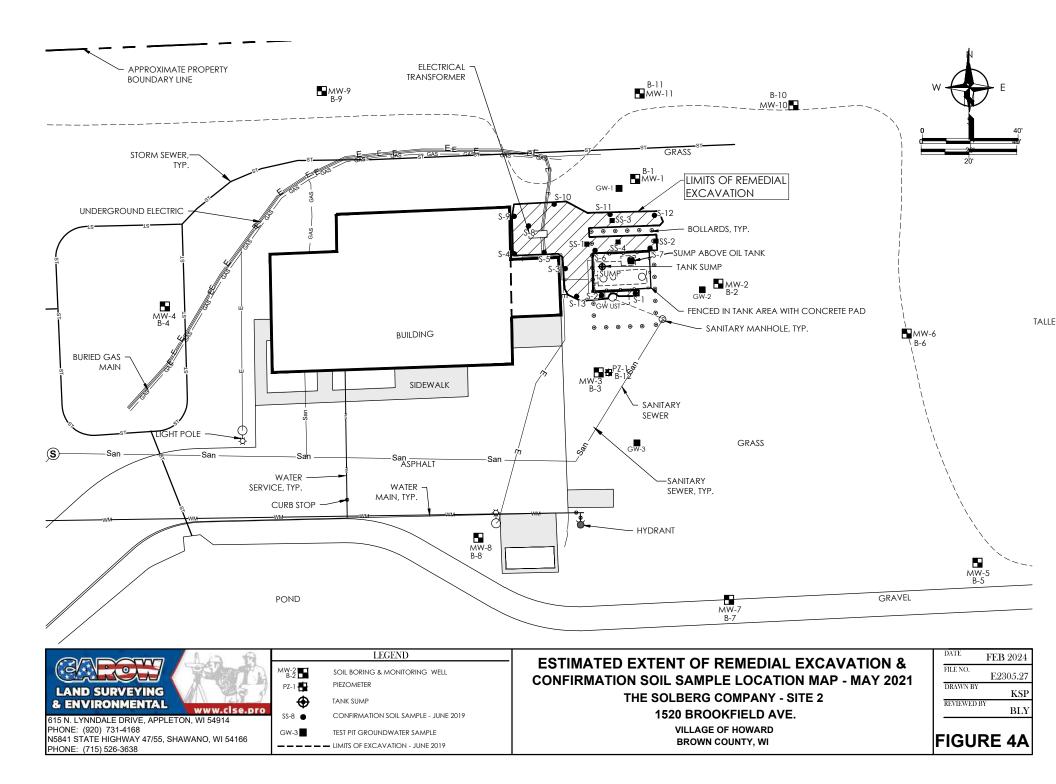
Attachment C: Well Construction Reports

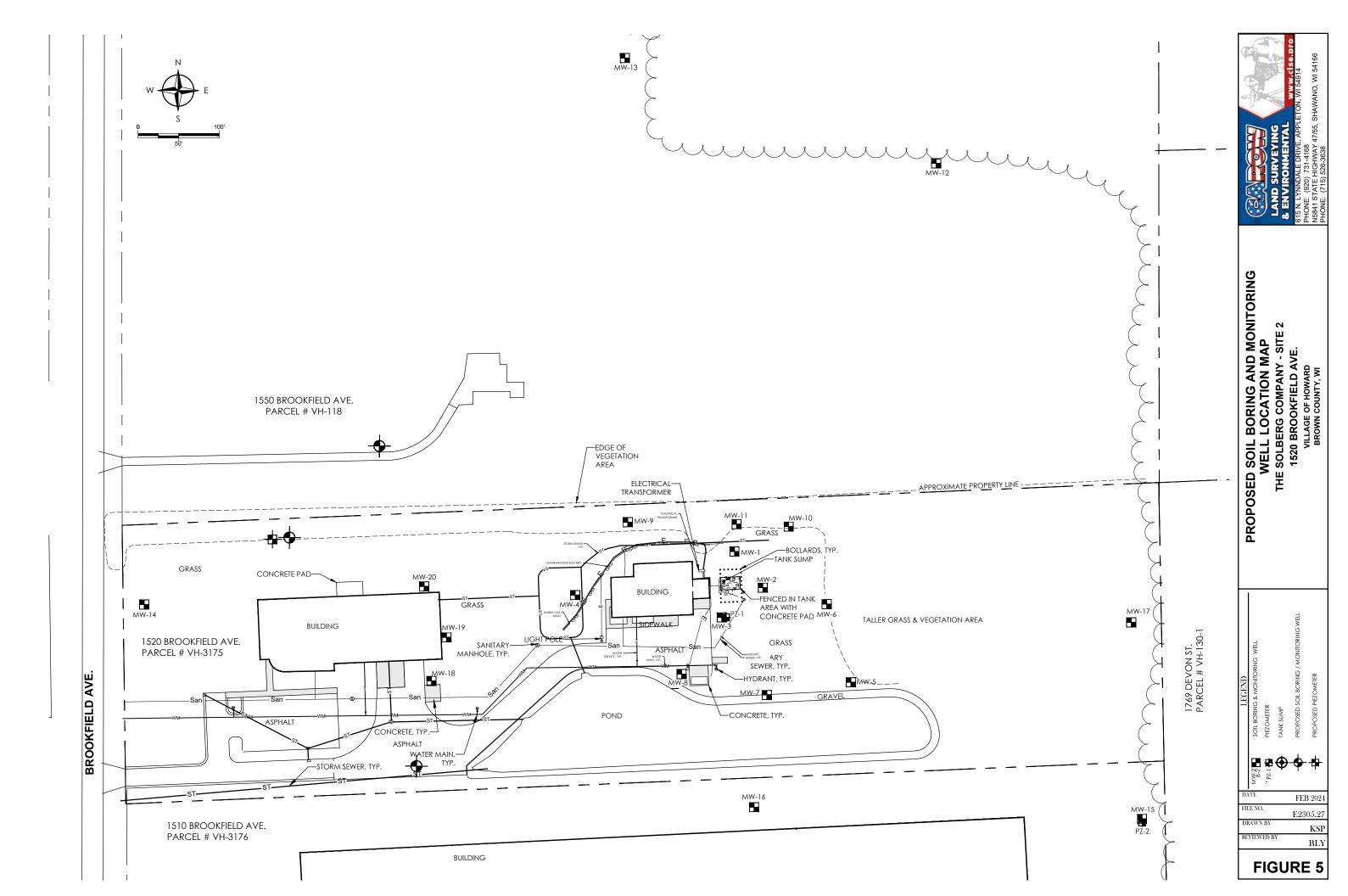
615 N Lynndale Drive Appleton, WI 54914 920-731-4168




APPENDIX A FIGURES




PHONE: (920) 731-4168 N5841 STATE HIGHWAY 47/55, SHAWANO, WI 54166 PHONE: (715) 526-3638 VILLAGE OF HOWARD BROWN COUNTY, WI


FIGURE 1	
----------	--

APPENDIX B TABLES

Monitoring Well	onitoring Well MW-1		
Lab	Pace Analytical		
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<63	<0.43	<1.2
4:2 FTSA	<83	12	13.4
6:2 FTSA	35,000	3,700D	11,300D
8:2 FTSA	<150	11	20.7
9CI-PF3ONS	<46	<0.3	<1
ADONA	<46	<0.51	<2
GenX (HFPO-DA)	<200	<0.53	<1.1
N-EtFOSA	<130	<0.61	<1.2
N-EtFOSAA	<72	<0.55	<1.7
N-EtFOSE	<91	<0.5	<1.9
N-MeFOSA	<120	<0.51	<1.2
N-MeFOSAA	<89	<0.43	<1.5
N-MeFOSE	<120	<0.33	<1.1
PFBA	1,300	760D	693D
PFDS	<74	<0.45	<1.4
PFDoS	<100	<0.46	<1.3
PFHpS	<48	<0.41	<1.4
PFNS	<68	<0.44	<1.3
PFOSA	<58	<0.81	<1.5
PFPeA	8,600	4,400D	8,400D
PFPeS	<57	<0.47	<1.3
PFBS	<40	13	8.9
PFDA	<50	0.85J	<1.3
PFDoA	<45	<0.48	<1
PFHpA	1,000	460D	710D
PFHxS	<53	1.2J	<1.1
PFHxA	6,100	3,100D	4,680D
PFNA	<44	2J	2.1J
PFOS	<190	1J	2.5J
PFOA	<79	9.5	13
PFTeDA	<57	<0.47	<1.3
PFTrDA	<50	<0.62	<1.3
PFUnA	<380	<0.54	<1

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

	in and Eentoning
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well MW-2			
Lab		Pace Analytical	
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<30	<0.43	<1.2
4:2 FTSA	<39	12	12
6:2 FTSA	16,000	3,300D	17,500D
8:2 FTSA	<72	3.4	2.3J
9CI-PF3ONS	<22	<0.3	<0.98
ADONA	<22	<0.51	<1.9
GenX (HFPO-DA)	<93	<0.52	<1
N-EtFOSA	<60	<0.6	<1.2
N-EtFOSAA	<33	<0.55	<1.7
N-EtFOSE	<43	<0.49	<1.9
N-MeFOSA	<56	<0.51	<1.2
N-MeFOSAA	<42	<0.43	<1.5
N-MeFOSE	<57	<0.33	<1.1
PFBA	1,100	710D	1,050D
PFDS	>35	<0.45	<1.3
PFDoS	<47	<0.46	<1.2
PFHpS	<22	<0.41	<1.4
PFNS	<32	<0.44	<1.2
PFOSA	<27	<0.81	<1.5
PFPeA	8,000	4,600D	7,290D
PFPeS	<27	<0.47	<1.3
PFBS	23J	15	7.7
PFDA	<23	<0.56	<1.3
PFDoA	<21	<0.48	<1
PFHpA	1,100	610D	842D
PFHxS	<25	1.5J	1.7J
PFHxA	5,200	3,300D	4,870D
PFNA	<21	1.2J	<1.7
PFOS	<89	0.73J	<1.4
PFOA	<37	12	11.9
PFTeDA	<27	<0.47	<1.3
PFTrDA	<24	<0.62	<1.3
PFUnA	<28	<0.53	<1

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well	Monitoring Well MW-3		
Lab	Pace Analytical		
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<1,200	<0.43	<1.1
4:2 FTSA	<1,600	<0.56	65.6
6:2 FTSA	460,000	530D	15,800D
8:2 FTSA	<2,900	<0.65	<1
9CI-PF3ONS	<880	<0.3	<0.97
ADONA	<880	<0.51	<1.9
GenX (HFPO-DA)	<3,800	<0.53	<1
N-EtFOSA	<2,500	<0.61	<1.2
N-EtFOSAA	<1,400	<0.55	<1.7
N-EtFOSE	<1,700	<0.5	<1.8
N-MeFOSA	<2,300	<0.51	<1.1
N-MeFOSAA	<1,700	<0.43	<1.4
N-MeFOSE	<2,300	<0.33	<1.1
PFBA	3,300J	110	3,550D
PFDS	<1,400	<0.45	<1.3
PFDoS	<1,900	<0.46	<1.2
PFHpS	<910	<0.41	<1.4
PFNS	<1,300	<0.44	<1.2
PFOSA	<1,100	<0.82	<1.5
PFPeA	20,000	520D	30,400D
PFPeS	<1,100	<0.47	<1.2
PFBS	<760	14	10.1
PFDA	<960	<0.56	<1.3
PFDoA	<860	<0.48	<0.99
PFHpA	1,200J	110	1,950D
PFHxS	<1,000	<0.51	5.9
PFHxA	13,000	360D	16,900D
PFNA	<840	0.87J	<1.6
PFOS	<3,700	1.7J	<1.4
PFOA	<1,500	1.9J	57.2
PFTeDA	<1,100	<0.47	<1.2
PFTrDA	<970	<0.62	<1.3
PFUnA	<1,100	<0.54	<1

Notes:

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

	Letteriny
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well MW-4			
Lab Pace Analytical			
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS		<0.43	<0.56
4:2 FTSA	3.6J	1.6J	3.4
6:2 FTSA	42	79	4,710D
8:2 FTSA	<1.5	<0.64	0.56J
9CI-PF3ONS	<0.44	<0.3	<0.48
ADONA	<0.44	<0.5	<0.93
GenX (HFPO-DA)	<1.9	<0.52	<0.5
N-EtFOSA	<1.2	<0.59	<0.58
N-EtFOSAA	<0.69	<0.54	<0.83
N-EtFOSE	<0.87	<0.49	<0.9
N-MeFOSA	<1.2	<0.5	<0.56
N-MeFOSAA	<0.85	<0.42	<0.7
N-MeFOSE	<1.2	<0.32	<0.53
PFBA	74	51	534D
PFDS	<0.71	<0.44	<0.65
PFDoS	<0.96	<0.45	<0.60
PFHpS	<0.46	<0.4	<0.68
PFNS	<0.65	<0.44	<0.59
PFOSA	<0.56	<0.8	<0.73
PFPeA	140	100	3,860D
PFPeS	<0.54	<0.46	<0.61
PFBS	600	170	<4.9D
PFDA	<0.48	<0.55	<0.62
PFDoA	<0.43	<0.47	<0.49
PFHpA	20	14	135
PFHxS	<51	2	0.59J
PFHxA	60	51	2,370D
PFNA	0.46J	<0.72	<0.80
PFOS	<1.8	0.74J	0.93J
PFOA	2.9J	5	4.4
PFTeDA	<55	<0.47	<0.61
PFTrDA	<48	<0.61	<0.63
PFUnA	<57	<0.33	<0.49

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well	onitoring Well MW-5		
Lab	Pace Analytical		
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & PO	LYFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<6	<4.3D	<0.57
4:2 FTSA	<7.9	<5.5D	2.7
6:2 FTSA	2,100	1,600D	2,410D
8:2 FTSA	<14	<6.5D	<0.52
9CI-PF3ONS	<4.4	<3D	<0.49
ADONA	<4.4	<5.1D	<0.95
GenX (HFPO-DA)	<19	<5.2D	<0.51
N-EtFOSA	<12	36D	<0.59
N-EtFOSAA	<6.8	<5.5D	<0.84
N-EtFOSE	<8.6	<4.9D	<0.92
N-MeFOSA	<11	<5.1D	<0.57
N-MeFOSAA	<8.4	<4.3D	<0.72
N-MeFOSE	<12	<3.3D	<0.54
PFBA	310	360D	552D
PFDS	<7	<4.5D	<0.66
PFDoS	<9.4	<4.6D	<0.61
PFHpS	<4.5	<4.1D	<0.69
PFNS	<6.4	<4.4D	<0.61
PFOSA	<5.5	<8.1D	0.82J
PFPeA	2,500	1,900D	4,160D
PFPeS	<5.4	<4.7D	<0.62
PFBS	12J	30D	14.4
PFDA	<4.7	<5.6D	<0.63
PFDoA	<4.3	<4.8D	<0.5
PFHpA	490	410D	490D
PFHxS	<5	<5D	0.58J
PFHxA	1,600	1,300D	2,390D
PFNA	<4.2	<7.3D	<0.82
PFOS	<18	<5.4D	1J
PFOA	11J	7.1J,D	6.5
PFTeDA	<5.4	<4.7D	<0.62
PFTrDA	<4.8	<6.2D	<0.64
PFUnA	<5.7	<5.4D	<0.5

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

	Letterin,
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well	Monitoring Well MW-6		
Lab	Lab Pace Analytical		
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<30	<4.4D	<0.56
4:2 FTSA	<39	<5.6D	2.8
6:2 FTSA	3,000	1,400D	993D
8:2 FTSA	<72	<6.6D	<0.51
9CI-PF3ONS	<22	<3.1D	<0.48
ADONA	<22	<5.2D	<0.93
GenX (HFPO-DA)	<93	<5.3D	<0.50
N-EtFOSA	<61	<6.1D	<0.58
N-EtFOSAA	<34	<5.6D	<0.83
N-EtFOSE	<43	<5D	<0.90
N-MeFOSA	<56	<5.1D	<0.56
N-MeFOSAA	<42	<4.4D	<0.70
N-MeFOSE	<58	<3.3D	<0.53
PFBA	820	650D	289D
PFDS	<35	<4.5D	<0.65
PFDoS	<47	<4.6D	<0.6
PFHpS	<22	<4.1D	<0.68
PFNS	<32	<4.5D	<0.59
PFOSA	<27	<8.2D	<0.73
PFPeA	6,600	5,700D	3,090D
PFPeS	<27	<4.8D	<0.61
PFBS	27J	38D	18.7
PFDA	<24	<5.7D	<0.62
PFDoA	<21	<4.9D	<0.49
PFHpA	1,000	760D	355D
PFHxS	<25	<5.1D	0.9J
PFHxA	3,800	3,400D	1,560D
PFNA	<21	<7.4D	<0.8
PFOS	<90	<5.5D	1.7J
PFOA	<37	8.7J,D	8.4
PFTeDA	<27	<4.8D	<0.61
PFTrDA	<24	<6.2D	<0.63
PFUnA	<28	<5.4D	<0.49

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

	Lettering and the second se
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well	Ionitoring Well MW-7		
Lab	Pace Analytical		
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<3.2	<0.43	<1.2
4:2 FTSA	<4.2	1.1J	<1
6:2 FTSA	750	550D	1,110D
8:2 FTSA	<7.7	<0.65	<1.1
9CI-PF3ONS	<2.3	<0.3	<1
ADONA	<2.3	<0.51	<2
GenX (HFPO-DA)	<9.9	<0.53	<1.1
N-EtFOSA	<6.5	<0.60	<1.2
N-EtFOSAA	<3.6	<0.55	<1.7
N-EtFOSE	<4.6	<0.49	<1.9
N-MeFOSA	<6	<0.51	<1.2
N-MeFOSAA	<4.5	<0.43	<1.5
N-MeFOSE	<6.2	<0.33	<1.1
PFBA	210	160	226
PFDS	<3.7	<0.45	<1.4
PFDoS	<5	<0.46	<1.3
PFHpS	<2.4	<0.41	<1.4
PFNS	<3.4	<0.44	<1.3
PFOSA	<2.9	<0.81	<1.5
PFPeA	1,500	860D	1,250D
PFPeS	<2.8	<0.47	<1.3
PFBS	8.3J	10	10
PFDA	<2.5	<0.56	<1.3
PFDoA	<2.3	<0.48	<1
PFHpA	190	130	159
PFHxS	<2.6	0.57J	<1.1
PFHxA	860	600D	706D
PFNA	2.9J	1.7J	2.7J
PFOS	<9.6	3.8	4.9
PFOA	5.4J	4.6	6
PFTeDA	<2.9	<0.47	<1.3
PFTrDA	<2.5	<0.62	<1.3
PFUnA	<3	<0.54	<1

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane	e-1-sulfonic acid (C10) PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-	I-sulfonic acid (C8) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic A	cid (C12) PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12) PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic	c Acid (C11) PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethar	nol (C11) PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well		MW-8	
Lab	Pace Analytical		
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<120	<4.4D	<0.56
4:2 FTSA	<160	13 J,D	9.5
6:2 FTSA	34,000	3,600D	5,040D
8:2 FTSA	<300	<6.6D	<0.51
9CI-PF3ONS	<90	<3.1D	<0.48
ADONA	<90	<5.2D	<0.93
GenX (HFPO-DA)	<390	<5.3D	<0.50
N-EtFOSA	<250	<6.1D	<0.58
N-EtFOSAA	<140	<5.6D	<0.83
N-EtFOSE	<180	<5D	<0.90
N-MeFOSA	<230	<5.2D	<0.56
N-MeFOSAA	<170	<4.4D	<0.70
N-MeFOSE	<240	<3.3D	<0.53
PFBA	2,300	2,800D	1,820D
PFDS	<140	<4.5D	<0.65
PFDoS	<190	<4.6D	<0.60
PFHpS	<93	<4.1D	<0.68
PFNS	<130	<4.5D	<0.59
PFOSA	<110	<8.3D	<0.73
PFPeA	19,000	17,000D	15,500D
PFPeS	<110	<4.8D	0.7J
PFBS	<77	24D	5.9
PFDA	<98	<5.7D	<0.62
PFDoA	<88	<4.9D	<0.49
PFHpA	2,100	3,400D	2,340D
PFHxS	<100	11 J,D	8.7
PFHxA	7,000	8,600D	5,500D
PFNA	<86	<7.5D	7.1
PFOS	<370	<5.5D	5.4
PFOA	<150	24D	29.1
PFTeDA	<110	<4.8D	<0.61
PFTrDA	<98	<6.3D	<0.63
PFUnA	<120	<5.5D	<0.49

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ATALLE AGROUTIN (GAG) TOLE TANKE (G	TRATE LENGTHY
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well	Monitoring Well MW-9		
Lab			
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<12	<4.4D	<1.2
4:2 FTSA	<15	220D	147
6:2 FTSA	6,100	3,300D	14,700D
8:2 FTSA	<28	<6.5D	<1.1
9CI-PF3ONS	<8.5	<3D	<0.99
ADONA	<8.5	<5.1D	<1.9
GenX (HFPO-DA)	<37	<5.3D	<1
N-EtFOSA	<24	<6.1D	<1.2
N-EtFOSAA	<13	<5.5D	<1.7
N-EtFOSE	<17	<5D	<1.9
N-MeFOSA	<22	<5.1D	<1.2
N-MeFOSAA	<16	<4.3D	<1.5
N-MeFOSE	<23	<3.3D	<1.1
PFBA	590	1,300D	3,190D
PFDS	<14	<4.5D	<1.4
PFDoS	<18	<4.6D	<1.2
PFHpS	<8.8	<4.1D	<1.4
PFNS	<13	<4.5D	<1.2
PFOSA	<11	<8.2D	<1.5
PFPeA	5,700	6,800D	14,900D
PFPeS	<10	<4.7D	1.3J
PFBS	27J	42D	28
PFDA	<9.2	<5.6D	<1.3
PFDoA	<8.3	<4.8D	<1
PFHpA	760	880D	2,080D
PFHxS	<9.7	5.2 J,D	13.2
PFHxA	3,100	8,500D	26,700D
PFNA	<8.1	<7.4D	<1.7
PFOS	<35	<5.5D	5.7
PFOA	<15	15 J,D	31.5
PFTeDA	<11	<4.8D	<1.3
PFTrDA	<9.3	<6.2D	<1.3
PFUnA	<11	<5.4D	<1

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

	Lenotry
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well	onitoring Well MW-10		
Lab	Pace Analytical		
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<30	<4.4D	<0.56
4:2 FTSA	<40	15 J,D	5.2
6:2 FTSA	11,000	3,300D	2,310D
8:2 FTSA	<73	<6.6D	<0.51
9CI-PF3ONS	<22	<3.1D	<0.47
ADONA	<22	<5.2D	<0.93
GenX (HFPO-DA)	<95	<5.4D	<0.50
N-EtFOSA	<62	<6.2D	<0.58
N-EtFOSAA	<34	<5.6D	<0.82
N-EtFOSE	<43	<5D	<0.90
N-MeFOSA	<57	<5.2	<0.56
N-MeFOSAA	<43	<4.4D	<0.70
N-MeFOSE	<59	<3.3D	<0.53
PFBA	1,500	1,100D	1,010D
PFDS	<35	<4.6D	<0.65
PFDoS	<48	<4.7D	<0.60
PFHpS	<23	<4.2D	<0.67
PFNS	<32	<4.5D	<0.59
PFOSA	<28	<8.3D	<0.72
PFPeA	15,000	9,500D	10,900D
PFPeS	<27	<4.8D	<0.61
PFBS	44J	54D	28.7
PFDA	<24	<5.7D	<0.61
PFDoA	<22	<4.9D	<0.48
PFHpA	1,500	1,000D	907D
PFHxS	<25	<5.2D	0.82J
PFHxA	8,700	6,200D	5,630D
PFNA	<21	<7.5D	<0.80
PFOS	<91	<5.6D	<0.67
PFOA	<38	18 J,D	9.2
PFTeDA	<27	<4.8D	<0.60
PFTrDA	<24	<6.3D	<0.63
PFUnA	<29	<5.5D	<0.49

Notes:

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well	Ionitoring Well MW-11		
Lab	Pace Analytical		
Sampling Date	6/2/2021	7/12/2022	7/12/2022
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<30	<4.3D	<0.55
4:2 FTSA	<40	12D	7.8
6:2 FTSA	19,000	3,500D	2,730D
8:2 FTSA	<73	<6.4D	1.6J
9CI-PF3ONS	<22	<3D	<0.46
ADONA	<22	<5.1D	<0.90
GenX (HFPO-DA)	<95	<5.2D	<0.48
N-EtFOSA	<62	<6D	<0.56
N-EtFOSAA	<34	<5.5D	<0.80
N-EtFOSE	<43	<4.9D	<0.87
N-MeFOSA	<57	<5D	<0.54
N-MeFOSAA	<43	<4.3D	<0.68
N-MeFOSE	<59	<3.2D	<0.51
PFBA	1,200	930D	333D
PFDS	<35	<4.4D	<0.63
PFDoS	<48	<4.5D	<0.58
PFHpS	<23	<4.1D	<0.66
PFNS	<32	<4.4D	<0.58
PFOSA	<28	<8.1D	<0.70
PFPeA	9,500	7,700D	4,970D
PFPeS	<27	<4.7D	<0.59
PFBS	39J	46D	30.4
PFDA	<24	<5.6D	<0.6
PFDoA	<22	<4.8D	<0.47
PFHpA	910	730D	306D
PFHxS	<25	<5D	1J
PFHxA	5,800	4,200D	2,330D
PFNA	<21	<7.3	1.6J
PFOS	<91	<5.4D	1.1J
PFOA	<38	18 J,D	12.4
PFTeDA	<27	<4.7D	<0.59
PFTrDA	<24	<6.1D	<0.61
PFUnA	<29	<5.3D	<0.48

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALITE ACTONINI (CAS) I BLE NAME (C	LAIN LENGTH)
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well	MW-12				
Lab	Pace A	nalytical			
Sampling Date	7/12/2022	7/24/2023			
PERFLUOROALKYL & POL	PERFLUOROALKYL & POLYFLUOROALKYL SUBSTANCES (PFAS) (ng/L)				
11CI-PF3OUdS	<0.44	<1.2			
4:2 FTSA	<0.56	<0.98			
6:2 FTSA	<0.65	<1.4			
8:2 FTSA	<0.66	<1.1			
9CI-PF3ONS	<0.31	<0.99			
ADONA	<0.52	<1.9			
GenX (HFPO-DA)	<0.53	<1			
N-EtFOSA	<0.61	<1.2			
N-EtFOSAA	<0.56	<1.7			
N-EtFOSE	<0.5	<1.9			
N-MeFOSA	<0.51	<1.2			
N-MeFOSAA	<0.44	<1.5			
N-MeFOSE	<0.33	<1.1			
PFBA	140	87.3			
PFDS	<0.45	<1.4			
PFDoS	<0.46	<1.2			
PFHpS	<0.41	<1.4			
PFNS	<0.45	<1.2			
PFOSA	<0.82	<1.5			
PFPeA	21	12			
PFPeS	1.2J	<1.3			
PFBS	8.3	5.1			
PFDA	<0.57	<1.3			
PFDoA	<0.49	<1			
PFHpA	6.7	3.9J			
PFHxS	1.6J	<1.1			
PFHxA	17	11.6			
PFNA	<0.74	<1.7			
PFOS	<0.55	<1.4			
PFOA	5.5	4.1J			
PFTeDA	<0.48	<1.3			
PFTrDA	<0.63	<1.3			
PFUnA	<0.54	<1			

Notes:

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit **Bold** indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection

and laboratory limit of quantitation

D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALYTE ACRONYM (CAS) FULL NAME (CHAIN LENGTH)

ANALTTE ACCONTINI (CAO) TOLE NAME (CHAIN ELNOTTI)				
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)			
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)			
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)			
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)			
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)			
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)			
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)			
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)			
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)			
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)			
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)			
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)			
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)			
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)			
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)			
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)			
DELINE (275.02.9) Derfluerebentenseulfenie Asid (C7)				

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)

Monitoring Well	Monitoring Well MW-13	
Lab	Pace Ar	nalytical
Sampling Date	7/12/2022	7/24/2023
PERFLUOROALKYL & F	POLYFLUOROALKYL SUBSTANCES (PFAS) (ng/L)	
11CI-PF3OUdS	<0.43	<1.2
4:2 FTSA	<0.55	<0.97
6:2 FTSA	<0.64	<1.4
8:2 FTSA	<0.65	<1.1
9CI-PF3ONS	<0.3	<0.98
ADONA	<0.51	<1.9
GenX (HFPO-DA)	<0.52	<1
N-EtFOSA	<0.6	<1.2
N-EtFOSAA	<0.55	<1.7
N-EtFOSE	<0.49	<1.9
N-MeFOSA	<0.43	<1.2
N-MeFOSAA	<0.5	<1.5
N-MeFOSE	<0.32	<1.1
PFBA	61	50
PFDS	<0.44	<1.3
PFDoS	<0.45	<1.2
PFHpS	<0.41	<1.4
PFNS	<0.44	<1.2
PFOSA	<0.81	<1.5
PFPeA	9.9	6.6
PFPeS	<0.47	<1.3
PFBS	4.6B	3.1J
PFDA	<0.56	<1.3
PFDoA	<0.48	<1
PFHpA	1.7J	<1.4
PFHxS	0.53J	<1.1
PFHxA	7.6	5.8
PFNA	<0.73	<1.7
PFOS	<0.54	<1.4
PFOA	2J	<1.8
PFTeDA	<0.47	<1.3
PFTrDA	<0.61	<1.3
PFUnA	<0.53	<1

Notes:

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit **Bold** indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection

and laboratory limit of quantitation

D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALTTE ACRONTM (CAS) FOLL NAME (CHAIN LENGTH)		
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)	
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)	
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)	
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)	
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)	
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)	
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)	
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)	
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)	
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)	
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)	
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)	
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)	
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)	
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)	
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)	
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)		

Monitoring Well	MW-14			
Lab	Pace Analytical			
Sampling Date	7/12/2022	7/24/2023		
PERFLUOROALKYL & POLYFLUOROALKYL SUBSTANCES (PFAS) (ng/L)				
11CI-PF3OUdS	<0.44	<0.56		
4:2 FTSA	<0.56	<0.47		
6:2 FTSA	23	4.7		
8:2 FTSA	<0.66	<0.50		
9CI-PF3ONS	<0.31	<0.47		
ADONA	<0.52	<0.92		
GenX (HFPO-DA)	<0.53	<0.49		
N-EtFOSA	<0.61	<0.57		
N-EtFOSAA	<0.56	<0.82		
N-EtFOSE	<0.50	<0.89		
N-MeFOSA	<0.52	<0.55		
N-MeFOSAA	<0.44	<0.69		
N-MeFOSE	<0.33	<0.52		
PFBA	35	17.5		
PFDS	<0.45	<0.64		
PFDoS	<0.46	<0.59		
PFHpS	<0.41	<0.67		
PFNS	<0.45	<0.59		
PFOSA	<0.82	<0.72		
PFPeA	63	25.2		
PFPeS	0.79J	<0.60		
PFBS	5.0B	1.9		
PFDA	<0.57	<0.61		
PFDoA	<0.49	<0.48		
PFHpA	15	4.3		
PFHxS	11	4.3		
PFHxA	40	17.4		
PFNA	1.3J	<0.79		
PFOS	14	3.6		
PFOA	14	4.8		
PFTeDA	<0.48	<0.60		
PFTrDA	<0.63	<0.62		
PFUnA	<0.54	<0.49		

Notes:

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit **Bold** indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection

and laboratory limit of quantitation

D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALYTE ACRONYM (CAS) FULL NAME (CHAIN LENGTH)

ANALTTE ACCONTMICCAS) FOLL NAME (CHAIN LENGTH)			
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)		
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)		
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)		
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)		
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)		
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)		
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)		
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)		
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)		
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)		
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)		
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)		
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)		
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)		
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)		
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)		
DELLO (OZE 00.0) Destuces haster and Kenia Asid (OZ)			

PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)

Monitoring Well	Ν	/W-15
Lab	Pace	Analytical
Sampling Date	7/12/2022	7/24/2023
PERFLUOROALKYL & POLYFLU	OROALKYL SUBSTANCES (PFAS) (ng/L)	
11CI-PF3OUdS	<0.43	<0.56
4:2 FTSA	<0.55	<0.47
6:2 FTSA	57	45.7
8:2 FTSA	<0.65	<0.51
9CI-PF3ONS	<0.3	<0.48
ADONA	<0.51	<0.93
GenX (HFPO-DA)	<0.52	<0.50
N-EtFOSA	<0.6	<0.58
N-EtFOSAA	<0.55	<0.83
N-EtFOSE	<0.49	<0.90
N-MeFOSA	<0.51	<0.56
N-MeFOSAA	<0.43	<0.70
N-MeFOSE	<0.33	<0.53
PFBA	94	52.3
PFDS	<0.45	<0.65
PFDoS	<0.46	<0.60
PFHpS	<0.41	<0.68
PFNS	<0.44	<0.60
PFOSA	<0.81	<0.73
PFPeA	180	190
PFPeS	1.2J	<0.61
PFBS	5.2B	3.3
PFDA	<0.56	<0.62
PFDoA	<0.48	<0.49
PFHpA	18	19
PFHxS	3.9	0.89J
PFHxA	110	105
PFNA	<0.73	<0.81
PFOS	<0.54	<0.68
PFOA	3.3	1.1J
PFTeDA	<0.47	<0.61
PFTrDA	<0.62	<0.63
PFUnA	<0.54	<0.49

Notes:

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection

and laboratory limit of quantitation

D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALYTE ACRONYM (CAS) FULL NAME (CHAIN LENGTH)

ANALITE ACTONINI (CAO) I DEL NAME (C	HAIN EENOTH)
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
DELLO (OZE 00.0) Derfluersheeteneeu/fanie Asid (OZ)	

Monitoring Well	N	IW-16
Lab	Pace	Analytical
Sampling Date	7/12/2022	7/24/2023
PERFLUOROALKYL & POLYFLU	OROALKYL SUBSTANCES (PFAS) (ng/L)	
11CI-PF3OUdS	<0.46	<0.55
4:2 FTSA	1.2J	0.66J
6:2 FTSA	310D	224D
8:2 FTSA	<0.69	<0.50
9CI-PF3ONS	<0.32	<0.47
ADONA	<0.54	<0.91
GenX (HFPO-DA)	<0.56	<0.49
N-EtFOSA	<0.64	<0.57
N-EtFOSAA	<0.58	<0.81
N-EtFOSE	<0.52	<0.88
N-MeFOSA	<0.54	<0.55
N-MeFOSAA	<0.46	<0.69
N-MeFOSE	<0.35	<0.52
PFBA	120	150
PFDS	<0.47	<0.64
PFDoS	<0.48	<0.59
PFHpS	<0.43	<0.66
PFNS	<0.47	<0.58
PFOSA	<0.86	<0.71
PFPeA	500D	633D
PFPeS	<0.50	<0.6
PFBS	6.6B	5.5
PFDA	<0.59	<0.60
PFDoA	<0.51	<0.48
PFHpA	80	64.5
PFHxS	0.59J	<0.53
PFHxA	290D	353D
PFNA	1.2J	<0.79
PFOS	1.4J	0.79J
PFOA	5.6	2.6
PFTeDA	<0.66	<0.60
PFTrDA	<0.50	<0.62
PFUnA	<0.57	<0.48

Notes:

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit **Bold** indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection

and laboratory limit of quantitation

D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALYTE ACRONYM (CAS) FULL NAME (CHAIN LENGTH)

ANALTTE ACKONTM (CAS) FOLL NAME (C	HAIN LENGTH)
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

Monitoring Well	MV	V-17
Lab Pace Analytical		nalytical
Sampling Date	7/12/2022	7/24/2023
PERFLUOROALKYL & PO	LYFLUOROALKYL SUBSTANCES (PFAS) (ng/L)	
11CI-PF3OUdS	<0.43	<1.2
4:2 FTSA	<0.55	<0.97
6:2 FTSA	<0.64	<1.4
8:2 FTSA	<0.65	<1
9CI-PF3ONS	<0.3	<0.98
ADONA	<0.51	<1.9
GenX (HFPO-DA)	<0.52	<1
N-EtFOSA	<0.60	<1.2
N-EtFOSAA	<0.55	<1.7
N-EtFOSE	<0.49	<1.8
N-MeFOSA	<0.51	<1.1
N-MeFOSAA	<0.43	<1.4
N-MeFOSE	<0.33	<1.1
PFBA	11	14.7
PFDS	<0.45	<1.3
PFDoS	<0.46	<1.2
PFHpS	<0.41	<1.4
PFNS	<0.44	<1.2
PFOSA	<0.81	<1.5
PFPeA	0.82J	<1.7
PFPeS	<0.47	<1.2
PFBS	1.8B	1.4J
PFDA	<0.56	<1.3
PFDoA	<0.48	<1
PFHpA	<0.55	<1.4
PFHxS	<0.5	<1.1
PFHxA	0.6J	<1.9
PFNA	<0.73	<1.6
PFOS	<0.54	<1.4
PFOA	0.68J	<1.8
PFTeDA	<0.47	<1.2
PFTrDA	<0.62	<1.3
PFUnA	<0.54	<1

Notes:

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit **Bold** indicates laboratory detections

B=Analyte detected in the field blank

 $\ensuremath{\mathsf{F}}\xspace/\ensuremath{\mathsf{J}}\xspace$ = result is between laboratory limit of detection

and laboratory limit of quantitation

D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALYTE ACRONYM (CAS) FULL NAME (CHAIN LENGTH)

	The second sec
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

Monitoring Well	MW-18	MW-19	MW-20
Lab	Lab Pace Analytical		
Sampling Date			
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<0.52	<0.56	<0.57
4:2 FTSA	12	9.2	97.5
6:2 FTSA	2,730	2,190	3,510
8:2 FTSA	<0.48	<0.5	<0.51
9CI-PF3ONS	<0.44	<0.47	<0.48
ADONA	<0.87	<0.92	<0.93
GenX (HFPO-DA)	<0.46	<0.49	<0.50
N-EtFOSA	<0.54	<0.57	<0.58
N-EtFOSAA	<0.77	<0.82	<0.83
N-EtFOSE	<0.84	<0.89	<0.90
N-MeFOSA	<0.52	<0.55	<0.56
N-MeFOSAA	<0.65	<0.69	<0.71
N-MeFOSE	<0.49	<0.52	<0.53
PFBA	996	1,130	2,030
PFDS	<0.6	<0.64	<0.65
PFDoS	<0.56	<0.59	<0.60
PFHpS	<0.63	<0.67	<0.68
PFNS	<0.55	<0.59	<0.60
PFOSA	<0.68	<0.72	<0.73
PFPeA	5,450	6,050	7,330
PFPeS	<0.57	<0.6	<0.61
PFBS	7.4	43.1	31.9
PFDA	<0.57	<0.61	<0.62
PFDoA	<0.45	<0.48	<0.49
PFHpA	527	293	343
PFHxS	0.72J	0.75J	82.9
PFHxA	1,740	2,110	2,830
PFNA	<0.75	<0.79	<0.81
PFOS	<0.63	<0.67	94.5
PFOA	2.7	3.4	11
PFTeDA	<0.57	<0.60	<0.61
PFTrDA	<0.59	<0.62	<0.63
PFUnA	<0.46	<0.49	<0.49

Notes:

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALYTE ACRONYM (CAS) FULL NAME (CHAIN LENGTH)

ANALTTE ACRONTIN (CAS) FOLL NAME (C	HAIN LENGTH)
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

Monitoring Well	pnitoring Well PZ-1		
Lab	Pace Analytical		
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POL	YFLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<0.88	<0.49	<2.9
4:2 FTSA	<1.2	<0.62	<2.5
6:2 FTSA	36	11	7.1J
8:2 FTSA	<2.1	<0.73	<2.7
9CI-PF3ONS	<0.64	<0.34	<2.5
ADONA	<0.64	<0.57	<4.8
GenX (HFPO-DA)	<2.8	<0.59	<2.6
N-EtFOSA	<1.8	<0.68	<3
N-EtFOSAA	<1	<0.62	<4.3
N-EtFOSE	<1.3	<0.55	<4.7
N-MeFOSA	<1.7	<0.57	<2.9
N-MeFOSAA	<1.2	<0.48	<3.7
N-MeFOSE	<1.7	<0.37	<2.7
PFBA	<0.8	<0.49	<2.6
PFDS	<1	<0.5	<3.4
PFDoS	<1.4	<0.51	<3.1
PFHpS	<0.66	<0.46	<3.5
PFNS	<0.95	<0.5	<3.1
PFOSA	<0.82	<0.91	<3.8
PFPeA	<0.72	0.49J	<4.3
PFPeS	<0.79	<0.53	<3.2
PFBS	<0.55	<0.53	<2.6
PFDA	<0.7	<0.63	<3.2
PFDoA	<0.63	<0.54	<2.5
PFHpA	<0.59	<0.61	<3.6
PFHxS	<0.73	<0.57	<2.8
PFHxA	1.2J	0.72J	<4.8
PFNA	<0.61	<0.82	<4.2
PFOS	<2.7	0.73J	<3.5
PFOA	<1.1	<0.65	<4.5
PFTeDA	<0.8	<0.53	<3.2
PFTrDA	<0.7	<0.69	<3.3
PFUnA	<0.83	<0.60	<2.6

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALYTE ACRONYM (CAS) FULL NAME (CHAIN LENGTH)

	TAIN LENGTH)
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Monitoring Well	F	PZ-2
Lab	Lab Pace Analytical	
Sampling Date	7/12/2022	7/24/2023
PERFLUOROALKYL & POLYFL	.UOROALKYL SUBSTANCES (PFAS) (ng/L)	
11CI-PF3OUdS	<0.47	<1.2
4:2 FTSA	<0.60	<1
6:2 FTSA	<0.69	<1.5
8:2 FTSA	<0.70	<1.1
9CI-PF3ONS	<0.33	<1
ADONA	<0.55	<2
GenX (HFPO-DA)	<0.56	<1.1
N-EtFOSA	<0.65	<1.3
N-EtFOSAA	<0.59	<1.8
N-EtFOSE	<0.53	<2
N-MeFOSA	<0.55	<1.2
N-MeFOSAA	<0.46	<1.5
N-MeFOSE	<0.35	<1.1
PFBA	0.60J	<1.1
PFDS	<0.48	<1.4
PFDoS	<0.49	<1.3
PFHpS	<0.44	<1.5
PFNS	<0.48	<1.3
PFOSA	<0.87	<1.6
PFPeA	<0.47	<1.8
PFPeS	<0.51	<1.3
PFBS	<0.50	<1.1
PFDA	<0.60	<1.3
PFDoA	<0.52	<1.1
PFHpA	<0.59	<1.5
PFHxS	<0.54	<1.2
PFHxA	<0.47	<2
PFNA	<0.79	<1.7
PFOS	<0.58	<1.5
PFOA	<0.62	<1.9
PFTeDA	<0.51	<1.3
PFTrDA	<0.66	<1.4
PFUnA	<0.58	<1.1

Notes:

ng/L = nanograms per liter (parts per trillion) < = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALYTE ACRONYM (CAS) FULL NAME (CHAIN LENGTH)

ANALTTE ACRONTIN (CAS) FOLL NAME (C	HAIN LENGTH)
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

Monitoring Well		SUMP	
Lab		Pace Analytical	
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<31	<0.42	<0.55
4:2 FTSA	<41	<0.53	1.9
6:2 FTSA	9,000	270D	3,420D
8:2 FTSA	<75	1.6J	9.2
9CI-PF3ONS	<22	<0.29	<0.46
ADONA	<23	<0.49	<0.90
GenX (HFPO-DA)	<97	<0.5	<0.48
N-EtFOSA	<63	<0.58	<0.56
N-EtFOSAA	<35	<0.53	<0.80
N-EtFOSE	<44	<0.47	<0.87
N-MeFOSA	<59	<0.49	<0.54
N-MeFOSAA	<43	<0.41	<0.68
N-MeFOSE	<60	<0.31	<0.51
PFBA	910	33	261D
PFDS	<36	<0.43	<0.63
PFDoS	<49	<0.44	<0.58
PFHpS	<23	<0.39	<0.66
PFNS	<33	<0.42	<0.58
PFOSA	<29	<0.78	<0.70
PFPeA	5,900	110	1,740D
PFPeS	<28	<0.45	<0.59
PFBS	<19	1.3J	0.89J
PFDA	<24	1J	0.80J
PFDoA	<22	<0.46	<0.47
PFHpA	980	27	263D
PFHxS	<26	<0.48	<0.52
PFHxA	4,200	73	1,090D
PFNA	<22	1.3J	2.7
PFOS	<93	0.71J	0.99J
PFOA	53J	1.3J	9.7
PFTeDA	<28	<0.45	<0.59
PFTrDA	<25	<0.59	<0.61
PFUnA	<29	<0.51	<0.48

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation

D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALYTE ACRONYM (CAS) FULL NAME (CHAIN LENGTH)

11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	P
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	P
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	P
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	P
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	P
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	Ρ
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	P
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	P
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	P
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	Ρ
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	Ρ
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	Ρ
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	Ρ
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	P
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	P
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	P
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9) PFOSA (754-91-6) Perfluorooctainesulfonamide (C8) PFPeA (2706-90-3) Perfluoropentanoic Acid (C5) PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5) PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4) PFDA (335-76-2) Perfluorodecanoic Acid (C10) PFDoA (307-55-1) Perfluorododecanoic Acid (C12) PFHpA (375-85-9) Perfluoroheptanoic Acid (C7) PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6) PFHxA (307-24-4) Perfluorohexanoic Acid (C6) PFNA (375-95-1) Perfluorononanoic Acid (C9) PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8) PFOA (355-67-1) Perfluoroctanoic Acid (C8) PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14) PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13) PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)

Monitoring Well		POND	
Lab		Pace Analytical	
Sampling Date	6/2/2021	7/12/2022	7/24/2023
PERFLUOROALKYL & POLY	FLUOROALKYL SUBSTANCES	(PFAS) (ng/L)	
11CI-PF3OUdS	<2.9	<0.43	<5.5D
4:2 FTSA	<3.9	99	<4.6D
6:2 FTSA	470	4,200D	388D
8:2 FTSA	<7.1	<0.64	<5D
9CI-PF3ONS	<2.1	<0.3	<4.6D
ADONA	<2.1	<0.5	<9D
GenX (HFPO-DA)	<9.2	0.64J	<4.9D
N-EtFOSA	<6	<0.59	<5.6D
N-EtFOSAA	<3.3	<0.54	<8D
N-EtFOSE	<4.2	<0.48	<8.7D
N-MeFOSA	<5.6	<0.5	<5.4D
N-MeFOSAA	<4.1	<0.42	<6.8D
N-MeFOSE	<5.7	<0.32	<5.1D
PFBA	180	5,600D	160D
PFDS	<3.4	<0.44	<6.3D
PFDoS	<4.6	<0.45	<5.8D
PFHpS	<2.2	<0.4	<6.6D
PFNS	<3.1	<0.44	<5.8D
PFOSA	<2.7	<0.8	<7.1D
PFPeA	980	35,000D	674D
PFPeS	<2.6	<0.46	<5.9D
PFBS	12J	14	8.7J,D
PFDA	<2.3	<0.55	<6D
PFDoA	<2.1	<0.47	<4.7D
PFHpA	190	2,600D	132D
PFHxS	<2.4	4	<5.2D
PFHxA	640	17,000 I,D	361D
PFNA	<2	1.6J	<7.8D
PFOS	<8.8	1.9	<6.6D
PFOA	4.7J	83	<8.5D
PFTeDA	<2.6	<0.46	<5.9D
PFTrDA	<2.3	<0.61	<6.1D
PFUnA	<2.8	<0.53	<4.8D

Notes:

ng/L = nanograms per liter (parts per trillion)

< = compound below laboratory detection limit

Bold indicates laboratory detections

B=Analyte detected in the field blank

F/J = result is between laboratory limit of detection and laboratory limit of quantitation D = dilution of sample aliquot ES= NR 140 Enforcement Standard PAL = NR 140 Preventive Action Limit NE = NR 140 ES/PAL Not Established

ANALYTE ACRONYM (CAS) FULL NAME (CHAIN LENGTH)

	Letterny
11CI-PF3OUdS (763051-92-9) 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)	PFNS (68259-12-1) Perfluorononanesulfonic Acid (C9)
4:2 FTSA (757124-72-4) 4:2 fluorotelomer sulfonate (C6)	PFOSA (754-91-6) Perfluorooctainesulfonamide (C8)
6:2 FTSA (27619-97-2) 6:2 fluorotelomer sulfonate (C8)	PFPeA (2706-90-3) Perfluoropentanoic Acid (C5)
8:2 FTSA (39108-34-4) 8:2 fluorotelomer sulfonate (C10)	PFPeS (2706-91-4) Perfluoropentanesulfonic Acid (C5)
9CI-PF3ONS (756426-58-1) 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8)	PFBS (375-73-5) Perfluorobutanesulfonic Acid (C4)
ADONA (919005-14-4) 4,8-Dioxa-3H-perfluorononanoic acid (C7)	PFDA (335-76-2) Perfluorodecanoic Acid (C10)
GenX (13252-13-6) Hexafluoropropylene oxide dimer acid (C6)	PFDoA (307-55-1) Perfluorododecanoic Acid (C12)
N-EtFOSA (4151-50-2) N-ethylperfluorooctanesulfonamide (C10)	PFHpA (375-85-9) Perfluoroheptanoic Acid (C7)
N-EtFOSAA (2991-50-6) N-ethylperfluorooctanesulfonamidoacetic Acid (C12)	PFHxS (355-46-4) Perfluorohexanesulfonic Acid (C6)
N-EtFOSE (1691-99-2) N-ethylperfluorooctanesulfonamidoethanol (C12)	PFHxA (307-24-4) Perfluorohexanoic Acid (C6)
N-MeFOSA (31506-32-8) N-methylperfluorooctanesulfonamide (C9)	PFNA (375-95-1) Perfluorononanoic Acid (C9)
N-MeFOSAA (2355-31-9) N-methyperfluorooctanesulfonamidoacetic Acid (C11)	PFOS (1963-23-1) Perfluoroctanesulfonic Acid (C8)
N-MeFOSE (24448-09-7) N-methylperfluorooctanesulfonamidoethanol (C11)	PFOA (355-67-1) Perfluoroctanoic Acid (C8)
PFBA (375-22-4) Perfluoroburanoic Acid (C4)	PFTeDA (376-06-7) Perfluorotetradecanoic Acid (C14)
PFDS (335-77-3) Perfluorodecanesulfonic Acid (C10)	PFTrDA (72629-94-8) Perfluorotridecanoic Acid (C13)
PFDoS (79780-39-5) Perfluorododecanesulfonic Acid (C12)	PFUnA (2058-94-8) Perfluoroundecanoic Acid (C11)
PFHpS (375-92-8) Perfluoroheptanesulfonic Acid (C7)	

Boring			B-4	B-5	B-6	B-7	B-8	B-9	B-10	B-11	B-12
Depth	Industrial Direct	Non-Industrial Direct	1-1.5 (U/S)	0.5-1 (U)	2.5-3 (S)	0.5-1 (U/S)	0.5-1 (U)	0.25-1 (U)	0.5-1 (U)	0.5 - 1 (U)	2-2.5 (U/S)
Sampling Date	Contact RCL	Contact RCL	5/26/2021	5/25/2021	5/25/2021	5/25/2021	5/26/2021	5/26/2021	5/26/2021	5/26/2021	5/26/2021
PERFLUOROALK			UBSTANCES (PFAS) (ng/g U							
PFPeA	NE	NE	< 0.366	1.13	0.312F	3.82	6.53	3.29	2.66	15.2	1.96
PFBS	16,400,000	1,260,000	<0.288	< 0.263	< 0.236	<0.285	<0.265	<0.279	<0.295	< 0.363	<0.299
4:2 FTSA	NE	NE	< 0.266	< 0.243	<0.217	<0.263	<0.244	<0.257	<0.273	< 0.335	<0.276
PFHxA	NE	NE	< 0.363	1.15	<0.296	2.28	3.3	3.8	3.29	9.19	3.97
PFPeS	NE	NE	< 0.311	< 0.284	<0.254	< 0.307	<0.285	< 0.300	<0.318	< 0.392	< 0.322
PFHpA	NE	NE	< 0.343	0.565F	<0.280	0.639F	1.25	1.85	2.59	9.34	1.23
HFPO-DA (GenX)	NE	NE	<0.267	<0.244	<0.218	<0.264	<0.245	<0.258	<0.274	< 0.337	<0.277
PFHxS	NE	NE	< 0.346	< 0.316	<0.282	<0.341	<0.318	< 0.334	< 0.354	< 0.436	< 0.359
DONA	NE	NE	< 0.320	< 0.293	<0.262	< 0.316	<0.294	< 0.310	<0.328	<0.404	< 0.332
6:2 FTSA	NE	NE	< 0.336	0.543F	0.766F	2.01	33.8	< 0.325	0.654F	1.35	63.8
PFOA	16,400	1,260	< 0.339	< 0.310	<0.277	< 0.335	< 0.312	< 0.328	< 0.348	<0.428	< 0.352
PFHpS	NE	NE	< 0.368	< 0.336	<0.3	< 0.363	< 0.338	< 0.356	< 0.377	<0.464	< 0.382
PFOS	16,400	1,260	< 0.363	< 0.331	< 0.296	< 0.358	< 0.333	0.446F	< 0.371	<0.457	< 0.376
PFNA	NE	NE	< 0.308	<0.281	<0.251	< 0.303	<0.282	<0.297	< 0.315	< 0.388	<0.376 <0.319
9CI-PF3ONS	NE	NE	< 0.343	< 0.313	<0.280	< 0.338	< 0.315	< 0.331	< 0.351	< 0.432	< 0.355
8:2 FTSA	NE	NE	<0.421	< 0.385	< 0.344	<0.415	<0.387	<0.407	<0.431	<0.530	<0.437
PFDA	NE	NE	< 0.346	< 0.316	<0.282	<0.341	<0.318	< 0.334	< 0.354	<0.436	< 0.359
PFNS	NE	NE	< 0.306	<0.280	<0.250	< 0.302	<0.281	<0.296	< 0.314	< 0.386	<0.318
N-MeFOSAA	NE	NE	<0.481	<0.440	< 0.393	<0.475	<0.442	<0.466	<0.493	<0.607	<0.499
N-EtFOSAA	NE	NE	< 0.303	<0.277	<0.248	<0.299	<0.279	<0.293	< 0.311	< 0.382	< 0.315
FOSA	NE	NE	<0.347	< 0.317	<0.283	< 0.342	< 0.319	< 0.335	< 0.355	<0.437	< 0.360
PFUnA	NE	NE	<0.289	<0.264	< 0.236	<0.286	<0.266	<0.280	<0.297	< 0.365	< 0.300
PFDS	NE	NE	< 0.308	<0.281	<0.251	< 0.303	<0.282	<0.297	< 0.315	<0.388	< 0.319
11CI-PF3OUdS	NE	NE	< 0.328	<0.299	<0.268	< 0.323	< 0.301	<0.317	< 0.336	<0.413	< 0.340
PFDoA	NE	NE	<0.405	< 0.370	< 0.331	<0.400	< 0.372	< 0.392	<0.415	<0.510	<0.420
10:2 FTSA	NE	NE	NR	NR	NR	NR	NR	NR	NR	NR	NR
PFDoS	NE	NE	<0.387	< 0.354	<0.316	<0.382	< 0.356	<0.374	< 0.396	<0.488	<0.402
PFTrDA	NE	NE	< 0.365	< 0.333	<0.298	<0.360	< 0.335	<0.353	<0.374	<0.460	<0.378
N-MeFOSA	NE	NE	<0.394	< 0.360	< 0.322	<0.389	< 0.362	<0.382	<0.404	<0.497	<0.409
N-MeFOSE	NE	NE	<0.468	<0.427	<0.382	<0.461	<0.430	<0.452	<0.479	<0.589	<0.485
N-EtFOSA	NE	NE	<0.252	<0.231	<0.206	<0.249	<0.232	<0.244	<0.259	<0.318	<0.262
N-EtFOSE	NE			<0.308	< 0.372	< 0.347	<0.365	<0.387	<0.476	< 0.392	
PFTeDA	NE	NE <0.367 <0.335 <0		<0.300	<0.362 <0.337 <0.355		<0.355	<0.376	<0.476	<0.381	
PFHxDA	NE NE NR		NR	NR			NR	NR	NR	NR	
PFODA	NE	NE	NR	NR	NR	NR	NR	NR	NR	NR	NR
PFBA	NE	NE	<0.616	< 0.563	< 0.503	<0.608	0.929F	< 0.596	<0.631	3.30F	< 0.639

NE - Standard Not Established NR-Not Reported

ng/g - parts per billion U=Unsaturated S=Saturated

< = compound below laboratory detection limit Bold indicates laboratory detections PFOA = Perfluoroctanoic Acid (C8) PFOS = Perfluoroctanesulfonic Acid (C8) PFBS = Perfluorobutanesulfonic Acid (C4) PFHpA = Perfluoroheptanoic Acid (C7) PFHxS = Perfluorohexanesulfonic Acid (C6) PFNA = Perfluorononanoic Acid (C9) PFDA = Perfluorodecanoic Acid (C10) PFDoA = Perfluorododecanoic Acid (C12) PFHxA: Perfluorohexanoic Acid (C6) PFTeDA = Perfluorotetradecanoic Acid (C14) PFTrDA = Perfluorotridecanoic Acid (C13) PFUnA = Perfluoroundecanoic Acid (C11) NEtFOSAA = N-ethylperfluorooctanesulfonamidoacetic Acid (C12) NMeFOSAA = N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA = Perfluoroburanoic Acid (C4) PFPeA = Perfluoropentanoic Acid (C5) PFHxDA = Perfluoro-n-hexadecanoic Acid (C16) PFODA = Perfluoro-n-octadecanoic Acid (C18) PFPeS = Perfluoropentanesulfonic Acid (C5) PFHpS = Perfluoroheptanesulfonic Acid (C7) PFNS = Perfluorononanesulfonic Acid (C9) PFDS = Perfluorodecanesulfonic Acid (C10) PFDoS = Perfluorododecanesulfonic Acid (C12) FOSA = Perfluorooctainesulfonamide (C8) NEtFOSA = N-ethylperfluorooctanesulfonamide (C10) NMeFOSA = N-methylperfluorooctanesulfonamide (C9) NMeFOSE = N-methylperfluorooctanesulfonamidoethanol (C11) NEtFOSE = N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA = 4:2 fluorotelomer sulfonate (C6) 6:2 FTSA = 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA = 8:2 fluorotelomer sulfonate (C10) 10:2 FTSA = 10:2 fluorotelomer sulfonate (C12) DONA = 4,8-Dioxa-3H-perfluorononanoic acid (C7) HFPO-DA (GenX) = Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS = 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8) 11CI-PF3OUdS = 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)

F=Result Is Between Limit of Detection and Limit of Quantitation Soil Samples Collected by General Engineering Company

Boring			B-13	B-14	B-17	B-18	B-19	B-20	B-21	B-22
Depth (Feet)	Industrial	Non-Industrial Direct Contact	1 (U)	0.5 (U)	1 (U)	0.5 (U)	0.5 (U)	0.5-1 (U)	0.5-1 (U)	1-2 (U)
Sampling Date	RCL	RCL	7/11/2022	7/11/2022	7/11/2022	7/11/2022	7/11/2022	11/14/2023	11/14/2023	11/14/2023
PERFLUOROALK	YL & POLYFL	UOROALKYL S	SUBSTANCES	(PFAS) (ng/g U	JNITS)					
PFPeA	NE	NE	<0.368	<0.405	< 0.325	<0.402	< 0.361	3.2	0.68	1.4
PFBS	16,400,000	1,260,000	<0.290	< 0.319	<0.256	< 0.317	<0.285	0.071J	< 0.029	< 0.031
4:2 FTSA	NE	NE	<0.268	< 0.294	< 0.236	<0.292	< 0.263	< 0.026	< 0.025	<0.027
PFHxA	NE	NE	< 0.365	<0.401	< 0.322	< 0.398	< 0.358	3.3	0.47	1.1
PFPeS	NE	NE	<0.313	< 0.344	<0.276	< 0.341	< 0.307	< 0.027	< 0.026	<0.028
PFHpA	NE	NE	< 0.345	< 0.379	< 0.304	< 0.376	< 0.338	4.2	0.3	0.84
HFPO-DA (GenX)	NE	NE	< 0.269	<0.295	<0.237	<0.294	<0.264	< 0.031	< 0.030	< 0.032
PFHxS	NE	NE	< 0.348	< 0.382	< 0.307	< 0.380	< 0.341	< 0.025	< 0.024	< 0.026
DONA	NE	NE	< 0.322	< 0.354	<0.284	< 0.352	< 0.316	<0.041	<0.040	< 0.042
6:2 FTSA	NE	NE	< 0.338	< 0.372	<0.298	< 0.369	< 0.332	3.4	< 0.045	< 0.048
PFOA	16,400	1,260	< 0.341	< 0.375	< 0.301	< 0.373	< 0.335	0.081J	< 0.034	< 0.036
PFHpS	NE	NE	< 0.370	<0.407	< 0.327	< 0.404	< 0.363	< 0.031	< 0.030	< 0.032
PFOS	16,400	1,260	< 0.365	<0.401	< 0.322	< 0.398	< 0.358	0.091J	0.044J	0.13
PFNA	NE	NE	< 0.309	< 0.340	<0.273	< 0.338	< 0.304	0.052J	< 0.034	< 0.036
9CI-PF3ONS	NE	NE	< 0.345	< 0.379	< 0.304	< 0.376	< 0.338	< 0.028	< 0.027	< 0.029
8:2 FTSA	NE	NE	< 0.424	<0.466	< 0.374	< 0.463	< 0.416	< 0.050	<0.048	< 0.051
PFDA	NE	NE	< 0.348	< 0.382	< 0.307	< 0.380	< 0.341	< 0.026	< 0.025	< 0.027
PFNS	NE	NE	< 0.308	< 0.339	<0.272	< 0.337	< 0.303	< 0.039	< 0.038	< 0.040
N-MeFOSAA	NE	NE	<0.484	<0.532	<0.427	<0.529	<0.475	< 0.032	< 0.031	< 0.033
N-EtFOSAA	NE	NE	< 0.305	< 0.335	< 0.269	< 0.333	<0.299	< 0.045	< 0.044	< 0.047
FOSA	NE	NE	< 0.349	< 0.383	< 0.308	< 0.381	< 0.342	< 0.033	< 0.032	< 0.034
PFUnA	NE	NE	<0.291	< 0.320	< 0.257	< 0.318	< 0.286	< 0.034	< 0.033	< 0.035
PFDS	NE	NE	< 0.309	< 0.340	<0.273	< 0.338	< 0.304	< 0.032	< 0.031	< 0.033
11CI-PF3OUdS	NE	NE	< 0.330	< 0.362	<0.291	< 0.360	< 0.323	< 0.029	<0.028	< 0.029
PFDoA	NE	NE	<0.408	<0.448	< 0.360	< 0.445	< 0.400	< 0.037	< 0.036	< 0.038
10:2 FTSA	NE	NE	NR	NR	NR	NR	NR	NR	NR	NR
PFDoS	NE	NE	< 0.390	<0.428	<0.344	<0.425	< 0.382	<0.029	<0.028	< 0.030
PFTrDA	NE	NE	< 0.367	<0.403	< 0.324	<0.401	< 0.360	<0.036	<0.035	< 0.037
N-MeFOSA	NE	NE	< 0.397	<0.436	< 0.350	<0.433	< 0.389	<0.031	< 0.030	< 0.032
N-MeFOSE	NE	NE	<0.471	<0.517	<0.415	<0.514	< 0.462	< 0.034	< 0.033	< 0.035
N-EtFOSA	NE	NE	< 0.254	<0.279	<0.224	<0.277	< 0.249	<0.029	<0.028	< 0.030
N-EtFOSE	NE	NE	< 0.380	<0.417	< 0.335	<0.415	< 0.373	< 0.036	< 0.035	< 0.038
PFTeDA	NE	NE	< 0.369	< 0.406	< 0.326	<0.403	< 0.362	< 0.039	< 0.037	<0.040
PFHxDA	NE	NE	NR	NR	NR	NR	NR	NR	NR	NR
PFODA	NE	NE	NR	NR	NR	NR	NR	NR	NR	NR
PFBA	NE	NE	<0.620	<0.681	<0.547	<0.677	<0.608	0.61	0.21	0.37

NE - Standard Not Established NR-Not Reported

ng/g - parts per billion U=Unsaturated S=Saturated

< = compound below laboratory detection limit Bold indicates laboratory detections PFOA = Perfluoroctanoic Acid (C8) PFOS = Perfluoroctanesulfonic Acid (C8) PFBS = Perfluorobutanesulfonic Acid (C4) PFHpA = Perfluoroheptanoic Acid (C7) PFHxS = Perfluorohexanesulfonic Acid (C6) PFNA = Perfluorononanoic Acid (C9) PFDA = Perfluorodecanoic Acid (C10) PFDoA = Perfluorododecanoic Acid (C12) PFHxA: Perfluorohexanoic Acid (C6) PFTeDA = Perfluorotetradecanoic Acid (C14) PFTrDA = Perfluorotridecanoic Acid (C13) PFUnA = Perfluoroundecanoic Acid (C11) NEtFOSAA = N-ethylperfluorooctanesulfonamidoacetic Acid (C12) NMeFOSAA = N-methyperfluorooctanesulfonamidoacetic Acid (C11) PFBA = Perfluoroburanoic Acid (C4) PFPeA = Perfluoropentanoic Acid (C5) PFHxDA = Perfluoro-n-hexadecanoic Acid (C16) PFODA = Perfluoro-n-octadecanoic Acid (C18) PFPeS = Perfluoropentanesulfonic Acid (C5) PFHpS = Perfluoroheptanesulfonic Acid (C7) PFNS = Perfluorononanesulfonic Acid (C9) PFDS = Perfluorodecanesulfonic Acid (C10) PFDoS = Perfluorododecanesulfonic Acid (C12) FOSA = Perfluorooctainesulfonamide (C8) NEtFOSA = N-ethylperfluorooctanesulfonamide (C10) NMeFOSA = N-methylperfluorooctanesulfonamide (C9) NMeFOSE = N-methylperfluorooctanesulfonamidoethanol (C11) NEtFOSE = N-ethylperfluorooctanesulfonamidoethanol (C12) 4:2 FTSA = 4:2 fluorotelomer sulfonate (C6) 6:2 FTSA = 6:2 fluorotelomer sulfonate (C8) 8:2 FTSA = 8:2 fluorotelomer sulfonate (C10) 10:2 FTSA = 10:2 fluorotelomer sulfonate (C12) DONA = 4,8-Dioxa-3H-perfluorononanoic acid (C7) HFPO-DA (GenX) = Hexafluoropropylene oxide dimer acid (C6) 9CI-PF3ONS = 9-clorohexadecafluoro-3-oxaneonane-1-sulfonic acid (C8) 11CI-PF3OUdS = 11-chloroeicosafluoro-3oxaundecane-1-sulfonic acid (C10)

F=Result Is Between Limit of Detection and Limit of Quantitation Soil Samples B-13 to B-19 Collected by General Engineering Company

TABLE A.6 WATER LEVEL ELEVATIONS THE SOLBERG COMPANY - SITE 2 - 1520 BROOKFIELD AVENUE CLSE PROJECT NO. E2305.27

Monitoring Well Number	Top of Well Casing Elevation (MSL)	Ground Surface Elevation (MSL)	Screened Interval Elevation (MSL)	Date Measured	Depth To Water Below Top Of Casing (Ft.)	Groundwa Elevatio (Ft.) (MS
				11/26/2019	2.61	588.02
			585.58	12/13/2019	2.70	587.93
	1	588.80		3/24/2020	2.65	587.98
	1		575.58	6/11/2020	2.68	587.95
MW-1	590.63			10/12/2020	6.48	584.15
10100-1	590.63			6/2/2021	4.12	586.51
				5/13/2022	4.55	586.08
				7/12/2022	5.12	585.51
				7/24/2023	7.23	583.40
				10/9/2023	8.00	582.63
				11/26/2019	3.01	587.83
			585.79	12/13/2019	3.03	587.81
		588.96		3/24/2020	3.00	587.84
			575.79	6/11/2020	3.06	587.78
MW-2	590.84			10/12/2020	6.69	584.15
				6/2/2021	3.85	586.99
				5/13/2022	4.85	585.99
				7/12/2022	5.24	585.60
				7/24/2023	7.39	583.45
				10/9/2023	8.27	582.57
	1			11/26/2019	3.01	587.87
			585.83	12/13/2019	3.03	587.85
	1	588.95	000.00	3/24/2020	3.00	587.88
	1	300.33	57E 92			
			575.83	6/11/2020	3.06	587.82
MW-3	590.88			10/12/2020	6.69	584.19
				6/2/2021	3.98	586.90
				5/13/2022	4.35	586.53
	1			7/12/2022	4.41	586.47
	1			7/24/2023	6.19	584.69
			<u> </u>	10/9/2023	7.26	583.62
				5/26/2021	3.65	586.28
	1		583.27	6/2/2021	3.12	586.81
MW-4	589.93	587.62		7/12/2022	3.66	586.27
11114-4	569.93		573.27	7/24/2023	5.27	584.66
				10/9/2023	6.73	583.20
				5/26/2021	2.94	586.84
			585.48	6/2/2021	2.65	587.13
MW-5	589.78	588.06		7/12/2022	3.10	586.68
			575.48	7/24/2023	4.89	584.89
				5/26/2021	3.12	586.78
			583.13	6/2/2021	2.32	587.58
MW-6	589.9	588.09		7/12/2022	3.19	586.71
			573.13	7/24/2023	6.37	583.53
				5/26/2021	2.95	586.66
			584.68	6/2/2021	2.85	586.76
MW-7	590.64	507.04	504.00			
IVI VV-/	589.61	587.31		7/12/2022	3.09	586.52
			574.68	7/24/2023	4.32	585.29
	1			5/26/2021	4.06	586.21
	1		585.33	6/2/2021	3.49	586.78
MW-8	590.27	588.4		7/12/2022	3.79	586.48
		000.4	575.33	7/24/2023	5.13	585.14
				112 112020	0.10	505.14
				5/26/2021	5.01	585.19
	1		585.33	6/2/2021	4.08	586.12
		588.02		7/12/2022	4.91	585.29
MW-9	590.2		575.33	7/24/2023	6.91	583.29
			0.0.00	10/9/2023	7.67	582.53
				10/3/2023	1.07	302.33
	1			5/27/2021	5.69	584.72
	1		585.37	6/2/2021	3.84	586.57
MA4 10	F00 44	588.3		7/12/2022	4.73	585.68
MW-10	590.41		575.37	7/24/2023	7.46	582.95
				10/9/2023	8.14	582.27
				5/27/2021	5.30	585.16
			585.47	6/2/2021	4.21	586.25
		588.4		5/13/2022	4.55	585.91
MW-11	590.46		575.47	7/12/2022	5.06	585.40
	1			7/24/2023	7.37	583.09
				10/9/2023	8.03	582.43

Elevations are referenced to Mean Sea Level (MSL). ft = feet

TABLE A.6 WATER LEVEL ELEVATIONS THE SOLBERG COMPANY - SITE 2 - 1520 BROOKFIELD AVENUE CLSE PROJECT NO. E2305.27

Monitoring Well Number	Top of Well Casing Elevation (MSL)	Ground Surface Elevation (MSL)	Screened Interval Elevation (MSL)	Date Measured	Depth To Water Below Top Of Casing (Ft.)	Groundwate Elevation (Ft.) (MSL)
			585.22	7/11/2022	4.40	586.34
MW-12	590.74	588.37		7/12/2022	4.56	586.18
10100-12	590.74	566.37		7/24/2023	7.49	583.25
			575.22			
			585.19	7/11/2022	5.26	585.60
MW-13	590.86	588.32		7/12/2022	5.34	585.52
14144-15	550.00	300.32		7/24/2023	7.73	583.13
			575.19			
			586.73	7/11/2022	1.57	586.43
MW-14	588	588.43		7/12/2022	1.69	586.31
14144	500	500.45		7/24/2023	3.90	584.10
			576.73			
			584.8	7/11/2022	1.88	585.85
MW-15	587.73	588.24	ſ	7/12/2022	2.00	585.73
14144-12	501.15	J00.24	`	7/24/2023	4.59	583.14
			574.8			
			586.03	7/11/2022	7.85	583.78
	504 62	590.40		7/12/2022	5.09	586.54
MW-16	591.63	589.46		7/24/2023	6.38	585.25
			576.03			
			584.74	7/11/2022	3.50	587.02
		589.46	F	7/12/2022	3.74	586.78
MW-17	590.52	589.46	F	7/24/2023	7.57	582.95
			574.74			
			588.07	11/16/2023	5.50	585.39
			F	11/29/2023	5.66	585.23
MW-18	590.89	NA	F			
			578.07			
			589.05	11/16/2023	6.60	585.23
				11/29/2023	6.73	585.10
MW-19	591.83	NA	-			
			579.05			
			589.84	11/16/2023	7.68	584.99
	5 00 07			11/29/2023	7.75	584.92
MW-20	592.67	NA	F			
			579.84			
	1		566.47	5/27/2021	5.39	585.53
				6/2/2021	4.40	586.52
PZ-1	590.92	588.56	F	7/12/2022	4.55	586.37
			F	7/24/2023	6.41	584.51
			561.47			00.01
	1		565.05	7/11/2022	11.35	579.33
				7/12/2022	4.98	585.70
PZ-2	590.68	588.32	ŀ	7/24/2023	7.43	583.25
			560.05	112712020	1.40	JUJ.2J

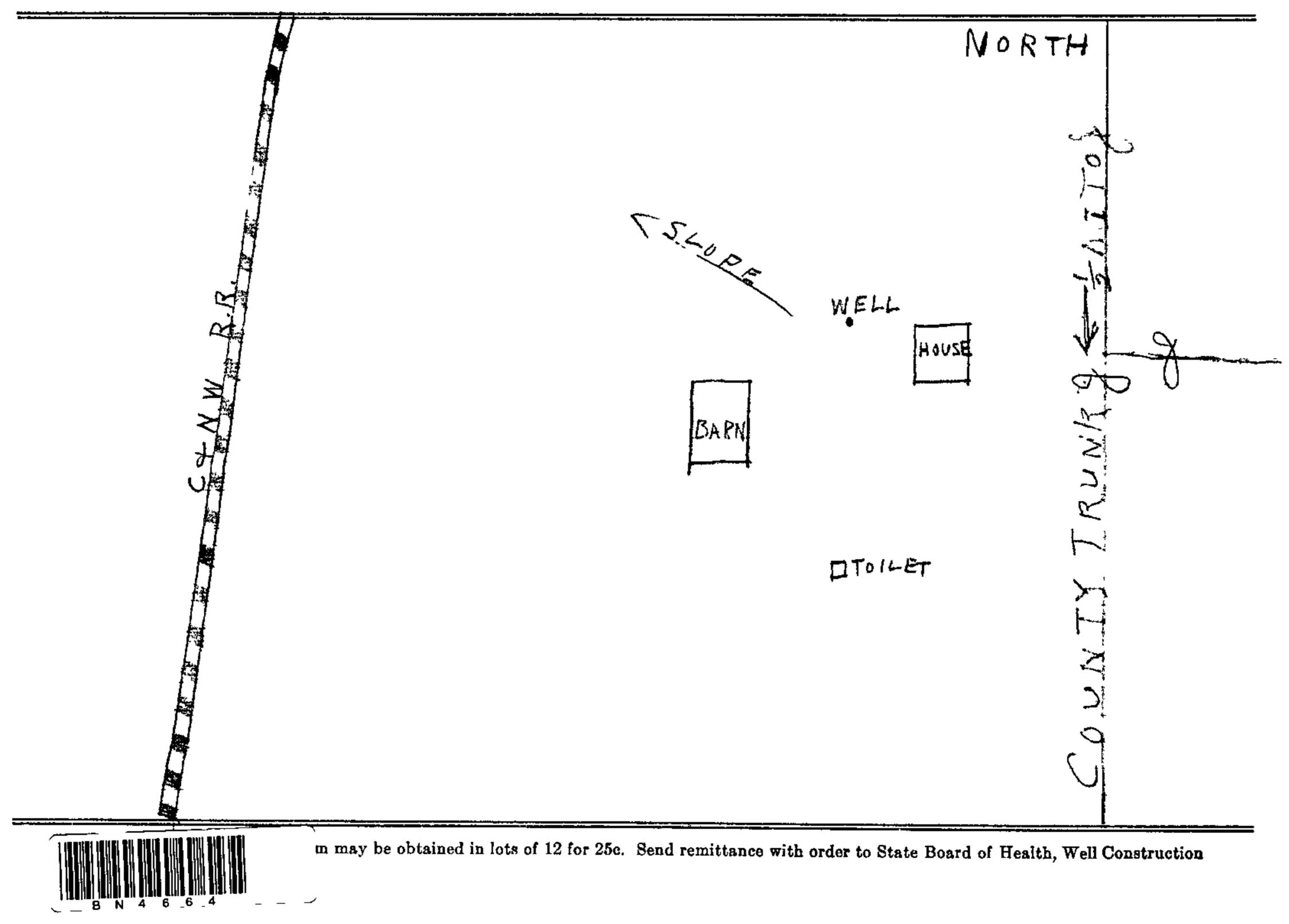
Elevations are referenced to Mean Sea Level (MSL). ft = feet

APPENDIX C

POTABLE WELL CONSTRUCTION LOGS

De			sconsin tural Res	ources			White	te Copy	NOTE		Com	_	V F		L CON	NSTR		REP	52-U
		Box 4		-			Gree	en Copy low Cop	<u> </u>	Division's Driller's (Owner's (opy			Rev. 10		15	JAN 22		
1. 00	UNTY				CI	IECK () ONE	E:					Name						
	BRO	WN				Town		X	Village	[Hou		0				
	<u>SE N</u>	<u>w</u> t%s	ection	Section		vnship		nge	1	NAME	X o	WNER					DRILLING	CHEC	K (-) ONE
	CATION		<u>SE</u>	3		24N		206			AV	0	P	AT	TT E	N	····		
OR	- G	na or s	treet No.		-	، مر . بس				ADDRES									
- AN	D – Iť	availab	le subdiv	ision name,	eoK i	////	.0_			POST OF	<u>2.</u> FDIF5	YK	ING	A					
				,								De.	EN .	RA	<u>.</u>				
4. Dis	tance in f	eet fro	m well	Building	Sanitary	Bidg, D	rain	Sanit	tary Bid	g. Sewer	1 3	Floor	Drain cted To:				g. Drain	Storn	n Bidg, Sewer
	nearest: wer in ap	(Red			C.I.	Ö	ther	C,I		Other	C.I.		Other S				Other	C.I.	Other
<u> </u>	ck)			14	·														
San,	Storm	C.I.	Other		ол Drain C Se	Connecto Wage	ed to:	Sewage	Sump Other	Clearv Sum		Septio Tank		- J	wage / epage		otion Unit		
3an, 1	Storna	0.1.	Other	Sewer Clearwat	Su	mp sarwater			-			101			epage				
Privy	Pet	Dit. 8		Dr.		mp						1~	_ _	See	epage	Trenc			
Privy	Waste	Well		rming Exist		urface F conform			Barn Gutte	er Barn	Anir	nal Si rd W	ith Pit S	torage	ined i	w/o	Earthen S Storage Tr	ilage rench O	r
		Pump		-			y = .			Pen				açilify	' '	Pít	Pit		
Temp		Tank Watert	tight	Solid Manu		irface	Waste	Pond o	r Land	Other (Give D)éscript	tion)		i		ļ		
Manur Stack		Liquid Tank	I Manure	Storage Structure	Gasol Oil T	line or ank	Dispo	sal Unit Ify Typ	t				,						
5 W-1		dad to								- FORMA		<u> </u>							
J. 110			supply wa	afer 10L:		om	5		9.	FORMA	TION					ł	Deces (6)		
6. DE	ULLHOL	E				0						Kin	a				From (ft.)	,	To (ft.)
+ -			To (ft	.) Dia. (ir	1.) Fron	n (ft.)) T	0 (ft.)					SA	NG			Surface		10
		•													_	BERE BERE			
/0) Su	nface	20			<u> </u>							CL	AY	THE OWNER OF THE OWNER		10		56
,			10												-	_			
7 64		<u>0</u> NER (<u>63</u>										Liph	25	ION	<u>¢</u>	56	-	63
Dia. (Ma	terial,	Weight, Sj	G AND SCR pecification	L Dean	. (64.)	T	- (64.)											
<u> </u>			thod of A	CK STU		n (ft.)		o (ft.)											
6		_		: T+C		face	1.5	16			/								
				AR FT				<u> </u>		_	1.		A MARINE SALE				••		
			STED	1800 As	1.					111			1 HA HA HA			ł			
			srm	_									N HALIMAN	Ù	_				
		RA	PUBL	IC STR	14		_ 				BN	46							
																		ĺ	
									/	. TYPE (קרו קר		C MACH		USED			[
											JF DK		I f	Rotary	y-hami	mer	i		
8. GR	OUT OR	OTHE	R SEAL	ING MATER	UAL			1		🕅 🖾 Ca	ble To	юf		w/drii muđ 8	ling k air			Jetting	with
		K	inđ		Fron	a (ft.)		o (ft.)			tary-a	lr 9 muđ		Rotary	y-hami	mer			Alr
		Λ					4												Water
		Po	0016	O CLA	Y Surf	face		20		mu	d	v/drilllr		Revers	se Rot	ary			
									We	ell constru	ction	comple	ted on _		1	1	19 1		19 <u>78</u>
11.	MISCE	LLAN	IEOUS I	DATA			1					-			[K al	bove fin	al grade	
	Yield Te	<u>est:</u>	<u> </u>		Hrs. at		0	GP	M We	ell is termi	nated		8	inche	s <u>[</u>	<u> </u>	elow	ai grau	
	Depth fr	tóm su	rface to n	ormal water	level	30		Ft.	Wei	ll disinfect	ted up	on com	pletion		C	ХД Y	es 🗆 No	•	
<u> </u>	Depth o	f water	level								-				- -		·		
	when	pumpir	ųg <u> </u>	<u>70</u> F	L. Stabi	lized	KAJ YO		No We	ll scaled w	atertij	ght upo	n compl	etion	4	χ]γ /	es LI No)	
		-	ent to _	<u> </u>	AUIS								itory on		·& /	/ /	8 /		19 <u>78</u>
Your finishi	opinion c ing the w	ell, am	ount of e	pollution h ement used i	nzards, inf in grouting	ormatio , blastic	n conc ng, etc.	ærning (., should	anneult i be give	n on revei	rse sid	, and di e.	ava relati	ng to i	nearby	∕ wella	s, screens, st	ais, me	
Signati	ure /)		}	,,		,		Co	mplete Ma	ail Ad	dress				~			_ _
	\mathcal{N}		\mathcal{A}	n	1 .					-		25	SHO	Rr	- 0	K	54115		
Z	\$ 10	~	54	/ 14	un fi	enitere	d Well	Drifler				02	PERE	. (\mathcal{M}	, 4	54115		
				E E															

		₹7. <u>₹</u> .	2 1978		
State of Wisconsin Department of Natural Resources Box 7921 Madison, Wisconsin 53707	White Copy Green Copy	DTE: – Division's Co – Driller's Cop – Owner's Cop	opy For	LL CONSTRU m 3300-15	CTOR'S REPORT Rev 12-76 BN-663-U
1 COUNTY Brown	CHECK (V) ONE	age 🗌	Name City HOWard	1	
² LOCATION Section J Section 2 LOCATION SE章-NE章 3	Township Range 24N 20E	3. NAME 🗔 T&JH	OWNER AGENT	AT TIME OF DI	RILLING CHECK () ONE
OR – Grid or Street No. Street Name			-Lite Dr.		
AND – If available subdivision name, lot &	block No.	POST OFFI	Wis. 5415	5	
	C.I Other CI 50	Bldg Sewer Other (Floor Drain Connected To C I Sewer Other Sew	Storm Bldg, I er C.I (Drain Storm Bldg Sewei Other C.I. Other
	rain Connected to: Sewage Sur Sewage C1 Oth		- $ -$	Sewage Absorptio Seepage Pit	on Unit
San Storm C.I Other Sewer Clearwater Dr.	Sump Clearwater Sump 10	55	60	Seepage Bed Seepage Trench	
Privy Pet Pit Nonconforming Existing Waste Pit Well Pump Tank			Animal Silo Yard With Pit Stor Facil	age w/o S	arthen Silage torage Trench Or it
Manure Liquid Manure Storage Stack Tank Structure R	Subsurface Waste Pond or La Gasofine or Disposal Unit Oil Tank CSIGENT 27	nd Other (Giv	e Description)		
5. Well is intended to supply water for: Home		9. FORMATIC	ONS Kınd	Fr	om (ft.) To (ft.)



WELL CONSTRUCTION REPORT WISCONSIN STATE BOARD OF HEALTH FEB 2 6 1945 WELL CONSTRUCTION[®] DIVISION

Note: Section 31 of the Wisconsin Well Construction Code, having the force and effect of law, provides that within thirty days after comple-tion of every well the driller shall submit a report covering all essential details of construction to the State Board of Health on a form provided by the Board. Driller Jandry & Aleason Post Office Meen Bay Wis Date April 26-1997 Permit No. 14 ankowski Owner__ Street or RFD Post Office. The n Bay Uris LOCATION OF PREMISES The square below represents a section of land How divided into 40 acre tracts. Mark the position of the premises in the section. NE,SW, County Sec. No. 3 Describe further by subdivision, plat, district, lake, lot. Twp. North 2 X block, nearest principal highway, etc., whichever apply. Range 🛃

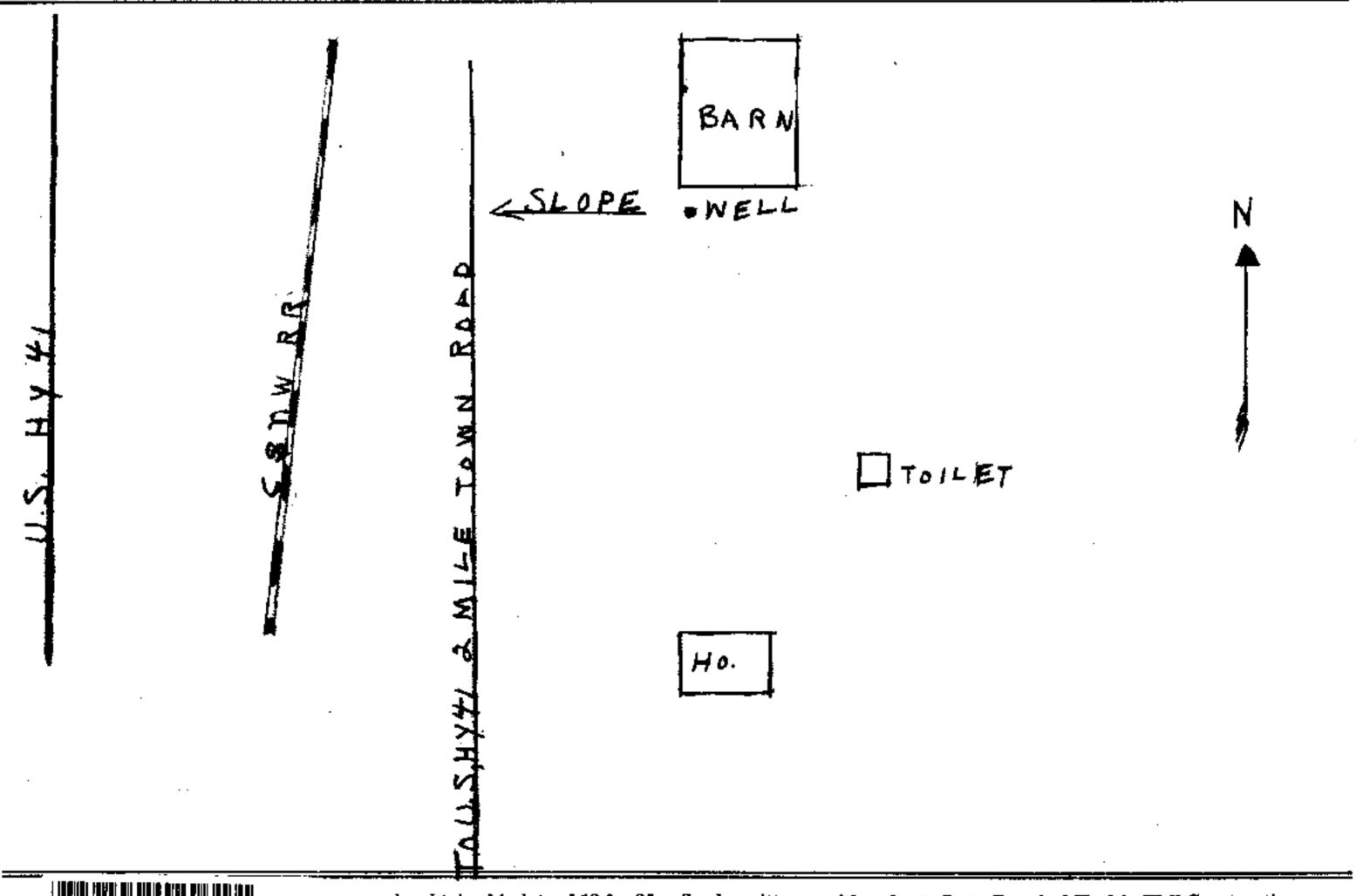
DIAGRAM OF PREMISES

See Well Construction Report bulletin. In making the diagram in the space below consider 10 ft. as the distance between lines. Be sure to indicate NORTH.

WELL LOG and REPORT

For method of making report, refer to bulletin entitled "Well Construction Report," 7-5-39. Accuracy is essential.

Tot meetod of making report, there to		Ceport, 7-5-59. Accuracy is essential.	· _ · · · · _ · _ · · · _ · _ · · _ ~ _ ~
In this column indicate the kind of casing, liner, shoe and other accessories used.	WELL DIAGRAM Use a red line to show casing or liner pipe. Use black for drill or borehole.	In this column state the kind of formations penetrated, their thickness in feet and if water bearing.	Record of FINAL Pumping test
6 STD. W. T.	Inches Diameter 2 3 4 5 6 8 10121416	SAND20'	Duration of test Hours
ÞIÞE.61.	ن من 25		Pumping rate G.P.M. 10
FORGED		BLUECLAY 55'	Depth of pump in well. Ft. /8
STEEL-DRIVE SHOE	50		Standing water-level (from surface)
\sim \sim \sim	61'		-
		LIMESTONE 19'	Water-level when pumping Ft. <u>10</u>
	100		Water. End of test. Clear X Cloudy Turbid


Was the well sterilized? Yes___No____ 150To which laboratory was sample Sent Len Bay lbis Date april 27 - 1944 200Was the well sealed on completion? 400 How high did you leave the casing-pipe above grade? 800 Well was completed Date april 26 - 1944 1200 Well Constructor Jundry + Gleacon Signature Draw the diagram to show the full diameter and right section of well only.

4664-2

WELL CONSTRUCTION REPORT FEB/21 1944 WISCONSIN STATE BOARD OF HEALTH WELL CONSTRUCTION DIVISION Note: Section 31 of the Wisconsin Well Construction Code, having the force and effect of law, provides that within thirty days after comple-tion of every well the driller shall submit a report covering all essential details of construction to the State Board of Health on a form provided by the Board. Owner Seo Hallam Driller alfed Lander Street or RFD 4 Post Office RED Bay Permit No.14 Date 2-8-44 Post Office_ Zsee LOCATION OF PREMISES The square below represents a section of land Howar divided into 40 acre tracts. Mark the position of the premises in the section. SUNE Sec. No. FARM - U.S. HIGHWAY 4/ IS THE Describe further by subdivision, plat, district, lake, lot. X Twp. North 24N NEAREST PRIDCIPAL HIGHWAY, block, nearest principal highway, etc., whichever apply. Range 20 E____

DIAGRAM OF PREMISES

See Well Construction Report bulletin. In making the diagram in the space below consider 10 ft. as the distance between lines. Be sure to indicate NORTH.

m may be obtained in lots of 12 for 25c. Send remittance with order to State Board of Health, Well Construction

WELL LOG and REPORT

For method of making report, refer to bulletin entitled "Well Construction Report," 7-5-39. Accuracy is essential.

Record of WELL DIAGRAM In this column state the kind of In this column indicate the kind Use a red line to show casing FINAL formations penetrated, their thickness in of casing, liner, shoe and other or liner pipe. Use black for drill Pumping test feet and if water bearing. accessories used. or borehole. STD-WEIGHT-PIPE Diameter Inches Depth 2 3 4 5 6 8 10121416 SAND Duration of test VNNNNNN Hours 2 hr FORGED.STEEL 151 SHOE BLUE CLAY Pumping rate 30 G.P.M. 19gal menute $\mathbf{25}$ CLAYEY GRAVEL Depth of pump in well. Ft. 30 1 8 53 53 Standing water-level (from surface) Ft.../.D... LIMESTONE 28' Water-level when 75pumping Ft. 14 81 Water. End of test. Clear__ 100 Cloudy. Turbid___ Was the well sterilized? Yes. Mo. No. 150•To which laboratory was sample sent?? Jeen Bars Date 12 -28 -4 200Was the well sealed on completion? Yes MIANO. 400 How high did you leave the casing-pipe above grade? 10 isc 800 Well was completed Date 12 - 2 - 431200 Well Constructor Draw the diagram to show the BN 4667-2full diameter and right section of Signature well only.

		ion Repor NIQUE WE		MBER		AAI	H22	24	D)epar	tme		Groundwa ral Resour				3300-077A	
Property Owner	ALLEN LI	EE INVESTM	ENTS LL	.C			Phone	e #	1	. Wel	l Lo	cation				Fire # (if	avail.)	
Mailing	1651 BR(OKFIELD A	VE STE A	2						/illage	e of I	HOWARD						
Address	1001 BIX		10127	•					S	Street Address or Road Name and Number								
City GRE	EN BAY			Sta	te WI	I Zip Code 54313			E	ROC	KFI	ELD AVEN	IUE					
County		Co. Permit #	Notif	ication #		1	Com	npleted	s	Subdiv	/isio	n Name			Lo	ot # E	Block #	
Brown			8266	6224202			02-1	11-2021										
Well Cons	tructor (Bu	usiness Name	e)	Li	c. # Fa	acility ID	# (Pul	blic Wel	lls) l	atitu	de /	Longitude	in Decimal	Degree	(DD)	Method	Code	
VAN DE Y	ACHT LE	O WELL DRI	, LLING IN	C 60	097				, 	14.58	7	°N	-88.058	5	°W	GPS008	3	
					W	/ell Plan	Appro	val #		S	w	NE	Section	Townsh	nip	Range		
									0	r Gov	/t Lo	t #	3	24	N	20	Е	
Address	1267 LAK	pproval C	Date (n	mm-dd-yyy	/y) 2	. We	ΙТу	pe New	Well									
	GREEN BAY WI 54313								0	f prev	/ious	unique we	ell #	C	onstru	icted in		
Hicap Perr	Hicap Permanent Well # Common Well # Spe								R	leaso	n foi	replaced	or reconstru	ucted we	ell ?			
					0	.8												
3. Well se	rves 1	# of BUILDIN	IG		Hi	icap Well	?	No										
Non-comm																		
Heat Exch		# of drillholes								onet	uctio	on Type [Vrilled					
	J.	nination Sou					able ?	No		01130	uoin	лтурс в	Jillea					
						L												
		ions and Co			d					8. Geology 8. Geology Type, From (ft.)							T ((1))	
Dia. (in.)		, , , , , , , , , , , , , , , , , , ,	pper Enla rillhole	arged		L		Open edrock	Geolo				gy Type, oncaving, (Color,		From (ft.)	To (ft.)	
9	Surface	83 		ry - Mud C	Circulation	۱		No		_		Hardness						
6	83	181		ry - Air				Yes		S		S-SAND			Surface	10		
		N		ry - Air & I	-oam			No		С		C-CLAY	•			10		
		N	o Drill-	Through C	Casing Ha	Hammer				Z		Z-CLAY & GRAVEL				60		
		<u>N</u>	o Reve	erse Rotar	y					L	н	L-LIMESTONE/DOLOMITE H- SHALEY				82	150	
		<u>N</u>	o Cable	e-tool Bit	in. di	a		<u>No</u>		N	-		STONE			150	181	
		<u>N</u>	<u>o</u> Dual	Rotary				<u>No</u>										
		<u>N</u>	<u>o</u> Temp	p. Outer C	asing	_in. dia												
		<u>N</u>		moved? _ ain on bac		ft. (If NO												
			onpro						0.04	-	Vete				11 V	Vell Is		
6. Casing						-	10. 2					r Level	20			. above gr	ade	
		Veight, Specif rer & Method		nbly		From	(ft.)	To (ft.)	10 n.		-	ound surfa				eloped ?	Yes	
6		CK STEEL PI) WEI DI	=D	Surfa	ace	83										
		3B 18.97# PE				Cun	uuu	00				60 ft. belov				ifected ?	Yes	
Dia. (in.)	Screen typ	e, material &	slot size			From	(ft.)	To (ft.)		-		GP M for 2			Capp	ped?	Yes	
									Pump	oing N	/leth	od? Airlif	t					
7. Grout o	or Other S	ealing Mater	ial						12. N	otified	y Or	ner of nee	d to fill & se	eal ?			No	
Method 7	TREMIE P	PIPE - PUMPE	Ð															
Kind of Se	aling Mate	erial	F	From (ft.)	To (f	t.) # Sa	acks C	Cement										
HIGH SOL	IDS BEN	TONITE		Surface	8	33		4 S	Filled	& Se	aled	Well(s) as	s needed?				No	
									13. Constructor / Supervisory Driller Lic #					Data	Signed			
															3-2021			
													Signed					
									ΚZ					736	5	03-2	3-2021	

4a. Potential	Contamir	nation So	urces	Is the well located in floor	dplain? <u>No</u>				
					Туре			Qualifier	Distance
					Septic or Ho	olding, or POWTS	Tank	=	70
Comment:		YES IT I	S PRIVATE P	OTABLE AND ITS A COM	IMERCIAL BUS	INESS BUILDING	3		
		4/23/21	(DNR REVIEV	VER) SERVICE CATEGO ERCIAL BUSINESS BUILD	RY CHANGED			INFORMATION	PROVIDED
Water Quality	y Text:								
Water Quant	ity Text:								
Difficulty Tex	t:								
Created On:	03-23-20)21	Created by:	EVANDEYACHT	Updated On:	04-23-2021	Updated by:	WELL PROCE	SS

Well Construction Report WISCONSIN UNIQUE WELL NUMBER DT091						91	Drinking Water and Groundwater - DG/5 Form 3300-0774 Department of Natural Resources, Box 7921 Madison WI 53707							300-077A
Property Owner	HAVERK	ORN, MIKE				none #		1. Well L	ocation			Fir	e # (if a	avail.)
	2852 NO	RTHWOOD F	חפ		(4	14)434-9522	2	Village of	HOWARD					
Mailing Address		KINWOODI	KD.					Street Ad	ldress or Ro	ad Name a	and Numbe	er		
City GR	EEN BAY			State W	I Zip Code	54313		BROOKF	IELD AVE					
County		Co. Permit #	Notificatio	on #		Completed		Subdivisi	on Name			Lot #	BI	ock #
Brown						10-27-1993	3							
Well Con	structor (Bu	usiness Name	e)	Lic. #	Facility ID #	(Public We	lls)	Latitude	/ Longitude i	in Decimal	Degree (D	DD) Me	ethod C	ode
VAN DE	YACHT LE	O WELL DRI	LLING I	6097			- /		°N		Ū (°W G	PS008	
					Well Plan A	pproval #		SE	NW	Section	Township		lange	_
Address	3383 OAI	K FOREST D	R		Annexal Da			or Govt L		3	24	N	20	E
	GREEN E	BAY WI 543	13		Approval Da	ate (mm-dd-yy)	yy)	2. Well T						
			0		0 17 0			•	us unique we			nstructed	IN	
Hicap Pe	ermanent W	ell #	Common W	'ell #	Specific Cap	bacity			or replaced	or reconstr	ructed well	?		
					0.6			WAREHO	DUSE					
3. Well s	erves 1	# of WAREH	OUSE		Hicap Well ?	P No								
Private,po	otable				Hicap Prope	erty? No								
Heat Exc	change	# of drillholes	3		Hicap Potab	le?		Construct	tion Type D	Drilled				
4. Potent	tial Contan	nination Sou	rces - ON RE	VERSE S	IDE									
5. Drillhc	ole Dimens	ions and Co	nstruction M	ethod			8. (Geology						
Dia. (in.) 9	From (ft.) Surface		pper Enlargeo rillhole	1	Lo	ower Open Bedrock	Geo Cod	logy es		oncaving,	Color,	Fro	m (ft.)	To (ft
6		· · · · · · · · · · · · · · · · · · ·	es Rotary - M	lud Circulat	ion			S	Hardness SAND	, etc		с,	urfago	2
Ū	02		es Rotary - A	ir				C	CLAY			31	irface 20	7
			Rotary - A	ir & Foam .				P	HARDPA	NI			20 75	8
			Drill-Throu	igh Casing	Hammer			L	LIMESTO			_	82	16
			Reverse F					N	SANDST			_	02 160	18
				Bitin.				IN	SANDST				100	10
				ry ter Casing ₋										
			Remove	-	pth ft. (If NO									
				back side)										
6. Casino	g, Liner, So	creen					9. S	tatic Wat	er Level		ŕ	11. Well	s	
	Material. V	Veight, Speci	fication		From (ff	t.) To (ft.)	80 f	t. below g	round surfac	ce		12 in. abo	ove gra	de
						,		Pump Te	st		[Develope	d ?	Yes
Dia. (in.)	Manufactu	irer & Method	0.7.0000				10.						ed ?	Yes
Dia. (in.)			LAIN END WE	LDED	Surfac	ce 82	-		l 120 ft. bela	w surface	[Disinfecte		Yes
Dia. (in.) 6	NEW BLA ASTM-A-5	CK STEEL P 3B 18.97#PE	LAIN END WE R FT. SAWHI				Pum	nping leve	l 120 ft. belo 5 GP M for 2					
Dia. (in.) 6	NEW BLA ASTM-A-5	CK STEEL P	LAIN END WE R FT. SAWHI		Surfac		Purr Purr	nping leve nping at 2	5 GP M for 2			Disinfecte	,	
Dia. (in.) 6	NEW BLA ASTM-A-5	CK STEEL P 3B 18.97#PE	LAIN END WE R FT. SAWHI				Pum Pum Pum	nping leve nping at 29 nping Met	5 GP M for 2 hod ?	? Hrs.	(•	
Dia. (in.) 6 Dia. (in.)	NEW BLA ASTM-A-5 Screen typ	CK STEEL P 3B 18.97#PE	LAIN END WE R FT. SAWHI slot size				Pum Pum Pum	nping leve nping at 29 nping Met	5 GP M for 2	? Hrs.	(
Dia. (in.) 6 Dia. (in.) 7. Grout	NEW BLA ASTM-A-5 Screen typ	CK STEEL P 3B 18.97#PE be, material &	LAIN END WE R FT. SAWHI slot size				Pum Pum Pum	nping leve nping at 29 nping Met	5 GP M for 2 hod ?	? Hrs.	(,	
Dia. (in.) 6 Dia. (in.) 7. Grout Method	NEW BLA ASTM-A-5 Screen typ	CK STEEL P 3B 18.97#PE be, material & cealing Mater	LAIN END WE R FT. SAWHI slot size	LL PIPE	From (ff	t.) To (ft.)	Pum Pum Pum 12. I	nping leve nping at 2 nping Met	5 GP M for 2 hod ? wner of nee	? Hrs. d to fill & s	(Ne
Dia. (in.) 6 Dia. (in.) 7. Grout Method	NEW BLAA ASTM-A-5 Screen typ or Other S	CK STEEL P 3B 18.97#PE be, material & cealing Mater	LAIN END WE R FT. SAWHI slot size ial	LL PIPE	From (ff	t.) To (ft.)	Pum Pum Pum 12. I	nping leve nping at 2 nping Met Notified O d & Seale	5 GP M for 2 hod ?	? Hrs. d to fill & s	(No
Dia. (in.) 6 Dia. (in.) 7. Grout Method Kind of S	NEW BLAA ASTM-A-5 Screen typ or Other S	CK STEEL P 3B 18.97#PE be, material & cealing Mater	LAIN END WE R FT. SAWHI slot size ial	(ft.) To	From (ff	t.) To (ft.)	Pum Pum Pum 12. I	nping leve nping at 2 nping Met Notified O d & Seale	5 GP M for 2 hod ? wner of nee	? Hrs. d to fill & s	(No
Dia. (in.) 6 Dia. (in.) 7. Grout Method Kind of S	NEW BLAA ASTM-A-5 Screen typ or Other S	CK STEEL P 3B 18.97#PE be, material & cealing Mater	LAIN END WE R FT. SAWHI slot size ial	(ft.) To	From (ff	t.) To (ft.)	Pum Pum 12. I Fille N/A	nping leve nping at 2 nping Met Notified O d & Seale PP	5 GP M for 2 hod ? wner of nee d Well(s) as	? Hrs. d to fill & s needed?	eal ?	Capped ?		-
Dia. (in.) 6 Dia. (in.) 7. Grout Method Kind of S	NEW BLAA ASTM-A-5 Screen typ or Other S	CK STEEL P 3B 18.97#PE be, material & cealing Mater	LAIN END WE R FT. SAWHI slot size ial	(ft.) To	From (ff	ks Cement	Purr Purr Purr 12. I Fille N/A	nping leve nping at 2 nping Met Notified O d & Seale PP	5 GP M for 2 hod ? wner of nee	? Hrs. d to fill & s needed?	eal ?	Capped ?	Date	Signed
Dia. (in.) 6 Dia. (in.) 7. Grout Method Kind of S	NEW BLAA ASTM-A-5 Screen typ or Other S	CK STEEL P 3B 18.97#PE be, material & cealing Mater	LAIN END WE R FT. SAWHI slot size ial	(ft.) To	From (ff	ks Cement	Pum Pum 12. I Fille N/A 13. (nping leve nping at 2 nping Met Notified O d & Seale PP	5 GP M for 2 hod ? wner of nee d Well(s) as or / Supervis	? Hrs. d to fill & s needed?	eal ?	Capped ?	Date \$ 10-27	Signed -1993
Dia. (in.) 6 Dia. (in.) 7. Grout Method Kind of S	NEW BLAA ASTM-A-5 Screen typ or Other S	CK STEEL P 3B 18.97#PE be, material & cealing Mater	LAIN END WE R FT. SAWHI slot size ial	(ft.) To	From (ff	ks Cement	Pum Pum 12. I Fille N/A 13. (nping leve nping at 2 nping Met Notified O d & Seale PP	5 GP M for 2 hod ? wner of nee d Well(s) as or / Supervis	? Hrs. d to fill & s needed?	eal ?	Capped ?	Date \$ 10-27	Signed -1993 Signed

4a. Potentia	Contamination	Sources	Is the well located in	floodplain ? <u>No</u>				
				Туре			Qualifier	Distance
				Building Ov	erhang			12
Comment:								
Water Qualit	y Text:							
Water Quan								
Difficulty Tex								
Created On:	02-04-1994	Created by:	HFRC LOAD	Updated On:	02-04-1994	Updated by:	MIGRATION	

Well Construction Report WISCONSIN UNIQUE WELL NUMBER KS080						0		Departm	Water and ent of Natur WI 53707				Form 3	300-077A
Property MIKE HA Owner	VERKORN CO	NST				ne #)434-3983	, ,	1. Well L	ocation				Fire # (if	avail.)
Mailing 2852 NO	RTHWOOD RD)			(414))434-3900	,	Village o	f HOWARD					
Address									ddress or Ro	ad Name a	and Numb	er		
City GREEN BAY			State W	I Zip C		54313			FIELD AVE					
County	Co. Permit #	Notification	1#			ompleted		Subdivis	ion Name			Lot	# B	lock #
Brown					01	1-16-1996								
Well Constructor (Bu	usiness Name)		Lic. #	Facility I	D # (F	Public Wel	ls)	Latitude	/ Longitude	in Decimal	Degree ([DD)	Method (Code
VAN DE YACHT LE	O WELL DRILL	ING I	6097						°N			°W	GPS008	
				Well Pla	n App	roval #		SE	NW	Section	Townshi	р	Range	
Address 3383 OAI	K FOREST DR							or Govt L		3	24	N	20	E
	BAY WI 54313	5		Approva	I Date	(mm-dd-yyy	y)	2. Well 1	ype New	Well				
								of previo	us unique we	ell #	со	nstruc	ted in	
Hicap Permanent W	'ell #	Common We	II #	Specific	Capa	city		Reason	for replaced	or reconstr	ucted well	?		
				0.7				WAREH	OUSE					
3. Well serves 1	# of WAREHO	USE		Hicap W	ell ?	No								
Private,potable				Hicap Pr	operty	/? No								
	# of drillholes			Hicap Po				Construc	tion Type	Drilled				
	-				Jable	ſ		Construct		Shiled				
4. Potential Contan				DIDE										
5. Drillhole Dimens	ions and Cons	struction Met	hod				8.	Geology						
Dia. (in.) From (ft.)	× /	ber Enlarged				or opon	Geo Cod	ology	8. Geolog	gy Type, oncaving, (Color	1	From (ft.)	To (ft.)
9 Surface	79	Ihole Rotary - Mu	d Circulat	lan		Bedrock	Cou	165	Hardness		50101,			
6 79	222 Yes							S	SAND				Surface	10
	Yes							С	CLAY				10	70
		Rotary - Air						P	HARDPA	N			70	79
		Drill-Throug Reverse Ro	-	Hammer				L	LIMESTO	DNE			79	140
		Cable-tool B		dia				N	SANDST	ONE			140	222
		Dual Rotary												
		Temp. Oute												
		Removed		pth ft. (If N	0									
		explain on b	ack side)											
6. Casing, Liner, So	creen						9. S	Static Wa	ter Level			11. W	ell Is	
Dia. (in.) Material, V				Fror	m (ft.)	To (ft.)	40 f	ft. below (ground surface	се		12 in.	above gra	ade
Manufactu	irer & Method o	f Assembly					10.	Pump Te	est			Devel	oped ?	Yes
-	CK STEEL PLA 3B 18 97LB PE			Su	irface	79	Pun	nping leve	el 100 ft. belo	w surface		Disinfe	ected?	Yes
Dia. (in.) Screen typ		-		Fror	n (ft.)	To (ft.)	Pum	nping at 4	0 GP M for 2	2 Hrs.		Cappe	ed ?	Yes
	-,					- (- /	Pun	nping Me	thod?					
7. Grout or Other S	ealing Materia	1					12.	Notified C	Owner of nee	d to fill & s	eal ?			
Method														
Kind of Sealing Mate	erial	From (f	ft) To	o (ft.) # \$	Sacks	Cement								
DRILL SLURRY		Surfa	'	79	Cuono		Fille	d & Seal	ed Well(s) as	needed?				
		Guila		15										
							13.	Construc	tor / Supervis	sory Driller	Lic #		Date	Signed
						i	LV						01-16	6-1996
							Drill	Rig Ope	rator		Lic o	r Reg	# Date	Signed
							ΤV					-	01-16	5-1996

4a. Potential Contamination	Sources Is	s the well locat	ted in floodpla	ain? <u>No</u>				
Туре		Qualifier	Distance	Туре			Qualifier	Distance
Building Overhang			10	Collector Se	ewer - San or Sto	orm		75
Clearwater Sump			30		Drain to Clearwa	ater		12
				Sewer - Bui	Iding Sanitary			50
Comment:								
Water Quality Text:								
Water Quantity Text:								
Difficulty Text:								
Difficulty Text.								
Created On: 05-10-1996	Created by:	HFRC LOAD	L	Ipdated On:	10-24-2002	Updated by:	WELL PROC	ESS

Well Construction Report NQ153 WISCONSIN UNIQUE WELL NUMBER NQ153						Drinking Water and Groundwater - DG/5 Form 3300-077A Department of Natural Resources, Box 7921 Madison WI 53707						
Property MIKE HAVERK Owner	ORN CO	NST			one #	1. Well I	ocation			Fire #	t (if avail.)	
Mailing 2852 NORTHW		1		(920	0)434-3983	Village o	f HOWARD				. ,	
Address						Street A	ddress or Ro	ad Name a	and Number			
City GREEN BAY			State WI	Zip Code	54313	BROOK	FIELD RD					
County Co. F	Permit #	Notificatio	n #	C	Completed	Subdivis	ion Name			Lot #	Block #	
Brown				0	9-21-1999							
Well Constructor (Busines	s Name)	÷	Lic. #	Facility ID # (Public Wells) Latitude	/ Longitude i	in Decimal	Degree (DD) Meth	od Code	
VAN DE YACHT LEO WE	LL DRILL	ING INC	6097				°N		٩	W GPS	008	
			,	Well Plan App	proval #	SE	NW	Section	Township	Rar	nge	
						or Govt I	_ot #	3	24 N	20) E	
Address 3383 OAK FOF GREEN BAY V	-			Approval Date	e (mm-dd-yyyy)	2. Well	Type New \	Well				
						of previo	us unique we	ell #	cons	tructed in		
Hicap Permanent Well #		Common W	ell #	Specific Capa	acity	Reason	for replaced of	or reconstr	ructed well ?			
				0.5		WAREH	OUSE					
3. Well serves 1 # of			I	Hicap Well ?	No							
Private,potable			1	Hicap Propert	ty? No							
Heat Exchange# of d	rillholes		1	Hicap Potable	e ?	Construc	tion Type D	Drilled				
4. Potential Contaminati	on Sourc	es - ON RE	VERSE SI	DE		•						
5. Drillhole Dimensions	and Cons	struction Me	ethod			3. Geology						
Dia. (in.) From (ft.) To (ft	.) Upp	er Enlarged		Lov	ver Open G	eology	8. Geolog	gy Type,		From ((ft.) To (ft	
9 Surface	83 Drill	hole				odes	Caving/N Hardness	oncaving,	Color,			
6 83	202 Yes			on		S	SAND	, 0.0		Surfa	ace 3	
I	Yes		r			С	CLAY				35 7	
			r & Foam		_	P	HARDPA	N			78 8	
		Reverse R	gh Casing F	lammer		L	LIMESTC	NE			83 13	
			Bitin.	dia		N	SANDST	ONE		1	35 20	
	1					IN						
			у									
		Dual Rotar	y er Casing _			IN						
		Dual Rotar Temp. Out Remove	er Casing _ d?dep			IN IN						
		Dual Rotar Temp. Out	er Casing _ d?dep	in. dia			tor Loval		11	Well Is		
0, ,		Dual Rotar Temp. Out Remove explain on	er Casing _ d?dep	in. dia th ft. (If NO		. Static Wa				. Well Is	arada	
0, ,		Dual Rotar Temp. Out Remove explain on	er Casing _ d?dep	in. dia) To (ft.) 4	. Static Wa	ground surfac	ce	12	? in. above	0	
Dia. (in.) Material, Weight Manufacturer &	Method of	Dual Rotar Temp. Out Remove explain on ation f Assembly	d?dep back side)	in. dia th ft. (If NO From (ft.)) To (ft.) 4	. Static Wa 0 ft. below 9 0. Pump Te	ground surface		12 Di	in. above	? Yes	
Dia. (in.) Material, Weight	Method of	Dual Rotar Temp. Out Remove explain on ation f Assembly	d?dep back side)	in. dia th ft. (If NO) To (ft.) 4 1 e 83 p	. Static Wa 0 ft. below 9 0. Pump To umping leve	ground surfacest est el 120 ft. belo	w surface	12 Di Di	in. above eveloped f	? Yes ? Yes	
Dia. (in.) Material, Weight Manufacturer & 6 NEW BLACK ST ASTM-A-53B, 18	Method of EEL PLA 3.97 # PE	Dual Rotar Temp. Out Remove explain on ation f Assembly IN END WE R FT. SAW	d?dep back side)	in. dia th ft. (If NO From (ft.)) To (ft.) 4 1 2 83 P) To (ft.) P	. Static Wa 0 ft. below (0. Pump To umping leve umping at 4	ground surfacest est el 120 ft. belo 0 GP M for 2	w surface	12 Di Di	in. above	? Yes	
Dia. (in.) Material, Weight Manufacturer & 6 NEW BLACK ST ASTM-A-53B, 18	Method of EEL PLA 3.97 # PE	Dual Rotar Temp. Out Remove explain on ation f Assembly IN END WE R FT. SAW	d?dep back side)	in. dia th ft. (If NO From (ft.) Surface) To (ft.) 4 1 2 83 P) To (ft.) P P	. Static Wa 0 ft. below g 0. Pump To umping leve umping at 4 umping Me	ground surfacest est 120 ft. belo 0 GP M for 2 thod ?	w surface ? Hrs.	12 Di Di Ci	in. above eveloped f	? Yes ? Yes	
Dia. (in.) Material, Weight Manufacturer & 6 NEW BLACK ST ASTM-A-53B, 12 Dia. (in.) Screen type, ma	Method o EEL PLA 3.97 # PE terial & sl	Dual Rotar Temp. Out Remove explain on ation f Assembly IN END WE R FT. SAWH ot size	d?dep back side)	in. dia th ft. (If NO From (ft.) Surface) To (ft.) 4 1 2 83 P) To (ft.) P P	. Static Wa 0 ft. below g 0. Pump To umping leve umping at 4 umping Me	ground surfacest est el 120 ft. belo 0 GP M for 2	w surface ? Hrs.	12 Di Di Ci	in. above eveloped f	? Yes ? Yes	
Dia. (in.) Material, Weight Manufacturer & 6 NEW BLACK ST ASTM-A-53B, 18 Dia. (in.) Screen type, ma 7. Grout or Other Sealing	Method o EEL PLA 3.97 # PE terial & sl	Dual Rotar Temp. Out Remove explain on ation f Assembly IN END WE R FT. SAWH ot size	d?dep back side)	in. dia th ft. (If NO From (ft.) Surface) To (ft.) 4 1 2 83 P) To (ft.) P P	. Static Wa 0 ft. below g 0. Pump To umping leve umping at 4 umping Me	ground surfacest est 120 ft. belo 0 GP M for 2 thod ?	w surface ? Hrs.	12 Di Di Ci	in. above eveloped f	? Yes ? Yes	
Dia. (in.) Material, Weight Manufacturer & 6 NEW BLACK ST ASTM-A-53B, 12 Dia. (in.) Screen type, ma 7. Grout or Other Sealing Method	Method o EEL PLA 3.97 # PE terial & sl	Dual Rotar Temp. Out Remove explain on ation f Assembly IN END WE R FT. SAWH ot size	LDED HILL PIPE	in. dia th ft. (If NO From (ft.) Surface From (ft.)) To (ft.) 4 1 2 83 P) To (ft.) P 1 1 3 S Cement	. Static Wa 0 ft. below 9 0. Pump To umping levo umping at 4 umping Me 2. Notified 0	ground surface est el 120 ft. belo e0 GP M for 2 thod ? Owner of need	w surface ? Hrs. d to fill & s	12 Di Di Ci	in. above eveloped f	? Yes ? Yes Yes	
Dia. (in.) Material, Weight Manufacturer & 6 NEW BLACK ST ASTM-A-53B, 18 Dia. (in.) Screen type, ma 7. Grout or Other Sealing Method Kind of Sealing Material	Method o EEL PLA 3.97 # PE terial & sl	Dual Rotar Temp. Out Remove explain on ation f Assembly IN END WE R FT. SAWH ot size	(ft.) To	in. dia th ft. (If NO From (ft.) Surface From (ft.)) To (ft.) 4 1 2 83 P) To (ft.) P 12 12 s Cement	Static Wa oft. below 9 O. Pump Te umping leve umping at 4 umping Me 2. Notified C	ground surfacest est 120 ft. belo 0 GP M for 2 thod ?	w surface ? Hrs. d to fill & s	12 Di Di Ci	in. above eveloped f	? Yes ? Yes	
Dia. (in.) Material, Weight Manufacturer & 6 NEW BLACK ST ASTM-A-53B, 18 Dia. (in.) Screen type, ma 7. Grout or Other Sealing Method Kind of Sealing Material	Method o EEL PLA 3.97 # PE terial & sl	Dual Rotar Temp. Out Remove explain on ation f Assembly IN END WE R FT. SAWH ot size	(ft.) To	in. dia th ft. (If NO From (ft.) From (ft.) (ft.) # Sack) To (ft.) 4 1 2 83 P) To (ft.) P 12 12 s Cement	. Static Wa 0 ft. below 9 0. Pump To umping levo umping at 4 umping Me 2. Notified 0	ground surface est el 120 ft. belo e0 GP M for 2 thod ? Owner of need	w surface ? Hrs. d to fill & s	12 Di Di Ci	in. above eveloped f	? Yes ? Yes Yes	
Dia. (in.) Material, Weight Manufacturer & 6 NEW BLACK ST ASTM-A-53B, 18 Dia. (in.) Screen type, ma 7. Grout or Other Sealing Method Kind of Sealing Material	Method o EEL PLA 3.97 # PE terial & sl	Dual Rotar Temp. Out Remove explain on ation f Assembly IN END WE R FT. SAWH ot size	(ft.) To	in. dia th ft. (If NO From (ft.) From (ft.) (ft.) # Sack) To (ft.) 4 1 8 8 9 1 7 7 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	. Static Wa 0 ft. below 9 0. Pump To umping levo umping at 4 umping Me 2. Notified 0 lled & Seal /APP	ground surface est el 120 ft. belo e0 GP M for 2 thod ? Owner of need	w surface ? Hrs. d to fill & s needed?	eal ?	in. above eveloped a sinfected apped ?	Yes Yes Yes	
6 NEW BLACK ST	Method o EEL PLA 3.97 # PE terial & sl	Dual Rotar Temp. Out Remove explain on ation f Assembly IN END WE R FT. SAWH ot size	(ft.) To	in. dia th ft. (If NO From (ft.) From (ft.) (ft.) # Sack) To (ft.) 4 1 8 8 9 1 7 7 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	Static Wa O ft. below 9 O. Pump To umping leve umping at 4 umping Me 2. Notified C Iled & Seal /APP 3. Construct	ground surface est el 120 ft. belo e0 GP M for 2 thod ? Dwner of need ed Well(s) as	w surface ? Hrs. d to fill & s needed?	eal ?	2 in. above eveloped 3 sinfected apped ?	? Yes ? Yes Yes	
Dia. (in.) Material, Weight Manufacturer & 6 NEW BLACK ST ASTM-A-53B, 18 Dia. (in.) Screen type, ma 7. Grout or Other Sealing Method Kind of Sealing Material	Method o EEL PLA 3.97 # PE terial & sl	Dual Rotar Temp. Out Remove explain on ation f Assembly IN END WE R FT. SAWH ot size	(ft.) To	in. dia th ft. (If NO From (ft.) From (ft.) (ft.) # Sack) To (ft.) 4 1 8 8 9) To (ft.) P 1 1 1 1 1 1 1 1 1 1 1 1 1	Static Wa O ft. below 9 O. Pump To umping leve umping at 4 umping Me 2. Notified C Iled & Seal /APP 3. Construct	ground surface est el 120 ft. belo e0 GP M for 2 thod ? Dwner of need ed Well(s) as tor / Supervis	w surface ? Hrs. d to fill & s needed?	eal ?	2 in. above eveloped a sinfected apped ? D	? Yes ? Yes Yes No ate Signed	

4a. Potentia	I Contamination	Sources	Is the well located in floo	odplain ? <u>No</u>				
				Туре			Qualifier	Distance
				Building Ov	rerhang			2
Comment:								
Water Qualit	ty Text:							
Water Quan	tity Text:							
Difficulty Tex	xt:							
Created On:	12-17-1999	Created by:	WELL CONST LOAD	Updated On:	12-17-1999	Updated by:	WELL PROCI	ESS

De			sconsin tural Res	ources			White	te Copy	NOTE		Com	_	V F		L CON	NSTR		REP	52-U
		Box 4		-			Gree	en Copy low Cop	<u> </u>	Division's Driller's (Owner's (opy			Rev. 10		15	JAN 22		
1. 00	UNTY				CI	IECK () ONE	E:					Name						
	BRO	WN				Town		X	Village	[Hou		0				
	<u>SE N</u>	<u>w</u> t%s	ection	Section		vnship		nge	1	NAME	X o	WNER					DRILLING	CHEC	K (-) ONE
	CATION		<u>SE</u>	3		24N		206			AV	0	P	AT	TT E	N	····		
OR	- G	na or s	treet No.		-	، مر . بس				ADDRES									
- AN	D – Iť	availab	le subdiv	ision name,	eoK i	////	.0_			POST OF	<u>2.</u> FDIF5	YK	ING	A					
				,								De.	EN .	RA	.				
4. Dis	tance in f	eet fro	m well	Building	Sanitary	Bidg, D	rain	Sanit	tary Bid	g. Sewer	1 3	Floor	Drain cted To:				g. Drain	Storn	n Bidg, Sewer
	nearest: wer in ap	(Red			C.I.	Ö	ther	C,I		Other	C.I.		Other S				Other	C.I.	Other
<u> </u>	ck)			14	·														
San,	Storm	C.I.	Other		ол Drain C Se	Connecto Wage	ed to:	Sewage	Sump Other	Clearv Sum		Septio Tank		- J	wage / epage		otion Unit		
3an, 1	Storna	0.1.	Other	Sewer Clearwat	Su	mp sarwater			-			101			epage				
Privy	Pet	Dit. 8		Dr.		mp						1~	_ _	See	epage	Trenc			
Privy	Waste	Well		rming Exist		urface F conform			Barn Gutte	er Barn	Anir	nal Si rd W	ith Pit S	torage	ined i	w/o	Earthen S Storage Tr	ilage rench O	r
		Pump		-			y = .			Pen				açilify	' '	Pít	Pit		
Temp		Tank Watert	tight	Solid Manu		irface	Waste	Pond o	r Land	Other (Give D)éscript	tion)		i		ļ		
Manur Stack		Liquid Tank	I Manure	Storage Structure	Gasol Oil T	line or ank	Dispo	sal Unit Ify Typ	t				,						
5 W-1		dad to								- FORMA		<u> </u>							
J. 110			supply wa	afer 10L:		om	5		9.	FORMA	TION					ł	Deces (6)		
6. DE	ULLHOL	E				0						Kin	a				From (ft.)	,	To (ft.)
+ -			To (ft	.) Dia. (ir	1.) Fron	n (ft.)) T	0 (ft.)					SA	NG			Surface		10
		•													_	BERE BERE			
/0) Su	nface	20			<u> </u>							CL	AY	THE OWNER OF THE OWNER		10		56
,			10												-	_			
7 64		<u>0</u> NER (<u>63</u>										Liph	25	ION	<u>¢</u>	56	-	63
Dia. (Ma	terial,	Weight, Sj	G AND SCR pecification	L Dean	. (64.)	T	- (64.)											
<u> </u>			thod of A	CK STU		n (ft.)		o (ft.)											
6		_		: T+C		face	1.5	16			/								
				AR FT				<u> </u>		_	1.		A MARINE SALE				••		
			STED	1800 As	1.					111			1 HA HA HA			ł			
			srm	_									N HALIMAN	Ù	_				
		RA	PUBL	IC STR	14		_ 				BN	4 6							
																		ĺ	
									/	. TYPE (קרו קר		C MACH		USED			[
											JF DK		I f	Rotary	y-hami	mer	i		
8. GR	OUT OR	OTHE	R SEAL	ING MATER	UAL			1		🕅 🔁 Ca	ble To	юf		w/drii mud 8	ling k air			Jetting	with
		K	inđ		Fron	a (ft.)		o (ft.)			tary-a	lr 9 muđ		Rotary	y-hami	mer			Alr
		Λ					4												Water
		Po	0016	O CLA	Y Surf	face		20		mu	d	v/drilllr		Rever	se Rot	ary			
									We	ell constru	ction	comple	ted on _		1	1	19 1		19 <u>78</u>
11.	MISCE	LLAN	IEOUS I	DATA			1					-			[K al	bove fin	al grade	
	Yield Te	<u>est:</u>	<u> </u>		- Hrs. at		0	GP	M We	ell is termi	nated		8	inche	s <u>[</u>	<u> </u>	elow	ai grau	
	Depth fr	tóm su	rface to n	ormal water	level	30		Ft.	Wei	ll disinfect	ted up	on com	pletion		C	ХД Y	es 🗆 No	•	
<u> </u>	Depth o	f water	level								-				- -		·		
	when	pumpir	ųg <u> </u>	<u>70</u> F	L. Stabi	lized	KAJ YO		No We	ll scaled w	atertij	ght upo	n compl	etion	4	χ]γ /	es LI No)	
		-	ent to _	<u> </u>	AUIS								itory on		·& /	/ /	8 /		19 <u>78</u>
Your finishi	opinion c ing the w	ell, am	ount of e	pollution h ement used i	nzards, inf in grouting	ormatio , blastic	n conc ng, etc.	ærning (., should	anneult i be give	n on revei	rse sid	, and di e.	ava relati	ng to i	nearby	∕ wella	s, screens, st	ais, me	
Signati	ure /)			,,		,		Co	mplete Ma	ail Ad	dress				~			_ _
	\mathcal{N}		\mathcal{A}	n	1 .					-		25	SHO	Rr	- 0	K	54115		
Z	\$ 10	~	54	/ 14	un fi	enitere	d Well	Drifler				02	PERE	. (\mathcal{M}	, 4	54115		
				E E															

Well Construction Report WISCONSIN UNIQUE WELL NUMBERRQ188						88	Drinking W Departmen Madison W	t of Natura				-om 33	00-077A
Property Owner	MIKE HA	VERKORN CO	ONST			one #	1. Well Loc	ation			Fire	# (if a	vail.)
Mailing	1601 BR	OOKFIELD AV	/E		(920	0)434-3983	Village of H	OWARD					
Address			-				Street Addr	ess or Roa	d Name a	and Numbe	r		
City GRE	EEN BAY			State WI	Zip Code	54313	1681 BROC	KFIELD A	٧E				
County		Co. Permit #	Notificatio	on #	C	Completed	Subdivision	Name			Lot #	Blo	ock #
Brown					0	7-01-2003					4		
Well Cons	structor (B	usiness Name)	Lic. # F	acility ID # (Public Wells) Latitude / Lo	ongitude in	Decimal	Degree (DI	D) Met	hod C	ode
VAN DE Y	YACHT LE	O WELL DRIL	LING INC	6097				°N		٥	W GP	S008	
				١	Vell Plan App	proval #	SE	NE	Section	Township	Ra	ange	
Adduces	0050 1 101						or Govt Lot	#	3	24 N	1 2	20	E
Address		EVILLE RD 3AY WI 5431	3	ŀ	Approval Date	e (mm-dd-yyyy)	2. Well Typ	e New W	ell				
							of previous	unique well	#	con	structed in	n	
Hicap Per	rmanent W	/ell #	Common W	ell #	Specific Capa	acity	Reason for	replaced or	reconstr	ucted well	?		
					1								
3. Well se	erves 1	# of SHOP		H	licap Well ?	No							
Private,po	otable			F	licap Propert	ty? No							
Heat Exch	nange	# of drillholes		F	licap Potable	∋?	Construction	n Type Dr	illed				
4. Potenti	ial Contan	nination Sour	ces - ON RE		1	-							
5. Drillho	le Dimens	ions and Cor	struction M	ethod		1	3. Geology						
Dia. (in.)	From (ft.)	To (ft.) Ur	per Enlarged		Lov	ver Open G	eology	8. Geology	Type,		From	(ft.)	To (ft
9	Surface	Dr	illhole		LOV		odes	Caving/Nor	ncaving, (Color,		, ,	,
6	83	182 <u>Ye</u>	es Rotary - M	lud Circulatic	on	<u>No</u>		Hardness, SAND	eic		Sur	face	2
		<u>Nc</u>	Rotary - A	ir		Yes		CLAY			501	20	7
			Rotary - A	ir & Foam		_		HARDPAN			_	75	8
				igh Casing H	lammer			LIMESTON			_	83	140
			Reverse R	lotary		_							18
			0-1-1-1-1	Dia in i		_	- N -	SANDSTO	NF			140	10
				Bitin. o		-	- N -	SANDSTO	NE			140	
			Dual Rota	ry		-	- N -	SANDSTO	NE			140	
			Dual Rota Temp. Out	ry ter Casing _	in. dia	-	- N -	SANDSTO	NE			140	
			Dual Rota Temp. Ou Remove	ry ter Casing _		-	- N -	SANDSTO	NE			140	
6. Casing	j, Liner, So	creen	Dual Rota Temp. Ou Remove	ryter Casing d?dept	in. dia	- 9	- N -		NE	1	1. Well Is		
Dia. (in.)	Material, V	Veight, Specifi	Dual Rota Temp. Ou Remove explain on cation	ryter Casing d?dept	in. dia			Level			1. Well Is 2 in. abov	;	de
Dia. (in.)	Material, V		Dual Rota Temp. Ou Remove explain on cation	ryter Casing d?dept	in. dia th ft. (If NO) To (ft.) 8	. Static Water	Level		1		e grad	de Yes
Dia. (in.)	Material, V Manufactu NEW BLA	Veight, Specifi irer & Method CK STEEL PL	Dual Rota Temp. Our Remove explain on cation of Assembly AIN END WE	ter Casing d?dept back side)	in. dia th ft. (If NO From (ft.) Surface) To (ft.) 8	. Static Water 0 ft. below grou	Level und surface		1. D	2 in. abov	e grad	
Dia. (in.)	Material, V Manufactu NEW BLA ASTMA53	Veight, Specifi irer & Method CK STEEL PL B 18.97# PER	Dual Rota Temp. Our Remove explain on cation of Assembly AIN END WE FT WHEATL	ter Casing d?dept back side)	in. dia th ft. (If NO From (ft.) Surface) To (ft.) 8 1 8 83 P	. Static Water 0 ft. below grou 0. Pump Test	Level und surface 20 ft. below	e v surface	1. D D	2 in. abov eveloped	ve grad ? 1?	Yes
Dia. (in.)	Material, V Manufactu NEW BLA ASTMA53	Veight, Specifi irer & Method CK STEEL PL	Dual Rota Temp. Our Remove explain on cation of Assembly AIN END WE FT WHEATL	ter Casing d?dept back side)	in. dia th ft. (If NO From (ft.) Surface) To (ft.) 8 1 8 83 P 1) To (ft.) P	. Static Water 0 ft. below grou 0. Pump Test umping level 1:	Level und surface 20 ft. below GP M for 2 H	e v surface	1. D D	2 in. abov eveloped isinfected	ve grad ? 1?	Yes Yes
Dia. (in.)	Material, V Manufactu NEW BLA ASTMA53 Screen typ	Veight, Specifi Irer & Method CK STEEL PL B 18.97# PER be, material & s	Dual Rota Temp. Our Remove explain on cation of Assembly AIN END WE FT WHEATL slot size	ter Casing d?dept back side)	in. dia th ft. (If NO From (ft.) Surface) To (ft.) 8 1 2 83 P 3 To (ft.) P P	. Static Water 0 ft. below grou 0. Pump Test umping level 12 umping at 40 G umping Method	Level und surface 20 ft. below GP M for 2 H	e surface Hrs.	1. D C	2 in. abov eveloped isinfected	ve grad ? 1?	Yes Yes
Dia. (in.)	Material, V Manufactu NEW BLA ASTMA53 Screen typ	Veight, Specifi irer & Method CK STEEL PL B 18.97# PER	Dual Rota Temp. Our Remove explain on cation of Assembly AIN END WE FT WHEATL slot size	ter Casing d?dept back side)	in. dia th ft. (If NO From (ft.) Surface) To (ft.) 8 1 2 83 P 3 To (ft.) P P	. Static Water 0 ft. below grou 0. Pump Test umping level 12 umping at 40 G	Level und surface 20 ft. below GP M for 2 H	e surface Hrs.	1. D C	2 in. abov eveloped isinfected	ve grad ? 1?	Yes Yes
Dia. (in.) 6 Dia. (in.) 7. Grout of Method	Material, V Manufactu NEW BLA ASTMA53 Screen typ	Veight, Specifi Irer & Method CK STEEL PL B 18.97# PER be, material & s Gealing Materi	Dual Rota Temp. Our Remove explain on cation of Assembly AIN END WE FT WHEATL slot size al	ter Casing d?dept back side)	in. dia th ft. (If NO From (ft.) Surface) To (ft.) 8 1 2 83 p 3 To (ft.) P 9 12 12	. Static Water 0 ft. below grou 0. Pump Test umping level 12 umping at 40 G umping Method	Level und surface 20 ft. below GP M for 2 H	e surface Hrs.	1. D C	2 in. abov eveloped isinfected	ve grad ? 1?	Yes Yes
Dia. (in.) Dia. (in.) Dia. (in.) 7. Grout of Method Kind of Se	Material, V Manufactu NEW BLA ASTMA53 Screen typ or Other S ealing Mate	Veight, Specifi Irer & Method CK STEEL PL B 18.97# PER be, material & s Gealing Materi	Dual Rota Temp. Our Remove explain on of Assembly AIN END WE FT WHEATL slot size al From	ter Casing d?dept back side)	(ft.) # Sack) To (ft.) 8 1 2 83 P 3 To (ft.) P 9 12 12 5 Cement	. Static Water 0 ft. below grou 0. Pump Test umping level 12 umping at 40 G umping Method	Level und surface 20 ft. below GP M for 2 H d ? ner of need	r surface Hrs. to fill & s	1. D C	2 in. abov eveloped isinfected	e grad ? 1 ?	Yes Yes
Dia. (in.) Dia. (in.) Dia. (in.) 7. Grout of Method Kind of Se	Material, V Manufactu NEW BLA ASTMA53 Screen typ or Other S ealing Mate	Veight, Specifi Irer & Method CK STEEL PL B 18.97# PER be, material & s Gealing Materi	Dual Rota Temp. Our Remove explain on cation of Assembly AIN END WE FT WHEATL slot size al	ter Casing d?dept back side)	in. dia th ft. (If NO From (ft.) Surface) To (ft.) 8 1 2 83 P) To (ft.) P 12 s Cement Fi	. Static Water 0 ft. below grou 0. Pump Test umping level 1: umping at 40 G umping Methor 2. Notified Own	Level und surface 20 ft. below GP M for 2 H d ? ner of need	r surface Hrs. to fill & s	1. D C	2 in. abov eveloped isinfected	e grad ? 1 ?	Yes Yes Yes
Dia. (in.)	Material, V Manufactu NEW BLA ASTMA53 Screen typ or Other S ealing Mate	Veight, Specifi Irer & Method CK STEEL PL B 18.97# PER be, material & s Gealing Materi	Dual Rota Temp. Our Remove explain on of Assembly AIN END WE FT WHEATL slot size al From	ter Casing d?dept back side)	(ft.) # Sack) To (ft.) 8 1 2 83 P) To (ft.) P 12 s Cement Fi	. Static Water 0 ft. below grou 0. Pump Test umping level 12 umping at 40 G umping Methor 2. Notified Own	Level und surface 20 ft. below GP M for 2 H d ? ner of need	r surface Hrs. to fill & s	1. D C	2 in. abov eveloped isinfected	e grad ? 1 ?	Yes Yes Yes
Dia. (in.)	Material, V Manufactu NEW BLA ASTMA53 Screen typ or Other S ealing Mate	Veight, Specifi Irer & Method CK STEEL PL B 18.97# PER be, material & s Gealing Materi	Dual Rota Temp. Our Remove explain on of Assembly AIN END WE FT WHEATL slot size al From	ter Casing d?dept back side)	(ft.) # Sack) To (ft.) 8 1 8 8 9 1 7 9 9 12 12 5 Cement Fi N	. Static Water 0 ft. below grou 0. Pump Test umping level 12 umping at 40 G umping Methor 2. Notified Own	Level und surface 20 ft. below GP M for 2 H d ? her of need Well(s) as r	r surface Hrs. to fill & s needed?	1 D C eal ?	2 in. above veloped isinfected apped ?	e grad ?]?	Yes Yes Yes
Dia. (in.) 6 Dia. (in.) 7. Grout of Method	Material, V Manufactu NEW BLA ASTMA53 Screen typ or Other S ealing Mate	Veight, Specifi Irer & Method CK STEEL PL B 18.97# PER be, material & s Gealing Materi	Dual Rota Temp. Our Remove explain on of Assembly AIN END WE FT WHEATL slot size al From	ter Casing d?dept back side)	(ft.) # Sack) To (ft.) 8 1 8 8 9 1 7 9 9 12 12 5 Cement Fi N	. Static Water 0 ft. below grou 0. Pump Test umping level 1: umping at 40 G umping Method 2. Notified Own illed & Sealed N /APP 3. Constructor /	Level und surface 20 ft. below GP M for 2 H d ? her of need Well(s) as r	r surface Hrs. to fill & s needed?	1 D C eal ?	2 in. abov reveloped isinfected apped ?	e grad ?]?	Yes Yes Yes No
Dia. (in.) Dia. (in.) Dia. (in.) 7. Grout of Method Kind of Se	Material, V Manufactu NEW BLA ASTMA53 Screen typ or Other S ealing Mate	Veight, Specifi Irer & Method CK STEEL PL B 18.97# PER be, material & s Gealing Materi	Dual Rota Temp. Our Remove explain on of Assembly AIN END WE FT WHEATL slot size al From	ter Casing d?dept back side)	(ft.) # Sack) To (ft.) 8 1 8 8 9 1 7 8 8 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	. Static Water 0 ft. below grou 0. Pump Test umping level 1: umping at 40 G umping Method 2. Notified Own illed & Sealed N /APP 3. Constructor /	Level und surface 20 ft. below 3P M for 2 H d ? her of need Well(s) as r	r surface Hrs. to fill & s needed?	1 D C eal ?	2 in. above eveloped isinfected apped ?	e grad ? 1? Date S	Yes Yes Yes No

4a. Potential Contamination So			ed in floodpla					
Туре		Qualifier	Distance	Туре			Qualifier	Distance
Building Overhang					ewer - San or Sto			100
Clearwater Sump			30		Drain to Clearwa	ater		10
				Sewer - Bui	lding Sanitary			20
Comment:								
Water Quality Text:								
Water Quantity Text:								
Difficulty Text:								
Created On: 10-08-2003	Created by:	WELL CONST	LOAD L	Ipdated On:	02-18-2008	Updated by:	HERSHS	

		ion Report		R	WI4	42		Drinking V Departmer Madison V	nt of Natu				Form	3300-077A
Property Owner	VDY Prop	perties				Phone # 920)434-29	20	1. Well Loo	cation			F	Fire # (it	avail.)
Mailing	2352 Line	eville Rd			(3	20)434-29	09	Town of H	OWARD					
Address								Street Add	ress or Ro	ad Name a	and Numb	ber		
City Gre	en Bay			State WI	Zip Coo	le 54313		BROOKFIE	ELD					
County		Co. Permit #	Notificatio	n #		Complete	b	Subdivision	n Name			Lot #	ŧ E	Block #
Brown			25239350)		03-06-200	7							
Well Cons	structor (Bu	usiness Name)	Lic. #	Facility ID	# (Public W	ells)	Latitude / I	_ongitude i	n Decimal	Degree (DD) I	Method	Code
VAN DE `	YACHT LE	O WELL DRIL	LING INC	6097				44.58348	°N	-88.050	015	°W	GPS00	6
					Well Plan /	Approval #		SW	NE	Section	Townsh	· .	Range	
Address	2352 LIN	EVILLE RD			A	-1		or Govt Lot		3	24	N	19	E
	GREEN E	3AY WI 5431	3		Approval L	ate (mm-dd-y	ууу)	2. Well Typ					ad in	
Licon Do	rmonont M	oll #	Common W	oll #	Specific Cr	nacity		of previous				onstructe	eu in	
	rmanent W	ell #	Common w		Specific Ca 0.2	apacity		Reason for	replaced	Direconstr	ucted wei	1 1		
3. Well se		# of test well			U.2 Hicap Well	? No								
		# OI LESL WEII	Test Well			erty? No								
Private,po		# of drillholes	Test Wen					Constructio		Vrilled				
	-	nination Sour			Hicap Pota	DIE ?		Constructio	лтуре с	mieu				
					DE			0						
		ions and Cor						Geology	0 Ocale				· · · · · · (ft)	T = /4
Dia. (in.) 9	From (ft.) Surface		per Enlarged		L	ower Open. Bedroc		ology des	8. Geolog Caving/N	gy Type, oncaving,	Color,	F	rom (ft.)	To (ft.
9	Sunace 81	202 Ye	s Rotary - M	ud Circulati	on	No			Hardness	, etc			o (
0	01	<u>Nc</u>	Rotary - Ai	r		Yes	-	- S - - C -	Sand				Surface	
		No	Rotary - Ai	r & Foam		<u>No</u>	_	- Z -	Clay Clay & Gr	avel		_	15 60	
		<u>Nc</u>	Drill-Throu	gh Casing I	Hammer		-	- P -	Hardpan	avei		_	75	
		<u>Nc</u>		-			-	- L -		e/Dolomite	;		80	
		<u>Nc</u>	-	Bitin. y		<u>No</u>	-	- N -	Sandston				85	9
		No		er Casing _			-	- L -	Limestone	e/Dolomite)		90	150
		No		0 -	oth ft. (If NO		-	- N -	Sandston	е			150	202
			explain on	back side)										
6. Casing	g, Liner, So	creen						Static Wate				11. We	ll Is	
		Veight, Specifi			From	ft.) To (ft.		ft. below gro		e		12 in. a	bove g	ade
		rer & Method					-	Pump Test				Develo	oed?	Yes
		steel plain en wheatland pip		n a 53b 18	3 Surfa	ice 8	Pur	mping level ?	120 ft. belo	w surface		Disinfe	cted ?	Yes
Dia. (in.)	Screen typ	e, material &	slot size		From	ft.) To (ft.) Pur	nping at 10	GP M for 2	Hrs.		Capped	1?	Yes
							Pur	mping Metho	od ?					
7. Grout	or Other S	ealing Materi	al				12.	Notified Ow	ner of nee	d to fill & s	eal?			
Method														
Kind of Se	ealing Mate	erial	From	(ft.) To	(ft.) # Sa	cks Cemen								
Drill Slurr	у		Surf	ace	81			ed & Sealed	Well(s) as	needed?				No
							n/a							
							12	Constructor	/ Supervis	ory Driller	Lic #	ŧ	Date	Signed
							TL\		, cupervis				_	3-2007
									or		Lies	r Rog #	_	
								I Rig Operat	01			or Reg #	_	e Signed
							SC						03-1	3-2007

4a. Potential	Contamination S	ources	Is the well located in floor	dplain ? <u>No</u>			
Comment:							
Water Quality	y Text:						
Water Quant	tity Text:						
Difficulty Tex	d:						
Created On:	04-05-2007	Created by:	WELL CONST LOAD	Updated On:	04-05-2007	Updated by:	WELL PROCESS

Well Construction Report WISCONSIN UNIQUE WELL NUMBER						298		Drinking Water and Groundwater - DG/5 Department of Natural Resources, Box 792 Madison WI 53707				Form 3	3300-077A	
Property RON SINCLAIR CONSTRUCTION Phone Owner								1. Well Location					Fire # (if avail.)	
Mailing 2989 YELLOW JASMINE WAY								Town of HOWARD						
Address								Street Address or Road Name and Number						
City GREEN BAY State WI Zip Code 5431						3	BROOKFIELD							
County		Co. Permit #	Notification	n #	Completed			Subdivision Name Lu				Lot	# B	lock #
Brown	wn 7444805004 11-15-201					2018								
Well Constructor (Business Name) Lic. # Facility ID # (Public Weill)							: Wells)							Code
VAN DE YACHT LEO WELL DRILLING INC 6097								44.5876 °N -88.0585 °W				°W	GPS008	
W					Well Plan Approval #			SW NE Section Township				ip	Range	
Address 1267 LAKEVIEW DR								or Govt L		3	24	N	20	E
GREEN BAY WI 54313 Approval Date (mm-dd-						dd-yyyy)								
								of previous unique well # constructed in						
Hicap Pe	rmanent W	ell #	Common We		Specific C	apacity	pacity Reason for replaced or reconstructed well ?					11 ?		
					0.4									
3. Well s	erves 1	# of BUILDIN	3		licap Wel		No							
	Private,potable Hicap Property ? No													
Heat Exc	hange	# of drillholes		H	licap Pota	able?	No	Construction Type Drilled						
4. Potent	tial Contan	nination Sour	ces - ON REV	ERSE SIE	DE									
5. Drillho	ole Dimens	ions and Cor	struction Me	thod			8	. Geology						
. ,	ia. (in.) From (ft.) To (ft.) Upper Enlarged Lower Oper 9 Surface 83							eology 8. Geology Type, odes Caving/Noncaving, Color, Hardness, etc				F	From (ft.)	To (ft.)
6	Yes Rotary - Mud Circulation No					<u>o</u>	S S-SAND				Surface	15		
No Rotary - Air						<u>es</u>	C		C-CLAY			15		
	<u>No</u> Rotary - Air & Foam							P	P-HARD	P-HARDPAN			70	83
No Drill-Through Casing Ham					lammer			L	L-LIMES	L-LIMESTONE/DOLOMITE			83	140
	No Reverse Rotary No Cable-tool Bitin. dia.					dia <u>No</u>		N	N-SANDSTONE				140	182
		<u>Nc</u> Nc				<u>No</u>	_							
						<u>1 N</u>	<u> </u>							
<u>No</u> Temp. Outer Casingin. dia <u>No</u> Removed?depth ft. (If NO														
			explain on b	back side)	`									
6. Casing	g, Liner, So	creen					9.	0. Static Water Level 11				11. W	I. Well Is	
Dia. (in.)		Veight, Specifi			From	From (ft.) To (ft.)		0 ft. below ground surface 12				12 in.	in. above grade	
	Manufacturer & Method of Assembly					10	10. Pump Test De				Develo	veloped? Yes		
6	6 NEW BLACK STEEL PLAIN END WELDED ASTM A 53B 18 97# PER FT IPSCO PIPE			Surfa	ace	⁸³ Pu	umping level 100 ft. below surface				Disinfe	infected ? Yes		
Dia. (in.)				From	(ft.) To	(ft.) Pu	Pumping at 40 GP M for 2 Hrs.			Cappe	ed ?	Yes		
		-,						Pumping Method? Airlift						
7. Grout	or Other S	ealing Materi	al				12	. Notified C	wner of nee	d to fill & s	eal ?			No
Method		J												
	Kind of Sealing Material From (ft.) To (ft.) # Sacks Cement													
				83		Filled & Sealed Well(s) as needed?						No		
							13	. Constructor / Supervisory Driller Lic #			4	Date Signed		
							ΤL	_V 6378			8	11-16-2018		
								Drill Rig Operator Lic or Re			or Reg	# Date	Signed	

4a. Potentia	I Contamination	Sources	Is the well located in f	loodplain ? <u>No</u>				
				Туре			Qualifier	Distance
				Septic or He	olding, or POWT	S Tank	=	35
Comment:								
Water Quali	ty Text:							
Water Quan								
Difficulty Te								
Difficulty 10.	λι.							
Created On:	11-16-2018	Created by:	EVANDEYACHT	Updated On:	11-28-2018	Updated by:	WELL PROC	ESS