

ADDITIONAL SITE INVESTIGATION REPORT

Laundromat Property Site 1021 South Broadway Street Menomonie, Dunn County, Wisconsin 54751

WDNR BRRTS No. 02-17-587803 AET Project No. P-0011071

Date:

December 11, 2023

Prepared for:

Quarters Unlimited N7487 State Highway 25 Menomonie, WI 54751

Geotechnical • Materials
Forensic • Environmental
Building Technology
Petrography/Chemistry

American Engineering Testing

1837 County Highway OO Chippewa Falls, WI 54729 teamAET.com • 800.972.6364 December 11, 2023

Quarters Unlimited N7487 State Highway 25 Menomonie, WI 54751

Attn: Wayne Moser

Submitted via Email: wmwasherman@gmail.com

RE: Additional Site Investigation Report

Laundromat Property Site 1021 South Broadway Street Menomonie, Wisconsin 54751 WDNR BRRTS No. 02-17-587803 AET Project No. P-0011071

Dear Mr. Moser:

American Engineering Testing, Inc. has completed additional remedial investigation services at the above-referenced property in Menomonie, Wisconsin. These services were performed to further evaluate the extent of impact at the site, in accordance with our approved proposal dated March 18, 2022.

We appreciate the opportunity to serve you on this project. If you have any questions regarding the information presented in this Site Investigation report, or if we may be of additional service, please contact me.

Sincerely,

CC:

American Engineering Testing, Inc.

Michael K. Neal, Professional Hydrologist

Geomorphologist

Phone: (715) 861-5045 Mobile (715) 894-6455

E-mail: mneal@teamAET.com

Matt Thompson, WDNR/RR, 1300 W. Clairemont Avenue, Eau Claire, WI 54701

TABLE OF CONTENTS

	<u>Page</u>
TRANSMITTAL LETTER	i
TABLE OF CONTENTS	ii
EXECUTIVE SUMMARY	iii
1.0 INTRODUCTION	
1.1 Purpose	1
2.0 BACKGROUND	
2.1 Site Description and Features	
2.2 Physical Setting	
2.3 Previous Environmental Reports	2
3.0 ADDITIONAL SITE INVESTIGATION ACTIVITIES	4
3.1 Scope of Services	
3.2 Environmental Sampling Methods	5
3.3 Reference Standards	
4.0 PROJECT RESULTS	7
4.1 Field Observations	7
4.2 Laboratory Analysis	7
5.0 DISCUSSION AND OPINIONS	8
5.1 Soil Contamination Conditions	8
5.2 Groundwater Contamination Conditions	
5.3 Potential Receptors	
5.4 Vapor Intrusion Pathway Screening	
5.5 Evaluation of Emerging Contaminants	
6.0 CONCLUSIONS AND RECOMMENDATIONS	
7.0 REPORT CLOSURE	
7.1 Standard of Care	
8.0 QUALIFICATIONS AND SIGNATURES	11

TABLES

- 1. Historic Soil Analytical Results
- 2. Groundwater Elevations
- 3. Groundwater Analytical Results
- 4. Sewer Gas Analytical Results

FIGURES

- 1. Site Location Map
- 2. Detailed Site Map
- 3. Cross-Section A-A'
- 4. Cross-Section B-B'
- 5. Groundwater Isoconcentration

APPENDICES

- A. Acronyms/Abbreviations and DefinitionsB. Environmental Sampling MethodsC. Soil Boring Logs and Abandonment Forms
- D. Laboratory Analytical Report and Chain-of-CustodyE. Concentration vs Time Graphs

EXECUTIVE SUMMARY

American Engineering Testing, Inc. (AET) was authorized by Quarters Unlimited, to conduct Site Investigation activities at the Laundromat Property site located at 1021 South Broadway Street, Menomonie, Dunn County, Wisconsin (the Site). The Wisconsin Department of Natural Resources (WDNR) denied site closure and directed Quarters Unlimited to complete a site investigation to define the extent of contamination discovered in May 2021 during the completion of a Phase II Environmental Site Assessment (ESA).

The results of our investigation have demonstrated that low concentrations of tetrachloroethene (PCE) detected in soil samples collected at depths of 14 to 16 feet below ground surface (bgs) are associated with the impacted groundwater smear zone and no residual soil is present on the Site.

Groundwater contaminated with PCE and trichloroethene (TCE) at levels exceeding groundwater enforcement standards (ES) remains on and off-site in an area that is approximately 300 feet by 280 feet. The contaminated groundwater extends off-site to the north onto the adjacent UW Stout paved parking lot property and the 2nd Street West right-of-way. The extent of impact is limited and defined by the lack of significant contamination in groundwater monitoring wells MW-4, MW-5, TW-8, TW-12, TW-14, TW-15, TW-16, and TW-17. The direction of groundwater flow is variable but trends toward the north, and contaminant concentration trends are generally stable or downward based on six rounds of groundwater sampling conducted over two years. No groundwater receptors have been identified, and vapor sampling indicates that the Site building and UW Stout maintenance building are not at risk for vapor intrusion.

Based on the investigation results to-date, the limited extent and stable concentrations of groundwater contamination, and lack of identified risk receptors, AET recommends that the contaminant impacts to groundwater be allowed to naturally attenuate. AET further recommends that this Site be considered for closure with a PAL exemption and continuing obligations.

1.0 INTRODUCTION

Quarters Unlimited authorized American Engineering Testing, Inc. (AET) to conduct site investigation activities at the Laundromat Property site located at 1021 South Broadway Street, Menomonie, Dunn County, Wisconsin (the Site). **Figure 1** shows the Site location and **Figure 2** shows the current Site layout and soil boring and monitoring well locations.

Appendix A contains a list of the acronyms and abbreviations used in this report.

1.1 Purpose

AET has completed the scope of services for this project to evaluate the degree and extent of previously identified soil and groundwater contamination and to identify if further investigation or remedial actions are necessary at the Site. AET also evaluated the potential for vapor intrusion from potential residual concentrations of chlorinated solvents that may be present in the sanitary sewer lines beneath the building and to identify if further vapor investigation or remedial actions are necessary at the Site. AET's services have been performed in accordance with generally accepted practices of the profession undertaken in similar studies at the same time and in the same geographical area, and for the following objectives:

- To attempt to define the extent and degree of previously identified soil and groundwater contamination.
- To attempt to further evaluate the vapor intrusion pathway.
- To evaluate the need for further remedial investigation.

2.0 BACKGROUND

2.1 Site Description and Features

The Site is located in the southwest quarter of the southwest quarter of Section 26, Township 28 North, Range 13 West, in the City of Menomonie, Dunn County, Wisconsin. The Site is an approximately 0.18-acre parcel located on the west side of South Broadway Street north of 11th Avenue West. The Site operates as a self-serve laundromat (Menomonie Quick Wash). The area is served by a municipal water supply and sanitary sewer system.

At present, neighboring property uses include University of Wisconsin Stout (UW Stout) campus parking lots to the north and west, South Broadway Street and UW Stout tennis courts to the east, and 11th Avenue West and a parking lot (formerly a gas station) to the south.

2.2 Physical Setting

The Site is located in the Central Plain Physiographic Province of northwestern Wisconsin. Fluvial and glacial processes have been an important geologic agent in determining the surface geology and

physiography of the Site, and it is generally situated on alluvial deposits composed of silty sand and gravel underlain by clay. Regionally, bedrock consists of Cambrian age sandstone at depths ranging from 20 to 50 feet.

Soils encountered at the Site are primarily non-waste fill (sand with varying amounts of silt and gravel) from the surface to approximately five feet below ground surface (bgs). Below the fill is coarse alluvium consisting of silty sand with varying amounts of silt, clay, and gravel to about 13 feet bgs. Below the coarse alluvium is mixed alluvium consisting of silty, gravelly, and lean clay with layers of silty sand or clayey silt. Bedrock was not encountered in the soil borings.

Topography at the Site is fairly level. Groundwater elevation data collected from the monitoring wells suggests that the groundwater gradient is relatively gentle, and that groundwater flow directions vary from west to north. Depth to groundwater measured in the monitoring wells ranged from approximately 9 to 14 feet bgs.

2.3 Previous Environmental Reports

AET concluded in their Phase I Environmental Site Assessment (ESA) report, dated May 3, 2021, that the past use of the Site as a dry cleaner and generation of hazardous solvent wastes are considered recognized environmental conditions (RECs) in connection with the Site. A Phase II ESA was completed to investigate the potential solvent-related soil, vapor, and/or groundwater contamination from use of the Site as a dry cleaner business.

As part of the Phase I ESA, AET reviewed the Wisconsin Department of Natural Resources (WDNR) Wisconsin Remediation and Redevelopment Database (WRRD) for active/closed remedial action sites for the Site and adjoining properties. One remedial action was identified on the adjacent south property on the WRRD database.

- Cenex C Store/Vista U Pump #12 at 1103 South Broadway Street located south of the Site is identified as a leaking underground storage tank (LUST) site (BRRTS No. 03-17-183724). In March 1998, petroleum contamination was reported from the unleaded gasoline underground storage tank (UST) system. The site investigation included seven soil borings and six groundwater monitoring wells. Soil contamination was minimal, and three years of groundwater monitoring determined groundwater contamination did not extend off-site and petroleum contaminant concentrations were decreasing. Groundwater elevation data collected from the monitoring wells suggested that groundwater flowed to the northeast. Based on the limited amount of soil and groundwater contamination and lack of off-site contamination, the Wisconsin Department of Commerce (WDCOM) closed the site on November 26, 2001, with a groundwater use restriction due to the presence of residual soil and groundwater contamination.
- An initial groundwater sample collected from a groundwater monitoring well located north of the Cenex Station on UW Stout property (MW-4) detected tetrachloroethene (PCE) and trichloroethene (TCE) at concentrations exceeding their NR 140 enforcement standards (ES).
 Follow up sampling for PCE and TCE was not continued during this investigation.

The scope of the initial Phase II work for this project included advancing one soil boring, two soil gas borings, and one sub-slab vapor probe inside the building. One soil sample, two outside soil gas samples, and one sub-slab vapor sample were analyzed for volatile organic compounds (VOCs). The measured results did not exceed regulatory criteria, except for the following:

 PCE concentration exceeding the soil to groundwater residual contaminant level (RCL) of 0.0036 parts per million (ppm) was detected in soil sample GP-1 (0.04 ppm) at a depth of 14-16 feet bgs.

Laboratory analyses of the soil gas samples detected various VOCs; however, the measured results did not exceed the WDNR's calculated Vapor Risk Screening Levels (VRSLs) for small commercial buildings.

On behalf of the property owner, AET submitted the Phase II investigation results to the WDNR and requested a review under a Technical Assistance, Environmental Liability Clarification Request. The purpose of this letter was to provide the property owner with clarifications as to environmental liabilities and current environmental conditions at the Site. Based on its review of the Phase II Investigation, the WDNR determined that additional investigation or response actions are required. The WDNR was notified of the soil contamination exceedance and in a July 29, 2021, letter, the WDNR also requested that a site investigation be completed to determine the degree and extent of the soil contamination.

AET completed additional site investigation activities on the Site. The results of the investigation were included in the Site Investigation report, Project No. P-0011071, dated December 8, 2022. Refer to that report for background and supplemental information. The additional soil and groundwater sampling was completed to further define the extent of contamination at the Site.

Twelve soil samples were analyzed for VOCs for this investigation. Laboratory analyses detected VOC in two of the twelve soil samples analyzed. Based on the measured depth to groundwater (9 to 14 feet), the measured results did not exceed regulatory criteria and are associated with the impacted groundwater smear zone.

Three groundwater monitoring wells were installed in September 2021 and three monitoring wells were installed in May 2022. One quarterly round of groundwater samples was collected from three wells in September 2021 and three quarterly rounds were collected from all six monitoring wells in May, August, and November 2022. All groundwater samples were analyzed for VOCs. In the last round of groundwater samples collected on November 1, 2022, the measured results did not exceed regulatory criteria, except for the following:

- PCE concentrations exceeding its 5 parts per billion (ppb) ES were detected in MW-2 (6.9 ppb), MW-3 (290 ppb), and MW-6 (15 ppb).
- PCE concentrations exceeding its 0.5 ppb preventive action limit (PAL) were detected in MW-1 (4.3 ppb) and MW-5 (1.6 ppb).

TCE concentrations exceeding its 0.5 ppb PAL were detected in MW-3 (1.5 ppb) and MW-6 (1.6 ppb).

No VOCs were detected in groundwater monitoring well MW-4 at concentrations exceeding regulatory criteria during all three sampling events. Historical soil analytical and groundwater analytical results are summarized in **Tables 1 and 2**. Soil boring and monitoring well locations (denoted as GP-2 to GP-7 & MW-1 to MW-6) are shown on **Figure 2**.

Depth to groundwater ranged from approximately 9 to 14 feet bgs in the monitoring wells sampled. Groundwater elevation data is summarized in **Table 3**. The direction of groundwater flow has been measured to the west and north.

In February 2023, the WDNR denied site closure and directed Quarters Unlimited to complete additional site investigation to further define the extent of groundwater contamination present on and off site. Once defined, the WDNR indicated they would be able to close this investigation at the site.

3.0 ADDITIONAL SITE INVESTIGATION ACTIVITIES

3.1 Scope of Services

The scope of this investigation was defined in an AET proposal agreement with Quarters Unlimited approved on April 5, 2023. The implemented scope of services included the following activities:

- Provided the client with information regarding the extent and degree of known soil and groundwater contamination found on the Site.
- Reviewed all available site background information and prepared and submitted a work plan to the WDNR project manager for their approval.
- Observed and documented the completion of 10 push probe soil borings (GP-8 to GP-17) off-site to depths of 12 to 34.5 feet bgs to define the extent of groundwater contamination. Collected continuous soil samples from each boring and described them according to the Unified Soil Classification System. Field screened soil samples for organic vapors with a photoionization detector (PID) equipped with a 10.6 eV lamp and observed the soil samples for obvious indicators of contamination (obvious odors, stains, discoloration, presence of debris, etc.).
- Observed the construction of and sampled eight temporary groundwater monitoring wells (TW-8 to TW-10, TW-12, and TW-14 to TW-17) to define the extent of groundwater contamination.
 Each sample was analyzed for VOCs.
- Collected two additional rounds of groundwater samples from six groundwater monitoring wells (MW-1 to MW-6). Each sample was analyzed for VOCs. Groundwater elevation measurements were collected from all the monitoring wells.
- Collected and analyzed one sewer gas sample from the on-site sanitary sewer clean-out pipe.
 The sample was analyzed for VOCs by EPA Method TO-15.

 Prepared and submitted this report to the Client and the WDNR to document the additional sampling results.

Soil boring, temporary well, monitoring well, and sewer cleanout locations are shown on Figure 2.

3.2 Environmental Sampling Methods

AET conducted soil, groundwater, and sewer gas sampling using the methods described on the Environmental Sampling Methods pages in **Appendix B**.

The soil samples were collected from a truck mounted Geoprobe® direct push sampler and screened in the field using a PID equipped with a 10.6 electron volt (eV) lamp to measure organic vapors in ppm. Results were recorded on the boring logs in **Appendix C**. Obvious odors and visual evidence of contamination were also noted. No soil samples were collected for laboratory analysis during this additional investigation work.

AET collected groundwater samples from temporary wells installed in eight of the 10 borings (TW-8 to TW-10, TW-12, and TW-14 to TW-17). The wells were purged to the extent practical, and groundwater was sampled using a dedicated polyvinyl chloride (PVC) 10-slot well screen attached to a riser-pipe and tubing with a stainless-steel check valve. Filter pack sand was installed around the slotted screen in each well. Samples were placed into laboratory-supplied containers, preserved as required, and placed in a cooler on ice prior to transport to the laboratory.

AET collected two rounds of groundwater samples from all the groundwater monitoring wells by purging each well and collecting a sample using a disposable bailer. Prior to sampling, water levels were measured in each well using an electronic water level indicator. Water levels were referenced to top of collar elevation to determine the elevation of the water table at the time of sampling. Bailer contents were emptied into the appropriately preserved containers, and all samples were placed in a cooler on ice to transport to the laboratory with the chain of custody record.

After all soil and groundwater samples were collected, the boreholes/temporary wells were completely backfilled with bentonite and abandoned according to procedures outlined in Chapter NR 141.25 of the Wisconsin Administrative Code (WAC). A WDNR borehole abandonment form (Form 3300-5W) was completed for each soil boring. Abandonment forms are included in **Appendix C**.

Vapor sampling was conducted in accordance with WDNR guidance Publication RR-800, "Addressing Vapor Intrusion at Remediation and Redevelopment Sites in Wisconsin" and Publication RR-649, "Guidance for Documenting the Investigation of Human-made Preferential Pathways Including Utility Corridors."

AET collected a sewer gas sample from the on-site sewer clean-out pipe. The sewer gas sample was extracted using disposable tubing. Prior to sample collection, the tubing and subsurface cavity was purged of excess sewer gas. The sewer gas sample was withdrawn over a period of 35-50 minutes and

placed into a stainless-steel Summa canister equipped with a flow regulator. The Summa canister was shipped to the laboratory with the chain-of-custody record.

AET submitted groundwater and vapor samples to Eurofins Test America laboratory for chemical analysis of VOCs. Samples were collected in accordance with AET's Quality Assurance/Quality Control (QA/QC) guidelines. The laboratory analytical reports and chain-of-custody records are provided in **Appendix D**.

3.3 Reference Standards

For this report, we compared the analytical results to the baseline environmental regulatory standards in use by the WDNR. The reference standards are included in the results tables for comparison with assessment results. The media-specific standards are described below. The following reference standards apply to potential contaminant exposures in soils and groundwater:

- PID Screening Criterion: The practical detection limit of a PID is considered to be 1 ppm, although ambient environmental conditions during sampling may result in higher background measurements.
- WDNR NR 720 soil industrial direct contact RCLs spreadsheet: Compound-specific values for the protection of human health from direct contact.
- WDNR NR 720 soil non-industrial direct contact RCLs spreadsheet: Compound-specific values for the protection of human health from direct contact.
- WDNR NR 720 soil to groundwater RCLs spreadsheet: Compound-specific values for protection of groundwater.
- WAC NR 140 Groundwater Quality Standards.

Vapor Action Levels (VALs) and sub-slab Vapor Risk Screening Levels (VRSLs) were established in WDNR's guidance Publication RR-800, "Addressing Vapor Intrusion at Remediation and Redevelopment Sites in Wisconsin." If a contaminant concentration exceeds the VAL or VRSL, the WDNR may require additional monitoring or vapor mitigation. The soil gas results are reported in parts per billion by volume (ppb v/v) and micrograms-per-cubic-meter (μg/m³). Because the future use of the Site will be a self-serve laundromat, AET compared the vapor analytical results to WDNR's small commercial VRSL regulatory criteria. VRSLs are calculated by dividing the VAL with an attenuation factor of 0.03. The reference standards are included in the results tables for comparison with assessment results.

4.0 PROJECT RESULTS

4.1 Field Observations

AET performed the field exploration, soil sampling, and temporary well installation for this investigation on June 6 and October 19, 2023. The observational data collected during field exploration activities at the Site are included on the soil boring logs in **Appendix C**.

Soils encountered in the borings were primarily non-waste fill (sand with varying amounts of silt and gravel) from the surface to approximately five feet bgs. Below the fill is coarse alluvium consisting of silty sand with varying amounts of silt, clay, and gravel to about 13 feet bgs. Below the coarse alluvium is mixed alluvium consisting of silty, gravelly, and lean clay with layers of silty sand or clayey silt. Soil samples were generally moist, and groundwater was encountered at depths of approximately 8 to 28 feet bgs. Obvious indications of potential environmental impacts such as staining or odor were not observed in the soils from the borings.

We observed PID readings of less than one ppm in soil samples collected from all 10 soil borings. Results of less than one ppm are considered background levels. Soil sample screening results appear on the boring logs in **Appendix C**.

Groundwater samples from the monitoring wells were collected on May 23 and November 20, 2023. Depth to groundwater was measured prior to purging and sampling each well. Measured depth to groundwater ranged from approximately 9 to 14 feet bgs in the monitoring wells sampled. Groundwater elevation data is summarized in **Table 3**.

AET performed sewer gas vapor sampling on May 24, 2023. Evidence of odors was not identified during the collection of the sample. We observed PID readings of less than one ppm in the sewer gas.

4.2 Laboratory Analysis

Appendix D includes the laboratory analytical reports and chains-of-custody for this site investigation. The sections below summarize the laboratory results.

4.2.1 Soil Analytical Results

Table 1 summarizes the results of laboratory analyses performed on soil samples collected during the Phase II and the initial site investigation. The soil results are reported in mg/kg, which is equivalent to ppm. The reference standards are included on the table for comparison and evaluation of impacts. Based on land use and site zoning, the non-industrial direct contact RCLs apply to this investigation.

Twelve soil samples were collected for VOC analysis during the Phase II and initial site investigation. Laboratory analyses detected VOCs in two of the twelve soil samples analyzed. Based on the measured depth to groundwater (9 to 14 feet) the measured results did not exceed regulatory criteria and are associated with the impacted groundwater smear zone.

4.2.2 Groundwater Analytical Results

The WDNR established groundwater PALs and ESs for selected compounds that are listed in WAC NR 140. If a contaminant concentration exceeds the PAL, the WDNR may require monitoring or additional investigation. If the concentration exceeds the ES, the WDNR may require monitoring or remediation.

Groundwater samples were collected from eight temporary wells and the measured results did not exceed regulatory criteria, except for the following:

- PCE concentrations exceeding its 5 ppb ES were detected in TW-10 (7.2 ppb)
- PCE concentrations exceeding its 0.5 ppb PAL were detected in TW-9 (4.6 ppb).
- TCE concentrations exceeding its 5 ppb ES were detected in TW-9 (8.1 ppb).
- TCE concentrations exceeding its 0.5 ppb PAL were detected in TW-10 (0.71 ppb).

The latest round of groundwater samples was collected on November 20, 2023, from the permanent groundwater monitoring wells. The measured results did not exceed regulatory criteria, except for the following:

- PCE concentrations exceeding its 5 ppb ES were detected in MW-1 (5.1 ppb), MW-2 (5.8 ppb), MW-3 (36 ppb) and MW-6 (30 ppb).
- PCE concentrations exceeding its 0.5 ppb PAL were detected in MW-5 (2.5 ppb).
- TCE concentrations exceeding its 0.5 ppb PAL were detected in MW-6 (1.5 ppb).

No VOCs were detected in groundwater monitoring well MW-4 at concentrations exceeding regulatory criteria during each of the May and November 2023 sampling events. Additionally, no VOCs were detected in groundwater samples collected from TW-12, TW-14, TW-15, TW-16 or TW-17. Groundwater analytical results are summarized in **Table 2** and the estimated extent of groundwater impacts are depicted on **Figures 3, 4, and 5**.

4.2.3 Vapor Analytical Results

Concentrations of VOCs were not detected exceeding sub-slab vapor risk screening levels (VRSLs) or indoor air vapor action levels (VALs) in the sewer gas sample. **Table 4** summarizes the results of laboratory analyses performed on the sewer gas sample.

5.0 DISCUSSION AND OPINIONS

5.1 Soil Contamination Conditions

Soils encountered at the Site are primarily non-waste fill (sand with varying amounts of silt and gravel) from the surface to approximately five feet bgs. Below the fill is coarse alluvium consisting of silty sand with varying amounts of silt, clay and gravel to about 13 feet bgs. Below the coarse alluvium is mixed alluvium consisting of silty, gravelly, and lean clay with layers of silty sand or clayey silt. No staining,

odors or evidence of contamination were noted from the soil borings. Field screening of the soils in the borings did not detect concentrations of organic vapors above background levels.

The results of our investigation have demonstrated that low concentrations of PCE were detected in soil samples collected at depths of 14 to 16 feet bgs and are associated with the impacted groundwater smear zone. There is no residual soil contamination at the Site.

5.2 Groundwater Contamination Conditions

Groundwater contaminated with PCE and TCE at levels exceeding the WDNR ES remains on and off-site in an area that is approximately 300 feet by 280 feet. This overall area includes groundwater monitoring wells MW-1, MW-2, MW-3, MW-6, TW-9, and TW-10. The contaminated groundwater extends off-site to the north onto the adjacent UW Stout paved parking lot property and within the 2nd Street West right-of-way. The extent of impact is limited and is defined by the lack of significant contamination in groundwater monitoring wells MW-4, MW-5, TW-8, TW-12, TW-14, TW-15, TW-16, and TW-17. The direction of groundwater flow is variable but tends generally toward the north. The extent of groundwater contamination is depicted on **Figures 3, 4, and 5**.

We calculated the stability of the groundwater plume at the wells showing the highest degree of impact, including MW-1, MW-2, MW-3, and MW-6. Line graphs showing the concentration trends over time for PCE were used to determine trends in the groundwater quality in these wells. Except for MW-1, which shows a slight increase, the analysis indicates contaminant trends are stable or decreasing. **Appendix E** includes concentration verses time graphs to illustrate these trends.

5.3 Potential Receptors

The Site is located within a commercial area in the City of Menomonie and is served by municipal sanitary sewer and water supply systems. Potential receptors of contamination include the subsurface soils and groundwater. Utility corridors that would allow horizontal migration of contaminants are not located within the area of groundwater impact. No drinking water wells were identified within the Site vicinity. There were no other pathways or receptors identified, such as sensitive environments, plant uptake, or food chain.

5.4 Vapor Intrusion Pathway Screening

Initial soil vapor investigation was completed at the Site in May 2021. Laboratory analyses detected various VOCs in three soil gas samples analyzed. The measured results did not exceed the WDNR's calculated vapor risk screening levels (VRSL) for small commercial buildings. Because these soil gas samples were taken below a layer of asphalt, it is appropriate to compare these results to the sub-slab VRSLs. The results of the three soil gas samples did not exceed the sub-slab VRSLs or the calculated VRSLs. Concentrations of VOCs were not detected exceeding sub-slab VRSLs in SSV-1 (the sub-slab vapor sample).

A sewer gas sample was collected in May 2023 and concentrations of VOCs were not detected exceeding VRSLs or indoor air VALs in the sewer gas sample.

Vapor testing of the on-site building did not detect VOCs at concentrations exceeding VRSL. This confirms that the presence of groundwater contamination exceeding ESs on the Site does not represent a vapor intrusion risk to the existing building. A maintenance building used by UW Stout is located approximately 300 feet north of the source area on the Site. Based on the vapor testing results on the Site, the low concentrations of PCE and TCE detected in the groundwater, and the presence of clayey soils that limit the potential for off-gassing organic vapors, it is unlikely that the groundwater contamination identified for this investigation represents a vapor intrusion risk to the UW Stout maintenance building. Further soil vapor investigation does not appear to be necessary.

5.5 Evaluation of Emerging Contaminants

To comply with the WDNR request to evaluate emerging contaminants at the Site, AET presents the following statement regarding emerging contaminants, including perfluoroalkyl and polyfluoroalkyl substances (PFAS), 1,4-dioxane and others.

The Site is located in a commercial area of Menomonie and was residential prior to commercial development as a laundry facility in the 1960s. Prior to recent development this area was residential and commercially developed since at least the late 1930s. No facilities that would typically manage or dispose of chemicals containing PFAS were identified on the Site.

The results of our investigation have demonstrated that concentrations of VOCs are present in the groundwater on the western portion of the Site.

Based on the known Site history, all potential contaminants associated with a hazardous substance discharge and/or environmental pollution, including emerging contaminants, have been evaluated at the Site. There is no indication that any products containing emerging contaminants, including PFAS, are present or were produced, used, handled, or stored at the Site.

6.0 CONCLUSIONS AND RECOMMENDATIONS

The results of our investigation have demonstrated that low concentrations of PCE detected in soil samples collected at depths of 14 to 16 feet bgs are associated with the impacted groundwater smear zone and no residual soil is present on the Site.

Groundwater contaminated with PCE and TCE at levels exceeding the WDNR ES remains on and offsite in an area that is approximately 300 feet by 280 feet. The contaminated groundwater extends offsite to the north onto the adjacent UW Stout paved parking lot property and the 2nd Street West right-ofway. The extent of impact is limited and defined by the lack of significant contamination in groundwater monitoring wells MW-4, MW-5, TW-8, TW-12, TW-14, TW-15, TW-16, and TW-17. The direction of groundwater flow is variable but trends toward the north, and contaminant concentration trends are

generally stable or downward based on six rounds of groundwater sampling conducted over two years. No groundwater receptors have been identified, and vapor sampling indicates that the Site building and UW Stout maintenance building are not at risk for vapor intrusion.

Based on the investigation results to-date, the limited extent and stable concentrations of groundwater contamination, and lack of identified risk receptors, AET recommends that the contaminant impacts to groundwater be allowed to naturally attenuate. AET further recommends that this Site be considered for closure with a PAL exemption and continuing obligations.

7.0 REPORT CLOSURE

7.1 Standard of Care

AET has endeavored to perform services for this project in a manner consistent with the level of skill and care ordinarily exercised by other members of the profession currently practicing in this area, under similar budgetary and time constraints. No additional warranty, express or implied, is made.

This report is based on our current understanding of the project and conditions at the Site. If conditions differing from our original understanding or findings are identified, AET should be consulted to determine if there are material impacts on our conclusions or recommendations.

8.0 QUALIFICATIONS AND SIGNATURES

We declare that, to the best of our professional knowledge and belief, we meet the definition of Environmental Professional as defined in §312.10 of 40 CFR 312 and we have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Site.

Report Prepared By:

Michael K. Neal

Professional Hydrologist/Geomorphologist

Report Reviewed By:

Mike Hultgren, PG

Principal Geologist

"I, Michael K. Neal, hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03 (1), Wis. Adm. Code, am registered in accordance with the requirements of Ch. GHSS 2, Wis. Adm. Code, or licensed in accordance with the requirements of Ch. GHSS 3, Wis. Adm. Code, and that, to the best of my knowledge, all of the information contained in this document is correct and the document was prepared in compliance with all applicable requirements in Chs. NR 700 to 726, Wis. Adm. Code."

Tables

TABLE 1

ANALYTICAL RESULTS - SOIL

LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN

AET PROJECT NO. P-0011071

		Sail BCL a /nn	m) Coloulatoo	ı.		8				Sar	amples							
		Soil RCLS (pp	nm) Calculated		GP-1	GP-2A	GP-2B	GP-2C	GP-3A	GP-3B	GP-3C	GP-4A	GP-4B	GP-4C	GP-5	GP-6	GP-7	MEOH Blank
Date	Non-	Industrial		Surficial	5/20/21					9/14/21					5/10/22			
Depth (feet)	Industrial Direct	Direct	Soil to GW	Background Threshold	14-16	2-4	14-16	22-24	2-4	14-16	18-20	2-4	14-16	18-20		14-16		
Location	Contact	Contact		Value	GP-1		GP-2/MW	-1	C	SP-3/MW-2			GP-4/MW-3		GP-5/MW-4	GP-6/MW-5	GP-7/MW-6	
PID (Instrument units)					4.5	0.0		0.1		0.0		(0.1			0.0		
Saturated (S) / Unsatura	ated (U)				S	U		S	U	S	3	U			S			
Depth to Water Table (ft	t bgs)						-				9-14	-						
Soil Type					clayey silt	sand & gravel	clayey silt	sand/gravel/clay	sand & gravel	clayey silt	clay	sand & gravel	sand/gravel/silt	clay		clayey silt		
VOCs (ppm)																		
Methylene chloride**	61.8	1,150	0.0026		< 0.013	< 0.096	< 0.087	< 0.094	< 0.098	< 0.12	< 0.12	< 0.089	< 0.12	< 0.12	0.047*	0.063*	0.052*	0.042*
PCE	33	145	0.0045		0.4	< 0.022	< 0.02	< 0.021	< 0.022	0.042*	< 0.028	< 0.02	0.53	2.2	< 0.083	< 0.095	< 0.089	< 0.076
TCE	1.3	8.41	0.0036		< 0.013	< 0.0097	< 0.0087	< 0.0094	< 0.0099	< 0.013	0.14	< 0.009	< 0.012	< 0.012	< 0.057	< 0.065	< 0.061	< 0.052
Toluene	818	818	1.107		0.03	< 0.0087	< 0.0078	< 0.0084	< 0.0089	< 0.011	< 0.011	< 0.0081	< 0.011	< 0.011	< 0.037	< 0.042	< 0.039	< 0.034
N	o. of Individua	l Exceedance	s (DC)		NA	0	NA	NA	0	NA	NA	0	NA	NA	NA	NA	NA	
	Cumulative F	łazard Index (DC)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
	Cumulative (Cancer Risk (I	DC)		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	

^{--- =} not analyzed or no standard

Bold areas indicate soil contaminant concentrations exceed Non-Industrial Direct Contact RCLs.

Underline areas indicate soil contaminant concentrations exceed Industrial Direct Contact RCLs.

Italic areas indicate soil contaminant concentrations exceed Groundwater RCL.

NA = not applicable

PCE = tetrachloroethene/tetrachloroethylene

ppm = parts per million

RCL = residual contaminant level

TCE = trichloroethene/trichloroethylene

VOC = volatile organic compound

Only VOCs detected are listed in the table.

^{** =} Methylene chloride is a common laboratory contaminant.

^{* =} Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

TABLE 2 (page 1 of 7)

ANALYTICAL RESULTS - GROUNDWATER

LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN

AET PROJECT NO. P-0011071

	MW-1								
Date	9/15/21	5/10/22	8/2/22	11/1/22	5/23/23	11/20/23	NR 140 Ren Lin		
Elevation (ft)	88.73	88.91	88.39	88.17	89.22	88.49			
<u>ANALYTE</u>							ES	PAL	
VOCs (ppb)									
Benzene	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	5	0.5	
cis-1,2-Dichloroethene	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	70	7	
Ethylbenzene	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	700	140	
Naphthalene	< 0.34	< 0.34	0.7*B	< 0.34	< 0.34	< 0.34	100	10	
PCE	3.2	2.3	4.2	4.3	4.6	5.1	5	0.5	
1,2,4- & 1,3,5-TMB	< 0.34	< 0.36	1.57*B	< 0.36	< 0.36	< 0.36	480	96	
TCE	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	5	0.5	
Total Xylenes	< 0.22	< 0.22	0.32*	< 0.22	< 0 .22	< 0.22	2,000	400	

--- = not analyzed or no standard

PCE = tetrachloroethene/tetrachloroethylene

Well Depth (feet):

24

ppb = parts per billion

TCE = trichloroethene/trichloroethylene

TMB = trimethylbenzene

TOC Elevation (feet):

99.63

VOC = volitile organic compounds

Only VOCs detected are listed in the table.

Date Installed:

14-Sep-21

B = Compound was found in the blank and sample.

Screen Length (feet):

15

Bold numbers indicate concentrations above the ES outlined in NR 140.10.

^{* =} Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

TABLE 2 (page 2 of 7)

ANALYTICAL RESULTS - GROUNDWATER

LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN

AET PROJECT NO. P-0011071

			M\	N-2						
Date	9/15/21	5/10/22	8/2/22	11/1/22	5/23/23	11/20/23	NR 140 Ren Lin	nedial Action nits		
Elevation (ft)	88.82	88.98	88.53	88.34	89.31	88.59				
<u>ANALYTE</u>							ES	PAL		
VOCs (ppb)										
Benzene	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	5	0.5		
cis-1,2-Dichloroethene	< 0.41	< 0.18	< 0.41	< 0.41	< 0.41	< 0.41	70	7		
Ethylbenzene	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	70	7		
Methylene chloride**	< 1.6	< 1.6	< 1.6	< 1.6	< 1.6	2.5*	5	0.5		
Naphthalene	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	< 0.34	100	10		
PCE	12	4.8	8.3	6.9	3.7	5.8	5	0.5		
1,2,4- & 1,3,5-TMB	< 0.36	< 0.36	0.77*B	< 0.36	< 0.36	< 0.36	480	96		
TCE	0.24*	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	5	0.5		
Total Xylenes	< 0.22	< 0.22	0.31*	< 0.22	< 0.22	< 0.22	2,000	400		

--- = not analyzed or no standard

PCE = tetrachloroethene/tetrachloroethylene

Well Depth (feet):

20

ppb = parts per billion

TCE = trichloroethene/trichloroethylene

TMB = trimethylbenzene

TOC Elevation (feet):

100.46

VOC = volitile organic compounds

Only VOCs detected are listed in the table.

Date Installed:

14-Sep-21

B = Compound was found in the blank and sample.

Screen Length (feet):

10

Bold numbers indicate concentrations above the ES outlined in NR 140.10.

^{** =} Methylene chloride is a common laboratory contaminant.

^{* =} Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

TABLE 2 (page 3 of 7)

ANALYTICAL RESULTS - GROUNDWATER

LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN

AET PROJECT NO. P-0011071

			M\	N-3							
Date	9/15/21	5/10/22	8/2/22	11/1/22	5/23/23	11/20/23	NR 140 Ren Lin				
Elevation (ft)	82.95	87.63	87.51	86.96	89.35	87.76					
<u>ANALYTE</u>							ES	PAL			
VOCs (ppb)											
Benzene	0.31*	< 2.9	< 0.15	< 0.15	< 0.15	< 0.15	5	0.5			
cis-1,2-Dichloroethene	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	70	7			
Ethylbenzene	< 0.18	< 3.7	< 0.18	< 0.18	< 0.18	< 0.18	700	140			
Methylene chloride**	< 1.6	< 33	< 1.6	< 1.6	< 1.6	2.9*	5	0.5			
Naphthalene	0.36*	< 6.7	0.66*B	< 0.34	< 0.34	< 0.34	100	10			
PCE	560	300	94	290	7.2	36	5	0.5			
1,2,4- & 1,3,5-TMB	0.64*	< 7.2	0.75*B	< 0.36	< 0.36	< 0.36	480	96			
TCE	20	30	0.54	1.5	< 0.16	< 0.16	5	0.5			
Total Xylenes	< 0.22	< 4.4	< 0.22	< 0.22	< 0.22	< 0.22	2,000	400			

--- = not analyzed or no standard

PCE = tetrachloroethene/tetrachloroethylene

Well Depth (feet):

20

ppb = parts per billion

TCE = trichloroethene/trichloroethylene

TMB = trimethylbenzene

TOC Elevation (feet):

100.47

VOC = volitile organic compounds

Only VOCs detected are listed in the table.

Date Installed:

14-Sep-21

B = Compound was found in the blank and sample.

Screen Length (feet):

10

Bold numbers indicate concentrations above the ES outlined in NR 140.10.

^{** =} Methylene chloride is a common laboratory contaminant.

^{* =} Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

TABLE 2 (page 4 of 7)

ANALYTICAL RESULTS - GROUNDWATER

LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN

AET PROJECT NO. P-0011071

		MW-4								
Date	5/11/22	8/2/22	11/1/22	5/23/23	11/20/23		NR 140 Remedial Action Limits			
Elevation (ft)	90.70	89.02	88.23	90.71	90.23					
<u>ANALYTE</u>						ES	PAL			
VOCs (ppb)										
Benzene	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	5	0.5			
cis-1,2-Dichloroethene	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	70	7			
Ethylbenzene	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	700	140			
Naphthalene	0.47*	0.66*B	< 0.34	< 0.34	< 0.34	100	10			
PCE	< 0.37	< 0.37	< 0.37	< 0.37	< 0.37	5	0.5			
1,2,4- & 1,3,5-TMB	< 0.36	0.73*B	< 0.36	< 0.36	< 0.34	480	96			
TCE	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	5	0.5			
Total Xylenes	< 0.22	< 0.22	< 0.22	< 0.22	< 0.22	2,000	400			

--- = not analyzed or no standard

PCE = tetrachloroethene/tetrachloroethylene

Well Depth (feet):

24

ppb = parts per billion

TCE = trichloroethene/trichloroethylene

TMB = trimethylbenzene

TOC Elevation (feet):

99.63

VOC = volitile organic compounds

Only VOCs detected are listed in the table.

Date Installed:

14-Sep-21

B = Compound was found in the blank and sample.

Screen Length (feet):

15

Bold numbers indicate concentrations above the ES outlined in NR 140.10.

^{* =} Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

TABLE 2 (page 5 of 7)

ANALYTICAL RESULTS - GROUNDWATER

LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN

AET PROJECT NO. P-0011071

		MW-5							
Date	5/11/22	8/2/22	11/1/22	5/23/23	11/20/23	NR 140 Ren Lin			
Elevation (ft)	90.59	89.77	89.44	90.69	90.09				
<u>ANALYTE</u>						ES	PAL		
VOCs (ppb)									
Benzene	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	5	0.5		
cis-1,2-Dichloroethene	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	70	7		
Ethylbenzene	< 0.18	< 0.18	< 0.18	< 0.18	< 0.18	700	140		
Naphthalene	0.34*	< 0.34	< 0.34	< 0.34	< 0.34	100	10		
PCE	3.4	1.4	1.6	2.9	2.5	5	0.5		
1,2,4- & 1,3,5-TMB	0.94*	< 0.36	< 0.36	< 0.36	< 0.36	480	96		
TCE	0.51	< 0.16	< 0.16	< 0.16	< 0.16	5	0.5		
Total Xylenes	0.85*	< 0.22	< 0.22	< 0.22	< 0.22	2,000	400		

--- = not analyzed or no standard

PCE = tetrachloroethene/tetrachloroethylene

Well Depth (feet): 24

ppb = parts per billion

TCE = trichloroethene/trichloroethylene

TMB = trimethylbenzene

TOC Elevation (feet): 99.63

VOC = volitile organic compounds

Only VOCs detected are listed in the table.

Date Installed: 14-Sep-21

* = Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

Screen Length (feet): 15

Bold numbers indicate concentrations above the ES outlined in NR 140.10.

TABLE 2 (page 6 of 7)

ANALYTICAL RESULTS - GROUNDWATER

LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN

AET PROJECT NO. P-0011071

			MW-6				
Date	5/11/22	8/2/22	11/1/22	5/23/23	11/20/23	NR 140 Ren Lin	nedial Action nits
Elevation (ft)	87.27	87.12	87.09	87.52	87.32		
<u>ANALYTE</u>						ES	PAL
VOCs (ppb)							
Benzene	< 0.15	< 0.15	< 0.15	< 0.15	< 0.15	5	0.5
Chloroform**	3.2	1.2*	0.9*	1.6*	0.83*	6	0.6
cis-1,2-Dichloroethene	< 0.41	< 0.41	0.6*	< 0.41	< 0.41	70	7
Ethylbenzene	0.2*	< 0.18	< 0.18	< 0.18	< 0.18	700	140
Naphthalene	< 0.34	< 0.34	< 0.34	< 0.34	0.55*B	100	10
PCE	29	34	15	42	30	5	0.5
1,2,4- & 1,3,5-TMB	0.58*	< 0.36	< 0.36	< 0.36	< 0.36	480	96
TCE	1.6	3.1	1.6	2.4	1.5	5	0.5
Total Xylenes	0.77*	< 0.22	< 0.22	< 0.22	< 0.22	2,000	400

--- = not analyzed or no standard

PCE = tetrachloroethene/tetrachloroethylene

Well Depth (feet):

24

ppb = parts per billion

TCE = trichloroethene/trichloroethylene

TMB = trimethylbenzene

TOC Elevation (feet):

99.63

VOC = volitile organic compounds

Only VOCs detected are listed in the table.

Date Installed:

14-Sep-21

B = Compound was found in the blank and sample.

Screen Length (feet):

15

Bold numbers indicate concentrations above the ES outlined in NR 140.10.

^{** =} Chloroform is a common laboratory contaminant.

^{* =} Result is less than the Reporting Limit but greater than or equal to the Method Detection Limit and the concentration is an approximate value.

TABLE 2 (7 of 7)

ANALYTICAL RESULTS - GROUNDWATER - TEMPORARY WELLS LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN AET PROJECT NO. P-0011071

	GPW-8	GPW-9	GPW-10	GPW-12	GPW-14	GPW-15	GPW-16	GPW-17	Trip Blank		
Date		6/6/2023							NR 140 Remedia	al Action I imits	
Temporary Well	TW-8	TW-9	TW-10	TW-12	TW-14	TW-15	T16	TW-17		TWY TO NOME	ar riotion Emilio
Depth to Water (ft)	11.80	15.90	19.70	28.15	8.35	25.51	22.51	12.35			
<u>ANALYTE</u>										ES	PAL
VOCs (ppb)											
cis-1,2-Dichloroethene	< 0.41	2	0.47*	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	< 0.41	70	7
1,4-Dioxane	< 0.12	< 0.12	< 0.13	< 0.14						3	0.3
Tetrachloroethene (PCE)	< 0.37	4.6	7.2	< 0.37	< 0.37	< 0.37	< 0.37	< 0.37	< 0.37	5	0.5
trans-1,2-Dichloroethene	< 0.35	0.49*	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	100	20
Trichloroethene (TCE)	< 0.16	8.1	0.71	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	< 0.16	5	0.5

^{--- =} not analyzed or no standard

PCE = tetrachloroethene/tetrachloroethylene

TCE = trichloroethene/trichloroethylene

VOC = volatile organic compound

Only VOCs detected are listed in the table.

Bold numbers indicate concentrations above the ES outlined in NR 140.10.

^{* =} Result is < the Reporting Limit but > or equal to the Method Detection Limit and the concentration is an approximate value.

TABLE 3

GROUNDWATER ELEVATIONS

LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN

AET PROJECT NO. P-0011071

Well Number	Date	Well Depth	TOC Elevation	Depth to Water	Water Table Elevation
MW-1	September 15, 2021	24.00	99.63	10.90	88.73
	September 23, 2021			10.96	88.67
	May 10, 2022			10.72	88.91
	August 2, 2022			11.24	88.39
	November 1, 2022			11.46	88.17
	May 23, 2023			10.41	89.22
	November 20, 2023			11.14	88.49
MW-2	September 15, 2021	20.00	100.46	11.64	88.82
	September 23, 2021			11.73	88.73
	May 10, 2022			11.48	88.98
	August 2, 2022			11.93	88.53
	November 1, 2022			12.12	88.34
	May 23, 2023			11.15	89.31
	November 20, 2023			11.87	88.59
MW-3	September 15, 2021	20.00	100.47	17.52	82.95
	September 23, 2021			13.44	87.03
	May 10, 2022			12.84	87.63
	August 2, 2022			12.96	87.51
	November 1, 2022			13.51	86.96
	May 23, 2023			11.12	89.35
	November 20, 2023			12.71	87.76
MW-4	May 11, 2022	20.00	101.48	10.78	90.70
	August 2, 2022			12.46	89.02
	November 1, 2022			13.25	88.23
	May 23, 2023			10.77	90.71
	November 20, 2023			11.25	90.23
MW-5	May 11, 2022	20.00	99.74	9.15	90.59
	August 2, 2022			9.97	89.77
	November 1, 2022			10.30	89.44
	May 23, 2023			9.05	90.69
	November 20, 2023			9.65	90.09
MW-6	May 11, 2022	20.00	97.12	9.85	87.27
	August 2, 2022			10.00	87.12
	November 1, 2022			10.03	87.09
	May 23, 2023			9.60	87.52
	November 20, 2023			9.80	87.32

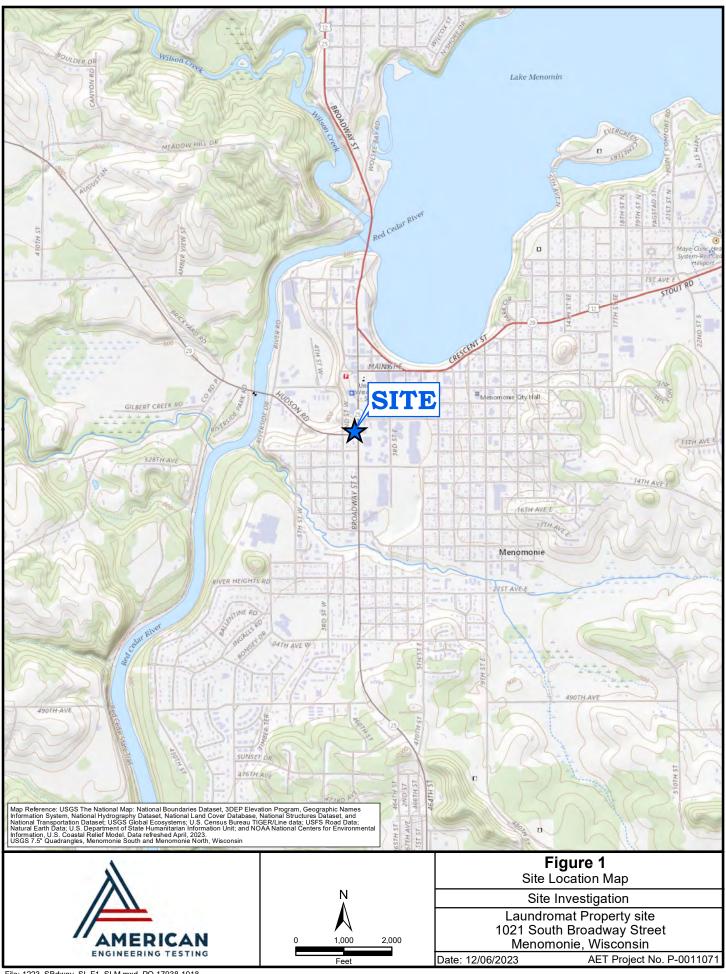
TABLE 4 ANALYTICAL RESULTS - SEWER GAS LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN AET PROJECT NO. P-0011071

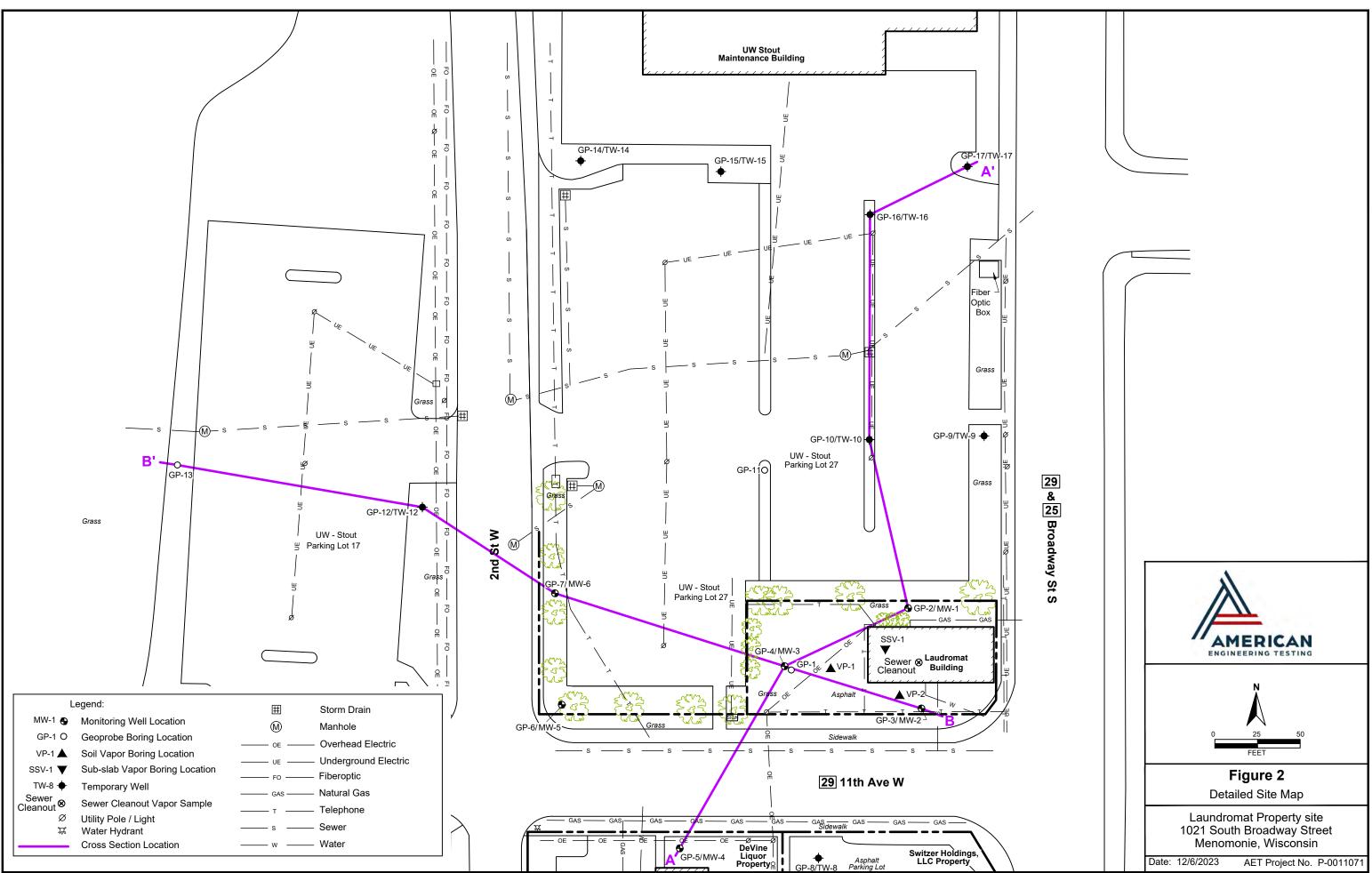
	Sewer Clean-Out	Small Commerc	cial Vapor Risk	
Date	5/24/23	Screening Levels		
<u>ANALYTE</u>		Indoor Air VAL	SSVRSL	
Method TO-15 (ppb v/v)				
Carbon disulfide	1.2*	3,100	103,333	
Chloroform	2	1.1	36	
Dichlorodifluoromethane	0.55*	88	3,000	
Ethylbenzene	1.8*	11	360	
Tetrachloroethene (PCE)	5.8	26	840	
Toluene	1.4*	22,000	733,333	
Trichloroethene (TCE)	< 0.33	1.6	53	
Trichlorofluoromethane	038*			
m-Xylene & p-Xylene	5.9*	100	3,400	
o-Xylene	1.7*	100	3,400	

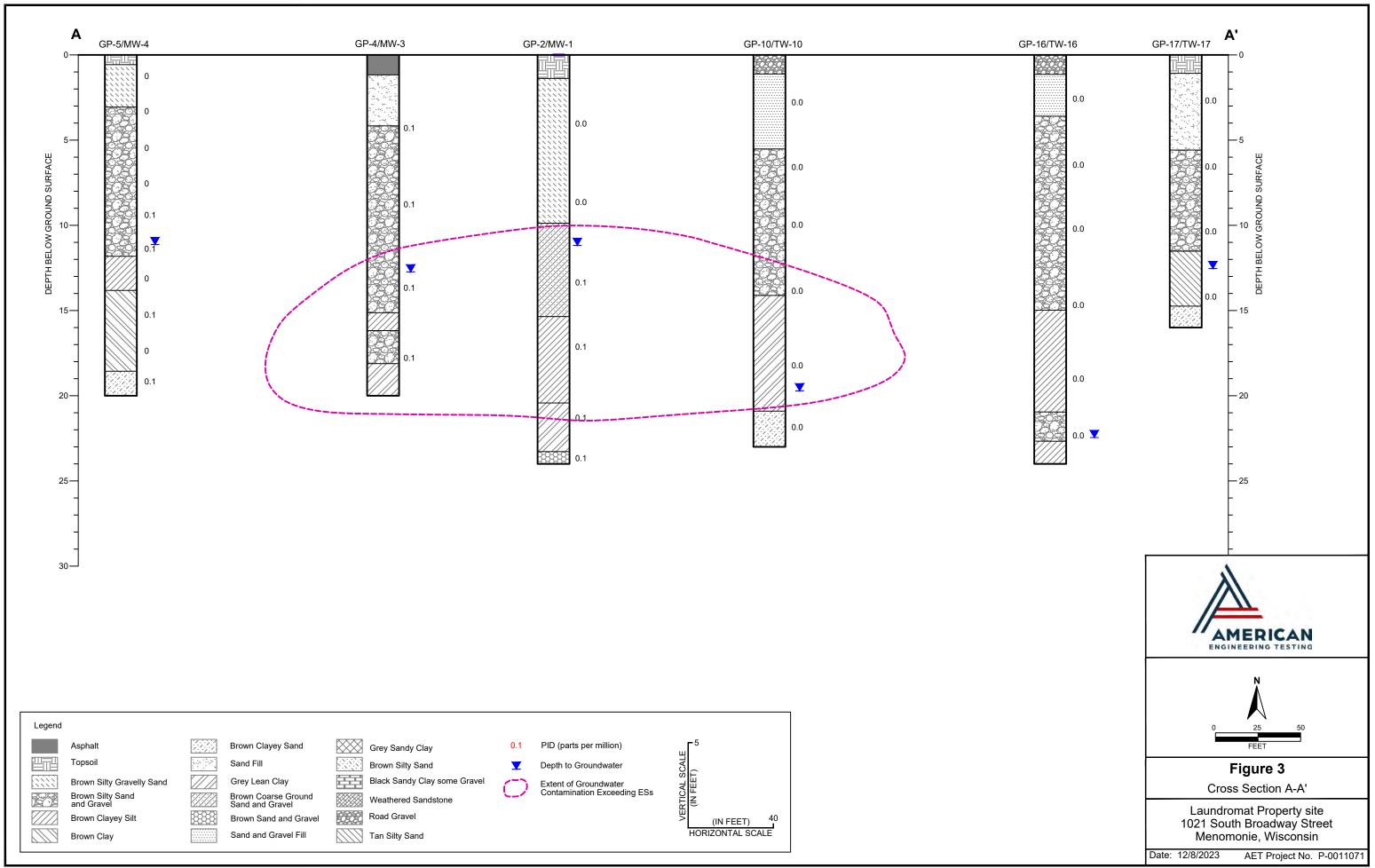
^{--- =} No Standard

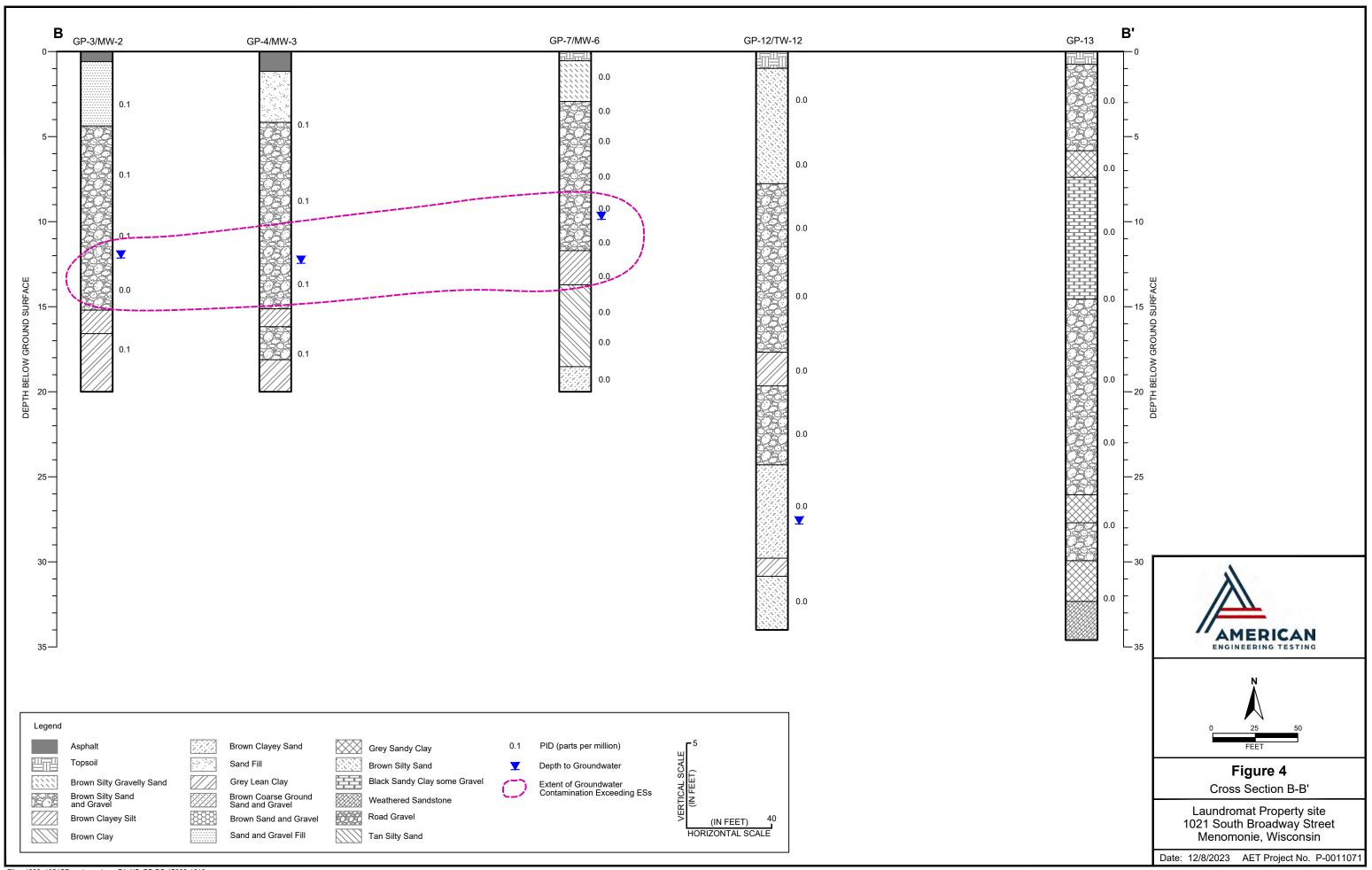
SSVRSL = sub-slab vapor risk screening level

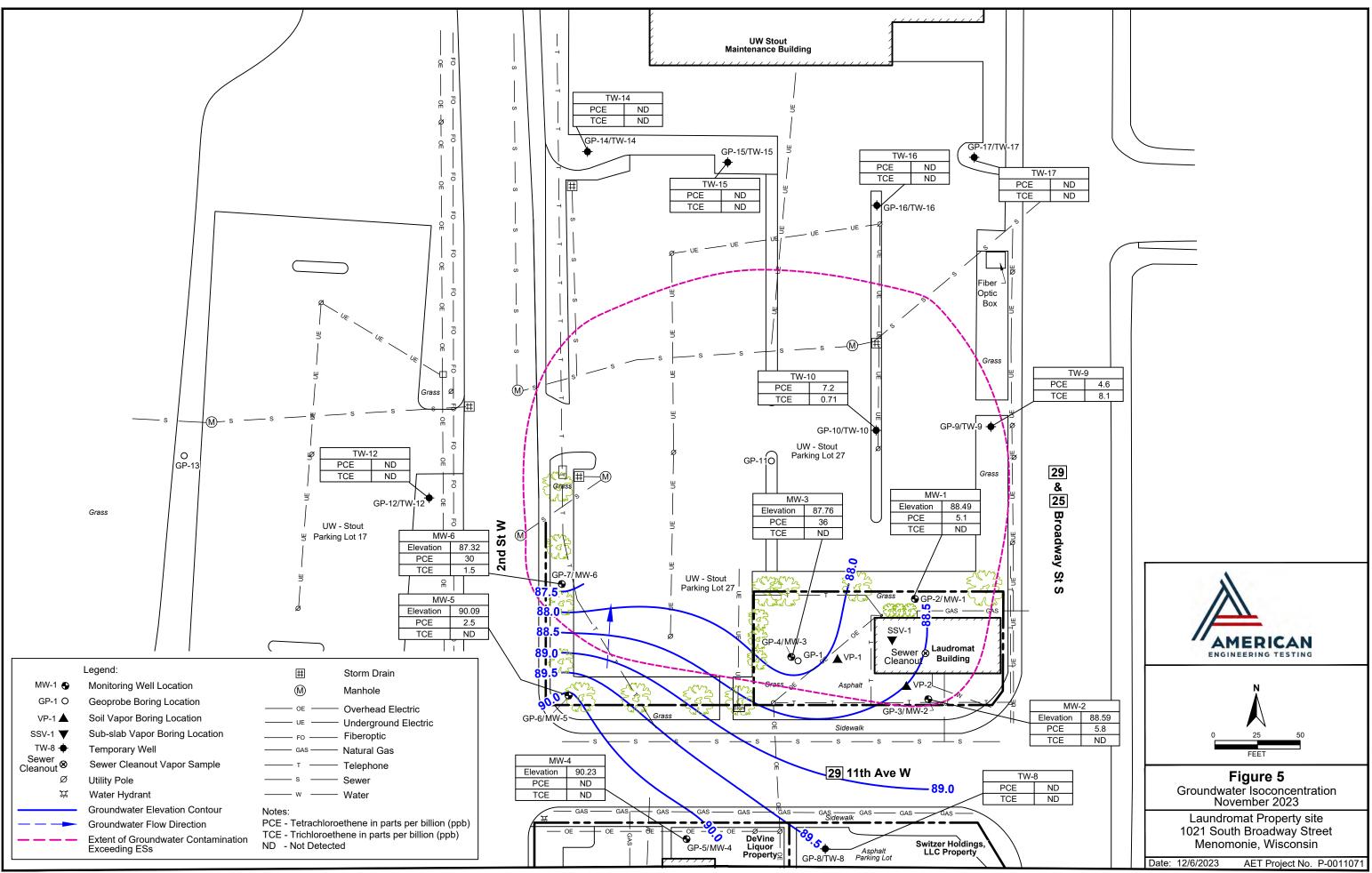
VAL = vapor action level


Bold numbers indicate concentrations above the IAVAL.


Red numbers indicate concentrations above the SSVRSL.


Samples were collected using summa canisters. The shut-in test method was used for leak testing on the sampling train.


^{* =} Result is < the Reporting Limit but > or equal to the Method Detection Limit and the concentration is an approximate value.


Figures

Appendix A

Acronyms/Abbreviations and Definitions

ACRONYMS / ABBREVIATIONS AND DEFINITIONS

AET Standard List

grace Coleius
grees Celsius
grees Fahrenheit
rcent
PA All Appropriate Inquiry (§312.10 of 40 CFR 312)
bestos containing material
bestos containing building material
nerican Engineering Testing, Inc.
bestos Hazard Emergency Response Act
oveground storage tank
nerican Society for Testing and Materials (now known only by acronym)
tivity and use limitation
nzene, ethylbenzene, toluene, xylene
low ground surface
reau of Remediation and Redevelopment Tracking System
prrective Action Plan
omprehensive Environmental Response, Compensation, Liability Act (Superfund)
omprehensive Environmental Response, Compensation, Liability Information System
CRA Conditionally Exempt Small Quantity Generator
ode of Federal Regulations
ontaminated Lands Environmental Action Network
ntaminant of concern
ain of custody
CRA Corrective Actions Information System
rcinogenic polynuclear aromatic hydrocarbon
lorinated volatile organic compound
bic yards
esel range organics
gineering control
vironmental Impact Statement
ovironmental Professional (§312.10 of 40 CFR 312)
vironmental Protection Agency (also USEPA)
forcement standard
vironmental Risk Information Services
nergency Response Notification System (federal)
vironmental Site Assessment
icilities Development Manual
ers per cubic centimeter
et
s chromatography

ACRONYMS / ABBREVIATIONS AND DEFINITIONS

AET Standard List

GIS geographic information system GPS global positioning system	
GPS global positioning system	
GRO gasoline range organics	
HASP Health and Safety Plan	
HIG Historical Information Gatherers, Inc.	
HMA Hazardous Materials Assessment	_
HREC historical recognized environmental condition	
IC institutional control	
LLP landowner liability protection	
LQG RCRA Large Quantity Generator	
LOQ limit of quantitation	
LSI Limited Site Investigation	
LUST leaking underground storage tank	
MCL EPA Maximum Contaminant Level	
MDL method detection limit.	
mg/kg milligrams per kilogram (ppm)	
mg/L milligrams per liter (ppm)	
MTBE methyl tert-butyl ether	
NA not assigned or not applicable	
ND no detection	
NEPA National Environmental Protection Act	
NESHAP National Emission Standards for Hazardous Air Pollutants	
NFA No Further Action	
NFRAP No Further Remedial Action Planned	
NLR RCRA No Longer Regulated Information System	
NPDES National Pollutant Discharge Elimination System	
NPL National Priority List (federal Superfund)	
NR not recorded	
ODI EPA Open Dump Inventory	
OSHA Occupational Safety and Health Administration	
PECFA Petroleum Environmental Clean-Up Fund Act	
PAH polynuclear aromatic hydrocarbon	
PAL preventive action limit	
PEL OSHA Permissible Exposure Limit	
PCB polychlorinated biphenyl	
pcm point count method	
PE Professional Engineer	
PG Professional Geologist	
PID photoionization detector	

ACRONYMS / ABBREVIATIONS AND DEFINITIONS

AET Standard List

PLM	polarized light microscopy
PLP	Permanent List of Priorities (state Superfund)
ppb	parts per billion
PPE	personal protective equipment
ppm	parts per million
PVOC	petroleum volatile organic compound
QA	quality assurance
QAPP	Quality Assurance Project Plan
QC	quality control
RACM	regulated asbestos containing material
RAP	Response Action Plan
RCRA	Resource Conservation Recovery Act
RCL	residual contaminant level
REC	recognized environmental condition
RI	Remedial Investigation
RL	laboratory reporting limit
ROD	EPA Record of Decision
RP	responsible party
SDS	safety data sheet
SOP	standard operating procedure
SPILLS	WDNR Spills inventory
SQG	RCRA Small Quantity Generator
SREC	suspect recognized environmental condition
SSP	Site Safety Plan
STH	State Highway
SVE	soil vapor extraction
SVOC	semi-volatile organic compound
SWF/LF	WDNR Solid Waste Facilities/Landfill Sites
TCLP	Toxicity Characteristic Leaching Procedure
TMB	trimethylbenzene
TPH	total petroleum hydrocarbons
TRIS	EPA Toxic Release Inventory System
TSCA	Toxic Substances Control Act
TSD	RCRA Transportation Storage and Disposal inventory
μg/kg	micrograms per kilogram (ppb)
μg/l or μg/L	micrograms per liter (ppb)
μg/m ³	micrograms per cubic meter
USEPA	United States Environmental Protection Agency (also EPA)
USGS	United States Geological Survey
UST	underground storage tank

ACRONYMS / ABBREVIATIONS AND DEFINITIONS

AET Standard List

VIC	Voluntary Investigation and Cleanup Program
VOC	volatile organic compound
WAC	Wisconsin Adminstrative Code
WCA	Wetland Conservation Act
WDATCP	Wisconsin Department of Agriculture, Trade, and Consumer Protection
WDHS	Wisconsin Department of Health Services
WDNR	Wisconsin Department of Natural Resources
WGNHS	Wisconsin Geological and Natural History Survey
WisDOT	Wisconsin Department of Transportation
WPDES	Wisconsin Pollution Discharge Elimination System
WRRD	Wisconsin Remediation and Redevelopment Database
XRF	x-ray fluorescence

DEFINITIONS

Controlled recognized environmental condition (CREC): a recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority (for example, as evidenced by the issuance of a no further action letter or equivalent, or meeting risk-based criteria established by regulatory authority), with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls).

De minimus condition: a condition that generally does not present a threat to human health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate government agencies. Conditions determined to be de minimus conditions are not recognized environmental conditions nor controlled recognized environmental conditions.

Historical recognized environmental condition (HREC): a past release of any hazardous substances or petroleum products that has occurred in connection with the property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted use criteria established by a regulatory authority, without subjecting the property to any required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls).

Recognized environmental condition (REC): the presence or likely presence of hazardous substances or petroleum products in, on, or at a property: 1) due to release to the environment; 2) under conditions indicative of a release to the environment; or 3) under conditions that pose a material threat of a future release to the environment.

Appendix B

Environmental Sampling Methods

AET Project No. P-0011071 Page B 1 of 4

Site Safety Issues

Safety is of paramount importance on construction, demolition, or other high-traffic sites with potentially unstable ground. Frequent visual and verbal contact is maintained with operators of heavy equipment in the sampling vicinity. Care is taken not to enter depressions or scale mounds that would constitute confined spaces, where engulfment, immersion, or falls are possible, or where harmful vapors may collect. Most observations and soil collection are performed from a stable and level ground surface with the help of heavy equipment operated by an excavation contractor.

Contamination Reduction

Sampling devices (except heavy equipment in most cases) are cleaned between sampling points to minimize cross contamination. The cleaning procedure may consist of an alconox detergent-water wash using a brush, followed by a tap water rinse. Certain types of projects may entail more or less stringent decontamination procedures.

Soil Collection

Most soil samples from excavations or test pits are collected directly from heavy equipment (e.g., excavation bucket, loader, or bulldozer), giving preference to soils that have not touched the equipment. A hand auger is used to complete shallow soil borings in locations of limited vehicle access. Hand auger borings are advanced manually, typically in 6" to 12" depth intervals. Soils are collected directly from the hollow auger barrel. A spade shovel is used to collect surficial soils (i.e., up to 6" depth). In many cases, soil samples can be collected by hand without added equipment.

Impacted soils or buried debris may be present in the ground that are not observed due to the spacing and depths of sampling points. Best judgment determinations, based on known site conditions and past experience in similar situations, do not guarantee identification or removal of all impacts.

Soil Classification

As the samples are obtained in the field, they are visually and manually classified by the field staff. Representative portions of the samples may be returned to the laboratory for further examination and for verification of the field classification. Soil classifications, visual/odor observations, and information on any groundwater encountered are reported on the Soil Screening Data Sheet or other field notes.

Soil Sample Vapor Screening

Soil samples collected directly or from equipment are screened with a photoionization detector (PID) for the presence of organic vapors with ionization potentials less than the lamp voltage. The PID is calibrated for direct reading in parts-permillion-volume (PPMv) of a benzene equivalent. Soil samples are collected and screened according to the bag-headspace field screening procedure, which consists of placing freshly collected soil into a polyethylene Whirl-Pak or freezer "baggie" (i.e., bag), sealing the bag to contain an air pocket (i.e., headspace), and allowing 10 to 20 minutes for vapors to disperse from the soil to the headspace. The highest reading upon inserting the PID probe into the bag headspace – typically attained within two to five seconds of probe insertion – is recorded on the Soil Screening Data Sheet or other field notes. Excessive moisture, temperature extremes, ambient vapors, or other unusual field circumstances can affect screening results.

Other Field Screening

For certain sites, field screening may be conducted for additional parameters in accordance with AET's Field Screening Methods Supplemental information sheet.

Soil Sampling for Chemical Analysis

Soil samples obtained for chemical analysis are collected directly or from the sampling device into laboratory-prepared containers with appropriate preservatives, according to laboratory protocols. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

AET Project No. P-0011071 Page B 2 of 4

Contamination Reduction

The hollow-stem auger (HSA) drill rig and down hole tooling are steam cleaned prior to mobilization. The split-spoon sampler is cleaned between samples to minimize cross contamination. The push-probe down hole tooling is steam cleaned prior to mobilization. New clear plastic liners are used for each drive, and the tooling is cleaned between borings to minimize cross contamination. The cleaning procedure consists of an alconox detergent-water wash using a brush, followed by a tapwater rinse. The alconox wash and rinse water are changed regularly – typically between borings. Certain types of projects may entail more stringent decontamination procedures.

Soil Boring Advancement and Limitations

Split-spoon soil sampling in the standard-penetration soil borings is performed using hollow-stem auger techniques in general accordance with ASTM:D1586, with a modified hammer weight calibrated by pile driving analyzer (PDA). Using this procedure, a 2" outer-diameter (OD) split-spoon soil sampler is driven into the soil by a hammer weight with 60%-65% energy of a 140-lb. weight falling 30". After an initial set of 6", the number of blows required to drive the sampler an additional 12" is known as the penetration resistance or N value, an index of the relative density of cohesionless soils and the consistency of cohesive soils. Samples are typically collected in distinct 18" or 24" depth intervals separated by 12" or 6" depth intervals, using drive rods to extend the boring deeper beneath the ground surface. The split-spoon sampler is opened to expose distinct 18" or 24" sections of soil for classification and sampling.

Soil sampling in the soil borings is performed using a Geoprobe® system. Soil borings are advanced using a vehicle-mounted, hydraulically-powered, soil probing machine, which uses static force (vehicle weight) and percussion to advance small-diameter sampling tools into the subsurface for collecting soil core, soil gas, or groundwater samples. Using this system, a 2" outer-diameter (OD) MacroCore® soil sampler containing a 1.75" OD clear plastic liner is driven into the soil in distinct 48" depth intervals, except where subsurface conditions limit the equipment to shorter drive lengths. In cases where soil recovery is poor, typically due to grain-size or moisture, a smaller "discrete" soil sampler (1.5" OD containing a 1.0" OD clear plastic liner) with a retractable piston tip may be used to collect soil in distinct 24" depth intervals. Probe rods are added to extend borings deeper beneath the surface. The plastic liner is removed from the sampler and cut lengthwise to expose discrete sections of soil for classification and sampling.

Unless actually observed, contacts between soil layers are estimated based on the spacing of samples and the action of the drilling tools. Cobbles, boulders, and other large objects generally cannot be recovered from soil borings, and may be present in the ground even if they are not noted on the boring logs. Impacted soils or buried debris may be present that are not observed due to the spacing and depths of sampling points. Best judgment determinations, based on known site conditions and past experience in similar situations, do not guarantee identification of all impacts.

Soil Classification

As the samples are obtained in the field, they are visually and manually classified by the field staff following the Unified Soil Classification (USC) system in general accordance with ASTM:D2488. Representative portions of the samples may be returned to the laboratory for further observation and for verification of the field identification. Logs of the borings are prepared indicating the depth and identification of the various strata, water level information, and other pertinent information regarding the method of maintaining and advancing the borings.

Boring logs include judgments of the geologic depositional origin. This judgment is primarily based on observations of the soil samples, which can be limited. Observations of the surrounding topography, vegetation, and development can sometimes aid this judgment. Visual/odor observations may aid in assessing impacts but are not relied on exclusively.

Soil Sample Vapor Screening

Soil samples collected directly from the soil samplers are screened with a photoionization detector (PID) for the presence of organic vapors with ionization potentials less than the lamp voltage. The PID is calibrated for direct reading in partsper-million-volume (PPMv) of a benzene equivalent. Soil samples are collected and screened according to the bagheadspace field screening procedure, which consists of placing freshly collected soil into a polyethylene Whirl-Pak or freezer "baggie" (i.e., bag), sealing the bag to contain an air pocket (i.e., headspace), and allowing 10 to 20 minutes for vapors to disperse from the soil to the headspace. The highest reading upon inserting the PID probe into the bag

AET Project No. P-0011071 Page B 3 of 4

headspace – typically attained within two to five seconds of probe insertion – is recorded on the boring log. Excessive moisture, temperature extremes, ambient vapors, or other unusual field circumstances can affect screening results.

Other Field Screening

For certain sites, field screening may be conducted for additional parameters in accordance with AET's Field Screening Methods Supplemental information sheet.

Soil Sampling for Chemical Analysis

Soil samples obtained for chemical analysis are collected directly from the soil samplers and placed into laboratory-prepared containers with appropriate preservatives, according to laboratory protocols. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

Water Level Measurements

The groundwater level measurements are shown at the bottom of the boring logs. The following information appears under Water Level Measurements on the logs:

- Date and time of measurement
- Sampled Depth: greatest depth of soil sampling at the time of measurement
- Casing Depth: depth to bottom of casing or hollow-stem auger at time of measurement
- Cave-in Depth: tape-measured depth of borehole
- Water Level: tape-measured depth of free water in the borehole

The true depth of the water table at the boring locations may be different from the water levels measured in the boreholes. This is possible because several factors can affect the water-level measurements in the borehole such as permeability of each soil layer in profile, presence of perched water, amount of time between water level readings, and weather conditions.

Groundwater Sampling for Chemical Analysis

Groundwater samples obtained for chemical analysis are collected directly from each borehole/temporary monitoring well by one of two techniques: (1) A new dedicated teflon bailer is lowered down the borehole/temporary monitoring well with new nylon rope or decontaminated downrigger cable; (2) Using a peristaltic pump or check-valve assembly, samples are pumped directly from the borehole/temporary monitoring well through new polyethylene tubing extended to depth through the casing. Samples are collected in laboratory-prepared containers with appropriate preservatives, according to laboratory protocols. For analyses in which field-filtering is required, samples are vacuum-filtered through a new dedicated plastic filter with 0.45- μ m pores. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

Because boreholes/temporary monitoring wells are not typically in equilibrium with groundwater, results provide qualitative groundwater data. Purging additional water prior to sampling may improve the data representativeness somewhat. Monitoring wells are necessary to obtain more accurate quantitative groundwater data.

Surveying and Abandonment

Following sampling, ground surface elevations at boring locations are typically measured to the nearest 0.1 foot. If a permanent benchmark of known elevation is unavailable, the measurement is referenced to a nearby temporary benchmark given the arbitrary reference elevation of 100.0 feet. Horizontal location control is typically based on tape measurements from fixed site features. Certain types of projects may entail more stringent measures such as global positioning systems (GPS) or contracting registered surveyors.

Boreholes/temporary monitoring wells are completely backfilled with bentonite and abandoned according to procedures outlined in Chapter NR 141.25 of the Wisconsin Administrative Code A WDNR Borehole Abandonment (3300-5W) form is completed for each soil boring not completed as a monitoring well.

AET Project No. P-0011071 Page B 4 of 4

Contamination Reduction

The sampling downrigger and electronic water-level indicator are cleaned prior to sampling and between sampling from different monitoring wells. The cleaning procedure consists of an alconox detergent-water wash and distilled water rinse from spray dispensers. New disposable bailers are used for each well.

Monitoring Well Installation and Development

Groundwater monitoring wells and piezometers are constructed and developed in accordance with Wisconsin Administrative Code – Chapter NR 141 requirements. Monitoring Well Construction (4400-113A) and Monitoring Well Development (4400-113B) forms are completed for each well. Typically, monitoring wells are installed in hollow-stem auger (HSA) soil boreholes that have been sampled for environmental parameters.

Monitoring wells are developed by removing a minimum of three to five borehole volumes, until water appears clear.

Groundwater Elevation Measurements

Following monitoring well installation, the top-of-riser elevations are surveyed to the nearest 0.01 feet. If a permanent benchmark of known elevation is unavailable, the survey is referenced to a nearby temporary benchmark given the arbitrary reference elevation of 100.00 feet.

Groundwater elevations are determined by using an electronic water-level indicator. Measurements are obtained by lowering the probe into each well until the groundwater surface is encountered. Measurements, referenced to the top-of-riser elevations, are reported to the nearest 0.01 feet.

Groundwater Sampling for Chemical Analysis

Groundwater samples obtained for chemical analysis are collected directly from each monitoring well using a new disposable bailer lowered down the well with new nylon rope or decontaminated downrigger cable. Samples are decanted directly from the bailer into laboratory-prepared containers with appropriate preservatives. Alternatively, samples may be drawn directly from the submersible pump discharge tubing. For analyses in which field-filtering is required, samples are vacuum-filtered through a new dedicated plastic filter with 0.45- μ m pores. The samples are delivered to the analytical laboratory within prescribed holding times, accompanied by proper chain-of-custody forms.

Free Product Removal Procedures

We conducted free product removal procedure as follows:

- Remove well cover and scrape away excess dirt.
- Carefully remove test well plug, bailer, & sock from well casing. Remember that bailer and absorbent socks are tied to the plug.
- Set bailer aside and squeeze product from sock into bucket. After squeezing out sock set aside to dry.
- Measure depth to water/product with a product/groundwater interface probe. Record depth to product, groundwater, and thickness of product in feet.
- Secure bailer to rope or string and insert into well casing. Lower the bailer until contact with water table is made. Allow bailer to drop into the water for no more than one foot. Remove bailer and estimate product thickness. Empty contents of bailer into bucket and record product thickness.
- Continue to lower bailer into well and drop to the water table. Allow bailer to fill with no more than one foot of water/product. Remove bailer and empty contents into bucket. Continue fill bucket. Transfer filled buckets to drum.
- Repeat this process until thickness of free product is less than one inch. Record amount of water/product removed.
- If a groundwater sample will be collected use a new disposable bailer to obtain a water sample. Insert the bailers bottom empting device and use to fill the appropriate sample bottle.
- Reattach string/rope to well plug, replace bailer and sock into well and cap with well plug. Replace well cover. Replace socks as needed.
- Secure cover on 55-gasllon drum.

Appendix C

Soil Boring Logs and Abandonment Forms

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98 Route To: Watershed/Wastewater Waste Management Remediation/Revelopment Other Facility/Project Name License/Permit/Monitoring Number Boring Numbe pert Boring Drilled By: Name of crew chief (first, last) and Firm
First Name: Last Name: Date Drilling Started Date Drilling Completed $\frac{O G}{m} \frac{G}{d} \frac{G}{d} \frac{G}{d} \frac{G}{y} \frac{G}{y} \frac{G}{y}$ WI Unique Well No. DNR Well ID No. Final Static Water Level Surface Elevation Feet MSL Feet MSL inches Local Grid Origin (estimated:) Local Grid Location 0 Lat \square N \Box E $5w_{1/4}$ of $5w_{1/4}$ of Section 360 Ta28 N, R Long Feet \square S Feet□ W County Code Civil Town/City/ or Village 7007160 nenomonia Sample Soil Properties Length Att. & Recovered (in) Depth in Feet (Below ground surfa Blow Counts Soil/Rock Description Number and Type And Geologic Origin For USCS Log Well Diagram PID/FID Moisture Content Plasticity Index Each Major Unit Graphic Liquid Limit DK Brw SILTY SAND 0 3 0 10 0 0 15 CL 20 25 30 35 I hereby certify that the information on this form is true and correct to the best of my knowledge.

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau.

	Route to DNR Bureau:				
Verification Only of Fill and Seal	Drinking Water	Watershed/Wa	ıstewater	Remediation	/Redevelopment
	Waste Managemer	nt Other:			
1. Well Location Information		2. Facility / Owner Info	rmation		
County WI Unique Well # of Removed Well	Hicap #	Facility Name	/ _1	0 1	
Dunn		LAUNC	LIOMAT_	Paga ty	
Latitude / Longitude (see instructions) Format	Code Method Code	Facility ID (FID or PWS)		• /	
N D	DD GPS008	License/Permit/Monitoring #	4		
w n	SCR002 DDM	Licerise/Fermil/Monitoring #	6P-	-8/TW-	E
	vnship Range E	Original Well Owner	<u> </u>	0//4-	
, , , , , , , , , , , , , , , , , , , ,	28 N 13 8 W				
Well Street Address	() N () (SB ''	Present Well_Owner		. 1	
Tren offect, addiede		QUAY 447 Mailing Address of Present	5 Onli	mited	
Well City, Village or Town	Well ZIP Code	Mailing Address of Present	Owner		
Menomonie	54751	N7487	57H 2		
Subdivision Name	Lot#	City of Present Owner		1	Code
		MEAUMINE	. Casina 8 C		5475/
	ll # of Replacement Well	4. Pump, Liner, Screer Pump and piping remove		Yes	□No \\N/A
Test Boring/TW		Liner(s) removed?		☐ Yes	No X N/A
3. Filled & Sealed Well / Drillhole / Borehole	on Date (mm/dd/yyyy)	Liner(s) perforated?		Yes	No N/A
Monitoring Well	on Date (IIIII day)	Screen removed?		Yes	No N/A
Water Well	the Development is a small about	Casing left in place?		Yes	No N/A
Borehole / Drillhole please attach.	tion Report is available,	Was casing cut off below	/ surface?	Yes	No N/A
Construction Type:		Did sealing material rise	to surface?	Yes	No N/A
Drilled Driven (Sandpoint)	Dug	Did material settle after 2		Yes	No N/A
Other (specify): Geoprobe		If yes, was hole retor	•	Yes	∐ No ∐ N/A
Formation Type:		If bentonite chips were us with water from a known		Yes Yes	N/A N/A
Unconsolidated Formation Bedr	rock	Required Method of Placing	g Sealing Materia	al	
Total Well Depth From Ground Surface (ft.) Casing	Diameter (in.)	Conductor Pipe-Gravi	ty Conduct	or Pipe-Pumped	
16	/	Screened & Poured (Bentonite Chips)	Other (E	xplain):	
Lower Drillhole Diameter (in.) Casing	Depth (ft.)	Sealing Materials			
		Neat Cement Grout		Concrete	
Was well annular space grouted? Yes	No Unknown	Sand-Cement (Concre	-	Bentonite Chip	os
· · ·		For Monitoring Wells and M			
If yes, to what depth (feet)? Depth to Wat		Bentonite Chips	Ber	ntonite - Cement G	irout
//	. 80	Granular Bentonite	<u> </u>	ntonite - Sand Slur	
5. Material Used to Fill Well / Drillhole		From (ft.) To (ft.)	No. Yards, Sack Volume (cire	s Sealant or cle one)	Mix Ratio or Mud Weight
Bentonite Chips		Surface /6	`		
IC Commands					
6. Comments					
7. Supervision of Work	"	E 00 E	D + D	DNR Use Onl	
Name of Person or Firm Doing Filling & Sealing Lie	cense # Date of Fil (mm/dd/yy	ling & Sealing or Verification	Date Received	Mote	аву
Street or Route	Te	elephone Number	Comments		
	(,	715)861 5045			
1837 CTH OO City Chippe 44 Falls Wa	ZIP Code	Signature of Person Doing	Work	Date Sig	gned
Chippent Folls Wy	I 54729 .	Mil Jolly	<u> </u>	<u> </u>	d3-d3
7 /					

SOIL BORING LOG INFORMATION

	Route	e To:		Wastewater					_		-		•	CV. /-,	
acility/Project N	ame	····	0		Licen	se/Peri	nit/Mo	nitorin	g Num	ber	Boring	Page Numl		_ of	<u>/</u>
Boring Drilled By	OMA Name	of cres	y chief (first	per 7/	Dotal	المثالثات	g Starte	d	Data I	\	Come	lated	Orillin	a Mari	7/7 W-
First Name:	. 11au.c	Last No	ame:	, tasi, agair inii			i ŽiQ			$Q_{\overline{\mathbf{d}}}$				g Men	noa /
Firm: A F / WI Unique Well I	ota I	DND V	Vell ID No.	Well Name			y y Water l						<u>64</u>	PI	05C
wi Onique well i	NO.	DINK	ven id No.	TW-9	Finai		Feet M		Suriac	e Elev	ation _Feet l		Boreho		ameter nches
Stote Dione			N	oring Location □	1 Y	at	0 1	11	Local	Grid L					
W 1/4 of 5 W	$J_{1/4 \text{ of}}$	Section	26 TO	18 N, R 13 4	ν Lo		0 '	11		F		N S_			□ E □ W
Facility ID G17007	7/60	7	County	THN	County (Code	Civil		City/ o	r Villa,	ge	n		_1 001	<u> </u>
Sample				,,,,		T		<u>/은</u>	1019	0.17		Prope	rties		
Number and Type Length Att. & Recovered (in) Blow Counts	Depth in Feet (Below ground surface)		And Ge	ock Description ologic Origin For h Major Unit		CS	hic	1 ram	PID/FID	Compressive Strength			Plasticity Index	0	RQD/ Comments
And and Len Recc Blow	Depl					n s	Graphic Log	Well Diagram	MD	Com	Moisture Content	Liquid Limit	Plast	P 200	Com
			TOP SI K Brw	Sand Fr	//				0		M	i			ti.
	5	DX	Bow	Silty Sar Frauel	1d				0		M			ļ	
	10 -	S	BIACK	PEAT					0		M				
	15.	B	rw 5,	ilt-/ Sand	Ú				0		M				
	20								0		W				-
	25		20,	B 20'											
	20.														
	30.														
	35														
														;	
hereby certify	that the	infopfy	ation on thi	s form is true and			st of n	ıy kno	wledg	e.	J	<u> </u>		I	
Signature	2/7/1				Firm	1	ET	-							

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

	Route to DNR Bureau:	· · · · · · · · · · · · · · · · · · ·	,	
Verification Only of Fill and Seal	Drinking Water	Watershed/Waste	water Reme	diation/Redevelopment
remodelen om y er / m and odd/	Waste Managemer	other:		
1. Well Location Information		2. Facility / Owner Inform	ation	
County WI Unique Well # of	Hicap #	Facility Name	10	-/ /
Dunn Removed Well		LAUNdre	omat Prog.	a 77
	- I at Code Method Code	Facility ID (FID or PWS)	•	
N	DD GPS008	Liana - /Dansit/N/anikasina di		
w		License/Permit/Monitoring #	6P-9/7	W-9
	ownship Range E	Original Well Owner	<u> </u>	
	28 N /3 W			
Well Street Address	VO N /_) 58 W	Present Well_Owner	<u> </u>	1
Troil offect, adjects		Mailing Address of Present Ow	Onlimited	\checkmark
Well City, Village or Town	Well ZIP Code	Mailing Address of Present Ow	ner // 2 -	
Menomonie	54751	N7487 S		
Subdivision Name	Lot#	City of Present Owner MCAUM MAC	State W.Z.	ZIP Code 5 475/
Reason for Removal from Service WI Unique W	 /ell # of Replacement Well	4. Pump, Liner, Screen, C	asing & Sealing Ma	
Tast Boring/TW _		Pump and piping removed?		Yes No No N/A
3. Filled & Sealed Well / Drillhole / Boreho		Liner(s) removed?	L	Yes No N/A
Monitoring Well Original Constru	ction Date (mm/dd/yyyy)	Liner(s) perforated? Screen removed?	L.	Yes No N/A
Water Well		Casing left in place?		Yes No N/A
If a Well Constrution Borehole / Drillhole please attach.	uction Report is available,	Was casing cut off below su	rface?	Yes No N/A
Construction Type:		Did sealing material rise to s	<u></u>	Yes No N/A
	Dug	Did material settle after 24 h	<u></u>	Yes No N/A
Drilled Driven (Sandpoint) Other (specify): Geoprobe	Bug	If yes, was hole retoppe	d?	Yes No N/A
Formation Type:		If bentonite chips were used with water from a known safe		Yes N/A
	drock	Required Method of Placing Se		
	ng Diameter (in.)	Conductor Pipe-Gravity		nped
2 7	1	Screened & Poured	Other (Explain):	
Lower Drillhole Diameter (in.) Casin	ng Depth (ft.)	(Bentonite Chips) Sealing Materials		
(. ,)		Neat Cement Grout	Concret	te
		Sand-Cement (Concrete)	Grout Bentoni	te Chips
Was well annular space grouted?		For Monitoring Wells and Moni	-	
If yes, to what depth (feet)? Depth to W	_ '	Bentonite Chips	Bentonite - Cer	ment Grout
13	.90	Granular Bentonite	Bentonite - Sar	nd Slurry
5. Material Used to Fill Well / Drillhole		From (ft.) To (ft.) No.	. Yards, Sacks Sealant o Volume (circle one)	or Mix Ratio or Mud Weight
Bestonite Chip	\$	Surface 20	Voluntio (direte ene)	waa voign
6. Comments				
7 Cunamician of Wark		n de la companya de	DND II-	- Only
7. Supervision of Work Name of Person or Firm Doing Filling & Sealing	License # Date of Fil	ling & Sealing or Verification D	DNR Us Date Received	Noted By
A E T Street or Route	(mm/dd/yy		,	
Street or Route			Comments	
1831 CT# 00		715)86/5045		
1837 CTH OO City Chippe 44 Falls	te ZIP Code 12 54729 .	Signature of Person Doing Wo	14	S-U3-U3
, v		ŧ		

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

											Page		_ of _		
Facility/Project Name LAU 11 Cl (me アMイ	a + Profession of crew chief (first,	perty	Licen	se/Peri	nit/Mo	nitorir	ıg Num	iber	Boring	y Num	G	P_	10/7	The
Boring Drilled By: First Name:	Nam	e of crew chief (first, Last Name:	last) apd Firm			Starte						Drillin	g Met	hod	
Firm: AFT	- 	7010 XX 11 XX 11	Tray may			1200		,	1 <u>06</u>		$\frac{2}{y}$	64	001	<u>obe</u>	_
WI Unique Well N	_	DNR Well ID No.	Well Name TW-/0	Final _		Water I Feet M	1SL	_	e Elev	_Feet l		Boreho		ameter nches	
Local Grid Origin State Plane		N.	ring Location □ E	I	_at	0			Grid L		n N			DЕ	
SW 1/4 of SW	/ _1/4 of	Section 26, Ta	8 N, R 13 W	Lo		0 '				eet 🗀			Fee	t W	
Facility ID G17007	160	$\mathcal{D}_{\mathcal{U}}$	hN	County C					r Villa ON/						
Sample										Soil	Prope	rties			
Number and Type Length Att. & Recovered (in) Blow Counts	Depth in Feet (Below ground surface)	Soil/Ro And Geo	ck Description logic Origin For		s				Compressive Strength	. دو		<u>}.</u>		nts	
Number and Type Length Al Recovered Blow Cou	elow gr	Each	Major Unit		sc	Graphic Log	/ell	PID/FID	mpre	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
X # 1 % E	Ae	ROAC	Grave 1		Þ	<u>ট এ</u>	2 0	<u> </u>	స్ట్రా	∑ŭ	בנ	P. I.	ద	కర	
		Sand G	concrete	,				0		M				1.	
	5	Wood	Concrete							 `					
		OK Bou	<i>y</i> .					0		M					
	10	51	Ity Sond	<u>[</u>				0		M					
	l.	4	grave/												
	15	li .			-			0		M					
		Grey	C/A-/							n					
	20		""/					0		1	-				
		SAndy	Clay		1			0		W	t				
	25		0.5											1	
		2015	23												
	30														
	35														
									Ī						
					<u> </u>	1			<u> </u>	<u> </u>	<u> </u>]		<u> </u>	

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

age 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

		Route	to DNR Bureau:						
Verification Only	of Fill and Sea	u 🗆 🗆	rinking Water		☐ Watershed/Wa	astewater	Remedia	ation/Redeve	lopment
			Vaste Manageme	nt	Other:				
1. Well Location Infor	mation		gram or garden	2. Facilit	y / Owner info	ormation			
	WI Unique Well #	of Hicap#		Facility Na	me)		0		
D	Removed Well				LAUNG	dromat	Proja	1/	
Latitude / Longitude (see in	etructions)	Format Code	Method Code	Facility ID	(FID or PWS)		. ,	/	
Latitude / Longitude (See II	N		GPS008						
			SCR002	License/Pe	ermit/Monitoring	* C) h 1+	~/ . / ~	
1/4 1 1/4 SW 1/4 S	W Section	Township	Range F	Original W	all Owner	φ_{P}	-10/7	W-10	
or Gov't Lot #	26	28 N	Range E	Oliginal W	CII OWIICI				
Well Street Address	1 40	N O N	1,) 28 "	Present W			, , 1		<u>·</u>
vvoii Otioet / idaress					QUARTER	rs On	limited		
Well City, Village or Town		Well	ZIP Code	1	dress of Present	t Owner			
Menomonie	-	5.	4751		7487	STH &	25		
Subdivision Name		Lot #	; :		Sent Owner		State W.T.	ZIP Code <i>5</i> 4 7	51
December Demonstration	One-in-	\\\-\ # -f D-			, Liner, Scree	n Casing &		1	
Reason for Removal from S		que Well # of Re	epiacement vveii		nd piping remov			∕es No	N/A
3. Filled & Sealed We		orehole Inforn	aation	Liner(s)	removed?			es No	X N/A
		onstruction Date		Liner(s)	perforated?		Y	∕es ∏No	N/A
Monitoring Well				Screen	removed?		\(\bar{\chi}\rac{\chi}{\chi}\	∕es ∏No	N/A
Water Well	If a Well C	onstruction Rep	ort is available	Casing	left in place?		Y	es No	N/A
Borehole / Drillhole	please atta		orrio avallable,	Was ca	sing cut off belov	w surface?	Y	es No	[N/A
Construction Type:	•			Did sea	ling material rise	to surface?	Y	∕es <u>∑</u> No	☐ N/A
Drilled [Oriven (Sandpoint)	Du	g	1	erial settle after:		∐'	∕es <u>∑</u> No	∏ N/A
Other (specify):	Geoprobe	2		1	es, was hole reto			∕es ∐ No	∐ N/A
Formation Type:		~	- No Company of the Company of th		nite chips were ι ter from a knowr		/ hydrated \	res Mo	□ N/A
Unconsolidated Form	ation	Bedrock		Required I	Method of Placin	g Sealing Mate	erial		
Total Well Depth From Gro	ound Surface (ft.)	Casing Diamete	er (in.)	Cond	ductor Pipe-Grav	rity 🔲 Condu	ıctor Pipe-Pumpe	∍d	
2.2		j			ened & Poured tonite Chips)	Other	(Explain):		
Lower Drillhole Diameter (i	n.)	Casing Depth (f	t.)	Sealing Ma	1 /		-		
,	,		•	Neat	Cement Grout		Concrete		
				Sand	d-Cement (Conc	rete) Grout	Bentonite	Chips	
Was well annular space gro	outed?	Yes 🅻 No	Unknown	For Monito	oring Wells and N	Monitoring Well			
If yes, to what depth (feet)	? Depti	h to Water (feet)			onite Chips	r—-	entonite - Ceme		
	1	19.7	0	1 7	ular Bentonite	□в	Bentonite - Sand	Slurry	
5. Material Used to Fil	ll Well / Drillhold	e.		From (ft.) To (ft.)	No. Yards, Sa	icks Sealant or	Mix Ra	
Benton	<u> </u>	108	<u>, , , , , , , , , , , , , , , , , , , </u>	Surface		Volume (d	circle one)	Mud W	eight
	114	(p)		Surface	· 🗴 -	<u> </u>			
· · · · · · · · · · · · · · · · · · ·				-					
6. Comments	<u> </u>								
7. Supervision of Wor	k - 1						DNR Use	Only	
Name of Person or Firm De		ng License#	Date of Fi	lling & Seali	ng or Verification	n Date Receiv		Noted By	
AET	A4F1		(mm/dd/y		6-2-3				
Street or Route 1837 CT#	00			elephone Nu 7/5)&	umber 61 5045	Comments			
1837 CTH Chippe WA Fra	1/5	1	Code 54729	Signature	of Person Doing	Work	Date	Signed	 2
- mpre 47 19	10	1004 10	/-//X/	7000	1-14	<u> </u>		<u> </u>	1

Signature

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 Watershed/Wastewater Waste Management Route To: Remediation/Revelopment Other License/Permit/Monitoring Number Boring Number Facility/Project Name AundioMAT Boring Drilled By: Name of crew chief (first, last) and Firm First Name: Last Name: Date Drilling Started Date Drilling Completed Drilling Method 06/06/2023 mm/dd/yyyyy 06,06,20d Firm: AFT WI Unique Well No. DNR Well ID No. Final Static Water Level Surface Elevation Feet MSL Feet MSL inches Local Grid Origin (estimated:) Boring Location Local Grid Location 0 Lat \square E 5 w 1/4 of 5 w 1/4 of Section 26 0 , Tal 8 N, R Long Feet□ W Feet
S Facility ID County County Code Civil Town/City/ or Village @17007160 $^{\prime}$ Z Menononia Sample h in Feet ground surface) Soil Properties Length Att. & Recovered (in) Soil/Rock Description Blow Counts And Geologic Origin For Compressiv Strength USCS Plasticity Index Log Well Diagram PID/FID Moisture Content Each Major Unit Graphic Depth Below g Liquid Limit P 200 OK BIW Silty SAME + grave! Some Bricks 0 0 10 0 0 15 Ö 20 VF SILTY SIND TAM/GIN Hard Refisal@ 28 0 SP 30 35 I hereby certify that the information on this form is true and correct to the best of my knowledge.

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

				Route	to DNR Bureau	_	_				
Verification On	ılv of Fill a	and Sea	ıl		rinking Water		☐ Watershed/W	/astewater	Remed	liation/Redev	elopment
	, •		••	□ w	/aste Managem	ent -	Other:				
1. Well Location Inf	formation					2. Facili	ty / Owner inf	ormation			
County	WI Uniqu	ue Well #	of	Hicap #	······································	Facility Na	ima .		0		
<i>(</i>)	Remove	d Well					LAUN	dromat	food	r 1 /	
Dunn				0-4-	Innethed Code	Facility ID	(FID or PWS)		, ,		
Latitude / Longitude (se	ee instruction	•	Format		Method Code						
		N		טט	SCR002	License/P	ermit/Monitoring	# ~ /	2 1 1		
		W		DM	OTH001			61	7//		
1/4/1/4 SW 1/4	SW.	Section	Tow	nship	Range E	Original W	/ell Owner				
or Gov't Lot#		26	J	8 N	13 🗸 w						
Well Street Address		1				Present W	/ell Owner Quar 12	rs On	limited	[
Well City, Village or Tov	wn			Well	ZIP Code	· · ·	ddress of Preser	nt Owner			
Menomon				5	4751	, ,	<u> 7487</u>	57H o	25		
Subdivision Name		·		Lot #			esent Owner		State W.Z.	ZIP Code	 '5/
Reason for Removal fro	om Service	WI Uni	que Wel	I# of Re	placement Well	4. Pump	, Liner, Scre		Sealing Mat	erial	
Tast Born	199					Pump a	and piping remov	ved?		Yes No	لاسورا
3. Filled & Sealed V		nole / Bo	rehole	Inform	nation	Liner(s)) removed?			Yes No	N/A
Monitoring Well	C	Original Co	onstructio	on Date	(mm/dd/yyyy)	, ,) perforated?		<u></u>	Yes No	
							removed?		_	Yes No	<u> </u>
Water Well	ļ,	f a Well C	onstruct	ion Rep	ort is available,	- Casing	left in place?		L.	Yes No	N/A
Borehole / Drillhol		olease att				Was ca	sing cut off belo	w surface?		Yes No	N/A
Construction Type:							aling material ris			Yes X	
Drilled	Driven (S	andpoint)		Dug	9		terial settle after			Yes 🔀 No	
Other (specify): _	Oeo (prob				1	es, was hole ret			Yes No	N/A
Formation Type:	· · · · · · · · · · · · · · · · · · ·						onite chips were ater from a know		y nydrated	Yes 🖫 No	N/A
Unconsolidated Fo	ormation	Γ	Bedro	ock		Required	Method of Placi	ng Sealing Mate	erial		
Total Well Depth From		ace (ft.)	Casing	Diamete	r (in.)	Con	ductor Pipe-Gra	vity Condi	uctor Pipe-Pum	ped	
			-				eened & Poured	Other	(Explain):		
Lower Drillhole Diamete	er (in)		Casing	Depth (f	1)	Sealing M	ntonite Chips)		` ' /		
Lower Britingie Blamet	O: (III.)		Cuoning	Dopui (ii)		t Cement Grout		Concrete	د	
							d-Cement (Cond	crete) Grout	Bentonite		
Was well annular space	grouted?		Yes	☐ No	Unknow	、 I '''	oring Wells and	•			
If ves, to what depth (fe	eet)?	Dept	h to Wat	er (feet)			tonite Chips		Bentonite - Cem		
) •• (•• (•• (•• (•• (•• (•• (, -			()			•				
			+5 , + ,			Grai	nular Bentonite		Bentonite - Sand		tio or
5. Material Used to			e			From (ft.		Volume (acks Sealant or circle one)	Mud V	
Bent	onte	C-A	109			Surface	28				
			<i>7</i>								
6. Comments						<u> </u>					
7. Supervision of V	Vork								DNR Use	Only	
Name of Person or Firm	n Doing Fillin	ıg & Seali	ng Lic	ense#	Date of (mm/dd/		ing or Verification	on Date Recei	ved _,	Noted By	
Street or Route						Telephone N	lumber _	Comments		I	
1837 CTt	400			4			61 5045	<u> </u>			
1837 CTA	Fn/b		State	. 1	Code - 4/729	Signature	of Person Defin	g Work	Da	S-W-	23
	, .		10-7			/		 	L	<u> </u>	

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

			Rout	e To:		Wastewater W n/Revelopment												
Facilia	ty/Proje	ot No				···	II : a a	ise/Perr	ui+A.(a	-16	- N		D	Page		_ of _	<u> </u>	_
Pacin	g/Pioje 9U 11	<u>dr</u>	116 7 /1/1 Nome	2+	Proj	last) and Firm								g Numl	6	P-		W-12
First A	vame: (Last N	vame:	lasi) apu ruin		Drilling 1 <u>06</u> d d				липе 1 <u>06</u>	_	oleted	Drillin	ig Mei	hod	
WI U	nique V	Vell N	0.	DNR	Well ID No.	Well Name	Final	Static V	Water I	Level			ation		Boreh			_
State 1	Plane				N	oring Location F			Feet M		Local	Grid L		n			nches	-
5 W	1/4 of-	5W	/ 1/4 of	Section	n26, Ta	8 N, R 13 4	$ u \mid_{Lo}$	ng	o '			F	eet 🗆	IN IS _			DE DW	_
The state of the s	70	07	160	2	County $\mathcal{D}_{\mathcal{U}}$	hn	County (Civil	Town/ Me	City/	r Villa	2					
_San		20	it urface)		Soit/Pa	ock Description							Soil	Prope	rties		-	
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet (Below ground surface)		And Geo	ologic Origin For Major Unit		uscs	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
•				70	opsoil	+ F,11							n				1.	_
			اعج ا	0	K Brw	SI14/ SA	nd				0		1					٠
					Brw Sr	1 ky Sm	rd.	-			0		M					
			10 -	D	Bru	SI/ty Some		SP			0		M					
					Sand	Some	, /				0		M					
			15.										M	-				
			20	<u> </u>	ore/ C	<u> </u>		C 4	1		0		/7					
				λ.)146K	Sindy grad Clay Son + wood	ve/	Sp			0		M					
			25	BI	K SAndy	/ Clay SUP	ne				0		M	Ī				
			_		911021	+ wood					1		/	-				
			30	B	Orw SI,	1ty Sano	<u> </u>	SP			0		W	<u> </u>				
			35		EOB	CTAY Ity Sand											1	
	<u> </u>		<u></u>		1			<u></u>					İ			<u></u>		
Signa	ure l	uty th	at the	intoph	nation on this	form is true and o	Firm				wledg	e						
40	US	11	//a	ET .				A	たて									

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

				Route	to DNR Bureau							
Verification (Only of F	ill and Sea	al		rinking Water		Watershed/\	Nastewater	Rer	nediation/	Redevelopr	ment
	•			v	/aste Manageme	nt [Other:					
1. Well Location	Informati	ion				2. Facili	ty / Owner In	formation				
County	WIL	Jnique Well #	of	Hicap#		Facility Na			, 0			
Dunn	Rem	noved Well					LAUR	dromat	- Fro.	gar ty		
Latitude / Longitude	(see instru	rtions)	Format	Code	Method Code	Facility ID	(FID or PWS)					
Editado / Eorigitado	(000 11101114	N N	I —	DD	GPS008							
					SCR002	License/P	ermit/Monitorin	g#	0 / 1	1-1	, / 1	
1/ /1/ 6/ 1 1/	- 1.1	W		DDM 	OTH001	0:: 110	V 11.0	φ_I	P-12	/ / W	1-10	
1/4 / 1/4 SW 1/4	SW.	Section		vnship	Range E	Original v	Vell Owner					
or Gov't Lot#		26	Ø	18 N	13 🛮 w	Present M	Vell Owner				<u>:</u>	
Well Street Address						i resent v	QUARTA	· (()	limite	/		
Well City, Village or	Town			Mail	ZIP Code	Mailing Ad	ddress of Prese	nt Owner	111/11/10			
				VVEII	217 Code		7487	57H	25			
Subdivision Name	1116			Lot #	7/2/	City of Pre	esent Owner	0717	State	ZIP	Code	
5 4 5 4 1 1 1 5 1 7 1 4 1 1 1 5				201		Me	AUM MIC		W	T 5	475,	/
Reason for Remova	ıl from Servi	ice WI Un	ique Wel	ll # of Re	placement Well	4. Pump), Liner, Scre		Sealing N	laterial		
Tast Bo	ring/T	W				· ·	and piping remo	oved?		Yes	□ No □	N/A
3. Filled & Seale		rillhole / B) removed?			Yes		N/A
Monitoring We	ell	Original C	onstructi	on Date	(mm/dd/yyyy)	,) perforated?			Yes	= :	₫ N/A
Water Well						l l	removed? left in place?			Yes		TN/A
	m1-	1		tion Rep	ort is available,						No [N/A
Borehole / Dril	inole	please at	tach.			_	asing cut off bel			=	No	N/A
Construction Type:							aling material ri: iterial settle afte			∐Yes ∏Yes	No [_N/A □N/A
Drilled	Drive	n (Sandpoint) <i>LO P (O b</i>	/2	Du	9		es, was hole re			□Yes	No L	N/A
Other (specify)):	EU pro o	<u></u>			1	onite chips were	• •	ey hydrated			_
Formation Type:							ater from a knov			Yes	X No [N/A
Unconsolidated			Bedr			1	Method of Plac	,				
Total Well Depth Fro	om Ground	Surface (ft.)	Casing	Diamete	r (in.)	, <u> </u>	nductor Pipe-Gr eened & Poure	· 🗀	ductor Pipe-P	umped		
39						(Ber	ntonite Chips)	¹ U Othe	r (Explain):			
Lower Drillhole Dian	neter (in.)		Casing	Depth (f	i.)	Sealing M						
						Nea	at Cement Grou	t	Conci			
Was well annular spa	ace arouted	2]Yes	No.	Unknown	1 —	id-Cement (Cor	,	Bento		3	
				ringe.	OTIKITOWIT	For Monit	toring Wells and	l Monitoring We				
If yes, to what depth	(teet)?		th to Wat			1	tonite Chips		Bentonite - C			
			28.	/\		Gra	nular Bentonite		Bentonite - S			
5. Material Used	to Fill We	ell / Drillhol	e			From (ft	.) To (ft.)	No. Yards, S Volume	acks Sealant (circle one)		Mix Ratio o Mud Weigh	
Ben	tonite	2 C	109			Surface	e 34					
	The state of the s											
6. Comments				. 11.6%								
7. Supervision o										Jse Only		
Name of Person or I	Firm Doing	Filling & Seali	ing Lic	ense#			ling or Verificati	on Date Rece	ived _,	Noted	Ву	
Street or South					(mm/dd/)		6-23					
Street or Route	T# 0	0				elephone N フィケッタ	lumber 1615045	Comments				
1837 CT Chippe 44	11 0		State	71P	Code		of Person Defr			Date Sig	ned	
Chippeus	Folls	ŝ	W		4729					\\ \mathcal{F}_{\infty}\'	<u> </u>	>
- mppe & T	, ,,,,		1007	. _	1,01	7 000	1 / //	7			x	

	f Wisco ment of		ral Res	ources	s								OIL I		NG L 2	OG II		MAT ev. 7-9		
			Route	e To:			Vastewater	_									j			
										·····						Page		_ of		
Facilit	y/Proje	ct Nai	nc 7.#1./	,+	,	Pra	oer 41		Licens	e/Pern	nit/Mo	nitorin	g Num	ber	Boring	Numb	er G	P_	13	
Boring	Drille	d By:	Name	of cr	ew chie	ef (first,	last) and Firm		Date D	Prilling	Starte	d	Date I	rilling	Comp	leted	Drillin	g Med	nod	
First N	fame: \mathcal{A}	_ 0	-	Last	Name:				06	06	ZQ	3_3	06	06	30g	2	6		3/2	
Firm: WI Ur	ique W		o.	DNR	Well I	D No.	Well Name		Final S								OG Boreho	ole Dia	meter	
_ 				, <u> </u>			ring Location				Feet N		Feet MSL Local Grid Location				رے	ir	nches	
State I	Plane				N			L	at	O 1		Local	Grid L	Location N				□ Ε		
<u>SW</u>	1/4 of	5W	1/4 of	Section	on J C	3, TA	W	Lon	ng	0 '	11		F	eel 🗖				$\Box \tilde{w}$		
Facilit	7 <i>0</i>	0	7/6	0	Count	y Dv	h M	Co	unty C	ode I			City/ or 4 <i>01</i> 1							
Sam	ple					<u></u>	· · · · · · · · · · · · · · · · · · ·						1017	<u> </u>		roper	ties			
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth in Feet (Below ground surface)		,	And Geo	ck Description logic Origin For Major Unit			USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength		Liquid Limit	Plasticity Index	P 200	RQD/ Comments	
					Top.	5017	+ Fi 11					-								
				DK	4 15	irw s	ilty Sand one gravi	\overline{d}_{i}					0		n				7.	
			5			50	ne gravi	z /				'	 	!	·					
					610	Y 50	mdy Cla	7					0		M					
			10 -	B	IK	S.An	by Clay	/ .					0		M					
						Son	ne grav	12/					0		40					
			15-	B	TW.	57/7	y sand + grave / y sand + grave y sand -	Y	= .	5P					M					
			20	D	1 V	0.11	15 and of						0		M					
			70	13	/ <u>/</u>	5/ //	grave	<u>/</u>					0		M					
			25-	D	1W.	SAM	1 SANCE -	3900	ve/	CL			^							
				B	1W	51/4	ISANC 36	ランクレ	ر /	SP			0	-	M					
			30.	10	may	1 5Ar	d smds	27		R			0		M					
			35	1	Re	fus	4/Q.	34.	6	-/-										
T boro	bu con	iifar eh	at the	infort	Agrica	on this	form is true and	d corre	ect to t	ha bee	t of m	ı, kno	ulada		٠	L,	l	<u> </u>	<u> </u>	

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

Firm

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

,		Route	to DNR Bureau:						
☐ Verification Only of Fill an	d Seal		rinking Water	w	/atershed/Waste	ewater	Remedia	ition/Redevel	lopment
		_ v	Vaste Managemer	nt 🔲 O	ther:				
1. Well Location Information				2. Facility /	Owner Inform	nation			
County WI Unique Removed		Hicap #		Facility Name	1. 1		D	11	
Dunn	VVCII			E 32 ID (EID	Laundr	OMA T	1 fo far	17	
Latitude / Longitude (see instructions)	Format	Code	Method Code	Facility ID (FID	or PWS)		•	/	
	N 🔲	DD	GPS008	License/Permi	t/Monitoring #				
	w 🖂 [DDM	OTH001	LIGOTION OTTO	a Montaling II	6P-	.13		
1/4 1 1/4 SW 1/4 SW S	ection Tov	nship	Range F	Original Well C	Dwner	 	/ - /		
or Gov't Lot #	26 8	8 N							
Well Street Address			12 2	Present Well C	Owner	(0)	, 1		
				<u> </u>	ONNET SENT ON	Unli	MITCO		
Well City, Village or Town		Well	ZIP Code	Mailing Addres	ss of Present Ov	wner ーナル)			
Menomonie		32	4751	City of Present	487 .	57H 25	Ctata	ZIP Code	
Subdivision Name		Lot #		Meau			State WI	547	51
Reason for Removal from Service	Dan Harran - Mar	1# - 6 D -			ner, Screen,	Casing & Se		1	
Tast Boring	I vvi Onique vve	I# OT KE	placement Well		oiping removed?			′es No	N/A
3. Filled & Sealed Well / Drillho	le / Borehole	Inform	ation	Liner(s) rem	noved?		Π̈́Υ	′es 🗌 No	X N/A
	ginal Constructi			Liner(s) per	forated?		Y	′es	N/A
				Screen rem			=	′es ∐ No	N/A
Water Well	Well Construct	ion Rep	ort is available,	Casing left i	ın place? —————			⁄es	N/A
Borehole / Drillhole ple	ease attach.]	cut off below su			es No	N/A
Construction Type:		_			material rise to Il settle after 24 l		=======================================	es No	∐ N/A
Drilled Driven (San	dpoint)	Du	g		vas hole retoppe		= =.	′es \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	∐ N/A □ N/A
_	OOL			-	chips were used		vdrated		
Formation Type:					rom a known sa			es No	∐ N/A
Unconsolidated Formation	Bedr			l r	hod of Placing S				
Total Well Depth From Ground Surfac	e (ft.) Casing	Diamete	er (in.)	Conduction Screener	or Pipe-Gravity		or Pipe-Pumpe	ea	
				│ 🋂 (Bentoni	ite Chips)	Other (E)	xplain):		
Lower Drillhole Diameter (in.)	Casing	Depth (f	t.)	Sealing Materi		r			
				l <u> </u>	ment Grout		Concrete		
Was well annular space grouted?	Yes	∏No	Unknown	ı —	ement (Concrete		Bentonite		
If yes, to what depth (feet)?	Depth to Wat			For Monitoring Bentonite	g Wells and Mon		•		
in yes, to what deput (leet):	Bepar to wat	ci (icci)			'		tonite - Ceme		
					r Bentonite	D. Yards, Sack	tonite - Sand	Siurry Mix Rat	io or
5. Material Used to Fill Well / D				From (ft.)	10 (11.)	Volume (circ	cle one)	Mud We	eight
Bentonite	Chips			Surface	34.6				
	· · · · · · · · · · · · · · · · · · ·		·						
6. Comments	1800 - 1700 - 170								
					<u> </u>			21	
7.0							DUDU	0.1	
7. Supervision of Work Name of Person or Firm Doing Filling		ense #	Date of Fil	ling & Sealing o	or Verification	Date Received	DNR Use	Voted By	
AET			(mm/dd/y)				'	,	
Street or Route				elephone Numb 7/5) 86/	per (Comments			
City /	State	ZIP	Code		erson Døjng Wo	ork	Date	e Signed	
City Chippe wa Falls	W	[] 3	54729 .	Mil	gille!			8-N3-a	<u> </u>

State of Wisconsin

Signature

including where the completed form should be sent.

SOIL BORING LOG INFORMATION Department of Natural Resources Form 4400-122 Rev. 7-98 Watershed/Wastewater Waste Management Route To: Remediation/Revelopment Other Facility/Project Name License/Permit/Monitoring Number Boring Number Name of crew chief (first, fast) and Firm Boring Drilled By: Date Drilling Started Date Drilling Completed Final Static Water Level DNR Well ID No. Well Name Surface Elevation Feet MSL Feet MSL Local Grid Origin (estimated:) Local Grid Location Lat State Plane \Box E \square N SW 1/4 of S W 1/4 of Section 26 Feet□ W Long Feet
S County Code Facility ID County Civil Town/City/ or Village 61700716 MENOMONIE Sample Soil Properties Depth in Feet (Below ground surface) જ Ξ Soil/Rock Description Blow Counts Length Att. Recovered (And Geologic Origin For Moisture Content Plasticity Index USCS Log Well Diagram PID/FID Each Major Unit Graphic Liquid Limit P 200 SP 5 0 CL 10 0 I hereby certify that the information on this form is true and correct to the best of my knowledge.

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information,

AET Project No. P-0011071 State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information. Route to DNR Bureau: **Drinking Water** Watershed/Wastewater Remediation/Redevelopment Verification Only of Fill and Seal Waste Management Other: 1. Well Location Information 2. Facility / Owner Information WI Unique Well # of Hicap # Facility Name Removed Well Facility ID (FID or PWS) atitude / Longitude (see instructions) Format Code Method Code GPS008 Ν License/Permit/Monitoring # SCR002 W OTH001 Section Township Range Original Well Owner ΠЕ SW or Gov't Lot # 28 Present Well Owner Well Street Address Mailing Address of Present Owner Well City, Village or Town Well ZIP Code 54751 Menomone ZIP Code 54751 MENUMUNIC 4. Pump, Liner, Screen, Casing & Sealing Material Reason for Removal from Service WI Unique Well # of Replacement Well Pump and piping removed? Yes No 12)+ Boring Liner(s) removed? Νo 3. Filled & Sealed Well / Drillhole / Borehole Information Yes No Liner(s) perforated? Original Construction Date (mm/dd/yyyy) Monitoring Well Screen removed? Yes Water Well Casing left in place? Yes If a Well Construction Report is available, Borehole / Drillhole Was casing cut off below surface? Yes N/A Did sealing material rise to surface? Yes N/A Construction Type: Did material settle after 24 hours? Yes N/A Drilled Driven (Sandpoint) Geopeobe If yes, was hole retopped? N/A My Other (specify): If bentonite chips were used, were they hydrated with water from a known safe source? Required Method of Placing Sealing Material Unconsolidated Formation Bedrock Conductor Pipe-Gravity Conductor Pipe-Pumped Total Well Depth From Ground Surface (ft.) Casing Diameter (in.) Screened & Poured (Bentonite Chips) Other (Explain): Casing Depth (ft.) Sealing Materials Lower Drillhole Diameter (in.) Neat Cement Grout Concrete Sand-Cement (Concrete) Grout Bentonite Chips Was well annular space grouted? **№** No Unknown For Monitoring Wells and Monitoring Well Boreholes Only: Depth to Water (feet) If yes, to what depth (feet)? Bentonite - Cement Grout Bentonite Chips 8. 33 Granular Bentonite Bentonite - Sand Slurry No. Yards, Sacks Sealant or 5. Material Used to Fill Well / Drillhole From (ft.) To (ft.) Volume (circle one) Benjorte Chips Surface 6. Comments 7. Supervision of Work **DNR Use Only** Name of Person or Firm Doing Filling & Sealing Date of Filling & Sealing or Verification Date Received Noted By License # (mm/dd/yyyy) //-20-23
Telephone Number Comments (715)861-5045 ZIP Code Signature of Person Doing Work State Date Signed

3*0*).

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98 Route To: Watershed/Wastewater Waste Management Remediation/Revelopment Other Page Facility/Project Name License/Permit/Monitoring Number Boring Number Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed First Name: CV Last Name: DNR Well ID No. Final Static Water Level Surface Elevation Feet MSL Feet MSL inches " Local Grid Location Boring Location 0 Lat \square N ΠE SW 1/4 of SW 1/4 of Section 26 0 Long Feet□ W Feet □ S Facility ID County Code Civil Town/City/ or Village County 617007160 Menamanie Soil Properties Sample Depth in Feet (Below ground surface) જ Recovered (in) Soil/Rock Description Blow Counts Length Att. And Geologic Origin For USCS Moisture Content Plasticity Index Log Well Diagram PID/FID Each Major Unit Graphic Liquid Limit P 200 5 0 0 Ö

I hereby certify that the information	on this form is true and correct to the best of my knowledge.	
Signature The Signature	Firm AET	-

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

AET Project No. P-0011071 State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

age 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information. Route to DNR Bureau: Remediation/Redevelopment Drinking Water Watershed/Wastewater Verification Only of Fill and Seal Waste Management Other: 2. Facility / Owner Information 1. Well Location Information WI Unique Well # of Hicap # Facility Name County Removed Well Facility ID (FID or PWS) Format Code Method Code Latitude / Longitude (see instructions) GPS008 DD Ν License/Permit/Monitoring# SCR002 DDM W OTH001 Section Township Original Well Owner Range $\leq l \omega$ 28 or Gov't Lot# Present Well Owner Well Street Address Quarters Unlimited Well City, Village or Town Well ZIP Code *ひつり*87 Menomone City of Present Owner ZIP Code Subdivision Name MEROMONIC WI 5475 4. Pump, Liner, Screen, Casing & Sealing WI Unique Well # of Replacement Well Reason for Removal from Service Pump and piping removed? Yes 125+ Boring Liner(s) removed? Yes No B 3. Filled & Sealed Well / Drillhole / Borehole Information No M/A Liner(s) perforated? Yes Original Construction Date (mm/dd/yyyy) Monitoring Well Yes Screen removed? N/A Water Well Casing left in place? If a Well Construction Report is available, Borehole / Drillhole Was casing cut off below surface? N/A please attach. Did sealing material rise to surface? No 🔀] N/A Construction Type: Yes Did material settle after 24 hours? Yes N/A Drilled Driven (Sandpoint) Geopeobe If yes, was hole retopped? N/A Yes Other (specify): ____ If bentonite chips were used, were they hydrated Yes **≯** No N/A Formation Type: with water from a known safe source? Required Method of Placing Sealing Material Unconsolidated Formation Bedrock Conductor Pipe-Gravity Conductor Pipe-Pumped Total Well Depth From Ground Surface (ft.) Casing Diameter (in.) Screened & Poured (Bentonite Chips) Other (Explain): Sealing Materials Casing Depth (ft.) Lower Drillhole Diameter (in.) Neat Cement Grout Concrete Bentonite Chips Sand-Cement (Concrete) Grout Unknown Was well annular space grouted? For Monitoring Wells and Monitoring Well Boreholes Only: Depth to Water (feet) If yes, to what depth (feet)? Bentonite Chips Bentonite - Cement Grout 25.51 Granular Bentonite Bentonite - Sand Slurry No. Yards, Sacks Sealant or 5. Material Used to Fill Well / Drillhole From (ft.) To (ft.) Volume (circle one) Benjorite Chips Surface 6. Comments **DNR Use Only** 7. Supervision of Work Noted By Name of Person or Firm Doing Filling & Sealing Date of Filling & Sealing or Verification Date Received License # (mm/dd/yyyy) 1/-20-23Telephone Number Comments Street or Route (715)861-5045 Signature of Person Doing Work Date Signed State ZIP Code

SOIL BORING LOG INFORMATION

Form 4400-122 Rev. 7-98

<u>Rc</u>	oute To:		/astewater 🔲 Wa /Revelopment 🔲		<u> </u>									
		Kentedianon	Kevelohilletti [Oulei	L.J							1		1
Facility/Project Name				Lice	ense/Perm	it/Mo:	nitorin	g Num	ber	Borins	Page Numb		_ of	
Boring Drilled By: Nar	nat	Propers	<u> </u>			_		-		6	P-	16	<u>/</u>	W-16
Boring Drilled By: Nat	me of cr Last	ew chief (first, / Name:	last) and Firm		e Drilling							Drilling	g Meth	iod ,
				<u>/ /</u> m i	<u>/ / 2 ()</u> /	2 0 y	$\frac{2}{y} \cdot \frac{2}{y}$	m m	(<u>국</u> Q /		ا کِ کِ	60	n Po	obe
Firm: AET WI Unique Well No.	DNR	Well ID No.	Well Name	Fina	al Static V			Surfac	e Elev			Boreho		
Local Grid Origin	(estimate	 d: □) or Bo	ring Location	<u> </u>		Feet M		Local	Grid L	Feet l			<u> ir</u>	nches
C 131		3.7		,	Lat	۰ ر				. П	N			□ E
SW 1/4 of SW 1/4 Facility ID	of Section	on <u>do</u> , Ta	8 N, R /3 W	County	ong		Town/	Tity/ or	F r Villa	eet 🗆	<u>s</u> _		Feet	□ w
61700716	0	County Du	An		<u> </u>		Me	10	MOI	50 1/C				
Sample										Soil	rope	rties		
Number and Type and Type Length Att. & ad Recovered (in) Blow Counts	od sur		ck Description logic Origin For						ive					n
Number and Type Length Att. & Recovered (in Blow Counts	nous *		Major Unit		CS	hic	l ram	PID/FID	oress igth	ture	it id	icity	0)/ men
Number and Type Length Att. & Recovered (in) Blow Counts Depth in Feet	(Below				ΩS	Graphic Log	Well Diagram	PID,	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
		crushed	5407 C						Ŭ					
	DX	Brw	Sind + gra	21				Ø		M				
	_		<u> </u>		-			 -						
5	$\cap D$	L DrW	51/14					_		M				
	-	Sand	+ grave	-/				0		27				
		<i>σ.γ.</i> ι = <i>τ</i>	SILY + Grave -y 11 concrete chip.	,							1			
1 10	7	/-	- 9 (/					0	1	M				
	l K	itck +	Concrete,		ľ				1		1			
	~	•	chip.	5			i			M				
1/5	~ 					}		0		'				
		Bow	14.7								1			
		7			CL		·	0		M				
Jac)-		C 147	•				10		M	1			
	DA	Brw SILF	Clay Sand + gr	wel.	SP		1	0			┨			
		Brw SI	t-/ C/4-/	,	CL	†		0		W				
35														
		EOB	24"								ļ.			
	.												 	
									1		1			
	ļ							ļ	1		l			
									<u> </u>					
I hereby certify that the	he infor	mation on this	form is true and c			t of m	y kno	wledg	e.					
Signature	1/1	Zel/		Fin	m \mathcal{A}	E	7							

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

AET Project No. P-0011071 State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information. Route to DNR Bureau: Watershed/Wastewater Remediation/Redevelopment Drinking Water Verification Only of Fill and Seal Waste Management Other: 1. Well Location Information 2. Facility / Owner Information Hicap # County WI Unique Well# of Facility Name Removed Well r)unn Facility ID (FID or PWS) Latitude / Longitude (see instructions) Format Code Method Code GP\$008 DD Ν License/Permit/Monitoring # SCR002 DDM OTH001 W Township Original Well Owner Section Range ÌΕ SW 28 W W or Gov't Lot# Present Well Owner Well Street Address Unlimited Well City, Village or Town Well ZIP Code Menomone Subdivision Name City of Present Owner ZIP Code WI 54751 MEROMONIC 4. Pump, Liner, Screen, Casing & Sealing WI Unique Well # of Replacement Well Reason for Removal from Service Pump and piping removed? Yes 725+ Boring Liner(s) removed? Yes No 3. Filled & Sealed Well / Drillhole / Borehole Information Liner(s) perforated? Yes No Original Construction Date (mm/dd/yyyy) Monitoring Well Screen removed? Yes Yes No N/A Water Well Casing left in place? If a Well Construction Report is available, Borehole / Drillhole Yes N/A Was casing cut off below surface? please attach. Did sealing material rise to surface? No No] N/A Yes Construction Type: Did material settle after 24 hours? Yes N/A Driven (Sandpoint) Dua Drilled If yes, was hole retopped? Yes Geopeabe MOther (specify): _ If bentonite chips were used, were they hydrated N/A Formation Type: with water from a known safe source? Required Method of Placing Sealing Material Unconsolidated Formation Bedrock Conductor Pipe-Pumped Conductor Pipe-Gravity Total Well Depth From Ground Surface (ft.) Casing Diameter (in.) Screened & Poured (Bentonite Chips) Other (Explain): Sealing Materials Lower Drillhole Diameter (in.) Casing Depth (ft.) Neat Cement Grout Concrete Sand-Cement (Concrete) Grout Bentonite Chips No. Unknown Was well annular space grouted? Yes For Monitoring Wells and Monitoring Well Boreholes Only: Depth to Water (feet) If yes, to what depth (feet)? Bentonite Chips Bentonite - Cement Grout 22.51 Granular Bentonite Bentonite - Sand Slurry Yards, Sacks Sealant or 5. Material Used to Fill Well / Drillhole From (ft.) To (ft.) olume (circle one) Benjante Chips Surface 6. Comments **DNR Use Only** 7. Supervision of Work Date Received Name of Person or Firm Doing Filling & Sealing Date of Filling & Sealing or Verification Noted By License # (mm/dd/yyyy) 1/-20-23Telephone Number Comments Street or Route (715)861-5045 Date Signed ZIP Code State

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98 Watershed/Wastewater Waste Management Route To: Remediation/Revelopment Other Facility/Project Name License/Permit/Monitoring Number Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Last Name: WI Unique Well No. DNR Well ID No. Final Static Water Level Surface Elevation Feet MSL " Local Grid Location 0 ΠE \square N 0 SW 1/4 of 5 W 1/4 of Section 26 Long Feet 🗆 S Feet□ W County Code Facility ID Civil Town/City/ or Village MENOMONI Sample Soil Properties Depth in Feet (Below ground surface) જ $\widehat{\mathbb{E}}$ Soil/Rock Description Blow Counts Length Att. And Geologic Origin For and Type USCS Plasticity Index Moisture Content Graphic Log Well Diagram PID/FID Each Major Unit Liquid Limit P 200 Ø 0 0 CZ

I hereby certify that the information on this form is true and correct to the best of my knowledge. Signature Firm

This form is authorized by Chapters 281, 283, 289, 291, 292, 293, 295, and 299, Wis. Stats. Completion of this form is mandatory. Failure to file this form may result in forfeiture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See instructions for more information, including where the completed form should be sent.

AET Project No. P-0011071 State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Report

Form 3300-005 (R 4/2015)

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and chs. NR 141 and 812, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information. Route to DNR Bureau: Drinking Water Remediation/Redevelopment Watershed/Wastewater Verification Only of Fill and Seal Other: Waste Management 1. Well Location Information 2. Facility / Owner Information County WI Unique Well # of Hicap # Facility Name Removed Well (1) Unn Facility ID (FID or PWS) Latitude / Longitude (see instructions) Format Code Method Code GPS008 Ν License/Permit/Monitoring # SCR002 W 10TH001 Original Well Owner Township Section Range S W W W or Gov't Lot# Present Well Owner Well Street Address Quarters Unlimited Well City, Village or Town Well ZIP Code Menomone ZIP Code MEADMONE WI 4. Pump, Liner, Screen, Casing & Sealing Reason for Removal from Service WI Unique Well # of Replacement Well Pump and piping removed? Yes 125+ Boring Yes No Liner(s) removed? 3. Filled & Sealed Well / Drillhole / Borehole Information Liner(s) perforated? Yes Νo Original Construction Date (mm/dd/yyyy) Monitoring Well **∏** Yes Πo] N/A Screen removed? Water Well Casing left in place? If a Well Construction Report is available, Borehole / Drillhole Was casing cut off below surface? Yes N/A please attach. N/A Did sealing material rise to surface? Yes No. Construction Type: Did material settle after 24 hours? Yes N/A ☐ Dug Drilled Driven (Sandpoint) N/A If yes, was hole retopped? Geopeobe Other (specify): If bentonite chips were used, were they hydrated N/A Formation Type: with water from a known safe source? Required Method of Placing Sealing Material Bedrock Unconsolidated Formation Conductor Pipe-Gravity Conductor Pipe-Pumped Total Well Depth From Ground Surface (ft.) Casing Diameter (in.) Screened & Poured (Bentonite Chips) Other (Explain): Casing Depth (ft.) Sealing Materials Lower Drillhole Diameter (in.) Neat Cement Grout Concrete Sand-Cement (Concrete) Grout Bentonite Chips Was well annular space grouted? No. Unknown For Monitoring Wells and Monitoring Well Boreholes Only: Depth to Water (feet) If yes, to what depth (feet)? Bentonite Chips Bentonite - Cement Grout /₁). 35 Granular Bentonite Bentonite - Sand Slurry No. Yards, Sacks Sealant or 5. Material Used to Fill Well / Drillhole From (ft.) To (ft.) Volume (circle one) Benjorite Chips Surface 6. Comments **DNR Use Only** 7. Supervision of Work Date of Filling & Sealing or Verification Date Received Noted By Name of Person or Firm Doing Filling & Sealing License # (mm/dd/yyyy) //-20-23 Telephone Number Street or Route Comments (715)861-5045 ZIP Code Date Signed State

Appendix D

Laboratory Analytical Report and Chain-of-Custody

Environment Testing

REVIEWED

By mneal at 10:08 am, Dec 05, 2023

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Michael Neal American Engineering Testing Inc. 1837 Cty Hwy OO Chippewa Falls, Wisconsin 54729

Generated 6/1/2023 1:26:08 PM

JOB DESCRIPTION

Laundromat Property - P-0011071

JOB NUMBER

500-234265-1

Eurofins Chicago 2417 Bond Street University Park IL 60484 AET Project No. P-0011071 Page D 2 of 156

Eurofins Chicago

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

Results relate only to the items tested and the sample(s) as received by the laboratory. The results, detection limits (LOD) and Quantitation Limits (LOQ) have been adjusted for sample dilutions and/or solids content.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Generated 6/1/2023 1:26:08 PM

Authorized for release by Sandie Fredrick, Project Manager II Sandra.Fredrick@et.eurofinsus.com (920)261-1660 ĺ

3

4

7

10

11

12

14

Laboratory Job ID: 500-234265-1

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	22
QC Association	23
Surrogate Summary	24
QC Sample Results	25
Chronicle	28
Certification Summary	29
Chain of Custody	30
Receint Checklists	32

3

4

6

8

10

40

13

14

Case Narrative

Client: American Engineering Testing Inc.
Project/Site: Laundromat Property - P-0011071

Job ID: 500-234265-1

Job ID: 500-234265-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-234265-1

Comments

No additional comments.

Receipt

The samples were received on 5/24/2023 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.7° C.

GC/MS VOA

Method 8260D: The laboratory control sample (LCS) for analytical batch 500-715986 recovered outside control limits for the following analytes: 2-Chlorotoluene, 4-Chlorotoluene, tert-Butylbenzene, Isopropyl ether and Bromobenzene. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method 8260D: The method blank for analytical batch 500-715986 contained 1,3,5-Trimethylbenzene, 1,2,4-Trimethylbenzene and Chloromethane above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction and re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

7

3

Ę

_

6

<u>۾</u>

9

10

12

Client Sample ID: Trip Blank

Analyte

1,2,4-Trimethylbenzene

1,3,5-Trimethylbenzene

Lab Sample ID: 500-234265-7

Prep Type

Total/NA

Total/NA

Dil Fac D Method

8260D

8260D

Detection Summary

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-234265-1

Client Sample ID: MW-1						Lab San	nple ID: 5	00-234265-1
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	4.6		1.0	0.37	ug/L		8260D	Total/NA
Client Sample ID: MW-2						Lab San	nple ID: 5	00-234265-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	3.7		1.0	0.37	ug/L		8260D	Total/NA
Client Sample ID: MW-3						Lab San	nple ID: 5	00-234265-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	7.2		1.0	0.37	ug/L		8260D	Total/NA
Client Sample ID: MW-4						Lab San	nple ID: 5	00-234265-4
No Detections.								
Client Sample ID: MW-5						Lab San	nple ID: 5	00-234265-5
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Tetrachloroethene	2.9		1.0	0.37	ug/L		8260D	Total/NA
Client Sample ID: MW-6						Lab San	nple ID: 5	00-234265-6
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Chloroform	1.6	J	2.0	0.37	ug/L		8260D	Total/NA
Tetrachloroethene	42		1.0	0.37	ug/L	1	8260D	Total/NA
Trichloroethene	2.4		0.50	0.16	ug/L	1	8260D	Total/NA

RL

1.0

1.0

MDL Unit

0.36 ug/L

0.25 ug/L

Result Qualifier

0.76 JB

0.79 JB

This Detection Summary does not include radiochemical test results.

Method Summary

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-234265-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CHI
5030B	Purge and Trap	SW846	EET CHI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

4

5

6

0

9

11

12

14

Lab Sample ID

500-234265-1

500-234265-2

500-234265-3

500-234265-4

500-234265-5

500-234265-6

500-234265-7

Sample Summary

Matrix

Ground Water

Ground Water

Ground Water

Ground Water

Ground Water

Ground Water

Water

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID

MW-1

MW-2

MW-3

MW-4

MW-5

MW-6

Trip Blank

Job ID: 500-234265-1

Collected	Received
05/23/23 08:15	05/24/23 10:30
05/23/23 08:30	05/24/23 10:30
05/23/23 09:30	05/24/23 10:30
05/23/23 07:45	05/24/23 10:30
05/23/23 08:00	05/24/23 10:30

05/23/23 09:00 05/24/23 10:30

05/23/23 00:00 05/24/23 10:30

3

-

6

8

9

11

12

14

Client: American Engineering Testing Inc.
Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-1

Lab Sample ID: 500-234265-1

Matrix: Ground Water

Job ID: 500-234265-1

Date Collected: 05/23/23 08:15 Date Received: 05/24/23 10:30

Method: SW846 8260D - Vola Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L	— <u> </u>		05/31/23 15:19	
1,1,1-Trichloroethane	<0.38	1.0		ug/L			05/31/23 15:19	
1,1,2,2-Tetrachloroethane	<0.40	1.0		ug/L			05/31/23 15:19	
1,1,2-Trichloroethane	<0.35	1.0		ug/L			05/31/23 15:19	
1,1-Dichloroethane	<0.41	1.0		ug/L			05/31/23 15:19	
1.1-Dichloroethene	<0.39	1.0	0.39	_			05/31/23 15:19	
1,1-Dichloropropene	<0.30	1.0		ug/L			05/31/23 15:19	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	-			05/31/23 15:19	
1,2,3-Trichloropropane	<0.41	2.0	0.41	_			05/31/23 15:19	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34				05/31/23 15:19	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	-			05/31/23 15:19	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			05/31/23 15:19	
1,2-Dibromoethane (EDB)	<0.39	1.0		ug/L			05/31/23 15:19	
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			05/31/23 15:19	
1,2-Dichloroethane	<0.39	1.0	0.39	-			05/31/23 15:19	
1,2-Dichloropropane	<0.43	1.0	0.43				05/31/23 15:19	
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			05/31/23 15:19	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			05/31/23 15:19	
1,3-Dichloropropane	<0.36	1.0		ug/L			05/31/23 15:19	
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			05/31/23 15:19	
2,2-Dichloropropane	<0.44	1.0	0.44	_			05/31/23 15:19	
2-Chlorotoluene	<0.31 *+	1.0		ug/L			05/31/23 15:19	
4-Chlorotoluene	<0.35 *+	1.0	0.35	_			05/31/23 15:19	
Benzene	<0.15	0.50		ug/L			05/31/23 15:19	
Bromobenzene	<0.36 *+	1.0		ug/L			05/31/23 15:19	
Bromochloromethane	<0.43	1.0	0.43	_			05/31/23 15:19	
Bromodichloromethane	<0.37	1.0	0.37	-			05/31/23 15:19	
Bromoform	<0.48	1.0		ug/L			05/31/23 15:19	
Bromomethane	<0.80	3.0	0.80	-			05/31/23 15:19	
Carbon tetrachloride	<0.38	1.0	0.38	-			05/31/23 15:19	
Chlorobenzene	<0.39	1.0		ug/L			05/31/23 15:19	
Chlorodibromomethane	<0.49	1.0	0.49	-			05/31/23 15:19	
Chloroethane	<0.51	1.0	0.51	-			05/31/23 15:19	
Chloroform	<0.37	2.0		ug/L			05/31/23 15:19	
Chloromethane	<0.32	1.0	0.32	-			05/31/23 15:19	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			05/31/23 15:19	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			05/31/23 15:19	· · · · · .
Dibromomethane	<0.27	1.0		ug/L			05/31/23 15:19	
Dichlorodifluoromethane	<0.67	3.0		ug/L			05/31/23 15:19	
Dichlorofluoromethane	<0.38	1.0		ug/L			05/31/23 15:19	
Ethylbenzene	<0.18	0.50		ug/L			05/31/23 15:19	
Hexachlorobutadiene	<0.45	1.0		ug/L			05/31/23 15:19	
Isopropyl ether	<0.28	1.0		ug/L			05/31/23 15:19	
Isopropylbenzene	<0.39 *+	1.0		ug/L			05/31/23 15:19	
Methyl tert-butyl ether	<0.39	1.0		ug/L			05/31/23 15:19	
Methylene Chloride	<1.6	5.0		ug/L ug/L			05/31/23 15:19	
Naphthalene	<0.34	1.0		ug/L ug/L			05/31/23 15:19	
n-Butylbenzene	<0.39	1.0		ug/L ug/L			05/31/23 15:19	
N-Propylbenzene	<0.41	1.0	0.39				05/31/23 15:19	· · · · · · .

Eurofins Chicago

6/1/2023

Page 8 of 32

4

6

9

11

13

II e

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-234265-1

Matrix: Ground Water

Job ID: 500-234265-1

Date Collected: 05/23/23 08:15 Date Received: 05/24/23 10:30

Client Sample ID: MW-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			05/31/23 15:19	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			05/31/23 15:19	1
Styrene	<0.39		1.0	0.39	ug/L			05/31/23 15:19	1
tert-Butylbenzene	<0.40	*+	1.0	0.40	ug/L			05/31/23 15:19	1
Tetrachloroethene	4.6		1.0	0.37	ug/L			05/31/23 15:19	1
Toluene	<0.15		0.50	0.15	ug/L			05/31/23 15:19	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/31/23 15:19	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/31/23 15:19	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/31/23 15:19	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/31/23 15:19	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/31/23 15:19	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/31/23 15:19	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75 - 126			-		05/31/23 15:19	1
4-Bromofluorobenzene (Surr)	109		72 - 124					05/31/23 15:19	1
Dibromofluoromethane (Surr)	95		75 - 120					05/31/23 15:19	1
Toluene-d8 (Surr)	95		75 - 120					05/31/23 15:19	1

Eurofins Chicago

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-2

Date Collected: 05/23/23 08:30 Date Received: 05/24/23 10:30 Lab Sample ID: 500-234265-2

Matrix: Ground Water

Job ID: 500-234265-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			05/31/23 15:45	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			05/31/23 15:45	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			05/31/23 15:45	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			05/31/23 15:45	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			05/31/23 15:45	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			05/31/23 15:45	1
1,1-Dichloropropene	<0.30	1.0	0.30				05/31/23 15:45	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	_			05/31/23 15:45	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	-			05/31/23 15:45	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			05/31/23 15:45	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	_			05/31/23 15:45	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			05/31/23 15:45	1
1,2-Dibromoethane (EDB)	<0.39	1.0	0.39				05/31/23 15:45	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	_			05/31/23 15:45	1
1,2-Dichloroethane	<0.39	1.0	0.39	_			05/31/23 15:45	1
1,2-Dichloropropane	<0.43	1.0	0.43				05/31/23 15:45	· 1
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			05/31/23 15:45	1
1,3-Dichlorobenzene	<0.40	1.0	0.40	•			05/31/23 15:45	1
1,3-Dichloropropane	<0.36	1.0	0.36				05/31/23 15:45	· · · · · · · · · 1
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			05/31/23 15:45	1
2.2-Dichloropropane	<0.44	1.0	0.44	_			05/31/23 15:45	1
2-Chlorotoluene	<0.31 *+	1.0	0.31				05/31/23 15:45	
4-Chlorotoluene	<0.35 *+	1.0	0.35	_			05/31/23 15:45	1
Benzene	<0.15	0.50	0.35	_			05/31/23 15:45	1
Bromobenzene	<0.36 *+	1.0	0.16				05/31/23 15:45	
Bromochloromethane	<0.43	1.0	0.43	-			05/31/23 15:45	1
Bromodichloromethane	<0.37	1.0	0.43	-			05/31/23 15:45	1
Bromoform	<0.48	1.0	0.48				05/31/23 15:45	
Bromomethane	<0.80	3.0	0.80	-			05/31/23 15:45	1
Carbon tetrachloride	<0.38	1.0	0.38	-			05/31/23 15:45	1
Chlorobenzene	<0.39	1.0	0.39				05/31/23 15:45	
Chlorodibromomethane	<0.49	1.0	0.39	-			05/31/23 15:45	1
Chloroethane	<0.49	1.0	0.49	-			05/31/23 15:45	1
Chloroform	<0.37	2.0	0.31				05/31/23 15:45	'
Chloromethane	<0.32	1.0	0.37				05/31/23 15:45	1
				_				
cis-1,2-Dichloroethene	<0.41	1.0	0.41				05/31/23 15:45	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42	-			05/31/23 15:45	1
Dibromomethane Dichlorodifluoromethane	<0.27	1.0	0.27	-			05/31/23 15:45	1
	<0.67	3.0	0.67				05/31/23 15:45	
Dichlorofluoromethane	<0.38	1.0	0.38				05/31/23 15:45	1
Ethylbenzene	<0.18	0.50	0.18	_			05/31/23 15:45	1
Hexachlorobutadiene	<0.45	1.0	0.45				05/31/23 15:45	
Isopropyl ether	<0.28	1.0	0.28	-			05/31/23 15:45	1
Isopropylbenzene	<0.39 *+	1.0	0.39	_			05/31/23 15:45	1
Methyl tert-butyl ether	<0.39	1.0	0.39				05/31/23 15:45	
Methylene Chloride	<1.6	5.0		ug/L			05/31/23 15:45	1
Naphthalene	<0.34	1.0	0.34	-			05/31/23 15:45	1
n-Butylbenzene	<0.39	1.0	0.39	ug/L			05/31/23 15:45	1

Eurofins Chicago

3

E

7

9

11

13

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-234265-2

Matrix: Ground Water

Job ID: 500-234265-1

Date Collected: 05/23/23 08:30 Date Received: 05/24/23 10:30

Client Sample ID: MW-2

Method: SW846 8260D - Vo	latile Organic	Compoun	ds by GC/MS	(Contin	ued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			05/31/23 15:45	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			05/31/23 15:45	1
Styrene	<0.39		1.0	0.39	ug/L			05/31/23 15:45	1
tert-Butylbenzene	<0.40	*+	1.0	0.40	ug/L			05/31/23 15:45	1
Tetrachloroethene	3.7		1.0	0.37	ug/L			05/31/23 15:45	1
Toluene	<0.15		0.50	0.15	ug/L			05/31/23 15:45	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/31/23 15:45	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/31/23 15:45	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/31/23 15:45	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/31/23 15:45	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/31/23 15:45	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/31/23 15:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		75 - 126					05/31/23 15:45	1
4-Bromofluorobenzene (Surr)	108		72 - 124					05/31/23 15:45	1
Dibromofluoromethane (Surr)	93		75 - 120					05/31/23 15:45	1
Toluene-d8 (Surr)	98		75 - 120					05/31/23 15:45	1

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-3

Date Collected: 05/23/23 09:30 Date Received: 05/24/23 10:30

Lab Sample	ID: 500-234265	-3
------------	----------------	----

Matrix: Ground Water

Job ID: 500-234265-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			05/31/23 16:11	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			05/31/23 16:11	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			05/31/23 16:11	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			05/31/23 16:11	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			05/31/23 16:11	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			05/31/23 16:11	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			05/31/23 16:11	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			05/31/23 16:11	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			05/31/23 16:11	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			05/31/23 16:11	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			05/31/23 16:11	
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			05/31/23 16:11	
1,2-Dibromoethane (EDB)	<0.39	1.0	0.39	ug/L			05/31/23 16:11	
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			05/31/23 16:11	
1,2-Dichloroethane	<0.39	1.0	0.39	-			05/31/23 16:11	
1,2-Dichloropropane	<0.43	1.0	0.43	ug/L			05/31/23 16:11	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			05/31/23 16:11	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			05/31/23 16:11	
1,3-Dichloropropane	<0.36	1.0		ug/L			05/31/23 16:11	
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			05/31/23 16:11	
2,2-Dichloropropane	<0.44	1.0	0.44	_			05/31/23 16:11	
2-Chlorotoluene	<0.31 *+	1.0		ug/L			05/31/23 16:11	
4-Chlorotoluene	<0.35 *+	1.0	0.35	_			05/31/23 16:11	
Benzene	<0.15	0.50		ug/L			05/31/23 16:11	
Bromobenzene	<0.36 *+	1.0		ug/L			05/31/23 16:11	
Bromochloromethane	<0.43	1.0	0.43	_			05/31/23 16:11	
Bromodichloromethane	<0.37	1.0	0.37	Ū			05/31/23 16:11	
Bromoform	<0.48	1.0		ug/L			05/31/23 16:11	
Bromomethane	<0.80	3.0	0.80	-			05/31/23 16:11	
Carbon tetrachloride	<0.38	1.0		ug/L			05/31/23 16:11	
Chlorobenzene	<0.39	1.0		ug/L			05/31/23 16:11	
Chlorodibromomethane	<0.49	1.0		ug/L			05/31/23 16:11	
Chloroethane	<0.51	1.0		ug/L			05/31/23 16:11	
Chloroform	<0.37	2.0		ug/L			05/31/23 16:11	
Chloromethane	<0.32	1.0		ug/L			05/31/23 16:11	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			05/31/23 16:11	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			05/31/23 16:11	
Dibromomethane	<0.27	1.0		ug/L			05/31/23 16:11	
Dichlorodifluoromethane	<0.67	3.0		ug/L			05/31/23 16:11	
Dichlorofluoromethane	<0.38	1.0		ug/L			05/31/23 16:11	
Ethylbenzene	<0.18	0.50		ug/L			05/31/23 16:11	
Hexachlorobutadiene	<0.45	1.0		ug/L			05/31/23 16:11	
Isopropyl ether	<0.28	1.0		ug/L			05/31/23 16:11	
Isopropylbenzene	<0.39 *+	1.0		ug/L			05/31/23 16:11	
Methyl tert-butyl ether	<0.39	1.0		ug/L			05/31/23 16:11	
Methylene Chloride	<1.6	5.0		ug/L			05/31/23 16:11	
Naphthalene	<0.34	1.0		ug/L			05/31/23 16:11	
n-Butylbenzene	<0.39	1.0		ug/L ug/L			05/31/23 16:11	
N-Propylbenzene	<0.41	1.0		ug/L ug/L			05/31/23 16:11	

Eurofins Chicago

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-234265-3

Matrix: Ground Water

Job ID: 500-234265-1

Date Collected: 05/23/23 09:30 Date Received: 05/24/23 10:30

Client Sample ID: MW-3

Method: SW846 8260D - Vo Analyte		Qualifier	RL	-	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L		<u> </u>	05/31/23 16:11	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			05/31/23 16:11	1
Styrene	<0.39		1.0	0.39	ug/L			05/31/23 16:11	1
tert-Butylbenzene	<0.40	*+	1.0	0.40	ug/L			05/31/23 16:11	1
Tetrachloroethene	7.2		1.0	0.37	ug/L			05/31/23 16:11	1
Toluene	<0.15		0.50	0.15	ug/L			05/31/23 16:11	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/31/23 16:11	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/31/23 16:11	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/31/23 16:11	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/31/23 16:11	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/31/23 16:11	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/31/23 16:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75 - 126					05/31/23 16:11	1
4-Bromofluorobenzene (Surr)	110		72 - 124					05/31/23 16:11	1
Dibromofluoromethane (Surr)	93		75 - 120					05/31/23 16:11	1
Toluene-d8 (Surr)	98		75 - 120					05/31/23 16:11	1

3

5

7

Ō

10

11

13

Client: American Engineering Testing Inc.
Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-4 Lab Sample ID: 500-234265-4

Date Collected: 05/23/23 07:45

Date Received: 05/24/23 10:30

Matrix: Ground Water

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L		-	05/31/23 16:37	
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/31/23 16:37	
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			05/31/23 16:37	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/31/23 16:37	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			05/31/23 16:37	1
1,1-Dichloroethene	< 0.39		1.0	0.39	ug/L			05/31/23 16:37	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L			05/31/23 16:37	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			05/31/23 16:37	1
1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/L			05/31/23 16:37	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			05/31/23 16:37	1
1,2,4-Trimethylbenzene	< 0.36		1.0	0.36	ug/L			05/31/23 16:37	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0		ug/L			05/31/23 16:37	1
1,2-Dibromoethane (EDB)	<0.39		1.0	0.39	ug/L			05/31/23 16:37	1
1,2-Dichlorobenzene	< 0.33		1.0	0.33	-			05/31/23 16:37	1
1,2-Dichloroethane	<0.39		1.0	0.39	-			05/31/23 16:37	1
1,2-Dichloropropane	<0.43		1.0	0.43				05/31/23 16:37	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	-			05/31/23 16:37	1
1,3-Dichlorobenzene	<0.40		1.0	0.40	-			05/31/23 16:37	1
1,3-Dichloropropane	<0.36		1.0	0.36				05/31/23 16:37	
1,4-Dichlorobenzene	<0.36		1.0	0.36	-			05/31/23 16:37	1
2,2-Dichloropropane	<0.44		1.0	0.44	_			05/31/23 16:37	1
2-Chlorotoluene	<0.31		1.0	0.31				05/31/23 16:37	
4-Chlorotoluene	<0.35		1.0	0.35	_			05/31/23 16:37	1
Benzene	<0.15		0.50	0.15	-			05/31/23 16:37	1
Bromobenzene	<0.36	*+	1.0	0.36				05/31/23 16:37	1
Bromochloromethane	<0.43		1.0	0.43	-			05/31/23 16:37	1
Bromodichloromethane	<0.37		1.0	0.37	-			05/31/23 16:37	1
Bromoform	<0.48		1.0	0.48				05/31/23 16:37	1
Bromomethane	<0.80		3.0	0.80	-			05/31/23 16:37	1
Carbon tetrachloride	<0.38		1.0	0.38	_			05/31/23 16:37	
Chlorobenzene	<0.39		1.0	0.39				05/31/23 16:37	1
Chlorodibromomethane	<0.49		1.0	0.49	-			05/31/23 16:37	1
Chloroethane	<0.51		1.0	0.51	-			05/31/23 16:37	1
Chloroform	<0.37		2.0	0.37				05/31/23 16:37	
Chloromethane	<0.32		1.0	0.32	-			05/31/23 16:37	
cis-1,2-Dichloroethene	<0.41		1.0	0.41	-			05/31/23 16:37	
cis-1,3-Dichloropropene	<0.42		1.0		ug/L			05/31/23 16:37	
Dibromomethane	<0.27		1.0	0.42				05/31/23 16:37	,
Dichlorodifluoromethane	<0.67		3.0	0.67	-			05/31/23 16:37	4
Dichlorofluoromethane	<0.38		1.0	0.38				05/31/23 16:37	
Ethylbenzene	<0.18		0.50	0.30				05/31/23 16:37	-
Hexachlorobutadiene	<0.45		1.0	0.16	-			05/31/23 16:37	,
sopropyl ether				0.43				05/31/23 16:37	
	<0.28	*.	1.0		•				1
sopropylbenzene	<0.39	т	1.0	0.39	-			05/31/23 16:37	1
Methyl tert-butyl ether	<0.39		1.0	0.39				05/31/23 16:37	
Methylene Chloride	<1.6		5.0		ug/L			05/31/23 16:37	1
Naphthalene	<0.34		1.0	0.34	-			05/31/23 16:37	1
n-Butylbenzene N-Propylbenzene	<0.39 <0.41		1.0		ug/L ug/L			05/31/23 16:37 05/31/23 16:37	1

Eurofins Chicago

Job ID: 500-234265-1

Client: American Engineering Testing Inc.

Job ID: 500-234265-1 Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-4

Lab Sample ID: 500-234265-4

Matrix: Ground Water

Date Collected: 05/23/23 07:45 Date Received: 05/24/23 10:30

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			05/31/23 16:37	1	
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			05/31/23 16:37	1	
Styrene	<0.39		1.0	0.39	ug/L			05/31/23 16:37	1	
tert-Butylbenzene	<0.40	*+	1.0	0.40	ug/L			05/31/23 16:37	1	
Tetrachloroethene	<0.37		1.0	0.37	ug/L			05/31/23 16:37	1	
Toluene	<0.15		0.50	0.15	ug/L			05/31/23 16:37	1	
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/31/23 16:37	1	
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/31/23 16:37	1	
Trichloroethene	<0.16		0.50	0.16	ug/L			05/31/23 16:37	1	
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/31/23 16:37	1	
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/31/23 16:37	1	
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/31/23 16:37	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1,2-Dichloroethane-d4 (Surr)	96		75 - 126					05/31/23 16:37	1	
4-Bromofluorobenzene (Surr)	110		72 - 124					05/31/23 16:37	1	
Dibromofluoromethane (Surr)	94		75 - 120					05/31/23 16:37	1	
Toluene-d8 (Surr)	98		75 - 120					05/31/23 16:37	1	

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-234265-5

Matrix: Ground Water

Job ID: 500-234265-1

Client Sample ID: MW-5 Date Collected: 05/23/23 08:00 Date Received: 05/24/23 10:30

Analyte	Result	Qualifier	RL _	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			05/31/23 17:04	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/31/23 17:04	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			05/31/23 17:04	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/31/23 17:04	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			05/31/23 17:04	1
1,1-Dichloroethene	<0.39		1.0	0.39	ug/L			05/31/23 17:04	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L			05/31/23 17:04	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			05/31/23 17:04	1
1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/L			05/31/23 17:04	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			05/31/23 17:04	1
1,2,4-Trimethylbenzene	< 0.36		1.0	0.36	ug/L			05/31/23 17:04	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			05/31/23 17:04	1
1,2-Dibromoethane (EDB)	<0.39		1.0	0.39	ug/L			05/31/23 17:04	1
1,2-Dichlorobenzene	< 0.33		1.0	0.33	ug/L			05/31/23 17:04	1
1,2-Dichloroethane	< 0.39		1.0	0.39	ug/L			05/31/23 17:04	1
1,2-Dichloropropane	<0.43		1.0	0.43	ug/L			05/31/23 17:04	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			05/31/23 17:04	1
1,3-Dichlorobenzene	< 0.40		1.0	0.40	ug/L			05/31/23 17:04	1
1,3-Dichloropropane	<0.36		1.0	0.36	ug/L			05/31/23 17:04	1
1,4-Dichlorobenzene	<0.36		1.0	0.36	-			05/31/23 17:04	1
2,2-Dichloropropane	<0.44		1.0	0.44	ug/L			05/31/23 17:04	1
2-Chlorotoluene	<0.31 *	' +	1.0	0.31	ug/L			05/31/23 17:04	1
4-Chlorotoluene	<0.35 *	* +	1.0	0.35	-			05/31/23 17:04	1
Benzene	<0.15	(0.50		ug/L			05/31/23 17:04	1
Bromobenzene	<0.36 *	' +	1.0	0.36				05/31/23 17:04	1
Bromochloromethane	< 0.43		1.0	0.43	ug/L			05/31/23 17:04	1
Bromodichloromethane	< 0.37		1.0	0.37	-			05/31/23 17:04	1
Bromoform	<0.48		1.0		ug/L			05/31/23 17:04	1
Bromomethane	<0.80		3.0	0.80	ug/L			05/31/23 17:04	1
Carbon tetrachloride	<0.38		1.0		ug/L			05/31/23 17:04	1
Chlorobenzene	<0.39		1.0		ug/L			05/31/23 17:04	1
Chlorodibromomethane	< 0.49		1.0		ug/L			05/31/23 17:04	1
Chloroethane	<0.51		1.0	0.51	-			05/31/23 17:04	1
Chloroform	<0.37		2.0		ug/L			05/31/23 17:04	1
Chloromethane	<0.32		1.0	0.32	-			05/31/23 17:04	1
cis-1,2-Dichloroethene	<0.41		1.0		ug/L			05/31/23 17:04	1
cis-1,3-Dichloropropene	<0.42		1.0		ug/L			05/31/23 17:04	1
Dibromomethane	<0.27		1.0		ug/L			05/31/23 17:04	1
Dichlorodifluoromethane	<0.67		3.0		ug/L			05/31/23 17:04	1
Dichlorofluoromethane	<0.38		1.0		ug/L			05/31/23 17:04	1
Ethylbenzene	<0.18		0.50		ug/L			05/31/23 17:04	1
Hexachlorobutadiene	<0.45		1.0		ug/L			05/31/23 17:04	1
Isopropyl ether	<0.28		1.0		ug/L			05/31/23 17:04	· · · · · · · · 1
Isopropylbenzene	<0.39 *	* +	1.0		ug/L			05/31/23 17:04	1
Methyl tert-butyl ether	<0.39		1.0		ug/L			05/31/23 17:04	1
Methylene Chloride	<1.6		5.0		ug/L			05/31/23 17:04	
Naphthalene	<0.34		1.0		ug/L			05/31/23 17:04	1
Hapminaionio	~U.J4		1.0	0.54	ug/L			00/01/20 17:04	'
n-Butylbenzene	< 0.39		1.0	U 3U	ug/L			05/31/23 17:04	1

Eurofins Chicago

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-234265-5

Matrix: Ground Water

Job ID: 500-234265-1

Client Sample ID: MW-5 Date Collected: 05/23/23 08:00 Date Received: 05/24/23 10:30

Method: SW846 8260D - Vo Analyte	_	Qualifier	RL	MDL	•	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			05/31/23 17:04	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			05/31/23 17:04	1
Styrene	<0.39		1.0	0.39	ug/L			05/31/23 17:04	1
tert-Butylbenzene	<0.40	*+	1.0	0.40	ug/L			05/31/23 17:04	1
Tetrachloroethene	2.9		1.0	0.37	ug/L			05/31/23 17:04	1
Toluene	<0.15		0.50	0.15	ug/L			05/31/23 17:04	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/31/23 17:04	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/31/23 17:04	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/31/23 17:04	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/31/23 17:04	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/31/23 17:04	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/31/23 17:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75 - 126					05/31/23 17:04	1
4-Bromofluorobenzene (Surr)	110		72 - 124					05/31/23 17:04	1
Dibromofluoromethane (Surr)	94		75 - 120					05/31/23 17:04	1
Toluene-d8 (Surr)	98		75 ₋ 120					05/31/23 17:04	1

3

5

7

9

10

12

13

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-6

Date Collected: 05/23/23 09:00 Date Received: 05/24/23 10:30

Lab Sample ID: 500-234265-6

Matrix: Ground Water

Job ID: 500-234265-1

Method: SW846 8260D - Volatile Organic Compounds by GC/MS											
Analyte	Result	Qualifier	RL	MDL	Unit		Prepared	Analy			
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			05/31/23			

Analyte	Result Qu		MDL		D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			05/31/23 17:30	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			05/31/23 17:30	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			05/31/23 17:30	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			05/31/23 17:30	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			05/31/23 17:30	1
1,1-Dichloroethene	< 0.39	1.0	0.39	ug/L			05/31/23 17:30	1
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			05/31/23 17:30	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			05/31/23 17:30	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			05/31/23 17:30	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			05/31/23 17:30	1
1,2,4-Trimethylbenzene	< 0.36	1.0	0.36	ug/L			05/31/23 17:30	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			05/31/23 17:30	1
1,2-Dibromoethane (EDB)	<0.39	1.0	0.39	ug/L			05/31/23 17:30	1
1,2-Dichlorobenzene	< 0.33	1.0	0.33	-			05/31/23 17:30	1
1,2-Dichloroethane	< 0.39	1.0	0.39	-			05/31/23 17:30	1
1,2-Dichloropropane	<0.43	1.0	0.43				05/31/23 17:30	1
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			05/31/23 17:30	1
1,3-Dichlorobenzene	< 0.40	1.0	0.40	-			05/31/23 17:30	1
1,3-Dichloropropane	<0.36	1.0	0.36				05/31/23 17:30	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			05/31/23 17:30	1
2,2-Dichloropropane	< 0.44	1.0	0.44	-			05/31/23 17:30	1
2-Chlorotoluene	<0.31 *+	1.0	0.31				05/31/23 17:30	1
4-Chlorotoluene	<0.35 *+	1.0	0.35	-			05/31/23 17:30	1
Benzene	<0.15	0.50	0.15	-			05/31/23 17:30	1
Bromobenzene	<0.36 *+	1.0	0.36				05/31/23 17:30	1
Bromochloromethane	< 0.43	1.0	0.43				05/31/23 17:30	1
Bromodichloromethane	<0.37	1.0	0.37	-			05/31/23 17:30	1
Bromoform	<0.48	1.0	0.48				05/31/23 17:30	1
Bromomethane	<0.80	3.0	0.80	-			05/31/23 17:30	1
Carbon tetrachloride	<0.38	1.0	0.38	-			05/31/23 17:30	1
Chlorobenzene	<0.39	1.0	0.39				05/31/23 17:30	1
Chlorodibromomethane	<0.49	1.0	0.49	-			05/31/23 17:30	1
Chloroethane	<0.51	1.0	0.51	-			05/31/23 17:30	1
Chloroform	1.6 J	2.0	0.37				05/31/23 17:30	1
Chloromethane	<0.32	1.0	0.32	-			05/31/23 17:30	1
cis-1,2-Dichloroethene	<0.41	1.0	0.41				05/31/23 17:30	1
cis-1,3-Dichloropropene	<0.42	1.0	0.42				05/31/23 17:30	
Dibromomethane	<0.27	1.0	0.27				05/31/23 17:30	1
Dichlorodifluoromethane	<0.67	3.0	0.67	-			05/31/23 17:30	1
Dichlorofluoromethane	<0.38	1.0	0.38				05/31/23 17:30	
Ethylbenzene	<0.18	0.50	0.18				05/31/23 17:30	1
Hexachlorobutadiene	<0.45	1.0	0.45	-			05/31/23 17:30	. 1
Isopropyl ether	<0.28	1.0	0.28				05/31/23 17:30	1
Isopropylbenzene	<0.39 *+	1.0	0.39	-			05/31/23 17:30	1
Methyl tert-butyl ether	<0.39	1.0	0.39	-			05/31/23 17:30	1
Methylene Chloride	<1.6	5.0		ug/L			05/31/23 17:30	· · · · · · · · · · · · · · · · · · ·
Naphthalene	<0.34	1.0	0.34	-			05/31/23 17:30	1
n-Butylbenzene	<0.39	1.0	0.39				05/31/23 17:30	1
N-Propylbenzene	<0.41	1.0	0.41				05/31/23 17:30	

Eurofins Chicago

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-234265-6

Matrix: Ground Water

Job ID: 500-234265-1

Date Collected: 05/23/23 09:00 Date Received: 05/24/23 10:30

Client Sample ID: MW-6

Method: SW846 8260D - Vo Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			05/31/23 17:30	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			05/31/23 17:30	1
Styrene	<0.39		1.0	0.39	ug/L			05/31/23 17:30	1
tert-Butylbenzene	<0.40	*+	1.0	0.40	ug/L			05/31/23 17:30	1
Tetrachloroethene	42		1.0	0.37	ug/L			05/31/23 17:30	1
Toluene	<0.15		0.50	0.15	ug/L			05/31/23 17:30	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/31/23 17:30	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/31/23 17:30	1
Trichloroethene	2.4		0.50	0.16	ug/L			05/31/23 17:30	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/31/23 17:30	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/31/23 17:30	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/31/23 17:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		75 - 126					05/31/23 17:30	1
4-Bromofluorobenzene (Surr)	111		72 - 124					05/31/23 17:30	1
Dibromofluoromethane (Surr)	94		75 - 120					05/31/23 17:30	1
Toluene-d8 (Surr)	97		75 - 120					05/31/23 17:30	1

Eurofins Chicago

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: Trip Blank

Lab Sample ID: 500-234265-7

Date Collected: 05/23/23 00:00 **Matrix: Water** Date Received: 05/24/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			05/31/23 13:34	
1,1,1-Trichloroethane	<0.38		1.0		ug/L			05/31/23 13:34	
1,1,2,2-Tetrachloroethane	<0.40		1.0		ug/L			05/31/23 13:34	
1,1,2-Trichloroethane	<0.35		1.0		ug/L			05/31/23 13:34	
1,1-Dichloroethane	<0.41		1.0		ug/L			05/31/23 13:34	
1,1-Dichloroethene	<0.39		1.0		ug/L			05/31/23 13:34	
1,1-Dichloropropene	<0.30		1.0		ug/L			05/31/23 13:34	
1,2,3-Trichlorobenzene	<0.46		1.0		ug/L			05/31/23 13:34	
1,2,3-Trichloropropane	<0.41		2.0		ug/L			05/31/23 13:34	
1,2,4-Trichlorobenzene	<0.34		1.0		ug/L			05/31/23 13:34	
1,2,4-Trimethylbenzene	0.76	JB	1.0		ug/L			05/31/23 13:34	
1,2-Dibromo-3-Chloropropane	<2.0	-	5.0		ug/L			05/31/23 13:34	
1,2-Dibromoethane (EDB)	<0.39		1.0		ug/L			05/31/23 13:34	
1,2-Dichlorobenzene	<0.33		1.0		ug/L			05/31/23 13:34	
1,2-Dichloroethane	<0.39		1.0		ug/L			05/31/23 13:34	
1,2-Dichloropropane	<0.43		1.0		ug/L			05/31/23 13:34	
1,3,5-Trimethylbenzene	0.79	JB	1.0		ug/L			05/31/23 13:34	
1,3-Dichlorobenzene	<0.40		1.0		ug/L			05/31/23 13:34	
1,3-Dichloropropane	<0.36		1.0		ug/L			05/31/23 13:34	
1,4-Dichlorobenzene	<0.36		1.0		ug/L			05/31/23 13:34	
2,2-Dichloropropane	<0.44		1.0		ug/L			05/31/23 13:34	
2-Chlorotoluene	<0.31	*+	1.0		ug/L			05/31/23 13:34	
4-Chlorotoluene	<0.35		1.0		ug/L			05/31/23 13:34	
Benzene	<0.15		0.50		ug/L			05/31/23 13:34	
Bromobenzene	<0.36	* +	1.0		ug/L			05/31/23 13:34	
Bromochloromethane	<0.43		1.0		ug/L			05/31/23 13:34	
Bromodichloromethane	<0.37		1.0		ug/L			05/31/23 13:34	
Bromoform	<0.48		1.0		ug/L			05/31/23 13:34	
Bromomethane	<0.80		3.0		ug/L			05/31/23 13:34	
Carbon tetrachloride	<0.38		1.0		ug/L			05/31/23 13:34	
Chlorobenzene	<0.39		1.0		ug/L			05/31/23 13:34	
Chlorodibromomethane	<0.49		1.0		ug/L			05/31/23 13:34	
Chloroethane	<0.51		1.0		ug/L			05/31/23 13:34	
Chloroform	<0.37		2.0		ug/L			05/31/23 13:34	
Chloromethane	<0.32		1.0		ug/L			05/31/23 13:34	
cis-1,2-Dichloroethene	<0.41		1.0		ug/L			05/31/23 13:34	
cis-1,3-Dichloropropene	<0.42		1.0		ug/L			05/31/23 13:34	
Dibromomethane	<0.27		1.0		ug/L			05/31/23 13:34	
Dichlorodifluoromethane	<0.67		3.0		ug/L			05/31/23 13:34	
Dichlorofluoromethane	<0.38		1.0		ug/L			05/31/23 13:34	
Ethylbenzene	<0.18		0.50		ug/L			05/31/23 13:34	
Hexachlorobutadiene	<0.45		1.0		ug/L			05/31/23 13:34	
Isopropyl ether	<0.28		1.0		ug/L			05/31/23 13:34	
Isopropylbenzene	<0.39	*+	1.0		ug/L			05/31/23 13:34	
Methyl tert-butyl ether	<0.39	•	1.0		ug/L			05/31/23 13:34	
Methylene Chloride	<1.6		5.0		ug/L			05/31/23 13:34	
Naphthalene	<0.34		1.0		ug/L			05/31/23 13:34	
n-Butylbenzene	<0.39		1.0		ug/L ug/L			05/31/23 13:34	
N-Propylbenzene	<0.39		1.0		ug/L ug/L			05/31/23 13:34	

Eurofins Chicago

Job ID: 500-234265-1

Job ID: 500-234265-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Client Sample ID: Trip Blank Lab Sample ID: 500-234265-7

Date Collected: 05/23/23 00:00 Matrix: Water Date Received: 05/24/23 10:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			05/31/23 13:34	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			05/31/23 13:34	1
Styrene	<0.39		1.0	0.39	ug/L			05/31/23 13:34	1
tert-Butylbenzene	<0.40	*+	1.0	0.40	ug/L			05/31/23 13:34	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			05/31/23 13:34	1
Toluene	<0.15		0.50	0.15	ug/L			05/31/23 13:34	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			05/31/23 13:34	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			05/31/23 13:34	1
Trichloroethene	<0.16		0.50	0.16	ug/L			05/31/23 13:34	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			05/31/23 13:34	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			05/31/23 13:34	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			05/31/23 13:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		75 - 126					05/31/23 13:34	1
4-Bromofluorobenzene (Surr)	109		72 - 124					05/31/23 13:34	1
Dibromofluoromethane (Surr)	92		75 - 120					05/31/23 13:34	1
Toluene-d8 (Surr)	98		75 - 120					05/31/23 13:34	1

3

5

9

10

12

13

Definitions/Glossary

Client: American Engineering Testing Inc.

Job ID: 500-234265-1

Project/Site: Laundromat Property - P-0011071

Qualifiers

GC/MS VOA

Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

www.uhr.road.ahhus.ristiana.warrar.au.warrat.ha.uusaant.iu.thia.usaant.

Glossary

Appreviation	These commonly used appreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit

CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Chicago

QC Association Summary

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Job ID: 500-234265-1

GC/MS VOA

Analysis Batch: 715986

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-234265-1	MW-1	Total/NA	Ground Water	8260D	
500-234265-2	MW-2	Total/NA	Ground Water	8260D	
500-234265-3	MW-3	Total/NA	Ground Water	8260D	
500-234265-4	MW-4	Total/NA	Ground Water	8260D	
500-234265-5	MW-5	Total/NA	Ground Water	8260D	
500-234265-6	MW-6	Total/NA	Ground Water	8260D	
500-234265-7	Trip Blank	Total/NA	Water	8260D	
MB 500-715986/7	Method Blank	Total/NA	Water	8260D	
LCS 500-715986/4	Lab Control Sample	Total/NA	Water	8260D	

3

4

5

7

9

11

12

14

Surrogate Summary

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Job ID: 500-234265-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Ground Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)
500-234265-1	MW-1	97	109	95	95
500-234265-2	MW-2	94	108	93	98
500-234265-3	MW-3	97	110	93	98
500-234265-4	MW-4	96	110	94	98
500-234265-5	MW-5	97	110	94	98
500-234265-6	MW-6	96	111	94	97

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)
500-234265-7	Trip Blank	94	109	92	98
LCS 500-715986/4	Lab Control Sample	88	111	88	100
MB 500-715986/7	Method Blank	92	110	92	99

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Eurofins Chicago

Page 24 of 32

6/1/2023

QC Sample Results

Client: American Engineering Testing Inc. Job ID: 500-234265-1 Project/Site: Laundromat Property - P-0011071

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 500-715986/7

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 715986	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			05/31/23 13:08	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			05/31/23 13:08	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			05/31/23 13:08	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			05/31/23 13:08	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			05/31/23 13:08	1
1,1-Dichloroethene	< 0.39		1.0	0.39	ug/L			05/31/23 13:08	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L			05/31/23 13:08	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			05/31/23 13:08	1
1,2,3-Trichloropropane	< 0.41		2.0	0.41	ug/L			05/31/23 13:08	1
1,2,4-Trichlorobenzene	0.345	J	1.0	0.34	ug/L			05/31/23 13:08	1
1,2,4-Trimethylbenzene	0.797	J	1.0	0.36	ug/L			05/31/23 13:08	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			05/31/23 13:08	1
1,2-Dibromoethane (EDB)	<0.39		1.0	0.39	ug/L			05/31/23 13:08	1
1,2-Dichlorobenzene	< 0.33		1.0	0.33	-			05/31/23 13:08	1
1,2-Dichloroethane	< 0.39		1.0	0.39	-			05/31/23 13:08	1
1,2-Dichloropropane	<0.43		1.0	0.43				05/31/23 13:08	1
1,3,5-Trimethylbenzene	0.827	J	1.0	0.25	-			05/31/23 13:08	1
1,3-Dichlorobenzene	<0.40		1.0	0.40	-			05/31/23 13:08	1
1,3-Dichloropropane	<0.36		1.0	0.36				05/31/23 13:08	1
1,4-Dichlorobenzene	<0.36		1.0	0.36	-			05/31/23 13:08	1
2,2-Dichloropropane	<0.44		1.0	0.44	-			05/31/23 13:08	1
2-Chlorotoluene	<0.31		1.0	0.31				05/31/23 13:08	1
4-Chlorotoluene	<0.35		1.0	0.35	_			05/31/23 13:08	1
Benzene	<0.15		0.50	0.15	-			05/31/23 13:08	1
Bromobenzene	<0.36		1.0	0.36	-			05/31/23 13:08	1
Bromochloromethane	<0.43		1.0	0.43				05/31/23 13:08	1
Bromodichloromethane	<0.37		1.0	0.37	-			05/31/23 13:08	1
Bromoform	<0.48		1.0	0.48				05/31/23 13:08	1
Bromomethane	<0.80		3.0	0.80				05/31/23 13:08	1
Carbon tetrachloride	<0.38		1.0	0.38	-			05/31/23 13:08	1
Chlorobenzene	<0.39		1.0	0.39				05/31/23 13:08	1
Chlorodibromomethane	<0.49		1.0	0.49	-			05/31/23 13:08	1
Chloroethane	<0.51		1.0	0.51	-			05/31/23 13:08	1
Chloroform	<0.37		2.0	0.37				05/31/23 13:08	
Chloromethane	0.634	J	1.0	0.32				05/31/23 13:08	1
cis-1,2-Dichloroethene	<0.41	ŭ	1.0	0.41				05/31/23 13:08	
cis-1,3-Dichloropropene	<0.42		1.0	0.42				05/31/23 13:08	
Dibromomethane	<0.27		1.0	0.42				05/31/23 13:08	1
Dichlorodifluoromethane	<0.67		3.0	0.67	-			05/31/23 13:08	1
Dichlorofluoromethane	<0.38		1.0	0.38				05/31/23 13:08	1
Ethylbenzene	<0.18		0.50	0.18				05/31/23 13:08	1
Hexachlorobutadiene	0.458	İ	1.0	0.15	-			05/31/23 13:08	1
								05/31/23 13:08	
Isopropyl ether Isopropylbenzene	<0.28 <0.39		1.0 1.0	0.28					1
	<0.39		1.0	0.39	-			05/31/23 13:08	1
Methylene Chloride				0.39				05/31/23 13:08 05/31/23 13:08	1
Methylene Chloride	<1.6		5.0		ug/L				1
Naphthalene	0.491	J	1.0	0.34	ug/L ug/L			05/31/23 13:08 05/31/23 13:08	1

Eurofins Chicago

Page 25 of 32

6/1/2023

QC Sample Results

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-234265-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 500-715986/7

Matrix: Water

Analysis Batch: 715986

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	<0.41	1.0	0.41	ug/L			05/31/23 13:08	1
p-Isopropyltoluene	<0.36	1.0	0.36	ug/L			05/31/23 13:08	1
sec-Butylbenzene	<0.40	1.0	0.40	ug/L			05/31/23 13:08	1
Styrene	<0.39	1.0	0.39	ug/L			05/31/23 13:08	1
tert-Butylbenzene	<0.40	1.0	0.40	ug/L			05/31/23 13:08	1
Tetrachloroethene	<0.37	1.0	0.37	ug/L			05/31/23 13:08	1
Toluene	<0.15	0.50	0.15	ug/L			05/31/23 13:08	1
trans-1,2-Dichloroethene	<0.35	1.0	0.35	ug/L			05/31/23 13:08	1
trans-1,3-Dichloropropene	<0.36	1.0	0.36	ug/L			05/31/23 13:08	1
Trichloroethene	<0.16	0.50	0.16	ug/L			05/31/23 13:08	1
Trichlorofluoromethane	<0.43	1.0	0.43	ug/L			05/31/23 13:08	1
Vinyl chloride	<0.20	1.0	0.20	ug/L			05/31/23 13:08	1
Xylenes, Total	<0.22	1.0	0.22	ug/L			05/31/23 13:08	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	92	75 - 126		05/31/23 13:08	1
4-Bromofluorobenzene (Surr)	110	72 - 124		05/31/23 13:08	1
Dibromofluoromethane (Surr)	92	75 - 120		05/31/23 13:08	1
Toluene-d8 (Surr)	99	75 - 120		05/31/23 13:08	1

Lab Sample ID: LCS 500-715986/4

Matrix: Water

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 715986								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	40.0	45.2		ug/L		113	70 - 125	
1,1,1-Trichloroethane	40.0	38.7		ug/L		97	70 - 125	
1,1,2,2-Tetrachloroethane	40.0	44.4		ug/L		111	62 - 140	
1,1,2-Trichloroethane	40.0	47.0		ug/L		118	71 - 130	
1,1-Dichloroethane	40.0	41.4		ug/L		104	70 - 125	
1,1-Dichloroethene	40.0	36.6		ug/L		92	67 - 122	
1,1-Dichloropropene	40.0	42.4		ug/L		106	70 - 121	
1,2,3-Trichlorobenzene	40.0	43.3		ug/L		108	51 - 145	
1,2,3-Trichloropropane	40.0	44.9		ug/L		112	50 - 133	
1,2,4-Trichlorobenzene	40.0	44.3		ug/L		111	57 - 137	
1,2,4-Trimethylbenzene	40.0	44.2		ug/L		110	70 - 123	
1,2-Dibromo-3-Chloropropane	40.0	40.3		ug/L		101	56 - 123	
1,2-Dibromoethane (EDB)	40.0	48.3		ug/L		121	70 - 125	
1,2-Dichlorobenzene	40.0	46.9		ug/L		117	70 - 125	
1,2-Dichloroethane	40.0	44.5		ug/L		111	68 - 127	
1,2-Dichloropropane	40.0	46.9		ug/L		117	67 - 130	
1,3,5-Trimethylbenzene	40.0	44.6		ug/L		111	70 - 123	
1,3-Dichlorobenzene	40.0	48.4		ug/L		121	70 - 125	
1,3-Dichloropropane	40.0	46.5		ug/L		116	62 - 136	
1,4-Dichlorobenzene	40.0	45.7		ug/L		114	70 - 120	
2,2-Dichloropropane	40.0	38.0		ug/L		95	58 - 139	
2-Chlorotoluene	40.0	52.0	*+	ug/L		130	70 - 125	
4-Chlorotoluene	40.0	51.6	*+	ug/L		129	68 - 124	

Eurofins Chicago

QC Sample Results

Spike

Added

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

40.0

LCS LCS

43.0

53.8

42.0

41.9

44.7

33.6

36.3

47.5

44.3

41.3

35.9

35.9

43.2

46.3

40.6

41.7

37.1

47.0

49.4

41.3

40.3

36.0

45.1

50.8

43.0

48.8

41.8

52.1

52.2 *+

Result Qualifier

Unit

ug/L

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-234265-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 500-715986/4

Matrix: Water

Analyte

Benzene

Bromoform

Bromobenzene

Bromomethane

Chlorobenzene

Chloroethane

Chloromethane

Dibromomethane

Ethylbenzene

Naphthalene

n-Butylbenzene

N-Propylbenzene

p-Isopropyltoluene

sec-Butylbenzene

tert-Butylbenzene

Styrene

Chloroform

Carbon tetrachloride

Chlorodibromomethane

cis-1,2-Dichloroethene

cis-1,3-Dichloropropene

Dichlorodifluoromethane

Dichlorofluoromethane

Hexachlorobutadiene

Methyl tert-butyl ether

Methylene Chloride

Isopropylbenzene

Bromochloromethane

Bromodichloromethane

Analysis Batch: 715986

Client Sample ID: Lab Control Sample

%Rec

108

135

105

105

112

84

91

119

111

103

90

90

108

116

101

104

93

118

124

130

103

101

90

113

127

107

122

105

130

121

118

102

116

115

86

116

124

Prep Type: Total/NA

%Rec

Limits

70 - 120

70 - 122

65 - 122

69 - 120

56 - 132

40 - 152

59 - 133

70 - 120

68 - 125

48 - 136

70 - 120

56 - 152

70 - 125

64 - 127

70 - 120

40 - 159

69 - 124

70 - 123

51 - 150

70 - 126

55 - 123

69 - 125

53 - 144

68 - 125

69 - 127

70 - 125

70 - 123

70 - 120

70 - 121

70 - 128

70 - 125

70 - 125

62 - 128

70 - 125

55 - 128

64 - 126

70 - 125

	L۰,

Tetrachloroethene			40.0	48.2	ug/L
Toluene			40.0	47.3	ug/L
trans-1,2-Dichloroethene			40.0	41.0	ug/L
trans-1,3-Dichloropropene			40.0	46.5	ug/L
Trichloroethene			40.0	46.2	ug/L
Trichlorofluoromethane			40.0	34.2	ug/L
Vinyl chloride			40.0	46.3	ug/L
Xylenes, Total			80.0	99.1	ug/L
	LCS	LCS			
Surrogate	%Recovery	Qualifier	Limits		
1,2-Dichloroethane-d4 (Surr)	88		75 - 126		
4-Bromofluorobenzene (Surr)	111		72 - 124		
Dibromofluoromethane (Surr)	88		75 - 120		
Toluene-d8 (Surr)	100		75 - 120		

Lab Chronicle

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-1 Lab Sample ID: 500-234265-1

Matrix: Ground Water

Job ID: 500-234265-1

Matrix: Ground Water

Matrix: Ground Water

Date Collected: 05/23/23 08:15 Date Received: 05/24/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	715986	W1T	EET CHI	05/31/23 15:19

Client Sample ID: MW-2 Lab Sample ID: 500-234265-2

Date Collected: 05/23/23 08:30 Date Received: 05/24/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D	 -	1	715986	W1T	EET CHI	05/31/23 15:45

Client Sample ID: MW-3 Lab Sample ID: 500-234265-3

Date Collected: 05/23/23 09:30 **Matrix: Ground Water**

Date Received: 05/24/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	715986	W1T	EET CHI	05/31/23 16:11

Client Sample ID: MW-4 Lab Sample ID: 500-234265-4

Date Collected: 05/23/23 07:45 **Matrix: Ground Water**

Date Received: 05/24/23 10:30

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D			715986	W1T	EET CHI	05/31/23 16:37	

Client Sample ID: MW-5 Lab Sample ID: 500-234265-5

Date Collected: 05/23/23 08:00

Date Received: 05/24/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	715986	W1T	EET CHI	05/31/23 17:04

Client Sample ID: MW-6 Lab Sample ID: 500-234265-6

Date Collected: 05/23/23 09:00 **Matrix: Ground Water**

Date Received: 05/24/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			715986	W1T	EET CHI	05/31/23 17:30

Client Sample ID: Trip Blank Lab Sample ID: 500-234265-7

Date Collected: 05/23/23 00:00 Date Received: 05/24/23 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	715986	W1T	EET CHI	05/31/23 13:34

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Eurofins Chicago

Matrix: Water

6/1/2023

Accreditation/Certification Summary

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-234265-1

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

	Authority	Program	Identification Number	Expiration Date
ı	Wisconsin	State	999580010	08-31-23

2

J

4

6

8

40

11

13

14

Site

TESTAMERICA LABS 2417 BOND ST

NIVERSITY PARK IL 60484

SAMPLE LOGIN

ORIGIN ID: JOTA (708) 534-5200 MICHAEL NEAL AMERICAN ENGINEERING TESTING INC. 1837 CTY HWY OD

500-234265 Waybı

4 MAY 10:30A
Y OVERNIGHT
60484
IL-US ORD
EX/II dx3 Graph Ser- MAY 10:30A

6/1/2023

AET Project No. P-0011071 Page D 32 of 156

Login Sample Receipt Checklist

Client: American Engineering Testing Inc.

Job Number: 500-234265-1

Login Number: 234265 List Source: Eurofins Chicago

List Number: 1

Creator: Berg, Nicole M

Creator. Derg, Nicole M		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	2.7
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	True	

1

3

4

၁ —

1

9

11

14

15

Environment Testing

REVIEWED

By mneal at 11:18 am, Jul 21, 2023

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Michael Neal American Engineering Testing Inc. 1837 Cty Hwy OO Chippewa Falls, Wisconsin 54729

Generated 6/16/2023 1:33:04 PM

JOB DESCRIPTION

Laundrumat Property - P-0011071

JOB NUMBER

500-234956-1

Eurofins Chicago 2417 Bond Street University Park IL 60484 AET Project No. P-0011071 Page D 34 of 156

Eurofins Chicago

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

Results relate only to the items tested and the sample(s) as received by the laboratory. The results, detection limits (LOD) and Quantitation Limits (LOQ) have been adjusted for sample dilutions and/or solids content.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Generated 6/16/2023 1:33:04 PM

Authorized for release by Sandie Fredrick, Project Manager II Sandra.Fredrick@et.eurofinsus.com (920)261-1660

2

4

5

_

8

4.6

1 1

4.0

14

15

Client: American Engineering Testing Inc.
Project/Site: Laundrumat Property - P-0011071

Laboratory Job ID: 500-234956-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
	8
Definitions	18
QC Association	19
Surrogate Summary	20
	21
	25
Certification Summary	26
	27
Receipt Checklists	30
	32

3

4

5

9

10

12

Case Narrative

Client: American Engineering Testing Inc.
Project/Site: Laundrumat Property - P-0011071

Job ID: 500-234956-1

Job ID: 500-234956-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-234956-1

Comments

No additional comments.

Receipt

The samples were received on 6/8/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 1.7° C.

GC/MS VOA

Method 8260D: The method blank for analytical batch 500-718619 contained Methylene Chloride above the method detection limit. This target analyte concentration was less than half the reporting limit (1/2RL); therefore, re-extraction or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3510C: Elevated reporting limits are provided for the following sample due to insufficient sample provided for preparation: GPW-12 (500-234956-4).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

_

4

5

6

0

9

11

14

15

Detection Summary

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071 Job ID: 500-234956-1

Client Sample ID: GPW-8

Lab Sample ID: 500-234956-1

No Detections.

Client Sample ID: GPW-9 Lab Sample ID: 500-234956-2

Analyte	Result Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
cis-1,2-Dichloroethene	2.0	1.0	0.41	ug/L		8260D	Total/NA
Tetrachloroethene	4.6	1.0	0.37	ug/L	1	8260D	Total/NA
trans-1,2-Dichloroethene	0.49 J	1.0	0.35	ug/L	1	8260D	Total/NA
Trichloroethene	8.1	0.50	0.16	ug/L	1	8260D	Total/NA

Client Sample ID: GPW-10 Lab Sample ID: 500-234956-3

Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
cis-1,2-Dichloroethene	0.47 J	1.0	0.41 ug/L		8260D	Total/NA
Tetrachloroethene	7.2	1.0	0.37 ug/L	1	8260D	Total/NA
Trichloroethene	0.71	0.50	0.16 ug/L	1	8260D	Total/NA

Client Sample ID: GPW-12 Lab Sample ID: 500-234956-4

No Detections.

Lab Sample ID: 500-234956-5 **Client Sample ID: Trip Blank**

No Detections.

This Detection Summary does not include radiochemical test results.

Method Summary

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071 Job ID: 500-234956-1

Method 8260D	Method Description Volatile Organic Compounds by GC/MS	Protocol SW846	Laboratory EET CHI
8270D SIM ID	Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)	SW846	EET BUF
3510C	Liquid-Liquid Extraction (Separatory Funnel)	SW846	EET BUF
5030B	Purge and Trap	SW846	EET CHI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Sample Summary

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071 Job ID: 500-234956-1

1000 101000 1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-234956-1	GPW-8	Ground Water	06/06/23 10:05	06/08/23 09:50
500-234956-2	GPW-9	Ground Water	06/06/23 12:40	06/08/23 09:50
500-234956-3	GPW-10	Ground Water	06/06/23 14:30	06/08/23 09:50
500-234956-4	GPW-12	Ground Water	06/06/23 16:00	06/08/23 09:50
500-234956-5	Trin Blank	Water	06/06/23 00:00	06/08/23 09:50

4

5

6

8

9

11

12

11

15

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071

Client Sample ID: GPW-8

Lab Sample ID: 500-234956-1

Matrix: Ground Water

Job ID: 500-234956-1

Date Collected: 06/06/23 10:05 Date Received: 06/08/23 09:50

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			06/14/23 23:37	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			06/14/23 23:37	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			06/14/23 23:37	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			06/14/23 23:37	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			06/14/23 23:37	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			06/14/23 23:37	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			06/14/23 23:37	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			06/14/23 23:37	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			06/14/23 23:37	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			06/14/23 23:37	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			06/14/23 23:37	
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			06/14/23 23:37	
1,2-Dibromoethane (EDB)	<0.39	1.0	0.39	ug/L			06/14/23 23:37	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			06/14/23 23:37	
1,2-Dichloroethane	<0.39	1.0		ug/L			06/14/23 23:37	
1,2-Dichloropropane	<0.43	1.0		ug/L			06/14/23 23:37	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			06/14/23 23:37	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			06/14/23 23:37	
1,3-Dichloropropane	<0.36	1.0		ug/L			06/14/23 23:37	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			06/14/23 23:37	
2,2-Dichloropropane	<0.44	1.0		ug/L			06/14/23 23:37	
2-Chlorotoluene	<0.31	1.0		ug/L			06/14/23 23:37	
4-Chlorotoluene	<0.35	1.0		ug/L			06/14/23 23:37	
Benzene	<0.15	0.50		ug/L			06/14/23 23:37	
Bromobenzene	<0.36	1.0		ug/L			06/14/23 23:37	
Bromochloromethane	<0.43	1.0		ug/L			06/14/23 23:37	
Bromodichloromethane	<0.43	1.0		ug/L			06/14/23 23:37	
Bromoform	<0.48	1.0		ug/L			06/14/23 23:37	
Bromomethane	<0.48	3.0		ug/L ug/L			06/14/23 23:37	
Carbon tetrachloride	<0.38	1.0		ug/L ug/L			06/14/23 23:37	
Chlorobenzene	<0.39			ug/L			06/14/23 23:37	
Chlorodibromomethane	<0.49	1.0 1.0		ug/L ug/L			06/14/23 23:37	
Chloroethane				-				
	<0.51	1.0		ug/L			06/14/23 23:37	
Chlorogory	<0.37	2.0		ug/L			06/14/23 23:37	
Chloromethane	<0.32	5.0		ug/L			06/14/23 23:37	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			06/14/23 23:37	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			06/14/23 23:37	
Dibromomethane	<0.27	1.0		ug/L			06/14/23 23:37	
Dichlorodifluoromethane	<0.67	3.0		ug/L			06/14/23 23:37	
Dichlorofluoromethane	<0.38	1.0		ug/L			06/14/23 23:37	
Ethylbenzene	<0.18	0.50		ug/L			06/14/23 23:37	
Hexachlorobutadiene	<0.45	1.0		ug/L			06/14/23 23:37	
Isopropyl ether	<0.28	1.0		ug/L			06/14/23 23:37	
Isopropylbenzene	<0.39	1.0		ug/L			06/14/23 23:37	
Methyl tert-butyl ether	<0.39	1.0		ug/L			06/14/23 23:37	
Methylene Chloride	<1.6	5.0		ug/L			06/14/23 23:37	
Naphthalene	<0.34	1.0	0.34	ug/L			06/14/23 23:37	
n-Butylbenzene	<0.39	1.0	0.39	ug/L			06/14/23 23:37	

Eurofins Chicago

Page 8 of 32

3

5

7

9

11

Client: American Engineering Testing Inc.

Project/Site: Laundrumat Property - P-0011071

Client Sample ID: GPW-8 Lab Sample ID: 500-234956-1 **Matrix: Ground Water** Date Collected: 06/06/23 10:05

Date Received: 06/08/23 09:50

Dibromofluoromethane (Surr)

Toluene-d8 (Surr)

Method: SW846 8260D - Vo	latile Organic	Compound	ds by GC/MS	(Contin	iued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			06/14/23 23:37	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			06/14/23 23:37	1
Styrene	<0.39		1.0	0.39	ug/L			06/14/23 23:37	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			06/14/23 23:37	1
Tetrachloroethene	< 0.37		1.0	0.37	ug/L			06/14/23 23:37	1
Toluene	<0.15		0.50	0.15	ug/L			06/14/23 23:37	1
trans-1,2-Dichloroethene	< 0.35		1.0	0.35	ug/L			06/14/23 23:37	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			06/14/23 23:37	1
Trichloroethene	<0.16		0.50	0.16	ug/L			06/14/23 23:37	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			06/14/23 23:37	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			06/14/23 23:37	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			06/14/23 23:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	98		75 - 126			·		06/14/23 23:37	1
4-Bromofluorobenzene (Surr)	102		72 - 124					06/14/23 23:37	1

Method: SW846 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
1,4-Dioxane	<0.12		0.24	0.12	ug/L		06/12/23 14:42	06/13/23 22:25	1		
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
1,4-Dioxane-d8	38		<u> 15 - 110</u>				06/12/23 14:42	06/13/23 22:25	1		

75 - 120

75 - 120

98

92

Eurofins Chicago

Page 9 of 32

Job ID: 500-234956-1

06/14/23 23:37

06/14/23 23:37

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071

Client Sample ID: GPW-9 Lab Sample ID: 500-234956-2

Date Collected: 06/06/23 12:40 Matrix: Ground Water
Date Received: 06/08/23 09:50

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			06/15/23 00:01	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			06/15/23 00:01	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			06/15/23 00:01	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			06/15/23 00:01	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			06/15/23 00:01	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			06/15/23 00:01	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			06/15/23 00:01	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			06/15/23 00:01	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			06/15/23 00:01	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			06/15/23 00:01	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			06/15/23 00:01	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			06/15/23 00:01	
1,2-Dibromoethane (EDB)	<0.39	1.0		ug/L			06/15/23 00:01	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			06/15/23 00:01	
1,2-Dichloroethane	<0.39	1.0	0.39	ug/L			06/15/23 00:01	
1,2-Dichloropropane	<0.43	1.0		ug/L			06/15/23 00:01	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			06/15/23 00:01	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			06/15/23 00:01	
1,3-Dichloropropane	<0.36	1.0		ug/L			06/15/23 00:01	
1.4-Dichlorobenzene	<0.36	1.0		ug/L			06/15/23 00:01	
2,2-Dichloropropane	<0.44	1.0		ug/L			06/15/23 00:01	
2-Chlorotoluene	<0.31	1.0		ug/L			06/15/23 00:01	
4-Chlorotoluene	<0.35	1.0		ug/L			06/15/23 00:01	
Benzene	<0.15	0.50		ug/L			06/15/23 00:01	
Bromobenzene	<0.36	1.0		ug/L			06/15/23 00:01	
Bromochloromethane	<0.43	1.0		ug/L			06/15/23 00:01	
Bromodichloromethane	<0.37	1.0		ug/L			06/15/23 00:01	
Bromoform	<0.48	1.0		ug/L			06/15/23 00:01	
Bromomethane	<0.80	3.0		ug/L			06/15/23 00:01	
Carbon tetrachloride	<0.38	1.0		ug/L			06/15/23 00:01	
Chlorobenzene	<0.39	1.0		ug/L			06/15/23 00:01	
Chlorodibromomethane	<0.49	1.0		ug/L			06/15/23 00:01	
Chloroethane	<0.51	1.0		ug/L			06/15/23 00:01	
Chloroform	<0.37	2.0		ug/L			06/15/23 00:01	
Chloromethane	<0.32	5.0		ug/L			06/15/23 00:01	
cis-1,2-Dichloroethene	2.0	1.0		ug/L			06/15/23 00:01	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			06/15/23 00:01	
Dibromomethane	<0.27	1.0		ug/L			06/15/23 00:01	
Dichlorodifluoromethane	<0.67	3.0		ug/L			06/15/23 00:01	
Dichlorofluoromethane	<0.38	1.0		ug/L			06/15/23 00:01	
Ethylbenzene	<0.18	0.50		ug/L			06/15/23 00:01	
Hexachlorobutadiene	<0.45	1.0		ug/L			06/15/23 00:01	
Isopropyl ether	<0.28	1.0		ug/L ug/L			06/15/23 00:01	
Isopropylbenzene	<0.39	1.0		ug/L ug/L			06/15/23 00:01	
	<0.39			_			06/15/23 00:01	
Methylana Chlorida		1.0		ug/L			06/15/23 00:01	
Methylene Chloride	<1.6	5.0		ug/L				
Naphthalene n Butulbanzana	<0.34	1.0		ug/L			06/15/23 00:01	
n-Butylbenzene N-Propylbenzene	<0.39 <0.41	1.0		ug/L ug/L			06/15/23 00:01 06/15/23 00:01	

Eurofins Chicago

3

Job ID: 500-234956-1

Ė

7

9

11

Client: American Engineering Testing Inc.

Project/Site: Laundrumat Property - P-0011071

Lab Sample ID: 500-234956-2

Matrix: Ground Water

Job ID: 500-234956-1

Date Collected: 06/06/23 12:40 Date Received: 06/08/23 09:50

Client Sample ID: GPW-9

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			06/15/23 00:01	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			06/15/23 00:01	1
Styrene	<0.39		1.0	0.39	ug/L			06/15/23 00:01	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			06/15/23 00:01	1
Tetrachloroethene	4.6		1.0	0.37	ug/L			06/15/23 00:01	1
Toluene	<0.15		0.50	0.15	ug/L			06/15/23 00:01	1
trans-1,2-Dichloroethene	0.49	J	1.0	0.35	ug/L			06/15/23 00:01	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			06/15/23 00:01	1
Trichloroethene	8.1		0.50	0.16	ug/L			06/15/23 00:01	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			06/15/23 00:01	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			06/15/23 00:01	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			06/15/23 00:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		75 - 126			-		06/15/23 00:01	1
4-Bromofluorobenzene (Surr)	102		72 - 124					06/15/23 00:01	1
Dibromofluoromethane (Surr)	97		75 - 120					06/15/23 00:01	1
Toluene-d8 (Surr)	94		75 - 120					06/15/23 00:01	1

Method: SW846 8270D \$	SIM ID - Semivolat	tile Organi	c Compound	s (GC/N	IS SIM /	Isotop	e Dilution)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	<0.12		0.24	0.12	ug/L		06/12/23 14:42	06/13/23 22:48	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	38		15 - 110				06/12/23 14:42	06/13/23 22:48	1

3

5

7

9

10

12

1 A

15

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071

Client Sample ID: GPW-10 Lab Sample

Date Collected: 06/06/23 14:30 Date Received: 06/08/23 09:50

Lab Sam	ple ID:	500-23	34956-3
---------	---------	--------	---------

Matrix: Ground Water

Job ID: 500-234956-1

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			06/15/23 00:25	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			06/15/23 00:25	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			06/15/23 00:25	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			06/15/23 00:25	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			06/15/23 00:25	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			06/15/23 00:25	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			06/15/23 00:25	
,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			06/15/23 00:25	
I,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			06/15/23 00:25	
I,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			06/15/23 00:25	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			06/15/23 00:25	
I,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			06/15/23 00:25	
,2-Dibromoethane (EDB)	<0.39	1.0		ug/L			06/15/23 00:25	
,2-Dichlorobenzene	<0.33	1.0		ug/L			06/15/23 00:25	
,2-Dichloroethane	<0.39	1.0		ug/L			06/15/23 00:25	
,2-Dichloropropane	<0.43	1.0		ug/L			06/15/23 00:25	
,3,5-Trimethylbenzene	<0.25	1.0		ug/L			06/15/23 00:25	
,3-Dichlorobenzene	<0.40	1.0		ug/L			06/15/23 00:25	
,3-Dichloropropane	<0.36	1.0		ug/L			06/15/23 00:25	
,4-Dichlorobenzene	<0.36	1.0		ug/L			06/15/23 00:25	
,4-Dichloropropane	<0.44	1.0		ug/L			06/15/23 00:25	
-Chlorotoluene	<0.31	1.0		ug/L			06/15/23 00:25	
-Chlorotoluene	<0.35	1.0		ug/L			06/15/23 00:25	
Benzene	<0.35	0.50		Ü			06/15/23 00:25	
Bromobenzene	<0.36	1.0		ug/L ug/L			06/15/23 00:25	
Bromochloromethane	<0.43	1.0		ug/L ug/L			06/15/23 00:25	
Bromodichloromethane	<0.43	1.0		ug/L ug/L			06/15/23 00:25	
Bromoform	<0.48	1.0		ug/L			06/15/23 00:25	
Bromomethane	<0.80	3.0		ug/L			06/15/23 00:25	
Carbon tetrachloride	<0.38	1.0		ug/L			06/15/23 00:25	
Chlorobenzene	<0.39	1.0		ug/L			06/15/23 00:25	
Chlorodibromomethane	<0.49	1.0		ug/L			06/15/23 00:25	
Chloroethane	<0.51	1.0		ug/L			06/15/23 00:25	
Chloroform	<0.37	2.0		ug/L			06/15/23 00:25	
Chloromethane	<0.32	5.0		ug/L			06/15/23 00:25	
cis-1,2-Dichloroethene	0.47 J	1.0		ug/L			06/15/23 00:25	
sis-1,3-Dichloropropene	<0.42	1.0		ug/L			06/15/23 00:25	
Dibromomethane	<0.27	1.0		ug/L			06/15/23 00:25	
Dichlorodifluoromethane	<0.67	3.0		ug/L			06/15/23 00:25	
Dichlorofluoromethane	<0.38	1.0	0.38	ug/L			06/15/23 00:25	
thylbenzene	<0.18	0.50		ug/L			06/15/23 00:25	
lexachlorobutadiene	<0.45	1.0		ug/L			06/15/23 00:25	
sopropyl ether	<0.28	1.0		ug/L			06/15/23 00:25	
sopropylbenzene	<0.39	1.0	0.39	ug/L			06/15/23 00:25	
Methyl tert-butyl ether	<0.39	1.0	0.39	ug/L			06/15/23 00:25	
Methylene Chloride	<1.6	5.0	1.6	ug/L			06/15/23 00:25	
Naphthalene	<0.34	1.0		ug/L			06/15/23 00:25	
i-Butylbenzene	<0.39	1.0		ug/L			06/15/23 00:25	
N-Propylbenzene	<0.41	1.0		ug/L			06/15/23 00:25	

Eurofins Chicago

3

5

7

9

11

13

15

Client: American Engineering Testing Inc.

Project/Site: Laundrumat Property - P-0011071

Lab Sample ID: 500-234956-3

Matrix: Ground Water

Job ID: 500-234956-1

Client Sample ID: GPW-10 Date Collected: 06/06/23 14:30 Date Received: 06/08/23 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			06/15/23 00:25	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			06/15/23 00:25	1
Styrene	<0.39		1.0	0.39	ug/L			06/15/23 00:25	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			06/15/23 00:25	1
Tetrachloroethene	7.2		1.0	0.37	ug/L			06/15/23 00:25	1
Toluene	<0.15		0.50	0.15	ug/L			06/15/23 00:25	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			06/15/23 00:25	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			06/15/23 00:25	1
Trichloroethene	0.71		0.50	0.16	ug/L			06/15/23 00:25	1
Trichlorofluoromethane	< 0.43		1.0	0.43	ug/L			06/15/23 00:25	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			06/15/23 00:25	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			06/15/23 00:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	94		75 - 126			-		06/15/23 00:25	1
4-Bromofluorobenzene (Surr)	101		72 - 124					06/15/23 00:25	1
Dibromofluoromethane (Surr)	98		75 - 120					06/15/23 00:25	1
Toluene-d8 (Surr)	92		75 - 120					06/15/23 00:25	1

Method: SW846 8270D SIM ID	- Semivola	tile Organi	c Compound	s (GC/N	IS SIM /	Isotop	e Dilution)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	<0.13		0.25	0.13	ug/L		06/12/23 14:42	06/13/23 23:11	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	41		15 - 110				06/12/23 14:42	06/13/23 23:11	1

<u>ی</u>

5

7

0

10

12

4 4

15

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071

Client Sample ID: GPW-12

Lab Sample ID: 500-234956-4 Date Collected: 06/06/23 16:00 **Matrix: Ground Water**

Date Received: 06/08/23 09:50

Result Qu	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
<0.46	1.0	0.46	ug/L			06/15/23 00:50	
<0.38	1.0	0.38	ug/L			06/15/23 00:50	
<0.40	1.0	0.40	ug/L			06/15/23 00:50	
<0.35	1.0	0.35	ug/L			06/15/23 00:50	
<0.41	1.0	0.41	ug/L			06/15/23 00:50	
< 0.39	1.0	0.39	ug/L			06/15/23 00:50	
<0.30	1.0	0.30	ug/L			06/15/23 00:50	
< 0.46	1.0	0.46	ug/L			06/15/23 00:50	
< 0.41	2.0	0.41	ug/L			06/15/23 00:50	
<0.34	1.0	0.34	ug/L			06/15/23 00:50	
< 0.36	1.0	0.36	ug/L			06/15/23 00:50	
<2.0	5.0		-			06/15/23 00:50	
<0.39	1.0					06/15/23 00:50	
<0.33	1.0		-			06/15/23 00:50	
<0.39	1.0		-			06/15/23 00:50	
<0.43	1.0					06/15/23 00:50	
<0.25	1.0		-			06/15/23 00:50	
<0.40			-				
<0.36							
			-				
			_				
			_				
			•				
			_				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
			-				
< 0.34	1.0	0.34	ug/L			06/15/23 00:50	
< 0.39	1.0	0.39				06/15/23 00:50	
	<0.46 <0.38 <0.40 <0.35 <0.41 <0.39 <0.30 <0.46 <0.41 <0.34 <0.36 <2.0 <0.39 <0.33 <0.39 <0.43 <0.25 <0.40 <0.36 <0.36 <0.44 <0.31 <0.35 <0.15 <0.36 <0.44 <0.37 <0.48 <0.80 <0.38 <0.80 <0.38 <0.39 <0.49 <0.51 <0.37 <0.48 <0.80 <0.38 <0.39 <0.49 <0.51 <0.37 <0.38 <0.49 <0.51 <0.37 <0.38 <0.49 <0.51 <0.37 <0.38 <0.49 <0.51 <0.37 <0.38 <0.49 <0.51 <0.37 <0.38 <0.49 <0.51 <0.37 <0.39 <0.49 <0.51 <0.37 <0.39 <0.41 <0.42 <0.27 <0.67 <0.38 <0.18 <0.45 <0.28 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39 <0.39	<0.46	<0.46	<0.46	<0.46	<0.46	<0.46

Eurofins Chicago

Job ID: 500-234956-1

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071

Lab Sample ID: 500-234956-4

Matrix: Ground Water

Job ID: 500-234956-1

Date Collected: 06/06/23 16:00 Date Received: 06/08/23 09:50

Client Sample ID: GPW-12

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			06/15/23 00:50	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			06/15/23 00:50	1
Styrene	<0.39		1.0	0.39	ug/L			06/15/23 00:50	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			06/15/23 00:50	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			06/15/23 00:50	1
Toluene	<0.15		0.50	0.15	ug/L			06/15/23 00:50	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			06/15/23 00:50	1
trans-1,3-Dichloropropene	< 0.36		1.0	0.36	ug/L			06/15/23 00:50	1
Trichloroethene	<0.16		0.50	0.16	ug/L			06/15/23 00:50	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			06/15/23 00:50	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			06/15/23 00:50	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			06/15/23 00:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		75 - 126			-		06/15/23 00:50	1
4-Bromofluorobenzene (Surr)	104		72 - 124					06/15/23 00:50	1
Dibromofluoromethane (Surr)	97		75 - 120					06/15/23 00:50	1
Toluene-d8 (Surr)	95		75 - 120					06/15/23 00:50	1

Method: SW846 8270D	SIM ID - Semivolat	ile Organi	c Compound	ls (GC/N	IS SIM /	Isotop	e Dilution)		
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	<0.14		0.28	0.14	ug/L		06/12/23 14:42	06/13/23 23:34	1
Isotope Dilution	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Dioxane-d8	39		<u> 15 - 110</u>				06/12/23 14:42	06/13/23 23:34	1

Eurofins Chicago

3

_

7

9

11

12

14

15

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071

Lab Sample ID: 500-234956-5

Matrix: Water

Job ID: 500-234956-1

Client Sample ID: Trip Blank Date Collected: 06/06/23 00:00 Date Received: 06/08/23 09:50

Analyte 1,1,1,2-Tetrachloroethane	Result Qualifier							
1 1 1 2-Tetrachloroethane	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2 100000000000000	<0.46	1.0	0.46	ug/L			06/14/23 23:12	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			06/14/23 23:12	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			06/14/23 23:12	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			06/14/23 23:12	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			06/14/23 23:12	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			06/14/23 23:12	1
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			06/14/23 23:12	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			06/14/23 23:12	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			06/14/23 23:12	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			06/14/23 23:12	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			06/14/23 23:12	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			06/14/23 23:12	1
1,2-Dibromoethane (EDB)	<0.39	1.0	0.39	ug/L			06/14/23 23:12	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	_			06/14/23 23:12	1
1,2-Dichloroethane	<0.39	1.0		ug/L			06/14/23 23:12	1
1,2-Dichloropropane	<0.43	1.0		ug/L			06/14/23 23:12	1
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			06/14/23 23:12	1
1,3-Dichlorobenzene	<0.40	1.0		ug/L			06/14/23 23:12	1
1,3-Dichloropropane	<0.36	1.0		ug/L			06/14/23 23:12	1
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			06/14/23 23:12	1
2,2-Dichloropropane	<0.44	1.0	0.44	_			06/14/23 23:12	1
2-Chlorotoluene	<0.31	1.0		ug/L			06/14/23 23:12	
4-Chlorotoluene	<0.35	1.0	0.35				06/14/23 23:12	1
Benzene	<0.15	0.50		ug/L			06/14/23 23:12	1
Bromobenzene	<0.36	1.0		ug/L			06/14/23 23:12	
Bromochloromethane	<0.43	1.0	0.43	_			06/14/23 23:12	1
Bromodichloromethane	<0.37	1.0	0.37	-			06/14/23 23:12	1
Bromoform	<0.48	1.0		ug/L			06/14/23 23:12	1
Bromomethane	<0.80	3.0		ug/L			06/14/23 23:12	1
Carbon tetrachloride	<0.38	1.0		ug/L			06/14/23 23:12	1
Chlorobenzene	<0.39	1.0		ug/L			06/14/23 23:12	1
Chlorodibromomethane	<0.49	1.0	0.49	_			06/14/23 23:12	1
Chloroethane	<0.51	1.0	0.51	-			06/14/23 23:12	1
Chloroform	<0.37	2.0		ug/L			06/14/23 23:12	
Chloromethane	<0.32	5.0	0.32	-			06/14/23 23:12	1
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			06/14/23 23:12	1
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			06/14/23 23:12	
Dibromomethane	<0.27	1.0		ug/L			06/14/23 23:12	1
Dichlorodifluoromethane	<0.67	3.0		ug/L			06/14/23 23:12	1
Dichlorofluoromethane	<0.38	1.0		ug/L			06/14/23 23:12	·
Ethylbenzene	<0.18	0.50		ug/L			06/14/23 23:12	1
Hexachlorobutadiene	<0.45	1.0		ug/L			06/14/23 23:12	1
Isopropyl ether	<0.28	1.0		ug/L			06/14/23 23:12	
Isopropylbenzene	<0.39	1.0		ug/L			06/14/23 23:12	1
Methyl tert-butyl ether	<0.39	1.0		ug/L			06/14/23 23:12	1
Methylene Chloride	<1.6	5.0		ug/L			06/14/23 23:12	
Naphthalene	<0.34	1.0		ug/L ug/L			06/14/23 23:12	1
n-Butylbenzene	<0.39	1.0		ug/L ug/L			06/14/23 23:12	1
N-Propylbenzene	<0.41	1.0		ug/L ug/L			06/14/23 23:12	1

Eurofins Chicago

3

5

9

11

13

. .

Job ID: 500-234956-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundrumat Property - P-0011071

Client Sample ID: Trip Blank

Date Collected: 06/06/23 00:00 Date Received: 06/08/23 09:50

Lab Sample ID: 500-234956-5 **Matrix: Water**

Method: SW846 8260D - Volatile Organic Compounds by GC/MS (Continued) Result Qualifier MDL Unit D Dil Fac Analyte Prepared Analyzed 0.36 ug/L p-Isopropyltoluene <0.36 1.0 06/14/23 23:12 sec-Butylbenzene <0.40 1.0 0.40 ug/L 06/14/23 23:12 Styrene < 0.39 1.0 0.39 ug/L 06/14/23 23:12 tert-Butylbenzene < 0.40 1.0 0.40 ug/L 06/14/23 23:12 Tetrachloroethene < 0.37 1.0 0.37 ug/L 06/14/23 23:12 Toluene 0.50 < 0.15 0.15 ug/L 06/14/23 23:12 trans-1,2-Dichloroethene < 0.35 1.0 0.35 ug/L 06/14/23 23:12 trans-1,3-Dichloropropene < 0.36 1.0 0.36 ug/L 06/14/23 23:12 Trichloroethene <0.16 0.50 0.16 ug/L 06/14/23 23:12 Trichlorofluoromethane < 0.43 1.0 0.43 ug/L 06/14/23 23:12 Vinyl chloride < 0.20 1.0 0.20 ug/L 06/14/23 23:12 06/14/23 23:12 Xylenes, Total < 0.22 1.0 0.22 ug/L Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1,2-Dichloroethane-d4 (Surr) 95 75 - 126 06/14/23 23:12 4-Bromofluorobenzene (Surr) 102 72 - 124 06/14/23 23:12 Dibromofluoromethane (Surr) 96 75 - 120 06/14/23 23:12 Toluene-d8 (Surr) 93 75 - 120 06/14/23 23:12

Eurofins Chicago

Definitions/Glossary

Client: American Engineering Testing Inc. Job ID: 500-234956-1

Project/Site: Laundrumat Property - P-0011071

Qualifiers

GC/MS VOA Qualifier **Qualifier Description**

Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery **CFL** Contains Free Liquid CFU Colony Forming Unit CNF Contains No Free Liquid

Duplicate Error Ratio (normalized absolute difference) **DER**

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

Estimated Detection Limit (Dioxin) **EDL** LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit MLMinimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

QC Association Summary

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071 Job ID: 500-234956-1

GC/MS VOA

Analysis Batch: 718619

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-234956-1	GPW-8	Total/NA	Ground Water	8260D	
500-234956-2	GPW-9	Total/NA	Ground Water	8260D	
500-234956-3	GPW-10	Total/NA	Ground Water	8260D	
500-234956-4	GPW-12	Total/NA	Ground Water	8260D	
500-234956-5	Trip Blank	Total/NA	Water	8260D	
MB 500-718619/6	Method Blank	Total/NA	Water	8260D	
LCS 500-718619/4	Lab Control Sample	Total/NA	Water	8260D	

GC/MS Semi VOA

Prep Batch: 672786

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-234956-1	GPW-8	Total/NA	Ground Water	3510C	
500-234956-2	GPW-9	Total/NA	Ground Water	3510C	
500-234956-3	GPW-10	Total/NA	Ground Water	3510C	
500-234956-4	GPW-12	Total/NA	Ground Water	3510C	
MB 480-672786/1-A	Method Blank	Total/NA	Water	3510C	
LCS 480-672786/2-A	Lab Control Sample	Total/NA	Water	3510C	

Analysis Batch: 672885

Lab Sample ID 500-234956-1	Client Sample ID GPW-8	Prep Type Total/NA	Matrix Ground Water	Method 8270D SIM ID	Prep Batch 672786
500-234956-2				8270D SIM ID	
	GPW-9	Total/NA	Ground Water		672786
500-234956-3	GPW-10	Total/NA	Ground Water	8270D SIM ID	672786
500-234956-4	GPW-12	Total/NA	Ground Water	8270D SIM ID	672786
MB 480-672786/1-A	Method Blank	Total/NA	Water	8270D SIM ID	672786
LCS 480-672786/2-A	Lab Control Sample	Total/NA	Water	8270D SIM ID	672786

6

Q

9

10

12

13

14

Surrogate Summary

Client: American Engineering Testing Inc.

Job ID: 500-234956-1

Project/Site: Laundrumat Property - P-0011071

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Ground Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)
500-234956-1	GPW-8	98	102	98	92
500-234956-2	GPW-9	95	102	97	94
500-234956-3	GPW-10	94	101	98	92
500-234956-4	GPW-12	96	104	97	95

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)
500-234956-5	Trip Blank	95	102	96	93
LCS 500-718619/4	Lab Control Sample	92	100	98	94
MB 500-718619/6	Method Blank	95	101	97	94

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Client: American Engineering Testing Inc.

Project/Site: Laundrumat Property - P-0011071

Job ID: 500-234956-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 500-718619/6

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 718619	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			06/14/23 22:48	•
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			06/14/23 22:48	•
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			06/14/23 22:48	•
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			06/14/23 22:48	
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			06/14/23 22:48	•
1,1-Dichloroethene	< 0.39		1.0	0.39	ug/L			06/14/23 22:48	•
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L			06/14/23 22:48	
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			06/14/23 22:48	•
1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/L			06/14/23 22:48	
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			06/14/23 22:48	
1,2,4-Trimethylbenzene	< 0.36		1.0	0.36	ug/L			06/14/23 22:48	
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			06/14/23 22:48	
1,2-Dibromoethane (EDB)	<0.39		1.0	0.39	ug/L			06/14/23 22:48	
1,2-Dichlorobenzene	< 0.33		1.0	0.33	-			06/14/23 22:48	
1,2-Dichloroethane	< 0.39		1.0	0.39	-			06/14/23 22:48	
1,2-Dichloropropane	<0.43		1.0	0.43	ug/L			06/14/23 22:48	
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	-			06/14/23 22:48	
1,3-Dichlorobenzene	<0.40		1.0	0.40	-			06/14/23 22:48	
1,3-Dichloropropane	<0.36		1.0	0.36				06/14/23 22:48	
1,4-Dichlorobenzene	<0.36		1.0	0.36	-			06/14/23 22:48	
2,2-Dichloropropane	<0.44		1.0	0.44	-			06/14/23 22:48	
2-Chlorotoluene	<0.31		1.0	0.31				06/14/23 22:48	,
4-Chlorotoluene	<0.35		1.0	0.35				06/14/23 22:48	
Benzene	<0.15		0.50	0.15	-			06/14/23 22:48	
Bromobenzene	<0.36		1.0	0.36				06/14/23 22:48	,
Bromochloromethane	<0.43		1.0	0.43	-			06/14/23 22:48	
Bromodichloromethane	<0.37		1.0	0.37	-			06/14/23 22:48	
Bromoform	<0.48		1.0	0.48				06/14/23 22:48	
Bromomethane	<0.80		3.0	0.80	-			06/14/23 22:48	
Carbon tetrachloride	<0.38		1.0	0.38	-			06/14/23 22:48	
Chlorobenzene	<0.39		1.0	0.39				06/14/23 22:48	,
Chlorodibromomethane	<0.49		1.0	0.49	-			06/14/23 22:48	,
Chloroethane	<0.51		1.0	0.51				06/14/23 22:48	
Chloroform	<0.37		2.0		ug/L			06/14/23 22:48	
Chloromethane	<0.32		5.0	0.32	-			06/14/23 22:48	
cis-1,2-Dichloroethene	<0.41		1.0	0.41	-			06/14/23 22:48	,
cis-1,3-Dichloropropene	<0.41		1.0		ug/L			06/14/23 22:48	
Dibromomethane	<0.42		1.0	0.42				06/14/23 22:48	,
Dichlorodifluoromethane	<0.27		3.0	0.27	-			06/14/23 22:48	,
Dichlorofluoromethane	<0.38		1.0	0.07				06/14/23 22:48	,
Ethylbenzene	<0.38		0.50					06/14/23 22:48	,
•				0.18	-				,
Hexachlorobutadiene	<0.45		1.0	0.45				06/14/23 22:48	
Isopropyl ether	<0.28		1.0	0.28				06/14/23 22:48	
Isopropylbenzene Methyl tort butyl other	<0.39		1.0	0.39	-			06/14/23 22:48	,
Methylene Chleride	<0.39		1.0	0.39				06/14/23 22:48	
Methylene Chloride	2.20	J	5.0		ug/L			06/14/23 22:48	
Naphthalene n-Butylbenzene	<0.34 <0.39		1.0	0.34	ug/L ug/L			06/14/23 22:48 06/14/23 22:48	•

Eurofins Chicago

3

5

7

9

11

16

4

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071 Job ID: 500-234956-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 500-718619/6

Matrix: Water

Analysis Batch: 718619

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL **MDL** Unit Prepared Analyzed Dil Fac 06/14/23 22:48 N-Propylbenzene <0.41 1.0 0.41 ug/L p-Isopropyltoluene < 0.36 1.0 0.36 ug/L 06/14/23 22:48 sec-Butylbenzene < 0.40 1.0 0.40 ug/L 06/14/23 22:48 Styrene < 0.39 1.0 0.39 ug/L 06/14/23 22:48 06/14/23 22:48 tert-Butylbenzene < 0.40 1.0 0.40 ug/L Tetrachloroethene < 0.37 1.0 0.37 ug/L 06/14/23 22:48 Toluene < 0.15 0.50 0.15 ug/L 06/14/23 22:48 trans-1,2-Dichloroethene < 0.35 1.0 0.35 ug/L 06/14/23 22:48 trans-1,3-Dichloropropene < 0.36 1.0 0.36 ug/L 06/14/23 22:48 Trichloroethene < 0.16 0.50 0.16 ug/L 06/14/23 22:48 Trichlorofluoromethane < 0.43 06/14/23 22:48 1.0 0.43 ug/L Vinyl chloride <0.20 1.0 0.20 ug/L 06/14/23 22:48

MB MB

< 0.22

Surrogate	%Recovery	Qualifier Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95	75 - 12	5	06/14/23 22:48	1
4-Bromofluorobenzene (Surr)	101	72 - 12	1	06/14/23 22:48	1
Dibromofluoromethane (Surr)	97	75 - 12)	06/14/23 22:48	1
Toluene-d8 (Surr)	94	75 - 12)	06/14/23 22:48	1

1.0

0.22 ug/L

Lab Sample ID: LCS 500-718619/4

Matrix: Water

Xylenes, Total

Analysis Batch: 718619

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

06/14/23 22:48

Analysis batch: 710019								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	42.6		ug/L		85	70 - 125	
1,1,1-Trichloroethane	50.0	47.5		ug/L		95	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	41.7		ug/L		83	62 - 140	
1,1,2-Trichloroethane	50.0	41.3		ug/L		83	71 - 130	
1,1-Dichloroethane	50.0	49.2		ug/L		98	70 - 125	
1,1-Dichloroethene	50.0	47.9		ug/L		96	67 - 122	
1,1-Dichloropropene	50.0	49.8		ug/L		100	70 - 121	
1,2,3-Trichlorobenzene	50.0	39.0		ug/L		78	51 - 145	
1,2,3-Trichloropropane	50.0	43.3		ug/L		87	50 - 133	
1,2,4-Trichlorobenzene	50.0	41.6		ug/L		83	57 - 137	
1,2,4-Trimethylbenzene	50.0	46.8		ug/L		94	70 - 123	
1,2-Dibromo-3-Chloropropane	50.0	34.1		ug/L		68	56 - 123	
1,2-Dibromoethane (EDB)	50.0	43.8		ug/L		88	70 - 125	
1,2-Dichlorobenzene	50.0	43.3		ug/L		87	70 - 125	
1,2-Dichloroethane	50.0	43.6		ug/L		87	68 - 127	
1,2-Dichloropropane	50.0	48.4		ug/L		97	67 - 130	
1,3,5-Trimethylbenzene	50.0	47.8		ug/L		96	70 - 123	
1,3-Dichlorobenzene	50.0	45.1		ug/L		90	70 - 125	
1,3-Dichloropropane	50.0	45.6		ug/L		91	62 - 136	
1,4-Dichlorobenzene	50.0	43.5		ug/L		87	70 - 120	
2,2-Dichloropropane	50.0	48.9		ug/L		98	58 - 139	
2-Chlorotoluene	50.0	46.1		ug/L		92	70 - 125	
4-Chlorotoluene	50.0	45.7		ug/L		91	68 - 124	

Eurofins Chicago

Spike

LCS LCS

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071 Job ID: 500-234956-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

%Recovery Qualifier

92

100

98

94

Lab Sample ID: LCS 500-718619/4

Matrix: Water

Surrogate

Toluene-d8 (Surr)

1,2-Dichloroethane-d4 (Surr)

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analysis Batch: 718619

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

%Rec

Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits
Benzene	50.0	47.7		ug/L	95	70 - 120
Bromobenzene	50.0	45.7		ug/L	91	70 - 122
Bromochloromethane	50.0	43.5		ug/L	87	65 - 122
Bromodichloromethane	50.0	41.7		ug/L	83	69 - 120
Bromoform	50.0	36.3		ug/L	73	56 - 132
Bromomethane	50.0	49.2		ug/L	98	40 - 152
Carbon tetrachloride	50.0	46.0		ug/L	92	59 - 133
Chlorobenzene	50.0	46.7		ug/L	93	70 - 120
Chlorodibromomethane	50.0	37.3		ug/L	75	68 - 125
Chloroethane	50.0	55.5		ug/L	111	48 - 136
Chloroform	50.0	46.3		ug/L	93	70 - 120
Chloromethane	50.0	50.4		ug/L	101	56 - 152
cis-1,2-Dichloroethene	50.0	46.8		ug/L	94	70 - 125
cis-1,3-Dichloropropene	50.0	42.8		ug/L	86	64 - 127
Dibromomethane	50.0	42.1		ug/L	84	70 - 120
Dichlorodifluoromethane	50.0	50.9		ug/L	102	40 - 159
Dichlorofluoromethane	50.0	53.2		ug/L	106	69 - 124
Ethylbenzene	50.0	45.8		ug/L	92	70 - 123
Hexachlorobutadiene	50.0	49.5		ug/L	99	51 - 150
Isopropylbenzene	50.0	48.1		ug/L	96	70 - 126
Methyl tert-butyl ether	50.0	48.9		ug/L	98	55 - 123
Methylene Chloride	50.0	47.6		ug/L	95	69 - 125
Naphthalene	50.0	34.2		ug/L	68	53 - 144
n-Butylbenzene	50.0	45.7		ug/L	91	68 - 125
N-Propylbenzene	50.0	46.2		ug/L	92	69 - 127
p-Isopropyltoluene	50.0	46.6		ug/L	93	70 - 125
sec-Butylbenzene	50.0	48.0		ug/L	96	70 - 123
Styrene	50.0	46.4		ug/L	93	70 - 120
tert-Butylbenzene	50.0	46.9		ug/L	94	70 - 121
Tetrachloroethene	50.0	49.7		ug/L	99	70 - 128
Toluene	50.0	42.7		ug/L	85	70 - 125
trans-1,2-Dichloroethene	50.0	47.1		ug/L	94	70 - 125
trans-1,3-Dichloropropene	50.0	40.8		ug/L	82	62 - 128
Trichloroethene	50.0	46.8		ug/L	94	70 - 125
Trichlorofluoromethane	50.0	50.7		ug/L	101	55 - 128
Vinyl chloride	50.0	56.2		ug/L	112	64 - 126
Xylenes, Total	100	91.7		ug/L	92	70 - 125
L	CS LCS					

Eurofins Chicago

Limits 75 - 126

72 - 124

75 - 120

75 - 120

Client: American Engineering Testing Inc.

Project/Site: Laundrumat Property - P-0011071

Job ID: 500-234956-1

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Lab Sample ID: MB 480-6727 Matrix: Water Analysis Batch: 672885	786/1-A					·	le ID: Method Prep Type: To Prep Batch:	otal/NA
	MB	MB						
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,4-Dioxane	<0.10		0.20	0.10 ug/L		06/12/23 14:42	06/13/23 15:37	1
	MB	MB						
Isotope Dilution	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

_1,4-Dioxane-d8	34	15 - 1	10			06/1	2/23 14:42	06/13/23 15.	:37 1
Lab Sample ID: LCS 480-6 Matrix: Water Analysis Batch: 672885	72786/2-A				Clie	nt Sar	mple ID:	Lab Contro Prep Type Prep Batc	: Total/NA
		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,4-Dioxane		2.00	2.25		ug/L		113	40 - 140	
	LCS LCS								
Isotope Dilution	%Recovery Qualified	r Limits							

15 - 110

30

1,4-Dioxane-d8

3

4

O

9

10

12

13

15

Job ID: 500-234956-1

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071

Client Sample ID: GPW-8

Lab Sample ID: 500-234956-1 Date Collected: 06/06/23 10:05 Date Received: 06/08/23 09:50

Matrix: Ground Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	718619	EA	EET CHI	06/14/23 23:37
Total/NA	Prep	3510C			672786	LSC	EET BUF	06/12/23 14:42
Total/NA	Analysis	8270D SIM ID		1	672885	EMD	EET BUF	06/13/23 22:25

Client Sample ID: GPW-9 Lab Sample ID: 500-234956-2

Date Collected: 06/06/23 12:40 **Matrix: Ground Water** Date Received: 06/08/23 09:50

Batch **Batch** Dilution **Batch** Prepared Factor or Analyzed **Prep Type** Type Method Run Number Analyst Lab 06/15/23 00:01 Total/NA Analysis 8260D 718619 EA EET CHI Total/NA 3510C 672786 LSC **EET BUF** 06/12/23 14:42 Prep Total/NA Analysis 672885 EMD **EET BUF** 06/13/23 22:48 8270D SIM ID 1

Client Sample ID: GPW-10 Lab Sample ID: 500-234956-3

Date Collected: 06/06/23 14:30 **Matrix: Ground Water**

Date Received: 06/08/23 09:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type Total/NA	Type Analysis	Method 8260D	Run	Factor 1	Number 718619	Analyst EA	EET CHI	or Analyzed 06/15/23 00:25
Total/NA Total/NA	Prep Analysis	3510C 8270D SIM ID		1	672786 672885		EET BUF EET BUF	06/12/23 14:42 06/13/23 23:11

Lab Sample ID: 500-234956-4 **Client Sample ID: GPW-12 Matrix: Ground Water**

Date Collected: 06/06/23 16:00 Date Received: 06/08/23 09:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	718619	EA	EET CHI	06/15/23 00:50
Total/NA	Prep	3510C			672786	LSC	EET BUF	06/12/23 14:42
Total/NA	Analysis	8270D SIM ID		1	672885	EMD	EET BUF	06/13/23 23:34

Client Sample ID: Trip Blank Lab Sample ID: 500-234956-5 Date Collected: 06/06/23 00:00

Date Received: 06/08/23 09:50

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Analysis	8260D		1	718619	EA	EET CHI	06/14/23 23:12	

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600 EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Eurofins Chicago

Matrix: Water

Accreditation/Certification Summary

Client: American Engineering Testing Inc. Project/Site: Laundrumat Property - P-0011071 Job ID: 500-234956-1

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	999580010	08-31-23

Laboratory: Eurofins Buffalo

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Arkansas DEQ	State	88-0686	07-06-22 *
Connecticut	State	PH-0568	03-31-24
Florida	NELAP	E87672	06-30-23
Georgia	State	10026 (NY)	03-31-24
Georgia	State Program	N/A	03-31-09 *
Georgia (DW)	State	956	03-31-23 *
Illinois	NELAP	200003	09-30-23
lowa	State	374	03-01-23 *
Iowa	State Program	374	03-01-09 *
Kansas	NELAP	E-10187	02-01-24
Kentucky (DW)	State	90029	01-01-24
Kentucky (UST)	State	30	04-01-23 *
Kentucky (WW)	State	KY90029	12-31-23
Louisiana	NELAP	02031	06-30-23
Louisiana (All)	NELAP	02031	06-30-23
Maine	State	NY00044	12-04-24
Maryland	State	294	03-31-23 *
Massachusetts	State	M-NY044	06-30-23
Michigan	State	9937	03-31-23 *
Michigan	State Program	9937	04-01-09 *
New Hampshire	NELAP	2973	09-11-19 *
New Hampshire	NELAP	2337	11-17-23
New Jersey	NELAP	NY455	06-30-23
New York	NELAP	10026	03-31-24
Pennsylvania	NELAP	68-00281	07-31-23
Rhode Island	State	LAO00328	12-30-23
Texas	NELAP	T104704412-18-10	07-31-23
USDA	US Federal Programs	P330-18-00039	03-25-24
Virginia	NELAP	460185	09-14-23
Washington	State	C784	02-10-23 *
Wisconsin	State	998310390	08-31-23

^{*} Accreditation/Certification renewal pending - accreditation/certification considered valid.

Chain of Custody Record

523109

🐫 eurofins

Environment Testing TestAmerica

Address	Pogulatory Program:	7			
Client Contact	Regulatory Program:		Site Contact	In. (2)	COC No
	Project Manager M. Neal Tel/Email: Maeal (A ferma	at com		Date: 6-6-23 Carrier	of COCs
Company Name 4 5 7 Address	Analysis Turnaround	Time	Lab Collact 3 An Ele	Carrier	
City/State/Zip CF, WF 54729		KING DAVS	1 2		Sampler M I Char N. Neg For Lab Use Only
Phone 715 84/5045	TAT if different from Below	MAING DATS	ÎZ ÎS		Walk-in Client
Fax	2 weeks				Lab Sampling
Project Name Laun drumat Property	1 week				
Site MENUMBIEL WIT	2 days			R-16	Job / SDG No
PO# 18174528	1 day		S/MSD CS DSS/		500-1349510
4ET # P-0011071	Sample Sample Type		Filtered Sample (Y/N) Perform MS/MSD (Y/N) VOCS VH-D8370511	500-234956 COC	200 13 14
Sample Identification	Date Time G=Grab)	# of Matrix Cont.	Filte Perfe		Sample Specific Notes
6PW-8	6-13 10 05 G	6W 50	ww X X		
GPW-9	1 3'40 G	64 5	NXX		
6 P W-10	14:30 6	6N 5	KKM		
6PW=11-					110 Sample
GPW-12	16:00 6	GN 5	MXX		- No Sample - No Sample
GPW-13 -					- No Sangle
Tip Blank	۷ – –	w 1	MUX		
					·
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=NaOH; 6= Other				
Possible Hazard Identification Are any samples from a listed EPA Hazardous Waste? Please Comments Section if the lab is to dispose of the sample	e List any EPA Waste Codes for t	ne sample in the	Sample Disposal (A fee may I	pe assessed if samples are retaine	ed longer than 1 month)
Non-Hazard Flammable Skin Irritant	Poison B Unkno	wn	Return to Client	Disposal by Lab Archive for	Months
Special Instructions/QC Requirements & Comments:					And the second s
			10 L T 790	2.8+1.7	
	Custody Seal No	Data (Time)	Cooler Temp (°C) C		Therm ID No
Relinquished by A Mal	Company AET	Date/Time 2 3 /3,0	Received by	Company	Date/Time
Ré inquished by	Company	Date/Time	Received by	Company	Date/Time
heri by	Company	Date/Time	Received in Laboratory by	Company EEIA	Date/Time 618123 0950

QRIGIN ID:JOTA (708) 534-5200 MICHAEL NEAL AMERICAN ENGINEERING TESTING INC. 1937 CTY HWY 00

SHIP DATE: 26MAY22 ACTWGT: 20.00 LB MAN CAD: 033264/CAFE3512

CHIPPEWA FALLS, WI 54729 UNITED STATES US

SAMPLE LOGIN **TESTAMERICA LABS 2417 BOND ST**

500-234956 Waybi

UNIVERSITY PARK IL 60484

(708) 534 - 5200

RMA: || || || ||

FedEx Express

FedEx TRK# 0221 1893 4457 7720

THU - 08 JUN 10:30A PRIORITY OVERNIGHT

NX JOTA

60484 IL-US ORD

Page 28 of 32

6/16/2023

2417 Bond Street

2417 Bond Street University Park, IL 60484 Phone: 708-534-5200 Fax: 708-534-5211	J	Chain o	of Cust	n of Custody Record	cord				💸 eurofins	Environment Testing
Client Information (Sub Contract Lab)	Sampler:			Lab PM Fredric	Lab PM: Fredrick, Sandie		Carrier Tracking No(s)	No(s):	COC No: 500-174702 1	
Client Contact: Shipping/Receiving	Phone:			E-Mail:	a Fredrick	E-Mail: Sandra Fradrick@at aurofineus com	State of Origin:		Page:	
Company: Eurofins Environment Testing Northeast,				V 0.	ccreditations	Accreditations Required (See note):	WISCOLISIT		Job #:	
Address: 10 Hazelwood Drive, ,	Due Date Requested: 6/21/2023	gg:					Application of the state of the		500-234956-1 Preservation Codes	des:
City: Amherst	TAT Requested (days):	ays):				Aldiyas	ned nested		A - HCL B - NaOH	
State, Zip: NY, 14228-2298	1								C - Zn Acetate D - Nitric Acid F - NaHSO4	U - ASNAU2 P - Na2O4S Q - Na2SO3
Phone: 716-691-2600(Tel) 716-691-7991(Fax)	# Od								F - MeOH G - Amchlor	
Email:	:# OM				(0)					
Project Name: Laundrumat Property - P-0011071	Project #: 50007204				10 88				tainers K-EDTA L-EDA	W - pH 4-5 Y - Trizma 7 other (capacity)
Site:	SSOW#:				A) as				f con	z - otner (specify)
		Same	Sample Type	(W=water, S=solid, O=waste/oil,	S henetis t BM/SM mno SM_MIS_C				Mumber o	
Sample Identification - Client ID (Lab ID)	Sample Date	Time	G=grab)		Perl					Special Instructions/Note:
	\bigvee	X	Preservation Code:	on Code:	X					
GPW-8 (500-234956-1)	6/6/23	10:05 Central		Water	×				2	
GPW-9 (500-234956-2)	6/6/23	12:40 Central		Water	×				2	
GPW-10 (500-234956-3)	6/6/23	14:30 Central		Water	×				2	
GPW-12 (500-234956-4)	6/6/23	16:00 Central		Water	×				2	
Note: Since laboratory accreditations are subject to change, Eurofins Chicago places the ownership of method, analyte & accreditation compliance upon our s maintain accreditation in the State of Origin listed above for analysis/tests/markx being analyzed, the samples must be shipped back to the Eurofins Chicago is attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Chicago.	places the ownership o rix being analyzed, the s n the signed Chain of C	f method, analy amples must b ustody attesting	ne & accreditati e shipped back to said complie	on compliance ut to the Eurofins ance to Eurofins	pon our sub Chicago labo Chicago.	analys & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody. If the laboratory does not currently nust be shipped back to the Eurofins Chicago laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Chicago.	sample shipment is forw	arded under chain-c	of-custody. If the laboration status should be bro	ory does not currently ught to Eurofins Chicago
Possible Hazard Identification					Sample	Sample Disposal (A fee may be assessed if samples	be assessed if s	amples are ret	are retained longer than 1 month)	1 month)
Unconfirmed						Return To Client	Disposal By Lab	de de	Archive For	Months
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank:	able Rank:	2		Special	Special Instructions/QC Requirements:	1			
Empty Mr. Kellinguished by:	Ė	Date:			Time:		Method of	Method of Shipment:		
Reinquished by.	Date/Lime: U/B123		0001	Company of the Compan	Rece	Received by:		C-4.23	1000	Company
Polinouishad bu:	Cate/		5	Company	Rece	Received by:		Date/Time:		0
	Date/Time:		0	Company	Rece	Received by:		Date/Time:		Company
Custody Seals Infact: Custody Seal No.: △ Yes △ No					Coole	Cooler Temperature(s) ${}^{\circ}_{S}$ and Other Remarks:	ther Remarks:			
)				

AET Project No. P-0011071 Page D 62 of 156

Login Sample Receipt Checklist

Client: American Engineering Testing Inc.

Job Number: 500-234956-1

Login Number: 234956 List Source: Eurofins Chicago

List Number: 1

Creator: Hernandez, Stephanie

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.7
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

1

3

4

10

12

15

AET Project No. P-0011071 Page D 63 of 156

Login Sample Receipt Checklist

Client: American Engineering Testing Inc.

Job Number: 500-234956-1

Login Number: 234956
List Source: Eurofins Buffalo
List Number: 2
List Creation: 06/09/23 03:01 PM

Creator: Yeager, Brian A

Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.8 ICE #1
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	True	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

1

3

1

O

ر

10

12

13

15

Isotope Dilution Summary

Client: American Engineering Testing Inc.

Job ID: 500-234956-1

Project/Site: Laundrumat Property - P-0011071

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Prep Type: Total/NA **Matrix: Ground Water**

		DXE	ercent Isotope Dilution Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(15-110)	
500-234956-1	GPW-8	38	
500-234956-2	GPW-9	38	
500-234956-3	GPW-10	41	
500-234956-4	GPW-12	39	
Surrogate Legend			

Method: 8270D SIM ID - Semivolatile Organic Compounds (GC/MS SIM / Isotope Dilution)

Matrix: Water Prep Type: Total/NA

			Percent Isotope Dilution Recovery (Acceptance Limits)
		DXE	
Lab Sample ID	Client Sample ID	(15-110)	
LCS 480-672786/2-A	Lab Control Sample	30	
MB 480-672786/1-A	Method Blank	34	
Surrogate Legend			
DXE = 1.4-Dioxane-d8	1		

Eurofins Chicago

Environment Testing

REVIEWED

By mneal at 7:15 am, Dec 05, 2023

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Michael Neal American Engineering Testing Inc. 1837 Cty Hwy OO Chippewa Falls, Wisconsin 54729

Generated 11/2/2023 8:35:32 AM

JOB DESCRIPTION

Laundromat Property - P-0011071

JOB NUMBER

500-241480-1

Eurofins Chicago 2417 Bond Street University Park IL 60484 AET Project No. P-0011071 Page D 66 of 156

Eurofins Chicago

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

Results relate only to the items tested and the sample(s) as received by the laboratory. The results, detection limits (LOD) and Quantitation Limits (LOQ) have been adjusted for sample dilutions and/or solids content.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Jodie Bracken

Generated 11/2/2023 8:35:32 AM

Authorized for release by Jodie Bracken, Project Management Assistant II Jodie.Bracken@ET.EurofinsUS.com Designee for Sandie Fredrick, Project Manager II Sandra.Fredrick@et.eurofinsus.com (920)261-1660

3

4

၁ —

9

10

4.0

14

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Laboratory Job ID: 500-241480-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	18
QC Association	19
Surrogate Summary	20
QC Sample Results	21
Chronicle	24
Certification Summary	25
Chain of Custody	26
Receipt Checklists	27

9

4

9

10

12

13

14

Case Narrative

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-241480-1

Job ID: 500-241480-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-241480-1

Receipt

The samples were received on 10/24/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 4.2° C.

GC/MS VOA

Method 8260D: The method requirement for no headspace was not met. The following volatile samples were analyzed with headspace in the sample container(s): GPW-14 (500-241480-1) and Trip Blank (500-241480-5).

Method 8260D: The following sample(s) was collected in a properly preserved vial; however, the pH was outside the required criteria when verified by the laboratory. The sample was analyzed outside the 7-day holding time specified for unpreserved samples but within the 14-day holding time specified for preserved samples: GPW-14 (500-241480-1).

Method 8260D: The laboratory control sample (LCS) for analytical batch 500-739474 recovered outside control limits for the following analytes: Trichloroethene and Trichlorofluoromethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

2

3

4

5

6

0

10

12

13

14

Client Sample ID: GPW-14

Detection Summary

Client: American Engineering Test	ting Inc.
Project/Site: Laundromat Property	, D 0011071

Job ID: 500-241480-1

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-241480-1

No Detections.

Lab Sample ID: 500-241480-2 **Client Sample ID: GPW-15**

No Detections.

Lab Sample ID: 500-241480-3 **Client Sample ID: GPW-16**

No Detections.

Client Sample ID: GPW-17 Lab Sample ID: 500-241480-4

No Detections.

Lab Sample ID: 500-241480-5 **Client Sample ID: Trip Blank**

No Detections.

This Detection Summary does not include radiochemical test results.

Method Summary

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-241480-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CHI
5030B	Purge and Trap	SW846	EET CHI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

2

4

J

1

10

11

13

14

Sample Summary

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-241480-1

300-241460-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-241480-1	GPW-14	Water	10/19/23 12:20	10/24/23 09:50
500-241480-2	GPW-15	Water	10/19/23 16:00	10/24/23 09:50
500-241480-3	GPW-16	Water	10/19/23 13:45	10/24/23 09:50
500-241480-4	GPW-17	Water	10/19/23 15:40	10/24/23 09:50
500-241480-5	Trip Blank	Water	10/19/23 00:00	10/24/23 09:50

4

5

7

10

11

13

14

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: GPW-14

Lab Sample ID: 500-241480-1

Matrix: Water

Job ID: 500-241480-1

Date Collected: 10/19/23 12:20 Date Received: 10/24/23 09:50

Analyte	tile Organic Compounds Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L	— <u> </u>		10/30/23 17:55	
1,1,1-Trichloroethane	<0.38	1.0		ug/L			10/30/23 17:55	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	-			10/30/23 17:55	
1,1,2-Trichloroethane	<0.35	1.0		ug/L			10/30/23 17:55	
1,1-Dichloroethane	<0.41	1.0	0.41	-			10/30/23 17:55	
1.1-Dichloroethene	<0.39	1.0	0.39	_			10/30/23 17:55	
1,1-Dichloropropene	<0.30	1.0	0.30				10/30/23 17:55	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	-			10/30/23 17:55	
1,2,3-Trichloropropane	<0.41	2.0	0.41	-			10/30/23 17:55	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34				10/30/23 17:55	· · · · · · .
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	-			10/30/23 17:55	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			10/30/23 17:55	
1,2-Dibromoethane (EDB)	<0.39	1.0		ug/L			10/30/23 17:55	
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			10/30/23 17:55	
1,2-Dichloroethane	<0.39	1.0	0.39	_			10/30/23 17:55	
1,2-Dichloropropane	<0.43	1.0	0.43				10/30/23 17:55	
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			10/30/23 17:55	
1,3-Dichlorobenzene	<0.40	1.0	0.40	-			10/30/23 17:55	
1,3-Dichloropropane	<0.36	1.0		ug/L			10/30/23 17:55	· · · · · .
1,4-Dichlorobenzene	<0.36	1.0	0.36	-			10/30/23 17:55	
2,2-Dichloropropane	<0.44	5.0	0.44	_			10/30/23 17:55	
2-Chlorotoluene	<0.31	1.0	0.31				10/30/23 17:55	
4-Chlorotoluene	<0.35	1.0	0.35	_			10/30/23 17:55	
Benzene	<0.15	0.50	0.15	-			10/30/23 17:55	
Bromobenzene	<0.36	1.0		ug/L			10/30/23 17:55	· · · · · .
Bromochloromethane	<0.43	1.0	0.43	_			10/30/23 17:55	
Bromodichloromethane	<0.37	1.0	0.37	-			10/30/23 17:55	
Bromoform	<0.48	1.0		ug/L			10/30/23 17:55	
Bromomethane	<0.80	3.0	0.80	-			10/30/23 17:55	
Carbon tetrachloride	<0.38	1.0	0.38	-			10/30/23 17:55	
Chlorobenzene	<0.39	1.0		ug/L			10/30/23 17:55	
Chlorodibromomethane	<0.49	1.0	0.49	-			10/30/23 17:55	
Chloroethane	<0.51	5.0	0.51	-			10/30/23 17:55	
Chloroform	<0.37	2.0		ug/L			10/30/23 17:55	· · · · · · .
Chloromethane	<0.32	5.0	0.32	-			10/30/23 17:55	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			10/30/23 17:55	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			10/30/23 17:55	
Dibromomethane	<0.27	1.0		ug/L			10/30/23 17:55	
Dichlorodifluoromethane	<0.27	3.0		ug/L ug/L			10/30/23 17:55	
Dichlorofluoromethane	<0.38	1.0		ug/L ug/L			10/30/23 17:55	
Ethylbenzene	<0.18	0.50		ug/L			10/30/23 17:55	
Hexachlorobutadiene	<0.45	1.0		ug/L ug/L			10/30/23 17:55	
				ug/L				
Isopropyl ether Isopropylbenzene	<0.28 <0.39	1.0 1.0		ug/L ug/L			10/30/23 17:55 10/30/23 17:55	
Methyl tert-butyl ether	<0.39	1.0		ug/L ug/L			10/30/23 17:55	
Methylene Chloride								
•	<1.6 <0.34	5.0 1.0		ug/L			10/30/23 17:55	
Naphthalene n Rutylbonzono		1.0		ug/L			10/30/23 17:55	
n-Butylbenzene N-Propylbenzene	<0.39 <0.41	1.0	0.39	ug/L			10/30/23 17:55 10/30/23 17:55	· · · · · · · .

Eurofins Chicago

3

5

7

9

11

13

Job ID: 500-241480-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Client Sample ID: GPW-14 Lab Sample ID: 500-241480-1 Date Collected: 10/19/23 12:20

Matrix: Water

Date Received: 10/24/23 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			10/30/23 17:55	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 17:55	1
Styrene	<0.39		1.0	0.39	ug/L			10/30/23 17:55	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 17:55	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			10/30/23 17:55	1
Toluene	<0.15		0.50	0.15	ug/L			10/30/23 17:55	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			10/30/23 17:55	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			10/30/23 17:55	1
Trichloroethene	<0.16	*+	0.50	0.16	ug/L			10/30/23 17:55	1
Trichlorofluoromethane	<0.43	*+	1.0	0.43	ug/L			10/30/23 17:55	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/30/23 17:55	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			10/30/23 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	106		75 - 126			-		10/30/23 17:55	1
4-Bromofluorobenzene (Surr)	82		72 - 124					10/30/23 17:55	1
Dibromofluoromethane (Surr)	113		75 - 120					10/30/23 17:55	1
Toluene-d8 (Surr)	92		75 - 120					10/30/23 17:55	1

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: GPW-15

Date Collected: 10/19/23 16:00 Date Received: 10/24/23 09:50 Lab Sample ID: 500-241480-2

Matrix: Water

Job ID: 500-241480-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			10/30/23 18:18	1
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			10/30/23 18:18	1
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			10/30/23 18:18	1
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			10/30/23 18:18	1
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			10/30/23 18:18	1
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			10/30/23 18:18	1
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			10/30/23 18:18	1
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			10/30/23 18:18	1
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			10/30/23 18:18	1
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			10/30/23 18:18	1
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			10/30/23 18:18	1
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			10/30/23 18:18	1
1,2-Dibromoethane (EDB)	<0.39	1.0	0.39				10/30/23 18:18	1
1,2-Dichlorobenzene	<0.33	1.0	0.33	-			10/30/23 18:18	1
1,2-Dichloroethane	<0.39	1.0		ug/L			10/30/23 18:18	1
1,2-Dichloropropane	<0.43	1.0	0.43				10/30/23 18:18	1
1,3,5-Trimethylbenzene	<0.25	1.0	0.25	-			10/30/23 18:18	1
1,3-Dichlorobenzene	<0.40	1.0		ug/L			10/30/23 18:18	1
1,3-Dichloropropane	<0.36	1.0		ug/L			10/30/23 18:18	1
1,4-Dichlorobenzene	<0.36	1.0		ug/L			10/30/23 18:18	1
2,2-Dichloropropane	<0.44	5.0	0.44	-			10/30/23 18:18	1
2-Chlorotoluene	<0.31	1.0		ug/L			10/30/23 18:18	1
4-Chlorotoluene	<0.35	1.0		ug/L			10/30/23 18:18	1
Benzene	<0.15	0.50		ug/L			10/30/23 18:18	1
Bromobenzene	<0.36	1.0		ug/L			10/30/23 18:18	· · · · · · · · · · · · · · · · · · ·
Bromochloromethane	<0.43	1.0		ug/L			10/30/23 18:18	1
Bromodichloromethane	<0.37	1.0	0.37	-			10/30/23 18:18	1
Bromoform	<0.48	1.0	0.48				10/30/23 18:18	
Bromomethane	<0.80	3.0	0.80	-			10/30/23 18:18	1
Carbon tetrachloride	<0.38	1.0		ug/L			10/30/23 18:18	1
Chlorobenzene	<0.39	1.0	0.39				10/30/23 18:18	
Chlorodibromomethane	<0.49	1.0	0.49	-			10/30/23 18:18	1
Chloroethane	<0.51	5.0	0.51	-			10/30/23 18:18	1
Chloroform	<0.37	2.0	0.37				10/30/23 18:18	
Chloromethane	<0.32	5.0	0.32	-			10/30/23 18:18	1
cis-1.2-Dichloroethene	<0.41	1.0	0.41	-			10/30/23 18:18	1
cis-1,3-Dichloropropene	<0.42	1.0	0.41				10/30/23 18:18	
Dibromomethane	<0.27	1.0		ug/L			10/30/23 18:18	1
Dichlorodifluoromethane	<0.67	3.0	0.67	-			10/30/23 18:18	1
Dichlorofluoromethane	<0.38	1.0					10/30/23 18:18	
	<0.38	0.50		ug/L				1
Ethylbenzene Hexachlorobutadiene	<0.45	1.0	0.18	-			10/30/23 18:18	1
				ug/L			10/30/23 18:18	
Isopropyl ether	<0.28	1.0		ug/L			10/30/23 18:18	1
Isopropylbenzene Methyl tert butyl ether	<0.39	1.0		ug/L			10/30/23 18:18	1
Methyl tert-butyl ether	<0.39	1.0		ug/L			10/30/23 18:18	1
Methylene Chloride	<1.6	5.0		ug/L			10/30/23 18:18	1
Naphthalene	<0.34	1.0		ug/L			10/30/23 18:18	1
n-Butylbenzene	<0.39	1.0		ug/L			10/30/23 18:18	1
N-Propylbenzene	<0.41	1.0	0.41	ug/L			10/30/23 18:18	

Eurofins Chicago

3

5

7

9

11

16

14

Job ID: 500-241480-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-241480-2

Matrix: Water

Client Sample ID: GPW-15 Date Collected: 10/19/23 16:00

Date Received: 10/24/23 09:50

Method: SW846 8260D - Vo Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0		ug/L	_ = -		10/30/23 18:18	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 18:18	1
Styrene	<0.39		1.0	0.39	ug/L			10/30/23 18:18	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 18:18	1
Tetrachloroethene	< 0.37		1.0	0.37	ug/L			10/30/23 18:18	1
Toluene	<0.15		0.50	0.15	ug/L			10/30/23 18:18	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			10/30/23 18:18	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			10/30/23 18:18	1
Trichloroethene	<0.16	*+	0.50	0.16	ug/L			10/30/23 18:18	1
Trichlorofluoromethane	<0.43	*+	1.0	0.43	ug/L			10/30/23 18:18	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/30/23 18:18	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			10/30/23 18:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 126			-		10/30/23 18:18	1
4-Bromofluorobenzene (Surr)	80		72 - 124					10/30/23 18:18	1
Dibromofluoromethane (Surr)	114		75 - 120					10/30/23 18:18	1
Toluene-d8 (Surr)	92		75 - 120					10/30/23 18:18	1

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: GPW-16

Lab Sample ID: 500-241480-3

Date Collected: 10/19/23 13:45 **Matrix: Water** Date Received: 10/24/23 09:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			10/30/23 18:41	
1,1,1-Trichloroethane	<0.38	1.0		ug/L			10/30/23 18:41	
1,1,2,2-Tetrachloroethane	<0.40	1.0		ug/L			10/30/23 18:41	
1,1,2-Trichloroethane	<0.35	1.0		ug/L			10/30/23 18:41	
1,1-Dichloroethane	<0.41	1.0	0.41	_			10/30/23 18:41	
1,1-Dichloroethene	<0.39	1.0		ug/L			10/30/23 18:41	
1,1-Dichloropropene	<0.30	1.0		ug/L			10/30/23 18:41	
1,2,3-Trichlorobenzene	<0.46	1.0		ug/L			10/30/23 18:41	
1,2,3-Trichloropropane	<0.41	2.0		ug/L			10/30/23 18:41	
1,2,4-Trichlorobenzene	<0.34	1.0		ug/L			10/30/23 18:41	
1,2,4-Trimethylbenzene	<0.36	1.0		ug/L			10/30/23 18:41	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			10/30/23 18:41	
1,2-Dibromoethane (EDB)	<0.39	1.0		ug/L			10/30/23 18:41	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			10/30/23 18:41	
1,2-Dichloroethane	<0.39	1.0		ug/L			10/30/23 18:41	
1,2-Dichloropropane	<0.43	1.0		ug/L			10/30/23 18:41	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			10/30/23 18:41	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			10/30/23 18:41	
1,3-Dichloropropane	<0.36	1.0		ug/L			10/30/23 18:41	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			10/30/23 18:41	
2,2-Dichloropropane	<0.44	5.0		ug/L			10/30/23 18:41	
2-Chlorotoluene	<0.31	1.0		ug/L			10/30/23 18:41	
4-Chlorotoluene	<0.35	1.0		ug/L			10/30/23 18:41	
Benzene	<0.15	0.50		ug/L			10/30/23 18:41	
Bromobenzene	<0.36	1.0		ug/L			10/30/23 18:41	
Bromochloromethane	<0.43	1.0		ug/L			10/30/23 18:41	
Bromodichloromethane	<0.37	1.0		ug/L			10/30/23 18:41	
Bromoform	<0.48	1.0		ug/L			10/30/23 18:41	
Bromomethane	<0.80	3.0		ug/L			10/30/23 18:41	
Carbon tetrachloride	<0.38	1.0		ug/L			10/30/23 18:41	
Chlorobenzene	<0.39	1.0		ug/L			10/30/23 18:41	
Chlorodibromomethane	<0.49	1.0		ug/L			10/30/23 18:41	
Chloroethane	<0.51	5.0		ug/L			10/30/23 18:41	
Chloroform	<0.37	2.0		ug/L			10/30/23 18:41	
Chloromethane	<0.32	5.0		ug/L			10/30/23 18:41	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			10/30/23 18:41	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			10/30/23 18:41	
Dibromomethane	<0.27	1.0		ug/L			10/30/23 18:41	
Dichlorodifluoromethane	<0.67	3.0		ug/L			10/30/23 18:41	
Dichlorofluoromethane	<0.38	1.0		ug/L			10/30/23 18:41	
Ethylbenzene	<0.18	0.50		ug/L			10/30/23 18:41	
Hexachlorobutadiene	<0.45	1.0		ug/L			10/30/23 18:41	
Isopropyl ether	<0.28	1.0		ug/L			10/30/23 18:41	
Isopropylbenzene	<0.39	1.0		ug/L			10/30/23 18:41	
Methyl tert-butyl ether	<0.39	1.0		ug/L			10/30/23 18:41	
Methylene Chloride	<1.6	5.0		ug/L			10/30/23 18:41	
Naphthalene	<0.34	1.0		ug/L			10/30/23 18:41	
n-Butylbenzene	<0.39	1.0		ug/L			10/30/23 18:41	
N-Propylbenzene	<0.41	1.0		ug/L			10/30/23 18:41	

Eurofins Chicago

Job ID: 500-241480-1

Job ID: 500-241480-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-241480-3

Matrix: Water

Client Sample ID: GPW-16 Date Collected: 10/19/23 13:45 Date Received: 10/24/23 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			10/30/23 18:41	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 18:41	1
Styrene	<0.39		1.0	0.39	ug/L			10/30/23 18:41	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 18:41	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			10/30/23 18:41	1
Toluene	<0.15		0.50	0.15	ug/L			10/30/23 18:41	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			10/30/23 18:41	1
trans-1,3-Dichloropropene	< 0.36		1.0	0.36	ug/L			10/30/23 18:41	1
Trichloroethene	<0.16	*+	0.50	0.16	ug/L			10/30/23 18:41	1
Trichlorofluoromethane	< 0.43	*+	1.0	0.43	ug/L			10/30/23 18:41	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/30/23 18:41	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			10/30/23 18:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	109		75 - 126					10/30/23 18:41	1
4-Bromofluorobenzene (Surr)	81		72 - 124					10/30/23 18:41	1
Dibromofluoromethane (Surr)	114		75 - 120					10/30/23 18:41	1
Toluene-d8 (Surr)	91		75 - 120					10/30/23 18:41	1

Eurofins Chicago

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: GPW-17 Lab Sample ID: 500-241480-4

Date Collected: 10/19/23 15:40 Matrix: Water Date Received: 10/24/23 09:50

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			10/30/23 19:05	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			10/30/23 19:05	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			10/30/23 19:05	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			10/30/23 19:05	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			10/30/23 19:05	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			10/30/23 19:05	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			10/30/23 19:05	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			10/30/23 19:05	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			10/30/23 19:05	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			10/30/23 19:05	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			10/30/23 19:05	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			10/30/23 19:05	
1,2-Dibromoethane (EDB)	<0.39	1.0		ug/L			10/30/23 19:05	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			10/30/23 19:05	
1,2-Dichloroethane	<0.39	1.0		ug/L			10/30/23 19:05	
1,2-Dichloropropane	<0.43	1.0		ug/L			10/30/23 19:05	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			10/30/23 19:05	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			10/30/23 19:05	
1,3-Dichloropropane	<0.36	1.0		ug/L			10/30/23 19:05	
1.4-Dichlorobenzene	<0.36	1.0		ug/L			10/30/23 19:05	
2,2-Dichloropropane	<0.44	5.0		ug/L			10/30/23 19:05	
2-Chlorotoluene	<0.31	1.0		ug/L			10/30/23 19:05	
4-Chlorotoluene	<0.35	1.0		ug/L			10/30/23 19:05	
Benzene	<0.15	0.50		ug/L			10/30/23 19:05	
Bromobenzene	<0.36	1.0		ug/L			10/30/23 19:05	
Bromochloromethane	<0.43	1.0		ug/L			10/30/23 19:05	
Bromodichloromethane	<0.37	1.0		ug/L			10/30/23 19:05	
Bromoform	<0.48	1.0		ug/L			10/30/23 19:05	
Bromomethane	<0.80	3.0		ug/L			10/30/23 19:05	
Carbon tetrachloride	<0.38	1.0		ug/L			10/30/23 19:05	
Chlorobenzene	<0.39	1.0		ug/L			10/30/23 19:05	
Chlorodibromomethane	<0.49	1.0		ug/L			10/30/23 19:05	
Chloroethane	<0.51	5.0		ug/L			10/30/23 19:05	
Chloroform	<0.37	2.0		ug/L			10/30/23 19:05	
Chloromethane	<0.32	5.0		ug/L			10/30/23 19:05	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			10/30/23 19:05	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			10/30/23 19:05	
Dibromomethane	<0.27	1.0		ug/L				
Dichlorodifluoromethane	<0.67	3.0		ug/L ug/L			10/30/23 19:05 10/30/23 19:05	
Dichlorofluoromethane								
	<0.38	1.0		ug/L			10/30/23 19:05	
Ethylbenzene	<0.18	0.50		ug/L			10/30/23 19:05	
Hexachlorobutadiene	<0.45	1.0		ug/L			10/30/23 19:05 10/30/23 19:05	
Isopropyl ether	<0.28	1.0		ug/L				
Isopropylbenzene Methyl test butyl other	<0.39	1.0		ug/L			10/30/23 19:05	
Methyl tert-butyl ether	<0.39	1.0		ug/L			10/30/23 19:05	
Methylene Chloride	<1.6	5.0		ug/L			10/30/23 19:05	
Naphthalene	<0.34	1.0		ug/L			10/30/23 19:05	
n-Butylbenzene N-Propylbenzene	<0.39 <0.41	1.0 1.0		ug/L ug/L			10/30/23 19:05 10/30/23 19:05	

Eurofins Chicago

3

Job ID: 500-241480-1

5

7

10

11 12

14

Job ID: 500-241480-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-241480-4

Matrix: Water

Client Sample ID: GPW-17 Date Collected: 10/19/23 15:40 Date Received: 10/24/23 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			10/30/23 19:05	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 19:05	1
Styrene	<0.39		1.0	0.39	ug/L			10/30/23 19:05	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 19:05	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			10/30/23 19:05	1
Toluene	<0.15		0.50	0.15	ug/L			10/30/23 19:05	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			10/30/23 19:05	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			10/30/23 19:05	1
Trichloroethene	<0.16	*+	0.50	0.16	ug/L			10/30/23 19:05	1
Trichlorofluoromethane	<0.43	*+	1.0	0.43	ug/L			10/30/23 19:05	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/30/23 19:05	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			10/30/23 19:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)			75 - 126			-		10/30/23 19:05	1
4-Bromofluorobenzene (Surr)	81		72 - 124					10/30/23 19:05	1
Dibromofluoromethane (Surr)	113		75 - 120					10/30/23 19:05	1
Toluene-d8 (Surr)	91		75 - 120					10/30/23 19:05	1

Eurofins Chicago

3

5

7

10

11

13

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: Trip Blank

Lab Sample ID: 500-241480-5 Date Collected: 10/19/23 00:00

Matrix: Water Date Received: 10/24/23 09:50

Method: SW846 8260D - Volatile Organic Compounds by GC/MS Dil Fac Analyte Result Qualifier **MDL** Unit D Prepared Analyzed 1,1,1,2-Tetrachloroethane <0.46 1.0 0.46 ug/L 10/30/23 17:32 <0.38 1,1,1-Trichloroethane 1.0 0.38 ug/L 10/30/23 17:32 1 1,1,2,2-Tetrachloroethane < 0.40 1.0 0.40 ug/L 10/30/23 17:32 1,1,2-Trichloroethane < 0.35 1.0 0.35 ug/L 10/30/23 17:32 < 0.41 0.41 10/30/23 17:32 1.1-Dichloroethane 1.0 ug/L ug/L 1,1-Dichloroethene < 0.39 1.0 0.39 10/30/23 17:32 1,1-Dichloropropene < 0.30 1.0 0.30 ug/L 10/30/23 17:32 1.0 1,2,3-Trichlorobenzene < 0.46 0.46 ug/L 10/30/23 17:32 1,2,3-Trichloropropane < 0.41 2.0 0.41 ug/L 10/30/23 17:32 1,2,4-Trichlorobenzene < 0.34 1.0 0.34 ug/L 10/30/23 17:32 1,2,4-Trimethylbenzene < 0.36 1.0 0.36 ug/L 10/30/23 17:32 1,2-Dibromo-3-Chloropropane < 2.0 5.0 2.0 ug/L 10/30/23 17:32 1 1,2-Dibromoethane (EDB) < 0.39 1.0 0.39 ug/L 10/30/23 17:32 1,2-Dichlorobenzene < 0.33 1.0 0.33 ug/L 10/30/23 17:32 < 0.39 0.39 ug/L 1.2-Dichloroethane 1.0 10/30/23 17:32 1,2-Dichloropropane < 0.43 1.0 0.43 ug/L 10/30/23 17:32 1,3,5-Trimethylbenzene <0.25 1.0 0.25 ug/L 10/30/23 17:32 1,3-Dichlorobenzene < 0.40 1.0 0.40 ug/L 10/30/23 17:32 1.0 < 0.36 0.36 ug/L 10/30/23 17:32 1,3-Dichloropropane 1,4-Dichlorobenzene < 0.36 1.0 0.36 ug/L 10/30/23 17:32 2,2-Dichloropropane < 0.44 5.0 0.44 ug/L 10/30/23 17:32 2-Chlorotoluene < 0.31 1.0 0.31 ug/L 10/30/23 17:32 4-Chlorotoluene < 0.35 1.0 0.35 ug/L 10/30/23 17:32 Benzene < 0.15 0.50 0.15 ug/L 10/30/23 17:32 Bromobenzene < 0.36 1.0 0.36 ug/L 10/30/23 17:32 Bromochloromethane < 0.43 1.0 0.43 ug/L 10/30/23 17:32 Bromodichloromethane < 0.37 1.0 0.37 ug/L 10/30/23 17:32 **Bromoform** < 0.48 1.0 0.48 ug/L 10/30/23 17:32 Bromomethane <0.80 3.0 0.80 ug/L 10/30/23 17:32 Carbon tetrachloride < 0.38 1.0 0.38 ug/L 10/30/23 17:32 Chlorobenzene < 0.39 1.0 0.39 ug/L 10/30/23 17:32 Chlorodibromomethane 1.0 0.49 ug/L 10/30/23 17:32 < 0.49Chloroethane 5.0 0.51 ug/L 10/30/23 17:32 < 0.51 Chloroform < 0.37 20 0.37 ug/L 10/30/23 17:32 Chloromethane < 0.32 5.0 0.32 ug/L 10/30/23 17:32 cis-1.2-Dichloroethene 0.41 ug/L 10/30/23 17:32 < 0.41 1.0 cis-1,3-Dichloropropene < 0.42 1.0 0.42 ug/L 10/30/23 17:32 Dibromomethane < 0.27 1.0 0.27 ug/L 10/30/23 17:32 Dichlorodifluoromethane < 0.67 3.0 0.67 ug/L 10/30/23 17:32 Dichlorofluoromethane < 0.38 1.0 0.38 ug/L 10/30/23 17:32 Ethylbenzene < 0.18 0.50 0.18 ug/L 10/30/23 17:32 Hexachlorobutadiene < 0.45 1.0 0.45 ug/L 10/30/23 17:32 Isopropyl ether <0.28 1.0 0.28 10/30/23 17:32 ug/L Isopropylbenzene 0.39 < 0.39 1.0 ug/L 10/30/23 17:32 Methyl tert-butyl ether < 0.39 1.0 0.39 ug/L 10/30/23 17:32 Methylene Chloride <1.6 5.0 1.6 ug/L 10/30/23 17:32 Naphthalene 1.0 < 0.34 0.34 ug/L 10/30/23 17:32 n-Butylbenzene < 0.39 1.0 0.39 ug/L 10/30/23 17:32 0.41 ug/L N-Propylbenzene < 0.41 1.0 10/30/23 17:32

Eurofins Chicago

Job ID: 500-241480-1

Job ID: 500-241480-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-241480-5

Matrix: Water

Client Sample ID: Trip Blank Date Collected: 10/19/23 00:00

Date Received: 10/24/23 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			10/30/23 17:32	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 17:32	1
Styrene	<0.39		1.0	0.39	ug/L			10/30/23 17:32	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 17:32	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			10/30/23 17:32	1
Toluene	<0.15		0.50	0.15	ug/L			10/30/23 17:32	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			10/30/23 17:32	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			10/30/23 17:32	1
Trichloroethene	<0.16	*+	0.50	0.16	ug/L			10/30/23 17:32	1
Trichlorofluoromethane	<0.43	*+	1.0	0.43	ug/L			10/30/23 17:32	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/30/23 17:32	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			10/30/23 17:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	112		75 - 126					10/30/23 17:32	1
4-Bromofluorobenzene (Surr)	82		72 - 124					10/30/23 17:32	1
Dibromofluoromethane (Surr)	112		75 - 120					10/30/23 17:32	1
Toluene-d8 (Surr)	91		75 - 120					10/30/23 17:32	1

Definitions/Glossary

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Job ID: 500-241480-1

Qualifiers

GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Chicago

QC Association Summary

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Job ID: 500-241480-1

GC/MS VOA

Analysis Batch: 739474

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-241480-1	GPW-14	Total/NA	Water	8260D	
500-241480-2	GPW-15	Total/NA	Water	8260D	
500-241480-3	GPW-16	Total/NA	Water	8260D	
500-241480-4	GPW-17	Total/NA	Water	8260D	
500-241480-5	Trip Blank	Total/NA	Water	8260D	
MB 500-739474/7	Method Blank	Total/NA	Water	8260D	
LCS 500-739474/4	Lab Control Sample	Total/NA	Water	8260D	

_

4

6

9

10

1 1

13

14

Surrogate Summary

Client: American Engineering Testing Inc.

Job ID: 500-241480-1

Project/Site: Laundromat Property - P-0011071

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)
500-241480-1	GPW-14	106	82	113	92
500-241480-2	GPW-15	111	80	114	92
500-241480-3	GPW-16	109	81	114	91
500-241480-4	GPW-17	110	81	113	91
500-241480-5	Trip Blank	112	82	112	91
LCS 500-739474/4	Lab Control Sample	100	78	104	93
MB 500-739474/7	Method Blank	108	80	115	88

Surrogate Legend

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

2

4

Ω

44

12

. .

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Job ID: 500-241480-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 500-739474/7

Matrix: Water

Client Sar	nple ID: Method Blank	
	Prep Type: Total/NA	

Analysis Batch: 739474								riep Type. It	Jianna
Alialysis Balcii. 139414	МВ	МВ							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	Qualifier	1.0		ug/L		Fiepareu	10/30/23 11:29	1
1,1,1-Trichloroethane	<0.38		1.0		ug/L			10/30/23 11:29	1
1,1,2,2-Tetrachloroethane	<0.40		1.0		ug/L			10/30/23 11:29	1
1,1,2-Trichloroethane	<0.35		1.0		ug/L			10/30/23 11:29	
1,1,2-11ichloroethane	<0.33		1.0		ug/L ug/L			10/30/23 11:29	1
1,1-Dichloroethane	<0.41		1.0		ug/L ug/L			10/30/23 11:29	
	<0.39				ug/L ug/L			10/30/23 11:29	1
1,1-Dichloropropene	<0.30		1.0 1.0		ug/L ug/L			10/30/23 11:29	1 1
1,2,3-Trichlorobenzene					-				•
1,2,3-Trichloropropane	<0.41		2.0		ug/L			10/30/23 11:29	
1,2,4-Trichlorobenzene	<0.34		1.0		ug/L			10/30/23 11:29	1
1,2,4-Trimethylbenzene	<0.36		1.0		ug/L			10/30/23 11:29	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0		ug/L			10/30/23 11:29	
1,2-Dibromoethane (EDB)	<0.39		1.0		ug/L			10/30/23 11:29	1
1,2-Dichlorobenzene	<0.33		1.0		ug/L			10/30/23 11:29	1
1,2-Dichloroethane	< 0.39		1.0		ug/L			10/30/23 11:29	1
1,2-Dichloropropane	<0.43		1.0		ug/L			10/30/23 11:29	1
1,3,5-Trimethylbenzene	<0.25		1.0		ug/L			10/30/23 11:29	1
1,3-Dichlorobenzene	<0.40		1.0		ug/L			10/30/23 11:29	1
1,3-Dichloropropane	< 0.36		1.0		ug/L			10/30/23 11:29	1
1,4-Dichlorobenzene	< 0.36		1.0		ug/L			10/30/23 11:29	1
2,2-Dichloropropane	<0.44		5.0		ug/L			10/30/23 11:29	1
2-Chlorotoluene	<0.31		1.0	0.31	ug/L			10/30/23 11:29	1
4-Chlorotoluene	< 0.35		1.0	0.35	ug/L			10/30/23 11:29	1
Benzene	<0.15		0.50	0.15	ug/L			10/30/23 11:29	1
Bromobenzene	<0.36		1.0	0.36	ug/L			10/30/23 11:29	1
Bromochloromethane	< 0.43		1.0	0.43	ug/L			10/30/23 11:29	1
Bromodichloromethane	< 0.37		1.0	0.37	ug/L			10/30/23 11:29	1
Bromoform	<0.48		1.0	0.48	ug/L			10/30/23 11:29	1
Bromomethane	<0.80		3.0	0.80	ug/L			10/30/23 11:29	1
Carbon tetrachloride	<0.38		1.0	0.38	ug/L			10/30/23 11:29	1
Chlorobenzene	<0.39		1.0	0.39	ug/L			10/30/23 11:29	1
Chlorodibromomethane	< 0.49		1.0	0.49	ug/L			10/30/23 11:29	1
Chloroethane	<0.51		5.0	0.51	ug/L			10/30/23 11:29	1
Chloroform	<0.37		2.0	0.37	ug/L			10/30/23 11:29	1
Chloromethane	< 0.32		5.0		ug/L			10/30/23 11:29	1
cis-1,2-Dichloroethene	<0.41		1.0		ug/L			10/30/23 11:29	1
cis-1,3-Dichloropropene	<0.42		1.0		ug/L			10/30/23 11:29	1
Dibromomethane	<0.27		1.0		ug/L			10/30/23 11:29	1
Dichlorodifluoromethane	< 0.67		3.0		ug/L			10/30/23 11:29	1
Dichlorofluoromethane	<0.38		1.0		ug/L			10/30/23 11:29	1
Ethylbenzene	<0.18		0.50		ug/L			10/30/23 11:29	1
Hexachlorobutadiene	<0.45		1.0		ug/L			10/30/23 11:29	1
Isopropyl ether	<0.28		1.0		ug/L			10/30/23 11:29	
Isopropylbenzene	< 0.39		1.0		ug/L			10/30/23 11:29	1
Methyl tert-butyl ether	< 0.39		1.0		ug/L			10/30/23 11:29	1
Methylene Chloride	<1.6		5.0		ug/L			10/30/23 11:29	
Naphthalene	<0.34		1.0		ug/L			10/30/23 11:29	1
n-Butylbenzene	<0.39		1.0		ug/L			10/30/23 11:29	1
II Datyibolizolio	~0.08		1.0	0.03	ag/L			10/00/20 11.29	1

Eurofins Chicago

2

5

7

10

12

4 E

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-241480-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 500-739474/7

Matrix: Water

Analysis Batch: 739474

Client Sample ID: Method Blank

Prep Type: Total/NA

_	MB I	MB							
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	<0.41		1.0	0.41	ug/L			10/30/23 11:29	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			10/30/23 11:29	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 11:29	1
Styrene	<0.39		1.0	0.39	ug/L			10/30/23 11:29	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			10/30/23 11:29	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			10/30/23 11:29	1
Toluene	<0.15		0.50	0.15	ug/L			10/30/23 11:29	1
trans-1,2-Dichloroethene	< 0.35		1.0	0.35	ug/L			10/30/23 11:29	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			10/30/23 11:29	1
Trichloroethene	<0.16		0.50	0.16	ug/L			10/30/23 11:29	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			10/30/23 11:29	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			10/30/23 11:29	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			10/30/23 11:29	1

MB MB

Surrogate	%Recovery (Qualifier	Limits		Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	108		75 - 126	-		10/30/23 11:29	1
4-Bromofluorobenzene (Surr)	80		72 - 124			10/30/23 11:29	1
Dibromofluoromethane (Surr)	115		75 - 120			10/30/23 11:29	1
Toluene-d8 (Surr)	88		75 - 120			10/30/23 11:29	1

Lab Sample ID: LCS 500-739474/4

Matrix: Water

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Analysis Batch: 739474								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	62.5		ug/L		125	70 - 125	
1,1,1-Trichloroethane	50.0	59.6		ug/L		119	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	42.2		ug/L		84	62 - 140	
1,1,2-Trichloroethane	50.0	50.7		ug/L		101	71 - 130	
1,1-Dichloroethane	50.0	57.3		ug/L		115	70 - 125	
1,1-Dichloroethene	50.0	55.7		ug/L		111	67 - 122	
1,1-Dichloropropene	50.0	56.4		ug/L		113	70 - 121	
1,2,3-Trichlorobenzene	50.0	50.6		ug/L		101	51 - 145	
1,2,3-Trichloropropane	50.0	42.0		ug/L		84	50 - 133	
1,2,4-Trichlorobenzene	50.0	49.3		ug/L		99	57 - 137	
1,2,4-Trimethylbenzene	50.0	46.9		ug/L		94	70 - 123	
1,2-Dibromo-3-Chloropropane	50.0	39.7		ug/L		79	56 - 123	
1,2-Dibromoethane (EDB)	50.0	53.4		ug/L		107	70 - 125	
1,2-Dichlorobenzene	50.0	53.8		ug/L		108	70 - 125	
1,2-Dichloroethane	50.0	58.9		ug/L		118	68 - 127	
1,2-Dichloropropane	50.0	58.3		ug/L		117	67 - 130	
1,3,5-Trimethylbenzene	50.0	47.1		ug/L		94	70 - 123	
1,3-Dichlorobenzene	50.0	52.3		ug/L		105	70 - 125	
1,3-Dichloropropane	50.0	51.9		ug/L		104	62 - 136	
1,4-Dichlorobenzene	50.0	51.4		ug/L		103	70 - 120	
2,2-Dichloropropane	50.0	53.9		ug/L		108	58 - 139	
2-Chlorotoluene	50.0	43.9		ug/L		88	70 - 125	
4-Chlorotoluene	50.0	45.6		ug/L		91	68 - 124	

Eurofins Chicago

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-241480-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 500-739474/4

Matrix: Water

Analysis Batch: 739474

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

	Spike	LCS LCS			%Rec
Analyte	Added	Result Qualifie	er Unit	D %Rec	Limits
Benzene	50.0	57.0	ug/L		70 - 120
Bromobenzene	50.0	48.2	ug/L	96	70 - 122
Bromochloromethane	50.0	58.9	ug/L	118	65 - 122
Bromodichloromethane	50.0	56.5	ug/L	113	69 - 120
Bromoform	50.0	63.5	ug/L	127	56 - 132
Bromomethane	50.0	60.6	ug/L	121	40 - 152
Carbon tetrachloride	50.0	66.2	ug/L	132	59 - 133
Chlorobenzene	50.0	55.2	ug/L	110	70 - 120
Chlorodibromomethane	50.0	59.0	ug/L	118	68 - 125
Chloroethane	50.0	52.2	ug/L	104	48 - 136
Chloroform	50.0	57.3	ug/L	115	70 - 120
Chloromethane	50.0	61.4	ug/L	123	56 - 152
cis-1,2-Dichloroethene	50.0	55.4	ug/L	111	70 - 125
cis-1,3-Dichloropropene	50.0	52.3	ug/L	105	64 - 127
Dibromomethane	50.0	58.8	ug/L	118	70 - 120
Dichlorodifluoromethane	50.0	65.3	ug/L	131	40 - 159
Dichlorofluoromethane	50.0	57.7	ug/L	115	69 - 124
Ethylbenzene	50.0	55.2	ug/L	110	70 - 123
Hexachlorobutadiene	50.0	52.2	ug/L	104	51 - 150
Isopropylbenzene	50.0	44.9	ug/L	90	70 - 126
Methyl tert-butyl ether	50.0	47.2	ug/L	94	55 - 123
Methylene Chloride	50.0	53.1	ug/L	106	69 - 125
Naphthalene	50.0	44.9	ug/L	90	53 - 144
n-Butylbenzene	50.0	44.7	ug/L	89	68 - 125
N-Propylbenzene	50.0	44.6	ug/L	89	69 - 127
p-Isopropyltoluene	50.0	47.5	ug/L	95	70 - 125
sec-Butylbenzene	50.0	46.2	ug/L	92	70 - 123
Styrene	50.0	56.7	ug/L	113	70 - 120
tert-Butylbenzene	50.0	45.6	ug/L	91	70 - 121
Tetrachloroethene	50.0	61.3	ug/L	123	70 - 128
Toluene	50.0	50.2	ug/L	100	70 - 125
trans-1,2-Dichloroethene	50.0	56.4	ug/L	113	70 - 125
trans-1,3-Dichloropropene	50.0	52.3	ug/L	105	62 - 128
Trichloroethene	50.0	63.2 *+	ug/L	126	70 - 125
Trichlorofluoromethane	50.0	67.6 *+	ug/L	135	55 - 128
Vinyl chloride	50.0	58.8	ug/L	118	64 - 126
Xylenes, Total	100	104	-	104	70 - 125

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	100		75 - 126
4-Bromofluorobenzene (Surr)	78		72 - 124
Dibromofluoromethane (Surr)	104		75 - 120
Toluene-d8 (Surr)	93		75 - 120

Job ID: 500-241480-1

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Client Sample ID: GPW-14

Date Collected: 10/19/23 12:20 Date Received: 10/24/23 09:50 Lab Sample ID: 500-241480-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	739474	AJP	EET CHI	10/30/23 17:55

Client Sample ID: GPW-15 Lab Sample ID: 500-241480-2

Lab Sample ID: 500-241460-2 Matrix: Water

Date Collected: 10/19/23 16:00 Date Received: 10/24/23 09:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	739474	AJP	EET CHI	10/30/23 18:18

Client Sample ID: GPW-16 Lab Sample ID: 500-241480-3

Date Collected: 10/19/23 13:45 Matrix: Water

Date Received: 10/24/23 09:50

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analys	t Lab	or Analyzed
Total/NA	Analysis	8260D			739474 AJP	EET CHI	10/30/23 18:41

Client Sample ID: GPW-17 Lab Sample ID: 500-241480-4

Date Collected: 10/19/23 15:40 Matrix: Water

Date Received: 10/24/23 09:50

Batch **Batch** Dilution Batch **Prepared Prep Type** Type Method Run **Factor Number Analyst** or Analyzed Lab Total/NA Analysis 8260D 739474 AJP EET CHI 10/30/23 19:05

Client Sample ID: Trip Blank Lab Sample ID: 500-241480-5

Date Collected: 10/19/23 00:00

Date Received: 10/24/23 09:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			739474	AJP	EET CHI	10/30/23 17:32

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Eurofins Chicago

2

4

5

8

9

10

13

Ik

Matrix: Water

Accreditation/Certification Summary

Client: American Engineering Testing Inc.
Project/Site: Laundromat Property - P-0011071

Job ID: 500-241480-1

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
Wisconsin	State	999580010	08-31-24

3

4

7

8

10

11

13

14

Chain of Custody Record

Eurofins Chicago

2417 Bond Street

Environment Testing America

University Park, IL 60484-3101 phone 708 534 5200 fax 708 534 5211 **Regulatory Program:** □ DW □ NPDES □ RCRA Other /ironment Testing America 500-241480 COC Project Manager: Michael K. Neal COCs Date. 10-19-23 **Client Contact** Email mneal@teamAET com Site Contact: American Engineering Testing, Inc. Tel/Fax: Lab Contact:Sandie Fredrick Carrier: TALS Project # 1837 CTH OO **Analysis Turnaround Time** Sampler Michael K Neal CALENDAR DAYS ☐ WORKING DAYS For Lab Use Only. Chippewa Fall, WI 54729 Walk-in Client 715-861-5045 Phone TAT if different from Below Lab Sampling 651-659-1379 FAX 2 weeks Project Name Laundromat Property 1 week PO# 18174528 \Box 2 days Job / SDG No - 24/4 AET Project # P-0011071 П 1 day Sample VOCs Type Sample Sample (C=Comp, # of Sample Identification Date Time G=Grab) Matrix Sample Specific Notes Cont. 11-19-23 12:00 GPW-14 G GW 3 16:00 G GW 3 GPW-15 13:45 G GW 3 **GPW-16** 15.40 G GW 3 **GPW-17** W Trip Blank Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; 5=NaOH; 6= Other Possible Hazard Identification: Sample Disposal (A fee may be assessed if samples are retained longer than 1 month) Are any samples from a listed EPA Hazardous Waste? Please List any EPA Waste Codes for the sample in the Comments Section if the lab is to dispose of the sample Skin Irritant Poison B Unknown ✓ Non-Hazard ☐ Return to Client Archive for_ Disposal by Lab Months Special Instructions/QC Requirements & Comments: Cooler Temp (°C) Obs'd Custody Seals Intact Custody Seal No Therm ID No Yes ☐ No Date/Time リンよ3/6.0/ Relingwish@dby Company AET Received by Company Date/Time Relinquished by Date/Time Received by Company Company Date/Time Relinquished by Company Date/Time Company

2

3

5

7

a

11

12

14

AET Project No. P-0011071 Page D 91 of 156

Login Sample Receipt Checklist

Client: American Engineering Testing Inc.

Job Number: 500-241480-1

Login Number: 241480 List Source: Eurofins Chicago

List Number: 1

Creator: James, Jeff A

QuestionAnswerCommentRadioactivity wasn't checked or is = background as measured by a survey meter.TrueThe cooler's custody seal, if present, is intact.TrueSample custody seals, if present, are intact.TrueThe cooler or samples do not appear to have been compromised or tampered with.TrueSamples were received on ice.TrueCooler Temperature is acceptable.TrueCooler Temperature is recorded.TrueCOC is present.TrueCOC is filled out in ink and legible.TrueCOC is filled out with all pertinent information.TrueIs the Field Sampler's name present on COC?TrueThere are no discrepancies between the containers received and the COC.TrueSamples are received within Holding Time (excluding tests with immediate HTs)TrueSample containers have legible labels.TrueContainers are not broken or leaking.TrueSample collection date/times are provided.TrueAppropriate sample containers are used.TrueSample Preservation Verified.TrueThere is sufficient vol. for all requested analyses, incl. any requestedTrue
meter. The cooler's custody seal, if present, is intact. True Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. True Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. True Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
Sample custody seals, if present, are intact. True The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. True Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. True Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
The cooler or samples do not appear to have been compromised or tampered with. Samples were received on ice. Cooler Temperature is acceptable. True Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. True Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True There is sufficient vol. for all requested analyses, incl. any requested True
tampered with. Samples were received on ice. Cooler Temperature is acceptable. Cooler Temperature is recorded. True Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
Cooler Temperature is acceptable. Cooler Temperature is recorded. True COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. True Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. True There is sufficient vol. for all requested analyses, incl. any requested True True 4.2 4.2 4.2 4.2 4.2 4.2 4.2 4.
Cooler Temperature is recorded. COC is present. True COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. True Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. True Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
COC is present. COC is filled out in ink and legible. True COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? True There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. True Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True There is sufficient vol. for all requested analyses, incl. any requested True
COC is filled out in ink and legible. COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. True Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested
COC is filled out with all pertinent information. Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. True Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
Is the Field Sampler's name present on COC? There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. True Containers are not broken or leaking. True Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
There are no discrepancies between the containers received and the COC. Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
Samples are received within Holding Time (excluding tests with immediate HTs) Sample containers have legible labels. Containers are not broken or leaking. True Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
HTs) Sample containers have legible labels. Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. True Sample bottles are completely filled. True Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
Containers are not broken or leaking. Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
Sample collection date/times are provided. Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
Appropriate sample containers are used. Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
Sample bottles are completely filled. Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
Sample Preservation Verified. True There is sufficient vol. for all requested analyses, incl. any requested True
There is sufficient vol. for all requested analyses, incl. any requested True
,
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").
Multiphasic samples are not present. True
Samples do not require splitting or compositing.

N/A

3

4

9

11

12

4 /

15

Residual Chlorine Checked.

Environment Testing

REVIEWED

By mneal at 9:58 am, Dec 05, 2023

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Michael Neal American Engineering Testing Inc. 1837 Cty Hwy OO Chippewa Falls, Wisconsin 54729 Generated 12/4/2023 10:45:49 AM

JOB DESCRIPTION

Laundromat Property - P-0011071

JOB NUMBER

500-242861-1

Eurofins Chicago 2417 Bond Street University Park IL 60484 AET Project No. P-0011071 Page D 93 of 156

Eurofins Chicago

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

Results relate only to the items tested and the sample(s) as received by the laboratory. The results, detection limits (LOD) and Quantitation Limits (LOQ) have been adjusted for sample dilutions and/or solids content.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Compliance Statement

The LOD and LOQ reported are adjusted by the dilution factor when a dilution factor greater than 1 is needed. Additionally, where results are indicated as being reported on a dry weight basis, the LOD and LOQ are adjusted for moisture content as well.

Definitions of Limits

- LOD = Limit of Detection = MDL as defined by 40 CFR part 136 Appendix B
- LOQ = Limit of Quantitation = 3.33 x LOD as defined by Wisconsin
- RL = Report Limit = a concentration supported by a standard in the calibration curves

Authorization

Generated 12/4/2023 10:45:49 AM

Authorized for release by Sandie Fredrick, Project Manager II Sandra.Fredrick@et.eurofinsus.com

(920)261-1660

Client: American Engineering Testing Inc.
Project/Site: Laundromat Property - P-0011071

Laboratory Job ID: 500-242861-1

Table of Contents

Cover Page	1
Table of Contents	
	4
Detection Summary	5
Sample Summary	
	8
	20
	21
Surrogate Summary	22
	23
	32
Certification Summary	33
	34
•	35

2

А

5

8

40

11

13

14

Case Narrative

Client: American Engineering Testing Inc.
Project/Site: Laundromat Property - P-0011071

Job ID: 500-242861-1

Job ID: 500-242861-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-242861-1

Receipt

The samples were received on 11/21/2023 9:50 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 0.9° C.

Receipt Exceptions

One or more containers for the following sample(s) was received broken or leaking: Sample 2,5 and Trip Blank. Sample 2 has 1 VOA Vial broken. Sample 5 has 2 VOA vials broken. Trip Blank was received Broken.

GC/MS VOA

Method 8260D: Methylene chloride was detected in the following items: MW-2 (500-242861-2) and MW-3 (500-242861-3). Methylene chloride is a known lab contaminant; therefore all low level detects for this compound could be suspected as lab contamination.

Method 8260D: The method blank for analytical batch 500-744420 contained Naphthalene above the method detection limit (MDL). Associated samples were not re-analyzed because the method blank results were less than the reporting limit (RL).

Method 8260D: The laboratory control sample (LCS) for analytical batch 500-744121 recovered outside control limits for the following analytes: Trichlorofluoromethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.MW-2 (500-242861-2), MW-3 (500-242861-3), MW-4 (500-242861-4) and MW-5 (500-242861-5)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

0

10

12

13

14

Naphthalene

Tetrachloroethene

Trichloroethene

Detection Summary

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Job ID: 500-242861-1

Client Sample ID: MW-1						Lab San	nple ID: 5	00-242861-1		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type		
Tetrachloroethene	5.1		1.0	0.37	ug/L	1	8260D	Total/NA		
Client Sample ID: MW-2						Lab San	nple ID: 5	00-242861-2		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type		
Methylene Chloride	2.5	J	5.0	1.6	ug/L		8260D	Total/NA		
Tetrachloroethene	5.8		1.0	0.37	ug/L	1	8260D	Total/NA		
Client Sample ID: MW-3						Lab San	nple ID: 5	D: 500-242861-3		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type		
Methylene Chloride	2.9	J	5.0	1.6	ug/L	1	8260D	Total/NA		
Tetrachloroethene	36		1.0	0.37	ug/L	1	8260D	Total/NA		
Client Sample ID: MW-4						Lab San	nple ID: 5	00-242861-4		
No Detections.										
Client Sample ID: MW-5						Lab San	nple ID: 5	00-242861-5		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type		
Tetrachloroethene	2.5		1.0	0.37	ug/L		8260D	Total/NA		
Client Sample ID: MW-6						Lab Sar	nple ID: 5	00-242861-6		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type		
Chloroform	0.83	J –	2.0	0.37	ug/L		8260D	Total/NA		

1.0

1.0

0.50

0.34 ug/L

0.37 ug/L

0.16 ug/L

8260D

8260D

8260D

1

0.55 JB

30

1.5

This Detection Summary does not include radiochemical test results.

Total/NA

Total/NA

Total/NA

Method Summary

Client: American Engineering Testing Inc.
Project/Site: Laundromat Property - P-0011071

Job ID: 500-242861-1

Method	Method Description	Protocol	Laboratory
8260D	Volatile Organic Compounds by GC/MS	SW846	EET CHI
5030B	Purge and Trap	SW846	EET CHI

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

-0

D

_

8

11

12

14

Sample Summary

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-242861-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-242861-1	MW-1	Water	11/20/23 14:45	11/21/23 09:50
500-242861-2	MW-2	Water	11/20/23 15:00	11/21/23 09:50
500-242861-3	MW-3	Water	11/20/23 15:30	11/21/23 09:50
500-242861-4	MW-4	Water	11/20/23 14:15	11/21/23 09:50
500-242861-5	MW-5	Water	11/20/23 13:45	11/21/23 09:50
500-242861-6	MW-6	Water	11/20/23 15:15	11/21/23 09:50

3

-

6

9

10

12

4 4

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-1 Lab Sample ID: 500-242861-1

Date Collected: 11/20/23 14:45

Date Received: 11/21/23 09:50

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			11/28/23 18:15	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			11/28/23 18:15	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			11/28/23 18:15	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			11/28/23 18:15	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			11/28/23 18:15	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			11/28/23 18:15	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			11/28/23 18:15	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			11/28/23 18:15	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			11/28/23 18:15	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			11/28/23 18:15	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			11/28/23 18:15	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			11/28/23 18:15	
1,2-Dibromoethane (EDB)	<0.39	1.0		ug/L			11/28/23 18:15	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			11/28/23 18:15	
1,2-Dichloroethane	<0.39	1.0	0.39	ug/L			11/28/23 18:15	
1,2-Dichloropropane	<0.43	1.0		ug/L			11/28/23 18:15	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			11/28/23 18:15	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			11/28/23 18:15	
1,3-Dichloropropane	<0.36	1.0		ug/L			11/28/23 18:15	
1.4-Dichlorobenzene	<0.36	1.0		ug/L			11/28/23 18:15	
2,2-Dichloropropane	<0.44	5.0		ug/L			11/28/23 18:15	
2-Chlorotoluene	<0.31	1.0		ug/L			11/28/23 18:15	
4-Chlorotoluene	<0.35	1.0		ug/L			11/28/23 18:15	
Benzene	<0.15	0.50		ug/L			11/28/23 18:15	
Bromobenzene	<0.36	1.0		ug/L			11/28/23 18:15	
Bromochloromethane	<0.43	1.0		ug/L			11/28/23 18:15	
Bromodichloromethane	<0.37	1.0		ug/L			11/28/23 18:15	
Bromoform	<0.48	1.0		ug/L			11/28/23 18:15	
Bromomethane	<0.80	3.0		ug/L			11/28/23 18:15	
Carbon tetrachloride	<0.38	1.0		ug/L			11/28/23 18:15	
Chlorobenzene	<0.39	1.0		ug/L			11/28/23 18:15	
Chlorodibromomethane	<0.49	1.0		ug/L			11/28/23 18:15	
Chloroethane	<0.51	5.0		ug/L			11/28/23 18:15	
Chloroform	<0.37	2.0		ug/L			11/28/23 18:15	
Chloromethane	<0.32	5.0		ug/L			11/28/23 18:15	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			11/28/23 18:15	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			11/28/23 18:15	
Dibromomethane	<0.27	1.0		ug/L			11/28/23 18:15	
Dichlorodifluoromethane	<0.67	3.0		ug/L			11/28/23 18:15	
Dichlorofluoromethane	<0.38	1.0		ug/L ug/L			11/28/23 18:15	
Ethylbenzene	<0.18	0.50		ug/L			11/28/23 18:15	
Hexachlorobutadiene	<0.45	1.0		ug/L ug/L			11/28/23 18:15	
							11/28/23 18:15	
Isopropyl ether	<0.28 <0.39	1.0		ug/L			11/28/23 18:15	
Isopropylbenzene Methyl tert butyl other	<0.39	1.0		ug/L ug/L			11/28/23 18:15	
Methyl tert-butyl ether		1.0					11/28/23 18:15	
Methylene Chloride	<1.6	5.0		ug/L				
Naphthalene n Butulbanzana	<0.34	1.0		ug/L			11/28/23 18:15	
n-Butylbenzene N-Propylbenzene	<0.39 <0.41	1.0		ug/L ug/L			11/28/23 18:15 11/28/23 18:15	

Eurofins Chicago

Page 8 of 35

2

Job ID: 500-242861-1

3

5

7

9

11

1 1

4 -

Client: American Engineering Testing Inc.

Job ID: 500-242861-1 Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-1

Lab Sample ID: 500-242861-1

Matrix: Water

Date Collected: 11/20/23 14:45 Date Received: 11/21/23 09:50

Method: SW846 8260D - Vo	latile Organic	Compoun	ds by GC/MS	(Contin	ued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			11/28/23 18:15	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			11/28/23 18:15	1
Styrene	<0.39		1.0	0.39	ug/L			11/28/23 18:15	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			11/28/23 18:15	1
Tetrachloroethene	5.1		1.0	0.37	ug/L			11/28/23 18:15	1
Toluene	<0.15		0.50	0.15	ug/L			11/28/23 18:15	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			11/28/23 18:15	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			11/28/23 18:15	1
Trichloroethene	<0.16		0.50	0.16	ug/L			11/28/23 18:15	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			11/28/23 18:15	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			11/28/23 18:15	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			11/28/23 18:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	95		75 - 126			-		11/28/23 18:15	1
4-Bromofluorobenzene (Surr)	94		72 - 124					11/28/23 18:15	1
Dibromofluoromethane (Surr)	96		75 - 120					11/28/23 18:15	1
Toluene-d8 (Surr)	102		75 - 120					11/28/23 18:15	1

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-2

Date Collected: 11/20/23 15:00 Date Received: 11/21/23 09:50

Lab Sample ID: 500-242861-2

Matrix: Water

Job ID: 500-242861-1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			11/29/23 12:12	
1,1,1-Trichloroethane	<0.38	1.0		ug/L			11/29/23 12:12	
1,1,2,2-Tetrachloroethane	<0.40	1.0		ug/L			11/29/23 12:12	
1,1,2-Trichloroethane	<0.35	1.0		ug/L			11/29/23 12:12	
1,1-Dichloroethane	<0.41	1.0	0.41	_			11/29/23 12:12	
1,1-Dichloroethene	<0.39	1.0		ug/L			11/29/23 12:12	
1,1-Dichloropropene	<0.30	1.0		ug/L			11/29/23 12:12	
1,2,3-Trichlorobenzene	<0.46	1.0		ug/L			11/29/23 12:12	
1,2,3-Trichloropropane	<0.41	2.0		ug/L			11/29/23 12:12	
1,2,4-Trichlorobenzene	<0.34	1.0		ug/L			11/29/23 12:12	
1,2,4-Trimethylbenzene	<0.36	1.0		ug/L			11/29/23 12:12	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			11/29/23 12:12	
1,2-Dibromoethane (EDB)	<0.39	1.0		ug/L			11/29/23 12:12	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			11/29/23 12:12	
1,2-Dichloroethane	<0.39	1.0		ug/L			11/29/23 12:12	
1,2-Dichloropropane	<0.43	1.0		ug/L			11/29/23 12:12	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			11/29/23 12:12	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			11/29/23 12:12	
1,3-Dichloropropane	<0.36	1.0		ug/L			11/29/23 12:12	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			11/29/23 12:12	
2,2-Dichloropropane	<0.44	5.0		ug/L			11/29/23 12:12	
2-Chlorotoluene	<0.31	1.0		ug/L			11/29/23 12:12	
4-Chlorotoluene	<0.35	1.0		ug/L			11/29/23 12:12	
Benzene	<0.15	0.50		ug/L			11/29/23 12:12	
Bromobenzene	<0.36	1.0		ug/L			11/29/23 12:12	
Bromochloromethane	<0.43	1.0		ug/L			11/29/23 12:12	
Bromodichloromethane	<0.37	1.0		ug/L			11/29/23 12:12	
Bromoform	<0.48	1.0		ug/L			11/29/23 12:12	
Bromomethane	<0.80	3.0		ug/L			11/29/23 12:12	
Carbon tetrachloride	<0.38	1.0		ug/L			11/29/23 12:12	
Chlorobenzene	<0.39	1.0		ug/L			11/29/23 12:12	
Chlorodibromomethane	<0.49	1.0		ug/L			11/29/23 12:12	
Chloroethane	<0.51	5.0		ug/L			11/29/23 12:12	
Chloroform	<0.37	2.0		ug/L			11/29/23 12:12	
Chloromethane	<0.32	5.0		ug/L			11/29/23 12:12	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			11/29/23 12:12	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			11/29/23 12:12	
Dibromomethane	<0.27	1.0		ug/L			11/29/23 12:12	
Dichlorodifluoromethane	<0.67	3.0		ug/L			11/29/23 12:12	
Dichlorofluoromethane	<0.38	1.0		ug/L			11/29/23 12:12	
Ethylbenzene	<0.18	0.50		ug/L			11/29/23 12:12	
Hexachlorobutadiene	<0.45	1.0		ug/L			11/29/23 12:12	
Isopropyl ether	<0.28	1.0		ug/L			11/29/23 12:12	
Isopropylbenzene	<0.39	1.0		ug/L			11/29/23 12:12	
Methyl tert-butyl ether	<0.39	1.0		ug/L			11/29/23 12:12	
Methylene Chloride	2.5 J	5.0		ug/L			11/29/23 12:12	
Naphthalene	<0.34	1.0		ug/L			11/29/23 12:12	
n-Butylbenzene	<0.39	1.0		ug/L ug/L			11/29/23 12:12	
N-Propylbenzene	<0.41	1.0		ug/L ug/L			11/29/23 12:12	

Eurofins Chicago

Job ID: 500-242861-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-242861-2

Matrix: Water

Client Sample ID: MW-2
Date Collected: 11/20/23 15:00
Date Received: 11/21/23 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L		-	11/29/23 12:12	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			11/29/23 12:12	1
Styrene	<0.39		1.0	0.39	ug/L			11/29/23 12:12	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			11/29/23 12:12	1
Tetrachloroethene	5.8		1.0	0.37	ug/L			11/29/23 12:12	1
Toluene	<0.15		0.50	0.15	ug/L			11/29/23 12:12	1
trans-1,2-Dichloroethene	< 0.35		1.0	0.35	ug/L			11/29/23 12:12	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			11/29/23 12:12	1
Trichloroethene	<0.16		0.50	0.16	ug/L			11/29/23 12:12	1
Trichlorofluoromethane	<0.43	*+	1.0	0.43	ug/L			11/29/23 12:12	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			11/29/23 12:12	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			11/29/23 12:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96		75 - 126					11/29/23 12:12	1
4-Bromofluorobenzene (Surr)	88		72 - 124					11/29/23 12:12	1
Dibromofluoromethane (Surr)	94		75 - 120					11/29/23 12:12	1
Toluene-d8 (Surr)	104		75 ₋ 120					11/29/23 12:12	1

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-3 Lab Sample ID: 500-242861-3

Date Collected: 11/20/23 15:30	Matrix: Water
Date Received: 11/21/23 09:50	

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			11/29/23 12:37	
1,1,1-Trichloroethane	<0.38	1.0		ug/L			11/29/23 12:37	
1,1,2,2-Tetrachloroethane	<0.40	1.0		ug/L			11/29/23 12:37	
1,1,2-Trichloroethane	<0.35	1.0		ug/L			11/29/23 12:37	
1,1-Dichloroethane	<0.41	1.0	0.41	_			11/29/23 12:37	
1,1-Dichloroethene	<0.39	1.0		ug/L			11/29/23 12:37	
1,1-Dichloropropene	<0.30	1.0		ug/L			11/29/23 12:37	
1,2,3-Trichlorobenzene	<0.46	1.0		ug/L			11/29/23 12:37	
1,2,3-Trichloropropane	<0.41	2.0		ug/L			11/29/23 12:37	
1,2,4-Trichlorobenzene	<0.34	1.0		ug/L			11/29/23 12:37	
1,2,4-Trimethylbenzene	<0.36	1.0		ug/L			11/29/23 12:37	
1,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			11/29/23 12:37	
1,2-Dibromoethane (EDB)	<0.39	1.0		ug/L			11/29/23 12:37	
1,2-Dichlorobenzene	<0.33	1.0		ug/L			11/29/23 12:37	
1,2-Dichloroethane	<0.39	1.0		ug/L			11/29/23 12:37	
1,2-Dichloropropane	<0.43	1.0		ug/L			11/29/23 12:37	
1,3,5-Trimethylbenzene	<0.25	1.0		ug/L			11/29/23 12:37	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			11/29/23 12:37	
1,3-Dichloropropane	<0.36	1.0		ug/L			11/29/23 12:37	
1,4-Dichlorobenzene	<0.36	1.0		ug/L			11/29/23 12:37	
2,2-Dichloropropane	<0.44	5.0		ug/L			11/29/23 12:37	
2-Chlorotoluene	<0.31	1.0		ug/L			11/29/23 12:37	
4-Chlorotoluene	<0.35	1.0		ug/L			11/29/23 12:37	
Benzene	<0.15	0.50		ug/L			11/29/23 12:37	
Bromobenzene	<0.36	1.0		ug/L			11/29/23 12:37	
Bromochloromethane	<0.43	1.0		ug/L			11/29/23 12:37	
Bromodichloromethane	<0.37	1.0		ug/L			11/29/23 12:37	
Bromoform	<0.48	1.0		ug/L			11/29/23 12:37	
Bromomethane	<0.80	3.0		ug/L			11/29/23 12:37	
Carbon tetrachloride	<0.38	1.0		ug/L			11/29/23 12:37	
Chlorobenzene	<0.39	1.0		ug/L			11/29/23 12:37	
Chlorodibromomethane	<0.49	1.0		ug/L			11/29/23 12:37	
Chloroethane	<0.51	5.0		ug/L			11/29/23 12:37	
Chloroform	<0.37	2.0		ug/L			11/29/23 12:37	
Chloromethane	<0.32	5.0		ug/L			11/29/23 12:37	
cis-1,2-Dichloroethene	<0.41	1.0		ug/L			11/29/23 12:37	
cis-1,3-Dichloropropene	<0.42	1.0		ug/L			11/29/23 12:37	
Dibromomethane	<0.27	1.0		ug/L			11/29/23 12:37	
Dichlorodifluoromethane	<0.67	3.0		ug/L			11/29/23 12:37	
Dichlorofluoromethane	<0.38	1.0		ug/L			11/29/23 12:37	
Ethylbenzene	<0.18	0.50		ug/L			11/29/23 12:37	
Hexachlorobutadiene	<0.45	1.0		ug/L			11/29/23 12:37	
Isopropyl ether	<0.28	1.0		ug/L			11/29/23 12:37	
Isopropylbenzene	<0.39	1.0		ug/L			11/29/23 12:37	
Methyl tert-butyl ether	<0.39	1.0		ug/L			11/29/23 12:37	
Methylene Chloride	2.9 J	5.0		ug/L			11/29/23 12:37	
Naphthalene	<0.34	1.0		ug/L ug/L			11/29/23 12:37	
n-Butylbenzene	<0.39	1.0		ug/L ug/L			11/29/23 12:37	
N-Propylbenzene	<0.41	1.0		ug/L ug/L			11/29/23 12:37	

Eurofins Chicago

Job ID: 500-242861-1

Job ID: 500-242861-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-242861-3

Matrix: Water

Client Sample ID: MW-3
Date Collected: 11/20/23 15:30
Date Received: 11/21/23 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			11/29/23 12:37	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			11/29/23 12:37	1
Styrene	<0.39		1.0	0.39	ug/L			11/29/23 12:37	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			11/29/23 12:37	1
Tetrachloroethene	36		1.0	0.37	ug/L			11/29/23 12:37	1
Toluene	<0.15		0.50	0.15	ug/L			11/29/23 12:37	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			11/29/23 12:37	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			11/29/23 12:37	1
Trichloroethene	<0.16		0.50	0.16	ug/L			11/29/23 12:37	1
Trichlorofluoromethane	<0.43	*+	1.0	0.43	ug/L			11/29/23 12:37	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			11/29/23 12:37	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			11/29/23 12:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	99		75 - 126					11/29/23 12:37	1
4-Bromofluorobenzene (Surr)	91		72 - 124					11/29/23 12:37	1
Dibromofluoromethane (Surr)	98		75 - 120					11/29/23 12:37	1
Toluene-d8 (Surr)	105		75 - 120					11/29/23 12:37	1

3

5

7

0

10

11

13

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-4 Lab Sample ID: 500-242861-4

Date Collected: 11/20/23 14:15

Date Received: 11/21/23 09:50

Matrix: Water

Analyte	Result Qualifier	· RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46 ug/L			11/29/23 13:25	
1,1,1-Trichloroethane	<0.38	1.0	0.38 ug/L			11/29/23 13:25	•
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40 ug/L			11/29/23 13:25	•
1,1,2-Trichloroethane	<0.35	1.0	0.35 ug/L			11/29/23 13:25	· · · · · · · · ·
1,1-Dichloroethane	<0.41	1.0	0.41 ug/L			11/29/23 13:25	
1,1-Dichloroethene	<0.39	1.0	0.39 ug/L			11/29/23 13:25	
1,1-Dichloropropene	<0.30	1.0	0.30 ug/L			11/29/23 13:25	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46 ug/L			11/29/23 13:25	
1,2,3-Trichloropropane	<0.41	2.0	0.41 ug/L			11/29/23 13:25	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34 ug/L			11/29/23 13:25	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36 ug/L			11/29/23 13:25	
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0 ug/L			11/29/23 13:25	
1,2-Dibromoethane (EDB)	<0.39	1.0	0.39 ug/L			11/29/23 13:25	
1,2-Dichlorobenzene	<0.33	1.0	0.33 ug/L			11/29/23 13:25	
1,2-Dichloroethane	<0.39	1.0	0.39 ug/L			11/29/23 13:25	
1,2-Dichloropropane	<0.43	1.0	0.43 ug/L			11/29/23 13:25	,
1,3,5-Trimethylbenzene	<0.25	1.0	0.25 ug/L			11/29/23 13:25	
1,3-Dichlorobenzene	<0.40	1.0	0.40 ug/L			11/29/23 13:25	
1,3-Dichloropropane	<0.36	1.0	0.36 ug/L			11/29/23 13:25	
1,4-Dichlorobenzene	<0.36	1.0	0.36 ug/L			11/29/23 13:25	
2,2-Dichloropropane	<0.44	5.0	0.44 ug/L			11/29/23 13:25	
2-Chlorotoluene	<0.31	1.0	0.31 ug/L			11/29/23 13:25	· · · · · · .
4-Chlorotoluene	<0.35	1.0	0.35 ug/L			11/29/23 13:25	
Benzene	<0.15	0.50	0.15 ug/L			11/29/23 13:25	
Bromobenzene	<0.36	1.0	0.36 ug/L			11/29/23 13:25	
Bromochloromethane	<0.43	1.0	0.43 ug/L			11/29/23 13:25	
Bromodichloromethane	<0.37	1.0	0.37 ug/L			11/29/23 13:25	
Bromoform	<0.48	1.0	0.48 ug/L			11/29/23 13:25	
Bromomethane	<0.80	3.0	0.80 ug/L			11/29/23 13:25	
Carbon tetrachloride	<0.38	1.0	0.38 ug/L			11/29/23 13:25	
Chlorobenzene	<0.39	1.0	0.39 ug/L			11/29/23 13:25	
Chlorodibromomethane	<0.49	1.0	0.49 ug/L			11/29/23 13:25	
Chloroethane	<0.51	5.0	0.51 ug/L			11/29/23 13:25	
Chloroform	<0.37	2.0	0.37 ug/L			11/29/23 13:25	
Chloromethane	<0.32	5.0	0.32 ug/L			11/29/23 13:25	
cis-1,2-Dichloroethene	<0.41	1.0	0.41 ug/L			11/29/23 13:25	
cis-1,3-Dichloropropene	<0.42	1.0	0.42 ug/L			11/29/23 13:25	
Dibromomethane	<0.27	1.0	0.42 ug/L			11/29/23 13:25	
Dichlorodifluoromethane	<0.67	3.0	0.27 ug/L 0.67 ug/L			11/29/23 13:25	
Dichlorofluoromethane	<0.38	1.0	0.38 ug/L			11/29/23 13:25	
Ethylbenzene	<0.18	0.50	0.30 ug/L 0.18 ug/L			11/29/23 13:25	
Hexachlorobutadiene	<0.45	1.0	0.10 ug/L 0.45 ug/L			11/29/23 13:25	
Isopropyl ether	<0.28	1.0	0.43 ug/L 0.28 ug/L			11/29/23 13:25	
Isopropylbenzene	<0.39	1.0	0.28 ug/L 0.39 ug/L			11/29/23 13:25	
Methyl tert-butyl ether	<0.39	1.0	0.39 ug/L 0.39 ug/L			11/29/23 13:25	
Methylene Chloride	<1.6	5.0	1.6 ug/L			11/29/23 13:25	
Naphthalene	<0.34	1.0	0.34 ug/L			11/29/23 13:25	
•	<0.39		_				
n-Butylbenzene N-Propylbenzene	<0.39 <0.41	1.0 1.0	0.39 ug/L 0.41 ug/L			11/29/23 13:25 11/29/23 13:25	

Eurofins Chicago

3

Job ID: 500-242861-1

5

7

9

11

13

14

Job ID: 500-242861-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-242861-4

Matrix: Water

Client Sample ID: MW-4 Date Collected: 11/20/23 14:15 Date Received: 11/21/23 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			11/29/23 13:25	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			11/29/23 13:25	1
Styrene	<0.39		1.0	0.39	ug/L			11/29/23 13:25	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			11/29/23 13:25	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			11/29/23 13:25	1
Toluene	<0.15		0.50	0.15	ug/L			11/29/23 13:25	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			11/29/23 13:25	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			11/29/23 13:25	1
Trichloroethene	<0.16		0.50	0.16	ug/L			11/29/23 13:25	1
Trichlorofluoromethane	<0.43	*+	1.0	0.43	ug/L			11/29/23 13:25	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			11/29/23 13:25	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			11/29/23 13:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97		75 - 126					11/29/23 13:25	1
4-Bromofluorobenzene (Surr)	95		72 - 124					11/29/23 13:25	1
Dibromofluoromethane (Surr)	95		75 - 120					11/29/23 13:25	1
Toluene-d8 (Surr)	105		75 - 120					11/29/23 13:25	1

Client: American Engineering Testing Inc.
Project/Site: Laundromat Property - P-0011071

Client Sample ID: MW-5 Lab Sample ID: 500-242861-5

Date Collected: 11/20/23 13:45

Date Received: 11/21/23 09:50

Matrix: Water

Analyte	Result Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L			11/29/23 14:14	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			11/29/23 14:14	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			11/29/23 14:14	
1,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			11/29/23 14:14	
1,1-Dichloroethane	<0.41	1.0	0.41	ug/L			11/29/23 14:14	
1,1-Dichloroethene	<0.39	1.0	0.39	ug/L			11/29/23 14:14	
1,1-Dichloropropene	<0.30	1.0	0.30	ug/L			11/29/23 14:14	
1,2,3-Trichlorobenzene	<0.46	1.0	0.46	ug/L			11/29/23 14:14	
1,2,3-Trichloropropane	<0.41	2.0	0.41	ug/L			11/29/23 14:14	
1,2,4-Trichlorobenzene	<0.34	1.0	0.34	ug/L			11/29/23 14:14	
1,2,4-Trimethylbenzene	<0.36	1.0	0.36	ug/L			11/29/23 14:14	
1,2-Dibromo-3-Chloropropane	<2.0	5.0	2.0	ug/L			11/29/23 14:14	
1,2-Dibromoethane (EDB)	<0.39	1.0	0.39	ug/L			11/29/23 14:14	
I,2-Dichlorobenzene	<0.33	1.0		ug/L			11/29/23 14:14	
,2-Dichloroethane	<0.39	1.0		ug/L			11/29/23 14:14	
,2-Dichloropropane	<0.43	1.0		ug/L			11/29/23 14:14	
,3,5-Trimethylbenzene	<0.25	1.0		ug/L			11/29/23 14:14	
,3-Dichlorobenzene	<0.40	1.0		ug/L			11/29/23 14:14	
,3-Dichloropropane	<0.36	1.0		ug/L			11/29/23 14:14	
,4-Dichlorobenzene	<0.36	1.0		ug/L			11/29/23 14:14	
2,2-Dichloropropane	<0.44	5.0		ug/L			11/29/23 14:14	
-Chlorotoluene	<0.31	1.0		ug/L			11/29/23 14:14	
-Chlorotoluene	<0.35	1.0		ug/L			11/29/23 14:14	
Benzene	<0.15	0.50		ug/L			11/29/23 14:14	
Bromobenzene	<0.36	1.0		ug/L			11/29/23 14:14	
Bromochloromethane	<0.43	1.0		ug/L			11/29/23 14:14	
Bromodichloromethane	<0.37	1.0		ug/L			11/29/23 14:14	
Bromoform	<0.48	1.0		ug/L			11/29/23 14:14	
Bromomethane	<0.80	3.0		ug/L			11/29/23 14:14	
Carbon tetrachloride	<0.38	1.0		ug/L			11/29/23 14:14	
Chlorobenzene	<0.39	1.0		ug/L			11/29/23 14:14	
Chlorodibromomethane	<0.49	1.0		ug/L			11/29/23 14:14	
Chloroethane	<0.51	5.0		ug/L			11/29/23 14:14	
Chloroform	<0.37	2.0		ug/L			11/29/23 14:14	
Chloromethane	<0.32	5.0		ug/L			11/29/23 14:14	
sis-1,2-Dichloroethene	<0.41	1.0		ug/L			11/29/23 14:14	
sis-1,3-Dichloropropene	<0.42	1.0		ug/L			11/29/23 14:14	
Dibromomethane	<0.42	1.0		ug/L			11/29/23 14:14	
Dichlorodifluoromethane	<0.67	3.0		ug/L ug/L			11/29/23 14:14	
Dichlorofluoromethane	<0.38	1.0		ug/L			11/29/23 14:14	
Ethylbenzene	<0.18	0.50					11/29/23 14:14	
•	<0.45	1.0		ug/L			11/29/23 14:14	
lexachlorobutadiene				ug/L ug/L				
sopropyl ether	<0.28	1.0		-			11/29/23 14:14	
sopropylbenzene Activat tort butval other	<0.39	1.0		ug/L			11/29/23 14:14	
Methyl tert-butyl ether	<0.39	1.0		ug/L			11/29/23 14:14	
Methylene Chloride	<1.6	5.0		ug/L			11/29/23 14:14	
Naphthalene	<0.34	1.0		ug/L			11/29/23 14:14	
n-Butylbenzene N-Propylbenzene	<0.39 <0.41	1.0		ug/L ug/L			11/29/23 14:14 11/29/23 14:14	

Eurofins Chicago

3

Job ID: 500-242861-1

_

7

ð

10

12

14

Job ID: 500-242861-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-242861-5

Matrix: Water

Client Sample ID: MW-5
Date Collected: 11/20/23 13:45
Date Received: 11/21/23 09:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L		•	11/29/23 14:14	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			11/29/23 14:14	1
Styrene	<0.39		1.0	0.39	ug/L			11/29/23 14:14	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			11/29/23 14:14	1
Tetrachloroethene	2.5		1.0	0.37	ug/L			11/29/23 14:14	1
Toluene	<0.15		0.50	0.15	ug/L			11/29/23 14:14	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			11/29/23 14:14	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			11/29/23 14:14	1
Trichloroethene	<0.16		0.50	0.16	ug/L			11/29/23 14:14	1
Trichlorofluoromethane	<0.43	*+	1.0	0.43	ug/L			11/29/23 14:14	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			11/29/23 14:14	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			11/29/23 14:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	103		75 - 126					11/29/23 14:14	1
4-Bromofluorobenzene (Surr)	98		72 - 124					11/29/23 14:14	1
Dibromofluoromethane (Surr)	98		75 - 120					11/29/23 14:14	1
Toluene-d8 (Surr)	104		75 - 120					11/29/23 14:14	1

3

__

7

8

9

10

12

13

14

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Job ID: 500-242861-1

Client Sample ID: MW-6

Lab Sample ID: 500-242861-6

Matrix: Water

Date Collected: 11/20/23 15:15 Date Received: 11/21/23 09:50

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
1,1,1,2-Tetrachloroethane	<0.46	1.0	0.46	ug/L		<u> </u>	11/30/23 12:31	
1,1,1-Trichloroethane	<0.38	1.0	0.38	ug/L			11/30/23 12:31	
1,1,2,2-Tetrachloroethane	<0.40	1.0	0.40	ug/L			11/30/23 12:31	
I,1,2-Trichloroethane	<0.35	1.0	0.35	ug/L			11/30/23 12:31	
,1-Dichloroethane	<0.41	1.0		ug/L			11/30/23 12:31	
,1-Dichloroethene	<0.39	1.0		ug/L			11/30/23 12:31	
I,1-Dichloropropene	<0.30	1.0		ug/L			11/30/23 12:31	
,2,3-Trichlorobenzene	<0.46	1.0		ug/L			11/30/23 12:31	
,2,3-Trichloropropane	<0.41	2.0		ug/L			11/30/23 12:31	
,2,4-Trichlorobenzene	<0.34	1.0		ug/L			11/30/23 12:31	
,2,4-Trimethylbenzene	<0.36	1.0		ug/L			11/30/23 12:31	
,2-Dibromo-3-Chloropropane	<2.0	5.0		ug/L			11/30/23 12:31	
,2-Dibromoethane (EDB)	<0.39	1.0		ug/L			11/30/23 12:31	
1.2-Dichlorobenzene	<0.33	1.0		ug/L			11/30/23 12:31	
1,2-Dichloroethane	<0.39	1.0		ug/L			11/30/23 12:31	
,2-Dichloropropane	<0.43	1.0		ug/L			11/30/23 12:31	
,3,5-Trimethylbenzene	<0.25	1.0		ug/L			11/30/23 12:31	
1,3-Dichlorobenzene	<0.40	1.0		ug/L			11/30/23 12:31	
,3-Dichloropropane	<0.36	1.0		ug/L			11/30/23 12:31	
,4-Dichlorobenzene	<0.36	1.0		ug/L			11/30/23 12:31	
,,4-Dichloropropane	<0.44	5.0		ug/L			11/30/23 12:31	
-Chlorotoluene	<0.31	1.0		ug/L			11/30/23 12:31	
-Chlorotoluene	<0.35	1.0		ug/L			11/30/23 12:31	
Benzene	<0.15	0.50		ug/L ug/L			11/30/23 12:31	
romobenzene	<0.13	1.0		ug/L ug/L			11/30/23 12:31	
romochloromethane	<0.43	1.0		_			11/30/23 12:31	
romodichloromethane	<0.43	1.0		ug/L ug/L			11/30/23 12:31	
romoform								
	<0.48	1.0		ug/L			11/30/23 12:31	
Bromomethane	<0.80	3.0		ug/L			11/30/23 12:31	
Carbon tetrachloride	<0.38	1.0		ug/L			11/30/23 12:31	
Chlorobenzene	<0.39	1.0		ug/L			11/30/23 12:31	
Chlorodibromomethane	<0.49	1.0		ug/L			11/30/23 12:31	
Chloroethane	<0.51	5.0		ug/L			11/30/23 12:31	
Chloroform	0.83 J	2.0		ug/L			11/30/23 12:31	
Chloromethane	<0.32	5.0		ug/L			11/30/23 12:31	
is-1,2-Dichloroethene	<0.41	1.0		ug/L			11/30/23 12:31	
is-1,3-Dichloropropene	<0.42	1.0		ug/L			11/30/23 12:31	
Dibromomethane	<0.27	1.0		ug/L			11/30/23 12:31	
Dichlorodifluoromethane	<0.67	3.0		ug/L			11/30/23 12:31	
Dichlorofluoromethane	<0.38	1.0		ug/L			11/30/23 12:31	
Ethylbenzene	<0.18	0.50		ug/L			11/30/23 12:31	
lexachlorobutadiene	<0.45	1.0		ug/L			11/30/23 12:31	
sopropyl ether	<0.28	1.0		ug/L			11/30/23 12:31	
sopropylbenzene	<0.39	1.0		ug/L			11/30/23 12:31	
Methyl tert-butyl ether	<0.39	1.0		ug/L			11/30/23 12:31	
Methylene Chloride	<1.6	5.0		ug/L			11/30/23 12:31	
Naphthalene	0.55 JB	1.0	0.34	ug/L			11/30/23 12:31	
n-Butylbenzene	<0.39	1.0	0.39	ug/L			11/30/23 12:31	
N-Propylbenzene	<0.41	1.0	0.41	ug/L			11/30/23 12:31	

Eurofins Chicago

3

5

7

0

10

12

14

1 E

Job ID: 500-242861-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-242861-6

Matrix: Water

Client Sample ID: MW-6 Date Collected: 11/20/23 15:15 Date Received: 11/21/23 09:50

Method: SW846 8260D - Vo	latile Organic	Compound	ds by GC/MS	(Contin	ued)				
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			11/30/23 12:31	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			11/30/23 12:31	1
Styrene	<0.39		1.0	0.39	ug/L			11/30/23 12:31	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			11/30/23 12:31	1
Tetrachloroethene	30		1.0	0.37	ug/L			11/30/23 12:31	1
Toluene	<0.15		0.50	0.15	ug/L			11/30/23 12:31	1
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			11/30/23 12:31	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			11/30/23 12:31	1
Trichloroethene	1.5		0.50	0.16	ug/L			11/30/23 12:31	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			11/30/23 12:31	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			11/30/23 12:31	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			11/30/23 12:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	101		75 - 126			-		11/30/23 12:31	1
4-Bromofluorobenzene (Surr)	109		72 - 124					11/30/23 12:31	1
Dibromofluoromethane (Surr)	91		75 - 120					11/30/23 12:31	1
Toluene-d8 (Surr)	90		75 - 120					11/30/23 12:31	1

Definitions/Glossary

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Job ID: 500-242861-1

Qualifiers

GC/MS VOA

Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

_

O

8

9

11

12

13

Eurofins Chicago

QC Association Summary

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-242861-1

GC/MS VOA

Analysis Batch: 743907

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-242861-1	MW-1	Total/NA	Water	8260D	
MB 500-743907/8	Method Blank	Total/NA	Water	8260D	
LCS 500-743907/5	Lab Control Sample	Total/NA	Water	8260D	

Analysis Batch: 744121

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-242861-2	MW-2	Total/NA	Water	8260D	
500-242861-3	MW-3	Total/NA	Water	8260D	
500-242861-4	MW-4	Total/NA	Water	8260D	
500-242861-5	MW-5	Total/NA	Water	8260D	
MB 500-744121/7	Method Blank	Total/NA	Water	8260D	
LCS 500-744121/4	Lab Control Sample	Total/NA	Water	8260D	

Analysis Batch: 744420

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-242861-6	MW-6	Total/NA	Water	8260D	
MB 500-744420/8	Method Blank	Total/NA	Water	8260D	
LCS 500-744420/5	Lab Control Sample	Total/NA	Water	8260D	

4

6

8

9

10

12

13

14

Surrogate Summary

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Job ID: 500-242861-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Matrix: Water Prep Type: Total/NA

_			Pe	ercent Surro	ogate Rec
		DCA	BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(75-126)	(72-124)	(75-120)	(75-120)
500-242861-1	MW-1	95	94	96	102
500-242861-2	MW-2	96	88	94	104
500-242861-3	MW-3	99	91	98	105
500-242861-4	MW-4	97	95	95	105
500-242861-5	MW-5	103	98	98	104
500-242861-6	MW-6	101	109	91	90
LCS 500-743907/5	Lab Control Sample	91	85	95	105
LCS 500-744121/4	Lab Control Sample	93	87	94	101
LCS 500-744420/5	Lab Control Sample	98	109	93	91
MB 500-743907/8	Method Blank	97	88	94	99
MB 500-744121/7	Method Blank	96	87	95	100
MB 500-744420/8	Method Blank	102	109	93	90
Surrogate Legend					

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Eurofins Chicago

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Job ID: 500-242861-1

Method: 8260D - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 500-743907/8

Matrix: Water

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 743907	MB M	IB							
Analyte	Result Q	ualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	ug/L			11/28/23 14:18	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	ug/L			11/28/23 14:18	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40	ug/L			11/28/23 14:18	1
1,1,2-Trichloroethane	<0.35		1.0	0.35	ug/L			11/28/23 14:18	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			11/28/23 14:18	1
1,1-Dichloroethene	<0.39		1.0	0.39	ug/L			11/28/23 14:18	1
1,1-Dichloropropene	<0.30		1.0	0.30	ug/L			11/28/23 14:18	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			11/28/23 14:18	1
1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/L			11/28/23 14:18	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			11/28/23 14:18	1
1,2,4-Trimethylbenzene	< 0.36		1.0	0.36	ug/L			11/28/23 14:18	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			11/28/23 14:18	1
1,2-Dibromoethane (EDB)	<0.39		1.0	0.39	ug/L			11/28/23 14:18	1
1,2-Dichlorobenzene	< 0.33		1.0	0.33	-			11/28/23 14:18	1
1,2-Dichloroethane	< 0.39		1.0	0.39	_			11/28/23 14:18	1
1,2-Dichloropropane	<0.43		1.0	0.43				11/28/23 14:18	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	_			11/28/23 14:18	1
1,3-Dichlorobenzene	<0.40		1.0	0.40	-			11/28/23 14:18	1
1,3-Dichloropropane	<0.36		1.0		ug/L			11/28/23 14:18	1
1,4-Dichlorobenzene	<0.36		1.0	0.36	_			11/28/23 14:18	1
2,2-Dichloropropane	<0.44		5.0	0.44	-			11/28/23 14:18	1
2-Chlorotoluene	<0.31		1.0		ug/L			11/28/23 14:18	1
4-Chlorotoluene	<0.35		1.0		ug/L			11/28/23 14:18	1
Benzene	<0.15		0.50	0.15	_			11/28/23 14:18	1
Bromobenzene	<0.36		1.0	0.36				11/28/23 14:18	1
Bromochloromethane	<0.43		1.0	0.43	-			11/28/23 14:18	1
Bromodichloromethane	<0.37		1.0	0.37	-			11/28/23 14:18	1
Bromoform	<0.48		1.0	0.48				11/28/23 14:18	
Bromomethane	<0.80		3.0	0.80	_			11/28/23 14:18	1
Carbon tetrachloride	<0.38		1.0	0.38	_			11/28/23 14:18	1
Chlorobenzene	<0.39		1.0	0.39				11/28/23 14:18	
Chlorodibromomethane	<0.49		1.0	0.49	-			11/28/23 14:18	1
Chloroethane	<0.51		5.0	0.51	-			11/28/23 14:18	1
Chloroform	<0.37		2.0	0.37				11/28/23 14:18	1
Chloromethane	<0.32		5.0	0.32	-			11/28/23 14:18	1
cis-1,2-Dichloroethene	<0.41		1.0	0.41	-			11/28/23 14:18	1
cis-1,3-Dichloropropene	<0.41		1.0	0.41				11/28/23 14:18	
Dibromomethane	<0.42			0.42					1
Dichlorodifluoromethane	<0.27 <0.67		1.0 3.0		-			11/28/23 14:18	1
				0.67				11/28/23 14:18	
Dichlorofluoromethane	< 0.38		1.0		ug/L			11/28/23 14:18	1
Ethylbenzene	<0.18		0.50	0.18	-			11/28/23 14:18	1
Hexachlorobutadiene	<0.45		1.0	0.45				11/28/23 14:18	1
Isopropyl ether	<0.28		1.0		ug/L			11/28/23 14:18	1
Isopropylbenzene	<0.39		1.0	0.39	-			11/28/23 14:18	1
Methyl tert-butyl ether	<0.39		1.0		ug/L			11/28/23 14:18	1
Methylene Chloride	2.17 J		5.0		ug/L			11/28/23 14:18	1
Naphthalene	<0.34		1.0	0.34	-			11/28/23 14:18	1
n-Butylbenzene	< 0.39		1.0	0.39	ug/L			11/28/23 14:18	1

Eurofins Chicago

3

_

8

3

11

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-242861-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 500-743907/8

Matrix: Water

Analysis Batch: 743907

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	<0.41		1.0	0.41	ug/L			11/28/23 14:18	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			11/28/23 14:18	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			11/28/23 14:18	1
Styrene	<0.39		1.0	0.39	ug/L			11/28/23 14:18	1
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			11/28/23 14:18	1
Tetrachloroethene	<0.37		1.0	0.37	ug/L			11/28/23 14:18	1
Toluene	<0.15		0.50	0.15	ug/L			11/28/23 14:18	1
trans-1,2-Dichloroethene	< 0.35		1.0	0.35	ug/L			11/28/23 14:18	1
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			11/28/23 14:18	1
Trichloroethene	<0.16		0.50	0.16	ug/L			11/28/23 14:18	1
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			11/28/23 14:18	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			11/28/23 14:18	1
Xylenes, Total	<0.22		1.0	0.22	ug/L			11/28/23 14:18	1

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	97	75 - 126		11/28/23 14:18	1
4-Bromofluorobenzene (Surr)	88	72 - 124		11/28/23 14:18	1
Dibromofluoromethane (Surr)	94	75 - 120		11/28/23 14:18	1
Toluene-d8 (Surr)	99	75 - 120		11/28/23 14:18	1

Lab Sample ID: LCS 500-743907/5

Matrix: Water

Analysis Batch: 743907

Client Sample ID	: Lab Control Sample
	Prep Type: Total/NA

Analysis batch: 745907								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	51.4		ug/L		103	70 - 125	
1,1,1-Trichloroethane	50.0	51.7		ug/L		103	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	38.5		ug/L		77	62 - 140	
1,1,2-Trichloroethane	50.0	46.1		ug/L		92	71 - 130	
1,1-Dichloroethane	50.0	50.1		ug/L		100	70 - 125	
1,1-Dichloroethene	50.0	49.1		ug/L		98	67 - 122	
1,1-Dichloropropene	50.0	56.4		ug/L		113	70 - 121	
1,2,3-Trichlorobenzene	50.0	60.0		ug/L		120	51 - 145	
1,2,3-Trichloropropane	50.0	44.6		ug/L		89	50 - 133	
1,2,4-Trichlorobenzene	50.0	60.0		ug/L		120	57 - 137	
1,2,4-Trimethylbenzene	50.0	49.4		ug/L		99	70 - 123	
1,2-Dibromo-3-Chloropropane	50.0	39.4		ug/L		79	56 - 123	
1,2-Dibromoethane (EDB)	50.0	43.4		ug/L		87	70 - 125	
1,2-Dichlorobenzene	50.0	51.1		ug/L		102	70 - 125	
1,2-Dichloroethane	50.0	45.5		ug/L		91	68 - 127	
1,2-Dichloropropane	50.0	44.1		ug/L		88	67 - 130	
1,3,5-Trimethylbenzene	50.0	50.2		ug/L		100	70 - 123	
1,3-Dichlorobenzene	50.0	52.9		ug/L		106	70 - 125	
1,3-Dichloropropane	50.0	44.7		ug/L		89	62 - 136	
1,4-Dichlorobenzene	50.0	50.7		ug/L		101	70 - 120	
2,2-Dichloropropane	50.0	45.8		ug/L		92	58 - 139	
2-Chlorotoluene	50.0	46.0		ug/L		92	70 - 125	
4-Chlorotoluene	50.0	48.1		ug/L		96	68 - 124	

Eurofins Chicago

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-242861-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 500-743907/5

Matrix: Water

Analysis Batch: 743907

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

nalysis batch. 743907	Spike	LCS LCS			%Rec
nalyte	Added	Result Qualific	er Unit	D %Rec	Limits
enzene	50.0	49.6	ug/L	99	70 - 120
omobenzene	50.0	46.9	ug/L	94	70 - 122
omochloromethane	50.0	48.3	ug/L	97	65 - 122
omodichloromethane	50.0	40.5	ug/L	81	69 - 120
omoform	50.0	44.5	ug/L	89	56 - 132
omomethane	50.0	41.9	ug/L	84	40 - 152
arbon tetrachloride	50.0	55.6	ug/L	111	59 - 133
lorobenzene	50.0	50.2	ug/L	100	70 - 120
nlorodibromomethane	50.0	46.5	ug/L	93	68 - 125
nloroethane	50.0	42.8	ug/L	86	48 - 136
nloroform	50.0	51.2	ug/L	102	70 - 120
nloromethane	50.0	47.9	ug/L	96	56 - 152
s-1,2-Dichloroethene	50.0	46.8	ug/L	94	70 - 125
s-1,3-Dichloropropene	50.0	43.9	ug/L	88	64 - 127
bromomethane	50.0	46.3	ug/L	93	70 - 120
chlorodifluoromethane	50.0	58.6	ug/L	117	40 - 159
chlorofluoromethane	50.0	49.2	ug/L	98	69 - 124
hylbenzene	50.0	53.9	ug/L	108	70 - 123
exachlorobutadiene	50.0	70.7	ug/L	141	51 - 150
ppropylbenzene	50.0	50.2	ug/L	100	70 - 126
ethyl tert-butyl ether	50.0	40.1	ug/L	80	55 - 123
ethylene Chloride	50.0	45.4	ug/L	91	69 - 125
aphthalene	50.0	52.2	ug/L	104	53 - 144
Butylbenzene	50.0	55.4	ug/L	111	68 - 125
Propylbenzene	50.0	49.9	ug/L	100	69 - 127
Isopropyltoluene	50.0	54.2	ug/L	108	70 - 125
c-Butylbenzene	50.0	55.1	ug/L	110	70 - 123
yrene	50.0	48.4	ug/L	97	70 - 120
rt-Butylbenzene	50.0	50.6	ug/L	101	70 - 121
trachloroethene	50.0	63.3	ug/L	127	70 - 128
luene	50.0	54.5	ug/L	109	70 - 125
ns-1,2-Dichloroethene	50.0	47.2	ug/L	94	70 - 125
ns-1,3-Dichloropropene	50.0	44.1	ug/L	88	62 - 128
ichloroethene	50.0	53.9	ug/L	108	70 - 125
ichlorofluoromethane	50.0	63.5	ug/L	127	55 - 128
nyl chloride	50.0	47.3	ug/L	95	64 - 126
vlenes, Total	100	106	ug/L	106	70 - 125
	ICS ICS				
ichlorofluoromethane nyl chloride	50.0 50.0	63.5 47.3	ug/L ug/L	127 95	55 - 64 -

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	91		75 - 126
4-Bromofluorobenzene (Surr)	85		72 - 124
Dibromofluoromethane (Surr)	95		75 - 120
Toluene-d8 (Surr)	105		75 - 120

Client: American Engineering Testing Inc. Job ID: 500-242861-1 Project/Site: Laundromat Property - P-0011071

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 500-744121/7

Matrix: Water

Analysis Batch: 744121

Client Sample ID: Method Blank
Prep Type: Total/NA

Analyte	MB Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0		ug/L			11/29/23 10:59	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	_			11/29/23 10:59	1
1,1,2,2-Tetrachloroethane	<0.40		1.0		ug/L			11/29/23 10:59	1
1,1,2-Trichloroethane	<0.35		1.0		ug/L			11/29/23 10:59	1
1,1-Dichloroethane	<0.41		1.0	0.41	-			11/29/23 10:59	1
1,1-Dichloroethene	<0.39		1.0	0.39	-			11/29/23 10:59	1
1,1-Dichloropropene	<0.30		1.0		ug/L			11/29/23 10:59	
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	_			11/29/23 10:59	1
1,2,3-Trichloropropane	<0.41		2.0	0.41	-			11/29/23 10:59	1
1,2,4-Trichlorobenzene	<0.34		1.0		ug/L			11/29/23 10:59	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	-			11/29/23 10:59	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0		ug/L			11/29/23 10:59	1
1,2-Dibromoethane (EDB)	<0.39		1.0		ug/L			11/29/23 10:59	1
1,2-Dichlorobenzene	<0.33		1.0	0.33	_			11/29/23 10:59	1
1,2-Dichloroethane	<0.39		1.0		ug/L			11/29/23 10:59	1
	<0.39				ug/L ug/L			11/29/23 10:59	
1,2-Dichloropropane	<0.45		1.0 1.0		_			11/29/23 10:59	1
1,3,5-Trimethylbenzene	<0.25		1.0		ug/L ug/L			11/29/23 10:59	
1,3-Dichlorobenzene									1
1,3-Dichloropropane	<0.36		1.0		ug/L			11/29/23 10:59	1
1,4-Dichlorobenzene	<0.36		1.0	0.36	•			11/29/23 10:59	1
2,2-Dichloropropane	<0.44		5.0		ug/L			11/29/23 10:59	1
2-Chlorotoluene	<0.31		1.0		ug/L			11/29/23 10:59	1
4-Chlorotoluene	<0.35		1.0	0.35	_			11/29/23 10:59	1
Benzene	<0.15		0.50	0.15				11/29/23 10:59	1
Bromobenzene	<0.36		1.0		ug/L			11/29/23 10:59	1
Bromochloromethane	<0.43		1.0	0.43	-			11/29/23 10:59	1
Bromodichloromethane	<0.37		1.0	0.37				11/29/23 10:59	1
Bromoform	<0.48		1.0	0.48	-			11/29/23 10:59	1
Bromomethane	<0.80		3.0	0.80	_			11/29/23 10:59	1
Carbon tetrachloride	<0.38		1.0		ug/L			11/29/23 10:59	1
Chlorobenzene	<0.39		1.0		ug/L			11/29/23 10:59	1
Chlorodibromomethane	<0.49		1.0	0.49	J			11/29/23 10:59	1
Chloroethane	<0.51		5.0	0.51				11/29/23 10:59	1
Chloroform	<0.37		2.0	0.37	-			11/29/23 10:59	1
Chloromethane	<0.32		5.0	0.32	ug/L			11/29/23 10:59	1
cis-1,2-Dichloroethene	<0.41		1.0		ug/L			11/29/23 10:59	1
cis-1,3-Dichloropropene	<0.42		1.0		ug/L			11/29/23 10:59	1
Dibromomethane	<0.27		1.0	0.27	ug/L			11/29/23 10:59	1
Dichlorodifluoromethane	<0.67		3.0		ug/L			11/29/23 10:59	1
Dichlorofluoromethane	<0.38		1.0	0.38	ug/L			11/29/23 10:59	1
Ethylbenzene	<0.18		0.50	0.18	ug/L			11/29/23 10:59	1
Hexachlorobutadiene	<0.45		1.0	0.45	ug/L			11/29/23 10:59	1
Isopropyl ether	<0.28		1.0	0.28	ug/L			11/29/23 10:59	1
Isopropylbenzene	<0.39		1.0	0.39	ug/L			11/29/23 10:59	1
Methyl tert-butyl ether	<0.39		1.0	0.39	ug/L			11/29/23 10:59	1
Methylene Chloride	<1.6		5.0	1.6	ug/L			11/29/23 10:59	1
Naphthalene	<0.34		1.0		ug/L			11/29/23 10:59	1
n-Butylbenzene	< 0.39		1.0	0.39	ug/L			11/29/23 10:59	1

Client: American Engineering Testing Inc.

Job ID: 500-242861-1

Project/Site: Laundromat Property - P-0011071

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 500-744121/7

Matrix: Water

Analysis Batch: 744121

Client Sample ID: Method Blank

Prep Type: Total/NA

MB	MB							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.41		1.0	0.41	ug/L			11/29/23 10:59	1
<0.36		1.0	0.36	ug/L			11/29/23 10:59	1
<0.40		1.0	0.40	ug/L			11/29/23 10:59	1
<0.39		1.0	0.39	ug/L			11/29/23 10:59	1
<0.40		1.0	0.40	ug/L			11/29/23 10:59	1
<0.37		1.0	0.37	ug/L			11/29/23 10:59	1
<0.15		0.50	0.15	ug/L			11/29/23 10:59	1
< 0.35		1.0	0.35	ug/L			11/29/23 10:59	1
< 0.36		1.0	0.36	ug/L			11/29/23 10:59	1
<0.16		0.50	0.16	ug/L			11/29/23 10:59	1
<0.43		1.0	0.43	ug/L			11/29/23 10:59	1
<0.20		1.0	0.20	ug/L			11/29/23 10:59	1
<0.22		1.0	0.22	ug/L			11/29/23 10:59	1
	Result <0.41 <0.36 <0.40 <0.39 <0.40 <0.37 <0.15 <0.35 <0.36 <0.16 <0.43 <0.20	<0.36 <0.40 <0.39 <0.40 <0.37 <0.15 <0.35 <0.36 <0.16 <0.43 <0.20	Result Qualifier RL <0.41	Result Qualifier RL MDL <0.41	Result Qualifier RL MDL Unit <0.41	Result Qualifier RL MDL Unit D <0.41	Result Qualifier RL MDL Unit D Prepared <0.41	Result Qualifier RL MDL Unit D Prepared Analyzed <0.41

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	96	75 - 126		11/29/23 10:59	1
4-Bromofluorobenzene (Surr)	87	72 - 124		11/29/23 10:59	1
Dibromofluoromethane (Surr)	95	75 - 120		11/29/23 10:59	1
Toluene-d8 (Surr)	100	75 - 120		11/29/23 10:59	1

Lab Sample ID: LCS 500-744121/4

Matrix: Water

Analysis Batch: 744121

lient Sample ID	: Lab Control Sample	
	Prep Type: Total/NA	

CI

Analysis Batch: 744121								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1,2-Tetrachloroethane	50.0	51.7		ug/L		103	70 - 125	_
1,1,1-Trichloroethane	50.0	53.3		ug/L		107	70 - 125	
1,1,2,2-Tetrachloroethane	50.0	38.8		ug/L		78	62 - 140	
1,1,2-Trichloroethane	50.0	44.0		ug/L		88	71 - 130	
1,1-Dichloroethane	50.0	50.5		ug/L		101	70 - 125	
1,1-Dichloroethene	50.0	53.9		ug/L		108	67 - 122	
1,1-Dichloropropene	50.0	57.9		ug/L		116	70 - 121	
1,2,3-Trichlorobenzene	50.0	59.9		ug/L		120	51 - 145	
1,2,3-Trichloropropane	50.0	43.5		ug/L		87	50 - 133	
1,2,4-Trichlorobenzene	50.0	58.7		ug/L		117	57 - 137	
1,2,4-Trimethylbenzene	50.0	47.0		ug/L		94	70 - 123	
1,2-Dibromo-3-Chloropropane	50.0	43.6		ug/L		87	56 - 123	
1,2-Dibromoethane (EDB)	50.0	46.2		ug/L		92	70 - 125	
1,2-Dichlorobenzene	50.0	51.0		ug/L		102	70 - 125	
1,2-Dichloroethane	50.0	48.1		ug/L		96	68 - 127	
1,2-Dichloropropane	50.0	45.6		ug/L		91	67 - 130	
1,3,5-Trimethylbenzene	50.0	49.1		ug/L		98	70 - 123	
1,3-Dichlorobenzene	50.0	51.9		ug/L		104	70 - 125	
1,3-Dichloropropane	50.0	46.6		ug/L		93	62 - 136	
1,4-Dichlorobenzene	50.0	50.7		ug/L		101	70 - 120	
2,2-Dichloropropane	50.0	50.0		ug/L		100	58 - 139	
2-Chlorotoluene	50.0	44.6		ug/L		89	70 - 125	
4-Chlorotoluene	50.0	46.2		ug/L		92	68 - 124	

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-242861-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 500-744121/4

Matrix: Water

Analysis Batch: 744121

Client Sample ID: Lab Control Sample

Onone Gumpio	Di Lab Control Campio
	Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	50.0	48.8		ug/L		98	70 - 120	
Bromobenzene	50.0	45.7		ug/L		91	70 - 122	
Bromochloromethane	50.0	49.4		ug/L		99	65 - 122	
Bromodichloromethane	50.0	41.4		ug/L		83	69 - 120	
Bromoform	50.0	45.2		ug/L		90	56 - 132	
Bromomethane	50.0	43.9		ug/L		88	40 - 152	
Carbon tetrachloride	50.0	56.9		ug/L		114	59 - 133	
Chlorobenzene	50.0	49.9		ug/L		100	70 - 120	
Chlorodibromomethane	50.0	45.5		ug/L		91	68 - 125	
Chloroethane	50.0	47.2		ug/L		94	48 - 136	
Chloroform	50.0	51.9		ug/L		104	70 - 120	
Chloromethane	50.0	48.9		ug/L		98	56 - 152	
cis-1,2-Dichloroethene	50.0	47.8		ug/L		96	70 - 125	
cis-1,3-Dichloropropene	50.0	45.1		ug/L		90	64 - 127	
Dibromomethane	50.0	50.3		ug/L		101	70 - 120	
Dichlorodifluoromethane	50.0	52.1		ug/L		104	40 - 159	
Dichlorofluoromethane	50.0	53.8		ug/L		108	69 - 124	
Ethylbenzene	50.0	53.8		ug/L		108	70 - 123	
Hexachlorobutadiene	50.0	68.8		ug/L		138	51 - 150	
Isopropylbenzene	50.0	47.3		ug/L		95	70 - 126	
Methyl tert-butyl ether	50.0	42.4		ug/L		85	55 - 123	
Methylene Chloride	50.0	45.7		ug/L		91	69 - 125	
Naphthalene	50.0	51.4		ug/L		103	53 - 144	
n-Butylbenzene	50.0	54.8		ug/L		110	68 - 125	
N-Propylbenzene	50.0	47.7		ug/L		95	69 - 127	
p-Isopropyltoluene	50.0	53.0		ug/L		106	70 - 125	
sec-Butylbenzene	50.0	52.6		ug/L		105	70 - 123	
Styrene	50.0	47.1		ug/L		94	70 - 120	
tert-Butylbenzene	50.0	48.3		ug/L		97	70 - 121	
Tetrachloroethene	50.0	64.1		ug/L		128	70 - 128	
Toluene	50.0	53.0		ug/L		106	70 - 125	
trans-1,2-Dichloroethene	50.0	49.9		ug/L		100	70 - 125	
trans-1,3-Dichloropropene	50.0	44.8		ug/L		90	62 - 128	
Trichloroethene	50.0	54.7		ug/L		109	70 - 125	
Trichlorofluoromethane	50.0	66.8	*+	ug/L		134	55 - 128	
Vinyl chloride	50.0	49.3		ug/L		99	64 - 126	
Xylenes, Total	100	104		ug/L		104	70 - 125	
100 100								

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		75 - 126
4-Bromofluorobenzene (Surr)	87		72 - 124
Dibromofluoromethane (Surr)	94		75 - 120
Toluene-d8 (Surr)	101		75 - 120

Client: American Engineering Testing Inc.

Job ID: 500-242861-1

Project/Site: Laundromat Property - P-0011071

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 500-744420/8

Matrix: Water

Client Sample	ID:	Metho	od Blank	
Pr	ер	Type:	Total/NA	

Analysis Batch: 744420	MB	MB							
Analyte	Result	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	<0.46		1.0	0.46	-			11/30/23 11:45	1
1,1,1-Trichloroethane	<0.38		1.0	0.38	-			11/30/23 11:45	1
1,1,2,2-Tetrachloroethane	<0.40		1.0	0.40				11/30/23 11:45	1
1,1,2-Trichloroethane	< 0.35		1.0	0.35	-			11/30/23 11:45	1
1,1-Dichloroethane	<0.41		1.0	0.41	ug/L			11/30/23 11:45	1
1,1-Dichloroethene	<0.39		1.0	0.39	ug/L			11/30/23 11:45	1
1,1-Dichloropropene	< 0.30		1.0	0.30	ug/L			11/30/23 11:45	1
1,2,3-Trichlorobenzene	<0.46		1.0	0.46	ug/L			11/30/23 11:45	1
1,2,3-Trichloropropane	<0.41		2.0	0.41	ug/L			11/30/23 11:45	1
1,2,4-Trichlorobenzene	<0.34		1.0	0.34	ug/L			11/30/23 11:45	1
1,2,4-Trimethylbenzene	<0.36		1.0	0.36	ug/L			11/30/23 11:45	1
1,2-Dibromo-3-Chloropropane	<2.0		5.0	2.0	ug/L			11/30/23 11:45	1
1,2-Dibromoethane (EDB)	<0.39		1.0	0.39	ug/L			11/30/23 11:45	1
1,2-Dichlorobenzene	< 0.33		1.0	0.33	ug/L			11/30/23 11:45	1
1,2-Dichloroethane	< 0.39		1.0	0.39	ug/L			11/30/23 11:45	1
1,2-Dichloropropane	<0.43		1.0	0.43	ug/L			11/30/23 11:45	1
1,3,5-Trimethylbenzene	<0.25		1.0	0.25	ug/L			11/30/23 11:45	1
1,3-Dichlorobenzene	<0.40		1.0	0.40	-			11/30/23 11:45	1
1,3-Dichloropropane	<0.36		1.0	0.36				11/30/23 11:45	1
1,4-Dichlorobenzene	< 0.36		1.0	0.36	-			11/30/23 11:45	1
2,2-Dichloropropane	<0.44		5.0	0.44	•			11/30/23 11:45	1
2-Chlorotoluene	<0.31		1.0	0.31				11/30/23 11:45	1
4-Chlorotoluene	<0.35		1.0	0.35	_			11/30/23 11:45	1
Benzene	<0.15		0.50	0.15	-			11/30/23 11:45	1
Bromobenzene	<0.36		1.0	0.36				11/30/23 11:45	1
Bromochloromethane	<0.43		1.0	0.43	-			11/30/23 11:45	1
Bromodichloromethane	<0.37		1.0	0.37	-			11/30/23 11:45	1
Bromoform	<0.48		1.0	0.48				11/30/23 11:45	1
Bromomethane	<0.80		3.0	0.80	-			11/30/23 11:45	1
Carbon tetrachloride	<0.38		1.0	0.38	-			11/30/23 11:45	1
Chlorobenzene	<0.39		1.0	0.39				11/30/23 11:45	· · · · · · 1
Chlorodibromomethane	<0.49		1.0	0.49	-			11/30/23 11:45	1
Chloroethane	<0.51		5.0	0.43	_			11/30/23 11:45	1
Chloroform	<0.37		2.0	0.37				11/30/23 11:45	
Chloromethane	<0.37		5.0	0.32				11/30/23 11:45	1
								11/30/23 11:45	1
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	<0.41		1.0	0.41					
• •	<0.42		1.0		ug/L			11/30/23 11:45	1
Dibromomethane	<0.27		1.0		ug/L			11/30/23 11:45	1
Dichlorodifluoromethane	<0.67		3.0		ug/L			11/30/23 11:45	1
Dichlorofluoromethane	<0.38		1.0	0.38				11/30/23 11:45	1
Ethylbenzene	<0.18		0.50	0.18	-			11/30/23 11:45	1
Hexachlorobutadiene	<0.45		1.0	0.45				11/30/23 11:45	1
Isopropyl ether 	<0.28		1.0	0.28				11/30/23 11:45	1
Isopropylbenzene	<0.39		1.0	0.39				11/30/23 11:45	1
Methyl tert-butyl ether	<0.39		1.0		ug/L			11/30/23 11:45	
Methylene Chloride	<1.6		5.0		ug/L			11/30/23 11:45	1
Naphthalene	0.667	.1	1.0	0.34	ug/L			11/30/23 11:45	1

Eurofins Chicago

Page 29 of 35

12/4/2023

3

5

7

_

4.4

12

14

Client: American Engineering Testing Inc.

Job ID: 500-242861-1

Project/Site: Laundromat Property - P-0011071

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: MB 500-744420/8

Matrix: Water

Analysis Batch: 744420

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	<0.41		1.0	0.41	ug/L			11/30/23 11:45	1
p-Isopropyltoluene	<0.36		1.0	0.36	ug/L			11/30/23 11:45	1
sec-Butylbenzene	<0.40		1.0	0.40	ug/L			11/30/23 11:45	1
Styrene	<0.39		1.0	0.39	ug/L			11/30/23 11:45	
tert-Butylbenzene	<0.40		1.0	0.40	ug/L			11/30/23 11:45	•
Tetrachloroethene	<0.37		1.0	0.37	ug/L			11/30/23 11:45	•
Toluene	<0.15		0.50	0.15	ug/L			11/30/23 11:45	
trans-1,2-Dichloroethene	<0.35		1.0	0.35	ug/L			11/30/23 11:45	
trans-1,3-Dichloropropene	<0.36		1.0	0.36	ug/L			11/30/23 11:45	•
Trichloroethene	<0.16		0.50	0.16	ug/L			11/30/23 11:45	
Trichlorofluoromethane	<0.43		1.0	0.43	ug/L			11/30/23 11:45	1
Vinyl chloride	<0.20		1.0	0.20	ug/L			11/30/23 11:45	•
Xylenes, Total	<0.22		1.0	0.22	ug/L			11/30/23 11:45	

MB MB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	102	75 - 126		11/30/23 11:45	1
4-Bromofluorobenzene (Surr)	109	72 - 124		11/30/23 11:45	1
Dibromofluoromethane (Surr)	93	75 - 120		11/30/23 11:45	1
Toluene-d8 (Surr)	90	75 - 120		11/30/23 11:45	1

Lab Sample ID: LCS 500-744420/5

Matrix: Water

Analysis Batch: 744420

Client Sample ID	: Lab Control Sample
	Pren Type: Total/NA

Analysis Batch: 744420							
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
1,1,1,2-Tetrachloroethane	50.0	47.0		ug/L		94	70 - 125
1,1,1-Trichloroethane	50.0	44.4		ug/L		89	70 - 125
1,1,2,2-Tetrachloroethane	50.0	52.8		ug/L		106	62 - 140
1,1,2-Trichloroethane	50.0	49.4		ug/L		99	71 - 130
1,1-Dichloroethane	50.0	44.5		ug/L		89	70 - 125
1,1-Dichloroethene	50.0	39.7		ug/L		79	67 - 122
1,1-Dichloropropene	50.0	48.7		ug/L		97	70 - 121
1,2,3-Trichlorobenzene	50.0	37.9		ug/L		76	51 - 145
1,2,3-Trichloropropane	50.0	55.1		ug/L		110	50 - 133
1,2,4-Trichlorobenzene	50.0	38.9		ug/L		78	57 - 137
1,2,4-Trimethylbenzene	50.0	52.2		ug/L		104	70 - 123
1,2-Dibromo-3-Chloropropane	50.0	49.0		ug/L		98	56 - 123
1,2-Dibromoethane (EDB)	50.0	52.6		ug/L		105	70 - 125
1,2-Dichlorobenzene	50.0	46.8		ug/L		94	70 - 125
1,2-Dichloroethane	50.0	50.7		ug/L		101	68 - 127
1,2-Dichloropropane	50.0	51.0		ug/L		102	67 - 130
1,3,5-Trimethylbenzene	50.0	52.0		ug/L		104	70 - 123
1,3-Dichlorobenzene	50.0	50.4		ug/L		101	70 - 125
1,3-Dichloropropane	50.0	52.4		ug/L		105	62 - 136
1,4-Dichlorobenzene	50.0	49.7		ug/L		99	70 - 120
2,2-Dichloropropane	50.0	38.9		ug/L		78	58 - 139
2-Chlorotoluene	50.0	52.4		ug/L		105	70 - 125
4-Chlorotoluene	50.0	54.7		ug/L		109	68 - 124

Client: American Engineering Testing Inc. Project/Site: Laundromat Property - P-0011071 Job ID: 500-242861-1

Method: 8260D - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 500-744420/5

Matrix: Water

Analysis Batch: 744420

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Spike	LUS	LCS		%Rec	
Added	Result	Qualifier Unit	D %Rec	Limits	
50.0	44.3	ug/L	89	70 - 120	
50.0	55.6	ug/L	111	70 - 122	
50.0	43.9	ug/L	88	65 - 122	
50.0	49.8	ug/L	100	69 - 120	
50.0	56.3	ug/L	113	56 - 132	
50.0	40.6	ug/L	81	40 - 152	
50.0	47.1	ug/L	94	59 - 133	
50.0	48.4	ug/L	97	70 - 120	
50.0	52.0	ug/L	104	68 - 125	
50.0	40.2	ug/L	80	48 - 136	
50.0	44.0	ug/L	88	70 - 120	
50.0	50.8	ug/L	102	56 - 152	
50.0	42.3	ug/L	85	70 - 125	
50.0	54.3	ug/L	109	64 - 127	
50.0	50.7	ug/L	101	70 - 120	
50.0	46.7	ug/L	93	40 - 159	
50.0	39.2	ug/L	78	69 - 124	
50.0	46.1	ug/L	92	70 - 123	
50.0	36.8	ug/L	74	51 - 150	
50.0	51.7	ug/L	103	70 - 126	
50.0	41.7	ug/L	83	55 - 123	
50.0	38.4	ug/L	77	69 - 125	
50.0	39.6	ug/L	79	53 - 144	
50.0	49.7	ug/L	99	68 - 125	
50.0	52.8	ug/L	106	69 - 127	
50.0	52.0	ug/L	104	70 - 125	
50.0	51.2	ug/L	102	70 - 123	
50.0	52.4	ug/L	105	70 - 120	
50.0	54.1	ug/L	108	70 - 121	
50.0	46.8	ug/L	94	70 - 128	
50.0	43.7	_	87	70 - 125	
50.0	40.0	ug/L	80	70 - 125	
50.0	56.9	ug/L	114	62 - 128	
50.0	47.4	ug/L	95	70 - 125	
50.0	46.5		93	55 - 128	
50.0	40.4	ug/L	81	64 - 126	
		•			
	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	50.0 44.3 50.0 55.6 50.0 43.9 50.0 49.8 50.0 56.3 50.0 40.6 50.0 47.1 50.0 48.4 50.0 52.0 50.0 40.2 50.0 44.0 50.0 50.8 50.0 50.8 50.0 54.3 50.0 54.3 50.0 50.7 50.0 46.7 50.0 39.2 50.0 46.1 50.0 39.2 50.0 46.1 50.0 39.2 50.0 41.7 50.0 39.6 50.0 49.7 50.0 52.8 50.0 52.0 50.0 52.4 50.0 52.4 50.0 54.1 50.0 46.8 50.0 46.8 50.0 46.9 50.0 46.9 50.0	50.0 44.3 ug/L 50.0 55.6 ug/L 50.0 43.9 ug/L 50.0 49.8 ug/L 50.0 49.8 ug/L 50.0 49.8 ug/L 50.0 56.3 ug/L 50.0 40.6 ug/L 50.0 40.6 ug/L 50.0 47.1 ug/L 50.0 48.4 ug/L 50.0 52.0 ug/L 50.0 40.2 ug/L 50.0 44.0 ug/L 50.0 44.0 ug/L 50.0 44.3 ug/L 50.0 50.8 ug/L 50.0 50.8 ug/L 50.0 50.7 ug/L 50.0 46.7 ug/L 50.0 39.2 ug/L 50.0 46.1 ug/L 50.0 46.1 ug/L 50.0 41.7 ug/L 50.0 49.7 ug/L 50.0 52.8	50.0 44.3 ug/L 89 50.0 55.6 ug/L 111 50.0 43.9 ug/L 88 50.0 49.8 ug/L 100 50.0 56.3 ug/L 113 50.0 40.6 ug/L 81 50.0 47.1 ug/L 94 50.0 48.4 ug/L 97 50.0 48.4 ug/L 97 50.0 48.4 ug/L 97 50.0 40.2 ug/L 80 50.0 40.2 ug/L 80 50.0 44.0 ug/L 80 50.0 42.3 ug/L 88 50.0 42.3 ug/L 85 50.0 54.3 ug/L 109 50.0 50.7 ug/L 101 50.0 50.7 ug/L 93 50.0 39.2 ug/L 78 50.0 36.8 ug/L 74 50.0 51.7 ug/L 103	50.0 44.3 ug/L 89 70.120 50.0 55.6 ug/L 111 70.122 50.0 43.9 ug/L 88 65.122 50.0 49.8 ug/L 100 69.120 50.0 56.3 ug/L 113 56.132 50.0 40.6 ug/L 81 40.152 50.0 47.1 ug/L 94 59.133 50.0 47.1 ug/L 94 59.133 50.0 48.4 ug/L 97 70.120 50.0 52.0 ug/L 104 68.125 50.0 40.2 ug/L 80 48.136 50.0 40.2 ug/L 80 48.136 50.0 42.3 ug/L 85 70.120 50.0 50.8 ug/L 85 70.125 50.0 54.3 ug/L 102 56.152 50.0 54.3 ug/L 107 64.127 50.0 50.7 ug/L 107 70.120

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	98		75 - 126
4-Bromofluorobenzene (Surr)	109		72 - 124
Dibromofluoromethane (Surr)	93		75 - 120
Toluene-d8 (Surr)	91		75 - 120

Job ID: 500-242861-1

Client: American Engineering Testing Inc.

Project/Site: Laundromat Property - P-0011071

Lab Sample ID: 500-242861-1

Matrix: Water

Matrix: Water

Date Collected: 11/20/23 14:45 Date Received: 11/21/23 09:50

Client Sample ID: MW-1

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	743907	W1T	EET CHI	11/28/23 18:15

Lab Sample ID: 500-242861-2

Client Sample ID: MW-2

Date Collected: 11/20/23 15:00 Date Received: 11/21/23 09:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number /	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	744121 I	LMB	EET CHI	11/29/23 12:12

Client Sample ID: MW-3 Lab Sample ID: 500-242861-3

Date Collected: 11/20/23 15:30 **Matrix: Water**

Date Received: 11/21/23 09:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	744121	LMB	EET CHI	11/29/23 12:37

Client Sample ID: MW-4 Lab Sample ID: 500-242861-4

Date Collected: 11/20/23 14:15 **Matrix: Water**

Date Received: 11/21/23 09:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	744121	LMB	EET CHI	11/29/23 13:25

Client Sample ID: MW-5 Lab Sample ID: 500-242861-5

Date Collected: 11/20/23 13:45 **Matrix: Water**

Date Received: 11/21/23 09:50

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D		1	744121	LMB	EET CHI	11/29/23 14:14

Client Sample ID: MW-6 Lab Sample ID: 500-242861-6

Date Collected: 11/20/23 15:15 **Matrix: Water**

Date Received: 11/21/23 09:50

	Batch	Batch		Dilution	Batch		Prepared
Prep Type	Type	Method	Run	Factor	Number Analyst	Lab	or Analyzed
Total/NA	Analysis	8260D			744420 W1T	FET CHI	11/30/23 12:31

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Accreditation/Certification Summary

Client: American Engineering Testing Inc.
Project/Site: Laundromat Property - P-0011071

Job ID: 500-242861-1

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

	Authority	Program	Identification Number	Expiration Date
ı	Wisconsin	State	999580010	08-31-24

-6

4

5

q

10

12

13

14

Chain of Custody Record

💸 eurofins

Environment Testing America

Eurofins Chicago

2417 Bond Street

University Park, IL 60484-3101 phone 708 534 5200 fax 708 534 5211	F	Regu	latory Pro	gram: 🗆] WD [NPDES] RC	CRA	☐ Oth	er									E	urofins Environment Testi	ng America
	Proje	ect M	lanager: Mi	chael K. N	eal		l													С	OC No	
Client Contact	Emai	l mne	eal@teamAE	Tcom			Site	Со	ntact	:				Da	te: 1	1-20-2	23				of COC	s
American Engineering Testing, Inc	Tel/F	ax:			***		Lab	Co	ntact	:Sandi	e Fre	dric	k	Ca	rrier				***************************************	T/	ALS Project #	
1837 CTH OO			Analysis T	urnaround	Time			Τ							T	·····	· · · · · · · · · · · · · · · · · · ·				ampler Michael K Neal	
Chippewa Fall, WI 54729	1	CALEN	DAR DAYS	☐ WOR	KING DAY	S											X 3	٧,	اغ		or Lab Use Only:	
715-861-5045 Phone		TA	T if different fr	om Below	*****		_	Filtered Sample (Y/N) Perform MS / MSD (Y/N) VOCs								71	<u> </u>	W	/alk-in Client			
651-659-1379 FAX	1	v	2	weeks	V	•	_ ^z												5	La	ab Sampling	
Project Name Laundromat Property	1		1	week				-								-	:00.27	12861	coc		L	
PO# 18174528	1		2	days													000-2-			Jo	ob / SDG No	
AET Project # P-0011071	1		1	day			du s											1			560-24281	71
				Sample			d SS E	١,										1			<u> </u>	<u>V.</u>
	San	nple	Sample	Type (C=Comp,		# of	fere	٤	۲)													
Sample Identification	Da	ate	Time	G=Grab)	Matrix	Cont.	Ē δ	<u> </u>	>												Sample Specific No	tes
MW-1 //-;	10-0	<u>23</u>	14.45	G	GW	3																
MW-2		1	15 00	G	GW	3		1,	A = A													
MW-3			15:30) G	GW	3		1/	Ϋ́				П									
MW-4			1415	G	GW	3	П	T,	V =													******
MW-5			13.45	G	GW	3	П	1	X													
MW-6			15.15	G	GW	3	П	T	Y													
Trip Blank		,	_	G	w	1			Y													
Preservation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3;	5=Na	ıOH;	6= Other _					_	2			<u> </u>										
Possible Hazard Identification: Are any samples from a listed EPA Hazardous Waste? Pleadomments Section if the lab is to dispose of the sample	se List	t any l	EPA Waste	Codes for	the sam	ple in th	ne S	am	iple L	isposa	al (A	fee	may	be as	esse	ed if s	ampl	les a	re retain	ed lor	nger than 1 month)	
✓ Non-Hazard	П	Poison	R	☐ Unkno	W.D		\dashv	П	Dotur	n to Clier	nt			D!					Archive for_		Months	
Special Instructions/QC Requirements & Comments:		i Olaon			4411				Recui	i to cilei	IL			Dispos	II DV L	ab		. لــا	AICHIVE IOI_		Months	
Custody Seals Intact.	l C 4	l C	N1 NI-							Coole	r Tai		(OC)	Obold	٠0,	4	Corr	 (3.9	TL -	erm ID No	
Bally with a think of the			Seal No AET		Date/T	ime .	IR	ece	eived,	by	7	np (()	JDS U		Com		<u> </u>	<u> </u>		ate/Time	
1 1000000		pany	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	11-	Lird	ime:4/	6			à d	1					COIII	Jany			ا	ate/ illie	
Relinquished by	Com	pany			Date/T	ime	R	Rece	eived	by '	,					Com	oany			- 1	ate/Time	
Relinquished by	Com	pany			Date/T	ime	R	Rece	eived	in Labo	orato	ry by	PA	au	aA)	Com	oany	E	ETA	D	ate/Time[][2][23	09.50
						Page	34	of	35				+ (,,,,,,,	~~				<u> </u>			12/4/202

AET Project No. P-0011071 Page D 126 of 156

Login Sample Receipt Checklist

Client: American Engineering Testing Inc.

Job Number: 500-242861-1

Login Number: 242861 List Source: Eurofins Chicago

List Number: 1

Creator: Schmidt, Kara

Oreator. Schilliat, Mara		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	0.9
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	False	NO TB RECEIVED
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

A

6

_

11

13

14

Environment Testing

REVIEWED

By mneal at 1:32 pm, Dec 05, 2023

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Michael Neal American Engineering Testing Inc. 1837 Cty Hwy OO Chippewa Falls, Wisconsin 54729

Generated 5/31/2023 3:20:36 PM

JOB DESCRIPTION

Laundry Property

JOB NUMBER

500-234429-1

Eurofins Chicago 2417 Bond Street University Park IL 60484 AET Project No. P-0011071 Page D 128 of 156

Eurofins Chicago

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All questions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

Results relate only to the items tested and the sample(s) as received by the laboratory. The results, detection limits (LOD) and Quantitation Limits (LOQ) have been adjusted for sample dilutions and/or solids content.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

Generated 5/31/2023 3:20:36 PM

Authorized for release by Sandie Fredrick, Project Manager II Sandra.Fredrick@et.eurofinsus.com (920)261-1660

J

_

7

Ŏ

10

11

14

Laboratory Job ID: 500-234429-1

Client: American Engineering Testing Inc. Project/Site: Laundry Property

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	11
QC Association	12
QC Sample Results	13
Chronicle	18
Certification Summary	19
Chain of Custody	20
Receipt Checklists	22
Clean Canister Certification	23
Clean Canister Data	23

3

4

6

۶ R

9

1 U

12

13

Case Narrative

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Job ID: 500-234429-1

Job ID: 500-234429-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-234429-1

Comments

No additional comments.

Receipt

The sample was received on 5/26/2023 9:15 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice.

Air - GC/MS VOA

Methods TO 15 LL, TO-14A, TO-15: EPA methods TO-14A and TO-15 specify the use of humidified "zero air" as the blank reagent for canister cleaning, instrument calibration and sample analysis. Ultra-high purity humidified nitrogen from a cryogenic reservoir is used in place of "zero air" by Eurofins TestAmerica Knoxville.

Methods TO 15 LL, TO-15: The continuing calibration verification (CCV) associated with batch 140-73677 exhibited % difference of > 30% for the following analyte(s) Hexachlorobutadiene; however, the results were within the LCS acceptance limits. The EPA method requires that all target analytes in the continuing calibration verification standard be within 30% difference from the initial calibration. According to the laboratory standard operating procedure, the continuing calibration is acceptable if it meets the laboratory control sample acceptance criteria.

Methods TO 15 LL, TO-15: The continuing calibration verification (CCV) associated with batch 140-73677 recovered above the upper control limit for Carbon tetrachloride. The samples associated with this CCV were non-detects above the reporting limit (RL) for the affected analyte; therefore, the data have been reported.

Methods TO 15 LL, TO-15: The laboratory control sample (LCS) for analytical batch 140-73677 recovered outside control limits for the following analyte: Carbon tetrachloride. This analyte was biased high in the LCS and was not detected above the reporting limit (RL) in the associated samples; therefore, the data have been reported.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

3

4

5

6

8

11

13

14

Detection Summary

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Job ID: 500-234429-1

Client Sample ID: SEWER CLEAN OUT

Lab Sample ID: 500-234429-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Carbon disulfide	1.2	J	5.0	0.87	ppb v/v	1	_	TO-15	Total/NA
Chloroform	2.0		2.0	0.36	ppb v/v	1		TO-15	Total/NA
Dichlorodifluoromethane	0.55	J	5.0	0.35	ppb v/v	1		TO-15	Total/NA
Ethylbenzene	1.8	J	2.0	0.33	ppb v/v	1		TO-15	Total/NA
m-Xylene & p-Xylene	5.9	J	8.0	0.73	ppb v/v	1		TO-15	Total/NA
o-Xylene	1.7	J	2.0	0.38	ppb v/v	1		TO-15	Total/NA
Tetrachloroethene	5.8		2.0	0.29	ppb v/v	1		TO-15	Total/NA
Toluene	1.4	J	10	0.57	ppb v/v	1		TO-15	Total/NA
Trichlorofluoromethane	0.38	J	2.0	0.28	ppb v/v	1		TO-15	Total/NA
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Carbon disulfide	3.6	J	16	2.7	ug/m3	1	_	TO-15	Total/NA
Chloroform	9.9		9.8	1.8	ug/m3	1		TO-15	Total/NA
Dichlorodifluoromethane	2.7	J	25	1.7	ug/m3	1		TO-15	Total/NA
Ethylbenzene	7.7	J	8.7	1.4	ug/m3	1		TO-15	Total/NA
m-Xylene & p-Xylene	26	J	35	3.2	ug/m3	1		TO-15	Total/NA
o-Xylene	7.2	J	8.7	1.7	ug/m3	1		TO-15	Total/NA
Tetrachloroethene	39		14	2.0	ug/m3	1		TO-15	Total/NA
Toluene	5.3	J	38	2.1	ug/m3	1		TO-15	Total/NA
Trichlorofluoromethane	2.1	J	11	1.6	ug/m3	1		TO-15	Total/NA

This Detection Summary does not include radiochemical test results.

Page 5 of 30

Method Summary

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Job ID: 500-234429-1

Method	Method Description	Protocol	Laboratory
TO-15	Volatile Organic Compounds in Ambient Air	EPA	EET KNX

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

EET KNX = Eurofins Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

3

_

9

11

12

Page D 133 of 156

Sample Summary

Client: American Engineering Testing Inc. Project/Site: Laundry Property

Job ID: 500-234429-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Asset ID
500-234429-1	SEWER CLEAN OUT	Air	05/24/23 07:39	05/26/23 09:15	Air Canister (6-Liter) #12192

Client Sample Results

Client: American Engineering Testing Inc. Job ID: 500-234429-1

Project/Site: Laundry Property

Client Sample ID: SEWER CLEAN OUT

Lab Sample ID: 500-234429-1

Date Collected: 05/24/23 07:39 Matrix: Air Date Received: 05/26/23 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
,1,1-Trichloroethane	<0.72		2.0	0.72	ppb v/v			05/31/23 01:46	
,1,2,2-Tetrachloroethane	< 0.35		2.0	0.35	ppb v/v			05/31/23 01:46	
,1,2-Trichloro-1,2,2-trifluoroethane	<0.24		2.0	0.24	ppb v/v			05/31/23 01:46	
,1,2-Trichloroethane	<0.38		2.0	0.38	ppb v/v			05/31/23 01:46	
,1-Dichloroethane	<0.27		2.0	0.27	ppb v/v			05/31/23 01:46	
,1-Dichloroethene	< 0.32		2.0	0.32	ppb v/v			05/31/23 01:46	
,2,4-Trichlorobenzene	<0.89		20	0.89	ppb v/v			05/31/23 01:46	
,2,4-Trimethylbenzene	<0.50		2.0	0.50	ppb v/v			05/31/23 01:46	
,2-Dichloro-1,1,2,2-tetrafluoroethane	< 0.30		2.0	0.30	ppb v/v			05/31/23 01:46	
,2-Dichlorobenzene	<0.78		4.0	0.78	ppb v/v			05/31/23 01:46	
,2-Dichloroethane	<0.25		2.0	0.25	ppb v/v			05/31/23 01:46	
,2-Dichloropropane	<0.25		2.0	0.25	ppb v/v			05/31/23 01:46	
,3,5-Trimethylbenzene	<1.6		4.0		ppb v/v			05/31/23 01:46	
,3-Dichlorobenzene	<0.40		2.0		ppb v/v			05/31/23 01:46	
,4-Dichlorobenzene	<0.40		2.0		ppb v/v			05/31/23 01:46	
,4-Dioxane	<0.75		50		ppb v/v			05/31/23 01:46	
-Butanone (MEK)	<1.8		10		ppb v/v			05/31/23 01:46	
-Methyl-2-pentanone (MIBK)	<1.4		10		ppb v/v			05/31/23 01:46	
Acetone	<14		75		ppb v/v			05/31/23 01:46	
Benzene	<0.33		2.0		ppb v/v			05/31/23 01:46	
Benzyl chloride	<0.95		8.0		ppb v/v			05/31/23 01:46	
Bromoform	<0.66		2.0		ppb v/v			05/31/23 01:46	
Bromomethane	<0.55		2.0		ppb v/v			05/31/23 01:46	
Carbon disulfide	1.2		5.0		ppb v/v			05/31/23 01:46	
Carbon tetrachloride	<0.32		2.0		ppb v/v			05/31/23 01:46	
Chlorobenzene	<0.56	•	2.0		ppb v/v			05/31/23 01:46	
Chlorodibromomethane	<0.34		2.0		ppb v/v			05/31/23 01:46	
Chloroethane	<0.79		8.0					05/31/23 01:46	
					ppb v/v				
Chloroform	2.0		2.0 10		ppb v/v			05/31/23 01:46	
Chloromethane	<1.6				ppb v/v			05/31/23 01:46	
is-1,2-Dichloroethene	< 0.25		2.0		ppb v/v			05/31/23 01:46	
is-1,3-Dichloropropene	<0.48		4.0		ppb v/v			05/31/23 01:46	
Cyclohexane	<0.93		5.0		ppb v/v			05/31/23 01:46	
Bromodichloromethane	<0.44		2.0		ppb v/v			05/31/23 01:46	
Dichlorodifluoromethane	0.55		5.0		ppb v/v			05/31/23 01:46	
thylbenzene	1.8	. J	2.0		ppb v/v			05/31/23 01:46	
,2-Dibromoethane (EDB)	<0.31		2.0		ppb v/v			05/31/23 01:46	
łexachlorobutadiene	<0.80		10		ppb v/v			05/31/23 01:46	
lexane	<0.63		8.0		ppb v/v			05/31/23 01:46	
sopropyl alcohol	<2.4		50		ppb v/v			05/31/23 01:46	
sopropylbenzene	< 0.43		8.0		ppb v/v			05/31/23 01:46	
n-Xylene & p-Xylene	5.9	J	8.0		ppb v/v			05/31/23 01:46	
flethyl tert-butyl ether	<1.3		10		ppb v/v			05/31/23 01:46	
lethylene Chloride	<3.4		10		ppb v/v			05/31/23 01:46	
laphthalene	<1.0		5.0	1.0	ppb v/v			05/31/23 01:46	
p-Xylene	1.7	J	2.0	0.38	ppb v/v			05/31/23 01:46	
Styrene	<0.60		2.0	0.60	ppb v/v			05/31/23 01:46	
etrachloroethene	5.8		2.0	0.20	ppb v/v			05/31/23 01:46	

Client Sample Results

Client: American Engineering Testing Inc. Job ID: 500-234429-1

Project/Site: Laundry Property

Client Sample ID: SEWER CLEAN OUT

Lab Sample ID: 500-234429-1

Date Collected: 05/24/23 07:39 Matrix: Air Date Received: 05/26/23 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Toluene	1.4	J	10	0.57	ppb v/v			05/31/23 01:46	1
trans-1,2-Dichloroethene	< 0.33		2.0	0.33	ppb v/v			05/31/23 01:46	1
trans-1,3-Dichloropropene	<0.49		2.0	0.49	ppb v/v			05/31/23 01:46	1
Trichloroethene	< 0.33		2.0	0.33	ppb v/v			05/31/23 01:46	1
Trichlorofluoromethane	0.38	J	2.0	0.28	ppb v/v			05/31/23 01:46	1
Vinyl acetate	<0.70		50	0.70	ppb v/v			05/31/23 01:46	1
Vinyl bromide	< 0.50		2.0	0.50	ppb v/v			05/31/23 01:46	1
Vinyl chloride	< 0.65		4.0	0.65	ppb v/v			05/31/23 01:46	1
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<3.9		11	3.9	ug/m3			05/31/23 01:46	1
1,1,2,2-Tetrachloroethane	<2.4		14	2.4	ug/m3			05/31/23 01:46	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<1.8		15	1.8	ug/m3			05/31/23 01:46	1
1,1,2-Trichloroethane	<2.1		11	2.1	ug/m3			05/31/23 01:46	1
1,1-Dichloroethane	<1.1		8.1	1.1	•			05/31/23 01:46	1
1,1-Dichloroethene	<1.3		7.9		ug/m3			05/31/23 01:46	1
1,2,4-Trichlorobenzene	<6.6		150		ug/m3			05/31/23 01:46	1
1,2,4-Trimethylbenzene	<2.5		9.8		ug/m3			05/31/23 01:46	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	<2.1		14	2.1	ug/m3			05/31/23 01:46	1
1,2-Dichlorobenzene	<4.7		24	4.7	ug/m3			05/31/23 01:46	1
1,2-Dichloroethane	<1.0		8.1		ug/m3			05/31/23 01:46	1
1,2-Dichloropropane	<1.2		9.2		ug/m3			05/31/23 01:46	1
1,3,5-Trimethylbenzene	<7.9		20		ug/m3			05/31/23 01:46	1
1,3-Dichlorobenzene	<2.4		12		ug/m3			05/31/23 01:46	1
1,4-Dichlorobenzene	<2.4		12		ug/m3			05/31/23 01:46	1
1,4-Dioxane	<2.7		180		ug/m3			05/31/23 01:46	1
2-Butanone (MEK)	<5.3		29		ug/m3			05/31/23 01:46	1
4-Methyl-2-pentanone (MIBK)	<5.7		41		ug/m3			05/31/23 01:46	1
Acetone	<33		180		ug/m3			05/31/23 01:46	1
Benzene	<1.1		6.4	1.1	ug/m3			05/31/23 01:46	1
Benzyl chloride	<4.9		41		ug/m3			05/31/23 01:46	1
Bromoform	<6.8		21		ug/m3			05/31/23 01:46	1
Bromomethane	<2.1		7.8		ug/m3			05/31/23 01:46	1
Carbon disulfide	3.6	J.	16		ug/m3			05/31/23 01:46	1
Carbon tetrachloride	<2.0		13		ug/m3			05/31/23 01:46	1
Chlorobenzene	<2.6		9.2		ug/m3			05/31/23 01:46	1
Chlorodibromomethane	<2.9		17		ug/m3			05/31/23 01:46	1
Chloroethane	<2.1		21		ug/m3			05/31/23 01:46	1
Chloroform	9.9		9.8		ug/m3			05/31/23 01:46	1
Chloromethane	<3.3		21		ug/m3			05/31/23 01:46	1
cis-1,2-Dichloroethene	<0.99		7.9		ug/m3			05/31/23 01:46	1
cis-1,3-Dichloropropene	<2.2		18		ug/m3			05/31/23 01:46	1
Cyclohexane	<3.2		17		ug/m3			05/31/23 01:46	1
Bromodichloromethane	<2.9		13		ug/m3			05/31/23 01:46	· · · · · · · · · · · · · · · · · · ·
Dichlorodifluoromethane	2.7	J	25		ug/m3			05/31/23 01:46	1
Ethylbenzene	7.7		8.7		ug/m3			05/31/23 01:46	1
1,2-Dibromoethane (EDB)	<2.4		15		ug/m3			05/31/23 01:46	
Hexachlorobutadiene	<8.5		110		ug/m3			05/31/23 01:46	1
Hexane	<2.2		28		ug/m3			05/31/23 01:46	1
Isopropyl alcohol	<5.9		120		ug/m3			05/31/23 01:46	

Eurofins Chicago

Page 9 of 30

Job ID: 500-234429-1

Client Sample Results

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Client Sample ID: SEWER CLEAN OUT

Lab Sample ID: 500-234429-1 Date Collected: 05/24/23 07:39 Matrix: Air

Date Received: 05/26/23 09:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Isopropylbenzene	<2.1		39	2.1	ug/m3			05/31/23 01:46	1
m-Xylene & p-Xylene	26	J	35	3.2	ug/m3			05/31/23 01:46	1
Methyl tert-butyl ether	<4.7		36	4.7	ug/m3			05/31/23 01:46	1
Methylene Chloride	<12		35	12	ug/m3			05/31/23 01:46	1
Naphthalene	<5.2		26	5.2	ug/m3			05/31/23 01:46	1
o-Xylene	7.2	J	8.7	1.7	ug/m3			05/31/23 01:46	1
Styrene	<2.6		8.5	2.6	ug/m3			05/31/23 01:46	1
Tetrachloroethene	39		14	2.0	ug/m3			05/31/23 01:46	1
Tetrahydrofuran	<5.3		150	5.3	ug/m3			05/31/23 01:46	1
Toluene	5.3	J	38	2.1	ug/m3			05/31/23 01:46	1
trans-1,2-Dichloroethene	<1.3		7.9	1.3	ug/m3			05/31/23 01:46	1
trans-1,3-Dichloropropene	<2.2		9.1	2.2	ug/m3			05/31/23 01:46	1
Trichloroethene	<1.8		11	1.8	ug/m3			05/31/23 01:46	1
Trichlorofluoromethane	2.1	J	11	1.6	ug/m3			05/31/23 01:46	1
Vinyl acetate	<2.5		180	2.5	ug/m3			05/31/23 01:46	1
Vinyl bromide	<2.2		8.7	2.2	ug/m3			05/31/23 01:46	1
Vinyl chloride	<1.7		10	1.7	ug/m3			05/31/23 01:46	1

Definitions/Glossary

Client: American Engineering Testing Inc. Job ID: 500-234429-1

Project/Site: Laundry Property

Qualifiers

Air - GC/MS VOA

Qualifier Qualifier Description

*+ LCS and/or LCSD is outside acceptance limits, high biased.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
--------------	---

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

5

7

8

3

1 1

12

10

15

QC Association Summary

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Job ID: 500-234429-1

Air - GC/MS VOA

Analysis Batch: 73677

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-234429-1	SEWER CLEAN OUT	Total/NA	Air	TO-15	
MB 140-73677/5	Method Blank	Total/NA	Air	TO-15	
LCS 140-73677/1002	Lab Control Sample	Total/NA	Air	TO-15	

3

4

6

Q

9

11

1 /

Client: American Engineering Testing Inc. Job ID: 500-234429-1

Project/Site: Laundry Property

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Lab Sample ID: MB 140-73677/5

Matrix: Air

Analysis Batch: 73677

Client Sample ID: Method Blank

Prep Type: Total/NA

•	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.072		0.20	0.072	ppb v/v			05/30/23 10:47	1
1,1,2,2-Tetrachloroethane	< 0.035		0.20	0.035	ppb v/v			05/30/23 10:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.024		0.20	0.024	ppb v/v			05/30/23 10:47	1
1,1,2-Trichloroethane	<0.038		0.20	0.038	ppb v/v			05/30/23 10:47	1
1,1-Dichloroethane	< 0.027		0.20	0.027	ppb v/v			05/30/23 10:47	1
1,1-Dichloroethene	< 0.032		0.20	0.032	ppb v/v			05/30/23 10:47	1
1,2,4-Trichlorobenzene	<0.089		2.0	0.089	ppb v/v			05/30/23 10:47	1
1,2,4-Trimethylbenzene	< 0.050		0.20	0.050	ppb v/v			05/30/23 10:47	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	< 0.030		0.20	0.030	ppb v/v			05/30/23 10:47	1
1,2-Dichlorobenzene	<0.078		0.40	0.078	ppb v/v			05/30/23 10:47	1
1,2-Dichloroethane	< 0.025		0.20	0.025	ppb v/v			05/30/23 10:47	1
1,2-Dichloropropane	< 0.025		0.20	0.025	ppb v/v			05/30/23 10:47	1
1,3,5-Trimethylbenzene	<0.16		0.40	0.16	ppb v/v			05/30/23 10:47	1
1,3-Dichlorobenzene	< 0.040		0.20	0.040	ppb v/v			05/30/23 10:47	1
1,4-Dichlorobenzene	<0.040		0.20	0.040	ppb v/v			05/30/23 10:47	1
1,4-Dioxane	<0.075		5.0	0.075	ppb v/v			05/30/23 10:47	1
2-Butanone (MEK)	<0.18		1.0	0.18	ppb v/v			05/30/23 10:47	1
4-Methyl-2-pentanone (MIBK)	<0.14		1.0	0.14	ppb v/v			05/30/23 10:47	1
Acetone	<1.4		7.5	1.4	ppb v/v			05/30/23 10:47	1
Benzene	< 0.033		0.20	0.033	ppb v/v			05/30/23 10:47	1
Benzyl chloride	< 0.095		0.80	0.095	ppb v/v			05/30/23 10:47	1
Bromoform	<0.066		0.20	0.066	ppb v/v			05/30/23 10:47	1
Bromomethane	< 0.055		0.20	0.055	ppb v/v			05/30/23 10:47	1
Carbon disulfide	<0.087		0.50	0.087	ppb v/v			05/30/23 10:47	1
Carbon tetrachloride	<0.032		0.20	0.032	ppb v/v			05/30/23 10:47	1
Chlorobenzene	< 0.056		0.20	0.056	ppb v/v			05/30/23 10:47	1
Chlorodibromomethane	< 0.034		0.20	0.034	ppb v/v			05/30/23 10:47	1
Chloroethane	<0.079		0.80	0.079	ppb v/v			05/30/23 10:47	1
Chloroform	< 0.036		0.20	0.036	ppb v/v			05/30/23 10:47	1
Chloromethane	<0.16		1.0	0.16	ppb v/v			05/30/23 10:47	1
cis-1,2-Dichloroethene	<0.025		0.20	0.025	ppb v/v			05/30/23 10:47	1
cis-1,3-Dichloropropene	<0.048		0.40	0.048	ppb v/v			05/30/23 10:47	1
Cyclohexane	< 0.093		0.50	0.093	ppb v/v			05/30/23 10:47	1
Bromodichloromethane	<0.044		0.20	0.044	ppb v/v			05/30/23 10:47	1
Dichlorodifluoromethane	< 0.035		0.50	0.035	ppb v/v			05/30/23 10:47	1
Ethylbenzene	< 0.033		0.20	0.033	ppb v/v			05/30/23 10:47	1
1,2-Dibromoethane (EDB)	<0.031		0.20		ppb v/v			05/30/23 10:47	1
Hexachlorobutadiene	<0.080		1.0		ppb v/v			05/30/23 10:47	1
Hexane	< 0.063		0.80		ppb v/v			05/30/23 10:47	1
Isopropyl alcohol	<0.24		5.0		ppb v/v			05/30/23 10:47	1
Isopropylbenzene	< 0.043		0.80		ppb v/v			05/30/23 10:47	1
m-Xylene & p-Xylene	< 0.073		0.80		ppb v/v			05/30/23 10:47	1
Methyl tert-butyl ether	<0.13		1.0		ppb v/v			05/30/23 10:47	1
Methylene Chloride	<0.34		1.0		ppb v/v			05/30/23 10:47	1
Naphthalene	<0.10		0.50		ppb v/v			05/30/23 10:47	1
o-Xylene	<0.038		0.20		ppb v/v			05/30/23 10:47	1
Styrene	<0.060		0.20		ppb v/v			05/30/23 10:47	1
Tetrachloroethene	<0.029		0.20		ppb v/v			05/30/23 10:47	1
15 addition oct to the	-0.028		0.20	0.023	hhn ava			00,00,20 10.47	'

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 140-73677/5

Matrix: Air

Analysis Batch: 73677

Client Sample ID: Method Blank

Prep Type: Total/NA

Page D 140 of 156

Job ID: 500-234429-1

Allalysis Batcii. 73077	MB	MB							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tetrahydrofuran	<0.18		5.0	0.18	ppb v/v			05/30/23 10:47	1
Toluene	<0.057		1.0	0.057	ppb v/v			05/30/23 10:47	1
trans-1,2-Dichloroethene	< 0.033		0.20	0.033	ppb v/v			05/30/23 10:47	1
trans-1,3-Dichloropropene	<0.049		0.20	0.049	ppb v/v			05/30/23 10:47	1
Trichloroethene	< 0.033		0.20	0.033	ppb v/v			05/30/23 10:47	1
Trichlorofluoromethane	<0.028		0.20	0.028	ppb v/v			05/30/23 10:47	1
Vinyl acetate	<0.070		5.0	0.070	ppb v/v			05/30/23 10:47	1
Vinyl bromide	< 0.050		0.20	0.050	ppb v/v			05/30/23 10:47	1
Vinyl chloride	< 0.065		0.40	0.065	ppb v/v			05/30/23 10:47	1
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	<0.39		1.1	0.39	ug/m3			05/30/23 10:47	1
1,1,2,2-Tetrachloroethane	<0.24		1.4	0.24	ug/m3			05/30/23 10:47	1
1,1,2-Trichloro-1,2,2-trifluoroethane	<0.18		1.5	0.18	ug/m3			05/30/23 10:47	1
1,1,2-Trichloroethane	<0.21		1.1	0.21	ug/m3			05/30/23 10:47	1
1,1-Dichloroethane	<0.11		0.81	0.11	ug/m3			05/30/23 10:47	1
1,1-Dichloroethene	<0.13		0.79	0.13	ug/m3			05/30/23 10:47	1
1,2,4-Trichlorobenzene	<0.66		15	0.66	ug/m3			05/30/23 10:47	1
1,2,4-Trimethylbenzene	<0.25		0.98	0.25	ug/m3			05/30/23 10:47	1
1,2-Dichloro-1,1,2,2-tetrafluoroethane	<0.21		1.4	0.21	ug/m3			05/30/23 10:47	1
1,2-Dichlorobenzene	<0.47		2.4	0.47	ug/m3			05/30/23 10:47	1
1,2-Dichloroethane	<0.10		0.81	0.10	ug/m3			05/30/23 10:47	1
1,2-Dichloropropane	<0.12		0.92	0.12	ug/m3			05/30/23 10:47	1
1,3,5-Trimethylbenzene	<0.79		2.0	0.79	ug/m3			05/30/23 10:47	1
1,3-Dichlorobenzene	<0.24		1.2	0.24	ug/m3			05/30/23 10:47	1
1,4-Dichlorobenzene	<0.24		1.2	0.24	ug/m3			05/30/23 10:47	1
1,4-Dioxane	<0.27		18	0.27	ug/m3			05/30/23 10:47	1
2-Butanone (MEK)	< 0.53		2.9	0.53	ug/m3			05/30/23 10:47	1
4-Methyl-2-pentanone (MIBK)	<0.57		4.1	0.57	ug/m3			05/30/23 10:47	1
Acetone	<3.3		18	3.3	ug/m3			05/30/23 10:47	1
Benzene	<0.11		0.64	0.11	ug/m3			05/30/23 10:47	1
Benzyl chloride	< 0.49		4.1	0.49	ug/m3			05/30/23 10:47	1
Bromoform	<0.68		2.1	0.68	ug/m3			05/30/23 10:47	1
Bromomethane	<0.21		0.78	0.21	ug/m3			05/30/23 10:47	1
Carbon disulfide	<0.27		1.6	0.27	ug/m3			05/30/23 10:47	1
Carbon tetrachloride	<0.20		1.3	0.20	ug/m3			05/30/23 10:47	1
Chlorobenzene	<0.26		0.92	0.26	ug/m3			05/30/23 10:47	1
Chlorodibromomethane	<0.29		1.7	0.29	ug/m3			05/30/23 10:47	1
Chloroethane	<0.21		2.1	0.21	ug/m3			05/30/23 10:47	1
Chloroform	<0.18		0.98	0.18	ug/m3			05/30/23 10:47	1
Chloromethane	< 0.33		2.1		ug/m3			05/30/23 10:47	1
cis-1,2-Dichloroethene	<0.099		0.79	0.099	ug/m3			05/30/23 10:47	1
cis-1,3-Dichloropropene	<0.22		1.8	0.22	ug/m3			05/30/23 10:47	1
Cyclohexane	< 0.32		1.7	0.32	ug/m3			05/30/23 10:47	1
Bromodichloromethane	<0.29		1.3	0.29	ug/m3			05/30/23 10:47	1
Dichlorodifluoromethane	<0.17		2.5		ug/m3			05/30/23 10:47	1
Ethylbenzene	<0.14		0.87	0.14	ug/m3			05/30/23 10:47	1
1,2-Dibromoethane (EDB)	<0.24		1.5	0.24	ug/m3			05/30/23 10:47	1
Hexachlorobutadiene	< 0.85		11	0.85	ug/m3			05/30/23 10:47	1

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Job ID: 500-234429-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: MB 140-73677/5

Matrix: Air

Analysis Batch: 73677

Client Sample ID: Method Blank

Prep Type: Total/NA

	MB MB							
Analyte	Result Qua	alifier RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Hexane	<0.22	2.8	0.22	ug/m3			05/30/23 10:47	1
Isopropyl alcohol	<0.59	12	0.59	ug/m3			05/30/23 10:47	1
Isopropylbenzene	<0.21	3.9	0.21	ug/m3			05/30/23 10:47	1
m-Xylene & p-Xylene	<0.32	3.5	0.32	ug/m3			05/30/23 10:47	1
Methyl tert-butyl ether	<0.47	3.6	0.47	ug/m3			05/30/23 10:47	1
Methylene Chloride	<1.2	3.5	1.2	ug/m3			05/30/23 10:47	1
Naphthalene	<0.52	2.6	0.52	ug/m3			05/30/23 10:47	1
o-Xylene	<0.17	0.87	0.17	ug/m3			05/30/23 10:47	1
Styrene	<0.26	0.85	0.26	ug/m3			05/30/23 10:47	1
Tetrachloroethene	<0.20	1.4	0.20	ug/m3			05/30/23 10:47	1
Tetrahydrofuran	<0.53	15	0.53	ug/m3			05/30/23 10:47	1
Toluene	<0.21	3.8	0.21	ug/m3			05/30/23 10:47	1
trans-1,2-Dichloroethene	<0.13	0.79	0.13	ug/m3			05/30/23 10:47	1
trans-1,3-Dichloropropene	<0.22	0.91	0.22	ug/m3			05/30/23 10:47	1
Trichloroethene	<0.18	1.1	0.18	ug/m3			05/30/23 10:47	1
Trichlorofluoromethane	<0.16	1.1	0.16	ug/m3			05/30/23 10:47	1
Vinyl acetate	<0.25	18	0.25	ug/m3			05/30/23 10:47	1
Vinyl bromide	<0.22	0.87	0.22	ug/m3			05/30/23 10:47	1
Vinyl chloride	<0.17	1.0	0.17	ug/m3			05/30/23 10:47	1

Lab Sample ID: LCS 140-73677/1002

Matrix: Air

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Analysis Batch: 73677								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1,1-Trichloroethane	3.00	3.22		ppb v/v		107	70 - 130	_
1,1,2,2-Tetrachloroethane	3.00	3.06		ppb v/v		102	70 - 130	
1,1,2-Trichloro-1,2,2-trifluoroetha	3.00	3.11		ppb v/v		104	70 - 130	
ne								
1,1,2-Trichloroethane	3.00	3.05		ppb v/v		102	70 - 130	
1,1-Dichloroethane	3.00	3.24		ppb v/v		108	70 - 130	
1,1-Dichloroethene	3.00	2.79		ppb v/v		93	70 - 130	
1,2,4-Trichlorobenzene	3.00	3.00		ppb v/v		100	60 - 140	
1,2,4-Trimethylbenzene	3.00	3.46		ppb v/v		115	70 - 130	
1,2-Dichloro-1,1,2,2-tetrafluoroet	3.00	2.66		ppb v/v		89	60 - 140	
hane								
1,2-Dichlorobenzene	3.00	3.49		ppb v/v		116	70 - 130	
1,2-Dichloroethane	3.00	3.44		ppb v/v		115	70 - 130	
1,2-Dichloropropane	3.00	3.11		ppb v/v		104	70 - 130	
1,3,5-Trimethylbenzene	3.00	3.86		ppb v/v		129	70 - 130	
1,3-Dichlorobenzene	3.00	3.41		ppb v/v		114	70 - 130	
1,4-Dichlorobenzene	3.00	3.59		ppb v/v		120	70 - 130	
1,4-Dioxane	3.00	2.69		ppb v/v		90	60 - 140	
2-Butanone (MEK)	3.00	2.82		ppb v/v		94	60 - 140	
4-Methyl-2-pentanone (MIBK)	3.00	2.65		ppb v/v		88	60 - 140	
Acetone	3.00	2.61	J	ppb v/v		87	60 - 140	
Benzene	3.00	2.98		ppb v/v		99	70 - 130	
Benzyl chloride	3.00	3.61		ppb v/v		120	70 - 130	
Bromoform	3.00	3.30		ppb v/v		110	60 - 140	

Eurofins Chicago

Page 15 of 30

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Job ID: 500-234429-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 140-73677/1002

Matrix: Air

Analysis Batch: 73677

Trichlorofluoromethane

Vinyl acetate

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromomethane	3.00	2.71		ppb v/v	_	90	70 - 130	
Carbon disulfide	3.00	3.09		ppb v/v		103	70 - 130	
Carbon tetrachloride	3.00	4.13	*+	ppb v/v		138	70 - 130	
Chlorobenzene	3.00	3.23		ppb v/v		108	70 - 130	
Chlorodibromomethane	3.00	3.77		ppb v/v		126	70 - 130	
Chloroethane	3 00	2.56		nnh v/v		95	70 130	

Chloroethane 3.00 ppb v/v 85 70 - 130 2.56 3.00 ppb v/v 105 70 - 130Chloroform 3.16 3.00 2 29 ppb v/v 76 60 - 1403.00 2.94 ppb v/v 98 70 - 130

Chloromethane cis-1,2-Dichloroethene 3.00 cis-1,3-Dichloropropene 3.26 ppb v/v 109 70 - 130 3.00 92 Cyclohexane 2.75 ppb v/v 70 - 130 3.00 Bromodichloromethane 113 70 - 130 3.40 ppb v/v Dichlorodifluoromethane 3.00 100 3.00 ppb v/v 60 - 1403.00 Ethylbenzene 2.80 93 70 - 130 ppb v/v 1,2-Dibromoethane (EDB) 3.00 3.19 106 70 - 130 ppb v/v

3.00 Hexachlorobutadiene 1.91 64 60 - 140ppb v/v Hexane 3.00 2.80 93 70 - 130 ppb v/v 3.00 3.08 103 60 - 140 Isopropyl alcohol ppb v/v Isopropylbenzene 3.00 3.22 107 70 - 130 ppb v/v m-Xylene & p-Xylene 6.00 5.87 98 70 - 130 ppb v/v Methyl tert-butyl ether 3.00 3.02 ppb v/v 101 60 - 140Methylene Chloride 3.00 2.73 91 70 - 130 ppb v/v Naphthalene 3.00 3.63 ppb v/v 121 60 - 140

3.00 2.92 ppb v/v 97 o-Xylene 70 - 130 3.00 103 Styrene 3.08 70 - 130 ppb v/v 3.00 3.25 108 70 - 130 Tetrachloroethene ppb v/v 3.00 88 Tetrahydrofuran 2.65 ppb v/v 60 - 140Toluene 3.00 2.90 ppb v/v 97 70 - 130 trans-1,2-Dichloroethene 3.00 2.90 ppb v/v 97 70 - 130trans-1,3-Dichloropropene 70 - 130 3.00 3.20 ppb v/v 107 Trichloroethene 3.00 3.08 103 70 - 130 ppb v/v

3.00

3.00

3.18

3.29

ppb v/v

ppb v/v

106

110

60 - 140

60 - 140

3.00 2.99 100 60 - 140 Vinyl bromide ppb v/v 3.00 Vinyl chloride 2.47 ppb v/v 82 70 - 130 LCS LCS Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits 70 - 130 1,1,1-Trichloroethane 16 17.6 ug/m3 107 1,1,2,2-Tetrachloroethane 21 21.0 ug/m3 102 70 - 130 70 - 130 1,1,2-Trichloro-1,2,2-trifluoroetha 23 23.9 ug/m3 104 1,1,2-Trichloroethane 16 16.7 ug/m3 102 70 - 130 1,1-Dichloroethane 12 13.1 ug/m3 108 70 - 130

12 1,1-Dichloroethene 11.1 ug/m3 93 70 - 130 22 22.3 100 60 - 140 1,2,4-Trichlorobenzene ug/m3 15 115 70 - 130 1,2,4-Trimethylbenzene 17.0 ug/m3 1,2-Dichloro-1,1,2,2-tetrafluoroet 21 18.6 ug/m3 89 60 - 140 18 21.0 116 70 - 130 1,2-Dichlorobenzene ug/m3

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Job ID: 500-234429-1

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 140-73677/1002

Matrix: Air

Client Sample ID: Lab Control Sample Prep Type: Total/NA

	Spike		LCS			%Rec
Analyte	Added		Qualifier	Unit	D %Re	
1,2-Dichloroethane	12	13.9		ug/m3	11	
1,2-Dichloropropane	14	14.4		ug/m3	10	4 70 - 130
1,3,5-Trimethylbenzene	15	19.0		ug/m3	12	9 70 - 130
1,3-Dichlorobenzene	18	20.5		ug/m3	11	4 70 - 130
1,4-Dichlorobenzene	18	21.6		ug/m3	12	0 70 - 130
1,4-Dioxane	11	9.69		ug/m3	9	0 60 - 140
2-Butanone (MEK)	8.8	8.32		ug/m3	9	4 60 - 140
4-Methyl-2-pentanone (MIBK)	12	10.9		ug/m3	8	8 60 - 140
Acetone	7.1	6.21	J	ug/m3	8	7 60 - 140
Benzene	9.6	9.51		ug/m3	9	9 70 - 130
Benzyl chloride	16	18.7		ug/m3	12	0 70 - 130
Bromoform	31	34.1		ug/m3	11	0 60 - 140
Bromomethane	12	10.5		ug/m3	g	0 70 - 130
Carbon disulfide	9.3	9.63		ug/m3	10	3 70 - 130
Carbon tetrachloride	19	26.0	*+	ug/m3	13	8 70 - 130
Chlorobenzene	14	14.9		ug/m3	10	8 70 - 130
Chlorodibromomethane	26	32.1		ug/m3	12	6 70 - 130
Chloroethane	7.9	6.76		ug/m3		5 70 - 130
Chloroform	15	15.4		ug/m3	10	5 70 - 130
Chloromethane	6.2	4.74		ug/m3	7	6 60 - 140
cis-1,2-Dichloroethene	12	11.7		ug/m3		8 70 - 130
cis-1,3-Dichloropropene	14	14.8		ug/m3	10	
Cyclohexane	10	9.45		ug/m3		2 70 - 130
Bromodichloromethane	20	22.8		ug/m3	11	
Dichlorodifluoromethane	15	14.9		ug/m3	10	
Ethylbenzene	13	12.2		ug/m3		3 70 - 130
1,2-Dibromoethane (EDB)	23	24.5		ug/m3	10	
Hexachlorobutadiene	32	20.4		ug/m3		4 60 - 140
Hexane	11	9.85		ug/m3		3 70 - 130
Isopropyl alcohol	7.4	7.58		ug/m3		
Isopropylbenzene	15	15.8		ug/m3	10	
m-Xylene & p-Xylene	26	25.5		ug/m3		8 70 - 130
Methyl tert-butyl ether	11	10.9		ug/m3		
Methylene Chloride	10	9.50		ug/m3	9	
Naphthalene	16	19.0		ug/m3	12	
o-Xylene	13	12.7		ug/m3		7 70 - 130
-	13	13.1		_	10	
Styrene Tetrachloroethene	20	22.0		ug/m3	10	
	8.8	7.80		ug/m3		
Tetrahydrofuran				ug/m3		
Toluene	11	10.9		ug/m3		7 70 130
trans-1,2-Dichloroethene	12	11.5		ug/m3		7 70 130
trans-1,3-Dichloropropene	14	14.5		ug/m3	10	
Trichlandlyananathana	16	16.5		ug/m3	10	
Trichlorofluoromethane	17	17.9		ug/m3	10	
Vinyl acetate	11	11.6		ug/m3	11	
Vinyl bromide	13	13.1		ug/m3	10	
Vinyl chloride	7.7	6.31		ug/m3	8	2 70 - 130

Lab Chronicle

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Client Sample ID: SEWER CLEAN OUT Lab Sample ID: 500-234429-1

Date Collected: 05/24/23 07:39 Matrix: Air

Date Received: 05/26/23 09:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	TO-15		1	73677	S1K	EET KNX	05/31/23 01:46

Laboratory References:

EET KNX = Eurofins Knoxville, 5815 Middlebrook Pike, Knoxville, TN 37921, TEL (865)291-3000

3

Job ID: 500-234429-1

4

5

7

0

10

12

Accreditation/Certification Summary

Client: American Engineering Testing Inc.

Project/Site: Laundry Property

Job ID: 500-234429-1

Laboratory: Eurofins Knoxville

All accreditations/certifications held by this laboratory are listed. Not all accreditations/certifications are applicable to this report.

Authority	Program	Identification Number	Expiration Date
	AFCEE	N/A	
ANAB	Dept. of Defense ELAP	L2311	02-13-25
ANAB	Dept. of Energy	L2311.01	02-13-25
ANAB	ISO/IEC 17025	L2311	02-13-25
Arkansas DEQ	State	88-0688	06-16-23
California	State	2423	06-30-23
Colorado	State	TN00009	02-29-24
Connecticut	State	PH-0223	09-30-23
Florida	NELAP	E87177	06-30-23
Georgia (DW)	State	906	07-27-25
Hawaii	State	NA	07-27-23
Kansas	NELAP	E-10349	10-31-23
Kentucky (DW)	State	90101	12-31-23
Louisiana	NELAP	83979	06-30-23
Louisiana (All)	NELAP	83979	06-30-23
Louisiana (DW)	State	LA019	12-31-23
Maryland	State	277	03-31-24
Michigan	State	9933	07-27-25
Nevada	State	TN00009	07-31-23
New Hampshire	NELAP	2999	01-17-24
New Jersey	NELAP	TN001	06-30-23
New York	NELAP	10781	03-31-24
North Carolina (DW)	State	21705	07-31-23
North Carolina (WW/SW)	State	64	12-31-23
Ohio VAP	State	CL0059	06-02-23
Oklahoma	State	9415	08-31-23
Oregon	NELAP	TNI0189	01-01-24
Pennsylvania	NELAP	68-00576	12-01-23
Tennessee	State	02014	07-27-25
Texas	NELAP	T104704380-22-17	08-31-23
US Fish & Wildlife	US Federal Programs	058448	07-31-23
USDA	US Federal Programs	525-22-279-18762	10-06-25
Utah	NELAP	TN00009	07-31-23
Virginia	NELAP	460176	09-14-23
Washington	State	C593	01-19-24
West Virginia (DW)	State	9955C	12-31-23
West Virginia DEP	State	345	04-30-24
Wisconsin	State	998044300	08-31-23

3

5

7

9

10

12

IC

eurofins :

Canister Samples Chain of Custody Record

Eurofins TestAmerica, Knoxville

5815 Middlebrook Pike

Knoxville, TN 37921-5947 phone 865.291.3000 fax 865.584.4315

TestAmerica Laboratories, Inc. assumes no liability with respect to the collection and shipment of these samples.

TestAmerica Laboratories, Inc. d/b/a Eurofins TestAmerica Sewer Clean Lut (See below for Add'I Items) Sample Specific Notes: For Lab Use Only Job / SDG No. **Nalk-in Client:** -ab Sampling: COC No: 500-234429 Chain of Custody Other (Please specify in notes section) 12:00 andfill Gas Soil Vapor Extraction (SVE) ETA KUX 5/26/23 ndoor Air/Ambient Air Sample Type Chease specify in notes section) 91/91 A93 8461-G MT2A EPA 25C DE A93 Michie MIS 31-01 [O-14/15 (Standard / Low Level) Samples Received by: 19/19 Canister Samples Collected By: ₽ Received by: Received by: Flow Controller ID 09893 Temperature (Fahrenheit) Pressure (inches of Hg Vacuum in Field, "Hg (Stop) Canister ď Email: Moralateannat (6m) Vacuum in Field, "Hg (Start) Canister **Analysis Turnaround Time** Client Project Manager: My Vax Date / Time: 24-43 5645 Time Stop Phone: 7, 5861 Date / Time: Date / Time Sample End Date 6.59 Sattas Standard (Specific): Interior Interior Rush (Specifiy): Site Contact: Tel/Fax Time Start Start Start Stop Sample Start Date 524.93 5473 Special Instructions/QC Requirements & Comments: Vieger ty Box FedEx 1722 4017 2547 G 15 861 50 45 CTH OO C/en-00) Can / 1 Flow (OF) (1R) Sample Identification LAW n decement Seal Intact Ambient ON 5/24/23 Client Contact Information Samples Relinquished by: Phone: 7/5 twer. Relinquished by: Company Name: Received Project Name: City/State/Zip Site/Location: Custadu Address: # O d

Form No. CA-C-WI-003, Rev. 2.23, dated 5/4/2020

3

Λ

Ę

6

8

10

12

13

14

1

Opened by:

Shipper Name:

Lab Use Only:

Loc: 500 234429

Log In Number:

EUROFINS/TESTAMERICA KNOXVILLE SAMPLE RECEIPT/CONDITION UPON RECEIPT ANOMALY CHECKLIST

2

5

6

7

9

11

13

14

Review Items	Yes	Ž	NA	If No, what was the problem?	Comments/Actions Taken
1. Are the shipping containers intact?	7			☐ Containers, Broken	
2. Were ambient air containers received intact?			7	Checked in lab	
3. The coolers/containers custody seal if present, is it				□ Yes	
intact?	7			□ NA	
4. Is the cooler temperature within limits? (> freezing				□ Cooler Out of Temp, Client	
temp. of water to 6 °C, VOST: 10°C)			/	Contacted, Proceed/Cancel	
Thermometer ID :				☐ Cooler Out of Temp, Same Day	
Correction factor:				Receipt	
5. Were all of the sample containers received intact?	/			☐ Containers, Broken	
6. Were samples received in appropriate containers?	/			☐ Containers, Improper; Client	
				Contacted; Proceed/Cancel	
7. Do sample container labels match COC?	/			ĺ	
(IDs, Dates, Times)				☐ COC Incorrect/Incomplete	
				☐ COC Not Received	
8. Were all of the samples listed on the COC received?	7			☐ Sample Received, Not on COC	
				☐ Sample on COC, Not Received	
9. Is the date/time of sample collection noted?	7			□ COC; No Date/Time; Client	
				Contacted	I shaling Varified by:
10. Was the sampler identified on the COC?	7			☐ Sampler Not Listed on COC	Date:
11. Is the client and project name/# identified?	7			☐ COC Incorrect/Incomplete	nH test strip lot number:
12. Are tests/parameters listed for each sample?	/			☐ COC No tests on COC	
13. Is the matrix of the samples noted?	7			□ COC Incorrect/Incomplete	
14. Was COC relinquished? (Signed/Dated/Timed)	\			□ COC Incorrect/Incomplete	H Box
15. Were samples received within holding time?	7			Holding Time - Receipt	Drecervative:
16. Were samples received with correct chemical				n h Adinsted nH Included	Lot Number:
preservative (excluding Encore)?			7	(See box 16A)	Exp Date:
				☐ Incorrect Preservative	Analyst:
17. Were VOA samples received without headspace?			7	☐ Headspace (VOA only)	Date:
18. Did you check for residual chlorine, if necessary?			7	☐ Residual Chlorine	Time:
(e.g. 1013B, 1008) Chlorine test strin lot mumber:					
19. For 1613B water samples is nH<92				15 ms matter 121 ms 21 ms	
20 Equand committee control of the c			7		
5 I			>	☐ Project missing info	
Project #: 5007204 PM Instructions:					
Sample Receiving Associate: () Lan			Date:	Date: 5/2L/23	QA026R32.doc, 062719

AET Project No. P-0011071 Page D 148 of 156

Eurofins Knoxville - Air Canister Initial Pressure Check

Gauge ID: G5 **Date/Time:** 5/26/23 1534

		Pressure @ Receipt (-in Hg or +psig)/initial			Cert	Size	
Analyst	Sample ID	pressurisation (if applicable)	Asset #	Cleaning Job	Type	(L)	Comments
hmt	500-234429-A-1	-1.9	12192	140-30875-A-10	b	6	
				1			
					 		
							L

3

7

9

10

12

14

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Knoxville	Job No.: 140-30875-1					
SDG No.:						
Client Sample ID: 12008	Lab Sample ID: 140-30875-1					
Matrix: Air	Lab File ID: C10L30875.D					
Analysis Method: TO 15 LL	Date Collected: 03/09/2023 16:20					
Sample wt/vol: 500(mL)	Date Analyzed: 03/11/2023 03:19					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)					
Purge Volume:	Heated Purge: (Y/N) pH:					
% Moisture: % Solids:	Level: (low/med) Low					
Analysis Batch No.: 71092	Units: ppb v/v					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	
71-55-6	1,1,1-Trichloroethane	ND		0.080	
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.080	
79-00-5	1,1,2-Trichloroethane	ND		0.080	
76-13-1	1,1,2-Trichlorotrifluoroethane	ND		0.080	
75-34-3	1,1-Dichloroethane	ND		0.080	
75-35-4	1,1-Dichloroethene	ND		0.040	
87-61-6	1,2,3-Trichlorobenzene	ND		0.40	
96-18-4	1,2,3-Trichloropropane	ND		0.20	
526-73-8	1,2,3-Trimethylbenzene	ND		0.080	
95-93-2	1,2,4,5-Tetramethylbenzene	ND		0.080	
120-82-1	1,2,4-Trichlorobenzene	ND		0.080	
95-63-6	1,2,4-Trimethylbenzene	ND		0.080	
96-12-8	1,2-Dibromo-3-Chloropropane	ND		0.16	
106-93-4	1,2-Dibromoethane	ND		0.080	
95-50-1	1,2-Dichlorobenzene	ND		0.080	
107-06-2	1,2-Dichloroethane	ND		0.080	
78-87-5	1,2-Dichloropropane	ND		0.080	
76-14-2	1,2-Dichlorotetrafluoroethane	ND		0.080	
108-67-8	1,3,5-Trimethylbenzene	ND		0.16	-
106-99-0	1,3-Butadine	ND		0.16	
541-73-1	1,3-Dichlorobenzene	ND		0.080	
106-46-7	1,4-Dichlorobenzene	ND		0.080	
123-91-1	1,4-Dioxane	ND		0.20	
71-36-3	1-Butanol	ND		0.80	
90-12-0	1-Methylnaphthalene	ND		1.0	
540-84-1	2,2,4-Trimethylpentane	ND		0.20	
565-59-3	2,3-Dimethylpentane	ND		0.080	
78-93-3	2-Butanone	ND		0.32	
95-49-8	2-Chlorotoluene	ND		0.16	-
591-78-6	2-Hexanone	ND		0.20	
78-78-4	2-Methylbutane	ND		0.20	
91-57-6	2-Methylnaphthalene	ND		1.0	
107-83-5	2-Methylpentane	ND		0.080	
107-05-1	3-Chloroprene	ND		0.080	

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Knoxville	Job No.: 140-30875-1					
SDG No.:						
Client Sample ID: 12008	Lab Sample ID: 140-30875-1					
Matrix: Air	Lab File ID: C10L30875.D					
Analysis Method: TO 15 LL	Date Collected: 03/09/2023 16:20					
Sample wt/vol: 500(mL)	Date Analyzed: 03/11/2023 03:19					
Soil Aliquot Vol:	Dilution Factor: 1					
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)					
Purge Volume:	Heated Purge: (Y/N) pH:					
% Moisture: % Solids:	Level: (low/med) Low					
Analysis Batch No.: 71092	Units: ppb v/v					

CAS NO.	COMPOUND NAME	RESULT	Q	RL	
622-96-8	4-Ethyltoluene	ND		0.16	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND		0.20	
67-64-1	Acetone	ND		2.0	
75-05-8	Acetonitrile	ND		0.40	
107-02-8	Acrolein	ND		0.40	
107-13-1	Acrylonitrile	ND		0.80	
98-83-9	Alpha Methyl Styrene	ND		0.16	
71-43-2	Benzene	ND		0.080	
100-44-7	Benzyl chloride	ND		0.16	
75-27-4	Bromodichloromethane	ND		0.080	
75-25-2	Bromoform	ND		0.080	
74-83-9	Bromomethane	ND		0.080	
106-97-8	Butane	ND		0.16	
75-15-0	Carbon disulfide	ND		0.20	
56-23-5	Carbon tetrachloride	ND		0.032	
108-90-7	Chlorobenzene	ND		0.080	
75-45-6	Chlorodifluoromethane	ND		0.080	
75-00-3	Chloroethane	ND		0.080	
67-66-3	Chloroform	ND		0.080	
74-87-3	Chloromethane	ND		0.20	
156-59-2	cis-1,2-Dichloroethene	ND		0.040	
10061-01-5	cis-1,3-Dichloropropene	ND		0.080	
98-82-8	Cumene	ND		0.16	
110-82-7	Cyclohexane	ND		0.20	
124-48-1	Dibromochloromethane	ND		0.080	
74-95-3	Dibromomethane	ND		0.16	
75-71-8	Dichlorodifluoromethane	ND		0.080	
64-17-5	Ethanol	ND		2.0	
141-78-6	Ethyl acetate	ND		0.80	
60-29-7	Ethyl ether	ND		0.80	
100-41-4	Ethylbenzene	ND		0.080	
87-68-3	Hexachlorobutadiene	ND		0.080	
110-54-3	Hexane	ND		0.20	
496-11-7	Indane	ND		0.080	

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: Eurofins Knoxville	Job No.: 140-30875-1
SDG No.:	
Client Sample ID: 12008	Lab Sample ID: 140-30875-1
Matrix: Air	Lab File ID: C10L30875.D
Analysis Method: TO 15 LL	Date Collected: 03/09/2023 16:20
Sample wt/vol: 500(mL)	Date Analyzed: 03/11/2023 03:19
Soil Aliquot Vol:	Dilution Factor: 1
Soil Extract Vol.:	GC Column: RTX-5 ID: 0.32(mm)
Purge Volume:	Heated Purge: (Y/N) pH:
% Moisture: % Solids:	Level: (low/med) Low
Analysis Batch No.: 71092	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	
95-13-6	Indene	ND		0.16	
67-63-0	Isopropyl alcohol	ND		0.80	
80-62-6	Methyl methacrylate	ND		0.20	
1634-04-4	Methyl tert-butyl ether	ND		0.16	
108-87-2	Methylcyclohexane	ND		0.080	
75-09-2	Methylene Chloride	ND		0.40	
179601-23-1	m-Xylene & p-Xylene	ND		0.080	
91-20-3	Naphthalene	ND		0.20	
104-51-8	n-Butylbenzene	ND		0.16	
124-18-5	n-Decane	ND		0.40	
112-40-3	n-Dodecane	ND		0.40	
142-82-5	n-Heptane	ND		0.20	
111-84-2	n-Nonane	ND		0.20	
111-65-9	n-Octane	ND		0.16	
103-65-1	N-Propylbenzene	ND		0.16	
95-47-6	o-Xylene	ND		0.080	
99-87-6	p-Cymene	ND		0.080	
109-66-0	Pentane	ND		0.40	
115-07-1	Propene	ND		1.0	
135-98-8	sec-Butylbenzene	ND		0.16	
100-42-5	Styrene	ND		0.080	
75-65-0	tert-Butanol	ND		0.32	
98-06-6	tert-Butylbenzene	ND		0.20	
127-18-4	Tetrachloroethene	ND		0.040	
109-99-9	Tetrahydrofuran	ND		0.40	
110-02-1	Thiophene	ND		0.080	
108-88-3	Toluene	ND		0.12	
L56-60-5	trans-1,2-Dichloroethene	ND		0.080	
10061-02-6	trans-1,3-Dichloropropene	ND		0.080	
79-01-6	Trichloroethene	ND		0.036	
75-69-4	Trichlorofluoromethane	ND		0.080	
1120-21-4	Undecane	ND		0.40	
108-05-4	Vinyl acetate	ND		0.40	
593-60-2	Vinyl bromide	ND		0.080	

Lab Name: Eurofins Knoxville			Job No.: 140-30875-1					
SDG No.:								
Client Sample ID: 12008			Lab Sample ID: 140-30875-1					
Matrix: Air			File ID: C	10L30875	. D			
Analysis Method: TO 15 LL			e Collected	: 03/09/	2023 16:2	0		
Sample wt/vol: 500(mL)			Date Analyzed: 03/11/2023 03:19					
Soil Aliquot Vol:			Dilution Factor: 1					
Soil Extract	Vol.:	GC	GC Column: RTX-5 ID: 0.32 (mm)					
Purge Volume:		Неа	Heated Purge: (Y/N) pH:					
% Moisture: _	% Solids:	Level: (low/med) Low						
Analysis Batch No.: 71092		Uni	Units: ppb v/v					
CAS NO.	COMPOUND NAME		RESULT	Q	RL			
75-01-4	Vinyl chloride		ND		0.040			

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET TARGETED TENATIVELY IDENTIFIED COMPOUNDS

Lab Name: Eurofins Knoxville		Job No.: 140-30875-1					
SDG No.:							
Client Sample ID:	12008	Lab Sample ID: 140-308	375-1				
Matrix: Air		Lab File ID: C10L30875	Lab File ID: C10L30875.D				
Analysis Method:	TO 15 LL	Date Collected: 03/09/	Date Collected: 03/09/2023 16:20				
Sample wt/vol: 500(mL)		Date Analyzed: 03/11/2	Date Analyzed: 03/11/2023 03:19				
Soil Aliquot Vol:		Dilution Factor: 1	Dilution Factor: 1				
Soil Extract Vol.	:	GC Column: RTX-5	ID: 0.32 (mm)				
Purge Volume:		Heated Purge: (Y/N)	pH:				
% Moisture:	% Solids:	Level: (low/med) Low					
Analysis Batch No.: 71092		Units: ppb v/v					

CAS NO.	COMPOUND NAME	RT	RESULT	Q	MATCH QUALITY
488-23-3	1,2,3,4-Tetramethylbenzene TIC		ND		
527-53-7	1,2,3,5-Tetramethylbenzene TIC		ND		
934-80-5	1,2-Dimethyl-4-Ethylbenzene TIC		ND		
872-55-9	2-Ethylthiophene TIC		ND		
554-14-3	2-Methylthiophene TIC		ND		
616-44-4	3-Methylthiophene TIC		ND		
95-15-8	Benzo(b)thiophene TIC		ND		

AET Project No. P-0011071 Page D 154 of 156

Eurofins Knoxville

Target Compound Quantitation Report

Data File: \\chromfs\Knoxville\ChromData\MR\20230309-27296.b\C10L30875.D

Lims ID: 140-30875-A-1

Client ID: 12008 Sample Type: Client

Inject. Date: 11-Mar-2023 03:19:30 ALS Bottle#: 17 Worklist Smp#: 25

Purge Vol: 500.000 mL Dil. Factor: 1.0000

Sample Info: 140-0027296-025

Misc. Info.: 12008

Operator ID: Instrument ID: MR

Method: \\chromfs\Knoxville\ChromData\MR\20230309-27296.b\MR_TO15.m

Limit Group: MSA TO14A_15 Routine ICAL

Last Update:13-Mar-2023 11:34:05Calib Date:09-Jan-2023 23:18:30Integrator:RTEID Type:Deconvolution IDQuant Method:Internal StandardQuant By:Initial CalibrationLast ICal File:\\chromfs\Knoxville\ChromData\MR\20230109-26581.b\ICRA09LVL7.D

Column 1: RTX-5 (0.32 mm) Det: MS SCAN

Process Host: CTX1636

First Level Reviewer: khachitpongpanits Date: 13-Mar-2023 11:34:05

Compound	Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q	Response	OnCol Amt ppb v/v	Flags
* 1 Chlorobromomethane (IS)	128	8.722	8.738	-0.016	97	81512	3.76	
* 21,4-Difluorobenzene	114	10.960	10.970	-0.010	95	469519	4.00	
* 3 Chlorobenzene-d5 (IS)	117	15.905	15.921	-0.016	88	435457	3.92	
\$ 4 4-Bromofluorobenzene (Surr)	95	17.587	17.598	-0.011	90	278124	2.98	

QC Flag Legend

Processing Flags

Reagents:

40MXISSUR_00003 Amount Added: 40.00 Units: mL Run Reagent

Page 28 of 30

2

5

6

7

. .

12

14

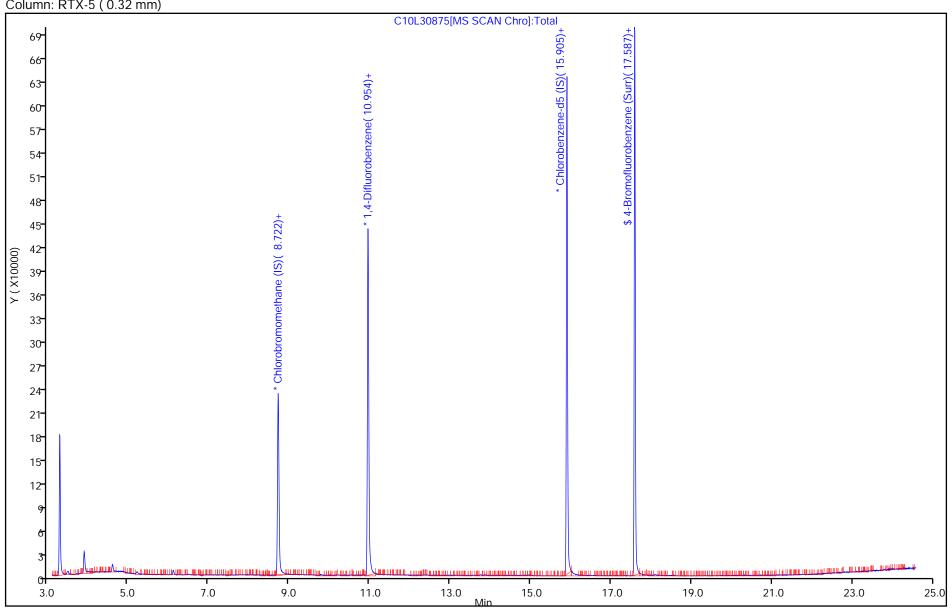
Operator ID:

Report Date: 13-Mar-2023 11:34:06 Chrom Revision: 2.3 15-Feb-2023 20:44:50

Eurofins Knoxville

Data File:

Injection Date: Instrument ID: MR 11-Mar-2023 03:19:30


Worklist Smp#: Lims ID: Lab Sample ID: 140-30875-1 25 140-30875-A-1

12008 Client ID:

Purge Vol: Dil. Factor: 17 500.000 mL 1.0000 ALS Bottle#:

Method: MR_TO15 Limit Group: MSA TO14A_15 Routine ICAL

Column: RTX-5 (0.32 mm)

Report Date: 13-Mar-2023 11:34:06

Chrom Revision: 2.3 15-Feb-2023 20:44:50 **User Disabled Compound Report**

Eurofins Knoxville

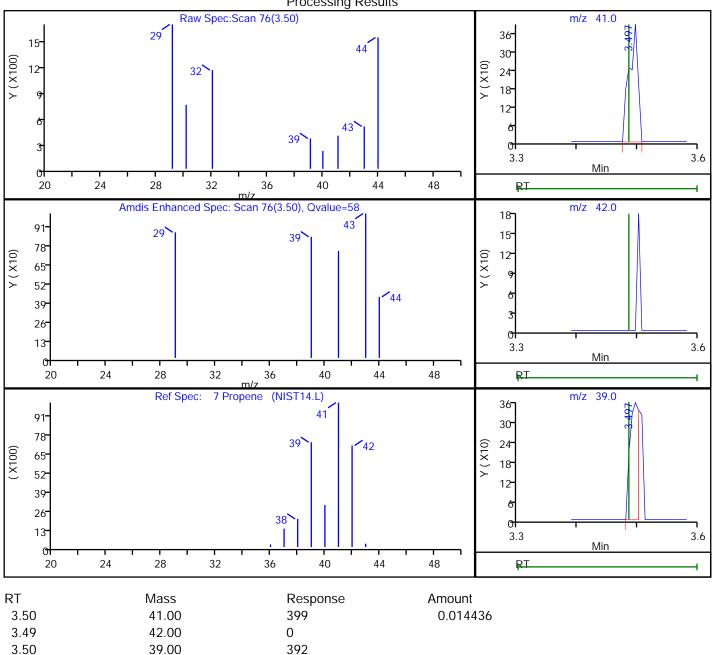
Data File:

Injection Date: 11-Mar-2023 03:19:30 Instrument ID: MR

Lims ID: 140-30875-A-1 Lab Sample ID: 140-30875-1

12008 Client ID:

ALS Bottle#: Operator ID: 17 Worklist Smp#: 25


Purge Vol: 500.000 mL Dil. Factor: 1.0000

Method: MR_TO15 Limit Group: MSA TO14A_15 Routine ICAL

Column: RTX-5 (0.32 mm) Detector MS SCAN

7 Propene, CAS: 115-07-1

Processing Results

Reviewer: khachitpongpanits, 13-Mar-2023 11:33:57

Audit Action: Marked Compound Undetected

Audit Reason: Invalid Compound ID

Appendix E


Concentration verses Time Graphs

AET Project No. P-0011071 Page E 1 of 4

A.7.a Concentration vs Time Graphs

LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN - MW-1

	Series 1	
Date	PCE	
9/15/2021		3.2
5/10/2022		2.3
8/2/2022		4.2
11/1/2022		4.3
5/23/2023		4.6
11/20/2023		5.1

	Series 1
Date	GW Elevation
9/15/2021	88.73
5/10/2022	88.91
8/2/2022	88.39
11/1/2022	88.17
5/23/2023	89.22
11/20/2023	88.49



AET Project No. P-0011071 Page E 2 of 4

A.7.a Concentration vs Time Graphs

LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN - MW-2

	Series 1	
Date	PCE	
9/15/2021		12
5/10/2022		4.8
8/2/2022		8.3
11/1/2022		6.9
5/23/2023		3.7
11/20/2023		5.8

	Series 1
Date	GW Elevation
9/15/2021	88.82
5/10/2022	88.98
8/2/2022	88.53
11/1/2022	88.34
5/23/2023	89.31
11/20/2023	88.59

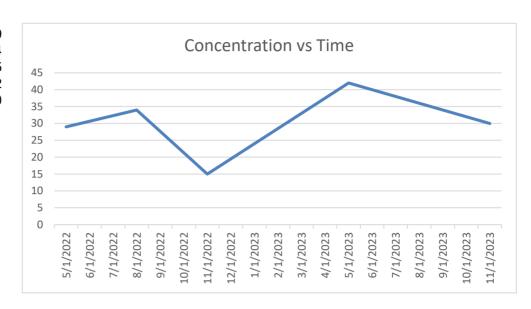
AET Project No. P-0011071 Page E 3 of 4

A.7.a Concentration vs Time Graphs

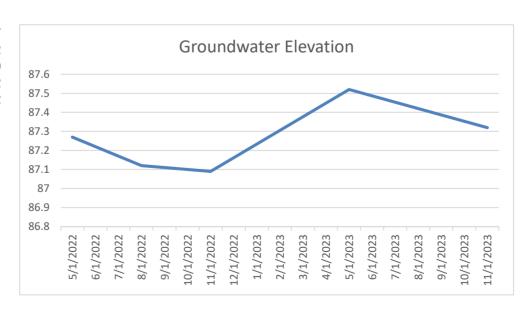
LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN - MW-3

	Series 1	
Date	PCE	
9/15/2021		560
5/10/2022		300
8/2/2022		94
11/1/2022		290
5/23/2023	}	7.2
11/20/2023	}	36

	Ser	ies 1
Date	GW	/ Elevation
9/15/2	021	82.95
5/10/2	022	87.63
8/2/2	022	87.51
11/1/2	022	86.96
5/23/2	023	89.35
11/20/2	023	87.76


AET Project No. P-0011071 Page E 4 of 4

A.7.a Concentration vs Time Graphs


LAUNDROMAT PROPERTY SITE, MENOMONIE, WISCONSIN - MW-6

Series 1
Date PCE

5/11/2022 29
8/2/2022 34
11/1/2022 15
5/23/2023 42
11/20/2023 30

Series 1
Date GW Elevation
5/11/2022 87.27
8/2/2022 87.12
11/1/2022 87.09
5/23/2023 87.52
11/20/2023 87.32

