

SITE INVESTIGATION REPORT AND REMEDIAL ACTION OPTIONS EVALUATION

Prepared for:
Millennium Forms
550 E Centralia Street
Elkhorn, WI 53121
BRRTS No. 02-65-587693

The Reese Group, LLC
1433 N Water Street, Ste 400
Milwaukee, WI 53202

Page No. **Table of Contents** 1 **EXECUTIVE SUMMARY GENERAL INFORMATION** 1.0 4 1.1 Purpose 4 4 1.2 Site Investigation Contacts 1.3 Site Location and Legal Description 5 2.0 **BACKGROUND INFORMATION** 6 6 Site Background 3.0 **INVESTIGATION METHODS** 9 3.1 Soil Assessment 9 3.1.1 Soil Boring Installation 9 9 3.1.2 Field Screening 3.1.3 Soil Sample Collection 9 3.2 **Groundwater Assessment** 10 3.2.1 10 **Groundwater Sample Collection** 3.3 Soil Vapor Assessment 11 4.0 SAMPLING AND ANALYSIS REQUIREMENTS 12 4.1 Soil 12 4.2 12 Groundwater SITE INVESTIGATION RESULTS 5.0 14 5.1 14 **Physical Conditions** 5.2 Site Hydrogeology 14 5.3 **Laboratory Analytical Results** 14 5.3.1 Soil Analytical Results 14 **Groundwater Analytical Results** 15 5.3.2 6.0 FIELD INVESTIGATION 17 17 6.1 Conceptual Site Model 6.2 Potential Contaminant Migration Pathways and Receptors 18 19 6.3 Field Measurements **Hydraulic Conductivity** 19 6.4 20 6.5 **Estimate of Contaminant Mass** 20 6.6 Management of Investigative Wastes 21 6.7 Sequence of Investigative Activities 7.0 REMEDIAL ACTION OPTIONS EVALUATION 22

8.0	CONCLUSIONS AND RECOMMENDATIONS	25
9.0	SIGNED STATEMENT	26
10.0	LIMITATIONS ON REPORT USE	27
	<u>FIGURES</u>	
	Figure 1 Site Location Map Figure 2 Detailed Site Map Figure 3 Summary of Soil Residual Contaminant Level Exceedances Figure 4 Summary of Groundwater Quality Standards Exceedances Figure 5 Groundwater Flow Direction Figure 6 Geologic Cross Section A – A' Figure 7 Geologic Cross Section B – B'	
	<u>Tables</u>	
	 Table 1 Summary of Detected Constituents in Soil Table 2 Summary of Detected Constituents in Groundwater Table 3 Groundwater Elevations and Water Quality Measurements Table 4 Hydraulic Conductivity Measurements and Calculations 	
	<u>Appendices</u>	
	Appendix A Soil Boring Logs and Borehole Abandonment Forms Appendix B Monitoring Well Construction, Development and Abandonment Forms Appendix C Soil Laboratory Analytical Results Appendix D Groundwater Laboratory Analytical Results Appendix E Site Investigation Photographic Documentation	

EXECUTIVE SUMMARY

The Reese Group LLC completed Site Investigation activities at 550 East Centralia Street, Elkhorn, Walworth County, Wisconsin (Property or Site) to comply with Ch. NR 716 Wisconsin Administrative Code requirements.

Purpose

The primary purpose of the Site Investigation activities was to define the degree and extent of constituents of concern in soil and groundwater at the Property, if appropriate, as well as recommending future actions to obtain closure from the Wisconsin Department of Natural Resources per the Ch. NR 700 Wisconsin Administrative Code rule series.

Site Investigation

A Site Investigation was conducted at the 550 East Centralia Street property which included collecting samples of soil and groundwater for laboratory analyses. The following sections summarize the results, conclusions and recommendations of the investigation activities completed to date.

The following scope of services was performed as part of the site investigation activities and included:

- Prepared and implemented a site-specific health and safety plan in accordance with 29 CFR 1910 for field activities.
- Both direct-push and hollow-stem auger drilling methods were employed as the methodology for subsurface soil characterization and soil and groundwater sample collection.
- Field screened soil samples for the presence of volatile organic vapors using a photoionization detector.
- Described characteristics of samples collected from the soil borings, which included physical appearance, texture, water content, and odor.
- Advanced eleven hollow stem auger soil borings (TRG SB-5 through TRG SB-15) to depths of 15 to 16 feet below ground surface.
- Constructed five Ch. NR 141-compliant monitoring wells (MW-4, MW-5, MW-6, MW-7, and MW-14) and six temporary monitoring wells (TRG TW-9, TRG TW-10, TRG TW-11, TRG TW-12, TRG TW-13, and TRG TW-15) to evaluate groundwater quality.
- Conducted groundwater sampling activities during October 2021 and March 2022.

Soil Investigation Results

- Subsurface soils at the Property consists of native silt, sand, and clay till units.
- Elevated concentrations of metals including hexavalent chromium were detected above

Wisconsin Department of Natural Resources Groundwater Protective Residual Contaminant Levels and/or Industrial Direct Contact Residual Contaminant Levels at boring locations TRGSB-1, TRG SB-3, TRG SB-5, TRG SB-8, TRG SB-9, TRG SB-10, TRG SB-13, TRG SB-14, and TRG SB-15.

Groundwater Investigation Results

- Groundwater levels were recorded at depths ranging from 3 to 10 feet below ground surface in October 2021 and 1 to 6 feet below ground surface in March 2022.
- Shallow groundwater flow is toward the south / southwest toward Jackson Creek and Delavan Lake.
- Results of groundwater laboratory analyses indicated detections of the following constituents above their respective NR 140 Preventive Action Limit and/or Enforcement Standard: Total Chromium at TRG MW-4, TRG MW-5, TRG MW-6, TRG MW-7, TRG TW-9, TRG TW-11, TRG TW-12, TRG TW-13, TRG TW-15.
- In general, wherever there were exceedances of total chromium in the groundwater samples
 collected during the Phase II ESA and/or SI activities, there were similar concentrations of
 hexavalent chromium. This indicates that the concentrations reported for total chromium are
 comprised mostly of hexavalent chromium.

Soil Vapor Investigation Results

As there were no detections of volatile organic compounds in soil or groundwater samples collected during Site Investigation activities, the soil vapor pathway was not assessed.

Remedial Action Options Evaluation

Based on a remedial action evaluation completed by TRG, Remedial Alternative #3 is recommended to address the removal of the source area(s), eliminate the exposure pathway(s) of contaminants of concern identified across the Site, and facilitate case closure for the Property. This alternative is effective in removing the source area and is moderately easy to implement. Additionally, the cost of implementing this alternative is significantly lower than Alternate #3.

Alternative #3 is - Removal of Impacted Concrete within the historical Trench System with Off-site Disposal, Treatment of Hexavalent Chromium of Soil and Groundwater in the Source Area utilizing Chemical Reduction

Conclusions and Recommendations

- Total chromium and hexavalent chromium were identified at concentrations greater than applicable regulatory standards in soil and groundwater samples collected at the Site.
- Groundwater Enforcement Standard exceedances are limited to total chromium in the area surrounding the former trench and the chromium plating process tank.

- Soil Industrial Direct Contact Residual Contaminant Level exceedances for hexavalent chromium include boring locations adjacent to the former trench and the existing process tank.
- Low level concentrations of constituents of concern in soil and groundwater are likely a result of the historical and current manufacturing activities at the site.

Based on the findings presented herein the following recommendations are made pertaining to the subject property:

- No additional site investigation activities be completed at the 550 E Centralia Street Property.
- Removal of Impacted Concrete within the historical Trench System with Off-site Disposal, Treatment of Hexavalent Chromium of Soil and Groundwater in the Source Area utilizing Chemical Reduction.
- Request Case Closure.

1.0 GENERAL INFORMATION

The Reese Group, LLC (TRG) prepared this Site Investigation Report (SIR) on behalf of Millennium Forms for the 550 East Centralia Street property (BRRTS No. 02-65-587693), hereafter referred to as Site or Property. The Site location and local topography is illustrated on **Figure 1.**

1.1 Purpose

The primary purpose of the Site Investigation activities was to define the degree and extent of constituents of concern in soil and groundwater at the Property as well as recommending future actions to obtain Site closure from the Wisconsin Department of Natural Resources (WDNR) per the Ch. NR 700 Wisconsin Administrative Code (WAC) rule series.

1.2 Site Investigation Contacts

Site Owner/Responsible Party: Millennium Forms

Contact: Mr. Walter Hauk

550 E Centralia St. Elkhorn, WI 53121

Phone:

Email: wh@millenniumforms.com

Environmental Consultants: The Reese Group LLC (TRG)

Contact: Christine Reese

1433 North Water St., Suite 400

Milwaukee, WI 53202 Phone: (414) 719-1477

Email: treese@the-reese-group.com

Contractors: On Site Environmental Services, Inc.

PO Box 280

Sun Prairie, WI 53590 Phone: (608) 837-8992

Email: onsiteenv@gmail.com

Pace Analytical Services Contact: Brian Basten

1241 Bellevue Street, Suite 9

Green Bay, WI 54302 Phone: (920) 321-9411

Email: Brian.Basten@pacelabs.com

Eurofins

Contact: Sandra Fredrick 2417 Bond Street

University Park, IL 60484 Phone: (920) 261-1660

Email: sandie.fredrick@testamericainc.com

1.3 Site Location and Legal Description

The Property is located at:

Southeast ½ of the Northwest ¼ of Section 6, Township 2 North Range 17 East in the City of Elkhorn, Walworth County, Wisconsin. Lat/Long coordinates for the Property are Latitude 42.6657625°, Longitude -88.5329798°.

The legal description of the Site is described as follows:

Tax IDs (Address)	Parcel Description	Lot Size (acres)
YVSE00009K and YVSE00004D1	PT NE 1/4 & NW 1/4 SEC 6 T2N R17E DESC AS: COM SW COR HARMONY ACRES SUB 1ST ADD, S1D27'W 180' TO INTER OF E LN GETZEN ST & N LN CENTRALIA ST, SELY ALG N LN CENTRALIA ST 1050.12' TO POB, N0D29'30"W 190.50', N88D04'50"E 433.80' TO W LN PROPOSED FRONTAGE RD, S27D27'30"W 344.75' TO N LN CENTRALIA ST, N69D43'10'W 291.10' TO POB. 2.167 A CITY OF ELKHORN ASSESSED BY DEPT OF REVENUE PT NW 1/4 SEC 6 T2N R17E DESC AS: COM SW COR HARMONY ACRES SUB 1ST ADD, S01D29'W 179.68', S68D56'10"E 707.50' TO POB, S68D56'10"E 341.50', N0D17'05" E 553.81' TO SE COR HARMONY ACRES SUB 1ST ADD, N89D50'W 195.82', S16D18'18"W 449.64' TO POB. 3 A.M/L CITY OF ELKHORN ASSESSED BY DEPT OF REVENUE	4.98

The Property consists of two contiguous parcels totaling approximately 5 acres. Surface cover at the Property consists of an office building and a manufacturing facility surrounded by an asphalt paved parking lot. The land surface surrounding the paved areas is flat and naturally vegetated and is approximately 1,000 feet above mean sea level. The Site is bordered to the south by East Centralia Street and beyond by Brogan & Patrick Manufacturing Corporation; to the west by a vacant commercial facility; to the north by an apartment complex; and to the east by a residential neighborhood. A Detailed Site Map depicting major site features is presented as **Figure 2**.

2.0 BACKGROUND INFORMATION

The following sections provide known information on the background and history of the 550 East Centralia St property.

2.1 Site Background

TRG conducted a review of historical environmental site investigation and remediation reports that were provided by the client and/or available on the WDNR BRRTS on the Web online database for contaminated sites in the State of Wisconsin. Three previous BRRTS cases and one Open ERP case were identified for the subject property including:

- **1. 04-65-044291 550 E CENTRALIA ST [HISTORIC SPILL]** Closed Historic SPILL case (Closed in 1989). Spill of paints, inks, and dyes reported at Elkhorn Webpress in 1989 due to after burner failure.
- **2. 02-65-152260 ELKHORN WEBPRESS INC** Closed ERP case (Closed in 1997). Spill of unknown amount of lubricating oil/engine oil in 1997. Braun Intertec Corporation conducted a Phase 1 Environmental Site Assessment (ESA) and limited remedial investigation at the Elkhorn Webpress Site located at 550 E Centralia St in Elkhorn, WI in June of 1997. During the Phase 1 ESA, two areas of surface staining were observed near down spouts and beneath a former discharge line from air compressors.

A total of four soil samples were submitted for laboratory analytical analysis from previous excavation and geoprobe/investigation activities conducted by Braun Intertec Corp. from May to July 1997. Polynuclear Aromatic Hydrocarbons (PAHs) and diesel range organics (DRO) were detected in soil samples collected on site ranging from 0 to 6 feet below ground surface (ft bgs). DRO was detected at 230 milligrams per kilogram (mg/Kg), which exceeded the WDNR Generic Residual Contaminant Level (RCL) of 100 mg/Kg. A small remedial excavation approximately 3 ft wide by 4 ft deep was conducted in the area of the stained soil.

- **3. 04-65-552088 MILLENIUM TILES SPILL** Closed SPILL case (Closed in 2008). Spill of chromic and sulfuric acid on site near the northeast corner of the building. Spill cleanup and remediation was conducted on site by North Shore Environmental Construction, Inc. The liquid mixture had spilled inside the building and flowed out of the northeastern corner of the building under the walls and the door of the facility. Spilled liquid was observed running off the edge of the building floor from under the walls and onto the grass, which made its way to a swale located approximately 10 to 20 ft from the building. Impacted soil excavation included the removal of approximately 120 tons of topsoil and clay from the 0-1' bgs interval near the northeast corner of the building. The soil was temporarily stockpiled on site, sampled for hexavalent chromium, and transported to a landfill for disposal. A total of eight (8) soil samples (MT-1 through MT-8) were collected from approximately 0-1' bgs. Hexavalent chromium concentrations ranged from 12.4 to 91.4 mg/Kg in the verification soil samples collected from the excavation area.
- **4. 02-65-587693 MILLENNIUM FORMS LLC** Open ERP case. This ERP case was opened in April 2021 in response to the discovery of chromium soil contamination during a Phase 2 ESA conducted by The Reese Group, LLC. The results of the Phase 2 ESA and the recommendations are summarized below.

Soil

- Polynuclear Aromatic Hydrocarbons (PAHs) were detected at concentrations below regulatory standards at boring location TRG SB-1.
- Volatile Organic Compounds (VOCs) were not detected in any soil sample.
- Hexavalent chromium exceeded its Non-Industrial Direct Contract (DC) Residual Contaminant Level (RCL) in two of the three soil boring locations including TRG SB-1 and TRG SB-3.

Groundwater

- VOCs, Resource Conservation and Recovery Act (RCRA) Metals and/or Hexavalent Chromium were detected in samples collected from each temporary monitoring well installed at the Site.
- PAHs were not detected in any groundwater sample.
- Arsenic and/or lead concentrations exceeded their respective PALs at sample locations TRG TW-1 and TRG TW-2.
- Chromium (total) exceeded its PAL at sample location TRG TW-2. Chromium exceeded its ES at TRG TW-3.
- Hexavalent chromium is an oxidation state of total chromium. The chromium concentrations reported in TRG-TW-2 and TRG-TW-3 are likely comprised of all hexavalent chromium.
- pH readings are elevated in samples collected from TRG TW-2 and TRG TW-3 ranging from 8.0 to 9.9.
- Groundwater (GW) RCL exceedances for Vinyl Chloride were likely a result of a historical release(s) to the environment from past operations and/or historical use of solvents by former industries at the Site. The total chromium/hexavalent PAL and ES exceedances are likely related to current industrial operations.

Recommendations

- Submit a Notification of Hazardous Substance Discharge (Form 4400-225 (R02/20) to the WDNR.
- Conduct a Site Investigation to determine the magnitude and extent of contamination.

According to the Walworth County Land Information Parcel Report, the Property has been developed for industrial/commercial use for over 40 years. Based on information obtained from the Walworth County Interactive Mapping website (November 16, 2021), the Site is zoned I, Industrial. Improvements to the 550 E Centralia Street Property include a one-story office building connected to a manufacturing facility with a combined footprint of approximately 72,000 square feet.

Historically, the Property was utilized as an industrial operation primarily focused on printing operations for former businesses including Elkhorn Webpress Inc. Currently, the property is utilized as an industrial manufacturing facility specializing in production and distribution of chrome-plated tiles for residential and

industrial buildings. Per the United States Department of Agriculture's Natural Resources Conservation Service (NRCS) online web soil survey map, soils in the area of the Site have general characteristics of being poorly drained Pella silt loam, which is described as silty glaciofluvial deposits over calcareous lacustrine deposits and/or calcareous loamy till. According to Southeast Wisconsin Regional Planning Commission (SEWRPC), the Silurian-age Dolomite bedrock in the vicinity of the Property lies approximately 150 to 200 feet below the surface. Groundwater is contained in the native till and dolomite bedrock units. The nearest surface water body is Jackson Creek, located approximately 1.5 miles south of the Site.

3.0 INVESTIGATION METHODS

3.1 Soil Assessment

3.1.1 Soil Boring Installation

Four soil borings TRG SB-4, TRG SB-5, TRG SB-6, and TRG SB-7 were advanced by On-Site Environmental Services, Inc. using direct-push drilling methods on October 12 and 13, 2021. Eight additional soil borings including TRG SB-8, TRG SB-9, TRG SB-10, TRG SB-11, TRG SB-12, TRG SB-13, TRG SB-14, and TRG SB-15 were advanced by On-Site Environmental Services, Inc. using direct-push drilling methods on March 24, 2022. The soil types were described using the Unified Soil Classification System (USCS) American Society for Testing and Materials (ASTM 0-2488-75) and Munsell Color Classification System.

All probe drilling rods, and soil sampling equipment were decontaminated prior to arrival on site and between soil boring locations. Sampling equipment was decontaminated with an $Alconox^{TM}$ equivalent wash followed by clean tap water or distilled water rinses.

3.1.2 Field Screening

Portions of the soil from approximately every 2-foot interval of subsurface were field screened for the presence of volatile organic compounds (VOCs) using a Photoionization Detector (PID) calibrated to a 100-parts per million Isobutylene calibration standard. Approximately 3 to 6 inches of soil core from each target depth interval was placed into a Zip-Lock bag, sealed, labeled, and stored for a period of approximately one-half hour. The samples were assessed by piercing the side of each Zip-Lock bag with the tip of the PID probe and the maximum meter reading recorded for each sample. The results were recorded in instrument units (i.u.) and reported on the soil boring logs (**Appendix A**).

3.1.3 Soil Sample Collection

Soil samples were collected at approximately two-foot intervals from each borehole using standard split-barrel sampling techniques in accordance with the American Society for Testing and Materials (ASTM) Standard Method for Penetration Test and Split-Barrel Sampling of Soil (ASTM Method D1586-11; ASTM, 2011). Soil at each interval was placed into a Zip-lock bag for field screening. Soil from each sample interval was split into subsamples for geologic/lithologic classification (percentages of gravel, sand, silt, and clay), visible layering, evidence of non-native fill/anthropogenic materials (with estimated percentages of these materials contained in the soil matrix), indications of chemical or other staining, odors, other distinctive features, field headspace analysis, and possible laboratory analysis.

Sampling locations were selected to provide a reasonable estimate as to the degree and vertical/horizontal extents of the impacted area(s) and ability to provide data for groundwater flow characteristics.

Borehole logs were prepared and included the depth and thickness of each soil stratum; a description of each stratum including color, USCS classification, soil moisture density or consistency; olfactory observations; depth interval from which samples were collected; sample number and sample recovery;

field screening results; samples selected for laboratory analysis; and the depth at which groundwater was encountered during drilling. Soil samples submitted for analysis were immediately placed into laboratory-supplied containers, preserved, and stored on ice.

After field screening, selected retained soil samples were submitted to a WDNR-certified laboratory for analysis. Soil samples were selected based on soil screening data and/or the depth of soil/water interface.

Wisconsin Department of Natural Resources (WDNR) Soil Boring Logs (WDNR Form 3300-5) are included in **Appendix A**.

3.2 Groundwater Assessment

3.2.1 Groundwater Sample Collection

Five soil borings (TRG SB-4, TRG SB-5, TRG SB-6, TRG SB-7, and TRG SB-14) were converted to Ch. NR-141-compliant groundwater monitoring wells. Each monitoring well consisted of a 10-ft, 2-inch diameter, 0.01-inch machine slotted, polyvinyl chloride (PVC) well screen, placed so that it intersected the groundwater table. The bottom of the well screens was set at approximately 15 ft bgs. A 2-inch diameter threaded joint, solid PVC riser pipe extended from the screen to approximately three inches bgs and was fitted with a water-tight locking cap. A flush-mount protective casing was placed over the PVC pipe. The protective casing was placed in a concrete pad raised above the surrounding grade, sloping away from the casing. Six soil borings (TRG SB-9, TRG SB-10, TRG SB-11, TRG SB-12, TRG SB-13, and TRG SB-15) were converted to temporary monitoring wells. Each temporary monitoring well consisted of a 10-ft, 1-inch diameter, 0.01-inch machine slotted, PVC well screen, placed so that it intersected the groundwater table. The temporary wells were also set at approximately 15 ft bgs.

The filter pack between the PVC screen and outer wall of the borehole was backfilled with a commercially packaged medium size grade sand from the bottom of the borehole to approximately six inches above the screened portion of the well. A fine sand filter pack approximately six inches to two feet thick was placed above the medium sand. A chipped bentonite annular space seal was placed from the top of the fine sand filter pack to 1-ft bgs.

The wells were developed to remove debris and sediment produced by construction and to clear the screen slots. The wells were developed by surging and bailing with disposable plastic bailers and in general accordance with chapter NR 141 of the WAC. Well development consisted of emptying each well of water a minimum of 10 times, the well and filter pack volume. A peristaltic pump was used to collect groundwater samples from each well. The groundwater samples were transferred to laboratory-supplied containers, stored on ice, and submitted to a WDNR-certified laboratory for analysis.

TRG followed proper chain-of-custody procedures from sample collection to laboratory analysis. Each sample was identified and labeled with a field sample identification number consisting of a sample location identifier and date collected. The drilling, monitoring well construction/development, and soil/groundwater sampling were documented in the field by TRG using WDNR forms (**Appendix B**).

The elevation and horizontal location of each groundwater monitoring well were surveyed with respect to a known or designated benchmark on the Property. Elevations of the ground surface and top of the PVC well casing were surveyed. The depth to groundwater was measured with a hand-held electric water level indicator.

3.3 Soil Vapor Assessment

Based on the results of the investigation activities conducted, no VOCs were detected in soil or groundwater. As such, a vapor intrusion assessment was not conducted.

4.0 SAMPLING AND ANALYSIS REQUIREMENTS

4.1 Soil

Selection of soil samples for laboratory analysis was based upon depth below ground surface, presence of fill materials, moisture content, and field screening readings. Soil samples selected for analysis were placed directly into laboratory-supplied containers, preserved as appropriate, and immediately placed in a cooler on ice for shipping to a WDNR-certified laboratory.

The soil samples were analyzed for the following target analytes:

- Hexavalent Chromium (EPA Method 7196A) and
- Resource Conservation and Recovery Act (RCRA) Metals (EPA Methods 6010D and 7471).

All samples were submitted under proper chain-of-custody procedures to:

Pace Analytical Services, LLC 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Or

Eurofins Chicago 2417 Bond Street University Park, IL 60484

Quality Control. All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the laboratory analytical reports. Where applicable, all method detection limit (MDL) and Limits of Quantitation (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control were within established criteria except those addressed in this case narrative, a non-conformance form or properly qualified within the sample results.

Laboratory analytical reports for soil samples are contained in **Appendix C**.

4.2 Groundwater

Groundwater sample analyses included the following:

- VOCs (EPA Method 8260),
- Hexavalent chromium (EPA Method 7196/SM 3500-Cr B (Online)) and
- Dissolved RCRA metals (EPA Methods 6010D/7470).

Field sampling precision and data quality was evaluated using trip blanks and one field duplicate. One trip blank was submitted to the laboratory for VOC analysis. All samples were submitted under proper chain-

of-custody procedures to:

Pace Analytical Services, LLC. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

Eurofins Chicago 2417 Bond Street University Park, IL 60484

One groundwater sample was collected as a field duplicate at TRG MW-6. The results of the field duplicate (TRG MW-6 DUP) were compared to the results of the sample (TRG MW-6). The coefficient of variation (CV) was determined for the results of all the detections of contaminants above the laboratory MDL for TRG MW-6 and TRG MW-6 DUP. The calculated CV of the concentrations of detected contaminants ranged from 2-20%. These results indicate relatively low variability between the duplicate samples.

Quality Control

All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of the laboratory reports. All samples were analyzed within the method required hold times. The samples were prepared in accordance with EPA 3010A. All criteria were within method requirements. All analytes were below the report limit in the method blank. All laboratory control spike compounds were within QC limits. All percent recoveries and relative percent differences were within acceptance criteria. Any exceptions and/or data with qualifiers from the laboratory are listed below:

Qualifier "P4" – Sample field preservation does not meet EPA or method recommendations for this analysis. TRG MW-4, TRG MW-5, TRG MW-6, TRG MW-6 DUP, and TRG MW-7 were given a P4 qualifier for dissolved mercury.

Qualifier "H1" – Analysis conducted outside the recognized holding time. TRG MW-4, TRG MW-5, TRG MW-6, TRG MW-6 DUP, and TRG MW-7 were given a H1 qualifier for method SM 3500-Cr B (hexavalent chromium).

Qualifier "D3" – Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference. TRG MW-4, TRG MW-5, TRG MW-6, TRG MW-6 DUP, and TRG MW-7 were given a H1 qualifier for method SM 3500-Cr B (hexavalent chromium).

Qualifier "H6" – Analysis initiated outside the 15-minute EPA required holding time. TRG MW-4, TRG MW-5, TRG MW-6, TRG MW-6 DUP, and TRG MW-7 were given a H6 qualifier for pH analysis.

Qualifier "HF" – Analysis initiated outside the 15-minute EPA required holding time. All groundwater samples submitted in March 2022 were given a HF qualifier for pH analysis.

Qualifier "J" – Result is less than the reporting limit but is greater than or equal to the minimum detection limit and the concentration is considered an approximate value.

Laboratory analytical reports for groundwater samples are contained in Appendix D.

5.0 SITE INVESTIGATION RESULTS

The following sections summarizes the results of the physical conditions of the Property and laboratory analysis of soil and groundwater collected as part of the Phase II Environmental Site Assessment and SI activities.

5.1 Physical Conditions

The Site has various surface covers including a concrete slab beneath the existing building and a concrete slab/asphalt paved parking lot and loading dock area on the southern portion of the Property . The area surrounding the buildings are covered with natural vegetation.

In general, the geology at the Site was comprised primarily of fine sand and silt with clay and trace amounts of small gravel. Specific soil characteristics and depths encountered during drilling and/or excavation activities are shown on the boring logs (**Appendix A**). Geologic cross sections A-A' and B-B' are included as **Figures 6 and 7**.

5.2 Site Hydrogeology

Based on the depth to groundwater measurements recorded from monitoring wells from October 2021 and March 2022, shallow groundwater depth ranges from 1 to 10 ft bgs with seasonal variations in depth. Shallow groundwater appears to flow from north / northeast to south / southwest. Regional groundwater flow was not assessed during the site investigation. Static water level measurements collected from the monitoring wells are included in **Table 3**.

5.3 Laboratory Analytical Results

The following section summarizes the laboratory analytical results for soil and groundwater samples collected during the Phase II ESA and SI activities conducted at the Property. **Table 1** provides a summary of the soil laboratory analytical results. **Figure 3** depicts the occurrence of detected Chromium / Hexavalent Chromium in site soils exceeding NR 720 Soil RCLs.

The soil laboratory analytical report and chain of custody form are included in **Appendix C**. The groundwater laboratory analytical report and chain of custody form are included in **Appendix D**.

5.3.1 Soil Analytical Results

RCRA Metals - Seven soil samples were analyzed for RCRA Metals during the Phase II ESA and SI Investigation activities. There were no RCRA metals detected at concentrations greater than the Background Threshold Value, GW RCL, Non-Industrial DC RCL, or Industrial DC RCL.

Hexavalent Chromium – Elevated concentrations of hexavalent chromium were detected above WDNR Residual Contaminant Levels (RCLs) in soil samples collected during various Phase II ESA and / or SI activities including the following:

Non-industrial Direct Contact (DC) RCLs: SB-1 (1-3'), SB-3 (2-4'), SB-5 (1-3'), SB-10 (0-2')m and SB-

15 (0-2')

Industrial DC RCLs: SB-8 (0-2'), SB-9 (0-2'), SB-13 (0-2'), and SB-14 (0-2')

The area of hexavalent chromium soil impacts is primarily in the 1 to 3' bgs intervals in the vicinity of a former trench system and an existing containment pit (near TRG SB-5), located west of the current process line, which is used to collect spillage as the tiles move from tank to tank.

5.3.2 Groundwater Analytical Results

Subsequent to the data analysis of groundwater samples completed during the Phase II ESA, the SI activities focused on the delineation of total Chromium and Hexavalent Chromium. In the environment, Chromium is found in two forms – the naturally occurring Cr III (trivalent) and also Cr VI (hexavalent) which is a byproduct of industrial processes. While Chromium is an essential micronutrient in the trivalent form, the hexavalent form of Chromium is considered to be a carcinogen.

Table 2 includes all laboratory analytical data for groundwater samples collected at the Site during Phase II ESA and Site Investigation activities conducted in January 2021, October 2021, and March 2022.

Table 3 contains groundwater elevation and water quality/natural attenuation parameter data that were measured in the field during groundwater monitoring in October 2021 and March 2022.

Figure 4 presents a summary of NR 140 Groundwater Quality Standard Exceedances (Preventive Action Limits (PALs) or Enforcement Standards (ESs)) for Chromium. Hexavalent Chromium concentrations are also included on Figure 4. The following sections summarize the results of all groundwater samples collected at the Property during Phase II ESA and Site Investigation activities.

RCRA Metals

Four groundwater samples were analyzed for RCRA Metals in October 2021. Eleven additional groundwater samples were analyzed for total chromium in March 2022.

Concentrations of total chromium that exceeded the WDNR PAL occurred at / on the following locations and dates:

- 01/22/2021 TRG TW-2
- 03/29/2022 TRG TW-11, TRG TW-13, TRG TW-15, TRG MW-4, TRG MW-7

Concentrations of total chromium that exceeded the WDNR ES occurred at / on the following locations and dates:

- 10/15/2021 TRG MW-6
- 01/22/2021 TRG TW-3
- 03/29/2022 TRG TW-9, TRG TW-12, TRG MW-5

Arsenic was the only other RCRA metal detected at concentrations that exceeded its PAL. The exceedance occurred in a sample collected from TRG TW-1, a temporary monitoring well installed during the Phase II ESA in January of 2021. TW-1 was installed at a location just outside the service door in the northern portion of the building, in the vicinity of a known (closed) spill site.

Hexavalent Chromium

Eighteen (18) groundwater samples were analyzed for hexavalent chromium in January 2021, October 2021, and March 2022. There were two detections of Hexavalent Chromium in groundwater samples collected during the Phase II ESA from temporary monitoring wells. There were no detections of Hexavalent Chromium above the laboratory method detection limit in the groundwater samples collected in October 2021. There were four detections of Hexavalent Chromium in the groundwater samples collected in March 2022 at TRG MW-5, TRG TW-9, TRG TW-11, and TRG TW-12 ranging from 18 to 550 μ g/L.

In general, wherever there were exceedances of total chromium in the groundwater samples there were similar concentrations of hexavalent chromium. This indicates that the concentrations reported for total chromium are comprised mostly of hexavalent chromium.

VOCs

During the Phase II ESA, Vinyl Chloride was detected in two groundwater samples collected from temporary monitoring wells (TRG TW-2 and TRG TW-3). Four groundwater samples were analyzed for VOCs in October 2021. There were no detections of VOCs above the laboratory method detection limit.

6.0 FIELD INVESTIGATION

6.1 Conceptual Site Model

The Conceptual Site Model (CSM) forms an understanding of the chemical source areas, chemical release mechanisms, environmental transport media, potential human intake routes, and potential human receptors for the Site. The current CSM builds on the previous Phase II ESA results and recognizes the following attributes of the Site that are relevant to defining the nature and extent of contamination:

- The Site consists of two parcels identified as tax keys # YV SE 00009K and # YV SE 00004D1 (4.98 acres total). The Site is currently developed with a single-story office building connected to a single-story industrial building. The manufacturing building is currently used for production of chrome-plated tiles.
- The Site is bordered by E Centralia Street to the south; a residential neighborhood to the east; a vacant industrial property (former electronic recycling business) to the west, and a residential apartment complex to the north.
- In general, stratigraphy encountered during Site investigation activities consisted of surficial materials of approximately 0.5 feet of concrete or gravel base course. Below the surficial material the stratigraphy includes silt, sand, and clay to approximately 16 ft bgs.
- The bedrock is expected to be greater than 100 ft bgs and consists of Silurian age dolomite (Bedrock Geology of Wisconsin, University of Wisconsin Geological and Natural History Survey, 1981).
- The nearest surface water body is Jackson Creek, located approximately 1.5 miles south of the Site.
- Shallow groundwater at the Site is located in the native soil at a depth of 2 to 10 ft bgs. Groundwater flow direction is south / southwest.
- Wetlands or other sensitive receptors were not encountered on the Property.
- The Site and surrounding area are serviced by the City of Elkhorn's public water supply system, which obtains water from groundwater wells. There are no water supply wells on the Property or on neighboring properties. The nearest water supply well is located 0.16 miles to the west of the Property.
- Based on soil classification of the borings installed during the Site Investigation, it appears that native glacial till units are present across the Property.
- The source of the soil contamination appears to be the former trench system and the existing industrial manufacturing process that includes the use of chromium for plating tiles. The area of hexavalent soil contamination is limited to immediately surrounding the former trench system in

the vicinity of TRG SB-1, TRG SB-8, TRG SB-9, TRG SB-10, TRG SB-13, TRG SB-14, and TRG SB-15 and the existing containment pit located in the northwestern part of the manufacturing facility in the vicinity of TRG SB-3 and TRG SB-5.

- Chromium concentrations detected above the WDNR PAL were detected in four groundwater samples collected from temporary and or NR 141-compliant monitoring wells including TRGTW-2, TRG MW-4, TRG MW-7, TRG TW-11, TRG TW-13, and TRG TW-15.
- Chromium concentrations were detected above the WDNR ES in groundwater samples collected from TRG TW-3, TRG MW-5, TRG MW-6, TRG TW-9, and TRG TW-12, which are monitoring wells located adjacent to the plating process tank and the former trench area.
- In general, wherever there were exceedances of total chromium in the groundwater samples
 collected during the Phase II ESA and/or SI activities, there were similar concentrations of
 hexavalent chromium. This indicates that the concentrations reported for total chromium are
 comprised mostly of hexavalent chromium.

6.2 Potential Contaminant Migration Pathways and Receptors

The following paragraphs evaluate all current and future migration pathways for the contaminants of concern at the Site. The media evaluated in the development of the conceptual site model were soil, groundwater, and soil/groundwater vapor.

For exposure to occur, a completed pathway must exist between the source of contamination and the "receptor" (i.e., the person or ecosystem components potentially affected). Where the exposure pathway is incomplete, there is no exposure and hence no risk via that pathway. The following paragraphs identify exposure pathways and an assessment of the likelihood of contamination exposure scenarios (i.e., that the contaminant is present in concentrations of concern, the exposure pathway is complete, and receptors will be affected.

Soil The Site is located in an area zoned for industrial land use. Soils at the Property are contaminated with low levels of Chromium and Hexavalent Chromium. Based on the results of the investigation activities conducted at the Site, it was determined that impacts to soil exceeded regulatory standards, including non-industrial and industrial direct contact RCLs for total chromium. Routes of exposure include inhalation, ingestion, or dermal contact.

Currently, the Site is utilized for industrial manufacturing processes. Impacted soils are covered by the buildings concrete floor slab. Consequently, the potential for direct contact exposure is not considered a significant risk. The anticipated future use of the Site for industrial purposes minimizes any risk of direct contact to Site soils.

Groundwater Groundwater at the Property is impacted with Chromium concentrations that exceed WDNR regulatory standards. Additionally, Hexavalent Chromium was detected at similar concentrations in the majority of the samples where Chromium exceeded the standards. This indicates that the concentrations reported for total chromium are comprised mostly of hexavalent chromium. However, there are no receptors as the properties located within the vicinity of the Site utilize the City of Elkhorn's Municipal Water/Sewer Utility Department. There are also no potable water supply wells within 1,000

feet of the Property. Therefore, potential contaminant migration to water wells is not considered a significant risk.

Underground Utilities There are underground utilities and sewer laterals to the south of the Property along East Centralia Street and along the property boundary of the Site. It does not appear as though there are any preferential migration pathways due to underground utilities because shallow soil consists of native material that has similar permeability with the backfilled utilities. Additionally, it was shown that VOCs are not present on the Property

Surface Water_ Jackson Creek is located approximately 1.5 miles south of the Property. Based on its distance from the Site and the low-level groundwater impacts identified during the investigation activities conducted, potential contaminant migration is not considered a significant risk and will not be further evaluated.

Sensitive Habitats The Site is located in an industrial area of the City of Elkhorn. Approximately seventy-five percent of the Property is covered by impervious surfaces. The remaining 25 percent is grass/native vegetation which surround the buildings. No known sensitive species, habitats, ecosystems, wetlands, or outstanding resource waters are present on the Property.

Vapor Migration In general, impacts to soil and groundwater at the Site consist of low-level concentrations of metals. Metals are not volatile and pose little to no risk to complete the vapor intrusion pathway. As such, it appears that the vapor pathway is not complete, and does not pose a risk to human health.

6.3 Field Measurements

Field measurements for water quality/natural attenuation parameters including dissolved oxygen (D.O.), specific conductance, oxidation reduction potential (ORP), temperature, and pH were collected during the October 2021 and March 2022 groundwater sampling events and are provided in **Table 3**. All parameters appear to be consistent with typical freshwater groundwater.

6.4 Hydraulic Conductivity

A slug test is a method that is used to evaluate the permeability (or hydraulic conductivity) of an aquifer. The procedure involves either adding or removing a measured quantity of water from a well rapidly, followed by making a series of water level measurements.

Hydraulic conductivity testing was conducted at three of the four monitoring wells located on the Property, MW-5, MW-6, and MW-7. The test consisted of removing water from the monitoring well(s) with a plastic bailer and subsequently measuring water levels over time to determine the rate of aquifer recharge. The results of the slug test were analyzed using the Bouwer and Rice Method (Bouwer and Rice, 1981) to determine the velocity of shallow groundwater flow. This information was then used to calculate the hydraulic conductivity (K) using Darcy's Law for groundwater flow in unconfined aquifers.

Table 4 presents the results of the hydraulic conductivity tests. The range of hydraulic conductivity is 4.0×10^{-4} feet per minute (ft/min) to 5.6×10^{-4} ft/min and the geometric mean is 4.8×10^{-4} ft/min. The average horizontal velocity for monitoring wells was calculated using the geometric mean for K, a hydraulic gradient of 0.024 feet per foot (ft/ft), and a porosity of 0.40 as presented in the equation below.

 N_e

Equation: $V_L = K *I_{avg}$ N_e 2.9x10⁻⁵ ft/min Linear Velocity (feet per minute) V_{L} = 4.0x10⁻⁴ ft/min **Hydraulic Conductivity** K_{Range} 5.6x10⁻⁴ ft/min to ft/ft Horizontal Hydraulic Gradient (feet per foot) 0.038 = I_{Range} 0.0001 ft/ft to 4.8x10⁻⁴ ft/min **Hydraulic Conductivity** K_{Geo Mean}= ft/ft Horizontal Hydraulic Gradient 0.024 I_{avg}

Effective Porosity (unitless)

Velocity calculated with the Geometric Mean of K:

0.4

$$V_L = (4.8 \times 10^{-4})^* (0.024) = 2.9 \times 10^{-5}$$
 ft/min 0.40

Convert feet per minute to feet per year by multiplying by 525,600

$$V_L = (4.8 \times 10 - 4) * (0.024) = 15.4 \text{ ft/year}$$

0.40

6.5 Estimate of Contaminant Mass

An estimate of contaminant mass at the Property was based on the average depth of contamination (3.0 ft bgs) in soil samples collected and the estimated area of documented soil contamination (approximately 9,950 square feet) in the area of the former trench and the existing chromium plating tank containment pit. According to these site dimensions, the estimated mass of contaminated soil at the Property is approximately 9,950 cubic feet. Assuming a soil density of clay soils of approximately 100 pounds per cubic foot, the total mass of contaminated soil is approximately 995,000 pounds. Multiplying by the average total chromium soil concentration of 45.4 mg/Kg detected in soil samples from the trench and process tank area equals an estimated 20.5 Kg of chromium soil contamination.

6.6 Management of Investigative Wastes

Soil cuttings and purge water generated during borehole drilling activities and monitoring well development were placed in DOT-approved 55-gallon steel drums, covered with a steel lid, and secured with a bolt ring. Each container of waste generated was individually labeled as "Analysis Pending" immediately following containerization. Appropriate disposal of soil and groundwater was determined after the laboratory analytical results were received and the drums re-labeled non-hazardous waste. The drums were stored on site in a secure location. Millennium Forms will coordinate waste transportation directly with the disposal facility and/or treated using the on-site wastewater treatment system.

6.7 Sequence of Investigative Activities

Previous site investigation activities, environmental reports, and WDNR correspondence related to the Property are summarized below:

- Notification of hazardous substance spill incident reported to WDNR on 12/27/1989.
- Notification of hazardous substance discharge of lubricating oil containing diesel range organics (DRO) reported to WDNR by Elkhorn Webpress on 06/03/1997.
- Case closure letter from WDNR to Elkhorn Webpress regarding BRRTS #02-65-152260 issued on 12/05/1997.
- Notification for Hazardous Substance Discharge for water containing chromic and sulfuric acid spilled was reported to WDNR by Millennium Tiles personnel on 06/24/2007.
- Spill activity closed by WDNR for BRRTS # 04-65-552088 on 07/31/2008.
- Phase 2 Environmental Site Assessment conducted by TRG in January 2021.
- Notification of hazardous substance discharge of chromium groundwater and soil contamination reported to WDNR by Millennium Forms on 04/02/2021.
- Responsible Party letter sent by WDNR to Millennium Forms on 06/03/2021.
- Site Investigation Work Plan submitted by TRG to WDNR on 06/28/2021.
- WDNR request for revisions to Site Investigation Work Plan on 08/20/2021.
- TRG revisions to Site Investigation Work Plan submitted to WDNR on 09/17/2021.
- WDNR approved TRG's Site Investigation Work Plan on 10/05/2021.
- Site Investigation activities conducted on Site in October 2021 through March 2022.

7.0 REMEDIAL ACTION OPTIONS EVALUATION

An initial screening of technologies was conducted to identify remedial action options that are feasible for a Site, based on the contaminant present, media impacted and Site characteristics. This evaluation process was used to determine which remedial action option constitutes the most appropriate technology or combination of technologies to restore the environment to the extent practicable, within a reasonable period of time and to minimize the harmful effects of the contamination, address the exposure pathways of concern, and effectively and efficiently address the source of the contamination.

7.1 Applicable Regulations and Cleanup Standards

Cleanup Standards

Industrial WDNR RCLs will be used as the soil cleanup standards and Chapter NR140, WAC PALs and ESs will be used as groundwater cleanup standards.

Laws and Regulations Applicable to the Cleanup

Laws and regulations that are applicable to this cleanup include:

- WAC, Chapter NR 720 Residual Contaminant Level
- WAC, Chapter NR 726 Case Closure
- WAC, Chapter NR 140 Groundwater Quality
- WAC, Chapter 292 Remedial Action, Wisconsin State Statutes

7.2 Evaluation of Cleanup Alternatives

Potential cleanup alternatives were evaluated based on; effectiveness, implementability, and cost. To address the soil contamination at the Site, three different alternatives were considered and include the following:

- Alternative #1: No Action,
- Alternative #2: Select Soil Excavation of Contaminated Soils in the Source Area with Off-site Disposal, Engineered Barrier, and Institutional Controls.
- Alternative #3 Removal of Impacted Concrete within the historical Trench System with Off-site Disposal, Treatment of Hexavalent Chromium of Soil and Groundwater in the Source Area utilizing Chemical Reduction.

7.2.1 Effectiveness

Alternative #1

No Action is not an effective measure in controlling or preventing the exposure of receptors to contamination at the Site.

Alternative #2

Soil - Select excavation of known contaminated soils would be highly effective in removing the source of the impacts. Keeping the concrete slab in place as an engineered barrier is an effective way to prevent potential receptors from direct contact concerns with contaminated soils. The engineered barrier would reduce surface infiltration thus minimizing the potential for any remaining soil contamination to migrate to groundwater. The contamination would be removed, and the exposure pathway would be minimized.

Groundwater

The groundwater exposure pathway does not represent a significant concern, as the area is serviced by municipal water. However, an institutional control restricting groundwater use, a PAL waiver, would be utilized to address residual groundwater contamination present at the Site.

Alternative #3

Soil and Groundwater- The removal of impacted concrete in the historical trench system would be highly effective in removing the source of impacts to both soil and groundwater. This remedial approach utilizes chemical reduction pathways using an electron donor via 3D Microemulsion and Zero Valent Iron. The self-distributing features of 3-D Microemulsion combined with the longevity (several years) allow for sufficient coverage with minimal pore volume displacement. The colloidal zero-valent iron (ZVI) product, Sulfidated-MicroZVI (S-MZVI), will provide zero valent iron for direct chemical reduction, while also maintaining strongly reducing conditions in the treatment area for an extended period of time. It is anticipated that based on the known concentrations of hexavalent chromium, and the extended treatment period this remedial option would be extremely effective for the remediation of both soil and groundwater.

7.2.2 Implementability

Alternative #1 - No Action is easy to implement.

Alternate #2 - Removal and disposal of contaminated soil at this facility would be difficult to implement and would require significant disruption of the facilities only process line. Impacted soil would be excavated, temporarily stockpiled (if necessary), loaded onto trucks and transported to a landfill. There would also be construction related disturbances (trucks transporting contaminating soils and backfill) to the surrounding neighborhood. The contaminated soils are located in the northern portion of the facility in the vicinity of historic and existing process lines. The depth of the excavation would extend on average approximately three feet below ground surface. An excavation of this size would be disruptive to the manufacturing schedule and generate approximately 550 tons of waste requiring proper disposal. Clean backfill from off-site sources would be needed to raise the grade and a new concrete slab installed.

Alternative #3 - Selective soil excavation and the emplacement of an engineered barrier would be moderately easy to implement. The targeted excavation includes the area immediately north and west of the existing process tanks. Impacted soils would be temporarily stockpiled, if required, loaded onto trucks, and taken to a landfill for disposal. Clean backfill from off-site sources would be needed to raise the grade and a new concrete slab installed.

Chemical injection would be completed using direct push drilling methods and would be easy to implement. However, the implementation of this alternative would be disruptive to the manufacturing

facility's only process line.

7.2.3 Costs

Alternative #1 - There is no cost for this alternative.

Alternative #2 - The estimated cost associated with the implementation of this alternative is summarized in the table below.

Activity	Price
Removal and Disposal of Impacted Soil	\$148,400
Removal and Reinstallation of Concrete	\$30,475
Seven (7) rounds of GW Monitoring (est)	\$30,000
Case Closure Request	\$7,500
Total	\$216,375

Alternative #3 - The estimated cost associated with the implementation of Alternative #3 is summarized in the table below.

Activity	Price	
Chemical Treatment of	\$140,000	
Soil and Groundwater	\$140,000	
Removal and Disposal of	¢20,000	
Concrete	\$30,000	
Two (2)Rounds of GW	\$10,000	
Monitoring	\$10,000	
Case Closure Request	\$7,500	
Total	\$187,500	

7.3 Recommended Cleanup Alternative

Based on a remedial action evaluation completed by TRG, Remedial Alternative #3 is recommended to address the removal of the source area(s), eliminate the exposure pathway(s) of contaminants of concern identified across the Site, and facilitate case closure for the Property. This alternative is effective in removing the source area and is moderately easy to implement. Additionally, the cost of implementing this alternative is significantly lower than Alternate #2.

8.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the findings presented herein the following recommendations are made pertaining to the subject property:

- No additional site investigation activities be completed at the 550 E Centralia Street Property.
- Removal of Impacted Concrete within the historical Trench System with Off-site Disposal, Treatment of Hexavalent Chromium of Soil and Groundwater in the Source Area utilizing Chemical Reduction.
- Request Case Closure.

8. SIGNED STATEMENT

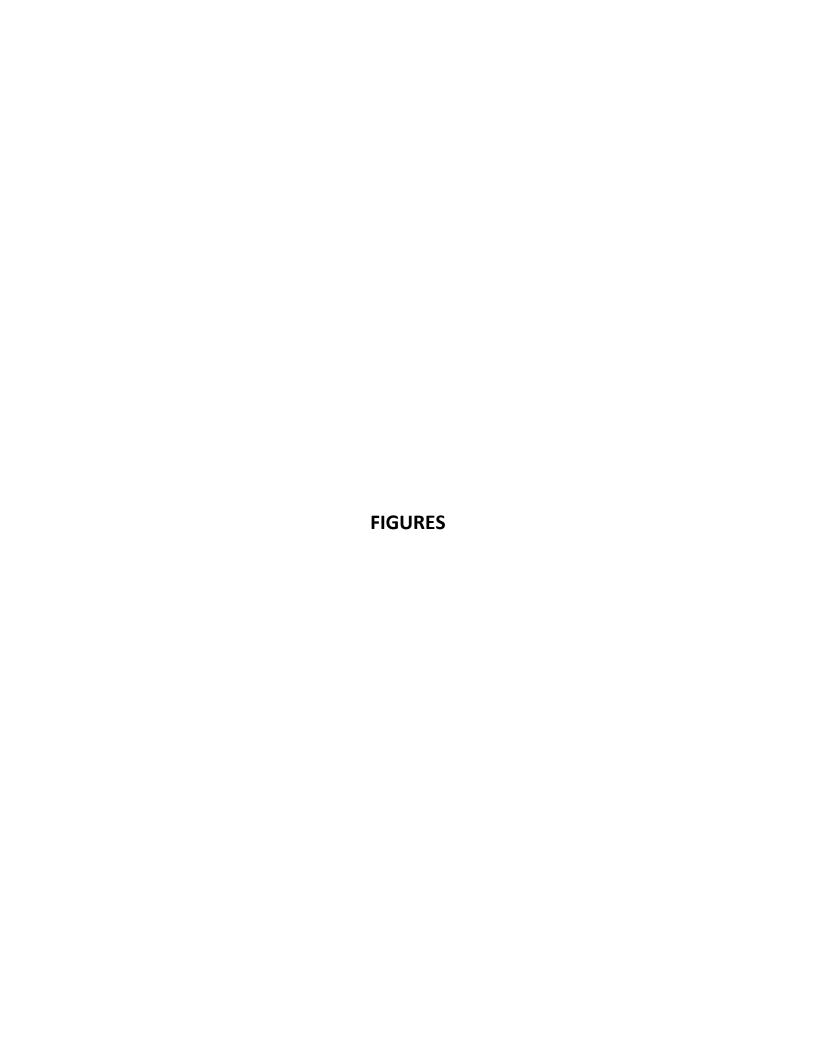
I, Christine A Reese, hereby certify that I am a registered Professional Geologist in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726 minute of the compliance with all applicable requirements in chs. NR 700 to 726 minute of the compliance with all applicable requirements in chs. NR 700 to 726 minute of the compliance with all applicable requirements in chs. NR 700 to 726 minute of the compliance with all applicable requirements in chs. NR 700 to 726 minute of the compliance with all applicable requirements in chs. NR 700 to 726 minute of the compliance with all applicable requirements in chs. NR 700 to 726 minute of the compliance with all applicable requirements in chs. NR 700 to 726 minute of the compliance with all applicable requirements in chs.

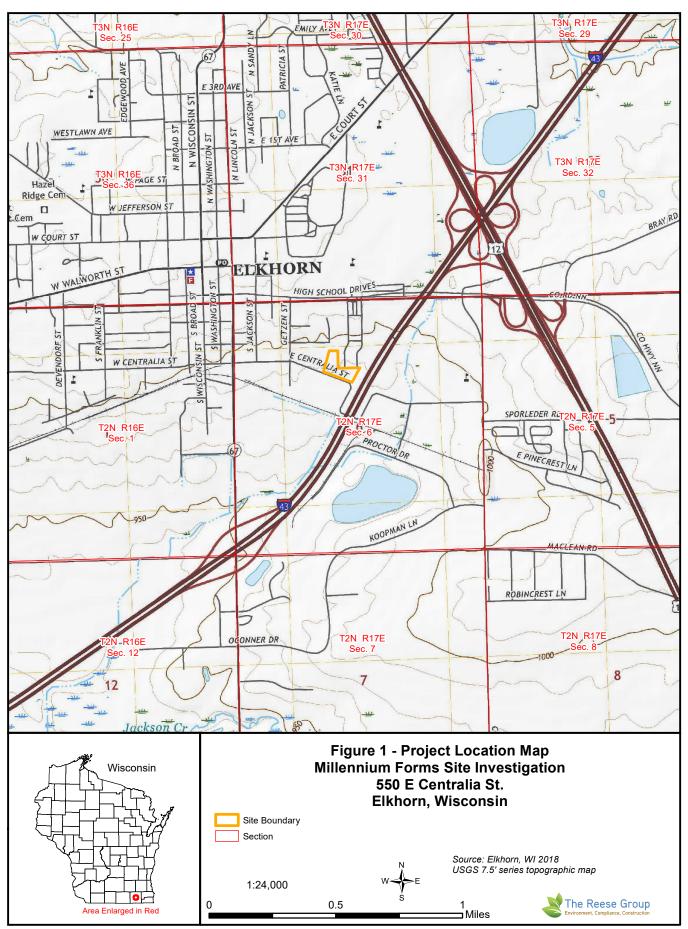
I, Robert Evangelisti, hereby certify that I am a registered Professional Engineer in the Misconsin, registered in accordance with the requirements of ch. A–E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A–E 8, Wis. Adm. Code; and that, to the best of my knowledge, all information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

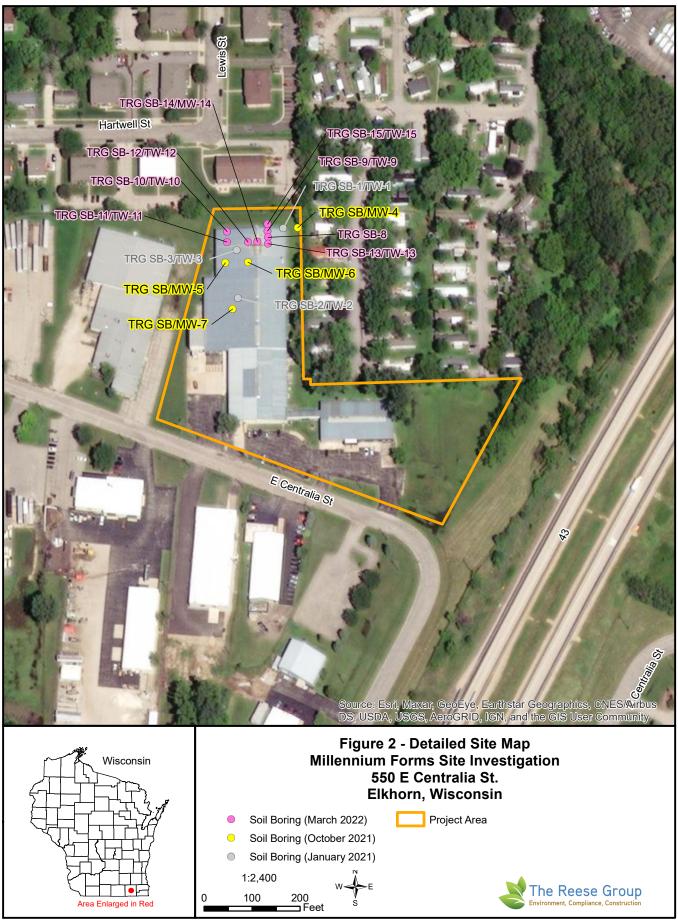
white my

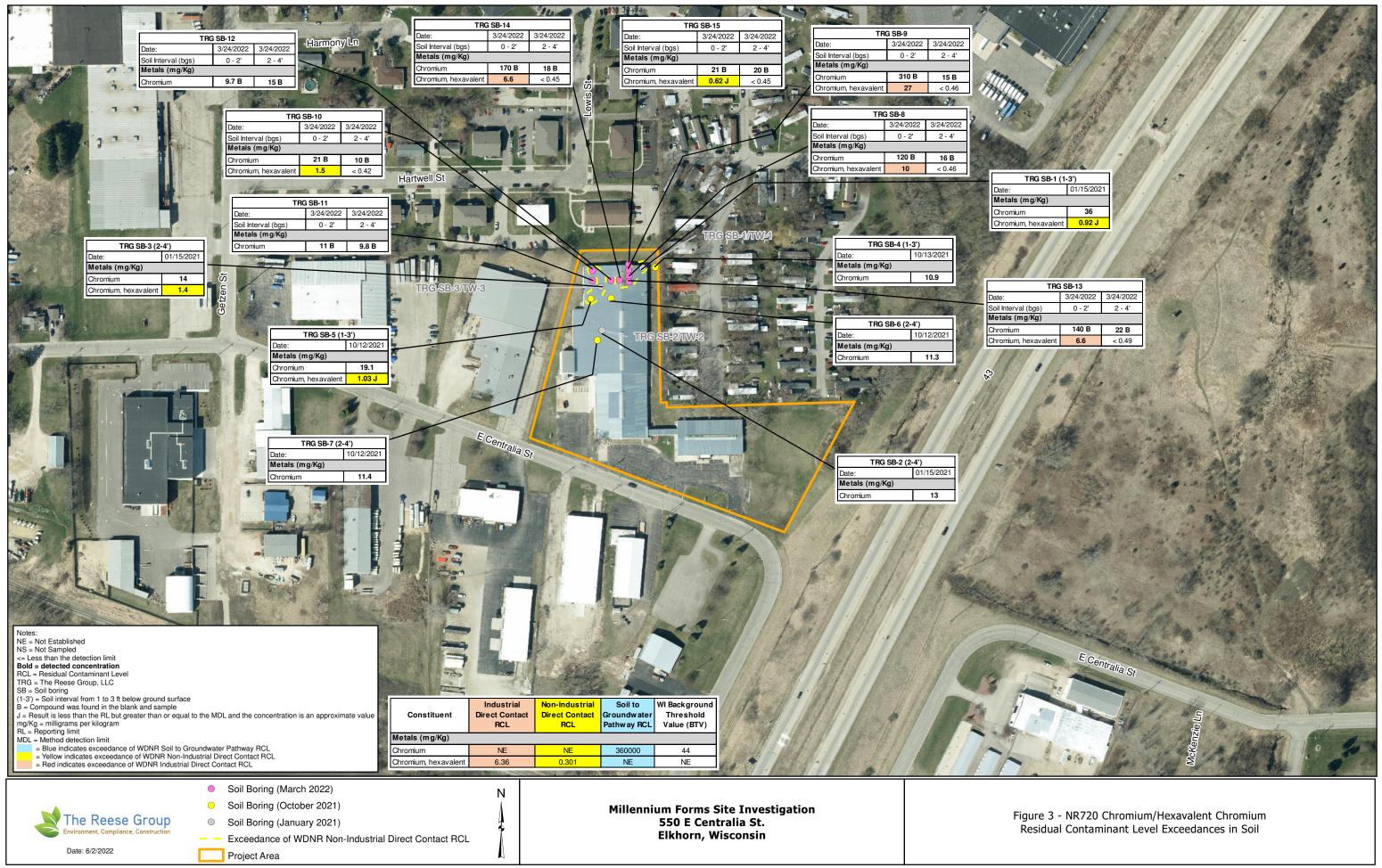
....

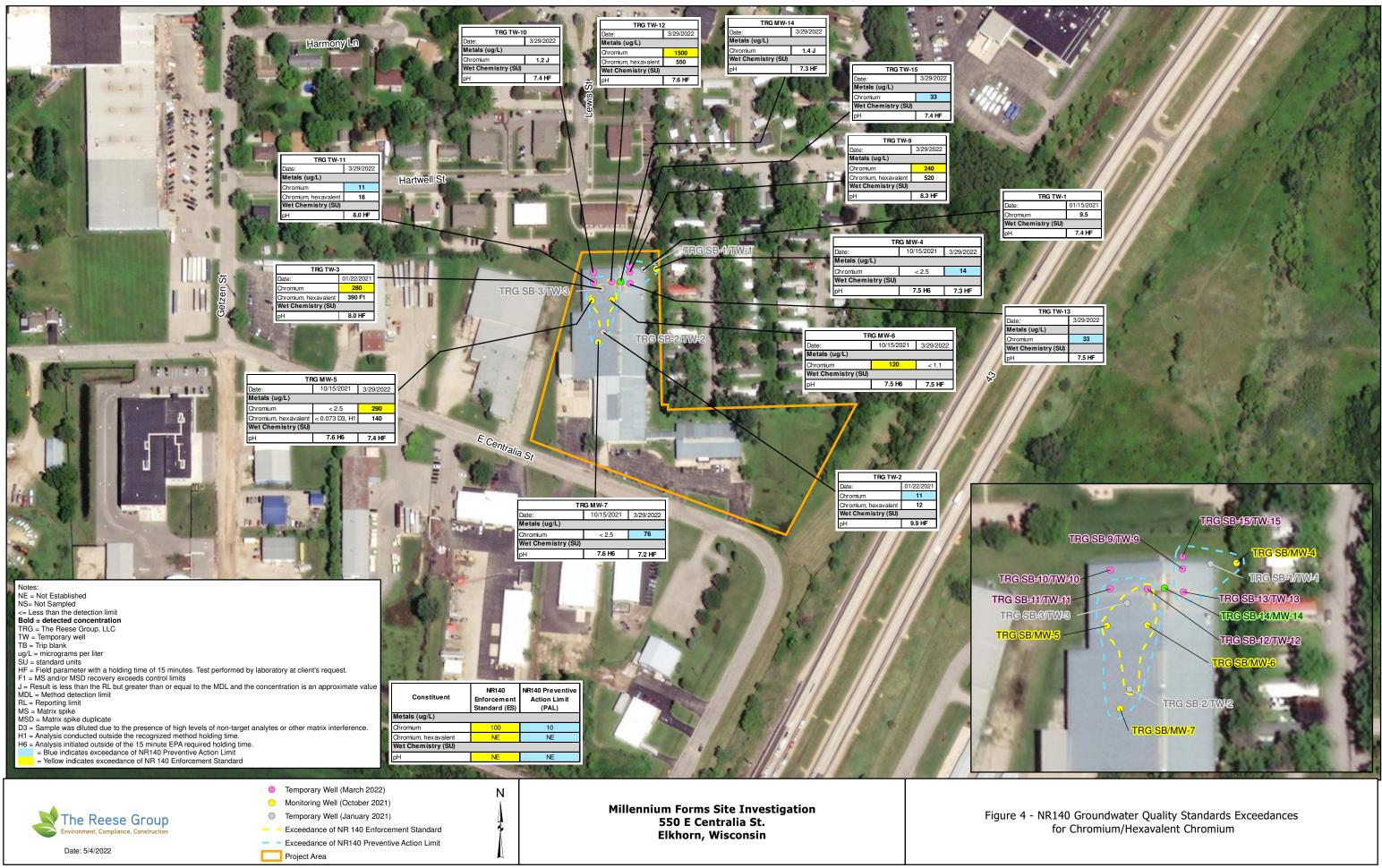
Professional English

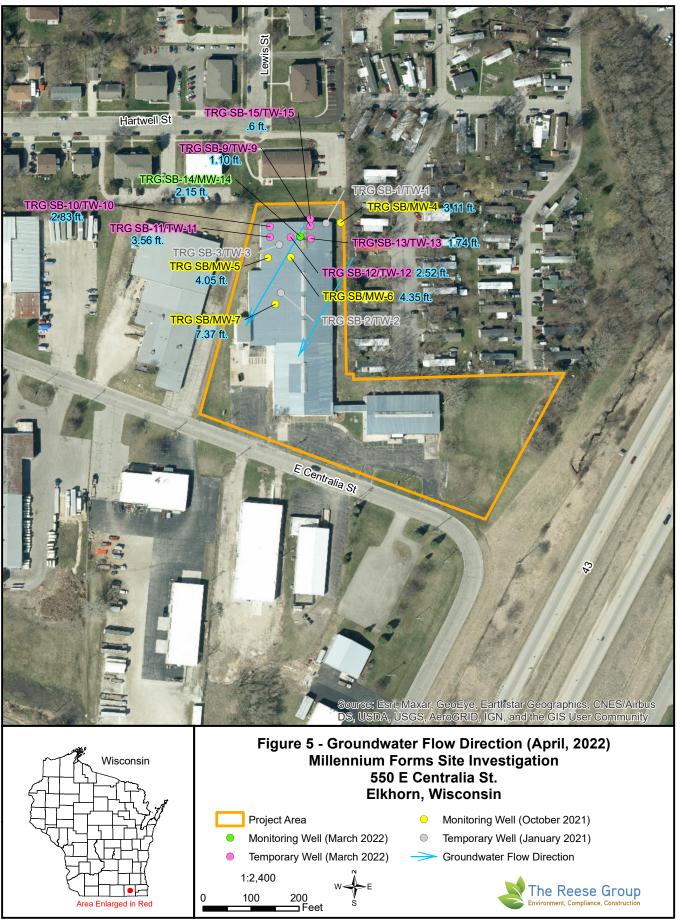

Signature and Title

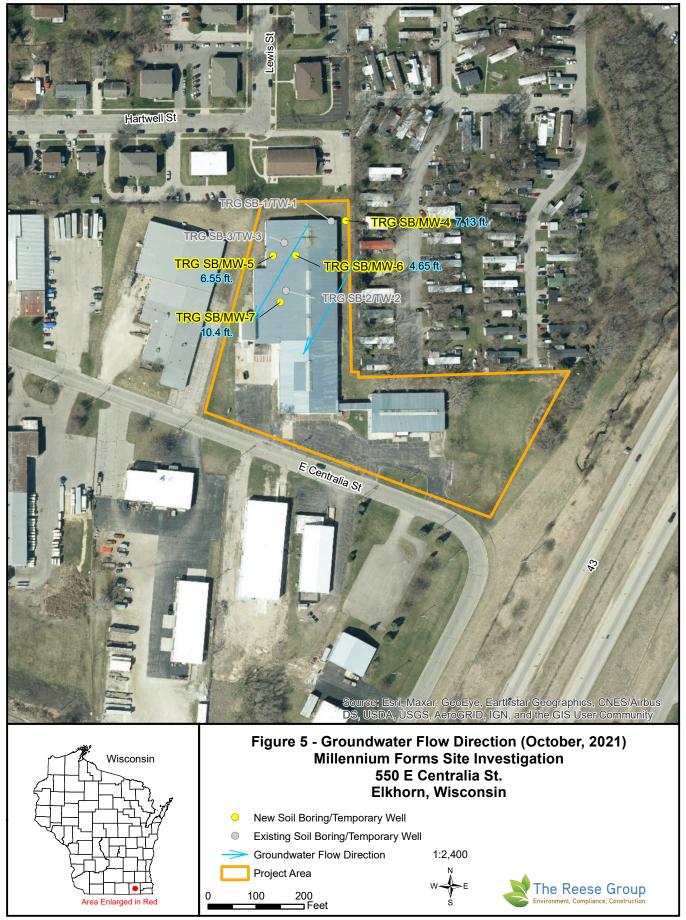

6/17/22

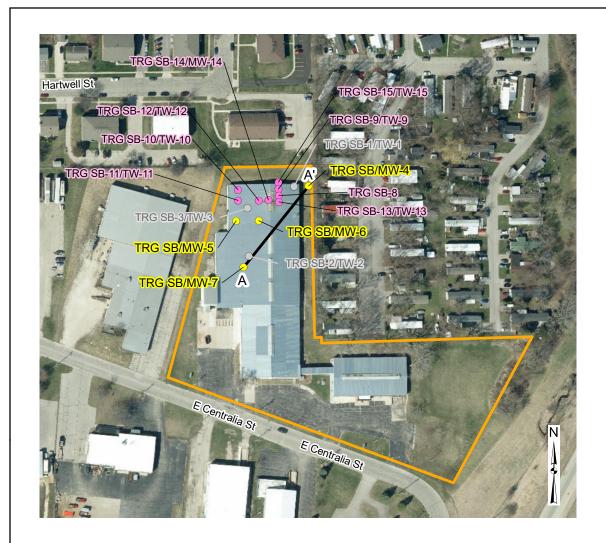

10.0 LIMITATIONS ON REPORT USE


This report is an instrument of service prepared for the exclusive use by Millennium Forms and may not be reproduced or distributed without written authorization from TRG and Millennium Forms. The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client or as otherwise noted. Any unauthorized use of this report is strictly prohibited, and we assume no liability for any such use.






 $12/3/2021 \quad C: \GIS_Projects \TRG \TRG_550_E_Centralia_St_Elkhorn \Site_Invstgtn_Project_Location.mxd$



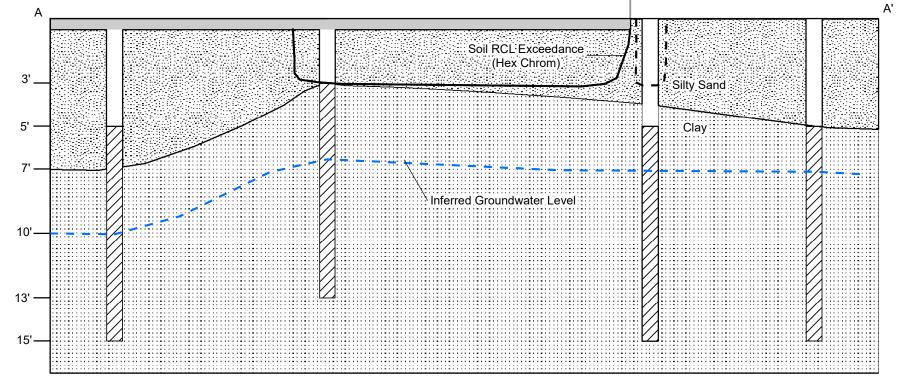
NR 720 RCL Exceedance for Soil to Groundwater

Date: 6/2/2022

RCL Exceedance (Inferred)

Groundwater Elevation (Inferred)

Concrete


Screened Interval

Silty Sand

Clay

B u i I d i n g

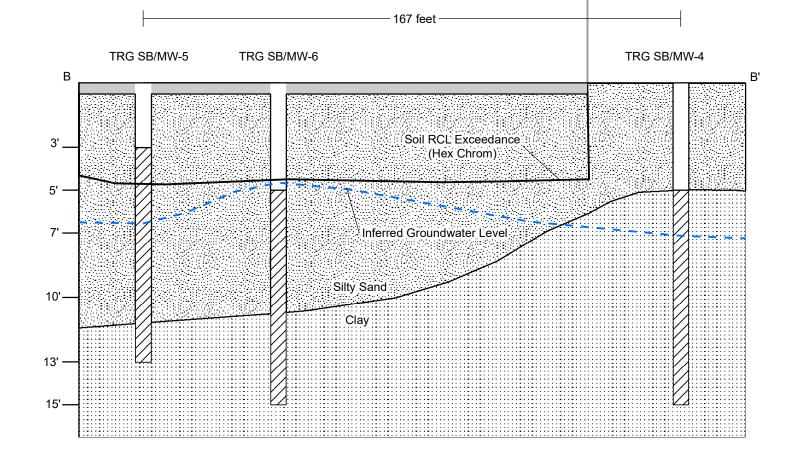
Millennium Forms Site Investigation 550 E Centralia St. Elkhorn, Wisconsin

Figure 6. Geologic Cross Section Figure A

NR 720 RCL Exceedance for Soil to Groundwater

Date: 6/2/2022

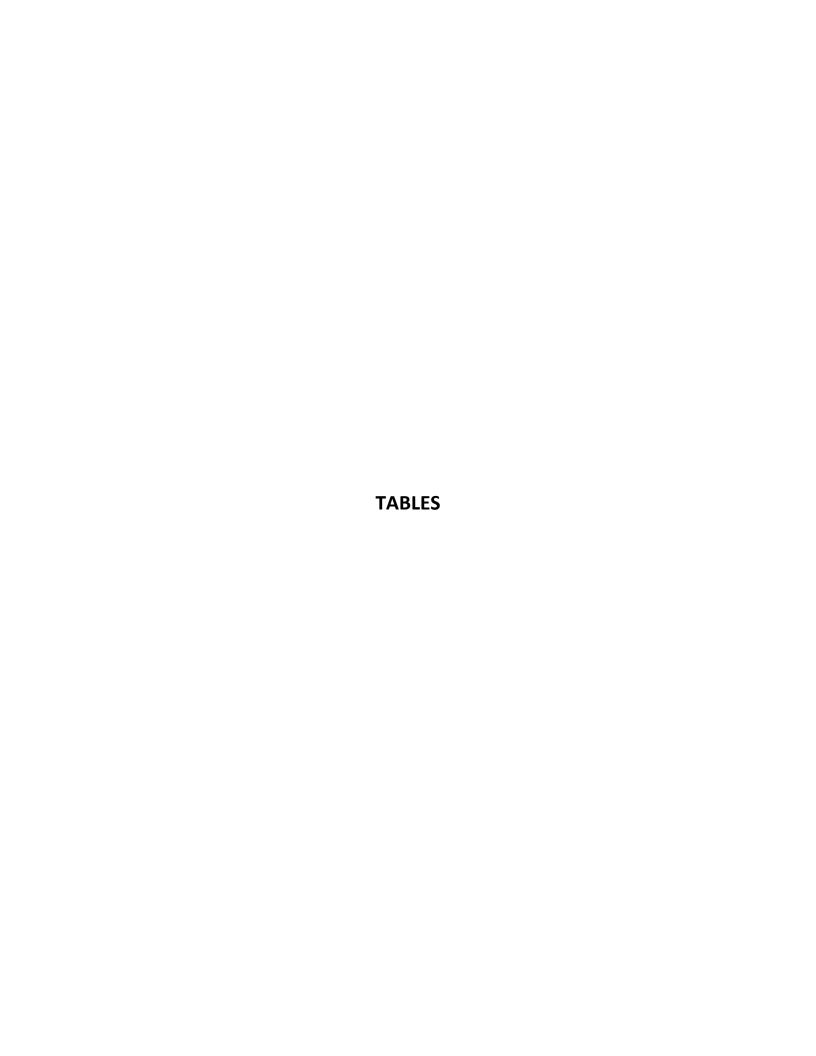
Groundwater Elevation (Inferred)


Concrete

Screened Interval

Silty Sand

Clay



Millennium Forms Site Investigation 550 E Centralia St. Elkhorn, Wisconsin

Figure 7. Geologic Cross Section Figure B

Table 1 Soil Analytical Results Site Investigation Millennium Forms 550 E Centralia Street, Elkhorn, WI

Constituent	Industrial Direct	Non- Industrial Direct	Soil to Groundwater	WI Background	TRG SB-1 (1-3')	TRG SB-2 (2-4')	TRG SB-3 (2-4')	TRG SB-4 (1-3')	TRG SB-5 (1-3')	TRG SB-6 (2-4')	TRG SB-7 (2-4')	TRG SB-8 (0-2')	TRG SB-8 (2-4')
Sample Date	Contact RCL	Contact RCL	Pathway RCL	Threshold Value (BTV)	01/15/2021	01/15/2021	01/15/2021	10/13/2021	10/12/2021	10/12/2021	10/12/2021	3/24/2022	3/24/2022
Volatile Organic Compounds (VCI),1,1,2-Tetrachloroethane	12.3 (mg/Kg)	2.78	0.0534	NE	< 0.032	< 0.029	< 0.027	NS	NS	NS	NS	NS	NS
1,1,1-Trichloroethane	640	640	0.1402	NE NE	< 0.032	< 0.029	< 0.027	NS NS	NS	NS	NS	NS	NS
1,1,2,2-Tetrachloroethane	3.6	0.81	0.0002	NE	< 0.027	< 0.025	< 0.024	NS	NS	NS	NS	NS	NS
1,1,2-Trichloroethane	7.01 22.2	1.59	0.0032	NE NE	< 0.024	< 0.022	< 0.021	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC
1,1-Dichloroethane 1,1-Dichloroethene	1190	5.06 320	0.4834 0.005	NE NE	< 0.028 < 0.027	< 0.025 < 0.024	< 0.024 < 0.023	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
I,1-Dichloropropene	NE	NE	NE	NE	< 0.020	< 0.018	< 0.018	NS	NS	NS	NS	NS	NS
1,2,3-Trichlorobenzene	934	62.6	NE	NE	< 0.031	< 0.028	< 0.027	NS	NS	NS	NS	NS	NS
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	0.109 113	0.0051 24	0.0519 0.408	NE NE	< 0.028 < 0.023	< 0.026 < 0.021	< 0.024 < 0.020	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,4-Trimethylbenzene	219	219	1.3787	NE NE	< 0.025	< 0.021	< 0.020	NS NS	NS	NS	NS NS	NS NS	NS
I,2-Dibromo-3-Chloropropane	0.0923	0.0075	0.0002	NE	< 0.14	< 0.12	< 0.12	NS	NS	NS	NS	NS	NS
1,2-Dibromoethane	0.221	0.05	0.0000282	NE	< 0.026	< 0.024	< 0.023	NS	NS	NS	NS	NS	NS
1,2-Dichlorobenzene 1,2-Dichloroethane	376 2.87	376 0.652	1.168 0.0028	NE NE	< 0.023 < 0.027	< 0.021 < 0.024	< 0.020 < 0.023	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-Dichloropropane	15	3.4	0.0028	NE NE	< 0.027	< 0.024	< 0.025	NS NS	NS	NS	NS	NS	NS
1,3,5-Trimethylbenzene	182	182	1.3787	NE	< 0.026	< 0.023	< 0.022	NS	NS	NS	NS	NS	NS
1,3-Dichlorobenzene	297	297	1.1528	NE	< 0.027	< 0.025	< 0.024	NS	NS	NS	NS	NS	NS
1,3-Dichloropropane 1,4-Dichlorobenzene	1490 16.4	1490 3.74	NE 0.144	NE NE	< 0.025 < 0.025	< 0.022 < 0.023	< 0.021	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2,2-Dichloropenzene	16.4	191	0.144 NE	NE NE	< 0.025	< 0.023	< 0.021 < 0.026	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2-Chlorotoluene	907	907	NE	NE	< 0.022	< 0.027	< 0.020	NS	NS	NS	NS	NS	NS
1-Chlorotoluene	253	253	NE	NE	< 0.024	< 0.022	< 0.021	NS	NS	NS	NS	NS	NS
Benzene Bromohenzene	7.07 679	1.6 342	0.0051 NE	NE NE	< 0.010	< 0.0090	< 0.0086	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Bromobenzene Bromochloromethane	906	216	NE NE	NE NE	< 0.024 < 0.029	< 0.022 < 0.026	< 0.021 < 0.025	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Bromodichloromethane	1.83	0.418	0.0003	NE	< 0.025	< 0.023	< 0.023	NS	NS	NS	NS	NS	NS
Bromoform	113	25.4	0.0023	NE	< 0.033	< 0.030	< 0.029	NS	NS	NS	NS	NS	NS
Bromomethane Carbon tetrachloride	43 4.03	9.6 0.916	0.0051 0.0039	NE NE	< 0.055 < 0.026	< 0.049 < 0.024	< 0.047 < 0.023	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Chlorobenzene	761	370	0.1358	NE NE	< 0.026	< 0.024	< 0.023	NS NS	NS NS	NS NS	NS NS	NS NS	NS
Chloroethane	2120	2120	0.2266	NE	< 0.035	< 0.031	< 0.030	NS	NS	NS	NS	NS	NS
Chloroform	1.98	0.454	0.0033	NE	< 0.025	< 0.023	< 0.022	NS	NS	NS	NS	NS	NS
Chloromethane cis-1,2-Dichloroethene	669 2340	159 156	0.0155 0.0412	NE NE	< 0.022 < 0.028	< 0.020 < 0.025	< 0.019	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
cis-1,3-Dichloropropene	1210	1210	0.0412 NE	NE NE	< 0.028	< 0.025	< 0.024 < 0.025	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Dibromochloromethane	38.9	8.28	0.032	NE	< 0.033	< 0.030	< 0.029	NS	NS	NS	NS	NS	NS
Dibromomethane	143	34	NE	NE	< 0.018	< 0.017	< 0.016	NS	NS	NS	NS	NS	NS
Dichlorodifluoromethane	530 35.4	126 8.02	3.0863 1.57	NE NE	< 0.046 < 0.013	< 0.042 < 0.011	< 0.040 < 0.011	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Ethylbenzene Hexachlorobutadiene	7.19	1.63	NE	NE NE	< 0.013	< 0.011	< 0.011	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
sopropyl ether	2260	2260	NE	NE	< 0.019	< 0.017	< 0.016	NS	NS	NS	NS	NS	NS
sopropylbenzene	268	268	NE	NE	< 0.026	< 0.024	< 0.023	NS	NS	NS	NS	NS	NS
Methyl tert-butyl ether Methylene Chloride	282 1150	63.8 61.8	0.027 0.0026	NE NE	< 0.027 < 0.11	< 0.024 < 0.10	< 0.023 < 0.096	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Naphthalene	24.1	5.52	0.6582	NE NE	< 0.023	< 0.10	< 0.096	NS NS	NS	NS	NS	NS NS	NS
n-Butylbenzene	108	108	NE	NE	< 0.027	< 0.024	< 0.023	NS	NS	NS	NS	NS	NS
N-Propylbenzene	264	264	NE	NE	< 0.028	< 0.026	< 0.024	NS	NS	NS	NS	NS	NS
o-Isopropyltoluene sec-Butylbenzene	162 145	162 145	NE NE	NE NE	< 0.025 < 0.027	< 0.022 < 0.025	< 0.021 < 0.024	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Styrene	867	867	0.22	NE NE	< 0.027	< 0.025	< 0.024	NS NS	NS	NS	NS NS	NS NS	NS
ert-Butylbenzene	183	183	NE	NE	< 0.027	< 0.025	< 0.024	NS	NS	NS	NS	NS	NS
Tetrachloroethene	145	33	0.0045	NE	< 0.025	< 0.023	< 0.022	NS	NS	NS	NS	NS	NS
Foluene rans-1,2-Dichloroethene	818 1850	818 1560	1.1072 0.0626	NE NE	< 0.010 < 0.024	< 0.0091 < 0.022	< 0.0087	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
rans-1,2-Dichloroethene	1510	1510	0.0626 NE	NE NE	< 0.024	< 0.022	< 0.021 < 0.021	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Trichloroethene	8.41	1.3	0.0036	NE	< 0.011	< 0.010	< 0.0097	NS	NS	NS	NS	NS	NS
Trichlorofluoromethane	1230	1230	4.4775	NE	< 0.029	< 0.026	< 0.025	NS	NS	NS	NS	NS	NS
Vinyl chloride Kylenes, Total	2.08 260	0.0668 260	0.0001 3.96	NE NE	< 0.018 < 0.015	< 0.016 < 0.014	< 0.015 < 0.013	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Polycyclic Aromatic Hydrocarbo			3.90	INC	<u> </u>	<u> < 0.014</u>	<u> < 0.013</u>	INO	CVI	INO	INO	INO	GVI
I-Methylnaphthalene	72.7	17.6	NE	NE	< 0.0096	< 0.0090	< 0.0087	NS	NS	NS	NS	NS	NS
2-Methylnaphthalene	3010	239	NE NE	NE NE	< 0.0072	< 0.0068	< 0.0065	NS NS	NS NC	NS NS	NS NS	NS NS	NS NC
Acenaphthene Acenaphthylene	45200 NE	3590 NE	NE NE	NE NE	< 0.0070 < 0.0052	< 0.0066 < 0.0049	< 0.0064 < 0.0047	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Anthracene	100000	17900	196.949	NE NE	< 0.0052	< 0.0049	< 0.0047	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Benzo[a]anthracene	20.8	1.14	NE	NE	0.018 J	< 0.0050	< 0.0048	NS	NS	NS	NS	NS	NS
Benzo[a]pyrene	2.11	0.115	0.47	NE	0.030 J	< 0.0072	< 0.0069	NS NC	NS	NS	NS	NS NC	NS NC
Benzo[b]fluoranthene Benzo[g,h,i]perylene	21.1 NE	1.15 NE	0.4781 NE	NE NE	0.047 < 0.013	< 0.0080 < 0.012	< 0.0076 < 0.011	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Benzo[k]fluoranthene	211	11.5	NE NE	NE NE	0.012 J	< 0.012	< 0.011	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Chrysene	2110	115	0.1442	NE	0.026 J	< 0.010	< 0.0097	NS	NS	NS	NS	NS	NS
Dibenz(a,h)anthracene	2.11	0.115	NE 00.0770	NE NE	< 0.0076	< 0.0071	< 0.0068	NS NC	NS	NS	NS	NS NC	NS
Fluoranthene Fluorene	30100 30100	2390 2390	88.8778 14.8299	NE NE	0.041 < 0.0055	< 0.0069 < 0.0052	< 0.0066 < 0.0050	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ndeno[1,2,3-cd]pyrene	21.1	1.15	14.6299 NE	NE NE	0.0055	< 0.0052	< 0.0050	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Naphthalene	24.1	5.52	0.6582	NE	< 0.0060	< 0.0057	< 0.0055	NS	NS	NS	NS	NS	NS
Phenanthrene	NE	NE 4700	NE F4 F4FF	NE NE	0.014 J	< 0.0052	< 0.0049	NS NC	NS	NS	NS	NS NC	NS
Pyrene Metals (mg/Kg)	22600	1790	54.5455	NE	0.034 J	< 0.0073	< 0.0070	NS	NS	NS	NS	NS	NS
Arsenic	3	0.677	0.584	8.0	3.7	4.1	3.0	3.5	3.5	3.2	4.0	NS	NS
Barium	100000	15300	164.8	364	63	52	35	39.7	60.1	44.6	18.0	NS	NS
Cadmium	985 NE	71.1	0.752	1.0	0.22 J B	0.20 B	0.20 B	0.17 J	0.20 J	0.31 J	0.19 J	NS 420 B	NS 46 P
Chromium Lead	NE 800	NE 400	360000 27	44 52	36 10	13 6.1	14 3.8	10.9 5.4	19.1 8.1	11.3 4.9	11.4 4.8	120 B NS	16 B NS
Lead Mercury	3.13	3.13	0.208	NE	0.036	0.013 J	0.012 J	< 0.0097	0.023 J	< 0.011	< 0.010	NS NS	NS
·	5840	391	0.52	NE	< 0.66	< 0.56	< 0.59	< 1.4	< 1.5	< 1.4	< 0.32	NS	NS
Selenium Silver	5840	391	0.8491	NE	0.38 J	0.32 J	0.32 J	< 0.33	< 0.36	< 0.32	< 0.32	NS	NS

Notes:

NE = Not Established

NS = Not Sampled

< = Less than the detection limit **Bold = detected concentration**

Bold = detected concentration
Blue indicates exceedance of WDNR Soil to Groundwater Pathway RCL
Yellow indicates exceedance of WDNR Non-Industrial Direct Contact RCL
Red indicates exceedance of WDNR Industrial Direct Contact RCL
RCL = Residual Contaminant Level
TRG = The Reese Group, LLC
SB = Soil boring
(1-3') = Soil interval from 1 to 3 ft below ground surface
B = Compound was found in the blank and sample
J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value mg/Kg = milligrams per kilogram
RL = Reporting limit
MDL = Method detection limit

Table 1 Soil Analytical Results Site Investigation Millennium Forms 550 E Centralia Street, Elkhorn, WI

Constituent	Industrial Direct	Non- Industrial Direct	Soil to Groundwater	WI Background	TRG SB-9 (0-2')	TRG SB-9 (2-4')	TRG SB-10 (0-2')	TRG SB-10 (2-4')	TRG SB-11 (0-2')	TRG SB-11 (2-4')	TRG SB-12 (0-2')	TRG SB-12 (2-4')	TRG SB-13 (0-2')
Sample Date	Contact RCL	Contact RCL	Pathway RCL	Threshold Value (BTV)	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022
olatile Organic Compounds (VC	Cs) (mg/Kg)												
,1,1,2-Tetrachloroethane	12.3	2.78	0.0534	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
,1,1-Trichloroethane ,1,2,2-Tetrachloroethane	640 3.6	640 0.81	0.1402 0.0002	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
,1,2-Trichloroethane	7.01	1.59	0.0032	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
,1-Dichloroethane	22.2	5.06	0.4834	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
,1-Dichloroethene ,1-Dichloropropene	1190 NE	320 NE	0.005 NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
,2,3-Trichlorobenzene	934	62.6	NE NE	NE NE	NS	NS	NS NS	NS	NS	NS NS	NS	NS NS	NS
,2,3-Trichloropropane	0.109	0.0051	0.0519	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
,2,4-Trichlorobenzene	113	24	0.408	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
,2,4-Trimethylbenzene ,2-Dibromo-3-Chloropropane	219 0.0923	219 0.0075	1.3787 0.0002	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
,2-Dibromoethane	0.0923	0.0075	0.0002	NE NE	NS NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS NS	NS NS
,2-Dichlorobenzene	376	376	1.168	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
,2-Dichloroethane	2.87	0.652	0.0028	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
,2-Dichloropropane	15	3.4	0.0033 1.3787	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
,3,5-Trimethylbenzene ,3-Dichlorobenzene	182 297	182 297	1.3787	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
,3-Dichloropropane	1490	1490	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
,4-Dichlorobenzene	16.4	3.74	0.144	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
2,2-Dichloropropane	191	191	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
-Chlorotoluene	907 253	907 253	NE NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
-Chlorotoluene Benzene	7.07	1.6	0.0051	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Bromobenzene	679	342	NE	NE	NS	NS	NS	NS	NS	NS NS	NS	NS	NS
Bromochloromethane	906	216	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Bromodichloromethane	1.83	0.418	0.0003	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Bromoform Bromomethane	113 43	25.4 9.6	0.0023 0.0051	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Carbon tetrachloride	4.03	0.916	0.0031	NE NE	NS	NS	NS	NS	NS	NS NS	NS	NS	NS
Chlorobenzene	761	370	0.1358	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloroethane	2120	2120	0.2266	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chloroform	1.98 669	0.454	0.0033 0.0155	NE NE	NS NS	NS NS	NS NS	NS NC	NS NS	NS NS	NS NC	NS NS	NS NS
Chloromethane is-1,2-Dichloroethene	2340	159 156	0.0155	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
is-1,3-Dichloropropene	1210	1210	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Dibromochloromethane	38.9	8.28	0.032	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Dibromomethane	143	34	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Dichlorodifluoromethane Ethylbenzene	530 35.4	126 8.02	3.0863 1.57	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
lexachlorobutadiene	7.19	1.63	NE	NE NE	NS	NS NS	NS NS	NS	NS	NS NS	NS	NS NS	NS
sopropyl ether	2260	2260	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
sopropylbenzene	268	268	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Methyl tert-butyl ether	282 1150	63.8 61.8	0.027 0.0026	NE NE	NS NC	NS NS	NS NS	NS NC	NS NC	NS NS	NS NC	NS NS	NS NC
Methylene Chloride Naphthalene	24.1	5.52	0.6582	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
-Butylbenzene	108	108	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
I-Propylbenzene	264	264	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
-Isopropyltoluene	162	162	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
ec-Butylbenzene Styrene	145 867	145 867	NE 0.22	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
ert-Butylbenzene	183	183	NE	NE NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
etrachloroethene	145	33	0.0045	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
oluene	818	818	1.1072	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
rans-1,2-Dichloroethene	1850	1560	0.0626	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
rans-1,3-Dichloropropene richloroethene	1510 8.41	1510 1.3	NE 0.0036	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
richlorofluoromethane	1230	1230	4.4775	NE	NS	NS	NS	NS	NS	NS NS	NS	NS	NS
/inyl chloride	2.08	0.0668	0.0001	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
(ylenes, Total	260	260	3.96	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Polycyclic Aromatic Hydrocarbo -Methylnaphthalene	ns (PAHs) (m 72.7	g/Kg) 17.6	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
-Methylnaphthalene	3010	239	NE NE	NE NE	NS	NS NS	NS	NS	NS	NS NS	NS	NS NS	NS
cenaphthene	45200	3590	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
cenaphthylene	NE	NE	NE 100 010	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Anthracene Renzolalanthracene	100000	17900	196.949 NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Benzo[a]anthracene Benzo[a]pyrene	20.8	1.14 0.115	NE 0.47	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Benzo[b]fluoranthene	21.1	1.15	0.4781	NE NE	NS NS	NS NS	NS NS	NS	NS	NS NS	NS	NS NS	NS
Benzo[g,h,i]perylene	NE	NE	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Benzo[k]fluoranthene	211	11.5	NE 0.4440	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Chrysene Dibenz(a,h)anthracene	2110 2.11	115 0.115	0.1442 NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Tuoranthene	30100	2390	NE 88.8778	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
luorene	30100	2390	14.8299	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
ndeno[1,2,3-cd]pyrene	21.1	1.15	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Naphthalene	24.1	5.52	0.6582	NE	NS NC	NS NC	NS NC	NS NC	NS NC	NS NC	NS	NS NC	NS
Phenanthrene Pyrene	NE 22600	NE 1790	NE 54.5455	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
letals (mg/Kg)	22000	1730	J4.0 4 00	INE	INO	I INO	INO	CVI	CVI	INO	INO	INO	L INO
rsenic	3	0.677	0.584	8.0	NS	NS	NS	NS	NS	NS	NS	NS	NS
Barium	100000	15300	164.8	364	NS	NS	NS	NS	NS	NS	NS	NS	NS
Cadmium	985 NE	71.1	0.752	1.0	NS 240 B	NS 45 B	NS 24 B	NS 10 B	NS 44 B	NS 0 0 P	NS 0.7.P	NS 45 B	NS 440 B
Chromium	NE 800	NE 400	360000 27	44 52	310 B NS	15 B NS	21 B NS	10 B NS	11 B NS	9.8 B NS	9.7 B NS	15 B NS	140 B NS
A2d	000	400	21										
ead Mercury		3 13	0.208	NF	l NS	I NS	I NS	1/1/2	1/1/2	I NS	NS	l NS	NS NS
ead Mercury Selenium	3.13 5840	3.13 391	0.208 0.52	NE NE	NS NS	NS NS	NS NS NS	NS NS	NS NS NS	NS NS NS	NS NS	NS NS NS	NS NS

Notes:

NE = Not Established

NS = Not Sampled

< = Less than the detection limit

Bold = detected concentration

Bold = detected concentration

Blue indicates exceedance of WDNR Soil to Groundwater Pathway RCL

Yellow indicates exceedance of WDNR Non-Industrial Direct Contact RCL

Red indicates exceedance of WDNR Industrial Direct Contact RCL

RCL = Residual Contaminant Level

TRG = The Reese Group, LLC

SB = Soil boring

(1-3') = Soil interval from 1 to 3 ft below ground surface

B = Compound was found in the blank and sample

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate many mg/Kg = milligrams per kilogram

RL = Reporting limit

MDL = Method detection limit

Table 1 Soil Analytical Results Site Investigation Millennium Forms 550 E Centralia Street, Elkhorn, WI

Constituent	Industrial Direct	Non- Industrial	Soil to	WI Background	TRG SB-13 (2-4')	TRG SB-14 (0-2')	TRG SB-14 (2-4')	TRG SB-15 (0-2')	TRG SB-15 (2-4')
Sample Date	Contact RCL	Direct Contact RCL	Groundwater Pathway RCL	Threshold Value (BTV)	3/24/2022	3/24/2022	3/24/2022	3/24/2022	3/24/2022
Volatile Organic Compounds (V	OCs) (mg/Kg)								
1,1,1,2-Tetrachloroethane	12.3	2.78	0.0534	NE	NS	NS	NS	NS	NS
1,1,1-Trichloroethane	640	640	0.1402	NE NE	NS NC	NS NC	NS NC	NS NC	NS NC
1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane	3.6 7.01	0.81 1.59	0.0002 0.0032	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-Dichloroethane	22.2	5.06	0.4834	NE NE	NS NS	NS	NS	NS	NS
1,1-Dichloroethene	1190	320	0.005	NE	NS	NS	NS	NS	NS
1,1-Dichloropropene	NE	NE	NE	NE	NS	NS	NS	NS	NS
1,2,3-Trichlorobenzene	934	62.6	NE	NE	NS	NS	NS	NS	NS
1,2,3-Trichloropropane	0.109	0.0051	0.0519	NE	NS	NS	NS	NS	NS
1,2,4-Trichlorobenzene	113	24	0.408	NE	NS NC	NS NC	NS NC	NS NC	NS NC
1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane	219 0.0923	219 0.0075	1.3787 0.0002	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-Dibromoethane	0.0323	0.05	0.00002	NE NE	NS NS	NS	NS	NS	NS
1,2-Dichlorobenzene	376	376	1.168	NE	NS	NS	NS	NS	NS
1,2-Dichloroethane	2.87	0.652	0.0028	NE	NS	NS	NS	NS	NS
1,2-Dichloropropane	15	3.4	0.0033	NE	NS	NS	NS	NS	NS
1,3,5-Trimethylbenzene	182	182	1.3787	NE	NS	NS	NS	NS	NS
1,3-Dichlorobenzene	297	297	1.1528	NE	NS	NS	NS	NS	NS
1,3-Dichloropropane	1490	1490	NE	NE	NS	NS	NS	NS	NS
1,4-Dichlorobenzene	16.4	3.74	0.144	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
2,2-Dichloropropane 2-Chlorotoluene	191 907	191 907	NE NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
4-Chlorotoluene	253	253	NE NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
Benzene	7.07	1.6	0.0051	NE NE	NS NS	NS NS	NS NS	NS	NS NS
Bromobenzene	679	342	NE	NE NE	NS NS	NS	NS	NS	NS
Bromochloromethane	906	216	NE	NE	NS	NS	NS	NS	NS
Bromodichloromethane	1.83	0.418	0.0003	NE	NS	NS	NS	NS	NS
Bromoform	113	25.4	0.0023	NE	NS	NS	NS	NS	NS
Bromomethane	43	9.6	0.0051	NE	NS	NS	NS	NS	NS
Carbon tetrachloride	4.03	0.916	0.0039	NE	NS	NS	NS	NS	NS
Chlorobenzene	761	370	0.1358	NE NE	NS NS	NS NC	NS NS	NS NC	NS NC
Chloroethane Chloroform	2120 1.98	2120 0.454	0.2266 0.0033	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
Chloromethane	669	159	0.0035	NE NE	NS NS	NS NS	NS	NS	NS NS
cis-1,2-Dichloroethene	2340	156	0.0412	NE NE	NS	NS	NS	NS	NS
cis-1,3-Dichloropropene	1210	1210	NE	NE	NS	NS	NS	NS	NS
Dibromochloromethane	38.9	8.28	0.032	NE	NS	NS	NS	NS	NS
Dibromomethane	143	34	NE	NE	NS	NS	NS	NS	NS
Dichlorodifluoromethane	530	126	3.0863	NE	NS	NS	NS	NS	NS
Ethylbenzene	35.4	8.02	1.57	NE	NS	NS	NS	NS	NS
Hexachlorobutadiene	7.19	1.63	NE	NE	NS	NS	NS	NS	NS
Isopropyl ether Isopropylbenzene	2260 268	2260 268	NE NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
Methyl tert-butyl ether	282	63.8	0.027	NE NE	NS NS	NS	NS	NS	NS NS
Methylene Chloride	1150	61.8	0.0026	NE NE	NS	NS	NS	NS	NS
Naphthalene	24.1	5.52	0.6582	NE	NS	NS	NS	NS	NS
n-Butylbenzene	108	108	NE	NE	NS	NS	NS	NS	NS
N-Propylbenzene	264	264	NE	NE	NS	NS	NS	NS	NS
p-Isopropyltoluene	162	162	NE	NE	NS	NS	NS	NS	NS
sec-Butylbenzene	145	145	NE 0.00	NE	NS NC	NS	NS	NS	NS
Styrene tert-Butylbenzene	867 183	867 183	0.22 NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
Tetrachloroethene	145	33	0.0045	NE NE	NS NS	NS	NS	NS	NS NS
Toluene	818	818	1.1072	NE NE	NS	NS	NS	NS	NS
trans-1,2-Dichloroethene	1850	1560	0.0626	NE	NS	NS	NS	NS	NS
trans-1,3-Dichloropropene	1510	1510	NE	NE	NS	NS	NS	NS	NS
Trichloroethene	8.41	1.3	0.0036	NE	NS	NS	NS	NS	NS
Trichlorofluoromethane	1230	1230	4.4775	NE	NS NS	NS	NS	NS	NS
Vinyl chloride	2.08	0.0668	0.0001	NE NE	NS NS	NS NC	NS NC	NS NC	NS NC
Xylenes, Total Polycyclic Aromatic Hydrocarb	260	260 a/Ka)	3.96	NE	NS	NS	NS	NS	NS
1-Methylnaphthalene	72.7	9/ kg) 17.6	NE	NE	NS	NS	NS	NS	NS
2-Methylnaphthalene	3010	239	NE NE	NE NE	NS	NS	NS	NS	NS
Acenaphthene	45200	3590	NE	NE	NS	NS	NS	NS	NS
Acenaphthylene	NE	NE	NE	NE	NS	NS	NS	NS	NS
Anthracene	100000	17900	196.949	NE	NS	NS	NS	NS	NS
Benzo[a]anthracene	20.8	1.14	NE 0.47	NE	NS	NS	NS	NS	NS
Benzo[a]pyrene	2.11	0.115	0.47	NE NE	NS NS	NS NC	NS NC	NS NC	NS NC
Benzo[b]fluoranthene	21.1 NE	1.15 NE	0.4781 NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
Benzo[g,h,i]perylene Benzo[k]fluoranthene	211	11.5	NE NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
Chrysene	2110	11.5	0.1442	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS
Dibenz(a,h)anthracene	2.11	0.115	NE	NE NE	NS NS	NS	NS	NS	NS
Fluoranthene	30100	2390	88.8778	NE	NS	NS	NS	NS	NS
Fluorene	30100	2390	14.8299	NE	NS	NS	NS	NS	NS
Indeno[1,2,3-cd]pyrene	21.1	1.15	NE	NE	NS	NS	NS	NS	NS
Naphthalene	24.1	5.52	0.6582	NE	NS	NS	NS	NS	NS
Phenanthrene Director	NE	NE 1700	NE 54.5455	NE	NS NC	NS NC	NS NS	NS NC	NS NC
Pyrene Metals (mg/Kg)	22600	1790	54.5455	NE	NS	NS	NS	NS	NS
Metals (mg/Kg) Arsenic	3	0.677	0.584	8.0	NS	NS	NS	NS	NS
Barium	100000	15300	164.8	364	NS NS	NS NS	NS NS	NS NS	NS NS
Cadmium	985	71.1	0.752	1.0	NS	NS	NS	NS	NS
Chromium	NE	NE	360000	44	22 B	170 B	18 B	21 B	20 B
Lead	800	400	27	52	NS	NS	NS	NS	NS
Mercury	3.13	3.13	0.208	NE	NS	NS	NS	NS	NS
Selenium	5840	391	0.52	NE	NS	NS	NS	NS	NS
		204	0.0404	NE	NS	NS	NS	NS	NS
Silver Chromium, hexavalent	5840 6.36	391 0.301	0.8491 NE	NE NE	< 0.49	6.6	< 0.45	0.62 J	< 0.45

Notes:

NE = Not Established

NS = Not Sampled

< = Less than the detection limit

Bold = detected concentration

Bold = detected concentration

Blue indicates exceedance of WDNR Soil to Groundwater Pathway RCL

Yellow indicates exceedance of WDNR Non-Industrial Direct Contact RCL

Red indicates exceedance of WDNR Industrial Direct Contact RCL

RCL = Residual Contaminant Level

TRG = The Reese Group, LLC

SB = Soil boring

(1-3') = Soil interval from 1 to 3 ft below ground surface

B = Compound was found in the blank and sample

J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate many mg/Kg = milligrams per kilogram

RL = Reporting limit

MDL = Method detection limit

Table 2 Groundwater Analytical Results

		Site Investigation Millennium Forms 550 E Centralia Street, Elkhorn, WI												
Constituent	Enforcement Standard	Preventive Action Limit	TRG TW-1	TRG TW-2	TRG TW-3	TRG MW-4	TRG MW-4	TRG MW-5	TRG MW-5	Т				
	Startuaru	LIIIII	01/15/2021	01/22/2021	01/22/2021	10/15/2021	3/29/2022	10/15/2021	3/29/2022	1				
Volatiles (ug/L)														
1,1,1,2-Tetrachloroethane	70	7	< 0.46	< 0.46	< 0.46	< 0.36	NS	< 0.36	NS					
1,1,1-Trichloroethane	200	40	< 0.38	< 0.38	< 0.38	< 0.30	NS	< 0.30	NS					
1,1,2,2-Tetrachloroethane	0.2	0.02	< 0.40	< 0.40	< 0.40	< 0.38	NS	< 0.38	NS					
1,1,2-Trichloroethane	5	0.5	< 0.35	< 0.35	< 0.35	< 0.34	NS	< 0.34	NS					
1,1-Dichloroethane	850	85	< 0.41	< 0.41	< 0.41	< 0.30	NS	< 0.30	NS					

			l	l	entralia Stree	<u>, , , , , , , , , , , , , , , , , , , </u>		T	I		
Constituent	Enforcement	Preventive Action	TRG TW-1	TRG TW-2	TRG TW-3	TRG MW-4	TRG MW-4	TRG MW-5	TRG MW-5	TRG MW-6	TRG MW-6
	Standard	Limit	01/15/2021	01/22/2021	01/22/2021	10/15/2021	3/29/2022	10/15/2021	3/29/2022	10/15/2021	3/29/2022
Volatiles (ug/L)											
1,1,1,2-Tetrachloroethane	70	7	< 0.46	< 0.46	< 0.46	< 0.36	NS	< 0.36	NS	< 0.36	NS
1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane	200 0.2	40 0.02	< 0.38 < 0.40	< 0.38 < 0.40	< 0.38 < 0.40	< 0.30 < 0.38	NS NS	< 0.30 < 0.38	NS NS	< 0.30 < 0.38	NS NS
1,1,2-Trichloroethane	5	0.5	< 0.40	< 0.40	< 0.40	< 0.34	NS	< 0.34	NS	< 0.34	NS
1,1-Dichloroethane	850	85	< 0.41	< 0.41	< 0.41	< 0.30	NS	< 0.30	NS	< 0.30	NS
1,1-Dichloroethene	7	0.7	< 0.39	< 0.39	< 0.39	< 0.58	NS	< 0.58	NS	< 0.58	NS
1,1-Dichloropropene	NE	NE	< 0.30	< 0.30	< 0.30	< 0.41	NS	< 0.41	NS	< 0.41	NS
1,2,3-Trichlorobenzene	NE	NE	< 0.46	< 0.46	< 0.46	< 1.0	NS	< 1.0	NS	< 1.0	NS
1,2,3-Trichloropropane	60	12	< 0.41	< 0.41	< 0.41	< 0.56	NS	< 0.56	NS	< 0.56	NS
1,2,4-Trichlorobenzene	70	14	< 0.34	< 0.34	< 0.34	< 0.95	NS	< 0.95	NS	< 0.95	NS
1,2,4-Trimethylbenzene 1,2-Dibromo-3-Chloropropane	See Reg 0.2	See Reg 0.02	< 0.36 < 2.0	< 0.36 < 2.0	< 0.36 < 2.0	< 0.45 < 2.4	NS NS	< 0.45 < 2.4	NS NS	< 0.45 < 2.4	NS NS
1,2-Dibromoethane	0.05	0.005	< 0.39	< 0.39	< 0.39	< 0.31	NS	< 0.31	NS	< 0.31	NS NS
1,2-Dichlorobenzene	600	60	< 0.33	< 0.33	< 0.33	< 0.33	NS	< 0.33	NS	< 0.33	NS
1,2-Dichloroethane	5	0.5	< 0.39	< 0.39	< 0.39	< 0.29	NS	< 0.29	NS	< 0.29	NS
1,2-Dichloropropane	5	0.5	< 0.43	< 0.43	< 0.43	< 0.45	NS	< 0.45	NS	< 0.45	NS
1,3,5-Trimethylbenzene	See Reg	See Reg	< 0.25	< 0.25	< 0.25	< 0.36	NS	< 0.36	NS	< 0.36	NS
1,3-Dichlorobenzene	600	120	< 0.40	< 0.40	< 0.40	< 0.35	NS	< 0.35	NS	< 0.35	NS
1,3-Dichloropropane	NE 75	NE 45	< 0.36	< 0.36	< 0.36	< 0.30	NS	< 0.30	NS NC	< 0.30	NS NS
1,4-Dichlorobenzene	75 NE	15 NE	0.47 J	< 0.36	< 0.36	< 0.89	NS NS	< 0.89	NS NS	< 0.89	NS NS
2,2-Dichloropropane 2-Chlorotoluene	NE NE	NE NE	< 0.44 < 0.31	< 0.44 < 0.31	< 0.44 < 0.31	< 4.2 < 0.89	NS NS	< 4.2 < 0.89	NS NS	< 4.2 < 0.89	NS NS
4-Chlorotoluene	NE	NE NE	< 0.35	< 0.35	< 0.35	< 0.89	NS	< 0.89	NS	< 0.89	NS
Benzene	5	0.5	< 0.15	< 0.15	< 0.15	< 0.30	NS	< 0.30	NS	< 0.30	NS
Bromobenzene	NE	NE	< 0.36	< 0.36	< 0.36	< 0.36	NS	< 0.36	NS	< 0.36	NS
Bromochloromethane	NE	NE	< 0.43	< 0.43	< 0.43	< 0.36	NS	< 0.36	NS	< 0.36	NS
Bromodichloromethane	0.6	0.06	< 0.37	< 0.37	< 0.37	< 0.42	NS	< 0.42	NS	< 0.42	NS
Bromoform	4.4	0.44	< 0.48	< 0.48	< 0.48	< 3.8	NS NS	< 3.8	NS NC	< 3.8	NS NS
Bromomethane Carbon tetrachloride	10 5	1 0.5	< 0.80 < 0.38	< 0.80 < 0.38	< 0.80 < 0.38	< 1.2 < 0.37	NS NS	< 1.2 < 0.37	NS NS	< 1.2 < 0.37	NS NS
Chlorobenzene	100	20	< 0.38	< 0.38	< 0.38	< 0.37	NS NS	< 0.37	NS NS	< 0.37	NS NS
Chloroethane	400	80	< 0.51	< 0.53	< 0.53	< 1.4	NS	< 1.4	NS	< 1.4	NS
Chloroform	6	0.6	< 0.37	< 0.37	< 0.37	< 1.2	NS	< 1.2	NS	< 1.2	NS
Chloromethane	30	3	< 0.32	< 0.32	< 0.32	< 1.6	NS	< 1.6	NS	< 1.6	NS
cis-1,2-Dichloroethene	70	7	< 0.41	1.4	1.7	< 0.47	NS	< 0.47	NS	< 0.47	NS
cis-1,3-Dichloropropene	NE	NE 0	< 0.42	< 0.42	< 0.42	< 0.36	NS	< 0.36	NS	< 0.36	NS
Dibromochloromethane	60 NE	6 NE	< 0.49 < 0.27	< 0.49 < 0.27	< 0.49 < 0.27	< 2.6 < 0.99	NS NS	< 2.6 < 0.99	NS NS	< 2.6 < 0.99	NS NS
Dibromomethane Dichlorodifluoromethane	1000	200	< 0.27	< 0.27	< 0.27	< 0.46	NS NS	< 0.46	NS NS	< 0.99	NS
Ethylbenzene	700	140	< 0.18	< 0.07	< 0.07	< 0.33	NS	< 0.33	NS	< 0.33	NS
Hexachlorobutadiene	NE	NE	< 0.45	< 0.45	< 0.45	< 2.7	NS	< 2.7	NS	< 2.7	NS
Isopropyl ether	NE	NE	< 0.28	< 0.28	< 0.28	< 1.1	NS	< 1.1	NS	< 1.1	NS
Isopropylbenzene (Cumene)	NE	NE	< 0.39	< 0.39	< 0.39	< 1.0	NS	< 1.0	NS	< 1.0	NS
Methyl tert-butyl ether (MTBE)	60	12	< 0.39	< 0.39	< 0.39	< 1.1	NS	< 1.1	NS	< 1.1	NS
Methylene Chloride	5 100	0.5 10	< 1.6 < 0.34	< 1.6 < 0.34	< 1.6 < 0.34	< 0.32 < 1.1	NS NS	< 0.32 < 1.1	NS NS	< 0.32 < 1.1	NS NS
Naphthalene	NE	NE	0.00	0.00	< 0.34	< 0.86	NS NS	< 0.86	NS NS	< 0.86	NS
N-Propylbenzene	NE	NE NE	< 0.39	< 0.39	< 0.41	< 0.35	NS	< 0.35	NS	< 0.35	NS
p-Isopropyltoluene	NE	NE	< 0.36	< 0.36	< 0.36	< 1.0	NS	< 1.0	NS	< 1.0	NS
sec-Butylbenzene	NE	NE	< 0.40	< 0.40	< 0.40	< 0.42	NS	< 0.42	NS	< 0.42	NS
Styrene	100	10	< 0.39	< 0.39	< 0.39	< 0.36	NS	< 0.36	NS	< 0.36	NS
tert-Butylbenzene	NE	NE	< 0.40	< 0.40	< 0.40	< 0.59	NS	< 0.59	NS	< 0.59	NS
Tetrachloroethene	5 800	0.5	< 0.37	< 0.37	< 0.37	< 0.41	NS	< 0.41	NS	< 0.41	NS
Toluene trans-1,2-Dichloroethene	100	160 20	< 0.15 < 0.35	< 0.15 < 0.35	< 0.15 < 0.35	< 0.29 < 0.53	NS NS	< 0.29 < 0.53	NS NS	< 0.29 < 0.53	NS NS
trans-1,3-Dichloropropene	NE	NE	< 0.36	< 0.36	< 0.36	< 3.5	NS	< 3.5	NS	< 3.5	NS
Trichloroethene	5	0.5	< 0.16	< 0.16	< 0.16	< 0.32	NS	< 0.32	NS	< 0.32	NS
Trichlorofluoromethane	3490	698	< 0.43	< 0.43	< 0.43	< 0.42	NS	< 0.42	NS	< 0.42	NS
Vinyl chloride	0.2	0.02	< 0.20	1.3	2.0	< 0.17	NS	< 0.17	NS	< 0.17	NS
Xylenes, Total	2000	400	< 0.22	< 0.22	< 0.22	< 0.35	NS	< 0.35	NS	< 0.35	NS
Semivolatiles (ug/L) 1-Methylnaphthalene	NE	NE	< 0.32	< 0.31	< 0.30	NS	NS	NS	NS	NS	NS
2-Methylnaphthalene	NE NE	NE NE	< 0.32	< 0.067	< 0.30	NS NS	NS NS	NS NS	NS NS	NS NS	NS
Acenaphthene	NE	NE NE	< 0.33	< 0.32	< 0.31	NS NS	NS	NS	NS	NS NS	NS
Acenaphthylene	NE	NE	< 0.29	< 0.27	< 0.27	NS	NS	NS	NS	NS	NS
Anthracene	3000	600	< 0.36	< 0.34	< 0.33	NS	NS	NS	NS	NS	NS
Benzo[a]anthracene	NE	NE 0.00	< 0.061	< 0.058	< 0.057	NS	NS	NS	NS	NS	NS
Benzo[a]pyrene	0.2	0.02	< 0.11	< 0.10	< 0.099	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Benzo[b]fluoranthene Benzo[g,h,i]perylene	NE	0.02 NE	< 0.087 < 0.40	< 0.082 < 0.38	< 0.081 < 0.37	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Benzo[k]fluoranthene	NE NE	NE NE	< 0.40	< 0.065	< 0.064	NS NS	NS	NS NS	NS	NS NS	NS
Chrysene	0.2	0.02	< 0.073	< 0.070	< 0.068	NS	NS	NS	NS	NS	NS
Dibenz(a,h)anthracene	NE	NE	< 0.055	< 0.052	< 0.051	NS	NS	NS	NS	NS	NS
Fluoranthene	400	80	< 0.49	< 0.46	< 0.45	NS	NS	NS	NS	NS	NS
Fluorene	400	80 NE	< 0.26	< 0.25	< 0.24	NS	NS	NS	NS	NS NS	NS
Indeno[1,2,3-cd]pyrene	NE 100	NE 10	< 0.081	< 0.076	< 0.075	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Naphthalene Phenanthrene	NE	NE	< 0.33 < 0.32	< 0.32 < 0.31	< 0.31 < 0.30	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Pyrene	250	50	< 0.32	< 0.44	< 0.43	NS NS	NS	NS NS	NS	NS NS	NS
Metals (ug/L)	200	- 00	, , , , , ,		, , 0.70	1,0	1,5	110		.,.	1,0
Arsenic	10	1	2.2	0.85 J	1.0	< 8.3	NS	< 8.3	NS	< 8.3	NS
Barium	2000	400	110	37	63	157	NS	160	NS	76.6	NS
Cadmium	5	0.5	< 0.17	< 0.17	< 0.17	< 1.3	NS	< 1.3	NS	< 1.3	NS
Chromium	100	10	9.5	11	280	< 2.5	14 NC	< 2.5	290	120 15.0	< 1.1
Lead Mercury	15 2	1.5 0.2	3.0 < 0.098	< 0.19 < 0.098	0.71 < 0.098	< 5.9 < 0.066 P4	NS NS	< 5.9 < 0.066 P4	NS NS	< 5.9 < 0.066 P4	NS NS
Selenium	50	10	< 0.098	< 0.098	< 0.096	< 12.2	NS	< 12.2	NS	< 12.2	NS
Silver	50	10	< 0.12	< 0.12	< 0.12	< 3.2 P4	NS	< 3.2 P4	NS	< 3.2 P4	NS
Wet Chemistry (SU)											
рН	NE	NE	7.4 HF	9.9 HF	8.0 HF	7.5 H6	7.3 HF	7.6 H6	7.4 HF	7.5 H6	7.5 HF
Wet Chemistry (ug/L)	NE	NE	1 .0.00	10	000 =:	-0.40 DO 111	0.0	-0.070 DO 111	440	-0.40 DO 111	0.0
Chromium, hexavalent	NE	NE	< 0.23	12	390 F1	< 0.18 D3, H1	< 3.2	< 0.073 D3, H1	140	< 0.18 D3, H1	< 3.2
Notes:											

Notes:

NE = Not Established NS = Not Sampled

< = Less than the detection limit

Bold = detected concentration
Blue indicates exceedance of NR 140 Preventive Action Limit
Yellow indicates exceedance of NR 140 Enforcement Standard
TRG = The Reese Group, LLC

TW = Temporary well
TB = Trip blank

HF = Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.
F1 = MS and/or MSD recovery exceeds control limits
J = Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value

MDL = Method detection limit

MDL = Method detection limit
RL = Reporting limit
MS = Matrix spike
MSD = Matrix spike
MSD = Matrix spike duplicate
D3 = Sample was diluted due to the presence of high levels of non-target analytes or other matrix interference.
H1 = Analysis conducted outside the recognized method holding time.
P4 = Sample field preservation does not meet EPA or method recommendations for this analysis.
H6 = Analysis initiated outside of the 15 minute EPA required holding time.

Table 2 Groundwater Analytical Results Site Investigation Millennium Forms

			5	550 E Central	ia Street, Elk	norn, WI					
Constituent	Enforcement	Preventive Action	TRG MW-7	TRG MW-7	TRG TW-9	TRG TW-10	TRG TW-11	TRG TW-12	TRG TW-13	TRG MW-14	TRG TW-15
Constituent	Standard	Limit	10/15/2021	3/29/2022	3/29/2022	3/29/2022	3/29/2022	3/29/2022	3/29/2022	3/29/2022	3/29/2022
Volatiles (ug/L)	70		0.00	NO	NO	NO	NO	NO	NO	NO	NO
1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane	70 200	7 40	< 0.36 < 0.30	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1,2,2-Tetrachloroethane	0.2	0.02	< 0.38	NS	NS	NS	NS	NS	NS	NS	NS
1,1,2-Trichloroethane	5	0.5	< 0.34	NS	NS	NS	NS	NS	NS	NS	NS
1,1-Dichloroethane 1,1-Dichloroethene	850 7	85 0.7	< 0.30 < 0.58	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,1-Dichloropropene	NE NE	NE	< 0.41	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-Trichlorobenzene	NE	NE	< 1.0	NS	NS	NS	NS	NS	NS	NS	NS
1,2,3-Trichloropropane 1,2,4-Trichlorobenzene	60 70	12 14	< 0.56	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2,4-Trimethylbenzene	See Reg	See Reg	< 0.95 < 0.45	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-Dibromo-3-Chloropropane	0.2	0.02	< 2.4	NS	NS	NS	NS	NS	NS	NS	NS
1,2-Dibromoethane	0.05	0.005	< 0.31	NS	NS	NS	NS	NS	NS	NS	NS
1,2-Dichlorobenzene 1,2-Dichloroethane	600 5	60 0.5	< 0.33 < 0.29	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,2-Dichloropropane	5	0.5	< 0.45	NS	NS	NS	NS	NS	NS	NS	NS
1,3,5-Trimethylbenzene	See Reg	See Reg	< 0.36	NS	NS	NS	NS	NS	NS	NS	NS
1,3-Dichlorobenzene	600 NE	120 NE	< 0.35 < 0.30	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1,3-Dichloropropane 1,4-Dichlorobenzene	75	15	< 0.89	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
2,2-Dichloropropane	NE	NE	< 4.2	NS	NS	NS	NS	NS	NS	NS	NS
2-Chlorotoluene	NE	NE NE	< 0.89	NS	NS	NS	NS	NS	NS	NS	NS
4-Chlorotoluene Benzene	NE 5	NE 0.5	< 0.89 < 0.30	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Bromobenzene	NE	NE	< 0.36	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Bromochloromethane	NE	NE	< 0.36	NS	NS	NS	NS	NS	NS	NS	NS
Bromodichloromethane	0.6	0.06	< 0.42	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Bromoform Bromomethane	4.4	0.44	< 3.8 < 1.2	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Carbon tetrachloride	5	0.5	< 0.37	NS	NS	NS NS	NS NS	NS	NS	NS NS	NS
Chlorobenzene	100	20	< 0.86	NS	NS	NS	NS	NS	NS	NS	NS
Chloroethane	400	80	< 1.4	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Chloroform Chloromethane	6 30	0.6	< 1.2 < 1.6	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
cis-1,2-Dichloroethene	70	7	< 0.47	NS	NS	NS	NS	NS	NS	NS	NS
cis-1,3-Dichloropropene	NE	NE	< 0.36	NS	NS	NS	NS	NS	NS	NS	NS
Dibromochloromethane Dibromomethane	60 NE	6 NE	< 2.6 < 0.99	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Dichlorodifluoromethane	1000	200	< 0.46	NS	NS	NS	NS	NS	NS	NS	NS
Ethylbenzene	700	140	< 0.33	NS	NS	NS	NS	NS	NS	NS	NS
Hexachlorobutadiene	NE	NE	< 2.7	NS	NS	NS	NS	NS	NS	NS	NS
Isopropyl ether Isopropylbenzene (Cumene)	NE NE	NE NE	< 1.1 < 1.0	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Methyl tert-butyl ether (MTBE)	60	12	< 1.1	NS	NS	NS	NS	NS	NS	NS	NS
Methylene Chloride	5	0.5	< 0.32	NS	NS	NS	NS	NS	NS	NS	NS
Naphthalene	100 NE	10 NE	< 1.1	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS
n-Butylbenzene N-Propylbenzene	NE NE	NE NE	< 0.86 < 0.35	NS	NS	NS	NS	NS	NS NS	NS	NS
p-Isopropyltoluene	NE	NE	< 1.0	NS	NS	NS	NS	NS	NS	NS	NS
sec-Butylbenzene	NE	NE	< 0.42	NS	NS	NS	NS	NS	NS	NS	NS
Styrene tert-Butylbenzene	100 NE	10 NE	< 0.36 < 0.59	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Tetrachloroethene	5	0.5	< 0.41	NS	NS	NS	NS	NS	NS	NS	NS
Toluene	800	160	< 0.29	NS	NS	NS	NS	NS	NS	NS	NS
trans-1,2-Dichloroethene	100	20	< 0.53	NS	NS	NS	NS	NS	NS NC	NS	NS
trans-1,3-Dichloropropene Trichloroethene	NE 5	NE 0.5	< 3.5 < 0.32	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Trichlorofluoromethane	3490	698	< 0.42	NS	NS	NS	NS	NS	NS	NS	NS
Vinyl chloride	0.2	0.02	< 0.17	NS	NS	NS	NS	NS	NS	NS	NS
Xylenes, Total Semivolatiles (ug/L)	2000	400	< 0.35	NS	NS	NS	NS	NS	NS	NS	NS
1-Methylnaphthalene	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
2-Methylnaphthalene	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Acenaphthene Acenaphthylene	NE NE	NE NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Anthracene	3000	600	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Benzo[a]anthracene	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Benzo[a]pyrene	0.2	0.02	NS NC	NS	NS	NS	NS	NS	NS	NS NC	NS
Benzo[b]fluoranthene Benzo[g,h,i]perylene	0.2 NE	0.02 NE	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Benzo[k]fluoranthene	NE NE	NE	NS	NS	NS	NS	NS	NS	NS	NS NS	NS NS
Chrysene	0.2	0.02	NS	NS	NS	NS	NS	NS	NS	NS	NS
Dibenz(a,h)anthracene Fluoranthene	NE 400	NE 80	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Fluorene	400	80	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Indeno[1,2,3-cd]pyrene	NE	NE	NS	NS	NS	NS	NS	NS	NS	NS	NS
Naphthalene	100	10	NS NC	NS NS	NS NS	NS	NS	NS	NS	NS NC	NS NS
Phenanthrene Pyrene	NE 250	NE 50	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Metals (ug/L)			.,,,								
Arsenic	10	1	< 8.3	NS	NS	NS	NS	NS	NS	NS	NS
Barium	2000	400 0.5	142	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Cadmium Chromium	5 100	0.5	< 1.3 < 2.5	76	NS 240	1.2 J	NS 11	1500	33	1.4 J	33
Lead	15	1.5	< 5.9	NS	NS	NS	NS	NS	NS	NS	NS
Mercury	2	0.2	< 0.066 P4	NS	NS	NS	NS	NS	NS	NS	NS
Selenium Silver	50 50	10 10	< 12.2 < 3.2 P4	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
Wet Chemistry (SU)	30	10	<u> </u>	INO	INO	ING	INO	INO	INO	INO	INO
pH	NE	NE	7.6 H6	7.2 HF	8.3 HF	7.4 HF	8.0 HF	7.6 HF	7.5 HF	7.3 HF	7.4 HF
Wet Chemistry (ug/L)	N.E	NE	-0.070 50 111			0.0	40	FF.		-0.0	.0.0
Chromium, hexavalent	NE	NE	< 0.073 D3, H1	< 3.2	520	< 3.2	18	550	< 3.2	< 3.2	< 3.2

Notes:

NE = Not Established NS = Not Sampled

= INUL Sampled
 = Less than the detection limit
 Bold = detected concentration
 Blue indicates exceedance of NR 140 Preventive Action Limit
 Yellow indicates exceedance of NR 140 Enforcement Standard
 TRG = The Reese Group, LLC
 TW = Temporary well

TW = Temporary well
TB = Trip blank

$$\begin{split} HF &= Field \ parameter \ with \ a \ holding \ time \ of \ 15 \ minutes. \ Test \ performed \ by \\ F1 &= MS \ and/or \ MSD \ recovery \ exceeds \ control \ limits \\ J &= Result \ is \ less \ than \ the \ RL \ but \ greater \ than \ or \ equal \ to \ the \ MDL \ and \ the \end{split}$$

MDL = Method detection limit

MDL = Method detection limit
RL = Reporting limit
MS = Matrix spike
MSD = Matrix spike duplicate
D3 = Sample was diluted due to the presence of high levels of non-target a
H1 = Analysis conducted outside the recognized method holding time.
P4 = Sample field preservation does not meet EPA or method recommenda
H6 = Analysis initiated outside of the 15 minute EPA required holding time.

Table 3 Groundwater Field Water Quality Parameters January and October 2021 Groundwater Sampling Site Investigation Millennium Forms 550 E Centralia St, Elkhorn, WI

Sample Location Identification:	TRG TW-1	TRG TW-2	TRG TW-3	TRG MW-4	TRG MW-5	TRG MW-6	TRG MW-7
Date of Level	1/15/2021	1/22/2021	1/22/2021	10/15/2021	10/15/2021	10/15/2021	10/15/2021
	Ground	Ground	Ground	Ground	Ground	Ground	Ground
Depth Reference Point (e.g., top of riser)	Surface	Surface	Surface	Surface	Surface	Surface	Surface
Measured Depth to Water (ft.)	3.28	6.65	4.25	7.13	6.55	4.65	10.04
Measured Well Depth (ft.)	13.62	17.73	14.30	15.05	15.35	15.31	15.17
	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristaltic
Purging/Sampling Device(s)	Pump	Pump	Pump	Pump	Pump	Pump	Pump
Target Purge Volume (gallons)	1.68	1.80	1.64	5.5	5.75	6.96	3.36
Date Purging Completed	1/15/2021	1/22/2021	1/22/2021	10/15/2021	10/15/2021	10/15/2021	10/15/2021
Volume Purged (gallons)	1.5	2.0	2.0	5.5	6.0	7.0	3.5
Did Well Purge Dry? (Y or N)	Υ	Ν	N	N	N	N	Ν
Date Sample Withdrawn	1/15/2021	1/22/2021	1/22/2021	10/15/2021	10/15/2021	10/15/2021	10/15/2021
Time Sample Withdrawn	14:00	14:30	15:00	10:45	12:15	13:00	11:30
Sampled By	LKK	LKK	LKK	LKK	LKK	LKK	LKK
Color	Clear	Brown	Brown	Clear/LB	Clear/LB	Clear/LB	Clear/LB
Odor	None	None	None	None	None	None	None
Turbidity (Low, Med, Turbid, Highly Turbid)	Low	Medium	Medium	Low/Med	Low/Med	Low/Med	Low/Med
Field Temperature (degrees Celsius)	NA	16.0	15.68	14.36	18.75	17.91	17.53
Dissolved Oxygen (mg/L)	NA	3.69	5.17	2.80	3.86	3.03	4.35
Specific Conductivity (uS/cm)	NA	868	804	1,513	854	857	1,166
pH (Standard Units)	7.4	9.9	8.0	7.5	7.6	7.5	7.6
Oxidation-Reduction Potential (mV)	NA	190.5	-240.9	20.7	243.7	82.6	278.9
Other Field Comments	Some parameters not measured in field. Low water recovery.					Duplicate sample time 13:10	

Notes:

MW = monitoring well

mg/L = milligrams per liter

NA = not applicable

TW = temporary well

TRG = The Reese Group, LLC

mV = millivolts

uS/cm = microsiemens per centimeter

Y = yes

N = no

ft = foot or feet

LB = light brown

Table 4

Hydraulic Conductivity Measurements and Calculations Millennium Forms Site Investigation 550 E Centralia Street, Elkhorn, WI

1800

Hydraulic Grad. (ft/ft)

Average

0.035481481 0.000128205 0.037795276

0.024

 Dist from MW-5 to MW-7 (ft)
 135

 Dist from MW-5 to MW-6 (ft)
 78

 Dist from MW-6 to MW-7 (ft)
 127

 Darcy's Law
 V = k*I/n

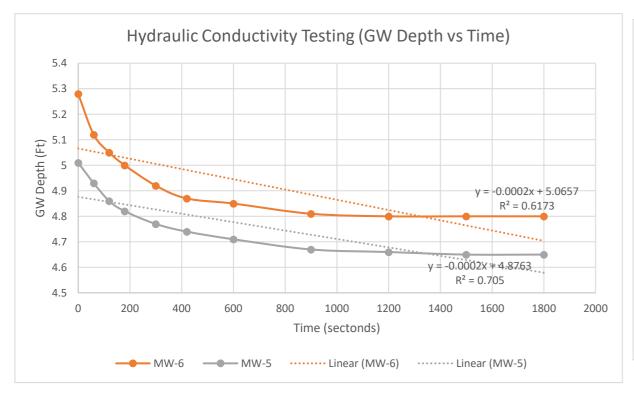
 V - velocity (ft/min)
 2.94E-05

 V - velocity (ft/sec)
 4.89E-07

 V - velocity (ft/year)
 15.4

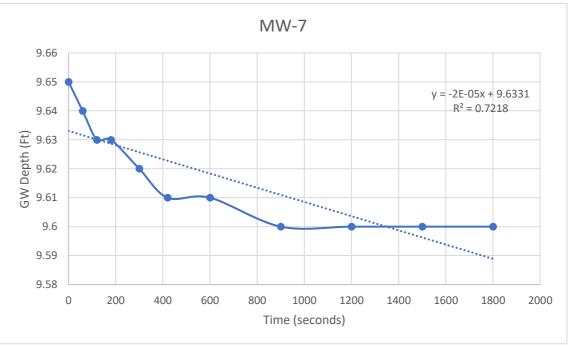
 K - Hydraulic Cond. (ft/sec)
 8.00E-06

 K - Hydraulic Cond. (ft/min)
 4.80E-04


 I - horizontal Hydraulic gradient (ft/ft)
 0.024

 n - effective porosity (unitless)
 0.4

n - effective porosity (unitless)		0.4				
MW-5			MW-6		MW-7	
Depth to Water (DTW)		4.61	DTW	4.6	DTW	9.4
Time (sec)	Dept	h (ft)	Time (sec) De	epth (ft)	Time (sec) Depth (ft)	
	0	5.01	0	5.28	0	9.65
	60	4.93	60	5.12	60	9.64
	120	4.86	120	5.05	120	9.63
	180	4.82	180	5	180	9.63
	300	4.77	300	4.92	300	9.62
	420	4.74	420	4.87	420	9.61
	600	4.71	600	4.85	600	9.61
	900	4.67	900	4.81	900	9.6
	1200	4.66	1200	4.8	1200	9.6
	1500	4.65	1500	4.8	1500	9.6


1800

4.8

4.65

1800

9.6

APPDENDICES

Appendix A – Soil Boring Logs and Borehole Abandonment Forms

Appendix B – Monitoring Well Construction, Development, and Abandonment Forms

Appendix C – Soil Analytical Results and Chain-of-Custody Forms

Appendix D – Site Investigation Photographic Documentation

Sta	te of	Wisco	nsin	
De	partm	ent of	Natural	Resources

Form 4400-122 Rev. 7-98

			Rou	ite To:			/astewater /Revelopment [1												
								•					_			D	1	_ r	2
Facilit	y/Proje	ect Na	me						Licen	se/Per	nit/Mo	nitorin	g Nun	ber	Boring	Page Num	ber	_ of	<u></u>
	lenniun		_							910	_		Ü		,	•		RG SB	-4
Boring First N	g Drille Iame: T	d By:	Nam		ew chie		last) and Firm				Starte						Drillin	g Meti	nod
Firm:	On-S	ite En		nental S	Services	<u>,</u> Inc.			mm	d d	$\frac{202}{y}$	<u>y</u> <u>y</u>	$\frac{11}{m}$	$\frac{15}{d}$	$\frac{202}{y}$	$\frac{1}{y} - y$	Geop	robe	
WI Uı	nique V	Vell N	o.	DNR	Well II	D No.	Well Name TRG MW-4				Water I Feet M	1SL		e Elev	Feet l	MSL	Boreho 2		meter nches
Local State F	Grid O			stimated	d: 🗖) N,		ring Location X	d		at 42	o ₄₀	0.85	Local	Grid L	ocatio	n			
SW	1/4 of						N, R 17	E	Loi	ng <u>-88</u>	o ₃₁ '	59			eet 🗖				□ E □ W
Facilit	y ID				County	y	WORTH		ounty C				City/ o	r Villa	ge	khorn	****		
Sam	ple		ହ	,		VVIII	WORTH	_				I				rope	rties		
		ts	Depth in Feet (Below ground surface)			Soil/Roo	ck Description							0)		JOPO			
r s	Length Att. & Recovered (in)	Blow Counts	in Fe		A		ogic Origin For			တ		₌	Q	ssiv	е		Σ		nts
Number and Type	ngtl) MC	pth			Each	Major Unit			sc	Graphic Log	Well Diagram	PID/FID	npre engt	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	78	BI	దిత	i					_	n	Grap Log	y Çi	[Id	Compressive Strength	ω Wc	Lic Lir	Pla Inc	P 2	RQ Coi
1	60/60		Ė	$\frac{0.0}{0.5}$	- 0.5 - 2.0	Topsoi	<u>l</u> prown silt with cl	av and		то	, ,,		2.1 2.1						Soil sample
			E_1	0.3	- 2.0	small g		ay and	L	CL			2,1			!			collected
			E									1							from (1-3') bgs interval
			E_2	$\sqrt{2.0}$	- 4.0	Light	brown silty sand	with _	$\overline{}$	İ	///	1	1.5						@ 0945
			E	10	- 4.0	gravel		With		ML	$\ \ \ $		1.0						
			Ξ_3								$\ \ \ $								
			E								$\ \ \ $								
			L ₄	/ 4.0	- 5.0	Orang	e to brown color	ed silty			$\ J \ $		1.5						
			2 3 4 4			clay w	ith gravel.			CL		1							
2	60/60		 5	$\sqrt{5.0}$	- 10.0	Light	brown silty clay	with _	\neg				1.9						
			E			gravel	. Wet around 7' b	ogs.		CL		1							
			 6	Ī															
			E													1			
			L 7									1							
			E								///								
			E_8									}							1
			F								///								
			E_9																
			þĺ																
3	54/60		E_{10}	/ 10.0	- 15.0	Light	brown to gray sil	ty clay	$\overline{}$				1.4						
3	34/00		F [°]	10.0	- 13.0		ravel. Wet.	ity ciay	_	CL			1.4						
			E ₁₁	İ						1		1							
			E ''																
			= 12									1 ,							
herel	ov cert	ify th		inforn	nation	on this f	form is true and	corre	ect to ti	ne hes	t of m	v knov	vledo.						
ignati			<u> </u>	1/	0				Firm						-				
	_			<u> </u>	$\sqrt{}$				<u> </u>	i ne b	Reese G	roup, I	LLC						

License/Project/Monitoring No. : WI Unique Well No. :

Page 2 of 2

		TRG SI	3-4	W	T Uniqi	ie Well	No. :			C I. I		···	_	
Number and Type	Length Att. & d	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture 60 Content	Liquid Limit ado	Plasticity 60 Index	P 200	RQD/ Comments
	f I			End of boring at 15' bgs.				d.						

Sta	te of	Wisco	nsin	
De	partn	ent of	Natural	Resources

Form 4400-122 Rev. 7-98

			Rou	te To:			/astewater /Revelopm														
								[]	J.1.1.									n	1	c	•
Facilit	y/Proje	ect Na	me						—IL	icens	e/Perr	nit/M	Or	nitorin	g Nun	ber	Borin	Page g Num	<u>l</u>	_ or _	<u>2</u>
Mil	lenniur	n Fort	ns								.,				.6		Dorm	5 1 14111		RG SB	-5
			Nam				last) and F	irm	D	ate D	Prilling	Star	tec	d	Date I	Orilling	Comp	pleted	Drillin	g Met	hod
	Vame: T	- ,				Kapugi			-	10	$\frac{12}{d}$	<u>/_20</u>	21	<u> </u>	10	$\frac{12}{d}$	<u> 202</u>	1	Geop	robe	
	nique V			nental S	Well II		Well Nar	ne			a a					e Elev		уу	Boreh		meter
	_ <u></u> -		_									Feet	M	SI.			Feet	MSL	2_		nches
Local State I	Grid O	rigin	□ (e:	stimated	l: 🗖) N	or Bo	ring Locat	ion XI		ΙL	at 42	o ₄₀	,	1.0 "	Local	Grid L	ocatio	n			
					- ``, _ m 6	т 2	N, R	17 E		Lon	g 88	o ₃₂	•	0.0 "			eet 🗖	1.4			□ E □ W
Facili	y ID		_ 1/ 1 0	f Sectio	County	4			Coun	ntv C						r Villa				_rai	<u> </u>
						WAL	WORTI	H	-	65_							El	khorn			
Sam			face)										Ţ				Soil	Prope	rties		
	tt. & 1 (in)	ınts	Feet id suri				k Descrip						١			ve					10
ber ype	th A	<u>ల</u>	rin]		F		ogic Origi Major Un				CS	ည္	1	am	Œ.	ressi	ure nt	ļ.,,	ity		ente
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet (Below ground surface)				•				n s (Graphic	3	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	≃ 60/60	H			0.5	Ć	ete floor.			_	co	5.	4		0.0	ర్రా	CX	111	P II	Ъ	≈ ∪
1	00/00		1 2 3 3 4 4 5 5 6 6 7 7		- 0.5 - 1.5	Light	orown silty	y sand wit	h	\lnot	ML	la i	٦		0.7						
			E 1			gravel	•				WIL	$\ \ \ $	$\ $								
			F	J 1.5	- 4.0	Dark l	rown/blac	k/gray sil	t with	\neg	ML	$\ \ \ $	$\ $		1.2						Soil sample
			= 2			ciay ai	ıd gravel.				WIL	$\ \ \ $	$\ $								collected from (1-3')
			E																		bgs interval
			= 3									$\ \ \ $						ļ			
			E									$\ \ \ $									
			E 4	$\sqrt{4.0}$	- 5.0		prown silt	with sand	. Wet	$\neg \setminus$	CN4	$\ \ $			0.9						
			E			aroun	l 5' bgs.				SM	ΙţΙ	Ħ								
2	56/60		= 5	$\int 5.0$	- 10.0	Light	orown silty	y sand, we	t.	\neg	CM	 †	Ħ		1.0						
			E								SM	ΙţΙ	Ħ								
			= 6									†↓↓	t								
			E										ļ								
			二 7										H								
			E									IJŦŦ									
			L 8									II † †	İ								
			Е									Ιŧŧ	I								
			L 9									ΙŧΙΙ	Ħ								
			E									ΙţͺͺΙ	t								
3	52/60		E_{10}	10.0	- 12.5	Light	orown silty	v sand wit	h	$\neg \downarrow$		†↓↓	t		1.1						
			E			gravel		,			SM		ļ								
			E_{11}							i		HII	H								
			F									Hii	∦								
			= 12									ŀIJ	ł								
herel	by cert	ify th	at the	inform	nation	on this f	orm is tru	ue and co	orrect	to th	e bes	t of r	nv	knov	vledø	 B.					L
Signati		<i>-</i>		1/	0					rm			Ť			•	-				
		//	~ 🖈	′ こ.ノ	1				- 1		The R	eese	Gr	oup, I	LLC						

License/Project/Monitoring No. : WI Unique Well No. :

Page 2 of 2

Soil Properties Sample Length Att. & Recovered (in) Depth in Feet Compressive Strength Blow Counts Soil/Rock Description And Geologic Origin For Moisture Content Plasticity Index Log Well Diagram PID/FID USCS Graphic Liquid Limit Each Major Unit P 200 12.5 - 15.0 Gray silty sand with gravel, wet. 1.0 SM End of boring at 15' bgs.

Sta	te of Wi	isconsir	1	
De	partmen	t of Nat	tural R	esources

Form 4400-122 Rev. 7-98

			Rou	te To:			Vastewater [/Revelopmer												
							•		_							Dogg	· 1	-6	2
Facili	y/Proje	ect Na	me						Licen	se/Peri	mit/M	onitorir	ıg Nun	nber	Borin	g Num	ber	_ of _	
	lenniur												_				T	RG SB	-6
			Nam				last) and Fir	m		Orilling							Drillin	g Met	hod
	Vame: T On-S	•	vironn	nental S	Name:] Services				$\frac{10}{m}$	$\frac{12}{d}$	$\frac{202}{y}$	$\frac{21}{y}$	$\frac{10}{m}$	$\frac{12}{d}$	$\frac{202}{y}$	$\frac{1}{y} \overline{y}$	Geop	robe	
	nique V				Well II		Well Name	:			Water	Level		e Elev			Boreho	ole Dia	ameter
Local	Grid C	rigin	(e	stimated	<u> </u>	or Bo	ring Location	n xi	<u> </u>		Feet l	MSL	I ocal	Grid I	_Feet	MSL		i	nches
State I	Plane _				_ N, _			E	L	.at	40	1.0 "	Local	Oliu L		I N			□ E
SW Facilit	1/4 of	NW	_1/4 o	f Section	n 6	_, <u>T_</u> 2	<u>N, R 1</u>					1.0 "			eet 🗖			Feet	<u> </u>
raciii	ly ID				County	WAL	WORTH	-	ountv C 65_	ode	Civil	Town/	City/ o	r Villa		khorn			
Sam			(ee)												Soil	Prope	rties		
	Length Att. & Recovered (in)	nts	Depth in Feet (Below ground surface)				ck Description							رو رو					
ype	h Ai ered	Com	in F		F		logic Origin : Major Unit	For		S	ا د	[l≘	essiv	5 ±		ĬŢ.		ents
Number and Type	Length Att. Recovered (Blow Counts	elow g			Each	Major Onit			USC	Graphic	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	_	B	Δē	_					_		Grap	≥ ⊆		ටුනි	≆೮	22	문교	Ъ.	<u>ჯ</u> ე
1	60/60		1 2 3 3 4 4 5 5 6 6 7 7	$\frac{0.0}{0.5}$	- 0.5 - 1.5	Dark l	ete floor. Frown to blac			СО	l≜ ì	.	0.0 1.2						
			<u> </u>			clay, s	and, and gra	vel.		ML]]]]]								
			F	J 1.5	- 5.0	Light	brown to gra	y silty san	d \	CM	$\ \ \ $		1.6	1					Soil sample
			=2			with c	lay and grave	eı.		SM	†	 	İ						collected from (2-4')
			E								 	tl							bgs interval
			= 3								I I † † .	ļ				ļ			
			F								ΗII	ļļ.							
			E 4								$\ \downarrow\downarrow$	li .							
			F								[İ							
2	56/60		= 5	5.0	- 9.0		brown silty c	lay with	$\overline{}$		11 + +		1.1						
			E			gravel	, moist.			ML	$\ \ \ $								
			E 6								$\ \ \ $								
			F																
			E 7																
			F											İ					
			E 8																
			E																
			8 9 10	/ 9.0	- 10.0		silty clay with	h gravel, w	et \		IJJ.	ļ	2.5						
			E			aroun	d 9' bgs.			CL		4							
3	60/60		- 10	10.0	- 15.0	Brown	and gray sil	lty clay wit	th \			7	2.9						
			E			gravel	•			CL		1							
			– 11									7							
			E									1							
			- 12									1							
		ify th	at the	inform	nation	on this f	form is true	and corre	ect to the	he bes	t of m	ıy kno	wledge	e.		_			
Signati	ıre	P	·	V.	X				Firm	The R	Reese (Group,	LLC						
		1/		<u> </u>	<u> </u>				1			г-, -							

License/Project/Monitoring No. : WI Unique Well No. :

Page 2 of 2

Soil Properties Sample Length Att. & Recovered (in) Depth in Feet Blow Counts Compressive Strength Soil/Rock Description And Geologic Origin For Moisture Content Plasticity Index Log Well Diagram PID/FID USCS Graphic Liquid Limit Each Major Unit P 200 End of boring at 15' bgs.

Sta	te of	Wisco	nsin	
Dej	partm	ent of	Natural	Resources

Form 4400-122 Rev. 7-98

			Rou	te To:				□ Wast nent [x] O											
							•									Dage	:1	of	2
Facili	ty/Proje	ect Na	me					_	Licen	se/Peri	nit/M	onitorii	ıg Nun	nber	Borin	g Num		_ 01 _	
	lenniur		_	-		0.(6)												RG SB	
Borin; First N	g Drille Name: T	d By:	Name			ef (first, . Kapugi	last) and F	irm		Orilling	-						Drillin	g Meti	nod
		•	vironm		Services	1 0			$\frac{10}{m}$	$\frac{12}{d}$	$\frac{202}{y}$	$\frac{1}{\mathbf{v}} = \mathbf{v}$	$\frac{10}{m}$	$\frac{12}{d}$	$\frac{202}{\sqrt{v}}$	$\frac{1}{\mathbf{v}} - \mathbf{v}$	Geop	robe	
	nique V				Well II		Well Nan	ne		Static			Surfac				Boreh	ole Dia	ımeter
 _	<u> </u>		_		_ =		<u>Ļ</u>				Feet l	ISL	_		_Feet	MSL	2_	i1	nches
Local State I	Orid Collane _		(es		_ N, _		ring Locati	_ E	L	at 42	0 39	59.0"	Local	Grid L	ocatio	n N			- -
SW	1/4 of	NW	_ 1/4 of	Sectio	m 6	_, T_2	N, R_	17 E	Lor	ng 88	o ₃₂	0.0			eet □	114			□ E □ W
Facili	ty ID				County	у	WORTH	<u> </u>	County C 65_	ode	Civil	Town/	City/ o		ge	khorn			
Sam			(e)					-							Soil	Prope	rties		
	Length Att. & Recovered (in)	nts	Depth in Feet (Below ground surface)				ck Descrip							ည					
Number and Type	Length Att. Recovered (Blow Counts	in F		I		ogic Origi Major Uni			S	ွ	⊑	l≘	Compressive Strength	일눈		ity		RQD/ Comments
fum nd T	engi	low	epth elow			Lucii	wajor om			SC	Graphic Log	Well Diagram	PID/FID	mpr reng	Moisture Content	Liquid Limit	Plasticity Index	P 200	/QC/ mum
	-	B								Ď	2 5	2 0		රින්	Σ೮	22	F 대	Ъ	ಜ ರ
1	60/60		1 2 3 3 4 4 5 5 6 6 6 7 7		- 0.5 - 4.0	<u>Concr</u> Light l	ete floor. brown silty	sand with		СО	l≜ ì		0.0 1.1						Soil sample
			<u>-</u> 1			small g				ML	11								collected from (2-4')
			E								$\ \ \ $								bgs interval
			L ₂								$\ \ \ $								
	'		Е								$\ \ \ $	İ							
			= 3								$\ \ \ $					Į			
			E								$\ \ \ $								
			L ₄		- 4.25	Dark b	rown clay	with silt.			IJJ,	JI	2.0						
			E	J 4.25	- 5.0	Mediu gravel		lay with silt	and \	CL CL	///	1	2.0						
2	58/60		L ₅	√ 5.0	- 7.0	Light 1	brown silty	sand with	$\overline{}$			3	1.2						
			E			gravel	•			ML	$\ \ \ $								
			\sqsubseteq_6								$\ \ \ $								
			E								$\ \ \ $								
			二 7	√ 7.0	- 7.5	Light	brown silt	with clay, w	et		Щ	ļ	1.2						
			E	√ 7.5	10.0		17.5' bgs.	clay and	$\overline{}$	CL		1	2.0	İ					
			E ₈	1.3	- 10.0	gravel	brown silt, . Wet.	Ciay, and		CL		1	2.0						
			E									1							
			E ₉								74	1		}					
			E									1							
3	60/60		E_{10}	/ 10.0	- 14.5	Light l	brown silt	with clay, w	et.	ŀ		1	1.0						
			E							CL	///	1							
			E_{11}								///	1						i	
			Ė									1				ļ			
			= 12									1							
herel	by cert	ify th	at the	inform	nation	on this f	orm is tru	ie and corr	ect to th	ne bes	t of m	v kno	wledg	e.					L
Signati			۷	1/	0				Firm										
	_	1		<u> </u>	<u> </u>					The F	keese (Froup,	LLC				_		

License/Project/Monitoring No. : WI Unique Well No. :

Page 2 of 2

Soil Properties Sample Length Att. & Recovered (in) Depth in Feet Blow Counts Soil/Rock Description Compressive Strength And Geologic Origin For Moisture Content Plasticity Index Well Diagram PID/FID USCS Graphic Liquid Limit Each Major Unit P 200 Log Brown clay with angular rock fragments. 14.5 - 15.0 1.0 \mathbf{CL}

Sta	te of	Wisco	nsin	
De	partn	ent of	Natural	Resources

Form 4400-122 Rev. 7-98

			Rou	ite To:			/astewater												
						•	E		<u>-</u>							D	. 1	- c	2
Facilit	y/Proje	ect Na	me						Licen	se/Peri	nit/Mo	nitorin	g Nun	nber	Boring	Page Num	<u>1</u> ber	_ or	
	lenniun									1000	_				Ì		T	RG SB	-8
	g Drille ^{Iame:} G		Nam		ew chie		ast) and Firm				g Starte				_		Drillin	g Meti	hod
		_	vironi	nental S					$\frac{3}{m}\frac{m}{m}$	$\frac{24}{d}$	$\frac{1}{\sqrt{y}} \frac{20}{y}$	$\frac{22}{y}$	$\frac{3}{m}\frac{m}{m}$	$\frac{24}{d}$	$\frac{20}{y}$	$\frac{22}{y}$	Geop	robe	
	nique V			DNR			Well Name				Water I	_evel		e Elev	ation		Boreho		
Local	Grid O	rigin	<u> </u>	estimated	<u> </u>	or Bo	ring Location XI			42	Feet M	1SL	Local	Grid L	_Feet l	MSL n	2	ir	nches
State 1	lane _		_		_ N, _		E			at 42	0 32 '	0.50				14			□ E
Facilit	y ID	11 11	_ 1/4 o	of Section	County	_ , <u>T _</u>	N, R 17 E		I Loi untv C					T Villa	eet 🗖	<u>s</u>		_ Feet	<u> </u>
							WORTH	_	_65_				,, .			khorn			
Sam			face)	ì											Soil I	rope	rties		
	Λtt. ¿ d (ir	unts	Feet				ck Description ogic Origin For							ive					s,
lber Lype	gth 4 vere	Ş	h in	6	,		Major Unit			CS	iic	ram	Œ	ress gth	ture	. p	city		/ nent
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet (Below ground surface)							N S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	60/60		E	0.0	- 0.5	Concr	ete floor.			CO	4 7			007	1				40
			1 2 3 4 4	0.5	- 1.2	Coarse gravel.	e brown sand with s	ilt an	ıd ¬	SP									(0-2') bgs interval
			E'	h		g			г	CL	///								submitted
			Ė۵							CL									for Cr/Hex Cr analysis
			Εź	1.2	- 5.0		o brown clay with s ir gravel. Black stre				///								(2-4') bgs interval
			Ė,			clay.	g												submitted as
			E,											ŀ					soil sample for Cr/Hex
			Ė٠																Cr analysis
			E																
•	60/60		۲,	750	0.25	<u> </u>	1 24 96	_											
2	60/60		E'	J 5.0	- 8.25	moist,	orown clay with silt stiff.	,	`	CL	///			ŀ					
			F _											i					
			E^6							ĺ	///		ľ						
			F _																
			E^7								1//								
			E.											1					
				√ 8.25	5 - 10.0	Gray o	elay with silt, moist,		\neg		///								
			E			stiff.				CL				1					
			- 9								7//								
			E	l										Ì					!
3	60/60		F ¹⁰	J 10.0	- 15.0	Gray s	ilty clay, wet.		ι.	CL	7/								
			E																
			E ¹¹								///								
			F.,								///								
ho=a1	N, 60rd	:6., 4L	12	infor-		on this f	orm is true and co			<u> </u>	///								
ignati		.11 y UI	at the	///	lauon	on uns i	OTHER IS IT US ARE CO		Firm					·	.				
				<u> </u>	\wedge					The F	Reese G	roup, l	LLC						

License/Project/Monitoring No. : WI Unique Well No. :

Page 2 of 2

Soil Properties Sample Length Att. & Recovered (in) Depth in Feet Compressive Strength Blow Counts Soil/Rock Description And Geologic Origin For Moisture Content Plasticity Index PID/FID Graphic Log Well Diagram USCS Liquid Limit Each Major Unit P 200 End of boring at 15' bgs.

Sta	te of	Wisco	nsin	
De	partn	ent of	Natural	Resources

l Resources		Form 4400-122	FORMATION Rev. 7-98
Route To:	Watershed/Wastewater		

							ricovolopinom [A]	Our	~ <u>_</u>							Page	. 1	of	1
Facilit	y/Proje	ect Na	me			-		П	Licen	se/Peri	nit/Mo	nitorir	ng Nun	nber	Borin	Num	ber	_ 01 _	
	lenniur												Ū			•		RG SB	-9
Boring	g Drille	d By:	Name				last) and Firm		Date I	Orillin	g Starte	d	Date 1	Orilling	Comp	oleted	Drillin	g Met	hod
	lame: G	0	vironm	Name of crew chief (first, last) and Firm Last Name: Kapugi ironmental Services, Inc. Date Drilling Started 3/24/2022 m m/d d/d v y y y y y m m/d d/d v y y y y m m/d d/d v y y y y m m/d d/d v y y y y m m/d d/d v y y y y m m/d d/d v y y y y m m/d d/d v y y y y m m/d d/d v y y y y m m/d d/d v y y y y m m/d d/d v y y y y m m/d d/d v y y y y m m/d d/d v y y y y m m/d u y y y m m/d u y y y m m/d u y y y m m/d u y y y y m m/d u y y y m m/d u y y y m m/d u y y y y m m/d u y y y m m/															
WI Ur	nique V	Vell N	o.	DNR	Well I	D No.	Well Name										Boreh	ole Dia	ameter
			_								Feet M	1SL	,_				2_	i1	nches
Local State F	Grid C Plane _	rigin	□ (es	timated		or Bo	ring Location XI						Local	Grid L					 □ Е
		NW	_1/4 of	Sectio	n <u>6</u>	_, T_2	2N, R_17E		Lor	ng88	0 32	0.11"		F					
Facilit	y ID				Count		WORTH	Cou		ode	Civil '	Town/	City/ o		ge				
Sam	ple		ହ										T -		Soil	Prope	rties		
Number and Type	40/60 - 0.0 - 0.5 Concrete floor.									SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength				P 200	RQD/ Comments
1	40/60		F			Concre	ete floor.		$\overline{}$	СО	4 \								
2	60/60		7 8 8 9	√0.85 √2.5 √5.0 √9.0 √10.0	- 2.5 - 5.0 - 9.0 - 15.4	Gray a and ro Light I clay. Carage of the clay of th	and black clay with sunded gravel. brown and orange significant or the state of th	silt (ilty clay		CL									
						<u>_`</u>				<u> </u>	///	Ļ	L	<u> </u>		L			
I heret		ify th	at the	ınform	nation	on this f	form is true and co		t to th	ne bes	t of m	y kno	wledg	e					

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

The Reese Group, LLC

Sta	te of	Wisco	nsin	
De	partn	ent of	Natural	Resources

Form 4400-122 Rev. 7-98

			Ro	ute To:				· □ Wa. nent [x] (t 🔲	_							
							_									Page	1	of 2	2
	ty/Proje						 -		Lice	nse/Pe	mit/Mo	nitorir	ıg Nun	nber	Borin	g Num	ber		
	lenniun			o of or	avy obio	f (first	last) and F	Zima		D			I					RG SB	
	ame: C		INall		Name: K		iasi) aliu r			Drillir	_			_	_		Drillin	g Met	hod
Firm:	On-S	ite En	vironi	mental S	Services,	Inc.			$\frac{3}{m}$	$\frac{1}{m} / \frac{24}{d}$	$\frac{1}{y} = \frac{20}{y}$	$\frac{22}{y}$	$\frac{3}{m}\frac{m}{m}$	$\frac{24}{d}$	$\frac{1}{y} = \frac{20}{y}$	$\frac{22}{y}$	Geop	robe	
WI U	nique V	Vell N	o.	DNR	Well ID	No.	Well Nar		Fina	l Static			Surfac	e Elev			Boreh	ole Dia	ameter
	Grid O	rigin		estimated		or Po		FW-10			_Feet N	<i>I</i> SL		C-: 4 I	_Feet	MSL	2	i	nches
State I	Plane _	n igni		Simatec	_N,	01 10	- Locat	_E		Lat _4	20 42	0.56"	Locai	Gria L	ocano	n I N			□ E
SW	1/4 of	NW	_ 1/4 c	of Section	m <u>6</u>	_, T_2	N, R	ion xl _ E 17E	lι	ong 8					eet 🗖	S_			
Facili	ty ID				County	337A T	WODTI	т	County 6		Civil	Town/	City/ o	r Villa					
Sam	nla					WAL	WORTH	1	0.	'—	-	1	ī	Τ		khorn			
Jan	એ (<u>વ</u>	50	Depth in Feet			Co:1/Do	ale Donomin								2011	Prope I	rties		
. ຍ	Att. ed (j	Blow Counts	Fee				ck Descrip ogic Origi						١_	sive					t)
Typ	igth over	ζ. ¥	th ir	4			Major Un			CS	hic]E	pres	sture	평.=	icity	0	men
Number and Type	Length Att. & Recovered (in)	Blo	Pg							N S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	40/60		F	0.0	- 0.5	Concr	ete floor.	-		CO	_			0.1					
			1 2 3 4	0.5	- 1.65		brown coar d gravel.	rse sand w	ith	$\gamma_{\rm sm}$	15								
						siit aii	u gravei.				 [++]								
			E.	J 1.65	- 2.5		brown silt,	sand, and		$\mathbf{V}_{\mathbf{w}}$	II t t								(0-2') bgs
			=2			clay.				SM	† I I ·	1							interval submitted as
			Е	725	- 5.0	Light	brown clas	with silt a		\prec	12/2								soil sample (2-4') bgs
			= ³	2.3	- 3.0	gravel		with sit a	anu			1				1			interval
			E								1//	1							submitted as soil sample
											1//			1					•
				I						۱.		1							
2	60/60		5 -6 -7	J 5.0	- 5.8	Light l	brown silty	y clay with	Ī	Y CL]							
			E	1 5.8	- 8.3		brown and	gray silty	clav	J		1							
			= ⁶		0.0	with re	ounded gra	avel, moist		CL	///	1	İ					1	
			Ε									1		ļ					
			⊢ ⁷								1/1/								
			E									1							
			8	√ 8.3	- 10 0	Gray (lay with si	ilt wet		٦l		1							
			E	- 0.5	- 10.0	Gray	nay with si	ш, жен		CL		1							
			F 9									1							
			E							_		1							
3	60/60		⊢ 10	J 10.0	- 12.5		brown and and, wet.	gray silty	clay	$^{V}_{CL}$		-							
			E			WILLI S	inu, wet.					1							
			- 11								11/1	1							
			E									1							
		_	— 12									1				<u> </u>			
		ify th	at the	inforn	nation o	on this f	orm is tru	ue and co			st of m	y kno	wledg	e					
Signati	ıre —	—	<u>~</u>	<i>K</i> :	\mathcal{X}				Firm	The	Reese C	Froup, 1	LLC						
			-	/ \ `	- \				1										

License/Project/Monitoring No. : WI Unique Well No. :

Page 2 of 2

Soil Properties Sample Length Att. & Recovered (in) Depth in Feet Blow Counts Compressive Strength Soil/Rock Description And Geologic Origin For Moisture Content Plasticity Index PID/FID Well Diagram USCS Graphic Liquid Limit Each Major Unit P 200 Log Dark gray clay with angular rocks and silt. 12.5 - 15.0 CLEnd of boring at 15' bgs. Temporary well installed (TRG TW-10).

Sta	te of	Wisco	nsin	
De	partn	ent of	Natural	Resources

Form 4400-122 Rev. 7-98

			Rou	te To:				r ∐ Waste nent [x] Ot		_	Ш								
			_													Page	1_	_ of _	1
	ty/Proje								Licen	se/Per	mit/Mo	nitorin	g Nun	nber	Boring	g Num	ber		
Borin		d By:		e of cre	ew chi	ef (first,	last) and l	Firm	Date I	Orillin	g Starte	d	Date I	Orilling	Com	oleted	Drillin	RG SB	
	Name: G	U				Kapugi					$\frac{7}{\sqrt{y}} \frac{20}{y}$			$\frac{24}{d}$	_		Geop	_	
	On-S			DNR		_	Well Na	me			y y Water 1		m m Surfac			у у	Boreh		meter
			<u>_</u> _				TRG	TW-11	<u> </u>		Feet M	ISL.	l		Feet 1	MSL	_2_		nches
State	Plane				N.		ring Locat	E	1	at _42	0 40	0.52"	Local	Grid L	ocatio.	n N			□ E
SW	1/4 of	NW	_1/4 of	Sectio	n <u>6</u>	_, <u>T_</u>	2N, R	<u>17</u> E	Lo	ng88	0 32	1.29"		F	eet 🗖	1 1 1			
Facili	ty ID				Count		WORT		ounty C	ode	Civil	Town/	City/ o	r Villa		khorn			
San			(e)			-										Prope	rties		
	tt. & I (in)	nts	eet d surfa				ck Descrip							Š					
ber	th A	Con	aroun				logic Orig Major Un			CS	.g	am	Œ	ressi gth	int inte	-g	city		, nents
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet (Below ground surface)				•			N S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	40/60		E	0.0	- 0.5		ete floor.			СО	107	-		007	~0				
			E,	0.5	- 1.0	Light gravel		y sand with		SM	11 11								(0-2') bgs interval
			E,	lλ		9			Γ	CL		ł							submitted as soil sample
			\mathbf{E}_2	1.0	- 5.0	Light and gr		y clay with sa	ınd			1							(2-4') bgs interval
	'			l		and gi	a v C 1 .					l							submitted as soil sample
			= 3									1				ļ			son sample
			E																
			= ⁴																
•	60/60		E,	/		.		1	 ¬										
2	60/60		E,	J 5.0	- 6.0		brown fine ed gravel,	e sand with si moist.	mall \	SM	líffi								
			E_6	√ 6.0	- 8.3	3 Light	brown silt	y clay with sa	und \					İ					
			E		0.0		avel, wet.	,, cing with 50	-	CL									
			二 7																
			F									ł		1					
			E 8	/ 0.22	10.	<u> </u>						1		1					
			E	J 8.33	- 10.0		brown to r ay with sa	medium brow ınd, wet.	n L	CL		l							
			- 9																
2	60/60		F ₁₀	/100	11.	<u> </u>			-,			1		Ì					
3	60/60		F	J 10.0	- 11.0		prown siit ravel, wet.	y clay and sa	na L	CL									
			E ₁₁	<u>√ 11.0</u>	- 12.0) Grav	clay with h	olack foundry	,	İ		1				1			
			E	11,0			t 12 ft bgs	. Refusal at 1		CL		ł							
			- 12			11 Dgs.													
		ify th	at the	inform	nation	on this	form is tr	ue and corre	ect to the	ne bes	t of m	y kno	wledge	e.					
Signat	ure	-/	_ رد	<i>V</i> .	I				Firm	The I	Reese G	roup, l	LLC						
		/		<u> </u>	<u> </u>				1			-							

Sta	te of	Wisco	nsin	
De	partn	ent of	Natural	Resources

Form 4400-122 Rev. 7-98

			Rou	te To:				☐ Wastonent [x] Of											
						•										Dogg	: <u>1</u>	~ ·	2
Facili	ty/Proje	ect Na	me		_				Licen	se/Per	mit/Mo	nitorir	g Nun	nber	Borin	g Num		_ 01 _2	<u></u>
	lenniuı										_							RG SB	
	g Drille Name: (Name		ew chie		ast) and F	irm			g Starte						Drillin	ig Met	hod
		0	wironm		Services	1 0			$\frac{3}{m}$	$\frac{24}{4}$	$\frac{1}{y} \frac{20}{y}$	$\frac{22}{v}$	3/	$\frac{24}{d}$	$\frac{20}{v}$	$\frac{22}{v}$	Geop	robe	
	nique V				Well II		Well Nan	ne			Water		Surfac				Boreh	ole Dia	ameter
			_				TRG T		_		Feet N	ISL	_		_Feet	MSL	2		nches
Local State 1	Grid C	rigin	☐ (es	stimated	i: 🔲) N	or Bor	ing Locati	on XI		at 42	0 40	0.55"	Local	Grid L	ocatio	n			
SW	1/4 of	NW	1/4 of	Section	 m_6	т 2	N, R	17 E	10	ng 88	o 32 '	0.77"			eet □				□ E □ W
Facili	ty ID		_ 17 1 01	Coolie	County	WAI	WORTH	<u></u> C	County C		Civil				ge	khorn		_100	<u> </u>
Sam	nle				<u> </u>	WAL	WOKII	1 .	05_	_		1	_	Γ		Prope	uti a a		
<u> </u>		S	Depth in Feet (Below ground surface)			Soil/Roc	k Descrip	tion								rope	rues		1
L g	Length Att. & Recovered (in)	Blow Counts	Fe sund s			and Geol	ogic Origi	n For		ا		_	_	Sive					l st
Number and Type	igth over	Ŭ ≩	th ir			Each	Major Uni	it		CS	hic	II I	PID/FID	pres	stur tent	Ę,Ę	ticit,	Ω.	Mer ∠
Nu	Rec Let	Blo	Belog							N S	Graphic	Well Diagram	PID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	40/60		E	0.0	- 0.5	Concre	te floor.			CO	¥ (Ť					
			Ė.	0.5	- 1.5	Light b gravel.	rown silty	sand with	`	SM	<u> </u>								
			E'	, <u> </u>	2.5						<u> </u> ††								
			F ₂	1.5	- 2.5	Віаск (clay with si	iit.		CL	777								(0-2') interval
			Εź									1					1		submitted as soil sample
			E.	2.5	- 5.0			gray silty sa	and	SM	[[+1]	1							(2-4')
			E^3			with cl	ay and gra	ivel.			[[++]			ŀ		1			interval submitted as
			Ė,								‡‡							ĺ	soil sample
			E									ı					l		
			Ė,								$ \uparrow \uparrow \uparrow \downarrow $								
2	60/60		E,	J 5.0	- 6.67			d with black t, and grave		SM	[I]								
			E,				-	_			$[] \downarrow \downarrow [$				l ,		1		
			E ₆							ĺ	[++1		İ					,	
			E.	6.67	- 9.16			orange silty		. CM	II t t I								
			E^7					foundry san nately 8 ft b		SM	IţŢŢ						[
			E								 †↓↓†						6		
			F ⁸								‡‡					İ			
			E								[++1			l					
			F ⁹	9.16	- 10.0	Gray s	ilty clay, n	noist to wet.	$\overline{}$		[i,j]								
			E							CL		1		İ			i	1	
3	60/60		– 10	J 10.0	- 13.3	Light b		clay with	/	CL									
			Е			sanu, v						1							
			- 11								111	1							ĺ
			E									ł							
			- 12	<u> </u>								1						L	
		ify th	at the	inforn	nation	on this f	orm is tru	ue and corr		he bes	t of m	y kno	wledge	e					
Signati	ure _	7	`~ <i>£</i>	V:)	(Firm	The I	Reese G	roup,	LLC						
		/		~~	`				1										

Facility/Project Boring No. : T	Name RG SE	: Mille	nnium Forms L	icense/I /I Uniqı	Project/I ie Well	Monitor No. :	ing No.	:		Pag	ge <u>2</u>	_ of _	2_
Sample	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	uscs		Well Diagram		Compressive Strength	Moisture OS Content	Liquid do	Plasticity air Index	P 200	RQD/ Comments
N a a a land a l			End of boring at 15' bgs. Temporary well installed (TRG TW-12).	CL	9	A A	ď	8				d .	

Sta	te of	Wisco	nsin	
De	partm	ent of	Natural	Resources

Form 4400-122 Rev. 7-98

			Rou	te To:				er D Was ment [x] (ıt 🔲								
							,									n	. 1	_ of _	2
Facili	ty/Proje	ect Na	me						Lice	nse/Pe	rmit/Mo	onitorir	ng Nun	nber	Borin	Page g Num	her	_ of _	
	lenniui									,			-6 - 1021		Dorm	6 1 1 G 111		RG SB	-13
Borin	g Drille	d By:	Nam				last) and	Firm	Date	Drilli	ng Start	ed	Date I	Orilling	Com	pleted	Drillin	g Met	hod
	Name: (_	vironn	Last l nental S		Kapugi s. Inc.			$\frac{3}{m}$	$\frac{1}{d} / \frac{2^2}{d}$	$\frac{1}{1} = \frac{20}{y}$	$\frac{22}{y}$	$\frac{3}{m}\frac{\pi}{m}$	$\frac{24}{d}$	$\frac{20}{y}$	$\frac{22}{y}$	Geop	robe	
	nique V			DNR		_	Well Na	ame			Water		Surfac				Boreh	ole Dia	ımeter
<u> </u>				-4:4 i	 -		TRG	TW-13			_Feet I	ISL	_		_Feet	MSL	2_	i	nches
State I	Plane _				_N,_		ming Loca			Lat _4	20 40	0.46"	Local	Grid L	ocatio.	n IN			□ E
SW	1/4 of	NW	_1/4 o	f Section	m <u>6</u>	_, T_	2N, R	R 17 E	lL	ong _8	80 32				eet 🗖				
Facili	ty ID				Count	y WAI	LWORT		County 65		Civil	Town/	City/ o	r Villa		khorn			
Sam	nle					WAI	ZW OKI	п		$\overline{}$		I	1	Γ		Prope	rtico		
<u> </u>	_	s,	Depth in Feet (Below ground surface)			Soil/Ro	ck Descri	intion				l			3011	rope	rues		
Lg	Length Att. & Recovered (in)	Blow Counts	Fe mund s				logic Orig			١.,			_	Sive					ıts
nbe Typ	igth over	Ŭ ≩	th ir			Each	Major U	nit		CS	hic	II I	PID/FID	pres	stur	ъ. Ę.	ticit.	0)/ mer
Number and Type	Rec Let	Blo	Belon							U S	Graphic I og	Well Diagram	<u></u> €	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	30/60		E	0.0	- 0.5		ete floor.			CC	_			ľ	-				
			2 3 4 5 6	0.5	- 1.0	Brow	n sandy si	lt with grave	el.	Ч мі	祖王								(0-2') bgs interval
			E,	lλ						[CL	7//	1							submitted as
			Ε.	1.0	- 5.0	Black	clay with	silt, stiff.		'		1	1						soil sample (2-4') bgs
			= ²					.,			1//	1				1			interval
			E	1								1							submitted as soil sample
			=3									7				ļ			
			F									1							
			L 4								1//	1		ł					
			Ε									1							
2	60/60		L ₅	$\sqrt{5.0}$	- 7.5	Light	brown sil	ty clay with	sand	7		4							
			F			and g	ravel, wet	•		CL	1///	1							
			E_6								1//	1							
			E							1		3							
			₽ ₂								///	1							
			E'	را		,				, l		1		i					
			Ε	J 7.5	- 10.0) Gray to wet	and brow	n silty clay,	moist	$^{H}_{CL}$		1							
			E 8 E 9			10 110	•					7							
			F									1							
			E 9								1///	1							
			E									1		l					
3	60/60		_	10.0	- 15.0) Light	brown an	d gray sand	v silt	٧		1							
			F					ravel, wet.		SM	: † † .	ļ .							
			Ε.,	1						i	J# 1 1 -	ļ							
			=								JJ † †.	ļ							
			E_{12}][]								
haral	N 00**	ifv +L		inform	nation	on this	form is t	rue and cor	react to	tha b	ot of =) 	 	<u></u>		<u> </u>	ш	لـــــا	
Signati	-	<u>ту и</u>	at the	, T	iauon	on this	IOIIII IS U	THE WHILE COL	Firm		st of M	y kno	wieag	.					
J		1	~ X	<u>\\</u>						The	Reese (Group,	LLC						

License/Project/Monitoring No. : WI Unique Well No. :

Page 2 of 2

	3 No. :	TRG SI	3-13		I Uniqu	ie Well	No. :					30 <u></u>	_ ^	
Number and Type	Length Att. & do	Blow Counts	Depth in Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	nscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture SContent	Liquid Limit	Plasticity all Index	P 200	RQD/ Comments
				End of boring at 15' bgs. Temporary well installed (TRG TW-13).										

Sta	te of	Wisco	nsin	
De	partn	ent of	Natural	Resources

Form 4400-122 Rev. 7-98

			Rou	te To:			Vastewater /Revelopme					_							
																Page	1_	of 2	2
	ty/Proje								Licen	se/Peri	nit/Mo	nitorin	g Nun	nber	Borin	g Num	ber		
	lenniur Deille			e of cre	aw chie	of (firet	last) and Fir		D. t. I		<u> </u>	,	. .	S 1111	Ĺ	, ,		RG SB	
	Vame: G		Ivaiii	Last 1	Name: I	Kapugi	iasi) anu i n	1111			Starte			_			Drillin	g Meti	hod
Firm:	On-S	ite En	vironn	nental S	ervices	, Inc.			$\frac{3}{m}$	$\frac{\sqrt{d}}{d} \frac{d}{d}$	$\frac{20}{y}$	$\frac{22}{y}$ $\frac{y}{y}$	$\frac{3}{m}$	$\frac{24}{d}$	$\frac{1}{y} \frac{20}{y}$	$\frac{22}{y}$	Geop	robe	
WI Uı	nique V	Vell N	o.	DNR	Well II	O No.	Well Name		Final	Static '	Water		Surfac	e Elev			Boreho		
Local	Grid C	rigin	(e:	stimated	<u> </u>	or Bo	TRG M		<u> </u>		Feet M		Local	Grid L	_Feet			i	nches
State I	Plane _		_		_ N, _			E	L	at <u>42</u>	0 40	0.33	Locai	Oriu L		ı I N			□ E
SW	1/4 of	NW	_1/4 of	f Sectio	m <u>6</u>	_, T_2	2_N, R_1	<u>7_</u> E_	Lor	ng88	o ₃₂ '	0.75"			eet 🗖				
Facili	ty ID				County			C	ounty C 65	ode	Civil '	Town/	City/ o	r Villa					
Sam	nle					WAL	WORTH	_	03_	$\overline{}$				r		khorn	- A !		
Jan	_	s	Depth in Feet (Below ground surface)			Soil/Do	ck Description								3011	Prope I	rties		
L g	Length Att. & Recovered (in)	Blow Counts	Fee		A		logic Origin			١				Compressive Strength	۱.,				ıts
Typ	igth over	Ŭ ≩	th ir w gro			Each	Major Unit			CS	hic	II gram	/FIL	pres	sture	멸ᆵ	ricity X	0)/ mer
Number and Type	Len Rec	Blo	Belong							S O	Graphic Log	Well Diagram	PID/FID	Stre	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	40/60		-	0.0	- 0.5		ete floor.	-	_	СО	¥ .			0.1					
			E.	0.5	- 1.0	Light	brown sandy	silt.	$\overline{}$	SM	lî) H								(0-2')
			3 4	h					Г	CL	7/2								interval submitted as
			E	1.0	- 5.0	Blay a	nd gray silty	clay with											soil sample (2-4')
			= ²	110		sand a	nd gravel, st	iff.			///						1		interval
			E	1															submitted as soil sample
			=3																•
			E																e,
			E ⁴								///								
			F																
2	60/60		E 5	$\sqrt{5.0}$	- 8.33		brown sandy	silt with	\neg	SM									
			6			sman ş	gravel, wet.			SIVI	╽┆┆┆								
			E 6								†↓↓†								
			E								14††4				İ				
			二 7																
			Е								IJŦŦIJ			İ					
			8 8 9 8 10								[++ <u> </u>								
			F	8.33	- 10.0		sandy silt wit	th small	-	CM	li t t i								
			E_9			gravel	, wet.			SM	I†∏†			}					
			Ė.								l l I I t								
3	60/60		E_{10}	/ 10.0	- 15.0	Cross	and light bro	ailte aa			l† I I †			ľ					
3	00/00		E	10.0	- 15.0	wet.	anu ngni bro	own siity sai	nu, L	SM	IJŦŦIJ								
			F	İ]] † †]								
			E''								[[++]								
			= ,,								† †			1					
, ,			12	<u> </u>						L	++			<u> </u>		<u> </u>			
	-	ity th	at the	inform	nation	on this f	form is true			ne bes	t of m	y kno	wledge	e					
Signati	TC -	7	<u>_</u> ,	K:_	X				Firm	The F	Reese G	roup, l	LLC						
		1		\rightarrow					<u>. </u>										

License/Project/Monitoring No. : WI Unique Well No. :

Page 2 of 2

Soil Properties Sample Length Att. & Recovered (in) Depth in Feet Blow Counts Compressive Strength Soil/Rock Description And Geologic Origin For Moisture Content Plasticity Index Log Well Diagram PID/FID USCS Graphic Liquid Limit Each Major Unit P 200 End of boring at 15' bgs. NR 141 monitoring well installed (TRG MW-14).

Sta	te of	Wisco	nsin	
De	partm	ent of	Natural	Resources

Form 4400-122 Rev. 7-98

			Rou	te To:				☐ Waste ent [x] Ot				_							
							-									Page	1	of 4	2
	ty/Proje							-	Licen	se/Peri	nit/Mo	nitorin	g Nun	ber	Boring	g Num	ber		
	lenniur			a af ama	ahi	of (finat 1	ast) and E								L			RG SB	
First 1	Vame: G	а Бу: lage	Name			er (11181, 1 Kapugi	ast) and F	IIII			Starte						Drillin	g Meti	hod
		0	vironm	nental S		1 0			$\frac{3}{m}\frac{m}{m}$	$\frac{24}{d}$	$\frac{1}{\sqrt{y}} \frac{20}{y}$	$\frac{22}{y} - y$	$\frac{3}{m}\frac{m}{m}$	$\frac{24}{d}$	$\frac{1}{y} \frac{20}{y}$	$\frac{22}{y}$	Geop	robe	
WI U	nique V	Vell N	o.	DNR '	Well I	D No.	Well Nam	ne			Water l			e Elev			Boreh	ole Dia	ımeter
<u> </u>	<u></u>						TRGT		_		Feet N	ISL	_	~	_Feet	MSL	2	i1	nches
State]	Plane _	rigin	(es	stimated	. LL) _ N, _	or Bor	ing Locati	on XI _E	1	_at42	o 40	0.74"	Local	Grid L	ocatio	n N			- -
SW	1/4 of	NW	1/4 of	Section	n 6	, т 2	N, R_	17 E	$ _{L_0}$	ng 88	o ₃₂ '	0.25"			eet □	1 1			□ E □ W
Facili	ty ID				Count	y WAI'	WORTH		ounty (Civil '				ge	khorn			
Sam	nole		T @			WAL	WORTH	<u> </u>		$\overline{}$						Prope	rtios		
<u> </u>		s,	Depth in Feet (Below ground surface)			Soil/Roc	k Descript	tion							3011	rope	ues		
Lg	Length Att. Recovered (Blow Counts	Fe munds		1		ogic Origin			l		_		sive					ıts
Typ.	igth over	ٽ ≩	th in			Each :	Major Uni	t		CS	hic	II gram	PID/FID	pres ngth	stur	it id	ticit	Q)/ umer
Number and Type	Length Att. & Recovered (in)	Blo	Det Det							n S	Graphic Log	Well Diagram	PID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
1	60/60		E				, grass, ro			то	<u> </u>)					
			E.	0.33	- 2.5	Light b	rown silty	clay.		CL									(0-2') interval
																			submitted as
			E.							į									soil sample
				l												İ			
			E	J 2.5	- 5.0		rown to oi nd, moist.	range silty c	lay \	CL	7/								(2-4') interval
			= ³				,									}			submitted as
			E							l	////								soil sample
			- 4							l	////								
			1 2 3 3 4 4 5 5 6 6 6 7 7							l	///								
2	60/60		= 5	J 5.0	- 8.33		rown to or nd, wet.	range silty c	lay \	CL	///								
			E			with sa	nu, wet.												
			= 6							1	///								
			F												ĺ				
			E 7																
			F																
			E 8	 															
			E	J 8.33	- 10.0) Gray si	lty sand w	ith clay, we	t. \	SM	lffi								
			L 9								ĬŢŢŤ								
			E								 †↓↓†					l			
3	60/60		L ₁₀	$\int 10.0$	- 15.0	Grav si	ilty clay, w	et.	$\neg \neg$		ַן לָּלָן								
			E			·	• • • • • • • • • • • • • • • • • • • •			CL									
			E_{11}																
			F																
			= 12																
here	ov cert	ifv th		inform	ation	on this f	orm is tru	e and corr	ect to t	he bes	t of m	v knov	vleda		I				
Signati		/	2	1/	(/				Firm						-				
-	_	\mathcal{I}	- x	$\langle \cdot \rangle$	\				1	The F	Reese G	roup, l	LLC						

License/Project/Monitoring No. : WI Unique Well No. :

Page 2 of 2

Soil Properties Sample Length Att. & Recovered (in) Depth in Feet Blow Counts Compressive Strength Soil/Rock Description And Geologic Origin For Moisture Content Plasticity Index PID/FID Well Diagram USCS Graphic Liquid Limit Each Major Unit P 200 Log End of boring at 15' bgs. Temporary well installed (TRG TW-15).

Appendix B – Monitoring Well Construction, Development and Abandonment Forms

	Watershed/Wastewater Remediation/Redevelopment[X]	Waste Management Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name Millennium Forms	Local Grid Location of Well ft.	IN DE	Well Name TRG MW-4
Facility License, Permit or Monitoring No.	Local Grid Origin X (estima	ated: X) or Well Location	Wis. Unique Well No. DNR Well ID No.
Facility ID		ft. <u>E</u> . S/C/	Date Well Installe 10 / 13 / 2021
Type of Well Well Code 11 / mw	Section Location of Waste/Sou SW_1/4 of NW 1/4 of Sec_	$_6$ _,T. $_2$ N, R. $_17$ _ \Box	Well Installed By: Name (first, last) and Firm Tony Kapugi
Distance from Waste/ Enf. Stds.	0 _	Sidegradient	On Site Env. Services. Inc.
Sourceft. Apply X A. Protective pipe, top elevation	d Downgradient n X	Not Known ———————————————————————————————————	
	ft. MSL	2. Protective cove a. Inside diame	
C. Land surface elevation	ft. MSL	b. Length:	1_{-} ft.
D. Surface seal, bottom ft. MS	SL or ft.	c. Material:	Steel X 0 4
12. USCS classification of soil near scree	#253/ACAPA	d. Additional p	
GP □ GM □ GC □ GW □ S	sw 🗆 sp 🗆 🔪 🔡		ibe:
SM □ SC □ ML□ MH□ (CL X CH 🗆	3. Surface scal:	Bentonite 🔲 30
	Yes IX No		Concrete X 01
	tary 50	4 Material betwee	Other Department of the control of t
Hollow Stem A	* I 82XI	4. Material Detwe	Bentonite 30
	ther 🗆 🎎		Other 🗆 🏬
		5. Annular space	seal: a. Granular/Chipped Bentonite X 3 3
15. Drilling fluid used: Water □ 0 2 Drilling Mud □ 0 3	Air □ 01		1 mud weight Bentonite-sand slurry 3 5
	None in 99		l mud weight Bentonite slurry □ 31
16. Drilling additives used?	Yes X No		onite Bentonite-cement grout 5 0 Ft 3 volume added for any of the above
		6. How installe	- · ·
Describe		1. How mistans	Tremie pumped 🗆 02
17. Source of water (attach analysis, if requ	ired):		Gravity X 08
		6. Bentonite seal:	· -
E. Bentonite seal, topft. MS	SL or _1ft.	b. □1/4 in.	X 3/8 in. □ 1/2 in. Bentonite chips X 3 2
F. Fine sand, top ft. MS	SL or _ 3.9 ft.	7. Fine sand mate	rial: Manufacturer, product name & mesh size
G. Filter pack, top ft. MS	SL or _4.9 ft.	a. Nolume add	_
H. Screen joint, top ft. MS	SLor 4.9 ft.	8. Filter pack mai	erial: Manufacturer, product name & mesh size
-		b. Volume add	
I. Well bottom ft. MS	SL or _ 14.9 ft.	9. Well casing:	Flush threaded PVC schedule 40 [X 23
J. Filter pack, bottom ft. MS	3L or _ 15 ft.		Flush threaded PVC schedule 80 2 4 Other D
K. Borehole, bottom ft. MS	SL or _ 15 ft.	10. Screen materia a. Screen type	Factory cut $ X = \overline{11}$
L. Borehole, diameter _ 8 in.			Continuous slot Other
M. O.D. well casing _ 2.38_ in.		b. Manufacture c. Slot size:	<u>0.01_ in.</u>
N. I.D. well casing2 in.		\ d. Slotted leng	al (below filter pack): None X 1 4
71 1 26 3 3 4 5 5	C	1	Other 🗆 🚉
I hereby certify that the information on this		best of my knowledge.	
Signature	Firm The Ree	ese Group, LLC	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Waters	stewater	Waste Management			
Remediation/R	edevelopment [X]	Other			
Facility/Project Name	County Name		Well Name		
Millennium Forms		WALWORTH	T	TRG MW-4	
Facility License, Permit or Monitoring Number	County Code _65	Wis. Unique Well N	umber Di	NR Well ID Number ———	
1. Can this well be purged dry?	Yes 🛮 No	11. Depth to Water	Before Develo	opment After Development	
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other	41 61 42 62 70 20 10 51 50	(from top of well casing) Date	b. $\frac{10}{m} / \frac{13}{d} / \frac{1}{2}$ c. $\frac{14}{m} : \frac{30}{m} = \frac{1}{2}$	Clear	
	ft. in.		turbid.	turbid.	
7. Volume of water removed from well 13	gal. gal. gal.			well is at solid waste facility:mg/l	
9. Source of water added		15. COD		_ mg/l mg/l	
10. Analysis performed on water added? (If yes, attach results) 17. Additional comments on development:	Yes X No	16. Well developed be First Name: Lee Firm: The Reese G	-	and Firm ast Name: Kimbell	
Name and Address of Facility Contact /Owner/Responsers First Walter Last Hauk Name:	sible Party	I hereby certify that of my knowledge.	at the above inform	nation is true and correct to the best	
Facility/Firm: Millennium Forms LLC		Signature:			
Street: 550 E Centralia St		Drint Name. Lee Kin	mbell		

Firm:

The Reese Group, LLC

53121-

WI

Elkhorn

City/State/Zip: _

	Watershed/Wastewater Remediation/Redevelopment[X]	Waste Management	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name Millennium Forms	Local Grid Location of Well ft.	ln DF	Well Name TRG MW-5
Facility License, Permit or Monitoring No.		ated: X) or Well Location X	
Facility ID	St. Plane ft. N	ft. E. S/C/N	Date Well Installe 10 / 12 / 2021
Type of Well Well Code 11 / mw	Section Location of Waste/Sou SW_1/4 of NW 1/4 of Sec_	$_6$ _,T. $_2$ N, R. $_17$ _ \Box $\overset{X}{ u}$	<u> </u>
Distance from Waste/ Enf. Stds.		Sidegradient	On Site Env. Services. Inc.
	d Downgradient n X	1. Cap and lock?	X Yes No
B. Well casing, top elevation	ft. MSL	2. Protective cover a. Inside diamet	
C. Land surface elevation	ft. MSL	b. Length:	1 ₋ ft. Steel X 0 4
D. Surface seal, bottom ft. MS	SL or ft.		Other 🗆
12. USCS classification of soil near screen	n:	d. Additional pr	
GP GM GC GW S	SW D SP D	If yes, descri	be:
SM □ SC □ ML□ MH□ (T IX CH []	3. Surface seal:	Bentonite 30
	Van IV NI.	3.52.7255	Concrete X 01
	Yes IX No		Other 🗆
1	tary 🗆 50	4. Material between	an well casing and protective pipe:
Hollow Stem A	ther \square		Bentonite □ 30 Other □
15. Drilling fiuid used: Water □ 0 2	Air □ 01	5. Annular space s	mud weight Bentonite-sand slurry □ 35
	None IX 99		mud weight Bentonite slurry 31
			initial weight Bentonite-cement grout \Box 50
16. Drilling additives used?	Yes X No		t volume added for any of the above
		f. How installe	- · - · ·
Describe	 	1. 110 / 110 / 110	Tremie pumped D 02
17. Source of water (attach analysis, if requ	iired):		Gravity X 08
		6. Bentonite seal:	a. Bentonite granules 33
		b. □1/4 in. □	$X_3/8$ in. $\square 1/2$ in. Bentonite chips $ X = 3.2$
E. Bentonite seal, top ft. MS	L or _1 ft.		Other 🗆 🎎
F. Fine sand, top ft. MS	SL or _ 1.9 ft.	7. Fine sand mater	ial: Manufacturer, product name & mesh size
G. Filter pack, top ft. MS	SL or _2.9 ft.	b. Volume adde	
H. Screen joint, top ft. MS	SLor 2.9 ft.	8. Filter pack mate a Red Flint #40	erial: Manufacturer, product name & mesh size
		a. Volume add	
I. Well bottom ft. MS	SL or _ 12.9 ft.	9. Well casing:	Flush threaded PVC schedule 40 X 23
J. Filter pack, bottom ft. MS	SLor 13 ft.		Flush threaded PVC schedule 80 2 4 Other D
_		10. Screen material	: PVC
K. Borehole, bottom ft. MS	L or _ 13 it.	a. Screen type:	Factory cut $ X = 1.1$ Continuous slot $\square = 0.1$
L. Borehole, diameter _ 8 in.			Other 🗆
M. O.D. well casing _ 2.38_ in.		b. Manufacture c. Slot size:	<u>0.01_ in.</u>
N. I.D. well casing _ 2 in.		d. Slotted leng	th: 10_{-} ft. al (below filter pack): None $ X = 14$
-			Other
I hereby certify that the information on this	form is true and correct to the	best of my knowledge.	
Signature	Firm The Peer	so Croup II.C	
- // X · \	i ne Rees	se Group, LLC	

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Noute to: Watershed Watershed Watershed		waste Management	
	edevelopment [X]	Other	IW-H N
Facility/Project Name Millennium Forms	County Name	WALWODEH	Well Name TRG MW-5
Facility License, Permit or Monitoring Number	County Code	WALWORTH Wis. Unique Well N	
Facility License, Fermit of Monitoring Number	_65	wis. Oilique weil is	
1. Can this well be purged dry? □	Yes X No	11. Depth to Water	Before Development After Development
2. Well development method		(from top of	a. 4.4 ft ft.
-	4 1	well casing)	a
surged with bailer and pumped	61		
surged with block and bailed	42	Date	. 10 / 13 / 2021 10 / 13 / 202
surged with block and pumped	62		b. $\frac{10}{m}$ / $\frac{13}{d}$ / $\frac{2021}{y}$ y $\frac{10}{y}$ / $\frac{13}{d}$ / $\frac{202}{y}$ y
surged with block, bailed and pumped	70		
compressed air	20	Time	c. 10 : 40 $p.m$. 11 : 15 $p.m$.
bailed only	10		
pumped only	5 1	12. Sediment in well	inches inches
pumped slowly	5.0	bottom	
Other		13. Water clarity	Clear \sqcap 10 Clear \sqcap 20 Turbid X 15 Turbid X 25
3. Time spent developing well 35	min.		(Describe) (Describe) Purge water was Purge water was
4. Depth of well (from top of well casisng) 13	ft.		turbid. turbid.
5. Inside diameter of well $\frac{2}{2}$	in.		
6. Volume of water in filter pack and well casing 1.4	gal.		
7. Volume of water removed from well 14	gal.		ds were used and well is at solid waste facility:
8. Volume of water added (if any)	gal.	solids	mg/l mg/l
9. Source of water added		15. COD	mg/l mg/l
		16. Well developed b	by: Name (first, last) and Firm
10. Analysis performed on water added? (If yes, attach results)	Yes X No	First Name: Lee	Last Name: Kimbell
(ii yes, attach results)		Firm: The Reese C	Group, LLC
17. Additional comments on development:			
Name and Address of Facility Contact/Owner/Respons	sible Party	I hereby certify the	at the above information is true and correct to the bes
First Walter Last Hauk Name:Name:		of my knowledge.	at the above information is true and correct to the bes
Facility/Firm: Millennium Forms LLC		Signature:	
Street: 550 E Centralia St		Print Name: Lee Ki	mbell

The Reese Group, LLC

NOTE: See instructions for more information including a list of county codes and well type codes.

53121-

Firm:

WI

Elkhorn

City/State/Zip:

	Watershed/Wastewater Remediation/Redevelopment[X	Waste Manag 【] Other □	gement	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name Millennium Forms	Local Grid Location of Well ft.	¬ NI	ft. □ E. ft. □ W.	Well Name TRG MW-6
Facility License, Permit or Monitoring No.	Local Grid Origin (estim	nated: X) or V	Well Location X	Wis. Unique Well No. DNR Well ID No.
Facility ID	Lat. 42 40 1 St. Planeft. N	-		Date Well Installe 10_/_12_/_2020
Type of Well	Section Location of Waste/So SW_1/4 of NW 1/4 of Sec.		N, R17 X E N, R17 W	Well Installed By: Name (first, last) and Firm
Well Code11/_mw	Location of Well Relative to		Gov. Lot Number	- <u>Tony Kapugi</u>
Sourceft. Apply X	d □ Downgradient n x	Not Known		On Site Env. Services. Inc.
A. Protective pipe, top elevation	ft. MSL		Cap and lock? Protective cover p	X Yes □ No
B. Well casing, top elevation	ft. MSL		a. Inside diameter	
C. Land surface elevation	ft. MSL		b. Length:	1_{-} ft.
D. Surface seal, bottom ft. MS	SL or ft.	V	c. Material:	Steel X 04
12. USCS classification of soil near scree	#253/ACAPA	A Comment	d. Additional pro	
GP GM GC GW SM SM SC ML ML MH G	SW SP		If yes, describe	: <u> </u>
Bedrock □	LK CHU W	3.	Surface scal:	Bentonite
13. Sieve analysis performed?	Yes X No			Other 🗆
1	tary □ 50	4.	Material between	well casing and protective pipe:
Hollow Stem A	uger IX 4 1 XX			Bentonite □ 30 Other □
		5.	Annular space sea	
15. Drilling fluid used: Water □ 0 2 Drilling Mud □ 0 3	Air 01	ъ	Lbs/gal m	nud weight Bentonite-sand slurry □ 35
	None IX 99			nud weight Bentonite slurry 31 ite Bentonite-cement grout 50
16. Drilling additives used?	Yes X No	a e		volume added for any of the above
Describe		f.		Tremie 🗆 01
17. Source of water (attach analysis, if requ	uired):			Tremie pumped
		6.	Bentonite seal:	a. Bentonite granules ☐ 33
			b. □1/4 in. X	3/8 in. □ 1/2 in. Bentonite chips X 3 2
E. Bentonite seal, top ft. MS	L or _1it.		с	Other 🗆 🌉
F. Fine sand, top ft. MS	SL or _ 3.9 ft.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	a. Red Flint #55	al: Manufacturer, product name & mesh size
G. Filter pack, top ft. MS	SL or _4.9 ft.		b. Volume added	
H. Screen joint, top ft. MS	L or _ 4.9 ft.		a. Red Flint #40	ial: Manufacturer, product name & mesh size
I. Well bottom ft. MS	SL or _ 14.9 ft.		b. Volume added Well casing:	I_1ft ³ Flush threaded PVC schedule 40 X 23
	<u> </u>		wen casing.	Flush threaded PVC schedule 80 \(\sigma\) 24
J. Filter pack, bottom ft. MS	L or _ 15 ft.	10	. Screen material:	Other
K. Borehole, bottom ft. MS	L or _ 15 ft.	000	a. Screen type:	Factory cut X 11
L. Borehole, diameter _ 8 in.				Continuous slot
M. O.D. well casing _ 2.38_ in.			b. Manufacturer c. Slot size:	<u>0.01</u> in.
N. I.D. well casing _ 2 in.		,	d. Slotted length Backfill material	: ft. (below filter pack): None X 1 4 Other □
I hereby certify that the information on this	form is true and correct to the	best of my know	/ledge.	
Signature	Firm	ese Group, LLC		
	1 He Kee	——————————————————————————————————————		

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wa	astewater	Waste Management		
Remediation/I	Redevelopment [X]	Other		
Facility/Project Name	County Name		Well Name	
Millennium Forms		WALWORTH	7	TRG MW-6
Facility License, Permit or Monitoring Number	County Code _65	Wis. Unique Well N	umber D	NR Well ID Number ———
1. Can this well be purged dry?	Yes X No	11. Depth to Water	Before Develo	opment After Development
surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other	62 70 20 10 51 50 min.	(from top of well casing) Date	b. $\frac{10}{m} / \frac{13}{d} / \frac{1}{d}$ c. $\frac{11}{m} : \frac{25}{n} = \frac{25}{n}$	Clear \square 20 Turbid X 25 (Describe)
	.9 ft. in.		turbid.	turbid.
7. Volume of water removed from well10	gal. gal. gal.			well is at solid waste facility: mg/l mg/l
9. Source of water added		15. COD		_ mg/l mg/l
10. Analysis performed on water added? (If yes, attach results) 17. Additional comments on development:	Yes X No	16. Well developed b First Name: Lee Firm: The Reese G	-	and Firm ast Name: Kimbell
Name and Address of Facility Contact/Owner/Responsive First Walter Last Name: Hauk	sible Party	I hereby certify that of my knowledge.	at the above inform	mation is true and correct to the best
Facility/Firm: Millennium Forms LLC		Signature:		
Street: 550 E Centralia St		Drint Name. Lee Kit	nbell	

Firm:

The Reese Group, LLC

NOTE: See instructions for more information including a list of county codes and well type codes.

53121-

WI

Elkhorn

City/State/Zip: _

	Watershed/Wastewater Remediation/Redevelopment[X]	Waste Management Other	MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 7-98
Facility/Project Name Millennium Forms	Local Grid Location of Wellft	N DF	Well Name TRG MW-7
Facility License, Permit or Monitoring No.		ted: X) or Well Location X	.
Facility ID	St. Plane ft. N,	, ft. E. S/C/N	Date Well Installe 10 / 12 / 2021
Type of Well Well Code 11 / mw	Section Location of Waste/Sour SW_1/4 of NW 1/4 of Sec_	$_{6}$, T. $_{2}$ N, R. $_{17}$ $\stackrel{X}{\Box}$ $\stackrel{X}{\Box}$	
Distance from Waste/ Enf. Stds.		Sidegradient	On Site Env. Services Inc.
	d □ Downgradient n X ft. MSL ———————————————————————————————————	1. Cap and lock?	X Yes No
B. Well casing, top elevation	ft. MSL ———	2. Protective cover a. Inside diamet	
C. Land surface elevation	ft. MSL	b. Length:	1 ft. Steel X 0 4
D. Surface seal, bottom ft. MS	SL or ft.	C. Material:	Other \square
12. USCS classification of soil near screen	1 1 1	d. Additional p	
GP GM GC GW S SM SC ML MH G	SW D SP D	If yes, descri	be:
Bedrock	LK CHU	3. Surface scal:	Bentonite 30 Concrete X 01
13. Sieve analysis performed?	Yes IX No		Other
14. Drilling method used: Ro	tary □ 50	4. Material between	en well casing and protective pipe:
Hollow Stem Au			Bentonite □ 30
o	ther 🗆 📖 📗		Other 🗆 🏬
15. Drilling fiuid used: Water □ 0 2	Air □ 01	5. Annular space s	eal: a. Granular/Chipped Bentonite X 3 3
	None IX 99		mud weight Bentonite-sand slurry □ 35 mud weight Bentonite slurry □ 31
			onite Bentonite-cement grout \Box 50
16. Drilling additives used?	Yes X No		t 3 volume added for any of the above
Describe		f. How installe	
17. Source of water (attach analysis, if requ	uired):		Tremie pumped D 02
, , , , , , , , , , , , , , , , , , , ,		6. Bentonite seal:	Gravity X 0 8 a. Bentonite granules □ 3 3
		KXXX	X3/8 in. □1/2 in. Bentonite chips X 3 2
E. Bentonite seal, top ft. MS	L or _1,ft.	/ c	Other 🗆 🏬
F. Fine sand, top ft. MS	SL or _ 3.9 ft.	7. Fine sand mater	rial: Manufacturer, product name & mesh size
G. Filter pack, top ft. MS	SL or _4.9 ft.	b. Volume add	cd_1ft ³
H. Screen joint, top ft. MS	SL or _ 4.9 ft.	8. Filter pack mat a Red Flint #40	erial: Manufacturer, product name & mesh size
	140	b. Volume add	ed_1ft ³
I. Well bottom ft. MS	SL or _ 14.9 ft.	9. Well casing:	Flush threaded PVC schedule 40 X 2 3 Flush threaded PVC schedule 80 2 4
J. Filter pack, bottomft. MS	L or _ 15 ft.		Other 🗆 🊃
K. Borehole, bottom ft. MS	SL or _ 15 ft.	10. Screen materia a. Screen type	Factory cut X 11
L. Borehole, diameter _ 8 in.			Continuous slot
M. O.D. well casing _ 2.38_ in.		b. Manufacture c. Slot size:	<u>0.01</u> in.
N. I.D. well casing _ 2 in.		d. Slotted leng	al (below filter pack): None $\frac{ X }{ X }$ 14
I hereby certify that the information on this	form is true and correct to the k	est of my knowledge	Other 🗆 🌉
Signature Signature	Firm	out of my knowledge.	
		se Group, LLC	666

Please complete both Forms 4400-113A and 4400-113B and return them to the appropriate DNR office and bureau. Completion of these reports is required by chs. 160, 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291, 292, 293, 295, and 299, Wis. Stats., failure to file these forms may result in a forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on these forms is not intended to be used for any other purpose. NOTE: See the instructions for more information, including where the completed forms should be sent.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wa	stewater	Waste Management				
Remediation/R	edevelopment [X]	Other				
Facility/Project Name	County Name		Well Name			
Millennium Forms	•	WALWORTH		TRG MW-7		
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well N	umber E	NR Well ID Number		
	.65					
1. Can this well be purged dry? □	Yes X No	11. Depth to Water	Before Devel	opment After Development		
surged with bailer and pumped	4 1 6 1 4 2	(from top of well casing)		ftftft.		
surged with block and pumped surged with block, bailed and pumped compressed air bailed only	62 70 20	1		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
pumped only pumped slowly Other	51	12. Sediment in well bottom 13. Water clarity	— — — Clear □ 10 Turbid X 15	— — — Clear		
3. Time spent developing well 30	min.		(Describe) Purge water w	(Describe)		
4. Depth of well (from top of well casisng) $\frac{14}{1}$	9ft.		turbid.	turbid.		
5. Inside diameter of well $\frac{2}{2}$	in.					
6. Volume of water in filter pack and well casing 0.3	gal.	Fill in if drilling fluid	ds were used and	well is at solid waste facility:		
7. Volume of water removed from well 3.5	gal.			_ mg/l mg/l		
8. Volume of water added (if any)	gal.	solids				
9. Source of water added		15. COD		mg/l mg/l		
		16. Well developed b	y: Name (first, last) and Firm		
10. Analysis performed on water added? (If yes, attach results)	Yes X No	First Name: Lee		ast Name: Kimbell		
17. Additional comments on development:		Firm: The Reese C	Group, LLC			
Name and Address of Facility Contact/Owner/Responsers First Walter Last Hauk Name: Hauk	sible Party	I hereby certify the of my knowledge.	at the above infor	mation is true and correct to the best		
Facility/Firm: Millennium Forms LLC		Signature:				
Street: 550 E Centralia St		Print Name: Lee Kin	mbell			

The Reese Group, LLC

53121-

Firm:

WI

Elkhorn

City/State/Zip:

Environment Testing America

ANALYTICAL REPORT

Eurofins Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-214174-1 Client Project/Site: Millenium Forms

For:

The Reese Group, LLC 1433 North Water Street, Suite 400 Milwaukee, Wisconsin 53202

Attn: Christine Reese

Sanda freduk

Authorized for release by: 4/8/2022 4:12:37 PM

Sandie Fredrick, Project Manager II (920)261-1660

Sandra.Fredrick@et.eurofinsus.com

----- LINKS -----

Review your project results through

Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

2

3

4

5

10

13

Client: The Reese Group, LLC Project/Site: Millenium Forms

Laboratory Job ID: 500-214174-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	24
QC Association	25
QC Sample Results	28
Chronicle	30
Certification Summary	36
Chain of Custody	37
Receipt Checklists	

4

8

9

1 U

12

13

Case Narrative

Client: The Reese Group, LLC
Project/Site: Millenium Forms

Job ID: 500-214174-1

Job ID: 500-214174-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-214174-1

Comments

No additional comments.

Receipt

The samples were received on 3/25/2022 9:40 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.3° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

•

3

4

5

7

8

9

10

12

13

Client: The Reese Group, LLC Job ID: 500-214174-1

Client Sample ID: TRG	SB-8 (0-2')					Lab Sa	mple ID: 50	0-214174-1
-	, ,						•	
Analyte		Qualifier	RL		Unit		D Method	Prep Type
Chromium	120	В	1.1		mg/Kg	•	≎ 6010C	Total/NA
Chromium, hexavalent	10		1.1	0.42	mg/Kg	1 -	∵ 7196A	Total/NA
Client Sample ID: TRG	SB-8 (2-4')					Lab Sa	mple ID: 50	0-214174-2
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chromium	16	В	1.1	0.56	mg/Kg	1	6010C	Total/NA
Client Sample ID: TRG	SB-9 (0-2')					Lab Sa	mple ID: 50	0-214174-3
- Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chromium	310		5.6	2.8	mg/Kg	5	6010C	Total/NA
Chromium, hexavalent	27		1.1	0.44	mg/Kg	1	≎ 7196A	Total/NA
Client Sample ID: TRG	SB-9 (2-4')					Lab Sa	mple ID: 50	0-214174-4
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chromium	15		1.0		mg/Kg		6010C	Total/NA
Client Sample ID: TRG	SB-10 (0-2')					Lab Sa	mple ID: 50	0-214174-5
_ Analyte	Result	Qualifier	RL	MDI	Unit	Dil Fac	D Method	Prep Type
Chromium			1.0		mg/Kg		6010C	Total/NA
Chromium, hexavalent	1.5	Ь	1.0		mg/Kg		≎ 7196A	Total/NA
Client Sample ID: TRG	SB-10 (2-4')					Lab Sa	mple ID: 50	0-214174-6
Analyte	Result	Qualifier	RL	MDI	Unit	Dil Fac	D Method	Prep Type
Chromium	10		0.95		mg/Kg		6010C	Total/NA
Client Sample ID: TRG	SB-11 (0-2')					Lab Sa	mple ID: 50	0-214174-7
Analyte	Posult	Qualifier	RL	MDI	Unit	Dil Fac	D Method	Prep Type
Chromium			0.96		mg/Kg		© 6010C	Total/NA
Client Sample ID: TRG	SR-11 (2-4')					I ah Sa	mnle ID: 50	0-214174-8
-	,					Lab Ga	inpic ib. oc	
Analyte		Qualifier	RL		Unit		D Method	Prep Type
Chromium	9.8	В	1.0	0.50	mg/Kg	1 1	⇔ 6010C	Total/NA
Client Sample ID: TRG	SB-12 (0-2')					Lab Sa	mple ID: 50	0-214174-9
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chromium	9.7	В	1.1	0.55	mg/Kg	1	6010C	Total/NA
Client Sample ID: TRG	SB-12 (2-4')					Lab San	ple ID: 500)-214174-10
 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chromium	15	В –	1.1	0.56	mg/Kg	1	6010C	Total/NA
Client Sample ID: TRG	SB-13 (0-2')					Lab San	ple ID: 500)-214174-11
– Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Chromium	140		1.0		mg/Kg		6010C	Total/NA
Omomani								

This Detection Summary does not include radiochemical test results.

Chromium, hexavalent

6.6

Eurofins Chicago

4/8/2022

Total/NA

1 🌣 7196A

1.1

0.43 mg/Kg

Detection Summary

Client: The Reese Group, LLC
Project/Site: Millenium Forms

Job ID: 500-214174-1

Client Sample ID: TRG	SB-13 (2-4')					Lab Sa	mpl	e ID: 50	0-214174-12
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	lethod	Prep Type
Chromium	22	В	1.1	0.54	mg/Kg	1	□ 60	010C	Total/NA
Client Sample ID: TRG	SB-14 (0-2')					Lab Sa	mpl	e ID: 50	0-214174-13
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	lethod	Prep Type
Chromium	170	В	1.1	0.56	mg/Kg	1	□ 6	010C	Total/NA
Chromium, hexavalent	6.6		1.2	0.45	mg/Kg	1	⇔ 7	196A	Total/NA
Client Sample ID: TRG	SB-14 (2-4')					Lab Sa	mpl	e ID: 50	0-214174-14
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	lethod	Prep Type
Chromium	18	В —	1.0	0.51	mg/Kg	1	□ 6	010C	Total/NA
Client Sample ID: TRG	SB-15 (0-2')					Lab Sa	mpl	e ID: 50	0-214174-15
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D M	lethod	Prep Type
Chromium	21	В —	1.1	0.55	mg/Kg	1	□ 6	010C	Total/NA
Chromium, hexavalent	0.62	J	1.2	0.48	mg/Kg	1	⇔ 7	196A	Total/NA
Client Sample ID: TRG	SB-15 (2-4')					Lab Sa	mple	e ID: 50	0-214174-16

RL

1.1

Result Qualifier

20 B

MDL Unit

0.52 mg/Kg

Dil Fac D Method

1 ☆ 6010C

Analyte

Chromium

4/8/2022

9

4

7

9

11

12

13

1

Prep Type

Total/NA

Method Summary

Client: The Reese Group, LLC Project/Site: Millenium Forms

Job ID: 500-214174-1

Method	Method Description	Protocol	Laboratory
6010C	Metals (ICP)	SW846	TAL CHI
7196A	Chromium, Hexavalent	SW846	TAL CHI
Moisture	Percent Moisture	EPA	TAL CHI
3050B	Preparation, Metals	SW846	TAL CHI
3060A	Alkaline Digestion (Chromium, Hexavalent)	SW846	TAL CHI

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

4

5

7

8

9

11

12

Sample Summary

Client: The Reese Group, LLC Project/Site: Millenium Forms

500-214174-16

TRG SB-15 (2-4')

Lab Sample ID Client Sample ID Matrix Collected Received 500-214174-1 TRG SB-8 (0-2') Solid 03/24/22 09:30 03/25/22 09:40 Solid 500-214174-2 TRG SB-8 (2-4') 03/24/22 09:30 03/25/22 09:40 500-214174-3 TRG SB-9 (0-2') Solid 03/24/22 10:00 03/25/22 09:40 Solid 500-214174-4 TRG SB-9 (2-4') 03/24/22 10:00 03/25/22 09:40 500-214174-5 TRG SB-10 (0-2') Solid 03/24/22 10:25 03/25/22 09:40 TRG SB-10 (2-4') Solid 03/24/22 10:25 03/25/22 09:40 500-214174-6 500-214174-7 TRG SB-11 (0-2') Solid 03/24/22 10:45 03/25/22 09:40 500-214174-8 TRG SB-11 (2-4') Solid 03/24/22 10:45 03/25/22 09:40 Solid 500-214174-9 TRG SB-12 (0-2') 03/24/22 11:15 03/25/22 09:40 Solid 500-214174-10 TRG SB-12 (2-4') 03/24/22 11:15 03/25/22 09:40 500-214174-11 TRG SB-13 (0-2') Solid 03/24/22 12:00 03/25/22 09:40 Solid 500-214174-12 TRG SB-13 (2-4') 03/24/22 12:00 03/25/22 09:40 Solid 500-214174-13 TRG SB-14 (0-2') 03/24/22 13:00 03/25/22 09:40 500-214174-14 TRG SB-14 (2-4') Solid 03/24/22 13:00 03/25/22 09:40 500-214174-15 TRG SB-15 (0-2') Solid 03/24/22 16:30 03/25/22 09:40

Solid

03/24/22 16:30 03/25/22 09:40

1

Job ID: 500-214174-1

2

3

6

7

8

9

10

13

Client: The Reese Group, LLC Job ID: 500-214174-1 Project/Site: Millenium Forms

Client Sample ID: TRG SB-8 (0-2')

Lab Sample ID: 500-214174-1 Date Collected: 03/24/22 09:30 **Matrix: Solid**

Date Received: 03/25/22 09:40 Percent Solids: 89.7

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	120	В	1.1	0.53	mg/Kg	₩	03/30/22 04:19	04/01/22 17:24	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	10		1.1	0.42	mg/Kg	<u></u>	03/29/22 10:45	03/31/22 11:42	1

Client: The Reese Group, LLC Job ID: 500-214174-1

Project/Site: Millenium Forms

Client Sample ID: TRG SB-8 (2-4')

Date Collected: 03/24/22 09:30

Lab Sample ID: 500-214174-2

Matrix: Solid

Date Received: 03/25/22 09:40 Percent Solids: 81.7

Method: 6010C - Metals (ICP) Analyte Chromium	Result	Qualifier	RL	MDL 0.56	Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/01/22 17:40	Dil Fac
General Chemistry Analyte Chromium, hexavalent	Result <0.46	Qualifier	RL	MDL 0.46	Unit mg/Kg	<u>D</u>	Prepared 03/29/22 10:45	Analyzed 03/31/22 11:43	Dil Fac

0

10

12

13

Client: The Reese Group, LLC Job ID: 500-214174-1

Project/Site: Millenium Forms

Client Sample ID: TRG SB-9 (0-2')

Lab Sample ID: 500-214174-3

Date Collected: 03/24/22 10:00 Matrix: Solid
Date Received: 03/25/22 09:40 Percent Solids: 83.3

Method: 6010C - Metals (ICP) Analyte Chromium	Result	Qualifier	RL	MDL 2.8	Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/04/22 14:02	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	27		1.1	0.44	mg/Kg	— <u> </u>	03/29/22 10:45	03/31/22 11:43	

9

10

12

13

Client: The Reese Group, LLC Job ID: 500-214174-1 Project/Site: Millenium Forms

Client Sample ID: TRG SB-9 (2-4')

Lab Sample ID: 500-214174-4 Date Collected: 03/24/22 10:00

Matrix: Solid

Date Received: 03/25/22 09:40 Percent Solids: 84.1

Method: 6010C - Metals (ICP) Analyte Chromium	Result	Qualifier	RL 1.0	MDL 0.50	Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/01/22 17:47	Dil Fac
General Chemistry	Danult	Overliëte v	Di	MDI	11		Duamanad	A seal second	D:: 5
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	< 0.46		1.2	0.46	mg/Kg	₽	03/29/22 10:45	03/31/22 11:43	1

Client: The Reese Group, LLC Job ID: 500-214174-1

Project/Site: Millenium Forms

Client Sample ID: TRG SB-10 (0-2')

Lab Sample ID: 500-214174-5

Date Collected: 03/24/22 10:25

Date Received: 03/25/22 09:40

Matrix: Solid
Percent Solids: 94.5

Method: 6010C - Metals (ICP) Analyte Chromium	Result 21	Qualifier	RL 1.0	MDL 0.50	Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/01/22 17:56	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	1.5		1.0	0.40	mg/Kg	<u></u>	03/29/22 10:45	03/31/22 11:44	

5

7

9

11

13

Client: The Reese Group, LLC Job ID: 500-214174-1

Project/Site: Millenium Forms

Client Sample ID: TRG SB-10 (2-4')

Lab Sample ID: 500-214174-6

Date Collected: 03/24/22 10:25

Date Received: 03/25/22 09:40

Matrix: Solid
Percent Solids: 91.5

Method: 6010C - Metals (ICP) Analyte Chromium		Qualifier	RL 0.95		Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/01/22 18:00	Dil Fac
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium hexavalent	<0.42		11	0.42	ma/Ka		03/29/22 10:45	03/31/22 11:47	1

1

6

7

8

10

11

13

Client: The Reese Group, LLC Job ID: 500-214174-1

Project/Site: Millenium Forms

Client Sample ID: TRG SB-11 (0-2')

Lab Sample ID: 500-214174-7

Date Collected: 03/24/22 10:45

Matrix: Solid

Percent Solids: 03.8

Date Received: 03/25/22 09:40 Percent Solids: 92.8

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	11	В	0.96	0.47	mg/Kg	— <u> </u>	03/30/22 04:19	04/01/22 18:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.41		1.1	0.41	mg/Kg	-	03/29/22 10:45	03/31/22 11:48	1

5

7

8

10

4.6

13

Client: The Reese Group, LLC Job ID: 500-214174-1 Project/Site: Millenium Forms

Client Sample ID: TRG SB-11 (2-4')

Lab Sample ID: 500-214174-8 Date Collected: 03/24/22 10:45

Matrix: Solid

Date Received: 03/25/22 09:40 Percent Solids: 89.7

Method: 6010C - Metals (ICP) Analyte Chromium	Result	Qualifier	RL	MDL 0.50	Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/01/22 18:06	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.41		1.1	0.41	ma/Ka		03/29/22 10:45	03/31/22 11:48	

Client: The Reese Group, LLC Job ID: 500-214174-1

Project/Site: Millenium Forms

Client Sample ID: TRG SB-12 (0-2')

Date Collected: 03/24/22 11:15

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-9

Matrix: Solid

Percent Solids: 84.2

Method: 6010C - Metals (ICP) Analyte Chromium		Qualifier	RL	MDL 0.55	Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/01/22 18:10	Dil Fac
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium hexavalent	<0.42		11	0.42	ma/Ka		03/29/22 10:45	03/31/22 11:51	

7

9

44

Client: The Reese Group, LLC
Project/Site: Millenium Forms

Job ID: 500-214174-1

Client Sample ID: TRG SB-12 (2-4')
Date Collected: 03/24/22 11:15

Lab Sample ID: 500-214174-10

Matrix: Solid

Date Received: 03/25/22 09:40

Percent Solids: 86.1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	15	B	1.1	0.56	mg/Kg	-	03/30/22 04:19	04/01/22 18:13	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.42		1.1	0.42	mg/Kg	— <u></u>	04/07/22 13:40	04/08/22 15:10	1

R

9

11

13

Client: The Reese Group, LLC Job ID: 500-214174-1

Project/Site: Millenium Forms

Client Sample ID: TRG SB-13 (0-2')

Lab Sample ID: 500-214174-11

Date Collected: 03/24/22 12:00 Matrix: Solid

Date Received: 03/25/22 09:40 Percent Solids: 84.0

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	140	В	1.0	0.50	mg/Kg	*	03/30/22 04:19	04/01/22 18:16	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	6.6		1.1	0.43	mg/Kg	— <u></u>	04/07/22 13:40	04/08/22 15:00	1

4

6

7

0

10

12

Client: The Reese Group, LLC
Project/Site: Millenium Forms

Job ID: 500-214174-1

Client Sample ID: TRG SB-13 (2-4')

Lab Sample ID: 500-214174-12

Date Collected: 03/24/22 12:00 Lab Sample 1D. 500-214174-12

Date Received: 03/25/22 09:40 Percent Solids: 78.6

Method: 6010C - Metals (ICP) Analyte Chromium	Result	Qualifier B	RL	MDL 0.54	Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/01/22 18:19	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.49		1.3	0.49	mg/Kg	— <u></u>	04/07/22 13:40	04/08/22 15:11	1

6

9

10

Client: The Reese Group, LLC
Project/Site: Millenium Forms

Job ID: 500-214174-1

Olicus Occupie ID: TDO OD 44 (0.01)

Client Sample ID: TRG SB-14 (0-2')

Date Collected: 03/24/22 13:00

Lab Sample ID: 500-214174-13

Matrix: Solid

Date Received: 03/25/22 09:40 Percent Solids: 84.1

Method: 6010C - Metals (ICP) Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	170	В	1.1	0.56	mg/Kg	*	03/30/22 04:19	04/01/22 18:23	1
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	6.6		1.2	0.45	ma/Ka	— <u></u>	04/07/22 13:40	04/08/22 15:01	1

_

6

7

9

10

12

Client: The Reese Group, LLC Job ID: 500-214174-1 Project/Site: Millenium Forms

Client Sample ID: TRG SB-14 (2-4')

Date Collected: 03/24/22 13:00

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-14

Matrix: Solid

Percent Solids: 80.9

Method: 6010C - Metals (ICP) Analyte Chromium	Result	Qualifier B	RL 1.0	MDL 0.51	Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/01/22 18:26	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.45		1.2	0.45	mg/Kg	-	04/07/22 13:40	04/08/22 15:11	1

Client: The Reese Group, LLC Job ID: 500-214174-1

Project/Site: Millenium Forms

Client Sample ID: TRG SB-15 (0-2')

Lab Sample ID: 500-214174-15

Date Collected: 03/24/22 16:30 Matrix: Solid

Date Received: 03/25/22 09:40 Percent Solids: 80.8

Method: 6010C - Metals (ICP) Analyte Chromium	Result 21	Qualifier B	RL	MDL 0.55	Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/01/22 18:35	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	0.62	J	1.2	0.48	mg/Kg	<u></u>	04/07/22 13:40	04/08/22 15:02	1

4

0

9

11

12

Client: The Reese Group, LLC Job ID: 500-214174-1

Project/Site: Millenium Forms

Client Sample ID: TRG SB-15 (2-4')

Lab Sample ID: 500-214174-16

Date Collected: 03/24/22 16:30 Matrix: Solid

Date Received: 03/25/22 09:40 Percent Solids: 81.2

Method: 6010C - Metals (ICP) Analyte Chromium	Result	Qualifier	RL	MDL 0.52	Unit mg/Kg	<u>D</u>	Prepared 03/30/22 04:19	Analyzed 04/01/22 18:39	Dil Fac
General Chemistry Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.45		1.2	0.45	ma/Ka	— <u> </u>	04/07/22 13:40	04/08/22 15:02	1

Δ

6

7

10

12

13

Definitions/Glossary

Client: The Reese Group, LLC Job ID: 500-214174-1 Project/Site: Millenium Forms

Qualifiers

Metals

J

Qualifier **Qualifier Description** MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

В Compound was found in the blank and sample.

F3 Duplicate RPD exceeds the control limit

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

Relative Error Ratio (Radiochemistry) **RFR**

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Page 24 of 39

QC Association Summary

Client: The Reese Group, LLC Project/Site: Millenium Forms Job ID: 500-214174-1

Metals

Prep Batch: 649335

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-1	TRG SB-8 (0-2')	Total/NA	Solid	3050B	
500-214174-2	TRG SB-8 (2-4')	Total/NA	Solid	3050B	
500-214174-3	TRG SB-9 (0-2')	Total/NA	Solid	3050B	
500-214174-4	TRG SB-9 (2-4')	Total/NA	Solid	3050B	
500-214174-5	TRG SB-10 (0-2')	Total/NA	Solid	3050B	
500-214174-6	TRG SB-10 (2-4')	Total/NA	Solid	3050B	
500-214174-7	TRG SB-11 (0-2')	Total/NA	Solid	3050B	
500-214174-8	TRG SB-11 (2-4')	Total/NA	Solid	3050B	
500-214174-9	TRG SB-12 (0-2')	Total/NA	Solid	3050B	
500-214174-10	TRG SB-12 (2-4')	Total/NA	Solid	3050B	
500-214174-11	TRG SB-13 (0-2')	Total/NA	Solid	3050B	
500-214174-12	TRG SB-13 (2-4')	Total/NA	Solid	3050B	
500-214174-13	TRG SB-14 (0-2')	Total/NA	Solid	3050B	
500-214174-14	TRG SB-14 (2-4')	Total/NA	Solid	3050B	
500-214174-15	TRG SB-15 (0-2')	Total/NA	Solid	3050B	
500-214174-16	TRG SB-15 (2-4')	Total/NA	Solid	3050B	
MB 500-649335/1-A	Method Blank	Total/NA	Solid	3050B	
LCS 500-649335/2-A	Lab Control Sample	Total/NA	Solid	3050B	
500-214174-1 MS	TRG SB-8 (0-2')	Total/NA	Solid	3050B	
500-214174-1 MSD	TRG SB-8 (0-2')	Total/NA	Solid	3050B	
500-214174-1 DU	TRG SB-8 (0-2')	Total/NA	Solid	3050B	

Analysis Batch: 650054

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-1	TRG SB-8 (0-2')	Total/NA	Solid	6010C	649335
500-214174-2	TRG SB-8 (2-4')	Total/NA	Solid	6010C	649335
500-214174-4	TRG SB-9 (2-4')	Total/NA	Solid	6010C	649335
500-214174-5	TRG SB-10 (0-2')	Total/NA	Solid	6010C	649335
500-214174-6	TRG SB-10 (2-4')	Total/NA	Solid	6010C	649335
500-214174-7	TRG SB-11 (0-2')	Total/NA	Solid	6010C	649335
500-214174-8	TRG SB-11 (2-4')	Total/NA	Solid	6010C	649335
500-214174-9	TRG SB-12 (0-2')	Total/NA	Solid	6010C	649335
500-214174-10	TRG SB-12 (2-4')	Total/NA	Solid	6010C	649335
500-214174-11	TRG SB-13 (0-2')	Total/NA	Solid	6010C	649335
500-214174-12	TRG SB-13 (2-4')	Total/NA	Solid	6010C	649335
500-214174-13	TRG SB-14 (0-2')	Total/NA	Solid	6010C	649335
500-214174-14	TRG SB-14 (2-4')	Total/NA	Solid	6010C	649335
500-214174-15	TRG SB-15 (0-2')	Total/NA	Solid	6010C	649335
500-214174-16	TRG SB-15 (2-4')	Total/NA	Solid	6010C	649335
MB 500-649335/1-A	Method Blank	Total/NA	Solid	6010C	649335
LCS 500-649335/2-A	Lab Control Sample	Total/NA	Solid	6010C	649335
500-214174-1 MS	TRG SB-8 (0-2')	Total/NA	Solid	6010C	649335
500-214174-1 MSD	TRG SB-8 (0-2')	Total/NA	Solid	6010C	649335
500-214174-1 DU	TRG SB-8 (0-2')	Total/NA	Solid	6010C	649335

Analysis Batch: 650244

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-3	TRG SB-9 (0-2')	Total/NA	Solid	6010C	649335

Client: The Reese Group, LLC
Project/Site: Millenium Forms

Job ID: 500-214174-1

General Chemistry

Prep Batch: 649187

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-1	TRG SB-8 (0-2')	Total/NA	Solid	3060A	
500-214174-2	TRG SB-8 (2-4')	Total/NA	Solid	3060A	
500-214174-3	TRG SB-9 (0-2')	Total/NA	Solid	3060A	
500-214174-4	TRG SB-9 (2-4')	Total/NA	Solid	3060A	
500-214174-5	TRG SB-10 (0-2')	Total/NA	Solid	3060A	
500-214174-6	TRG SB-10 (2-4')	Total/NA	Solid	3060A	
500-214174-7	TRG SB-11 (0-2')	Total/NA	Solid	3060A	
500-214174-8	TRG SB-11 (2-4')	Total/NA	Solid	3060A	
500-214174-9	TRG SB-12 (0-2')	Total/NA	Solid	3060A	
MB 500-649187/1-A	Method Blank	Total/NA	Solid	3060A	
LCS 500-649187/2-A	Lab Control Sample	Total/NA	Solid	3060A	
LCS 500-649187/3-A	Lab Control Sample	Total/NA	Solid	3060A	
500-214174-5 MS	TRG SB-10 (0-2')	Total/NA	Solid	3060A	
500-214174-5 MS	TRG SB-10 (0-2')	Total/NA	Solid	3060A	
500-214174-5 MSD	TRG SB-10 (0-2')	Total/NA	Solid	3060A	
500-214174-5 MSD	TRG SB-10 (0-2')	Total/NA	Solid	3060A	

Analysis Batch: 649689

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-1	TRG SB-8 (0-2')	Total/NA	Solid	7196A	649187
500-214174-2	TRG SB-8 (2-4')	Total/NA	Solid	7196A	649187
500-214174-3	TRG SB-9 (0-2')	Total/NA	Solid	7196A	649187
500-214174-4	TRG SB-9 (2-4')	Total/NA	Solid	7196A	649187
500-214174-5	TRG SB-10 (0-2')	Total/NA	Solid	7196A	649187
500-214174-6	TRG SB-10 (2-4')	Total/NA	Solid	7196A	649187
500-214174-7	TRG SB-11 (0-2')	Total/NA	Solid	7196A	649187
500-214174-8	TRG SB-11 (2-4')	Total/NA	Solid	7196A	649187
MB 500-649187/1-A	Method Blank	Total/NA	Solid	7196A	649187
LCS 500-649187/2-A	Lab Control Sample	Total/NA	Solid	7196A	649187
LCS 500-649187/3-A	Lab Control Sample	Total/NA	Solid	7196A	649187
500-214174-5 MS	TRG SB-10 (0-2')	Total/NA	Solid	7196A	649187
500-214174-5 MS	TRG SB-10 (0-2')	Total/NA	Solid	7196A	649187
500-214174-5 MSD	TRG SB-10 (0-2')	Total/NA	Solid	7196A	649187
500-214174-5 MSD	TRG SB-10 (0-2')	Total/NA	Solid	7196A	649187

Analysis Batch: 649700

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-9	TRG SB-12 (0-2')	Total/NA	Solid	7196A	649187

Analysis Batch: 649885

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-1	TRG SB-8 (0-2')	Total/NA	Solid	Moisture	
500-214174-2	TRG SB-8 (2-4')	Total/NA	Solid	Moisture	
500-214174-3	TRG SB-9 (0-2')	Total/NA	Solid	Moisture	
500-214174-4	TRG SB-9 (2-4')	Total/NA	Solid	Moisture	
500-214174-5	TRG SB-10 (0-2')	Total/NA	Solid	Moisture	
500-214174-6	TRG SB-10 (2-4')	Total/NA	Solid	Moisture	
500-214174-7	TRG SB-11 (0-2')	Total/NA	Solid	Moisture	
500-214174-8	TRG SB-11 (2-4')	Total/NA	Solid	Moisture	
500-214174-9	TRG SB-12 (0-2')	Total/NA	Solid	Moisture	
500-214174-10	TRG SB-12 (2-4')	Total/NA	Solid	Moisture	

Eurofins Chicago

4/8/2022

Page 26 of 39

2

7

8

4 4

11

4.0

QC Association Summary

Client: The Reese Group, LLC Job ID: 500-214174-1 Project/Site: Millenium Forms

General Chemistry (Continued)

Analysis Batch: 649885 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-11	TRG SB-13 (0-2')	Total/NA	Solid	Moisture	
500-214174-12	TRG SB-13 (2-4')	Total/NA	Solid	Moisture	
500-214174-13	TRG SB-14 (0-2')	Total/NA	Solid	Moisture	
500-214174-14	TRG SB-14 (2-4')	Total/NA	Solid	Moisture	
500-214174-15	TRG SB-15 (0-2')	Total/NA	Solid	Moisture	
500-214174-16	TRG SB-15 (2-4')	Total/NA	Solid	Moisture	
500-214174-5 DU	TRG SB-10 (0-2')	Total/NA	Solid	Moisture	

Prep Batch: 650601

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-10	TRG SB-12 (2-4')	Total/NA	Solid	3060A	
500-214174-11	TRG SB-13 (0-2')	Total/NA	Solid	3060A	
500-214174-12	TRG SB-13 (2-4')	Total/NA	Solid	3060A	
500-214174-13	TRG SB-14 (0-2')	Total/NA	Solid	3060A	
500-214174-14	TRG SB-14 (2-4')	Total/NA	Solid	3060A	
500-214174-15	TRG SB-15 (0-2')	Total/NA	Solid	3060A	
500-214174-16	TRG SB-15 (2-4')	Total/NA	Solid	3060A	
MB 500-650601/1-A	Method Blank	Total/NA	Solid	3060A	
LCS 500-650601/2-A	Lab Control Sample	Total/NA	Solid	3060A	
LCS 500-650601/3-A	Lab Control Sample	Total/NA	Solid	3060A	

Analysis Batch: 650963

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-11	TRG SB-13 (0-2')	Total/NA	Solid	7196A	650601
500-214174-13	TRG SB-14 (0-2')	Total/NA	Solid	7196A	650601
500-214174-15	TRG SB-15 (0-2')	Total/NA	Solid	7196A	650601
500-214174-16	TRG SB-15 (2-4')	Total/NA	Solid	7196A	650601
MB 500-650601/1-A	Method Blank	Total/NA	Solid	7196A	650601
LCS 500-650601/2-A	Lab Control Sample	Total/NA	Solid	7196A	650601
LCS 500-650601/3-A	Lab Control Sample	Total/NA	Solid	7196A	650601

Analysis Batch: 650966

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214174-10	TRG SB-12 (2-4')	Total/NA	Solid	7196A	650601
500-214174-12	TRG SB-13 (2-4')	Total/NA	Solid	7196A	650601
500-214174-14	TRG SB-14 (2-4')	Total/NA	Solid	7196A	650601

Job ID: 500-214174-1

Client: The Reese Group, LLC Project/Site: Millenium Forms

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 500-649335/1-A

Client Sample ID: Method Blank

Matrix: Solid Prep Type: Total/NA Analysis Batch: 650054 Prep Batch: 649335 MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 1.0 03/30/22 04:19 04/01/22 17:17 Chromium 0.820 J 0.50 mg/Kg

Lab Sample ID: LCS 500-649335/2-A **Client Sample ID: Lab Control Sample Matrix: Solid** Prep Type: Total/NA **Prep Batch: 649335** Analysis Batch: 650054 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits

20.0 19.0 95 80 - 120 Chromium mg/Kg Lab Sample ID: 500-214174-1 MS Client Sample ID: TRG SB-8 (0-2')

Matrix: Solid Prep Type: Total/NA Analysis Batch: 650054 **Prep Batch: 649335** Sample Sample Spike MS MS %Rec Limits D

Result Qualifier Added Result Qualifier Analyte Unit %Rec Chromium 120 B 19.8 133 4 55 75 - 125 mg/Kg

Lab Sample ID: 500-214174-1 MSD Client Sample ID: TRG SB-8 (0-2')

Matrix: Solid Prep Type: Total/NA Analysis Batch: 650054 **Prep Batch: 649335** Spike MSD MSD %Rec **RPD** Sample Sample

Added Analyte Result Qualifier Result Qualifier Unit %Rec Limits **RPD** Limit Chromium 120 B 20.9 138 4 75 - 125 mg/Kg

Client Sample ID: TRG SB-8 (0-2') Lab Sample ID: 500-214174-1 DU **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 650054

Chromium

Prep Batch: 649335 DU DU Sample Sample **RPD** Analyte Result Qualifier Result Qualifier Unit D Limit

220 F3

mg/Kg

Method: 7196A - Chromium, Hexavalent

120 B

Lab Sample ID: MB 500-649187/1-A **Client Sample ID: Method Blank Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 649689

MR MR RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac 1.0 03/29/22 10:45 03/31/22 11:35 Chromium, hexavalent < 0.39 0.39 mg/Kg

Lab Sample ID: LCS 500-649187/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Prep Type: Total/NA **Analysis Batch: 649689 Prep Batch: 649187**

LCS LCS Spike %Rec Added Result Qualifier Unit D %Rec Limits Chromium, hexavalent 10.0 8.98 90 mg/Kg 80 - 120

Prep Batch: 649187

Client: The Reese Group, LLC
Project/Site: Millenium Forms

Job ID: 500-214174-1

Method: 7196A - Chromium, Hexavalent (Continued)

Įι	ab Sample ID: LCS 500-649187/3-A				Clien	t Sample ID:	Lab Control Sample
1	Matrix: Solid						Prep Type: Total/NA
	Analysis Batch: 649689						Prep Batch: 649187
	-	Spike	LCS	LCS			%Rec
Δ	nalyte	Added	Result	Qualifier	Unit	D %Rec	Limits
C	Chromium, hexavalent	1320	1320		mg/Kg	100	80 - 120

Lab Sample ID: 500-214174	-5 MS					(Client	Sample	e ID: TRG S	SB-10 (0-2')
Matrix: Solid									Prep Typ	e: Total/NA
Analysis Batch: 649689									Prep Bat	ch: 649187
_	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium hexavalent	1.5		40.8	38.0	-	ma/Ka	- 	89	75 - 125	

Lab Sample ID: 500-214174	-5 MS						Client	Sample	D: IRG	SB-10 (0-2')
Matrix: Solid									Prep Typ	e: Total/NA
Analysis Batch: 649689									Prep Ba	tch: 649187
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	1.5		1190	1300		mg/Kg		109	75 - 125	

Lab Sample ID: 500-214174	1-5 MSD						Client	Sample	e ID: TRG	SB-10	(0-2)
Matrix: Solid									Prep Ty	pe: Tot	al/NA
Analysis Batch: 649689									Prep Ba	itch: 64	19187
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent	1.5		40.6	39.9		mg/Kg		94	75 - 125	5	30

Lab Sample ID: 500-21417 Matrix: Solid	4-5 MSD					(Client	Sample	e ID: TRG Prep Ty		
Analysis Batch: 649689									Prep Ba	atch: 64	1 9187
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chromium, hexavalent	1.5		1160	1440		ma/Ka	<u></u>	124	75 - 125	10	30

L	- Chromium, nexavalent	1.5	1100	1440	mg/kg	1,2	124	75 - 125	10	30
	Lab Sample ID: MB 500-650601/1/ Matrix: Solid Analysis Batch: 650963	- A				Clier	nt Sam	ple ID: Met Prep Type Prep Bat	e: Tota	I/NA

	MB MB						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.39	1.0	0.39 mg/Kg		04/07/22 13:40	04/08/22 14:58	1

Lab Sample ID: LCS 500-650601/2-A Matrix: Solid Analysis Batch: 650963				Clien	t Sa	mple ID	: Lab Control Sample Prep Type: Total/NA Prep Batch: 650601
Analysis Batch. 030303	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Chromium, hexavalent	10.0	8.33		mg/Kg		83	80 - 120

Lab Sample ID: LCS 500-650601/3-A				Clien	t Sar	nple ID	: Lab Cont	rol Sample
Matrix: Solid							Prep Typ	e: Total/NA
Analysis Batch: 650963							Prep Bat	ch: 650601
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chromium, hexavalent	1210	1170		mg/Kg		97	80 - 120	

Eurofins Chicago

Page 29 of 39

2

3

Ē

7

8

10

12

13

14

14

4/8/2022

Job ID: 500-214174-1

Client: The Reese Group, LLC Project/Site: Millenium Forms

Client Sample ID: TRG SB-8 (0-2')

Date Collected: 03/24/22 09:30

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-1

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-8 (0-2')

Date Collected: 03/24/22 09:30

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-1 **Matrix: Solid**

Percent Solids: 89.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 17:24	JJB	TAL CHI
Total/NA	Prep	3060A			649187	03/29/22 10:45	EAT	TAL CHI
Total/NA	Analysis	7196A		1	649689	03/31/22 11:42	EAT	TAL CHI

Client Sample ID: TRG SB-8 (2-4')

Date Collected: 03/24/22 09:30

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-2 **Matrix: Solid**

Batch Batch Dilution Batch Prepared Prep Type Method Factor Number or Analyzed Analyst Type Run Lab TAL CHI Total/NA Analysis Moisture 649885 04/01/22 11:59 LWN

Client Sample ID: TRG SB-8 (2-4')

Date Collected: 03/24/22 09:30

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-2 Matrix: Solid

Percent Solids: 81.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 17:40	JJB	TAL CHI
Total/NA	Prep	3060A			649187	03/29/22 10:45	EAT	TAL CHI
Total/NA	Analysis	7196A		1	649689	03/31/22 11:43	EAT	TAL CHI

Client Sample ID: TRG SB-9 (0-2')

Date Collected: 03/24/22 10:00

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-	3
----------------------------	---

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-9 (0-2')

Date Collected: 03/24/22 10:00

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-3

Matrix: Solid Percent Solids: 83.3

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		5	650244	04/04/22 14:02	JJB	TAL CHI
Total/NA	Prep	3060A			649187	03/29/22 10:45	EAT	TAL CHI
Total/NA	Analysis	7196A		1	649689	03/31/22 11:43	EAT	TAL CHI

Eurofins Chicago

Page 30 of 39

4/8/2022

Client: The Reese Group, LLC Project/Site: Millenium Forms

Client Sample ID: TRG SB-9 (2-4')

Date Collected: 03/24/22 10:00 Date Received: 03/25/22 09:40 Lab Sample ID: 500-214174-4

Matrix: Solid

l		Batch	Batch		Dilution	Batch	Prepared		
	Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
l	Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-9 (2-4')

Date Collected: 03/24/22 10:00

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-4 Matrix: Solid

Percent Solids: 84.1

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 17:47	JJB	TAL CHI
Total/NA	Prep	3060A			649187	03/29/22 10:45	EAT	TAL CHI
Total/NA	Analysis	7196A		1	649689	03/31/22 11:43	EAT	TAL CHI

Client Sample ID: TRG SB-10 (0-2')

Date Collected: 03/24/22 10:25 Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-5 **Matrix: Solid**

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-10 (0-2')

Date Collected: 03/24/22 10:25

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-5

Matrix: Solid Percent Solids: 94.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 17:56	JJB	TAL CHI
Total/NA	Prep	3060A			649187	03/29/22 10:45	EAT	TAL CHI
Total/NA	Analysis	7196A		1	649689	03/31/22 11:44	EAT	TAL CHI

Client Sample ID: TRG SB-10 (2-4')

Date Collected: 03/24/22 10:25

Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-6

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-10 (2-4')

Date Collected: 03/24/22 10:25

Lab Sample ID: 500-214174-6 **Matrix: Solid**

Date Received: 03/25/22 09:40 Percent Solids: 91.5

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 18:00	JJB	TAL CHI
Total/NA	Prep	3060A			649187	03/29/22 10:45	EAT	TAL CHI
Total/NA	Analysis	7196A		1	649689	03/31/22 11:47	EAT	TAL CHI

Eurofins Chicago

Client: The Reese Group, LLC Project/Site: Millenium Forms

Client Sample ID: TRG SB-11 (0-2')

Date Collected: 03/24/22 10:45 Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-7

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-11 (0-2')

Date Collected: 03/24/22 10:45 Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-7 **Matrix: Solid**

Percent Solids: 92.8

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 18:03	JJB	TAL CHI
Total/NA	Prep	3060A			649187	03/29/22 10:45	EAT	TAL CHI
Total/NA	Analysis	7196A		1	649689	03/31/22 11:48	EAT	TAL CHI

Client Sample ID: TRG SB-11 (2-4')

Date Collected: 03/24/22 10:45 Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-8 **Matrix: Solid**

Lab Sample ID: 500-214174-9

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-11 (2-4')

Date Collected: 03/24/22 10:45

Lab Sample ID: 500-214174-8 **Matrix: Solid** Date Received: 03/25/22 09:40 Percent Solids: 89.7

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 18:06	JJB	TAL CHI
Total/NA	Prep	3060A			649187	03/29/22 10:45	EAT	TAL CHI
Total/NA	Analysis	7196A		1	649689	03/31/22 11:48	EAT	TAL CHI

Client Sample ID: TRG SB-12 (0-2')

Date Collected: 03/24/22 11:15	Matrix: Solid
Date Received: 03/25/22 09:40	

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-12 (0-2')

Lab Sample ID: 500-214174-9 Date Collected: 03/24/22 11:15 **Matrix: Solid** Date Received: 03/25/22 09:40 Percent Solids: 84.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 18:10	JJB	TAL CHI

Job ID: 500-214174-1

Client: The Reese Group, LLC Project/Site: Millenium Forms

Client Sample ID: TRG SB-12 (0-2')

Date Collected: 03/24/22 11:15 Date Received: 03/25/22 09:40 Lab Sample ID: 500-214174-9

Matrix: Solid

Percent Solids: 84.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			649187	03/29/22 10:45	EAT	TAL CHI
Total/NA	Analysis	7196A		1	649700		EAT	TAL CHI
					(Start)	03/31/22 11:51		
					(End)	03/31/22 11:51		

Client Sample ID: TRG SB-12 (2-4')

Date Collected: 03/24/22 11:15 Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-10

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Lab Sample ID: 500-214174-10 Client Sample ID: TRG SB-12 (2-4')

Date Collected: 03/24/22 11:15 **Matrix: Solid** Date Received: 03/25/22 09:40 Percent Solids: 86.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 18:13	JJB	TAL CHI
Total/NA	Prep	3060A			650601	04/07/22 13:40	EAT	TAL CHI
Total/NA	Analysis	7196A		1	650966		EAT	TAL CHI
					(Start)	04/08/22 15:10		
					(End)	04/08/22 15:11		

Client Sample ID: TRG SB-13 (0-2') Lab Sample ID: 500-214174-11

Date Collected: 03/24/22 12:00 Date Received: 03/25/22 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-13 (0-2') Lab Sample ID: 500-214174-11

Date Collected: 03/24/22 12:00 **Matrix: Solid** Percent Solids: 84.0 Date Received: 03/25/22 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 18:16	JJB	TAL CHI
Total/NA	Prep	3060A			650601	04/07/22 13:40	EAT	TAL CHI
Total/NA	Analysis	7196A		1	650963	04/08/22 15:00	EAT	TAL CHI

2

Job ID: 500-214174-1

Client: The Reese Group, LLC Project/Site: Millenium Forms

Client Sample ID: TRG SB-13 (2-4')

Date Collected: 03/24/22 12:00 Date Received: 03/25/22 09:40 Lab Sample ID: 500-214174-12

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture			649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-13 (2-4')

Date Collected: 03/24/22 12:00 Date Received: 03/25/22 09:40 Lab Sample ID: 500-214174-12

Matrix: Solid Percent Solids: 78.6

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 18:19	JJB	TAL CHI
Total/NA	Prep	3060A			650601	04/07/22 13:40	EAT	TAL CHI
Total/NA	Analysis	7196A		1	650966		EAT	TAL CHI
					(Start)	04/08/22 15:11		
					(End)	04/08/22 15:11		

Client Sample ID: TRG SB-14 (0-2')

Date Collected: 03/24/22 13:00

Lab Sample ID: 500-214174-13

Matrix: Solid

Date Received: 03/25/22 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-14 (0-2')

Date Collected: 03/24/22 13:00 Date Received: 03/25/22 09:40 Lab Sample ID: 500-214174-13

Matrix: Solid Percent Solids: 84.1

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 18:23	JJB	TAL CHI
Total/NA	Prep	3060A			650601	04/07/22 13:40	EAT	TAL CHI
Total/NA	Analysis	7196A		1	650963	04/08/22 15:01	EAT	TAL CHI

Client Sample ID: TRG SB-14 (2-4')

Date Collected: 03/24/22 13:00 Date Received: 03/25/22 09:40 Lab Sample ID: 500-214174-14

Matrix: Solid

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-14 (2-4')

Date Collected: 03/24/22 13:00 Date Received: 03/25/22 09:40 Lab Sample ID: 500-214174-14

Matrix: Solid

Percent Solids: 80.9

	Batch	Batch		Dilution	Batch	Prepared			
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab	
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI	
Total/NA	Analysis	6010C		1	650054	04/01/22 18:26	JJB	TAL CHI	

Eurofins Chicago

Client: The Reese Group, LLC Project/Site: Millenium Forms

Lab Sample ID: 500-214174-14

Matrix: Solid

Percent Solids: 80.9

Job ID: 500-214174-1

Client Sample ID: TRG SB-14 (2-4') Date Collected: 03/24/22 13:00

Date Received: 03/25/22 09:40

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3060A			650601	04/07/22 13:40	EAT	TAL CHI
Total/NA	Analysis	7196A		1	650966		EAT	TAL CHI
					(Start)	04/08/22 15:11		
					(End)	04/08/22 15:12		

Client Sample ID: TRG SB-15 (0-2')

Date Collected: 03/24/22 16:30 Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-15

Matrix: Solid

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	Moisture		1	649885	04/01/22 11:59	LWN	TAL CHI

Client Sample ID: TRG SB-15 (0-2')

Date Collected: 03/24/22 16:30 Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-15

Matrix: Solid Percent Solids: 80.8

Batch Batch Dilution Batch **Prepared** Method Number or Analyzed **Prep Type** Type Run Factor Analyst Lab 3050B Total/NA 649335 03/30/22 04:19 WRE TAL CHI Prep Total/NA Analysis 6010C 650054 04/01/22 18:35 JJB TAL CHI Total/NA 3060A TAL CHI Prep 650601 04/07/22 13:40 EAT Total/NA Analysis 7196A 650963 04/08/22 15:02 EAT TAL CHI 1

Client Sample ID: TRG SB-15 (2-4')

Date Collected: 03/24/22 16:30 Date Received: 03/25/22 09:40

Lab Sample ID: 500-214174-16 Matrix: Solid

Batch Dilution Batch Batch **Prepared** Prep Type Type Method Run **Factor** Number or Analyzed Analyst Lab Total/NA Analysis Moisture 04/01/22 11:59 LWN TAL CHI

Client Sample ID: TRG SB-15 (2-4')

Date Collected: 03/24/22 16:30

Lab Sample ID: 500-214174-16

Matrix: Solid Date Received: 03/25/22 09:40 Percent Solids: 81.2

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	3050B			649335	03/30/22 04:19	WRE	TAL CHI
Total/NA	Analysis	6010C		1	650054	04/01/22 18:39	JJB	TAL CHI
Total/NA	Prep	3060A			650601	04/07/22 13:40	EAT	TAL CHI
Total/NA	Analysis	7196A		1	650963	04/08/22 15:02	EAT	TAL CHI

Laboratory References:

TAL CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Eurofins Chicago

Accreditation/Certification Summary

Client: The Reese Group, LLC Job ID: 500-214174-1

Project/Site: Millenium Forms

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	999580010	08-31-22

3

1

6

Q

9

11

12

Eurofins Chicago

2417 Bond Street

University Park IL 60484

Chain of Custody Record

. eurofins

Phone 708 534-5200 Fax 70d 534-5211 Ja. ier Ta∪king No s Lee Knbell 500-99858-43614 2 Fredrick Sandie Client Information Client Lontace 270 210 8583 ate of Urigin Lee Kimbell sandra fredrick@eurofinset.com Page 2 of 2 Compary **Analysis Requested** The Recse Group LLC Due Date Requested Preservation Codes 1433 North Water Sireet Suite 400 A HCL TAT Requested (days) B NaOH N None 3 TAT Milwaukee C Zn Aketate C Ash J2 Normal C Mit c said F Na204. State Zip Compliance Project. A Yes A No E NaHSO4 Q -a2 U2 WI 53202 Š F MeCH R 18,1520 Phone G Amphor S H SO4 500-214174 COC Purchase Order not required 414 719-14⁻⁷(Te) H scorbic Acid T SP Dudecative ate ce L. Acetorie V M A DI Water lk mbell@the-reese-group com K ED L FD Cother K EDTA V pH4 Project # Project Narile Hexevolant L FDA Z ierupe y 50008700 Millenium Forms 58U'^# SSO E Cotralia St, Elkhorn Total Number of Sample Matrix
Type (Vy-wate.
S= olid,
O-wastbu
G=grab) BT Yiseu- A-Air) Sample Sample Identification Sample Date Time Special Instructions/Note XXININ Preservation Code TRG 58-8 3/24/22 0-21 0930 TR G SB-8 6 0930 SB-9 (c-2) 000 6 Solder 12-4 Solder 1000 6 SB-10 10-2 1025 TRG SB-10 2-4 501 10.5 6 TRG SB-11 B-2 1095 6 SB-11 6 TRG 1045 TRG SB-12 10-2 1115 TRG 58-12 (2-4) 0 1115 TRG 58-13 10-2 1200 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) ☐ Nor Hazard ☐ Fammable ☐ Skin Irrtar ☐ Po son B ☐ Lin nov n ☐ Radiologica
Delive able Requested I II II IV Other specify Disposal By Lab Archive For Retur To C ent Months Specia I * uctions QC Requirements Empty Kit Re in Lished by Reing shid by ished by Custooy Sea No C stody Seals Intact. oole. Teliperatulis U. Chi Relicks 1 Yes 1 No

Eurofins Chicago

2417 Bond Street

Chain of Custody Record

eurofins

University Park IL 60484 Phone 708-534-5200 Fax 708-534 5211 Carrier Tracking Nois COC No: Lee Kubil Fredrick Sandie Client Information 500-97897-42983 1 Phone 2700108583 E-Mail Client Contact State of Origin Christine Reese sandra frednck@eurofinset.com Page 1 of 1 Company: ^{Job}#**50**0-The Reese Group LLC **Analysis Requested** Due Date Requested Preservation Codes 1433 North Water Street Suite 400 A HCL M Hexane TAT Requested (days) B NaOH N None Milwaukee TAT C Zn Acetate C AsNaO2 D Nitric Acid State Zip P Na204S 5 Compliance Project A Yes A No WI 53202 E NaHSO4 Q Na2SO3 F MeOH R Na25203 57 Phone G Amchlor S H2SO4 Purchase Order not required 414-719-1477(Tel) H Ascorbic Acid T TSP Dodecahydrate WO# L Acetorie V MCAA treese@the-reese-g oup com J DI Water K EDTA W pH 4-5 Project# VACUUM M HEAR OF FORMS L EDA Z other (specify 50008700 SSOW#: Other: Hexaun Total Number of Matrix Sample (W=water Type S− volid, O=waste/oil (C=Comp, Sample Sample Identification Sample Date Time G=grab) BT-Tissue, A-Air Special Instructions/Note Preservation Code: 3/24/22 TRG 5B-13 2-4 () Solid 1200 X X 10-2 Solid X 0 1300 12-4 X 300 1630 501 5B 15 1630 Y \checkmark 501 Possible Hazard Identification Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Non-Hazard Flammable Skin irritant Poison B Unknown Radiological D sposal By Lab Return To Client Arch ve For Months Deliverable Requested I II III IV Other (specify) Special Instructions, QC Requirements Empty Kit Reiinguished by Time Method of Shipment Reinquished by 5 50 Reling jished by Relinquished by Date/Time Received by ate/Time Company Custody Seal No Custody Seals Intactooler Temperature(s __ and Ot* er Remarks A Yes A No

3

5

7

9

10

12

Login Sample Receipt Checklist

Client: The Reese Group, LLC

Job Number: 500-214174-1

Login Number: 214174 List Source: Eurofins Chicago

List Number: 1

Creator: Scott, Sherri L

Creator: Scott, Sherri L		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.3
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

6

А

5

0

10

10

13

Environment Testing America

ANALYTICAL REPORT

Eurofins Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-214341-1 Client Project/Site: Milleniium Forms

For:

The Reese Group, LLC 1433 North Water Street, Suite 400 Milwaukee, Wisconsin 53202

Attn: Lee Kimbell

Authorized for release by: 4/12/2022 4:29:58 PM

Sandie Fredrick, Project Manager II (920)261-1660

Sandra.Fredrick@et.eurofinsus.com

----- LINKS -----

Review your project results through Total Access

Have a Question?

Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Client: The Reese Group, LLC Project/Site: Milleniium Forms

Laboratory Job ID: 500-214341-1

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	19
QC Association	20
QC Sample Results	22
Chronicle	25
Certification Summary	28
Chain of Custody	29
Receipt Chacklists	30

6

8

46

11

12

Case Narrative

Client: The Reese Group, LLC Project/Site: Milleniium Forms

Job ID: 500-214341-1

Job ID: 500-214341-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-214341-1

Comments

No additional comments.

Receipt

The samples were received on 3/30/2022 10:00 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.2° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Method SM 3500 CR B: Reanalysis of the following sample was performed outside of the analytical holding time due to QC failure: TRG TW-13 (500-214341-9).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

-

3

 \boldsymbol{A}

5

J

6

_

9

10

. .

13

Client: The Reese Group, LLC Job ID: 500-214341-1 Project/Site: Milleniium Forms

Lab Sample ID: 500-214341-1 Client Sample ID: TRG MW-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.014		0.0050	0.0011	mg/L	1	_	6020A	Total
									Recoverable
pH	7.3	HF	0.2	0.2	SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: TRG MW-5 Lab Sample ID: 500-214341-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.29		0.0050	0.0011	mg/L	1	_	6020A	Total
									Recoverable
Chromium, hexavalent	0.14		0.010	0.0032	mg/L	1		SM 3500 CR B	Total/NA
pH	7.4	HF	0.2	0.2	SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: TRG MW-6 Lab Sample ID: 500-214341-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D Method	Prep Type
pH	7.5 HF	0.2	0.2 SU	1 SM 4500 H+ B	Total/NA

Client Sample ID: TRG MW-7 Lab Sample ID: 500-214341-4

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.076		0.0050	0.0011	mg/L	1	_	6020A	Total
									Recoverable
рН	7.2	HF	0.2	0.2	SU	1		SM 4500 H+ B	Total/NA

Lab Sample ID: 500-214341-5 **Client Sample ID: TRG TW-9**

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.24	0.0050	0.0011	mg/L	1	_	6020A	Total
								Recoverable
Chromium, hexavalent	0.52	0.050	0.016	mg/L	5		SM 3500 CR B	Total/NA
рН	8.3 HF	0.2	0.2	SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: TRG TW-10 Lab Sample ID: 500-214341-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0012	J	0.0050	0.0011	mg/L	1	_	6020A	Total
									Recoverable
pН	7.4	HF	0.2	0.2	SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: TRG TW-11 Lab Sample ID: 500-214341-7

Analyte	Result Qua	alifier RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.011	0.0050	0.0011	mg/L	1	_	6020A	Total
								Recoverable
Chromium, hexavalent	0.018	0.010	0.0032	mg/L	1		SM 3500 CR B	Total/NA
pН	8.0 HF	0.2	0.2	SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: TRG TW-12 Lab Sample ID: 500-214341-8

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	1.5	0.0050	0.0011	mg/L	1	_	6020A	Total
								Recoverable
Chromium, hexavalent	0.55	0.050	0.016	mg/L	5		SM 3500 CR B	Total/NA
На	7.6 HF	0.2	0.2	SU	1		SM 4500 H+ B	Total/NA

This Detection Summary does not include radiochemical test results.

4/12/2022

Detection Summary

Client: The Reese Group, LLC
Project/Site: Milleniium Forms

Job ID: 500-214341-1

Olice t Occurring IDs TDO TV

Client Sample ID: TRG TW-13	Lab Sample ID: 500-214341-9
-----------------------------	-----------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.033		0.0050	0.0011	mg/L	1	_	6020A	Total
									Recoverable
pН	7.5	HF	0.2	0.2	SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: TRG MW-14

_									
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.0014	J	0.0050	0.0011	mg/L	1	_	6020A	Total Recoverable
рН	7.3	HF	0.2	0.2	SU	1		SM 4500 H+ B	Total/NA

Client Sample ID: TRG TW-15

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chromium	0.033		0.0050	0.0011	mg/L	1	_	6020A	Total
pH	7.4	HF	0.2	0.2	SU	1		SM 4500 H+ B	Recoverable Total/NA

3

4

5

Lab Sample ID: 500-214341-10

Lab Sample ID: 500-214341-11

7

8

9

10

12

TG

Method Summary

Client: The Reese Group, LLC Project/Site: Milleniium Forms

Job ID: 500-214341-1

Method	Method Description	Protocol	Laboratory
6020A	Metals (ICP/MS)	SW846	TAL CHI
SM 3500 CR B	Chromium, Hexavalent	SM	TAL CHI
SM 4500 H+ B	рН	SM	TAL CHI
3005A	Preparation, Total Recoverable or Dissolved Metals	SW846	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

- (

4

5

7

8

10

11

13

Sample Summary

Client: The Reese Group, LLC Project/Site: Milleniium Forms

Job ID: 500-214341-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-214341-1	TRG MW-4	Water	03/29/22 12:30	03/30/22 10:00
500-214341-2	TRG MW-5	Water	03/29/22 15:30	03/30/22 10:00
500-214341-3	TRG MW-6	Water	03/29/22 14:45	03/30/22 10:00
500-214341-4	TRG MW-7	Water	03/29/22 14:00	03/30/22 10:00
500-214341-5	TRG TW-9	Water	03/29/22 17:30	03/30/22 10:00
500-214341-6	TRG TW-10	Water	03/29/22 16:30	03/30/22 10:00
500-214341-7	TRG TW-11	Water	03/29/22 16:00	03/30/22 10:00
500-214341-8	TRG TW-12	Water	03/29/22 17:00	03/30/22 10:00
500-214341-9	TRG TW-13	Water	03/29/22 11:00	03/30/22 10:00
500-214341-10	TRG MW-14	Water	03/29/22 13:15	03/30/22 10:00
500-214341-11	TRG TW-15	Water	03/29/22 11:55	03/30/22 10:00

6

ŏ

10

4.6

13

Client: The Reese Group, LLC Job ID: 500-214341-1

Project/Site: Milleniium Forms

Lab Sample ID: 500-214341-1 **Client Sample ID: TRG MW-4** Date Collected: 03/29/22 12:30

Matrix: Water

Method: 6020A - Metals (ICI	P/MS) - Total F	Recoverable	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.014		0.0050	0.0011	mg/L		04/06/22 09:37	04/07/22 16:09	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.0032		0.010	0.0032	mg/L			03/30/22 11:32	1
pH	7.3	HF	0.2	0.2	SU			04/08/22 15:03	1

Client: The Reese Group, LLC Job ID: 500-214341-1 Project/Site: Milleniium Forms

Lab Sample ID: 500-214341-2 **Client Sample ID: TRG MW-5** Date Collected: 03/29/22 15:30

Matrix: Water

Method: 6020A - Metals (ICF	P/MS) - Total F	Recoverabl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.29		0.0050	0.0011	mg/L		04/06/22 09:37	04/07/22 16:26	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	0.14		0.010	0.0032	mg/L			03/30/22 12:33	1
pH	7.4	HF	0.2	0.2	SU			04/08/22 15:05	1

Client: The Reese Group, LLC
Project/Site: Milleniium Forms

Job ID: 500-214341-1

Client Sample ID: TRG MW-6

Lab Sample ID: 500-214341-3

04/08/22 15:08

Matrix: Water

Date Collected: 03/29/22 14:45 Date Received: 03/30/22 10:00

рН

Method: 6020A - Metals (IC	P/MS) - Total Recoverabl	е						
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	<0.0011	0.0050	0.0011	mg/L		04/06/22 09:37	04/07/22 16:29	1
General Chemistry								
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.0032	0.010	0.0032	mg/L			03/30/22 12:34	1

0.2

7.5 HF

0.2 SU

-

9

44

16

Client: The Reese Group, LLC

Job ID: 500-214341-1

Project/Site: Milleniium Forms

Client Sample ID: TRG MW-7 Lab Sample ID: 500-214341-4

Matrix: Water

Date Collected: 03/29/22 14:00 Date Received: 03/30/22 10:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.076		0.0050	0.0011	mg/L		04/06/22 09:37	04/08/22 12:37	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.0032		0.010	0.0032	mg/L			03/30/22 12:35	1
pH	7.2	HE	0.2	0.2	SU			04/08/22 15:11	1

7

9

10

Client: The Reese Group, LLC Job ID: 500-214341-1

Project/Site: Milleniium Forms

Lab Sample ID: 500-214341-5 **Client Sample ID: TRG TW-9** Date Collected: 03/29/22 17:30

Matrix: Water

Method: 6020A - Metals (ICI	P/MS) - Total F	Recoverable	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.24		0.0050	0.0011	mg/L		04/06/22 09:37	04/07/22 16:43	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	0.52		0.050	0.016	mg/L			03/30/22 12:45	5
pH	8.3	HF	0.2	0.2	SU			04/08/22 15:14	1

Client: The Reese Group, LLC Job ID: 500-214341-1

Project/Site: Milleniium Forms

Lab Sample ID: 500-214341-6 **Client Sample ID: TRG TW-10** Date Collected: 03/29/22 16:30

Matrix: Water

Method: 6020A - Metals (ICP)	/MS) - Total F	Recoverable	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.0012	J	0.0050	0.0011	mg/L		04/06/22 09:37	04/07/22 16:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.0032		0.010	0.0032	mg/L			03/30/22 12:36	1
pH	7.4	HF	0.2	0.2	SU			04/08/22 15:18	1

Client: The Reese Group, LLC Job ID: 500-214341-1

Project/Site: Milleniium Forms

Lab Sample ID: 500-214341-7 **Client Sample ID: TRG TW-11** Date Collected: 03/29/22 16:00

Matrix: Water

Method: 6020A - Metals (ICP/	MS) - Total R	ecoverable	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.011		0.0050	0.0011	mg/L		04/06/22 09:37	04/07/22 16:50	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	0.018		0.010	0.0032	mg/L			03/30/22 12:37	1
pH	8.0	HF	0.2	0.2	SU			04/08/22 15:21	1

Client: The Reese Group, LLC

Job ID: 500-214341-1

Project/Site: Milleniium Forms

Client Sample ID: TRG TW-12 Lab Sample ID: 500-214341-8

Date Collected: 03/29/22 17:00 Matrix: Water

Date Received: 03/30/22 10:00

Method: 6020A - Metals (ICF	P/MS) - Total F	Recoverabl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	1.5		0.0050	0.0011	mg/L		04/06/22 09:37	04/07/22 16:53	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	0.55		0.050	0.016	mg/L			03/30/22 12:48	5
pH	7.6	HF	0.2	0.2	SU			04/08/22 15:24	1

4

6

9

11

13

Client: The Reese Group, LLC

Job ID: 500-214341-1

Project/Site: Milleniium Forms

Client Sample ID: TRG TW-13 Lab Sample ID: 500-214341-9

Matrix: Water

Date Collected: 03/29/22 11:00 Date Received: 03/30/22 10:00

Method: 6020A - Metals (IC	P/MS) - Total F	Recoverable	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.033		0.0050	0.0011	mg/L		04/06/22 09:37	04/07/22 16:57	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.0032	H	0.010	0.0032	mg/L			03/30/22 11:30	1
pH	7.5	HF	0.2	0.2	SU			04/08/22 15:26	1

4

7

9

11

16

4 /

Client: The Reese Group, LLC Job ID: 500-214341-1

Project/Site: Milleniium Forms

Lab Sample ID: 500-214341-10 **Client Sample ID: TRG MW-14** Date Collected: 03/29/22 13:15

Matrix: Water

Method: 6020A - Metals (IC	P/MS) - Total F	Recoverable	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.0014	J	0.0050	0.0011	mg/L		04/06/22 09:37	04/07/22 17:00	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.0032		0.010	0.0032	mg/L			03/30/22 11:32	1
pH	7.3	HF	0.2	0.2	SU			04/08/22 15:29	1

Client: The Reese Group, LLC
Project/Site: Milleniium Forms

Job ID: 500-214341-1

Client Sample ID: TRG TW-15

Lab Sample ID: 500-214341-11

Date Collected: 03/29/22 11:55 Date Received: 03/30/22 10:00 . Matrix: Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium	0.033		0.0050	0.0011	mg/L		04/06/22 09:37	04/07/22 17:03	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chromium, hexavalent	<0.0032		0.010	0.0032	mg/L			03/30/22 11:31	1
Hq	7.4	HE	0.2	0.2	SU			04/08/22 15:33	1

Definitions/Glossary

Client: The Reese Group, LLC

Job ID: 500-214341-1

Project/Site: Milleniium Forms

Qualifiers

Metals

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

General Chemistry

Quaimer	Qualifier Description
ш	Cample was proposed or apply zed beyond the appointed helding time

H Sample was prepped or analyzed beyond the specified holding time

HF Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.

Glossary

Abbreviation	These commonly	y used abbreviations may	y or may not be	present in this report.
--------------	----------------	--------------------------	-----------------	-------------------------

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

. |

4

8

9

11

12

QC Association Summary

Client: The Reese Group, LLC Job ID: 500-214341-1 Project/Site: Milleniium Forms

Metals

Prep Batch: 650463

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214341-1	TRG MW-4	Total Recoverable	Water	3005A	
500-214341-2	TRG MW-5	Total Recoverable	Water	3005A	
500-214341-3	TRG MW-6	Total Recoverable	Water	3005A	
500-214341-4	TRG MW-7	Total Recoverable	Water	3005A	
500-214341-5	TRG TW-9	Total Recoverable	Water	3005A	
500-214341-6	TRG TW-10	Total Recoverable	Water	3005A	
500-214341-7	TRG TW-11	Total Recoverable	Water	3005A	
500-214341-8	TRG TW-12	Total Recoverable	Water	3005A	
500-214341-9	TRG TW-13	Total Recoverable	Water	3005A	
500-214341-10	TRG MW-14	Total Recoverable	Water	3005A	
500-214341-11	TRG TW-15	Total Recoverable	Water	3005A	
MB 500-650463/1-A	Method Blank	Total Recoverable	Water	3005A	
LCS 500-650463/2-A	Lab Control Sample	Total Recoverable	Water	3005A	
500-214341-1 MS	TRG MW-4	Total Recoverable	Water	3005A	
500-214341-1 MSD	TRG MW-4	Total Recoverable	Water	3005A	
500-214341-1 DU	TRG MW-4	Total Recoverable	Water	3005A	

Analysis Batch: 650841

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214341-1	TRG MW-4	Total Recoverable	Water	6020A	650463
500-214341-2	TRG MW-5	Total Recoverable	Water	6020A	650463
500-214341-3	TRG MW-6	Total Recoverable	Water	6020A	650463
500-214341-5	TRG TW-9	Total Recoverable	Water	6020A	650463
500-214341-6	TRG TW-10	Total Recoverable	Water	6020A	650463
500-214341-7	TRG TW-11	Total Recoverable	Water	6020A	650463
500-214341-8	TRG TW-12	Total Recoverable	Water	6020A	650463
500-214341-9	TRG TW-13	Total Recoverable	Water	6020A	650463
500-214341-10	TRG MW-14	Total Recoverable	Water	6020A	650463
500-214341-11	TRG TW-15	Total Recoverable	Water	6020A	650463
MB 500-650463/1-A	Method Blank	Total Recoverable	Water	6020A	650463
LCS 500-650463/2-A	Lab Control Sample	Total Recoverable	Water	6020A	650463
500-214341-1 MS	TRG MW-4	Total Recoverable	Water	6020A	650463
500-214341-1 MSD	TRG MW-4	Total Recoverable	Water	6020A	650463
500-214341-1 DU	TRG MW-4	Total Recoverable	Water	6020A	650463

Analysis Batch: 650958

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214341-4	TRG MW-7	Total Recoverable	Water	6020A	650463

General Chemistry

Analysis Batch: 649487

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214341-1	TRG MW-4	Total/NA	Water	SM 3500 CR B	
500-214341-9	TRG TW-13	Total/NA	Water	SM 3500 CR B	
500-214341-10	TRG MW-14	Total/NA	Water	SM 3500 CR B	
500-214341-11	TRG TW-15	Total/NA	Water	SM 3500 CR B	
MB 500-649487/9	Method Blank	Total/NA	Water	SM 3500 CR B	
LCS 500-649487/10	Lab Control Sample	Total/NA	Water	SM 3500 CR B	
500-214341-9 MS	TRG TW-13	Total/NA	Water	SM 3500 CR B	
500-214341-9 MSD	TRG TW-13	Total/NA	Water	SM 3500 CR B	

Eurofins Chicago

Page 20 of 30

QC Association Summary

Client: The Reese Group, LLC Project/Site: Milleniium Forms Job ID: 500-214341-1

General Chemistry

Analysis Batch: 649501

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214341-2	TRG MW-5	Total/NA	Water	SM 3500 CR B	
500-214341-3	TRG MW-6	Total/NA	Water	SM 3500 CR B	
500-214341-4	TRG MW-7	Total/NA	Water	SM 3500 CR B	
500-214341-5	TRG TW-9	Total/NA	Water	SM 3500 CR B	
500-214341-6	TRG TW-10	Total/NA	Water	SM 3500 CR B	
500-214341-7	TRG TW-11	Total/NA	Water	SM 3500 CR B	
500-214341-8	TRG TW-12	Total/NA	Water	SM 3500 CR B	
MB 500-649501/9	Method Blank	Total/NA	Water	SM 3500 CR B	
LCS 500-649501/10	Lab Control Sample	Total/NA	Water	SM 3500 CR B	

Analysis Batch: 650949

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-214341-1	TRG MW-4	Total/NA	Water	SM 4500 H+ B	
500-214341-2	TRG MW-5	Total/NA	Water	SM 4500 H+ B	
500-214341-3	TRG MW-6	Total/NA	Water	SM 4500 H+ B	
500-214341-4	TRG MW-7	Total/NA	Water	SM 4500 H+ B	
500-214341-5	TRG TW-9	Total/NA	Water	SM 4500 H+ B	
500-214341-6	TRG TW-10	Total/NA	Water	SM 4500 H+ B	
500-214341-7	TRG TW-11	Total/NA	Water	SM 4500 H+ B	
500-214341-8	TRG TW-12	Total/NA	Water	SM 4500 H+ B	
500-214341-9	TRG TW-13	Total/NA	Water	SM 4500 H+ B	
500-214341-10	TRG MW-14	Total/NA	Water	SM 4500 H+ B	
500-214341-11	TRG TW-15	Total/NA	Water	SM 4500 H+ B	
LCS 500-650949/5	Lab Control Sample	Total/NA	Water	SM 4500 H+ B	
LCSD 500-650949/6	Lab Control Sample Dup	Total/NA	Water	SM 4500 H+ B	
500-214341-1 DU	TRG MW-4	Total/NA	Water	SM 4500 H+ B	
500-214341-2 DU	TRG MW-5	Total/NA	Water	SM 4500 H+ B	
500-214341-3 DU	TRG MW-6	Total/NA	Water	SM 4500 H+ B	
500-214341-4 DU	TRG MW-7	Total/NA	Water	SM 4500 H+ B	
500-214341-5 DU	TRG TW-9	Total/NA	Water	SM 4500 H+ B	
500-214341-6 DU	TRG TW-10	Total/NA	Water	SM 4500 H+ B	
500-214341-7 DU	TRG TW-11	Total/NA	Water	SM 4500 H+ B	
500-214341-8 DU	TRG TW-12	Total/NA	Water	SM 4500 H+ B	
500-214341-9 DU	TRG TW-13	Total/NA	Water	SM 4500 H+ B	
500-214341-10 DU	TRG MW-14	Total/NA	Water	SM 4500 H+ B	
500-214341-11 DU	TRG TW-15	Total/NA	Water	SM 4500 H+ B	

Job ID: 500-214341-1

Client: The Reese Group, LLC Project/Site: Milleniium Forms

Method: 6020A - Metals (ICP/MS)

Lab Sample ID: MB 500-650463/1-A Client Sample ID: Method Blank **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 650841 **Prep Batch: 650463**

MB MB

Result Qualifier RL **MDL** Unit Analyzed Dil Fac Analyte Prepared 0.0050 04/06/22 09:37 04/07/22 16:02 Chromium <0.0011 0.0011 mg/L

Lab Sample ID: LCS 500-650463/2-A **Client Sample ID: Lab Control Sample Matrix: Water Prep Type: Total Recoverable Analysis Batch: 650841 Prep Batch: 650463** Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit D %Rec Limits 0.200 0.202 80 - 120 Chromium mg/L 101

Lab Sample ID: 500-214341-1 MS Client Sample ID: TRG MW-4 **Matrix: Water Prep Type: Total Recoverable Analysis Batch: 650841 Prep Batch: 650463**

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Limits Analyte Unit %Rec Chromium 0.014 0.200 0.193 89 75 - 125 mg/L

Lab Sample ID: 500-214341-1 MSD Client Sample ID: TRG MW-4 **Matrix: Water Prep Type: Total Recoverable**

Analysis Batch: 650841 **Prep Batch: 650463** Spike MSD MSD %Rec **RPD** Sample Sample Added Analyte Result Qualifier Result Qualifier Unit D %Rec Limits **RPD** Limit

Chromium 0.200 0.191 75 - 125 0.014 mg/L

Lab Sample ID: 500-214341-1 DU Client Sample ID: TRG MW-4 **Matrix: Water Prep Type: Total Recoverable** Analysis Batch: 650841 **Prep Batch: 650463**

RPD DU DU Sample Sample Analyte Result Qualifier Result Qualifier Unit Limit Chromium 0.014 0.0144 mg/L 20

Method: SM 3500 CR B - Chromium, Hexavalent

Lab Sample ID: MB 500-649487/9 **Client Sample ID: Method Blank Matrix: Water** Prep Type: Total/NA

Analysis Batch: 649487

MR MR

RL **MDL** Unit Analyte Result Qualifier Prepared Analyzed Dil Fac 0.010 0.0032 mg/L 03/30/22 11:29 Chromium, hexavalent <0.0032

Lab Sample ID: LCS 500-649487/10 **Client Sample ID: Lab Control Sample**

Matrix: Water Prep Type: Total/NA **Analysis Batch: 649487**

LCS LCS Spike %Rec

Added Result Qualifier Unit %Rec Limits Chromium, hexavalent 0.250 0.262 105 mg/L 85 - 115

Job ID: 500-214341-1

Client: The Reese Group, LLC Project/Site: Milleniium Forms

Method: SM 3500 CR B - Chromium, Hexavalent (Continued)

Lab Sample ID: 500-214341-9 MS Client Sample ID: TRG TW-13 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 649487

Sample Sample Spike MS MS %Rec Result Qualifier Added Result Qualifier Unit %Rec Limits Analyte 0.250 Chromium, hexavalent <0.0032 H 0.248 mg/L 99 85 - 115

Lab Sample ID: 500-214341-9 MSD Client Sample ID: TRG TW-13 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 649487

Sample Sample Spike MSD MSD %Rec **RPD** Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit <0.0032 H 0.250 0.249 99 85 - 115 Chromium, hexavalent mg/L n

Lab Sample ID: MB 500-649501/9 **Client Sample ID: Method Blank** Prep Type: Total/NA

Matrix: Water

Analysis Batch: 649501

MB MB

Result Qualifier RL **MDL** Unit Analyte Prepared Analyzed Dil Fac Chromium, hexavalent <0.0032 0.010 0.0032 mg/L 03/30/22 12:32

Lab Sample ID: LCS 500-649501/10 **Client Sample ID: Lab Control Sample Prep Type: Total/NA**

Matrix: Water

Analysis Batch: 649501

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 0.250 0.264 Chromium, hexavalent mg/L 85 - 115

Method: SM 4500 H+ B - pH

Lab Sample ID: 500-214341-1 DU Client Sample ID: TRG MW-4 **Matrix: Water Prep Type: Total/NA**

Analysis Batch: 650949

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit pН 7.3 HF 7.3 SU

Lab Sample ID: 500-214341-2 DU Client Sample ID: TRG MW-5 **Matrix: Water** Prep Type: Total/NA

Analysis Batch: 650949

DU DU RPD Sample Sample Result Qualifier Result Qualifier RPD Analyte Unit Limit pН 7.4 HF SU 0.3 7.4

Lab Sample ID: 500-214341-3 DU Client Sample ID: TRG MW-6 Prep Type: Total/NA

Matrix: Water

Analysis Batch: 650949

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit 7.5 HF 7.5 SU рН 0.1

10

4/12/2022

Client: The Reese Group, LLC Job ID: 500-214341-1 Project/Site: Milleniium Forms

Method: SM 4500 H+ B - pH (Continued)

Lab Sample ID: 500-214341-6 DU

Lab Sample ID: 500-214341-7 DU

Lab Sample ID: 500-214341-8 DU

Matrix: Water

Matrix: Water

рН

Lab Sample ID: 500-21434 Matrix: Water	1-4 DU					Clic	ent Sample ID: TR Prep Type: 1		
Analysis Batch: 650949									
-	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RP	D	Limit
рН	7.2	HF	 7.2		SU			.1	

Lab Sample ID: 500-214341-5 DU				Client Sample ID: TRG 1					
Matrix: Water					Prep Type: To	tal/NA			
Analysis Batch: 650949									
Sample	e Sample	DU	DU				RPD		
Analyte Resul	t Qualifier	Result	Qualifier	Unit	D	RPD	Limit		
pH 8.3	HF	8.3		SU					

Matrix: Water Analysis Batch: 650949							Prep Ty	pe: Tot	tal/NA
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
рН	7.4	HF	7.4		SU			0	

Analysis Batch: 650949									
	Sample	Sample	DU	DU					RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
pH	8.0	HF	8.0		SU			0.1	

Matrix: Water							Prep Type: Tota	al/NA
Analysis Batch: 650949								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit

7.7

SU

7.6 HF

Lab Sample ID: 500-214341-9 DU Matrix: Water		Client Sample ID: TRG TW-13 Prep Type: Total/NA
Analysis Batch: 650949		Trep type. Totality
Sample Sample	DU DU	RPD

Analyte	Result	Qualifier	Result	Qualifier	Unit	D		RPD	Limit
рН	7.5	HF	7.5		SU			0.3	
_ Lab Sample ID: 500-21434	1-10 DU					CI	lient Sample ID:	TRG M	W-14

Analysis Batch: 650949								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
pH	7.3	HF	7.3		SU		 0.3	

Lab Sample ID: 500-21434	1-11 DU					Clier	nt Sample ID: TRG T	W-15
Matrix: Water							Prep Type: Tot	al/NA
Analysis Batch: 650949								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
pH	7.4	HF	7.4		SU		0.4	

Eurofins Chicago

Client Sample ID: TRG TW-10

Client Sample ID: TRG TW-11

Client Sample ID: TRG TW-12

Prep Type: Total/NA

Client Sample ID: TRG MW-14

Prep Type: Total/NA

Job ID: 500-214341-1

Client: The Reese Group, LLC Project/Site: Milleniium Forms

Client Sample ID: TRG MW-4

Date Collected: 03/29/22 12:30 Date Received: 03/30/22 10:00

Lab Sample ID: 500-214341-1

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650841	04/07/22 16:09	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		1	649487	03/30/22 11:32	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CHI
					(Start)	04/08/22 15:03		
					(End)	04/08/22 15:04		

Client Sample ID: TRG MW-5

Date Collected: 03/29/22 15:30

Date Received: 03/30/22 10:00

Lab Sample ID: 500-214341-2

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650841	04/07/22 16:26	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		1	649501	03/30/22 12:33	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CHI
					(Start)	04/08/22 15:05		
					(End)	04/08/22 15:07		

Client Sample ID: TRG MW-6

Date Collected: 03/29/22 14:45

Date Received: 03/30/22 10:00

Lab Sample ID: 500-214341-3

Lab Sample ID: 500-214341-4

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650841	04/07/22 16:29	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		1	649501	03/30/22 12:34	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CHI
					(Start)	04/08/22 15:08		
					(End)	04/08/22 15:10		

Client Sample ID: TRG MW-7

Date Collected: 03/29/22 14:00

Date Received: 03/30/22 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650958	04/08/22 12:37	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		1	649501	03/30/22 12:35	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CHI
					(Start)	04/08/22 15:11		
					(End)	04/08/22 15:12		

Page 25 of 30

Matrix: Water

Job ID: 500-214341-1

Client: The Reese Group, LLC Project/Site: Milleniium Forms

Client Sample ID: TRG TW-9

Date Collected: 03/29/22 17:30 Date Received: 03/30/22 10:00

Lab Sample ID: 500-214341-5

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650841	04/07/22 16:43	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		5	649501	03/30/22 12:45	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CHI
					(Start)	04/08/22 15:14		
					(End)	04/08/22 15:15		

Client Sample ID: TRG TW-10

Date Collected: 03/29/22 16:30

Date Received: 03/30/22 10:00

Lab	Samp	le	ID:	500-21	14341-6	
				8.0 - 4 - 4	141-1-	_

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650841	04/07/22 16:46	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		1	649501	03/30/22 12:36	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CHI
					(Start)	04/08/22 15:18		
					(End)	04/08/22 15:19		

Client Sample ID: TRG TW-11 Lab Sample ID: 500-214341-7

Date Collected: 03/29/22 16:00

Date Received: 03/30/22 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650841	04/07/22 16:50	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		1	649501	03/30/22 12:37	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CHI
					(Start)	04/08/22 15:21		
					(End)	04/08/22 15:22		

Client Sample ID: TRG TW-12 Lab Sample ID: 500-214341-8 Date Collected: 03/29/22 17:00

Date Received: 03/30/22 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650841	04/07/22 16:53	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		5	649501	03/30/22 12:48	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CHI
					(Start)	04/08/22 15:24		
					(End)	04/08/22 15:25		

Eurofins Chicago

Page 26 of 30

Matrix: Water

Matrix: Water

Lab Chronicle

Client: The Reese Group, LLC Job ID: 500-214341-1

Project/Site: Milleniium Forms

Date Received: 03/30/22 10:00

Lab Sample ID: 500-214341-9 **Client Sample ID: TRG TW-13** Date Collected: 03/29/22 11:00

Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650841	04/07/22 16:57	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		1	649487	03/30/22 11:30	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CHI
					(Start)	04/08/22 15:26		
					(End)	04/08/22 15:28		

Client Sample ID: TRG MW-14 Lab Sample ID: 500-214341-10

Date Collected: 03/29/22 13:15 **Matrix: Water**

Date Received: 03/30/22 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650841	04/07/22 17:00	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		1	649487	03/30/22 11:32	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CHI
					(Start)	04/08/22 15:29		
					(End)	04/08/22 15:31		

Lab Sample ID: 500-214341-11 **Client Sample ID: TRG TW-15**

Date Collected: 03/29/22 11:55 **Matrix: Water** Date Received: 03/30/22 10:00

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total Recoverable	Prep	3005A			650463	04/06/22 09:37	BDE	TAL CHI
Total Recoverable	Analysis	6020A		1	650841	04/07/22 17:03	FXG	TAL CHI
Total/NA	Analysis	SM 3500 CR B		1	649487	03/30/22 11:31	AS	TAL CHI
Total/NA	Analysis	SM 4500 H+ B		1	650949		SMO	TAL CH
					(Start)	04/08/22 15:33		
					(End)	04/08/22 15:35		

Laboratory References:

TAL CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Accreditation/Certification Summary

Client: The Reese Group, LLC Job ID: 500-214341-1

Project/Site: Milleniium Forms

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	999580010	08-31-22

3

1

^

Q

9

12

241/ Bo. d Street

Chain of Custody Record

eurofins

University Park II, 60484 Phone 708-534 5200 Fax. 708-534 5211 Lee Kimbell 500-214341 COC 500-99858-43614 1 Fredrick Sandie Client Information are of Origi Cunticonfact °7701108583 Page 1 of 2 sandra fredrick@eurorinse_com Lee Kimbe ompany **Analysis Requested** The Reese Group LLC Due Date Requested Preservation Codes 1433 North Water Street Suite 400 М пехале TAT Requested (days) B NaOH N None TAT M Iwaukee C Zr Acetatr (A NhO2 Normal D N⊨ cAud F Na2045 State Zip マミクラ E NaH504 Q N=25.) Compliance Project A Yes A No WI 53202 F MeOH Na2 320-3 Phone G Amchlor Purchase Order not required 414-719-1477(Tel) TS rodeck yd te H Ascerbic Acid l Ice J Acetr e V M AA ∠ V ater kimbe @the-reese group com Total Number of containers K EPTA v p14 roject Name: L EDA Z the spe f Millen um Forms Other 550 E Certralic St. ElKLor. Matrix Sample {₩=water Type solid Orwaste/ il. Sample (C=Comp, Sample Date Time G=grab) eT-Tissue, A. Asr Special Instructions/Note Sample Identification Preservation Code OXIVIDIN 3/29/22 1230 TRG MW-4 - ete neasure pH from TRG MW-5 Hex thronium bottle 1530 TRG MW-6 for all samples TRG MW-7 1400 TW-9 1730 1630 TW-10 TW-11 1600 1700 TRG V ater 1100 TRG MW-14 1315 Water TW-15 1155 TRG Water Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Possible Hazard Identification Non-Haza d Fammable Sin Irriant Poison B Urknow Rauloingica □_{Re u} To ∪ rent Arch ve For Disposal By Lab Months De iverab e Reques ed | il III IV Oth ir (specify) Special I stilicions.QC Requirements Empty K.t Rel ngu shed by elag he y Relocustred b Date Tre огтра. у Custody Seal No Custody Seals I tact och mper h(s) "Cland he Plmark -20.2 Yes A No

_

3

5

7

9

10

12

1,

Login Sample Receipt Checklist

Client: The Reese Group, LLC

Job Number: 500-214341-1

Login Number: 214341 List Source: Eurofins Chicago

List Number: 1

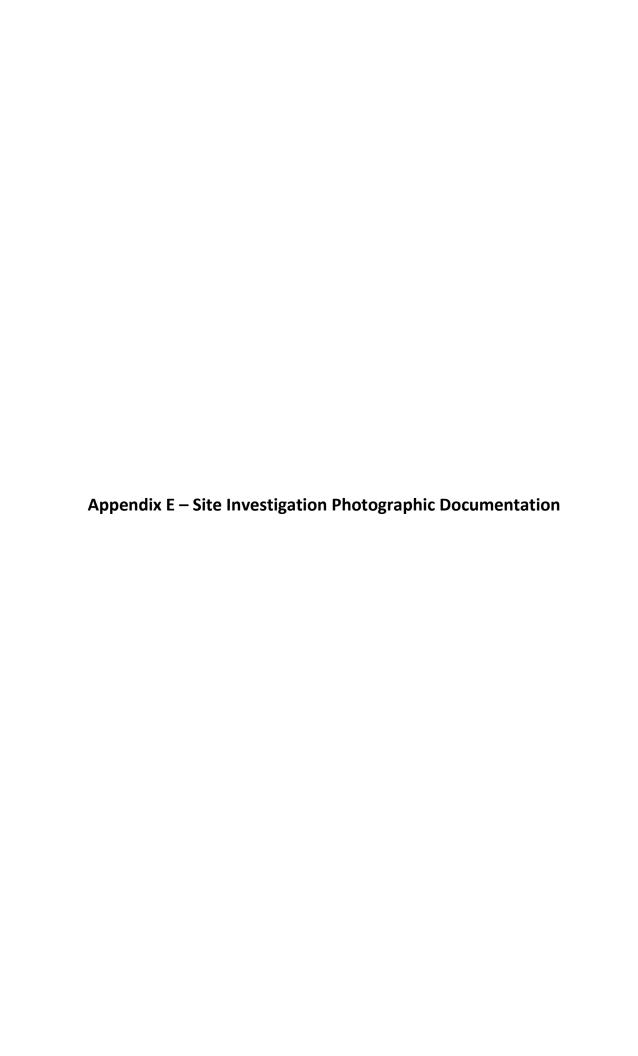
Creator: James, Jeff A

Creator. James, Jen A		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.2
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

9

5

4


6

o

9

11

40

Client: Millennium Forms, Elkhorn, WI

Location: 550 E Centralia Street, Elkhorn, WI

Photograph No. 1

Photographer: Lee Kimbell

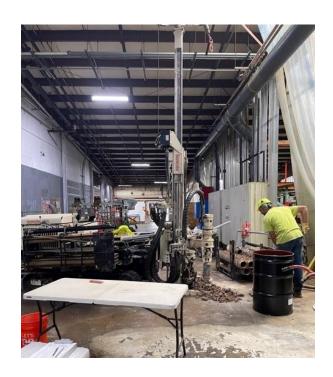
Photograph Date: 10/13/2021

Description:

View of soil boring completed at boring location TRG SB/MW-4. This boring location is located near the northeast corner of the property.

Photographic Documentation

Prepared by: The Reese Group, LLC


Photograph No. 2

Photographer: Lee Kimbell

Photograph Date: 10/13/2021

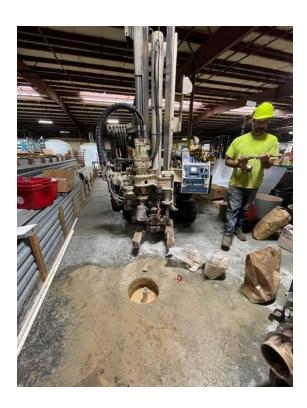
Description:

View of soil boring/monitoring well installation boring location TRG SB/MW-6. This boring is located directly south of the chromium tank in the process line.

Client: Millennium Forms, Elkhorn, WI Location: 550 E Centralia Street, Elkhorn, WI

Photograph No. 3

Photographer: Lee Kimbell


Photograph Date: 10/13/2021

Description:

View of soil boring/monitoring well being installed at TRG SB/MW-7. This boring is located in the area of dry materials storage.

Photographic Documentation

Prepared by: The Reese Group, LLC

Photograph No. 4

Photographer: Lee Kimbell

Photograph Date: 10/15/2021

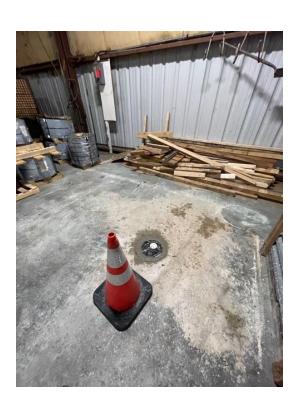
Description:

View of TRG SB/MW-5 with 55-gallon drum containing purge water.

Client: Millennium Forms, Elkhorn, WI Location: 550 E Centralia Street, Elkhorn, WI

Photograph No. 5

Photographer: Lee Kimbell


Photograph Date: 10/13/2021

Description:

View of monitoring well installed at TRG SB/MW-7. This boring is located in the area of dry materials storage.

Photographic Documentation

Prepared by: The Reese Group, LLC

Photograph No. 6

Photographer: Lee Kimbell

Photograph Date: 10/13/2021

Description:

View of TRG SB/MW-6 with 55-gallon drums containing purge water and soil cuttings.

