

- GEOTECHNICAL
- CONSTRUCTION MATERIALS
- ENVIRONMENTAL
- **BUILDING TECHNOLOGY**
- PETROGRAPHY/CHEMISTRY

# PHASE II ENVIRONMENTAL SITE ASSESSMENT

Laundromat Property

1021 South Broadway Street Menomonie, Wisconsin 54751

AET Report No. P-0002702

Date:

June 16, 2021

### Prepared for:

Quarters Unlimited N7487 State Highway 25 Menomonie, WI 54751

www.amengtest.com





June 16, 2021

Quarters Unlimited N7487 State Highway 25 Menomonie, WI 54751

Attn: Wayne Moser, Owner

Submitted via Email: wmwasherman@gmail.com

RE: Phase II Environmental Site Assessment

Laundromat Property Site 1021 South Broadway Street Menomonie, Wisconsin 54751 AET Project No. P-0002702.

Dear Mr. Moser:

American Engineering Testing, Inc. has completed Phase II Environmental Site Assessment services at the above referenced property located at 1021 South Broadway Street, Menomonie, Wisconsin. This Limited Phase II Environmental Site Assessment was done in accordance with our proposal no. P-0002702.

· GEOTECHNICAL

ENVIRONMENTALBUILDING TECHNOLOGYPETROGRAPHY/CHEMISTRY

· CONSTRUCTION MATERIALS

We appreciate the opportunity to serve you on this project. If you have any questions regarding the information presented in this Phase II Environmental Site Assessment report, or if we may be of additional assistance, please contact me.

Sincerely,

American Engineering Testing, Inc.

Dennis McComas, PG

Senior Geologist/ Due Diligence Manager

Phone: (651) 647-2759

E-mail: dmccomas@amengtest.com

#### **TABLE OF CONTENTS**

|                                                 | Page     |
|-------------------------------------------------|----------|
| TABLE OF CONTENTS                               |          |
| EXECUTIVE SUMMARY                               | ii       |
| 1.0 INTRODUCTION                                | 1        |
| 1.1 Site and User Identification                | 1        |
| 1.2 Purpose                                     |          |
| 2.0 BACKGROUND                                  | 1        |
| 2.1 Site Description and Features               | 1        |
| 2.2 Physical Setting                            | 2        |
| 2.3 History of Site and Vicinity                | 2        |
| 2.4 Previous Environmental Reports              | 2        |
| 3.0 LIMITED PHASE II ESA ACTIVITIES             |          |
| 3.1 Scope of Services                           | 3        |
| 3.2 Environmental Sampling Methods              | 3        |
| 3.3 Reference Standards                         | 5        |
| 4.0 PROJECT RESULTS                             | 5        |
| 4.1 Field Observations                          | 5        |
| 4.2 Field Screening Results                     | 6        |
| 4.3 Laboratory Analysis                         | <i>6</i> |
| 5.0 DISCUSSION AND OPINIONS                     |          |
| 5.1 Soil Conditions                             | 7        |
| 5.2 Soil Gas Conditions                         | 7        |
| 6.0 CONCLUSIONS AND RECOMMENDATIONS             |          |
| 7.0 REPORT CLOSURE                              | 8        |
| 7.1 Reliance                                    | 8        |
| 7.2 Limitations and Exceptions of Investigation | 8        |
| 7.3 Standard of Care                            |          |
| 8 O OHALIFICATIONS AND SIGNATURES               | C        |

#### **TABLES**

- 1. Soil Analytical Results
- 2. Soil Gas Analytical Results

#### **FIGURES**

- 1. Site Location Map
- 2. Site Map and Soil Boring Locations

#### **APPENDICES**

- A. Acronyms/Abbreviations and Definitions
- B. Environmental Sampling Methods
- C. Subsurface Boring Logs
- D. Laboratory Analytical Reports and Chains-of-Custody

#### **EXECUTIVE SUMMARY**

American Engineering Testing, Inc. (AET) was authorized by Quarters Unlimited (the User) to conduct a Limited Phase II Environmental Site Assessment (ESA) for the Laundromat Property located at 1021 South Broadway Street in the City of Menomonie, Dunn County, Wisconsin (the Site).

This Limited Phase II ESA has revealed the following information regarding the potential environmental conditions assessed in connection with the Site:

- Soils encountered at the Site are primarily silty sands with gravel from the surface to approximately 13 feet below ground surface (bgs), silty clay from 13 to 16 feet bgs, and lean clay from 16 to 25 feet bgs. Field observations of the soil boring (GP-1) did not identify the presence of odors or solid waste within the existing soils. Field screening of the soils in the borings did not detect elevated levels of organic vapors.
- AET advanced the soil boring on the west side of the Site building. Laboratory analysis of the soil sample collected from the boring identified tetrachloroethylene (PCE) at concentrations exceeding the Wisconsin Department of Natural Resources (WDNR) soil to groundwater residual contaminant level (RCL) as outlined in NR 720 of the Wisconsin Administrative Code (WAC).
- Laboratory analyses detected various VOCs in each of the three soil gas samples analyzed.
   The measured results did not exceed the WDNR's calculated Vapor Risk Screening Levels (VRSLs) for small commercial buildings.

Low concentrations of PCE were detected in the soil sample collected from boring GP-1. The measured PCE concentration in this soil sample exceeded the WDNR soil to groundwater RCL. Field screening of additional deeper soils suggests that the PCE impacts may be isolated and do not extend significantly in a vertical direction beneath the pavement (25 feet bgs).

According to the "Wisconsin Spill Law", Chapter 292.11, Wisconsin Statutes, the discovery of petroleum and non-petroleum contamination constitutes a release to the environment. In accordance with the Spill Law, the owner of the Site and/or responsible party(s) associated with the release may have an obligation to notify the WDNR of the results from this limited site investigation. Reporting can be done by completing the WDNR form "Notification for Hazardous Substance Discharge (Non-Emergency Only)". Following notification, the WDNR may require further sampling and analysis to determine the degree and extent of contamination. Alternatively, they may determine that no further action is required based on the limited extent of the contamination, current site use, and general risk to the public.

AET Project No. P-0002702

#### 1.0 INTRODUCTION

#### 1.1 Site and User Identification

American Engineering Testing, Inc. (AET) was authorized by Quarters Unlimited to conduct a Limited Phase II Environmental Site Assessment (ESA) for the Laundromat Property located at 1021 South Broadway Street in the City of Menomonie, Wisconsin. Hereafter, Quarters Unlimited will be referred to as the "User" of this report, and the assessed property will be referred to as the "Site."

**Figure 1** shows the Site location. **Appendix A** contains a list of the acronyms and abbreviations used in this report.

#### 1.2 Purpose

AET understands the Site was residential prior to commercial development as a laundry facility in the 1960s. The User is considering selling the property for continued commercial use. Soil borings, soil vapor sampling, and a sub-slab vapor sample was used to evaluate potential soil, groundwater, and soil vapor contamination at the Site.

We have performed this Limited Phase II ESA for the following objective:

• To evaluate whether hazardous materials or petroleum products have impacted the soil or groundwater on the Site from past operations at the Site.

These objectives are based on AET's understanding of the User's needs and on the User's authorization of the Scope of Services. Any other objectives not described above are not considered to be within the Purpose of this Limited Phase II ESA.

#### 2.0 BACKGROUND

#### 2.1 Site Description and Features

The Site consists of one commercial parcel of land less than one acre located at 1021 South Broadway Street, Menomonie, Wisconsin. The Site is located in Section 26, Township 28 North, Range 13 West, Dunn County, and is identified as parcel identification number 1725122813263300014. The Site is located in a commercially developed area in the City of Menomonie, Wisconsin.

**Figure 2** shows the soil boring and sub-slab vapor locations. At present, neighboring property uses include:

• North: University of Wisconsin Stout paved parking lot;

- East: South Broadway Street followed by University of Wisconsin Stout tennis courts;
- South: State Highway 29 followed by a commercial business with paved parking lot; and
- West: University of Wisconsin Stout paved parking lot.

#### 2.2 Physical Setting

The Site is located in the Central Plain Physiographic Province of northwestern Wisconsin. Topography at the Site is fairly level. Fluvial and glacial processes have been an important geologic agent in determining the surface geology and physiography of the Site, and it is generally situated on alluvial deposits composed of silty sand and gravel underlain by clay. Regionally, bedrock consists of Cambrian age sandstone at depths ranging from 20 to 50 feet.

Soils encountered at the Site are primarily non-waste fill (sand with varying amounts of silt and gravel) from the surface to approximately five feet below ground surface (bgs). Below the fill is coarse alluvium consisting of silty sand with varying amounts of silt and gravel to about 13 feet bgs. Below the coarse alluvium is fine alluvium consisting of silty and lean clay. Bedrock was not encountered in the soil borings.

Groundwater was not encountered in the soil boring which reached a maximum depth of 25 feet bgs. The regional surficial groundwater gradient in the vicinity of the Site is likely southwest toward the Red Cedar River.

#### 2.3 History of Site and Vicinity

The Site and surrounding properties have been residential and commercially developed since at least the late 1930s. The Site was residential prior to commercial development as a laundry facility in the 1960s. The current building dates to the early 1960s.

#### 2.4 Previous Environmental Reports

AET concluded in their Phase I ESA report, dated May 3, 2021, that the past use of the Site as a dry cleaner and generation of hazardous solvent wastes are considered recognized environmental conditions (RECs) in connection with the Site.

AET reviewed the Wisconsin Department of Natural Resources (WDNR) Wisconsin Remediation and Redevelopment Database (WRRD) for active/closed remedial action sites for the Site and adjoining properties. One remedial action was identified on the adjacent south property on the WRRD database.

Cenex C Store/Vista U Pump #12 at 1103 South Broadway Street located south of the Site
is identified as a LUST (BRRTS No. 03-17-183724). In March 1998, petroleum
contamination was reported from the unleaded gasoline UST system. The site investigation

included seven soil borings and six groundwater monitoring wells. Soil contamination was minimal and three years of groundwater monitoring determined groundwater contamination did not extend off-site and petroleum contaminant concentrations were decreasing. Based on the limited amount of soil and groundwater contamination and lack of off-site contamination, the WDCOM closed the site on November 26, 2001 with a groundwater use restriction due to the presence of residual soil and groundwater contamination.

#### 3.0 LIMITED PHASE II ESA ACTIVITIES

#### 3.1 Scope of Services

The scope of this Limited Phase II ESA was defined in AET's Proposal Agreement No. P-0002702, authorized by the User on May 18, 2021, and included the following tasks:

- Contacted the appropriate authorities and coordinated the locating and marking of underground utilities and conduits.
- Field screened soil samples recovered from soil borings with a photoionization detector (PID) for the presence of organic vapors and observed the soil samples for obvious indicators of contamination (unusual odors, stains, discoloration, presence of debris, etc.).
- Collected one soil sample from one soil boring (GP-1) for laboratory analysis of the following: volatile organic compounds (VOCs).
- Observed and documented the completion of two push probe soil borings for soil gas sampling (VP-1 and VP-2). The soil vapor borings were advanced through a layer of asphalt to a depth of three to five feet bgs. Collected one soil gas sample from each boring to evaluate whether soil gas conditions have the potential to intrude into the building via vapor migration. Each sample was analyzed for VOCs using EPA Method TO-15.
- Observed and documented the installation of one sub-slab vapor probe (SSV-1) in the northwest portion of the existing building. Collected one sub-slab soil gas sample to evaluate whether the presence of VOCs under the on-site building has the potential to intrude into the building via vapor migration. The sample was analyzed for VOCs using EPA Method TO-15.
- Prepared this report that summarizes the results of field sampling activities and includes a
  figure showing sampling locations, sheets describing methodologies used, tables
  summarizing the laboratory analytical and field screening results, a discussion of the
  results, and our conclusions and recommendations.

#### 3.2 Environmental Sampling Methods

The Limited Phase II ESA environmental sample locations were selected to achieve a distribution of sampling locations encompassing potential contamination and to determine the presence of potential soil gas contamination. **Appendix B** contains information sheets which detail AET's standard environmental sampling methods.

June 16, 2021 AET Project No. P-0002702 AMERICAN ENGINEERING TESTING, INC.

The soil sample was collected from a truck-mounted Geoprobe® direct push sampler and screened in the field using a PID equipped with a 10.6 electron volt (eV) lamp to measure organic vapors in ppm. Results were recorded on the boring log in **Appendix C**. No evidence of obvious odors or visual evidence of contamination was observed.

Temporary vapor probes and soil gas samples were conducted and sampled in accordance with WDNR guidance Publication RR-800, "Addressing Vapor Intrusion at Remediation and Redevelopment Sites in Wisconsin."

The sub-slab vapor sample was collected utilizing the Vapor Pin<sup>TM</sup> sampling system. Using this system, AET placed the sampling port in the floor at the selected location and drilled each sampling point through the floor into the sub-slab fill using a ½" diameter drill bit to a depth of approximately 2-3" below the bottom of the slab. The lower end of the Vapor Pin<sup>TM</sup> Soil Gas Sampling Port assembly was placed into the drilled hole and hammered into place. The silicone sleeve in the assembly sealed the hole and formed a slight bulge between the slab and the Vapor Pin<sup>TM</sup> shoulder. The vapor port was tested for leakage by using the water dam method prior to sampling.

At each of the vapor sample locations, a soil gas sample was extracted using disposable tubing. Prior to sample collection, the tubing and subsurface cavity created for the sample collection was purged of excess soil gas. The soil gas sample was withdrawn over a period of 35-50 minutes and placed into a stainless-steel Summa canister equipped with a flow regulator. The Summa canisters were shipped to the laboratory with the chain-of-custody record.

After all necessary soil and soil gas samples were collected, the boreholes were completely backfilled with bentonite and abandoned according to procedures outlined in Chapter NR 141.25 of the Wisconsin Administrative Code (WAC). A WDNR borehole abandonment form (Form 3300-5W) was completed for each soil boring. Abandonment forms are included in **Appendix C**.

AET submitted soil and soil gas samples to Eurofins Test America laboratory for chemical analysis. The soil sample was collected from a depth of 14-16 feet bgs and analyzed for VOCs by EPA Method 8260B. Soil vapor samples were analyzed for VOCs by EPA Method TO-15. Samples were collected in accordance with AET's Quality Assurance/Quality Control (QA/QC) guidelines. The laboratory analytical reports and chain-of-custody records are provided in **Appendix D**.

AET Project No. P-0002702

#### 3.3 Reference Standards

In this Limited Phase II ESA, we compare the analytical results to the baseline environmental regulatory standards in use by the WDNR. The reference standards are included in the results tables for comparison with assessment results. The media-specific standards are described below.

#### Soil Standards

The following reference standards apply to potential contaminant exposures in soils:

- PID Screening Criterion The practical detection limit of a PID is considered to be 1 ppm, although ambient environmental conditions during sampling may result in higher background measurements.
- WDNR NR 720 soil industrial direct contact residual contaminant levels (RCLs): Compound-specific values for the protection of human health from direct contact.
- WDNR NR 720 soil non-industrial direct contact RCLs: Compound-specific values for the protection of human health from direct contact.
- WDNR NR 720 soil to groundwater RCLs: Compound-specific values for protection of groundwater.

#### Soil Gas Standards

Vapor Action Levels (VALs) and sub-slab Vapor Risk Screening Levels (VRSLs) were established in WDNR's guidance Publication RR-800, "Addressing Vapor Intrusion at Remediation and Redevelopment Sites in Wisconsin." If a contaminant concentration exceeds the VAL or VRSL, the WDNR may require additional monitoring or vapor mitigation. The soil gas results are reported in parts per billion by volume (ppbV) and micrograms-per-cubic-meter ( $\mu$ g/m³). Because the future use of the Site will be a commercial office space, AET compared the soil gas and sub-slab vapor analytical results to WDNR's small commercial VRSL regulatory criteria. VRSLs are calculated by dividing the VAL with an attenuation factor of 0.03. The reference standards are included in the results tables for comparison with assessment results.

#### 4.0 PROJECT RESULTS

#### 4.1 Field Observations

AET performed the field exploration and sampling for this Limited Phase II ESA on May 20, 2021. The observational data collected during field exploration activities at the Site are included on the soil boring logs in **Appendix C**.

#### 4.1.1 Soil Boring Observations

Soils encountered at the Site are primarily non-waste fill (sand with varying amounts of silt and gravel) from the surface to approximately five feet below ground surface (bgs). Below the fill is

coarse alluvium consisting of silty sand with varying amounts of silt and gravel to about 13 feet bgs. Below the coarse alluvium is fine alluvium consisting of silty and lean clay to the terminal depths of the boring.

Groundwater was not encountered in the soil boring which reached a maximum depth of 25 feet bgs.

#### 4.2 Field Screening Results

The screening data collected during field exploration activities at the Site are included on the logs. The PID screening results ranged from zero to 4.5 ppm. No unusual odors were observed.

#### 4.3 Laboratory Analysis

**Appendix D** includes the laboratory analytical reports and chains-of-custody for this Limited Phase II ESA. The sections below summarize the laboratory results.

#### 4.3.1 Soil Analytical Results

**Table 1** summarizes the results of laboratory analyses performed on soil samples. The soil results are reported in ppm, which is equivalent to milligrams/kilogram. The reference standards are included on the table for comparison and evaluation of impacts. Based on proposed land use and site zoning, the non-industrial direct contact RCLs apply to this investigation.

#### **VOCs**

One soil sample was analyzed for VOCs for this investigation. Laboratory analyses detected two VOCs in the soil sample analyzed. The measured results did not exceed regulatory criteria, except for the following:

• Tetrachloroethene (PCE) concentrations exceeding its soil to groundwater RCL of 0.0045 ppm was detected in the soil sample GP-1 (0.4 ppm).

#### 4.3.2 Soil Gas Analytical Results

**Table 2** summarizes the results of laboratory analyses performed on soil gas samples. The soil gas results are reported in ppbV and  $\mu g/m^3$ . Because the use of the Site is a commercial space, AET compared the soil gas and sub-slab vapor analytical results to WDNR's small commercial VRSL regulatory criteria.

#### **VOCs**

Laboratory analyses detected various VOCs in each of the three soil gas samples analyzed. The measured results did not exceed the WDNR's calculated VRSLs for small commercial buildings.

Because these soil gas samples were taken below a layer of asphalt, it's appropriate to compare these results to the sub-slab VRSLs. The results of the three soil gas samples did not exceed the sub-slab VRSLs or the calculated VRSLs.

Concentrations of VOCs were not detected exceeding sub-slab VRSLs in SSV-1 (the sub-slab vapor sample). **Appendix B** includes the laboratory analytical reports and chains-of-custody for this investigation.

#### 5.0 DISCUSSION AND OPINIONS

#### 5.1 Soil Conditions

Subsurface sampling indicates soils at the Site are primarily non-waste fill (sand with varying amounts of silt and gravel) from the surface to approximately two feet bgs. Below the fill is coarse alluvium consisting of silty sand with varying amounts of silt and gravel to about 13 feet bgs. Below the coarse alluvium is fine alluvium consisting of silty and lean clay to the terminal depths of the boring. No staining or unusual odors were noted from the soil boring and field evidence of contamination was not observed in the soils recovered at the Site. Field screening of the soils in the borings did not detect significant concentrations of organic vapors.

Low concentrations of PCE was detected in the soil sample collected from boring GP-1. The measured PCE concentration in this soil sample exceeded the WDNR soil to groundwater RCL. Field screening of additional deeper soils suggests that the PCE impacts may be isolated and do not extend a significant vertical extent beneath the pavement (25 feet bgs).

#### **5.2 Soil Gas Conditions**

Vapor testing at the Site did not detect VOCs at concentrations exceeding the calculated VRSL.

WDNR generally relies on the test results of the sub-slab soil gas samples when determining what, if any, action should be taken related to chemical vapors coming from nearby soil or groundwater contamination. If test results are less than a VRSL for sub-slab soil gas, then the air in the building should not present a health concern. It is expected that the sub-slab vapor attenuation factor will be the default for most sampling scenarios.

#### 6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on visual observations, laboratory results, and the results of the PID screening, there is no indication that soils and soil gas on the Site have been significantly impacted.

Isolated low concentrations of PCE was detected in the soil sample from boring GP-1. The measured PCE concentration in this soil sample exceeded the WDNR soil to groundwater RCL.

According to the "Wisconsin Spill Law", Chapter 292.11, Wisconsin Statutes, the discovery of petroleum and non-petroleum contamination constitutes a release to the environment. In accordance with the Spill Law, the owner of the Site and/or responsible party(s) associated with the release may have an obligation to notify the WDNR of the results from this limited site investigation. Reporting can be done by completing the WDNR form "Notification for Hazardous Substance Discharge (Non-Emergency Only)". Following notification, the WDNR may require further sampling and analysis to determine the degree and extent of contamination. Alternatively, they may determine that no further action is required based on the limited extent of the contamination, current site use, and general risk to the public.

#### 7.0 REPORT CLOSURE

#### 7.1 Reliance

AET has prepared this Limited Phase II ESA for the exclusive use of the User for specific application to the Site. Written authorization by AET is necessary for other parties to rely on this report.

Because Site uses and environmental conditions can change over time, this report must be considered time-sensitive. AET should be consulted if 180 days have elapsed since the report date or the passage of time results in uncertainty about the continuing applicability of this report.

#### 7.2 Limitations and Exceptions of Investigation

No environmental investigation can wholly eliminate uncertainty regarding the potential for contamination in connection with a property. The methodologies of this investigation are not intended to detect all possible contamination at all locations and depths throughout the Site; while AET may extrapolate between sampling locations based on actual observations, sample data, and professional experience, those extrapolations are considered less reliable than actual data at any given location or depth on the Site.

#### 7.3 Standard of Care

AET has endeavored to perform services for this project in a manner consistent with the level of skill and care ordinarily exercised by other members of the profession currently practicing in this area, under similar budgetary and time constraints. No further warranty, express or implied, is made.

This report is based on our current understanding of the project and conditions at the Site. If conditions differing from our original understanding or findings are identified, AET should be consulted to determine if there are material impacts on our conclusions or recommendations.

#### 8.0 QUALIFICATIONS AND SIGNATURES

"I, Michael K. Neal, hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03 (1), Wis. Adm. Code, am registered in accordance with the requirements of ch. GHSS 2, Wis. Adm. Code, or licensed in accordance with the requirements of ch. GHSS 3, Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in chs. NR 700 to 726, Wis. Adm. Code."

Report Authored By:

Michael K. Neal

EAU CLAIRE

Professional Hydrologist, Geomorphologist

Report Reviewed By:

Eric Hesse, PE

Principal Engineer

# Tables

#### TABLE 1

#### **ANALYTICAL RESULTS - SOIL**

# LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN **AET PROJECT NO. P-0002702**

|                      | c                    | oil BCL a /nnm  | ) Calculated: I | Samples                 |            |            |  |  |
|----------------------|----------------------|-----------------|-----------------|-------------------------|------------|------------|--|--|
|                      |                      | oli NGLS (ppili | ) Calculateu. 1 | VA                      | GP-1       | MEOH Blank |  |  |
| Date                 | Non-                 | Industrial      |                 | 5/20/21                 |            |            |  |  |
| Depth (feet)         | Industrial<br>Direct | Direct          | Soil to GW      | Background<br>Threshold | 14-16      |            |  |  |
| Location             | Contact              | Contact         |                 | Value                   | GP-1       |            |  |  |
| PID (Instrument unit | s)                   | 4.5             |                 |                         |            |            |  |  |
| Saturated (S) / Unsa | iturated (U)         |                 | U               |                         |            |            |  |  |
| Depth to Water Tabl  | e (ft bgs)           |                 |                 |                         | > 25       |            |  |  |
| Soil Type            |                      |                 |                 |                         | silty clay |            |  |  |
| VOCs (ppm)           |                      |                 |                 |                         |            | •          |  |  |
| Benzene              | 1.6                  | 7.07            | 0.0051          |                         | < 0.011    | < 0.0073   |  |  |
| Ethylbenzene         | 8.02                 | 35.4            | 1.57            |                         | < 0.014    | < 0.0092   |  |  |
| MTBE                 | 63.8                 | 282             | 0.027           |                         | < 0.031    | < 0.02     |  |  |
| Naphthalene          | 5.52                 | 24.1 0.6582     |                 |                         | < 0.026    | < 0.017    |  |  |
| PCE                  | 33                   | 145             | 0.0045          |                         | 0.4        | < 0.0019   |  |  |
| Toluene              | 818                  | 818             | 1.107           |                         | 0.03       | < 0.0074   |  |  |
| 1,2,4-TMB            | MB 219 219           |                 |                 |                         |            | < 0.018    |  |  |
| 1,3,5-TMB            | 182                  | 182             |                 |                         | < 0.029    | < 0.019    |  |  |
| Total TMB            |                      |                 | 1.3787          |                         |            |            |  |  |
| Total Xylenes        | 260                  |                 | < 0.017 < 0.01  |                         |            |            |  |  |
|                      | No. of Individu      | NA              |                 |                         |            |            |  |  |
|                      | Cumulative           |                 | NA              |                         |            |            |  |  |
|                      | Cumulative           | Cancer Risk     | (DC)            |                         | NA         |            |  |  |

--- = not analyzed or no standard NA = not applicable

PCE = tetrachloroethene/tetrachloroethylene

RCL = residual contaminant level

TMB = trimethylbenzene

VOC = volatile organic compound

**Bold** areas indicate soil contaminant concentrations exceed Non-Industrial Direct Contact RCLs.

<u>Underline</u> areas indicate soil contaminant concentrations exceed Industrial Direct Contact RCLs.

Italic areas indicate soil contaminant concentrations exceed Groundwater RCL.

# TABLE 2 ANALYTICAL RESULTS - SOIL GAS LAUNDROMAT PROPERTY, MENOMONIE, WISCONSIN AET PROJECT NO. P-0002702

|                           | VP-1  |                                  | mmercial |           |           |
|---------------------------|-------|----------------------------------|----------|-----------|-----------|
| Date                      |       | ─ Vapor Risk Screening<br>Levels |          |           |           |
| Depth (feet)              | ;     | 3-5                              |          | VRSL      | SSVRSL    |
| <u>ANALYTE</u>            |       |                                  |          |           |           |
| TO-15 VOCs (µg/m3)        |       |                                  |          |           |           |
| Acetone                   | 120   | < 120                            | 2400*    | 4,500,000 | 4,500,000 |
| Benzene                   | 22    | 13                               | < 51     | 530       | 530       |
| 1,3-Butadiene             | 49    | 20                               | < 35     |           |           |
| Chloroform                | < 9.8 | 22                               | < 78     | 180       | 180       |
| Ethanol                   | < 94  | < 94                             | 600      |           |           |
| Methyl ethyl ketone (MEK) | 27    | < 15                             | < 120    |           |           |
| Propylene                 | 370   | 110                              | < 690    |           |           |
| Tetrachloroethylene (PCE) | 2,300 | 1,300                            | < 14     | 6,000     | 6,000     |
| Toluene                   | 23    | 16                               | < 60     | 730,000   | 730,000   |

--- = no standard

IAVAL = indoor air vapor action level

PCE = tetrachloroethene/tetrachloroethylene

SSVRSL = sub-slab vapor risk screening level

VAL = vapor action level

VRSL = vapor risk screening level

VOC = volatile organic compound

VALs were determined using an attenuation factor of 0.03 in accordance with WDNR guidance Publication RR-800, "Addressing Vapor Intrusion at Remediation and Redevelopment Sites in Wisconsin."

**Bold** numbers indicate concentrations above the IAVAL.

Red numbers indicate concentrations above the SSVRSL.


Note that only compounds detected above reporting limits are included in the table, see lab report for complete results.

Samples were collected using summa canisters and the water dam method was used for leak testing on the SSV

<sup>\* =</sup> Result exceed calibration range.

# Figures





# Appendix A

Acronyms and Abbreviations

## **AET Standard List**

| °C       | degrees Celsius                                                                  |
|----------|----------------------------------------------------------------------------------|
| °F       | degrees Fahrenheit                                                               |
| %        | percent                                                                          |
| AAI      | EPA All Appropriate Inquiry (§312.10 of 40 CFR 312)                              |
| ACM      | asbestos containing material                                                     |
| ACBM     | asbestos containing building material                                            |
| AET      | American Engineering Testing, Inc.                                               |
| AHERA    | Asbestos Hazard Emergency Response Act                                           |
| AST      | aboveground storage tank                                                         |
| ASTM     | American Society for Testing and Materials (now known only by acronym)           |
| AUL      | activity and use limitation                                                      |
| BETX     | benzene, ethylbenzene, toluene, xylene                                           |
| bgs      | below ground surface                                                             |
| BRRTS    | Bureau of Remediation and Redevelopment Tracking System                          |
| CAP      | Corrective Action Plan                                                           |
| CERCLA   | Comprehensive Environmental Response, Compensation, Liability Act (Superfund)    |
| CERCLIS  | Comprehensive Environmental Response, Compensation, Liability Information System |
| CESQG    | RCRA Conditionally Exempt Small Quantity Generator                               |
| CFR      | Code of Federal Regulations                                                      |
| CLEAN    | Contaminated Lands Environmental Action Network                                  |
| CoC      | contaminant of concern                                                           |
| c.o.c.   | chain of custody                                                                 |
| CORRACTS | RCRA Corrective Actions Information System                                       |
| cPAH     | carcinogenic polynuclear aromatic hydrocarbon                                    |
| CVOC     | chlorinated volatile organic compound                                            |
| cy or CY | cubic yards                                                                      |
| DCA      | dichloroethane                                                                   |
| DRO      | diesel range organics                                                            |
| EC       | engineering control                                                              |
| EIS      | Environmental Impact Statement                                                   |
| EP       | Environmental Professional (§312.10 of 40 CFR 312)                               |
| EPA      | Environmental Protection Agency (also USEPA)                                     |
| ES       | enforcement standard                                                             |
| ERIS     | Environmental Risk Information Services                                          |
| ERNS     | Emergency Response Notification System (federal)                                 |
| ESA      | Environmental Site Assessment                                                    |
| FDM      | Facilities Development Manual                                                    |
| f/cc     | fibers per cubic centimeter                                                      |
| ft       | feet                                                                             |
| GC       | gas chromatography                                                               |

## **AET Standard List**

| GC/MS  | gas chromatography/mass spectroscopy                     |
|--------|----------------------------------------------------------|
| GEN    | RCRA Generator                                           |
| GIS    | geographic information system                            |
| GPS    | global positioning system                                |
| GRO    | gasoline range organics                                  |
| HASP   | Health and Safety Plan                                   |
| HIG    | Historical Information Gatherers, Inc.                   |
| HMA    | Hazardous Materials Assessment                           |
| HREC   | historical recognized environmental condition            |
| IAVAL  | indoor air vapor action level                            |
| IC     | institutional control                                    |
| LLP    | landowner liability protection                           |
| LQG    | RCRA Large Quantity Generator                            |
| LOQ    | limit of quantitation                                    |
| LSI    | Limited Site Investigation                               |
| LUST   | leaking underground storage tank                         |
| MCL    | EPA Maximum Contaminant Level                            |
| MDL    | method detection limit.                                  |
| mg/kg  | milligrams per kilogram (ppm)                            |
| mg/L   | milligrams per liter (ppm)                               |
| MTBE   | methyl tert-butyl ether                                  |
| NA     | not assigned or not applicable                           |
| ND     | no detection                                             |
| NEPA   | National Environmental Protection Act                    |
| NESHAP | National Emission Standards for Hazardous Air Pollutants |
| NFA    | No Further Action                                        |
| NFRAP  | No Further Remedial Action Planned                       |
| NLR    | RCRA No Longer Regulated Information System              |
| NPDES  | National Pollutant Discharge Elimination System          |
| NPL    | National Priority List (federal Superfund)               |
| NR     | not recorded                                             |
| ODI    | EPA Open Dump Inventory                                  |
| OSHA   | Occupational Safety and Health Administration            |
| PECFA  | Petroleum Environmental Clean-Up Fund Act                |
| PAH    | polynuclear aromatic hydrocarbon                         |
| PAL    | preventive action limit                                  |
| PEL    | OSHA Permissible Exposure Limit                          |
| PCB    | polychlorinated biphenyl                                 |
| PCE    | tetrachloroethylene                                      |
| pcm    | point count method                                       |
|        | Į <b>A</b>                                               |

## **AET Standard List**

| DE          | Due face in all Euroineau                      |
|-------------|------------------------------------------------|
| PE          | Professional Engineer                          |
| PG          | Professional Geologist                         |
| PID         | photoionization detector                       |
| PLM<br>PL P | polarized light microscopy                     |
| PLP         | Permanent List of Priorities (state Superfund) |
| ppb         | parts per billion                              |
| PPE         | personal protective equipment                  |
| ppm         | parts per million                              |
| PVOC        | petroleum volatile organic compound            |
| QA          | quality assurance                              |
| QAPP        | Quality Assurance Project Plan                 |
| QC          | quality control                                |
| RACM        | regulated asbestos containing material         |
| RAP         | Response Action Plan                           |
| RCRA        | Resource Conservation Recovery Act             |
| RCL         | residual contaminant level                     |
| REC         | recognized environmental condition             |
| RI          | Remedial Investigation                         |
| RL          | laboratory reporting limit                     |
| ROD         | EPA Record of Decision                         |
| RP          | responsible party                              |
| SDS         | safety data sheet                              |
| SOP         | standard operating procedure                   |
| SPILLS      | WDNR Spills inventory                          |
| SQG         | RCRA Small Quantity Generator                  |
| SREC        | suspect recognized environmental condition     |
| SSP         | Site Safety Plan                               |
| SSVP        | sub-slab vapor probe                           |
| SSVRSL      | sub-slab vapor risk screening level            |
| STH         | State Highway                                  |
| SVE         | soil vapor extraction                          |
| SVOC        | semi-volatile organic compound                 |
| SVP         | soil vapor probe                               |
| SWF/LF      | WDNR Solid Waste Facilities/Landfill Sites     |
| TCE         | trichloroethylene                              |
| TCLP        | Toxicity Characteristic Leaching Procedure     |
| TMB         | trimethylbenzene                               |
| TPH         | total petroleum hydrocarbons                   |
| TRIS        | EPA Toxic Release Inventory System             |
| TSCA        | Toxic Substances Control Act                   |
| ISCA        | TOAIC BUOSTAIICES CUITIUI ACT                  |

#### **AET Standard List**

| TSD          | RCRA Transportation Storage and Disposal inventory                  |
|--------------|---------------------------------------------------------------------|
| μg/kg        | micrograms per kilogram (ppb)                                       |
| μg/l or μg/L | micrograms per liter (ppb)                                          |
| $\mu g/m^3$  | micrograms per cubic meter                                          |
| USEPA        | United States Environmental Protection Agency (also EPA)            |
| USGS         | United States Geological Survey                                     |
| UST          | underground storage tank                                            |
| VAL          | vapor action level                                                  |
| VIC          | Voluntary Investigation and Cleanup Program                         |
| VOC          | volatile organic compound                                           |
| VRSL         | vapor risk screening level                                          |
| WAC          | Wisconsin Adminstrative Code                                        |
| WCA          | Wetland Conservation Act                                            |
| WDATCP       | Wisconsin Department of Agriculture, Trade, and Consumer Protection |
| WDHS         | Wisconsin Department of Health Services                             |
| WDNR         | Wisconsin Department of Natural Resources                           |
| WGNHS        | Wisconsin Geological and Natural History Survey                     |
| WisDOT       | Wisconsin Department of Transportation                              |
| WPDES        | Wisconsin Pollution Discharge Elimination System                    |
| WRRD         | Wisconsin Remediation and Redevelopment Database                    |
| XRF          | x-ray fluorescence                                                  |

#### **DEFINITIONS**

Controlled recognized environmental condition (CREC): a recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls).

De minimus condition: a condition that generally does not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate government agencies. Conditions determined to be de minimus conditions are not recognized environmental conditions nor controlled recognized environmental conditions.

#### **AET Standard List**

Historical recognized environmental condition (HREC): a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls).

Recognized environmental condition (REC): the presence or likely presence of hazardous substances or petroleum products in, on, or at a property: 1) due to release to the environment; 2) under conditions indicative of a release to the environment; or 3) under conditions that pose a material threat of a future release to the environment.

# Appendix B

**Environmental Sampling Methods** 

AET Project No. P-0002702 Page B 1 of 7

#### ENVIRONMENTAL SAMPLING METHODS – GENERAL: EXCAVATIONS/TEST PITS, HAND AUGERS, SURFICIAL SOILS, STOCKPILES

#### **Site Safety Issues**

Safety is of paramount importance on construction, demolition, or other high-traffic sites with potentially unstable ground. Frequent visual and verbal contact is maintained with operators of heavy equipment in the sampling vicinity. Care is taken not to enter depressions or scale mounds that would constitute confined spaces, where engulfment, immersion, or falls are possible, or where harmful vapors may collect. Most observations and soil collection are performed from a stable and level ground surface with the help of heavy equipment operated by an excavation contractor.

#### **Contamination Reduction**

Sampling devices (except heavy equipment in most cases) are cleaned between sampling points to minimize cross contamination. The cleaning procedure may consist of an alconox detergent-water wash using a brush, followed by a tap water rinse. Certain types of projects may entail more or less stringent decontamination procedures.

#### **Soil Collection**

Most soil samples from excavations or test pits are collected directly from heavy equipment (e.g., excavation bucket, loader, or bulldozer), giving preference to soils that have not touched the equipment. A hand auger is used to complete shallow soil borings in locations of limited vehicle access. Hand auger borings are advanced manually, typically in 6" to 12" depth intervals. Soils are collected directly from the hollow auger barrel. A spade shovel is used to collect surficial soils (i.e., up to 6" depth). In many cases, soil samples can be collected by hand without added equipment.

Impacted soils or buried debris may be present in the ground that are not observed due to the spacing and depths of sampling points. Best judgment determinations, based on known site conditions and past experience in similar situations, do not guarantee identification or removal of all impacts.

#### **Soil Classification**

As the samples are obtained in the field, they are visually and manually classified by the field staff. Representative portions of the samples may be returned to the laboratory for further examination and for verification of the field classification. Soil classifications, visual/odor observations, and information on any groundwater encountered are reported on the Soil Screening Data Sheet or other field notes.

#### Soil Sample Vapor Screening

Soil samples collected directly or from equipment are screened with a photoionization detector (PID) for the presence of organic vapors with ionization potentials less than the lamp voltage. The PID is calibrated for direct reading in parts-permillion-volume (PPMv) of a benzene equivalent. Soil samples are collected and screened according to the bag-headspace field screening procedure, which consists of placing freshly collected soil into a polyethylene Whirl-Pak or freezer "baggie" (i.e., bag), sealing the bag to contain an air pocket (i.e., headspace), and allowing 10 to 20 minutes for vapors to disperse from the soil to the headspace. The highest reading upon inserting the PID probe into the bag headspace – typically attained within two to five seconds of probe insertion – is recorded on the Soil Screening Data Sheet or other field notes. Excessive moisture, temperature extremes, ambient vapors, or other unusual field circumstances can affect screening results.

#### **Other Field Screening**

For certain sites, field screening may be conducted for additional parameters in accordance with AET's Field Screening Methods Supplemental information sheet.

#### Soil Sampling for Chemical Analysis

Soil samples obtained for chemical analysis are collected directly or from the sampling device into laboratory-prepared containers with appropriate preservatives, according to laboratory protocols. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

Page 1 of 1

(02/2016)

AET Project No. P-0002702 Page B 2 of 7

#### ENVIRONMENTAL SAMPLING METHODS – HSA/PUSH PROBE SOIL BORINGS

#### **Contamination Reduction**

The hollow-stem auger (HSA) drill rig and down hole tooling are steam cleaned prior to mobilization. The split-spoon sampler is cleaned between samples to minimize cross contamination. The push-probe down hole tooling is steam cleaned prior to mobilization. New clear plastic liners are used for each drive, and the tooling is cleaned between borings to minimize cross contamination. The cleaning procedure consists of an alconox detergent-water wash using a brush, followed by a tapwater rinse. The alconox wash and rinse water are changed regularly – typically between borings. Certain types of projects may entail more stringent decontamination procedures.

#### **Soil Boring Advancement and Limitations**

Split-spoon soil sampling in the standard-penetration soil borings is performed using hollow-stem auger techniques in general accordance with ASTM:D1586, with a modified hammer weight calibrated by pile driving analyzer (PDA). Using this procedure, a 2" outer-diameter (OD) split-spoon soil sampler is driven into the soil by a hammer weight with 60%-65% energy of a 140-lb. weight falling 30". After an initial set of 6", the number of blows required to drive the sampler an additional 12" is known as the penetration resistance or N value, an index of the relative density of cohesionless soils and the consistency of cohesive soils. Samples are typically collected in distinct 18" or 24" depth intervals separated by 12" or 6" depth intervals, using drive rods to extend the boring deeper beneath the ground surface. The split-spoon sampler is opened to expose distinct 18" or 24" sections of soil for classification and sampling.

Soil sampling in the soil borings is performed using a Geoprobe® system. Soil borings are advanced using a vehicle-mounted, hydraulically-powered, soil probing machine, which uses static force (vehicle weight) and percussion to advance small-diameter sampling tools into the subsurface for collecting soil core, soil gas, or groundwater samples. Using this system, a 2" outer-diameter (OD) MacroCore® soil sampler containing a 1.75" OD clear plastic liner is driven into the soil in distinct 48" depth intervals, except where subsurface conditions limit the equipment to shorter drive lengths. In cases where soil recovery is poor, typically due to grain-size or moisture, a smaller "discrete" soil sampler (1.5" OD containing a 1.0" OD clear plastic liner) with a retractable piston tip may be used to collect soil in distinct 24" depth intervals. Probe rods are added to extend borings deeper beneath the surface. The plastic liner is removed from the sampler and cut lengthwise to expose discrete sections of soil for classification and sampling.

Unless actually observed, contacts between soil layers are estimated based on the spacing of samples and the action of the drilling tools. Cobbles, boulders, and other large objects generally cannot be recovered from soil borings, and may be present in the ground even if they are not noted on the boring logs. Impacted soils or buried debris may be present that are not observed due to the spacing and depths of sampling points. Best judgment determinations, based on known site conditions and past experience in similar situations, do not guarantee identification of all impacts.

#### **Soil Classification**

As the samples are obtained in the field, they are visually and manually classified by the field staff following the Unified Soil Classification (USC) system in general accordance with ASTM:D2488. Representative portions of the samples may be returned to the laboratory for further observation and for verification of the field identification. Logs of the borings are prepared indicating the depth and identification of the various strata, water level information, and other pertinent information regarding the method of maintaining and advancing the borings.

Boring logs include judgments of the geologic depositional origin. This judgment is primarily based on observations of the soil samples, which can be limited. Observations of the surrounding topography, vegetation, and development can sometimes aid this judgment. Visual/odor observations may aid in assessing impacts but are not relied on exclusively.

#### Soil Sample Vapor Screening

Soil samples collected directly from the soil samplers are screened with a photoionization detector (PID) for the presence of organic vapors with ionization potentials less than the lamp voltage. The PID is calibrated for direct reading in partsper-million-volume (PPMv) of a benzene equivalent. Soil samples are collected and screened according to the bagheadspace field screening procedure, which consists of placing freshly collected soil into a polyethylene Whirl-Pak or freezer "baggie" (i.e., bag), sealing the bag to contain an air pocket (i.e., headspace), and allowing 10 to 20 minutes for vapors to disperse from the soil to the headspace. The highest reading upon inserting the PID probe into the bag

Page 1 of 2

(02/2016)

AET Project No. P-0002702 Page B 3 of 7

#### ENVIRONMENTAL SAMPLING METHODS – HSA/PUSH PROBE SOIL BORINGS

headspace – typically attained within two to five seconds of probe insertion – is recorded on the boring log. Excessive moisture, temperature extremes, ambient vapors, or other unusual field circumstances can affect screening results.

#### **Other Field Screening**

For certain sites, field screening may be conducted for additional parameters in accordance with AET's Field Screening Methods Supplemental information sheet.

#### **Soil Sampling for Chemical Analysis**

Soil samples obtained for chemical analysis are collected directly from the soil samplers and placed into laboratory-prepared containers with appropriate preservatives, according to laboratory protocols. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

#### **Water Level Measurements**

The groundwater level measurements are shown at the bottom of the boring logs. The following information appears under Water Level Measurements on the logs:

- Date and time of measurement
- Sampled Depth: greatest depth of soil sampling at the time of measurement
- Casing Depth: depth to bottom of casing or hollow-stem auger at time of measurement
- Cave-in Depth: tape-measured depth of borehole
- Water Level: tape-measured depth of free water in the borehole

The true depth of the water table at the boring locations may be different from the water levels measured in the boreholes. This is possible because several factors can affect the water-level measurements in the borehole such as permeability of each soil layer in profile, presence of perched water, amount of time between water level readings, and weather conditions.

#### **Groundwater Sampling for Chemical Analysis**

Groundwater samples obtained for chemical analysis are collected directly from each borehole/temporary monitoring well by one of two techniques: (1) A new dedicated teflon bailer is lowered down the borehole/temporary monitoring well with new nylon rope or decontaminated downrigger cable; (2) Using a peristaltic pump or check-valve assembly, samples are pumped directly from the borehole/temporary monitoring well through new polyethylene tubing extended to depth through the casing. Samples are collected in laboratory-prepared containers with appropriate preservatives, according to laboratory protocols. For analyses in which field-filtering is required, samples are vacuum-filtered through a new dedicated plastic filter with 0.45- $\mu$ m pores. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

Because boreholes/temporary monitoring wells are not typically in equilibrium with groundwater, results provide qualitative groundwater data. Purging additional water prior to sampling may improve the data representativeness somewhat. Monitoring wells are necessary to obtain more accurate quantitative groundwater data.

#### Surveying and Abandonment

Following sampling, ground surface elevations at boring locations are typically measured to the nearest 0.1 foot. If a permanent benchmark of known elevation is unavailable, the measurement is referenced to a nearby temporary benchmark given the arbitrary reference elevation of 100.0 feet. Horizontal location control is typically based on tape measurements from fixed site features. Certain types of projects may entail more stringent measures such as global positioning systems (GPS) or contracting registered surveyors.

Boreholes/temporary monitoring wells are completely backfilled with bentonite and abandoned according to procedures outlined in Chapter NR 141.25 of the Wisconsin Administrative Code A WDNR Borehole Abandonment (3300-5W) form is completed for each soil boring not completed as a monitoring well.

Page 2 of 2

(02/2016)

AET Project No. P-0002702 Page B 4 of 7

#### ENVIRONMENTAL SAMPLING METHODS - MONITORING WELLS

#### **Contamination Reduction**

The sampling downrigger and electronic water-level indicator are cleaned prior to sampling and between sampling from different monitoring wells. The cleaning procedure consists of an alconox detergent-water wash and distilled water rinse from spray dispensers. New disposable bailers are used for each well.

#### **Monitoring Well Installation and Development**

Groundwater monitoring wells and piezometers are constructed and developed in accordance with Wisconsin Administrative Code – Chapter NR 141 requirements. Monitoring Well Construction (4400-113A) and Monitoring Well Development (4400-113B) forms are completed for each well. Typically, monitoring wells are installed in hollow-stem auger (HSA) soil boreholes that have been sampled for environmental parameters.

Monitoring wells are developed by removing a minimum of three to five borehole volumes, until water appears clear.

#### **Groundwater Elevation Measurements**

Following monitoring well installation, the top-of-riser elevations are surveyed to the nearest 0.01 feet. If a permanent benchmark of known elevation is unavailable, the survey is referenced to a nearby temporary benchmark given the arbitrary reference elevation of 100.00 feet.

Groundwater elevations are determined by using an electronic water-level indicator. Measurements are obtained by lowering the probe into each well until the groundwater surface is encountered. Measurements, referenced to the top-of-riser elevations, are reported to the nearest 0.01 feet.

#### **Groundwater Sampling for Chemical Analysis**

Groundwater samples obtained for chemical analysis are collected directly from each monitoring well using a new disposable bailer lowered down the well with new nylon rope or decontaminated downrigger cable. Samples are decanted directly from the bailer into laboratory-prepared containers with appropriate preservatives. Alternatively, samples may be drawn directly from the submersible pump discharge tubing. For analyses in which field-filtering is required, samples are vacuum-filtered through a new dedicated plastic filter with 0.45- $\mu$ m pores. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

#### **Free Product Removal Procedures**

We conducted free product removal procedure as follows:

- Remove well cover and scrape away excess dirt.
- Carefully remove test well plug, bailer, & sock from well casing. Remember that bailer and absorbent socks are tied to the plug.
- Set bailer aside and squeeze product from sock into bucket. After squeezing out sock set aside to dry.
- Measure depth to water/product with a product/groundwater interface probe. Record depth to product, groundwater, and thickness of product in feet.
- Secure bailer to rope or string and insert into well casing. Lower the bailer until contact with water table is made. Allow bailer to drop into the water for no more than one foot. Remove bailer and estimate product thickness. Empty contents of bailer into bucket and record product thickness.
- Continue to lower bailer into well and drop to the water table. Allow bailer to fill with no more than one foot of water/product. Remove bailer and empty contents into bucket. Continue fill bucket. Transfer filled buckets to drum.
- Repeat this process until thickness of free product is less than one inch. Record amount of water/product removed.
- If a groundwater sample will be collected use a new disposable bailer to obtain a water sample. Insert the bailers bottom empting device and use to fill the appropriate sample bottle.
- Reattach string/rope to well plug, replace bailer and sock into well and cap with well plug. Replace well cover. Replace socks as needed.
- Secure cover on 55-gasllon drum.

#### Page 1 of 1

AET Project No. P-0002702 Page B 5 of 7



# Standard Operating Procedure Installation and Extraction of the Vapor Pin<sup>™</sup>

Updated April 3, 2015

#### Scope:

This standard operating procedure describes the installation and extraction of the Vapor Pin<sup>™</sup> for use in sub-slab soil-gas sampling.

#### Purpose:

The purpose of this procedure is to assure good quality control in field operations and uniformity between field personnel in the use of the Vapor Pin<sup>™</sup> for the collection of subslab soil-gas samples or pressure readings.

#### Equipment Needed:

- Assembled Vapor Pin<sup>™</sup> [Vapor Pin<sup>™</sup> and silicone sleeve(Figure 1)]; Because of sharp edges, gloves are recommended for sleeve installation;
- Hammer drill;
- 5/8-inch (16mm) diameter hammer bit (hole must be 5/8-inch (16mm) diameter to ensure seal. It is recommended that you use the drill guide). (Hilti™ TE-YX 5/8" x 22" (400 mm) #00206514 or equivalent);
- 1½-inch (38mm) diameter hammer bit (Hilti<sup>™</sup> TE-YX 1½" x 23" #00293032 or equivalent) for flush mount applications;
- 3/4-inch (19mm) diameter bottle brush;
- Wet/Dry vacuum with HEPA filter (optional);
- Vapor Pin<sup>™</sup> installation/extraction tool;
- Dead blow hammer;
- Vapor Pin<sup>™</sup> flush mount cover, if desired;
- Vapor Pin<sup>™</sup> drilling guide, if desired;
- Vapor Pin<sup>™</sup> protective cap; and

 VOC-free hole patching material (hydraulic cement) and putty knife or trowel for repairing the hole following the extraction of the Vapor Pin<sup>™</sup>.



Figure 1. Assembled Vapor Pin<sup>TM</sup>

#### **Installation Procedure:**

- 1) Check for buried obstacles (pipes, electrical lines, etc.) prior to proceeding.
- 2) Set up wet/dry vacuum to collect drill cuttings.
- 3) If a flush mount installation is required, drill a 1½-inch (38mm) diameter hole at least 1¾-inches (45mm) into the slab. Use of a Vapor Pin™ drilling guide is recommended.
- 4) Drill a 5/8-inch (16mm) diameter hole through the slab and approximately 1-inch (25mm) into the underlying soil to form a void. Hole must be 5/8-inch (16mm) in diameter to ensure seal. It is recommended that you use the drill guide.

Vapor Pin<sup>TM</sup> protected under US Patent # 8,220,347 B2

AET Project No. P-0002702 Page B 6 of 7

Standard Operating Procedure Installation and Removal of the Vapor Pin™ Updated April 3, 2015 Page 2

- 5) Remove the drill bit, brush the hole with the bottle brush, and remove the loose cuttings with the vacuum.
- 6) Place the lower end of Vapor Pin<sup>™</sup> assembly into the drilled hole. Place the small hole located in the handle of the installation/extraction tool over the Vapor Pin<sup>™</sup> to protect the barb fitting, and tap the Vapor Pin<sup>™</sup> into place using a dead blow hammer (Figure 2). Make sure the installation/extraction tool is aligned parallel to the Vapor Pin<sup>™</sup> to avoid damaging the barb fitting.



Figure 2. Installing the Vapor  $Pin^{TM}$ .

During installation, the silicone sleeve will form a slight bulge between the slab and the Vapor  $Pin^{TM}$  shoulder. Place the protective cap on Vapor  $Pin^{TM}$  to prevent vapor loss prior to sampling (Figure 3).



Figure 3. Installed Vapor Pin<sup>TM</sup>

7) For flush mount installations, cover the Vapor Pin<sup>™</sup> with a flush mount cover, using either the plastic cover or the optional stainless-steel Secure Cover (Figure 4).



Figure 4. Secure Cover Installed

- 8) Allow 20 minutes or more (consult applicable guidance for your situation) for the sub-slab soil-gas conditions to reequilibrate prior to sampling.
- 9) Remove protective cap and connect sample tubing to the barb fitting of the Vapor Pin<sup>™</sup>. This connection can be made using a short piece of Tygon<sup>™</sup> tubing to join the Vapor Pin<sup>™</sup> with the Nylaflow

Vapor Pin<sup>TM</sup> protected under US Patent # 8,220,347 B2

AET Project No. P-0002702 Page B 7 of 7

Standard Operating Procedure Installation and Removal of the Vapor Pin™ Updated April 3, 2015 Page 3

tubing (Figure 5). Put the Nylaflow tubing as close to the Vapor Pin as possible to minimize contact between soil gas and  $Tygon^{TM}$  tubing.



Figure 5. Vapor Pin™ sample connection.

10) Conduct leak tests in accordance with applicable guidance. If the method of leak testing is not specified, an alternative can be the use of a water dam and vacuum pump, as described in SOP Leak Testing the Vapor Pin™ via Mechanical Means (Figure 6). For flush-mount installations, distilled water can be poured directly into the 1 1/2 inch (38mm) hole.



Figure 6. Water dam used for leak detection

11) Collect sub-slab soil gas sample or pressure reading. When finished, replace the protective cap and flush mount cover until the next event. If the sampling is complete, extract the Vapor Pin™.

#### **Extraction Procedure:**

- 1) Remove the protective cap, and thread the installation/extraction tool onto the barrel of the Vapor Pin<sup>™</sup> (Figure 7). Continue turning the tool clockwise to pull the Vapor Pin<sup>™</sup> from the hole into the installation/extraction tool.
- 2) Fill the void with hydraulic cement and smooth with a trowel or putty knife.



Figure 7. Removing the Vapor Pin<sup>TM</sup>.

3) Prior to reuse, remove the silicone sleeve and protective cap and discard. Decontaminate the Vapor Pin™ in a hot water and Alconox® wash, then heat in an oven to a temperature of 265° F (130° C) for 15 to 30 minutes.

The Vapor Pin<sup>™</sup> to designed be used repeatedly, however, replacement parts and supplies will be required periodically. These parts are available on-line at VaporPin.CoxColvin.com.

Vapor Pin<sup>TM</sup> protected under US Patent # 8,220,347 B2

# Appendix C

WDNR Soil Boring Logs and Boring Abandonment Forms

Page C 1 of 4



# GEOPROBE SUBSURFACE BORING LOG

| AET JOB NO: P-0002702                             |                                                                                  |              |          |               |            |                 | LOG OF BORING NOGP-1 (p. 1 of 1) |      |                     |     |              |        |       |              |              |
|---------------------------------------------------|----------------------------------------------------------------------------------|--------------|----------|---------------|------------|-----------------|----------------------------------|------|---------------------|-----|--------------|--------|-------|--------------|--------------|
| PROJECT: Phase II ESA - Laundromat, Menomonee, WI |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              |              |
| DEPTH<br>IN<br>FEET                               | SURFACE ELEVATION:                                                               |              | _        |               | GI         | EOLOGY          | N                                | MC   | SAMPLE              | REC | FIELI        | ) & LA | BORA' | TORY 7       |              |
| FËÈT                                              | MATERIAL I                                                                       | DESCRIPTIO   | ON       |               |            | _               |                                  | IVIC | TYPE                | IN. | WC           | DEN    | LL    | XRF          | PID<br>(ppm) |
| 1 —                                               | BITUMINOUS FILL, mostly sand with gra                                            | vel, fine to | o medium | _             | FIL        | .L              |                                  |      |                     |     |              |        |       |              | 0.5          |
| 2 —                                               | \grained, light brown                                                            |              |          | _             |            |                 |                                  | _    | 3.40                | 2.  |              |        |       |              |              |
| 3 —                                               | FILL, mostly silty sand, dark brown, slight organic odor, some large rocks at 5' |              |          |               |            |                 |                                  | D    | MC                  | 36  |              |        |       |              | 0.5          |
| 4 —                                               |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              | 0.1          |
| 5 —                                               | SAND WITH GRAVEL, r                                                              | eddish bro   | wn       |               | CO         | ARSE            |                                  |      |                     |     |              |        |       |              |              |
| 6 —                                               | ,                                                                                |              |          |               | ALI        | LUVIUM          |                                  |      |                     |     |              |        |       |              | 0.0          |
| 7 —                                               |                                                                                  |              |          |               |            |                 |                                  | M    | MC                  | 48  |              |        |       |              |              |
| 8 —                                               |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              | 0.1          |
| 9 –                                               |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              | 0.1          |
| 10 -                                              |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              |              |
| 11 —<br>12 —                                      |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              | 0.2          |
| 13 —                                              |                                                                                  |              |          |               |            |                 |                                  | M    | MC                  | 48  |              |        |       |              |              |
| 14 —                                              | CLAYEY SILT, light brow                                                          | /n           |          |               | FIN<br>ALI | IE<br>LUVIUM    |                                  |      |                     |     |              |        |       |              | 0.1          |
| 15 —                                              |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              |              |
| 16 —                                              | LEAN CLAY, greenish gra                                                          | ny vary fir  | em.      |               |            |                 |                                  |      |                     |     |              |        |       |              | 4.5          |
| 17 —                                              | LEAN CLAT, greenish gr                                                           | iy, very iii | 111      |               |            |                 |                                  | M    | MC                  | 54  |              |        |       |              | 1.7          |
| 18 —                                              |                                                                                  |              |          |               |            |                 |                                  | 1V1  | IVIC                | 34  |              |        |       |              |              |
| 19 —                                              |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              | 1.2          |
| 20 —                                              |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              |              |
| 21 —                                              |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              |              |
| 22 -                                              |                                                                                  |              |          |               |            |                 |                                  | M    | MC                  | 48  |              |        |       |              | 0.1<br>0.1   |
| 23 —<br>24 —                                      |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              | 0.1          |
| 25 —                                              |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              |              |
| 23                                                | END OF BORING                                                                    |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              |              |
|                                                   |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              |              |
|                                                   |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              |              |
|                                                   |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        |       |              |              |
| DEP                                               | TH: DRILLING METHOD                                                              |              |          | WAT           | ER L       | EVEL MEA        | SURF                             | MENT | S S                 |     |              |        | IOTE  | DEFE         | D. T. C      |
|                                                   |                                                                                  | DATE         | TIME     | SAMPI<br>DEPT |            | CASING<br>DEPTH | CAV<br>DEI                       |      | DRILLIN<br>FLUID LE | NG  | WATE<br>LEVE |        |       | REFE<br>TTAC |              |
| 0-                                                | -25' Geoprobe                                                                    | DAIL         | THVIE    | DEPT<br>Non   | _          | DEPTH<br>Taken  | DEI<br>Refe                      |      | FLUID LE            |     | Colur        | _      |       | TS FOR       |              |
|                                                   |                                                                                  |              |          | 14011         | iC         | 1 aken          | IXCIE                            | 1 10 | IVIC                |     | Colui        | 1111   |       | NATIC        |              |
| BORIN                                             | IG<br>LETED: <b>5/20/21</b>                                                      |              |          |               |            |                 |                                  |      |                     |     |              | T      | ERMIN | NOLOC        | GY ON        |
| DR: <b>B</b> 7                                    |                                                                                  |              |          |               |            |                 |                                  |      |                     |     |              |        | TH    | IS LO        | Ĵ            |
| 06/04                                             |                                                                                  |              | i        |               |            |                 |                                  |      | i                   |     |              |        |       |              |              |

State of Wis., Dept. of Natural Resources dnr.wi.gov

### Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

|                                                  | Route to DNR Bureau:              | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Verification Only of Fill and Seal</b>        | Drinking Water                    | Watershed/Wastewater Remediation/Redevelopme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <u> </u>                                         | Waste Manageme                    | ent Other:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1. Well Location Information                     |                                   | 2. Facility / Owner Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| County WI Unique Well # of                       | Hicap #                           | Facility Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Removed Well                                     |                                   | LAUNARO mat Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Latitude / Longitude (see instructions) Form     | nat Code Method Code              | Facility ID (FID or PWS)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| , , ,                                            | DD GPS008                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N   L                                            | SCR002                            | License/Permit/Monitoring # 6 P- /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| W                                                | DDMOTH001                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3.0 3.0                                          | 「ownship Range ☐ E                | Original Well Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                  | 28 N /3 🛮 W                       | Present Well Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Well Street Address                              | ci $i$                            | t .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Well City, Village or Town                       | WAY STRUT                         | Mailing Address of Present Owner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| _                                                |                                   | 1021 Couth Boardway Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Men Comunic Subdivision Name                     | 54751                             | City of Present Owner Street ZIP Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Subdivision Name                                 | Lot #                             | MENDMONIC WI 54751                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Reason for Removal from Service   WI Unique V    | Vell # of Replacement Well        | 4. Pump, Liner, Screen, Casing & Sealing Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| test boring -                                    | TOWN OF PROPERTY OF A STORY       | Pump and piping removed? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3. Filled & Sealed Well / Drillhole / Boreho     | ole Information                   | Liner(s) removed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Monitoring Well Original Constru                 | ction Date (mm/dd/yyyy)           | Liner(s) perforated?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Water Well 5-20.                                 | -21                               | Screen removed?  Yes No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| If a Well Constr                                 | uction Report is available,       | Casing left in place? Yes No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Borehole / Drillhole please attach.              |                                   | Was casing cut off below surface? Yes No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Construction Type:                               |                                   | Did sealing material rise to surface?  Did material settle after 24 hours?  Yes No No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drilled Driven (Sandpoint)                       | Dug                               | Did material settle after 24 hours?  If yes, was hole retopped?  Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Other (specify): 6eo probe                       |                                   | If bentonite chips were used, were they hydrated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Formation Type:                                  |                                   | with water from a known safe source?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                  | drock                             | Required Method of Placing Sealing Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total Well Depth From Ground Surface (ft.) Casin | ng Diameter (in.)                 | Conductor Pipe-Gravity Conductor Pipe-Pumped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 25                                               |                                   | Screened & Poured (Bentonite Chips) Other (Explain):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Lower Drillhole Diameter (in.)                   | ng Depth (ft.)                    | Sealing Materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                  |                                   | Neat Cement Grout Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Was well annular space grouted? Yes              | No Unknown                        | Sand-Cement (Concrete) Grout Bentonite Chips                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| If yes, to what depth (feet)? Depth to W         |                                   | For Monitoring Wells and Monitoring Well Boreholes Only:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| , , , ,                                          | <u>`</u> '                        | Bentonite Chips Bentonite - Cement Grout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                  | 725                               | Granular Bentonite Bentonite - Sand Slurry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5. Material Used to Fill Well / Drillhole        |                                   | From (ft.)  To (ft.)  No. Yards, Sacks Sealant or Mix Ratio or Volume (circle one)  Mud Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bentunte Ch                                      | FPS                               | Surface d5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  |                                   | , and the second |
| C. Commonto                                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6. Comments                                      |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                  |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7. Supervision of Work                           |                                   | DNR Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Name of Person or Firm Doing Filling & Sealing   | License # Date of Fi<br>(mm/dd/yy | illing & Sealing or Verification Date Received Noted By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Street or Route                                  |                                   | (Yyy) 5- dO- 3 / Celephone Number Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                  |                                   | (715) 8615R45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1837 CTH 00 City Chippeum Folls W                |                                   | Signature of Person Doing Work Date Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Chippeum Folls W                                 | 7 54729                           | Par 2 md 15T 6-1-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

State of Wis., Dept. of Natural Resources dnr.wi.gov

# Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

**Notice:** Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

|                                                | Route to DNR Bureau:          | <b>:</b>                                                                                 |
|------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------|
| <b>Verification Only of Fill and Seal</b>      | Drinking Water                | Watershed/Wastewater Remediation/Redevelopment                                           |
| [ ]                                            | Waste Manageme                | ent Other:                                                                               |
| 1. Well Location Information                   |                               | 2. Facility / Owner Information                                                          |
| County WI Unique Well # of                     | Hicap #                       | Facility Name                                                                            |
| Removed Well                                   | ·                             | LAUNGROMAT Property                                                                      |
| <u> </u>                                       |                               | Facility ID (FID or PWS)                                                                 |
| Latitude / Longitude (see instructions)        | rmat Code Method Code         | ,                                                                                        |
| N                                              | DD GPS008                     | License/Permit/Monitoring#                                                               |
| w                                              | DDM OTHO01                    | License/Ferritionioning # VP_/                                                           |
| 1/4 1 1/4 S W 1/4 S W Section                  | Township Range F              | Original Well Owner                                                                      |
|                                                | • -   · - <del>    -</del>    |                                                                                          |
| 90                                             | 28 N /3 ₩W                    | Present Well Owner                                                                       |
| Well Street Address                            | 1                             | l r                                                                                      |
| 1021 South Broad                               | WAY Street Well ZIP Code      | Mailing Address of Present Owner                                                         |
| 40                                             | Well ZIP Code                 | Lazi Cotto Kanding Start                                                                 |
| Men smanic                                     | 54751                         | 1021 South Broadway Street City of Present Owner State ZIP Code                          |
| Subdivision Name                               | Lot #                         |                                                                                          |
|                                                |                               | Menomonic WF 5475/<br>4. Pump, Liner, Screen, Casing & Sealing Material                  |
| Reason for Removal from Service WI Unique      | Well # of Replacement Well    | Pump and piping removed?  Yes No N/A                                                     |
| test boring -                                  |                               | Liner(s) removed?                                                                        |
| 3. Filled & Sealed Well / Drillhole / Boreh    |                               | Liner(s) perforated?                                                                     |
| Monitoring Well Original Constr                | ruction Date (mm/dd/yyyy)     | Screen removed?                                                                          |
| Water Well 5-20                                | 1-21                          | Casing left in place?                                                                    |
| If a Well Cons                                 | truction Report is available, |                                                                                          |
| Borehole / Drillhole please attach.            | - 1-1-1                       | Was casing cut off below surface?  Yes No N/A                                            |
| Construction Type:                             |                               | Did sealing material rise to surface?  Yes No NA                                         |
| Drilled Driven (Sandpoint)                     | Dug                           | Did material settle after 24 hours?  Yes No N/A                                          |
| Other (specify): 6eoprobe                      |                               | If yes, was hole retopped?  Yes No N/A  If bentonite chips were used, were they hydrated |
| Formation Type:                                |                               | with water from a known safe source?  Yes No N/A                                         |
| Unconsolidated Formation                       | Bedrock                       | Required Method of Placing Sealing Material                                              |
|                                                | sing Diameter (in.)           | Conductor Pipe-Gravity Conductor Pipe-Pumped                                             |
|                                                |                               | Screened & Poured Other (Evaluin):                                                       |
| Lawar Brillhala Biarratar (in )                | i D                           | (Bentonite Chips)                                                                        |
| Lower Drillhole Diameter (in.)                 | ing Depth (ft.)               | Sealing Materials                                                                        |
|                                                |                               | Neat Cement Grout Concrete                                                               |
| Was well annular space grouted? Yes            | s No Unknown                  | Sand-Cement (Concrete) Grout Bentonite Chips                                             |
|                                                |                               | For Monitoring Wells and Monitoring Well Boreholes Only:                                 |
|                                                | Water (feet)                  | Bentonite Chips Bentonite - Cement Grout                                                 |
|                                                | > 25                          | Granular Bentonite Bentonite - Sand Slurry                                               |
| 5. Material Used to Fill Well / Drillhole      |                               | From (ft.) To (ft.) No. Yards, Sacks Sealant or Mix Ratio or                             |
| Do do do                                       | rps                           | Surface 5 Volume (circle one) Mud Weight                                                 |
| Bentante Ci                                    | (1/2)                         | Burrace 9                                                                                |
|                                                |                               |                                                                                          |
| 6. Comments                                    |                               |                                                                                          |
|                                                |                               |                                                                                          |
| <u> </u>                                       |                               |                                                                                          |
| 7. Supervision of Work                         |                               | DNR Use Only                                                                             |
| Name of Person or Firm Doing Filling & Sealing |                               | illing & Sealing or Verification Date Received Noted By                                  |
| # 12 1                                         |                               | yyy) 5-20-21                                                                             |
| Street or Route                                | Te                            | elephone Number Comments                                                                 |
| 1831 6/1 00                                    | (                             | 715)8615945                                                                              |
| ~ / · · · · / · · · · /                        | ate ZIP Code                  | Signature of Person Doing Work  Date Signed                                              |
| Unippewy Falls 4                               | 17 54729                      | My & MA 1ET 6-1-21                                                                       |

State of Wis., Dept. of Natural Resources dnr.wi.gov

# Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

**Notice:** Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Route to DNR Bureau                   | u:                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------|
| Verification Only of Fill and Seal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drinking Water                        | Watershed/Wastewater Remediation/Redevelopment                             |
| ر مناها المناها مناها م | Waste Manageme                        | nent Other:                                                                |
| 1. Well Location Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 2. Facility / Owner Information                                            |
| County WI Unique Well # of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hicap #                               | Facility Name                                                              |
| Removed Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | Eacility ID (FID or PINS)                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0-1 10 10 1                           | Facility ID (FID or PWS)                                                   |
| Latitude / Longitude (see instructions) Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [ CDenno                              |                                                                            |
| N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SCR002                                | License/Permit/Monitoring#                                                 |
| w 🔲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DDM TH001                             | UP-2                                                                       |
| 14/14 SW. 14 SW Section Tow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nship Range E                         | Original Well Owner                                                        |
| or Gov't Lot#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8 N /3 8 W                            | V                                                                          |
| Well Street Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Present Well Owner                                                         |
| 1021 South Broadw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | my Street                             | Mailing Address of Present Owner                                           |
| Well City, Village or Town                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | / Well ZIP Code                       | Mailing Address of Present Owner                                           |
| Men smonic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 54751                                 | 1021 South Broadway Street City of Present Owner State ZIP Code            |
| Subdivision Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Lot#                                  |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | MENOMORIC WI 5475/                                                         |
| Reason for Removal from Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | # of Replacement Well                 |                                                                            |
| test boring                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | Pump and piping removed?  Yes No N/A                                       |
| 3. Filled & Sealed Well / Drillhole / Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Liner(s) removed?  Liner(s) perforated?  Yes No N/A  Yes No N/A            |
| Monitoring Well Original Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Date (mm/dd/yyyy)                   |                                                                            |
| Water Well 5-20-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /                                     | Screen removed? Yes No N/A  Casing left in place? Yes No N/A               |
| If a Well Constructi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | on Report is available,               |                                                                            |
| Construction Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · · | Was casing cut off below surface?    Yes   No   N/A                        |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | Did sealing material rise to surface?  Yes No NA  No NA  No NA             |
| Drilled Driven (Sandpoint)  Other (specify): 600 pnobe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Dug                                   | If yes, was hole retopped?                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | If bentonite chips were used, were they hydrated                           |
| Formation Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | with water from a known safe source?  Yes No N/A                           |
| Unconsolidated Formation Bedro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Required Method of Placing Sealing Material                                |
| Total Well Depth From Ground Surface (ft.) Casing D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Diameter (in.)                        | Conductor Pipe-Gravity Conductor Pipe-Pumped                               |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       | Screened & Poured (Explain):                                               |
| Lower Drillhole Diameter (in.) Casing D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pepth (ft.)                           | Sealing Materials                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Neat Cement Grout Concrete                                                 |
| 147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | Sand-Cement (Concrete) Grout Bentonite Chips                               |
| Was well annular space grouted? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | No Unknown                            | For Monitoring Wells and Monitoring Well Boreholes Only:                   |
| If yes, to what depth (feet)? Depth to Wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | Bentonite Chips Bentonite - Cement Grout                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                    | Granular Bentonite Bentonite - Sand Slurry                                 |
| 5. Material Used to Fill Well / Drillhole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                       | From (ft.) To (ft.) No. Yards, Sacks Sealant or Mix Ratio or               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - C                                   | volume (circle one) lividu vveignt                                         |
| Bentonite Chip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                              | Surface 5                                                                  |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                       |                                                                            |
| 6. Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                                                                            |
| 7. Supervision of Monk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                                                                            |
| 7. Supervision of Work Name of Person or Firm Doing Filling & Sealing Lice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nse# Date of Fi                       | DNR Use Only  Filling & Sealing or Verification   Date Received   Noted By |
| AET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                                     | yyyy) 5-20-3/                                                              |
| Street or Route                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       | Telephone Number Comments                                                  |
| 1837 CTH 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                       | (715) 8615,245                                                             |
| 1837 CTH 00  City Chippewr Falls State W7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ZIP Code                              | Signature of Person Doing Wark Date Signed                                 |
| Chippeum Falls WZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54729                                 | May 2 Md 4ET 6-1-21                                                        |

# Appendix D

Laboratory Analytical Reports and Chains-of-Custody

AET Project No. P-0002702

Page D 1 of 80



# **Environment Testing America**

# **REVIEWED**

By mneal at 10:43 am, Jun 01, 2021



Eurofins TestAmerica, Cedar Falls 3019 Venture Way Cedar Falls, IA 50613 Tel: (319)277-2401

Laboratory Job ID: 310-207193-1

Laboratory Sample Delivery Group: P-0002702

Client Project/Site: Phase II ESA Laundromat/Menominee WI

For:

American Engineering Testing Inc. 550 Cleveland Ave. North St. Paul, Minnesota 55114

Attn: Dennis McComas

Authorized for release by:

Sanda Ireduck

Authorized for release by: 6/1/2021 8:53:15 AM Sandie Fredrick, Project Manager II (920)261-1660 sandra.fredrick@eurofinset.com

Designee for

Zach Bindert, Project Manager I (319)277-2401

Zach.Bindert@Eurofinset.com

LINKS .....

Review your project results through

Total Access

**Have a Question?** 



Visit us at:

www.eurofinsus.com/Env

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

\_\_

3

7

10

12

13

14

Laboratory Job ID: 310-207193-1 SDG: P-0002702

Client: American Engineering Testing Inc.
Project/Site: Phase II ESA Laundromat/Menominee WI

# **Table of Contents**

| Cover Page            | 1  |
|-----------------------|----|
| Table of Contents     | 2  |
| Case Narrative        | 3  |
| Sample Summary        | 4  |
| Detection Summary     |    |
| Client Sample Results | 6  |
| Definitions           | 10 |
| Surrogate Summary     | 11 |
| QC Sample Results     | 12 |
| QC Association        | 18 |
| Chronicle             | 19 |
| Certification Summary | 20 |
| Method Summary        | 21 |
|                       | 22 |
| Receipt Checklists    | 25 |

3

6

8

9

1 0

12

AET Project No. P-0002702 Page D 3 of 80

#### **Case Narrative**

Client: American Engineering Testing Inc.

Project/Site: Phase II ESA Laundromat/Menominee WI

Job ID: 310-207193-1 SDG: P-0002702

Job ID: 310-207193-1

Laboratory: Eurofins TestAmerica, Cedar Falls

Narrative

Job Narrative 310-207193-1

#### Comments

No additional comments.

#### Receipt

The samples were received on 5/22/2021 7:45 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.8° C.

#### GC/MS VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

#### Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

4

5

6

9

10

12

13

# **Sample Summary**

Client: American Engineering Testing Inc. Project/Site: Phase II ESA Laundromat/Menominee WI Job ID: 310-207193-1

SDG: P-0002702

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Asset ID |
|---------------|------------------|--------|----------------|----------------|----------|
| 310-207193-1  | GP-1 (14-16')    | Soil   | 05/20/21 12:24 | 05/22/21 07:45 |          |
| 310-207193-2  | Trip Blank       | Solid  | 05/20/21 00:00 | 05/22/21 07:45 |          |

# **Detection Summary**

Client: American Engineering Testing Inc.

Project/Site: Phase II ESA Laundromat/Menominee WI

Job ID: 310-207193-1

SDG: P-0002702

Client Sample ID: GP-1 (14-16')

Lab Sample ID: 310-207193-1

| Analyte           | Result | Qualifier | LOQ | LOD | Unit  | Dil Fac | D | Method | Prep Type |
|-------------------|--------|-----------|-----|-----|-------|---------|---|--------|-----------|
| Tetrachloroethene | 400    |           | 78  | 29  | ug/Kg | 50      | ₩ | 8260B  | Total/NA  |
| Toluene           | 30     |           | 19  | 11  | ug/Kg | 50      | ₩ | 8260B  | Total/NA  |

Lab Sample ID: 310-207193-2 **Client Sample ID: Trip Blank** 

No Detections.

# **Client Sample Results**

Client: American Engineering Testing Inc.

Job ID: 310-207193-1 Project/Site: Phase II ESA Laundromat/Menominee WI SDG: P-0002702

Client Sample ID: GP-1 (14-16')

Date Received: 05/22/21 07:45

Lab Sample ID: 310-207193-1 Date Collected: 05/20/21 12:24

**Matrix: Soil** 

| Analyte                     | Result Qualifier | LOQ      | LOD | Unit           | D                | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|------------------|----------|-----|----------------|------------------|----------------|----------------|---------|
| Benzene                     | <11              | 19       | 11  | ug/Kg          | <u></u>          | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Bromobenzene                | <28              | 78       | 28  | ug/Kg          | ₩                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Bromochloromethane          | <33              | 78       | 33  | ug/Kg          | ₩                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Bromodichloromethane        | <29              | 78       | 29  | ug/Kg          |                  | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Bromoform                   | <38              | 78       | 38  | ug/Kg          | ₩                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Bromomethane                | <62              | 230      | 62  | ug/Kg          | ₩                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| n-Butylbenzene              | <30              | 78       | 30  | ug/Kg          |                  | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| sec-Butylbenzene            | <31              | 78       | 31  | ug/Kg          | ₩                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| tert-Butylbenzene           | <31              | 78       | 31  | ug/Kg          | ₩                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Carbon tetrachloride        | <30              | 78       |     | ug/Kg          |                  | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Chlorobenzene               | <30              | 78       |     | ug/Kg          | ₩                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Dibromochloromethane        | <38              | 78       |     | ug/Kg          | ₩                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Chloroethane                | <39              | 78       |     | ug/Kg          | <br>☆            | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Chloroform                  | <29              | 160      |     | ug/Kg          | ÷                |                | 05/31/21 14:46 | 50      |
| Chloromethane               | <25              | 78       |     | ug/Kg          | ₩                |                | 05/31/21 14:46 | 50      |
| 2-Chlorotoluene             | <24              | 78       |     | ug/Kg          |                  |                | 05/31/21 14:46 | 50      |
| 4-Chlorotoluene             | <27              | 78       | 27  |                |                  |                | 05/31/21 14:46 | 50      |
| 1,2-Dibromo-3-Chloropropane | <150             | 390      |     | ug/Kg          |                  |                | 05/31/21 14:46 | 50      |
| 1,2-Dibromoethane           | <30              | 78       |     | ug/Kg          |                  |                | 05/31/21 14:46 | 50      |
| Dibromomethane              | <21              | 78       | 21  |                | ₩                |                | 05/31/21 14:46 | 50      |
| 1,2-Dichlorobenzene         | <26              | 78       |     | ug/Kg          | ₩                |                | 05/31/21 14:46 | 50      |
| 1,3-Dichlorobenzene         | <31              | 78       |     | ug/Kg          |                  |                | 05/31/21 14:46 | 50      |
| 1,4-Dichlorobenzene         | <28              | 78       |     | ug/Kg          | ₩                |                | 05/31/21 14:46 | 50      |
| Dichlorodifluoromethane     | <52              | 230      |     | ug/Kg<br>ug/Kg | ₩                |                | 05/31/21 14:46 | 50      |
| 1,1-Dichloroethane          | <32              | 78       |     | ug/Kg          |                  |                | 05/31/21 14:46 | 50      |
| 1,1-Dichloroethane          | <30              | 78       |     | ug/Kg<br>ug/Kg | Ψ<br>Φ           |                | 05/31/21 14:46 | 50      |
| 1,1-Dichloroethene          | <30              | 78       |     | ug/Kg<br>ug/Kg |                  |                | 05/31/21 14:46 | 50      |
| · i                         | <32              | 78       |     |                | <del>.</del> .   |                | 05/31/21 14:46 | 50      |
| cis-1,2-Dichloroethene      |                  |          |     | ug/Kg          | ₩                |                |                |         |
| trans-1,2-Dichloroethene    | <27<br><33       | 78<br>78 | 27  | 0 0            | <u>~</u>         |                | 05/31/21 14:46 | 50      |
| 1,2-Dichleropropane         |                  |          |     | ug/Kg          | · <del>.</del> . |                | 05/31/21 14:46 | 50      |
| 1,3-Dichloropropane         | <28              | 78<br>70 |     | ug/Kg          | ₩.               |                | 05/31/21 14:46 | 50      |
| 2,2-Dichloropropane         | <34              | 78       | 34  | 0 0            | <b>*</b>         |                | 05/31/21 14:46 | 50      |
| 1,1-Dichloropropene         | <23              | 78       |     | ug/Kg          | <u>.</u> .       |                | 05/31/21 14:46 | 50      |
| cis-1,3-Dichloropropene     | <32              | 78       |     | ug/Kg          | <b>*</b>         |                | 05/31/21 14:46 | 50      |
| trans-1,3-Dichloropropene   | <28              | 78       |     | ug/Kg          | ₽                |                | 05/31/21 14:46 | 50      |
| Isopropyl ether             | <21              | 78       |     | ug/Kg          | <del></del>      |                | 05/31/21 14:46 | 50      |
| Ethylbenzene                | <14              | 19       |     | ug/Kg          | ₩                |                | 05/31/21 14:46 | 50      |
| Hexachlorobutadiene         | <35              | 78       |     | ug/Kg          | ₩                |                | 05/31/21 14:46 | 50      |
| Isopropylbenzene            | <30              | 78       |     | ug/Kg          | <del></del> .    |                | 05/31/21 14:46 | 50      |
| p-Isopropyltoluene          | <28              | 78       |     | ug/Kg          | ₩                |                | 05/31/21 14:46 | 50      |
| Methylene Chloride          | <130             | 390      |     | ug/Kg          | ₩                |                | 05/31/21 14:46 | 50      |
| Methyl tert-butyl ether     | <31              | 78       |     | ug/Kg          |                  |                | 05/31/21 14:46 | 50      |
| Naphthalene                 | <26              | 78       |     | ug/Kg          | ₩                |                | 05/31/21 14:46 | 50      |
| N-Propylbenzene             | <32              | 78       | 32  | ug/Kg          | ₽                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Styrene                     | <30              | 78       | 30  | ug/Kg          | ₩                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| 1,1,1,2-Tetrachloroethane   | <36              | 78       | 36  | ug/Kg          | ₽                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| 1,1,2,2-Tetrachloroethane   | <31              | 78       | 31  | ug/Kg          | ₽                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Tetrachloroethene           | 400              | 78       | 29  | ug/Kg          | ₩                | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Toluene                     | 30               | 19       |     | ug/Kg          |                  | 05/20/21 12:24 | 05/31/21 14:46 | 50      |

Eurofins TestAmerica, Cedar Falls

Page 6 of 26 6/1/2021

SDG: P-0002702

Job ID: 310-207193-1

05/26/21 10:05

# **Client Sample Results**

Client: American Engineering Testing Inc.

**Percent Solids** 

Project/Site: Phase II ESA Laundromat/Menominee WI

Client Sample ID: GP-1 (14-16')

Date Collected: 05/20/21 12:24

Lab Sample ID: 310-207193-1

Matrix: Soil

Date Collected: 05/20/21 12:24 Date Received: 05/22/21 07:45

75.9

| Analyte                      | Result    | Qualifier | LOQ      | LOD | Unit  | D       | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|-----|-------|---------|----------------|----------------|---------|
| 1,2,3-Trichlorobenzene       | <36       |           | 78       | 36  | ug/Kg | <u></u> | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| 1,2,4-Trichlorobenzene       | <27       |           | 78       | 27  | ug/Kg | ☼       | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| 1,1,1-Trichloroethane        | <29       |           | 78       | 29  | ug/Kg | ₽       | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| 1,1,2-Trichloroethane        | <27       |           | 78       | 27  | ug/Kg | ₩       | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Trichloroethene              | <13       |           | 39       | 13  | ug/Kg | ₩       | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Trichlorofluoromethane       | <33       |           | 78       | 33  | ug/Kg | ₩       | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| 1,2,3-Trichloropropane       | <32       |           | 160      | 32  | ug/Kg | ≎       | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| 1,2,4-Trimethylbenzene       | <28       |           | 78       | 28  | ug/Kg | ≎       | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| 1,3,5-Trimethylbenzene       | <29       |           | 78       | 29  | ug/Kg | ₩       | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Vinyl chloride               | <20       |           | 78       | 20  | ug/Kg | ₩       | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Xylenes, Total               | <17       |           | 39       | 17  | ug/Kg | ₩       | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Surrogate                    | %Recovery | Qualifier | Limits   |     |       |         | Prepared       | Analyzed       | Dil Fac |
| 1,2-Dichloroethane-d4 (Surr) | 99        |           | 75 - 126 |     |       |         | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Toluene-d8 (Surr)            | 97        |           | 75 - 120 |     |       |         | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| 4-Bromofluorobenzene (Surr)  | 93        |           | 72 - 124 |     |       |         | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| Dibromofluoromethane         | 92        |           | 75 - 120 |     |       |         | 05/20/21 12:24 | 05/31/21 14:46 | 50      |
| General Chemistry            |           |           |          |     |       |         |                |                |         |
| Analyte                      | Result    | Qualifier | LOQ      | LOD | Unit  | D       | Prepared       | Analyzed       | Dil Fac |
| Percent Moisture             | 24.1      |           | 0.1      | 0.1 | %     |         |                | 05/26/21 10:05 | 1       |

0.1

0.1 %

# **Client Sample Results**

Client: American Engineering Testing Inc.

Project/Site: Phase II ESA Laundromat/Menominee WI SDG: P-0002702

**Client Sample ID: Trip Blank** 

Date Received: 05/22/21 07:45

Lab Sample ID: 310-207193-2 Date Collected: 05/20/21 00:00

**Matrix: Solid** 

Job ID: 310-207193-1

| Analyte                     | Result     | Qualifier | LOQ      | LOD | Unit           | D | Prepared       | Analyzed       | Dil Fa |
|-----------------------------|------------|-----------|----------|-----|----------------|---|----------------|----------------|--------|
| Benzene                     | <7.3       |           | 13       | 7.3 | ug/Kg          |   | 05/20/21 00:00 | 05/31/21 15:11 |        |
| Bromobenzene                | <18        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 | 05/31/21 15:11 | 5      |
| Bromochloromethane          | <21        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 | 05/31/21 15:11 | 5      |
| Bromodichloromethane        | <19        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 | 05/31/21 15:11 | 5      |
| Bromoform                   | <24        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| Bromomethane                | <40        |           | 150      |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| n-Butylbenzene              | <19        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| sec-Butylbenzene            | <20        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| tert-Butylbenzene           | <20        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 | 05/31/21 15:11 | 5      |
| Carbon tetrachloride        | <19        |           | 50       | 19  | ug/Kg          |   | 05/20/21 00:00 | 05/31/21 15:11 | 5      |
| Chlorobenzene               | <19        |           | 50       | 19  | ug/Kg          |   | 05/20/21 00:00 | 05/31/21 15:11 | 5      |
| Dibromochloromethane        | <24        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| Chloroethane                | <25        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| Chloroform                  | <19        |           | 100      |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| Chloromethane               | <16        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| 2-Chlorotoluene             | <16        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| 4-Chlorotoluene             | <18        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| 1,2-Dibromo-3-Chloropropane | <100       |           | 250      |     |                |   |                | 05/31/21 15:11 | 5      |
| 1.2-Dibromoethane           | <19        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| Dibromomethane              | <14        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| 1,2-Dichlorobenzene         | <17        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| 1,3-Dichlorobenzene         | <20        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| 1,4-Dichlorobenzene         | <18        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| Dichlorodifluoromethane     | <34        |           | 150      |     | ug/Kg<br>ug/Kg |   | 05/20/21 00:00 |                | 5      |
| 1,1-Dichloroethane          | <21        |           | 50       | 21  | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| 1,2-Dichloroethane          | <20        |           | 50       | 20  | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| 1,1-Dichloroethene          | <20        |           | 50       | 20  | ug/Kg<br>ug/Kg |   | 05/20/21 00:00 |                | 5      |
| cis-1,2-Dichloroethene      | <20        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| trans-1,2-Dichloroethene    | <18        |           | 50<br>50 |     | ug/Kg<br>ug/Kg |   | 05/20/21 00:00 |                | 5      |
|                             | <21        |           | 50<br>50 |     | ug/Kg<br>ug/Kg |   | 05/20/21 00:00 |                | 5      |
| 1,2-Dichloropropane         |            |           |          |     |                |   |                |                |        |
| 1,3-Dichloropropane         | <18<br><22 |           | 50<br>50 |     | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| 2,2-Dichloropropane         |            |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| 1,1-Dichloropropene         | <15        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| cis-1,3-Dichloropropene     | <21        |           | 50<br>50 |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| trans-1,3-Dichloropropene   | <18        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| Isopropyl ether             | <14        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 | 05/31/21 15:11 | 5      |
| Ethylbenzene                | <9.2       |           | 13       |     | ug/Kg          |   | 05/20/21 00:00 | 05/31/21 15:11 | 5      |
| Hexachlorobutadiene<br>     | <22        |           | 50       |     | ug/Kg          |   | 05/20/21 00:00 |                | 5      |
| Isopropylbenzene            | <19        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| p-Isopropyltoluene          | <18        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| Methylene Chloride          | <82        |           | 250      |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| Methyl tert-butyl ether     | <20        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| Naphthalene                 | <17        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| N-Propylbenzene             | <21        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| Styrene                     | <19        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| 1,1,1,2-Tetrachloroethane   | <23        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| 1,1,2,2-Tetrachloroethane   | <20        |           | 50       |     | ug/Kg          |   |                | 05/31/21 15:11 | 5      |
| Tetrachloroethene           | <19        |           | 50       |     | ug/Kg<br>ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 5      |

Eurofins TestAmerica, Cedar Falls

Page 8 of 26 6/1/2021

Job ID: 310-207193-1

# **Client Sample Results**

Client: American Engineering Testing Inc.

Project/Site: Phase II ESA Laundromat/Menominee WI

Lab Sample ID: 310-207193-2

05/20/21 00:00 05/31/21 15:11

310-207193-2 Matrix: Solid

SDG: P-0002702

**Client Sample ID: Trip Blank** 

Date Collected: 05/20/21 00:00 Date Received: 05/22/21 07:45

Xylenes, Total

| Method: 8260B - Volatile O | rganic Compoι | ınds (GC/M | S) (Continu | ed) |       |   |                |                |         |
|----------------------------|---------------|------------|-------------|-----|-------|---|----------------|----------------|---------|
| Analyte                    | Result        | Qualifier  | LOQ         | LOD | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| 1,2,3-Trichlorobenzene     | <23           |            | 50          | 23  | ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| 1,2,4-Trichlorobenzene     | <17           |            | 50          | 17  | ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| 1,1,1-Trichloroethane      | <19           |            | 50          | 19  | ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| 1,1,2-Trichloroethane      | <18           |            | 50          | 18  | ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| Trichloroethene            | <8.2          |            | 25          | 8.2 | ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| Trichlorofluoromethane     | <21           |            | 50          | 21  | ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| 1,2,3-Trichloropropane     | <21           |            | 100         | 21  | ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| 1,2,4-Trimethylbenzene     | <18           |            | 50          | 18  | ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| 1,3,5-Trimethylbenzene     | <19           |            | 50          | 19  | ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| Vinyl chloride             | <13           |            | 50          | 13  | ug/Kg |   | 05/20/21 00:00 | 05/31/21 15:11 | 50      |

| Surrogate                    | %Recovery Qualifier | Limits              | Prepared       | Analyzed       | Dil Fac |
|------------------------------|---------------------|---------------------|----------------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 100                 | 75 - 126            | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| Toluene-d8 (Surr)            | 97                  | 75 <sub>-</sub> 120 | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| 4-Bromofluorobenzene (Surr)  | 93                  | 72 - 124            | 05/20/21 00:00 | 05/31/21 15:11 | 50      |
| Dibromofluoromethane         | 91                  | 75 - 120            | 05/20/21 00:00 | 05/31/21 15:11 | 50      |

25

11 ug/Kg

<11

4

6

8

46

50

11

40

# **Definitions/Glossary**

Client: American Engineering Testing Inc. Project/Site: Phase II ESA Laundromat/Menominee WI Job ID: 310-207193-1

SDG: P-0002702

## **Glossary**

DLC

| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
|----------------|-------------------------------------------------------------------------------------------------------------|
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL. RA. RE. IN | Indicates a Dilution. Re-analysis. Re-extraction. or additional Initial metals/anion analysis of the sample |

| EDL | Estimated Detection Limit (Dioxin) |
|-----|------------------------------------|
| LOD | Limit of Detection (DoD/DOE)       |
| LOQ | Limit of Quantitation (DoD/DOE)    |

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Decision Level Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) Most Probable Number MPN MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL **Practical Quantitation Limit** 

**PRES** Presumptive QC **Quality Control** 

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

**TNTC** Too Numerous To Count

Eurofins TestAmerica, Cedar Falls

# **Surrogate Summary**

Client: American Engineering Testing Inc.

Project/Site: Phase II ESA Laundromat/Menominee WI

Job ID: 310-207193-1 SDG: P-0002702

# Method: 8260B - Volatile Organic Compounds (GC/MS)

**Matrix: Soil** Prep Type: Total/NA

|               |                  |          | Pe       | ercent Surre | ogate Reco | very (Acceptance Limits) |
|---------------|------------------|----------|----------|--------------|------------|--------------------------|
|               |                  | DCA      | TOL      | BFB          | DBFM       |                          |
| Lab Sample ID | Client Sample ID | (75-126) | (75-120) | (72-124)     | (75-120)   |                          |
| 310-207193-1  | GP-1 (14-16')    | 99       | 97       | 93           | 92         |                          |

#### **Surrogate Legend**

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

## Method: 8260B - Volatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Solid** 

|                     |                    |          | Pe       | ercent Surre | ogate Reco |
|---------------------|--------------------|----------|----------|--------------|------------|
|                     |                    | DCA      | TOL      | BFB          | DBFM       |
| Lab Sample ID       | Client Sample ID   | (75-126) | (75-120) | (72-124)     | (75-120)   |
| 310-207193-2        | Trip Blank         | 100      | 97       | 93           | 91         |
| LB3 500-600828/21-A | Method Blank       | 97       | 97       | 96           | 92         |
| LCS 500-600828/22-A | Lab Control Sample | 99       | 98       | 98           | 96         |
| LCS 500-601576/5    | Lab Control Sample | 98       | 99       | 96           | 95         |
| MB 500-601576/7     | Method Blank       | 101      | 98       | 99           | 97         |

#### **Surrogate Legend**

DCA = 1,2-Dichloroethane-d4 (Surr)

TOL = Toluene-d8 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane

Eurofins TestAmerica, Cedar Falls

Client: American Engineering Testing Inc.

Job ID: 310-207193-1 Project/Site: Phase II ESA Laundromat/Menominee WI SDG: P-0002702

# Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: LB3 500-600828/21-A

**Matrix: Solid** 

Analysis Batch: 601576

| Client | <b>Sample</b> | ID:  | Meth  | od E | Blank |
|--------|---------------|------|-------|------|-------|
|        | Pr            | en T | Type: | Tota | al/NA |

Prep Batch: 600828

| Analysis Batch: 601576      | 1.00          | LDO       |     |     |       |   |                | Prep Batch:    | 600828 |
|-----------------------------|---------------|-----------|-----|-----|-------|---|----------------|----------------|--------|
| Analyte                     | LB3<br>Result | Qualifier | LOQ | LOD | Unit  | D | Prepared       | Analyzed       | Dil Fa |
| Benzene                     | <7.3          |           | 13  | 7.3 | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Bromobenzene                | <18           |           | 50  | 18  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Bromochloromethane          | <21           |           | 50  | 21  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Bromodichloromethane        | <19           |           | 50  | 19  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Bromoform                   | <24           |           | 50  | 24  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Bromomethane                | <40           |           | 150 | 40  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| n-Butylbenzene              | <19           |           | 50  | 19  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| sec-Butylbenzene            | <20           |           | 50  | 20  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| tert-Butylbenzene           | <20           |           | 50  | 20  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Carbon tetrachloride        | <19           |           | 50  | 19  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Chlorobenzene               | <19           |           | 50  | 19  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Dibromochloromethane        | <24           |           | 50  | 24  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Chloroethane                | <25           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Chloroform                  | <19           |           | 100 |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Chloromethane               | <16           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| 2-Chlorotoluene             | <16           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 5(     |
| 4-Chlorotoluene             | <18           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| 1,2-Dibromo-3-Chloropropane | <100          |           | 250 |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| 1,2-Dibromoethane           | <19           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Dibromomethane              | <14           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| 1,2-Dichlorobenzene         | <17           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| 1,3-Dichlorobenzene         | <20           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 5(     |
| 1,4-Dichlorobenzene         | <18           |           | 50  |     | ug/Kg |   |                | 05/31/21 12:13 | 50     |
| Dichlorodifluoromethane     | <34           |           | 150 |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| 1,1-Dichloroethane          | <21           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 5(     |
| 1,2-Dichloroethane          | <20           |           | 50  | 20  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| 1,1-Dichloroethene          | <20           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| cis-1,2-Dichloroethene      | <20           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| trans-1,2-Dichloroethene    | <18           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| 1,2-Dichloropropane         | <21           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| 1,3-Dichloropropane         | <18           |           | 50  | 18  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 5(     |
| 2,2-Dichloropropane         | <22           |           | 50  | 22  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| 1,1-Dichloropropene         | <15           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| cis-1,3-Dichloropropene     | <21           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 5(     |
| trans-1,3-Dichloropropene   | <18           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Isopropyl ether             | <14           |           | 50  | 14  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Ethylbenzene                | <9.2          |           | 13  |     | ug/Kg |   |                | 05/31/21 12:13 | 5(     |
| Hexachlorobutadiene         | <22           |           | 50  |     | ug/Kg |   |                | 05/31/21 12:13 | 50     |
| Isopropylbenzene            | <19           |           | 50  |     | ug/Kg |   |                | 05/31/21 12:13 | 50     |
| p-Isopropyltoluene          | <18           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 5(     |
| Methylene Chloride          | <82           |           | 250 |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Methyl tert-butyl ether     | <20           |           | 50  |     | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50     |
| Naphthalene                 | <17           |           | 50  |     | ug/Kg |   |                | 05/31/21 12:13 | 5      |
| N-Propylbenzene             | <21           |           | 50  |     | ug/Kg |   |                | 05/31/21 12:13 | 50     |
| Styrene                     | <19           |           | 50  |     | ug/Kg |   |                | 05/31/21 12:13 | 50     |
| 1,1,1,2-Tetrachloroethane   | <23           |           | 50  |     | ug/Kg |   |                | 05/31/21 12:13 | 50     |
| 1,1,2,2-Tetrachloroethane   | <20           |           | 50  |     | ug/Kg |   |                | 05/31/21 12:13 | 50     |
| Tetrachloroethene           | <19           |           | 50  |     | ug/Kg |   |                | 05/31/21 12:13 | 50     |

Eurofins TestAmerica, Cedar Falls

Page 12 of 26

6/1/2021

Client: American Engineering Testing Inc.

Job ID: 310-207193-1 Project/Site: Phase II ESA Laundromat/Menominee WI SDG: P-0002702

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Analysis Batch: 601576

| Lab Sample ID: LB3 500-600828/21-A | Client Sample ID: Method Blank |
|------------------------------------|--------------------------------|
| Matrix: Solid                      | Prep Type: Total/NA            |
| Analysis Ratch: 601576             | Pron Ratch: 600828             |

|                        | LB3    | LB3       |     |     |       |   |                |                |         |
|------------------------|--------|-----------|-----|-----|-------|---|----------------|----------------|---------|
| Analyte                | Result | Qualifier | LOQ | LOD | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Toluene                | <7.4   |           | 13  | 7.4 | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| 1,2,3-Trichlorobenzene | <23    |           | 50  | 23  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| 1,2,4-Trichlorobenzene | <17    |           | 50  | 17  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| 1,1,1-Trichloroethane  | <19    |           | 50  | 19  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| 1,1,2-Trichloroethane  | <18    |           | 50  | 18  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| Trichloroethene        | <8.2   |           | 25  | 8.2 | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| Trichlorofluoromethane | <21    |           | 50  | 21  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| 1,2,3-Trichloropropane | <21    |           | 100 | 21  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| 1,2,4-Trimethylbenzene | <18    |           | 50  | 18  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| 1,3,5-Trimethylbenzene | <19    |           | 50  | 19  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| Vinyl chloride         | <13    |           | 50  | 13  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| Xylenes, Total         | <11    |           | 25  | 11  | ug/Kg |   | 05/25/21 20:55 | 05/31/21 12:13 | 50      |

| LB3 | LB3 |
|-----|-----|
|-----|-----|

| Surrogate                    | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|------------------------------|-----------|-----------|----------|----------------|----------------|---------|
| 1,2-Dichloroethane-d4 (Surr) | 97        |           | 75 - 126 | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| Toluene-d8 (Surr)            | 97        |           | 75 - 120 | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| 4-Bromofluorobenzene (Surr)  | 96        |           | 72 - 124 | 05/25/21 20:55 | 05/31/21 12:13 | 50      |
| Dibromofluoromethane         | 92        |           | 75 - 120 | 05/25/21 20:55 | 05/31/21 12:13 | 50      |

Lab Sample ID: LCS 500-600828/22-A

**Matrix: Solid** 

Analysis Batch: 601576

| Client | <b>Sample</b> | ID: | Lab | Contr | ol S | ar | nple |  |
|--------|---------------|-----|-----|-------|------|----|------|--|
|        |               |     | _   | _     | _    |    |      |  |

**Prep Type: Total/NA** Prep Batch: 600828

|       |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Prep Batch: 600828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spike | LCS                                                                                                                                                                                                                     | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | %Rec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Added | Result                                                                                                                                                                                                                  | Qualifier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2500  | 2570                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2580                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2440                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65 - 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2360                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 69 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2070                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56 - 132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2340                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 - 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2540                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2620                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2630                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2430                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 59 - 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2560                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2170                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 68 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2490                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 48 - 136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2380                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 3160                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56 - 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2610                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2590                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68 - 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 1520                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 56 - 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2390                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2450                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2400                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2530                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 2460                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70 - 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2500  | 1580                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ug/Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40 - 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | Added  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500  2500 | Added         Result           2500         2570           2500         2580           2500         2440           2500         2360           2500         2070           2500         2340           2500         2540           2500         2620           2500         2630           2500         2560           2500         2170           2500         2490           2500         2380           2500         2610           2500         2590           2500         2590           2500         2390           2500         2450           2500         2450           2500         2450           2500         2450           2500         2500           2500         2450           2500         2500           2500         2450           2500         2500           2500         2450           2500         2500           2500         2500           2500         2500           2500         2500           2500 | Added         Result         Qualifier           2500         2570           2500         2580           2500         2440           2500         2360           2500         2070           2500         2340           2500         2540           2500         2620           2500         2630           2500         2430           2500         2560           2500         2170           2500         2380           2500         2380           2500         2610           2500         2590           2500         2590           2500         2450           2500         2450           2500         2450           2500         2450           2500         2450           2500         2450           2500         2450           2500         2450           2500         2450           2500         2460 | Added         Result         Qualifier         Unit           2500         2570         ug/Kg           2500         2580         ug/Kg           2500         2440         ug/Kg           2500         2360         ug/Kg           2500         2360         ug/Kg           2500         2340         ug/Kg           2500         2340         ug/Kg           2500         2540         ug/Kg           2500         2620         ug/Kg           2500         2630         ug/Kg           2500         2430         ug/Kg           2500         2560         ug/Kg           2500         2430         ug/Kg           2500         2490         ug/Kg           2500         2380         ug/Kg           2500         2380         ug/Kg           2500         2590         ug/Kg           2500         2590         ug/Kg           2500         2590         ug/Kg           2500         2450         ug/Kg           2500         2450         ug/Kg           2500         2450         ug/Kg           2500 | Added         Result         Qualifier         Unit         D           2500         2570         ug/Kg           2500         2580         ug/Kg           2500         2440         ug/Kg           2500         2360         ug/Kg           2500         2360         ug/Kg           2500         2340         ug/Kg           2500         2540         ug/Kg           2500         2620         ug/Kg           2500         2630         ug/Kg           2500         2430         ug/Kg           2500         2560         ug/Kg           2500         2560         ug/Kg           2500         2490         ug/Kg           2500         2380         ug/Kg           2500         2380         ug/Kg           2500         2590         ug/Kg           2500         2590         ug/Kg           2500         2590         ug/Kg           2500         2450         ug/Kg           2500         2450         ug/Kg           2500         2450         ug/Kg           2500         2450         ug/Kg           < | Added         Result         Qualifier         Unit         D         %Rec           2500         2570         ug/Kg         103           2500         2580         ug/Kg         103           2500         2440         ug/Kg         98           2500         2360         ug/Kg         94           2500         2360         ug/Kg         83           2500         2340         ug/Kg         93           2500         2540         ug/Kg         102           2500         2540         ug/Kg         105           2500         2620         ug/Kg         105           2500         2630         ug/Kg         105           2500         2430         ug/Kg         97           2500         2560         ug/Kg         102           2500         2560         ug/Kg         99           2500         2490         ug/Kg         95           2500         2380         ug/Kg         95           2500         2610         ug/Kg         105           2500         2590         ug/Kg         104           2500         2590         ug/Kg |

Eurofins TestAmerica, Cedar Falls

Page 13 of 26

6/1/2021

Client: American Engineering Testing Inc.

Lab Sample ID: LCS 500-600828/22-A

**Matrix: Solid** 

**Analysis Batch: 601576** 

Project/Site: Phase II ESA Laundromat/Menominee WI

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

**Client Sample ID: Lab Control Sample** 

Job ID: 310-207193-1

SDG: P-0002702

| pe. Iotalita  |  |
|---------------|--|
| atch: 600828  |  |
| atcii. 000020 |  |
|               |  |
|               |  |

| Prep Type: Total/NA |
|---------------------|
| Prep Batch: 600828  |
| %Rec.               |

| Analyte         Added         Result         Qualifier         Unit         D         %Rec         Limits           1,1-Dichloroethane         2500         2830         ug/Kg         1103         70. 125           1,1-Dichloroethane         2500         2650         ug/Kg         106         68. 127           1,1-Dichloroethene         2500         2500         ug/Kg         99         67. 122           ctas-1,2-Dichloroethene         2500         2470         ug/Kg         99         70. 125           trans-1,2-Dichloroethene         2500         2470         ug/Kg         99         70. 125           1,2-Dichloropropane         2500         2470         ug/Kg         97         70. 125           1,2-Dichloropropane         2500         2570         ug/Kg         103         58. 139           1,1-Dichloropropane         2500         2570         ug/Kg         100         70. 121           cis-1,3-Dichloropropane         2500         2570         ug/Kg         100         70. 121           cis-1,3-Dichloropropane         2500         2500         ug/Kg         90         62. 128           Elthylbenzer         2500         2400         ug/Kg         90         6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analysis Baton. 601076    | Spike | LCS LCS    | S            |        | %Rec.    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|------------|--------------|--------|----------|
| 1,2-Dichloroethane   2500   2650   ug/Kg   106   68 - 127   1,1-Dichloroethene   2500   2380   ug/Kg   95   67 - 122   1501-12-Dichloroethene   2500   2380   ug/Kg   95   67 - 122   1501-12-Dichloroethene   2500   2530   ug/Kg   99   70 - 125   1,2-Dichloropropane   2500   2470   ug/Kg   99   70 - 125   1,2-Dichloropropane   2500   2430   ug/Kg   97   62 - 136   2,2-Dichloropropane   2500   2430   ug/Kg   97   62 - 136   2,2-Dichloropropane   2500   2570   ug/Kg   103   58 - 139   1,1-Dichloropropene   2500   2510   ug/Kg   90   62 - 128   1,1-Dichloropropene   2500   2500   ug/Kg   90   64 - 127   1,1-Dichloropropene   2500   2500   ug/Kg   90   62 - 128   1,1-Dichloropropene   2500   2680   ug/Kg   91   70 - 123   1,1-Dichloropropene   2500   2680   ug/Kg   94   51 - 150   1,1-Dichloropropene   2500   2680   ug/Kg   107   70 - 126   1,1-Dichloropropene   2500   2500   ug/Kg   99   69 - 125   1,1-Dichloropropene   2500   2500   ug/Kg   104   70 - 125   1,1-Dichloropropene   2500   2500   ug/Kg   104   70 - 125   1,1-Dichloropropene   2500   2500   ug/Kg   101   70 - 125   1,1-Dichloropropene   2500   2500   ug/Kg   100   70 - 125   1,1-Dichloropropene   2500   2500   ug/Kg   101 | Analyte                   | •     | Result Qua | alifier Unit | D %Rec | Limits   |
| 1,1-Dichloroethene       2500       2380       ug/kg       95       67. 122         cis-1,2-Dichloroethene       2500       2530       ug/kg       99       70. 125         trans-1,2-Dichloroethene       2500       2470       ug/kg       99       70. 125         1,2-Dichloropropane       2500       2940       ug/kg       118       67. 130         1,3-Dichloropropane       2500       2570       ug/kg       103       58. 139         1,1-Dichloropropene       2500       2570       ug/kg       100       70. 121         cis-1,3-Dichloropropene       2500       2500       2250       ug/kg       90       62. 128         Ethylbenzene       2500       2250       ug/kg       90       62. 128         Ethylbenzene       2500       2250       ug/kg       101       70. 123         Hexachlorobutadiene       2500       2260       ug/kg       94       51. 150         Isopropylbenzene       2500       2880       ug/kg       107       70. 126         p-Isopropyltoluene       2500       2880       ug/kg       104       70. 125         Methylene Chloride       2500       2470       ug/kg       85       55. 123 <td>1,1-Dichloroethane</td> <td>2500</td> <td>2830</td> <td>ug/Kg</td> <td></td> <td>70 - 125</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1-Dichloroethane        | 2500  | 2830       | ug/Kg        |        | 70 - 125 |
| cis-1,2-Dichloroethene         2500         2530         ug/kg         101         70 - 125           trans-1,2-Dichloroethene         2500         2470         ug/kg         118         67 - 130           1,2-Dichloropropane         2500         2940         ug/kg         118         67 - 130           1,3-Dichloropropane         2500         2430         ug/kg         97         62 - 136           2,2-Dichloropropane         2500         2570         ug/kg         103         58 - 139           1,1-Dichloropropene         2500         2510         ug/kg         100         70 - 121           cis-1,3-Dichloropropene         2500         2500         ug/kg         96         64 - 127           trans-1,3-Dichloropropene         2500         2250         ug/kg         90         62 - 128           Ethylbenzene         2500         2250         ug/kg         90         62 - 128           Ethylbenzene         2500         2860         ug/kg         101         70 - 126           p-pspropytloure         2500         2860         ug/kg         94         51 - 150           sopropytloure         2500         2600         ug/kg         104         70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2-Dichloroethane        | 2500  | 2650       | ug/Kg        | 106    | 68 - 127 |
| trans-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,1-Dichloroethene        | 2500  | 2380       | ug/Kg        | 95     | 67 - 122 |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cis-1,2-Dichloroethene    | 2500  | 2530       | ug/Kg        | 101    | 70 - 125 |
| 1,3-Dichloropropane       2500       2430       ug/Kg       97       62 - 136         2,2-Dichloropropane       2500       2570       ug/Kg       103       58. 139         1,1-Dichloropropene       2500       2510       ug/Kg       100       70 - 121         cis-1,3-Dichloropropene       2500       2400       ug/Kg       96       64 - 127         trans-1,3-Dichloropropene       2500       2250       ug/Kg       90       62 - 128         Ethylbenzene       2500       2250       ug/Kg       101       70 - 123         Hexachlorobutadiene       2500       2360       ug/Kg       94       51 - 150         Isopropylbenzene       2500       2680       ug/Kg       107       70 - 126         Isopropylbenzene       2500       2680       ug/Kg       104       70 - 125         Methylne Choirde       2500       2680       ug/Kg       99       99 - 125         Methylne Choirde       2500       2880       ug/Kg       85       55 - 123         Naphthalene       2500       2880       ug/Kg       115       53 - 144         N-Propylbenzene       2500       2880       ug/Kg       106       69 - 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | trans-1,2-Dichloroethene  | 2500  | 2470       | ug/Kg        | 99     | 70 - 125 |
| 2,2-Dichloropropane       2500       2570       ug/Kg       103       58 - 139         1,1-Dichloropropene       2500       2510       ug/Kg       100       70 - 121         cis-1,3-Dichloropropene       2500       2400       ug/Kg       96       64 - 127         trans-1,3-Dichloropropene       2500       2250       ug/Kg       90       62 - 128         Ethylbenzene       2500       2540       ug/Kg       101       70 - 123         Hexachlorobutadiene       2500       2500       ug/Kg       94       51 - 150         Isopropylbenzene       2500       2680       ug/Kg       107       70 - 126         p-Isopropyltoluene       2500       2680       ug/Kg       104       70 - 125         Methylere-Chloride       2500       2470       ug/Kg       99       69 - 125         Methyler-Chloride       2500       2470       ug/Kg       85       55 - 123         Naphthalene       2500       2880       ug/Kg       115       53 - 144         N-Propylbenzene       2500       2880       ug/Kg       107       70 - 125         Styrene       2500       2530       ug/Kg       107       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dichloropropane       | 2500  | 2940       | ug/Kg        | 118    | 67 - 130 |
| 1,1-Dichloropropene       2500       2510       ug/Kg       100       70 - 121         cis-1,3-Dichloropropene       2500       2400       ug/Kg       96       64 - 127         trans-1,3-Dichloropropene       2500       2250       ug/Kg       90       62 - 128         Ethylbenzene       2500       2500       2360       ug/Kg       101       70 - 123         Hexachlorobutadiene       2500       2360       ug/Kg       94       51 - 150         Isopropylbenzene       2500       2680       ug/Kg       107       70 - 126         p-Isopropyltoluene       2500       2600       ug/Kg       104       70 - 125         Methylne Chloride       2500       2600       ug/Kg       99       69 - 125         Methyl tert-butyl ether       2500       2470       ug/Kg       99       69 - 125         Methyl tert-butyl ether       2500       2880       ug/Kg       115       53 - 144         N-Propylbenzene       2500       2880       ug/Kg       106       69 - 127         Styrene       2500       2660       ug/Kg       106       69 - 127         Styrene       2500       2500       ug/Kg       107       70 - 125 <td>1,3-Dichloropropane</td> <td>2500</td> <td>2430</td> <td>ug/Kg</td> <td>97</td> <td>62 - 136</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,3-Dichloropropane       | 2500  | 2430       | ug/Kg        | 97     | 62 - 136 |
| cis-1,3-Dichloropropene         2500         2400         ug/Kg         96         64 . 127           trans-1,3-Dichloropropene         2500         2250         ug/Kg         90         62 . 128           Ethylbenzene         2500         2540         ug/Kg         90         62 . 128           Ethylbenzene         2500         2560         ug/Kg         94         51 . 150           Isopropylbenzene         2500         2680         ug/Kg         107         70 . 126           p-Isopropylbenzene         2500         2600         ug/Kg         104         70 . 125           Methyl tert-butyl ether         2500         2470         ug/Kg         99         69 . 125           Methyl tert-butyl ether         2500         2880         ug/Kg         115         53 . 144           N-Propylbenzene         2500         2880         ug/Kg         115         53 . 144           N-Propylbenzene         2500         2660         ug/Kg         106         69 . 127           Styrene         2500         2530         ug/Kg         101         70 . 126           1,1,2-Ertrachloroethane         2500         2500         ug/Kg         107         62 . 140           Tetr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,2-Dichloropropane       | 2500  | 2570       | ug/Kg        | 103    | 58 - 139 |
| trans-1,3-Dichloropropene         2500         2250         ug/Kg         90         62 - 128           Ethylbenzene         2500         2540         ug/Kg         101         70 - 123           Hexachlorobutadiene         2500         2360         ug/Kg         94         51 - 150           Isopropylbenzene         2500         2680         ug/Kg         107         70 - 126           p-Isopropyltoluene         2500         2600         ug/Kg         104         70 - 125           Methyl tert-butyl ether         2500         2470         ug/Kg         99         69 - 125           Methyl tert-butyl ether         2500         2110         ug/Kg         85         55 - 123           Maphthalene         2500         2880         ug/Kg         115         53 - 144           N-Propylbenzene         2500         2880         ug/Kg         106         69 - 127           Styrene         2500         2530         ug/Kg         101         70 - 126           1,1,1,2-Tetrachloroethane         2500         2430         ug/Kg         97         62 - 140           Tetrachloroethane         2500         2430         ug/Kg         97         62 - 140           Tetrac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1-Dichloropropene       | 2500  | 2510       | ug/Kg        | 100    | 70 - 121 |
| Ethylbenzene         2500         2540         ug/kg         101         70 - 123           Hexachlorobutadiene         2500         2360         ug/kg         94         61 - 150           Isopropylbenzene         2500         2680         ug/kg         107         70 - 126           p-Isopropyltoluene         2500         2600         ug/kg         104         70 - 125           Methylere Chloride         2500         2470         ug/kg         99         69 - 125           Methyl tert-butyl ether         2500         2470         ug/kg         85         55 - 123           Naphthalene         2500         2880         ug/kg         115         53 - 144           N-Propylbenzene         2500         2880         ug/kg         106         69 - 127           Styrene         2500         2630         ug/kg         106         69 - 127           Styrene         2500         2530         ug/kg         100         70 - 126           1,1,2,2-Tetrachloroethane         2500         2490         ug/kg         100         70 - 125           1,1,2,2-Tetrachloroethane         2500         2430         ug/kg         101         70 - 128           Tetrachloroethane<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cis-1,3-Dichloropropene   | 2500  | 2400       | ug/Kg        | 96     | 64 - 127 |
| Hexachlorobutadiene   2500   2360   ug/Kg   94   51 . 150   lsopropylbenzene   2500   2680   ug/Kg   107   70 . 126   p-lsopropylbenzene   2500   2680   ug/Kg   104   70 . 125   methylene Chloride   2500   2600   ug/Kg   99   69 . 125   methylene Chloride   2500   2110   ug/Kg   99   69 . 125   methylene Chloride   2500   2110   ug/Kg   85   55 . 123   maphthalene   2500   2880   ug/Kg   115   53 . 144   methylenzene   2500   2660   ug/Kg   106   69 . 127   methylenzene   2500   2530   ug/Kg   101   70 . 120   methylenzene   2500   2530   ug/Kg   101   70 . 120   methylenzene   2500   2430   ug/Kg   100   70 . 125   methylenzene   2500   2430   ug/Kg   101   70 . 125   methylenzene   2500   2520   ug/Kg   101   70 . 128   methylenzene   2500   2520   ug/Kg   101   70 . 128   methylenzene   2500   2520   ug/Kg   101   70 . 128   methylenzene   2500   2520   ug/Kg   101   70 . 125   methylenzene   2500   2520   ug/Kg   104   70 . 125   methylenzene   2500   2520   ug/Kg   104   70 . 125   methylenzene   2500   2500   ug/Kg   100   70 . 125   methylenzene   2500   2500   ug/Kg   100   70 . 125   methylenzene   2500   2500   ug/Kg   100   70 . 125   methylenzene   2500   2570   ug/Kg   103   70 . 125   methylenzene   2500   2520   ug/Kg   101   55 . 128   methylenzene   2500   2520   ug/Kg   101   55 . 128   methylenzene   2500   2500   ug/Kg   103   70 . 125   methylenzene   2500   2500   ug/Kg   103   70 . 123   methylenzene   2500   2500   ug/Kg   104   70 . 123   methylenzene   2500   2500   ug/Kg   104   70 . 123   methylenzene   2500   2500   ug/Kg   104   70 . 123   methylenzene   2500   2500   ug/Kg   106   64 . 126   methylenzene   2500   2500   ug/Kg   106   64 . 126   methylenzene   2500   2500   ug/Kg   101   70 . 125   methylenzene   2500   2500   ug/Kg   104   70 . 123   methylenzene   2500   2500   ug/Kg   104   70 . 123   methylenzene   2500   2500   ug/Kg   106   64 . 126   methylenzene   2500   2500   ug/Kg   101   70 . 125   methylenzene   2500   2500   ug/Kg   101   70 . 125   methylenzene   2   | trans-1,3-Dichloropropene | 2500  | 2250       | ug/Kg        | 90     | 62 - 128 |
| Sopropylbenzene   2500   2680   ug/kg   107   70 - 126   vg/kg   104   70 - 125   vg/kg   106   vg/kg   106   vg/kg   106   vg/kg   115   vg/kg   106   vg/kg   115   vg/kg   vg/kg   115   vg/kg   vg/kg   115   vg/kg   vg/kg   115   vg/kg    | Ethylbenzene              | 2500  | 2540       | ug/Kg        | 101    | 70 - 123 |
| p-Isopropyltoluene 2500 2600 ug/Kg 104 70 - 125 Methylene Chloride 2500 2470 ug/Kg 99 69 - 125 Methyl tert-butyl ether 2500 2110 ug/Kg 85 55 - 123 Naphthalene 2500 2880 ug/Kg 115 53 - 144 N-Propylbenzene 2500 2660 ug/Kg 106 69 - 127 Styrene 2500 2530 ug/Kg 101 70 - 120 1,1,1,2-Tetrachloroethane 2500 2490 ug/Kg 100 70 - 125 1,1,2,2-Tetrachloroethane 2500 2500 ug/Kg 101 70 - 128 Toluene 2500 2500 ug/Kg 104 70 - 125 1,2,3-Trichlorobenzene 2500 2610 ug/Kg 104 70 - 125 1,2,3-Trichlorobenzene 2500 1730 ug/Kg 69 51 - 145 1,2,4-Trichloroethane 2500 2500 ug/Kg 100 70 - 125 1,1,1-Trichloroethane 2500 2500 ug/Kg 100 70 - 125 1,1,1-Trichloroethane 2500 2500 ug/Kg 100 70 - 125 1,1,2-Trichloroethane 2500 2500 ug/Kg 100 55 - 128 1,2,3-Trichloroptopane 2500 2500 ug/Kg 101 55 - 128 1,2,3-Trichloroptopane 2500 2500 ug/Kg 100 50 - 133 1,2,4-Trimethylbenzene 2500 2500 ug/Kg 100 50 - 133 1,3,5-Trimethylbenzene 2500 2660 ug/Kg 104 70 - 123 Vinyl chloride 2500 2650 ug/Kg 104 70 - 123 Vinyl chloride 2500 2600 ug/Kg 101 70 - 125 Vinyl chloride 2500 2650 ug/Kg 100 64 - 126 Viylenes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hexachlorobutadiene       | 2500  | 2360       | ug/Kg        | 94     | 51 - 150 |
| Methylene Chloride         2500         2470         ug/Kg         99         69 - 125           Methyl tert-butyl ether         2500         2110         ug/Kg         85         55 - 123           Naphthalene         2500         2880         ug/Kg         115         53 - 144           N-Propylbenzene         2500         2660         ug/Kg         106         69 - 127           Styrene         2500         2530         ug/Kg         101         70 - 120           1,1,2-2-Tetrachloroethane         2500         2490         ug/Kg         100         70 - 125           1,1,2,2-Tetrachloroethane         2500         2430         ug/Kg         97         62 - 140           Tetrachloroethane         2500         2520         ug/Kg         101         70 - 128           Toluene         2500         2520         ug/Kg         104         70 - 125           1,2,3-Trichlorobenzene         2500         1730         ug/Kg         69         51 - 145           1,2,4-Trichloroethane         2500         2500         ug/Kg         100         70 - 125           1,1,2-Trichloroethane         2500         2500         ug/Kg         103         70 - 125           Tri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Isopropylbenzene          | 2500  | 2680       | ug/Kg        | 107    | 70 - 126 |
| Methyl tert-butyl ether       2500       2110       ug/Kg       85       55 - 123         Naphthalene       2500       2880       ug/Kg       115       53 - 144         N-Propylbenzene       2500       2660       ug/Kg       106       69 - 127         Styrene       2500       2530       ug/Kg       101       70 - 120         1,1,1,2-Tetrachloroethane       2500       2490       ug/Kg       100       70 - 125         1,1,2,2-Tetrachloroethane       2500       2430       ug/Kg       101       70 - 125         1,1,2,2-Tetrachloroethane       2500       2430       ug/Kg       101       70 - 128         Toluene       2500       2520       ug/Kg       101       70 - 128         Toluene       2500       2610       ug/Kg       104       70 - 125         1,2,3-Trichlorobenzene       2500       1730       ug/Kg       69       51 - 145         1,2,4-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,1-Trichloroethane       2500       2500       ug/Kg       98       71 - 130         Trichloroethane       2500       2500       ug/Kg       101       70 - 125 <t< td=""><td>p-Isopropyltoluene</td><td>2500</td><td>2600</td><td>ug/Kg</td><td>104</td><td>70 - 125</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p-Isopropyltoluene        | 2500  | 2600       | ug/Kg        | 104    | 70 - 125 |
| Naphthalene       2500       2880       ug/Kg       115       53 - 144         N-Propylbenzene       2500       2660       ug/Kg       106       69 - 127         Styrene       2500       2530       ug/Kg       101       70 - 120         1,1,2-Tetrachloroethane       2500       2490       ug/Kg       100       70 - 125         1,1,2,2-Tetrachloroethane       2500       2430       ug/Kg       97       62 - 140         Tetrachloroethane       2500       2520       ug/Kg       101       70 - 128         Toluene       2500       2520       ug/Kg       104       70 - 125         1,2,3-Trichlorobenzene       2500       1730       ug/Kg       69       51 - 145         1,2,4-Trichloroethane       2500       1930       ug/Kg       77       57 - 137         1,1,1-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,2-Trichloroethane       2500       2500       ug/Kg       98       71 - 130         Trichlorofluoromethane       2500       2500       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2500       ug/Kg       101       55 - 128 <td>Methylene Chloride</td> <td>2500</td> <td>2470</td> <td>ug/Kg</td> <td>99</td> <td>69 - 125</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Methylene Chloride        | 2500  | 2470       | ug/Kg        | 99     | 69 - 125 |
| N-Propylbenzene 2500 2660 ug/kg 106 69 - 127  Styrene 2500 2530 ug/kg 101 70 - 120  1,1,1,2-Tetrachloroethane 2500 2490 ug/kg 100 70 - 125  1,1,2,2-Tetrachloroethane 2500 2430 ug/kg 97 62 - 140  Tetrachloroethene 2500 2520 ug/kg 101 70 - 128  Toluene 2500 2610 ug/kg 104 70 - 125  1,2,3-Trichlorobenzene 2500 1730 ug/kg 69 51 - 145  1,2,4-Trichloroethane 2500 2500 ug/kg 77 57 - 137  1,1,1-Trichloroethane 2500 2500 ug/kg 100 70 - 125  1,1,2-Trichloroethane 2500 2500 ug/kg 100 70 - 125  1,1,1-Trichloroethane 2500 2500 ug/kg 100 70 - 125  1,1,1-Trichloroethane 2500 2500 ug/kg 100 70 - 125  Trichloroethene 2500 2500 ug/kg 103 70 - 125  Trichlorofluoromethane 2500 2500 ug/kg 101 55 - 128  1,2,3-Trichloropropane 2500 2500 ug/kg 101 55 - 128  1,2,3-Trichloropropane 2500 2500 ug/kg 103 70 - 125  Trichlorofluoromethane 2500 2500 ug/kg 103 70 - 123  1,3,5-Trimethylbenzene 2500 2600 ug/kg 104 70 - 123  1,3,5-Trimethylbenzene 2500 2600 ug/kg 104 70 - 123  Vinyl chloride 2500 2600 ug/kg 104 70 - 123  Vinyl chloride 2500 2650 ug/kg 106 64 - 126  Vylenes, Total 5000 5040 ug/kg 101 70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Methyl tert-butyl ether   | 2500  | 2110       | ug/Kg        | 85     | 55 - 123 |
| Styrene       2500       2530       ug/Kg       101       70 - 120         1,1,2-Tetrachloroethane       2500       2490       ug/Kg       100       70 - 125         1,1,2-Tetrachloroethane       2500       2430       ug/Kg       97       62 - 140         Tetrachloroethene       2500       2520       ug/Kg       101       70 - 128         Toluene       2500       2610       ug/Kg       104       70 - 125         1,2,3-Trichlorobenzene       2500       1730       ug/Kg       69       51 - 145         1,2,4-Trichloroethane       2500       1930       ug/Kg       77       57 - 137         1,1,1-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,2-Trichloroethane       2500       2500       ug/Kg       98       71 - 130         Trichloroethene       2500       2570       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2520       ug/Kg       101       55 - 128         1,2,3-Trichloropropane       2500       2500       ug/Kg       101       55 - 128         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123 <td>Naphthalene</td> <td>2500</td> <td>2880</td> <td>ug/Kg</td> <td>115</td> <td>53 - 144</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Naphthalene               | 2500  | 2880       | ug/Kg        | 115    | 53 - 144 |
| 1,1,1,2-Tetrachloroethane       2500       2490       ug/Kg       100       70 - 125         1,1,2,2-Tetrachloroethane       2500       2430       ug/Kg       97       62 - 140         Tetrachloroethene       2500       2520       ug/Kg       101       70 - 128         Toluene       2500       2610       ug/Kg       104       70 - 125         1,2,3-Trichlorobenzene       2500       1730       ug/Kg       69       51 - 145         1,2,4-Trichlorobenzene       2500       1930       ug/Kg       77       57 - 137         1,1,1-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,2-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,2-Trichloroethane       2500       2500       ug/Kg       103       70 - 125         1,1,2-Trichloroethane       2500       2570       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2500       ug/Kg       101       55 - 128         Trichloropropane       2500       2500       ug/Kg       105       5 - 133         1,2,4-Trimethylbenzene       2500       2500       ug/Kg       104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N-Propylbenzene           | 2500  | 2660       | ug/Kg        | 106    | 69 - 127 |
| 1,1,2,2-Tetrachloroethane       2500       2430       ug/Kg       97       62 - 140         Tetrachloroethene       2500       2520       ug/Kg       101       70 - 128         Toluene       2500       2610       ug/Kg       104       70 - 125         1,2,3-Trichlorobenzene       2500       1730       ug/Kg       69       51 - 145         1,2,4-Trichlorobenzene       2500       1930       ug/Kg       77       57 - 137         1,1,1-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,2-Trichloroethane       2500       2450       ug/Kg       98       71 - 130         Trichloroethene       2500       2570       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2520       ug/Kg       101       55 - 128         1,2,3-Trichloropropane       2500       2500       ug/Kg       100       50 - 133         1,2,4-Trimethylbenzene       2500       2500       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Styrene                   | 2500  | 2530       | ug/Kg        | 101    | 70 - 120 |
| Tetrachloroethene       2500       2520       ug/Kg       101       70 - 128         Toluene       2500       2610       ug/Kg       104       70 - 125         1,2,3-Trichlorobenzene       2500       1730       ug/Kg       69       51 - 145         1,2,4-Trichlorobenzene       2500       1930       ug/Kg       77       57 - 137         1,1,1-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,2-Trichloroethane       2500       2450       ug/Kg       98       71 - 130         Trichloroethene       2500       2570       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2520       ug/Kg       101       55 - 128         1,2,3-Trichloropropane       2500       2500       ug/Kg       100       50 - 133         1,2,4-Trimethylbenzene       2500       2560       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,1,1,2-Tetrachloroethane | 2500  | 2490       | ug/Kg        | 100    | 70 - 125 |
| Toluene       2500       2610       ug/Kg       104       70 - 125         1,2,3-Trichlorobenzene       2500       1730       ug/Kg       69       51 - 145         1,2,4-Trichlorobenzene       2500       1930       ug/Kg       77       57 - 137         1,1,1-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,2-Trichloroethane       2500       2450       ug/Kg       98       71 - 130         Trichloroethene       2500       2570       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2520       ug/Kg       101       55 - 128         1,2,3-Trichloropropane       2500       2500       ug/Kg       100       50 - 133         1,2,4-Trimethylbenzene       2500       2560       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1,2,2-Tetrachloroethane | 2500  | 2430       | ug/Kg        | 97     | 62 - 140 |
| 1,2,3-Trichlorobenzene       2500       1730       ug/Kg       69       51 - 145         1,2,4-Trichlorobenzene       2500       1930       ug/Kg       77       57 - 137         1,1,1-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,2-Trichloroethane       2500       2450       ug/Kg       98       71 - 130         Trichloroethene       2500       2570       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2520       ug/Kg       101       55 - 128         1,2,3-Trichloropropane       2500       2500       ug/Kg       100       50 - 133         1,2,4-Trimethylbenzene       2500       2560       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tetrachloroethene         | 2500  | 2520       | ug/Kg        | 101    | 70 - 128 |
| 1,2,4-Trichlorobenzene       2500       1930       ug/Kg       77       57 - 137         1,1,1-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,2-Trichloroethane       2500       2450       ug/Kg       98       71 - 130         Trichloroethene       2500       2570       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2520       ug/Kg       101       55 - 128         1,2,3-Trichloropropane       2500       2500       ug/Kg       100       50 - 133         1,2,4-Trimethylbenzene       2500       2560       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Toluene                   | 2500  | 2610       | ug/Kg        | 104    | 70 - 125 |
| 1,1,1-Trichloroethane       2500       2500       ug/Kg       100       70 - 125         1,1,2-Trichloroethane       2500       2450       ug/Kg       98       71 - 130         Trichloroethene       2500       2570       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2520       ug/Kg       101       55 - 128         1,2,3-Trichloropropane       2500       2500       ug/Kg       100       50 - 133         1,2,4-Trimethylbenzene       2500       2560       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,3-Trichlorobenzene    | 2500  | 1730       | ug/Kg        | 69     | 51 - 145 |
| 1,1,2-Trichloroethane       2500       2450       ug/Kg       98       71 - 130         Trichloroethene       2500       2570       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2520       ug/Kg       101       55 - 128         1,2,3-Trichloropropane       2500       2500       ug/Kg       100       50 - 133         1,2,4-Trimethylbenzene       2500       2560       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2,4-Trichlorobenzene    | 2500  | 1930       | ug/Kg        | 77     | 57 - 137 |
| Trichloroethene       2500       2570       ug/Kg       103       70 - 125         Trichlorofluoromethane       2500       2520       ug/Kg       101       55 - 128         1,2,3-Trichloropropane       2500       2500       ug/Kg       100       50 - 133         1,2,4-Trimethylbenzene       2500       2560       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1,1-Trichloroethane     | 2500  | 2500       | ug/Kg        | 100    | 70 - 125 |
| Trichlorofluoromethane       2500       2520       ug/Kg       101       55 - 128         1,2,3-Trichloropropane       2500       2500       ug/Kg       100       50 - 133         1,2,4-Trimethylbenzene       2500       2560       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,1,2-Trichloroethane     | 2500  | 2450       | ug/Kg        | 98     | 71 - 130 |
| 1,2,3-Trichloropropane       2500       2500       ug/Kg       100       50 - 133         1,2,4-Trimethylbenzene       2500       2560       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trichloroethene           | 2500  | 2570       | ug/Kg        | 103    | 70 - 125 |
| 1,2,4-Trimethylbenzene       2500       2560       ug/Kg       103       70 - 123         1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trichlorofluoromethane    | 2500  | 2520       | ug/Kg        | 101    | 55 - 128 |
| 1,3,5-Trimethylbenzene       2500       2600       ug/Kg       104       70 - 123         Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,2,3-Trichloropropane    | 2500  | 2500       | ug/Kg        | 100    | 50 - 133 |
| Vinyl chloride       2500       2650       ug/Kg       106       64 - 126         Xylenes, Total       5000       5040       ug/Kg       101       70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,2,4-Trimethylbenzene    | 2500  | 2560       | ug/Kg        | 103    | 70 - 123 |
| Xylenes, Total 5000 5040 ug/Kg 101 70 - 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,3,5-Trimethylbenzene    | 2500  | 2600       | ug/Kg        | 104    | 70 - 123 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vinyl chloride            | 2500  | 2650       | ug/Kg        | 106    | 64 - 126 |
| ICS ICS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Xylenes, Total            | 5000  | 5040       | ug/Kg        | 101    | 70 - 125 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109 109                   |       |            |              |        |          |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| 1,2-Dichloroethane-d4 (Surr) | 99        |           | 75 - 126 |
| Toluene-d8 (Surr)            | 98        |           | 75 - 120 |
| 4-Bromofluorobenzene (Surr)  | 98        |           | 72 - 124 |
| Dibromofluoromethane         | 96        |           | 75 - 120 |

Lab Sample ID: MB 500-601576/7

**Matrix: Solid** 

**Analysis Batch: 601576** 

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

| Analyte | Result Qualifier | LOQ  | LOD Unit   | D | Prepared | Analyzed       | Dil Fac |
|---------|------------------|------|------------|---|----------|----------------|---------|
| Benzene | <0.15            | 0.25 | 0.15 ug/Kg |   |          | 05/31/21 11:48 | 1       |

Client: American Engineering Testing Inc.

Job ID: 310-207193-1 Project/Site: Phase II ESA Laundromat/Menominee WI SDG: P-0002702

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-601576/7

**Matrix: Solid** 

Analysis Batch: 601576

Client Sample ID: Method Blank

**Prep Type: Total/NA** 

|                             | MB MB            |      |      |                |   | _        | _              |        |
|-----------------------------|------------------|------|------|----------------|---|----------|----------------|--------|
| Analyte                     | Result Qualifier | LOQ  | LOD  |                | D | Prepared | Analyzed       | Dil Fa |
| Bromobenzene                | <0.36            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Bromochloromethane          | <0.43            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Bromodichloromethane        | <0.37            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Bromoform                   | <0.48            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Bromomethane                | <0.80            | 3.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| n-Butylbenzene              | <0.39            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| sec-Butylbenzene            | <0.40            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| tert-Butylbenzene           | <0.40            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Carbon tetrachloride        | <0.38            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Chlorobenzene               | <0.39            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Dibromochloromethane        | <0.49            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Chloroethane                | <0.50            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Chloroform                  | <0.37            | 2.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Chloromethane               | <0.32            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 2-Chlorotoluene             | <0.31            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 4-Chlorotoluene             | <0.35            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,2-Dibromo-3-Chloropropane | <2.0             | 5.0  | 2.0  | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,2-Dibromoethane           | <0.39            | 1.0  | 0.39 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Dibromomethane              | <0.27            | 1.0  | 0.27 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,2-Dichlorobenzene         | <0.33            | 1.0  | 0.33 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,3-Dichlorobenzene         | <0.40            | 1.0  | 0.40 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,4-Dichlorobenzene         | <0.36            | 1.0  | 0.36 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Dichlorodifluoromethane     | <0.67            | 3.0  | 0.67 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,1-Dichloroethane          | <0.41            | 1.0  | 0.41 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,2-Dichloroethane          | <0.39            | 1.0  | 0.39 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,1-Dichloroethene          | <0.39            | 1.0  | 0.39 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| cis-1,2-Dichloroethene      | <0.41            | 1.0  | 0.41 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| rans-1,2-Dichloroethene     | <0.35            | 1.0  | 0.35 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,2-Dichloropropane         | <0.43            | 1.0  | 0.43 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,3-Dichloropropane         | <0.36            | 1.0  | 0.36 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 2,2-Dichloropropane         | <0.44            | 1.0  | 0.44 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,1-Dichloropropene         | <0.30            | 1.0  | 0.30 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| cis-1,3-Dichloropropene     | <0.42            | 1.0  | 0.42 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| trans-1,3-Dichloropropene   | <0.36            | 1.0  | 0.36 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| sopropyl ether              | <0.28            | 1.0  | 0.28 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Ethylbenzene                | <0.18            | 0.25 |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Hexachlorobutadiene         | <0.45            | 1.0  | 0.45 | ug/Kg          |   |          | 05/31/21 11:48 |        |
| sopropylbenzene             | <0.38            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| o-Isopropyltoluene          | <0.36            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Methylene Chloride          | <1.6             | 5.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Methyl tert-butyl ether     | <0.39            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Naphthalene                 | <0.33            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| N-Propylbenzene             | <0.41            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Styrene                     | <0.39            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,1,1,2-Tetrachloroethane   | <0.46            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,1,2,2-Tetrachloroethane   | <0.40            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Tetrachloroethene           | <0.37            | 1.0  |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| Toluene                     | <0.15            | 0.25 |      | ug/Kg          |   |          | 05/31/21 11:48 |        |
| 1,2,3-Trichlorobenzene      | <0.46            | 1.0  |      | ug/Kg<br>ug/Kg |   |          | 05/31/21 11:48 |        |

Eurofins TestAmerica, Cedar Falls

Page 15 of 26

6/1/2021

Client: American Engineering Testing Inc.

Project/Site: Phase II ESA Laundromat/Menominee WI

Job ID: 310-207193-1

SDG: P-0002702

# Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 500-601576/7

**Matrix: Solid** 

**Analysis Batch: 601576** 

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

|                        | MB MB           |       |      |       |   |          |                |         |
|------------------------|-----------------|-------|------|-------|---|----------|----------------|---------|
| Analyte                | Result Qualifie | r LOQ | LOD  | Unit  | D | Prepared | Analyzed       | Dil Fac |
| 1,2,4-Trichlorobenzene | <0.34           | 1.0   | 0.34 | ug/Kg |   |          | 05/31/21 11:48 | 1       |
| 1,1,1-Trichloroethane  | <0.38           | 1.0   | 0.38 | ug/Kg |   |          | 05/31/21 11:48 | 1       |
| 1,1,2-Trichloroethane  | <0.35           | 1.0   | 0.35 | ug/Kg |   |          | 05/31/21 11:48 | 1       |
| Trichloroethene        | <0.16           | 0.50  | 0.16 | ug/Kg |   |          | 05/31/21 11:48 | 1       |
| Trichlorofluoromethane | <0.43           | 1.0   | 0.43 | ug/Kg |   |          | 05/31/21 11:48 | 1       |
| 1,2,3-Trichloropropane | <0.41           | 2.0   | 0.41 | ug/Kg |   |          | 05/31/21 11:48 | 1       |
| 1,2,4-Trimethylbenzene | <0.36           | 1.0   | 0.36 | ug/Kg |   |          | 05/31/21 11:48 | 1       |
| 1,3,5-Trimethylbenzene | <0.38           | 1.0   | 0.38 | ug/Kg |   |          | 05/31/21 11:48 | 1       |
| Vinyl chloride         | <0.26           | 1.0   | 0.26 | ug/Kg |   |          | 05/31/21 11:48 | 1       |
| Xylenes, Total         | <0.22           | 0.50  | 0.22 | ug/Kg |   |          | 05/31/21 11:48 | 1       |

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed 1,2-Dichloroethane-d4 (Surr) 101 75 - 126 05/31/21 11:48 75 - 120 Toluene-d8 (Surr) 98 05/31/21 11:48 4-Bromofluorobenzene (Surr) 99 72 - 124 05/31/21 11:48 Dibromofluoromethane 97 75 - 120 05/31/21 11:48

Lab Sample ID: LCS 500-601576/5

**Matrix: Solid** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

| Analysis Batch: 601576      |       |        |           |       |   |      |          |  |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|--|
|                             | Spike | LCS    | LCS       |       |   |      | %Rec.    |  |
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene                     | 50.0  | 47.5   | -         | ug/Kg |   | 95   | 70 - 120 |  |
| Bromobenzene                | 50.0  | 47.3   |           | ug/Kg |   | 95   | 70 - 122 |  |
| Bromochloromethane          | 50.0  | 46.1   |           | ug/Kg |   | 92   | 65 - 122 |  |
| Bromodichloromethane        | 50.0  | 44.4   |           | ug/Kg |   | 89   | 69 - 120 |  |
| Bromoform                   | 50.0  | 41.1   |           | ug/Kg |   | 82   | 56 - 132 |  |
| Bromomethane                | 50.0  | 53.8   |           | ug/Kg |   | 108  | 40 - 152 |  |
| n-Butylbenzene              | 50.0  | 47.6   |           | ug/Kg |   | 95   | 68 - 125 |  |
| sec-Butylbenzene            | 50.0  | 47.5   |           | ug/Kg |   | 95   | 70 - 123 |  |
| tert-Butylbenzene           | 50.0  | 48.1   |           | ug/Kg |   | 96   | 70 - 121 |  |
| Carbon tetrachloride        | 50.0  | 47.3   |           | ug/Kg |   | 95   | 59 - 133 |  |
| Chlorobenzene               | 50.0  | 47.5   |           | ug/Kg |   | 95   | 70 - 120 |  |
| Dibromochloromethane        | 50.0  | 42.1   |           | ug/Kg |   | 84   | 68 - 125 |  |
| Chloroethane                | 50.0  | 55.2   |           | ug/Kg |   | 110  | 48 - 136 |  |
| Chloroform                  | 50.0  | 44.1   |           | ug/Kg |   | 88   | 70 - 120 |  |
| Chloromethane               | 50.0  | 61.8   |           | ug/Kg |   | 124  | 56 - 152 |  |
| 2-Chlorotoluene             | 50.0  | 48.0   |           | ug/Kg |   | 96   | 70 - 125 |  |
| 4-Chlorotoluene             | 50.0  | 48.2   |           | ug/Kg |   | 96   | 68 - 124 |  |
| 1,2-Dibromo-3-Chloropropane | 50.0  | 31.5   |           | ug/Kg |   | 63   | 56 - 123 |  |
| 1,2-Dibromoethane           | 50.0  | 45.4   |           | ug/Kg |   | 91   | 70 - 125 |  |
| Dibromomethane              | 50.0  | 46.5   |           | ug/Kg |   | 93   | 70 - 120 |  |
| 1,2-Dichlorobenzene         | 50.0  | 43.7   |           | ug/Kg |   | 87   | 70 - 125 |  |
| 1,3-Dichlorobenzene         | 50.0  | 46.2   |           | ug/Kg |   | 92   | 70 - 125 |  |
| 1,4-Dichlorobenzene         | 50.0  | 45.3   |           | ug/Kg |   | 91   | 70 - 120 |  |
| Dichlorodifluoromethane     | 50.0  | 38.2   |           | ug/Kg |   | 76   | 40 - 159 |  |
| 1,1-Dichloroethane          | 50.0  | 52.9   |           | ug/Kg |   | 106  | 70 - 125 |  |
| 1,2-Dichloroethane          | 50.0  | 49.4   |           | ug/Kg |   | 99   | 68 - 127 |  |

Eurofins TestAmerica, Cedar Falls

Spike

LCS LCS

Client: American Engineering Testing Inc.

Project/Site: Phase II ESA Laundromat/Menominee WI

Job ID: 310-207193-1 SDG: P-0002702

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 500-601576/5

**Matrix: Solid** 

**Analysis Batch: 601576** 

**Client Sample ID: Lab Control Sample** 

%Rec.

Prep Type: Total/NA

|                           | Opino |        |                |        | /011001  |  |
|---------------------------|-------|--------|----------------|--------|----------|--|
| Analyte                   | Added | Result | Qualifier Unit | D %Rec | Limits   |  |
| 1,1-Dichloroethene        | 50.0  | 47.8   | ug/Kg          | 96     | 67 - 122 |  |
| cis-1,2-Dichloroethene    | 50.0  | 47.0   | ug/Kg          | 94     | 70 - 125 |  |
| trans-1,2-Dichloroethene  | 50.0  | 47.4   | ug/Kg          | 95     | 70 - 125 |  |
| 1,2-Dichloropropane       | 50.0  | 53.5   | ug/Kg          | 107    | 67 - 130 |  |
| 1,3-Dichloropropane       | 50.0  | 46.1   | ug/Kg          | 92     | 62 - 136 |  |
| 2,2-Dichloropropane       | 50.0  | 51.5   | ug/Kg          | 103    | 58 - 139 |  |
| 1,1-Dichloropropene       | 50.0  | 48.4   | ug/Kg          | 97     | 70 - 121 |  |
| cis-1,3-Dichloropropene   | 50.0  | 45.3   | ug/Kg          | 91     | 64 - 127 |  |
| trans-1,3-Dichloropropene | 50.0  | 42.8   | ug/Kg          | 86     | 62 - 128 |  |
| Ethylbenzene              | 50.0  | 47.7   | ug/Kg          | 95     | 70 - 123 |  |
| Hexachlorobutadiene       | 50.0  | 41.6   | ug/Kg          | 83     | 51 - 150 |  |
| Isopropylbenzene          | 50.0  | 49.9   | ug/Kg          | 100    | 70 - 126 |  |
| p-Isopropyltoluene        | 50.0  | 47.7   | ug/Kg          | 95     | 70 - 125 |  |
| Methylene Chloride        | 50.0  | 45.5   | ug/Kg          | 91     | 69 - 125 |  |
| Methyl tert-butyl ether   | 50.0  | 39.2   | ug/Kg          | 78     | 55 - 123 |  |
| Naphthalene               | 50.0  | 33.8   | ug/Kg          | 68     | 53 - 144 |  |
| N-Propylbenzene           | 50.0  | 50.0   | ug/Kg          | 100    | 69 - 127 |  |
| Styrene                   | 50.0  | 46.9   | ug/Kg          | 94     | 70 - 120 |  |
| 1,1,1,2-Tetrachloroethane | 50.0  | 46.2   | ug/Kg          | 92     | 70 - 125 |  |
| 1,1,2,2-Tetrachloroethane | 50.0  | 46.7   | ug/Kg          | 93     | 62 - 140 |  |
| Tetrachloroethene         | 50.0  | 48.0   | ug/Kg          | 96     | 70 - 128 |  |
| Toluene                   | 50.0  | 49.3   | ug/Kg          | 99     | 70 - 125 |  |
| 1,2,3-Trichlorobenzene    | 50.0  | 36.5   | ug/Kg          | 73     | 51 - 145 |  |
| 1,2,4-Trichlorobenzene    | 50.0  | 38.2   | ug/Kg          | 76     | 57 - 137 |  |
| 1,1,1-Trichloroethane     | 50.0  | 48.5   | ug/Kg          | 97     | 70 - 125 |  |
| 1,1,2-Trichloroethane     | 50.0  | 47.0   | ug/Kg          | 94     | 71 - 130 |  |
| Trichloroethene           | 50.0  | 48.8   | ug/Kg          | 98     | 70 - 125 |  |
| Trichlorofluoromethane    | 50.0  | 48.5   | ug/Kg          | 97     | 55 - 128 |  |
| 1,2,3-Trichloropropane    | 50.0  | 46.8   | ug/Kg          | 94     | 50 - 133 |  |
| 1,2,4-Trimethylbenzene    | 50.0  | 46.9   | ug/Kg          | 94     | 70 - 123 |  |
| 1,3,5-Trimethylbenzene    | 50.0  | 47.7   | ug/Kg          | 95     | 70 - 123 |  |
| Vinyl chloride            | 50.0  | 51.7   | ug/Kg          | 103    | 64 - 126 |  |
| Xylenes, Total            | 100   | 94.5   | ug/Kg          | 95     | 70 - 125 |  |
|                           |       |        |                |        |          |  |

LCS LCS

| Surrogate                    | %Recovery | Qualifier | Limits   |
|------------------------------|-----------|-----------|----------|
| 1,2-Dichloroethane-d4 (Surr) | 98        |           | 75 - 126 |
| Toluene-d8 (Surr)            | 99        |           | 75 - 120 |
| 4-Bromofluorobenzene (Surr)  | 96        |           | 72 - 124 |
| Dibromofluoromethane         | 95        |           | 75 - 120 |

Eurofins TestAmerica, Cedar Falls

# **QC Association Summary**

Client: American Engineering Testing Inc.

Project/Site: Phase II ESA Laundromat/Menominee WI

Job ID: 310-207193-1 SDG: P-0002702

## **GC/MS VOA**

#### Prep Batch: 600828

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| 310-207193-1        | GP-1 (14-16')      | Total/NA  | Soil   | 5035   |            |
| 310-207193-2        | Trip Blank         | Total/NA  | Solid  | 5035   |            |
| LB3 500-600828/21-A | Method Blank       | Total/NA  | Solid  | 5035   |            |
| LCS 500-600828/22-A | Lab Control Sample | Total/NA  | Solid  | 5035   |            |

#### **Analysis Batch: 601576**

| Lab Sample ID       | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|---------------------|--------------------|-----------|--------|--------|------------|
| 310-207193-1        | GP-1 (14-16')      | Total/NA  | Soil   | 8260B  | 600828     |
| 310-207193-2        | Trip Blank         | Total/NA  | Solid  | 8260B  | 600828     |
| LB3 500-600828/21-A | Method Blank       | Total/NA  | Solid  | 8260B  | 600828     |
| MB 500-601576/7     | Method Blank       | Total/NA  | Solid  | 8260B  |            |
| LCS 500-600828/22-A | Lab Control Sample | Total/NA  | Solid  | 8260B  | 600828     |
| LCS 500-601576/5    | Lab Control Sample | Total/NA  | Solid  | 8260B  |            |

# **General Chemistry**

#### **Analysis Batch: 600927**

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 310-207193-1  | GP-1 (14-16')    | Total/NA  | Soil   | Moisture |            |

#### **Lab Chronicle**

Client: American Engineering Testing Inc.

Project/Site: Phase II ESA Laundromat/Menominee WI

SDG: P-0002702

Job ID: 310-207193-1

Client Sample ID: GP-1 (14-16')

Date Collected: 05/20/21 12:24 Date Received: 05/22/21 07:45

Lab Sample ID: 310-207193-1

Analyst

WRE

Lab

TAL CHI

Matrix: Soil

| _         |       |        |     |          |        |                |
|-----------|-------|--------|-----|----------|--------|----------------|
|           | Batch | Batch  |     | Dilution | Batch  | Prepared       |
| Prep Type | Type  | Method | Run | Factor   | Number | or Analyzed    |
| Total/NA  | Prep  | 5035   |     |          | 600828 | 05/20/21 12:24 |

Total/NA 50 Analysis 8260B 601576 05/31/21 14:46 PMF TAL CHI Total/NA Analysis Moisture 1 600927 05/26/21 10:05 LWN TAL CHI

Lab Sample ID: 310-207193-2

**Matrix: Solid** 

**Client Sample ID: Trip Blank** Date Collected: 05/20/21 00:00 Date Received: 05/22/21 07:45

|           | Batch    | Batch  | _   | Dilution | Batch  | Prepared       |         |         |
|-----------|----------|--------|-----|----------|--------|----------------|---------|---------|
| Prep Type | Type     | Method | Run | Factor   | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035   |     |          | 600828 | 05/20/21 00:00 | WRE     | TAL CHI |
| Total/NA  | Analysis | 8260B  |     | 50       | 601576 | 05/31/21 15:11 | PMF     | TAL CHI |

**Laboratory References:** 

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

6/1/2021

# **Accreditation/Certification Summary**

Client: American Engineering Testing Inc.

Project/Site: Phase II ESA Laundromat/Menominee WI

Job ID: 310-207193-1 SDG: P-0002702

## Laboratory: Eurofins TestAmerica, Chicago

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority<br>Wisconsin |             | rogram<br>tate               | Identification Number<br>999580010        | Expiration Date 08-31-21                 |
|------------------------|-------------|------------------------------|-------------------------------------------|------------------------------------------|
| The following analyte  | •           | ort, but the laboratory is r | not certified by the governing authority. | This list may include analytes for which |
| Analysis Method        | Prep Method | Matrix                       | Analyte                                   |                                          |
| Moisture               | ·           | Soil                         | Percent Moisture                          |                                          |
| Moisture               |             | Soil                         | Percent Solids                            |                                          |

# **Method Summary**

Client: American Engineering Testing Inc. Project/Site: Phase II ESA Laundromat/Menominee WI Job ID: 310-207193-1

SDG: P-0002702

| Method   | Method Description                 | Protocol | Laboratory |
|----------|------------------------------------|----------|------------|
| 8260B    | Volatile Organic Compounds (GC/MS) | SW846    | TAL CHI    |
| Moisture | Percent Moisture                   | EPA      | TAL CHI    |
| 5035     | Closed System Purge and Trap       | SW846    | TAL CHI    |

#### **Protocol References:**

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

#### **Laboratory References:**

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200



# **Environment Testing TestAmerica**



|                                                                                                           | e Receipt a       | nd Temper         | ature Log Form              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Client Information                                                                                        |                   |                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Client: A.E.T                                                                                             |                   |                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| City/State: CITY St. Paul                                                                                 | STATE             | Project:          |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Receipt Information                                                                                       |                   |                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Date/Time Received: DATE 377                                                                              | 745               | Received By       | r: OB                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Delivery Type: MUPS Sat ☐ FedE                                                                            | × [               | ☐ FedEx Gro       | und US Mail                 | ☐ Spee-Dee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ☐ Lab Courier ☐ Lab F                                                                                     | ield Services [   | Client Drop       | -off                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Condition of Cooler/Containers                                                                            |                   |                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample(s) received in Cooler? Yes                                                                         | □ No              | If yes: Coole     | er ID:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Multiple Coolers?                                                                                         | DINO              | If yes: Coole     | er# of                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cooler Custody Seals Present? Seas                                                                        | ☐ No              | If yes: Coole     | r custody seals intact      | ? ☐ Yes ☐ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sample Custody Seals Present?                                                                             | ₽No               | If yes: Samp      | le custody seals intac      | t?□ Yes □ No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Trip Blank Present?                                                                                       | Ď No              | If yes: Which     | VOA samples are in          | cooler? ↓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                           |                   |                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                           |                   |                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 3 <u></u>                                                                                                 |                   |                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Temperature Record                                                                                        | SERVICE SERVICE   | DESCRIPTION OF    | AND REAL PROPERTY.          | <b>经保护</b> 自由的工作。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Coolant: Wet ice Blue ice                                                                                 | ☐ Dry ice         | Other:_           |                             | NONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Thermometer ID:                                                                                           |                   | Correction Fa     | actor (°C):                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| • Temp Blank Temperature - If no temp blank, of                                                           | or temp blank tem | perature above cr | iteria, proceed to Sample C | ontainer Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Uncorrected Temp (°C):                                                                                    |                   | Corrected Te      | emp (°C): 💍 💍               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Container Temperature                                                                              |                   | Shirt every fire  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Container(s) used:                                                                                        |                   |                   | CONTAINER 2                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Uncorrected Temp (°C):                                                                                    |                   |                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Corrected Temp (°C):                                                                                      |                   |                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Exceptions Noted                                                                                          |                   |                   |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ol> <li>If temperature exceeds criteria, was sa</li> <li>If yes: Is there evidence that the c</li> </ol> |                   | -                 | of sampling?                | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| If temperature is <0°C, are there obvio (e.g., bulging septa, broken/cracked both)                        |                   |                   | sample containers is c      | · —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Note: If yes, contact PM before proceeding                                                                | g. If no, procee  | d with login      |                             | 1978-billio francisco de la comprese del la comprese de la comprese de la comprese del la comprese de la comprese del la comprese de la comprese del la comprese de la comprese del la comprese della comprese della com |

Document: CF-LG-WI-002

**Additional Comments** 

Revision: 25 Date: 06/17/2019

Eurofins TestAmerica, Cedar Falls

General temperature criteria is 0 to 6°C Bacteria temperature criteria is 0 to 10°C

2

3

L

7

9

11

12

8/2019

#### Eurofins TestAmerica, Cedar Falls

3019 Venture Way

**Chain of Custody Record** Cedar Falls IA 50613 Phone 319 277 2401 Fax 319 277 2425



| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ALL PROPERTY AND ADDRESS OF THE PERTY AD |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , manual (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Constitution of the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| The real Property lies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| TIONE 310 211 2401 1 dx 310 211 2425                                                                                                                                      |                              |                 |                                    |                  |                                        |                                                            |              |           |               |                 |                        |             |       |                  |                 |                                         |                           |                                         |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------|------------------------------------|------------------|----------------------------------------|------------------------------------------------------------|--------------|-----------|---------------|-----------------|------------------------|-------------|-------|------------------|-----------------|-----------------------------------------|---------------------------|-----------------------------------------|----------|
| Client Information (Sub Contract Lab)                                                                                                                                     |                              |                 |                                    | Lab PM<br>Bindei |                                        | Zach T                                                     |              |           |               | Са              | Carrier Tracking No(s) |             |       |                  |                 | COC No<br>310-37761 1                   |                           |                                         |          |
| lient Contact                                                                                                                                                             | Phone E Ma                   |                 |                                    |                  | D. n. d                                |                                                            |              |           |               |                 | State of Origin        |             |       |                  | Page            | *************************************** |                           |                                         |          |
| Shipping/Receiving Company                                                                                                                                                | Zat                          |                 |                                    |                  |                                        | Bindert@Eurofinset.com Wisconditations Required (See note) |              |           |               | Wisconsın       |                        |             |       | Page 1 of 1      |                 |                                         |                           |                                         |          |
| estAmerica Laboratories Inc                                                                                                                                               |                              |                 |                                    |                  | State                                  | e Prog                                                     | ram -        | Wiscor    | nsın          |                 |                        |             |       |                  |                 |                                         | 310-207193-1              |                                         |          |
| ddress<br>417 Bond Street                                                                                                                                                 | Due Date Request<br>6/2/2021 | ed <sup>.</sup> |                                    | 1                |                                        |                                                            |              |           | Analv         | sis l           | Reque                  | ested       |       |                  |                 |                                         | Preservation Cod          | es                                      |          |
| ity.                                                                                                                                                                      | TAT Requested (d.            | ays)            |                                    | -+               | Т                                      | T                                                          | Т            |           | 1             | <u> </u>        | 1                      | T           | Ţ     | ГТ               |                 | Т                                       | A HCL<br>B NaOH           | M Hexane<br>N None                      |          |
| University Park 310-207193 COC                                                                                                                                            |                              |                 |                                    | - 1              | 1                                      |                                                            |              |           |               |                 | -                      | ]           |       |                  | - }             |                                         | C Zn Acetate              | O AsNaO2                                |          |
| tate Zip:<br>L 60484                                                                                                                                                      | 1                            |                 |                                    |                  | 1                                      | 1                                                          |              |           |               |                 |                        |             |       |                  | ı               |                                         | D Nitric Acid<br>E NaHSO4 | P Na2O4S<br>Q Na2SO3                    |          |
| hone <sup>-</sup>                                                                                                                                                         | PO#                          |                 |                                    |                  | 1                                      |                                                            |              |           |               | İ               | ļ                      |             |       |                  |                 |                                         | F MeOH<br>G Amchlor       | R Na2S2O3<br>S H2SO4                    | - 1      |
| '08-534-5200(Tel) 708-534-5211(Fax)                                                                                                                                       | WO #:                        |                 |                                    | ——[ <u>3</u>     | <b>3</b>                               | ۽ ا                                                        |              |           |               |                 | Ì                      |             |       |                  |                 |                                         | H Ascorbic Acid<br>I Ice  | T TSP Dodecahydra<br>U Acetone          | ate      |
| maii                                                                                                                                                                      | WO #.                        |                 |                                    | 3                | 2                                      | - Wisconsin                                                |              |           |               |                 |                        |             |       |                  | l               | gs.                                     | J DI Water                | V MCAA                                  | l        |
| roject Name                                                                                                                                                               | Project #                    |                 |                                    |                  |                                        | ž Š                                                        |              |           |               |                 | ı                      |             |       |                  |                 | containers                              | K EDTA<br>L EDA           | W pH 4-5<br>Z other (specify)           |          |
| Phase II ESA Laundromat/Menominee WI ite.                                                                                                                                 | 31005472<br>SSOW#            |                 |                                    |                  | گرا <u>گ</u>                           | ğ                                                          |              |           |               |                 |                        |             |       |                  | l               | onta                                    | Other <sup>.</sup>        |                                         |          |
| 116.                                                                                                                                                                      | 00011,                       |                 |                                    |                  | 8 8                                    | ) ×                                                        |              |           |               |                 |                        | }           |       | 1                |                 | ofc                                     |                           |                                         | l        |
|                                                                                                                                                                           |                              |                 | Sample Mat                         | rix              | NSW<br>B                               | 8260B/5035A_FM VOCs                                        |              |           |               |                 |                        |             |       |                  | •               | per                                     |                           |                                         |          |
|                                                                                                                                                                           | }                            |                 | Type (w=w                          | rater            |                                        | 503                                                        | 2            |           |               |                 |                        |             |       |                  | 1               | Num                                     |                           |                                         |          |
|                                                                                                                                                                           |                              | Sample          | (C=comp, 0=was                     | te/oil,          |                                        | 90B/                                                       | Moisture     |           |               |                 |                        |             |       |                  | ŀ               | Total Number                            |                           |                                         |          |
| Sample Identification - Client ID (Lab ID)                                                                                                                                | Sample Date                  | Time            | G=grab) BT=Tissu<br>Preservation C | e, A=Air) Li     | 果                                      | <u> </u>                                                   | ž            |           | +             |                 |                        | -           |       | -                |                 | Ł                                       | Special In:               | structions/Note                         |          |
|                                                                                                                                                                           |                              | 12 24           |                                    |                  | ¥                                      | ¥                                                          | <del> </del> | -         | +             |                 |                        | +           |       | ╀                |                 | 4                                       | <b> </b>                  |                                         |          |
| GP-1 (14-16') (310-207193-1)                                                                                                                                              | 5/20/21                      | Central         | So                                 | lid              | ┸                                      | X                                                          | X            |           | 1             | _               |                        |             |       |                  |                 | 2                                       |                           |                                         |          |
| rıp Blank (310-207193-2)                                                                                                                                                  | 5/20/21                      | Central         | So                                 | lid              | 1                                      | X                                                          |              |           | 1 1           |                 |                        | Ì           |       |                  |                 | 1                                       |                           |                                         | 1        |
|                                                                                                                                                                           |                              |                 |                                    |                  | 1                                      | 1                                                          |              |           |               |                 |                        | 1           |       |                  | $\top$          | 1                                       |                           |                                         | $\neg$   |
|                                                                                                                                                                           | <del> </del>                 |                 |                                    |                  | ╁                                      |                                                            | -            | -         | +             |                 |                        | +           |       | $\vdash$         |                 | +                                       | <b>_</b>                  |                                         |          |
|                                                                                                                                                                           |                              |                 |                                    |                  | $\perp$                                |                                                            | ļ            |           | $\perp \perp$ |                 |                        |             |       |                  |                 |                                         |                           |                                         |          |
|                                                                                                                                                                           |                              |                 |                                    | - 1              | 1                                      |                                                            |              |           |               |                 | - 1                    |             |       |                  | -               |                                         |                           |                                         | - 1      |
|                                                                                                                                                                           |                              |                 |                                    |                  |                                        | 1                                                          | ,            |           | $\top$        | $\neg \uparrow$ |                        |             |       |                  |                 |                                         |                           |                                         |          |
|                                                                                                                                                                           | <del> </del>                 |                 |                                    |                  | ╁                                      |                                                            | $\vdash$     |           | +             |                 |                        |             | _     | $\vdash$         | _               | +-                                      | <b>_</b>                  | *************************************** |          |
|                                                                                                                                                                           |                              |                 |                                    |                  | $\perp$                                |                                                            |              |           | $\perp$       |                 |                        |             |       | <u> </u>         |                 |                                         |                           |                                         |          |
|                                                                                                                                                                           |                              |                 |                                    |                  |                                        |                                                            |              |           |               |                 |                        |             |       |                  |                 |                                         |                           |                                         |          |
|                                                                                                                                                                           |                              |                 |                                    |                  | Τ                                      |                                                            |              |           |               |                 |                        |             |       |                  |                 |                                         |                           |                                         |          |
|                                                                                                                                                                           | L                            | L               | LL                                 |                  | ــــــــــــــــــــــــــــــــــــــ |                                                            |              |           | لـــــا       | L               |                        |             | L     | LL               |                 |                                         | <u> </u>                  |                                         | $\dashv$ |
| lote Since laboratory accreditations are subject to change Eurofins TestAmerica<br>naintain accreditation in the State of Origin listed above for analysis/tests/matrix t |                              |                 |                                    |                  |                                        |                                                            |              |           |               |                 |                        |             |       |                  |                 |                                         |                           |                                         | - 1      |
| estAmerica attention immediately If all requested accreditations are current to d                                                                                         | ate return the signer        | d Chain of Cust | tody attesting to said co          | omplicanc        | e to E                                 | Eurofins                                                   | s Test/      | America   |               |                 |                        |             |       | _                |                 |                                         |                           | -                                       |          |
| Possible Hazard Identification                                                                                                                                            |                              |                 |                                    |                  | Sá                                     |                                                            |              | •         |               | nay t           | e asse                 | essed       | if sa | mples            | are r           | etain                                   | ed longer than 1          | month)                                  | $\neg$   |
| Inconfirmed                                                                                                                                                               |                              |                 |                                    |                  | ┸                                      | $\sqcup_R$                                                 | Returr       | To Clie   | ent           |                 | Disp                   | osal E      | By La | b                | ᆜ               | Arch                                    | nive For                  | Months                                  |          |
| Deliverable Requested I II III IV Other (specify)                                                                                                                         | Primary Deliver              | able Rank. 2    | 2                                  |                  | Sp                                     | pecial                                                     | Instr        | uctions/  | QC Re         | quire           | ments                  |             |       |                  |                 |                                         |                           |                                         |          |
| Empty Kit Relinquished by                                                                                                                                                 |                              | Date            |                                    | Т                | ime                                    |                                                            |              | *         | -             |                 |                        | Meth        | od of | Shipmer          | nt:             | _                                       |                           |                                         | ᅱ        |
| delinquished by                                                                                                                                                           | Date/Time                    |                 | Compar                             | ıy .             |                                        | Rece                                                       | eived b      | 4/) .     | -             | 1               | _/                     | <del></del> |       | Date/T           | me:             | 21                                      | 8.42.3                    | Сородалу                                | #        |
| / JU/K                                                                                                                                                                    | 5247                         | 1635            |                                    |                  |                                        | J                                                          | A            | Min       |               | <u>XX</u>       | W                      | 0           |       | 57               | 15/             | 21                                      | 0930                      | ETA OH                                  | لك       |
| Relinquished by                                                                                                                                                           | Date/Time                    |                 | Compar                             | ny               |                                        | Rece                                                       | eived b      | À.        |               |                 |                        |             |       | Dat <b>é</b> /Ti | me /            |                                         |                           | Company                                 |          |
| lelinquished by                                                                                                                                                           | Date/Time                    |                 | Compar                             | ıy               |                                        | Rece                                                       | eived b      | A.        |               |                 |                        |             |       | Date/Ti          | me <sup>.</sup> |                                         |                           | Company                                 | $\dashv$ |
|                                                                                                                                                                           |                              | ***             |                                    |                  |                                        |                                                            |              |           |               |                 |                        |             |       | <u> </u>         |                 |                                         |                           |                                         |          |
| Custody Seals Intact: Custody Seal No Δ Yes Δ No                                                                                                                          |                              |                 |                                    |                  |                                        | Cool                                                       | er Ten       | perature( | s) °C an      | d Othe          | r Remar                | ks.         | 5     | 8                | •               |                                         |                           |                                         | l        |
| L                                                                                                                                                                         |                              |                 |                                    |                  |                                        | 1                                                          |              |           |               |                 |                        |             |       | V                |                 |                                         |                           |                                         |          |

AET Project No. P-0002702 Page D 25 of 80

# **Login Sample Receipt Checklist**

Client: American Engineering Testing Inc.

Job Number: 310-207193-1 SDG Number: P-0002702

List Source: Eurofins TestAmerica, Cedar Falls

Login Number: 207193 List Number: 1

Creator: Barros, Chelsea E

| Creator. Darros, Crieisea L                                                                               |        |         |
|-----------------------------------------------------------------------------------------------------------|--------|---------|
| Question                                                                                                  | Answer | Comment |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td> | N/A    |         |
| The cooler's custody seal, if present, is intact.                                                         | True   |         |
| Sample custody seals, if present, are intact.                                                             | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.                            | True   |         |
| Samples were received on ice.                                                                             | True   |         |
| Cooler Temperature is acceptable.                                                                         | True   |         |
| Cooler Temperature is recorded.                                                                           | True   |         |
| COC is present.                                                                                           | True   |         |
| COC is filled out in ink and legible.                                                                     | True   |         |
| COC is filled out with all pertinent information.                                                         | True   |         |
| Is the Field Sampler's name present on COC?                                                               | True   |         |
| There are no discrepancies between the containers received and the COC.                                   | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)                             | True   |         |
| Sample containers have legible labels.                                                                    | True   |         |
| Containers are not broken or leaking.                                                                     | True   |         |
| Sample collection date/times are provided.                                                                | True   |         |
| Appropriate sample containers are used.                                                                   | True   |         |
| Sample bottles are completely filled.                                                                     | True   |         |
| Sample Preservation Verified.                                                                             | True   |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                          | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                           | True   |         |
| Multiphasic samples are not present.                                                                      | True   |         |
| Samples do not require splitting or compositing.                                                          | True   |         |
| Residual Chlorine Checked.                                                                                | N/A    |         |

2

А

5

9

10

12

13

# **Login Sample Receipt Checklist**

Client: American Engineering Testing Inc.

Job Number: 310-207193-1

SDG Number: P-0002702

Login Number: 207193 List Source: Eurofins TestAmerica, Chicago List Number: 2

List Creation: 05/25/21 11:59 AM

Creator: Scott, Sherri L

| Answer | Comment                                 |
|--------|-----------------------------------------|
| True   |                                         |
| True   | 5.8                                     |
| True   |                                         |
|        | True True True True True True True True |

**Eurofins TestAmerica, Cedar Falls** 

AET Project No. P-0002702 Page D 27 of 80



# **REVIEWED**

By mneal at 8:15 am, May 27, 2021

# **Environment Testing America**



# ANALYTICAL REPORT

Eurofins TestAmerica, Burlington 530 Community Drive Suite 11 South Burlington, VT 05403

Tel: (802)660-1990

Laboratory Job ID: 200-58590-1

Laboratory Sample Delivery Group: 200-58590-1

Client Project/Site: Ph II ESA Laundromat/ Menomonie WI

For:

American Engineering Testing Inc. 550 Cleveland Ave. North St. Paul, Minnesota 55114

Attn: Dennis McComas

Kathykely

Authorized for release by: 5/26/2021 2:54:49 PM

Kathryn Kelly, Project Manager II (802)923-1021

Kathryn.Kelly@Eurofinset.com

LINKS

Review your project results through

Total Access

**Have a Question?** 



Visit us at:

www.eurofinsus.com/Env

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

1

2

3

6

9

10

12

Client: American Engineering Testing Inc. Project/Site: Ph II ESA Laundromat/ Menomonie WI Laboratory Job ID: 200-58590-1 SDG: 200-58590-1

# **Table of Contents**

| Cover Page                   | 1  |
|------------------------------|----|
| Table of Contents            | 2  |
| Definitions/Glossary         | 3  |
| Case Narrative               | 4  |
| Detection Summary            | 5  |
| Client Sample Results        | 6  |
| QC Sample Results            | 12 |
| QC Association Summary       | 17 |
| Lab Chronicle                | 18 |
| Certification Summary        | 19 |
| Method Summary               | 20 |
| Sample Summary               | 21 |
| Chain of Custody             | 22 |
| Receipt Checklists           | 24 |
| Air Canister Dilution        | 25 |
| Clean Canister Certification | 26 |
| Pre-Ship Certification       | 26 |
| Clean Canister Data          | 28 |

# **Definitions/Glossary**

Client: American Engineering Testing Inc. Job ID: 200-58590-1

Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

#### **Qualifiers**

#### Air - GC/MS VOA

Qualifier **Qualifier Description** 

D Sample results are obtained from a dilution; the surrogate or matrix spike recoveries reported are calculated from diluted samples.

Ε Result exceeded calibration range.

U Indicates the analyte was analyzed for but not detected.

#### Air - GC/MS VOA TICs

Qualifier **Qualifier Description** 

J Indicates an Estimated Value for TICs

Ν This flag indicates the presumptive evidence of a compound.

#### **Glossary**

| Abbreviation | These commonly | y used abbreviations may | y or may not be | present in this report. |
|--------------|----------------|--------------------------|-----------------|-------------------------|
|--------------|----------------|--------------------------|-----------------|-------------------------|

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid **CFU** Colony Forming Unit CNF Contains No Free Liquid

**DER** Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor** 

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

**EDL** Estimated Detection Limit (Dioxin) Limit of Detection (DoD/DOE) LOD Limit of Quantitation (DoD/DOE) LOQ

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MI Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

**Practical Quantitation Limit** PQL

**PRES** Presumptive QC **Quality Control** 

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

**RPD** Relative Percent Difference, a measure of the relative difference between two points

**TFF** Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

#### **Case Narrative**

Client: American Engineering Testing Inc.

Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

Job ID: 200-58590-1

Laboratory: Eurofins TestAmerica, Burlington

**Narrative** 

#### **CASE NARRATIVE**

Client: American Engineering Testing Inc.

Project: Ph II ESA Laundromat/ Menomonie WI

Report Number: 200-58590-1

With the exceptions noted as flags or footnotes, standard analytical protocols were followed in the analysis of the samples and no problems were encountered or anomalies observed. In addition all laboratory quality control samples were within established control limits, with any exceptions noted below. Each sample was analyzed to achieve the lowest possible reporting limit within the constraints of the method. In some cases, due to interference or analytes present at high concentrations, samples were diluted. For diluted samples, the reporting limits are adjusted relative to the dilution required.

Calculations are performed before rounding to avoid round-off errors in calculated results.

All holding times were met and proper preservation noted for the methods performed on these samples, unless otherwise detailed in the individual sections below.

#### **RECEIPT**

The samples were received on 05/22/2021; the samples arrived in good condition.

#### **VOLATILE ORGANIC COMPOUNDS**

Samples VP-1 (3-5'), VP-2 (3-5') and SSV-1 were analyzed for Volatile Organic Compounds in accordance with EPA Method TO-15. The samples were analyzed on 05/26/2021.

Samples VP-1 (3-5')[10X], VP-2 (3-5')[10X], SSV-1[10.1X] and SSV-1[79.8X] required dilution prior to analysis. The reporting limits have been adjusted accordingly.

No analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

4

Job ID: 200-58590-1

5

6

1

10

12

# **Detection Summary**

Client: American Engineering Testing Inc.

Project/Site: Ph II ESA Laundromat/ Menomonie WI

Job ID: 200-58590-1

Lab Sample ID: 200-58590-1

SDG: 200-58590-1

Total/NA

Total/NA

Total/NA

## Client Sample ID: VP-1 (3-5')

| Analyte             | Result | Qualifier | RL  | RL  | Unit  | Dil Fac D | Method | Prep Type |
|---------------------|--------|-----------|-----|-----|-------|-----------|--------|-----------|
| Propylene           | 370    |           | 86  | 86  | ug/m3 |           | TO-15  | Total/NA  |
| 1,3-Butadiene       | 49     |           | 4.4 | 4.4 | ug/m3 | 10        | TO-15  | Total/NA  |
| Acetone             | 120    |           | 120 | 120 | ug/m3 | 10        | TO-15  | Total/NA  |
| Methyl Ethyl Ketone | 27     |           | 15  | 15  | ug/m3 | 10        | TO-15  | Total/NA  |
| Benzene             | 22     |           | 6.4 | 6.4 | ug/m3 | 10        | TO-15  | Total/NA  |
| Toluene             | 23     |           | 7.5 | 7.5 | ug/m3 | 10        | TO-15  | Total/NA  |
| Tetrachloroethene   | 2300   |           | 14  | 14  | ug/m3 | 10        | TO-15  | Total/NA  |

#### Client Sample ID: VP-2 (3-5')

| Client Sample ID: VF | P-2 ( 3-5' )     |     |     |       | Lab S   | Sar | mple ID: | 200-58590-2 |
|----------------------|------------------|-----|-----|-------|---------|-----|----------|-------------|
| Analyte              | Result Qualifier | RL  | RL  | Unit  | Dil Fac | D   | Method   | Prep Type   |
| Propylene            | 110              | 86  | 86  | ug/m3 | 10      | _   | TO-15    | Total/NA    |
| 1,3-Butadiene        | 20               | 4.4 | 4.4 | ug/m3 | 10      |     | TO-15    | Total/NA    |
| Chloroform           | 22               | 9.8 | 9.8 | ug/m3 | 10      |     | TO-15    | Total/NA    |

6.4

7.5

14

6.4 ug/m3

7.5 ug/m3

14 ug/m3

10

10

10

TO-15

TO-15

TO-15

Lab Sample ID: 200-58590-3

13

16

1300

| Tetrachloroethene |            |
|-------------------|------------|
| 011 - 1 0 1       | ID- 00V/ 4 |

| <b>Client Sample</b> | ID: SSV-1 |
|----------------------|-----------|
|----------------------|-----------|

Benzene

Toluene

| Analyte      | Result | Qualifier | RL  | RL  | Unit  | Dil Fac D | Method | Prep Type |
|--------------|--------|-----------|-----|-----|-------|-----------|--------|-----------|
| Ethanol      | 600    |           | 95  | 95  | ug/m3 | 10.1      | TO-15  | Total/NA  |
| Acetone      | 2400   | E         | 120 | 120 | ug/m3 | 10.1      | TO-15  | Total/NA  |
| Acetone - DL | 2200   | D         | 950 | 950 | ug/m3 | 79.8      | TO-15  | Total/NA  |

# **Client Sample Results**

Client: American Engineering Testing Inc.

Job ID: 200-58590-1 Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

Client Sample ID: VP-1 ( 3-5')

Date Collected: 05/20/21 13:35

Date Received: 05/22/21 09:30 **Sample Container: No Container**  Lab Sample ID: 200-58590-1

| trix: | Air |  |
|-------|-----|--|
|       |     |  |
|       |     |  |
|       |     |  |
|       |     |  |
|       |     |  |

| 5 |
|---|
| J |
|   |
|   |

|  | 10                         |  |
|--|----------------------------|--|
|  | 10                         |  |
|  | 10                         |  |
|  | 10                         |  |
|  | 10                         |  |
|  | 10                         |  |
|  | 10                         |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  | 10<br>10<br>10<br>10<br>10 |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  |                            |  |
|  | 10                         |  |
|  |                            |  |

| Analyte                          | Result | Qualifier | RL  | RL  | Unit  | D | Prepared | Analyzed       | Dil Fa |
|----------------------------------|--------|-----------|-----|-----|-------|---|----------|----------------|--------|
| Propylene                        | 370    |           | 86  | 86  | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Dichlorodifluoromethane          | 25     | U         | 25  | 25  | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| 1,2-Dichlorotetrafluoroethane    | 14     | U         | 14  | 14  | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Chloromethane                    | 10     | U         | 10  | 10  | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Vinyl chloride                   | 5.1    | U         | 5.1 | 5.1 | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| 1,3-Butadiene                    | 49     |           | 4.4 | 4.4 | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Bromomethane                     | 7.8    | U         | 7.8 | 7.8 | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Chloroethane                     | 13     | U         | 13  | 13  | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Trichlorofluoromethane           | 11     | U         | 11  | 11  | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Ethanol                          | 94     | U         | 94  | 94  | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Freon TF                         | 15     | U         | 15  | 15  | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| 1,1-Dichloroethene               | 7.9    | U         | 7.9 | 7.9 | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Acetone                          | 120    |           | 120 | 120 | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Isopropyl alcohol                | 120    | U         | 120 | 120 | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Carbon disulfide                 | 16     | U         | 16  | 16  | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| Methylene Chloride               | 17     | U         | 17  | 17  | ug/m3 |   |          | 05/26/21 00:26 |        |
| Methyl tert-butyl ether          | 7.2    | U         | 7.2 | 7.2 | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| trans-1,2-Dichloroethene         | 7.9    | U         | 7.9 | 7.9 | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| n-Hexane                         | 18     | U         | 18  | 18  | ug/m3 |   |          | 05/26/21 00:26 |        |
| 1,1-Dichloroethane               | 8.1    | U         | 8.1 | 8.1 | ug/m3 |   |          | 05/26/21 00:26 | •      |
| Vinyl acetate                    | 180    | U         | 180 | 180 | ug/m3 |   |          | 05/26/21 00:26 |        |
| Ethyl acetate                    | 180    | U         | 180 | 180 | ug/m3 |   |          | 05/26/21 00:26 |        |
| Methyl Ethyl Ketone              | 27     |           | 15  | 15  | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| cis-1,2-Dichloroethene           | 7.9    | U         | 7.9 | 7.9 | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| Chloroform                       | 9.8    | U         | 9.8 | 9.8 | ug/m3 |   |          | 05/26/21 00:26 |        |
| Tetrahydrofuran                  | 150    | U         | 150 | 150 | ug/m3 |   |          | 05/26/21 00:26 |        |
| 1,1,1-Trichloroethane            | 11     | U         | 11  | 11  | ug/m3 |   |          | 05/26/21 00:26 | •      |
| Cyclohexane                      | 6.9    | U         | 6.9 | 6.9 | ug/m3 |   |          | 05/26/21 00:26 |        |
| Carbon tetrachloride             | 13     | U         | 13  | 13  | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| Benzene                          | 22     |           | 6.4 | 6.4 | ug/m3 |   |          | 05/26/21 00:26 | •      |
| 1,2-Dichloroethane               | 8.1    | U         | 8.1 | 8.1 | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| n-Heptane                        | 8.2    | U         | 8.2 | 8.2 | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| Trichloroethene                  | 11     | U         | 11  | 11  | ug/m3 |   |          | 05/26/21 00:26 | •      |
| 1,2-Dichloropropane              | 9.2    | U         | 9.2 | 9.2 | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| Bromodichloromethane             | 13     | U         | 13  | 13  | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| cis-1,3-Dichloropropene          | 9.1    | U         | 9.1 | 9.1 | ug/m3 |   |          | 05/26/21 00:26 | •      |
| Methyl isobutyl ketone           | 20     | U         | 20  | 20  | ug/m3 |   |          | 05/26/21 00:26 |        |
| Toluene                          | 23     |           | 7.5 | 7.5 | ug/m3 |   |          | 05/26/21 00:26 | •      |
| trans-1,3-Dichloropropene        | 9.1    | U         | 9.1 | 9.1 | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| 1,1,2-Trichloroethane            | 11     | U         | 11  | 11  | ug/m3 |   |          | 05/26/21 00:26 |        |
| Tetrachloroethene                | 2300   |           | 14  | 14  | ug/m3 |   |          | 05/26/21 00:26 | •      |
| Methyl Butyl Ketone (2-Hexanone) | 20     | U         | 20  | 20  | ug/m3 |   |          | 05/26/21 00:26 | ,      |
| 1,2-Dibromoethane                | 15     | U         | 15  | 15  | ug/m3 |   |          | 05/26/21 00:26 |        |
| Chlorobenzene                    | 9.2    | U         | 9.2 | 9.2 | ug/m3 |   |          | 05/26/21 00:26 |        |
| Ethylbenzene                     | 8.7    | U         | 8.7 | 8.7 | ug/m3 |   |          | 05/26/21 00:26 |        |
| m,p-Xylene                       | 22     | U         | 22  |     | ug/m3 |   |          | 05/26/21 00:26 |        |
| Xylene, o-                       | 8.7    | U         | 8.7 |     | ug/m3 |   |          | 05/26/21 00:26 | 1      |
| Styrene                          | 8.5    |           | 8.5 |     | ug/m3 |   |          | 05/26/21 00:26 | 1      |

Eurofins TestAmerica, Burlington

#### Client Sample Results

Client: American Engineering Testing Inc.

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Result Qualifier

21 Ū

27 JN

15 J N

29 J N

18 J N

14 J

Job ID: 200-58590-1 Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

RL

21

RL Unit

6.98

7.43

8.35

9.59

16.72

513-35-9

591-95-7

542-92-7

541-05-9

21 ug/m3

D

Prepared

Client Sample ID: VP-1 (3-5')

Date Collected: 05/20/21 13:35

Date Received: 05/22/21 09:30 Sample Container: No Container

Analyte

Bromoform

Lab Sample ID: 200-58590-1

Analyzed

05/26/21 00:26

Matrix: Air

Dil Fac

10

10

10

10

10

10

10

10

10

6

1,1,2,2-Tetrachloroethane 14 U 14 14 ug/m3 05/26/21 00:26 10 9.8 U 9.8 4-Ethyltoluene 9.8 ug/m3 05/26/21 00:26 10 1,3,5-Trimethylbenzene 9.8 U 9.8 9.8 ug/m3 05/26/21 00:26 1,2,4-Trimethylbenzene 9.8 U 9.8 9.8 ug/m3 05/26/21 00:26 10 1,3-Dichlorobenzene 12 U 12 ug/m3 05/26/21 00:26 10 1,4-Dichlorobenzene 12 U 12 12 ug/m3 05/26/21 00:26 10 Benzyl chloride 10 U 10 10 ug/m3 05/26/21 00:26 10 1,2-Dichlorobenzene 12 U 12 12 ug/m3 05/26/21 00:26 10 1,2,4-Trichlorobenzene 37 U 37 37 ug/m3 05/26/21 00:26 10 Hexachlorobutadiene 21 U 21 21 ug/m3 05/26/21 00:26 10 Naphthalene 26 U 26 26 ug/m3 05/26/21 00:26 10 **Tentatively Identified Compound** Est. Result Qualifier Unit RT CAS No. Prepared Dil Fac Analyzed Propyne 35 JΝ ppb v/v 4.48 74-99-7 05/26/21 00:26 5.00 115-11-7 1-Propene, 2-methyl-70 J N ppb v/v 05/26/21 00:26 10 Unknown 20 J ppb v/v 5.05 05/26/21 00:26 10 Unknown 20 J 5.41 05/26/21 00:26 10 ppb v/v Unknown 14 J ppb v/v 5.51 05/26/21 00:26

ppb v/v

ppb v/v

ppb v/v

ppb v/v

ppb v/v

Client Sample ID: VP-2 (3-5')

Date Collected: 05/20/21 13:56 Date Received: 05/22/21 09:30

2-Butene, 2-methyl-

1.3-Cyclopentadiene

Cyclotrisiloxane, hexamethyl-

1,2-Pentadiene

Unknown

Sample Container: Summa Canister 1L

Lab Sample ID: 200-58590-2

05/26/21 00:26

05/26/21 00:26

05/26/21 00:26

05/26/21 00:26

05/26/21 00:26

Matrix: Air

| Analyte                       | Result | Qualifier | RL  | RL  | Unit  | D | Prepared | Analyzed       | Dil Fac |
|-------------------------------|--------|-----------|-----|-----|-------|---|----------|----------------|---------|
| Propylene                     | 110    |           | 86  | 86  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Dichlorodifluoromethane       | 25     | U         | 25  | 25  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,2-Dichlorotetrafluoroethane | 14     | U         | 14  | 14  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Chloromethane                 | 10     | U         | 10  | 10  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Vinyl chloride                | 5.1    | U         | 5.1 | 5.1 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,3-Butadiene                 | 20     |           | 4.4 | 4.4 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Bromomethane                  | 7.8    | U         | 7.8 | 7.8 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Chloroethane                  | 13     | U         | 13  | 13  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Trichlorofluoromethane        | 11     | U         | 11  | 11  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Ethanol                       | 94     | U         | 94  | 94  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Freon TF                      | 15     | U         | 15  | 15  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,1-Dichloroethene            | 7.9    | U         | 7.9 | 7.9 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Acetone                       | 120    | U         | 120 | 120 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Isopropyl alcohol             | 120    | U         | 120 | 120 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Carbon disulfide              | 16     | U         | 16  | 16  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Methylene Chloride            | 17     | U         | 17  | 17  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Methyl tert-butyl ether       | 7.2    | U         | 7.2 | 7.2 | ug/m3 |   |          | 05/26/21 03:11 | 10      |

Eurofins TestAmerica, Burlington

Client: American Engineering Testing Inc.

Job ID: 200-58590-1 Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

Client Sample ID: VP-2 (3-5')

Date Collected: 05/20/21 13:56 Date Received: 05/22/21 09:30

Propyne

Unknown

Unknown

Unknown

Sample Container: Summa Canister 1L

Lab Sample ID: 200-58590-2

Matrix: Air

| Analyte                          |          | Qualifier | RL  | RL  | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------------------------------|----------|-----------|-----|-----|-------|---|----------|----------------|---------|
| trans-1,2-Dichloroethene         | 7.9      | U         | 7.9 | 7.9 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| n-Hexane                         | 18       | U         | 18  | 18  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,1-Dichloroethane               | 8.1      | U         | 8.1 | 8.1 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Vinyl acetate                    | 180      | U         | 180 | 180 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Ethyl acetate                    | 180      | U         | 180 | 180 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Methyl Ethyl Ketone              | 15       | U         | 15  | 15  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| cis-1,2-Dichloroethene           | 7.9      | U         | 7.9 | 7.9 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Chloroform                       | 22       |           | 9.8 | 9.8 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Tetrahydrofuran                  | 150      | U         | 150 | 150 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,1,1-Trichloroethane            | 11       | U         | 11  | 11  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Cyclohexane                      | 6.9      | U         | 6.9 | 6.9 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Carbon tetrachloride             | 13       | U         | 13  | 13  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Benzene                          | 13       |           | 6.4 | 6.4 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,2-Dichloroethane               | 8.1      | U         | 8.1 | 8.1 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| n-Heptane                        | 8.2      | U         | 8.2 | 8.2 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Trichloroethene                  | 11       | U         | 11  |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,2-Dichloropropane              | 9.2      | U         | 9.2 | 9.2 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Bromodichloromethane             | 13       | U         | 13  | 13  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| cis-1,3-Dichloropropene          | 9.1      | U         | 9.1 | 9.1 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Methyl isobutyl ketone           | 20       | U         | 20  | 20  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Toluene                          | 16       |           | 7.5 | 7.5 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| trans-1,3-Dichloropropene        | 9.1      | U         | 9.1 | 9.1 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,1,2-Trichloroethane            | 11       | U         | 11  | 11  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Tetrachloroethene                | 1300     |           | 14  |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Methyl Butyl Ketone (2-Hexanone) | 20       | U         | 20  | 20  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,2-Dibromoethane                | 15       | U         | 15  |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Chlorobenzene                    | 9.2      | U         | 9.2 | 9.2 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Ethylbenzene                     | 8.7      | U         | 8.7 | 8.7 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| m,p-Xylene                       | 22       | U         | 22  | 22  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Xylene, o-                       | 8.7      | U         | 8.7 | 8.7 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Styrene                          | 8.5      | U         | 8.5 | 8.5 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Bromoform                        | 21       | U         | 21  | 21  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,1,2,2-Tetrachloroethane        | 14       | U         | 14  | 14  | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 4-Ethyltoluene                   | 9.8      | U         | 9.8 | 9.8 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,3,5-Trimethylbenzene           | 9.8      | U         | 9.8 | 9.8 | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,2,4-Trimethylbenzene           | 9.8      | U         | 9.8 |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,3-Dichlorobenzene              | 12       |           | 12  |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,4-Dichlorobenzene              | 12       | U         | 12  |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Benzyl chloride                  | 10       | U         | 10  |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,2-Dichlorobenzene              | 12       | U         | 12  |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| 1,2,4-Trichlorobenzene           | 37       | U         | 37  |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |
|                                  | 0.4      | U         | 21  |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |
| Hexachlorobutadiene              | 21       | U         |     |     |       |   |          | 00/20/21 00.11 |         |
|                                  | 21<br>26 |           | 26  |     | ug/m3 |   |          | 05/26/21 03:11 | 10      |

Eurofins TestAmerica, Burlington

05/26/21 03:11

05/26/21 03:11

05/26/21 03:11

05/26/21 03:11

ppb v/v

ppb v/v

ppb v/v

ppb v/v

4.49

5.01

5.06

5.42

74-99-7

15 JN

18 J

18 J

18 J

10

10

10

Client: American Engineering Testing Inc.

Job ID: 200-58590-1 Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

Client Sample ID: VP-2 (3-5')

Date Collected: 05/20/21 13:56 Date Received: 05/22/21 09:30

Sample Container: Summa Canister 1L

Lab Sample ID: 200-58590-2

Matrix: Air

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

| Tentatively Identified Compound | Est. Result | Qualifier | Unit    | D | RT   | CAS No.  | Prepared | Analyzed       | Dil Fac |
|---------------------------------|-------------|-----------|---------|---|------|----------|----------|----------------|---------|
| Unknown                         | 10          | J         | ppb v/v |   | 6.96 |          |          | 05/26/21 03:11 | 10      |
| 1,3-Cyclopentadiene             | 10          | JN        | ppb v/v |   | 8.35 | 542-92-7 |          | 05/26/21 03:11 | 10      |

**Client Sample ID: SSV-1** Lab Sample ID: 200-58590-3

Date Collected: 05/20/21 11:47 **Matrix: Air** 

Date Received: 05/22/21 09:30

Sample Container: Summa Canister 1L

| Analyte                       | Result | Qualifier | RL  | RL  | Unit  | D | Prepared | Analyzed       | Dil Fac |
|-------------------------------|--------|-----------|-----|-----|-------|---|----------|----------------|---------|
| Propylene                     | 87     | U         | 87  | 87  | ug/m3 |   |          | 05/26/21 04:06 | 10.1    |
| Dichlorodifluoromethane       | 25     | U         | 25  | 25  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| 1,2-Dichlorotetrafluoroethane | 14     | U         | 14  | 14  | ug/m3 |   |          | 05/26/21 04:06 | 10.1    |
| Chloromethane                 | 10     | U         | 10  | 10  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Vinyl chloride                | 5.2    | U         | 5.2 | 5.2 | ug/m3 |   |          | 05/26/21 04:06 | 10.1    |
| 1,3-Butadiene                 | 4.5    | U         | 4.5 | 4.5 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Bromomethane                  | 7.8    | U         | 7.8 | 7.8 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Chloroethane                  | 13     | U         | 13  | 13  | ug/m3 |   |          | 05/26/21 04:06 | 10.1    |
| Trichlorofluoromethane        | 11     | U         | 11  | 11  | ug/m3 |   |          | 05/26/21 04:06 | 10.1    |
| Ethanol                       | 600    |           | 95  | 95  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Freon TF                      | 15     | U         | 15  | 15  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| 1,1-Dichloroethene            | 8.0    | U         | 8.0 | 8.0 | ug/m3 |   |          | 05/26/21 04:06 | 10.1    |
| Acetone                       | 2400   | E         | 120 | 120 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Isopropyl alcohol             | 120    | U         | 120 | 120 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Carbon disulfide              | 16     | U         | 16  | 16  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Methylene Chloride            | 18     | U         | 18  | 18  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Methyl tert-butyl ether       | 7.3    | U         | 7.3 | 7.3 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| trans-1,2-Dichloroethene      | 8.0    | U         | 8.0 | 8.0 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| n-Hexane                      | 18     | U         | 18  | 18  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| 1,1-Dichloroethane            | 8.2    | U         | 8.2 | 8.2 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Vinyl acetate                 | 180    | U         | 180 | 180 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Ethyl acetate                 | 180    | U         | 180 | 180 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Methyl Ethyl Ketone           | 15     | U         | 15  | 15  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| cis-1,2-Dichloroethene        | 8.0    | U         | 8.0 | 8.0 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Chloroform                    | 9.9    | U         | 9.9 | 9.9 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Tetrahydrofuran               | 150    | U         | 150 | 150 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| 1,1,1-Trichloroethane         | 11     | U         | 11  | 11  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Cyclohexane                   | 7.0    | U         | 7.0 | 7.0 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Carbon tetrachloride          | 13     | U         | 13  | 13  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Benzene                       | 6.5    | U         | 6.5 | 6.5 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| 1,2-Dichloroethane            | 8.2    | U         | 8.2 | 8.2 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| n-Heptane                     | 8.3    | U         | 8.3 | 8.3 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Trichloroethene               | 11     | U         | 11  | 11  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| 1,2-Dichloropropane           | 9.3    | U         | 9.3 | 9.3 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Bromodichloromethane          | 14     | U         | 14  | 14  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| cis-1,3-Dichloropropene       | 9.2    | U         | 9.2 | 9.2 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Methyl isobutyl ketone        | 21     | U         | 21  | 21  | ug/m3 |   |          | 05/26/21 04:06 | 10.     |
| Toluene                       | 7.6    | U         | 7.6 | 7.6 | ug/m3 |   |          | 05/26/21 04:06 | 10.     |

Eurofins TestAmerica, Burlington

Page 9 of 54

5/26/2021

Client: American Engineering Testing Inc.

Job ID: 200-58590-1 Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

**Client Sample ID: SSV-1** 

Date Collected: 05/20/21 11:47 Date Received: 05/22/21 09:30

Sample Container: Summa Canister 1L

Lab Sample ID: 200-58590-3

Matrix: Air

| Analyte                          | Result      | Qualifier | RL      | RL  | Unit  | D       | Prepared | Analyzed       | Dil Fac |
|----------------------------------|-------------|-----------|---------|-----|-------|---------|----------|----------------|---------|
| trans-1,3-Dichloropropene        | 9.2         | U         | 9.2     | 9.2 | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| 1,1,2-Trichloroethane            | 11          | U         | 11      | 11  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Tetrachloroethene                | 14          | U         | 14      | 14  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Methyl Butyl Ketone (2-Hexanone) | 21          | U         | 21      | 21  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| 1,2-Dibromoethane                | 16          | U         | 16      | 16  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Chlorobenzene                    | 9.3         | U         | 9.3     | 9.3 | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Ethylbenzene                     | 8.8         | U         | 8.8     | 8.8 | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| m,p-Xylene                       | 22          | U         | 22      | 22  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Xylene, o-                       | 8.8         | U         | 8.8     | 8.8 | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Styrene                          | 8.6         | U         | 8.6     | 8.6 | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Bromoform                        | 21          | U         | 21      | 21  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| 1,1,2,2-Tetrachloroethane        | 14          | U         | 14      | 14  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| 4-Ethyltoluene                   | 9.9         | U         | 9.9     | 9.9 | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| 1,3,5-Trimethylbenzene           | 9.9         | U         | 9.9     | 9.9 | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| 1,2,4-Trimethylbenzene           | 9.9         | U         | 9.9     | 9.9 | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| 1,3-Dichlorobenzene              | 12          | U         | 12      | 12  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| 1,4-Dichlorobenzene              | 12          | U         | 12      | 12  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Benzyl chloride                  | 10          | U         | 10      | 10  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| 1,2-Dichlorobenzene              | 12          | U         | 12      | 12  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| 1,2,4-Trichlorobenzene           | 37          | U         | 37      | 37  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Hexachlorobutadiene              | 22          | U         | 22      | 22  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Naphthalene                      | 26          | U         | 26      | 26  | ug/m3 |         |          | 05/26/21 04:06 | 10.1    |
| Tentatively Identified Compound  | Est. Result | Qualifier | Unit    | D   | RT    | CAS No. | Prepared | Analyzed       | Dil Fac |
| Unknown                          | 11          | J         | ppb v/v | 5   | .41   |         |          | 05/26/21 04:06 | 10.1    |
| 1-Propanol                       | 13          | JN        | ppb v/v | 10  | .17   | 71-23-8 |          | 05/26/21 04:06 | 10.1    |

| Analyte                       | Result | Qualifier | RL  | RL  | Unit  | D | Prepared | Analyzed       | Dil Fac |
|-------------------------------|--------|-----------|-----|-----|-------|---|----------|----------------|---------|
| Propylene                     | 690    | U         | 690 | 690 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Dichlorodifluoromethane       | 200    | U         | 200 | 200 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| 1,2-Dichlorotetrafluoroethane | 110    | U         | 110 | 110 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Chloromethane                 | 82     | U         | 82  | 82  | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Vinyl chloride                | 41     | U         | 41  | 41  | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| 1,3-Butadiene                 | 35     | U         | 35  | 35  | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Bromomethane                  | 62     | U         | 62  | 62  | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Chloroethane                  | 110    | U         | 110 | 110 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Trichlorofluoromethane        | 90     | U         | 90  | 90  | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Ethanol                       | 750    | U         | 750 | 750 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Freon TF                      | 120    | U         | 120 | 120 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| 1,1-Dichloroethene            | 63     | U         | 63  | 63  | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Acetone                       | 2200   | D         | 950 | 950 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Isopropyl alcohol             | 980    | U         | 980 | 980 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Carbon disulfide              | 120    | U         | 120 | 120 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Methylene Chloride            | 140    | U         | 140 | 140 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| Methyl tert-butyl ether       | 58     | U         | 58  | 58  | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| trans-1,2-Dichloroethene      | 63     | U         | 63  | 63  | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| n-Hexane                      | 140    | U         | 140 | 140 | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |
| 1,1-Dichloroethane            | 65     | U         | 65  | 65  | ug/m3 |   |          | 05/26/21 05:01 | 79.8    |

Eurofins TestAmerica, Burlington

Client: American Engineering Testing Inc.

Job ID: 200-58590-1 Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

**Client Sample ID: SSV-1** 

Date Collected: 05/20/21 11:47 Date Received: 05/22/21 09:30

Sample Container: Summa Canister 1L

Lab Sample ID: 200-58590-3

Matrix: Air

| Analyte                          | Result      | Qualifier | RL   |      | Unit  | D       | Prepared | Analyzed       | Dil Fac |
|----------------------------------|-------------|-----------|------|------|-------|---------|----------|----------------|---------|
| Vinyl acetate                    | 1400        | U         | 1400 | 1400 | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Ethyl acetate                    | 1400        | U         | 1400 | 1400 | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Methyl Ethyl Ketone              | 120         | U         | 120  | 120  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| cis-1,2-Dichloroethene           | 63          | U         | 63   | 63   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Chloroform                       | 78          | U         | 78   | 78   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Tetrahydrofuran                  | 1200        | U         | 1200 | 1200 | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,1,1-Trichloroethane            | 87          | U         | 87   | 87   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Cyclohexane                      | 55          | U         | 55   | 55   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Carbon tetrachloride             | 100         | U         | 100  | 100  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Benzene                          | 51          | U         | 51   | 51   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,2-Dichloroethane               | 65          | U         | 65   | 65   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| n-Heptane                        | 65          | U         | 65   | 65   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Trichloroethene                  | 86          | U         | 86   | 86   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,2-Dichloropropane              | 74          | U         | 74   | 74   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Bromodichloromethane             | 110         | U         | 110  | 110  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| cis-1,3-Dichloropropene          | 72          | U         | 72   | 72   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Methyl isobutyl ketone           | 160         | U         | 160  | 160  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Toluene                          | 60          | U         | 60   | 60   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| trans-1,3-Dichloropropene        | 72          | U         | 72   | 72   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,1,2-Trichloroethane            | 87          | U         | 87   | 87   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Tetrachloroethene                | 110         | U         | 110  | 110  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Methyl Butyl Ketone (2-Hexanone) | 160         | U         | 160  | 160  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,2-Dibromoethane                | 120         | U         | 120  | 120  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Chlorobenzene                    | 73          | U         | 73   | 73   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Ethylbenzene                     | 69          | U         | 69   | 69   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| m,p-Xylene                       | 170         | U         | 170  | 170  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Xylene, o-                       | 69          | U         | 69   | 69   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Styrene                          | 68          | U         | 68   | 68   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Bromoform                        | 160         | U         | 160  | 160  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,1,2,2-Tetrachloroethane        | 110         | U         | 110  | 110  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 4-Ethyltoluene                   | 78          | U         | 78   | 78   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,3,5-Trimethylbenzene           | 78          | U         | 78   | 78   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,2,4-Trimethylbenzene           | 78          | U         | 78   | 78   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,3-Dichlorobenzene              | 96          | U         | 96   | 96   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,4-Dichlorobenzene              | 96          | U         | 96   | 96   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Benzyl chloride                  | 83          | U         | 83   | 83   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,2-Dichlorobenzene              | 96          | U         | 96   | 96   | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| 1,2,4-Trichlorobenzene           | 300         | U         | 300  | 300  | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Hexachlorobutadiene              | 170         | U         | 170  |      | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Naphthalene                      | 210         | U         | 210  |      | ug/m3 |         |          | 05/26/21 05:01 | 79.8    |
| Tentatively Identified Compound  | Est. Result | Qualifier | Unit | D    | RT    | CAS No. | Prepared | Analyzed       | Dil Fac |

Client: American Engineering Testing Inc. Job ID: 200-58590-1 Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

# Method: TO-15 - Volatile Organic Compounds in Ambient Air

Lab Sample ID: MB 200-167228/4

**Matrix: Air** 

Client Sample ID: Method Blank **Prep Type: Total/NA** 

| Analysis Batch: 167228           | MB     | MB        |      |      |                |   |          |                |         |
|----------------------------------|--------|-----------|------|------|----------------|---|----------|----------------|---------|
| Analyte                          | Result | Qualifier | RL   | RL   | Unit           | D | Prepared | Analyzed       | Dil Fac |
| Propylene                        | 8.6    | U         | 8.6  | 8.6  | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Dichlorodifluoromethane          | 2.5    | U         | 2.5  | 2.5  | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| 1,2-Dichlorotetrafluoroethane    | 1.4    | U         | 1.4  | 1.4  | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Chloromethane                    | 1.0    | U         | 1.0  | 1.0  | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Vinyl chloride                   | 0.51   | U         | 0.51 | 0.51 | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| 1,3-Butadiene                    | 0.44   | U         | 0.44 | 0.44 | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Bromomethane                     | 0.78   | U         | 0.78 | 0.78 | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Chloroethane                     | 1.3    | U         | 1.3  | 1.3  | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Trichlorofluoromethane           | 1.1    | U         | 1.1  | 1.1  | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Ethanol                          | 9.4    | U         | 9.4  | 9.4  | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Freon TF                         | 1.5    | U         | 1.5  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| 1,1-Dichloroethene               | 0.79   | U         | 0.79 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Acetone                          | 12     | U         | 12   |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Isopropyl alcohol                | 12     | U         | 12   |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Carbon disulfide                 | 1.6    |           | 1.6  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Methylene Chloride               | 1.7    |           | 1.7  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Methyl tert-butyl ether          | 0.72   |           | 0.72 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| trans-1,2-Dichloroethene         | 0.79   |           | 0.79 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| n-Hexane                         | 1.8    |           | 1.8  |      | ug/m3          |   |          | 05/25/21 10:23 |         |
| 1,1-Dichloroethane               | 0.81   |           | 0.81 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Vinyl acetate                    | 18     |           | 18   |      | ug/m3          |   |          | 05/25/21 10:23 | . 1     |
| Ethyl acetate                    | 18     |           | 18   |      | ug/m3          |   |          | 05/25/21 10:23 |         |
| Methyl Ethyl Ketone              | 1.5    |           | 1.5  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| cis-1,2-Dichloroethene           | 0.79   |           | 0.79 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Chloroform                       | 0.79   |           | 0.79 |      | ug/m3          |   |          | 05/25/21 10:23 |         |
| Tetrahydrofuran                  | 15     |           | 15   |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| 1,1,1-Trichloroethane            | 1.1    |           | 1.1  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
|                                  | 0.69   |           | 0.69 |      |                |   |          | 05/25/21 10:23 |         |
| Cyclohexane Carbon tetrachloride | 1.3    |           | 1.3  |      | ug/m3<br>ug/m3 |   |          | 05/25/21 10:23 | 1       |
| Benzene                          | 0.64   |           | 0.64 |      | -              |   |          | 05/25/21 10:23 | 1<br>1  |
|                                  |        |           |      |      | ug/m3          |   |          |                |         |
| 1,2-Dichloroethane               | 0.81   |           | 0.81 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| n-Heptane                        | 0.82   |           | 0.82 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Trichloroethene                  | 1.1    |           | 1.1  |      | ug/m3          |   |          | 05/25/21 10:23 |         |
| 1,2-Dichloropropane              | 0.92   |           | 0.92 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Bromodichloromethane             | 1.3    |           | 1.3  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| cis-1,3-Dichloropropene          | 0.91   |           | 0.91 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Methyl isobutyl ketone           | 2.0    |           | 2.0  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Toluene                          | 0.75   |           | 0.75 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| trans-1,3-Dichloropropene        | 0.91   |           | 0.91 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| 1,1,2-Trichloroethane            | 1.1    |           | 1.1  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Tetrachloroethene                | 1.4    |           | 1.4  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Methyl Butyl Ketone (2-Hexanone) | 2.0    |           | 2.0  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| 1,2-Dibromoethane                | 1.5    |           | 1.5  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Chlorobenzene                    | 0.92   |           | 0.92 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Ethylbenzene                     | 0.87   |           | 0.87 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| m,p-Xylene                       | 2.2    |           | 2.2  |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Xylene, o-                       | 0.87   |           | 0.87 |      | ug/m3          |   |          | 05/25/21 10:23 | 1       |
| Styrene                          | 0.85   | U         | 0.85 | 0.85 | ug/m3          |   |          | 05/25/21 10:23 | 1       |

Eurofins TestAmerica, Burlington

Page 12 of 54

5/26/2021

Client: American Engineering Testing Inc.

Job ID: 200-58590-1 Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

# Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

None

Lab Sample ID: MB 200-167228/4

**Matrix: Air** 

**Analysis Batch: 167228** 

**Client Sample ID: Method Blank** 

Prep Type: Total/NA

|                                 | MB          | MB        |      |      |       |         |          |                |         |
|---------------------------------|-------------|-----------|------|------|-------|---------|----------|----------------|---------|
| Analyte                         | Result      | Qualifier | RL   | RL   | Unit  | D       | Prepared | Analyzed       | Dil Fac |
| Bromoform                       | 2.1         | U         | 2.1  | 2.1  | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| 1,1,2,2-Tetrachloroethane       | 1.4         | U         | 1.4  | 1.4  | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| 4-Ethyltoluene                  | 0.98        | U         | 0.98 | 0.98 | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| 1,3,5-Trimethylbenzene          | 0.98        | U         | 0.98 | 0.98 | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| 1,2,4-Trimethylbenzene          | 0.98        | U         | 0.98 | 0.98 | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| 1,3-Dichlorobenzene             | 1.2         | U         | 1.2  | 1.2  | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| 1,4-Dichlorobenzene             | 1.2         | U         | 1.2  | 1.2  | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| Benzyl chloride                 | 1.0         | U         | 1.0  | 1.0  | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| 1,2-Dichlorobenzene             | 1.2         | U         | 1.2  | 1.2  | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| 1,2,4-Trichlorobenzene          | 3.7         | U         | 3.7  | 3.7  | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| Hexachlorobutadiene             | 2.1         | U         | 2.1  | 2.1  | ug/m3 |         |          | 05/25/21 10:23 | 1       |
| Naphthalene                     | 2.6         | U         | 2.6  | 2.6  | ug/m3 |         |          | 05/25/21 10:23 | 1       |
|                                 | MB          | MB        |      |      |       |         |          |                |         |
| Tentatively Identified Compound | Est. Result | Qualifier | Unit | D    | RT    | CAS No. | Prepared | Analyzed       | Dil Fac |

ppb v/v

Lab Sample ID: LCS 200-167228/3

**Matrix: Air** 

Tentatively Identified Compound

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

05/25/21 10:23

|                               | Spike | LCS    | LCS       |       |   |      | %Rec.    |
|-------------------------------|-------|--------|-----------|-------|---|------|----------|
| Analyte                       | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |
| Propylene                     | 17.4  | 17.5   |           | ug/m3 |   | 100  | 50 - 158 |
| Dichlorodifluoromethane       | 52.3  | 49.4   |           | ug/m3 |   | 94   | 61 - 142 |
| 1,2-Dichlorotetrafluoroethane | 74.0  | 70.1   |           | ug/m3 |   | 95   | 71 - 141 |
| Chloromethane                 | 20.5  | 22.1   |           | ug/m3 |   | 108  | 56 - 141 |
| Vinyl chloride                | 25.5  | 25.8   |           | ug/m3 |   | 101  | 61 - 135 |
| 1,3-Butadiene                 | 21.5  | 20.2   |           | ug/m3 |   | 94   | 58 - 139 |
| Bromomethane                  | 40.4  | 36.9   |           | ug/m3 |   | 91   | 72 - 124 |
| Chloroethane                  | 27.9  | 26.4   |           | ug/m3 |   | 95   | 68 - 130 |
| Trichlorofluoromethane        | 58.5  | 53.9   |           | ug/m3 |   | 92   | 70 - 129 |
| Ethanol                       | 27.7  | 28.1   |           | ug/m3 |   | 101  | 50 - 150 |
| Freon TF                      | 81.8  | 75.7   |           | ug/m3 |   | 93   | 70 - 121 |
| 1,1-Dichloroethene            | 40.4  | 34.6   |           | ug/m3 |   | 86   | 68 - 120 |
| Acetone                       | 24.8  | 22.8   |           | ug/m3 |   | 92   | 54 - 154 |
| Isopropyl alcohol             | 25.0  | 23.3   |           | ug/m3 |   | 93   | 53 - 142 |
| Carbon disulfide              | 32.3  | 29.8   |           | ug/m3 |   | 92   | 71 - 138 |
| Methylene Chloride            | 35.6  | 33.4   |           | ug/m3 |   | 94   | 59 - 137 |
| Methyl tert-butyl ether       | 38.1  | 34.7   |           | ug/m3 |   | 91   | 70 - 127 |
| trans-1,2-Dichloroethene      | 40.9  | 38.2   |           | ug/m3 |   | 93   | 69 - 137 |
| n-Hexane                      | 36.9  | 33.3   |           | ug/m3 |   | 90   | 63 - 138 |
| 1,1-Dichloroethane            | 41.6  | 37.5   |           | ug/m3 |   | 90   | 66 - 130 |
| Vinyl acetate                 | 35.5  | 38.0   |           | ug/m3 |   | 107  | 59 - 149 |
| Ethyl acetate                 | 36.8  | 34.6   |           | ug/m3 |   | 94   | 70 - 131 |
| Methyl Ethyl Ketone           | 30.5  | 28.4   |           | ug/m3 |   | 93   | 72 - 124 |
| cis-1,2-Dichloroethene        | 41.1  | 34.4   |           | ug/m3 |   | 84   | 72 - 121 |
| Chloroform                    | 50.4  | 45.8   |           | ug/m3 |   | 91   | 73 - 124 |
| Tetrahydrofuran               | 28.9  | 28.0   |           | ug/m3 |   | 97   | 60 - 149 |
| 1,1,1-Trichloroethane         | 56.3  | 51.9   |           | ug/m3 |   | 92   | 72 - 127 |

Eurofins TestAmerica, Burlington

Client: American Engineering Testing Inc.

Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

Spike

Added

LCS LCS

Result Qualifier

Unit

ug/m3

## Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-167228/3

**Matrix: Air** 

Analyte

Ethylbenzene

1,3,5-Trimethylbenzene

m,p-Xylene

**Analysis Batch: 167228** 

**Client Sample ID: Lab Control Sample** 

Job ID: 200-58590-1

**Prep Type: Total/NA** %Rec.

Limits

%Rec

Cyclohexane 35.2 32.0 ug/m3 91 76 - 124 Carbon tetrachloride 63.2 64.5 ug/m3 102 71 - 133Benzene 33.2 30.6 ug/m3 92 73 - 119 1,2-Dichloroethane 42.3 39.2 ug/m3 93 68 - 13560 - 142 42.2 39.1 93 n-Heptane ug/m3 Trichloroethene 55.3 49.7 ug/m3 90 73 - 122 1,2-Dichloropropane 47.8 45.9 ug/m3 96 69 - 128 68.9 Bromodichloromethane 67.4 ug/m3 98 75 - 127 cis-1,3-Dichloropropene 45.1 44.4 ug/m3 98 74 - 125 95 58 - 144 Methyl isobutyl ketone 41.7 39.5 ug/m3 92 75 - 122 Toluene 38.4 35.4 ug/m3 97 trans-1,3-Dichloropropene 44.7 43.3 ug/m3 74 - 128 1,1,2-Trichloroethane 57.2 94 75 - 126 53.9 ug/m3 70 - 125 Tetrachloroethene 71.0 67.1 ug/m3 95 41.4 38.8 ug/m3 94 57 - 143 Methyl Butyl Ketone (2-Hexanone) 79.0 1,2-Dibromoethane 81.9 ug/m3 96 78 - 122 Chlorobenzene 48.3 46.4 ug/m3 96 76 - 119

ug/m3 94 74 - 122 ug/m3 100 76 - 121 ug/m3 95 73 - 123

96

72 - 126

Xylene, o-45.0 42.9 43.8 101 Styrene 44.0 ug/m3 74 - 125 106 109 Bromoform 116 ug/m3 53 - 149 71.0 101 74 - 126 1,1,2,2-Tetrachloroethane 72.0 ug/m3 102 50.4 51.5 ug/m3 75 - 129 4-Ethyltoluene

51.6

44.4

86.8

41.9

86.6

49.6

1,2,4-Trimethylbenzene 51.3 50.3 ug/m3 98 71 - 129 1,3-Dichlorobenzene 61.1 69.7 ug/m3 114 69 - 131 1,4-Dichlorobenzene 62.5 70.7 113 67 - 132 ug/m3 Benzyl chloride 52.6 63.7 ug/m3 121 60 - 136 1,2-Dichlorobenzene 64.7 67.0 ug/m3 104 68 - 129

50 - 150 1,2,4-Trichlorobenzene 81.5 107 87.4 ug/m3 Hexachlorobutadiene 116 103 ug/m3 89 58 - 130 Naphthalene 55.0 56.1 ug/m3 102 50 - 150

Lab Sample ID: 200-58590-1 DU Client Sample ID: VP-1 (3-5') **Matrix: Air** Prep Type: Total/NA **Analysis Batch: 167228** 

| Sample | Sample                            | DU                            | DU                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                  | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------|-----------------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result | Qualifier                         | Result                        | Qualifier                                                                                                                                                                                                                                                   | Unit                                                                                                                                                                                                                                                                                      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPD                                                                                                                                                                                                                                                                                                                                                                                              | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 370    |                                   | 353                           |                                                                                                                                                                                                                                                             | ug/m3                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 25     | U                                 | 25                            | U                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 14     | U                                 | 14                            | U                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10     | U                                 | 10                            | U                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5.1    | U                                 | 5.1                           | U                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 49     |                                   | 47.7                          |                                                                                                                                                                                                                                                             | ug/m3                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7.8    | U                                 | 7.8                           | U                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13     | U                                 | 13                            | U                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11     | U                                 | 11                            | U                                                                                                                                                                                                                                                           | ug/m3                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NC                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | Result 370 25 14 10 5.1 49 7.8 13 | 25 U<br>14 U<br>10 U<br>5.1 U | Result         Qualifier         Result           370         353           25 U         25           14 U         14           10 U         10           5.1 U         5.1           49         47.7           7.8 U         7.8           13 U         13 | Result         Qualifier         Result         Qualifier           370         353           25 U         25 U           14 U         14 U           10 U         10 U           5.1 U         5.1 U           49         47.7           7.8 U         7.8 U           13 U         13 U | Result         Qualifier         Result         Qualifier         Unit           370         353         ug/m3           25         U         25         U         ug/m3           14         U         14         U         ug/m3           10         U         10         U         ug/m3           5.1         U         ug/m3           49         47.7         ug/m3           7.8         U         ug/m3           13         U         ug/m3 | Result         Qualifier         Result         Qualifier         Unit         D           370         353         ug/m3           25         U         ug/m3           14         U         ug/m3           10         U         ug/m3           5.1         U         ug/m3           49         47.7         ug/m3           7.8         U         ug/m3           13         U         ug/m3 | Result         Qualifier         Result         Qualifier         Unit         D         RPD           370         353         ug/m3         4           25         U         25         U         ug/m3         NC           14         U         14         U         ug/m3         NC           10         U         10         U         ug/m3         NC           5.1         U         5.1         U         ug/m3         NC           49         47.7         ug/m3         NC           7.8         U         ug/m3         NC           13         U         ug/m3         NC |

Eurofins TestAmerica, Burlington

Client: American Engineering Testing Inc.

Project/Site: Ph II ESA Laundromat/ Menomonie WI

SDG: 200-58590-1

## Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

9.1 U

11 U

20 U

15 U

9.2 U

8.7 U

22 U

8.5 U

21 U

14 U

9.8 U

9.8 U

9.8 U

12 U

12 U

10 U

12 U

8.7 U

2300

Lab Sample ID: 200-58590-1 DU

**Matrix: Air** 

**Analysis Batch: 167228** 

trans-1,3-Dichloropropene

1.1.2-Trichloroethane

Tetrachloroethene

(2-Hexanone) 1,2-Dibromoethane

Chlorobenzene

Ethylbenzene

m,p-Xylene

Xylene, o-

Bromoform

4-Ethyltoluene

1,1,2,2-Tetrachloroethane

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

1,3-Dichlorobenzene

1,4-Dichlorobenzene

1,2-Dichlorobenzene

Benzyl chloride

Styrene

Methyl Butyl Ketone

| Analysis Batch: 167228   | Sample | Sample    | DU   | DU        |       |   |     | RPD   |  |
|--------------------------|--------|-----------|------|-----------|-------|---|-----|-------|--|
| Analyte                  | -      | Qualifier |      | Qualifier | Unit  | D | RPD | Limit |  |
| Ethanol                  | 94     |           | 94   | U         | ug/m3 |   | NC  | 25    |  |
| Freon TF                 | 15     | U         | 15   | U         | ug/m3 |   | NC  | 25    |  |
| 1,1-Dichloroethene       | 7.9    | U         | 7.9  | U         | ug/m3 |   | NC  | 25    |  |
| Acetone                  | 120    |           | 120  | U         | ug/m3 |   | NC  | 25    |  |
| Isopropyl alcohol        | 120    | U         | 120  | U         | ug/m3 |   | NC  | 25    |  |
| Carbon disulfide         | 16     | U         | 16   | U         | ug/m3 |   | NC  | 25    |  |
| Methylene Chloride       | 17     | U         | 17   | U         | ug/m3 |   | NC  | 25    |  |
| Methyl tert-butyl ether  | 7.2    | U         | 7.2  | U         | ug/m3 |   | NC  | 25    |  |
| trans-1,2-Dichloroethene | 7.9    | U         | 7.9  | U         | ug/m3 |   | NC  | 25    |  |
| n-Hexane                 | 18     | U         | 18   | U         | ug/m3 |   | NC  | 25    |  |
| 1,1-Dichloroethane       | 8.1    | U         | 8.1  | U         | ug/m3 |   | NC  | 25    |  |
| Vinyl acetate            | 180    | U         | 180  | U         | ug/m3 |   | NC  | 25    |  |
| Ethyl acetate            | 180    | U         | 180  | U         | ug/m3 |   | NC  | 25    |  |
| Methyl Ethyl Ketone      | 27     |           | 26.5 |           | ug/m3 |   | 2   | 25    |  |
| cis-1,2-Dichloroethene   | 7.9    | U         | 7.9  | U         | ug/m3 |   | NC  | 25    |  |
| Chloroform               | 9.8    | U         | 9.8  | U         | ug/m3 |   | NC  | 25    |  |
| Tetrahydrofuran          | 150    | U         | 150  | U         | ug/m3 |   | NC  | 25    |  |
| 1,1,1-Trichloroethane    | 11     | U         | 11   | U         | ug/m3 |   | NC  | 25    |  |
| Cyclohexane              | 6.9    | U         | 6.9  | U         | ug/m3 |   | NC  | 25    |  |
| Carbon tetrachloride     | 13     | U         | 13   | U         | ug/m3 |   | NC  | 25    |  |
| Benzene                  | 22     |           | 21.3 |           | ug/m3 |   | 3   | 25    |  |
| 1,2-Dichloroethane       | 8.1    | U         | 8.1  | U         | ug/m3 |   | NC  | 25    |  |
| n-Heptane                | 8.2    | U         | 8.2  | U         | ug/m3 |   | NC  | 25    |  |
| Trichloroethene          | 11     | U         | 11   | U         | ug/m3 |   | NC  | 25    |  |
| 1,2-Dichloropropane      | 9.2    | U         | 9.2  | U         | ug/m3 |   | NC  | 25    |  |
| Bromodichloromethane     | 13     | U         | 13   | U         | ug/m3 |   | NC  | 25    |  |
| cis-1,3-Dichloropropene  | 9.1    | U         | 9.1  | U         | ug/m3 |   | NC  | 25    |  |
| Methyl isobutyl ketone   | 20     | U         | 20   | U         | ug/m3 |   | NC  | 25    |  |
| Toluene                  | 23     |           | 22.0 |           | ug/m3 |   | 4   | 25    |  |
|                          |        |           |      |           |       |   |     |       |  |

9.1 U

11 U

20 U

15 U

9.2 U

8.7 U

22 U

8.7 U

8.5 U

21 U

14 U

9.8 U

9.8 U

9.8 U

12 U

12 U

12 U

10

2210

ug/m3

Eurofins TestAmerica, Burlington

NC

6

25

25

25

25

25

25

25

25

25

25

25

25

25

25 25

25

25

25

25

<u>ی</u>

Client Sample ID: VP-1 (3-5')

**Prep Type: Total/NA** 

ე 6

Ω

10

12

1 1

15

Client: American Engineering Testing Inc.

Project/Site: Ph II ESA Laundromat/ Menomonie WI

SDG: 200-58590-1

# Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: 200-58590-1 DU

Matrix: Air

Client Sample ID: VP-1 ( 3-5' )
Prep Type: Total/NA

Analysis Batch: 167228

|                        | Sample | Sample    | DU     | DU        |       |   |     | RPD   |
|------------------------|--------|-----------|--------|-----------|-------|---|-----|-------|
| Analyte                | Result | Qualifier | Result | Qualifier | Unit  | D | RPD | Limit |
| 1,2,4-Trichlorobenzene | 37     | U —       | 37     | U         | ug/m3 |   | NC  | 25    |
| Hexachlorobutadiene    | 21     | U         | 21     | U         | ug/m3 |   | NC  | 25    |
| Naphthalene            | 26     | U         | 26     | U         | ug/m3 |   | NC  | 25    |

3

4

6

8

40

11

13

4 5

# **QC Association Summary**

Client: American Engineering Testing Inc.

Project/Site: Ph II ESA Laundromat/ Menomonie WI

SDG: 200-58590-1

## Air - GC/MS VOA

## **Analysis Batch: 167228**

| Lab Sample ID    | Client Sample ID   | Prep Type | Matrix | Method | Prep Batch |
|------------------|--------------------|-----------|--------|--------|------------|
| 200-58590-1      | VP-1 ( 3-5' )      | Total/NA  | Air    | TO-15  |            |
| 200-58590-2      | VP-2 ( 3-5' )      | Total/NA  | Air    | TO-15  |            |
| 200-58590-3      | SSV-1              | Total/NA  | Air    | TO-15  |            |
| 200-58590-3 - DL | SSV-1              | Total/NA  | Air    | TO-15  |            |
| MB 200-167228/4  | Method Blank       | Total/NA  | Air    | TO-15  |            |
| LCS 200-167228/3 | Lab Control Sample | Total/NA  | Air    | TO-15  |            |
| 200-58590-1 DU   | VP-1 ( 3-5' )      | Total/NA  | Air    | TO-15  |            |

\_

Λ

4

6

8

9

11

12

14

15

#### Lab Chronicle

Client: American Engineering Testing Inc.

Job ID: 200-58590-1 Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG: 200-58590-1

Client Sample ID: VP-1 (3-5')

Date Received: 05/22/21 09:30

Lab Sample ID: 200-58590-1 Date Collected: 05/20/21 13:35 Matrix: Air

Batch Batch Dilution Batch **Prepared** Method or Analyzed **Prep Type** Type Run **Factor** Number Analyst Lab Total/NA Analysis TO-15 167228 05/26/21 00:26 A1B TAL BUR 10

Client Sample ID: VP-2 (3-5') Lab Sample ID: 200-58590-2

Date Collected: 05/20/21 13:56 Matrix: Air

Date Received: 05/22/21 09:30

Batch Batch Dilution **Batch** Prepared **Prep Type** Type Method Run Factor Number or Analyzed Analyst Lab TAL BUR Total/NA Analysis TO-15 10 167228 05/26/21 03:11 A1B

Client Sample ID: SSV-1 Lab Sample ID: 200-58590-3 Date Collected: 05/20/21 11:47 Matrix: Air

Date Received: 05/22/21 09:30

Batch **Batch** Dilution Batch **Prepared Prep Type** Method **Factor** Number or Analyzed Type Run **Analyst** Lab Total/NA TO-15 10.1 167228 05/26/21 04:06 A1B TAL BUR Analysis Total/NA Analysis TO-15 DL 79.8 167228 05/26/21 05:01 A1B TAL BUR

**Laboratory References:** 

TAL BUR = Eurofins TestAmerica, Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

# **Accreditation/Certification Summary**

Client: American Engineering Testing Inc.

Project/Site: Ph II ESA Laundromat/ Menomonie WI

Job ID: 200-58590-1

SDG: 200-58590-1

# **Laboratory: Eurofins TestAmerica, Burlington**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority<br>Minnesota                       |             | rogram<br>ELAP               | Identification Number 050-999-436         | Expiration Date 12-31-21                |
|----------------------------------------------|-------------|------------------------------|-------------------------------------------|-----------------------------------------|
| The following analytes the agency does not o | •           | ort, but the laboratory is r | not certified by the governing authority. | This list may include analytes for whic |
| Analysis Method                              | Prep Method | Matrix                       | Analyte                                   |                                         |
| TO-15                                        |             | Air                          | Vinyl acetate                             |                                         |

Δ

5

6

8

10

13

15

# **Method Summary**

Client: American Engineering Testing Inc.

Project/Site: Ph II ESA Laundromat/ Menomonie WI

Job ID: 200-58590-1

SDG: 200-58590-1

| Method | Method Description                        | Protocol | Laboratory |
|--------|-------------------------------------------|----------|------------|
| TO-15  | Volatile Organic Compounds in Ambient Air | EPA      | TAL BUR    |

- 1

**Protocol References:** 

EPA = US Environmental Protection Agency

Laboratory References:

TAL BUR = Eurofins TestAmerica, Burlington, 530 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

7

9

. .

4.0

13

15

# **Sample Summary**

Client: American Engineering Testing Inc. Project/Site: Ph II ESA Laundromat/ Menomonie WI

Job ID: 200-58590-1 SDG: 200-58590-1

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Asset ID                         |
|---------------|------------------|--------|----------------|----------------|----------------------------------|
| 200-58590-1   | VP-1 ( 3-5' )    | Air    | 05/20/21 13:35 | 05/22/21 09:30 | Air Canister (1-Liter) #34002441 |
| 200-58590-2   | VP-2 ( 3-5' )    | Air    | 05/20/21 13:56 | 05/22/21 09:30 | Air Canister (1-Liter) #4482     |
| 200-58590-3   | SSV-1            | Air    | 05/20/21 11:47 | 05/22/21 09:30 | Air Canister (1-Liter) #8287     |

|  | AMERICAN<br>ENGINEERING<br>TESTING, INC. |
|--|------------------------------------------|
|--|------------------------------------------|

X St Paul Office 550 Cleveland Ave N St Paul, MN 55114 651-659-9001

| OTHER |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |

| ADDRESS<br>nneapolis SC |  |
|-------------------------|--|
|                         |  |

Nº 25841

| LESTING, INC.              | 651-659-1379 (fax) | mineapons 5C |          |             |
|----------------------------|--------------------|--------------|----------|-------------|
|                            | ( ,                | PHONE        |          | <br>PAGE OF |
| AET PROJECT NUMBER         | 1002702            |              | ANALYSIS |             |
| PROJECT NAME/LOCATION Ph 1 | ESA Laundromati    | Menomonee WI |          | '           |
| <b>△</b>                   | nis McComas        |              |          |             |

**PRESERVATIVES** 

AET PURCHASE ORDER NO

SAMPLED BY (PRINT)

SAMPLED BY (PRINT)

SAMPLED BY (PRINT) SAMPLER SIGNATURE

ITEM# CAMPLE DECODIDATION DATE TIME

REQUESTED TURNAROUND TIME

DATE NEEDED BY

**NORMAL** 

RUSH

NO OF CONTAINERS UNPRESERVED MeOH

H<sub>2</sub>SO<sub>4</sub> 占

FIELD FILTERED Y/N

Œ ZD

REMARKS

|       | II EIVI # | SAMPLE DESCRIPTION | DATE    | LIME  | SAMPLE TYPE |  | <del>                                     </del> | <br><del> </del> |   |      | <del> </del> |     |     |      |      |     |   |
|-------|-----------|--------------------|---------|-------|-------------|--|--------------------------------------------------|------------------|---|------|--------------|-----|-----|------|------|-----|---|
| of 54 |           | VP-1 (3-5')        | 5/20/21 | 13:29 | air         |  |                                                  |                  | × | 13:2 | 1339         | -30 | -2  | 3441 | 1669 | 0.8 | , |
|       | 2         | VP-Z (3-5')        |         | 1349  |             |  |                                                  |                  | × | 1349 |              |     |     |      |      |     |   |
|       | 3_        | 55V-I              |         | 11:42 |             |  |                                                  |                  | X |      |              | 1   | i . | 3327 | ~    | 2.5 | , |
|       |           |                    |         |       |             |  |                                                  |                  |   |      |              |     |     |      | E.   |     |   |
|       |           |                    |         |       |             |  | 1 1                                              |                  |   |      |              |     |     |      |      |     |   |



NOTE

5 day TAT

ITEM **RELINQUISHED BY/AFFILIATION** NUMBER

ACCEPTED BY/AFFILIATION

DATE TIME

8/2019

Page D

48 of 80























ORIGIN ID:GPZA (111) 111-1111
F. SAMPLE RECEIVING
F. SAMPLE RECEIV

SHIP DATE: 21MAY21 ACTWGT: 10.10 LB CAD: 399920/CAFE3409

BILL RECIPIENT

 SAMPLE RECEIVING TESTAMERICA BURLINGTON 530 COMMUNITY DRIVE

# **BURLINGTON VT 05403**

(802) 660 - 1990 INU: PO:

DEPT:

REF:

FedEx Express

TRK# 4114 9911 2090

SATURDAY 12:00P PRIORITY OVERNIGHT

**XO BTVA** 

05403 VT-US BTV



13

5 =

7

U

5

S I

## **Login Sample Receipt Checklist**

Client: American Engineering Testing Inc.

Job Number: 200-58590-1

SDG Number: 200-58590-1

Login Number: 58590

List Source: Eurofins TestAmerica, Burlington

List Number: 1

Creator: Lavigne, Scott M

| Creator. Lavigne, Scott W                                                                                                                          |        |                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------------------------------------|
| Question                                                                                                                                           | Answer | Comment                                  |
| Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td>Lab does not accept radioactive samples.</td> | True   | Lab does not accept radioactive samples. |
| The cooler's custody seal, if present, is intact.                                                                                                  | True   | 1356904                                  |
| Sample custody seals, if present, are intact.                                                                                                      | True   |                                          |
| The cooler or samples do not appear to have been compromised or tampered with.                                                                     | True   |                                          |
| Samples were received on ice.                                                                                                                      | N/A    | Thermal preservation not required.       |
| Cooler Temperature is acceptable.                                                                                                                  | True   |                                          |
| Cooler Temperature is recorded.                                                                                                                    | N/A    | Thermal preservation not required.       |
| COC is present.                                                                                                                                    | True   |                                          |
| COC is filled out in ink and legible.                                                                                                              | True   |                                          |
| COC is filled out with all pertinent information.                                                                                                  | True   |                                          |
| Is the Field Sampler's name present on COC?                                                                                                        | True   |                                          |
| There are no discrepancies between the containers received and the COC.                                                                            | True   |                                          |
| Samples are received within Holding Time (excluding tests with immediate HTs)                                                                      | True   |                                          |
| Sample containers have legible labels.                                                                                                             | True   |                                          |
| Containers are not broken or leaking.                                                                                                              | True   |                                          |
| Sample collection date/times are provided.                                                                                                         | True   |                                          |
| Appropriate sample containers are used.                                                                                                            | True   |                                          |
| Sample bottles are completely filled.                                                                                                              | N/A    |                                          |
| Sample Preservation Verified.                                                                                                                      | True   |                                          |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs                                                                   | True   |                                          |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").                                                                    | True   |                                          |
| Multiphasic samples are not present.                                                                                                               | True   |                                          |

True

N/A

**Eurofins TestAmerica, Burlington** 

Samples do not require splitting or compositing.

Residual Chlorine Checked.

Page 24 of 54

AET Project No. P-0002702

Job No.: 200-58590-1

#### **Summa Canister Dilution Worksheet**

Client: American Engineering Testing Inc.

Project/Site: Ph II ESA Laundromat/ Menomonie WI SDG No.: 200-58590-1

|               | Canister | Preadjusted | Preadjusted | Preadjusted | Adjusted | Adjusted | Adjusted | Initial |          | Final    | Pressure |                |                 |
|---------------|----------|-------------|-------------|-------------|----------|----------|----------|---------|----------|----------|----------|----------------|-----------------|
|               | Volume   | Pressure    | Pressure    | Volume      | Pressure | Pressure | Volume   | Volume  | Dilution | Dilution | Gauge    |                |                 |
| Lab Sample ID | (L)      | ("Hg)       | (atm)       | (L)         | (psig)   | (atm)    | (L)      | (mL)    | Factor   | Factor   | ID       | Date           | Analyst Initals |
| 200-58590-3   | 1        | -1.9        | 0.94        | 0.94        | 56.7     | 4.86     | 4.86     |         | 5.19     | 5.19     | G21      | 05/25/21 11:20 | TPB             |

#### Formulae:

Preadjusted Volume (L) = ( Preadjusted Pressure ("Hg) + 29.92 "Hg \* Vol L ) / 29.92 "Hg Adjusted Volume (L) = ( Adjusted Pressure (psig) + 14.7 psig \* Vol L ) / 14.7 psig

Dilution Factor = Adjusted Volume (L) / Preadjusted Volume (L)

#### Where:

29.92 "Hg = Standard atmospheric pressure in inches of Mercury ("Hg)

14.7 psig = Standard atmospheric pressure in pounds per square inch gauge (psig)

Page 25 of 54 5/26/2021

6

Δ

5

6

7

8

1 በ

11

13

14

| Pre-Shipment | Clean | Canister | Certification | Renor |
|--------------|-------|----------|---------------|-------|
| re-ompinent  | Cican | Camster  | Certification | vehor |

|      |          |                      |          |                    |              | Canis      | ter Cleaning & | k Pre-Shipmen   | t Leak Test |         |        |         |             |              |       |
|------|----------|----------------------|----------|--------------------|--------------|------------|----------------|-----------------|-------------|---------|--------|---------|-------------|--------------|-------|
| S    | ystem ID | Max DF#              | # Cycles | Clear              | ning Start D | ate/Time   | System S       | tart Temp(s):   | Tecl        | nnician | Can    | Size    | Cer         | tification T | уре:  |
| (    | Oven 1/2 | 1000                 | 300      | 4/30/20            | 21           | 1142       | 2              | 2 22            |             | SML     | 1 lit  | ter     |             | batch        |       |
|      |          | Initial <sup>1</sup> | Final    | 1.4 m 2.5 m        | Final        | ji maala 👑 | WisiWarau      | Initial Reading | 9           |         |        | Fi      | nal Reading | )            |       |
| Port | Can ID   | (psia)               | (psia)   | Diff. <sup>3</sup> | ("Hg)        | Gauge:     | Date:          | Time:           | Tech:       | Temp:   | Gauge: | Date:   | Time:       | Tech:        | Temp: |
| 1    | 6437     | 106                  | 106      | Ø                  | 790%         | G26        | 3/3/21         | 1025            | 5_          | 22.0    | G26    | 5/11/21 | 1358        | (            | 1     |
| 2    | 5856     |                      | 106      | 8                  | 1            | G26        | 1 1            | 1               | 1           | 1       | G26    | 1/4     | Α           |              |       |
| 3    | 8287     |                      | 106      | a                  |              | G26        |                |                 |             |         | G26    | 1 1     |             |              |       |
| 4    | 6456     |                      | 106      | Å                  |              | G26        |                |                 |             |         | G26    |         |             |              |       |
| 5    | 34001090 |                      | 106      | 0.                 |              | G26        |                |                 |             |         | G26    |         | 1 1         |              |       |
| 6    | 34000331 |                      | 106      | Ø                  |              | G26        |                |                 |             |         | G26    |         |             |              |       |
| 7    | 4851     |                      | .06      | Ø                  |              | G26        |                |                 |             |         | G26    |         |             |              |       |
| 8    | 5891     |                      | ,04      | 'Ø                 |              | G26        |                |                 |             |         | G26    |         | 1           |              |       |
| 9    | 34002441 |                      | 106      | 0                  |              | G26        |                |                 | 1           |         | G26    |         |             | 1            | 1     |
| 10   | 4643     | 1                    | 106      | Ø                  |              | G26        | 1              |                 |             |         | G26    |         |             | 1            |       |
| 11   | 4961     | 106                  | 106      | Ø                  |              | G26        | 5/10/21        | 1214            | 5-          | 2210    | G26    |         |             |              |       |
| 12   | 4657     | بان،                 | 106      | 10                 |              | G26        | 5/2/21         | 1075            | 5           | 22:0    | G26    | 1       | 1           | 1            | 1     |

Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the batch.

<sup>3</sup> Difference = Final Pressure - Initial Pressure . Acceptance Criteria: (1) The difference must be less than or equal to + 0.25psi. (2) Pressure readings must be at least 24 hours apart.

If time frame was not met, the PM must authorize shipment of canister **PM Authorization** Date: Clean Canister Certification Analysis & Authorization of Release to Inventory Test Method: 🔼 O15 Routine 🗀 TO15 LL **Inventory Level** Secondary Review Can ID Date Sequence Analyst 4 Limited **Review Date** Reviewer 7580 4961 XXXXXX

Inventory Level 1: Individual Canister Certification (TO15LL 0.01).

Inventory Level 2: Individual or Batch Certification (TO15 0.04 ppbv).

Inventory Level 3: Individual or Batch Certification (TO15 0.2 ppbv).

Dup Tees/Vac gauges (enter IDs if included):

Inventory Level Limited: Canisters may only be used for certain projects.

O Dup Tees/Vac gauges (e)
O DForm ID: FAI023:12
NRevision Date: 12/18/2018

TestAmerica Burlington

0

4961 /-A-11
4961 -- Ooz! /-A-11
Location: Air-Storage
Bottle: Summa Canister 1L
Sampled: 4/30/2021 12:00 AM 200-148968

Loc: 250 58277 #11 A

|      |          |                      |            |                    |              | Canist  | er Clean | ing &  | Pre-Shipmen   | Leak Te | st    | - 11   |        |         |            |             |                                                  |
|------|----------|----------------------|------------|--------------------|--------------|---------|----------|--------|---------------|---------|-------|--------|--------|---------|------------|-------------|--------------------------------------------------|
| S    | ystem ID | Max DF#              | # Cycles   | Clean              | ing Start Da | te/Time | Syste    | em Sta | rt Temp(s):   |         | Techi | nician | Can    | Size    | Cei        | rtification | Гуре:                                            |
| C    | Oven 1/2 | 30                   | 100        | 5/4/202            | 1            | 1610    | ì        | 22     | 22            |         | SI    | ML     | 1 li   | ter     |            | batch       |                                                  |
|      |          | Initial <sup>1</sup> | Final      | •                  | Final        |         |          |        | nitial Readin |         | 1.25  |        |        | Fi.     | nal Readin | g           |                                                  |
| Port | Can ID   | (psia)               | (psia)     | Diff. <sup>3</sup> | ("Hg)        | Gauge:  | Da       |        | Time:         | Tech    | า:    | Temp:  | Gauge: | Date:   | Time:      | Tech:       | Temp:                                            |
| 1    | 6298     | 06                   | 106        | 0                  | 29.6         | G26     | 5/10     | 121    | 1214          | 5-      |       | 2200   | G26    | 5/11/21 | 1416       | 5-          | 2212                                             |
| 2    | 34002425 | ,06                  | 106        | Ø                  |              | G26     | 5/5      |        | 1000          | 5-      | -     | 22.0   | G26    | 1       | 1          | 1           |                                                  |
| 3    | 4486     |                      | ٠٥٠,       | Ò                  |              | G26     | _ ' '    |        | 1             | 1       |       | 1      | G26    |         | T 1        |             | 1 5                                              |
| 4    | 34002005 |                      | م) ن       | $\otimes$          |              | G26     |          |        |               |         |       |        | G26    |         | 1 - 1      |             | <del>                                     </del> |
| 5    | 34002416 |                      | ن          | Ø                  |              | G26     |          |        |               |         |       |        | G26    |         |            |             | 1 5                                              |
| 6    | 4482     |                      | ر ٥ (ر     | Ó                  |              | G26     |          |        |               |         |       |        | G26    |         |            |             |                                                  |
| 7    | 6272     |                      | : 116      | Þ                  |              | G26     |          |        |               |         |       |        | G26    |         |            |             |                                                  |
| 8    | 6425     |                      | :06        | Ó                  |              | G26     |          |        |               |         |       |        | G26    |         |            |             |                                                  |
| 9    | 6422     |                      | ٠٥٤        | Q                  |              | G26     |          |        |               |         |       |        | G26    |         |            |             | 1 7                                              |
| 10   | 5915     |                      | :06        | Q                  |              | G26     |          |        |               |         |       |        | G26    |         |            |             |                                                  |
| 11   | 6434     |                      | :06        | D                  |              | G26     |          |        |               |         | _     |        | G26    |         |            |             |                                                  |
| 12   | 6451     | X                    | <i>۵</i> ۰ | Ø                  |              | G26     |          |        | 1             | y       |       |        | G26    |         |            |             | 1                                                |

Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the batch.

<sup>3</sup> Difference = Final Pressure - Initial Pressure . Acceptance Criteria: (1) The difference must be less than or equal to + 0.25psi. (2) Pressure readings must be at least 24 hours apart.

If time frame was not met, the PM must authorize shipment of canister

PM Authorization

Date:

| est Method: 🔲                           | TO15 Routine ☐ TO | D15 LL                                    |            |   | Invent | ory Level |   |         | Secondary Review                      | v     |
|-----------------------------------------|-------------------|-------------------------------------------|------------|---|--------|-----------|---|---------|---------------------------------------|-------|
| Can ID                                  | Date              | Sequence                                  | Analyst    | 1 | 2      | 3         | 4 | Limited | Review Date                           | Revie |
| 6298                                    | 5/7/21            | 45860                                     | ICF1       |   |        | XXXXXX    |   |         | 5/7/21                                | UP    |
|                                         | -                 |                                           |            |   |        |           |   |         |                                       |       |
| *************************************** |                   |                                           |            |   |        |           |   |         | · · · · · · · · · · · · · · · · · · · |       |
| 7.4                                     |                   | er en |            |   |        |           |   |         |                                       |       |
|                                         |                   |                                           |            |   |        |           |   |         |                                       |       |
|                                         |                   |                                           |            |   |        |           |   |         |                                       |       |
|                                         |                   |                                           | to www.huh |   |        |           |   |         | 100                                   |       |
| ····                                    |                   |                                           |            |   |        |           |   |         |                                       |       |

Inventory Level 1: Individual Canister Certification (TO15LL 0.01).

Inventory Level 2: Individual or Batch Certification (TO15 0.04 ppbv).

Inventory Level 3: Individual or Batch Certification (TO15 0.2 ppbv).

Inventory Level Limited: Canisters may only be used for certain projects.

Dup Tees/Vac gauges (enter IDs if included):

Norm ID: FAI023:12 Revision Date: 12/18/2018

TestAmerica Burlington

Comments:

# FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Burlington Job No.: 200-58277-1 SDG No.: Client Sample ID: 4961 Lab Sample ID: 200-58277-11 Matrix: Air Lab File ID: 45801-06.D Analysis Method: TO-15 Date Collected: 04/30/2021 00:00 Sample wt/vol: 200(mL) Date Analyzed: 05/03/2021 12:01 Soil Aliquot Vol: Dilution Factor: 1 GC Column: RTX-624 ID: 0.32 (mm) Soil Extract Vol.: % Moisture: Level: (low/med) Low Analysis Batch No.: 166412 Units: ppb v/v

| CAS NO.   | COMPOUND NAME                 | RESULT | Q | RL   | RL   |
|-----------|-------------------------------|--------|---|------|------|
| 115-07-1  | Propylene                     | 5.0    | U | 5.0  | 5.0  |
| 75-71-8   | Dichlorodifluoromethane       | 0.50   | U | 0.50 | 0.50 |
| 75-45-6   | Freon 22                      | 0.50   | U | 0.50 | 0.50 |
| 76-14-2   | 1,2-Dichlorotetrafluoroethane | 0.20   | U | 0.20 | 0.20 |
| 74-87-3   | Chloromethane                 | 0.50   | U | 0.50 | 0.50 |
| 106-97-8  | n-Butane                      | 0.50   | U | 0.50 | 0.50 |
| 75-01-4   | Vinyl chloride                | 0.20   | Ū | 0.20 | 0.20 |
| 106-99-0  | 1,3-Butadiene                 | 0.20   | U | 0.20 | 0.20 |
| 74-83-9   | Bromomethane                  | 0.20   | U | 0.20 | 0.20 |
| 75-00-3   | Chloroethane                  | 0.50   | U | 0.50 | 0.50 |
| 593-60-2  | Bromoethene (Vinyl Bromide)   | 0.20   | U | 0.20 | 0.20 |
| 75-69-4   | Trichlorofluoromethane        | 0.20   | U | 0.20 | 0.20 |
| 64-17-5   | Ethanol                       | 5.0    | U | 5.0  | 5.0  |
| 76-13-1   | Freon TF                      | 0.20   | U | 0.20 | 0.20 |
| 75-35-4   | 1,1-Dichloroethene            | 0.20   | U | 0.20 | 0.20 |
| 67-64-1   | Acetone                       | 5.0    | U | 5.0  | 5.0  |
| 67-63-0   | Isopropyl alcohol             | 5.0    | U | 5.0  | 5.0  |
| 75-15-0   | Carbon disulfide              | 0.50   | Ū | 0.50 | 0.50 |
| 107-05-1  | 3-Chloropropene               | 0.50   | U | 0.50 | 0.50 |
| 75-09-2   | Methylene Chloride            | 0.50   | U | 0.50 | 0.50 |
| 75-65-0   | tert-Butyl alcohol            | 5.0    | U | 5.0  | 5.0  |
| 1634-04-4 | Methyl tert-butyl ether       | 0.20   | U | 0.20 | 0.20 |
| 156-60-5  | trans-1,2-Dichloroethene      | 0.20   | U | 0.20 | 0.20 |
| 110-54-3  | n-Hexane                      | 0.50   | U | 0.50 | 0.50 |
| 75-34-3   | 1,1-Dichloroethane            | 0.20   | U | 0.20 | 0.20 |
| 108-05-4  | Vinyl acetate                 | 5.0    | U | 5.0  | 5.0  |
| 141-78-6  | Ethyl acetate                 | 5.0    | U | 5.0  | 5.0  |
| 78-93-3   | Methyl Ethyl Ketone           | 0.50   | U | 0.50 | 0.50 |
| 156-59-2  | cis-1,2-Dichloroethene        | 0.20   | U | 0.20 | 0.20 |
| 540-59-0  | 1,2-Dichloroethene, Total     | 0.40   | U | 0.40 | 0.40 |
| 67-66-3   | Chloroform                    | 0.20   | U | 0.20 | 0.20 |
| 109-99-9  | Tetrahydrofuran               | 5.0    | U | 5.0  | 5.0  |
| 71-55-6   | 1,1,1-Trichloroethane         | 0.20   | U | 0.20 | 0.20 |
| 110-82-7  | Cyclohexane                   | 0.20   | U | 0.20 | 0.20 |
| 56-23-5   | Carbon tetrachloride          | 0.20   | U | 0.20 | 0.20 |
| 540-84-1  | 2,2,4-Trimethylpentane        | 0.20   | U | 0.20 | 0.20 |

FORM I TO-15

# FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Burlington Job No.: 200-58277-1 SDG No.: Client Sample ID: 4961 Lab Sample ID: 200-58277-11 Matrix: Air Lab File ID: 45801-06.D Analysis Method: TO-15 Date Collected: 04/30/2021 00:00 Sample wt/vol: 200(mL) Date Analyzed: 05/03/2021 12:01 Soil Aliquot Vol: Dilution Factor: 1 GC Column: RTX-624 ID: 0.32(mm) Soil Extract Vol.: % Moisture: Level: (low/med) Low Analysis Batch No.: 166412 Units: ppb v/v

| CAS NO.     | COMPOUND NAME                           | RESULT | Q     | RL   | RL   |
|-------------|-----------------------------------------|--------|-------|------|------|
| 71-43-2     | Benzene                                 | 0.20   | T T   | 0.20 | 0.20 |
| 107-06-2    | 1,2-Dichloroethane                      | 0.20   | II II | 0.20 | 0.20 |
| 142-82-5    | n-Heptane                               | 0.20   | II II | 0.20 | 0.20 |
| 79-01-6     | Trichloroethene                         | 0.20   | II II | 0.20 | 0.20 |
| 80-62-6     |                                         | 0.20   | TI U  | 0.20 | 0.50 |
| 78-87-5     | Methyl methacrylate 1,2-Dichloropropane | 0.30   | II II | 0.30 | 0.20 |
| 123-91-1    | 1,4-Dioxane                             | 5.0    | II II | 5.0  | 5.0  |
| 75-27-4     | <u> </u>                                | 0.20   | II II | 0.20 | 0.20 |
|             | Bromodichloromethane                    |        |       |      |      |
| 10061-01-5  | cis-1,3-Dichloropropene                 | 0.20   | U     | 0.20 | 0.20 |
| 108-10-1    | methyl isobutyl ketone                  | 0.50   | U     | 0.50 | 0.50 |
| 108-88-3    | Toluene                                 | 0.20   | U     | 0.20 | 0.20 |
| 10061-02-6  | trans-1,3-Dichloropropene               | 0.20   | U     | 0.20 | 0.20 |
| 79-00-5     | 1,1,2-Trichloroethane                   | 0.20   | U     | 0.20 | 0.20 |
| 127-18-4    | Tetrachloroethene                       | 0.20   | U     | 0.20 | 0.20 |
| 591-78-6    | Methyl Butyl Ketone (2-Hexanone)        | 0.50   | U     | 0.50 | 0.50 |
| 124-48-1    | Dibromochloromethane                    | 0.20   | U     | 0.20 | 0.20 |
| 106-93-4    | 1,2-Dibromoethane                       | 0.20   | U     | 0.20 | 0.20 |
| 108-90-7    | Chlorobenzene                           | 0.20   | U     | 0.20 | 0.20 |
| 100-41-4    | Ethylbenzene                            | 0.20   | U     | 0.20 | 0.20 |
| 179601-23-1 | m,p-Xylene                              | 0.50   | U     | 0.50 | 0.50 |
| 95-47-6     | Xylene, o-                              | 0.20   | U     | 0.20 | 0.20 |
| 1330-20-7   | Xylene (total)                          | 0.70   | U     | 0.70 | 0.70 |
| 100-42-5    | Styrene                                 | 0.20   | U     | 0.20 | 0.20 |
| 75-25-2     | Bromoform                               | 0.20   | U     | 0.20 | 0.20 |
| 98-82-8     | Cumene                                  | 0.20   | U     | 0.20 | 0.20 |
| 79-34-5     | 1,1,2,2-Tetrachloroethane               | 0.20   | U     | 0.20 | 0.20 |
| 103-65-1    | n-Propylbenzene                         | 0.20   | U     | 0.20 | 0.20 |
| 622-96-8    | 4-Ethyltoluene                          | 0.20   | U     | 0.20 | 0.20 |
| 108-67-8    | 1,3,5-Trimethylbenzene                  | 0.20   | U     | 0.20 | 0.2  |
| 95-49-8     | 2-Chlorotoluene                         | 0.20   | U     | 0.20 | 0.20 |
| 98-06-6     | tert-Butylbenzene                       | 0.20   | U     | 0.20 | 0.20 |
| 95-63-6     | 1,2,4-Trimethylbenzene                  | 0.20   | U     | 0.20 | 0.20 |
| 135-98-8    | sec-Butylbenzene                        | 0.20   | U     | 0.20 | 0.20 |
| 99-87-6     | 4-Isopropyltoluene                      | 0.20   | U     | 0.20 | 0.2  |
| 541-73-1    | 1,3-Dichlorobenzene                     | 0.20   | U     | 0.20 | 0.2  |
| 106-46-7    | 1,4-Dichlorobenzene                     | 0.20   | U     | 0.20 | 0.2  |

FORM I TO-15

2

6

4

5

\_

8

3

4 4

12

14

AET Project No. P-0002702 Page D 56 of 80

# FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Burlington Job No.: 200-58277-1 SDG No.: Client Sample ID: 4961 Lab Sample ID: 200-58277-11 Matrix: Air Lab File ID: 45801-06.D Analysis Method: TO-15 Date Collected: 04/30/2021 00:00 Sample wt/vol: 200(mL) Date Analyzed: 05/03/2021 12:01 Soil Aliquot Vol: Dilution Factor: 1 GC Column: RTX-624 ID: 0.32 (mm) Soil Extract Vol.: % Moisture: Level: (low/med) Low Analysis Batch No.: 166412 Units: ppb v/v

| CAS NO.  | COMPOUND NAME          | RESULT | Q | RL   | RL   |
|----------|------------------------|--------|---|------|------|
| 100-44-7 | Benzyl chloride        | 0.20   | U | 0.20 | 0.20 |
| 104-51-8 | n-Butylbenzene         | 0.20   | U | 0.20 | 0.20 |
| 95-50-1  | 1,2-Dichlorobenzene    | 0.20   | U | 0.20 | 0.20 |
| 120-82-1 | 1,2,4-Trichlorobenzene | 0.50   | U | 0.50 | 0.50 |
| 87-68-3  | Hexachlorobutadiene    | 0.20   | U | 0.20 | 0.20 |
| 91-20-3  | Naphthalene            | 0.50   | U | 0.50 | 0.50 |

FORM I TO-15

2

6

4

Q

10

12

10

15

AET Project No. P-0002702 Page D 57 of 80

Report Date: 04-May-2021 09:38:35 Chrom Revision: 2.3 08-Apr-2021 17:17:48

# Eurofins TestAmerica, Burlington Target Compound Quantitation Report

Data File: \\chromfs\Burlington\ChromData\CHX.i\20210503-45801.b\45801-06.D

Lims ID: 200-58277-A-11

Client ID: 4961 Sample Type: Client

Inject. Date: 03-May-2021 12:01:30 ALS Bottle#: 5 Worklist Smp#: 6

Purge Vol: 200.000 mL Dil. Factor: 1.0000

Sample Info: 200-0045801-006

Operator ID: ggg Instrument ID: CHX.i

Limit Group: AI\_TO15\_ICAL

Last Update:04-May-2021 09:38:34Calib Date:09-Apr-2021 11:15:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\chromfs\Burlington\ChromData\CHX.i\20210408-45522.b\45522-23.D

Column 1: RTX-624 ( 0.32 mm) Det: MS SCAN

Process Host: CTX1631

| First Level Reviewer: puangmale                    | ek        |        | Da             | ate:   |    | 04-May-20 | 21 09:38:34  |       |
|----------------------------------------------------|-----------|--------|----------------|--------|----|-----------|--------------|-------|
|                                                    |           | RT     | Adj RT         | Dlt RT |    | _         | OnCol Amt    |       |
| Compound                                           | Sig       | (min.) | (min.)         | (min.) | Q  | Response  | ppb v/v      | Flags |
| 1 Dranana                                          | 41        |        | 4.343          |        |    |           | ND           |       |
| Propene     Dichlorodifluoromethane                | 85        |        | 4.439          |        |    |           | ND<br>ND     |       |
| 3 Chlorodifluoromethane                            | 51        |        | 4.488          |        |    |           | ND<br>ND     |       |
|                                                    |           |        | 4.466<br>4.798 |        |    |           | ND<br>ND     |       |
| 4 1,2-Dichloro-1,1,2,2-tetrafluoro 5 Chloromethane | 50        |        | 4.796<br>4.926 |        |    |           | ND<br>ND     |       |
| 6 Butane                                           | 43        |        | 5.236          |        |    |           | ND<br>ND     |       |
|                                                    | 43<br>62  |        | 5.236          |        |    |           | ND<br>ND     |       |
| 7 Vinyl chloride<br>8 Butadiene                    | 62<br>54  |        | 5.236<br>5.349 |        |    |           | ND<br>ND     |       |
|                                                    | 94        |        |                |        |    |           | ND<br>ND     |       |
| 10 Bromomethane                                    | 94<br>64  |        | 6.066          |        |    |           | ND<br>ND     |       |
| 11 Chloroethane                                    | 106       |        | 6.333          |        |    |           | ND<br>ND     |       |
| 13 Vinyl bromide<br>14 Trichlorofluoromethane      |           |        | 6.750          |        |    |           | ND<br>ND     |       |
|                                                    | 101<br>45 | 7.275  | 6.906          | 0.032  | 51 | 1094      | טא<br>0.1943 |       |
| 17 Ethanol                                         | 45<br>96  | 7.275  | 7.259          | 0.032  | 51 |           | 0.1943<br>ND |       |
| 21 1,1-Dichloroethene                              |           |        | 7.965          |        |    |           |              |       |
| 20 112TCTFE                                        | 101       |        | 7.997          |        |    |           | ND           |       |
| 22 Acetone                                         | 43        |        | 8.024          |        |    |           | ND           |       |
| 24 Isopropyl alcohol                               | 45        |        | 8.291          |        |    |           | ND           |       |
| 23 Carbon disulfide                                | 76        |        | 8.382          |        |    |           | ND           |       |
| 25 3-Chloro-1-propene                              | 41        |        | 8.660          |        |    |           | ND           |       |
| 27 Methylene Chloride                              | 49        |        | 8.896          |        |    |           | ND           |       |
| 28 2-Methyl-2-propanol                             | 59        |        | 9.056          |        |    |           | ND           |       |
| 29 Methyl tert-butyl ether                         | 73        |        | 9.372          |        |    |           | ND           |       |
| 31 trans-1,2-Dichloroethene                        | 61        |        | 9.393          |        |    |           | ND           | _     |
| S 30 1,2-Dichloroethene, Total                     | 61        |        | 9.665          |        |    |           | ND           | 7     |
| 33 Hexane                                          | 57        |        | 9.885          |        |    |           | ND           |       |
| 35 Vinyl acetate                                   | 43        |        | 10.153         |        |    |           | ND           |       |
| 34 1,1-Dichloroethane                              | 63        |        | 10.158         |        |    |           | ND           |       |
| 38 2-Butanone (MEK)                                | 72        |        | 11.105         |        |    |           | ND           |       |
| 37 cis-1,2-Dichloroethene                          | 96        |        | 11.148         |        |    |           | ND           |       |
| 39 Ethyl acetate                                   | 88        |        | 11.185         |        |    |           | ND           |       |
| * 40 Chlorobromomethane                            | 128       | 11.565 | 11.565         | 0.000  | 83 | 78788     | 10.0         |       |
| 41 Tetrahydrofuran                                 | 42        |        | 11.587         |        |    |           | ND           |       |

9

4

5

7

0

10

12

4 4

15

Report Date: 04-May-2021 09:38:35 Chrom I

Chrom Revision: 2.3 08-Apr-2021 17:17:48

Data File: \\chromfs\Burlington\ChromData\CHX.i\20210503-45801.b\45801-06.D

| Data File. \\Chiomis\bur                       | iiigioi  |              |        |        | J-4-JOC | 71.D\456U1-U0 |           |       |
|------------------------------------------------|----------|--------------|--------|--------|---------|---------------|-----------|-------|
| Compound                                       | Sic.     | RT<br>(min.) | Adj RT | Dlt RT | 0       | Doonanas      | OnCol Amt | Elece |
| Compound                                       | Sig      | (min.)       | (min.) | (min.) | Q       | Response      | ppb v/v   | Flags |
| 42 Chloroform                                  | 83       |              | 11.736 |        |         |               | ND        |       |
| 44 1,1,1-Trichloroethane                       | 97       |              | 12.041 |        |         |               | ND        |       |
| 43 Cyclohexane                                 | 84       |              | 12.180 |        |         |               | ND        |       |
| 45 Carbon tetrachloride                        | 117      |              | 12.320 |        |         |               | ND        |       |
| 47 Benzene                                     | 78       |              | 12.667 |        |         |               | ND        |       |
| 48 1,2-Dichloroethane                          | 62       |              | 12.753 |        |         |               | ND        |       |
| 46 Isooctane                                   | 57       |              | 12.755 |        |         |               | ND        |       |
| 49 n-Heptane                                   | 43       |              | 13.175 |        |         |               | ND        |       |
| * 50 1,4-Difluorobenzene                       | 114      | 13.400       | 13.405 | -0.005 | 93      | 397546        | 10.0      |       |
| 53 Trichloroethene                             | 95       | 13.400       | 13.833 | -0.003 | 33      |               | ND        |       |
| 54 1,2-Dichloropropane                         | 63       |              | 14.299 |        |         |               | ND        |       |
| 55 Methyl methacrylate                         | 69       |              | 14.253 |        |         |               | ND        |       |
| 56 1,4-Dioxane                                 | 88       |              | 14.401 |        |         |               | ND        |       |
| 57 Dibromomethane                              | 174      |              | 14.459 |        |         |               | ND        |       |
| 58 Dichlorobromomethane                        | 83       |              | 14.459 |        |         |               | ND        |       |
| 60 cis-1,3-Dichloropropene                     | os<br>75 |              | 15.561 |        |         |               | ND        |       |
| 61 4-Methyl-2-pentanone (MIBK)                 |          |              | 15.797 |        |         |               | ND        |       |
| 65 Toluene                                     | 92       |              | 16.198 |        |         |               | ND        |       |
| 66 trans-1,3-Dichloropropene                   | 75       |              | 16.615 |        |         |               | ND        |       |
| 67 1,1,2-Trichloroethane                       | 83       |              | 16.995 |        |         |               | ND        |       |
| 68 Tetrachloroethene                           | 166      |              | 17.182 |        |         |               | ND        |       |
| 69 2-Hexanone                                  | 43       |              | 17.182 |        |         |               | ND        |       |
| 71 Chlorodibromomethane                        | 129      |              | 17.370 |        |         |               | ND        |       |
| 72 Ethylene Dibromide                          | 107      |              | 17.739 |        |         |               | ND        |       |
| * 74 Chlorobenzene-d5                          | 117      | 18.873       | 18.878 | -0.005 | 85      | 289891        | 10.0      |       |
| 75 Chlorobenzene                               | 112      | 10.073       | 18.937 | -0.005 | 65      |               | ND        |       |
| 76 Ethylbenzene                                | 91       |              | 19.119 |        |         |               | ND        | 7     |
| 78 m-Xylene & p-Xylene                         | 106      |              | 19.119 |        |         |               | ND        | ,     |
| S 73 Xylenes, Total                            | 106      |              | 19.600 |        |         |               | ND        | 7     |
| 79 o-Xylene                                    | 106      |              | 20.157 |        |         |               | ND        | ,     |
| 80 Styrene                                     | 104      |              | 20.137 |        |         |               | ND        |       |
| 81 Bromoform                                   | 173      |              | 20.553 |        |         |               | ND        |       |
| 82 Isopropylbenzene                            | 105      |              | 20.836 |        |         |               | ND        |       |
| 84 1,1,2,2-Tetrachloroethane                   | 83       |              | 21.355 |        |         |               | ND        |       |
| 85 N-Propylbenzene                             | 91       |              | 21.548 |        |         |               | ND        |       |
| 89 2-Chlorotoluene                             | 91       |              | 21.698 |        |         |               | ND        |       |
| 88 4-Ethyltoluene                              | 105      |              | 21.096 |        |         |               | ND        |       |
| 90 1,3,5-Trimethylbenzene                      | 105      |              | 21.746 |        |         |               | ND<br>ND  |       |
|                                                | 119      |              | 22.313 |        |         |               | ND<br>ND  |       |
| 92 tert-Butylbenzene 93 1,2,4-Trimethylbenzene | 105      |              | 22.313 |        |         |               | ND<br>ND  |       |
| •                                              | 105      |              |        |        |         |               |           |       |
| 94 sec-Butylbenzene                            |          |              | 22.634 |        |         |               | ND        | 7     |
| 96 1,3-Dichlorobenzene                         | 146      |              | 22.816 |        |         |               | ND        | 7     |
| 95 4-Isopropyltoluene                          | 119      |              | 22.848 |        |         |               | ND        | 11    |
| 97 1,4-Dichlorobenzene                         | 146      |              | 22.955 |        |         |               | ND        | U     |
| 98 Benzyl chloride                             | 91       |              | 23.099 |        |         |               | ND        | 7     |
| 100 n-Butylbenzene                             | 91       |              | 23.404 |        |         |               | ND        | 7     |
| 101 1,2-Dichlorobenzene                        | 146      |              | 23.447 |        |         |               | ND        |       |
| 103 1,2,4-Trichlorobenzene                     | 180      |              | 25.897 |        |         |               | ND        |       |
| 104 Hexachlorobutadiene                        | 225      | 00 0         | 26.132 | =      |         |               | ND        |       |
| 105 Naphthalene                                | 128      | 26.389       | 26.377 | 0.005  | 1       | 243           | 0.0173    |       |

Page 32 of 54 5/26/2021

3

5

5

7

9

10

12

13

4 -

AET Project No. P-0002702 Page D 59 of 80

Report Date: 04-May-2021 09:38:35 Chrom Revision: 2.3 08-Apr-2021 17:17:48

QC Flag Legend Processing Flags

7 - Failed Limit of Detection

**Review Flags** 

U - Marked Undetected

Reagents:

ATTO15XISs\_00002 Amount Added: 20.00 Units: mL Run Reagent

2

\_\_\_\_\_

J

8

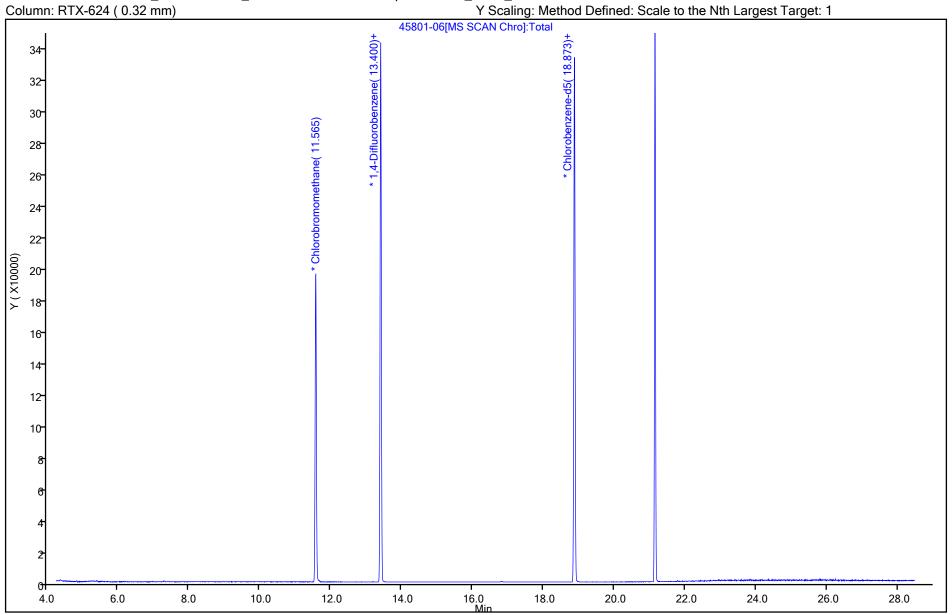
9

12

4 /

15

Report Date: 04-May-2021 09:38:35 Chrom Revision: 2.3 08-Apr-2021 17:17:48


Eurofins TestAmerica, Burlington \\chromfs\Burlington\ChromData\CHX.i\20210503-45801.b\45801-06.D Data File:

Injection Date: 03-May-2021 12:01:30 Instrument ID: CHX.i Operator ID: ggg Worklist Smp#: Lims ID: 200-58277-A-11 Lab Sample ID: 200-58277-11 6

Client ID: 4961

Purge Vol: 200.000 mL Dil. Factor: 1.0000 ALS Bottle#: 5

Method: TO15\_MasterMethod\_X.m Limit Group: AI\_TO15\_ICAL



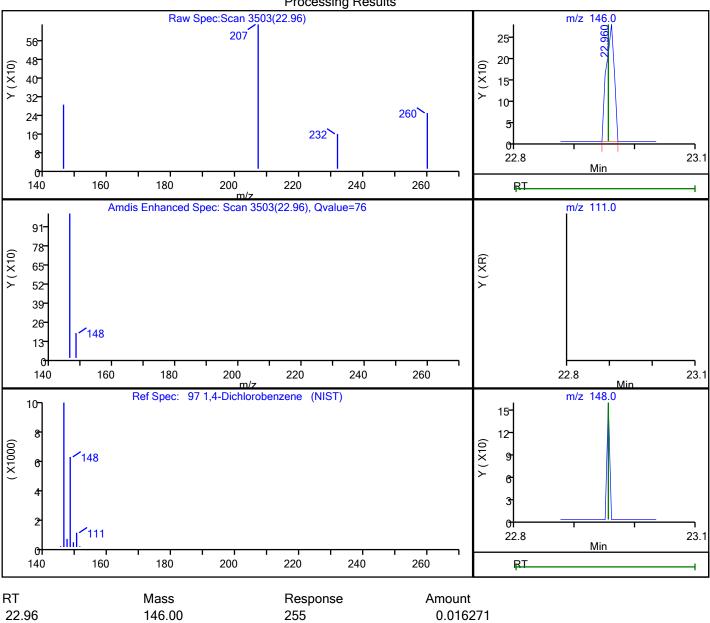
Page 34 of 54 5/26/2021

Report Date: 04-May-2021 09:38:35

Chrom Revision: 2.3 08-Apr-2021 17:17:48 **User Disabled Compound Report** 

#### Eurofins TestAmerica, Burlington

\\chromfs\Burlington\ChromData\CHX.i\20210503-45801.b\45801-06.D Data File: 03-May-2021 12:01:30 Injection Date: Instrument ID: CHX.i Lims ID: 200-58277-A-11 Lab Sample ID: 200-58277-11


Client ID: 4961

ALS Bottle#: Operator ID: 5 Worklist Smp#: 6 ggg

Purge Vol: 200.000 mL Dil. Factor: 1.0000 Method: TO15\_MasterMethod\_X.m Limit Group: AI\_TO15\_ICAL Column: RTX-624 (0.32 mm) MS SCAN Detector

## 97 1,4-Dichlorobenzene, CAS: 106-46-7

#### Processing Results



| RT    | Mass   | Response | Amount   |
|-------|--------|----------|----------|
| 22.96 | 146.00 | 255      | 0.016271 |
| 22.95 | 111.00 | 0        |          |
| 22.95 | 148.00 | 0        |          |
|       |        |          |          |

Reviewer: puangmaleek, 04-May-2021 09:38:26

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

# FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Burlington Job No.: 200-58316-1 SDG No.: Client Sample ID: 6298 Lab Sample ID: 200-58316-1 Matrix: Air Lab File ID: 200-45860-006.D Analysis Method: TO-15 Date Collected: 05/04/2021 00:00 Sample wt/vol: 200(mL) Date Analyzed: 05/06/2021 12:03 Soil Aliquot Vol: Dilution Factor: 1 GC Column: RTX-624 ID: 0.32(mm) Soil Extract Vol.: % Moisture: Level: (low/med) Low Analysis Batch No.: 166587 Units: ppb v/v

| CAS NO.   | COMPOUND NAME                 | RESULT | Q | RL   | RL   |
|-----------|-------------------------------|--------|---|------|------|
| 115-07-1  | Propylene                     | 5.0    | U | 5.0  | 5.0  |
| 75-71-8   | Dichlorodifluoromethane       | 0.50   | U | 0.50 | 0.50 |
| 75-45-6   | Freon 22                      | 0.50   | U | 0.50 | 0.5  |
| 76-14-2   | 1,2-Dichlorotetrafluoroethane | 0.20   | U | 0.20 | 0.20 |
| 74-87-3   | Chloromethane                 | 0.50   | U | 0.50 | 0.50 |
| 106-97-8  | n-Butane                      | 0.50   | U | 0.50 | 0.50 |
| 75-01-4   | Vinyl chloride                | 0.20   | U | 0.20 | 0.2  |
| 106-99-0  | 1,3-Butadiene                 | 0.20   | U | 0.20 | 0.2  |
| 74-83-9   | Bromomethane                  | 0.20   | U | 0.20 | 0.20 |
| 75-00-3   | Chloroethane                  | 0.50   | U | 0.50 | 0.50 |
| 593-60-2  | Bromoethene(Vinyl Bromide)    | 0.20   | U | 0.20 | 0.20 |
| 75-69-4   | Trichlorofluoromethane        | 0.20   | U | 0.20 | 0.2  |
| 64-17-5   | Ethanol                       | 5.0    | U | 5.0  | 5.0  |
| 76-13-1   | Freon TF                      | 0.20   | U | 0.20 | 0.2  |
| 75-35-4   | 1,1-Dichloroethene            | 0.20   | U | 0.20 | 0.2  |
| 67-64-1   | Acetone                       | 5.0    | U | 5.0  | 5.0  |
| 67-63-0   | Isopropyl alcohol             | 5.0    | U | 5.0  | 5.0  |
| 75-15-0   | Carbon disulfide              | 0.50   | U | 0.50 | 0.50 |
| 107-05-1  | 3-Chloropropene               | 0.50   | U | 0.50 | 0.50 |
| 75-09-2   | Methylene Chloride            | 0.50   | U | 0.50 | 0.5  |
| 75-65-0   | tert-Butyl alcohol            | 5.0    | U | 5.0  | 5.   |
| 1634-04-4 | Methyl tert-butyl ether       | 0.20   | U | 0.20 | 0.2  |
| 156-60-5  | trans-1,2-Dichloroethene      | 0.20   | U | 0.20 | 0.20 |
| 110-54-3  | n-Hexane                      | 0.50   | U | 0.50 | 0.50 |
| 75-34-3   | 1,1-Dichloroethane            | 0.20   | U | 0.20 | 0.20 |
| 108-05-4  | Vinyl acetate                 | 5.0    | U | 5.0  | 5.0  |
| 141-78-6  | Ethyl acetate                 | 5.0    | U | 5.0  | 5.0  |
| 78-93-3   | Methyl Ethyl Ketone           | 0.50   | U | 0.50 | 0.5  |
| 156-59-2  | cis-1,2-Dichloroethene        | 0.20   | U | 0.20 | 0.2  |
| 540-59-0  | 1,2-Dichloroethene, Total     | 0.40   | U | 0.40 | 0.4  |
| 67-66-3   | Chloroform                    | 0.20   | U | 0.20 | 0.2  |
| 109-99-9  | Tetrahydrofuran               | 5.0    | U | 5.0  | 5.0  |
| 71-55-6   | 1,1,1-Trichloroethane         | 0.20   | U | 0.20 | 0.2  |
| 110-82-7  | Cyclohexane                   | 0.20   | U | 0.20 | 0.2  |
| 56-23-5   | Carbon tetrachloride          | 0.20   | U | 0.20 | 0.2  |
| 540-84-1  | 2,2,4-Trimethylpentane        | 0.20   | U | 0.20 | 0.2  |

FORM I TO-15

# FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Burlington Job No.: 200-58316-1 SDG No.: Client Sample ID: 6298 Lab Sample ID: 200-58316-1 Matrix: Air Lab File ID: 200-45860-006.D Analysis Method: TO-15 Date Collected: 05/04/2021 00:00 Sample wt/vol: 200(mL) Date Analyzed: 05/06/2021 12:03 Soil Aliquot Vol: Dilution Factor: 1 GC Column: RTX-624 ID: 0.32 (mm) Soil Extract Vol.: % Moisture: Level: (low/med) Low Analysis Batch No.: 166587 Units: ppb v/v

|             |                                  | 11 ,   | 1 1 |      |      |
|-------------|----------------------------------|--------|-----|------|------|
| CAS NO.     | COMPOUND NAME                    | RESULT | Q   | RL   | RL   |
| 71-43-2     | Benzene                          | 0.20   | U   | 0.20 | 0.20 |
| 107-06-2    | 1,2-Dichloroethane               | 0.20   | U   | 0.20 | 0.20 |
| 142-82-5    | n-Heptane                        | 0.20   | U   | 0.20 | 0.2  |
| 79-01-6     | Trichloroethene                  | 0.20   | U   | 0.20 | 0.20 |
| 80-62-6     | Methyl methacrylate              | 0.50   | U   | 0.50 | 0.50 |
| 78-87-5     | 1,2-Dichloropropane              | 0.20   | U   | 0.20 | 0.2  |
| 123-91-1    | 1,4-Dioxane                      | 5.0    | U   | 5.0  | 5.0  |
| 75-27-4     | Bromodichloromethane             | 0.20   | U   | 0.20 | 0.20 |
| 10061-01-5  | cis-1,3-Dichloropropene          | 0.20   | U   | 0.20 | 0.20 |
| 108-10-1    | methyl isobutyl ketone           | 0.50   | U   | 0.50 | 0.50 |
| 108-88-3    | Toluene                          | 0.20   | U   | 0.20 | 0.20 |
| 10061-02-6  | trans-1,3-Dichloropropene        | 0.20   | U   | 0.20 | 0.20 |
| 79-00-5     | 1,1,2-Trichloroethane            | 0.20   | U   | 0.20 | 0.20 |
| 127-18-4    | Tetrachloroethene                | 0.20   | U   | 0.20 | 0.20 |
| 591-78-6    | Methyl Butyl Ketone (2-Hexanone) | 0.50   | U   | 0.50 | 0.5  |
| 124-48-1    | Dibromochloromethane             | 0.20   | U   | 0.20 | 0.2  |
| 106-93-4    | 1,2-Dibromoethane                | 0.20   | U   | 0.20 | 0.20 |
| 108-90-7    | Chlorobenzene                    | 0.20   | U   | 0.20 | 0.20 |
| 100-41-4    | Ethylbenzene                     | 0.20   | U   | 0.20 | 0.20 |
| 179601-23-1 | m,p-Xylene                       | 0.50   | U   | 0.50 | 0.50 |
| 95-47-6     | Xylene, o-                       | 0.20   | U   | 0.20 | 0.2  |
| 1330-20-7   | Xylene (total)                   | 0.70   | U   | 0.70 | 0.70 |
| 100-42-5    | Styrene                          | 0.20   | U   | 0.20 | 0.20 |
| 75-25-2     | Bromoform                        | 0.20   | U   | 0.20 | 0.20 |
| 98-82-8     | Cumene                           | 0.20   | U   | 0.20 | 0.20 |
| 79-34-5     | 1,1,2,2-Tetrachloroethane        | 0.20   | U   | 0.20 | 0.20 |
| 103-65-1    | n-Propylbenzene                  | 0.20   | U   | 0.20 | 0.20 |
| 622-96-8    | 4-Ethyltoluene                   | 0.20   | U   | 0.20 | 0.2  |
| 108-67-8    | 1,3,5-Trimethylbenzene           | 0.20   | U   | 0.20 | 0.2  |
| 95-49-8     | 2-Chlorotoluene                  | 0.20   | U   | 0.20 | 0.2  |
| 98-06-6     | tert-Butylbenzene                | 0.20   | U   | 0.20 | 0.2  |
| 95-63-6     | 1,2,4-Trimethylbenzene           | 0.20   | U   | 0.20 | 0.20 |
| 135-98-8    | sec-Butylbenzene                 | 0.20   | U   | 0.20 | 0.2  |
| 99-87-6     | 4-Isopropyltoluene               | 0.20   | U   | 0.20 | 0.2  |
| 541-73-1    | 1,3-Dichlorobenzene              | 0.20   | U   | 0.20 | 0.2  |
| 106-46-7    | 1,4-Dichlorobenzene              | 0.20   | U   | 0.20 | 0.2  |

FORM I TO-15

AET Project No. P-0002702 Page D 64 of 80

# FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins TestAmerica, Burlington Job No.: 200-58316-1 SDG No.: Client Sample ID: 6298 Lab Sample ID: 200-58316-1 Matrix: Air Lab File ID: 200-45860-006.D Analysis Method: TO-15 Date Collected: 05/04/2021 00:00 Sample wt/vol: 200(mL) Date Analyzed: 05/06/2021 12:03 Soil Aliquot Vol: Dilution Factor: 1 Soil Extract Vol.: GC Column: RTX-624 ID: 0.32(mm) % Moisture: Level: (low/med) Low Analysis Batch No.: 166587 Units: ppb v/v

| CAS NO.  | COMPOUND NAME          | RESULT | Q    | RL   | RL   |
|----------|------------------------|--------|------|------|------|
| 100-44-7 | Benzyl chloride        | 0.20   | U *+ | 0.20 | 0.20 |
| 104-51-8 | n-Butylbenzene         | 0.20   | U    | 0.20 | 0.20 |
| 95-50-1  | 1,2-Dichlorobenzene    | 0.20   | U    | 0.20 | 0.20 |
| 120-82-1 | 1,2,4-Trichlorobenzene | 0.50   | U    | 0.50 | 0.50 |
| 87-68-3  | Hexachlorobutadiene    | 0.20   | U    | 0.20 | 0.20 |
| 91-20-3  | Naphthalene            | 0.50   | U    | 0.50 | 0.50 |

FORM I TO-15

2

3

6

10

13

15

AET Project No. P-0002702 Page D 65 of 80

Report Date: 06-May-2021 16:14:52 Chrom Revision: 2.3 08-Apr-2021 17:17:48

Eurofins TestAmerica, Burlington Target Compound Quantitation Report

Data File: \\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D

Lims ID: 200-58316-A-1

Client ID: 6298 Sample Type: Client

Inject. Date: 06-May-2021 12:03:30 ALS Bottle#: 5 Worklist Smp#: 6

Purge Vol: 200.000 mL Dil. Factor: 1.0000

Sample Info: 200-0045860-006

Operator ID: ggg Instrument ID: CHG.i

Method: \\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\TO15\_MasterMethod\_(v1)\_G.m

Limit Group: AI\_TO15\_ICAL

Last Update:06-May-2021 16:14:51Calib Date:30-Apr-2021 01:36:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\\Burlington\\ChromData\\CHG.i\\20210429-45776.b\\200-45776-013.D

Column 1: RTX-624 ( 0.32 mm) Det: MS SCAN

Process Host: CTX1680

| First Level Reviewer: phamvu               |          |        | Date:          |        |    | 06-May-2021 16:14:51 |           |       |
|--------------------------------------------|----------|--------|----------------|--------|----|----------------------|-----------|-------|
|                                            |          | RT     | Adj RT         | Dlt RT |    | _                    | OnCol Amt |       |
| Compound                                   | Sig      | (min.) | (min.)         | (min.) | Q  | Response             | ppb v/v   | Flags |
| 1 Propono                                  | 41       |        | 3.038          |        |    |                      | ND        | 7     |
| 1 Propene 2 Dichlorodifluoromethane        | 85       |        | 3.036          |        |    |                      | ND<br>ND  | ,     |
| 3 Chlorodifluoromethane                    | 51       |        | 3.107          |        |    |                      | ND<br>ND  | 7     |
| 4 1,2-Dichloro-1,1,2,2-tetrafluoro         |          |        | 3.300          |        |    |                      | ND<br>ND  | ,     |
| 5 Chloromethane                            | 50       |        | 3.369          |        |    |                      | ND<br>ND  | 7     |
| 7 Vinyl chloride                           | 62       |        | 3.557          |        |    |                      | ND<br>ND  | ,     |
| 6 Butane                                   | 43       |        | 3.567          |        |    |                      | ND<br>ND  | 7     |
| 8 Butadiene                                | 43<br>54 |        | 3.632          |        |    |                      | ND<br>ND  | /     |
| 10 Bromomethane                            | 94       |        | 4.086          |        |    |                      | ND<br>ND  |       |
| 11 Chloroethane                            | 94<br>64 |        | 4.086          |        |    |                      | ND<br>ND  |       |
|                                            |          |        |                |        |    |                      |           |       |
| 13 Vinyl bromide 14 Trichlorofluoromethane | 106      |        | 4.579<br>4.712 |        |    |                      | ND<br>ND  |       |
|                                            | 101      |        |                |        |    |                      | ND<br>ND  | 7     |
| 17 Ethanol                                 | 45       |        | 4.921          |        |    |                      | ND<br>ND  | 7     |
| 21 1,1-Dichloroethene                      | 96       |        | 5.563          |        |    |                      | ND        | 7     |
| 22 Acetone                                 | 43       |        | 5.579          |        |    |                      | ND        | 7     |
| 20 1,1,2-Trichloro-1,2,2-trifluoroe        |          |        | 5.606          |        |    |                      | ND        |       |
| 24 Isopropyl alcohol                       | 45       |        | 5.809          |        |    |                      | ND        |       |
| 23 Carbon disulfide                        | 76       |        | 5.937          |        |    |                      | ND        | _     |
| 25 3-Chloro-1-propene                      | 41       |        | 6.157          |        |    |                      | ND        | 7     |
| 27 Methylene Chloride                      | 49       |        | 6.355          |        |    |                      | ND        | 7     |
| 28 2-Methyl-2-propanol                     | 59       |        | 6.520          |        |    |                      | ND        |       |
| 31 trans-1,2-Dichloroethene                | 61       |        | 6.852          |        |    |                      | ND        |       |
| 29 Methyl tert-butyl ether                 | 73       |        | 6.874          |        |    |                      | ND        | 7     |
| 33 Hexane                                  | 57       |        | 7.382          |        |    |                      | ND        |       |
| 34 1,1-Dichloroethane                      | 63       |        | 7.564          |        |    |                      | ND        |       |
| 35 Vinyl acetate                           | 43       |        | 7.574          |        |    |                      | ND        |       |
| 38 2-Butanone (MEK)                        | 72       |        | 8.489          |        |    |                      | ND        |       |
| 37 cis-1,2-Dichloroethene                  | 96       |        | 8.527          |        |    |                      | ND        |       |
| 39 Ethyl acetate                           | 88       |        | 8.607          |        |    |                      | ND        |       |
| * 40 Chlorobromomethane                    | 128      | 8.928  | 8.922          | 0.006  | 82 | 117828               | 10.0      |       |
| 41 Tetrahydrofuran                         | 42       |        | 9.003          |        |    |                      | ND        |       |
| 42 Chloroform                              | 83       |        | 9.110          |        |    |                      | ND        |       |

2

5

0

8

10

11

13

1 E

Chrom Revision: 2.3 08-Apr-2021 17:17:48

| rioport Bato. oo ii | .a, 2021 1011 1102                | 011101111101101111                    | • |
|---------------------|-----------------------------------|---------------------------------------|---|
| Data File:          | \\chromfs\Burlington\ChromData\CH | HG.i\20210506-45860.b\200-45860-006.D |   |

| Data File. \\chiroffils\bull   | IIIIgtoi  |        |        |        | 3-456 | 00.0\200-4560 |              |       |
|--------------------------------|-----------|--------|--------|--------|-------|---------------|--------------|-------|
|                                |           | RT     | Adj RT | Dlt RT |       | _             | OnCol Amt    | l     |
| Compound                       | Sig       | (min.) | (min.) | (min.) | Q     | Response      | ppb v/v      | Flags |
|                                |           |        |        |        |       |               |              |       |
| 44 1,1,1-Trichloroethane       | 97        |        | 9.452  |        |       |               | ND           |       |
| 43 Cyclohexane                 | 84        |        | 9.629  |        |       |               | ND           |       |
| S 30 1,2-Dichloroethene, Total | 61        |        | 9.665  |        |       |               | ND           | 7     |
| 45 Carbon tetrachloride        | 117       |        | 9.757  |        |       |               | ND           |       |
| 47 Benzene                     | 78        |        | 10.094 |        |       |               | ND           | U     |
| 48 1,2-Dichloroethane          | 62        |        | 10.148 |        |       |               | ND           |       |
| 46 Isooctane                   | 57        |        | 10.399 |        |       |               | ND           |       |
| 49 n-Heptane                   | 43        |        | 10.741 |        |       |               | ND           | 7     |
| * 50 1,4-Difluorobenzene       | 114       | 10.897 | 10.891 | 0.006  | 94    | 642827        | 10.0         |       |
| 53 Trichloroethene             | 95        |        | 11.383 |        |       |               | ND           |       |
| 54 1,2-Dichloropropane         | 63        |        | 11.859 |        |       |               | ND           |       |
| 55 Methyl methacrylate         | 69        |        | 12.004 |        |       |               | ND           |       |
| 57 Dibromomethane              | 174       |        | 12.020 |        |       |               | ND           | 7     |
| 56 1,4-Dioxane                 | 88        |        | 12.025 |        |       |               | ND           |       |
| 58 Dichlorobromomethane        | 83        |        | 12.378 |        |       |               | ND           |       |
| 60 cis-1,3-Dichloropropene     | 75        |        | 13.282 |        |       |               | ND           |       |
| 61 4-Methyl-2-pentanone (MIBK) |           |        | 13.571 |        |       |               | ND           |       |
| 65 Toluene                     | 92        |        | 13.999 |        |       |               | ND           | U     |
| 66 trans-1,3-Dichloropropene   | 75        |        | 14.422 |        |       |               | ND           | 7     |
| 67 1,1,2-Trichloroethane       | 83        |        | 14.818 |        |       |               | ND           | •     |
| 68 Tetrachloroethene           | 166       |        | 15.091 |        |       |               | ND           |       |
| 69 2-Hexanone                  | 43        |        | 15.289 |        |       |               | ND           |       |
| 71 Chlorodibromomethane        | 129       |        | 15.610 |        |       |               | ND           |       |
| 72 Ethylene Dibromide          | 107       |        | 15.856 |        |       |               | ND           | U     |
| * 74 Chlorobenzene-d5          | 117       | 16.851 | 16.856 | -0.005 | 88    | 591412        | 10.0         | U     |
|                                | 112       | 10.001 |        | -0.003 | 00    |               |              | 1.1   |
| 75 Chlorobenzene               |           |        | 16.915 |        |       |               | ND           | U     |
| 76 Ethylbenzene                | 91        |        | 17.145 |        |       |               | ND           | U     |
| 78 m-Xylene & p-Xylene         | 106       |        | 17.429 |        |       |               | ND           |       |
| 79 o-Xylene                    | 106       |        | 18.231 |        |       |               | ND           | U     |
| 80 Styrene                     | 104       |        | 18.263 |        |       |               | ND           | 7     |
| 81 Bromoform                   | 173       |        | 18.605 |        |       |               | ND           | 7     |
| 82 Isopropylbenzene            | 105       |        | 19.033 |        |       |               | ND           | 7     |
| 84 1,1,2,2-Tetrachloroethane   | 83        |        | 19.568 |        |       |               | ND           | 7     |
| S 73 Xylenes, Total            | 106       |        | 19.600 |        |       |               | ND           | 7     |
| 85 N-Propylbenzene             | 91        |        | 19.836 |        |       |               | ND           | 7     |
| 89 2-Chlorotoluene             | 91        |        | 19.975 |        |       |               | ND           | 7     |
| 88 4-Ethyltoluene              | 105       |        | 20.055 |        |       |               | ND           | 7     |
| 90 1,3,5-Trimethylbenzene      | 105       |        | 20.162 |        |       |               | ND           | 7     |
| 92 tert-Butylbenzene           | 119       |        | 20.681 |        |       |               | ND           | 7     |
| 93 1,2,4-Trimethylbenzene      | 105       |        | 20.777 |        |       |               | ND           | 7     |
| 94 sec-Butylbenzene            | 105       |        | 21.034 |        |       |               | ND           | 7     |
| 96 1,3-Dichlorobenzene         | 146       |        | 21.195 |        |       |               | ND           | U     |
| 95 4-Isopropyltoluene          | 119       |        | 21.270 |        |       |               | ND           | 7     |
| 97 1,4-Dichlorobenzene         | 146       |        | 21.344 |        |       |               | ND           | Ú     |
| 98 Benzyl chloride             | 91        |        | 21.489 |        |       |               | ND           | U     |
| 101 1,2-Dichlorobenzene        | 91<br>146 |        | 21.469 |        |       |               | ND<br>ND     | U     |
|                                |           |        |        |        |       |               |              | 7     |
| 100 n-Butylbenzene             | 91<br>190 | 24 222 | 21.847 | 0.000  | 4     |               | ND<br>0.1072 | 1     |
| 103 1,2,4-Trichlorobenzene     | 180       | 24.233 | 24.233 | 0.000  | 1     | 3552          | 0.1072       |       |
| 104 Hexachlorobutadiene        | 225       |        | 24.506 |        |       |               | ND           | U     |
| 105 Naphthalene                | 128       |        | 24.677 |        |       |               | ND           | U     |
|                                |           |        |        |        |       |               |              |       |

Page 40 of 54

5/26/2021

3

4

6

8

10

12

4 4

15

AET Project No. P-0002702 Page D 67 of 80

Report Date: 06-May-2021 16:14:52 Chrom Revision: 2.3 08-Apr-2021 17:17:48

QC Flag Legend Processing Flags

7 - Failed Limit of Detection

**Review Flags** 

U - Marked Undetected

Reagents:

ATTO15GIS\_00017 Amount Added: 20.00 Units: mL Run Reagent

3

4

5

8

4.0

11

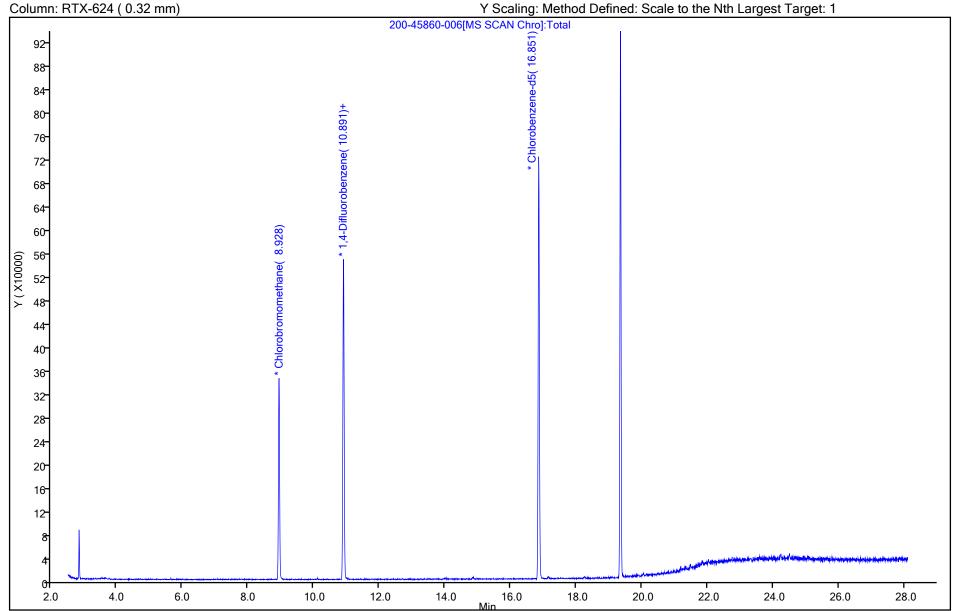
13

14

10

5/26/2021

Report Date: 06-May-2021 16:14:52 Chrom Revision: 2.3 08-Apr-2021 17:17:48


Eurofins TestAmerica, Burlington
\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D Data File:

Injection Date: 06-May-2021 12:03:30 Instrument ID: CHG.i Operator ID: ggg Worklist Smp#: Lims ID: 200-58316-A-1 Lab Sample ID: 200-58316-1 6

6298 Client ID:

Purge Vol: Dil. Factor: 1.0000 ALS Bottle#: 200.000 mL 5

Method: TO15\_MasterMethod\_(v1)\_G Limit Group: AI\_TO15\_ICAL



Page 42 of 54

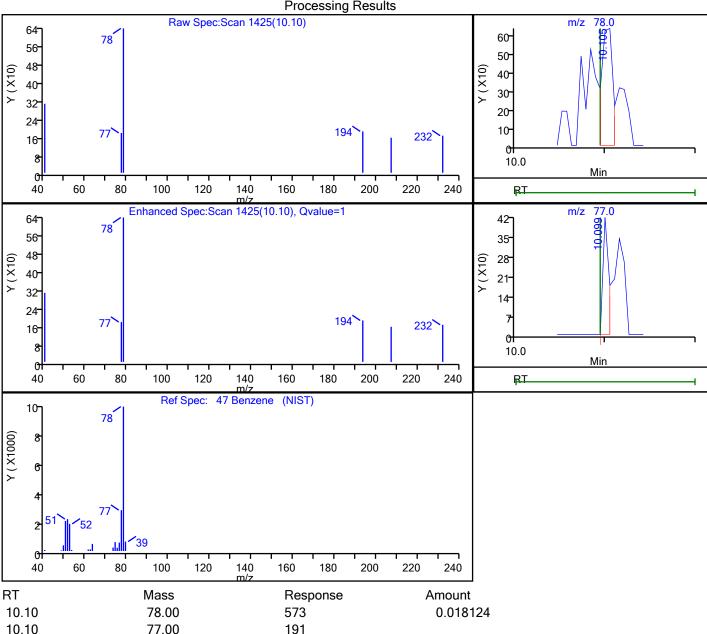
5/26/2021

Chrom Revision: 2.3 08-Apr-2021 17:17:48 **User Disabled Compound Report** 

#### Eurofins TestAmerica, Burlington

\\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D Data File:

06-May-2021 12:03:30 Instrument ID: Injection Date: CHG.i Lims ID: 200-58316-A-1 Lab Sample ID: 200-58316-1


Client ID: 6298

ALS Bottle#: Operator ID: 5 Worklist Smp#: 6 ggg

Purge Vol: 200.000 mL Dil. Factor: 1.0000 Method: TO15\_MasterMethod\_(v1)\_G Limit Group: AI\_TO15\_ICAL Column: RTX-624 (0.32 mm) Detector MS SCAN

### 47 Benzene, CAS: 71-43-2

#### **Processing Results**

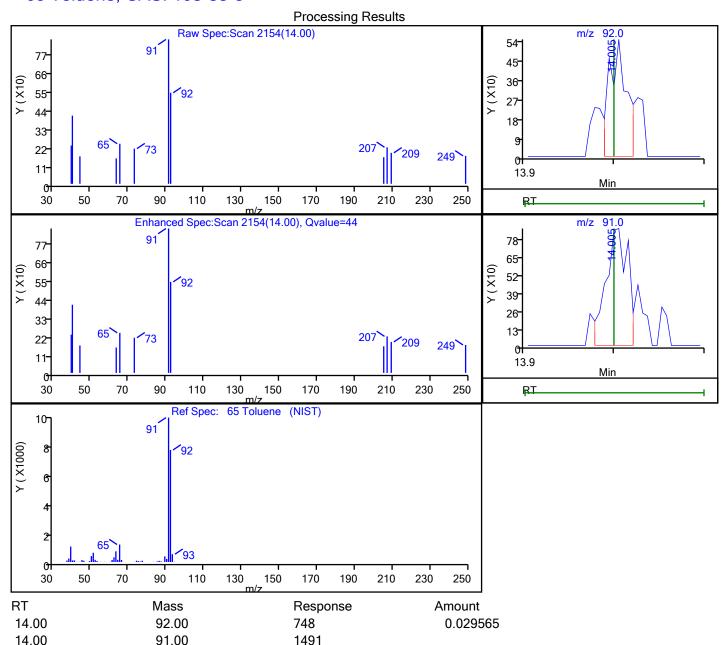


Reviewer: phamvu, 06-May-2021 16:14:14

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

Chrom Revision: 2.3 08-Apr-2021 17:17:48 User Disabled Compound Report

#### Eurofins TestAmerica, Burlington


Data File: \\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D

Client ID: 6298

Operator ID: ggg ALS Bottle#: 5 Worklist Smp#: 6

Purge Vol:200.000 mLDil. Factor:1.0000Method:TO15\_MasterMethod\_(v1)\_GLimit Group:AI\_TO15\_ICALColumn:RTX-624 ( 0.32 mm)DetectorMS SCAN

### 65 Toluene, CAS: 108-88-3



Reviewer: phamvu, 06-May-2021 16:14:19

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

2

3

4

6

8

9

12

14

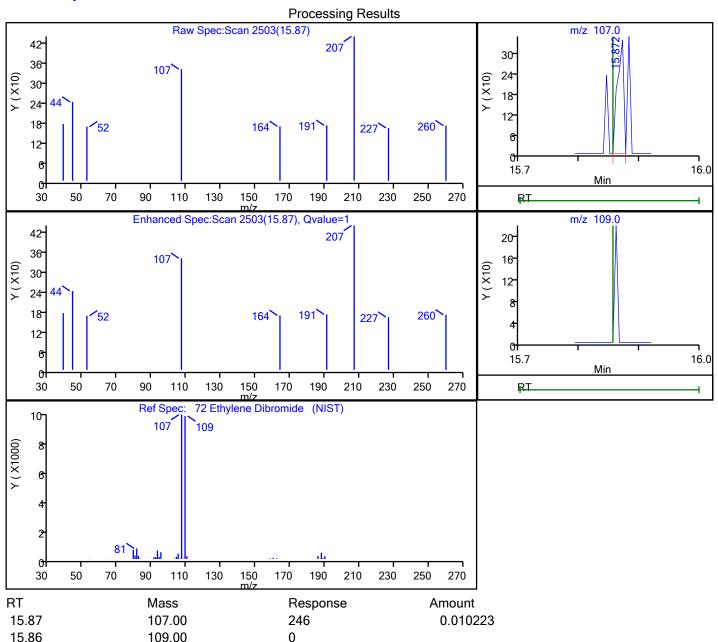
15

Chrom Revision: 2.3 08-Apr-2021 17:17:48 User Disabled Compound Report

#### Eurofins TestAmerica, Burlington

Data File: \\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D

Client ID: 6298


Operator ID: ggg ALS Bottle#: 5 Worklist Smp#: 6

 Purge Vol:
 200.000 mL
 Dil. Factor:
 1.0000

 Method:
 TO15\_MasterMethod\_(v1)\_G
 Limit Group:
 Al\_TO15\_ICAL

 Column:
 RTX-624 ( 0.32 mm)
 Detector
 MS SCAN

## 72 Ethylene Dibromide, CAS: 106-93-4



Reviewer: phamvu, 06-May-2021 16:14:23

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

3

6

8

10

12

14

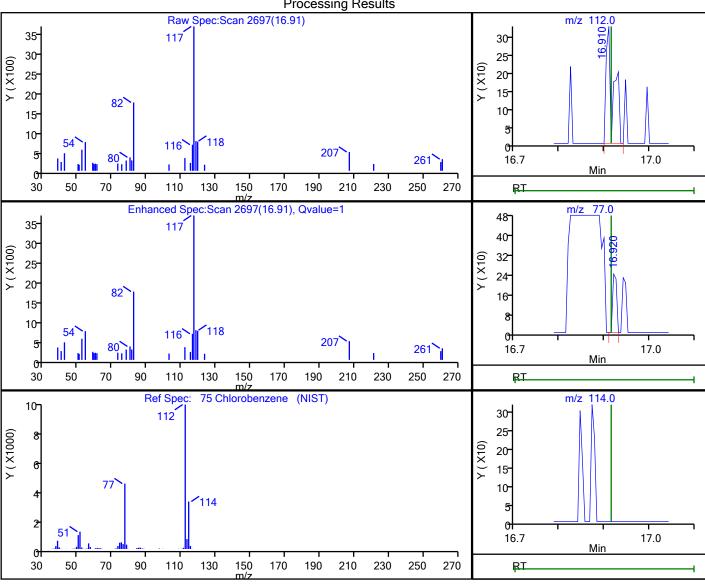
15

Chrom Revision: 2.3 08-Apr-2021 17:17:48 **User Disabled Compound Report** 

#### Eurofins TestAmerica, Burlington

\\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D Data File:

06-May-2021 12:03:30 Instrument ID: Injection Date: CHG.i Lims ID: 200-58316-A-1 Lab Sample ID: 200-58316-1


Client ID: 6298

ALS Bottle#: Operator ID: 5 Worklist Smp#: 6 ggg

Purge Vol: 200.000 mL Dil. Factor: 1.0000 Method: TO15\_MasterMethod\_(v1)\_G Limit Group: AI\_TO15\_ICAL Column: RTX-624 (0.32 mm) MS SCAN Detector

## 75 Chlorobenzene, CAS: 108-90-7

#### Processing Results





Reviewer: phamvu, 06-May-2021 16:14:25

Audit Action: Marked Compound Undetected

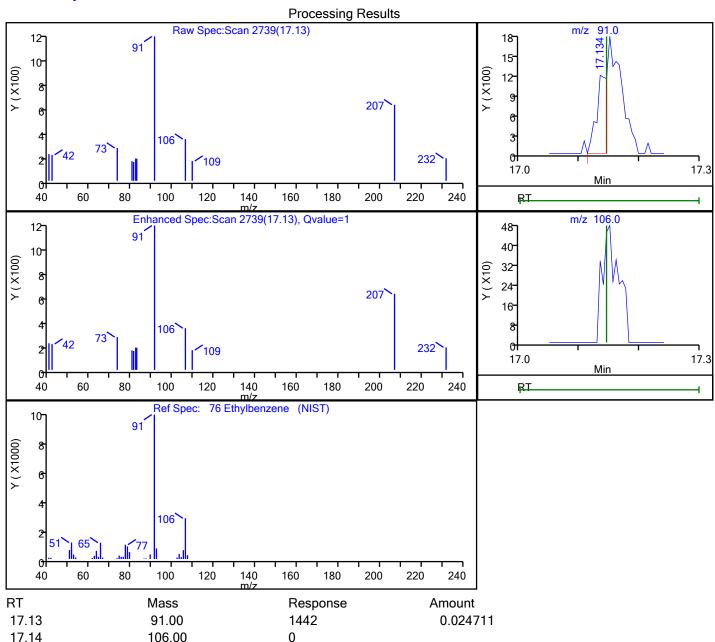
Audit Reason: Invalid Compound ID

5/26/2021

Page 46 of 54

Chrom Revision: 2.3 08-Apr-2021 17:17:48 User Disabled Compound Report

#### Eurofins TestAmerica, Burlington


Data File: \\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D

Client ID: 6298

Operator ID: ggg ALS Bottle#: 5 Worklist Smp#: 6

Purge Vol:200.000 mLDil. Factor:1.0000Method:TO15\_MasterMethod\_(v1)\_GLimit Group:AI\_TO15\_ICALColumn:RTX-624 ( 0.32 mm)DetectorMS SCAN

## 76 Ethylbenzene, CAS: 100-41-4



Reviewer: phamvu, 06-May-2021 16:14:26

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

2

3

4

5

7

9

11

13

14

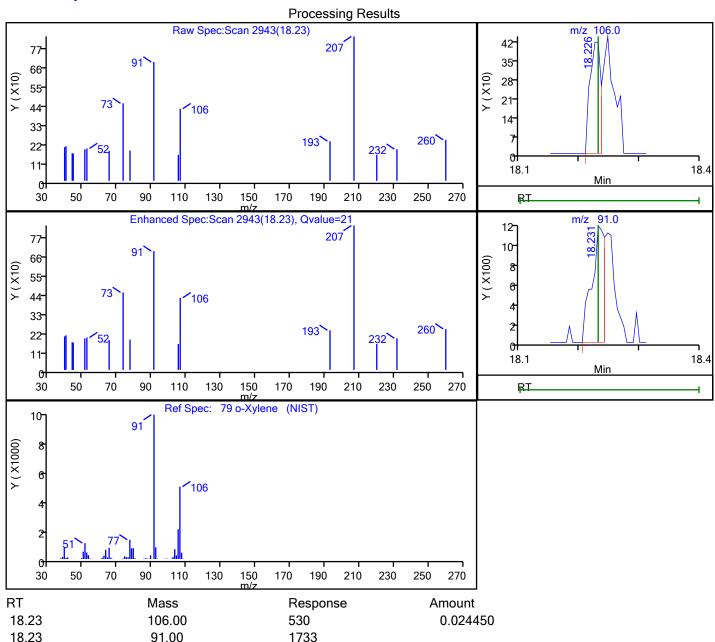
II.

Chrom Revision: 2.3 08-Apr-2021 17:17:48 User Disabled Compound Report

#### Eurofins TestAmerica, Burlington

Data File: \\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D

Client ID: 6298


Operator ID: ggg ALS Bottle#: 5 Worklist Smp#: 6

 Purge Vol:
 200.000 mL
 Dil. Factor:
 1.0000

 Method:
 TO15\_MasterMethod\_(v1)\_G
 Limit Group:
 Al\_TO15\_ICAL

 Column:
 RTX-624 ( 0.32 mm)
 Detector
 MS SCAN

## 79 o-Xylene, CAS: 95-47-6



Reviewer: phamvu, 06-May-2021 16:14:30

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

2

3

4

7

9

11

13

15

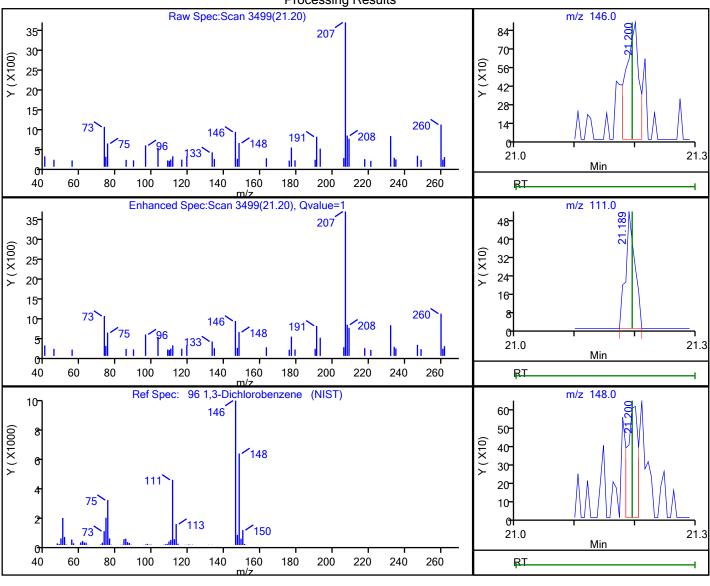
Chrom Revision: 2.3 08-Apr-2021 17:17:48 User Disabled Compound Report

#### Eurofins TestAmerica, Burlington

Data File: \\chromfs\\Burlington\\ChromData\\CHG.i\\20210506-45860.b\\200-45860-006.D

Client ID: 6298

Operator ID: ggg ALS Bottle#: 5 Worklist Smp#: 6


 Purge Vol:
 200.000 mL
 Dil. Factor:
 1.0000

 Method:
 TO15\_MasterMethod\_(v1)\_G
 Limit Group:
 Al\_TO15\_ICAL

 Column:
 RTX-624 ( 0.32 mm)
 Detector
 MS SCAN

## 96 1,3-Dichlorobenzene, CAS: 541-73-1

#### Processing Results



| RT    | Mass   | Response | Amount   |
|-------|--------|----------|----------|
| 21.20 | 146.00 | 1298     | 0.033542 |
| 21.19 | 111.00 | 559      |          |
| 21.20 | 148.00 | 762      |          |
|       |        |          |          |

Reviewer: phamvu, 06-May-2021 16:14:38 Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

5/26/2021

3

4

6

9

12

14

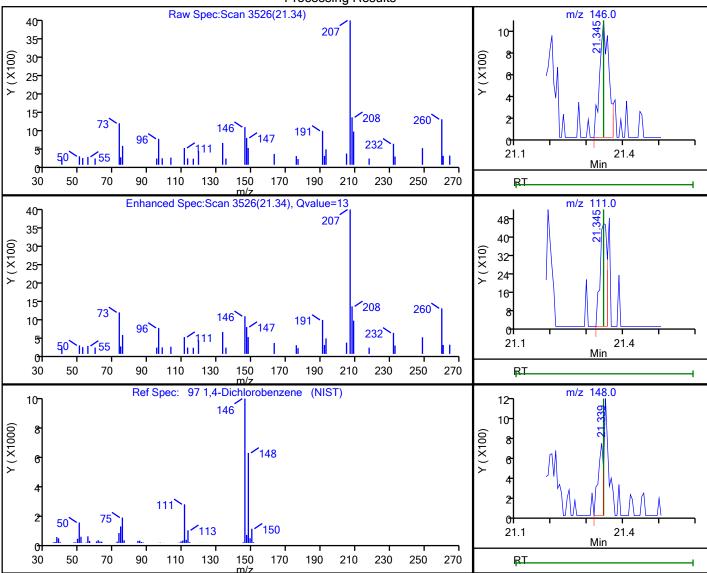
Chrom Revision: 2.3 08-Apr-2021 17:17:48 User Disabled Compound Report

#### Eurofins TestAmerica, Burlington

Data File: \\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D

Client ID: 6298

Operator ID: ggg ALS Bottle#: 5 Worklist Smp#: 6


 Purge Vol:
 200.000 mL
 Dil. Factor:
 1.0000

 Method:
 TO15\_MasterMethod\_(v1)\_G
 Limit Group:
 Al\_TO15\_ICAL

 Column:
 RTX-624 ( 0.32 mm)
 Detector
 MS SCAN

## 97 1,4-Dichlorobenzene, CAS: 106-46-7

#### Processing Results





Reviewer: phamvu, 06-May-2021 16:14:40

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

5/26/2021

5

5

6

8

10

12

14

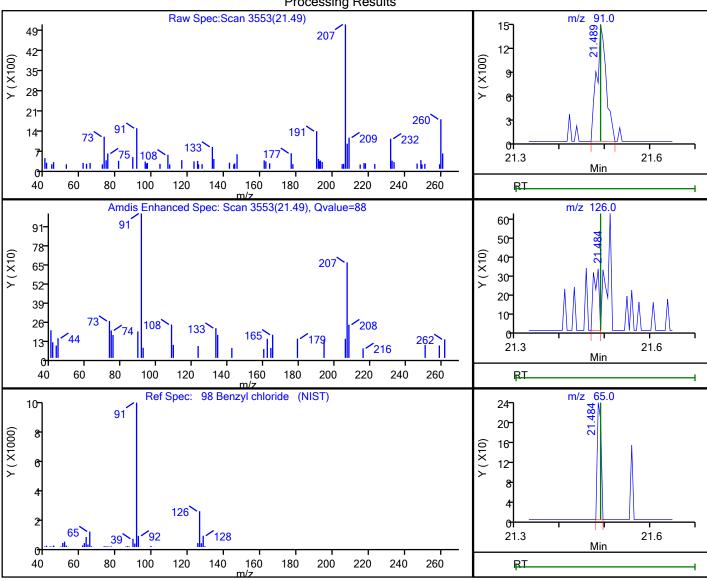
15

Chrom Revision: 2.3 08-Apr-2021 17:17:48 **User Disabled Compound Report** 

#### Eurofins TestAmerica, Burlington

\\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D Data File:

06-May-2021 12:03:30 Instrument ID: Injection Date: CHG.i Lims ID: 200-58316-A-1 Lab Sample ID: 200-58316-1


Client ID: 6298

ALS Bottle#: Operator ID: 5 Worklist Smp#: 6 ggg

Purge Vol: 200.000 mL Dil. Factor: 1.0000 Method: TO15\_MasterMethod\_(v1)\_G Limit Group: AI\_TO15\_ICAL Column: RTX-624 (0.32 mm) Detector MS SCAN

## 98 Benzyl chloride, CAS: 100-44-7

#### **Processing Results**



| RT    | Mass   | Response | Amount   |
|-------|--------|----------|----------|
| 21.49 | 91.00  | 2090     | 0.043679 |
| 21.48 | 126.00 | 276      |          |
| 21.48 | 65.00  | 141      |          |

Reviewer: phamvu, 06-May-2021 16:14:41 Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

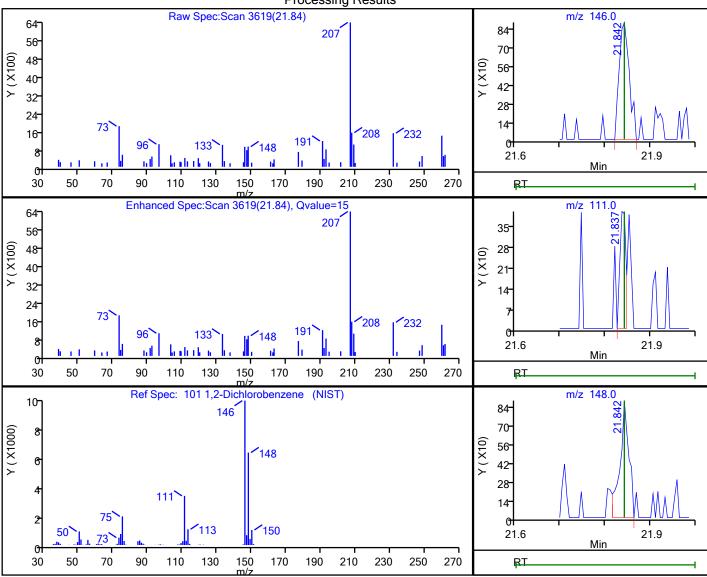
Chrom Revision: 2.3 08-Apr-2021 17:17:48 User Disabled Compound Report

#### Eurofins TestAmerica, Burlington

Data File: \\chromfs\\Burlington\\ChromData\\CHG.i\\20210506-45860.b\\200-45860-006.D

Client ID: 6298

Operator ID: ggg ALS Bottle#: 5 Worklist Smp#: 6


 Purge Vol:
 200.000 mL
 Dil. Factor:
 1.0000

 Method:
 TO15\_MasterMethod\_(v1)\_G
 Limit Group:
 Al\_TO15\_ICAL

 Column:
 RTX-624 ( 0.32 mm)
 Detector
 MS SCAN

### 101 1,2-Dichlorobenzene, CAS: 95-50-1

#### Processing Results



| RT    | Mass   | Response | Amount   |
|-------|--------|----------|----------|
| 21.84 | 146.00 | 1390     | 0.035537 |
| 21.84 | 111.00 | 377      |          |
| 21.84 | 148.00 | 1240     |          |

Reviewer: phamvu, 06-May-2021 16:14:42 Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

2

3

4

6

8

10

12

14

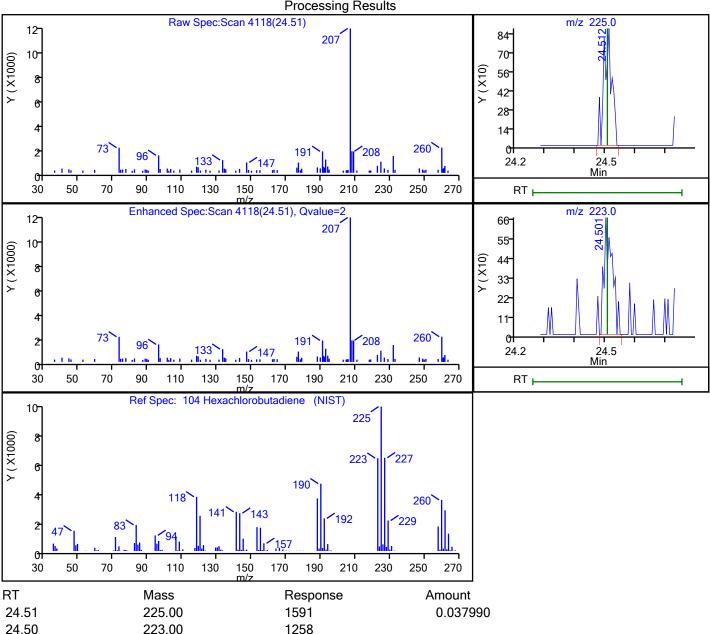
15

Chrom Revision: 2.3 08-Apr-2021 17:17:48 **User Disabled Compound Report** 

#### Eurofins TestAmerica, Burlington

\\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D Data File:

06-May-2021 12:03:30 Instrument ID: Injection Date: CHG.i Lims ID: 200-58316-A-1 Lab Sample ID: 200-58316-1


6298 Client ID:

ALS Bottle#: Operator ID: 5 Worklist Smp#: 6 ggg

Purge Vol: 200.000 mL Dil. Factor: 1.0000 TO15\_MasterMethod\_(v1)\_G Method: Limit Group: AI\_TO15\_ICAL Column: RTX-624 (0.32 mm) MS SCAN Detector

## 104 Hexachlorobutadiene, CAS: 87-68-3

#### Processing Results



Reviewer: phamvu, 06-May-2021 16:14:45 Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

Page 53 of 54

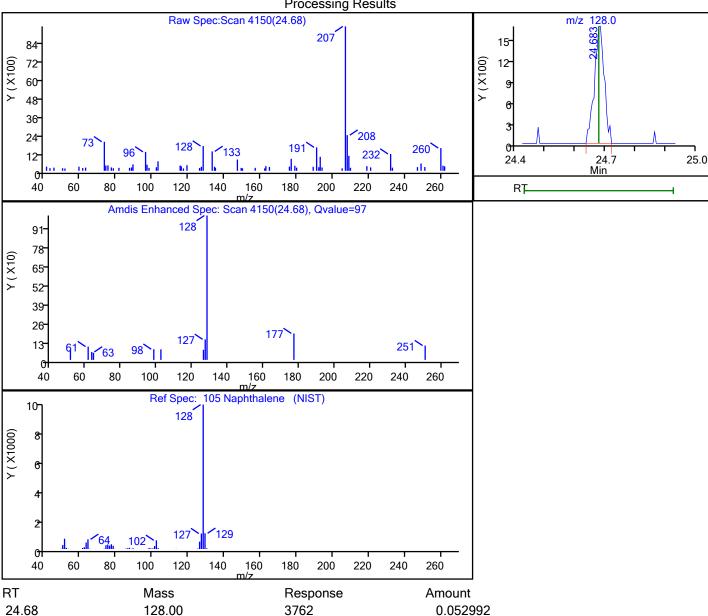
5/26/2021

Chrom Revision: 2.3 08-Apr-2021 17:17:48 **User Disabled Compound Report** 

#### Eurofins TestAmerica, Burlington

\\chromfs\Burlington\ChromData\CHG.i\20210506-45860.b\200-45860-006.D Data File:

06-May-2021 12:03:30 Instrument ID: Injection Date: CHG.i Lims ID: 200-58316-A-1 Lab Sample ID: 200-58316-1


Client ID: 6298

ALS Bottle#: Operator ID: 5 Worklist Smp#: 6 ggg

Purge Vol: 200.000 mL Dil. Factor: 1.0000 Method: TO15\_MasterMethod\_(v1)\_G Limit Group: AI\_TO15\_ICAL Column: RTX-624 (0.32 mm) Detector MS SCAN

## 105 Naphthalene, CAS: 91-20-3

#### **Processing Results**



24.68 128.00 3762 Reviewer: phamvu, 06-May-2021 16:14:46

Audit Action: Marked Compound Undetected Audit Reason: Invalid Compound ID

Page 54 of 54