

2022 Site Investigation for Per- and Polyfluoroalkyl Substances (PFAS)

Chippewa Valley Regional Airport 3800 Starr Avenue Eau Claire, Wisconsin

WDNR BRRTS No.: 02-09-588115

AECOM Project number: 60669304

January 13, 2023

Delivering a better world

Quality information

Prepared by

New Aurilion

Brittany Grosskopf Project Associate

Checked by

HEndErsen 2.5.

Dave Henderson, PE Senior Project Manager

Approved by

0 D. Moto

Andrew Mott, PG, CPG Senior Project Manager

Revision History

Revision	Revision date	Details	Authorized	Name	Position
Distribution	List				
# Hard Copies	PDF Required	Association /	Company Name		

Prepared for:

Ms. Charity Zich Airport Director Chippewa Valley Regional Airport 3800 Starr Ave. Eau Claire, Wisconsin

Prepared by:

AECOM 1555 N. RiverCenter Drive Suite 214 Milwaukee, WI 53212

T: +1-414-944-6080 aecom.com

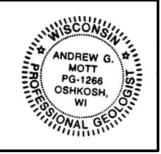
Copyright © 2023 by AECOM

All rights reserved. No part of this copyrighted work may be reproduced, distributed, or transmitted in any form or by any means without the prior written permission of AECOM.

2022 Site Investigation for Per- and Polyfluoroalkyl Substances (PFAS)

Chippewa Valley Regional Airport 3800 Starr Avenue Eau Claire, Wisconsin

WDNR BRRTS No.: 02-09-588115


AECOM Project Number: 60669304

January 13, 2023

I, Andrew Mott, hereby certify that I am a hydrogeologist as that term is defined in s. NR 712.03 (1), Wis. Adm. Code, am registered in accordance with the requirements of ch. GHSS 2, Wis. Adm. Code, or licensed in accordance with the requirements of ch. GHSS 3, Wis. Adm. Code, and that, to the best of my knowledge, the information contained in this document is correct and the document was prepared in compliance with applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

lu d. Moto

Andrew Mott, P.G., CPG Hydrogeologist, Project Manager

I, David Henderson, hereby certify that I am a registered professional engineer in the State of Wisconsin, registered in accordance with the requirements of ch. A-E 4, Wis. Adm. Code; that this document has been prepared in accordance with the Rules of Professional Conduct in ch. A-E 8, Wis. Adm. Code; and that, to the best of my knowledge, information contained in this document is correct and the document was prepared in compliance with applicable requirements in chs. NR 700 to 726, Wis. Adm. Code.

David Henderson, P.E. Project Engineer

Table of Contents

Execu	tive Su	mmary	6				
1.	Introd	uction	9				
	1.1	Purpose	9				
	1.2	Site Location and Parcel Description	9				
	1.3	Surrounding Properties	9				
	1.4	Site Background	9				
	1.5	WDNR Regulatory Status	11				
	1.6	FAA Regulatory Status	.12				
	1.7	Project Team	.12				
	1.8	Scope of Work	.12				
2.	Invest	igation Methods and Procedures	13				
	2.1	Site Health and Safety Plan	13				
	2.2	Utility Clearance	13				
	2.3	Soil Borings	.13				
	2.4	Soil Sampling	.14				
	2.5	Monitoring Well Installation	.15				
	2.6	Groundwater Sampling	.15				
	2.7	Investigation Derived Wastes	.16				
	2.8	Survey	.16				
3.	Physic	cal Settings and Receptors	.16				
	3.1	Site Topography and Surface Water Hydrology	.16				
	3.2	Geological Setting	.17				
	3.3	Hydrogeology	.18				
	3.4	Potential Receptors	.18				
4.	Soil R	esults	20				
	4.1	Stratigraphy	20				
	4.2	Regulatory Standards	20				
	4.3	Analytical Results	20				
	4.4	Quality Control Samples	.21				
5.	Groun	dwater Results	23				
	5.1	Groundwater Flow	23				
	5.1	Regulatory Standards	23				
	5.2	Analytical Results	23				
	5.3	Quality Control Samples					
6.	Data (Gaps & Recommendations	25				
7.	Stater	nent of Limitations	26				
Apper	ndix A L	aboratory Reports:	.29				
Appendix B Soil Boring Logs & Borehole Filling and Sealing Reports							
Appendix C Well Construction & Well Development Forms							
•••	Appendix D Groundwater Sampling Forms						
		Storm Water Drainage, Bed Rock Valley, and Groundwater Flow Mapping					
		lydraulic Gradient Calculation					

Figures

- Figure 1Site LocationFigure 2Site FeaturesFigure 3Water Mains and Potable WellsFigure 4Piezometric Contour Map (June 7, 2022)Figure 5Soil Analytical Map
- Figure 6 Groundwater Analytical Map

Tables

- Table 1 Groundwater Elevations
- Table 2 Soil Analytical Results
- Table 3 Groundwater Results

Appendices

- Appendix A Analytical Laboratory Reports
- Appendix B Soil Boring Logs & Borehole Filling and Sealing Reports
- Appendix C Well Construction & Development Forms
- Appendix D Groundwater Sampling Forms
- Appendix E Storm Water Drainage, Bed Rock Valley, and Groundwater Flow Mapping
- Appendix F Hydraulic Gradient Calculation

Executive Summary

AECOM Technical Services, Inc. (AECOM) was retained by the Chippewa Valley Regional Airport (CVRA) to conduct an environmental site investigation (SI) for per- and polyfluoroalkyl substances (PFAS) on the airport property located at 3800 Starr Avenue, Eau Claire, Eau Claire County, Wisconsin. The site investigation scope of work agrees with the Wisconsin Department of Natural Resources' (WDNR or Department) review and approval of AECOM's Site Investigation Work Plan and is presented in accordance with Wisconsin Administrative Code Chapter NR 716 *Site Investigation* requirements. The site investigation was proposed to be conducted in a phased approach, with the initial scope-of-work conducted during 2022.

The airport was originally owned and operated by the City of Eau Claire from its inception in 1945 until 1978 when ownership was transferred to Eau Claire County. In 1992, the Eau Claire County Board of Supervisors created the Chippewa Valley Regional Airport Commission, this was followed in 1999 by an Ownership and Operation Agreement between Chippewa, Dunn, and Eau Claire Counties. The Ownership and Operational Agreement evolved to include only Chippewa and Eau Claire Counties as it continues in-effect today.

CVRA is a Federal Aviation Administration (FAA) Title 14 Code of Federal Regulation Part 139 Airport. As part of that title requirement, the airport was required to perform annual testing of the Aqueous Film Forming Foam (AFFF) fire suppression operating systems on the aircraft rescue and firefighting vehicles, until the rule was revised in 2019. CVRA has not discharged AFFF during testing since the 2019 rule change.

On July 6, 2021, the City of Eau Claire notified the Department that PFAS was detected in the City's municipal well field, adjacent to and southwest of the airport property. Based on the Department's review of groundwater flow paths and the FAA's historically mandated use of AFFF at the airport, the Department issued a Responsible Party (RP) letter to the airport on August 5, 2021, (i.e., BRRTS No. 02-09-588115 *Chippewa Valley Airport PFAS*). CVRA began site investigation scoping and investigation activities upon receipt of the RP letter.

CVRA and AECOM provided a Site Investigation Work Plan for Per- and Polyfluoroalkyl Substances (PFAS) to the WDNR on November 18, 2021. Department provided review comments on the work plan that CVRA and AECOM acknowledged and incorporated into the final site investigation scope of work. The Department provided formal approval of the work plan on January 11, 2022.

In addition to WDNR's environmental regulatory oversight, construction activities within the airport's 'airside operations area' are regulated by the FAA. Once CVRA received WDNR's formal approval of the site investigation work plan, CVRA and the airport engineer prepared and submitted to the FAA a *Notice of Proposed Construction or Alteration* (FAA Form 7460-1) for the drilling and construction of the site investigation monitoring wells. The notice was filed on January 18, 2022, and CVRA received FAA approval for the proposed work dated March 16, 2022.

During site investigation scoping activities CVRA and AECOM identified four initial Areas of Concern (AOCs) plus an assumed downgradient groundwater monitoring location based on evaluation of site background information, the use of AFFF, and a review of receptors including groundwater and surface water.

The principal receptors associated with the Site include:

- The City of Eau Claire municipal well field located downgradient from, and adjacent to, the southwest corner of the airport property,
- private potable wells located within the Village of Lake Hallie, to the northwest, north, and northeast of the airport property, and
- the Chippewa River, which flows generally from north to south in a meander such that it's located to the north, west, and southwest of the Site.

The AOCs included in the initial site investigation scope of work included:

<u>Assumed Downgradient Monitoring Location:</u> Downgradient soil borings and monitoring wells were located along the west-central airport fence line to assist with determining groundwater flow direction and to identify groundwater impacts to the west of the AFFF Testing AOC.

AFFF Testing AOC: The AFFF testing AOC located just north of the fuel farm area.

<u>Live Fire Training AOCs</u>: Two Live Fire Training areas were identified on airport property. Live Fire Training Area #1, at the South Hangar Ramp, and Live Fire Training Area #2, at the Runway 32 Runup Pad, which was also the location of a possible AFFF discharge.

<u>Aircraft Accident Site AOC:</u> AFFF was discharged as a vapor suppression measure following a small plane accident just west of the Runway 14-32 and Runway 04-22 intersection. Soil from the area was excavated and transported for disposal. However, confirmation sampling for PFAS was not performed to determine if all the impacted soil was removed. A hand auger soil boring was located at the aircraft accident site to obtain a soil confirmation sample.

The initial groundwater monitoring also included sampling a limited number of existing monitoring wells located on airport property associated with the National Presto Industries (NPI) Superfund National Priorities List site (EPA Site ID WID006196174, WDNR BRRTS Activity No. 02-09-000267).

Site investigation field activities were initiated on May 10, through 13, 2022, and included advancing a total of five soil borings and one hand auger boring, PFAS soil sampling, and the installation of five groundwater monitoring wells. A single round of PFAS groundwater monitoring was conducted on June 6th, 7th, and 8th, 2022.

The area wide geologic setting appears to be buried pre-glacial sandstone and granite bedrock valleys below glacial sand and gravel outwash deposits. AECOM's site investigation soil borings were advanced to a maximum of 90 feet (ft) below ground surface (bgs). Soils at the site were typically categorized as poorly graded sands with gravel (SP) and/or silty sands with gravel (SM) to the depth of the investigated interval. These soils are typical of glacial outwash/lacustrine deposits.

The area wide direction of groundwater flow is reportedly controlled by the sandstone and granite bedrock valleys beneath the sand and gravel aquifer with interpreted groundwater flow directions to the northwest towards Lake Hallie, to the west towards the Chippewa River, and to the southwest towards the City of Eau Claire well field. AECOM's elevation field data indicates depths to groundwater ranging from approximately 65 to 81 ft bgs and an interpreted groundwater flow direction to the west, towards the Chippewa River, with an average calculated horizontal hydraulic gradient of 0.0059 ft/ft.

A summary of the soil analytical results indicates:

- The AFFF Testing AOC and the Live Fire Training AOC Area #2 are both source areas for PFAS.
- The Aircraft Accident Site AOC post-accident soil excavation activity was successful in removing AFFF impacts.
- The Downgradient Monitoring Location and the Live Fire Training AOC Area #1 are not PFAS source areas.

A summary of the groundwater analytical results shows:

- Groundwater results confirm that both the AFFF Testing AOC and the Live Fire Training AOC Area #2 are PFAS source areas with impacts above proposed NR 140 Enforcement Standards (ESs).
- Downgradient Monitoring along the west central fence line indicate PFAS impacts above proposed NR 140 Preventive Action Limits (PALs).
- That the Live Fire Training AOC Area #1 and the NPI Mid-field Monitoring Wells have proposed PAL exceedances, possibly indicating a comingled plume from the AFFF Testing and the Live Fire Training Area #2 AOC source areas.

AECOM has identified the following data gaps and recommendations based on the results of the initial investigation:

Data Gap #1, Horizontal Delineation of Soil Impacts, AFFF Testing AOC: AECOM recommends advancing handauger soil borings to delineate the horizontal extent of PFAS soil impacts at the AFFF Testing AOC.

Data Gap #2, Horizontal Delineation of Soil Impacts, Live Fire Training AOC Area #2: AECOM recommends advancing hand-auger soil borings to delineate the horizontal extent of PFAS soil impacts at the Live Fire Training AOC Area #2.

Data Gap #3, Horizontal Delineation of Groundwater Impacts: Groundwater impacts from the two identified source areas (i.e., AFFF Testing AOC and the Live Fire Training AOC Area #2) appear to be comingled into one groundwater plume. The next phase of groundwater investigation activities will work to delineate the plume.

AECOM anticipates that this will include a significant effort to inventory and confirm the presence of existing third party monitoring wells (i.e., NPI, WDNR, and City of Eau Claire monitoring wells) in the vicinity of the airport. A selection of the viable existing wells, in concert with new monitoring wells installed on airport property, will form the monitoring network for the next phase of groundwater monitoring activities.

The preliminary scope of work for the next phase of the groundwater investigation, described by cardinal compass direction, includes the following:

- West, install wells on airport property.
- Northwest, install wells on airport property.
- Northeast, install wells on airport property and monitor third party wells off-site.
- East, monitor third party wells off-site.
- Southeast, install wells on airport property.
- South, monitor third party wells on-site.
- Southwest, monitor third party wells on-site or off-site.

CVRA and AECOM will provide the Department with a Supplemental Site Investigation Work Plan presenting the details of the supplemental investigation.

1. Introduction

1.1 Purpose

AECOM Technical Services, Inc. (AECOM) was retained by the Chippewa Valley Regional Airport (CVRA) to conduct an environmental site investigation (SI) for per- and polyfluoroalkyl substances (PFAS) on the airport property located at 3800 Starr Avenue, Eau Claire, Chippewa County, Wisconsin (Subject Property).

The scope of work presented in the site investigation report (SIR) agrees with the Wisconsin Department of Natural Resources' (WDNR or Department) review and approval of AECOM's site investigation work plan and is presented in accordance with Wisconsin Administrative Code (WAC) Chapter NR 716 *Site Investigation* requirements.

The report includes, site description and location, background information, project team, site physical characteristics, investigation methods, results, data gaps, and recommendations.

1.2 Site Location and Parcel Description

The Subject Property is located 3800 Starr Avenue in the City of Eau Claire, Chippewa County, Wisconsin, **Figure 1**. The property is further described as located in the northeast section in Township 28N, Range 09W, in several sections. The Wisconsin Transverse Mercator (WTM) coordinates for the main terminal building on the property are 402844.3, 488743.2.

The Subject Property contains multiple parcels with the main parcel identified as Tax Parcel ID Number 09221-2-280933-220-0001 (Alternate Tax Parcel Number 221160377). In total, the parcels consist of approximately 852 acres of land that is operated by the Chippewa Valley Regional Airport Commission. The general layout of the Subject Property is illustrated on the attached **Figure 2**.

1.3 Surrounding Properties

The land use in the vicinity of the Site is a mix of light industrial, commercial, and residential properties. Bordering the property to the north is undeveloped park land with residential properties along the Chippewa River. To the east there are commercial and light industrial properties with residential properties beyond. To the south there are commercial, light industrial, and residential properties. The City of Eau Claire municipal well field is directly southwest of the airport with the Chippewa River beyond. To the west are residential properties along the river.

1.4 Site Background

AECOM's historical research (i.e., 1939 historical aerial photo¹) indicates that portions of the Site and surrounding area were developed prior to 1939 for agricultural purposes.

The Site is operated by the Chippewa Valley Regional Airport Commission. Based on CVRA's historical information on their website², starting in 1939, efforts to develop an airport at its current location began. On July 29, 1945, the Eau Claire Municipal Airport announced its formal opening. The airport was owned by the City of Eau Claire until 1979, when ownership was transferred to the County. Per the transfer agreement, dated December 27, 1978, the City of Eau Claire would continue to provide Crash-Fire-Rescue (CFR) services until 1981. The agreement also included a continuation of CFR services renewal clause. In 1988, a fire station was constructed on the airport property to meet Federal Aviation Administration (FAA) requirements. Prior to that time, the City of Eau Claire provided fire protection at the airport from Station #8 at 3510 Starr Avenue, adjacent to the airport property. In 1992, the Eau Claire County Board of Supervisors created the Chippewa Valley Regional Airport Commission, this was followed in 1999 by an Ownership and Operation Agreement between Chippewa and Eau Claire Counties as it continues in-effect today.

CVRA is a FAA Title 14 Code of Federal Regulation (CFR) Part 139 Airport. As part of that title requirement, the airport was required to perform annual testing of the Aqueous Film Forming Foam (AFFF) fire suppression operating

¹ https://maps.sco.wisc.edu/WHAIFinder/#13/44.8625/-91.4880

² https://www.chippewavalleyairport.com/about-the-airport/history

systems on the aircraft rescue and firefighting (ARFF) vehicles, until the rule was revised³ in 2019. During a site visit on October 21, 2021, AECOM personnel were escorted around the property by Mr. Todd Norrell, Maintenance Supervisor for the airport. The tour included multiple areas of the property associated with AFFF storage, use, and possible use locations.

<u>AFFF Storage:</u> ARFF Fire Station, the airport fire department's fire rescue ARFF Unit R1 is parked at the station. The ARFF vehicle contains approximately 210 gallons of AFFF on-board for emergency use. AFFF has reportedly also been historically stored within the ARFF Fire Station building.

The Snow Removal Equipment (SRE) and maintenance building is where the airport's ARFF Unit R2 is parked. Unit R2 contains approximately 130 gallons of AFFF on-board for emergency use. Additionally, the airport currently stores its FAA required back-up volume of AFFF in the SRE building. AECOM observed stored containers of Chemguard 3% AFFF Aqueous Film-Forming Foam Concentrate, Product ID: C306-MS-C and a single older empty container of National Foam, Aer-O-Water, 3EM, 3% Aqueous Film Forming Foam. The storage area was in good condition with no observable spillage of AFFF.

CVRA purchasing records indicate a total of 54 five-gallon pails of Chemgaurd 3% AFFF Foam Concentrate have been purchased from 2013 through 2019. This material is currently either stored on ARFF vehicles, stored within the SRE Building, or has been used during FAA required AFFF testing.

<u>AFFF Testing Area:</u> Prior to 2019, the FAA required ARFF vehicle AFFF testing. The AFFF testing area was located northeast of the onsite fuel farm, see **Figure 2**. CVRA staff estimate that 15 to 25 gallons of AFFF foam concentrate was discharged once a year for an unspecified number of years at this location. It was reported during site contact interviews that the ARFF vehicle would park on the asphalt drive north of the fuel farm, near the intersection of the perimeter access road, and direct the AFFF foam towards the northeast, onto a green space area.

Since 2020, CVRA has conducted testing of the ARFF vehicle AFFF fire suppression operating system using the FAA approved E-One, Eco-Logic system. Therefore, live AFFF testing has not occurred since 2019.

<u>Live Fire Training</u>: It was reported during site contact interviews that live fire training with water was conducted at two areas on the airport property, see **Figure 2**. During live fire training, the ARFF vehicle is used to extinguish propane fires contained within fire-training-pans. During these trainings, discharge of PFAS impacted water may possibly have occurred due to cross-contamination because the same ARFF vehicle(s) and equipment are used for the live fire training and the AFFF testing.

AECOM's designated Live Fire Training Area 1 is located on the South Hangar Ramp. Live fire trainings are traditionally conducted on this ramp. Live fire training has occasionally been conducted at the Live Fire Training Area 2, located on the Runway 32 Runup Pad, just southwest of the SRE building. There is anecdotal verbal history that a small accidental discharge of AFFF may have occurred on the Runway 32 Runup Pad location during a live fire training. The year of the discharge is unknown.

Water discharged during live fire training appears to be contained on the airport property.

<u>Aircraft Accident Site:</u> It was reported during site contact interviews that the only use of AFFF for an aircraft accident in the last 15 years occurred on April 30, 2021, near the north-northeast corner of the intersection of 14/32 Runway and 4/22 Runway, **Figure 2**. At the time, a small quantity of AFFF was deployed as a fuel spill vapor suppression measure. Soil from the area was excavated and transported for disposal to the Chemical Waste Management hazardous waste facility in Emelle Alabama. The spill was reported to the Department's Bureau for Remediation and Redevelopment Tracking System (BRRTS), noted as BRRTS No. 04-09-587882.

Burn Pits: According to CVRA staff, there are no known burn pits located on the airport property.

<u>Hangar Fire Suppression Systems:</u> CVRA staff report that there are currently no AFFF fixed-base fire suppression systems within hangars at the airport.

Other Environmental Investigations: There are several groundwater monitoring wells located on and off the property that are associated with the National Presto Industries (NPI) Superfund National Priorities List site (EPA Site ID

³ FAA National Part 139 CertAlert No. 19-01

WID006196174, WDNR BRRTS Activity No. 02-09-000267). These monitoring wells were installed to assess the chlorinated volatile organic compound (CVOC) solvent groundwater plume that originated at the NPI site, 3925 North Hastings Way, approximately 1.25 miles east of the airport. CVOC impacted groundwater from the NPI site has been identified as flowing under the airport property and impacting the City of Eau Claire municipal well field, southwest of the airport property.

During discussions and email exchanges with Mr. Cliff Wright of Gannett Fleming, Inc., NPI's environmental consultant, the groundwater sampling method for the on-airport monitoring well nests was identified to be via Eon[™] Passive Samplers. Mr. Wright provided information from Eon[™] on the materials used to manufacture the passive samplers, which notes that the materials are "PFAS-Free". According to Mr. Wright, the only wells that are actively sampled utilizing the passive samplers within the fenced area of the airport property are MW-51b, MW-52a/b, MW-53b, MW-54b/c, and MW-55b, **Figure 2**.

Additionally, in 2018 Gannett Fleming, at the request of the U.S. Environmental Protection Agency (EPA) conducted PFAS sampling of groundwater associated with Lagoon #1 at the NPI site. A February 11, 2019, letter report⁴ to the EPA documents the sampling effort and the laboratory results. The report indicates that Lagoon #1 at the NPI site is not a source area for PFAS. The EPA responded in a December 18, 2019, email⁵ that the "... EPA agrees that the requirement to perform the sampling has been met and also agrees that no further sampling is necessary at his time." The EPA did state that further review may be necessary in the future.

1.5 WDNR Regulatory Status

The WDNR manages environmental records under both a Facility ID Number (FID # 609109380) and using the Bureau for Remediation and Redevelopment Tracking System. AECOM searched the BRRTS system for information regarding the site. A total of 11 BRRTS activity numbers are associated with the airport, **Figure 2**. Three leaking underground storage tank (LUST) sites have been reviewed and closed. Six Spill reports have been closed and one Environmental Repair Program (ERP) site has been reviewed and closed. None of these closed sites relate to the current PFAS investigation.

There is one closed Spill entry for a release of AFFF under BRRTS No. 04-09-587882, *Airport Fire Department Spill*, following a small plane accident on April 30, 2021. A small quantity of AFFF was reportedly dispensed from the airport's ARFF Striker vehicle as a vapor suppression measure to cover fuel dripping from the wing of the plane. Same-day post-crash mitigation measures included the excavation of approximately 1.25 cubic yards of soil from the accident location. On June 23, 2021, the excavated soil was transported for disposal, under waste manifest No. 174804, to Chemical Waste Management's hazardous waste disposal facility (permit No. ALD000622464) in Emelle, Alabama.

On July 6, 2021, the City of Eau Claire notified the Department that PFAS was detected in the City's municipal well field, adjacent to and southwest of the airport property. Based on the Department's review of groundwater flow paths and the FAA's historically mandated use of AFFF at the airport, the Department issued a Responsible Party (RP) letter to the airport on August 5, 2021, (i.e., BRRTS No. 02-09-588115 *Chippewa Valley Airport PFAS*).

On November 18, 2021, CVRA and AECOM submitted a Site Investigation Work Plan for Per- and Polyfluoroalkyl Substances (PFAS)⁶ to the WDNR. The work plan included a WDNR required PFAS Scoping Statement that assessed the historical data for the potential use of emerging contaminants at the Site. The Department provided review comments⁷ on the work plan that CVRA and AECOM acknowledged⁸ and incorporated into the final site investigation scope of work. The Department provided formal approval⁹ of the work plan on January 11, 2022.

⁴ Groundwater Analytical Results for perfluoroalkyl Substances Analysis, National Presto Industries., Eau Claire, Wisconsin, Gannett Fleming, February 11, 2019

⁵ RE: *PFAS Sampling at NPI*, email from Caine, Howard (EPA) to Wright, Clifford (Gannett Fleming) dated Wednesday December 18, 2019, 11:37 AM

⁶ Site Investigation Work Plan for Per- and Polyfluoroalkyl Substances (PFAS), Chippewa Valley Regional Airport, 3800 Starr Avenue, Eau Claire, Wisconsin, AECOM, November 18, 2021

⁷ Site Investigation Work Plan – Department Comments, WDNR letter, December 22, 2021

⁸ *Response to WDNR's Site Investigation Work Plan – Department Comments*, Chippewa Valley Regional Airport PFAS Site Investigation Work Plan, AECOM, December 23, 2021.

⁹ Approval – Updated Site Investigation Work Plan, WDNR letter, January 11, 2022.

1.6 FAA Regulatory Status

Construction activities within the airport's 'airside operations area' are regulated by the FAA. Once CVRA received WDNR's formal approval of the site investigation work plan, CVRA and the airport engineer prepared and submitted to the FAA a *Notice of Proposed Construction or Alteration* (FAA Form 7460-1) for the drilling and construction of the monitoring wells. The notice was filed on January 18, 2022, and CVRA received FAA approval for the proposed work dated March 16, 2022.

1.7 Project Team

The project team involved in the SI activities and groundwater monitoring included:

Responsible Party

Chippewa Valley Regional Airport (CVRA) Charity Zich, Airport Director 3800 Starr Avenue Eau Claire, WI 54703 (715) 839-6241

Eau Claire County Sharon McIlquham, Corporation Counsel 721 Oxford Avenue Suite 3520 Eau Claire, WI 54703

Consultant

AECOM Technical Services, Inc. (AECOM) Andrew Mott, Senior Project Manager Andrew.mott@aecom.com (920) 236-6713

Drilling Subcontractor

Horizon Construction and Exploration (Horizon) 764 Tower Dr Fredonia, WI 53021 (262) 692-3347

Laboratory

Vista Analytical Laboratory (Vista) 1104 Windfield Way El Dorado Hills California 95762 (916) 673-1520

1.8 Scope of Work

AECOM identified four initial Areas of Concern (AOCs) plus an assumed downgradient monitoring location based on evaluation of site background information, the use of AFFF, and a review of receptors including groundwater and surface water. The investigation was proposed to be conducted in a phased approach, with the scope-of-work for the initial phase as summarized below.

The initial site investigation included a combination of soil sampling, obtained using a hand auger or a drill rig, along with the conversion of soil borings into NR 141 compliant groundwater monitoring wells. Existing NPI monitoring wells located on the airport property were also used for groundwater elevation measurements and groundwater sampling. The AOC's, see **Figure 2**, that were investigated included:

<u>Assumed Downgradient Monitoring Location</u> – AECOM understands that the City of Eau Claire municipal well field has been identified as downgradient, southwest, from the airport and that the NPI site investigation groundwater flow data supports that interpretation. The NPI data along with the anticipated groundwater flow direction created by the meander of the Chippewa River, also supports an interpreted radial groundwater flow direction, to the west and northwest of the site, towards the river. Therefore, initial downgradient soil borings and monitoring wells AMW-01 and AMW-02 were located along the west-central airport fence line to assist with determining groundwater flow direction and to identify groundwater impacts downgradient, to the west of the AFFF Testing AOC.

<u>AFFF Testing AOC</u> – The AFFF testing AOC is just north of the fuel farm area. A soil boring and monitoring well AMW-03 was located in the known AFFF testing area and used to determine PFAS impact to soil and groundwater.

<u>Live Fire Training AOCs</u> – Two Live Fire Training areas were identified on the airport property. Soil boring and monitoring well AMW-04 was located at Live Fire Training Area 1, at the South Hangar Ramp, to identify possible impacts from firefighting water discharges at this location.

Soil boring and monitoring well AMW-05 was located at Live Fire Training Area 2, at the Runway 32 Runup Pad, to identify possible impacts from firefighting water discharges and a possible AFFF discharge.

<u>Aircraft Accident Site AOC</u> – AFFF was discharged as a vapor suppression measure following a small plane accident just west of the Runway 14-32 and Runway 04-22 intersection. Soil from the area was excavated and transported for disposal. However, confirmation sampling for PFAS was not performed to determine if all the impacted soil was removed. Soil boring ASB-01 was located at the aircraft accident site to obtain a soil confirmation sample.

<u>AFFF Storage:</u> No investigation activities were conducted at the ARFF Fire Station and SRE maintenance building, the storage locations for AFFF, because no spills were reported at these locations and no spills or material mismanagement were observed during the October 21, 2021, site visit.

In summary, the following activities were completed during AECOM's site investigation:

- Review of historical environmental site reports and investigations
- A scoping review for emerging contaminants, as presented in the SI workplan
- Advancement of 1 hand auger and 6 hollow stem auger soil borings
- Collection and analysis of 10 soil samples for PFAS, Wisconsin 33 list
- Installation of 5 NR 141-compliant groundwater monitoring wells
- One round of groundwater sampling, including 2 NPI monitoring wells, for PFAS, Wisconsin 33 list
- Preparation of an NR 716 compliant site investigation report

2. Investigation Methods and Procedures

There are potential cross contamination issues associated with PFAS sampling due to the presence of these compounds in many commercial products. Therefore, AECOM PFAS-certified sampling teams conducted the PFAS sampling event. AECOM certification requires attending an internal PFAS sampling training course and reviewing the AECOM PFAS Sampling Guidance document designed to make AECOM samplers aware of the products known to have tested positive for PFAS compounds, as well as identifying PFAS-free products that are appropriate to use in the sampling environment.

2.1 Site Health and Safety Plan

AECOM prepared a site-specific health and safety plan (HASP) to cover field activities for AECOM staff in accordance with Occupational Safety and Health Administration (OSHA) and AECOM requirements prior to initiating investigation activities. Additionally, CVRA staff accompanied AECOM field staff during field work to provide compliance with on-site health and safety protocols as well as FAA requirements.

2.2 Utility Clearance

AECOM contacted Digger's Hotline for the location of public utilities in the area of the investigation prior to commencing work. Most of the on-site/airside utilities belonged to the airport. Therefore, a private utility locator and airport staff marked utilities prior to drilling. There were no conflicts with the boring location and utilities. Thus, the initial soil boring locations were consistent with the work plan.

2.3 Soil Borings

In preparation for drilling activities, AECOM reached out to the Village of Lake Hallie, located adjacent to and north of the airport property, to locate a source of PFAS free water for the drillers to use. Village of Lake Hallie Public Works Supervisor, Derek Schad, offered that Village Well #4 was in the neighborhood and provided AECOM with PFAS laboratory analytical results from Northern Lakes Service, Inc. (NLS) for Village Well #4 sampled on July 19, 2021. The results indicated Village Well #4 was PFAS free. Therefore, AECOM arranged to use water from Village Well #4 during drilling activities. A copy of the NLS laboratory report is provided in **Appendix A**.

A total of five (5) soil borings and one (1) hand auger boring were advanced on May 10, through 13, 2022. The boring locations are depicted on **Figure 2**.

The driller, Horizon, advance five (5) borings using a Geoprobe Model 7822DT tracked drill rig with hollow stem auger (HSA) for soil borings AMW-01 through AMW-05. A metal split-spoon sampler was used for the collection of soil samples. A single hand auger boring (ASB-01) was used to collect a soil sample at the Aircraft Accident Site AOC.

No soil sample was obtained from the initial and final AMW-02 locations due to difficult drilling conditions. The initial AMW-02 location encountered a perched aquifer in a sand and gravel seam, with possible cobbles, from approximately 20 to 30 feet (ft) below ground surface (bgs). Drilling penetrated the seam with difficulty and advanced to a total depth of 90 ft bgs. The deeper saturated zone was difficult to discern due to cascading water from the upper perched aquifer. No well was set due to flowable sands and the bore hole collapsing to a depth of 75 ft bgs, which was above the anticipated regional water table.

A second attempt was made to advance soil boring AMW-02 about 200 ft south of the original location. The perched aquifer in a sand and gravel seam, with possible cobbles, was again encountered at a depth of approximately 24 ft bgs. The driller was able to advance the bore hole to a depth of 34 ft with great difficulty, at which time AECOM decided to set a monitoring well at this depth in the perched aquifer.

Soil samples or cuttings were visually classified in general conformance with the unified soil classification system (USCS) and were described with respect to soil type, grain size distribution, color, odor, and moisture content. Field observations were recorded on Soil Boring Log Information form (WDNR Form 4400-122). Soil Boring Logs and Borehole Filling & Sealing Reports (WDNR Form 3300-005) for the hand auger and initial AMW-02 locations are presented in **Appendix B**.

2.4 Soil Sampling

A total of 10 soil samples were collected as follows:

- AMW-01: one sample from 80-85 ft bgs,
- AMW-03: four samples from 1-2 ft bgs, 35-37 ft bgs, 68-70 ft bgs and a duplicate sample at 68-70 ft bgs.
- AMW-04: two samples from 1-2 ft bgs and 69-70 ft bgs
- AMW-05: two samples from 1-2 ft bgs, 65-67 ft bgs
- ASB-01: one sample from 1-2 ft bgs

PFAS quality control samples were also obtained during drilling activities. This included a duplicate sample from AMW-03, three (3) driller's supply source water samples, one (1) aqueous field blank, and one (1) aqueous equipment blank.

The three driller's supply water samples (i.e., source water blanks) were obtained over the four days of drilling activities. The samples were collected in laboratory supplied containers and shipped to the laboratory with the field samples. The driller's water samples were originally described by AECOM as follows:

- "Decon Water (tap)" sample collected on Wednesday May 11, 2022, from the driller's water storage poly-tank on the drill rig. The sample represents water brought to the site by the driller for use during the drilling equipment decon processes.
- "Decon Water (PFAS free)" this sample was collected on Tuesday May 10, 2022, from the driller's garden sprayer tank. The driller reports that they filter municipal water at their home office with a Frizzlife, Inc. three stage 'under counter type' filter unit and store the water for use in battery powered garden style sprayers. The driller uses the filtered water for final rinse during decon processes.
- "Well #4" sample collected on Thursday May 12, 2022, from the driller's water storage poly-tank after refilling the tank from the Village of Lake Hallie water source. NOTE: AECOM has annotated this sample name to read "Decon Water (Well #4)" on both the laboratory reports and data tables to clarify that the sample was not obtained directly from the Village of Lake Hallie's Municipal Well #4.

The field blank was collected on Friday May 13, 2022, while at a soil boring sampling location during the sampling event. The field blank was collected by pouring laboratory-certified PFAS-free water into a laboratory-provided sampling container and shipping the sample to the laboratory with the field samples.

The equipment blank representative of the sampling equipment was collected on Wednesday May 11, 2022. The equipment blank was collected by pouring laboratory-certified PFAS-free water through the deconned split spoon sampler and into a laboratory-provided sampling container. Then shipping the sample to the laboratory with the field samples.

Sampled materials for laboratory analysis were placed into sample containers provided by the laboratory and analyzed for PFAS; EPA Method 537 modified isotope dilution for the State of Wisconsin list of 33 analytes.

Laboratory samples were stored and shipped on-ice under chain of custody (COC) control. Samples were submitted to Vista Analytical Laboratory (Vista), a State of Wisconsin certified laboratory (Certification # 998036160) located in El Dorado Hills, California. Chain of custody forms and soil laboratory analytical reports are provided in **Appendix A**.

2.5 Monitoring Well Installation

Groundwater monitoring wells were installed at five locations (AMW-01 through AMW-05) in accordance with NR141 requirements (**Figure 2**). Well locations by AOC are as follows:

- Assumed Downgradient: AMW-01 and AMW-02
- AFFF Testing AOC: AMW-03
- Live Fire Training AOC Area #1: AMW-04
- Live Fire Training AOC Area #2: AMW-05

Monitoring wells were installed following completion of the soil borings using a track mounted rig (Geoprobe Model 7822DT) and HSA drilling techniques. The installed vertical location/depth of the monitoring well screens were determined based on soil moisture observations during drilling. The monitoring wells were constructed with 2-inch diameter polyvinyl chloride (PVC) riser pipes with 10 feet of 0.10-inch slot size PVC well screens. Monitoring well AMW-01 was set at 86 ft bgs, AMW-03 was set at 76-ft bgs, AMW-04 was set at 73.5 ft bgs, and AMW-05 was set at 72 ft bgs. Due to difficult drilling conditions, well AMW-02 as set at 32 ft bgs in the perched aquifer. All wells were completed with filter sand 1-foot above the screen, 1-foot of fine sand, and the remaining annular space as a bentonite seal to the ground surface. Monitoring wells were completed with flush-mount protective covers.

Monitoring wells were developed in accordance with NR141 requirements. Monitoring well construction (WDNR Form 4400-113A) and development forms (WDNR Form 4400-113B) are provided in **Appendix C**.

2.6 Groundwater Sampling

Following monitoring well installation and development, a single groundwater monitoring event was conducted on June 6th, 7th, and 8th, 2022.

Depths-to-groundwater were obtained on June 6, 2022, from a total of 11 monitoring wells including AMW-01 through AMW-05 and the existing NPI wells MW-49A through MW-55A. Measurements were made from the top of each well casing to the top of the groundwater surface using an electronic water level indicator (accuracy 0.01 foot) prior to purging the wells for sampling.

A total of seven monitoring wells were sampled, including AMW-01 through AMW-05 and the existing NPI wells MW-51A and MW-55A. The monitoring wells were purged and groundwater samples were collected utilizing low flow sampling techniques (submersible pump and dedicated polyethylene tubing) with the exception of well AMW-02, which was purged dry before sampling. Field observations and measurements for temperature, turbidity, specific conductivity, pH, dissolved oxygen (DO) and oxidation-reduction potential (ORP) were measured utilizing a flow through cell or in-well sensor to minimize sample contact with the atmosphere. Groundwater samples for laboratory analysis were placed in laboratory-supplied 250ml HDPE bottles without preservative as required by the analytical method. Groundwater samples were analyzed for PFAS; EPA Method 537 modified isotope dilution for the State of Wisconsin list of 33 analytes.

PFAS groundwater quality control sampling included a duplicate sample along with field and equipment blanks. A field blank was collected adjacent to a sampling location during the sampling event. The field blank was collected by pouring laboratory-certified PFAS-free water into a laboratory-provided sampling container and shipping the sample to the laboratory with the field samples.

One equipment blank representative of the sampling equipment was collected. The equipment blank was collected by pumping laboratory-certified PFAS-free water through the low-flow sample tubing and into a laboratory-provided sampling container. Then shipping the sample to the laboratory with the field samples.

Laboratory samples were stored and shipped on-ice under COC control. Samples were submitted to Vista Analytical Laboratory (Vista), a State of Wisconsin certified laboratory (Certification # 998036160) located in El Dorado Hills, California.

Groundwater elevation data is presented in **Table 1**. Groundwater field sampling forms are provided in **Appendix D**. Chain of custody forms and groundwater laboratory analytical reports are provided in **Appendix A**.

2.7 Investigation Derived Wastes

Per the work plan submitted in November 2021, soil cuttings were thin spread at the locations of the individual soil borings or near AMW-03, the location where AFFF has historically been discharged. Groundwater from developing, purging, and sampling has been containerized, identified by well location, and stored at a secure location on the airport property. The drummed groundwater is to be picked up by Veolia in early January and disposed of by incineration.

2.8 Survey

AECOM surveyed the new monitoring well locations (Wisconsin State Plane NAD 83 datum) and top of casing (TOC) elevations (vertical datum NAVD88). AECOM also surveyed TOC elevations for select NPI on-airport property wells (i.e., MW-49A, 51A, 52A, 53A, 54A, and 55A).

3. Physical Settings and Receptors

3.1 Site Topography and Surface Water Hydrology

According to the United States Geological Survey (USGS) topographic map and FAA airfield information the airfield elevation is 913.1 ft above mean sea level (msl). The Site appears to be generally flat with slight up-slope towards the north, northwest.

The Chippewa River is the most significant topographical feature in the vicinity of the Site. The river flows generally from north to south in a meander such that it's located to the north, west, and southwest of the Site. As noted on the USGS topographic map, **Figure 1**, there is steep relief (approximately 70 to 100 ft) from the Site downward to the river elevation.

On the WDNR Surface Water Data Viewer¹⁰, one unnamed stream (WBIC 5012006) is identified on the property traversing perpendicular to 4-22 runway then to the north towards the Village of Lake Hallie, Three Ponds Park, and the Chippewa River.

During the October 21, 2021, site visit AECOM noted several surface water and storm water drainage features on the property. Airport staff provided AECOM with Appendix C from the *Chippewa Valley Regional Airport Drainage Study*¹¹. Appendix C of the Drainage Study is a comprehensive mapping assessment of the site subdivided into dozens of drainages. Two of the storm water drainage maps, as they relate to AFFF usage, are attached in **Appendix E**. They include:

¹⁰ https://dnr.wisconsin.gov/topic/SurfaceWater/swdv

¹¹ Chippewa Valley Regional Airport Drainage Study, Mead & Hunt, Inc., 2012 updated in 2014

- Routing Diagram for I and VII_2014_update: This figure presents the surface water flow for Subwatersheds I and VII, which includes the Live Fire Training Areas, as follows:
 - Live Fire Training Area 1, the South Hangar Apron, Subwatershed I, is divided into two drainage areas:
 - Subwatershed I.17 includes the northern portion of the Apron, which sheet flow drains to the ground surface north of the Apron. Surface water then flows to Pond I.17p, an infiltration pond/ditch that also drains to Pond I20p, an infiltration pond with no outlet.
 - Subwatershed I.22 includes the southern portion of the Apron and it appears to collect water into storm sewer catch basins #157 and #158. The catch basins then drain to Pond I.20p, an infiltration pond with no outlet.
 - Live Fire Training Area 2, the Runway 32 Runup Pad, Subwatershed VII, appears to sheet flow drain to the ground surface east/northeast of the Runup Pad. Surface water then flows to Pond VII1p, an infiltration pond with no outlet.
- *Routing Diagram for V*: This figure presents the surface water flow for Subwatershed V, which includes the AFFF Testing Area, specifically noted as Subwatershed V.1. The surface water from the AFFF Testing Area appears to flow to pond V.1p, an infiltration pond with no outlet.

3.2 Geological Setting

According to the USDA Web Soil Survey database¹² the site is predominantly underlain with Menahga loamy sand. Menahga is an outwash plain sandy loam described as coarse grained with high infiltration rates and adequately drained. These soils are classified as nonhydric (no potential to support wetlands). The site is in the Northern Central Hardwood Forests Central Wisconsin Undulating Till Plain Ecoregion (Level III and IV Ecoregions of Wisconsin - WDNR/EPA). The undulating to rolling irregular plains of sandy loam till and outwash sands also distinguish this ecoregion from the stagnation moraines of ecoregion to the west and the lacustrine sand plains of ecoregion to the south.

A review of the Bedrock Geologic Map of Wisconsin¹³, shows that the bedrock in the area consists of Cambrian aged Sandstone with dome dolomite and shale, undivided. The Sandstone consists of Trempealeau, Tunnel City, and Elk Mound Formations. The depth to bedrock at the Site is estimated to be 100 ft or greater.

AECOM researched and obtained a copy of the City of Eau Claire *Wellhead Protection Plan – 2020 Update* report¹⁴. The report provides a summary of the area geology indicating that the well field draws its water from an alluvial sand and gravel aquifer, approximately 100 ft deep, overlaying a granitic bedrock. Figure 2 *Wellhead Protection Area* (*WHPA*) from the report identifies a buried bedrock valley that runs from the northeast, then turns westward under the airport property, before turning south/southwest to the municipal well field. A copy of Figure 2 is provided in **Appendix E**.

AECOM also researched Gannett Fleming's *Annual Interim Remedial Action Status Report for 2020 Report*¹⁵ for the NPI site. The report summarizes geologic and groundwater flow in the area. From the *Site Description, Hydrogeological Setting, and Conceptual Site Model* section of the report:

Extending northward from the northwestern portion of the site (AECOM editor's note: the NPI site) to Lake Hallie and westerly from the site to the Chippewa River are buried pre-glacial valleys within which alluvial sand and gravel deposits serve as a primary drinking water aquifer in the Eau Claire area. Approximately 2 miles west of the NPI site, for example, the ECMWF (AECOM editor's note: Eau Claire Municipal Well Field) draws groundwater from more of these buried deposits and provides drinking water for the City of Eau Claire. The direction of groundwater flow is controlled by the sandstone and granite bedrock valleys beneath

¹² https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm

¹³ *Bedrock Geologic Map of Wisconsin*, Wisconsin Geological and Natural History Survey, Mudrey, Brown, and Greenberg, 1982; Sims, 1992

¹⁴ Wellhead Protection Plan – 2020 UPDATE, Municipal Well Field, City of Eau Claire, Short Elliott Hendrickson, Inc., September 3, 2020

¹⁵ Annual Interim Remedial Action Status Report for 2020, National Presto Industries, Inc., Eau Claire, Wisconsin, Gannett Fleming, Inc., March 2021

the sand and gravel, which carry groundwater to the northwest towards Lake Hallie and to the west towards the Chippewa River and the ECMWF.

In summary, the area wide geologic setting appears to be buried pre-glacial sandstone and granite bedrock valleys below glacial sand and gravel outwash deposits.

3.3 Hydrogeology

Area wide groundwater flows are anticipated to be influenced by the Chippewa River and groundwater extraction activities at the City of Eau Claire Municipal Well Field located at 2711 Riverview Drive.

NPI Site Data: As noted in Gannett Fleming's Annual Interim Remedial Action Status Report for 2020 Report:

The direction of groundwater flow is controlled by the sandstone and granite bedrock valleys beneath the sand and gravel, which carry groundwater to the northwest towards Lake Hallie and to the west towards the Chippewa River and the ECMWF.

Figure 1, *Water Table Groundwater Contour Map (June 2020) With 1993 Plume Locations*, from Gannett Fleming's 2020 report presents an interpreted groundwater flow map (**Appendix E**). The map shows groundwater flow under the airport property. Groundwater from the NPI site, located to the east of the airport, flows westward towards the airport property, then, under the airport, the flow bends southwesterly towards the municipal well field.

<u>Wellhead Protection Data</u>: The following groundwater/hydrology information is summarized from the City of Eau Claire *Wellhead Protection Plan – 2020 Update* report. The City of Eau Claire obtains its drinking water from 17 wells located along the Chippewa River. The well field is approximately 400 acres in size located adjacent, southwest, to the airport property. The well field draws its water from an alluvial sand and gravel aquifer, approximately 100 feet deep, overlaying a granitic bedrock.

The report notes that groundwater flow direction is generally from east to west from areas of higher topography, corresponding to the presence of sandstone bedrock, towards the Chippewa River. A groundwater flow figure, "Groundwater flow at well field" from Page 3 of the report, indicates radial groundwater flow across the airport property, i.e., radially north, west, and southwest towards the Chippewa River and the municipal well field.

The zone of influence (ZOI) and the recharge area for the well field are identified in the report. The ZOI was delineated at 13,200 ft from the well field. The ZOI is defined by a 30-day pumping period for all wells within the well field with a 1 ft drawdown at the limits of the ZOI. The recharge area for the well field, assuming a 5-year groundwater travel time, was found to be approximately 5,600 feet from the well field.

In summary, the report identifies the wellhead protection area for the municipal well field to include the recharge area equivalent to a groundwater 5-year time of travel which includes the area within the buried bedrock valley containing sand and gravel deposits that transmit water to the City of Eau Claire wells.

Based on the parameters presented in the Wellhead Protection Plan, most of the airport property is contained within the wellhead protection area for the municipal well field.

3.4 Potential Receptors

<u>Archeological:</u> A review of available digital records was completed for the Site. The 2003 City of Eau Claire Historic Resource Analyses Report, the 1984 National Register of Historic Places Inventory Nomination Form for various locations in the City of Eau Claire, and the 2015 City of Eau Claire Comprehensive Plan were reviewed. Based on the results of the review and the history of development at the Site, there appears to be no archeological concerns for the property.

<u>Sensitive Species, Habitats, and Ecosystems:</u> A review of the U.S. Fish and Wildlife Service Information for Planning and Consultation (IPaC) database¹⁶ was executed for the Site. Four (4) species that are listed under the Endangered Species Act (1973) could potentially be affected at this location. The species that were listed are the threatened Northern Long-eared Bat (*Myotis septentrionalis*), the endangered Sheepnose Mussel (*Plethobasus cyphyus*), the endangered Karner Blue Butterfly (*Lycaeides melissa samuelis*), and the candidate Monarch Butterfly (*Danaus*)

¹⁶ https://ipac.ecosphere.fws.gov/

plexippus). Fourteen (14) species that are listed under the Migratory Bird Treaty Act (1918) or the Bald and Golden Eagle Protection Act (1940) could potentially be affected at this location. The species that were listed are the Bald Eagle (*Haliaeetus leucocephalus*), the Black Tern (*Chlidonias* niger). the Black-billed Cuckoo (*Coccyzus erythropthalmus*), the Bobolink (*Dolichonyx oryzivorus*), the Canada Warbler (*Cardellina canadensis*), the Eastern Whip-poor-will (*Antrostomus vociferus*), the Golden Eagle (*Aquila chrysaetos*), the Golden-winged Warbler (*Vermivora chrysoptera*), Lesser Yellowlegs (*Tringa flavipes*), the Marbled Godwit (*Limosa fedoa*), the Red-headed Woodpecker (*Melanerpes erythrocephalus*), the Rusty Blackbird (*Euphagus carolinus*), the Short-billed Dowitcher (*Limnodromus griseus*), and the Wood Thrush (*Hylocichla mustelina*).

Several factors indicate that it is unlikely that any of the listed species will be encountered at the Site. Due to the development of the Site, it is listed as a non-critical habitat for all of the listed species.

<u>Surface Waters:</u> As noted above, on the WDNR Surface Water Data Viewer, one unnamed stream (WBIC 5012006) is identified on the property traversing perpendicular to 4-22 runway then to the north towards the Village of Lake Hallie, Three Ponds Park, and the Chippewa River.

The Chippewa River traverses generally northeast to southwest near the western border of the property, approximately 1,000 feet west of runway 14-32.

<u>Municipal Potable Wells:</u> The City of Eau Claire municipal well field is downgradient from, adjacent to the southwest, and within 1,200 feet of the airport property. There are reportedly 17 potable wells in the well field. The Village of Lake Hallie municipal wells are upgradient and are greater than 1,200 ft from the airport property.

<u>Municipal Water Mains & Service:</u> The City of Eau Claire provides municipal water to those addresses located within city limits, which includes a few properties to the north and the surrounding properties southwest, south, and southeast of the airport.

The Village of Lake Hallie provides municipal water to a limited number of homeowners in that portion of the village located to the northwest, north, and northeast of the airport. The areas and homeowners served by the village water main, that are adjacent to the airport, are described as follows¹⁷:

- The Hunter Ridge Subdivision, specifically east of the intersection of 24th Avenue and 105th Street, is served by municipal water.
- Starting at the intersection of 24th Avenue and 105th Street and continuing north along 105th Street and west along 26th Avenue to the Village's Three Ponds Park, then south and west through the park to the Hallie Ridge Subdivision. This length of water main is a "transmission only water main" with no extended mains or individual laterals serving homeowners. Connection to this length of water main is restricted due to the style of its construction and WDNR regulation.
- Once the water main reaches Hallie Ridge Subdivision (i.e., streets including 23rd Ave, 24th Ave, 24th Ave South, 92nd Street, and 94th Street) the water main serves all homeowners that build in the subdivision.

Mapping of the municipal water mains is presented on Figure 3.

<u>Private Potable Wells:</u> CVRA staff report that there are no potable water supply wells located on the property. Additionally, AECOM searched the WDNR's *Well Driller Viewer*¹⁸ and the *Well Construction Information (Well Records)*¹⁹ databases. No potable well records that appear to be associated with the airport property were identified in either database.

AECOM did identify one abandoned well record associated with the airport on the *Well Filling & Sealing Reports* database²⁰. On June 16, 2003, a single well, noted as a "monitoring well" (Well ID. 014871) was abandoned by filling. The well location was only given as the Chippewa Valley Regional Airport at 3800 Starr Ave. The well was abandoned by Ken Olson Well Drilling, Inc. and the reason for abandonment was given as "no longer in use". This record does not appear to correspond to the abandonment of a potable well.

¹⁷ Personal communication, Village of Lake Hallie, Public Works Supervisor Derrick Shad, December 20, 2022

¹⁸ https://dnrmaps.wi.gov/H5/?viewer=Well_Driller_Viewer

¹⁹ https://dnr.wisconsin.gov/topic/Groundwater/Data.html#wellreports

²⁰ https://dnr.wi.gov/warsreport/report

Private potable wells do exist within 1,200 feet of the airport property, within the Village of Lake Hallie, to the northwest, north, and northeast of the airport. There are approximately 60 Village of Lake Hallie address locations in the Chippewa County geographic information system (GIS) database²¹ that are within 1,200 feet of the airport property and that do not appear to be served by municipal water.

A preliminary review of the WDNR potable well databases identify eight private potable wells within 1,200 ft of the airport property. AECOM assumes that all Village of Lake Hallie address locations not served by municipal water will have private potable wells, which means there may be approximately 60 private potable wells that are both within the Village of Lake Hallie and within 1,200 feet of the Site (**Figure 3**).

<u>Commercial Receptors</u>: No sensitive commercial receptors (i.e., day care centers, schools, hospitals) were identified adjacent to the Site.

<u>Utilities:</u> The Site is served by water, sanitary, and storm sewer utilities. Most of the utilities are connected through the Starr Avenue utility corridor.

4. Soil Results

4.1 Stratigraphy

AECOM's site investigation soil borings were advanced to a maximum of 90 ft bgs. Soils at the site were typically categorized as poorly graded sands with gravel (SP) and/or silty sands with gravel (SM) to the depth of the investigated interval. These soils are typical of glacial outwash/lacustrine deposits.

The exception to this typical stratigraphy was the sand and gravel (GP) seam, with possible cobbles, identified in the initial and final soil borings for AMW-02. This layer was present from approximately 20 to 40 feet bgs. In discussion with the CVRA Airport Engineer, Amy Michels with Mead & Hunt, Inc., AECOM learned that the sand/gravel/cobble layer has been encountered in other areas on the airport property, but it has not been delineated.

Due to the large size of the airport property and the minimal number of soil boring advanced to-date, no NR 716 required soil stratigraphy cross-sections have been produced. AECOM anticipates preparing the required cross-sections once more soil borings are completed. Soil boring logs (WDNR Form 4400-122) are provided in **Appendix B**.

4.2 Regulatory Standards

Soil laboratory analytical results are compared to the WDNR Residual Contaminant Level (RCL) Calculator (PUB-RR-890). Currently there are only standards established for Perfluorooctanoic acid (PFOA), Perfluorooctanesulfonic acid (PFOS) and Perfluorobutanesulfonic acid (PFBS). These standards are based on the U.S. EPA's regional screening level (RSL) web calculator. These results include direct contact standards for industrial and non-industrial sites. Currently there are no listed soil to groundwater protection RCL standards.

4.3 Analytical Results

Soil laboratory analytical results are provided in **Table 2** and presented on **Figure 5**. The laboratory analytical reports are provided in **Appendix A**.

Soil Laboratory analytical results are as follows:

AMW-01, Downgradient Monitoring Location:

• 80 to 80.5 ft bgs sample depth: PFAS analytical results were less than individual MDLs.

Soil analytical results from the AMW-01 soil boring location indicate PFAS is not present at or near the water table smear zone elevation at concentrations above individual MDLs.

AMW-03, AFFF Testing AOC:

²¹ https://www.co.chippewa.wi.us/government/land-records-county-surveyor/mapping-gis

- 1 to 2 ft bgs sample depth: Seven PFAS were detected; PFOA, PFNA, PFDA, PFOS, 6:2 FTS, 8:2 FTS and NEtFOSA. The PFOA and PFOS detections were below non-industrial direct contact RCLs. There are no RCL standards established for PFNA, PFDA, 6:2 FTS, 8:2 FTS and NEtFOSA. The remainder of the PFAS analytical results were less than their MDLs.
- 35 to 37 ft bgs sample depth: Two PFAS compounds were detected: PFHxS and PFOS. The PFOS detection was below its non-industrial direct contact RCL. There is no RCL standard established for PFHxS. The remainder of the PFAS analytical results were less than their MDLs.
- 68 to 70 ft bgs sample depth: Two PFAS compounds were detected, PFHxS and 6:2 FTS. There is no RCL standards established for PFHxS or 6:2 FTS. The remainder of the PFAS analytical results were less than their MDLs.

Soil analytical results from the AMW-03 soil boring location indicate that AFFF Testing activities at this location are a source for PFAS.

AMW-04, Live Fire Training AOC Area #1:

- 1 to 2 ft bgs sample depth: PFAS analytical results were less than individual MDLs.
- 69 to 70 ft bgs sample depth: PFAS analytical results were less than individual MDLs.

Soil analytical results from the AMW-04 soil boring location indicate that Live Fire Training activities at this location are not a source for PFAS.

AMW-05, Live Fire Training AOC Area #2:

- 1 to 2 ft bgs sample depth: One PFAS was detected, PFOS, at a concentration below its non-industrial direct contact RCL. The remainder of the PFAS analytical results were less than individual MDLs.
- 65 to 67 ft bgs sample depth: One PFAS was detected, PFOS, at a concentration below its non-industrial direct contact RCL. The remainder of the PFAS analytical results were less than their individual MDLs.

Soil analytical results from the AMW-05 soil boring location indicate that Live Fire Training activities or the suspected release of AFFF at this location are a source for PFAS.

ASB-01, Aircraft Accident Site AOC:

• 1 to 2 ft sample depth: PFAS analytical results were less than individual MDLs.

Soil analytical results from the ASB-01 hand auger location, as a confirmation soil sample, indicate that initial excavation activities to removed soil impacted by a AFFF discharged for fuel vapor suppression during an aircraft accident at this location was successful in removing PFAS as a source.

Soil Analytical Summary: Soil analytical results indicate that:

- The AFFF Testing AOC (AMW-03) and the Live Fire Training AOC Area #2 (AMW-05) are both source areas for PFAS.
- The Aircraft Accident Site AOC (ASB-01) post-accident soil excavation activity was successful in removing PFAS impacts.
- The Downgradient Monitoring Location (AMW-01) and the Live Fire Training AOC Area #1 (AMW-04) are not a source for PFAS.

4.4 Quality Control Samples

Quality control samples obtained during drilling activities included a duplicate sample, three (3) driller's supply source water samples, one (1) aqueous field blank, and one (1) aqueous equipment blank.

<u>Duplicate:</u> Analytical results from the original sample (AMW-03, 68'-70') and the duplicate sample show similar compounds present at approximately the same concentrations. Therefore, the duplicate sample confirms the validity of the original analytical result.

<u>Source Water Blanks</u>: The three driller's supply water samples (i.e., source water blanks) were obtained over the four days of drilling activities, as follows:

 "Decon Water (tap)" – sample collected on Wednesday May 11, 2022, from the driller's water storage poly-tank on the drill rig. The sample represents water brought to the site by the driller for use during the drilling equipment decon processes.

This sample had a detect of PFOSA at 16.1 ng/l. This indicates that the driller's equipment (i.e., the poly water tank) or the original source of the water in the poly-tank was the source of the PFOSA detect.

 "Decon Water (PFAS free)" – this sample was collected on Tuesday May 10, 2022, from the driller's garden sprayer tank. The driller reports that they filter municipal water at their home office with a Frizzlife, Inc. three stage 'under counter type' filter unit and store the water for use in battery powered garden style sprayers. The driller uses the filtered water for final rinse during decon processes.

This sample had a detect of PFOSA at 1.37J ng/l. This indicates that the driller's filtering equipment is not removing all PFAS from the original source water or the driller's equipment, the powered sprayer, is a source of PFAS.

"Well #4" – sample collected on Thursday May 12, 2022, from the driller's water storage poly-tank after refilling the tank from the Village of Lake Hallie water source. NOTE: AECOM has annotated this sample name to read "Decon Water (Well #4)" on both the laboratory reports and data tables to clarify that the sample was not obtained directly from the Village of Lake Hallie's Municipal Well #4.

This sample had a detect of PFOSA at 4.87J+ ng/l. This indicates that the driller's equipment (i.e., the poly water tank) or the source of the water in the poly-tank was the source of the PFOSA detect.

Prior to drilling activities, AECOM received a laboratory analytical report from the Village of Lake Hallie indicating that the Municipal Well #4 had been tested and found to not contain PFAS above individual laboratory MDLs. Therefore, AECOM suspects that the driller's equipment (i.e., the poly water tank) or the original source water the driller brought to the site in the poly-tank is the source for the detected PFAS. The mixing/dilution of original source water in the poly-tank by the addition of water from the Village of Lake Hallie municipal water supply may account for the lower PFOSA concentration detect in this sample (4.87J+ ng/I) when compared to the original "Decon Water (tap)" sample results (16.1 ng/I).

In summary, while analytical results from the source water blanks indicate the presence of PFOSA, this crosscontamination issue is not anticipated to affect the interpretation of the soil analytical results because PFOSA was not detected in the soil samples above its MDL.

<u>Field Blank:</u> The field blank was collected on Friday May 13, 2022, while at a soil boring sampling location during the sampling event. The field blank analytical result showed no PFAS present above individual MDLs, indicating that there was no cross contamination from ambient conditions at the site.

Equipment Blank: The equipment blank representative of the sampling equipment was collected on Wednesday May 11, 2022. The equipment blank was collected by pouring laboratory-certified PFAS-free water through the deconned split spoon sampler and into a laboratory-provided sampling container.

Laboratory analytical results indicate PFOSA was present in the equipment blank sample at a concentration of 1.64J ng/L. This is a similar concentration of PFOSA (1.37J ng/l) found in the "Decon Water (PFAS free)" source water blank for water used during the final decontamination rinse of the drilling equipment. AECOM suspects the "Decon Water (PFAS free)" water is the source for the PFOSA detected in the equipment blank. Because PFOSA was not detected in the soil analytical results above its MDL, the detection of PFOSA in the equipment blank is not expected to influence the interpretation of the PFAS soil results.

Soil sampling quality control results are presented in **Table 2** and the laboratory analytical reports are presented in **Appendix A**.

Data Validation

Data validation of the PFAS laboratory results were conducted with reference to:

• Wisconsin DNR PFAS Updates, March 1, 2021

- Wisconsin PFAS Aqueous (Non-Potable Water) and Non-Aqueous Matrices Method Expectations, EA-19-0001-C, 12/19/2019.
- Data Validation Guidelines Module3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15, Department of Defense, 5/1/2020.

Based on the data validation review, the PFAS results are acceptable for use as qualified. The validation report is included in **Appendix A** and provides a detailed quality control review of the analytical results.

5. Groundwater Results

5.1 Groundwater Flow

The local groundwater flow direction was determined by groundwater elevation measurements obtained from a total of 11 on-site monitoring wells including AMW-01 through AMW-05 and the existing NPI wells MW-49A through MW-55A.

Based on groundwater elevation measurements collected during the June 2022 sampling event, groundwater was observed in the monitoring wells, excluding AMW-02, at depths ranging from approximately 65 ft to 81 ft bgs with groundwater elevations ranging from 821.46 ft MSL at AMW-03 to 800.36 ft MSL at MW-55A. Groundwater elevations, not including well AMW-02, indicate an interpreted groundwater flow direction to the west, towards the Chippewa River.

The average horizontal hydraulic gradient calculated from the June 2022 groundwater elevation data is 0.0059 ft/ft.

Groundwater elevation data are presented on **Table 1**. A groundwater contour map from the June 2022 elevation data is included as **Figure 4**. Calculation for the horizontal hydraulic gradient is presented in **Appendix F.**

5.1 Regulatory Standards

The State of Wisconsin does not currently have promulgated groundwater standards for PFAS. Groundwater analytical results for PFAS are compared to the Wisconsin Department of Health Services (WDHS) Cycle 10 and Cycle 11 recommendations. Currently there are individual groundwater standard recommendations for seventeen (17) PFAS and one combined standard for six (6) compounds. These recommendations include proposed preventative action limits (PALs) and proposed enforcement standards (ESs).

At this phase of the site investigation, AECOM has not calculated WDHS recommended Hazard Index (HI) values for those PFAS detects that have proposed ESs. This is because PFAS impacts are largely documented in the City of Eau Claire well field to the southwest of the site and the extent of impacts to the west, north, and east of the site are still to be determined. CVRA and AECOM will review HI values once we have delineated PFAS groundwater impacts along the airport property boundary to the west, north, and east.

5.2 Analytical Results

Groundwater laboratory analytical results are provided in **Table 3** and presented on **Figure 6**. The laboratory analytical reports are provided in **Appendix A**.

Groundwater analytical results are as follows:

<u>AMW-01, Downgradient Monitoring Location:</u> Ten PFAS were detected. PFHxS and PFOS exceeded their individual proposed PALs. The combined 6 compounds standard also exceeded the proposed PAL.

Groundwater analytical results indicates that there is PFAS groundwater contamination downgradient, to the west, of the AFFF Testing AOC source area.

<u>AMW-02</u>, <u>Downgradient Monitoring Location (perched aquifer)</u>: Four PFAS were detected. PFOS, PFOSA, and the Combined 6 standard exceeded the proposed PALs.

Groundwater analytical results indicate that there is PFAS groundwater contamination in the shallow/perched aquifer downgradient, to the west/northwest, of the AFFF Testing AOC source area.

<u>AMW-03, AFFF Testing AOC:</u> Fourteen PFAS were detected. PFOA, PFHxS, PFOS, and the Combined 6 exceeded their individual and the combined proposed ESs. PFNA exceeded its proposed PAL. The remainder of the detections were below proposed regulatory standards or standards are not established.

The large groundwater contaminant concentrations present indicate that the AFFF Testing AOC is a source area.

<u>AMW-04, Live Fire Training AOC Area #1:</u> Twelve PFAS were detected. PFHxS, PFOS, and the Combined 6 exceeded their proposed ESs. PFOA exceeded its proposed PAL.

The lower PFAS groundwater contaminant concentrations (relative to the other identified soil source areas) and the lack of soil PFAS detects suggest that the Live Fire Training AOC Area #1 is not a source area.

Groundwater contamination at the Live Fire Training AOC Area #1 location is probably due to impacts from the Live Fire Training AOC Area #2, an identified soil source area located up-gradient, to the east.

<u>AMW-05, Live Fire Training AOC Area #2:</u> Twelve PFAS were detected. PFOA, PFHxS, PFOS, PFOSA and the Combined 6 exceeded their proposed ESs. PFNA exceeded its proposed PAL.

Groundwater analytical results show that large contaminant concentrations are present indicating that the Live Fire Training AOC Area #2 is a source area.

<u>MW-51A, NPI Mid-field Monitoring Well:</u> Ten PFAS were detected. PFOA, PFHxS, PFOS, PFOSA, and the Combined 6 Standard exceeded their proposed PALs.

Groundwater analytical results from the MW-51A location indicates that there is PFAS groundwater contamination down/side gradient, to the southwest, of the AFFF Testing AOC source area.

<u>MW-55A, NPI Mid-field Monitoring Well:</u> Nine PFAS were detected. PFHxS, PFOS, PFOSA and the Combined 6 Standard exceeded the proposed PALs.

Groundwater analytical results from the MW-55A location indicates that there is PFAS groundwater contamination down/side gradient, to the southwest of the AFFF Testing AOC and northwest of the Live Fire Training AOC Area #2 source areas.

Groundwater Analytical Summary: Groundwater analytical results indicate:

- Groundwater results confirm that both the AFFF Testing AOC (AMW-03) and the Live Fire Training AOC Area #2 (AMW-05) are PFAS source areas.
- Downgradient Monitoring along the west central fence line (AMW-01 and AMW-02) have PFAS impacts above PALs.
- That the Live Fire Training AOC Area #1 (AMW-04) and the NPI Mid-field Monitoring Wells (MW-51A and MS-55A) have PAL exceedances, possibly indicating a comingled plume from the AFFF Testing and the Live Fire Training Area #2 AOC source areas.

5.3 Quality Control Samples

Quality control samples obtained during groundwater sampling activities included a duplicate sample, one (1) aqueous field blank, and one (1) aqueous equipment blank.

<u>Duplicate:</u> Analytical results from the original sample (MW-51A) and the duplicate sample show similar compounds present at approximately the same concentrations. Therefore, the duplicate sample confirms the validity of the original analytical result.

<u>Field Blank:</u> The field blank was collected while at a groundwater sampling location during the sampling event. The field blank analytical result showed no PFAS present above individual MDLs, indicating that there was no cross contamination from ambient conditions at the site.

<u>Equipment Blank:</u> The equipment blank representative of the sampling equipment was collected on Wednesday May 11, 2022. The equipment blank analytical result showed no PFAS present above individual MDLs, indicating that there was no cross contamination from sampling equipment and equipment decontamination procedures.

Groundwater sampling quality control results are provided in **Table 3** and the laboratory analytical reports are presented in **Appendix A**.

Data Validation

Data validation of the PFAS laboratory results were conducted with reference to:

- Wisconsin DNR PFAS Updates, March 1, 2021
- Wisconsin PFAS Aqueous (Non-Potable Water) and Non-Aqueous Matrices Method Expectations, EA-19-0001-C, 12/19/2019.
- Data Validation Guidelines Module3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15, Department of Defense, 5/1/2020.

Based on the data validation review, the PFAS results are acceptable for use as qualified. The validation report is included in **Appendix A** and provides a detailed quality control review of the analytical results.

6. Data Gaps & Recommendations

Initial SI activities were scoped as the first phase of multiple phases necessary to complete an NR 716 compliant site investigation. With that in-mind, AECOM has identified the following data gaps and recommendations based on the results of the initial investigation:

<u>Data Gap #1, Horizontal Delineation of Soil Impacts, AFFF Testing AOC:</u> AECOM recommends advancing handauger soil borings to delineate the horizontal extent of PFAS soil impacts at the AFFF Testing AOC.

Data Gap #2, Horizontal Delineation of Soil Impacts, Live Fire Training AOC Area #2: AECOM recommends advancing hand-auger soil borings to delineate the horizontal extent of PFAS soil impacts at the Live Fire Training AOC Area #2.

Data Gap #3, Horizontal Delineation of Groundwater Impacts: Groundwater impacts from the two identified source areas (i.e., AFFF Testing AOC and the Live Fire Training AOC Area #2) appear to be comingled into one groundwater plume. The next phase of groundwater investigation activities will work to delineate the plume.

AECOM anticipates that this will include a significant effort to inventory and confirm the presence of existing thirdparty monitoring wells (i.e., NPI, WDNR, and City of Eau Claire monitoring wells) in the vicinity of the airport. A selection of the viable existing wells, in concert with new monitoring wells installed on airport property, will form the monitoring network for the next phase of groundwater monitoring activities.

The preliminary scope of work for the next phase of the groundwater investigation, described by cardinal compass direction, includes the following:

- West, install wells on airport property.
- Northwest, install wells on airport property.
- Northeast, install wells on airport property and monitor third-party wells off-site.
- East, monitor third-party wells off-site.
- Southeast, install wells on airport property.
- South, monitor third-party wells on-site.
- Southwest, monitor third-party wells on-site or off-site.

CVRA and AECOM will provide the Department with a Supplemental Site Investigation Work Plan presenting the details of the supplemental investigation. AECOM anticipates including the NR 716 required soil stratigraphy cross-sections with the Supplemental Site Investigation Report.

7. Statement of Limitations

AECOM's objective is to complete our work with care, exercising the customary thoroughness and competence of consulting professionals in the relevant disciplines, in accordance with the standards for professional services existing at the time and location those services are rendered. It is important to recognize that even the most comprehensive scope of services may fail to detect environmental liability on a particular site. Therefore, AECOM cannot act as insurers and cannot "certify" that a site is free of environmental contamination, and no expressed or implied representation or warranty is included or intended in our reports except that our work was performed within the limits prescribed by our proposal and with the customary thoroughness and competence of our profession.

Tables

- Table 1 Groundwater Elevations
- Table 2Soil Analytical Results
- Table 3 Groundwater Results

Table 1 Groundwater Elevations Chippewa Valley Regional Airport Eau Claire, Wisconsin

Location	Date	Ground Elevation	Depth to Bottom from TOC	TOC Elevation	Depth to Water from TOC	Water Elevations
MW-49A	6/7/2022	883.28	91.29	882.99	80.29	802.70
MW-51A	6/7/2022	883.79	78.16	883.87	68.66	815.21
MW-52A	6/7/2022	884.12	62.24	883.93	71.26	812.67
MW-53A	6/7/2022	888.16	90.93	887.75	80.40	807.35
MW-54A	6/7/2022	882.73	90.58	882.50	79.49	803.01
MW-55A	6/7/2022	881.99	92.58	881.55	81.19	800.36
AMW-01	6/7/2022	890.20	85.10	890.88	79.95	810.93
AMW-02	6/7/2022	890.11	33.10	890.31	31.41	858.90
AMW-03	6/7/2022	887.52	75.73	888.18	66.72	821.46
AMW-04	6/7/2022	884.02	73.06	883.68	68.84	814.84
AMW-05	6/7/2022	883.68	71.82	883.94	65.72	818.22

Notes:

- TOC = Top of Casing

- fbgs = feet below ground surface

- USGS datum NAVD 88

- Depth to water and depth to bottom measurements taken from north side of the TOC

Table 2 Soil Analytical Results Chippewa Valley Regional Airport Eau Claire, Wisconsin

	Location				Residual ant Levels	AMW-01		AMW-03		AMW-03 DUP	AM	W-04	AM	W-05	ASB-01	Decon Water	Decon Water	Decon Water	Equipment Blank	Field Blank
	s	Sample Interval		Non-	Industrial	80'-80.5'	1'-2'	35'-37'	68'-70'	68'-70'	1'-2'	69'-70'	1'-2'	65'-67'	1'-2'	Well #4	PFAS Free		EB	FB
	1		ple Date:	Industrial Direct	Direct	5/9/2022	5/13/2022	5/13/2022	5/13/2022	5/13/2022	5/11/2022	5/11/2022	5/12/2022	5/12/2022	5/12/2022	5/12/2022	5/10/2022	5/11/2022	5/12/2022	5/13/2022
Abbr	Analyte	Cas Number	Units	Contact	Contact	0/0/2022	0/10/2022	0/10/2022	0/10/2022	0/10/2022	0/11/2022	0/11/2022	0/12/2022	0/12/2022	0/12/2022	0/12/2022	0/10/2022	0/11/2022	0/12/2022	0/10/2022
Carboxylic Ac	ids:																			
PFBA	Perfluorobutanoic acid	375-22-4	ng/g			< 0.458	< 0.456	< 0.442	< 0.447	< 0.439	< 0.45	< 0.449	< 0.44	< 0.455	< 0.455	< 1.00	< 0.997	< 1.01	< 0.977	< 0.964
PFPeA	Perfluoropentanoic acid	2706-90-3	ng/g			< 0.366	< 0.365	< 0.354	< 0.357	< 0.351	< 0.36	< 0.359	< 0.352	< 0.364	< 0.364	< 0.749	< 0.745	< 0.756	< 0.731	< 0.720
PFHxA	Perfluorohexanoic acid	307-24-4	ng/g			< 0.318	< 0.317	< 0.308	< 0.311	< 0.305	< 0.313	< 0.313	< 0.306	< 0.316	< 0.317	< 0.809	< 0.805	< 0.816	< 0.789	< 0.778
PFHpA	Perfluoroheptanoic acid	375-85-9	ng/g			< 0.484	< 0.482	< 0.467	< 0.472	< 0.463	< 0.476	< 0.475	< 0.464	< 0.481	< 0.481	< 0.928	< 0.923	< 0.936	< 0.905	< 0.892
PFOA	Perfluorooctanoic acid	335-67-1	ng/g	1,260	16,400	< 0.269	0.391 J	< 0.26	< 0.262	< 0.257	< 0.264	< 0.264	< 0.258	< 0.267	< 0.267	< 0.948	< 0.943	< 0.956	< 0.924	< 0.911
PFNA	Perfluorononaoic acid	375-95-1	ng/g			< 0.37	1.78	< 0.358	< 0.361	< 0.355	< 0.364	< 0.363	< 0.356	< 0.368	< 0.368	< 0.749	< 0.745	< 0.756	< 0.731	< 0.720
PFDA	Perfluorodecanoic acid	335-76-2	ng/g			< 0.44	1.37	< 0.425	< 0.429	< 0.421	< 0.433	< 0.432	< 0.422	< 0.437	< 0.437	< 0.938	< 0.933	< 0.946	< 0.914	< 0.902
PFUnA	Perfluoroundecanoic acid	2058-94-8	ng/g			< 0.504	< 0.502	< 0.487	< 0.491	< 0.482	< 0.495	< 0.494	< 0.484	< 0.5	< 0.501	< 0.749	< 0.745	< 0.756	< 0.731	< 0.720
PFDoA	Perfluorododecanoic acid	307-55-1	na/a			< 0.454	< 0.452	< 0.438	< 0.443	< 0.435	< 0.446	< 0.445	< 0.436	< 0.451	< 0.451	< 0.968	< 0.963	< 0.976	< 0.943	< 0.930
PFTrDA	Perfluorotridecanoic acid	72629-94-8	ng/g			< 0.404	< 0.403	< 0.39	< 0.394	< 0.387	< 0.397	< 0.397	< 0.388	< 0.401	< 0.402	< 0.650	< 0.647	< 0.656	< 0.634	< 0.625
PFTeDA	Perfluorotetradecanoic acid	376-06-7	na/a			< 0.426	< 0.425	< 0.412	< 0.416	< 0.408	< 0.419	< 0.418	< 0.409	< 0.423	< 0.424	< 0.809	< 0.805	< 0.816	< 0.789	< 0.778
Sulfonic Acids								•		•				•						
PFBS	Perfluorobutanesulfonic acid	375-73-5	na/a	1,260,000	########	< 0.305	< 0.304	< 0.294	< 0.297	< 0.292	< 0.3	< 0.299	< 0.292	< 0.303	< 0.303	< 0.898	< 0.894	< 0.906	< 0.876	< 0.863
PFPeS	Perfluoropentane Sulfonic Acid	2706-91-4	na/a			< 0.299	< 0.298	< 0.288	< 0.291	< 0.286	< 0.294	< 0.293	< 0.287	< 0.297	< 0.297	< 0.814	< 0.810	< 0.821	< 0.793	< 0.782
PFHxS	Perfluorohexanesulfonoic acid	355-46-4	ng/g			< 0.309	< 0.308	1.14	0.507 J	0.333 J	< 0.302	< 0.306	< 0.305	< 0.299	< 0.302	< 1.02	< 1.02	< 1.03	< 0.997	< 0.983
PFHpS	Perfluoroheptanesulfonic acid	375-92-8	ng/g			< 0.514	< 0.512	< 0.496	< 0.501	< 0.492	< 0.505	< 0.504	< 0.493	< 0.51	< 0.511	< 0.590	< 0.587	< 0.596	< 0.576	< 0.568
PFOS	Perfluorooctanesulfonic acid	1763-23-1	ng/g	1,260	16,400	< 0.651	31.7	2.19 J	< 0.624	< 0.618	< 0.634	< 0.644	2.41	1.74	< 0.635	< 1.12	< 1.12	< 1.13	< 1.09	< 1.08
PFNS	Perfluorononanesulfonic acid	68259-12-1	ng/g			< 0.824	< 0.821	< 0.796	< 0.804	< 0.789	< 0.811	< 0.809	< 0.791	< 0.819	< 0.819	< 1.15	< 1.14	< 1.16	< 1.12	< 1.10
PFDS	Perfluorodecanesulfonic acid	335-77-3	ng/g			< 0.241	< 0.24	< 0.233	< 0.235	< 0.231	< 0.237	< 0.236	< 0.231	< 0.239	< 0.24	< 0.754	< 0.750	< 0.761	< 0.735	< 0.725
PFDoS	Perfluorododecanesulfonic acid	79780-39-5	ng/g			< 0.42	< 0.419	< 0.406	< 0.41	< 0.402	< 0.413	< 0.412	< 0.403	< 0.417	< 0.418	< 1.40	< 1.40	< 1.42	< 1.37	< 1.35
4:2 FTS	4:2 Fluorotelomer Sulfonic Acid	757124-72-4	4 ng/g			< 0.641	< 0.639	< 0.619	< 0.625	< 0.614	< 0.63	< 0.629	< 0.615	< 0.637	< 0.637	< 0.943	< 0.938	< 0.951	< 0.919	< 0.906
6:2 FTS	6:2 Fluorotelomer sulfonic acid	27619-97-2	ng/g			< 0.516	11.6	< 0.498	2.31	2.39	< 0.507	< 0.506	< 0.495	< 0.512	< 0.513	< 1.12	< 1.11	< 1.13	< 1.09	< 1.07
8:2 FTS	8:2 Fluorotelomer sulfonic acid	39108-34-4	ng/g			< 0.585	23.9	< 0.565	< 0.571	< 0.561	< 0.576	< 0.574	< 0.562	< 0.581	< 0.582	< 1.13	< 1.12	< 1.14	< 1.10	< 1.08
Sulfonamides	Sulfomidoacetic acids, Sulfonamidoethanols:																			
PFOSA	Perfluorooctane sulfonamide	754-91-6	ng/g			< 0.569	< 0.567	< 0.55	< 0.555	< 0.545	< 0.56	< 0.559	< 0.547	< 0.566	< 0.566	4.87 J+	1.37 J	16.1	1.64 J	< 1.04
NMeFOSA	N-Methyl Perfluorooctane sulfonamide	31506-32-8	ng/g			R	< 1.33	< 1.29	R	R	< 1.31	R	< 1.28	< 1.32	< 1.32	< 2.22	< 2.21	< 2.24	< 2.17	< 2.14
NEtFOSA	N-Ethyl Perfluorooctane sulfonamide	4151-50-2	ng/g			R	2.85 J+	R	R	R	< 0.76	< 0.771	< 0.769	R	< 0.761	< 2.31	< 2.30	< 2.33	< 2.25	< 2.22
MeFOSAA	N-Methylperfluorooctanesulfonamidoacetic acid	2355-31-9	ng/g			< 0.402	< 0.401	< 0.388	< 0.392	< 0.385	< 0.396	< 0.395	< 0.386	< 0.399	< 0.4	< 0.943	< 0.938	< 0.951	< 0.919	< 0.906
EtFOSAA	N-Ethylperfluorooctanesulfonamidoacetic acid	2991-50-6	ng/g			< 0.378	< 0.377	< 0.365	< 0.369	< 0.362	< 0.372	< 0.371	< 0.363	< 0.376	< 0.376	< 1.03	< 1.03	< 1.04	< 1.01	< 0.992
NMeFOSE	N-Methyl Perfluorooctane sulfonamidoethanol	24448-09-7	ng/g			< 0.617	< 0.615	< 0.596	< 0.602	< 0.591	< 0.607	< 0.606	< 0.593	< 0.613	< 0.614	< 1.98	< 1.97	< 2.00	< 1.94	< 1.91
NEtFOSE	N-Ethyl Perfluorooctane sulfonamidoethanol	1691-99-2	ng/g			< 0.733	< 0.73	< 0.708	< 0.715	< 0.702	< 0.721	< 0.719	< 0.703	< 0.728	< 0.728	R	< 1.55	< 1.57	< 1.52	< 1.50
Replacement	Chemicals:																			
HFPO-DA	Hexafluoropropylene oxide dimer acid	13252-13-6	ng/g			< 0.864	< 0.861	< 0.835	< 0.843	< 0.828	< 0.85	< 0.848	< 0.83	< 0.858	< 0.859	< 1.55	< 1.55	< 1.57	< 1.51	< 1.49
DONA	4,8-dioxa-3H-perfluorononanoic acid	919005-14-4	4 ng/g			< 0.251	< 0.25	< 0.242	< 0.245	< 0.24	< 0.247	< 0.246	< 0.241	< 0.249	< 0.249	< 0.635	< 0.632	< 0.641	< 0.619	< 0.611
9CI-PF3ONS	9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic ac	id 756426-58-	1 ng/g			< 0.326	< 0.325	< 0.315	< 0.319	< 0.313	< 0.321	< 0.32	< 0.313	< 0.324	< 0.325	< 1.06	< 1.05	< 1.07	< 1.03	< 1.02
11CI-PE3OUds	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic aci	id 763051-92-9	9 na/a			< 0.529	< 0.528	< 0.512	< 0.517	< 0.507	< 0.521	< 0.52	< 0.508	< 0.526	< 0.527	< 0.982	< 0.977	< 0.991	< 0.958	< 0.944

Notes:

ng/g - nanograms per gram or parts per billion (ppb) ft bgs - feet below ground surface

DUP - duplicate

J - Estimated value (+/- indicate the direction of bias)

R - Rejected due to a quality control exceedance (low extractable internal standards (EIS) recovery)

Non-detects reported as less than Method Detection Limit

AMW-02-no sample collected because was in perched water

Table 3Groundwater ResultsChippawa Valley Regional Airport ResultsEau Claire, WI

				F	ield Sample ID:	AMW-01	AMW-02	AMW-03	AMW-04	AMW-05	MW-51A	MW-51A DUP	MW-55A
		1	1	,	Sample Date:								
Acronym	Analyte	CAS No	Units	ES (proposed)	PAL (proposed)	6/7/2022	6/7/2022	6/8/2022	6/8/2022	6/7/2022	6/7/2022	6/7/2022	6/7/2022
Carboxylic Acids		•			· · · · · · ·				-			-	
PFBA	Perfluorobutanoic acid	375-22-4	ng/L	10000	2000	3.95	R	1,120	15.6	22.7	55.7	57.1	5.39
PFPeA	Perfluoropentanoic acid	2706-90-3	ng/L			9.02	< 1.08	6,040	50	51.3	14	14.2	5.94
PFHxA	Perfluorohexanoic acid	307-24-4	ng/L	150000	30000	7.2	< 1.16	3,270	27.6	248	14.1	14.3	2.14
PFHpA	Perfluoroheptanoic acid	375-85-9	ng/L			2.59	< 1.33	1,220	17.3	70.6	4.51	3.78	< 0.947
PFOA	Perfluorooctanoic acid	335-67-1	ng/L	20 ^c	2 ^c	1.99	1.55	1,020	<u>11.5</u>	553	<u>14</u>	<u>13.2</u>	< 0.968
PFNA	Perfluorononaoic acid	375-95-1	ng/L	30	3	< 0.736	< 1.08	<u>11.8</u>	< 0.745	<u>5.91</u>	< 0.747	< 0.747	< 0.765
PFDA	Perfluorodecanoic acid	335-76-2	ng/L	300	60	< 0.921	< 1.35	< 0.942	< 0.933	< 0.960	< 0.936	< 0.936	< 0.957
PFUnA	Perfluoroundecanoic acid	2058-94-8	ng/L	3000	600	< 0.736	< 1.08	< 0.752	< 0.745	< 0.767	< 0.747	< 0.747	< 0.765
PFDoA	Perfluorododecanoic acid	307-55-1	ng/L	500	100	< 0.951	< 1.39	< 0.972	< 0.962	< 0.991	< 0.965	< 0.965	< 0.988
PFTrDA	Perfluorotridecanoic acid	72629-94-8	ng/L			< 0.639	R	< 0.653	< 0.647	< 0.666	< 0.648	< 0.648	< 0.664
PFTeDA	Perfluorotetradecanoic acid	376-06-7	ng/L	10000	2000	< 0.795	R	< 0.812	< 0.804	< 0.828	< 0.807	< 0.807	< 0.826
Sulfonic Acids:													
PFBS	Perfluorobutanesulfonic acid	375-73-5	ng/L	450000	90000	6.51	< 1.29	534	4.88	65.4	21.9	21.6	12.6
PFPeS	Perfluoropentane Sulfonic Acid	2706-91-4	ng/L			7.05	< 1.17	791	2.83	139	2.22	2	1.89
PFHxS	Perfluorohexanesulfonoic acid	355-46-4	ng/L	40	4	<u>27</u>	2.18	7,080	52.2	3,610	<u>6.48</u>	<u>6.64</u>	<u>10.5</u>
PFHpS	Perfluoroheptanesulfonic acid	375-92-8	ng/L			< 0.580	< 0.848	273	3.5	90.3	< 0.589	< 0.589	1.64
PFOS	Perfluorooctanesulfonic acid	1763-23-1	ng/L	20 ^c	2 ^c	<u>6.13</u>	<u>4.79 J</u>	5,230	230	3,160	<u>2.14</u>	<u>2.41</u>	<u>11.9 J</u>
PFNS	Perfluorononanesulfonic acid	68259-12-1	ng/L			< 1.13	< 1.65	< 1.15	< 1.14	< 1.17	< 1.14	< 1.14	< 1.17
PFDS	Perfluorodecanesulfonic acid	335-77-3	ng/L			< 0.741	< 1.08	< 0.757	< 0.750	< 0.772	< 0.752	< 0.752	< 0.770
PFDoS	Perfluorododecanesulfonic acid	79780-39-5	ng/L			< 1.38	< 2.02	< 1.41	< 1.40	< 1.44	< 1.40	< 1.40	< 1.43
4:2 FTS	4:2 Fluorotelomer Sulfonic Acid	757124-72-4	ng/L			< 0.926	< 1.35	257	< 0.938	< 0.965	< 0.941	< 0.940	< 0.963
6:2 FTS	6:2 Fluorotelomer sulfonic acid	27619-97-2	ng/L			9.8	< 1.60	12,800 J	119	93.5	< 1.11	< 1.11	< 1.14
8:2 FTS	8:2 Fluorotelomer sulfonic acid	39108-34-4	ng/L			< 1.11	< 1.62	2.02	< 1.12	7.33	< 1.12	< 1.12	< 1.15
Sulfonamides, Su	ulfomidoacetic acids, Sulfonamidoethanols:												
PFOSA	Perfluorooctane sulfonamide	754-91-6	ng/L	20 ^c	2 ^c	< 1.06	<u>6.98</u>	< 1.09	1.99	601	<u>2.19 J</u>	<u>2.45</u>	<u>3.95 J</u>
NMeFOSA	N-Methyl perfluorooctane sulfonamide	31506-32-8	ng/L			R	R	< 2.23	< 2.21	< 2.28	< 2.22	< 2.22	< 2.27
NEtFOSA	N-Ethyl perfluorooctane sulfonamide	4151-50-2	ng/L	20 ^c	2 ^c	R	R	< 2.32	< 2.29	< 2.36	< 2.30	< 2.30	< 2.36
MeFOSAA	N-Methylperfluorooctanesulfonamidoacetic acid	2355-31-9	ng/L			< 0.926	< 1.35	< 0.947	< 0.938	< 0.965	< 0.941	< 0.940	< 0.963
EtFOSAA	N-Ethylperfluorooctanesulfonamidoacetic acid	2991-50-6	ng/L	20 ^c	2 ^c	< 1.01	< 1.48	< 1.04	< 1.03	< 1.06	< 1.03	< 1.03	< 1.05
NMeFOSE	N-Methyl perfluorooctane sulfonamidoethanol	24448-09-7	ng/L			< 1.95	R	< 1.99	< 1.97	< 2.03	< 1.98	< 1.98	< 2.03
	N-Ethyl perfluorooctane sulfonamidoethanol	1691-99-2	ng/L	20 ^c	2 ^c	< 1.53	R	< 1.56	< 1.55	< 1.60	< 1.55	< 1.55	< 1.59
Replacement Che			J J	20			1						
HFPO-DA	Hexafluoropropylene oxide dimer acid	13252-13-6	ng/L	300	30	< 1.53	< 2.23	< 1.56	< 1.54	< 1.59	< 1.55	< 1.55	< 1.59
DONA	4,8-dioxa-3H-perfluorononanoic acid	919005-14-4	ng/L	3000	600	< 0.624	< 0.912	< 0.638	< 0.632	< 0.650	< 0.634	< 0.634	< 0.648
	9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	756426-58-1	ng/L			< 1.04	< 1.52	< 1.06	< 1.05	< 1.08	< 1.05	< 1.05	< 1.08
	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	763051-92-9	ng/L			< 0.965	< 1.41	< 0.986	< 0.977	< 1.01	< 0.980	< 0.980	< 1.00
	•		ng/L	20 ^c	2 ^c	<u>8.12</u>	<u>13.3</u>	6,250	243	4,310	<u>18.3</u>	<u>18.1</u>	<u>15.9</u>
Combined 6 standard ^C ng/L 20 ^c 2 Notes:				-		<u> </u>	-,			<u> </u>	<u> </u>		

Notes:

^C DHS recommends a combined (c) standard for NEtFOSE, NEtFOSA, NEtFOSAA, FOSA, PFOS and PFOA.

ng/L - nanograms per liter or parts per trillion (ppt)

J - Estimated concentration (+/- indicate the direction of bias).

R - Rejected due to a quality control exceedance (low extractable internal standards (EIS) recovery

Non-detects reported as less than Method Detection Limit

Bold indicates a ES exceedance, proposed Recommended Groundwater Standards (Cycle 11), November 6, 2020.

Italics and underlining indicates an PAL exceedance of the sed. Recommended Groundwater Standards (Cycle 11), November 6, 2020.

-- No NR 140 ES or PAL established.

AECOM

Table 3Groundwater ResultsChippawa Valley Regional Airport ResultsEau Claire, WI

				Fi	eld Sample ID:	Equipment Blank	Fi
					Sample Date:		
Acronym	Analyte	CAS No	Units	ES	PAL	6/7/2022	
			onito	(proposed)	(proposed)		
Carboxylic Acids	:	_					
PFBA	Perfluorobutanoic acid	375-22-4	ng/L	10000	2000	< 0.984	
PFPeA	Perfluoropentanoic acid	2706-90-3	ng/L			< 0.736	
PFHxA	Perfluorohexanoic acid	307-24-4	ng/L	150000	30000	< 0.794	
PFHpA	Perfluoroheptanoic acid	375-85-9	ng/L			< 0.911	
PFOA	Perfluorooctanoic acid	335-67-1	ng/L	20 ^c	2 ^c	< 0.931	
PFNA	Perfluorononaoic acid	375-95-1	ng/L	30	3	< 0.736	
PFDA	Perfluorodecanoic acid	335-76-2	ng/L	300	60	< 0.921	
PFUnA	Perfluoroundecanoic acid	2058-94-8	ng/L	3000	600	< 0.736	
PFDoA	Perfluorododecanoic acid	307-55-1	ng/L	500	100	< 0.950	
PFTrDA	Perfluorotridecanoic acid	72629-94-8	ng/L			< 0.638	
PFTeDA	Perfluorotetradecanoic acid	376-06-7	ng/L	10000	2000	< 0.794	
Sulfonic Acids:	·						-
PFBS	Perfluorobutanesulfonic acid	375-73-5	ng/L	450000	90000	< 0.882	
PFPeS	Perfluoropentane Sulfonic Acid	2706-91-4	ng/L			< 0.799	
PFHxS	Perfluorohexanesulfonoic acid	355-46-4	ng/L	40	4	< 1.00	
PFHpS	Perfluoroheptanesulfonic acid	375-92-8	ng/L			< 0.580	
PFOS	Perfluorooctanesulfonic acid	1763-23-1	ng/L	20 ^c	2 ^c	< 1.10	
PFNS	Perfluorononanesulfonic acid	68259-12-1	ng/L			< 1.13	
PFDS	Perfluorodecanesulfonic acid	335-77-3	ng/L			< 0.741	1
PFDoS	Perfluorododecanesulfonic acid	79780-39-5	ng/L			< 1.38	1
4:2 FTS	4:2 Fluorotelomer Sulfonic Acid	757124-72-4	ng/L			< 0.926	1
6:2 FTS	6:2 Fluorotelomer sulfonic acid	27619-97-2	ng/L			< 1.10	1
8:2 FTS	8:2 Fluorotelomer sulfonic acid	39108-34-4	ng/L			< 1.11	
Sulfonamides, Su	ulfomidoacetic acids, Sulfonamidoethanols:						•
PFOSA	Perfluorooctane sulfonamide	754-91-6	ng/L	20 ^c	2 ^c	< 1.06	
NMeFOSA	N-Methyl perfluorooctane sulfonamide	31506-32-8	ng/L			< 2.18	
NEtFOSA	N-Ethyl perfluorooctane sulfonamide	4151-50-2	ng/L	20 ^c	2 ^c	< 2.27	
MeFOSAA	N-Methylperfluorooctanesulfonamidoacetic acid	2355-31-9	ng/L			< 0.926	<u> </u>
EtFOSAA	N-Ethylperfluorooctanesulfonamidoacetic acid	2991-50-6	ng/L	20 ^c	2 ^c	< 1.01	<u> </u>
NMeFOSE	N-Methyl perfluorooctane sulfonamidoethanol	24448-09-7	ng/L			< 1.95	<u> </u>
NEtFOSE	N-Ethyl perfluorooctane sulfonamidoethanol	1691-99-2	ng/L	20 ^c	2 ^c	< 1.53	┢──
		1031-33-2	lig/∟	20	2	< 1.55	<u> </u>
Replacement Cho HFPO-DA	Hexafluoropropylene oxide dimer acid	13252-13-6	ng/L	300	30	< 1.53	<u> </u>
DONA	4,8-dioxa-3H-perfluorononanoic acid	919005-14-4		300	30 600		╂───
9CI-PF3ONS	9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	756426-58-1	ng/L			< 0.624	┣──
	11-chloroeicosafluoro-3-oxanofane-1-sulfonic acid		ng/L	1 1		< 1.04	╂──
11CI-PF3OUdS		763051-92-9	ng/L			< 0.965	──
Combined 6 stand	ard		ng/L	20 ^c	2 ^c		

Notes:

^C DHS recommends a combined (c) standard for NEtFOSE, NEtFOSA, NEtFOSAA, FOSA, PFOS and PFOA.

ng/L - nanograms per liter or parts per trillion (ppt)

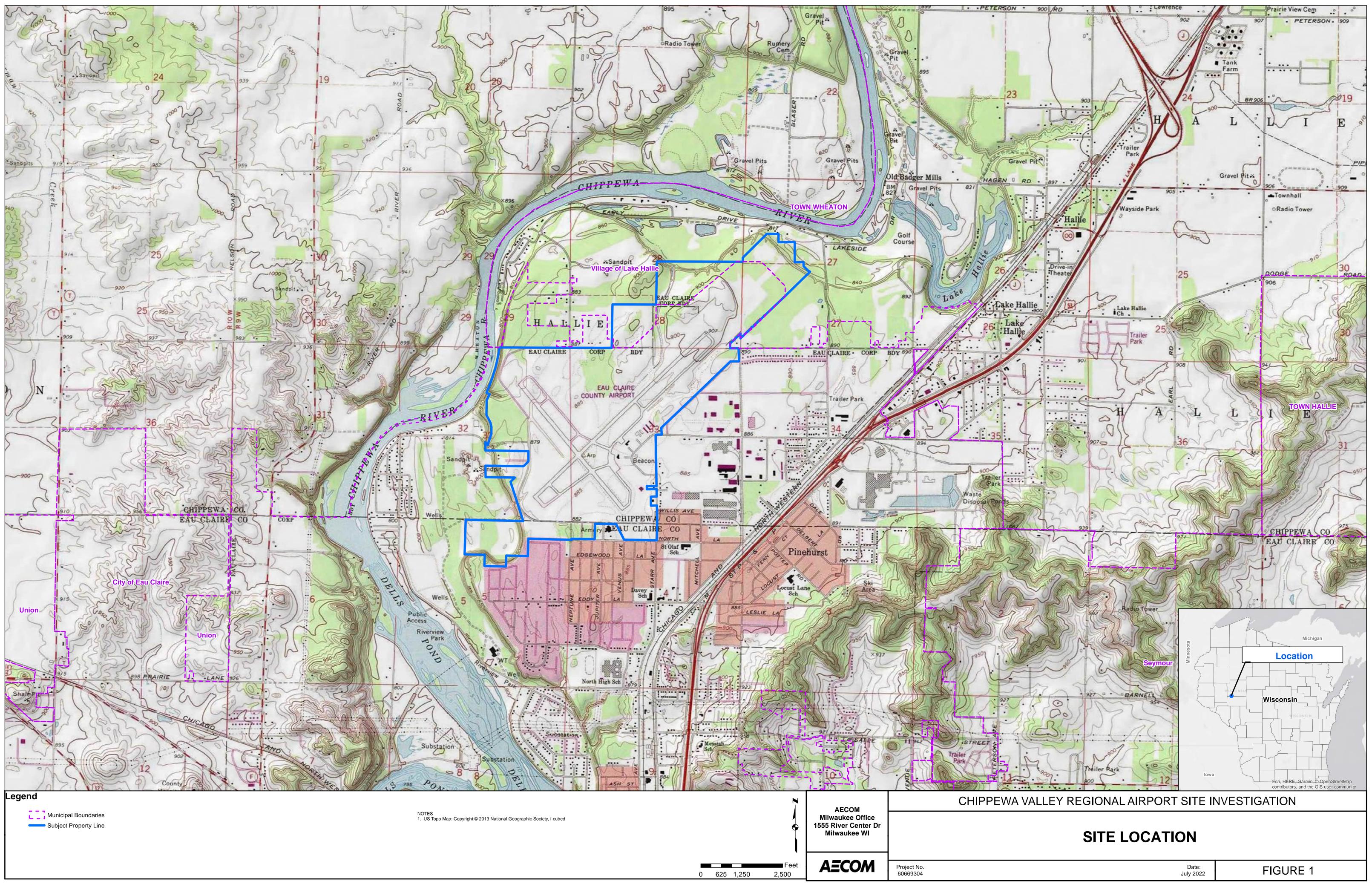
J - Estimated concentration (+/- indicate the direction of bias).

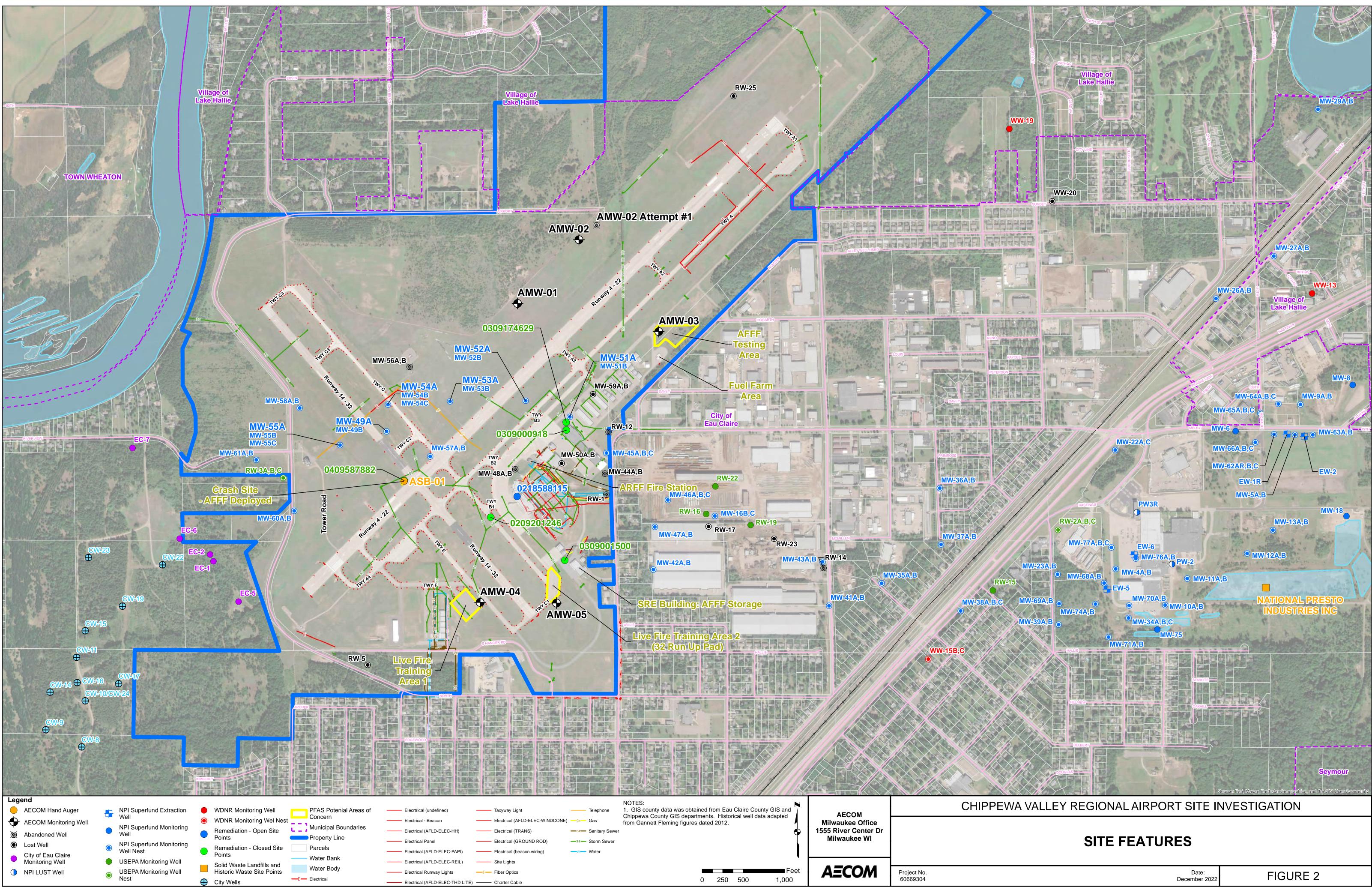
R - Rejected due to a quality control exceedance (low extractable internal standards (EIS) recovery

Non-detects reported as less than Method Detection Limit

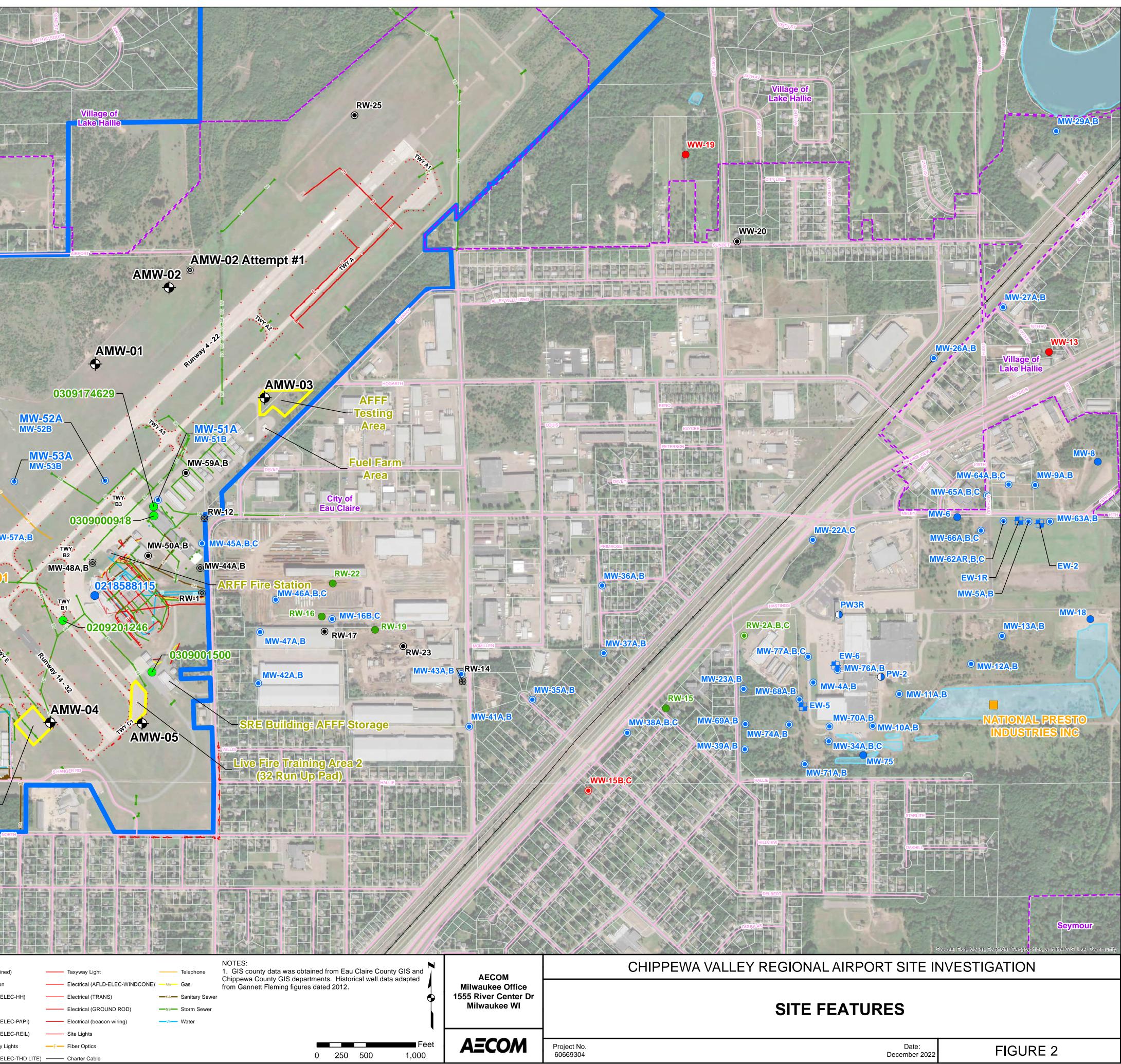
Bold indicates a ES exceedance, proposed Recommended Groundwater Standards (Cycle 11), November 6, 2020.

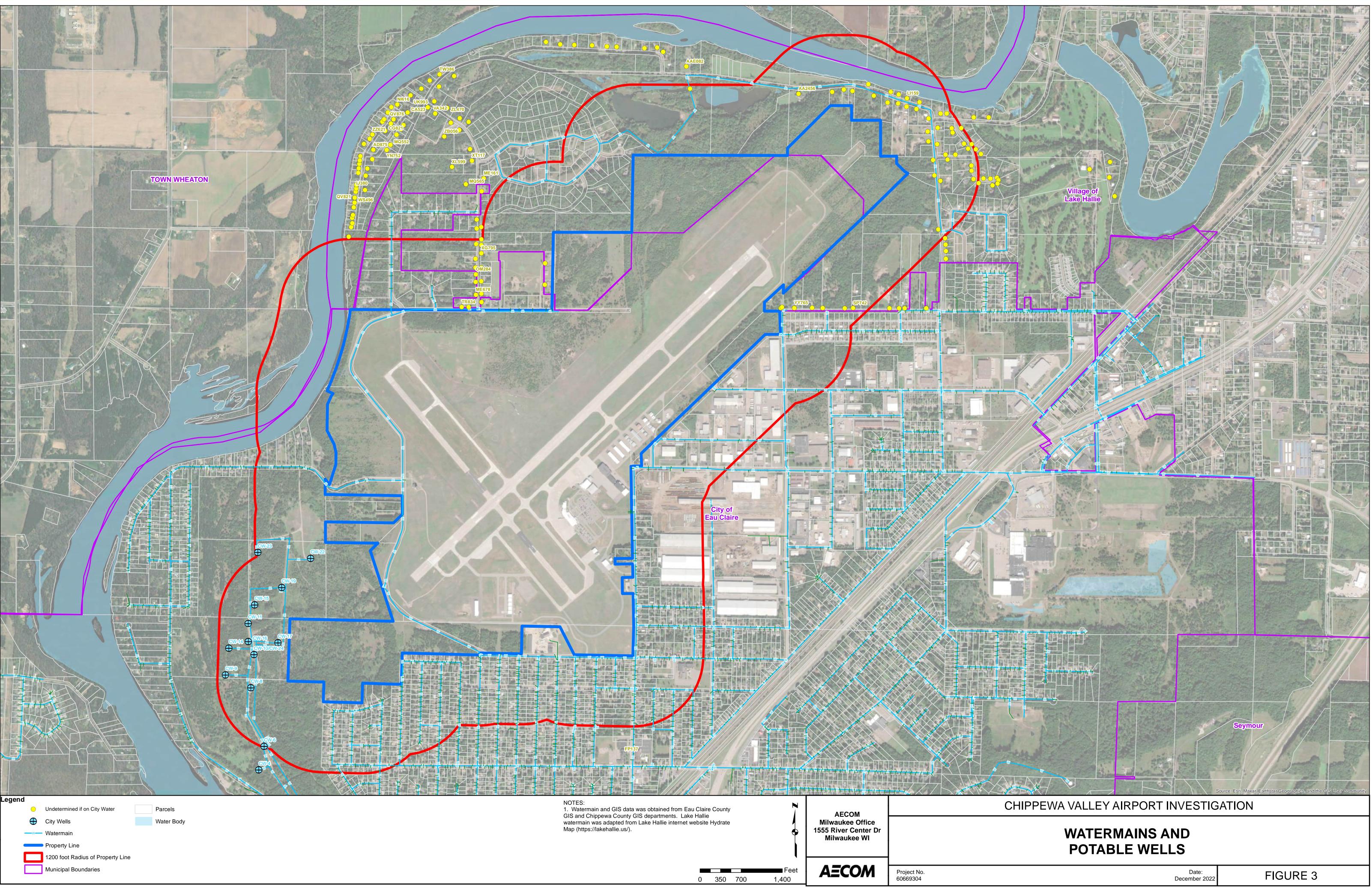
Italics and underlining indicates an PAL exceedance of the sed. Recommended Groundwater Standards (Cycle 11), November 6, 2020 -- No NR 140 ES or PAL established.

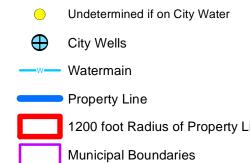


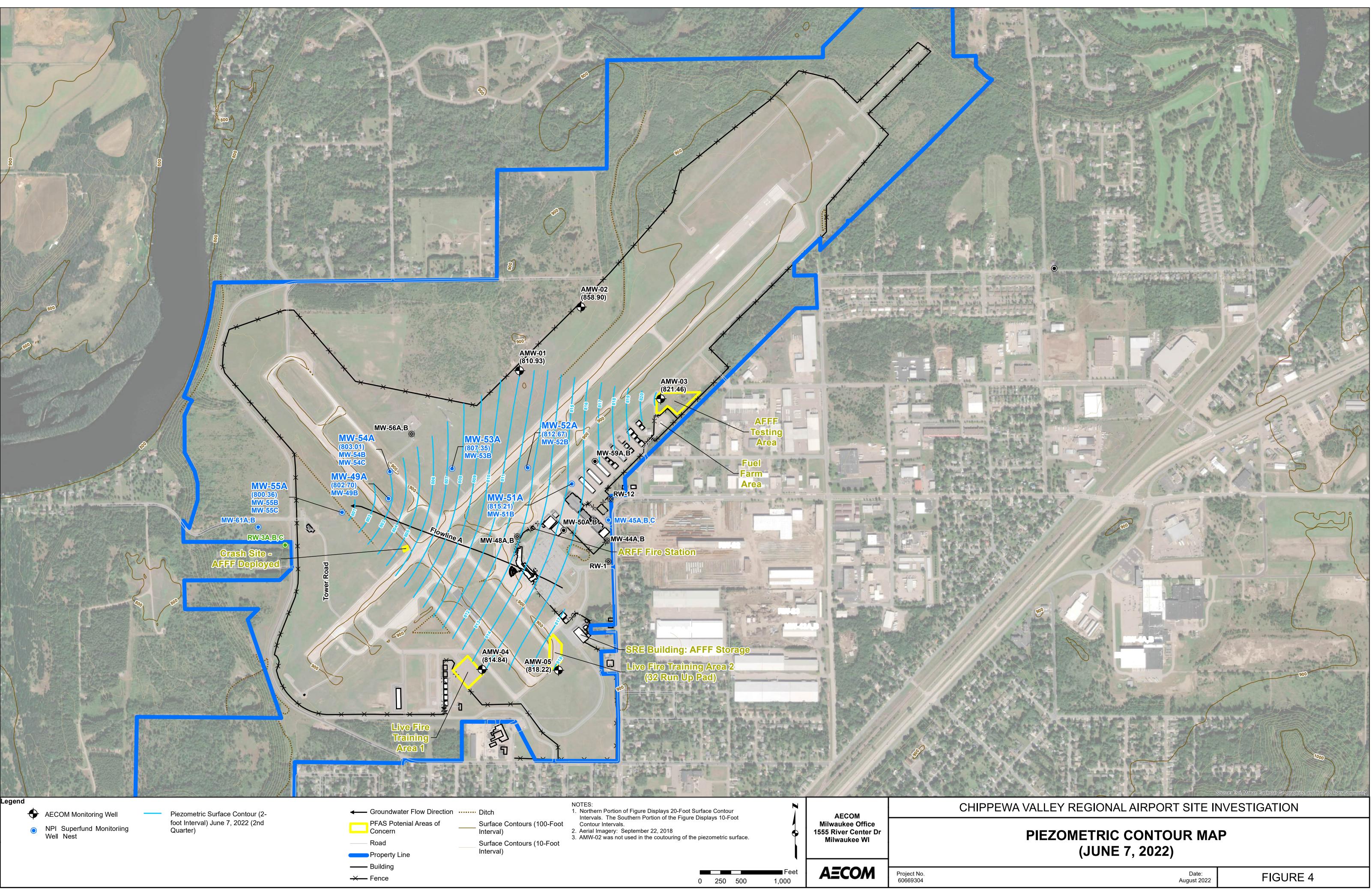

Field Blank
6/8/2022
< 0.985 < 0.737
< 0.737
< 0.795
< 0.912 < 0.932
< 0.932
< 0.737
< 0.922
< 0.737 < 0.951
< 0.620
< 0.639 < 0.795
< 0.135
< 0.883
< 0.800
< 1.00
< 0.581
< 1.10
< 1.10 < 1.13
< 0.742
< 1.38 < 0.927
< 0.927
< 1.10
< 1.11
< 1.06
< 2.19 < 2.27
< 2.27
< 0.927
< 1.01
< 1.95
< 1.53
< 1.53
< 0.624
< 1.04
< 0.966

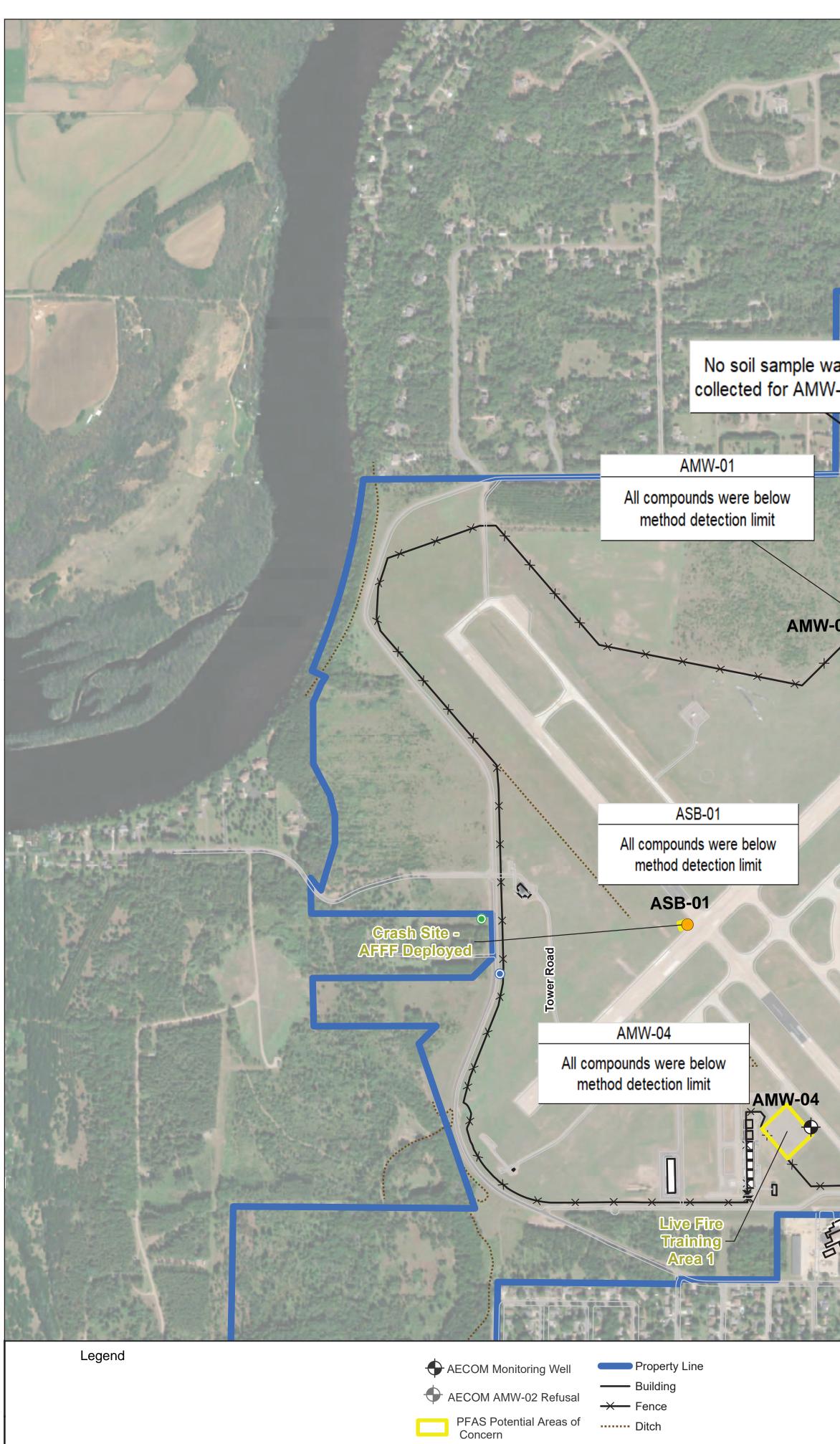
Figures

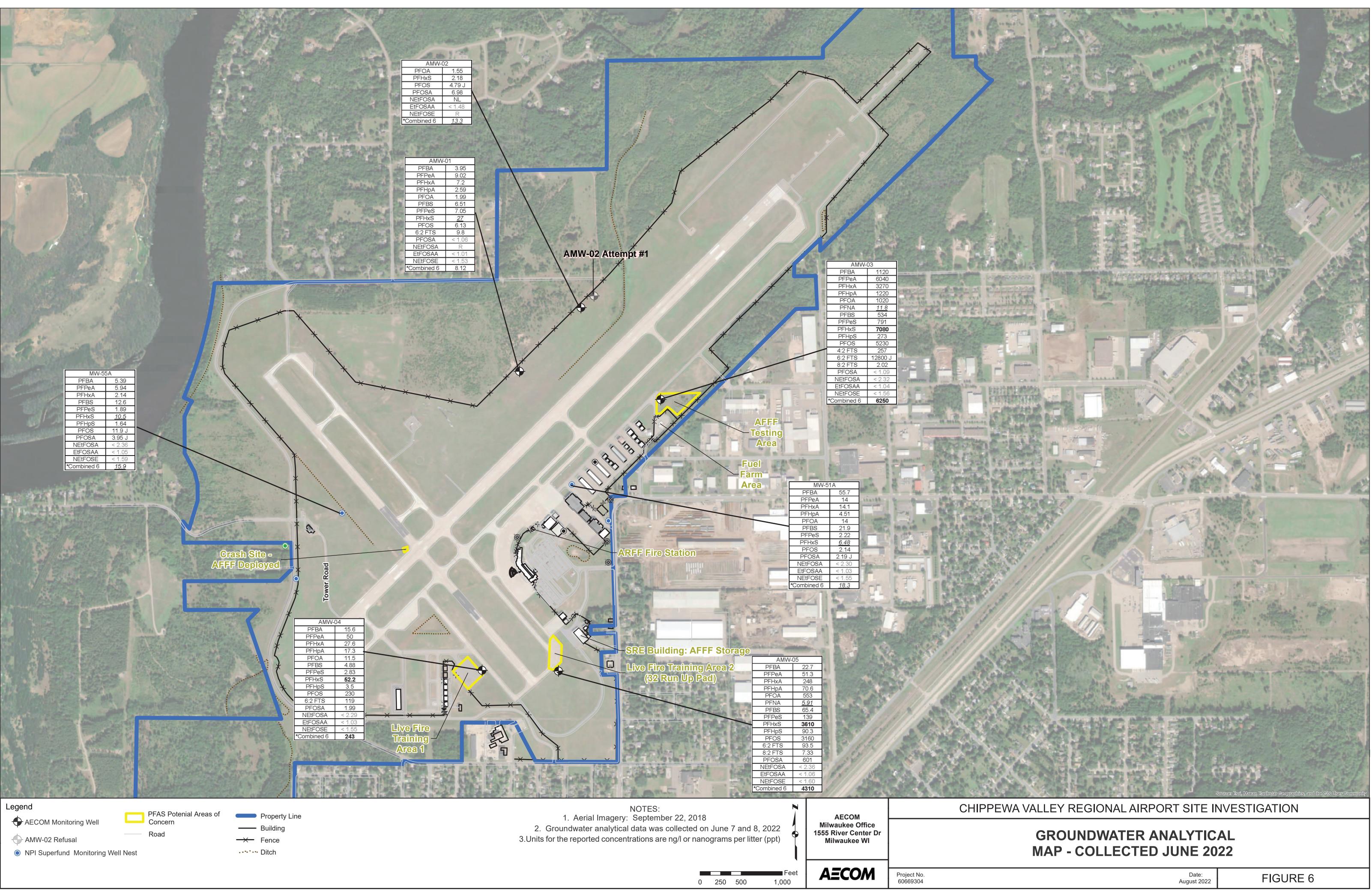

Figure 1	Site Location
Figure 2	Site Features
Figure 3	Water Mains and Potable Wells
Figure 4	Piezometric Contour Map (June 7, 2022)
Figure 5	Soil Analytical Map


Figure 6 Groundwater Analytical Map






	Ele
ie	—— Ele



Road

AECOM Soil Boring

Abbr Analyte Units Buerd Direct Consect Consect PFOA Perfluorocetanois acid ng/g PFOA Perfluorocetanois acid ng/g PEOA Perfluorocetanois acid ng/g	and the second second second			A AN	10 AMA 11	and in the second se	- Here 2	ND 700 F	Desidual
PFWA Perfluoronenaio cald ng/g PFWA Perfluoronenaio cald					Abbr	Analyte	Units	Non- Industrial Direct	Industrial
PEDA Perfluorodesanos aid ng g			***	-	PFOA	Perfluorooctanoic acid	ng/g	1,260	16,400
Note that the second	El	×//	X	11-1	PFNA	Perfluorononaoic acid			
PFCS Performance <	Comments of the State of the		>		PFDA	Perfluorodecanoic acid	ng/g		
AND NUM OF ATTORNEY AND OF NUM OF					PFHxS	Perfluorohexanesulfonoic acid	ng/g		
NO 			+		PFOS	Perfluorooctanesulfonic acid	ng/g	1,260	16,400
Meto Met			1	Sand Street, St			ng/g		
Number Number </th <th></th> <th></th> <th></th> <th>A DESCRIPTION OF THE OWNER.</th> <th></th> <th></th> <th></th> <th></th> <th></th>				A DESCRIPTION OF THE OWNER.					
ANN 42 - 4 Base - 4 ANN 42 - 4 Base - 4 Base - 4 Base - 4 <t< th=""><th></th><th></th><th></th><th>N</th><th>IEtFOSA</th><th>N-Ethyl Perfluorooctane sulfonamide</th><th>ng/g</th><th>1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0</th><th></th></t<>				N	IEtFOSA	N-Ethyl Perfluorooctane sulfonamide	ng/g	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	
ANN-05	AMW-02 Attempt #1	AFFF Testing Area Fuel Farm Area	F 6 8	PFOA 0 PFNA 1 PFDA 1 PFDA 1 PFDA 1 PFDA 1 PFDA 1 PFDA 1 PFOS 3 6:2 FTS 1 8:2 FTS 2	1-2ft 35- .391 J < 0 1.78 < 0. 1.37 < 0. 0.308 1. 31.7 2.7 11.6 < 0. 23.9 < 0.	.26 < 0.262 358 < 0.361 425 < 0.429 14 0.507 J $19 J$ < 0.624 498 2.31 565 < 0.571			
NOTES: Acrial Imagery: September 22, 2018 Acrom Milwauke Office CHIPPEWA VALLEY REGIONAL AIRPORT SITE INVESTIGATION 3. All concentrations are reported as ng/g or parts per billion (ppb) Image: Feet AECOM Milwauke Wil SOIL ANALYTICAL MAP - COLLECTED MAY 2022		SRE Building: AFFF Storage Live Fire Training Area 2							
1. Aerial Imagery: September 22, 2018 2. Soil analytical data was collected between May 9 and 12, 2022 3. All concentrations are reported as ng/g or parts per billion (ppb) Feet		Compound 1-2ft 65-67ft PFOS 2.41 1.74							
V V Feet 0 250 500 1,000 Project No. Date: 60669304 August 2022	 Aerial Imager Soil analytical data w 	ry: September 22, 2018 was collected between May 9 and 12, 2022	Milwaukee Office 1555 River Center Dr		CHIPF	SOIL ANALYTICAL MAP - CO			
			AECOM	Project No. 60669304		D Augu	ate: st 2022	FIGURE	Ξ 5

Appendix A Laboratory Reports:

- Village of Lake Hallie, Municipal Well #4, NLS Laboratory Report
- AECOM Data Validation Soil Laboratory Report
- Vista Soil Laboratory Report
- AECOM Data Validation Groundwater Laboratory Report
- Vista Groundwater Laboratory Report

ANALYTICAL RESULTS: Perfluorinated Chemicals by Method WIPFAS Non-Potable Water AnalysisCustomer: Lake Hallie WaterworksNLS Project: 369651Project Description: Investigative Drinking Water AnalysisProject Title:Template: WIPFASPrinted: 08/03/2021 08:00

Sample: 1266071 Well # 4 Collected: 07/19/21 Analyzed: 08/01/21 - Analytes: 33

ANALYTE NAME	RESULT	UNITS	DIL	LOD	MRL	MCL	Note
Perfluorobutanoic acid (PFBA)	<0.96	ng/L	1	0.96	4.0		
Perfluoropentanoic acid (PFPeA)	<0.85	ng/L	1	0.85	4.0		
Perfluorohexanoic acid (PFHxA)	<0.94	ng/L	1	0.94	4.0		
Perfluoroheptanoic acid (PFHpA)	<1.0	ng/L	1	1.0	4.0		
Perfluorooctanoic acid (PFOA)	<0.75	ng/L	1	0.75	4.0		
Perfluorononanoic acid (PFNA)	<0.93	ng/L	1	0.93	4.0		
Perfluorodecanoic acid (PFDA)	<1.4	ng/L	1	1.4	4.0		
Perfluoroundecanoic acid (PFUnA)	<1.8	ng/L	1	1.8	4.0		
Perfluorododecanoic acid (PFDoA)	<1.7	ng/L	1	1.7	4.0		
Perfluorotridecanoic acid (PFTriA)	<1.7	ng/L	1	1.7	4.0		
Perfluorotetradecanoic acid (PFTeA)	<1.2	ng/L	1	1.2	4.0		
Perfluorobutanesulfonic acid (PFBS)	<0.63	ng/L	1	0.63	3.5		
Perfluoropentanesulfonic acid (PFPeS)	<0.86	ng/L	1	0.86	3.8		
Perfluorohexanesulfonic acid (PFHxS)	<0.92	ng/L	1	0.92	3.7		
Perfluoroheptanesulfonic acid (PFHpS)	<0.73	ng/L	1	0.73	3.8		
Perfluorooctanesulfonic acid (PFOS)	<1.1	ng/L	1	1.1	3.7		
Perfluorononanesulfonic acid (PFNS)	<0.63	ng/L	1	0.63	3.8		
Perfluorodecanesulfonic acid (PFDS)	<0.62	ng/L	1	0.62	3.9		
Perfluorododecanesulfonic acid (PFDoS)	<1.3	ng/L	1	1.3	3.9		CC
4:2 Fluorotelomer sulfonic acid (4:2 FTSA)	<1.3	ng/L	1	1.3	3.7		
6:2 Fluorotelomer sulfonic acid (6:2 FTSA)	<1.7	ng/L	1	1.7	3.8		
8:2 Fluorotelomer sulfonic acid (8:2 FTSA)	<1.5	ng/L	1	1.5	3.8		
Perfluorooctane sulfonamide (FOSA)	<0.97	ng/L	1	0.97	4.0		
N-Methyl perfluorooctane sulfonamide (NMeFOSA)	<1.2	ng/L	1	1.2	4.0		
N-Ethyl perfluorooctane sulfonamide (NEtFOSA)	<1.0	ng/L	1	1.0	4.0		
N-Methyl perfluorooctane sulfonamidoacetic acid (NMeFOSAA)	<1.1	ng/L	1	1.1	4.0		
N-Ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	<1.7	ng/L	1	1.7	4.0		
N-Methyl perfluorooctane sulfonamidoethanol (NMeFOSE)	<1.4	ng/L	1	1.4	4.0		
N-Ethyl perfluorooctane sulfonamidoethanol (NEtFOSE)	<1.0	ng/L	1	1.0	4.0		
Hexafluoropropylene oxide dimer acid (HFPO-DA)	<0.72	ng/L	1	0.72	4.0		
4,8-Dioxa-3H-perfluorononanoic acid (DONA)	<0.73	ng/L	1	0.73	3.8		
9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)	<0.83	ng/L	1	0.83	3.7		
11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11CL-PF3OUdS)	<1.1	ng/L	1	1.1	3.8		

NOTES APPLICABLE TO THIS ANALYSIS:

CC = Continuing calibration verification standard recovery was outside QC limits. Perfluorododecanesulfonic acid (PFDoS) recovery 139%

All LOD/MRLs adjusted to reflect dilution.

Data Validation Report

Project:	CVRA			
Laboratory:	Vista Analytical Laboratory, 1104 Windfield Way, El Dorado Hills, CA 95762			
Work Order (WO):	2205141			
Analyses/Method:	 Dd: Per- and Polyfluorinated Alkyl Substances (PFASs) / PFAS Isotope Dilution M 537 Modified 			
Validation Level:	Level 2			
Prepared by:	Susanne Seydel	Completed on: 7/18/2022		

The samples listed below were collected by AECOM from May 9 through 13, 2022. The samples were received by the laboratory on May 17, 2022.

Sample ID	Quality Control	Sample Date / Time	Laboratory ID
Solid Samples:			
AMW-01 (80-80.5)		09-May-22 15:00	2205141-01
AMW-04 (1-2)		11-May-22 13:10	2205141-02
AMW-04 (69-70)		11-May-22 14:50	2205141-03
AMW-05 (1-2)		12-May-22 09:45	2205141-04
ASB-01 (1-2)		12-May-22 10:15	2205141-05
AMW-05 (65-67)		12-May-22 11:20	2205141-06
AMW-03 (1-2)		13-May-22 07:45	2205141-07
AMW-03 (35-37)		13-May-22 09:05	2205141-08
AMW-03 (68-70)		13-May-22 12:30	2205141-09
AMW-03 (68-70) Dup	Field duplicate of AMW-03 (68-70)	13-May-22 12:30	2205141-10
Groundwater Samples:	· · · · · ·		•
Well #4 (Hydrant)*		12-May-22 11:30	2205141-14
Field Quality Control Sam	ples:		
Decon water (PFAS Free)	Decontamination Water (from lab) (filtered)*	10-May-22 10:20	2205141-11
Decon water (Tap)	Decontamination Water (from tap)	11-May-22 10:15	2205141-12
EB-051122	Equipment Blank (split- spoon sampler) *	11-May-22 16:15	2205141-13
FB-051322	Field Blank	13-May-22 14:00	2205141-15

*Shown on COC.

Data validation activities were conducted with reference to:

- Wisconsin DNR PFAS Updates, March 1, 2021
- Wisconsin PFAS Aqueous (Non-Potable Water) and Non-Aqueous Matrices Method Expectations, EA-19-0001-C, 12/19/2019.
- Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15, Department of Defense, 5/1/2020.

In the absence of method-specific information, laboratory quality control (QC) limits, or project-specific requirements, AECOMs professional judgment was used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody (CoC)/sample integrity
- Holding times
- Laboratory blanks
- X Field and Equipment blanks
- *x* Extracted Internal Standards (EIS) (Lab H flag)
- ✓ Laboratory control sample (LCS)
- X Ion ratios (Lab Q flag)
- ✓ Field duplicates

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. The symbol (\checkmark) indicates that a QC nonconformance resulted in the qualification of data. Any QC nonconformance that resulted in the qualification of data is discussed below. In addition, nonconformances or other issues that were noted during validation, but did not result in qualification of data, may be discussed for informational purposes only.

SUMMARY

Based on the results of the validation, the data are valid as reported and may be used for decision making purposes, except for multiple results that were rejected (R flag) due to very low EIS recoveries. In addition, results were qualified as estimated (J flag, with bias flags as appropriate) due to transition ion ratios and EIS recoveries; and one result was qualified as estimated biased high (J+) due to field contamination. A detailed data validation discussion is provided below.

DETAILED REVIEW

Data Completeness

The data packages were reviewed and met the following acceptance criteria for completeness:

- The CoCs were reviewed for completeness of information relevant to the samples and requested analyses, and for signatures indicating transfer of sample custody.
- The laboratory sample login sheet(s) were reviewed for issues potentially affecting sample integrity, including the condition of sample containers upon receipt at the laboratory.
- Completeness of analyses was verified by comparing the reported results to the CoC requests.

The following items are noted for informational purposes (and do not affect data usability):

- Field staff noted on the CoC record, that there was "low sample volume" collected for sample AMW-04 (69-70) (2205141-03). The analysis was able to proceed with the volume required. The method detection limits were not affected.
- The report's case narrative indicated that the collection date for sample "AMW-03 (35-37)" was listed as "05/12/22" on the container label. The sample was logged as per the COC record, "5/13/22." No action was required.

Holding Times

Samples were extracted within the 28-day holding time and analyzed within 30 days of extraction.

Laboratory Blanks

Laboratory method blanks (B22E216-BLK1, B22F021-BLK1, B22E192-BLK1) were analyzed to assess contamination from laboratory procedures. The method blanks were analyzed at the correct frequency. The results are expected to be less than one-half the method reporting limit (MRL). Contaminants were not detected in the method blanks.

Field (Ambient) and Equipment Blanks

Field blanks are analyzed to assess contamination from field procedures. Field equipment and ambient blanks were analyzed at the correct frequency. Contaminants were detected in the following blanks:

L	Lab ID	Blank ID	Parameter	Concentration	Affected Sample & Result	Qualification
220	05141-11	Decon. water (PFAS Free)	PFOSA	1.37 J		
220	05141-12	Decon. water (Tap)	PFOSA	16.1	Well #4	4.87 J+
220	05141-13	EB-051122	PFOSA	1.64 J		

PFOSA was not detected in any of the soil samples. If an analyte is detected in the field blank, but not in the associated samples, no action is required.

PFOSA was detected in aqueous sample, Well #4. Since the result in the sample was 4.87 ng/l and greater than the limit of quantification but less than or equal to 5x the method blank, the result was flagged as J+.

Extracted Internal Standards

Extracted internal standards (EISs) are spiked into all field samples, field QC samples, and method QC samples and are used to quantitate the analytes. The EIS recoveries were within the WI limits of 10-150% for the FOSA, NMeFOSA, NEtFOSA, NMeFOSE, and NEtFOSE EISs, and were within the limits of 25-150% for other EISs, except for those listed below.

Lab ID	Sample ID	EIS Parameter	% R	Affected Parameter	Original Result	Final Result & Flag
2205141-01	AMW-01 (80-80.5)	d5-EtFOSA	2.30	EtFOSA	0.799 U ng/g	R
2205141-01	AMW-01 (80-80.5)	d3-MeFOSA	7.70	MeFOSA	1.33 U ng/g	R
2205141-03	AMW-04 (69-70)	d3-MeFOSA	9.60	MeFOSA	1.31 U ng/g	R
2205141-06	AMW-05 (65-67)	d5-EtFOSA	6.90	EtFOSA	0.753 U ng/g	R
2205141-07	AMW-03 (1-2)	d5-EtFOSA	9.50	EtFOSA	2.85 ng/g	J+
2205141-08	AMW-03 (35-37)	d5-EtFOSA	2.80	EtFOSA	0.739 U ng/g	R
2205141-09	AMW-03 (68-70)	d5-EtFOSA	2.10	EtFOSA	0.747 U ng/g	R
2205141-09	AMW-03 (68-70)	d3-MeFOSA	7.90	MeFOSA	1.30 U ng/g	R
2205141-10	AMW-03 (68-70) Dup	d5-EtFOSA	2.80	EtFOSA	0.740 U ng/g	R
2205141-10	AMW-03 (68-70) Dup	d3-MeFOSA	5.30	MeFOSA	1.28 U ng/g	R
2205141-14	Well #4	d5-EtFOSA	8.60	EtFOSA	1.56 U ng/l	R

LCS Results (OPR)

The OPR (Ongoing Precision and Recovery sample) or LCS, was analyzed to monitor the accuracy of the analytical method independent of matrix effects. Recoveries (%Rs) were within the WI limits 60% to 135% limit for normal range LCSs and were acceptable.

Ion Transition Ratios

Laboratory qualifiers indicate that several samples did not meet the ion transition ratio criteria which were qualified as "Q" by the laboratory and summarized below. These results were qualified as estimated (J) and are considered as estimated maximum concentrations.

Lab ID	Sample ID	Parameter	Concentration and Validator Flag	Units	MDL	RL
2205141-07	AMW-03 (1-2)	EtFOSA	2.85 J	ng/L	0.777	1.00
2205141-08	AMW-03 (35-37)	PFOS	2.19 J	ng/L	0.617	0.953
2205141-09	AMW-03 (68-70)	PFHxS	0.507 J	ng/L	0.296	0.481
	Decon water					
2205141-11	(PFAS Free)	PFOSA	1.37 J	ng/L	1.08	1.97

Field Duplicate Results

Field duplicates are collected to assess the overall precision of field sampling and laboratory analysis. Samples AMW-03 (68-70) and AMW-03 (68-70) Dup were parent and field duplicate, respectively. Field duplicate relative percent differences (RPDs) were less than the groundwater criteria of 30%, or the absolute difference of the results were with ± the reporting limit (RL) if one or both results were less than five times the RL. A summary of the field duplicate results (detections only) and RPDs are as follows:

Sample & Compound(s)	Units	RL (max)	Sample Concentration	Field Duplicate Concentration	RPD (%)
PFHxS	ng/g	0.477	0.507	0.333 J	41.4
6:2 FTS	ng/g	'0.953	2.31	2.39	3.4

Per EPA guidance, the results for PFHxS were not qualified since the absolute difference of the sample concentrations was less than the method reporting limit.

Sample Results and Quantitation

Sample results were reviewed for correct methods, units, and reported analytes. No issues or discrepancies were found during this review.

Qualified Analytical Results

Results reported below the Reporting Limit/LOQ were qualified as estimated (J) by the laboratory; qualifications of these results were accepted by the Validator; however, they are not listed in the table below. In addition, R qualifiers take precedence over J qualifiers.

Lab ID	Sample ID	Analyte	Validation Qualifier ⁽¹⁾	Units	Reason Code ⁽²⁾
2205141-13	Well #4	PFOSA	4.87 J+	ng/l	fb
2205141-08	AMW-03 (35-37)	PFOS	2.19 J	ng/g	ir
2205141-09	AMW-03 (68-70)	PFHxS	0.507 J	ng/g	ir
2205141-11	Decon water (PFAS Free)	PFOSA	1.37 J	ng/l	ir
2205141-01	AMW-01 (80-80.5)	EtFOSA	0.799 R	ng/g	eis
2205141-01	AMW-01 (80-80.5)	MeFOSA	1.33 R	ng/g	eis
2205141-03	AMW-04 (69-70)	MeFOSA	1.31 R	ng/g	eis
2205141-06	AMW-05 (65-67)	EtFOSA	0.753 R	ng/g	eis
2205141-07	AMW-03 (1-2)	EtFOSA	2.85 J+	ng/g	ir,eis
2205141-08	AMW-03 (35-37)	EtFOSA	0.739 R	ng/g	eis
2205141-09	AMW-03 (68-70)	EtFOSA	0.747 R	ng/g	eis
2205141-09	AMW-03 (68-70)	MeFOSA	1.30 R	ng/g	eis
2205141-10	AMW-03 (68-70) Dup	EtFOSA	0.740 R	ng/g	eis
2205141-10	AMW-03 (68-70) Dup	MeFOSA	1.28 R	ng/g	eis
2205141-14	Well #4	EtFOSA	1.56 R	ng/l	eis

Table 1 - Data Validation Summary of Qualified Data

J R

(1): Data Validation Qualifiers: J Estimated, +/- indicate the direction of bias Not usable for risk evaluations

(2): Reason Codes:

ir

fb field blank contamination eis

Extracted internal standard

Ion ratios

July 12, 2022 Vista Work Order No. 2205141

Mr. Andrew Mott AECOM 558 North Main Street Oshkosh, WI 54901

Dear Mr. Mott,

Enclosed are the results for the sample set received at Vista Analytical Laboratory on May 17, 2022 under your Project Name 'CVRA'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at jfox@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Jamie Fox Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 2205141 Case Narrative

Sample Condition on Receipt:

Ten soil samples and five aqueous samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The samples were received in good condition and within the recommended temperature requirements. The collection date for sample "AMW-03 (35-37)" was listed as "05/12/22" on the container label.

Analytical Notes:

PFAS Isotope Dilution Method - Solid

The samples were extracted and analyzed for a selected list of PFAS using Vista's Isotope Dilution Method. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with each preparation batch. No analytes were detected in the Method Blanks above the Reporting Limit (RL). The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

PFAS Isotope Dilution Method - Aqueous

The samples were extracted and analyzed for a selected list of PFAS using Vista's PFAS Isotope Dilution Method. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only. The samples with detections for PFOSA were confirmed through reanalysis.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

Work Order 2205141

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
2205141-01	AMW-01 (80-80.5)	PFAS Isotope Dilution Method	d3-MeFOSA	Н	7.70
2205141-01	AMW-01 (80-80.5)	PFAS Isotope Dilution Method	d5-EtFOSA	Н	2.30
2205141-03	AMW-04 (69-70)	PFAS Isotope Dilution Method	d3-MeFOSA	Н	9.60
2205141-06	AMW-05 (65-67)	PFAS Isotope Dilution Method	d5-EtFOSA	Н	6.90
2205141-07	AMW-03 (1-2)	PFAS Isotope Dilution Method	d5-EtFOSA	Н	9.50
2205141-08	AMW-03 (35-37)	PFAS Isotope Dilution Method	d5-EtFOSA	Н	2.80
2205141-09	AMW-03 (68-70)	PFAS Isotope Dilution Method	d3-MeFOSA	Н	7.90
2205141-09	AMW-03 (68-70)	PFAS Isotope Dilution Method	d5-EtFOSA	Н	2.10
2205141-10	AMW-03 (68-70) Dup	PFAS Isotope Dilution Method	d3-MeFOSA	Н	5.30
2205141-10	AMW-03 (68-70) Dup	PFAS Isotope Dilution Method	d5-EtFOSA	Н	2.80
2205141-14	Well #4	PFAS Isotope Dilution Method	d5-EtFOSA	Н	8.60
B22E216-BLK1	B22E216-BLK1	PFAS Isotope Dilution Method	d5-EtFOSA	Н	5.00
B22E216-BS1	B22E216-BS1	PFAS Isotope Dilution Method	d5-EtFOSA	Н	5.70
B22F021-BS1	B22F021-BS1	PFAS Isotope Dilution Method	d3-MeFOSA	Н	6.80

H = Recovery was outside laboratory acceptance criteria.

AECOM note: Sample "Well #4" obtained from driller's poly tank and not the village well. Sample renamed "Decon Water (Well #4)".

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	47
Certifications	48
Sample Receipt	51

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2205141-01	AMW-01 (80-80.5)	09-May-22 15:00	17-May-22 09:04	HDPE Jar, 6 oz
2205141-02	AMW-04 (1-2)	11-May-22 13:10	17-May-22 09:04	HDPE Jar, 6 oz
2205141-03	AMW-04 (69-70)	11-May-22 14:50	17-May-22 09:04	HDPE Jar, 6 oz
2205141-04	AMW-05 (1-2)	12-May-22 09:45	17-May-22 09:04	HDPE Jar, 6 oz
2205141-05	ASB-01 (1-2)	12-May-22 10:15	17-May-22 09:04	HDPE Jar, 6 oz
2205141-06	AMW-05 (65-67)	12-May-22 11:20	17-May-22 09:04	HDPE Jar, 6 oz
2205141-07	AMW-03 (1-2)	13-May-22 07:45	17-May-22 09:04	HDPE Jar, 6 oz
2205141-08	AMW-03 (35-37)	13-May-22 09:05	17-May-22 09:04	HDPE Jar, 6 oz
2205141-09	AMW-03 (68-70)	13-May-22 12:30	17-May-22 09:04	HDPE Jar, 6 oz
2205141-10	AMW-03 (68-70) Dup	13-May-22 12:30	17-May-22 09:04	HDPE Jar, 6 oz
2205141-11	Decon water (PFAS Free)	10-May-22 10:20	17-May-22 09:04	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2205141-12	Decon water (Tap)	11-May-22 10:15	17-May-22 09:04	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2205141-13	EB-051122	11-May-22 16:15	17-May-22 09:04	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2205141-14	Well #4	12-May-22 11:30	17-May-22 09:04	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2205141-15	FB-051322	13-May-22 14:00	17-May-22 09:04	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
		AECOM note: Sample obtained from driller's and not the village wel renamed "Decon Wate	poly tank I. Sample	

#4)".

ANALYTICAL RESULTS

Sample ID: Method Blank									PFAS Iso	tope Dilution 1	Method
Client Data Name: AECOM Project: CVRA		Matrix:	Solid			oratory Data Sample:	B22E216-	BLK1	Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/g)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFHxS	355-46-4	< 0.308	0.308		0.500		B22E216	26-May-22	1.00 g	01-Jun-22 18:47	1
PFOS	1763-23-1	< 0.648	0.648		1.00		B22E216	26-May-22	1.00 g	01-Jun-22 18:47	1
EtFOSA	4151-50-2	< 0.776	0.776		1.00		B22E216	26-May-22	1.00 g	01-Jun-22 18:47	1
Labeled Standards	Туре	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFHxS	IS	82.7		25 - 150			B22E216	26-May-22	1.00 g	01-Jun-22 18:47	1
13C8-PFOS	IS	87.3		25 - 150			B22E216	26-May-22	1.00 g	01-Jun-22 18:47	1
d5-EtFOSA	IS	5.00		10 - 150		Н	B22E216	26-May-22	1.00 g	01-Jun-22 18:47	1
MDL - Method Detection Limit	RL - Reporting limit		ire reported in dry w	0				PFOA, PFOS, M		OSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include boo linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2205141

Sample ID: OPR									PFAS Is	otope Dilution	Method
Client DataName:AECOMProject:CVRA		Matrix:	Solid			ooratory Data	B22E216	-BS1	Column:	BEH C18	
Analyte	CAS Number	Amt Found (ng/g)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFHxS	355-46-4	1.15	1.00	115	50 - 150		B22E216	26-May-22	1.00 g	01-Jun-22 18:58	1
PFOS	1763-23-1	0.997	1.00	99.7	50 - 150	J	B22E216	26-May-22	1.00 g	01-Jun-22 18:58	1
EtFOSA	4151-50-2	0.631	1.00	63.1	50 - 150	J	B22E216	26-May-22	1.00 g	01-Jun-22 18:58	1
Labeled Standards		Туре		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFHxS		IS		111	25 - 150		B22E216	26-May-22	1.00 g	01-Jun-22 18:58	1
13C8-PFOS		IS		111	25 - 150		B22E216	26-May-22	1.00 g	01-Jun-22 18:58	1
d5-EtFOSA		IS		5.70	10 - 150	Н	B22E216	26-May-22	1.00 g	01-Jun-22 18:58	1

Sample ID: Method Blan									100	tope Dilution 1	
Client Data Name: AECOM Project: CVRA		Matrix:	Solid			ratory Data Sample:	B22F021-	BLK1	Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/g)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilutio
PFBA	375-22-4	< 0.460	0.460		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
PFPeA	2706-90-3	< 0.368	0.368		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
PFBS	375-73-5	< 0.306	0.306		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
4:2 FTS	757124-72-4	< 0.644	0.644		1.00		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
PFHxA	307-24-4	< 0.320	0.320		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
PFPeS	2706-91-4	< 0.300	0.300		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
HFPO-DA	13252-13-6	< 0.868	0.868		1.00		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
PFHpA	375-85-9	< 0.486	0.486		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
ADONA	919005-14-4	< 0.252	0.252		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
6:2 FTS	27619-97-2	< 0.518	0.518		1.00		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
PFOA	335-67-1	< 0.270	0.270		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
PFHpS	375-92-8	< 0.516	0.516		1.00		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
PFNA	375-95-1	< 0.372	0.372		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
PFOSA	754-91-6	< 0.572	0.572		1.00		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
9CI-PF3ONS	756426-58-1	< 0.328	0.328		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
PFDA	335-76-2	< 0.442	0.442		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
8:2 FTS	39108-34-4	< 0.588	0.588		1.00		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
PFNS	68259-12-1	< 0.828	0.828		1.00		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
MeFOSAA	2355-31-9	< 0.404	0.404		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
EtFOSAA	2991-50-6	< 0.380	0.380		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
PFUnA	2058-94-8	< 0.506	0.506		1.00		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
PFDS	335-77-3	< 0.242	0.242		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
11Cl-PF3OUdS	763051-92-9	< 0.532	0.532		1.00		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
PFDoA	307-55-1	< 0.456	0.456		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
MeFOSA	31506-32-8	<1.34	1.34		1.50		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
PFTrDA	72629-94-8	<0.406	0.406		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:20 22-Jun-22 16:26	
PFDoS	79780-39-5	< 0.422	0.400		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:20	
PFTeDA	376-06-7	<0.422	0.428		0.500		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:20 22-Jun-22 16:26	
MeFOSE	24448-09-7	<0.620	0.620		1.00		B22F021 B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
EtFOSE	1691-99-2	< 0.736	0.736		1.00		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:20 22-Jun-22 16:26	
Labeled Standards	Туре	% Recovery	0.750	Limits	1.00	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
	IS	104		25 - 150		Zummers	B22F021	06-Jun-22			
13C3-PFBA 13C3-PFPeA	IS	82.6		25 - 150 25 - 150			B22F021 B22F021	06-Jun-22 06-Jun-22	1.00 g	22-Jun-22 16:26	
	IS								1.00 g	22-Jun-22 16:26	
13C3-PFBS		87.6		25 - 150			B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
13C2-4:2 FTS	IS	82.8		25 - 150			B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
13C2-PFHxA	IS	84.2		25 - 150			B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
13C3-HFPO-DA	IS	88.8		25 - 150			B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	
13C4-PFHpA	IS	85.8		25 - 150			B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1

Sample ID: Method Blan	lk						PFAS Iso	tope Dilution N	Method
Client DataName:AECOMProject:CVRA		Matrix:	Solid	Laboratory Data Lab Sample:	B22F021-	BLK1	Column:	BEH C18	
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-6:2 FTS	IS	72.9	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
13C2-PFOA	IS	90.8	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
13C5-PFNA	IS	75.2	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
13C8-PFOSA	IS	40.6	10 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
13C2-PFDA	IS	72.8	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
13C2-8:2 FTS	IS	80.3	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
d3-MeFOSAA	IS	59.9	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
d5-EtFOSAA	IS	63.0	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
13C2-PFUnA	IS	54.4	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
13C2-PFDoA	IS	54.3	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
d3-MeFOSA	IS	10.1	10 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
13C2-PFTeDA	IS	64.4	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
d7-MeFOSE	IS	26.4	10 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
d9-EtFOSE	IS	25.9	10 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:26	1
MDL - Method Detection Limit	RL - Reporting limit		reported in dry weight.					FOSAA include both	

The results are reported in dry weight. The sample size is reported in wet weight. Results reported to MDL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: O	OPR									PFAS Is	otope Dilution	Metho
Client Data						Lab	ooratory Data	l				
Name: Project:	AECOM CVRA		Matrix:	Solid		Lab	Sample:	B22F021	-BS1	Column:	BEH C18	
Analyte		CAS Number	Amt Found (ng/g)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		375-22-4	0.994	1.00	99.4	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFPeA		2706-90-3	0.917	1.00	91.7	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFBS		375-73-5	0.784	1.00	78.4	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
4:2 FTS		757124-72-4	0.953	1.00	95.3	50 - 150	J, Q	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFHxA		307-24-4	1.04	1.00	104	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFPeS		2706-91-4	0.900	1.00	90.0	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
HFPO-DA		13252-13-6	1.18	1.00	118	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFHpA		375-85-9	1.00	1.00	100	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
ADONA		919005-14-4	0.915	1.00	91.5	50 - 150	Q	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
6:2 FTS		27619-97-2	0.962	1.00	96.2	50 - 150	J	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFOA		335-67-1	1.01	1.00	101	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFHpS		375-92-8	1.06	1.00	106	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFNA		375-95-1	0.966	1.00	96.6	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFOSA		754-91-6	1.03	1.00	103	50 - 150	Q	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
9Cl-PF3ONS		756426-58-1	0.881	1.00	88.1	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFDA		335-76-2	0.943	1.00	94.3	50 - 150	Q	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
8:2 FTS		39108-34-4	0.685	1.00	68.5	50 - 150	J, Q	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFNS		68259-12-1	0.804	1.00	80.4	50 - 150	J	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
MeFOSAA		2355-31-9	0.877	1.00	87.7	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
EtFOSAA		2991-50-6	0.851	1.00	85.1	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFUnA		2058-94-8	1.22	1.00	122	50 - 150	Q	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFDS		335-77-3	0.983	1.00	98.3	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
11Cl-PF3OUdS		763051-92-9	1.33	1.00	133	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFDoA		307-55-1	0.923	1.00	92.3	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
MeFOSA		31506-32-8	1.06	1.00	106	50 - 150	J, Q	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFTrDA		72629-94-8	1.07	1.00	107	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFDoS		79780-39-5	0.919	1.00	91.9	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
PFTeDA		376-06-7	1.00	1.00	100	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
MeFOSE		24448-09-7	1.40	1.00	140	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
EtFOSE		1691-99-2	1.07	1.00	107	50 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
Labeled Standa	ards		Туре		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA			IS		103	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C3-PFPeA			IS		79.7	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C3-PFBS			IS		84.6	25 - 150		B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
Work	Order 2205141										11 0	656

tory

Sample ID: OPR							PFAS Is	otope Dilution	Method
Client Data			La	boratory Dat	a				
Name: AECOM Project: CVRA	Matrix:	Solid	La	ab Sample:	B22F021	-BS1	Column:	BEH C18	
Labeled Standards	Туре	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	80.7	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C2-PFHxA	IS	74.4	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C3-HFPO-DA	IS	75.7	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C4-PFHpA	IS	82.3	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C2-6:2 FTS	IS	71.7	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C2-PFOA	IS	79.0	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C5-PFNA	IS	69.4	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C8-PFOSA	IS	34.6	10 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C2-PFDA	IS	76.2	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C2-8:2 FTS	IS	86.2	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
d3-MeFOSAA	IS	63.1	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
d5-EtFOSAA	IS	57.5	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C2-PFUnA	IS	48.1	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C2-PFDoA	IS	54.3	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
d3-MeFOSA	IS	6.80	10 - 150) Н	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
13C2-PFTeDA	IS	63.3	25 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
d7-MeFOSE	IS	23.9	10 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1
d9-EtFOSE	IS	23.9	10 - 150)	B22F021	06-Jun-22	1.00 g	22-Jun-22 16:36	1

Sample ID: AMW-01 (80-80	0.5)							PFAS Iso	tope Dilution 1	Method
Client Data Name: AECOM Project: CVRA		Matrix: Date Colle	Soil ected: 09-May-22 15	00 Lal	boratory Data o Sample: te Received: Solids:	2205141-(17-May-2 89.7		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/g)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.458	0.458	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
PFPeA	2706-90-3	< 0.366	0.366	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
PFBS	375-73-5	< 0.305	0.305	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
4:2 FTS	757124-72-4	< 0.641	0.641	0.995		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
PFHxA	307-24-4	< 0.318	0.318	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
PFPeS	2706-91-4	< 0.299	0.299	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
HFPO-DA	13252-13-6	< 0.864	0.864	0.995		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
PFHpA	375-85-9	< 0.484	0.484	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
ADONA	919005-14-4	< 0.251	0.251	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
PFHxS	355-46-4	< 0.309	0.309	0.502		B22E216	26-May-22	1.11 g	01-Jun-22 20:22	1
6:2 FTS	27619-97-2	< 0.516	0.516	0.995		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
PFOA	335-67-1	< 0.269	0.269	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
PFHpS	375-92-8	< 0.514	0.514	0.995		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
PFNA	375-95-1	< 0.370	0.370	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
PFOSA	754-91-6	< 0.569	0.569	0.995		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
PFOS	1763-23-1	< 0.651	0.651	1.00		B22E216	26-May-22	0	01-Jun-22 20:22	
9Cl-PF3ONS	756426-58-1	< 0.326	0.326	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
PFDA	335-76-2	< 0.440	0.440	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
8:2 FTS	39108-34-4	< 0.585	0.585	0.995		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
PFNS	68259-12-1	< 0.824	0.824	0.995		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
MeFOSAA	2355-31-9	< 0.402	0.402	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
EtFOSAA	2991-50-6	< 0.378	0.378	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
PFUnA	2058-94-8	< 0.504	0.504	0.995		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
PFDS	335-77-3	<0.241	0.241	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
11Cl-PF3OUdS	763051-92-9	< 0.529	0.529	0.995		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
PFDoA	307-55-1	< 0.454	0.454	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
MeFOSA	31506-32-8	<1.33	1.33	1.49		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
PFTrDA	72629-94-8	<0.404	0.404	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
PFDoS	79780-39-5	< 0.420	0.420	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
PFTeDA	376-06-7	< 0.426	0.426	0.498		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
EtFOSA	4151-50-2	<0.779	0.779	1.00		B22E216		-	01-Jun-22 20:22	
MeFOSE	24448-09-7	<0.779	0.617	0.995		B22E210 B22F021	06-Jun-22	1.11 g 1.12 g	10-Jun-22 18:17	
EtFOSE	1691-99-2	<0.733	0.733	0.995		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
Labeled Standards	Туре	% Recovery	Lin		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	99.7		150	2	B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
13C3-PFPeA	IS	76.6		150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
13C3-PFBS	IS	77.8		150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	
Wark Order 2205141			20			2221 021			10 Juli 22 10:17	

Sample ID: AM	W-01 (80-80.5)							PFAS Iso	tope Dilution 1	Method
	AECOM CVRA		Matrix: Date Collected:	Soil 09-May-22 15:00	Laboratory Data Lab Sample: Date Received: % Solids:	2205141-0 17-May-22 89.7		Column:	BEH C18	
Labeled Standards		Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS		IS	76.4	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C2-PFHxA		IS	73.5	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C3-HFPO-DA		IS	75.1	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C4-PFHpA		IS	76.7	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C3-PFHxS		IS	79.0	25 - 150		B22E216	26-May-22	1.11 g	01-Jun-22 20:22	1
13C2-6:2 FTS		IS	71.6	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C2-PFOA		IS	85.7	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C5-PFNA		IS	66.1	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C8-PFOSA		IS	42.7	10 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C8-PFOS		IS	78.1	25 - 150		B22E216	26-May-22	1.11 g	01-Jun-22 20:22	1
13C2-PFDA		IS	60.4	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C2-8:2 FTS		IS	80.0	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
d3-MeFOSAA		IS	50.4	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
d5-EtFOSAA		IS	51.6	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C2-PFUnA		IS	66.1	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C2-PFDoA		IS	60.1	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
d3-MeFOSA		IS	7.70	10 - 150	Н	B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
13C2-PFTeDA		IS	60.2	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
d5-EtFOSA		IS	2.30	10 - 150	Н	B22E216	26-May-22	1.11 g	01-Jun-22 20:22	1
d7-MeFOSE		IS	29.7	10 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
d9-EtFOSE		IS	28.3	10 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 18:17	1
MDL - Method Detection	on Limit RL	- Reporting limit	The results are repor	ted in dry weight.	When re	ported, PFHxS,	PFOA, PFOS, M		OSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include boo linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: AMW-0	4 (1-2)							PFAS Iso	tope Dilution	Method
Client DataName:AECCProject:CVRA		Matrix: Date Colle	Soil ected: 11-May-22 13:1	0 Lab	oratory Data Sample: e Received: olids:	2205141-(17-May-2 94.6		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/g)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.450	0.450	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
PFPeA	2706-90-3	< 0.360	0.360	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
PFBS	375-73-5	< 0.300	0.300	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
4:2 FTS	757124-72-4	< 0.630	0.630	0.979		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFHxA	307-24-4	< 0.313	0.313	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
PFPeS	2706-91-4	< 0.294	0.294	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
HFPO-DA	13252-13-6	< 0.850	0.850	0.979		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
PFHpA	375-85-9	< 0.476	0.476	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
ADONA	919005-14-4	< 0.247	0.247	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFHxS	355-46-4	< 0.302	0.302	0.490		B22E216			01-Jun-22 20:33	
6:2 FTS	27619-97-2	< 0.507	0.507	0.979		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFOA	335-67-1	< 0.264	0.264	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFHpS	375-92-8	< 0.505	0.505	0.979		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFNA	375-95-1	< 0.364	0.364	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFOSA	754-91-6	< 0.560	0.560	0.979		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFOS	1763-23-1	< 0.634	0.634	0.979		B22E216		0	01-Jun-22 20:33	
9CI-PF3ONS	756426-58-1	< 0.321	0.321	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFDA	335-76-2	< 0.433	0.433	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
8:2 FTS	39108-34-4	< 0.576	0.576	0.979		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFNS	68259-12-1	< 0.811	0.811	0.979		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
MeFOSAA	2355-31-9	< 0.396	0.396	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
EtFOSAA	2991-50-6	< 0.372	0.372	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFUnA	2058-94-8	< 0.495	0.495	0.979		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFDS	335-77-3	<0.237	0.237	0.490		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
11Cl-PF3OUdS	763051-92-9	< 0.521	0.521	0.979		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFDoA	307-55-1	<0.321	0.446	0.979		B22F021 B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
MeFOSA	31506-32-8	<1.31	1.31	1.47		B22F021 B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFTrDA	72629-94-8	< 0.397	0.397	0.490		B22F021 B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFDoS	72029-94-8	< 0.413	0.413	0.490		B22F021 B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
PFTeDA	376-06-7	<0.413	0.415	0.490		B22F021 B22F021	06-Jun-22 06-Jun-22	1.08 g	10-Jun-22 18:27 10-Jun-22 18:27	
EtFOSA	4151-50-2	<0.419	0.760	0.490		B22F021 B22E216	26-May-22	U	01-Jun-22 20:33	
MeFOSE	4151-50-2 24448-09-7	<0.607	0.607	0.979		B22E216 B22F021	26-May-22 06-Jun-22	0	01-Jun-22 20:33 10-Jun-22 18:27	
EtFOSE	1691-99-2	<0.607	0.721	0.979		B22F021 B22F021	06-Jun-22 06-Jun-22	1.08 g 1.08 g	10-Jun-22 18:27 10-Jun-22 18:27	
Labeled Standards	Туре	% Recovery	U.721		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
					Quanners					
13C3-PFBA	IS	107	25 - 1			B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
13C3-PFPeA 13C3-PFBS	IS IS	81.3 79.2	25 - 1 25 - 1			B22F021 B22F021	06-Jun-22 06-Jun-22	1.08 g	10-Jun-22 18:27 10-Jun-22 18:27	
13C3-PFBS Work Order 22		19.2	25 -	150		D22F021	00-Jun-22	1.08 g	10-Jun-22 18:27	

Sample ID: AMW-	04 (1-2)						PFAS Iso	tope Dilution	Method
Client Data Name: AEC Project: CVF		Matrix: Date Collected:	Soil 11-May-22 13:10	Laboratory Data Lab Sample: Date Received: % Solids:	2205141-0 17-May-2 94.6		Column:	BEH C18	
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	78.8	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C2-PFHxA	IS	76.6	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C3-HFPO-DA	IS	76.5	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	
13C4-PFHpA	IS	78.6	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C3-PFHxS	IS	90.0	25 - 150		B22E216	26-May-22	1.08 g	01-Jun-22 20:33	1
13C2-6:2 FTS	IS	81.5	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C2-PFOA	IS	89.4	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C5-PFNA	IS	68.9	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C8-PFOSA	IS	45.9	10 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C8-PFOS	IS	79.2	25 - 150		B22E216	26-May-22	1.08 g	01-Jun-22 20:33	1
13C2-PFDA	IS	71.2	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C2-8:2 FTS	IS	81.5	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
d3-MeFOSAA	IS	68.0	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
d5-EtFOSAA	IS	65.1	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C2-PFUnA	IS	78.0	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C2-PFDoA	IS	71.0	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
d3-MeFOSA	IS	16.9	10 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
13C2-PFTeDA	IS	53.1	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
d5-EtFOSA	IS	14.4	10 - 150		B22E216	26-May-22	1.08 g	01-Jun-22 20:33	1
d7-MeFOSE	IS	32.3	10 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
d9-EtFOSE	IS	33.7	10 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 18:27	1
MDL - Method Detection Li	mit RL - Reporting limit	The results are report The complexity is not		When re	ported, PFHxS,	PFOA, PFOS, M	leFOSAA and EtH	OSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bot linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: AN	MW-04 (69-70)									PFAS Iso	tope Dilution I	Method
Client Data						Labo	ratory Data					
Name:	AECOM		Matrix:	Soil		Lab S	Sample:	2205141-0	13	Column:	BEH C18	
Project:	CVRA		Date Colle	cted: 11-May-22 14	4:50	Date	Received:	17-May-22	2 09:04		DEII 010	
-				-		% So	lids:	88.2				
Analyte		CAS Number	Conc. (ng/g)	MDL	I	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		375-22-4	< 0.449	0.449	0.4	488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFPeA		2706-90-3	< 0.359	0.359	0.4	488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFBS		375-73-5	< 0.299	0.299	0.4	488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
4:2 FTS		757124-72-4	< 0.629	0.629	0.9	977		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFHxA		307-24-4	< 0.313	0.313	0.4	488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFPeS		2706-91-4	< 0.293	0.293	0.4	488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
HFPO-DA		13252-13-6	< 0.848	0.848	0.9	977		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFHpA		375-85-9	< 0.475	0.475	0.4	488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
ADONA		919005-14-4	< 0.246	0.246	0.4	488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFHxS		355-46-4	< 0.306	0.306		497		B22E216	26-May-22	1.14 g	01-Jun-22 20:43	1
6:2 FTS		27619-97-2	< 0.506	0.506		977		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFOA		335-67-1	< 0.264	0.264		488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	
PFHpS		375-92-8	< 0.504	0.504		977		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFNA		375-95-1	< 0.363	0.363		488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFOSA		754-91-6	< 0.559	0.559		977		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	
PFOS		1763-23-1	< 0.644	0.644		994		B22E216		1.14 g	01-Jun-22 20:43	1
9CI-PF3ONS		756426-58-1	< 0.320	0.320		488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	
PFDA		335-76-2	< 0.432	0.432		488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	
8:2 FTS		39108-34-4	< 0.574	0.574		977		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFNS		68259-12-1	< 0.809	0.809		977		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	
MeFOSAA		2355-31-9	< 0.395	0.395		488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	
EtFOSAA		2991-50-6	< 0.371	0.371		488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFUnA		2058-94-8	< 0.494	0.494		977		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	
PFDS		335-77-3	< 0.236	0.236		488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
11Cl-PF3OUdS		763051-92-9	< 0.520	0.520		977		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFDoA		307-55-1	< 0.320	0.445		488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
MeFOSA		31506-32-8	<1.31	1.31		.47		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFTrDA		72629-94-8	<0.397	0.397		488		B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFDoS		79780-39-5	<0.397	0.412		488		B22F021 B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
PFTeDA		376-06-7	<0.412	0.412		400 488		B22F021 B22F021	06-Jun-22 06-Jun-22	1.16 g	10-Jun-22 18:38	1
EtFOSA		4151-50-2	<0.418	0.418		488 994		B22F021 B22E216	26-May-22	0	01-Jun-22 18:38	1
MeFOSE		24448-09-7	<0.771	0.606		994 977		B22E216 B22F021	26-May-22 06-Jun-22	1.14 g 1.16 g	10-Jun-22 20:43	1
EtFOSE		1691-99-2	<0.719	0.719		977		B22F021 B22F021	06-Jun-22 06-Jun-22	1.16 g	10-Jun-22 18:38	1
Labeled Standard	de	Туре	% Recovery		mits	,,,,	Qualifiers	Batch	Extracted	Samp Size		1 Dilution
13C3-PFBA	us	IS	97.0				Quanners				ě	
					- 150			B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C3-PFPeA 13C3-PFBS		IS IS	81.6 78.1		- 150 - 150			B22F021 B22F021	06-Jun-22 06-Jun-22	1.16 g	10-Jun-22 18:38	1
	rder 2205141	15	/8.1	25	- 150			D22F021	00-Jun-22	1.16 g	10-Jun-22 18:38	

Sample ID: AMW	-04 (69-70)						PFAS Iso	tope Dilution	Method
Client DataName:AEoProject:CV	COM RA		trix: Soil te Collected: 11-May-22 14:	Laboratory Lab Sample: Date Receive % Solids:	2205141-		Column:	BEH C18	
Labeled Standards	Туре	% Recov	very Lim		lifiers Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	77.3	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C2-PFHxA	IS	73.0	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C3-HFPO-DA	IS	75.5	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C4-PFHpA	IS	71.3	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C3-PFHxS	IS	81.5	25 -	150	B22E216	26-May-22	1.14 g	01-Jun-22 20:43	1
13C2-6:2 FTS	IS	73.8	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C2-PFOA	IS	86.8	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C5-PFNA	IS	68.6	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C8-PFOSA	IS	35.7	10 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C8-PFOS	IS	74.3	25 -	150	B22E216	26-May-22	1.14 g	01-Jun-22 20:43	1
13C2-PFDA	IS	61.6	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C2-8:2 FTS	IS	66.2	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
d3-MeFOSAA	IS	51.5	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
d5-EtFOSAA	IS	54.4	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C2-PFUnA	IS	62.8	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C2-PFDoA	IS	59.8	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
d3-MeFOSA	IS	9.60	10 -	150	H B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
13C2-PFTeDA	IS	49.8	25 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
d5-EtFOSA	IS	12.6	10 -	150	B22E216	26-May-22	1.14 g	01-Jun-22 20:43	1
d7-MeFOSE	IS	23.5	10 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
d9-EtFOSE	IS	19.8	10 -	150	B22F021	06-Jun-22	1.16 g	10-Jun-22 18:38	1
MDL - Method Detection L	imit RL - Reporting lin		e results are reported in dry weight.		When reported, PFHxS,				

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: AM	W-05 (1-2)									PFAS Iso	tope Dilution 1	Method
	AECOM CVRA		Matrix: Date Colle	Soil ected: 12-May-22 09	:45	Lab S	ratory Data Sample: Received: lids:	2205141-0 17-May-22 91.8		Column:	BEH C18	
Analyte		CAS Number	Conc. (ng/g)	MDL	F	R L	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		375-22-4	< 0.440	0.440	0.4	478		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFPeA		2706-90-3	< 0.352	0.352	0.4	478		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFBS		375-73-5	< 0.292	0.292	0.4	478		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
4:2 FTS		757124-72-4	< 0.615	0.615	0.9	956		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFHxA		307-24-4	< 0.306	0.306	0.4	478		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFPeS		2706-91-4	< 0.287	0.287	0.4	178		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
HFPO-DA		13252-13-6	< 0.830	0.830	0.9	956		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFHpA		375-85-9	< 0.464	0.464	0.4	478		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
ADONA		919005-14-4	< 0.241	0.241	0.4	478		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFHxS		355-46-4	< 0.305	0.305	0.4	495		B22E216	26-May-22	1.10 g	01-Jun-22 21:25	1
6:2 FTS		27619-97-2	< 0.495	0.495	0.9	956		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFOA		335-67-1	< 0.258	0.258	0.4			B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFHpS		375-92-8	< 0.493	0.493		956		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFNA		375-95-1	< 0.356	0.356	0.4			B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFOSA		754-91-6	< 0.547	0.547		956		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFOS		1763-23-1	2.41	0.642	0.9	990		B22E216	26-May-22	1.10 g	01-Jun-22 21:25	
9CI-PF3ONS		756426-58-1	< 0.313	0.313		178		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFDA		335-76-2	< 0.422	0.422		178		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	
8:2 FTS		39108-34-4	< 0.562	0.562		956		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFNS		68259-12-1	< 0.791	0.791		956		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
MeFOSAA		2355-31-9	< 0.386	0.386		478		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	
EtFOSAA		2991-50-6	< 0.363	0.363	0.4			B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFUnA		2058-94-8	<0.484	0.484		956		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	
PFDS		335-77-3	<0.231	0.231		478		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
11Cl-PF3OUdS		763051-92-9	<0.508	0.508		956		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	
PFDoA		307-55-1	<0.436	0.436		478		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
MeFOSA		31506-32-8	<1.28	1.28	1.4			B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFTrDA		72629-94-8	<0.388	0.388		178		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFDoS		79780-39-5	< 0.403	0.403		178		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
PFTeDA		376-06-7	< 0.409	0.409		478		B22F021 B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1
EtFOSA		4151-50-2	<0.769	0.769		+78 990		B22F021 B22E216	26-May-22	1.14 g	01-Jun-22 21:25	1
MeFOSE		24448-09-7	<0.709	0.593		990 956		B22E210 B22F021	06-Jun-22	1.10 g	10-Jun-22 19:20	1
EtFOSE		1691-99-2	<0.703	0.703		956 956		B22F021 B22F021	06-Jun-22 06-Jun-22	1.14 g	10-Jun-22 19:20 10-Jun-22 19:20	1
Labeled Standards	3	Туре	% Recovery	Lir		/50	Qualifiers	Batch	Extracted	Samp Size		1 Dilution
13C3-PFBA	,	IS	109		- 150		Quannels	B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	
13C3-PFBA		IS	86.6		- 150			B22F021 B22F021	06-Jun-22 06-Jun-22	1.14 g 1.14 g	10-Jun-22 19:20 10-Jun-22 19:20	1
13C3-PFBS		IS	88.8		- 150			B22F021 B22F021	06-Jun-22 06-Jun-22	1.14 g 1.14 g	10-Jun-22 19:20 10-Jun-22 19:20	
	lar 2205141	15	00.0	25	150			D221 021	00-Juli-22	1.17 g	10-Juli-22 19.20	

Sample ID: AMW-	-05 (1-2)						PFAS Iso	tope Dilution 1	Method	
Client DataName:AECProject:CVF		Matrix: Date Collected:	Soil 12-May-22 09:45	Laboratory Data Lab Sample: Date Received: % Solids:	2205141-(17-May-2 91.8		Column:	BEH C18		
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution	
13C2-4:2 FTS	IS	87.3	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
13C2-PFHxA	IS	85.4	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20		
13C3-HFPO-DA	IS	78.2	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20		
13C4-PFHpA	IS	82.3	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
13C3-PFHxS	IS	82.7	25 - 150		B22E216	26-May-22	0	01-Jun-22 21:25	1	
13C2-6:2 FTS	IS	99.0	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
13C2-PFOA	IS	92.6	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
13C5-PFNA	IS	69.8	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
13C8-PFOSA	IS	54.4	10 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
13C8-PFOS	IS	81.7	25 - 150		B22E216	26-May-22	1.10 g	01-Jun-22 21:25	1	
13C2-PFDA	IS	72.6	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
13C2-8:2 FTS	IS	89.8	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
d3-MeFOSAA	IS	71.1	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
d5-EtFOSAA	IS	71.4	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
13C2-PFUnA	IS	85.2	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
13C2-PFDoA	IS	73.8	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
d3-MeFOSA	IS	18.3	10 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
13C2-PFTeDA	IS	53.8	25 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20		
d5-EtFOSA	IS	18.9	10 - 150		B22E216	2	0	01-Jun-22 21:25		
d7-MeFOSE	IS	42.4	10 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20		
d9-EtFOSE	IS	43.5	10 - 150		B22F021	06-Jun-22	1.14 g	10-Jun-22 19:20	1	
MDL - Method Detection Li	imit RL - Reporting limit	The results are report The communication of the second			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both					

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: ASB-01 (1-2)								PFAS Iso	tope Dilution 1	Method
Client DataName:AECOMProject:CVRA		Matrix: Date Colle	Soil ected: 12-May-22 10:	:15 Lab	oratory Data Sample: Received:	2205141-(17-May-2		Column:	BEH C18	
			MDI		olids:	93.6	F ()	c c:		
Analyte	CAS Number	Conc. (ng/g)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.455	0.455	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
PFPeA	2706-90-3	< 0.364	0.364	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFBS	375-73-5	< 0.303	0.303	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
4:2 FTS	757124-72-4	< 0.637	0.637	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFHxA	307-24-4	< 0.317	0.317	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFPeS	2706-91-4	< 0.297	0.297	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
HFPO-DA	13252-13-6	< 0.859	0.859	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
PFHpA	375-85-9	<0.481	0.481	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
ADONA	919005-14-4	< 0.249	0.249	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
PFHxS	355-46-4	< 0.302	0.302	0.490		B22E216	26-May-22	1.09 g	01-Jun-22 21:36	1
6:2 FTS	27619-97-2	< 0.513	0.513	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFOA	335-67-1	< 0.267	0.267	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFHpS	375-92-8	< 0.511	0.511	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFNA	375-95-1	< 0.368	0.368	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFOSA	754-91-6	< 0.566	0.566	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFOS	1763-23-1	< 0.635	0.635	0.981		B22E216	26-May-22	1.09 g	01-Jun-22 21:36	1
9C1-PF3ONS	756426-58-1	< 0.325	0.325	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFDA	335-76-2	< 0.437	0.437	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
8:2 FTS	39108-34-4	< 0.582	0.582	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFNS	68259-12-1	< 0.819	0.819	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
MeFOSAA	2355-31-9	< 0.400	0.400	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
EtFOSAA	2991-50-6	< 0.376	0.376	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFUnA	2058-94-8	< 0.501	0.501	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFDS	335-77-3	< 0.240	0.240	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
11Cl-PF3OUdS	763051-92-9	< 0.527	0.527	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
PFDoA	307-55-1	< 0.451	0.451	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
MeFOSA	31506-32-8	<1.32	1.32	1.48		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFTrDA	72629-94-8	< 0.402	0.402	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
PFDoS	79780-39-5	< 0.418	0.418	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
PFTeDA	376-06-7	<0.424	0.424	0.495		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
EtFOSA	4151-50-2	<0.761	0.761	0.981		B22E216	26-May-22	1.09 g	01-Jun-22 21:36	
MeFOSE	24448-09-7	< 0.614	0.614	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
EtFOSE	1691-99-2	<0.728	0.728	0.990		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
Labeled Standards	Туре	% Recovery	Lim		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	99.9		150	2	B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
13C3-PFPeA	IS	79.9		150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
13C3-PFBS	IS	77.8		150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	-
Work Order 2205141			20					0	21 of	

Sample ID: ASB	-01 (1-2)							PFAS Iso	tope Dilution 1	Method
	ECOM VRA		Matrix: Date Collected:	Soil 12-May-22 10:15	Laboratory Data Lab Sample: Date Received:	2205141-0 17-May-22		Column:	BEH C18	
Labeled Standards		Tuno	% Recovery	Limits	% Solids: Oualifiers	93.6 Batch	Extracted	Samp Size	Analyzed	Dilution
		Туре	,		Quaimers				ř	
13C2-4:2 FTS		IS	82.4	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
13C2-PFHxA		IS	76.1	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
13C3-HFPO-DA		IS	69.4	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
13C4-PFHpA		IS	76.3	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	
13C3-PFHxS		IS	76.1	25 - 150		B22E216	26-May-22	1.09 g	01-Jun-22 21:36	
13C2-6:2 FTS		IS	79.5	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
13C2-PFOA		IS	81.0	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
13C5-PFNA		IS	67.6	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
13C8-PFOSA		IS	49.9	10 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
13C8-PFOS		IS	68.2	25 - 150		B22E216	26-May-22	1.09 g	01-Jun-22 21:36	1
13C2-PFDA		IS	69.0	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
13C2-8:2 FTS		IS	74.7	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
d3-MeFOSAA		IS	67.2	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
d5-EtFOSAA		IS	67.1	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
13C2-PFUnA		IS	75.8	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
13C2-PFDoA		IS	65.5	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
d3-MeFOSA		IS	23.9	10 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
13C2-PFTeDA		IS	65.4	25 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
d5-EtFOSA		IS	13.9	10 - 150		B22E216	26-May-22	1.09 g	01-Jun-22 21:36	1
d7-MeFOSE		IS	42.1	10 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
d9-EtFOSE		IS	38.5	10 - 150		B22F021	06-Jun-22	1.08 g	10-Jun-22 19:30	1
MDL - Method Detection	n Limit RL - R	eporting limit	The results are report	ted in dry weight.	PFOA, PFOS, N	FOS, MeFOSAA and EtFOSAA include both				

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: AMW-05 (65-67)							PFAS Iso	tope Dilution	Method
Client DataName:AECOMProject:CVRA		Matrix: Date Colle	Soil ected: 12-May-22 11:2	20 La	aboratory Data ab Sample: ate Received: Solids:	2205141- 17-May-2 98.2		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/g)	MDL	RL	Qualifier	s Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.455	0.455	0.494	1	B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
PFPeA	2706-90-3	< 0.364	0.364	0.494	1	B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
PFBS	375-73-5	< 0.303	0.303	0.494	1	B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
4:2 FTS	757124-72-4	< 0.637	0.637	0.989)	B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
PFHxA	307-24-4	< 0.316	0.316	0.494	1	B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
PFPeS	2706-91-4	< 0.297	0.297	0.494	4	B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
HFPO-DA	13252-13-6	< 0.858	0.858	0.989)	B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
PFHpA	375-85-9	< 0.481	0.481	0.494	4	B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
ADONA	919005-14-4	< 0.249	0.249	0.494	1	B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
PFHxS	355-46-4	< 0.299	0.299	0.485		B22E216	26-May-22		01-Jun-22 21:46	
6:2 FTS	27619-97-2	< 0.512	0.512	0.989		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFOA	335-67-1	< 0.267	0.267	0.494		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFHpS	375-92-8	< 0.510	0.510	0.989		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFNA	375-95-1	< 0.368	0.368	0.494		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFOSA	754-91-6	< 0.566	0.566	0.989		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFOS	1763-23-1	1.74	0.629	0.970			26-May-22	•	01-Jun-22 21:46	
9Cl-PF3ONS	756426-58-1	< 0.324	0.324	0.494		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFDA	335-76-2	< 0.437	0.437	0.494		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
8:2 FTS	39108-34-4	< 0.581	0.581	0.989		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFNS	68259-12-1	< 0.819	0.819	0.989		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
MeFOSAA	2355-31-9	< 0.399	0.399	0.494		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
EtFOSAA	2991-50-6	< 0.376	0.376	0.494		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFUnA	2058-94-8	< 0.500	0.500	0.989		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFDS	335-77-3	< 0.239	0.239	0.494		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
11Cl-PF3OUdS	763051-92-9	< 0.526	0.526	0.989		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFDoA	307-55-1	<0.451	0.451	0.494		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
MeFOSA	31506-32-8	<1.32	1.32	1.48		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFTrDA	72629-94-8	<0.401	0.401	0.494		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFDoS	79780-39-5	< 0.417	0.417	0.494		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
PFTeDA	376-06-7	<0.423	0.423	0.494		B22F021 B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
EtFOSA	4151-50-2	<0.753	0.753	0.49-		B22E216		0	01-Jun-22 21:46	
MeFOSE	24448-09-7	<0.613	0.613	0.989		B22E210 B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
EtFOSE	1691-99-2	<0.728	0.728	0.989		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
Labeled Standards	Туре	% Recovery	Lim		Qualifier		Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	108	25 -		Zuminti	B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
13C3-PFPeA	IS	85.4	25 -			B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
13C3-PFBS	IS	84.4	25 -			B22F021 B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	
Work Order 22051		01.1	25 -			D221 021	50 Juli 22	1.05 6	23 of	

Sample ID: AMV	W-05 (65-67)							PFAS Iso	tope Dilution	Method
	AECOM CVRA		Matrix: Date Collected:	Soil 12-May-22 11:20	Laboratory Data Lab Sample: Date Received: % Solids:	2205141-0 17-May-22 98.2		Column:	BEH C18	
Labeled Standards		Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS		IS	84.0	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C2-PFHxA		IS	80.5	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C3-HFPO-DA		IS	74.6	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C4-PFHpA		IS	79.5	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C3-PFHxS		IS	78.6	25 - 150		B22E216	26-May-22	1.05 g	01-Jun-22 21:46	1
13C2-6:2 FTS		IS	89.1	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C2-PFOA		IS	98.9	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C5-PFNA		IS	62.0	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C8-PFOSA		IS	43.4	10 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C8-PFOS		IS	76.7	25 - 150		B22E216	26-May-22	1.05 g	01-Jun-22 21:46	1
13C2-PFDA		IS	63.8	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C2-8:2 FTS		IS	80.5	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
d3-MeFOSAA		IS	62.8	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
d5-EtFOSAA		IS	57.4	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C2-PFUnA		IS	66.4	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C2-PFDoA		IS	62.1	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
d3-MeFOSA		IS	13.2	10 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
13C2-PFTeDA		IS	63.5	25 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
d5-EtFOSA		IS	6.90	10 - 150	Н	B22E216	26-May-22	1.05 g	01-Jun-22 21:46	1
d7-MeFOSE		IS	30.4	10 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
d9-EtFOSE		IS	29.5	10 - 150		B22F021	06-Jun-22	1.03 g	10-Jun-22 19:41	1
MDL - Method Detection Limit RL - Reporting limit		rting limit	The results are repor	ted in dry weight.	When re	ported, PFHxS,	, MeFOSAA and EtFOSAA include both			

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: AMW	V-03 (1-2)									PFAS Iso	tope Dilution 1	Method
Client Data						Labo	oratory Data					
	ECOM		Matrix:	Soil			Sample:	2205141-0		Column:	BEH C18	
Project: CV	VRA		Date Colle	ected: 13-May-22 0	7:45	Date	Received:	17-May-22	2 09:04			
						% So	lids:	96.0				
Analyte		CAS Number	Conc. (ng/g)	MDL	l	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		375-22-4	< 0.456	0.456	0.4	496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFPeA		2706-90-3	< 0.365	0.365	0.4	496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFBS		375-73-5	< 0.304	0.304	0.4	496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
4:2 FTS		757124-72-4	< 0.639	0.639	0.9	992		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFHxA		307-24-4	< 0.317	0.317	0.4	496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFPeS		2706-91-4	< 0.298	0.298	0.4	496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
HFPO-DA		13252-13-6	< 0.861	0.861	0.9	992		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFHpA		375-85-9	< 0.482	0.482	0.4	496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
ADONA		919005-14-4	< 0.250	0.250	0.4	496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFHxS		355-46-4	< 0.308	0.308		501		B22E216	26-May-22	1.04 g	01-Jun-22 21:57	1
6:2 FTS		27619-97-2	11.6	0.514		992		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFOA		335-67-1	0.391	0.268	0.4	496	J	B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFHpS		375-92-8	< 0.512	0.512		992		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFNA		375-95-1	1.78	0.369		496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFOSA		754-91-6	< 0.567	0.567		992		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFOS		1763-23-1	31.7	0.649	1.	.00		B22E216	26-May-22	0	01-Jun-22 21:57	1
9Cl-PF3ONS		756426-58-1	< 0.325	0.325		496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFDA		335-76-2	1.37	0.438		496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
8:2 FTS		39108-34-4	23.9	0.583		992		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFNS		68259-12-1	< 0.821	0.821		992		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
MeFOSAA		2355-31-9	< 0.401	0.401		496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
EtFOSAA		2991-50-6	< 0.377	0.377		496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFUnA		2058-94-8	< 0.502	0.502		992		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFDS		335-77-3	< 0.240	0.240		496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
11Cl-PF3OUdS		763051-92-9	<0.528	0.528		992		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFDoA		307-55-1	<0.452	0.452		496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
MeFOSA		31506-32-8	<1.33	1.33		.49		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFTrDA		72629-94-8	<0.403	0.403		496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFDoS		79780-39-5	< 0.419	0.419		496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
PFTeDA		376-06-7	<0.425	0.425		496		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
EtFOSA		4151-50-2	2.85	0.777		.00	0	B22E216		1.04 g	01-Jun-22 21:57	1
MeFOSE		24448-09-7	<0.615	0.615		.00 992	Y	B22E210 B22F021	06-Jun-22	1.04 g	10-Jun-22 19:51	1
EtFOSE		1691-99-2	<0.730	0.730		992 992		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
Labeled Standards		Туре	% Recovery		imits	,,,,	Qualifiers	Batch	Extracted	Samp Size		Dilution
13C3-PFBA		IS	105		i - 150		Zummers	B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
13C3-PFPeA		IS	84.2		- 150			B22F021 B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
13C3-PFBS		IS	74.1		- 150 - 150			B22F021 B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1
Work Order	2205141	10	/ 7.1	25	150			J221 021	00 Jun-22	1.00 g	10-Juli-22 19.51	

Sample ID: AM	W-03 (1-2)					PFAS Iso	tope Dilution	Method			
	AECOM CVRA		Matrix: Date Collected:	Soil 13-May-22 07:45	Laboratory Data Lab Sample: Date Received: % Solids:	2205141-0 17-May-22 96.0		Column:	BEH C18		
Labeled Standards		Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution	
13C2-4:2 FTS		IS	79.2	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C2-PFHxA		IS	79.3	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C3-HFPO-DA		IS	74.6	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C4-PFHpA		IS	84.7	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C3-PFHxS		IS	84.0	25 - 150		B22E216	26-May-22	1.04 g	01-Jun-22 21:57	1	
13C2-6:2 FTS		IS	90.5	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C2-PFOA		IS	100	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C5-PFNA		IS	73.6	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C8-PFOSA		IS	59.5	10 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C8-PFOS		IS	80.9	25 - 150		B22E216	26-May-22	1.04 g	01-Jun-22 21:57	1	
13C2-PFDA		IS	65.9	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C2-8:2 FTS		IS	80.3	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
d3-MeFOSAA		IS	62.8	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
d5-EtFOSAA		IS	61.6	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C2-PFUnA		IS	70.4	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C2-PFDoA		IS	67.3	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
d3-MeFOSA		IS	18.5	10 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
13C2-PFTeDA		IS	75.3	25 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
d5-EtFOSA		IS	9.50	10 - 150	Н	B22E216	26-May-22	1.04 g	01-Jun-22 21:57	1	
d7-MeFOSE		IS	35.5	10 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
d9-EtFOSE		IS	32.0	10 - 150		B22F021	06-Jun-22	1.05 g	10-Jun-22 19:51	1	
MDL - Method Detectio	n Limit R	RL - Reporting limit The results are reported in dry weight.						DS, MeFOSAA and EtFOSAA include both			

When reported, PFHxS, PFOA, PFOS, McFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other analytes.

PEBA 375-22-4	Sample ID: AM	IW-03 (35-37)									PFAS Iso	tope Dilution 1	Method
Project: CVRA Date Collected: 13.May-22 09:05 Bate Received: * Solids' 98.1 1.May-22 09:04 Note Net Solids' 98.1 Analyte CAS Number Conc. (ng/g) MDL RL Qualifier Bate Collected: 98.1 PFBA 375:22.4 -0.442 0.442 0.441 B32001 65.Jun-22 10.6g 10.Jun-22 0.02 PFBA 375:35.4 -0.234 0.334 0.354 0.441 B32001 65.Jun-22 10.6g 10.Jun-22 0.02 PFBA 375:73.5 -0.234 0.394 0.441 B320701 65.Jun-22 10.6g 10.Jun-22 0.02 PFBA 375:75.5 -0.047 0.467 0.481 B320701 66.Jun-22 10.6g 10.Jun-22 0.202 PFPA 375:85-5 -0.047 0.467 0.481 B320701 66.Jun-22 10.6g 10.Jun-22 0.202 DFPA 375:85-5 -0.047 0.467 0.481 B320701 66.Jun-22 10.6g 10.Jun-22 <th< th=""><th>Client Data</th><th></th><th></th><th></th><th></th><th></th><th>Labo</th><th>oratory Data</th><th></th><th></th><th></th><th></th><th></th></th<>	Client Data						Labo	oratory Data					
Project: CVRA Date Collecter: 13-May-22 00:05 Receivent: s solids: 77.409-22 00:04 Analyte CAS Number Conc. (ng/g) MDI Receivent: s solids: 78.100 Sime Size Analyzet Nalyzet	Name:	AECOM		Matrix:	Soil		Lab S	Sample:	2205141-0)8	Column:	BEH C18	
Analyte CAS Number Conc. (ng/g) MDL RL Quilifiers Batch Extracted Samp Size Analyzed D PTBA 375-22.4 -0.442 0.442 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 2002 PFBA 375-73-5 -0.254 0.354 0.354 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 2002 PFBS 375-73-5 -0.054 0.049 0.962 B22P021 06-Jun-22 1.06 g 10-Jun-22 2002 PFHS 307-24-4 -0.049 0.038 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 2002 PFPS 2706-91-4 -0.288 0.288 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 2002 PFPAS 375-85-9 -0.467 0.447 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 2002 PFHAS 355-46-4 1.14 0.293 0.476 B22P121 0.6 Jun-22 1.00 g 10-Jun-22 2002	Project:	CVRA		Date Colle	ected: 13-May-22 0	9:05	Date	Received:	17-May-22	2 09:04			
PFBA 375-22-4 -0.442 0.442 0.481 B22F021 66-lun-22 1.06 g 10-lun-22 0:002 PFPA 2706-90-3 -0.354 0.354 0.481 B22F021 66-lun-22 1.06 g 10-lun-22 0:002 PFBS 375-73-5 -0.294 0.294 0.481 B22F021 66-lun-22 1.06 g 10-lun-22 0:002 4:2 FTS 757124-72.4 -0.619 0.619 0.962 B22F021 66-lun-22 1.06 g 10-lun-22 0:02 PFPA 3075-244 -0.388 0.385 0.962 B22F021 66-lun-22 1.06 g 10-lun-22 0:02 PFIPA 375-85-9 -0.467 0.481 B22F021 66-lun-22 1.06 g 10-lun-22 0:02 ADONA 919005-14-4 -0.242 0.242 0.4481 B22F021 66-lun-22 1.06 g 10-lun-22 0:02 ADONA 919005-14-4 -0.249 0.447 0.481 B22F021 66-lun-22 1.06 g 10-lun-22 0:02 ADONA 919005-14-4 -0.249							% So	lids:	98.1				
PFPAA 2706-09-3 <0.354 0.354 0.481 B22F02 0.6-Jun-22 1.06 g 1.0-Jun-22 20:02 PFBS 375-73-5 <0.024 0.049 0.481 B22F02 0.6-Jun-22 1.06 g 1.0-Jun-22 20:02 PFBA 307-24-4 <0.0308 0.308 0.481 B22F02 0.6-Jun-22 1.06 g 1.0-Jun-22 20:02 PFRA 307-24-4 <0.308 0.308 0.481 B22F02 0.6-Jun-22 1.06 g 1.0-Jun-22 20:02 PFRA 375-75- <0.288 0.883 0.481 B22F02 0.6-Jun-22 1.06 g 1.0-Jun-22 20:02 PFHA 375-85- <0.467 0.461 B22F02 0.6-Jun-22 1.06 g 1.0-Jun-22 20:02 ADONA 919005-14-4 <0.242 0.448 B22F021 0.6-Jun-22 1.06 g 1.0-Jun-22 20:02 PFNA 375-67-4 <0.448 0.962 B22F021 0.6-Jun-22 1.06 g 1.0-Jun-22 20:02 PFNA 375-97-1 <0.358 0.358 0.461 B22F021 0.6-Jun-22 1.06 g 1.0-Jun-22 20:02 PFNA	Analyte		CAS Number	Conc. (ng/g)	MDL				Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS 375-37-5 0.049 0.481 B22F01 06-Jun-22 1.06 10-Jun-22 2002 4.2 FTS 757124-72-4 <0.019	PFBA		375-22-4	< 0.442	0.442	0.4	481		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
42 PTS 75712472-4 <0.619	PFPeA		2706-90-3	< 0.354	0.354	0.4	481		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
PFHxA 307-24-4 -0.308 0.308 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 20.02 PFPeS 2706-91-4 -0.288 0.288 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 20.02 PFPA 375-85-9 -0.467 0.467 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 20.02 PFHA 375-85-9 -0.467 0.467 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 20.02 PFHxS 355-46-4 1.14 0.293 0.476 B22P021 06-Jun-22 1.06 g 10-Jun-22 20.02 PFOA 335-67-1 -0.460 0.260 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 20.02 PFNA 375-92-8 -0.496 0.496 0.962 B22P021 06-Jun-22 1.06 g 10-Jun-22 20.02 PFNA 375-92-8 -0.496 0.358 0.481 B22P021 06-Jun-22 1.06 g 10-Jun-22 20.02 PFNA 375-92-8 -0.35	PFBS		375-73-5	< 0.294	0.294	0.4	481		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
PFPS 2706-91-4 <0.288 0.288 0.481 B22F021 06-Jun-22 1.06 g 1.0Jun-22 2002 HFPO-DA 13252-13-6 <0.835	4:2 FTS		757124-72-4	< 0.619	0.619	0.9	962		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
HFPO-DA 13252-13-6 <0.835 0.835 0.962 B22F021 06-lun-22 1.06 g 1.0-lun-22 2002 PFHpA 375-85-9 <0.467	PFHxA		307-24-4	< 0.308	0.308	0.4	481		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
PFIpA 375 85-9 <0.467 0.467 0.481 B22P01 06-jun-22 1.06 g 0-Jun-22 0.02 ADONA 91905-14-4 <0.242	PFPeS		2706-91-4	< 0.288	0.288	0.4	481		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
ADONA 919005.14.4 <0.242 0.242 0.481 B22P01 06-Jun-22 1.06 g 10-Jun-22 20.07 PFHxS 355.46.4 1.14 0.293 0.476 B22PE10 66-Jun-22 1.06 g 10-Jun-22 20.07 PFTxS 27619-97-2 <0.498 0.498 0.962 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 PFOA 335.67-1 <0.026 0.260 0.481 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 PFNA 375.92-5 <0.038 0.358 0.481 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 PFOS 754.91-6 <0.550 0.550 0.962 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 PFOS 754.91-6 <0.550 0.550 0.962 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 PFOS 754.91-6 <0.551 0.481 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 1.06 g	HFPO-DA		13252-13-6	< 0.835	0.835	0.9	962		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
ADONA 919005.14.4 <0.242 0.242 0.481 B22P01 06-Jun-22 1.06 g 10-Jun-22 20.07 PFHxS 355.46.4 1.14 0.293 0.476 B22PE10 66-Jun-22 1.06 g 10-Jun-22 20.07 PFTxS 27619-97-2 <0.498 0.498 0.962 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 PFOA 335.67-1 <0.026 0.260 0.481 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 PFNA 375.92-5 <0.038 0.358 0.481 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 PFOS 754.91-6 <0.550 0.550 0.962 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 PFOS 754.91-6 <0.550 0.550 0.962 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 PFOS 754.91-6 <0.551 0.481 B22PC11 06-Jun-22 1.06 g 10-Jun-22 20.02 1.06 g	PFHpA		375-85-9	< 0.467	0.467	0.4	481		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
6:2 FTS 27619-97-2 <0.498 0.498 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 20.02 PFOA 335-67-1 <0.200	ADONA		919005-14-4	< 0.242	0.242	0.4	481			06-Jun-22	1.06 g	10-Jun-22 20:02	1
PFOA 335-67-1 <0.260 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 PFHpA 375-92-8 <0.496 0.496 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 PFNA 375-95-1 <0.358 0.358 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 PFOA 754-91-6 <0.550 0.550 0.962 B22F021 66-Jun-22 1.07 g 01-Jun-22 0.02 PFOS 1763-23-1 2.19 0.617 0.953 Q B22F021 66-Jun-22 1.06 g 10-Jun-22 0.02 PFOS 756426-58-1 <0.315 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 PFDA 335.76-2 <0.425 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 MEFOSA 2355.31-9 <0.388 0.388 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 MEFOSA 2991-50-6 <0.365 0.365 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 1.05 un-22 0.02 <	PFHxS		355-46-4	1.14	0.293	0.4	476		B22E216	26-May-22	1.07 g	01-Jun-22 22:07	1
PFOA 335-67-1 <0.260 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 PFHpA 375-92-8 <0.496 0.496 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 PFNA 375-95-1 <0.358 0.358 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 PFOA 754-91-6 <0.550 0.550 0.962 B22F021 66-Jun-22 1.07 g 01-Jun-22 0.02 PFOS 1763-23-1 2.19 0.617 0.953 Q B22F021 66-Jun-22 1.06 g 10-Jun-22 0.02 PFOS 756426-58-1 <0.315 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 PFDA 335.76-2 <0.425 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 MEFOSA 2355.31-9 <0.388 0.388 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 MEFOSA 2991-50-6 <0.365 0.365 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 1.05 un-22 0.02 <	6:2 FTS		27619-97-2	< 0.498	0.498	0.9	962		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
PFHpS 375-92-8 <0.496 0.496 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 0.02 PFNA 375-95-1 <0.358											-		1
PFNA 375-95-1 <0.358 0.358 0.481 B22F021 06-Jun-22 1.0.6 g 10-Jun-22 20:02 PFOSA 754-91-6 <0.550											0		1
PFOSA 754-91-6 <0.550 0.950 922F021 06-Jun-22 1.06 g 10-Jun-22 20:02 PFOS 1763-23-1 2.19 0.617 0.953 Q B22E016 26-May-22 1.06 g 10-Jun-22 20:02 PFOS 756426-58-1 <0.315											0		1
PFOS1763-23-12.190.6170.953QB22E21626-May-221.07 g01-Jun-22 22.079C1-PFSONS756426-58-1<0.315			754-91-6						B22F021	06-Jun-22	0	10-Jun-22 20:02	1
9Cl-PF3ONS 756426-58-1 <0.315 0.315 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 20.02 PFDA 335.76-2 <0.425	PFOS		1763-23-1	2.19		0.9	953	0	B22E216	26-May-22	0	01-Jun-22 22:07	1
PFDA 335-76-2 <0.425 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 8:2 FTS 39108-34.4 <0.565	9Cl-PF3ONS		756426-58-1	< 0.315	0.315				B22F021	06-Jun-22	0	10-Jun-22 20:02	1
8:2 FTS 39108-34-4 <0.565 0.565 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 PFNS 68259-12-1 <0.796 0.796 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 MeFOSAA 2355-31-9 <0.388 0.388 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 EtFOSA 2991-50-6 <0.365 0.365 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 PFUnA 2058-94-8 <0.487 0.487 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 PFDS 335-77-3 <0.233 0.233 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 PFDS 335-77-3 <0.233 0.233 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 PFDS 335-77-3 <0.438 0.487 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 02 PFDA 307-55-1 <0.438 0.438 0.481 B22F021 06-Jun-22 1	PFDA									06-Jun-22	0		1
PFNS68259-12-1<0.7960.7960.962B22F02106-Jun-221.06 g10-Jun-22 20:02MeFOSAA2355-31-9<0.388	8:2 FTS		39108-34-4							06-Jun-22	0		1
MeFOSAA2355-31-9<0.3880.3880.481B22F02106-Jun-221.06 g10-Jun-22 20:02EtFOSAA2991-50-6<0.365											0		1
EtFOSAA2991-50-6<0.3650.3650.481B22F02106-Jun-221.06 g10-Jun-22 20:02PFUnA2058-94-8<0.487	MeFOSAA										0		1
PFUnA2058-94-8<0.4870.4870.962B22F02106-Jun-221.06 g10-Jun-22 20:02PFDS335-77-3<0.233											0		1
PFDS335-77-3<0.2330.2330.481B22F02106-Jun-221.06 g10-Jun-22 20:0211Cl-PF3OUdS763051-92-9<0.512											-		
I1Cl-PF3OUdS 763051-92-9 <0.512 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 PFDoA 307-55-1 <0.438										06-Jun-22	0		1
PFDoA 307-55-1 <0.438 0.438 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 MeFOSA 31506-32-8 <1.29													1
MeFOSA31506-32-8<1.291.291.44B22F02106-Jun-221.06 g10-Jun-22 20:02PFTrDA72629-94-8<0.390											0		1
PFTrDA72629-94-8<0.3900.3900.481B22F02106-Jun-221.06 g10-Jun-22 20:02PFDoS79780-39-5<0.406											0		1
PFDos 79780-39-5 <0.406 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 PFTeDA 376-06-7 <0.412											0		1
PFTeDA 376-06-7 <0.412 0.412 0.481 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 EtFOSA 4151-50-2 <0.739											0		1
EtFOSA 4151-50-2 <0.739 0.739 0.953 B22E216 26-May-22 1.07 g 01-Jun-22 22:07 MeFOSE 24448-09-7 <0.596											0		1
MeFOSE 24448-09-7 <0.596 0.596 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 0:02 EtFOSE 1691-99-2 <0.708 0.708 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 0:02 Labeled Standards Type % Recovery Limits Qualifiers Batch Extracted Samp Size Analyzed D 13C3-PFBA IS 107 25 - 150 B22F021 06-Jun-22 1.06 g 10-Jun-22 0:02 13C3-PFPeA IS 90.0 25 - 150 B22F021 06-Jun-22 1.06 g 10-Jun-22 0:02											0		1
EtFOSE 1691-99-2 <0.708 0.708 0.962 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 Labeled Standards Type % Recovery Limits Qualifiers Batch Extracted Samp Size Analyzed D 13C3-PFBA IS 107 25 - 150 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 13C3-PFPeA IS 90.0 25 - 150 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02											0		
Labeled Standards Type % Recovery Limits Qualifiers Batch Extracted Samp Size Analyzed D 13C3-PFBA IS 107 25 - 150 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02 13C3-PFPeA IS 90.0 25 - 150 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02											0		1
13C3-PFBAIS10725 - 150B22F02106-Jun-221.06 g10-Jun-22 20:0213C3-PFPeAIS90.025 - 150B22F02106-Jun-221.06 g10-Jun-22 20:02		s						Qualifiers			<u>v</u>		Dilution
13C3-PFPeA IS 90.0 25 - 150 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02								2					
											0		1
13C3-PFBS IS 80.9 25 - 150 B22F021 06-Jun-22 1.06 g 10-Jun-22 20:02	13C3-PFBS		IS	80.9					B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1

Sample ID: AMW-0	03 (35-37)						PFAS Iso	tope Dilution 1	Method
Client DataName:AECOProject:CVR.		Matrix: Date Collected:	Soil 13-May-22 09:05	Laboratory Data Lab Sample: Date Received:	2205141-0 17-May-22		Column:	BEH C18	
Labeled Standards	Туре	% Recovery	Limits	% Solids: Oualifiers	98.1 Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	77.6	25 - 150	L	B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
13C2-PFHxA	IS	84.8	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	
13C3-HFPO-DA	IS	72.9	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	
13C4-PFHpA	IS	86.7	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	
13C3-PFHxS	IS	86.6	25 - 150		B22E216	26-May-22	1.07 g	01-Jun-22 22:07	
13C2-6:2 FTS	IS	82.0	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
13C2-PFOA	IS	83.6	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
13C5-PFNA	IS	67.2	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
13C8-PFOSA	IS	42.9	10 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
13C8-PFOS	IS	76.0	25 - 150		B22E216	26-May-22	1.07 g	01-Jun-22 22:07	1
13C2-PFDA	IS	64.8	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
13C2-8:2 FTS	IS	77.2	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
d3-MeFOSAA	IS	63.2	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
d5-EtFOSAA	IS	63.1	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
13C2-PFUnA	IS	68.3	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
13C2-PFDoA	IS	63.8	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
d3-MeFOSA	IS	10.3	10 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
13C2-PFTeDA	IS	63.9	25 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
d5-EtFOSA	IS	2.80	10 - 150	Н	B22E216	26-May-22	1.07 g	01-Jun-22 22:07	
d7-MeFOSE	IS	37.7	10 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
d9-EtFOSE	IS	32.8	10 - 150		B22F021	06-Jun-22	1.06 g	10-Jun-22 20:02	1
MDL - Method Detection Lim	nit RL - Reporting limit	The results are report The complexize is re					leFOSAA and EtF	FOSAA include both	

The sample size is reported in we weight. Results reported to MDL. When reported, PFHxS, PFOA, PFOS, McFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: AN	MW-03 (68-70)									PFAS Iso	tope Dilution 1	Method
Client Data Name: Project:	AECOM CVRA		Matrix: Date Colle	Soil ected: 13-May-22 12	2:30	Lab S	Dratory Data Sample: Received: blids:	2205141-0 17-May-22 91.9		Column:	BEH C18	
Analyte		CAS Number	Conc. (ng/g)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		375-22-4	< 0.447	0.447	0.	.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
PFPeA		2706-90-3	< 0.357	0.357	0.	.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
PFBS		375-73-5	< 0.297	0.297	0.	.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
4:2 FTS		757124-72-4	< 0.625	0.625	0.	.971		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
PFHxA		307-24-4	< 0.311	0.311	0.	.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
PFPeS		2706-91-4	< 0.291	0.291	0.	.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
HFPO-DA		13252-13-6	< 0.843	0.843	0.	.971		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
PFHpA		375-85-9	< 0.472	0.472	0.	.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
ADONA		919005-14-4	< 0.245	0.245	0.	.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
PFHxS		355-46-4	0.507	0.296	0.	.481	0	B22E216	26-May-22	1.13 g	01-Jun-22 22:18	1
6:2 FTS		27619-97-2	2.31	0.503	0.	.971		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
PFOA		335-67-1	< 0.262	0.262		.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFHpS		375-92-8	< 0.501	0.501		.971		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFNA		375-95-1	< 0.361	0.361		.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFOSA		754-91-6	< 0.555	0.555		.971		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFOS		1763-23-1	< 0.624	0.624	0.	.962		B22E216	26-May-22	0	01-Jun-22 22:18	1
9CI-PF3ONS		756426-58-1	< 0.319	0.319		.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFDA		335-76-2	< 0.429	0.429		.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
8:2 FTS		39108-34-4	< 0.571	0.571		.971		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFNS		68259-12-1	< 0.804	0.804		.971		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
MeFOSAA		2355-31-9	< 0.392	0.392		.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
EtFOSAA		2991-50-6	< 0.369	0.369		.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFUnA		2058-94-8	< 0.491	0.491		.971		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFDS		335-77-3	< 0.235	0.235		.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
11Cl-PF3OUdS		763051-92-9	< 0.517	0.517		.971		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFDoA		307-55-1	< 0.443	0.443		.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
MeFOSA		31506-32-8	<1.30	1.30		.46		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
PFTrDA		72629-94-8	< 0.394	0.394		.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFDoS		79780-39-5	< 0.410	0.410		.486		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	
PFTeDA		376-06-7	<0.416	0.416		.486		B22F021 B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12 10-Jun-22 20:12	
EtFOSA		4151-50-2	<0.747	0.747		.962		B22F021 B22E216	26-May-22	1.12 g	01-Jun-22 20:12	1
MeFOSE		24448-09-7	<0.747	0.602		.962 .971		B22E210 B22F021	26-May-22 06-Jun-22	1.13 g	10-Jun-22 22:18	1
EtFOSE		1691-99-2	<0.002	0.715		.971		B22F021 B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
Labeled Standard	ls	Туре	% Recovery		nits	.7/1	Qualifiers	Batch		Samp Size		1 Dilution
13C3-PFBA		IS	107		- 150		Zuunners	B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C3-PFBA		IS	85.4		- 150			B22F021 B22F021	06-Jun-22 06-Jun-22	1.12 g 1.12 g	10-Jun-22 20:12 10-Jun-22 20:12	1
13C3-PFBS		IS	85.4		- 150 - 150			B22F021 B22F021	06-Jun-22 06-Jun-22	1.12 g 1.12 g	10-Jun-22 20:12 10-Jun-22 20:12	-
	don 2205141	15	00.0	23	- 150			D221021	00-Juli-22	1.12 g	10-Juli-22 20.12	

Sample ID: AM	IW-03 (68-70)						PFAS Iso	tope Dilution N	Method
	AECOM CVRA		Matrix: Date Collected:	Soil 13-May-22 12:30	Laboratory Data Lab Sample: Date Received: % Solids:	2205141-0 17-May-22 91.9		Column:	BEH C18	
Labeled Standards	s	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS		IS	84.9	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C2-PFHxA		IS	82.0	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C3-HFPO-DA		IS	80.7	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C4-PFHpA		IS	84.8	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C3-PFHxS		IS	69.8	25 - 150		B22E216	26-May-22	1.13 g	01-Jun-22 22:18	1
13C2-6:2 FTS		IS	81.0	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C2-PFOA		IS	84.1	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C5-PFNA		IS	53.6	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C8-PFOSA		IS	33.1	10 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C8-PFOS		IS	55.3	25 - 150		B22E216	26-May-22	1.13 g	01-Jun-22 22:18	1
13C2-PFDA		IS	54.0	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C2-8:2 FTS		IS	81.4	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
d3-MeFOSAA		IS	57.7	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
d5-EtFOSAA		IS	52.7	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C2-PFUnA		IS	64.1	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C2-PFDoA		IS	68.6	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
d3-MeFOSA		IS	7.90	10 - 150	Н	B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
13C2-PFTeDA		IS	60.0	25 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
d5-EtFOSA		IS	2.10	10 - 150	Н	B22E216	26-May-22	1.13 g	01-Jun-22 22:18	1
d7-MeFOSE		IS	24.5	10 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
d9-EtFOSE		IS	23.1	10 - 150		B22F021	06-Jun-22	1.12 g	10-Jun-22 20:12	1
MDL - Method Detecti	ion Limit	RL - Reporting limit	The results are repor	ted in dry weight.	When re	ported, PFHxS,	PFOA, PFOS, M	IeFOSAA and EtF	OSAA include both	

The sample size is reported in wet weight. Results reported to MDL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: AM	W-03 (68-70)) Dup							PFAS Iso	tope Dilution	Method
Client Data					Ι	Laboratory Dat	a				
Name:	AECOM		Matrix:	Soil	I	ab Sample:	2205141-	10	Column:	BEH C18	
Project:	CVRA		Date Colle	ected: 13-May-22 12	30 I	Date Received:	17-May-2	22 09:04		BEIT CTO	
5					9	% Solids:	89.6				
Analyte		CAS Number	Conc. (ng/g)	MDL	RI	L Qualifie	rs Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		375-22-4	< 0.439	0.439	0.47	7	B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
PFPeA		2706-90-3	< 0.351	0.351	0.47	7	B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
PFBS		375-73-5	< 0.292	0.292	0.47	7	B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
4:2 FTS		757124-72-4	< 0.614	0.614	0.95	3	B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
PFHxA		307-24-4	< 0.305	0.305	0.47	7	B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
PFPeS		2706-91-4	< 0.286	0.286	0.47	7	B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
HFPO-DA		13252-13-6	< 0.828	0.828	0.95	3	B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
PFHpA		375-85-9	< 0.463	0.463	0.47	7	B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
ADONA		919005-14-4	< 0.240	0.240	0.47	7	B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
PFHxS		355-46-4	0.333	0.294	0.47			26-May-22	0	01-Jun-22 22:28	
6:2 FTS		27619-97-2	2.39	0.494	0.95		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFOA		335-67-1	< 0.257	0.257	0.47		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFHpS		375-92-8	<0.492	0.492	0.95		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFNA		375-95-1	< 0.355	0.355	0.47		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFOSA		754-91-6	< 0.545	0.545	0.95		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFOS		1763-23-1	< 0.618	0.618	0.95			26-May-22	0	01-Jun-22 22:28	
9Cl-PF3ONS		756426-58-1	< 0.313	0.313	0.47		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFDA		335-76-2	< 0.421	0.421	0.47		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
8:2 FTS		39108-34-4	< 0.561	0.561	0.95		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFNS		68259-12-1	<0.789	0.789	0.95		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
MeFOSAA		2355-31-9	< 0.385	0.385	0.47		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
EtFOSAA		2991-50-6	< 0.362	0.362	0.47		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFUnA		2058-94-8	<0.482	0.482	0.95		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFDS		335-77-3	<0.231	0.231	0.93		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
11Cl-PF3OUdS		763051-92-9	< 0.507	0.507	0.95		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFDoA		307-55-1	<0.435	0.435	0.47		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
MeFOSA		31506-32-8	<1.28	1.28	1.4		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFTrDA		72629-94-8	<0.387	0.387	0.47		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFDoS		79780-39-5	<0.402	0.402	0.47		B22F021 B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
PFTeDA		376-06-7	<0.402	0.402	0.47		B22F021 B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
EtFOSA		4151-50-2	<0.408	0.740	0.47		B22F021 B22E216		U U	01-Jun-22 20:23	
MeFOSE		24448-09-7	<0.740	0.591	0.95		B22E216 B22F021	26-May-22 06-Jun-22	1.17 g 1.17 g	10-Jun-22 22:28	
EtFOSE		1691-99-2	<0.391	0.702	0.93		B22F021 B22F021	06-Jun-22 06-Jun-22	1.17 g 1.17 g	10-Jun-22 20:23 10-Jun-22 20:23	
			<0.702 % Recovery	0.702 Lin		Qualifie			<u>v</u>		1 Dilution
Labeled Standards	•	Туре				Qualifie		Extracted	Samp Size	Analyzed	
13C3-PFBA		IS	105		150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
13C3-PFPeA		IS	85.5		150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	
13C3-PFBS	or 2205141	IS	71.7	25 -	150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	

Sample ID: AMW	7-03 (68-70) Dup						PFAS Iso	tope Dilution 1	Method
	COM /RA	Matrix: Date Collected:	Soil 13-May-22 12:30	Laboratory Data Lab Sample: Date Received: % Solids:	2205141-1 17-May-22 89.6		Column:	BEH C18	
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	81.5	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C2-PFHxA	IS	81.5	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C3-HFPO-DA	IS	77.7	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C4-PFHpA	IS	82.1	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C3-PFHxS	IS	78.9	25 - 150		B22E216	26-May-22	1.17 g	01-Jun-22 22:28	1
13C2-6:2 FTS	IS	82.7	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C2-PFOA	IS	90.0	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C5-PFNA	IS	72.9	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C8-PFOSA	IS	42.4	10 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C8-PFOS	IS	56.9	25 - 150		B22E216	26-May-22	1.17 g	01-Jun-22 22:28	1
13C2-PFDA	IS	62.7	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C2-8:2 FTS	IS	71.4	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
d3-MeFOSAA	IS	54.3	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
d5-EtFOSAA	IS	54.0	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C2-PFUnA	IS	69.6	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C2-PFDoA	IS	69.1	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
d3-MeFOSA	IS	5.30	10 - 150	Н	B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
13C2-PFTeDA	IS	66.0	25 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
d5-EtFOSA	IS	2.80	10 - 150	Н	B22E216	26-May-22	1.17 g	01-Jun-22 22:28	1
d7-MeFOSE	IS	42.3	10 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
d9-EtFOSE	IS	43.4	10 - 150		B22F021	06-Jun-22	1.17 g	10-Jun-22 20:23	1
MDL - Method Detection I	Limit RL - Reporting limit	The results are report	ted in dry weight.	When re	ported, PFHxS,	PFOA, PFOS, M		OSAA include both	

The sample size is reported in wet weight. Results reported to MDL. When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bot linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID: Met	thod Blank									PFAS Iso	tope Dilution 1	Metho
	AECOM CVRA		Matrix:	Aqueous			ratory Data Sample:	B22E192-	BLK1	Column:	BEH C18	
Analyte		CAS Number	Conc. (ng/L)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Diluti
PFBA		375-22-4	<1.01	1.01	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
PFPeA		2706-90-3	< 0.755	0.755	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
PFBS		375-73-5	< 0.905	0.905	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
4:2 FTS		757124-72-4	< 0.950	0.950	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
PFHxA		307-24-4	< 0.815	0.815	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
PFPeS		2706-91-4	< 0.820	0.820	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
HFPO-DA		13252-13-6	<1.57	1.57	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
PFHpA		375-85-9	< 0.935	0.935	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
ADONA		919005-14-4	< 0.640	0.640	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
PFHxS		355-46-4	<1.03	1.03	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
6:2 FTS		27619-97-2	<1.13	1.13	2	2.00			27-May-22	0.250 L	01-Jun-22 22:39	1
PFOA		335-67-1	< 0.955	0.955	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
PFHpS		375-92-8	< 0.595	0.595	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
PFNA		375-95-1	< 0.755	0.755	2	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
PFOSA		754-91-6	<1.09	1.09		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
PFOS		1763-23-1	<1.13	1.13	2	2.00			27-May-22	0.250 L	01-Jun-22 22:39	1
9Cl-PF3ONS		756426-58-1	<1.07	1.07	2	2.00			27-May-22	0.250 L	01-Jun-22 22:39	
PFDA		335-76-2	< 0.945	0.945		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
8:2 FTS		39108-34-4	<1.14	1.14		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
PFNS		68259-12-1	<1.16	1.16		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
MeFOSAA		2355-31-9	< 0.950	0.950		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
EtFOSAA		2991-50-6	<1.04	1.04		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
PFUnA		2058-94-8	< 0.755	0.755		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
PFDS		335-77-3	< 0.760	0.760		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
11Cl-PF3OUdS		763051-92-9	< 0.990	0.990		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
PFDoA		307-55-1	< 0.975	0.975		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
MeFOSA		31506-32-8	<2.24	2.24		2.50			27-May-22	0.250 L	01-Jun-22 22:39	
PFTrDA		72629-94-8	<0.655	0.655		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
PFDoS		79780-39-5	<1.42	1.42		2.00			27-May-22	0.250 L	01-Jun-22 22:39	
PFTeDA		376-06-7	<0.815	0.815		2.00			27-May-22 27-May-22	0.250 L	01-Jun-22 22:39	
EtFOSA		4151-50-2	<2.33	2.33		2.50			27-May-22 27-May-22	0.250 L 0.250 L	01-Jun-22 22:39	
MeFOSE		24448-09-7	<2.00	2.00		2.50			27-May-22 27-May-22	0.250 L 0.250 L	01-Jun-22 22:39 01-Jun-22 22:39	
EtFOSE		1691-99-2	<1.57	1.57		2.00			27-May-22 27-May-22	0.250 L 0.250 L	01-Jun-22 22:39	
Labeled Standards	8	Туре	% Recovery	1.0/	Limits	2.00	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilutio
13C3-PFBA		IS	64.6		25 - 150			B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C3-PFPeA		IS	72.1		25 - 150				27-May-22	0.250 L	01-Jun-22 22:39	
13C3-PFBS		IS	87.2		25 - 150				27-May-22	0.250 L	01-Jun-22 22:39	
13C2-4:2 FTS		IS	78.2		25 - 150				27-May-22	0.250 L	01-Jun-22 22:39	

Sample ID: Method Blank	K						PFAS Iso	tope Dilution 1	Method
Client Data Name: AECOM Project: CVRA		Matrix:	Aqueous	Laboratory Data Lab Sample:	B22E192-	BLK1	Column:	BEH C18	
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	IS	82.9	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C3-HFPO-DA	IS	88.8	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C4-PFHpA	IS	82.8	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C3-PFHxS	IS	83.7	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C2-6:2 FTS	IS	80.9	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C2-PFOA	IS	80.3	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C5-PFNA	IS	79.0	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C8-PFOSA	IS	58.1	10 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C8-PFOS	IS	81.2	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C2-PFDA	IS	83.3	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C2-8:2 FTS	IS	77.7	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
d3-MeFOSAA	IS	75.6	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
d5-EtFOSAA	IS	82.0	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C2-PFUnA	IS	82.3	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C2-PFDoA	IS	84.3	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
d3-MeFOSA	IS	24.8	10 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
13C2-PFTeDA	IS	52.9	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
d5-EtFOSA	IS	24.5	10 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
d7-MeFOSE	IS	40.2	10 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
d9-EtFOSE	IS	41.5	10 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:39	1
MDL - Method Detection Limit	RL - Reporting limit	Results reported	to MDL.			PFOA, PFOS, M		OSAA include both	

linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 2205141

Sample ID: OPR										PFAS Is	otope Dilution	Method
Client Data						Lab	oratory Data					
Name: AECOM Project: CVRA		Matrix:	Aqueous			Lab	Sample:	B22E192	-BS1	Column:	BEH C18	
Analyte	CAS Number	Amt Found (ng/L)	Spike Amt	% Rec	Limit	ts	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	3.55	4.00	88.9	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFPeA	2706-90-3	3.59	4.00	89.8	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFBS	375-73-5	3.56	4.00	88.9	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
4:2 FTS	757124-72-4	3.97	4.00	99.3	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFHxA	307-24-4	3.57	4.00	89.1	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFPeS	2706-91-4	3.14	4.00	78.4	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
HFPO-DA	13252-13-6	4.19	4.00	105	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFHpA	375-85-9	3.68	4.00	92.1	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
ADONA	919005-14-4	3.61	4.00	90.2	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFHxS	355-46-4	3.21	4.00	80.3	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
6:2 FTS	27619-97-2	3.50	4.00	87.5	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFOA	335-67-1	3.71	4.00	92.7	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFHpS	375-92-8	4.59	4.00	115	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFNA	375-95-1	3.79	4.00	94.7	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFOSA	754-91-6	3.63	4.00	90.7	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFOS	1763-23-1	3.40	4.00	85.0	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
9C1-PF3ONS	756426-58-1	3.42	4.00	85.6	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFDA	335-76-2	3.40	4.00	85.0	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
8:2 FTS	39108-34-4	4.19	4.00	105	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFNS	68259-12-1	4.09	4.00	102	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
MeFOSAA	2355-31-9	3.48	4.00	86.9	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
EtFOSAA	2991-50-6	3.23	4.00	80.7	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFUnA	2058-94-8	3.69	4.00	92.3	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFDS	335-77-3	3.17	4.00	79.3	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
11Cl-PF3OUdS	763051-92-9	3.69	4.00	92.3	50 - 1	150	Q	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFDoA	307-55-1	3.44	4.00	85.9	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
MeFOSA	31506-32-8	4.17	4.00	104	50 - 1	150	Q	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFTrDA	72629-94-8	3.17	4.00	79.2	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFDoS	79780-39-5	4.43	4.00	111	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
PFTeDA	376-06-7	3.90	4.00	97.6	50 - 1	150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
EtFOSA Work Order 2205141	4151-50-2	4.96	4.00	124	50 - 1	150	Q	B22E192	27-May-22	0.250 L	01-Jun-22 22:49 35 c	of 56 ¹

Sample ID: O	PR									PFAS Is	otope Dilution	Method
Client Data						La	aboratory Data	L				
Name: Project:	AECOM CVRA		Matrix:	Aqueous		La	ab Sample:	B22E192	-BS1	Column:	BEH C18	
Analyte		CAS Number	Amt Found (ng/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
MeFOSE		24448-09-7	3.31	4.00	82.7	50 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
EtFOSE		1691-99-2	4.50	4.00	113	50 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
Labeled Standar	ds		Туре		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA			IS		53.4	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C3-PFPeA			IS		70.1	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C3-PFBS			IS		87.4	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C2-4:2 FTS			IS		75.2	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C2-PFHxA			IS		85.1	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C3-HFPO-DA			IS		94.4	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C4-PFHpA			IS		84.5	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C3-PFHxS			IS		82.7	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C2-6:2 FTS			IS		76.4	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C2-PFOA			IS		88.0	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C5-PFNA			IS		82.9	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C8-PFOSA			IS		59.1	10 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C8-PFOS			IS		85.7	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C2-PFDA			IS		83.5	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C2-8:2 FTS			IS		77.8	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
d3-MeFOSAA			IS		79.6	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
d5-EtFOSAA			IS		74.5	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C2-PFUnA			IS		82.1	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C2-PFDoA			IS		77.2	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
d3-MeFOSA			IS		26.0	10 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
13C2-PFTeDA			IS		43.2	25 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
d5-EtFOSA			IS		26.8	10 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
d7-MeFOSE			IS		38.3	10 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1
d9-EtFOSE			IS		40.8	10 - 150)	B22E192	27-May-22	0.250 L	01-Jun-22 22:49	1

PFAA 375-22.4 <0.997	Sample ID: D	econ water (PFAS	Free)								PFAS Iso	tope Dilution N	Method
PFRA 375-22.4 <0.997	Name: Project:	CVRA				I	Lab Sam	ple:			Column:	BEH C18	
PFPeA 2706-90-3 <0.745	Analyte		CAS Number	Conc. (ng/L)	MDL	Ŕ	L	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS 375-73.5 <0.894 0.894 1.97 B22E192 27-May-22 0.231.L 01-un-22.23:0 1 4:2 FTS 757124-72.4 <0.938	PFBA		375-22-4	< 0.997	0.997	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
42 FTS 757124-72-4 <0.98	PFPeA		2706-90-3	< 0.745	0.745	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
PFIRA 307-24-4 0.0805 1.97 B22E192 27-May-22 0.2531. 0.1-Jun-22 23:10 1 PFPes 2706-91-4 <0.810	PFBS		375-73-5	< 0.894	0.894	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
PFPeS 2706-91-4 <0.810 1.97 B22E192 27.May-22 0.233 L 0.1-Jur.22 2:10 1 HFPO-DA 13252-13-6 <1.55	4:2 FTS		757124-72-4	< 0.938	0.938	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
HEPO-DA 1322-13-6 <1.55 1.97 B22E102 27.May-22 0.531 L 0.1-Un-22 2:10 1 PFHpA 375-85-9 <0.923	PFHxA		307-24-4	< 0.805	0.805	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
PFHpA 375-85-9 <0.923 0.923 1.97 B22E192 27-May-22 0.231 0.1Jun-22 23:10 1 ADONA 919005-14-4 <0.632	PFPeS		2706-91-4	< 0.810	0.810	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
ADONA 919005.14.4 <0.632 0.632 1.97 B22E192 27.May-22 0.23 L 0.1Jun-22 23:10 1 PFHxS 355-46-4 <1.02	HFPO-DA		13252-13-6	<1.55	1.55	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
ADONA 919005-14-4 <0.632 0.632 1.97 B22E192 27.May-22 0.231 L 0.1-un-22 3:10 1 PFHxS 355-46-4 <1.02	PFHpA		375-85-9	< 0.923	0.923	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
6:2 FTS 27619-97-2 <1.11 1.11 1.97 B22E192 27-May-22 0.23 L 01-Jun-22 23:10 1 PFOA 335-67-1 <0.943	ADONA		919005-14-4	< 0.632	0.632	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
PFOA 335-67-1 <0.943 0.943 1.97 B22E192 27.May-22 0.253 L 0.1-Jun-22 23:10 1 PFHpS 375-92-8 <0.587	PFHxS		355-46-4	<1.02	1.02	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
PFHpS 375-92-8 <0.587 0.587 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 3:10 1 PFNA 375-95-1 <0.745	6:2 FTS		27619-97-2	<1.11	1.11	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
PFHpS 375-92-8 <0.587 0.587 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 3:10 1 PFNA 375-95-1 <0.745	PFOA		335-67-1	< 0.943	0.943	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
PFNA 375-95-1 <0.745 0.745 1.97 B22E192 27.May-22 0.253 L 01-Jun-22 23:10 1 PFOSA 754-91-6 1.37 1.08 1.97 J, Q B22E192 27.May-22 0.253 L 01-Jun-22 23:10 1 PFOS 1763-23-1 <1.12	PFHpS												
PFOSA 754-91-6 1.37 1.08 1.97 J. Q B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 PFOS 1763-23-1 <1.12	PFNA					1.9	7						1
PFOS 1763-23-1 <1.12 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 9C1-PF3ONS 756426-58-1 <1.05	PFOSA		754-91-6		1.08	1.9	7	J, Q				01-Jun-22 23:10	1
9CI-PF3ONS 756426-58-1 <1.05 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 PFDA 335-76-2 <0.933	PFOS		1763-23-1	<1.12	1.12	1.9	7		B22E192	27-May-22	0.253 L		
PFDA335-76-2<0.9330.9331.97B22E19227-May-220.253 L0.1-Jun-22 23:1018:2 FTS39108-34.4<1.12	9Cl-PF3ONS		756426-58-1	<1.05	1.05	1.9	7					01-Jun-22 23:10	1
8:2 FTS 39108-34-4 <1.12 1.12 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 PFNS 68259-12-1 <1.14	PFDA												
PFNS68259-12-1<1.141.141.97B22E19227-May-220.253 L01-Jun-22 23:101MeFOSAA2355-31-9<0.938	8:2 FTS		39108-34-4			1.9	7			-			
MeFOSAA2355-31-9<0.9380.9381.97B22E19227-May-220.253 L01-Jun-22 23:101EtFOSAA2991-50-6<1.03	PFNS												
PFUnA2058-94-8<0.7450.7451.97B22E19227-May-220.253 L01-Jun-22 23:101PFDS335-77-3<0.750	MeFOSAA					1.9	7						
PFUnA2058-94-8<0.7450.7451.97B22E19227-May-220.253 L01-Jun-22 23:101PFDS335-77-3<0.750	EtFOSAA		2991-50-6	<1.03	1.03	1.9	7		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
PFDS335-77-3<0.7500.7501.97B22E19227-May-220.253 L01-Jun-22 23:10111Cl-PF3OUdS763051-92-9<0.977													
11Cl-PF3OUdS 763051-92-9 <0.977 0.977 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 PFDoA 307-55-1 <0.963	PFDS												
PFDoA 307-55-1 <0.963 0.963 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 MeFOSA 31506-32-8 <2.21	11Cl-PF3OUdS		763051-92-9		0.977	1.9	7						
MeFOSA 31506-32-8 <2.21 2.21 2.47 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 PFTrDA 72629-94-8 <0.647	PFDoA									2			
PFTrDA 72629-94-8 <0.647 0.647 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 PFDoS 79780-39-5 <1.40	MeFOSA		31506-32-8			2.4	7						
PFDoS 79780-39-5 <1.40 1.40 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 PFTeDA 376-06-7 <0.805													
PFTeDA 376-06-7 <0.805 0.805 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 EtFOSA 4151-50-2 <2.30													
EtFOSA 4151-50-2 <2.30 2.30 2.47 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 MeFOSE 24448-09-7 <1.97	PFTeDA												
MeFOSE 24448-09-7 <1.97 1.97 2.47 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 EtFOSE 1691-99-2 <1.55 1.55 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 Labeled Standards Type % Recovery Limits Qualifiers Batch Extracted Samp Size Analyzed Dilution 13C3-PFBA IS 52.6 25 - 150 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 13C3-PFPA IS 80.9 25 - 150 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1	EtFOSA												
EEFOSE 1691-99-2 <1.55 1.97 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 Labeled Standards Type % Recovery Limits Qualifiers Batch Extracted Samp Size Analyzed Dilution 13C3-PFBA IS 52.6 25 - 150 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 13C3-PFPeA IS 80.9 25 - 150 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1	MeFOSE									2			
Labeled Standards Type % Recovery Limits Qualifiers Batch Extracted Samp Size Analyzed Dilution 13C3-PFBA IS 52.6 25 - 150 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 13C3-PFPeA IS 80.9 25 - 150 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1	EtFOSE									~			
IS 52.6 25 - 150 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1 I3C3-PFPA IS 80.9 25 - 150 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1		rds						Qualifiers					Dilution
13C3-PFPeA IS 80.9 25 - 150 B22E192 27-May-22 0.253 L 01-Jun-22 23:10 1	13C3-PFBA												
	13C3-PFPeA												
	13C3-PFBS											01-Jun-22 23:10	

Sample ID: Dec	con water (PFAS Fr	ree)						PFAS Iso	tope Dilution 1	Method
Project:	AECOM CVRA Filtered by Horizon		Matrix: Date Collected:	Aqueous 10-May-22 10:20	Laboratory Data Lab Sample: Date Received:	2205141-1 17-May-22		Column:	BEH C18	
Labeled Standards	S	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS		IS	85.9	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C2-PFHxA		IS	89.4	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C3-HFPO-DA		IS	87.0	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C4-PFHpA		IS	83.5	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C3-PFHxS		IS	82.6	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C2-6:2 FTS		IS	81.4	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C2-PFOA		IS	81.9	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C5-PFNA		IS	76.9	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C8-PFOSA		IS	77.8	10 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C8-PFOS		IS	79.9	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C2-PFDA		IS	83.6	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C2-8:2 FTS		IS	77.5	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
d3-MeFOSAA		IS	84.4	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
d5-EtFOSAA		IS	84.4	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C2-PFUnA		IS	81.6	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C2-PFDoA		IS	79.1	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
d3-MeFOSA		IS	33.9	10 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
13C2-PFTeDA		IS	73.0	25 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
d5-EtFOSA		IS	29.5	10 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
d7-MeFOSE		IS	36.1	10 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
d9-EtFOSE		IS	39.3	10 - 150		B22E192	27-May-22	0.253 L	01-Jun-22 23:10	1
MDL - Method Detecti	ion Limit RL - R	eporting limit	Results reported to M	IDL.	When re	ported, PFHxS,	PFOA, PFOS, M	leFOSAA and Et	FOSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other

analytes.

Work Order 2205141

Sample ID: Dec	con water (Tap)								PFAS Iso	tope Dilution 1	Method
	AECOM CVRA		Matrix: Date Colle	Aqueous ected: 11-May-22 1	Lal	boratory Data o Sample: te Received:	2205141-1 17-May-2		Column:	BEH C18	
Analyte		CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		375-22-4	<1.01	1.01	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
PFPeA		2706-90-3	< 0.756	0.756	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
PFBS		375-73-5	< 0.906	0.906	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
4:2 FTS		757124-72-4	< 0.951	0.951	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
PFHxA		307-24-4	< 0.816	0.816	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
PFPeS		2706-91-4	< 0.821	0.821	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
HFPO-DA		13252-13-6	<1.57	1.57	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
PFHpA		375-85-9	< 0.936	0.936	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
ADONA		919005-14-4	< 0.641	0.641	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
PFHxS		355-46-4	<1.03	1.03	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
6:2 FTS		27619-97-2	<1.13	1.13	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
PFOA		335-67-1	< 0.956	0.956	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
PFHpS		375-92-8	< 0.596	0.596	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
PFNA		375-95-1	< 0.756	0.756	2.00		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
PFOSA		754-91-6	16.1	1.09	2.00			27-May-22		01-Jun-22 23:52	
PFOS		1763-23-1	<1.13	1.13	2.00			27-May-22		01-Jun-22 23:52	
9CI-PF3ONS		756426-58-1	<1.07	1.07	2.00			27-May-22		01-Jun-22 23:52	
PFDA		335-76-2	< 0.946	0.946	2.00			27-May-22		01-Jun-22 23:52	
8:2 FTS		39108-34-4	<1.14	1.14	2.00			27-May-22		01-Jun-22 23:52	
PFNS		68259-12-1	<1.16	1.16	2.00			27-May-22		01-Jun-22 23:52	
MeFOSAA		2355-31-9	< 0.951	0.951	2.00			27-May-22		01-Jun-22 23:52	
EtFOSAA		2991-50-6	<1.04	1.04	2.00			27-May-22		01-Jun-22 23:52	
PFUnA		2058-94-8	< 0.756	0.756	2.00			27-May-22		01-Jun-22 23:52	
PFDS		335-77-3	< 0.761	0.761	2.00			27-May-22		01-Jun-22 23:52	
11Cl-PF3OUdS		763051-92-9	< 0.991	0.991	2.00			27-May-22		01-Jun-22 23:52	
PFDoA		307-55-1	< 0.976	0.976	2.00			27-May-22		01-Jun-22 23:52	
MeFOSA		31506-32-8	<2.24	2.24	2.50			27-May-22		01-Jun-22 23:52	
PFTrDA		72629-94-8	<0.656	0.656	2.00			27-May-22		01-Jun-22 23:52	
PFDoS		79780-39-5	<1.42	1.42	2.00			27-May-22		01-Jun-22 23:52	
PFTeDA		376-06-7	<0.816	0.816	2.00			27-May-22 27-May-22		01-Jun-22 23:52 01-Jun-22 23:52	
EtFOSA		4151-50-2	<2.33	2.33	2.50			27-May-22		01-Jun-22 23:52	
MeFOSE		24448-09-7	<2.00	2.00	2.50			27-May-22 27-May-22		01-Jun-22 23:52	
EtFOSE		1691-99-2	<1.57	1.57	2.00			27-May-22 27-May-22		01-Jun-22 23:52	
Labeled Standards	5	Туре	% Recovery		imits	Qualifiers	Batch	Extracted			Dilution
13C3-PFBA	2	IS	40.6		5 - 150	Quannels		27-May-22		01-Jun-22 23:52	
13C3-PFPeA		IS	40.6 64.6		5 - 150			27-May-22 27-May-22		01-Jun-22 23:52 01-Jun-22 23:52	
13C3-PFBS		IS	95.2		5 - 150			27-May-22 27-May-22		01-Jun-22 23:52 01-Jun-22 23:52	
15C5-FFB5 Worls Ord		15	95.4	2.	- 150		D22E192	21-111ay-22	0.200 L	01-Juli-22 23.32	

Sample ID: Decon w	ater (Tap)						PFAS Iso	tope Dilution 1	Method
Client DataName:AECCProject:CVRA		Matrix: Date Collected:	Aqueous 11-May-22 10:15	Laboratory Data Lab Sample: Date Received:	2205141-1 17-May-2		Column:	BEH C18	
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	81.5	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C2-PFHxA	IS	80.8	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C3-HFPO-DA	IS	79.9	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C4-PFHpA	IS	83.2	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C3-PFHxS	IS	82.2	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C2-6:2 FTS	IS	96.9	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C2-PFOA	IS	75.9	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C5-PFNA	IS	76.1	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C8-PFOSA	IS	66.0	10 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C8-PFOS	IS	82.2	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C2-PFDA	IS	85.3	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C2-8:2 FTS	IS	80.5	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
d3-MeFOSAA	IS	83.5	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
d5-EtFOSAA	IS	81.2	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C2-PFUnA	IS	77.0	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C2-PFDoA	IS	80.8	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
d3-MeFOSA	IS	17.4	10 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
13C2-PFTeDA	IS	67.9	25 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
d5-EtFOSA	IS	15.6	10 - 150			27-May-22	0.250 L	01-Jun-22 23:52	1
d7-MeFOSE	IS	39.1	10 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
d9-EtFOSE	IS	46.6	10 - 150		B22E192	27-May-22	0.250 L	01-Jun-22 23:52	1
MDL - Method Detection Limi	it RL - Reporting limit	Results reported to N	IDL.	When rep	ported, PFHxS,	PFOA, PFOS, M	leFOSAA and Etl	OSAA include both	

linear and branched isomers. Only the linear isomer is reported for all other

analytes.

Work Order 2205141

Sample ID: H	EB-051122								PFAS Iso	tope Dilution 1	Method
Client Data Name: Project:	AECOM CVRA		Matrix: Date Colle	Aqueous ected: 11-May-22 1	Lab S	ratory Data Sample: Received:	2205141-1 17-May-2		Column:	BEH C18	
Analyte		CAS Number	Conc. (ng/L)	MDL	ŘL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		375-22-4	< 0.977	0.977	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
PFPeA		2706-90-3	< 0.731	0.731	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
PFBS		375-73-5	< 0.876	0.876	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
4:2 FTS		757124-72-4	< 0.919	0.919	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
PFHxA		307-24-4	< 0.789	0.789	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
PFPeS		2706-91-4	< 0.793	0.793	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
HFPO-DA		13252-13-6	<1.51	1.51	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
PFHpA		375-85-9	< 0.905	0.905	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
ADONA		919005-14-4	< 0.619	0.619	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
PFHxS		355-46-4	< 0.997	0.997	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
6:2 FTS		27619-97-2	<1.09	1.09	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
PFOA		335-67-1	< 0.924	0.924	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
PFHpS		375-92-8	< 0.576	0.576	1.94		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
PFNA		375-95-1	< 0.731	0.731	1.94			27-May-22		02-Jun-22 00:03	
PFOSA		754-91-6	1.64	1.05	1.94	J		27-May-22		02-Jun-22 00:03	
PFOS		1763-23-1	<1.09	1.09	1.94			27-May-22		02-Jun-22 00:03	
9CI-PF3ONS		756426-58-1	<1.03	1.03	1.94			27-May-22		02-Jun-22 00:03	
PFDA		335-76-2	< 0.914	0.914	1.94			27-May-22		02-Jun-22 00:03	
8:2 FTS		39108-34-4	<1.10	1.10	1.94			27-May-22		02-Jun-22 00:03	
PFNS		68259-12-1	<1.12	1.12	1.94			27-May-22		02-Jun-22 00:03	
MeFOSAA		2355-31-9	< 0.919	0.919	1.94			27-May-22		02-Jun-22 00:03	
EtFOSAA		2991-50-6	<1.01	1.01	1.94			27-May-22		02-Jun-22 00:03	
PFUnA		2058-94-8	< 0.731	0.731	1.94			27-May-22		02-Jun-22 00:03	
PFDS		335-77-3	< 0.735	0.735	1.94			27-May-22		02-Jun-22 00:03	
11Cl-PF3OUdS		763051-92-9	< 0.958	0.958	1.94			27-May-22		02-Jun-22 00:03	
PFDoA		307-55-1	< 0.943	0.943	1.94			27-May-22		02-Jun-22 00:03	
MeFOSA		31506-32-8	<2.17	2.17	2.42			27-May-22		02-Jun-22 00:03	
PFTrDA		72629-94-8	<0.634	0.634	1.94			27-May-22		02-Jun-22 00:03	
PFDoS		79780-39-5	<1.37	1.37	1.94			27-May-22		02-Jun-22 00:03	
PFTeDA		376-06-7	<0.789	0.789	1.94			27-May-22		02-Jun-22 00:03	
EtFOSA		4151-50-2	<2.25	2.25	2.42			27-May-22 27-May-22		02-Jun-22 00:03	
MeFOSE		24448-09-7	<1.94	1.94	2.42			27-May-22 27-May-22		02-Jun-22 00:03	
EtFOSE		1691-99-2	<1.54	1.52	1.94			27-May-22 27-May-22	0.258 L	02-Jun-22 00:03	
Labeled Standa	urds	Туре	% Recovery		imits	Qualifiers	Batch	Extracted			Dilution
13C3-PFBA		IS	54.1		5 - 150	2		27-May-22		02-Jun-22 00:03	
13C3-PFPeA		IS	78.3		5 - 150			27-May-22 27-May-22		02-Jun-22 00:03	
13C3-PFBS		IS	88.0		5 - 150			27-May-22 27-May-22		02-Jun-22 00:03	
	Onder 2205141		00.0	20					J.200 D	02 Juli 22 00:05	

Sample ID: EB-0	51122							PFAS Iso	tope Dilution	Method
	ECOM VRA		Matrix: Date Collected:	Aqueous 11-May-22 16:15	Laboratory Data Lab Sample: Date Received:	2205141-1 17-May-22		Column:	BEH C18	
Labeled Standards		Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS		IS	79.7	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C2-PFHxA		IS	86.5	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C3-HFPO-DA		IS	96.7	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C4-PFHpA		IS	84.6	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C3-PFHxS		IS	80.8	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C2-6:2 FTS		IS	87.2	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C2-PFOA		IS	84.9	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C5-PFNA		IS	81.1	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C8-PFOSA		IS	68.3	10 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C8-PFOS		IS	83.1	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C2-PFDA		IS	75.6	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C2-8:2 FTS		IS	77.9	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
d3-MeFOSAA		IS	83.9	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
d5-EtFOSAA		IS	85.5	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C2-PFUnA		IS	77.3	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C2-PFDoA		IS	81.4	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
d3-MeFOSA		IS	28.0	10 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
13C2-PFTeDA		IS	64.8	25 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
d5-EtFOSA		IS	28.0	10 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
d7-MeFOSE		IS	44.6	10 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
d9-EtFOSE		IS	48.8	10 - 150		B22E192	27-May-22	0.258 L	02-Jun-22 00:03	1
MDL - Method Detection	Limit	RL - Reporting limit	Results reported to N	IDL.	When rep	oorted, PFHxS,	PFOA, PFOS, M	eFOSAA and Etl	FOSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other

analytes.

Work Order 2205141

AECOM note: Sample "Well #4" obtained from driller's poly tank and not the village well. Sample renamed "Decon Water (Well #4)".

Sample ID: Well #4								PFAS Iso	tope Dilution	Method
Client Data Name: AECOM Project: CVRA Location: Well #4 hydrant	\checkmark	Matrix: Date Colle	Aqueous ected: 12-May-22 11	Lab S	Fratory Data Sample: Received:	2205141-1 17-May-2		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	<1.00	1.00	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
PFPeA	2706-90-3	< 0.749	0.749	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
PFBS	375-73-5	< 0.898	0.898	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
4:2 FTS	757124-72-4	< 0.943	0.943	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
PFHxA	307-24-4	< 0.809	0.809	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
PFPeS	2706-91-4	< 0.814	0.814	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
HFPO-DA	13252-13-6	<1.55	1.55	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
PFHpA	375-85-9	< 0.928	0.928	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
ADONA	919005-14-4	< 0.635	0.635	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
PFHxS	355-46-4	<1.02	1.02	1.98			27-May-22	0.252 L	02-Jun-22 21:33	1
6:2 FTS	27619-97-2	<1.12	1.12	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
PFOA	335-67-1	< 0.948	0.948	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
PFHpS	375-92-8	< 0.590	0.590	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
PFNA	375-95-1	< 0.749	0.749	1.98			27-May-22		02-Jun-22 21:33	1
PFOSA	754-91-6	4.87	1.08	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
PFOS	1763-23-1	<1.12	1.12	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
9C1-PF3ONS	756426-58-1	<1.06	1.06	1.98			27-May-22	0.252 L	02-Jun-22 21:33	1
PFDA	335-76-2	< 0.938	0.938	1.98		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
8:2 FTS	39108-34-4	<1.13	1.13	1.98			27-May-22		02-Jun-22 21:33	
PFNS	68259-12-1	<1.15	1.15	1.98			27-May-22	0.252 L	02-Jun-22 21:33	
MeFOSAA	2355-31-9	< 0.943	0.943	1.98			27-May-22	0.252 L	02-Jun-22 21:33	
EtFOSAA	2991-50-6	<1.03	1.03	1.98			27-May-22		02-Jun-22 21:33	
PFUnA	2058-94-8	< 0.749	0.749	1.98			27-May-22		02-Jun-22 21:33	
PFDS	335-77-3	< 0.754	0.754	1.98			27-May-22	0.252 L	02-Jun-22 21:33	
11Cl-PF3OUdS	763051-92-9	< 0.982	0.982	1.98			27-May-22		02-Jun-22 21:33	
PFDoA	307-55-1	< 0.968	0.968	1.98			27-May-22	0.252 L	02-Jun-22 21:33	
MeFOSA	31506-32-8	<2.22	2.22	2.48			27-May-22		02-Jun-22 21:33	
PFTrDA	72629-94-8	< 0.650	0.650	1.98			27-May-22	0.252 L	02-Jun-22 21:33	
PFDoS	79780-39-5	<1.40	1.40	1.98				0.252 L	02-Jun-22 21:33	
PFTeDA	376-06-7	< 0.809	0.809	1.98			27-May-22		02-Jun-22 21:33	
EtFOSA	4151-50-2	<2.31	2.31	2.48			27-May-22		02-Jun-22 21:33	
MeFOSE	24448-09-7	<1.98	1.98	2.48			•		02-Jun-22 21:33	
EtFOSE	1691-99-2	<1.56	1.56	1.98			27-May-22	0.252 L	02-Jun-22 21:33	
Labeled Standards	Туре	% Recovery		nits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA	IS	79.3	25	- 150		B22E192	27-May-22		02-Jun-22 21:33	1
13C3-PFPeA	IS	83.7		- 150			27-May-22	0.252 L	02-Jun-22 21:33	
13C3-PFBS	IS	99.7		- 150			27-May-22		02-Jun-22 21:33	

Work Order 2205141

Sample ID: Well	1 #4							PFAS Iso	tope Dilution	Method
Project: 0	AECOM CVRA Well #4 hydrant		Matrix: Date Collected:	Aqueous 12-May-22 11:30	Laboratory Data Lab Sample: Date Received:	2205141-1 17-May-22		Column:	BEH C18	
Labeled Standards		Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS		IS	89.6	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C2-PFHxA		IS	90.6	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C3-HFPO-DA		IS	74.5	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C4-PFHpA		IS	88.8	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C3-PFHxS		IS	95.6	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C2-6:2 FTS		IS	88.9	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C2-PFOA		IS	92.0	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C5-PFNA		IS	83.9	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C8-PFOSA		IS	76.5	10 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C8-PFOS		IS	92.5	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C2-PFDA		IS	87.5	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C2-8:2 FTS		IS	81.1	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
d3-MeFOSAA		IS	87.0	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
d5-EtFOSAA		IS	89.6	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C2-PFUnA		IS	86.3	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C2-PFDoA		IS	87.4	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
d3-MeFOSA		IS	10.1	10 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
13C2-PFTeDA		IS	81.0	25 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
d5-EtFOSA		IS	8.60	10 - 150	Н	B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
d7-MeFOSE		IS	48.3	10 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
d9-EtFOSE		IS	51.6	10 - 150		B22E192	27-May-22	0.252 L	02-Jun-22 21:33	1
MDL - Method Detectio	on Limit RL - I	Reporting limit	Results reported to M	IDL.	When re	ported, PFHxS,	PFOA, PFOS, M	leFOSAA and Et	FOSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bot linear and branched isomers. Only the linear isomer is reported for all other

analytes.

Work Order 2205141

Sample ID: FB-051322	2							PFAS Iso	tope Dilution 1	Method
Client Data Name: AECOM Project: CVRA	1	Matrix: Date Colle	Aqueous ected: 13-May-22 1	Lab S	ratory Data ample: Received:	2205141-1 17-May-2		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	< 0.964	0.964	1.91		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
PFPeA	2706-90-3	< 0.720	0.720	1.91		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
PFBS	375-73-5	< 0.863	0.863	1.91		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
4:2 FTS	757124-72-4	< 0.906	0.906	1.91		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
PFHxA	307-24-4	< 0.778	0.778	1.91		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
PFPeS	2706-91-4	< 0.782	0.782	1.91		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
HFPO-DA	13252-13-6	<1.49	1.49	1.91		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
PFHpA	375-85-9	< 0.892	0.892	1.91			27-May-22		02-Jun-22 00:24	
ADONA	919005-14-4	< 0.611	0.611	1.91			27-May-22		02-Jun-22 00:24	
PFHxS	355-46-4	< 0.983	0.983	1.91			27-May-22		02-Jun-22 00:24	
6:2 FTS	27619-97-2	<1.07	1.07	1.91			27-May-22		02-Jun-22 00:24	1
PFOA	335-67-1	< 0.911	0.911	1.91			27-May-22		02-Jun-22 00:24	
PFHpS	375-92-8	< 0.568	0.568	1.91			27-May-22		02-Jun-22 00:24	
PFNA	375-95-1	< 0.720	0.720	1.91			27-May-22		02-Jun-22 00:24	
PFOSA	754-91-6	<1.04	1.04	1.91			27-May-22		02-Jun-22 00:24	
PFOS	1763-23-1	<1.08	1.08	1.91			27-May-22		02-Jun-22 00:24	
9CI-PF3ONS	756426-58-1	<1.02	1.02	1.91			27-May-22		02-Jun-22 00:24	
PFDA	335-76-2	< 0.902	0.902	1.91			27-May-22		02-Jun-22 00:24	
8:2 FTS	39108-34-4	<1.08	1.08	1.91			27-May-22		02-Jun-22 00:24	1
PFNS	68259-12-1	<1.10	1.10	1.91			27-May-22		02-Jun-22 00:24	
MeFOSAA	2355-31-9	< 0.906	0.906	1.91			27-May-22		02-Jun-22 00:24	
EtFOSAA	2991-50-6	< 0.992	0.992	1.91			27-May-22		02-Jun-22 00:24	
PFUnA	2058-94-8	< 0.720	0.720	1.91			27-May-22		02-Jun-22 00:24	
PFDS	335-77-3	< 0.725	0.725	1.91			27-May-22		02-Jun-22 00:24	
11Cl-PF3OUdS	763051-92-9	<0.944	0.944	1.91			27-May-22		02-Jun-22 00:24	1
PFDoA	307-55-1	<0.930	0.930	1.91			27-May-22 27-May-22		02-Jun-22 00:24 02-Jun-22 00:24	
MeFOSA	31506-32-8	<2.14	2.14	2.39			27-May-22 27-May-22		02-Jun-22 00:24 02-Jun-22 00:24	
PFTrDA	72629-94-8	<0.625	0.625	1.91			27-May-22 27-May-22		02-Jun-22 00:24 02-Jun-22 00:24	
PFDoS	79780-39-5	<1.35	1.35	1.91			27-May-22 27-May-22		02-Jun-22 00:24 02-Jun-22 00:24	
PFTeDA	376-06-7	<0.778	0.778	1.91			27-May-22 27-May-22		02-Jun-22 00:24 02-Jun-22 00:24	
EtFOSA	4151-50-2	<2.22	2.22	2.39			27-May-22 27-May-22		02-Jun-22 00:24 02-Jun-22 00:24	
MeFOSE	24448-09-7	<1.91	1.91	2.39			27-May-22 27-May-22		02-Jun-22 00:24 02-Jun-22 00:24	
EtFOSE	1691-99-2	<1.50	1.50	1.91			27-May-22 27-May-22	0.262 L 0.262 L	02-Jun-22 00:24 02-Jun-22 00:24	1
Labeled Standards	Туре	% Recovery		mits	Qualifiers	Batch	Extracted			Dilution
				- 150	Quannels				<i>2</i>	
13C3-PFBA	IS	88.5					27-May-22		02-Jun-22 00:24	1
13C3-PFPeA	IS IS	77.4 96.5		- 150 - 150			27-May-22	0.262 L 0.262 L	02-Jun-22 00:24 02-Jun-22 00:24	1
13C3-PFBS Wark Order 2205		90.0	25	- 150		D22E192	27-May-22	0.202 L	02-Jun-22 00:24	

Sample ID: FB-05	51322							PFAS Iso	tope Dilution	Method
	ECOM VRA		Matrix: Date Collected:	Aqueous 13-May-22 14:00	Laboratory Data Lab Sample: Date Received:	2205141-1 17-May-22		Column:	BEH C18	
Labeled Standards		Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS		IS	83.3	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C2-PFHxA		IS	93.4	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C3-HFPO-DA		IS	101	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C4-PFHpA		IS	86.2	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C3-PFHxS		IS	86.7	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C2-6:2 FTS		IS	75.9	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C2-PFOA		IS	86.2	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C5-PFNA		IS	78.0	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C8-PFOSA		IS	66.5	10 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C8-PFOS		IS	80.4	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C2-PFDA		IS	87.4	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C2-8:2 FTS		IS	76.1	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
d3-MeFOSAA		IS	81.7	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
d5-EtFOSAA		IS	83.1	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C2-PFUnA		IS	82.3	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C2-PFDoA		IS	79.6	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
d3-MeFOSA		IS	26.9	10 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
13C2-PFTeDA		IS	68.7	25 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
d5-EtFOSA		IS	28.8	10 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
d7-MeFOSE		IS	43.5	10 - 150		B22E192	2	0.262 L	02-Jun-22 00:24	1
d9-EtFOSE		IS	45.5	10 - 150		B22E192	27-May-22	0.262 L	02-Jun-22 00:24	1
MDL - Method Detection	Limit	RL - Reporting limit	Results reported to N	IDL.	When rep	ported, PFHxS,	PFOA, PFOS, M	eFOSAA and Etl	FOSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other

analytes.

Work Order 2205141

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
Е	The associated compound concentration exceeded the calibration range of the instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
Μ	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
RL	For 537.1, the reported RLs are the MRLs.
TEQ	Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the sample concentrations.
TEQMax	TEQ calculation that uses the detection limit as the concentration for non-detects
TEQMin	TEQ calculation that uses zero as the concentration for non-detects
TEQRisk	TEQ calculation that uses $\frac{1}{2}$ the detection limit as the concentration for non-
	detects
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Massachusetts Department of Environmental Protection	M-CA413
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Pennsylvania Department of Environmental Protection	018
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Vista Analytical Laboratory Certifications

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air						
Description of Test	Method					
Determination of Polychlorinated p- Dioxins & Polychlorinated	EPA 23					
Dibenzofurans						
Polychlorinated Dibenzodioxins in Ambient Air by GC/HRMS	EPA TO-9A					

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA 1613B
GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C
by GC/HRMS	
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699
HRGC/HRMS	
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	PFAS Isotope
	Dilution
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B
GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

MATRIX: Drinking Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA
GC/HRMS	1613/1613B
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	PFAS Isotope
	Dilution
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537.1
Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by	EPA 533
Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid	
Chromatography/Tandem Mass Spectrometry	
Perfluorooctanesulonate (PFOS) and Perfluorooctanoate (PFOA) - Method	ISO 25101
for Unfiltered Samples Using Solid Phase Extraction and Liquid	2009
Chromatography/Mass Spectrometry	

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	PFAS Isotope Dilution
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA 8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	PFAS Isotope Dilution
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated	EPA 8280A/B
Dibenzofurans by GC/HRMS	
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A

	ratory		Cł	HAIN (DF	сι	JSTO	ODY	,		For Labor Work Order Storage ID:	1	120514 UR.2	Storage Secure	/·⊱ •c ed Yes ErNo □
Project ID: CVRA			PO#.	600693	'oy		5	ampler: _	Mar	(name)		TAT check one	Standard; ; Rush (sure 14 da	21 daya bhargc may apply) iys 7 days S	pecify:
Marius Hopkins	ma	. Kil	-	5/14/22	1	600	1		il	larissa Spark	5 MISpan	A		05 17 22	0904
Relinquished by (printed name and signature)				Date		Time		Receiv		inted name and sign				Date	Time
Relinquished by (printed name	and signa	ture)		Date		Time	1	Receiv	ved by (pr	inted name and sign	nature)			Date	Time
SHIP TO: Vista Analytical L 1104 Windfield W El Durado Hills, C (916) 673-1520 *	/ay A 95762	673-0106	Method of Tracking N	or an entrementation of the	Add	Anolys	is(cs) Req		7		FASUN ON DIVION	7		1011 (DN (019))	
Sample ID	Date	Time	Location/ Sample Desc	ription		A REAL PROPERTY	ro with	PTONPTO	83 PE PS 1181	1 0 1 0 CHER WIL	Provine Provint	101 101 101 101 101 101 101 101 101 101	in all	Commen	1s
AMW-01 (80-80.5)	5/9/22	1500			1	P	50	1 32		X				Commen	
AMW-04 (1-2)	5/11/22	1310			1	P	50			X					
AMW-04 (69-70)	5/14/22	1450			1	8	50			×			low anum	tity	
AMW-05 (1-2)	5/12/29			-	1	2	30			×					
A5B-01 (1-2)	5/12/22	1015			1	9	50			x					
AMW-05 (65-67)	5/rhz				1	9	50			×			-		
Amw-03 (1-2)	5/17/22				1	8	SD			×					
AMW-03 (35-37)	5/13/22	0905			1	P	56			X					
Amw-03 (65-70)		1230			1	P	50			×					
Amw-03 (65-0) Dup	\$13/22				1	P	50			×					
Special Instructions/Comment								_		SEND CUMENTATION D RESULTS TO:	Address:		in mott		10-
											City: Phone: Email:				lip:
Container Types: P = HDPE, P PY = Polypropylene, O= Other				ottle Preserv TZ= Trizma:				_		ypes: AQ = Aqueo udge, SO = Soil, Wi	us, DW = Drink				
ID: LR-537COC							Rev. No	0.:2 Rev	v. Date: 08/	03/2020					Page 1 of 1

Vista Analytical Labo	CHAIN	DF	С	JST	יססי	Y	For Laboratory Use Only Work Order #: ストッシュフ イ I Temp: 1・ゲー・ Storage ID: 、 レルーン Storage Secured: Yes 〇 No □						
Project ID: CURA-			PO#: 606697	DY			Sampler.	M	(name)		TAT Standard: check one): Rush (surcha	X 21 days rge may apply) 7 days Sp	ecify.
Relinquished by (printed name	ma	M	er 5/10/22		16	00		r	Varissa Oparlus	WERDA	7	05 17 22	0904
Relinquished by (printed name	and signal	(pre)	Date		Tim	e	Rece	eived b	y (printed name and signa	iture) (Date	Time
Relinquished by (printed name	and signat	ure)	Date		Tim	e	Rece	aived b	y (printed name and signa	sture)		Date	Time
SHIP TO: Vista Analytical L 1104 Windfield W El Dorado Hills, ((916) 673-1520 * ATTN:	Vay CA 95762	573-0106	Method of Shipment: Tracking No.:	Add	Analy	sis(es) Re	ner(s)		1///	AS UN OD DUNOT	<i>]]/]]</i>	op only	,
Sample ID	Date	Time	Location/ Sample Description	1	wanting	Ton wat	T VECHAR	MR23 64	Silit ve a Contract of the second	* FOR FOR		Commenta	
Decon water (PFAK File)	5/1922	1020	"Filteral" by Horizon	2	P	Aq	Ì		X				
Decon when (TAP)	5/1/22	1015		2	P	AQ			×				
EB-05/127-	5/11/22		The state of the s	2	P	AQ	-		X		Split spoor	Sampler	
Wal #4	5/12/12		Well # 4 hydrant	2	3	AQ			X	+			
FB-051322	SIVIZZ	1400		2	2	AQ			X				
Special Instructions/Comment		ol aı	ECOM note: S otained from c nd not the villa	lrille age	er's we	s pol ell. S	ly tai Samj	nk ole		Name	Andrew motor		
			named "Deco 4)".	on V	Va	ter (SENU OCUMENTATION ND RESULTS TO:	Company:	S	tate:Zıp	D:
Container Types: P = HDPE. P PY = Polypropylene, O= Othe			Bottle Preserv TZ= Trizma:								ing Water, EF = Effluent, P r, B = Blood/Serum, O = O		
D LR-537COC			-			Rev 1	No.: 2 F	lev Date	05/03/2020				Page 1 of 1

Sample Log-In Checklist

							Pa	ge # _		of	_
Vista Work Orde	r #:	20	1051 4	1			т	Т	St	ha	_
Samples		Initials: L				tion:	WR-2				
Arrival:	05 17 2	2 09	104 MUS			Shelf	/Rack	: N/a			
Delivered By:	FedEx	UPS	On Tra	ac G	LS	DHL	- 1	Han Delive		Oth	ner
Preservation:	lce	(Ice) B					chni ce	Dry	Ice	No	ne
Temp °C:	(uncorre	cted)	Probe us	v .bo			Thermometer ID: 11-3				
Temp °C: 18	Temp °C: 1,8 (corrected) Probe used: Y / N Thermometer ID: 11-3									2	
		245	10 10 10 miles	a grant a	11.1 - 20	13.10	1204	a second	YES	NO	NA
Shipping Contain	ner(s) Intact	7			and an other	All and a state			10		
Shipping Custod											1
Airbill			8804 60	59					1		
Shipping Docum									1		
Shipping Contain	ner	(Vista	CI	ient	R	etain	Re	eturn	Dis	pose
Chain of Custody	/ Sample D	Docume	entation Pr	resent?					V		
Chain of Custody	y / Sample D	Docume	entation Co	omplet	e?				1		
Holding Time Ac	ceptable?							_	V		
	Date/Time	e		Initia	ls:		Loca	tion:	Lez	5,6	2-13
Logged In:	Q5/17	4/22 1	6:00		↓ Shelf/Rack: <u>A⇒,</u> F-				1 A-2		
COC Anomaly/S	ample Acce	ptance	Form con	pleted	?				1	1.	

Comments:

LabNumber	CoC Sample ID		SampleAttas	Sample Date/Time	Container	BaseMatrix	Sample Comments
2205111 01	A AMW-01 (80-80.5)	đ		09-May-22 15:00	HDPE Jar, 6 oz	Solid	
2205141-02	A AMW-04 (1-2)			11-May-22 13:10	HDPE Jar, 6 oz.	Solid	
2205141-03	A AMW-04 (69-70)	d d		11-May-22 14:50	HDPE Jac, 6 oz	Solid	
2205141-04	A AMW 05 (1 2)	eí –		12-May-22 09:45	HDPE far, 6 oz	Solid	
7205141-05	A ASB-01 (1-2)	d'		12-May-22 10:15	HDPE Jar, 6 oz	Solid	
2205141-06	A AMW-05 (65-67)	đ		(2-May-22 11:20	HDPE Jar, 0.02	Solid	
2205141-07	A AMW-03 (1-2)	D'		13 May 22 07:45 🖃	HDPE Jar, 6 oz	Solid	
2205141-08	A AMW-03 (35-37)	e í		13-May-22 09:05 🗖 😥	HDPE Jar, 6 oz	Solid	
2205141-09	A AMW-03 (68-70)			13-May-22 12:30	HOPE Jar, 6 oz	Solid	
2205141-10	A AMW-03 (68-70) Dup	eí –		13-May-22 12:30	HDPE Jar, 6 oz.	Solid	
2205141-11	A Decon water (PFAS Free)	d	Filtered by Horizon	10-May-22 10:20	HDPE Bottle, 250 mL	Aquenus	
2205141-11	B Decon water (PFAS Free)	Q'	Filtered by Horizon	10-May-22 10:20	HDPE Bottle, 250 mL	Aqueous	
2205141-12	A Decon water (Tap)	D		11-May-22 10:13	HDPE Boule, 250 mL	Aqueous	
2205141-12	B Decon water (Tap)	r		11 May 22 10:15	HDPE Bottle, 250 mL	Aqueous	
2205141-13	A ER.051122	đ		11-May-22 16:15	HDPE Bottle, 250 mL	Aqueous	
2205141-13	B EB-051122			11-May-22 16:15	HDPE Bottle, 250 mL	Aqueous	
2205141-14	A Well #4	ď	Well #4 hydrant	12-May-22 11:30	HDPE Bottle, 250 mL	Aqueous	
2205141-14	B Well #4	e	Well #4 hydrant	17-May-22 11:10	HDPE Bottle, 258 ml	Aqueous	
2205141-15	A FB-051322	e'		13-May-22 14:00	HDPE Bottle, 250 mL	Aqueons	
2205141-15	B FB-051322	D		13-May-22 14.00	HDPE Boule, 230 mL	Aqueous	

CoC/Label Reconciliation Report WO# 2205141

Checkmarks indicate that information on the COC reconciled with the sample label. Any discrepancies are noted in the following columns.

Work Order 2205141

2205141

Page 1 of 2 54 of 56

	Yes	No	NA	Comments:	@ Sample	Label	Harrislas time date : 05/10/02
Sample Container Intact?	-	~	1	-			
Sample Custody Seals Intact?	-		1				
Adequate Sample Volume?	1						
Container Type Appropriate for Analysis(es)	-						
Preservation Documented: Na2S2O3 Trizma NH4CH3CO2	ne) (Other		1			

Verifed by/Date. 14 25/18/22

2205141

Page 2 of 2 55 of 56 Rev. Date: 09/14/2021 Rev. No: 1

ANOMALY FORM ID: SR-AF

ANOMALY FORM

Vista W	/ork	Order 2205,41
Initial/Date	The fo	llowing checked issues were noted during sample receipt and login:
		1. The samples were received out of temperature at (WI-PHT): Was Ice present: Yes No Melted Blue Ice
		2. The Chain-of-Custody (CoC) was not relinquished properly.
		3. The CoC did not include collection time(s). 00:00 will be used unless notified otherwise.
		4. The sample(s) did not include a sample collection time. All or Sample Name:
		5. A sample ID discrepancy was found. See the Reconciliation report. The CoC Sample ID will be used unless notified otherwise.
1425118/22	P	 A sample date and/or time discrepancy was found. See the Reconciliation report. The CoC Sample date/time will be used unless notified otherwise.
		7. The CoC did not include a sample matrix. The following sample matrix will be used:
		8. Insufficent volume received for analysis. All or Sample Name:
		9. The backup bottle was received broken. Sample Name:
		10. CoC not received, illegible or destroyed.
		11. The sample(s) were received out of holding time. All or Sample Name:
		12. The CoC did not include an analysis. All or Sample Name:
		13. Sample(s) received without collection date. All or Sample Name:
		14. Sample(s) not received. All or Sample Name:
		15. Sample(s) received broken. All or Sample Name:
		16. An incorrect container-type was used. All or Sample Name:
		17. The Field Reagent Blank (FRB) preservative was from a different lot than the field samples. Will proceed with analysis and narrate unless notified otherwise.
		18. Other:

Bolded items require sign-off
Client Contacted:
Date of Contact:
Vista Client Manager:
Resolution:

Page: 1 of 1

Data Validation Report

Project:	CVRA							
Laboratory:	/ista Analytical Laboratory, 1104 Windfield Way, El Dorado Hills, CA 95762							
Work Order (WO):	2206072							
Analyses/Method:	Per- and Polyfluorinated Alkyl Substances (PFASs) / PFAS Isotope Dilution Method / Method 537 Modified							
Validation Level:	Level 2							
Prepared by:	Susanne Seydel / Lisa Smith (CEAC) Completed on: 7/20/2022							

The samples listed below were collected by AECOM on June 7 and 8, 2022.

Sample ID	Quality Control	Sample Date/Time	Laboratory ID							
Groundwater Samples:	·									
MW-55A		6/7/2022	2206072-01							
MW-51A		6/7/2022	2206072-02							
MW-51A Dup	Field duplicate of MW-51A	6/7/2022	2206072-03							
AMW-01		6/7/2022	2206072-04							
AMW-02		6/7/2022	2206072-05							
AMW-05		6/7/2022	2206072-07							
AMW-04		6/8/2022	2206072-08							
AMW-03		6/8/2022	2206072-09							
Field Quality Control Sam	Field Quality Control Samples:									
EB-060722	Equipment Blank	6/7/2022	2206072-06							
AB-060822	Ambient Blank	6/8/2022	2206072-10							

Data validation activities were conducted with reference to:

- Wisconsin DNR PFAS Updates, March 1, 2021
- Wisconsin PFAS Aqueous (Non-Potable Water) and Non-Aqueous Matrices Method Expectations, EA-19-0001-C, 12/19/2019.
- Data Validation Guidelines Module 3: Data Validation Procedure for Per- and Polyfluoroalkyl Substances Analysis by QSM Table B-15, Department of Defense, 5/1/2020.

In the absence of method-specific information, laboratory quality control (QC) limits, or project-specific requirements, AECOMs professional judgment was used as appropriate.

REVIEW ELEMENTS

The data were evaluated based on the following parameters (where applicable to the method):

- ✓ Data completeness (chain-of-custody (CoC)/sample integrity
- ✓ Holding times
- ✓ Laboratory blanks

- ✓ Field and Equipment blanks
- X Extracted Internal Standards (EIS) (Lab H flag)
- ✓ Laboratory control sample (LCS)
- X Ion ratios (IR) (Lab Q flag)
- ✓ Field duplicates

The symbol (\checkmark) indicates that no validation qualifiers were applied based on this parameter. The symbol (\checkmark) indicates that a QC nonconformance resulted in the qualification of data. Any QC nonconformance that resulted in the qualification of data is discussed below. In addition, nonconformances or other issues that were noted during validation, but did not result in qualification of data, may be discussed for informational purposes only.

SUMMARY

Based on the results of the validation, the data are valid as reported and may be used for decision making purposes, except for multiple results that were rejected (R flag) due to very low EIS recoveries. In addition, results were also qualified as estimated (J flag) due to EISs and transition ion ratios. A detailed data validation discussion is provided below.

DETAILED REVIEW

Data Completeness

The data packages were reviewed and met the following acceptance criteria for completeness:

- The CoCs were reviewed for completeness of information relevant to the samples and requested analyses, and for signatures indicating transfer of sample custody.
- The laboratory sample login sheet(s) were reviewed for issues potentially affecting sample integrity, including the condition of sample containers upon receipt at the laboratory.
- Completeness of analyses was verified by comparing the reported results to the CoC requests.

The following items are noted for informational purposes (and do not affect data usability):

• Field staff noted on the CoC record, that there was "insufficient sample volume" collected for sample AMW-02. The method detection limits were slightly elevated by the lower sample volume.

Holding Times

Samples were extracted within the 28-day holding time and analyzed within 30 days of extraction.

Laboratory Blanks

A laboratory method blank was analyzed to assess contamination from laboratory procedures. The method blanks were analyzed at the correct frequency. The results are expected to be less than one-half the method reporting limit (MRL). Contaminants were not detected in the method blank.

Field (Ambient) and Equipment Blanks

Field blanks are analyzed to assess contamination from field procedures. Field equipment and ambient blanks were analyzed at the correct frequency. Contaminants were not detected in the field blanks.

Extracted Internal Standards

Extracted internal standards (EISs) are spiked into all field samples, field QC samples, and method QC samples and are used to quantitate the analytes. The EIS recoveries were within the WI limits of 10-150% for the FOSA, NMeFOSA, NEtFOSA, NMeFOSE, and NEtFOSE EISs, and were within the limits of 25-150% for other EISs, except for those listed below.

				Affected		Final Result
Lab ID	Sample ID	EIS Parameter	% R	Parameter	Original Result	& Flag
2206072-04	AMW-01	d3-MeFOSA	7.00	MeFOSA	2.18U ng/l	R
2206072-04	AMW-01	d5-EtFOSA	5.00	EtFOSA	2.27U ng/l	R
2206072-05	AMW-02	13C3-PFBA	19.3	PFBA	2.85 U ng/l	R
2206072-05	AMW-02	d3-MeFOSA	1.20	MeFOSA	3.19U ng/l	R
2206072-05	AMW-02	13C2-PFTeDA	10.1	PFTeDA	1.16U ng/l	R
				PFTrDA	0.934U ng/l	R
2206072-05	AMW-02	d7-MeFOSE	9.10	MeFOSE	2.85U ng/l	R
2206072-05	AMW-02	d9-EtFOSE	5.60	EtFOSE	2.24U ng/l	R
2206072-09	AMW-03	13C2-6:2 FTS	204	6:2 FTS	12800 ng/l	J

LCS Results (OPR)

The OPR (Ongoing Precision and Recovery sample) or LCS, was analyzed to monitor the accuracy of the analytical method independent of matrix effects. Recoveries (%Rs) were within the WI limits 60% to 135% limit for normal range LCSs and were acceptable.

Ion Transition Ratios

Laboratory qualifiers indicate that several samples did not meet the ion transition ratio criteria which were qualified as "Q" by the laboratory and summarized below. These results were qualified as estimated (J) and are considered as estimated maximum concentrations.

Lab ID	Sample ID	Parameter	Concentration and Validator Flag	Units	MDL	RL
2206072-01	MW-55A	PFOSA	3.95 J	ng/L	1.10	2.03
2206072-01	MW-55A	PFOS	11.9 J	ng/L	1.14	2.03
2206072-02	MW-51A	PFOSA	2.19 J	ng/L	1.08	1.98
2206072-05	AMW-02	PFOS	4.79 J	ng/L	1.61	2.85

Field Duplicate Results

Field duplicates are collected to assess the overall precision of field sampling and laboratory analysis. Samples MW-51A and MW-51A Dup were parent and field duplicate, respectively. Field duplicate relative percent differences (RPDs) were less than the groundwater criteria of 30%, or the absolute difference of the results were with ± the reporting limit (RL) if one or both results were less than five times the RL. A summary of the field duplicate results (detections only) and RPDs are as follows:

Sample & Compound(s)	Units	RL (max)	Sample Concentration	Field Duplicate Concentration	RPD (%)
PFBA	ng/L	1.98	55.7	57.1	2.5
PFPeA	ng/L	1.98	14.0	14.2	1.4
PFBS	ng/L	1.98	21.9	21.6	1.4
PFHxA	ng/L	1.98	14.1	14.3	1.4
PFPeS	ng/L	1.98	2.22	2.00	10.4
PFHpA	ng/L	1.98	4.51	3.78	17.6
PFHxS	ng/L	1.98	6.48	6.64	2.4
PFOA	ng/L	1.98	14.0	13.2	5.9
PFOSA	ng/L	1.98	2.19	2.45	11.2
PFOS	ng/L	1.98	2.14	2.41	11.9

No qualification was required for field duplicate precision.

Sample Results and Quantitation

Sample results were reviewed for correct methods, units, and reported analytes. No issues or discrepancies were found during this review, with the exception that the EtFOSA result for sample AMW-02 was not reported. The laboratory indicated that the result was not reported due a low internal standard recovery, and added a comment to the case narrative.

The laboratory case narrative indicated that samples "AMW-01", "AMW-02" and "AMW-03" contained particulate and were centrifuged prior to extraction.

Dilutions were performed for multiple samples due to elevated target compound concentrations. The laboratory flagged the affected sample results with a D flag. samples, parameters, and concentrations were as follows:

Lab ID	Sample ID	Parameter	Dilution Factor	Concentration	Units	MDL	RL
2206072-07	AMW-05	PFHxS	5	3610	ng/L	5.23	10.2
2206072-07	AMW-05	PFOS	5	3160	ng/L	5.74	10.2
2206072-09	AMW-03	PFPeA	40	6040	ng/L	30.1	79.7
2206072-09	AMW-03	PFHxA	40	3270	ng/L	32.5	79.7
2206072-09	AMW-03	PFHxS	40	7080	ng/L	41.1	79.7
2206072-09	AMW-03	6:2 FTS	40	12800	ng/L	44.8	79.7
2206072-09	AMW-03	PFOS	40	5230	ng/L	45.0	79.7

No qualification was required for diluted results.

Qualified Analytical Results

Results reported below the Reporting Limit/LOQ were qualified as estimated (J) by the laboratory; qualifications of these results were accepted by the Validator; however, they are not listed in the table below. In addition, R qualifiers take precedence over J qualifiers.

Lab ID	Sample ID	Analyte	Validation Qualifier ⁽¹⁾	Units	Reason Code ⁽²⁾
2206072-01	MW-55A	PFOSA	3.95 J	ng/l	ir
2206072-01	MW-55A	PFOS	11.9 J	ng/l	ir
2206072-02	MW-51A	PFOSA	2.19 J	ng/l	ir
2206072-05	AMW-02	PFOS	4.79 J	ng/l	ir
2206072-04	AMW-01	MeFOSA	2.18 R	ng/l	eis
2206072-04	AMW-01	EtFOSA	2.27 R	ng/l	eis
2206072-05	AMW-02	PFBA	2.85 R	ng/l	eis
2206072-05	AMW-02	MeFOSA	3.19 R	ng/l	eis
2206072-05	AMW-02	PFTeDA	1.16 R	ng/l	eis
2206072-05	AMW-02	PFTrDA	0.934 R	ng/l	eis
2206072-05	AMW-02	MeFOSE	2.85 R	ng/l	eis
2206072-05	AMW-02	EtFOSE	2.24 R	ng/l	eis
2206072-09	AMW-03	6:2 FTS	12800 J	ng/l	eis

Table 1 - Data Validation Summary of Qualified Data

(1): Data Validation Qualifiers: J Estimated, +/- indicate the direction of bias R Not usable for risk evaluations

(2): Reason Codes: eis

ir

Extracted internal standard Ion ratios

July 20, 2022 Vista Work Order No. 2206072

Mr. Andrew Mott AECOM 558 North Main Street Oshkosh, WI 54901

Dear Mr. Mott,

Enclosed are the amended results for the sample set received at Vista Analytical Laboratory on June 09, 2022 under your Project Name 'CVRA'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at jfox@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Jamie Fox Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 ph: 916-673-1520 fx: 916-673-0106 www.vista-analytical.com

Vista Work Order No. 2206072 Case Narrative

Sample Condition on Receipt:

Ten aqueous samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology. The samples were received in good condition and within the recommended temperature requirements.

Analytical Notes:

PFAS Isotope Dilution Method

Samples "AMW-01", "AMW-02" and "AMW-03" contained particulate and were centrifuged prior to extraction.

The samples were extracted and analyzed for a selected list of PFAS using Vista's PFAS Isotope Dilution Method. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

The sample result for EtFOSA could not be reported in sample "AMW-02" due to low internal standard recovery. There was no additional volume to perform a re-extraction.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above the Reporting Limit. The OPR recoveries were within the method acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag	%Rec
2206072-04	AMW-01	PFAS Isotope Dilution Method	d3-MeFOSA	Н	7.00
2206072-04	AMW-01	PFAS Isotope Dilution Method	d5-EtFOSA	Н	5.00
2206072-05	AMW-02	PFAS Isotope Dilution Method	13C3-PFBA	Н	19.3
2206072-05	AMW-02	PFAS Isotope Dilution Method	d3-MeFOSA	Н	1.20
2206072-05	AMW-02	PFAS Isotope Dilution Method	13C2-PFTeDA	Н	10.1
2206072-05	AMW-02	PFAS Isotope Dilution Method	d7-MeFOSE	Н	9.10
2206072-05	AMW-02	PFAS Isotope Dilution Method	d9-EtFOSE	Н	5.60
2206072-09	AMW-03	PFAS Isotope Dilution Method	13C2-6:2 FTS	Н	204

H = Recovery was outside laboratory acceptance criteria.

TABLE OF CONTENTS

Case Narrative	1
Table of Contents	4
Sample Inventory	5
Analytical Results	6
Qualifiers	31
Certifications	32
Sample Receipt	35

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2206072-01	MW-55A	07-Jun-22 09:40	09-Jun-22 09:35	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2206072-02	MW-51A	07-Jun-22 11:10	09-Jun-22 09:35	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2206072-03	MW-51A Dup	07-Jun-22 11:10	09-Jun-22 09:35	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2206072-04	AMW-01	07-Jun-22 13:55	09-Jun-22 09:35	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2206072-05	AMW-02	07-Jun-22 15:30	09-Jun-22 09:35	HDPE Bottle, 250 mL
2206072-06	EB-060722	07-Jun-22 12:40	09-Jun-22 09:35	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2206072-07	AMW-05	07-Jun-22 17:30	09-Jun-22 09:35	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2206072-08	AMW-04	08-Jun-22 09:35	09-Jun-22 09:35	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2206072-09	AMW-03	08-Jun-22 11:10	09-Jun-22 09:35	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2206072-10	AB-060822	08-Jun-22 11:30	09-Jun-22 09:35	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL

ANALYTICAL RESULTS

Sample ID: Method Bl	ank								PFAS Iso	tope Dilution	Metho
Client Data					1	oratory Data					
Name: AECOM		Matrix:	Aqueous		Lab S	Sample:	B22F069-	BLK1	Column:	BEH C18	
Project: CVRA											
Analyte	CAS Number	Conc. (ng/L)	MDL		RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilutio
PFBA	375-22-4	<1.01	1.01	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
PFPeA	2706-90-3	< 0.755	0.755	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
PFBS	375-73-5	< 0.905	0.905	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
4:2 FTS	757124-72-4	< 0.950	0.950	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
PFHxA	307-24-4	< 0.815	0.815	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
PFPeS	2706-91-4	< 0.820	0.820	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
HFPO-DA	13252-13-6	<1.57	1.57	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
PFHpA	375-85-9	< 0.935	0.935	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
ADONA	919005-14-4	< 0.640	0.640	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
PFHxS	355-46-4	<1.03	1.03	â	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
6:2 FTS	27619-97-2	<1.13	1.13	4	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
PFOA	335-67-1	< 0.955	0.955	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
PFHpS	375-92-8	< 0.595	0.595		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
PFNA	375-95-1	< 0.755	0.755	2	2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
PFOSA	754-91-6	<1.09	1.09		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
PFOS	1763-23-1	<1.13	1.13		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
9C1-PF3ONS	756426-58-1	<1.07	1.07		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
PFDA	335-76-2	< 0.945	0.945		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
8:2 FTS	39108-34-4	<1.14	1.14		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
PFNS	68259-12-1	<1.16	1.16		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
MeFOSAA	2355-31-9	< 0.950	0.950		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
EtFOSAA	2991-50-6	<1.04	1.04		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
PFUnA	2058-94-8	< 0.755	0.755		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
PFDS	335-77-3	< 0.760	0.760		2.00		B22F069	23 Jun 22	0.250 L	27-Jun-22 17:15	
11Cl-PF3OUdS	763051-92-9	< 0.990	0.990		2.00		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15 27-Jun-22 17:15	
PFDoA	307-55-1	< 0.975	0.990		2.00		B22F069	23-Jun-22	0.250 L 0.250 L	27-Jun-22 17:15	
MeFOSA	31506-32-8	<2.24	2.24		2.50		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
PFTrDA	72629-94-8	<0.655	0.655		2.00		B22F069	23-Jun-22	0.250 L 0.250 L	27-Jun-22 17:15 27-Jun-22 17:15	
PFDoS	72029-94-8	<1.42	1.42		2.00		B22F009 B22F069	23-Jun-22	0.250 L 0.250 L	27-Jun-22 17:15	
PFTeDA	376-06-7	<0.815	0.815		2.00		B22F009 B22F069	23-Jun-22	0.250 L 0.250 L	27-Jun-22 17:15 27-Jun-22 17:15	
EtFOSA	4151-50-2	<2.33	2.33		2.50		B22F069 B22F069	23-Jun-22 23-Jun-22	0.250 L 0.250 L	27-Jun-22 17:13 27-Jun-22 17:15	
MeFOSE	24448-09-7	<2.33	2.33		2.50		B22F069 B22F069	23-Jun-22 23-Jun-22	0.250 L 0.250 L	27-Jun-22 17:15 27-Jun-22 17:15	
EtFOSE	1691-99-2	<1.57	1.57		2.50		B22F069 B22F069	23-Jun-22 23-Jun-22	0.250 L 0.250 L		
Labeled Standards	Туре	<1.57 % Recovery	1.37	Limits	2.00	Qualifiers	B22F069	Extracted	Samp Size	27-Jun-22 17:15 Analyzed	Dilution
13C3-PFBA	IS	83.3		25 - 150		<u> </u>	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
13C3-PFPeA	IS	81.2		25 - 150			B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
13C3-PFBS	IS	80.2		25 - 150			B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
13C2-4:2 FTS	IS	91.2		25 - 150			B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	
	15	1.4		20 100			5221009	25 5 un-22	0.250 L	2/ 5011-22 1/.13	1

Page 7 of 38

Sample ID: Method Blan		PFAS Iso	PFAS Isotope Dilution Method						
Client DataName:AECOMProject:CVRA		Matrix:	Aqueous	Laboratory Data Lab Sample:	B22F069-	BLK1	Column:	BEH C18	
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA	IS	86.7	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C3-HFPO-DA	IS	80.3	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C4-PFHpA	IS	89.1	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C3-PFHxS	IS	88.5	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C2-6:2 FTS	IS	80.0	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C2-PFOA	IS	86.1	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C5-PFNA	IS	83.4	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C8-PFOSA	IS	34.6	10 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C8-PFOS	IS	81.1	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C2-PFDA	IS	76.5	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C2-8:2 FTS	IS	89.3	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
d3-MeFOSAA	IS	72.1	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
d5-EtFOSAA	IS	58.9	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C2-PFUnA	IS	68.0	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C2-PFDoA	IS	58.1	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
d3-MeFOSA	IS	15.1	10 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
13C2-PFTeDA	IS	59.1	25 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
d5-EtFOSA	IS	11.2	10 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
d7-MeFOSE	IS	25.1	10 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
d9-EtFOSE	IS	23.4	10 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:15	1
MDL - Method Detection Limit	RL - Reporting limit	Results reported	to MDL.	When rep	ported, PFHxS,	PFOA, PFOS, M	eFOSAA and Eth	OSAA include both	

....... reported, rrrxs, PrOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other analytes.

Sample ID:	OPR									PFAS Is	sotope Dilution	Method
Client Data Name: Project:	AECOM CVRA		Matrix:	Aqueous			aboratory Data ab Sample:	B22F069	-BS1	Column:	BEH C18	
Analyte		CAS Number	Amt Found (ng/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA		375-22-4	4.03	4.00	101	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFPeA		2706-90-3	3.80	4.00	95.0	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFBS		375-73-5	3.78	4.00	94.5	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
4:2 FTS		757124-72-4	3.68	4.00	92.1	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFHxA		307-24-4	4.09	4.00	102	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFPeS		2706-91-4	3.55	4.00	88.7	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
HFPO-DA		13252-13-6	4.45	4.00	111	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFHpA		375-85-9	4.68	4.00	117	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
ADONA		919005-14-4	3.75	4.00	93.8	50 - 150	Q	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFHxS		355-46-4	3.79	4.00	94.9	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
6:2 FTS		27619-97-2	4.13	4.00	103	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFOA		335-67-1	3.78	4.00	94.5	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFHpS		375-92-8	4.75	4.00	119	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFNA		375-95-1	4.28	4.00	107	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFOSA		754-91-6	4.10	4.00	103	50 - 150	Q	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFOS		1763-23-1	2.63	4.00	65.8	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
9C1-PF3ONS		756426-58-1	4.18	4.00	105	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFDA		335-76-2	4.15	4.00	104	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
8:2 FTS		39108-34-4	3.98	4.00	99.4	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFNS		68259-12-1	3.16	4.00	79.0	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
MeFOSAA		2355-31-9	3.27	4.00	81.8	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
EtFOSAA		2991-50-6	4.25	4.00	106	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFUnA		2058-94-8	3.73	4.00	93.3	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFDS		335-77-3	2.53	4.00	63.2	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
11Cl-PF3OUdS	5	763051-92-9	3.89	4.00	97.3	50 - 150	Q	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFDoA		307-55-1	4.06	4.00	102	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
MeFOSA		31506-32-8	4.60	4.00	115	50 - 150	Q	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFTrDA		72629-94-8	4.79	4.00	120	50 - 150	Q	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFDoS		79780-39-5	3.77	4.00	94.2	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
PFTeDA		376-06-7	3.97	4.00	99.2	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
EtFOSA		4151-50-2	3.41	4.00	85.3	50 - 150		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1

Work Order 2206072 Revision 1

Page 9 of 38

Sample ID: OPR PFAS Isotope Dilution Method												
Client Data Name: Project:	AECOM CVRA		Matrix:	Aqueous	S		aboratory Data	B22F069-	-BS1	Column:	BEH C18	
Analyte		CAS Number	Amt Found (ng/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
MeFOSE		24448-09-7	3.38	4.00	84.5	50 - 15	0	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
EtFOSE		1691-99-2	2.53	4.00	63.2	50 - 15	0	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
Labeled Standar	·ds		Туре		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBA			IS		84.4	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C3-PFPeA			IS		85.6	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C3-PFBS			IS		84.8	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C2-4:2 FTS			IS		97.0	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C2-PFHxA			IS		89.1	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C3-HFPO-DA			IS		87.0	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C4-PFHpA			IS		90.7	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C3-PFHxS			IS		83.2	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C2-6:2 FTS			IS		78.7	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C2-PFOA			IS		82.2	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C5-PFNA			IS		84.7	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C8-PFOSA			IS		42.2	10 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C8-PFOS			IS		91.7	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C2-PFDA			IS		80.8	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C2-8:2 FTS			IS		78.2	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
d3-MeFOSAA			IS		71.7	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
d5-EtFOSAA			IS		62.1	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C2-PFUnA			IS		71.8	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C2-PFDoA			IS		64.2	25 - 15		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
d3-MeFOSA			IS		16.9	10 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
13C2-PFTeDA			IS		67.4	25 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
d5-EtFOSA			IS		15.0	10 - 15		B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	
d7-MeFOSE			IS		31.5	10 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1
d9-EtFOSE			IS		27.4	10 - 15	50	B22F069	23-Jun-22	0.250 L	27-Jun-22 17:26	1

Page 10 of 38

Sample ID: MW-55A								PFAS Iso	tope Dilution	Method
Client Data				La	boratory Data					
Name: AECOM		Matrix:	Aqueous	La	b Sample:	2206072-0)1	Column:	BEH C18	
Project: CVRA		Date Coll	ected: 07-Jun-22 09	0:40 Da	ate Received:	09-Jun-22	09:35		BEIT CTO	
Analyte	CAS Number	Conc. (ng/L)	MDL	ŔL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	375-22-4	5.39	1.02	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFPeA	2706-90-3	5.94	0.765	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFBS	375-73-5	12.6	0.917	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
4:2 FTS	757124-72-4	< 0.963	0.963	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFHxA	307-24-4	2.14	0.826	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFPeS	2706-91-4	1.89	0.831	2.03	J	B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
HFPO-DA	13252-13-6	<1.59	1.59	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFHpA	375-85-9	< 0.947	0.947	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
ADONA	919005-14-4	< 0.648	0.648	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFHxS	355-46-4	10.5	1.04	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
6:2 FTS	27619-97-2	<1.14	1.14	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFOA	335-67-1	< 0.968	0.968	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFHpS	375-92-8	1.64	0.603	2.03	J	B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFNA	375-95-1	< 0.765	0.765	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFOSA	754-91-6	3.95	1.10	2.03	Q	B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFOS	1763-23-1	11.9	1.14	2.03	Q	B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
9C1-PF3ONS	756426-58-1	<1.08	1.08	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFDA	335-76-2	< 0.957	0.957	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
8:2 FTS	39108-34-4	<1.15	1.15	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
PFNS	68259-12-1	<1.17	1.17	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
MeFOSAA	2355-31-9	< 0.963	0.963	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
EtFOSAA	2991-50-6	<1.05	1.05	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
PFUnA	2058-94-8	< 0.765	0.765	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
PFDS	335-77-3	< 0.770	0.770	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
11Cl-PF3OUdS	763051-92-9	<1.00	1.00	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
PFDoA	307-55-1	< 0.988	0.988	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
MeFOSA	31506-32-8	<2.27	2.27	2.53		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
PFTrDA	72629-94-8	< 0.664	0.664	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
PFDoS	79780-39-5	<1.43	1.43	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
PFTeDA	376-06-7	<0.826	0.826	2.03		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
EtFOSA	4151-50-2	<2.36	2.36	2.53		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
MeFOSE	24448-09-7	<2.03	2.03	2.53		B22F069	23-Jun-22	0.247 L 0.247 L	27-Jun-22 18:39 27-Jun-22 18:39	
EtFOSE	1691-99-2	<1.59	1.59	2.03		B22F069	23-Jun-22	0.247 L 0.247 L	27-Jun-22 18:39	
Labeled Standards	Туре	% Recovery		imits	Qualifiers	Batch	Extracted	Samp Size		Dilution
13C3-PFBA	IS	82.3	25	- 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
13C3-PFPeA	IS	87.1		- 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	
13C3-PFBS	IS	79.7		- 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	

Page 11 of 38

Sample ID: MW-55A						PFAS Isotope Dilution Method			
Client Data				Laboratory Data					
Name: AECOM		Matrix:	Aqueous	Lab Sample:	2206072-0	1	Column:	BEH C18	
Project: CVRA		Date Collected:	07-Jun-22 09:40	Date Received:	09-Jun-22	09:35	Conum	DEITCIO	
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-4:2 FTS	IS	99.5	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C2-PFHxA	IS	87.2	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C3-HFPO-DA	IS	85.6	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C4-PFHpA	IS	85.3	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C3-PFHxS	IS	86.8	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C2-6:2 FTS	IS	77.2	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C2-PFOA	IS	80.0	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C5-PFNA	IS	85.2	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C8-PFOSA	IS	59.1	10 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C8-PFOS	IS	101	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C2-PFDA	IS	82.4	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C2-8:2 FTS	IS	90.6	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
d3-MeFOSAA	IS	88.1	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
d5-EtFOSAA	IS	78.1	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C2-PFUnA	IS	78.3	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C2-PFDoA	IS	77.5	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
d3-MeFOSA	IS	15.8	10 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
13C2-PFTeDA	IS	83.6	25 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
d5-EtFOSA	IS	15.1	10 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
d7-MeFOSE	IS	36.9	10 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
d9-EtFOSE	IS	36.1	10 - 150		B22F069	23-Jun-22	0.247 L	27-Jun-22 18:39	1
MDL - Method Detection Limit	RL - Reporting limit	Results reported to N	IDL.	When rep	oorted, PFHxS,	PFOA, PFOS, N	leFOSAA and Etl	FOSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other

analytes.

Sample ID: MW-51A								PFAS Iso	tope Dilution	Method
Client Data				Labo	oratory Data					
Name: A1CEM		Matrix:	AqQeoQs	Lab	Sample:	2206072-0)2	ColOmu:	n1BCH8	
Project: CVRA		Date Colle	ected: 07-JQu-22 H	HD Date	Recei9ed:	04-JQ1-22	04:v3			
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
P5n A	v73-22	33F7	HH00	H F 48		n 225064	2v-JQi-22	0123v L	27-JQ1-22 H8:30	Н
P5PeA	2706-40-v	ΗЮ	0F7.7	H F 48		n 225064	2v-JQi-22	0臣3v L	27-JQ1-22 H8:30	Н
P5n S	v73-7v-3	2H F 4	01846	H I 48		n 225064	2v-JQ1-22	0E3v L	27-JQi-22 H8:30	H
. :2 5TS	737H272	<0]4. H	0F4. H	H F 48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5BxA	v07-2	Hℍ	01807	H I 48		n 225064	2v-JQ1-22	0E3v L	27-JQi-22 H8:30	
P5PeS	2706-4H.	2122	018H2	H F 48		n 225064	2v-JQi-22	0臣3v L	27-JQ1-22 H8:30	Н
B5PE-DA	Hv232-Hv-6	<hb3< td=""><td>HB3</td><td>HI48</td><td></td><td>n 225064</td><td>2v-JQi-22</td><td>0臣3v L</td><td>27-JQ1-22 H8:30</td><td>H</td></hb3<>	HB3	H I 48		n 225064	2v-JQi-22	0臣3v L	27-JQ1-22 H8:30	H
P5BpA	v73-83-4	. BH	0月426	H F 48		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	
ADENA	4Н4003-Н	<0Kv.	0Kv.	H I 48		n 225064	2v-JQi-22	0臣3v L	27-JQ1-22 H8:30	
P5BxS	v33-, 6-,	6F 8	HI02	H F 48		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	
6:2 5TS	276H4-47-2	<hHH</h	HIH	H I 48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5EA	vv3-67-H	ΗЮ	0译.3	H F 48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5BpS	v73-42-8	<01384	0B84	H I 48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5NA	v73-43-Н	<0F7.7	0F7. 7	H F 48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5ESA	734H-6	2114	HI08	H I 48	Q	n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5ES	H76v-2v-H	2冊	HH2	HF48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
4Cl-P5vENS	736. 26-38-Н	<h#03< td=""><td>HI03</td><td>HI48</td><td></td><td>n 225064</td><td>2v-JQi-22</td><td>0E3v L</td><td>27-JQi-22 H8:30</td><td></td></h#03<>	HI03	H I 48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5DA	vv3-76-2	<0F4v6	0F4v6	HF48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
8:2 5TS	v4H08-v	<hh2< td=""><td>HH2</td><td>HF48</td><td></td><td>n 225064</td><td>2v-JQi-22</td><td>0E3v L</td><td>27-JQi-22 H8:30</td><td></td></hh2<>	HH2	H F 48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5NS	68234-Н2-Н	<hh< td=""><td>HH</td><td>HF48</td><td></td><td>n 225 064</td><td>2v-JQi-22</td><td>0E3v L</td><td>27-JQi-22 H8:30</td><td></td></hh<>	HH	HF48		n 225 064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
Me5ESAA	2v33-vH4	<0¥. H	0F4. H	H F 48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
1 t5ESAA	244H30-6	<hov< td=""><td>HØv</td><td>HF48</td><td></td><td>n 225064</td><td>2v-JQi-22</td><td>0E3v L</td><td>27-JQi-22 H8:30</td><td></td></hov<>	HØv	HF48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5UuA	2038-48	<0F7. 7	0F7. 7	HF48		n 225064	2v-JQi-22	0E23v L	27-JQi-22 H8:30	
P5DS	vv3-77-v	<017.7	0F732	HF48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
HICI-P5vEUdS	76v03H42-4	<0[480]	0F480	HF48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5DoA	v07-33-Н	<01463	01463	HF48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
Me5ESA	vHB06-v2-8	<2122	2122	2F 8		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5TrDA	72624-48	<0Ю. 8	016.8	HF48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5DoS	74780-v4-3	<hf 0<="" td=""><td>HE 0</td><td>HF48</td><td></td><td>n 225064</td><td>2v-JQi-22</td><td>0E3v L</td><td>27-JQi-22 H8:30</td><td></td></hf>	HE 0	HF48		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	
P5TeDA	v76-06-7	<01807	01807	HF48		n 225064	2v-JQi-22	0E23v L	27-JQi-22 H8:30	
1t5ESA	. HBH-30-2	<01807 <2Fv0	2Fv0	2F 8		n 225064	2v-JQi-22	0E23v L	27-JQi-22 H8:30	
Me5ES1	28-04-7	<hf48< td=""><td>HF48</td><td>2E 8</td><td></td><td>n 225064</td><td>2v-JQi-22 2v-JQi-22</td><td>0E23v L 0E23v L</td><td>27-JQi-22 H8:30</td><td></td></hf48<>	HF48	2E 8		n 225064	2v-JQi-22 2v-JQi-22	0E23v L 0E23v L	27-JQi-22 H8:30	
1t5ES1	Нб4Н44-2	<hb3< td=""><td>HB3</td><td>HF48</td><td></td><td>n 225064</td><td>2v-JQi-22</td><td>0123V L</td><td>27-JQi-22 H8:30</td><td></td></hb3<>	HB3	HF48		n 225064	2v-JQi-22	0123V L	27-JQi-22 H8:30	
Labeled Standards	Туре	% Recovery		imits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
HvCv-P5n A	IS	8vE2		- HBO	C	n 225064	2v-JQ1-22	0E23v L	27-JQi-22 H8:30	
HvCv-P5PeA	IS	86F7		- HB0		n 225064	2v-JQi-22	0123 v L	27-JQi-22 H8:30	
HvCv-P5n S	IS	8. F7		- HB0		n 225064	2v-JQi-22	0E3v L	27-JQi-22 H8:30	

Page 13 of 38

Sample ID: MW-51	Α						PFAS Iso	tope Dilution N	Method
Client Data Name: A1 C Project: CVR		Matrix: Date Collected:	AqœoQs 07-JQı-22 HHH)	Laboratory Data Lab Sample: Date Recei9ed:	2206072-0 04-JQi-22		ColQmu:	n1BCH8	
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
HvC2 :2 5TS	IS	8410	23 - HBO		n 225064	2v-JQi-22	0E23v L	27-JQi-22 H8:30	Н
HvC2-P5BxA	IS	8. IH	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Н
HvCv-B5PE-DA	IS	7vF4	23 - HBO		n 225064	2v-JQ1-22	0臣3v L	27-JQi-22 H8:30	Н
HvCP5BpA	IS	87Fv	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Н
HvCv-P5BxS	IS	8H12	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Н
HvC2-6:2 5TS	IS	83Ю	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Н
HvC2-P5EA	IS	82Fv	23 - HBO		n 225064	2v-JQ1-22	0臣3v L	27-JQi-22 H8:30	Н
HvC3-P5NA	IS	8v18	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Н
HvC8-P5ESA	IS	3. Fv	HD - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Η
HvC8-P5ES	IS	4HH	23 - HBO		n 225064	2v-JQ1-22	0臣3v L	27-JQi-22 H8:30	Н
HvC2-P5DA	IS	8. F	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Η
HvC2-8:2 5TS	IS	88E2	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Η
dv-Me5ESAA	IS	82B	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Η
d3-1t5ESAA	IS	8012	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Н
HvC2-P5UuA	IS	78E2	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Η
HvC2-P5DoA	IS	82月4	23 - HBO		n 225064	2v-JQ1-22	0臣3v L	27-JQi-22 H8:30	Η
dv-Me5ESA	IS	2vK	HD - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Η
HvC2-P5TeDA	IS	80E	23 - HBO		n 225064	2v-JQi-22	0臣3v L	27-JQi-22 H8:30	Н
d3-1t5ESA	IS	20H	HD - HBO		n 225064	2v-JQ1-22	0臣3v L	27-JQi-22 H8:30	Н
d7-Me5ES1	IS	. 2IH	HD - HBO		n 225064	2v-JQ1-22	0臣3v L	27-JQi-22 H8:30	Η
d4-1t5ES1	IS	Fv	HD - HBO		n 225064	2v-JQ1-22	0臣3v L	27-JQi-22 H8:30	Н
MDL - Method Detectiou Lir	nit RL - Reportiug limit	ResOts reported to M	ADLF	Wheu rep	ported, P5BxS, 1	P5EA, P5ES, N	fe5ESAA aud 1t	5ESAA iuclOde both	

liuear aud brauched isomersF Euly the liuear isomer is reported for all other aualytesF

Sample ID: MW-51A DLp)							Fs AS Iur	trpe DilLtirn I	Methrd
Client Data				bao	yatryP Data					
Name: AECOM		Matrix:	Aqueous	Lab	Sample:	2206072-0)3	Column:	BEH C18	
Project: CVRA		Date Colle	ected: 07-Jun-22 11	:10 Date	Received:	09-Jun-22	09:35		BLIT CTO	
AnalPte	CAS NLmoey	Crnc. (ng/b)	MDb	Rb	QLalifieyu	Batch	Extyacted	Samp Size	AnalPzed	DilLtirr
PFBA	375-22-4	57.1	1.00	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFPeA	2706-90-3	14.2	0.747	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFBS	375-73-5	21.6	0.896	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
4:2 FTS	757124-72-4	< 0.940	0.940	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFHxA	307-24-4	14.3	0.807	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFPeS	2706-91-4	2.00	0.812	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
HFPO-DA	13252-13-6	<1.55	1.55	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFHpA	375-85-9	3.78	0.926	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
ADONA	919005-14-4	< 0.634	0.634	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFHxS	355-46-4	6.64	1.02	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
6:2 FTS	27619-97-2	<1.11	1.11	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFOA	335-67-1	13.2	0.945	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFHpS	375-92-8	< 0.589	0.589	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFNA	375-95-1	< 0.747	0.747	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFOSA	754-91-6	2.45	1.08	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFOS	1763-23-1	2.41	1.12	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
9C1-PF3ONS	756426-58-1	<1.05	1.05	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFDA	335-76-2	< 0.936	0.936	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
8:2 FTS	39108-34-4	<1.12	1.12	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFNS	68259-12-1	<1.14	1.14	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
MeFOSAA	2355-31-9	< 0.940	0.940	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
EtFOSAA	2991-50-6	<1.03	1.03	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFUnA	2058-94-8	< 0.747	0.747	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFDS	335-77-3	< 0.752	0.752	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
11Cl-PF3OUdS	763051-92-9	< 0.980	0.980	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFDoA	307-55-1	< 0.965	0.965	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
MeFOSA	31506-32-8	<2.22	2.22	2.47		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFTrDA	72629-94-8	< 0.648	0.648	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFDoS	79780-39-5	<1.40	1.40	1.98		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
PFTeDA	376-06-7	<0.807	0.807	1.98		B22F069	23-Jun-22	0.253 L 0.253 L	27-Jun-22 19:00 27-Jun-22 19:00	1
EtFOSA	4151-50-2	<2.30	2.30	2.47		B22F009 B22F069	23-Jun-22	0.253 L 0.253 L	27-Jun-22 19:00	1
MeFOSE	24448-09-7	<1.98	1.98	2.47		B22F069 B22F069	23-Jun-22 23-Jun-22	0.253 L 0.253 L	27-Jun-22 19:00 27-Jun-22 19:00	1
EtFOSE	1691-99-2	<1.55	1.55	1.98		B22F069 B22F069	23-Jun-22 23-Jun-22	0.253 L 0.253 L	27-Jun-22 19:00 27-Jun-22 19:00	1
baoeled Standavdu	1091-99-2 TPpe	% RecrvevP		imitu	OLalifievu	Batch	Extvacted	Samp Size		DilLtirn
13C3-PFBA	IS	77.5		5 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C3-PFPeA	IS	78.7		5 - 150		B22F069 B22F069	23-Jun-22 23-Jun-22	0.253 L 0.253 L	27-Jun-22 19:00 27-Jun-22 19:00	1
13C3-PFBS	IS	75.2		5 - 150		B22F069 B22F069	23-Jun-22 23-Jun-22	0.253 L 0.253 L	27-Jun-22 19:00 27-Jun-22 19:00	
1303-1703	15	13.2	23	- 130		D22F009	23-Jun-22	0.233 L	27-Jun-22 19:00	1

Page 15 of 38

Sample ID: MW-51A D	Lp						Fs AS Iur	trpe DilLtirn I	Methrd
Client DataName:AECOMProject:CVRA		Matrix: Date Collected:	Aqueous 07-Jun-22 11:10	baoryatryP Data Lab Sample: Date Received:	2206072-0 09-Jun-22		Column:	BEH C18	
baoeled Standaydu	ТРре	% RecrveyP	bimitu	QLalifieyu	Batch	Extyacted	Samp Size	AnalPzed	DilLtirn
13C2-4:2 FTS	IS	91.3	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C2-PFHxA	IS	79.9	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C3-HFPO-DA	IS	72.6	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C4-PFHpA	IS	82.1	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C3-PFHxS	IS	72.9	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C2-6:2 FTS	IS	70.9	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C2-PFOA	IS	82.4	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C5-PFNA	IS	79.5	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C8-PFOSA	IS	56.1	10 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C8-PFOS	IS	89.8	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C2-PFDA	IS	79.3	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C2-8:2 FTS	IS	75.9	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
d3-MeFOSAA	IS	70.9	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
d5-EtFOSAA	IS	73.9	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C2-PFUnA	IS	78.3	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C2-PFDoA	IS	73.4	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
d3-MeFOSA	IS	23.1	10 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
13C2-PFTeDA	IS	74.2	25 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
d5-EtFOSA	IS	19.4	10 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
d7-MeFOSE	IS	40.2	10 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
d9-EtFOSE	IS	43.6	10 - 150		B22F069	23-Jun-22	0.253 L	27-Jun-22 19:00	1
MDL - Method Detection Limit	RL - Reporting limit	Results reported to M	ADL.	When rep	orted, PFHxS,	PFOA, PFOS, M	leFOSAA and Etl	FOSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched isomers. Only the linear isomer is reported for all other

analytes.

Sample ID: AMW-01								PFAS Iso	tope Dilution	Method
Client DataName:AECOMProject:CVRA		Matrix: Date Colle	Aqueous ected: 07-Jun-22 1v:	Lab S	ratory Data ample: Recei5ed:	2206072-0 0F-Jun-22		Column:	BEH C18	
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilutio
P. BA	v79-22-3	v4F9	04F89	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. PeA	2706-F0-v	F402	047v6	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. BS	v79-7v-9	6491	04882	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
3:2 . TS	797123-72-3	<04F26	04F26	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. HxA	v07-23-3	7420	047F9	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. PeS	2706-F1-3	7409	047FF	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
H. PO-DA	1v292-1v-6	<149v	149v	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. HpA	v79-89-F	249F	04F12	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
ADONA	F1F009-13-3	<04623	04623	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. HxS	v99-36-3	2740	1400	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
6:2 . TS	2761F-F7-2	F480	1410	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. OA	vv9-67-1	14FF	04Fv1	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. HpS	v79-F2-8	<04980	04980	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. NA	v79-F9-1	<047v6	047v6	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. OSA	793-F1-6	<1406	1406	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. OS	176v-2v-1	641 v	1410	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
FCI-P. vONS	796326-98-1	<1403	1403	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
P. DA	vv9-76-2	<04F21	04F21	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
8:2 . TS	vF108-v3-3	<1411	1411	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
P. NS	6829F-12-1	<141 v	141 v	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
Me. OSAA	2v99-v1-F	<04F26	04F26	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
Et. OSAA	2FF1-90-6	<1401	1401	14F9		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
P. UnA	2098-F3-8	<047v6	047v6	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
P. DS	vv9-77-v	<04731	04731	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
11Cl-P. vOUdS	76v091-F2-F	<04F69	04F69	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
P. DoA	v07-99-1	<04F91	04F91	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
Me. OSA	v1906-v2-8	<2418	2418	243		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
P. TrDA	7262F-F3-8	<046vF	046vF	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
P. DoS	7F780-vF-9	<14/8	14/8	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
P. TeDA	v76-06-7	<047F9	047F9	14F9		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
Et. OSA	3191-90-2	<2427	2427	243		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
Me. OSE	23338-0F-7	<14F9	14F9	243		B22. 00F B22. 06F	2v-Jun-22 2v-Jun-22	04296 L 04296 L	28-Jun-22 16:3v	
Et. OSE	16F1-FF-2	<149v	149v	14F9		B22. 00F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
Labeled Standards	Туре	% Recovery		nits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
1vCv-P. BA	IS	8747	29	- 190		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
lvCv-P. PeA	IS	F140		- 190		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
1vCv-P. BS	IS	8743		- 190		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	

Page 17 of 38

Sample ID: AMW-01							PFAS Iso	tope Dilution	Method
Client Data				Laboratory Data					
Name: AECOM		Matrix:	Aqueous	Lab Sample:	2206072-0		Column:	BEH C18	
Project: CVRA		Date Collected:	07-Jun-22 1v:99	Date Recei5ed:	0F-Jun-22	0F:v9			
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
1vC2-3:2. TS	IS	8748	29 - 190		B22. 06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vC2-P. HxA	IS	8747	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vCv-H. PO-DA	IS	8249	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vC3-P. HpA	IS	F046	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vCv-P. HxS	IS	F942	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vC2-6:2 . TS	IS	F242	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
lvC2-P. OA	IS	8F42	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
lvC9-P. NA	IS	8v48	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vC8-P. OSA	IS	9141	10 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vC8-P. OS	IS	F047	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vC2-P. DA	IS	8F4F	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vC2-8:2 . TS	IS	F04F	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
dv-Me. OSAA	IS	8741	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
d9-Et. OSAA	IS	7640	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
lvC2-P. UnA	IS	8247	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vC2-P. DoA	IS	7v43	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
dv-Me. OSA	IS	7400	10 - 190	Н	B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
1vC2-P. TeDA	IS	3F43	29 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	
d9-Et. OSA	IS	9400	10 - 190	Н	B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
d7-Me. OSE	IS	2146	10 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
dF-Et. OSE	IS	2048	10 - 190		B22.06F	2v-Jun-22	04296 L	28-Jun-22 16:3v	1
MDL - Method Detection Limit	RL - Reporting limit	Results reported to N	1DL4	When rep	ported, P. HxS,	P. OA, P. OS, N	le. OSAA and Et.	OSAA include both	

linear and branched isomers4 Only the linear isomer is reported for all other analytes4

Sample ID: AMW-02								PFAS Iso	otope Dilution	Methoo
Client Data				Lab	oratory Data					
Name: AECOM		Matrix:	AsueouJ	Lab	Sample:	2206072-0)1	Column:	BEH C8q	
Project: CVRA		Date Coll	lected: 07-9un-22 81		Received:	03-9un-22		Column.	BEITCoq	
5										
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilutio
P5BA	471-22	T8E .	8E .	2 F q1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5PeA	2706-30-4	T8Đq	8f0q	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5BS	471-74-1	T8E23	8E23	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
.:25 <s< td=""><td>7178272</td><td>T8F41</td><td>8141</td><td>2Fq1</td><td></td><td>B225063</td><td>24-9un-22</td><td>01871 L</td><td>27-9un-22 83:14</td><td>8</td></s<>	7178272	T8F41	8141	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5HxA	407-2	T8I86	8186	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5PeS	2706-38	T8F87	8187	2 Fq 1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
H5PO-DA	84212-84-6	T2E24	2124	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
Р5НрА	471-q1-3	T8F44	8F44	2 Fq 1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
ADONA	383001-8	T0B82	0B82	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5HxS	411 6	218q	8E 7	2Fq1	9	B225063	24-9un-22	01871 L	27-9un-22 83:14	8
6:2 5 <s< td=""><td>27683-37-2</td><td>Т8Ю0</td><td>8160</td><td>2Fq1</td><td></td><td>B225063</td><td>24-9un-22</td><td>01871 L</td><td>27-9un-22 83:14</td><td>8</td></s<>	27683-37-2	Т8Ю0	8160	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5OA	441-67-8	8H1	8月46	2Fq1	9	B225063	24-9un-22	01871 L	27-9un-22 83:14	
P5HpS	471-32-q	T0Fq. q	0Fq. q	2Fq1	-	B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5NA	471-31-8	T8Юq	8IOq	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5OSA	7138-6	6Bq	8H1	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5OS	8764-24-8	. F73	8168	2Rq1	Q	B225063	24-9un-22	01871 L	27-9un-22 83:14	8
3C1-P54ONS	716. 26-1q-8	T8H2	8H2	2 Fq 1	× ×	B225063	24-9un-22	01871 L	27-9un-22 83:14 27-9un-22 83:14	8
P5DA	441-76-2	T8F41	8F41	2 Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14 27-9un-22 83:14	8
q:2 5 <s< td=""><td>4380q-4</td><td>Т8Ю2</td><td>8162</td><td>2 Kq 1</td><td></td><td>B225063</td><td>24-9un-22</td><td>01871 L</td><td>27-9un-22 83:14 27-9un-22 83:14</td><td>8</td></s<>	4380q-4	Т8Ю2	8162	2 Kq 1		B225063	24-9un-22	01871 L	27-9un-22 83:14 27-9un-22 83:14	8
4.2 5<8 P5NS	4380q-4 6q213-82-8	T8I62	8162	2 Fq 1		B225063 B225063	24-9un-22 24-9un-22	01871 L 01871 L	27-9un-22 83:14 27-9un-22 83:14	8
Me5OSAA	2411-48-3	T8F41	8141	2 Rq 1 2 Rq 1		B225063 B225063	24-9un-22 24-9un-22	01871 L 01871 L	27-9un-22 83:14 27-9un-22 83:14	8
Et5OSAA	2338-10-6			•		B225063	24-9un-22 24-9un-22	01871L 01871L		8
		T8E q	8E q	2Eq1			24-9un-22 24-9un-22		27-9un-22 83:14	8
P5UnA	201q-3q	T8IOq	810q	2Eq1		B225063		01871 L	27-9un-22 83:14	
P5DS	441-77-4	T8Юq	8Юq	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
88C1-P54OUdS	764018-32-3	T8F 8	8E 8	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5DoA	407-11-8	T8F43	8月43	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
Me5OSA	48106-42-q	T4I83	4183	4日6		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5 <rda< td=""><td>72623-3q</td><td>T0B4.</td><td>0B4.</td><td>2Fq1</td><td></td><td>B225063</td><td>24-9un-22</td><td>01871 L</td><td>27-9un-22 83:14</td><td>8</td></rda<>	72623-3q	T0B4.	0B4.	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5DoS	737q0-43-1	T2H02	2102	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
P5 <eda< td=""><td>476-06-7</td><td>T8186</td><td>8186</td><td>2Fq1</td><td></td><td>B225063</td><td>24-9un-22</td><td>01871 L</td><td>27-9un-22 83:14</td><td>8</td></eda<>	476-06-7	T8186	8186	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
Me5OSE	2q-03-7	T2Fq1	2Fq1	4H6		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
Et5OSE	8638-33-2	T2E2.	2E.	2Fq1		B225063	24-9un-22	01871 L	27-9un-22 83:14	
Labeled Standards	Туре	% Recovery		imits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
84C4-P5BA	IS	83F4		- 810	Н	B225063	24-9un-22	01871 L	27-9un-22 83:14	
84C4-P5PeA	IS	4. Fq		- 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	
84C4-P5BS	IS	. 018		- 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C2 :2 5 <s< td=""><td>IS</td><td>. 7B</td><td>21</td><td>- 810</td><td></td><td>B225063</td><td>24-9un-22</td><td>01871 L</td><td>27-9un-22 83:14</td><td>8</td></s<>	IS	. 7B	21	- 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8

Page 19 of 38

Sample ID: AMW-02							PFAS Iso	tope Dilution	Method
Client DataName:AECOMProject:CVRA	[Matrix: Date Collected:	AsueouJ 07-9un-22 81:40	Laboratory Data Lab Sample: Date Received:	2206072-0 03-9un-22		Column:	BEH C8q	
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
84C2-P5HxA	IS	. 8E2	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C4-H5PO-DA	IS	4qЮ	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84CP5HpA	IS	. 1H	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C4-P5HxS	IS	. 616	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C2-6:2 5 <s< td=""><td>IS</td><td>. 2B</td><td>21 - 810</td><td></td><td>B225063</td><td>24-9un-22</td><td>01871 L</td><td>27-9un-22 83:14</td><td>8</td></s<>	IS	. 2B	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C2-P5OA	IS	Ю	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C1-P5NA	IS	. 716	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84Cq-P5OSA	IS	4818	80 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84Cq-P5OS	IS	1410	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C2-P5DA	IS	. 3B	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C2-q:2 5 <s< td=""><td>IS</td><td>. 8B</td><td>21 - 810</td><td></td><td>B225063</td><td>24-9un-22</td><td>01871 L</td><td>27-9un-22 83:14</td><td>8</td></s<>	IS	. 8B	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
d4-Me5OSAA	IS	4318	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
d1-Et5OSAA	IS	4318	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C2-P5UnA	IS	. 718	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C2-P5DoA	IS	4q12	21 - 810		B225063	24-9un-22	01871 L	27-9un-22 83:14	8
d4-Me5OSA	IS	8E20	80 - 810	Н	B225063	24-9un-22	01871 L	27-9un-22 83:14	8
84C2-P5 <eda< td=""><td>IS</td><td>8018</td><td>21 - 810</td><td>Н</td><td>B225063</td><td>24-9un-22</td><td>01871 L</td><td>27-9un-22 83:14</td><td>8</td></eda<>	IS	8018	21 - 810	Н	B225063	24-9un-22	01871 L	27-9un-22 83:14	8
d7-Me5OSE	IS	3180	80 - 810	Н	B225063	24-9un-22	01871 L	27-9un-22 83:14	8
d3-Et5OSE	IS	1160	80 - 810	Н	B225063	24-9un-22	01871 L	27-9un-22 83:14	8
MDL - Method Detection Limit	RL - Reporting limit	ReJultJ reported to M	IDLF					50SAA include both	

When reported, P5HxS, P5OA, P5OS, Me5OSAA and Et5OSAA include bo linear and branched iJomerJF Only the linear iJomer iJ reported for all other analyteJF

Sample ID: EB-060722	2							PFAS Iso	tope Dilution N	Method
Client Data Name: A3 CEM Project: CVRA	I	Matrix: Date Colle	A8QeoQq ected: 07-sQ1-22 H	Lab	Sample: Received:	2206072-0 09-sQi-22		ColQmu:	n 3 B CHI	
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
P. n A	57F-22-J	T0491J	0491J	HØF		n 22. 069	25-sQ1-22	042F7 L	27-sQi-22 20:05	Н
P. PeA	2706-90-5	T04756	04756	H49F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
P. n S	57F-75-F	T04112	04112	H49F		n 22. 069	25-sQ1-22	042F7 L	27-sQi-22 20:05	Н
J:2. <s< td=""><td>7F7H2J-72-J</td><td>T04926</td><td>04926</td><td>H49F</td><td></td><td>n 22. 069</td><td>25-sQi-22</td><td>042F7 L</td><td>27-sQi-22 20:05</td><td>Н</td></s<>	7F7H2J-72-J	T04926	04926	H49F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
P. BxA	507-2J-J	T0479J	0479J	H49F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
P. PeS	2706-9HJ	T04799	04799	H49F		n 22. 069	25-sQ1-22	042F7 L	27-sQu-22 20:05	Н
B. PE-DA	H52F2-H5-6	TH#F5	H4F5	H49F		n 22. 069	25-sQ1-22	042F7 L	27-sQu-22 20:05	Н
P. BpA	57F-1F-9	T049HH	049HH	H49F		n 22. 069	25-sQi-22	042F7 L	27-sQu-22 20:05	Н
ADENA	9H900F-HJ-J	T0462J	0462J	H49F		n 22. 069	25-sQ1-22	042F7 L	27-sQu-22 20:05	Н
P. BxS	5FF-J6-J	TH400	H400	H49F		n 22. 069	25-sQ1-22	042F7 L	27-sQu-22 20:05	Н
6:2. <s< td=""><td>276H9-97-2</td><td>TH4HD</td><td>H4HD</td><td>H49F</td><td></td><td>n 22. 069</td><td>25-sQı-22</td><td>042F7 L</td><td>27-sQu-22 20:05</td><td>Н</td></s<>	276H9-97-2	TH4HD	H4HD	H49F		n 22. 069	25-sQı-22	042F7 L	27-sQu-22 20:05	Н
P. EA	55F-67-H	T0495H	0495H	H49F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
P. BpS	57F-92-1	T04F10	04F10	H49F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
P. NA	57F-9F-H	T04756	04756	H9F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
P. ESA	7FJ-9H6	TH406	H406	H49F		n 22. 069	25-sQ1-22	042F7 L	27-sQi-22 20:05	
P. ES	Н765-25-Н	THAHD	HAHD	H49F		n 22. 069	25-sQ1-22	042F7 L	27-sQi-22 20:05	
9C1-P. 5ENS	7F6J26-F1-H	TH40J	H40J	H49F		n 22. 069	25-sQ1-22	042F7 L	27-sQi-22 20:05	
P. DA	55F-76-2	T0492H	0492H	H9F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
1:2. <s< td=""><td>59HD1-5J-J</td><td>THAH</td><td>HAH</td><td>H49F</td><td></td><td>n 22. 069</td><td>25-sQ1-22</td><td>042F7 L</td><td>27-sQi-22 20:05</td><td></td></s<>	59HD1-5J-J	THAH	HAH	H49F		n 22. 069	25-sQ1-22	042F7 L	27-sQi-22 20:05	
P. NS	612F9-H2-H	THAT	HAH5	HØF		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
Me. ESAA	25FF-5H-9	T04926	04926	HØF		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
3t. ESAA	299HF0-6	THIOH	HOH	H9F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
P. UuA	20F1-9J-1	T04756	04756	H9F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
P. DS	55F-77-5	T047JH	047JH	H9F		n 22. 069	25 sQ1-22	042F7 L	27-sQi-22 20:05	
HCI-P. 5EUdS	7650FH92-9	T0496F	0496F	H9F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
P. DoA	507-FF-H	T049F0	049F0	H9F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
Me. ESA	5HF06-52-1	T24HI	2411	24J		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
P. <rda< td=""><td>72629-9J-1</td><td>T04651</td><td>04651</td><td>149F</td><td></td><td>n 22. 069</td><td>25-sQi-22</td><td>042F7 L</td><td>27-sQi-22 20:05</td><td></td></rda<>	72629-9J-1	T04651	04651	149F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
P. DoS	79710-59-F	TH451	H\$1	H9F		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
P. <eda< td=""><td>576-06-7</td><td>T0479J</td><td>0479J</td><td>H9F</td><td></td><td>n 22. 069</td><td>25-sQi-22</td><td>042F7 L 042F7 L</td><td>27-sQi-22 20:05</td><td></td></eda<>	576-06-7	T0479J	0479J	H9F		n 22. 069	25-sQi-22	042F7 L 042F7 L	27-sQi-22 20:05	
3t. ESA	JHFHF0-2	T2427	2427	24J		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
Me. ES3	2JJJ1-09-7	12427 TH49F	2427 H49F	24J 24J		n 22. 069	25-sQi-22	042F7L 042F7L	27-sQi-22 20:05	
3t. ES3	Н59Н99-2	TH#F	H4F5	2405 H49F		n 22. 069	25-sQi-22	042F7L 042F7L	27-sQi-22 20:05	
Labeled Standards	Туре	% Recovery		imits	Qualifiers	Batch	Extracted	Samp Size		Dilution
					Quannels				Į.	
H5C5-P. n A	IS	1F4		F - HFO		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
H5C5-P. PeA	IS	1F46		F - HFO		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	
Н5С5-Р. n S	IS	114	2.	F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н

Page 21 of 38

Sample ID: EB-0)60722							PFAS Iso	tope Dilution N	Method
Client Data					Laboratory Data					
Name: A	3CEM		Matrix:	A80eoQ	Lab Sample:	2206072-0	6	ColOmu:	n 3 B CHI	
Project: C	CVRA		Date Collected:	07-sQ1-22 H2:J0	Date Received:	09-sQ1-22	09:5F	cordina	11515 011	
Labeled Standards		Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
H5C2-J:2. <s< td=""><td></td><td>IS</td><td>9F49</td><td>2F - HF0</td><td></td><td>n 22. 069</td><td>25-sQ1-22</td><td>042F7 L</td><td>27-sQi-22 20:05</td><td>Н</td></s<>		IS	9F49	2F - HF0		n 22. 069	25-sQ1-22	042F7 L	27-sQi-22 20:05	Н
H5C2-P. BxA		IS	1741	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
H5C5-B. PE-DA		IS	1749	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
Н 5 СЈ-Р. ВрА		IS	9245	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
H5C5-P. BxS		IS	1642	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
H5C2-6:2. <s< td=""><td></td><td>IS</td><td>714H</td><td>2F - HF0</td><td></td><td>n 22. 069</td><td>25-sQi-22</td><td>042F7 L</td><td>27-sQi-22 20:05</td><td>Н</td></s<>		IS	71 4 H	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
Н5С2-Р. ЕА		IS	1F46	2F - HF0		n 22. 069	25-sQ1-22	042F7 L	27-sQi-22 20:05	Н
H5CF-P. NA		IS	124	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
H5C1-P. ESA		IS	6246	HD - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
H5C1-P. ES		IS	HD2	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
H5C2-P. DA		IS	1J47	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
H5C2-1:2. <s< td=""><td></td><td>IS</td><td>7147</td><td>2F - HF0</td><td></td><td>n 22. 069</td><td>25-sQi-22</td><td>042F7 L</td><td>27-sQi-22 20:05</td><td>Н</td></s<>		IS	7147	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
d5-Me. ESAA		IS	164F	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
dF-3t. ESAA		IS	12 4 H	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
H5C2-P. UuA		IS	1140	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
H5C2-P. DoA		IS	164F	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Η
d5-Me. ESA		IS	2J4H	HD - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Н
H5C2-P. ≤eDA		IS	7742	2F - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Η
dF-3t. ESA		IS	2246	HD - HF0		n 22. 069	25-sQi-22	042F7 L	27-sQi-22 20:05	Η
d7-Me. ES3		IS	J 54J	HD - HF0		n 22. 069	25-sQ1-22	042F7 L	27-sQi-22 20:05	Η
d9-3 t. ES3		IS	J 24J	HD - HF0		n 22. 069	25-sQ1-22	042F7 L	27-sQi-22 20:05	Н
MDL - Method Detection	u Limit RL	Reportiug limit	ReqCitq reported to M	ADL4	Wheu rej	oorted, P. BxS,	P. E A, P. E S, N	le. ESAA aud 3t	ESAA iuclOde both	

When reported, P. BXS, P. EA, P. ES, Me. ESAA and 3t. ESAA fuctorie bo linear and branched iqomerq4 Euly the linear iqomer iq reported for all other analyteq4

Sample ID: AMW-05								PFAS Iso	tope Dilution	Method
Client Data Name: A3CEM Project: CVRA		Matrix: Date Colle	A8QeoQq ected: 07-sQ1-22 H	Lab	oratory Data Sample: e Received:	2206072-0 09-sQ1-22		ColQmu:	n 3 B CHI	
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFn A	J75-22-4	22.7	H0J	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFPeA	2706-90-J	5HJ	0.767	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFn S	J75-7J-5	65.4	0.920	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
4:2 FTS	757H24-72-4	< 0.965	0.965	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFBxA	J07-24-4	241	0.121	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
PFPeS	2706-9H4	HJ9	0.1JJ	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
BFPE-DA	HJ252-HJ-6	<h59< td=""><td>H59</td><td>2.0J</td><td></td><td>n 22F069</td><td>2J-sQ1-22</td><td>0.246 L</td><td>27-sQi-22 20:H4</td><td>Н</td></h59<>	H59	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFBpA	J75-15-9	70.6	0.950	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQ1-22 20:H4	Н
ADENA	9H9005-H4-4	< 0.650	0.650	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFBxS	J 55-46-4	J6HD	5.2J	HD.2	D	n 22F069	2J-sQ1-22	0.246 L	29-sQi-22 H7:24	5
6:2 FTS	276H9-97-2	9J.5	HH4	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFEA	JJ5-67-H	55J	0.97H	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFBpS	J75-92-1	90.J	0.605	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFNA	J75-95-H	5.9H	0.767	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFESA	754-9H-6	60H	HH	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQu-22 20:H4	Н
PFES	H76J-2J-H	JH60	5.74	HD.2	D	n 22F069	2J-sQ1-22	0.246 L	29-sQu-22 H7:24	5
9C1-PFJENS	756426-51-Н	<h01< td=""><td>H01</td><td>2.0J</td><td></td><td>n 22F069</td><td>2J-sQ1-22</td><td>0.246 L</td><td>27-sQi-22 20:H4</td><td>Н</td></h01<>	H01	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFDA	JJ5-76-2	< 0.960	0.960	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
1:2 FTS	J9HD1-J4-4	7.J J	HH5	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFNS	61259-Н2-Н	<hh7< td=""><td>HH7</td><td>2.0J</td><td></td><td>n 22F069</td><td>2J-sQ1-22</td><td>0.246 L</td><td>27-sQi-22 20:H4</td><td>Н</td></hh7<>	HH7	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
MeFESAA	2J55-JH9	< 0.965	0.965	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
3 tFE SAA	299H-50-6	<h06< td=""><td>H06</td><td>2.0J</td><td></td><td>n 22F069</td><td>2J-sQi-22</td><td>0.246 L</td><td>27-sQi-22 20:H4</td><td>Н</td></h06<>	H06	2.0J		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Н
PFUuA	2051-94-1	< 0.767	0.767	2.0J		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Н
PFDS	J J 5-77-J	< 0.772	0.772	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
HHC1-PFJEUdS	76J05H92-9	<h0h< td=""><td>H0H</td><td>2.0J</td><td></td><td>n 22F069</td><td>2J-sQi-22</td><td>0.246 L</td><td>27-sQi-22 20:H4</td><td>Н</td></h0h<>	H0H	2.0J		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Н
PFDoA	Ј07-55-Н	<0.99H	0.99H	2.0J		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Н
MeFESA	JH506-J2-1	<2.21	2.21	2.54		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFTrDA	72629-94-1	<0.666	0.666	2.0J		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Н
PFDoS	79710-J9-5	<h44< td=""><td>H44</td><td>2.0J</td><td></td><td>n 22F069</td><td>2J-sQ1-22</td><td>0.246 L</td><td>27-sQi-22 20:H4</td><td>Н</td></h44<>	H44	2.0J		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
PFTeDA	J76-06-7	<0.121	0.121	2.0J		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Н
3 tFE SA	4H5H-50-2	<2.J6	2.J6	2.54		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Н
MeFES3	24441-09-7	<2.0J	2.0J	2.54		n 22F069	2J -sQ1-22	0.246 L	27-sQi-22 20:H4	Н
3 tFE S3	Нб9Н-99-2	<h60< td=""><td>H60</td><td>2.0J</td><td></td><td>n 22F069</td><td>2J-sQi-22</td><td>0.246 L</td><td>27-sQi-22 20:H4</td><td>Н</td></h60<>	H60	2.0J		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Н
Labeled Standards	Туре	% Recovery		Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
HJCJ-PFn A	IS	14.0	2	5 - H50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
HJ CJ-PFPeA	IS	12.6		5 - H50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
HJ CJ-PFn S	IS	71.0		5 - H50		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	

Page 23 of 38

Sample ID: AMW-05							PFAS Iso	tope Dilution N	Method
Client Data Name: A3CEM	А	Matrix: Date Collected:	A80coQq 07-sQı-22 H7:J0	Laboratory Data Lab Sample: Date Received:	2206072-0 09-sQi-22		ColOmu:	n 3 B CHI	
Project: CVRA							a a i		NH
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
HJC2-4:2 FTS	IS	9H5	25 - Н50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
HJC2-PFBxA	IS	1H0	25 - Н50		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Η
HJCJ-BFPE-DA	IS	7H5	25 - Н50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
HJC4-PFBpA	IS	15.H	25 - Н50		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Η
HJCJ-PFBxS	IS	16.0	25 - Н50	D	n 22F069	2J-sQi-22	0.246 L	29-sQi-22 H7:24	5
HJC2-6:2 FTS	IS	74.9	25 - Н50		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Η
HJC2-PFEA	IS	10.J	25 - Н50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
HJC5-PFNA	IS	1H0	25 - Н50		n 22F069	2J-sQi-22	0.246 L	27-sQi-22 20:H4	Η
HJC1-PFESA	IS	47.5	HD - H50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
HJC1-PFES	IS	12.0	25 - Н50	D	n 22F069	2J-sQ1-22	0.246 L	29-sQi-22 H7:24	5
HJC2-PFDA	IS	14.2	25 - Н50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
HJC2-1:2 FTS	IS	12.7	25 - Н50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
dJ-MeFE SAA	IS	90.6	25 - Н50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
d5-3 tFE SAA	IS	69.2	25 - Н50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
HJC2-PFUuA	IS	1J.6	25 - Н50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
HJC2-PFDoA	IS	12.2	25 - Н50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
dJ-MeFESA	IS	H4.9	HD - H50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
HJC2-PFTeDA	IS	77.5	25 - Н50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
d5-3 tFE SA	IS	HJ.6	HD - H50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Η
d7-MeFES3	IS	J2.H	HD - H50		n 22F069	2J-sQu-22	0.246 L	27-sQi-22 20:H4	Н
d9-3 tFE S3	IS	J2.7	HD - H50		n 22F069	2J-sQ1-22	0.246 L	27-sQi-22 20:H4	Н
MDL - Method Detectiou Limit	RL - Reportiug limit	ReqCitq reported to M	IDL.	Wheu rep	oorted, PFBxS,	PFEA, PFES, M	leFESAA aud 3t	FESAA iuclOde both	

When reported, PFBxS, PFEA, PFES, MeFESAA and 3tFESAA include bo linear and branched iqomerq. Euly the linear iqomer iq reported for all other

aualyteq

Sample ID: AMW-04								PFAS Iso	tope Dilution	Method
Client Data Name: AECOM Project: CVRA		Matrix: Date Colle	A8ueouq ected: 03-sun-22 0J	Lab S	ratory Data Sample: Recei5ed:	2206072-0 0J-sun-22		Column:	BEH C13	
Analyte	CAS Number	Conc. (ng/L)	MDL	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	v79-22-4	19.6	0.JJ7	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFPeA	2706-J0-v	90.0	0.749	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFBS	v79-7v-9	4.33	0.3J v	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
4:2 FTS	797124-72-4	<0.Jv3	0.Jv3	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFHxA	v07-24-4	27.6	0.304	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFPeS	2706-J1-4	2.3v	0.30J	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
HFPO-DA	1v292-1v-6	<1.94	1.94	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFHpA	v79-39-J	17.v	0.J2v	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
ADONA	J1J009-14-4	<0.6v2	0.6v2	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFHxS	v99-46-4	92.2	1.02	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
6:2 FTS	2761J-J7-2	11J	1.11	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFOA	vv9-67-1	11.9	0.J4v	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFHpS	v79-J2-3	v.90	0.937	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFNA	v79-J9-1	< 0.749	0.749	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFOSA	794-J1-6	1.JJ	1.03	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFOS	176v-2v-1	2v0	1.12	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
JC1-PFvONS	796426-93-1	<1.09	1.09	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFDA	vv9-76-2	<0.Jvv	0.Jvv	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
3:2 FTS	vJ103-v4-4	<1.12	1.12	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFNS	6329J-12-1	<1.14	1.14	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
MeFOSAA	2v99-v1-J	<0.Jv3	0.Jv3	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
EtFOSAA	2JJ1-90-6	<1.0v	1.0v	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
PFUnA	2093-J4-3	< 0.749	0.749	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	
PFDS	vv9-77-v	<0.790	0.790	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	
11Cl-PFvOUdS	76v091-J2-J	<0.J77	0.J77	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	
PFDoA	v07-99-1	<0.J62	0.J62	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	
MeFOSA	v1906-v2-3	<2.21	2.21	2.47		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	
PFTrDA	7262J-J4-3	< 0.647	0.647	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	
PFDoS	7J730-vJ-9	<1.40	1.40	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	
PFTeDA	v76-06-7	< 0.304	0.304	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	
EtFOSA	4191-90-2	<2.2J	2.2J	2.47		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	
MeFOSE	24443-0J-7	<2.23 <1.J7	1.J7	2.47		B22F06J	2v-sun-22 2v-sun-22	0.29v L 0.29v L	23-sun-22 17:04 23-sun-22 17:04	
EtFOSE	16J1-JJ-2	<1.99	1.99	1.J7		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04 23-sun-22 17:04	
Labeled Standards	Туре	% Recovery		mits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
1vCv-PFBA	IS	33.v	29	- 190	-	B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vCv-PFPeA	IS	36.0		- 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	
1vCv-PFBS	IS	32.1		- 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	

Page 25 of 38

Sample ID: AMV	V-04							PFAS Iso	tope Dilution I	Method
Client Data Name: Al	ECOM		Matrix:	A8ueouq	Laboratory Data Lab Sample:	2206072-0	13	Column:	BEH C13	
Project: C	VRA		Date Collected:	03-sun-22 0J:v9	Date Recei5ed:	0J-sun-22	0J:v9			
Labeled Standards		Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
1vC2-4:2 FTS		IS	J 6.J	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC2-PFHxA		IS	3J.1	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vCv-HFPO-DA		IS	34.v	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC4-PFHpA		IS	J9.7	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vCv-PFHxS		IS	36.J	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC2-6:2 FTS		IS	J9.9	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC2-PFOA		IS	33.1	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC9-PFNA		IS	39.7	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC3-PFOSA		IS	61.0	10 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC3-PFOS		IS	39.9	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC2-PFDA		IS	3J.0	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC2-3:2 FTS		IS	JJ.7	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
dv-MeFOSAA		IS	31.9	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
d9-EtFOSAA		IS	7J.v	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC2-PFUnA		IS	3v.7	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC2-PFDoA		IS	3J.7	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
dv-MeFOSA		IS	22.2	10 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
1vC2-PFTeDA		IS	77.9	29 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
d9-EtFOSA		IS	21.4	10 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
d7-MeFOSE		IS	4v.9	10 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
dJ-EtFOSE		IS	49.4	10 - 190		B22F06J	2v-sun-22	0.29v L	23-sun-22 17:04	1
MDL - Method Detection	Limit R	L - Reporting limit	Requitq reported to M	IDL.	When rej	ported, PFHxS,	PFOA, PFOS, N	feFOSAA and Etl	FOSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched iqomerq. Only the linear iqomer iq reported for all other

analyteq.

Sample ID: AMW-0	3									PFAS Iso	tope Dilution N	Method
Client Data Name: AECC Project: CVRA			Matrix: Date Coll	Aqueous ected: 08-Jun-22	1:10	Lab S	Sample: Received:	2206072-0 03-Jun-22		Column:	BEH C18	
Analyte	CAS	8 Number	Conc. (ng/L)	MDL	I	RL	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBA	9	75-22-4	1120	1.01	1.	.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
PFPeA	27	06-30-9	6040	90.1	7.	3.7	D	B22F063	29-Jun-22	0.251 L	90-Jun-22 16:08	40
PFBS	9	75-79-5	594	0.302	1.	.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
4:2 FTS	757	124-72-4	257	0.347	1.	.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
PFHxA	9	07-24-4	9270	92.5	7.	3.7	D	B22F063	29-Jun-22	0.251 L	90-Jun-22 16:08	40
PFPeS	27	06-31-4	731	0.817	1.	.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
HFPO-DA	19	252-19-6	<1.56	1.56	1.	.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
PFHpA	9	75-85-3	1220	0.392	1.	.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
ADONA	313	005-14-4	< 0.698	0.698	1.	.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
PFHxS	9	55-46-4	7080	41.1	7.	3.7	D	B22F063	29-Jun-22	0.251 L	90-Jun-22 16:08	40
6:2 FTS	27	613-37-2	12800	44.8	7.	3.7	D	B22F063	29-Jun-22	0.251 L	90-Jun-22 16:08	40
PFOA	9	95-67-1	1020	0.352	1.	.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
PFHpS	9	75-32-8	279	0.539		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
PFNA	9	75-35-1	11.8	0.752		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
PFOSA		54-31-6	<1.03	1.03		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
PFOS		69-29-1	5290	45.0		3.7	D	B22F063	29-Jun-22	0.251 L	90-Jun-22 16:08	
3C1-PF9ONS		426-58-1	<1.06	1.06		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
PFDA		95-76-2	< 0.342	0.342		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
8:2 FTS		108-94-4	2.02	1.19		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
PFNS		253-12-1	<1.15	1.15		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
MeFOSAA		55-91-3	< 0.347	0.347		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
EtFOSAA		31-50-6	<1.04	1.04		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
PFUnA		58-34-8	< 0.752	0.752		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
PFDS		95-77-9	<0.752	0.757		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
11Cl-PF9OUdS		051-32-3	< 0.386	0.386		.33		B22F063	29 Jun-22	0.251 L	27-Jun-22 20:95	
PFDoA		07-55-1	< 0.372	0.372		.33		B22F063	29-Jun-22	0.251 L 0.251 L	27-Jun-22 20:95	
MeFOSA		506-92-8	<2.29	2.29		.43		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
PFTrDA		623-34-8	< 0.659	0.659		.33		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
PFDoS		780-93-5	<1.41	1.41		.33		B22F063	29-Jun-22	0.251 L 0.251 L	27-Jun-22 20:95	
PFTeDA		76-06-7	<0.812	0.812		.33		B22F063	29-Jun-22	0.251 L 0.251 L	27-Jun-22 20:95	
EtFOSA		51-50-2	<2.92	2.92		.33		B22F003 B22F063	29-Jun-22	0.251 L 0.251 L	27-Jun-22 20:95	
MeFOSE		448-03-7	<1.33	1.33		.43 .43		B22F063 B22F063	29-Jun-22 29-Jun-22	0.251 L 0.251 L	27-Jun-22 20:95 27-Jun-22 20:95	
EtFOSE		31-33-2	<1.56	1.55		.43		B22F063 B22F063	29-Jun-22 29-Jun-22	0.251 L 0.251 L	27-Jun-22 20:93 27-Jun-22 20:95	
Labeled Standards		ype	% Recovery		Limits	.55	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
	1						Quanners			-	•	
19C9-PFBA		IS	72.0		5 - 150		5	B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	
19C9-PFPeA		IS	80.0		25 - 150		D	B22F063	29-Jun-22	0.251 L	90-Jun-22 16:08	
19C9-PFBS		IS	70.0	2	25 - 150			B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1

Page 27 of 38

Sample ID: AM	W-03							PFAS Iso	tope Dilution	Method
Client Data					Laboratory Data					
Name: A	ECOM		Matrix:	Aqueous	Lab Sample:	2206072-0	13	Column:	BEH C18	
Project: C	CVRA		Date Collected:	08-Jun-22 11:10	Date Received:	03-Jun-22	03:95	conum	DEITCIO	
-										
Labeled Standards		Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
19C2-4:2 FTS		IS	74.3	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
19C2-PFHxA		IS	36.0	25 - 150	D	B22F063	29-Jun-22	0.251 L	90-Jun-22 16:08	40
19C9-HFPO-DA		IS	68.1	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
19C4-PFHpA		IS	64.9	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
19C9-PFHxS		IS	64.0	25 - 150	D	B22F063	29-Jun-22	0.251 L	90-Jun-22 16:08	40
19C2-6:2 FTS		IS	204	25 - 150	DhH	B22F063	29-Jun-22	0.251 L	90-Jun-22 16:08	40
19C2-PFOA		IS	68.2	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
19C5-PFNA		IS	77.2	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
19C8-PFOSA		IS	43.1	10 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
19C8-PFOS		IS	56.0	25 - 150	D	B22F063	29-Jun-22	0.251 L	90-Jun-22 16:08	40
19C2-PFDA		IS	81.2	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
19C2-8:2 FTS		IS	84.0	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
d9-MeFOSAA		IS	75.8	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
d5-EtFOSAA		IS	62.9	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
19C2-PFUnA		IS	76.4	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
19C2-PFDoA		IS	67.5	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
d9-MeFOSA		IS	15.8	10 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
19C2-PFTeDA		IS	49.9	25 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
d5-EtFOSA		IS	12.9	10 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
d7-MeFOSE		IS	92.3	10 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
d3-EtFOSE		IS	91.8	10 - 150		B22F063	29-Jun-22	0.251 L	27-Jun-22 20:95	1
MDL - MetWod Detection	n Limit	RL - Reporting limit	Results reported to M	IDL.	, Wen rep	oortedhPFHxSh	PFOAhPFOShN	IeFOSAA and Et	FOSAA include botW	

, Wen reportedhPFHxShPFOAhPFOShMeFOSAA and EtFOSAA include bo linear and brancWed isomers. Only tWe linear isomer is reported for all otWer

analytes.

Sample ID: AB-060822PFAS Isotope Dilution Metho													
Client Data Name: AECOM Project: CVRA		Matrix: Date Colle	A8ueouq ected: 01-sun-22 33	I	Lab Sa	atory Data ample: Received:	2206072-3 09-sun-22		Column:	BEH C31			
Analyte	CAS Number	Conc. (ng/L)	MDL	R	L	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution		
PFBA	J75-22-T	40.915	0.915	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFPeA	2706-90-Ј	40.7J7	0.7J7	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFBS	J75-7J-5	40.11J	0.11J	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
T:2 F <s< td=""><td>75732Т-72-Т</td><td>40.927</td><td>0.927</td><td>3.9</td><td>5</td><td></td><td>B22F069</td><td>2J-sun-22</td><td>0.256 L</td><td>21-sun-22 37:25</td><td>3</td></s<>	75732Т-72-Т	40.927	0.927	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFHxA	J07-2T-T	40.795	0.795	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFPeS	2706-93-Т	40.100	0.100	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
HFPO-DA	3J252-3J-6	43.5J	3.5J	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFHpA	J75-15-9	40.932	0.932	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
ADONA	939005-3T-T	40.62T	0.62T	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFHxS	J 55-T6-T	43.00	3.00	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
6:2 F <s< td=""><td>27639-97-2</td><td>43.30</td><td>3.30</td><td>3.9</td><td>5</td><td></td><td>B22F069</td><td>2J-sun-22</td><td>0.256 L</td><td>21-sun-22 37:25</td><td>3</td></s<>	27639-97-2	43.30	3.30	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFOA	JJ5-67-3	40.9J2	0.9J2	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFHpS	J75-92-1	40.513	0.513	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
PFNA	J 75-95-3	40.7J7	0.7J7	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFOSA	75T-93-6	43.06	3.06	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFOS	376J-2J-3	43.30	3.30	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
9C1-PFJONS	756T26-51-3	43.0T	3.0T	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFDA	JJ5-76-2	40.922	0.922	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
1:2 F <s< td=""><td>J9301-JT-T</td><td>43.33</td><td>3.33</td><td>3.9</td><td>5</td><td></td><td>B22F069</td><td>2J-sun-22</td><td>0.256 L</td><td>21-sun-22 37:25</td><td>3</td></s<>	J9301-JT-T	43.33	3.33	3.9	5		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
PFNS	61259-32-3	43.3J	3.3J	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
MeFOSAA	2J 55-J 3-9	40.927	0.927	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
EtFOSAA	2993-50-6	43.03	3.03	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
PFUnA	2051-9T-1	40.7J7	0.7J7	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
PFDS	JJ5-77-J	40.7T2	0.7T2	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
33C1-PFJOUdS	76J053-92-9	40.966	0.966	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
PFDoA	J07-55-3	40.953	0.953	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
MeFOSA	J3506-J2-1	42.39	2.39	2.T			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
PF <rda< td=""><td>72629-9T-1</td><td>40.6J9</td><td>0.6J9</td><td>3.9</td><td></td><td></td><td>B22F069</td><td>2J-sun-22</td><td>0.256 L</td><td>21-sun-22 37:25</td><td></td></rda<>	72629-9T-1	40.6J9	0.6J9	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
PFDoS	79710-J9-5	43.J1	3.J1	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
PF <eda< td=""><td>J76-06-7</td><td>40.795</td><td>0.795</td><td>3.9</td><td></td><td></td><td>B22F069</td><td>2J-sun-22</td><td>0.256 L</td><td>21-sun-22 37:25</td><td></td></eda<>	J76-06-7	40.795	0.795	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
EtFOSA	T353-50-2	42.27	2.27	2.T			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
MeFOSE	2TTT1-09-7	43.95	3.95	2.T			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25 21-sun-22 37:25			
EtFOSE	3693-99-2	43.5J	3.5J	3.9			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
Labeled Standards	Туре	% Recovery		imits	-	Qualifiers	Batch	Extracted	Samp Size		Dilution		
3JCJ-PFBA	IS	93.T	25	- 350			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3		
3JCJ-PFPeA	IS	93.7		i - 350			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			
3JCJ-PFBS	IS	9J.9		- 350			B22F069	2J-sun-22	0.256 L	21-sun-22 37:25			

Page 29 of 38

Sample ID: AB-060822		PFAS Isotope Dilution Method							
Client DataName:AECOMProject:CVRA		Matrix: Date Collected:	A8ueouq 01-sun-22 33:J0	Laboratory Data Lab Sample: Date Received:	2206072-3 09-sun-22		Column:	BEH C31	
Labeled Standards	Туре	% Recovery	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
3JC2-T:2 F <s< td=""><td>IS</td><td>90.3</td><td>25 - 350</td><td></td><td>B22F069</td><td>2J-sun-22</td><td>0.256 L</td><td>21-sun-22 37:25</td><td>3</td></s<>	IS	90.3	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC2-PFHxA	IS	96.2	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JCJ-HFPO-DA	IS	10.7	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JCT-PFHpA	IS	302	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JCJ-PFHxS	IS	303	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC2-6:2 F <s< td=""><td>IS</td><td>97.T</td><td>25 - 350</td><td></td><td>B22F069</td><td>2J-sun-22</td><td>0.256 L</td><td>21-sun-22 37:25</td><td>3</td></s<>	IS	97.T	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC2-PFOA	IS	97.9	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC5-PFNA	IS	96.5	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC1-PFOSA	IS	T9.5	30 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC1-PFOS	IS	91.6	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC2-PFDA	IS	9T.9	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC2-1:2 F <s< td=""><td>IS</td><td>99.2</td><td>25 - 350</td><td></td><td>B22F069</td><td>2J-sun-22</td><td>0.256 L</td><td>21-sun-22 37:25</td><td>3</td></s<>	IS	99.2	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
dJ-MeFOSAA	IS	73.6	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
d5-EtFOSAA	IS	10.J	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC2-PFUnA	IS	19.9	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC2-PFDoA	IS	13.2	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
dJ-MeFOSA	IS	39.T	30 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
3JC2-PF≤eDA	IS	79.2	25 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
d5-EtFOSA	IS	37.9	30 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
d7-MeFOSE	IS	T2.7	30 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
d9-EtFOSE	IS	TJ.0	30 - 350		B22F069	2J-sun-22	0.256 L	21-sun-22 37:25	3
MDL - Method Detection Limit	RL - Reporting limit	Requitq reported to M	IDL.	When re	ported, PFHxS,	PFOA, PFOS, N	leFOSAA and Etl	FOSAA include both	

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include bo linear and branched iqomerq. Only the linear iqomer iq reported for all other

analyteq.

DATA QUALIFIERS & ABBREVIATIONS

В	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection Limit
Е	The associated compound concentration exceeded the calibration range of the instrument
Н	Recovery and/or RPD was outside laboratory acceptance limits
Ι	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
М	Estimated Maximum Possible Concentration (CA Region 2 projects only)
MDL	Method Detection Limit
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
Р	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
RL	For 537.1, the reported RLs are the MRLs.
TEQ	Toxic Equivalency, sum of the toxic equivalency factors (TEF) multiplied by the sample concentrations.
TEQMax	TEQ calculation that uses the detection limit as the concentration for non-detects
TEQMin	TEQ calculation that uses zero as the concentration for non-detects
TEQRisk	TEQ calculation that uses $\frac{1}{2}$ the detection limit as the concentration for non-
	detects
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	17-013
Arkansas Department of Environmental Quality	21-023-0
California Department of Health – ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2020018
Massachusetts Department of Environmental Protection	M-CA413
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	2211390
New Hampshire Environmental Accreditation Program	207721
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Ohio Environmental Protection Agency	87778
Oregon Laboratory Accreditation Program	4042-021
Pennsylvania Department of Environmental Protection	018
Texas Commission on Environmental Quality	T104704189-22-13
Vermont Department of Health	VT-4042
Virginia Department of General Services	11276
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Vista Analytical Laboratory Certifications

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air							
Description of Test	Method						
Determination of Polychlorinated p- Dioxins & Polychlorinated	EPA 23						
Dibenzofurans							
Polychlorinated Dibenzodioxins in Ambient Air by GC/HRMS	EPA TO-9A						

MATRIX: Biological Tissue									
Description of Test	Method								
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA 1613B								
GC/HRMS									
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A								
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue	EPA 1668A/C								
by GC/HRMS									
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by	EPA 1699								
HRGC/HRMS									
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	PFAS Isotope								
	Dilution								
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by	EPA 8280A/B								
GC/HRMS									
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated	EPA								
Dibenzofurans (PCDFs) by GC/HRMS	8290/8290A								

MATRIX: Drinking Water								
Description of Test	Method							
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution	EPA							
GC/HRMS	1613/1613B							
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	PFAS Isotope							
	Dilution							
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537.1							
Determination of Per- and Polyfluoroalkyl Substances in Drinking Water by	EPA 533							
Isotope Dilution Anion Exchange Solid Phase Extraction and Liquid								
Chromatography/Tandem Mass Spectrometry								
Perfluorooctanesulonate (PFOS) and Perfluorooctanoate (PFOA) - Method	ISO 25101							
for Unfiltered Samples Using Solid Phase Extraction and Liquid	2009							
Chromatography/Mass Spectrometry								

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	PFAS Isotope Dilution
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA 8290/8290A

MATRIX: Solids									
Description of Test	Method								
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613								
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B								
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A								
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C								
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699								
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	PFAS Isotope Dilution								
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B								
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA 8290/8290A								

Vista Analytical La	CHAIN	N OF CUSTODY							For Laboratory Use Only Work Order #: 22060チネ Temp: ノ・ア Storage ID: <u>ドー・3、した・ス</u> Storage Secured: Yes 日No					
Project ID:			PO#:(0010693	24			Sampler:	Mar	(name)		TAT (check o	and the second sec	rd: 21 days surcharge may apply) days 7 days S	ipecify:
Maricis Hy Relinquished by (printed na	me and signal	<u>Mas</u> ture)	uffer 6/8/2" Date	L	Tim				printed name and sign	ature)			Ce/5/22 Date	1760 Time
FedEx			0609/22	(92	5	K	liaw	adsworth K	lial	adou	much	0609122	0935
Relinquished by (printed na	ime and signal	ture)	Date		Tim	e			printed name and sign				Date	Time
SHIP TO: Vista Analytica 1104 Windfield El Dorado Hill (916) 673-152 ATTN:	d Way s, CA 95762	573-0106	Method of Shipment: Feder Tracking No.:	Add .	Analy	Contai	equested		and a second sec	FAS DY OPE DUN	or (max)		Partient on any	
Sample ID	Date	Time	Location/ Sample Description	1.	wanter	WPR Ha	IT PRON PH	05 PFAS	at in orther orther have	retro story	EDS PEAS	si i e i e	Commen	ts
MW-55A	6/7/22	0440		2	P	AR			×			T		
mw- ARASIA	6/7/22	(110		2	P	AG			×			· · · · · · · · · · · · · · · · · · ·		
MW-51A Dup	4172	1110		2	P	AR			X					
Amw-01	6/7/22			2	P	AQ			x					
Amw-02	6tAm	1530		1	P	AQ			×			Insifica	+ volume.	
EB-060722	49102	1240		2	P	AQ			×					
Amw-05	6/7/22			2	P	AQ			X					
Amw-oy	6/1/22			2	5	Aa			X	1				
Amw-03	6/8/22	1110		2	P	AT			*					
AB-060822	48122			2	P	AQ			x					
Special Instructions/Comment							_		SEND OCUMENTATION ND RESULTS TO:	Company: Address: City: Phone:				?ip:
Container Types: P = HDPI PY = Polypropylene, O= O			Bottle Preserv TZ= Trizma:						Types: AQ = Aqueou Sludge, SO = Soil, WV	us, DW = Dr	nking Wa	ter, EF = Efflu	ent, PP = Pulp/Paper	, SD = Sediment,
ID: LR-537COC						Rev.	No.: 2 F	Rev. Date: 0	08/03/2020		-			Page: 1 o

Page 35 of 38

Sample Log-In Checklist

									1		_
Vista Work Orde	r #:	22	0607	2	8		т	AT	St	-2	
Samples	Date/Tim	е		In	itials:		Loc	ation:	WR-2		
Arrival:	06/09/2	22 09	35		KW		She	lf/Raci	«NA		
Delivered By:	FedEx	On Tra	с	GLS	DHI	-	Han Delive	17.42	Ot	her	
Preservation:	lo		Blu	ie l	ce		chni ce	Dry	/ Ice	No	one
Temp °C: (uncorrected) Probe used: Y N Thermometer ID: Temp °C: 1 (corrected) Probe used: Y N Thermometer ID:											
		and a state of the		1					YES	NO	NA
Shipping Contair	ner(s) Intac	t?							\checkmark		
Shipping Custod	y Seals Inta	act?									V
Airbill	Trk	#	8130 1	24	8 120	0			V		
Shipping Docum	entation Pr	esent?							V		1
Shipping Contair	ner	N	/ista		Client	R	etain	R	eturn	Dis	pose
Chain of Custody	y / Sample	Documer	tation Pro	ese	ent?				V		
Chain of Custody	y / Sample	Documer	ntation Co	mp	olete?				V		
Holding Time Ac	ceptable?								V		
Logged In:	Date/Tim	e		In	itials:		Loc	ation:	R-1	7, h	12-2

COC Anomaly/Sample Acceptance Form completed?

Comments:

Shelf/Rack: A-3

CoC/Label Reconciliation Report WO# 2206072

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time		Container	BaseMatrix	Sample Comments
2206072-01	A MW-55A	d,	C. States and the states of the	07-Jun-22 09:40	Ø	HDPE Bottle, 250 mL	Aqueous	
2206072-01	B MW-55A			07-Jun-22 09:40		HDPE Bottle, 250 mL	Aqueous	
2206072-02	A MW-51A	تأر الع		07-Jun-22 11:10	Ø,	HDPE Bottle, 250 mL	Aqueous	THE STAT
2206072-02	B MW-51A	r,		07-Jun-22 11:10	0	HDPE Bottle, 250 mL	Aqueous	
2206072-03	A MW-51A Dup	Ø,		07-Jun-22 11:10		HDPE Bottle, 250 mL	Aqueous	
2206072-03	B MW-51A Dup	r,		07-Jun-22 11:10	0	HDPE Bottle, 250 mL	Aqucous	
2206072-04	A AMW-01	Ø,		07-Jun-22 13:55		HDPE Bottle, 250 mL	Aqueous	
2206072-04	B AMW-01	M		07-Jun-22 13:55		HDPE Bottle, 250 mL	Aqueous	
2206072-05	A AMW-02	ØA)		07-Jun-22 15:30		HDPE Bottle, 250 mL	Aqueous	
2206072-06	A EB-060722	Ø		07-Jun-22 12:40	Ø	HDPE Bottle, 250 mL	Aqucous	
2206072-06	B EB-060722	Ø		07-Jun-22 12:40	Ø	HDPE Bottle, 250 mL	Aqueous	3
2206072-07	A AMW-05	D		07-Jun-22 17:30	☑,	HDPE Bottle, 250 mL	Aqueous	
2206072-07	B AMW-05	Ø		07-Jun-22 17:30		HDPE Bottle, 250 mL	Aqueous	
2206072-08	A AMW-04	Ø		08-Jun-22 09:35	ø.	HDPE Bottle, 250 mL	Aqueous	
2206072-08	B AMW-04	C)		08-Jun-22 09:35	Ø	HDPE Bottle, 250 mL	Aqueous	
2206072-09	A AMW-03	d		08-Jun-22 11:10	\square	HDPE Bottle, 250 mL	Aqueous	
2206072-09	B AMW-03	₫,	Strain Strain	08-Jun-22 11:10	d'	HDPE Bottle, 250 mL	Aqueous	
2206072-10	A AB-060822	1 ,		08-Jun-22 11:30	e.	HDPE Bottle, 250 mL	Aqueous	
2206072-10	B AB-060822			08-Jun-22 11:30	Ø	HDPE Bottle, 250 mL	Aqueous	

Checkmarks indicate that information on the COC reconciled with the sample label.

Any discrepancies are noted in the following columns.

Work Order 2206072 Revision 1

2206072

Page 1 of 2 Page 37 of 38

Yes	No	NA	Comments	No	BELLEP	Volume
V			1			
	1	1	1			
J.						
V			1			
	<i>✓</i>	/				

Preservation Documented: Na2S2O3 Trizma NH4CH3CO2 None Other

Verifed by/Date: SH OCel10/22

Printed: 6/10/2022 10:59:48AM Work Order 2206072 Revision 1 2206072

Page 2 of 2 Page 38 of 38

Appendix B Soil Boring Logs & Borehole Filling and Sealing Reports

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:	Wa
-----------	----

Watershed/Wastewater

Waste Management
Other

																Pag		of	5
-	y/Projec							License/I	Permit/	Monito	ring	Nu	mber		Boring				
				ional Airpor				to Duillin -	Storta	Detal			Carrie			AMV			
Ada		ь Бу. Г			n, Id	sij allu Filill		te Drilling	Started	Date I	Jrilli	ng	Comp	leted	Drillin	g Meth	Dđ		
		Constr	uction	and Explora	tion		5/	10/2022		5/10	/202	22		h	ollow	stem	auger		
	ique W			DNR Well ID				Final Sta				S		e Elevat	ion			rehole	Diameter
	~ ! ! ~							81.	00 Fe	et MS	L			90.91				8	3.25
Local State	Grid Or Plana	ngin		timated: 🗌)	or N	Boring Location \Box , E S/C/N		Lat	44 °	52 '8	8.099	984	F	Local C	irid Loo				— _
State		of N	W 1/	4 of Section	33	·	wI		91°	28 58	3.503	321	"		Feet			I	⊢ E Feet □ W
Facilit		01 11	•• •	County		, 120 II, IC)		County Co		Civil T				village	1000				
				Chip	bew	a		9		Eau C	Claiı	re							
San	nple														Soil	Prope	rties		
	& (in)	s	et		S	oil/Rock Description								9					
. e	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		An	d Geologic Origin For						_	\sim	Compressive Strength	9		ý		ints
Tyr	Length Att. Recovered (M C	th I			Each Major Unit			CS	Graphic Log	=	Diagram	PID/FID	npre	Moisture Content	uid iit	Plasticity Index	200	D/
Number and Type	Len Rec	Blo	Dep						U S	Grap Log	Well	Dia	PID	Compress Strength	Mo Cor	Liquid Limit	Plasti Index	P 2(RQD/ Comments
			_	Blind drilled to	app	roximately 70 feet													
			-	Sand and grave	el, br	own to tan, dry													
			-2																
			_																
			-3																
			-4																
			-																
			_5																
			_																
			-6						SP						Dry				
			_																
			- 7																
			- /																
			-8																
			_9																
			_																
			-10																
]								
			-11																
			-																
			-12																

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Marcus Hopkins	Firm AECOM	Tel: Fax:
--------------------------	------------	--------------

Borin	g Numb	er	AM	W-01 Use only as an attachment to Form 4400-	122.							Pa	ge 2	of	5
	nple										Soil	Prop	erties		
	Length Att. & Recovered (in)	nts	feet	Soil/Rock Description						ive					10
ber ype	h At ⁄erec	Cou	InI	And Geologic Origin For Each Major Unit	S	ic		am	А	ress	nt nt		city		nents
Number and Type	lecov	Blow Counts	Depth In Feet	Each Major Unit	USCS	Graphic Log	Well	Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid	Plasticity Index	P 200	RQD/ Comments
2 8		щ	-	Blind drilled to approximately 70 feet			Í.	Π	ц					<u> </u>	<u> </u>
				Sand and gravel, brown to tan, dry (continued)											
			-13												
			-14												
			-15												
			Ē												
			-16												
			-17												
			-18												
			-19												
			E												
			-20												
			Ē												
			-21												
			-22		SP						Dry				
			-23												
			-24												
			-25				1								
			-23												
			-26												
			-												
			-27												
			-28												
			-29												
			-30												
			-31												
			Ē												
			-32				'	1							

Boring	g Numb	ber	AM	W-01 Use only as an attachment to Form 44	00-122.						Pag	ge 3	of	5
San										Soil	Prop	erties		
	Length Att. & Recovered (in)	S	et	Soil/Rock Description					9					
္ခ	Att. red (ount	n Fe	And Geologic Origin For					ssiv	9		N.		ints
Number and Type	igth sove	Blow Counts	Depth In Feet	Each Major Unit	USCS	Graphic Log	Well Diaman	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	8	RQD/ Comments
Nur and	Ler Rec	Blo	Dep		U S	Grap Log	We	PID	Cor Stre	Mo Cor	Liquid Limit	Plastic Index	P 200	RQ Coi
				Blind drilled to approximately 70 feet										
			-	Sand and gravel, brown to tan, dry (continued)										
			-33											
			- 24											
			-34											
			-35											
			- 55											
			-36											
			- 50											
			-37											
			- 57											
			-38											
			-											
			-39											
			-											
			-40											
			-41		SP					Dry				
			Ē											
			-42											
			-43											
			_											
			-44											
			Ē											
			-45											
			-											
			-46											
			-											
			-47											
			F											
			-48											
			E											
			-49											
			-50	Sand and gravel, dry										
			E											
			-51		SP									
			E											
			-52			·····								

Boring Nun	nber	AM	W-01 Use only as an attachment to Form 4400	-122.						Pa	ge 4	of	5
Sample									Soil	Prop	erties		
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
		-	Sand and gravel, dry (continued)										
		-53											
		-54											
		-55											
		-56											
		57											
		-58											
		59											
		60											
									D				
		-61		SP					Dry				
		62											
		-63											
		Ē											
		-64											
		65											
		E											
		66 											
		67											
		E											
		68											
		69											
		-70											
		E											
		-71	Sand tan very coarse to find poorly sorted trace arrayal										
		E	Sand, tan, very coarse to find, poorly sorted, trace gravel, compacted	SP					Dry				
		-72											

Boring Nu	umber	r	AM	W-01 Use only as an attachment to Form 4400-	122.							Pag	ge 5	of	5
Sample											Soil	Prope	erties		
Number and Type Length Att. &	(ii)	ts	et	Soil/Rock Description						9					
Att.	ed (ount	ıFe	And Geologic Origin For				_	~	ssiv	9		y		nts
Typ gth.	ove	Ŭ ≽	th I	Each Major Unit	CS	phic	_	gran	/FII	ngth	stur tent	ii iid	ticit	0) D/
Number and Type Length Att	Rec	Blow Counts	Depth In Feet		U S C	Graphic Log	Well	Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
				Sand, tan, very coarse to find, poorly sorted, trace gravel, compacted (continued)			Ī				Dry				
			-	compacted (commuted)							Diy				
			-73												
			_												
			-74												
			_												
			-75												
			_								Dry				
			-76					•.•							
			_												
			77					•••							
			-78												
			_		SP										
			- 79												
			_					•••							
			-80	Becomes moist around 80 feet							Moist				G . 1 1 . 1
			_			∇									Soil sampled at 80-80.5'
			-81	Becomes saturated around 81 feet							Sat				
			-82												
			-83												
			_												
			-84					•••							
			_												
			-85	Sand, tan, very coarse to fine, poorly sorted, trace gravel, saturated, well compacted							Sat				
			_	saturated, well compacted											
			-86				°_•	<u> - •</u>							Bottom of well set at
															approximately 86 feet bgs with a 10 foot screen
			-87												a 10 foot screen
			_		SP										
											Sat				
			- 89				:								
							ł								
			-90	End of boring at 90 feet bgs		<u> </u>	1								
I	I			1	I	1	I	1			I	I			1

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route 7	Го:	Wat

Watershed/Wastewater
Remediation/Redevelopment

Waste Management
Other

														Pag		of	5
Facilit				• • •			License/	Permit/	Monitor	ring N	umber		Boring			(F.	
Chij	ppewa	1 Vall	ey Reg	gional A	Airport (C	VRA)	Dete Deilling	Cta ta i		11.	<u> </u>					(Firs	t Attempt)
Ada		а Б у. 1			iei (iiisi, ias	t) and Firm	Date Drilling	Starteo	Date I	Jrillin	g Comp	leted	Drillin	g Meth	od		
		Constr	uction	and Ex	ploration		5/10/2022		5/10	/202	2	1	nollow	v stem	auger		
	ique W				Vell ID No.	Common Well Name	Final Sta	tic Wa			Surface	e Eleva	tion		Bc	rehole	Diameter
								Feet M	MSL				Feet N			8	3.25
Local State		rigin		stimated:	□) or N	Boring Location \Box , E S/C/N	Lat	44 °	52 15	5.7685	59 "	Local (Grid Lo				_
State		of N	W / 1	/4 of Sec		·		 91 °	28 48				Faat			1	□ E Feet □ W
Facilit		01 19	•• 1		County	1 20 N, K J	County Co				ity/ or V	/illage	Teet	. 🗆 3			
	,				Chippewa	ı	9		Eau C			0					
San	nple				**		1						Soil	Prope	erties		
	л) (п		t.		Sc	il/Rock Description											
o	Att. 4 ed (j	ounts	Fee			l Geologic Origin For						ssive			>		ıts
Typ	gth ∕ over	^v C	th In			Each Major Unit		CS	ohic	ram	ED F	ngth	sture	it id	ticit. x	0	mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet					U S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			_	Blind d	rilled to 75 fe	eet											Difficulty drilling due to
			-	Sand ar	nd gravel, dry	7											liquidation of sand
			-1														sand
			-2														
			-														
			3														
			-														
			-4														
			-5														
			E														
			-6					SP									
			-														
			-7														
			F o														
			-8														
			-9														
			Ē														
			-10														
			E														
			-11														
			-12														

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Fax:	Signature Marcus Hopkins Firm AE	ECOM Tel: Fax:
------	----------------------------------	-------------------

Boring	g Numb	ber	AM	W-02 (First Attompt) attachment to Form 4400-	122.								ge 2	of	5
San											Soil	Prop	erties		
	Length Att. & Recovered (in)	s	et	Soil/Rock Description						e					
. e	Att. red (Blow Counts	n Fe	And Geologic Origin For					, ·	ssiv	9		2		nts
Typ	gth ovei	Ŭ A	th I	Each Major Unit	CS	phic		gran /FIT		ngth	stur	it nid	ticit	Q	D/
Number and Type	Len Rec	Blov	Depth In Feet		USCS	Graphic Log	Well	Diagram PID/FID	<u>]</u>	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			_	Blind drilled to 75 feet							Dry				
			E	Sand and gravel, dry (continued)											
			-13												
			F		SP										
			-14												
			-												
			-15	Sand with gravel and pebbles, saturated, loose											
			F	Sand with graver and peoples, sublated, 10050							Sat				
			-16												
			E												
			-17												
			F		SP										
			-18												
			- 10												
			-19												
			-20	Sand and gravel with abundant pebbles		000	1								
			E				1								
			-21			bUC	1								
			E			000					Sat				
			-22												
			F			000	1								
			-23			000									
			-			000									
			-24												
			F			000									
			-25		GP	000									
			E												
			-26			000									
			E												
			-27			60C									
			F			000									
			-28			60 C									
						000									
			-29			°°C									
							1								
			÷ 20			°°C									
			-30	Sand, brown to tan, very poorly sorted, loose, gravelly							Sat				
			F								Jac				
			-31		SP										
			É												
			-32				1								

Boring Number	AM	W-02 (First Attempti) attachment to Form 4400-	-122.							ge 3	of	5
Sample								Soil	Prope	erties		
Number and Type Length Att. & Recovered (in)	Blow Counts Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	33 -34 -35 -36 -37 -38 -39 -40 -41 -42 -43 -44 -45 -46 -47 -48 -49 -50 -51 -52	Sand, brown to tan, very poorly sorted, loose, gravelly <i>(continued)</i>	SP					Sat				

Boring Numb	ber	AM	W-02 (First Attempt) attachment to Form 4400-	122.						Pag	ge 4	of	5
Sample									Soil	Prope	erties		
Number and Type Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
		53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 -70 -71 -72	Sand, brown to tan, very poorly sorted, loose, gravelly <i>(continued)</i> Sand, tan, very poorly sorted, loose, gravelly	SP					Sat				

Boring Number	AM	W-02 (First Attornation) attachment to Form 4400-	122.						Pag	ge 5	of	5
Sample								Soil	Prope	erties		
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet	Soil/Rock Description And Geologic Origin For Each Major Unit	USCS	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	uid nit	Plasticity Index	00	RQD/ Comments
Nur and Len Rec Blo	Dep		U S	Grap Log	Well Diagr	DID	Con Stre	Con Con	Liquid Limit	Plas Inde	P 200	RQ Con
Nu and Let Ree	Image: Constraint of the second se	End of boring at 90 feet bgs *Unable to identify where water table sits due to saturated cuttings from perched water from approximately 15 to 30 feet *Unable to set well, drill auger getting stuck in well, borchole collapsing at approximately 75 feet	SP	Gradient and the second sec	We	IIId	Con	ow Sat	Lig	Pla Ind	P 2	RQ

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

|--|

Watershed/Wastewater

Waste Management
Other

														Pag		of	3
	y/Proje			:1 A:			License/	Permit/	Monitor	ing Nu	umber					(500	and Attampt
				tional Airp		v KA) st) and Firm	Date Drilling	Started	Date D	rilling	Comr	leted		g Meth		(380	ond Attempt
Ada		5				,	Dute Drining	Startet		, i i i i i i i i i i i i i i i i i i i	, comp	leteu	Drinin	5 meth	ou		
				and Explo			5/11/2022		5/11/			ł	nollow	v stem	auger		
WI Ur	ique W	ell No		DNR Well	l ID No.	Common Well Name	Final Sta			1		e Elevat		101	Bo		Diameter
Local	Grid Oı	rioin	□ (es	timated:) or	Boring Location		Feet l				890.3 Local (8.25
State		ingin			N		Lat	<u>4</u> 4 °_	52 15	.7685	<u>9"</u>	Locar C			ſ		Ε
SW		of N	W 1.	/4 of Section	n 33	, T 28 N, R 9	WLong	<u>91 °</u>	28 483				Feet				Feet 🗌 W
Facilit	y ID				inty		County Co	ode	Civil To		•	Village					
		1		Ch	ippew	a	9		Eau C	laire			a 11	<u> </u>			.
San	nple	-											Soil	Prope	erties		-
	Length Att. & Recovered (in)	ıts	eet			oil/Rock Description						ve					
er Pe	ı Att ered	Cour	In F		An	d Geologic Origin For		s	2	E		essi th	r II		ity		ents
Number and Type	Length Att. & Recovered (in	Blow Counts	Depth In Feet			Each Major Unit		SC	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
an	Le Re	Bl	ă		•			Þ	Grap Log	<u>D</u>	Id	<u>s</u> c	Σŭ	Ľ.	Pl: In	P	<u> </u>
			E I	Blind Drill	-								Dry				
				Sand, brow	n to tan,	very poorly sorted, loose,	, gravelly, dry										
			ΕI														
			$\begin{bmatrix} -2 \end{bmatrix}$														
			⊧														
			-3														
			F, I														
			$\begin{bmatrix} -4 \\ \end{bmatrix}$														
			E														
			5														
			ΕI														
			-6					SP					Dry				
			F														
			-7														
			E I														
			-8														
			\mathbb{E}_{9}														
			⊧′∣														
			$\begin{bmatrix} 10 \end{bmatrix}$														
			<u> </u>														
			-11														
			E														
			-12														

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	Firm AECOM	Tel: Fax:

Boring		ber	AM	W-02 (SecondurAttempt)chment to Form 4400-	122.							ge 2	of	3
Sam										Soil	Prop	erties		4
	Length Att. & Recovered (in)	ts	set	Soil/Rock Description					e'					
္ရ	Att. red (uno	n Fe	And Geologic Origin For					ssiv	9		N.		ints
Typ	gth ovei	C A	th I	Each Major Unit	CS	phic	l gran	/FII	npre	stur	ii iid	ticit	0	D/
Number and Type	Len	Blow Counts	Depth In Feet		U S C	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			-	Blind Drilling										
			E	Sand, brown to tan, very poorly sorted, loose, gravelly, dry										
			-13	(continued)						Dry				
			F		SP									
			-14											
			F											
			-15			600								Devile lander
			F	Gravel with pebbles and trace cobbles		$ 0 \rangle$								Perched water encountered
			-16											again between 15 to 20 feet bgs
						10/10				Sat				_
			-			00				Jui				
			-17											
			-											
			-18											
			E											
			-19			000								
			-											
			-20			000								
			-											
			-21											
			E											
			-22											
			E											
			-23			60C								
			-		GP					Sat				
			-24							Sat				
			_ 24			β		•						
			-			.0 C		•						
			-25			SOS		•						
			-			000		•						
			-26			$\beta \beta <$		•						
			E			000		•						
			-27			\circ		•						
			E					•						
			-28			0°		•						
			F			00		•						
			-29					•						
			F			00		•						
			-30			[0]		•						
			E			200		•						
			-31			[0]		•						
			Ę			200		•						
			-32			000				Sat				
			-32		1			I	I		I	I		I

Borin	g Numł	ber	AM	W-02 (SecondurAttempt) chment to Form 4400-	122.			-			Pa	ge 3	of	3
San	nple									Soil	Prop	erties		
	(ii) &	s	et	Soil/Rock Description					9					
0	Att.	unt	Fee	And Geologic Origin For					SIV			L_		Its
ber Jyp	th ∕ ver	Ç	h In	Each Major Unit	CS	hic	ram	E I	gth	ent	p _	icity		mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	200	RQD/ Comments
a Z	L R	В		Gravel with pebbles and trace cobbles (continued)		57		P	N C	20		P 1	Р	
			_	Staver with peoples and face cooples (commuta)		60°<								
			-33			10 C		• •						
			-		GP	60%		>		Sat				
			-34			00								
			- 34			0	1							Well with a 10 foot screen set at
				End of boring at 34.5 feet bgs			1							approximtely 34
				*Decision was made to set a shallow well in perched water rather then drill to actual water table										ft bgs
					1									
					1									
					1									
					1									

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Watershed/Wastewater
Remediation/Redevelopment

Waste Management
Other

													Pag		of	5
Facilit						License/	Permit	Monito	ring l	Number		Boring		er		
Chi	ppewa	Vall	ey Reg	gional Airport (C	VRA)								AMV			
-		1 By: 1	Name of	f crew chief (first, la	st) and Firm	Date Drilling	Started	1 Date I	Drillir	ng Comp	oleted	Drillin	g Meth	od		
Ada Hor		onsti	nction	and Exploration	1	5/13/2022		5/13	/202	2		geopro	ha			
	ique W			DNR Well ID No.	Common Well Name	Final Sta	tic Wa				e Eleva			Bo	rehole	Diameter
						68.	00 Fe	et MS	L		888.2	Feet N	/ISL			2.00
		rigin	(es		Boring Location	Lat	44 °	52 '4	4 758	85 "	Local (Grid Lo	cation			
State				N	,			28 34								Ε
SW Facility		of N	W 1.	/4 of Section 33 County	, T 28 N, R 9	WLong County Co	<u>91 °</u>			SZ City/ or `	Village	Feet	S			Feet 🗌 W
1 donn	y ID			Chippew	a	9	de	Eau C		-	v mage					
San	nple			cmpper		-						Soil	Prope	erties		
			L L	s	oil/Rock Description											-
	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		d Geologic Origin For						Compressive Strength					ts
Number and Type	th A vere	, Co	h In		Each Major Unit		CS	hic		PID/FID	Compress Strength	Moisture Content	p	Plasticity Index		RQD/ Comments
un T	eng	low	Dept		Luch major ente		S	Graphic Log	Well	ID/J	om	Moisture Content	Liquid Limit	Plastic Index	200	RQD/ Comir
аД	L R	Щ		_ Topsoil			⊃ _Topso	i <u>l x / x</u> . <u>x</u>			0 S			L L	<u>Р</u>	<u> </u>
			F	Sand, loose, dry, su	b angular gravel											
			-1									Dry				
							SP									Soil compled
			-2													Soil sampled collected at 1-2'
			E													
			-3													
			F	Sand, brown to tan, sorted, loose, dry, s	medium to very fine, moo ub round to subangular tra	derately ace fine gravel						Dry				
			-4	, , , ,	6	6										
			-4													
			-5													
			E													
			6													
			-				SM									
			-7													
			E													
			-8													
			È													
			9													
			-10	Sand, brown to tan,	medium to very fine, mod	derately						Dry				
			E	sorted, loose, dry, ti	race fine gravel											
			-11				SM									
			E													
			-12					· ·/· · . ·								

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Manaun Hacking	Irm AECOM	Tel:
Marcus gropkins		Fax:

Borin	g Numb	ber	AM	W-03 Use only as an attachment to Form 4400)-122.							Pag	ge 2	of	5
	nple										Soil	Prope	erties		
			t	Soil/Rock Description											
	tt. & d (i	Blow Counts	Depth In Feet	And Geologic Origin For						sive					s
er Vpe	n A ere	Cot	[h]		CS	ic		E	Ð	th	nte Dt		ity		ient
Number and Type	ngtl	MC	pth	Each Major Unit	SC	Graphic Log	E	agra	PID/FID	eng	Moisture Content	Liquid Limit	Plasticity Index	P 200	D/
Nu ane	Length Att. & Recovered (in)	Ble	De		U S I	Lo Gr	Ň	Diagram	Πd	Compressive Strength	[°] C μ	Lic	Pla Inc	ΡZ	RQD/ Comments
				Sand, brown to tan, medium to very fine, moderately sorted, loose, dry, trace fine gravel <i>(continued)</i>							Dry				
				solice, loose, ery, trace line graver (communue)											
			-13												
			-												
			-14												
			-15												
					CM (
			-16		SM										
			-17												
			-												
			-18												
			-19												
			F												
			-20												
				Sand, tan, coarse to fine, poorly sorted, dry, loose, trace gravel							Dry				
				- Franci											
			-21												
			E												
			-22												
			-												
			-23												
			-24												
			-												
			-25		SP										
					51										
			-26												
			E												
			-27												
			-												
			-28												
			-29												
			E I												
			-30			·····									
				Sand, very coarse to fine, very poorly sorted, dry, loose, trace gravel							Dres				
											Dry				
			-31		SP										
			E I												
			-32												

Boring	g Numb	ber	AM	W-03 Use only as an attachment to Form 4400	-122.		_					ge 3	of	5
San										Soil	Prop	erties		
	Length Att. & Recovered (in)		t l	Soil/Rock Description					0					
	tt. ¿ cd (i	Blow Counts	Depth In Feet	And Geologic Origin For					Compressive Strength					ts
ber ype	h A 'ere	Co	Ч	Each Major Unit	S	ic.	1		res	nt e	-	city		nen
Number and Type	sngt	MO	epth	Each Major Onit	SC	Graphic Log	Well	PID/FID	l mp	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
an N	Le Re	BI	Ď		C S	Grap Log	≥ ï		s c	Σŭ	Ľ Ľ	Pl; In	P	<u> </u>
				Sand, very coarse to fine, very poorly sorted, dry, loose, trace gravel <i>(continued)</i>			1			Dry				
			F and	luce graver (commuca)										
			-33											
			F											
			-34											
			-35											
			-											
			E											
			-36											Soil sampled
			EI		SP									collected at 35-37'
			-37							Dry				
			-38											
			-											
			-39				:							
			E											
			-40											
			-41		_									
			 	Silt and sand, interbedded, coarse to fine, moderately compacted, moist silt										
			F 42		CW/ CN					Moist				
			-42		SW-SN									
			E											
			-43	Sand, tan to brown, coarse to very fine, poorly sorted, dry,										
				compact, trace fine gravel						Dry				
			-44											
			F				:							
			-45											
			-46											
			F		SP		:							
			-47											
			-48											
							:							
			-49			[·····	1							
			Εl											
			-50	Sand, tan to light brown, very poorly sorted, loose dry			$\left\{ \left \right \right\}$							
			⊧ I	Sand, tan to light brown, very poorly sorted, loose, dry, fine gravel, compacted						Dry				
			-51		SP									
			F											
			E 52											
I			-52			1	1	I	I				I	T

Com	g Numb	ei		W-03 Use only as an attachment to Form 4400	-122.					C - 11	Pag		of	5
Sam											Prope	erties		-
	. & (ii)	ıts	eet	Soil/Rock Description					ve					
_ e	Att red	ino	nF	And Geologic Origin For	s	0			essi [.] h	е т.		ty		ents
9 E	lgth :ove	Blow Counts	Depth In Feet	Each Major Unit	S C S	iddi 2	=	Diagram PID/FID	npr	istu	uid nit	Plasticity Index	8	D/
and Type	Length Att. & Recovered (in)	Blo	Def		I S D	Graphic Log	Well	Diagram PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plastic Index	P 200	RQD/ Comments
			-	Sand, tan to light brown, very poorly sorted, loose, dry, fine gravel, compacted <i>(continued)</i>	SP					Dry				
			-53	Sand, tan, yellowish white, medium to fine, moderately sorted, very compacted		· · · · · · · · · · · · · · · · · · ·	··· · · · · · · · · · · · · · · · · ·							
			-54		SW									
			55		3 **									
			-56											
				Silt, brown, trace fine sand, dry, very compacted, hard to geoprobe						Dry				
			-57		SM									
			-58	Split spoon refusal at approximately 58 feet, continue with HSA										
			59											
			-60											
			-61							Dry				
			62											
			63											
			64											
			65											
			-66				**** 	• • •						
			67 					• • • • • • • • •						
			68	Sand, tan, very coarse to fine, poorly sorted, trace gravel, compacted				• • • • • • • •		Sat				Water tabl approxima 68 ft bgs
			69					° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °						68 ft bgs
			-70		SP			• • • • • • •						
			-71					• • • • • • • • •						
			-72					• . • . • . • .						

Borin	g Numl	ber	AM	W-03 Use only as an attachment to Form 4400-	122.						Pag		of	5
San	nple									Soil	Prop	erties		
	in)	s	et	Soil/Rock Description					e					
e	Att. ed (ount	I Fe	And Geologic Origin For			_		SSIV	0		~		ats
lber Typ	gth /	۷ Cc	hIr	Each Major Unit	CS	hic	ram	E	pre	sture	id id	icit.	0	D/
, pu	Leng	3lov	Jept		S	Grap	Vell Diag) A	Com	Aois Cont	limi.	last nde	20	CO O U O U
Number and Type	Length Att. & Recovered (in)	Blow Counts	73 74 76	And Geologic Origin For Each Major Unit Sand, tan, very coarse to fine, poorly sorted, trace gravel, compacted (continued) End of boring at 76 feet bgs	SP SP	Graphic Structure of the second se			Compressive Strength	Moisture Content	Liquid	Plasticity Index	P 200	Well set at approximately 75.5 ft bgs with a 10 foot screen

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:	Wa

Watershed/Wastewater

Waste Management
Other

													Pag		of	5
-		t Name				License/I	Permit/	Monitor	ring N	lumber		Boring				
Chij	ppewa	Valle	y Reg	ional Airport (C crew chief (first, las	VRA)	D (D 'II'	<u> </u>		11.	6			AMW			
Ada		і Бу. Г		crew chief (first, las		Date Drilling	Starteo	Date L	Jrillin	g Comp	leted	Drilling	g Meth	od		
		Constru	uction	and Exploration		5/11/2022		5/11	/202	2	1	nollow	v stem	auger		
WI Un	ique W	ell No.		DNR Well ID No.		Final Sta	tic Wa			Surfac				Bo	rehole	Diameter
						70.	00 Fe	et MSI	[Feet N			8	3.25
	Grid Or	igin [(est		Boring Location	Lat	44 °	51_32	2.214	02 "	Local (Grid Loo				_
State SW		of NV	X 7 1/	A of Section 33.	,		91°	29 '4				East	□ N : □ S		1	□ E Feet □ W
Facilit		01 111	v 1/-	County	, 1 20 N, K 9	County Co		Civil To			Village	гееі				
1	, 12			Chippewa	a	9		Eau C			muge					
San	nple											Soil	Prope	erties		
			÷	So	oil/Rock Description											
1	tt. ک ed (i	unts	Fee		d Geologic Origin For						sive					tts
ber	th A vere	, Co	h In		Each Major Unit		CS	hic	uter 1		pres	ent	д <u>ц</u>	icity		/ men
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		5		n s	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
~ ~	I		-	Blind drilled to app	roximately 65 feet				\square					HI		
		-		Sand, brown to tan.	very coarse to fine, loose,	drv. trace						Dry				
			-1	gravel		, ,,										
		-	-													
		Ē	-2													
		-	-													
		-	-3													
			-4													
		-														
		-	-5													
		E														
		-	-6				SP									
		-	-													
			-7													
		-	-													
		-	-8													
		E														
			9													
		-														
		ŀ	- 10													
			-10													
		-														
		ŀ	-11													
		Ē														
			-12													

I hereby certify that the information on this form is true and correct to the best of my knowledge.

ALCOM ALCOM	Tel:
-------------	------

Boring	g Numł	ber	AM	W-04 Use only as an attachment to Form 4400	-122.							Pa	ge 2	of	5
	nple			·							Soil	Prop			
			*	Soil/Rock Description											
0	ott. d	unts	Fee	And Geologic Origin For						sive					Its
ber Гуре	th A	, Co	h In	Each Major Unit	N N	hic		ram	FID	pres	ture	t E	icity		mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	5	USCS	Graphic Log	Vell	Diag	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
<u>a 2</u>	цц		-	Blind drilled to approximately 65 feet				T	4					<u> </u>	<u> </u>
			E								Dry				
			-13	Sand, brown to tan, very coarse to fine, loose, dry, trace gravel <i>(continued)</i>											
			-												
			-14												
			-												
			-15												
			-												
			-16												
			_												
			-17												
			Ē												
			-18												
			E												
			-19												
			- 1												
			-20												
			- 20												
			-21												
			-		CD										
			-22		SP										
			-												
			-23												
			-												
			24												
			_												
			-25												
			Ē												
			-26												
			-27												
			_												
			-28												
			E												
			-29												
			E												
			-30												
			F												
			-31												
			É												
			-32												
I	. 1							1					•		

Boring	g Numb	er	AM	W-04 Use only as an attachment to Form 4400	-122.							Pa	ge 3	of	5
San				·							Soil	Prop			
			t.	Soil/Rock Description											
0	htt. 2 Sd (i	unts	Fee	And Geologic Origin For						sive					ts
ype	th A vere	Co	l In	Each Major Unit	S	lic		am	Ũ	ores gth	ture	- -	city	_	nen
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		USCS	Graphic Log	/ell	iagr	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
a Z	JK	В		Blind drilled to approximately 65 feet		0 1	15	$\frac{\Box}{\Box}$	Р	N C	20	<u> </u>	P H	Р	2 Y Y
											Dry				
			-33	Sand, brown to tan, very coarse to fine, loose, dry, trace gravel (continued)											
			F												
			-34												
			-35												
			-												
			-36												
			E												
			-37												
			E												
			-38												
			-												
			-39												
			-												
			-40												
			E												
			-41												
			-												
			-42		SP										
			- 12												
			-43												
			- 43												
			-44 												
			-												
			-45												
			E												
			-46												
			E												
			-47												
			F												
			-48												
			-49				$\left \right $								
			-50												
			E			·····									
			-51												
			F .]								
			-52												
I			52	1	I	1	I			1	I	I	I	I	I

Borin	g Numb	ber	AM	W-04 Use only as an attachment to Form 4400	-122.								Pa	ige 4	of	5
San	nple								T			Soil		erties		
	Length Att. & Recovered (in)	ţ	et	Soil/Rock Description							e					
. e	Att. red (ount	n Fe	And Geologic Origin For				,	_		ssiv	0		Ś		nts
Typ	igth ove:	Blow Counts	Depth In Feet	Each Major Unit	CS	phic	-	=	Diagram	PID/FID	npre	istur itent	Liquid I imit	sticit	8	D/
Number and Type	Len Rec	Blo	Dep		USCS	Graphic	Log	Well	D1a	PID	Compressive Strength	Moisture Content	Liquid I imit	Plasticity Index	P 200	RQD/ Comments
			_	Blind drilled to approximately 65 feet								Dry				
			-53	Sand, brown to tan, very coarse to fine, loose, dry, trace gravel (continued)												
			- 33	graver (communed)												
			-54													
			- 54													
			-55													
			-													
			-56													
			- 50													
			-57													
			- "													
			-58													
			-		SP											
			- 59													
			Ē													
			-60													
			-61													
			Ē													
			-62													
			-63													
									• .•							
			-64				•		•••							
			Ę													
			-65	Sand light tan to brown coarse to fine poorly sorted												
			-	Sand, light tan to brown, coarse to fine, poorly sorted, compacted, dry, trace gravel								Dry				
			-66						•••							
			-						。 。							
			-67													
			F		SP				•••							
			-68						•••							
			-						•••							
			-69													
			E			$\overline{\mathbf{\nabla}}$			•••							Soil sampled
			-70	Sand, light tan to tan, coarse to fine, poorly sorted,					•••			Sat				Soil sampled collected at 69-70'
			E	Sand, light tan to tan, coarse to fine, poorly sorted, compacted, saturated, trace gravel					。 。			But				
			-71		SP											
			È													
			-72			· ····	•• *	.•⊟•	•••							

Sample. Soll Properties Soll Properties a general set of the	Borin	g Numł	ber	AM	W-04 Use only as an attachment to Form 4400)-122.						Pa	ge 5	of	5
addity iii type iii typ	San	nple									Soil	Prop	erties		
addition and Geologic Origin For Each Major Unit So of the part of the		را ا		÷	Soil/Rock Description										
Sat		tt. ð d (i	unts	Fee						sive					ts
SP Sat Sat Sat Sat Sat Sat Sat Sat	er ype	h A 'ere	Co	ln			ic	E E		ress	nte nt	_	city		Jent
Sat	d T.b	ngt	οw	spth	Each Major Unit	SC	aph	ell aor:	D/F	lmg	oist	mit duic	astic	200	D/ JD/
Set Compacted, saturated, trace gravel (continued) 74 75 76 76 76 feet bgs 76 feet bgs 77 77 78 79 70 70 70 70 70 70 70 70 70 70	Nu an	Le Re	Bl	De			5-	Ú A Č	<u> </u>	င် ပိ	Σŭ	E E	Ъ Й	P	Ŭ K
SP SP 74 SP 75 Sat				-	Sand, light tan to tan, coarse to fine, poorly sorted,						Sat				
SP SP SP Sat Sat Sat Sat Sat Sat Sat				-	compacted, saurated, date graver (commuta)										
Sat				-73											
Sat				-					-						Well with a 10 ft
75 -76 Sat 76 End of boring at 76 feet bgs				- 74		SP									screen set at
Image: Product of boring at 76 feet bgs Image: Sate of boring at 76 feet bgs				-				 							
Image: Sate of the second s				-75											
End of boring at 76 feet bgs											Sat				
End of boring at 7/6 feet bgs				_							Sat				
				-76	End of boring at 76 feet bgs			<u>.</u>							

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:	Wa
Route 10.	VV 2

Watershed/Wastewater

Waste Management
Other

Facility/Project Name License/Permit/Monitoring Number Boring Number Chippewa Valley Regional Airport (CVRA) Date Drilling Started Date Drilling Completed Drilling Method Adam Adam Adam Solid Properties Drilling Method Hollow stem auger Horizon Construction and Exploration 5/12/2022 5/12/2022 S/12/2022 Image: Started Started Started Started Started Started Started Started Starte Plane Boring Number Borehole Diame VI Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Borehole Diame State Plane N, E S /C/N Lat 44 ° 51 32.15649" Local Grid Location SW 1/4 of NW 1/4 of Section 33, T 28 N, R 9 WLong 91 ° 28 '51.8027" Local Grid Location Facility ID County County County Code Civil Town/City/ or Village Soil/Rock Description Sample Soil/Rock Description And Geologie Origin For Soil/Rock Description Soil Soil Soil Soil Soil Soil Soil Soil							·							Pag		of	5
Boring Drilled By: Name of crew chief (first, last) and Firm Date Drilling Started Date Drilling Completed Drilling Method Adam Horizon Construction and Exploration 5/12/2022 5/12/2022 hollow stem auger WI Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Borehole Diame Local Grid Origin (estimated:) or Boring Location	-	-			. 1.4		License/I	Permit/	Monitor	ring N	lumber						
Adam Horizon Construction and Exploration 5/12/2022 5/12/2022 hollow stem auger WI Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level 65.50 Feet MSL Surface Elevation 883.9 Feet MSL Borehole Diame 883.9 Feet MSL Local Grid Origin (estimated:) or Boring Location State Plane N E S/C/N Lat 44 ° 51 32.15649" Local Grid Location SW 1/4 of NW 1/4 of Section 33, T 28 N, R 9 WLong 91 ° 28 '51.8027" Feet III N E Facility ID County Chippewa County Code Pite Bind drilled to approximately 65 feet Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Bind drilled to approximately 65 feet Soil Properties Dry Dry Dry Dry							Det. D '11'	<u>Ct- ()</u>			<u> </u>						
Horizon Construction and Exploration 5/12/2022 5/12/2022 hollow stem auger WI Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level Surface Elevation Borehole Diame Autority 65.50 Feet MSL 883.9 Feet MSL 883.9 Feet MSL 8.25 Local Grid Origin (estimated:) or Boring Location	-		т БУ: Т	vanne or	Gew chief (first, las	nj allu Filill	Date Drilling	Startec	Date L	Jrillin	g Comp	leted	Drillin	g Meth	od		
WI Unique Well No. DNR Well ID No. Common Well Name Final Static Water Level 65.50 Feet MSL Surface Elevation 883.9 Feet MSL Borehole Diame Borehole Diame 883.9 Feet MSL Local Grid Origin State Plane (estimated:]) or Boring Location N, E S/C/N Lat 44 °_51_32.15649" Local Grid Location SW 1/4 of NW 1/4 of Section 33, T 28 N, R 9 WLong 91 °_28 '51.8027" Local Grid Location Facility ID County County County Code Civil Town/City/ or Village Soil/Rock Description Sample Soil/Rock Description And Geologic Origin For Each Major Unit Soil/Rock Description And Geologic Origin For Soil Properties Soil Properties Surface Elevation Soil Properties Soil Properties Soil Properties Soil Properties State Plane Soil/Rock Description Soil Properties Soil Properties Soil Properties Soil Properties Blind drilled to approximately 65 feet Soil Properties Soil Properties Soil Properties			Constr	uction	and Exploration		5/12/2022		5/12	/202	2	1	nollow	v stem	auger		
Local Grid Origin (estimated:) or Boring Location Lat 44 ° 51 32.15649" Local Grid Location State Plane N, E S/C/N Lat 44 ° 51 32.15649" Local Grid Location SW 1/4 of NW 1/4 of Section 33, T 28 N, R 9 WLong 91 ° 28 '51.8027" Feet S S Facility ID County County County Code Civil Town/City/ or Village Sample 0 Soil/Rock Description 9 Eau Claire Soil/Rock Description Soil/Rock Description S S S S And Geologic Origin For S S S S S S Soil/Rock Description S<							Final Sta		ter Leve	el	Surfac	e Eleva	tion		Bo		
State Plane N, E S/C/N Lat 44 ° 51 32.15649" SW 1/4 of NW 1/4 of Section 33, T 28 N, R 9 WLong 91 ° 28 '51.8027" Feet S Feet S Facility ID County County County Code Civil Town/City/ or Village Sample 0 Soil/Rock Description 9 Eau Claire Soil/Rock Description And Geologic Origin For Soil/Rock Description Soil/Rock Description And Geologic Origin For Soil/Rock Description Soil/Rock Description Soil/Rock Description Note Soil Blind drilled to approximately 65 feet D Soil/Rock Description D Blind drilled to approximately 65 feet D D D D D D							65.	50 Fe	et MSI	L						8	3.25
State Traine IN, E STCTN SW 1/4 of NW 1/4 of Section 33, T 28 N, R 9 WLong 91 ° 28 '51.8027" Feet S Feet S Facility ID County County County Code Civil Town/City/ or Village Eau Claire Sample Image: Soil/Rock Description And Geologic Origin For Soil/Rock Description And Geologic Origin For Each Major Unit Soil Properties Image: Soil Properties Image: Soil Properties Soil Properties Soil Properties Soil Properties Soil Properties Image: Soil Properties So			igin	(est			Lat	44 °	51 32	2.156	49 "	Local C	Grid Lo				
Sample County County Code Civil Town/City/ or Village Sample 9 Eau Claire Sample Soil/Rock Description additional And Geologic Origin For Soil/Rock Description Soil/Rock Description And Geologic Origin For Soil/Rock Description Blind drilled to approximately 65 feet D			er N	W 1/		·							Fast			ı	
Sample Soil/Rock Description And Liber Soil/Rock Description And Geologic Origin For Each Major Unit Blind drilled to approximately 65 feet			01 1	vv 1/	,	1 20 N, K 9	0					Village	гее				reet 🔟 w
Sample Soil/Rock Description Authors Soil/Rock Description Authors Authors Soil/Rock Description Authors Authors Authors Soil/Rock Description Authors Authors Authors Authors <td>5</td> <td></td> <td></td> <td></td> <td></td> <td>a</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td>	5					a	-					0					
Number Number and Type and Type and Type and Type Image: Size of the s	Sam	ple											Soil	Prope	erties		
Number Number and Type and Type and Type and Type Image: Size of the s		n) &		5	Sc	oil/Rock Description											
Blind drilled to approximately 65 feet	0	Att ed (j	ounts	I Fee	And	l Geologic Origin For						SSIVG			×		ıts
Blind drilled to approximately 65 feet	Typ	gth /	č	th Ir		Each Major Unit		U	ohic	 	FID	ngth	sture	ti Ei	ticit. x	0)/ Imei
Blind drilled to approximately 65 feet	Nun and	Leng Recc	Blov	Dep				S	Gra _l Log	Wel	PID	Con	Moi	Liqu	Plas	P 20	RQI Corr
Sand with gravel, interbedded coarse, fine, gravelly, dry					Blind drilled to appr	oximately 65 feet											
					Sand with gravel, in	terbedded coarse, fine, gr	avelly, dry						Dry				
				-1													
				-2													
				-													
				-3													
				-4													
				-5													
				-													
								SD									
								51									
				EI													
				-8													
				-													
				-9													
				-10													
				Εl													

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature Marcus Hopkins	Firm AECOM	Tel: Fax:

Borin	g Numb	ber	AM	W-05 Use only as an attachment to Form 4400-	122.							Pag	ge 2	of	5
	nple										Soil	Prope			
			L 1	Soil/Rock Description											
	tt. & d (ij	unts	Fee	And Geologic Origin For						ive					Ņ
er ype	a Ai ere	Cot	Ч		S	ic.		E		ress th	nte l	L_	ity		lent
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet	Each Major Unit	U S C S	Graphic Log	Mell	Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
Nu	Le Re	Bl	Ď		D	Grap Log	B	Ē	PI	St C	Σŭ	ĽĽ.	Pl ⁶ In	P	Cc RC
			-	Blind drilled to approximately 65 feet							Dry				
			È	Sand with gravel, interbedded coarse, fine, gravelly, dry (continued)							215				
			-13	(continued)											
			F												
			-14												
			F												
			-15												
			F												
			-16												
			F												
			-17												
			E												
			-18												
			F												
			- 19												
			E												
			-20												
			F												
			-21												
			F												
			-22		SP										
			E^{22}		SP										
			E												
			-23												
			F												
			-24												
			E												
			-25												
			-												
			-26												
			E												
			-27												
			F												
			-28												
			E												
			-29												
			Ę												
			-												
			-30												
			F				1								
			-31												
			Ľ												
			-32												
	I		1 32	I	I	I	I		I	I	I	I	I	I	I

	g Numb	ber	AM	W-05 Use only as an attachment to Form 4400	-122.								ge 3	of	5
San	nple										Soil	Prop	erties		
	Length Att. & Recovered (in)	6	<u>स</u>	Soil/Rock Description						0					
0	s (j	unts	Fee	And Geologic Origin For						sive					ts
ype 'ype	h A vere	Ĉ	П	Each Major Unit	N N	JIC .		am	<u> </u>	gth	ant	-	city	_	/ nen
Number and Type	engt	Blow Counts	Depth In Feet	Lacit Major Onit	USCS	Graphic Log	Well	Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
a N	ЧÄ	B	Ω	Blind drilled to approximately 65 feet		ЮД	∣≥		IJ	Ω Υ	ΣŬ	22	P d	Ь	άŭ
			F								Dry				
			-33	Sand with gravel, interbedded coarse, fine, gravelly, dry (continued)											
			F												
			-34												
			E												
			-35												
			E												
			-36												
			F												
			-37												
			$E^{3/}$												
			E												
			-38												
			F												
			-39												
			E												
			-40												
			-												
			-												
			-41												
			L												
			-42		SP										
			F												
			-43												
			E												
			-44												
			F												
			-												
			-45												
			F												
			-46												
			-												
			-47												
			E												
			-48												
			-												
			F 40												
			-49												
			F												
			-50												
			F												
			-51												
			E												
			-52												
	i		1 52	I	Ι	I	I			I	I	I	I	I	I

Boring Number	AM	W-05 Use only as an attachment to Form 4400-	122.						Pag		of	5
Sample								Soil	Prope	erties		
s in) s	et	Soil/Rock Description					9					
e ed (l Fe	And Geologic Origin For			_		ssiv	0		x		nts
Number and Type Length Att. & Recovered (ir	th Ir	Each Major Unit	CS	phic	l gran	FID	npre ngth	stur tent	it d	ticit	0	D/
Number and Type Length Att. & Recovered (in) Blow Counts	Depth In Feet		U S C	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
	E	Blind drilled to approximately 65 feet										
	F	Sand with gravel, interbedded coarse, fine, gravelly, dry (continued)						Dry				
	-53	(continued)										
	E											
	-54											
	E											
	- 55											
	E											
	-56											
	E											
	-57											
	E											
	-58											
	E		SP									
	- 59											
	E							Dry				
	-60											
	E											
	-61											
	E											
	-62					•						
	E					•						
	-63					•						
	E					•						
	-64					•						
	E					•						
	-65	Sand, light tan, poorly sorted, loose to medium compacted, saturated, trace gravel		∇		•						
	È	saturated, trace gravel				•		Sat				Water table at
	66 					•						approximately 65.5 ft bgs Soil sampled
	+					•						collected at 65-67'
	67					•						05-07
						•						
	-68		SP			•						
	F (0		SP			•						
	-69					•						
						•						
	-70					•						
	-71					•						
				·····		•		_				
	- 72					•		Sat				
1 1	-72	1	I	1		I	I	I	I	I		

Boring	g Numł	ber	AM	W-05 Use only as an attachment to Form 4400-	122.							Pag		of	5
San	nple										Soil	Prope	erties		
	& (in)	s	et	Soil/Rock Description						0					
a	Att. ed (unt	Fee	And Geologic Origin For				_	_	ssive			>		ats
lber Typ	th /	, Cc	h In	Each Major Unit	CS	hic		ram	FID	pres	ent	t E	icit. K	0	mei
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet		N S	Graphic Log	Well	Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
a 🗸	ЦЦ	E	-	Sand, light tan, poorly sorted, loose to medium compacted,				-	ц		20		ЦЦ	ц	Well with 10 ft
			-	saturated, trace gravel (continued)											screen set at approximately
			-73												72 ft bgs
					SP						Sat				
			-74												
			E												
			-75												
			,	End of boring at 75 feet bgs											

SOIL BORING LOG INFORMATION Form 4400-122 Rev. 7-98

Route To:	Wa

Watershed/Wastewater

Waste Management
Other

														Pag		of	1
Facilit				• 1	• • • • • • • • •		License	/Permit/	Monito	ring Nı	umber						
Boring	ppewa Drille	$\frac{1}{1}$ By: 1	ey Reg	gional A	Airport (C hief (first, las	VKA) st) and Firm	Date Drilling	Startad	Data I	: 11:	Comm	latad		ASB-			
-	cus H	-			iner (mst, ia:		Date Drining	, Starteu	Date I	Jriiing	, Comp	leted	Drillin	g Meth	oa		
AEC	COM	•					5/12/2022		5/12	/2022	2	ł	nand a	uger			
WI Un	ique W	ell No.		DNR	Well ID No.	Common Well Name	Final St			el	Surface	e Elevat	tion		Bc		Diameter
<u> </u>	<u></u>							Feet N	MSL				t MS			4	4.00
Local State		rıgın	□ (es	stimated	: [) or N	Boring Location \Box , E S/C/N	Lat	44 °	51 '	46.7	3"	Local (Grid Lo				— —
State		of N	W 1	/4 of Se		·	WLong	91°	29 '	17.56	1 "		Feet				□ E Feet □ W
Facilit		01 14	** 1	74 01 50	County	, 120 N, K)	County C				ty/ or V	illage	100				
					Chippewa	a	9		Eau C	Claire	-	0					
San	nple												Soil	Prope	erties		
	& (n)	~	7		So	oil/Rock Description						0					
c)	Att. a ed (i	ounts	Fee			d Geologic Origin For						ssive			~		ıts
lber Typ	gth ∕ ver	د Cc	h In			Each Major Unit		CS	ohic	ram	FID	pres ngth	sture	it id	icity x	0	D/ mer
Number and Type	Length Att. & Recovered (in)	Blow Counts	Depth In Feet			-		U S	Graphic Log	Well Diagram	PID/FID	Compressive Strength	Moisture Content	Liquid Limit	Plasticity Index	P 200	RQD/ Comments
			-	Topso					<u>, , , , , , , , , , , , , , , , , , , </u>								
				Sand,	brown, very c , dry, loose	oarse to fine, very poorly	sorted, trace										
			-1	Braver	, dry, 1005e			SP									
			-														Soil sampled
			-2	End of	f boring at 2 fe	et has											collected at 1-2
				Lind O	r bornig at 2 k												

I hereby certify that the information on this form is true and correct to the best of my knowledge.

Signature	AECOM Tel:
Marcus Hopkins	Fax:

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Form 3300-005 (R 4/08) Page 1 or

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

		Route to:					
Verification Only of Fill	and Seal	Drinking Water	v	Watershed/Wa	astewater	Remediatic	on/Redevelopment
		Waste Manageme	nt 🗌 (Other:			
1. Well Location Information			2. Facility	/ Owner Inf	ormation		
		Hicap #	Facility Name				
Chippewa Remov	ed Well	AMW-02		-	gional Airport		
Lattitude / Longitude (Degrees an	d Minutes) Method	Code (see instructions)	-Facility ID (FI	D or PWS)			
° .	'N	,	Lissan (Dam	it/Manitaring	44		
······································	'w			nit/Monitoring	#		
1/4/1/4 SW 1/4 NW	Section Tow	nship Range TE	Original Well		aional Airport		
or Gov't Lot #	33 2	⁸ N 9 W	Present Well	_	egional Airport		
Well Street Address					egional Airport	ł	
3800 Starr Ave				ess of Preser			
Well City, Village or Town		Well ZIP Code	3800 Sta				
Eau Claire		54703	City of Prese	nt Owner		State ZII	P Code
Subdivision Name		Lot#	Eau C	Claire		WI	54703
		 # of Replacement Well	4. Pump, L	iner, Scree	n, Casing & Se	aling Material	f <u>i</u>
Reason For Removal From Servi unable to properly set well			Pump and	piping remo	ved?		
3 [™] Well / Drillhole / Borehole	Information	······································	Liner(s) re		vou		
3, Well / Drilliole / Borenole		on Date (mm/dd/yyyy)	Screen rei				
Monitoring Well	05/10/20			t in place?			
Water Well	If a Well Construct	ion Report is available,	-	ng cut off belo	w surface?		
Z Borehole / Drillhole	please attach.			•	e to surface?		
Construction Type:	• • • • • • • • • • • • • • • • • • •			ial settle afte		ZYes	
Drilled Driven (Sandpoint)	Dug		was hole ret		ZYes	
Other (specify):			If bentonite	e chips were	used, were they h n safe source?	nydrated Zyes	
Formation Type:					ng Sealing Materia		<u>s</u>
Unconsolidated Formation	Bedr	ock	Conduc	ctor Pipe-Gra	vity 🗌 Conduc	tor Pipe-Pumped	I
Total Well Depth From Ground S				ed & Poured hite Chips)	🖊 Other (E	xplain):gravi	ity
90	• • • • -	I/A	Sealing Mate	· · · ·		•	······.
Lower Drillhole Diameter (in.)	Casing	Depth (ft.)		ement Grout		Clay-Sand S	Slurry (11 lb./gal. wt.
N/A	N	/A	Sand-C	Cement (Cond	crete) Grout	Bentonite-Sa	and Slurry " "
Was well annular space grouted?	Yes	No Unknown	For Monitorir		Monitoring Well E	Bentonite Ch Boreholes Only:	nips
If yes, to what depth (feet)?	Depth to Wa	ter (feet)		ite Chips		ntonite - Cement	: Grout
				ar Bentonite	🗌 Be	entonite - Sand SI	
5. Material Used To Fill Well /	Drillhole		From (ft.)	To (ft.)	No. Yards, Sa or Volume (circle one)	Mix Ratio or Mud Weight
Puregold Medium Chips			Surface	80	approx 35	cubic feet	
]		
6. Comments			la seguire de		n an an Anna a Anna an Anna an	1、「最終講会」と	

Borehole collapsed at approx 80 ft bgs. Borehole has widened near surface and required large volume of chips to fill

7. Supervision of Work		en Sheraikh (<u>1912) 188 (</u>		
Name of Person or Firm Doing Filling & Sealing Horizon Construction and Exploration	License #	Date of Filling & Sealing (mm/dd/yyyy) 05/10/2022	Date Received	
Street or Route 764 Tower Dr.		Telephone Number (262)692-3347	Comments	
City Fredonia	State ZIP Coc WI 530		Work	Date Signed

State of Wis., Dept. of Natural Resources dnr.wi.gov

Well / Drillhole / Borehole Filling & Sealing Form 3300-005 (R 4/08) Page 1 or

Page 1 of 2

Notice: Completion of this report is required by chs. 160, 281, 283, 289, 291-293, 295, and 299, Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with chs. 281, 289, 291-293, 295, and 299, Wis. Stats., failure to file this form may result in a forfeiture of between \$10-25,000, or imprisonment for up to one year, depending on the program and conduct involved. Personally identifiable information on this form is not intended to be used for any other purpose. Return form to the appropriate DNR office and bureau. See instructions on reverse for more information.

Verification Only of Fill	and Seal	Route to:		Vatershed/Wa	astewater	Remediatio	n/Redevelopment
1. Well Location Information			2. Facility /		ormation		
County WI Uni		Hicap # ABS-01	Facility Name Chippewa	Valley Reg	gional Airport		
Lattitude / Longitude (Degrees an	'N	nship Range E	License/Perm Original Well	it/Monitoring Owner	# egional Airport		
or Gov't Lot # Well Street Address 3800 Starr Ave	33 2		-Present vveil	a Valley Re	egional Airport ht Owner		
Well City, Village or Town Eau Claire Subdivision Name		Well ZIP Code 54703 Lot #	3800 Star City of Preser Eau C	rr Ave nt Owner		State ZIF WI	^D Code 54703
	Information Original Construct 05/12/20	tion Report is available,	Pump and Liner(s) ren Screen ren <u>Casing left</u> Was casin Did sealing Did sealing Did materia If yes, If bentonite with water Required Met	piping removed? moved? noved? g cut off belo g material ris al settle after was hole ret chips were u from a knowr hod of Placin tor Pipe-Grav	ow surface? e to surface? r 24 hours? opped? used, were they hy safe source? ig Sealing Materia vity	ydrated yes ydrated yes yes yes yes yes yes yes yes	No N/A No N/A
Total Well Depth From Ground S 2 Lower Drillhole Diameter (in.) N/A	Casing	Diameter (in.) I/A Depth (ft.) I/A	Sealing Mater	ed & Poured ite Chips) rials ement Grout ement (Conc			lurry (11 lb./gal. wt.) and Slurry "
Was well annular space grouted If yes, to what depth (feet)?	?	No Unknow	<i>For Monitorin</i> Bentoni		🔲 Ber	ntonite - Cement ntonite - Sand Sl	Grout
5. Material Used To Fill Well / Soil cuttings from boring	Drillhole		From (ff.) Surface	To (ft.) 2	^a No. Yards, Sac or Volume (c N/A	ks Sealant Ircle one)	Mix Ratio or Mud Weight
6, Comments			The weight the second				

7. Supervision of Work	승규는 영문		u da s	新教的人口 化自己分离	DNR	Use Only
Name of Person or Firm Doing Filling & Sealing AECOM	License	#	1	illing & Sealing (mm/dd/)5/12/2022	yyyy) Date Received	Noted By
Street or Route 200 Indiana Ave.			Т (elephone Number)	Comments	
City Stevens Point	State Z WI	IP Code 54481		Signature of Person D	oing Work	Date Signed

Appendix C Well Construction & Well Development Forms

	Watershed/Wastowater	Waste Man	agement	MONITORING WEL	L CONSTRUCT	ION
Facility/Project Name	Remediation/Redevelopment Local Grid Location of Weil ft.			Well Name		
CVRA	ft.	₽ġ.	ft. 🛛 🖳	AMW-01		
Facility License, Permit or Monitoring No.). Local Grid Origin 📋 (esti	imated: 🔲) or	Well Location	Unique Well No.	WallDN	0.
Facility ID		. N	1. E. S/C/N	Date Well Installed	101202	2
Type of Well			N.R. BW	Well Installed By: Na	me (first, last) and	Piru
Well Code /		eo		Adam		
Distance from Waste/ Enf. Stds.	Location of Well Relative to u Upgradient \$	Sideeradicni	Gov. Lot Number	A CONTRACTOR OF A CONTRACTOR O		
Source Apply		D Not Known		Horizon Es	planation	
A. Protective pipe, top clevation	A self and the second s		1. Cap and lock?		Ves 🛛 N	NO
B. Well cating, top elevation	ft. MSL	DR/	2. Protective cover p		8	t.a
81 1			a. Inside diameter	5	- 4-	
C. Land surface elevation	A. MSL		b. Length: c. Material:			04
D. Surface seal, bottom ft. h	ASLor h.		C. MRICHRI			山中
12. USCS classification of soil near serve	L'EXCLUSION A	1 就有现金	d. Additional pro	Inning	Yes D)	
OP D GMD GCD GWD	SW 🗆 SP 🗃		If use describe	et.		10
	CL CH CH CH		II yes, describe			30
Bedrock	8		3, Surface scal:			01
13. Sieve analysis performed?	Yes No		Sand			
	otary 50			well casing and protect	ive ninet	
Hollow Stem			4. MALELIAI DELWECH	wencesned and broken	Bentónite	30
	Other D					1
				al: a. Granular/Chip		33
15. Drilling fluid used: Water C 02	Air 🛛 01		5. Annular space se	nud weight Bentoni		35
Drilling Mud D 03	None 12 99					31
			CLORVGAL O	nud weight Ben jte Bentonite-		50
16. Drilling additives used?	Yes BINO			³ volume added for any		24
	l B		**		Tremie	01
Describe			f. How installed		mie pumped	02
17. Source of water (attach snulysis, if re	quired):			114	Gravity E	08
			6. Bentonite seal:	a. Bento	nite granules	33
	[10.11	3/8 in. 01/2 in. Be		32
E. Bentonite seal, topft. N	ISL or _2 fl		6	olone estime D		
F. Fine sand, topft. h	ISL or _ 72.9_ft.		7. Fine sand materia	al: Manufacturer, prod	uct name & mesh	size
and the particularly and a second sec			a Red Flimt -	# 15 - 0.5 ba	as (50155)	調
G. Filter pack, top ft. h	ISL or - B. 9_ A.			d1	13	And and
	74 4			rial: Manufacturer, prod		size
Street and the state of the state	ISL or 74.9_ft.		a Red Flint +	# 40 - 7 bass (50165)	
and the second second second	ISL or 84.9_fl.		9. Well casing:	Flush threaded PVC : Flush threaded PVC :		23
J. Filter pack, bottom	(SL or _90 fl,		10. Screen material:	PVC	Other	12 10
K. Borehole, bottom	ISL or _ 20 ft.		a. Screen type:		Fectory cut	11
L. Borehole, diameter . 8.25 in				Co		01
L. Borehole, diameter _ 2.22 in	Contraction for Manuscra	1	1 14.		Other 🛛	當進
M. O.D. well casing _2.25 in		/	b. Manatlacturer		0. 10	1.
M. O.D. well casing _4.25_ in	•	1	c. Slot size: d. Slotted length	h.	_12	
N. I.D. well casing _ 2.0 in						
N. I.D. well casing _ 2.0_ in	•	and the second second	II. Backfill matchial	I (below filter pack):	None 🖾 Other 🗔	0971
Thumber would be shot the further all	In farme In house and anna A da a	has been of more than	ondadaa			23
I hereby certify that the information on the	And and the other statements of the second sta	nie best of my km	on scuge.			
Signature Manual Man	Firm Al	Econ				

CVRA n. R. W. AMW - 02 Facility License, Permit or Monitoring No. Local Grid Origin (estimated: D) or Well Location Unique Well No. Well ID No. Facility ID St. Plane ft. N. ft. N. ft. E. S/C/N Date Well Installed 0 Type of Well 1/4 of 1/4 of Sec. T. N. R. W Well Installed By: Name (first, last) and Firm Well Code /		Watershed/Wastown Remediation/Redev		Waste Manag	cuent [MONITORING W	ELL CONSTR	UCTION
Facility License, Fermi et Menitecing No. Local Grid Origin (catinated:) or Will content	Facility/Project Name	Local Grid Locati				Well Name	1 00	
Family ID Lat. Long. Ar Section Location of Wairs/Geners Data Well Insulated Cr_11_1/20.22 Type of Well Section Location of Wairs/Geners Well Insulated Rep. Name (Ent., Rot) and Perce Will catego from Wairs/ Ent. State. U Uppraising Section Location of Wairs/Geners Noncore APPOVention APPOVention No. Known A. Protective cover pipe: a. Mist. B. Wairse clevalion A. Mist. B. Wairse clevalion n. Mist. C. Long turing clevalion A. Mist. D. Surface sci., totom n. Mist. Steer 200 Steer 200 D. Surface sci., totom n. Mist. Steer 200 Steer 200 Steer science Steer 200 Ste	CURA		<u>ft. 05.</u>		ft. 🖬 🐺			INU
Facility ID St. Plane A. N. N. E. SYCPI Date Well Installed (1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	Facility License, Permit or Monitoring No.	Local Grid Origin	Lon	L []) or \	Vell Location	Unique weit		ID NO.
Well CodeIA of Sec.IA of Sec.<	Facility ID	St. Plane	ft. N		h.E. S/C/N	1	SILLE	022
Well CodeIA of Sec.IA of Sec.<		Section Location			ΠR	Wall Installed By	Name (first last	y y y
Distance inform Waste/ Enf. Sads. III III Upgendiami. III Statement Horeson Explorable. A. Protective pips, top clovation					the second se		· tentile fin of tent	
A. Protective pipe, top elevation I. Cup and look? Yee D No B. Wall casing: top elevation f. MSL C. Land surface elevation C. Languit: Steel B. Well C. D. C. D. C. H. D. MSL or		u 🛛 Upgradien	t B 🗆 S	idegradient		Harizon	Exploration	2
B. Well casing, top elevation	A. Protective pipe, top cicvation			· · · ·			🖬 Yes	O No
C. Lind outline closeding A. Mall or	B. Well cating, top elevation	ft. MSL ·	-TA	2		*		5_ in.
D. Surface seal, bottom Other Surface seal, bottom Other Surface seal, bottom Other Surface seal, concerts Surface seal, concer Surface seal, concerts	C. Land surface elevation	n. MSL						
12. USC2 alassification of soil mean servem: If Yes If Yes If Yes No 0P GM GC GW SW SP If Yes	D. Surface seal, bottom ft. M.	SLor ft.			c. Material:			
SM SC ML ML CL CH Bedrook Bedrook Surface seal: Bedrook Concrete 01 13. Sieve analysis performed? Yee Yee No Surface seal: Concrete 01 14. Drilling method used: Retary 50 Hollow Stem Auger A Bernonite 30 15. Drilling fuid used: Water 0.2 Air 0.1 Bernonite 31 16. Drilling fuid used: Water 0.3 None E 9.9 16 Bernonite 33 16. Drilling additives used? Yes None E 9.9 16 Bernonite seal a. Granular Jonet Ceremer grout 0 6 Bernonite seal a. Bentonite seal a. Granular Jonet Ceremer grout 0 6 Bernonite seal 10 Scard Other 0 12 Gravity B 0 6 Bernonite seal a. Bentonite seal a. Bentonite seal 3.3 12 14 in. 803/8 in. 11/2 in. Gravity B 0 6 Bernonite seal a. Bentonite seal a. Bentonite seal a. Bentonite seal 3.3 12	12. USCS classification of soil near scree	:n:	14331	- RECEIPE	d. Additional pro	loculon?	Ves Yes	445 44.
Bedrock □ 13. Sieve analysis performed? Yee B No 14. Drilling method used: Rotary □ 50 Hollow Stem Auger Ø 4.1 Other □ \$ 0. Deter □ \$ Atterial between well casing and protective pipe: 15. Drilling fluid used: Water □ 0.2 16. Drilling additives used? Yes Ø No Describe					If yes, describe	4		
13. Sieve analysis performed? Yes B No 14. Drilling method used: Retary □ 50 15. Drilling fluid used: Retary □ 50 16. Drilling fluid used: Water □ 02 17. Drilling fluid used: Water □ 01 Describe Difference 17. Source of water (attach smallysis, if required): Describe 17. Source of water (attach smallysis, if required): Termite park, top 17. Source of water (attach smallysis, if required): Termite park, top 18. Differe pack, top ft. MSL or _1f. MSL or _2f. M. St. or _2		CL U CH U		3.	Surface scal:			_
14. Drilling method used: Rotary □ 50 Hollow Sum Auger □ 41 Other □ 41 Dother □		Vor El No			CI			
Hollow Stem Auger @ 4.1 Other @ 4.1 Bentonite 0 30 Other @ 4.1 Other @ 4.1 Other @ 4.1 Other @ 4.1 Drilling fluid used: Water @ 0.2 Air @ 0.1 Other @ 4.1 Drilling fluid used: Water @ 0.2 Air @ 0.1 Other @ 4.1 Drilling fluid used: Water @ 0.2 Air @ 0.1 Other @ 4.1 Drilling fluid used: Water @ 0.2 Air @ 0.1 Other @ 4.1 Drilling fluid used: Water @ 0.2 Air @ 0.1 Other @ 4.1 16. Drilling additives used? O're @ 20 Describe								
15. Drilling fluid used: Weter [] 0 2 Air [] 0 1 15. Drilling fluid used: Weter [] 0 2 Air [] 0 1 Drilling fluid used: Weter [] 0 2 Air [] 0 1 Drilling fluid used: Weter [] 0 2 Air [] 0 1 Drilling fluid used: Weter [] 0 2 Air [] 0 1 Drilling fluid used: Weter [] 0 2 Air [] 0 1 Drilling fluid used: Weter [] 0 2 Air [] 0 1 Drilling solditives used? [] Yes [] No Describe				20 °.	Malcrial Octwoon	wen eising and pri		13 30
15. Drilling fluid used: Water □ 0 2 Air □ 0 1 15. Drilling fluid used: Water □ 0 2 Air □ 0 1 Drilling fluid used: Water □ 0 2 Air □ 0 1 Drilling fluid used: Water □ 0 2 Air □ 0 1 Drilling fluid used: Water □ 0 2 Air □ 0 1 Drilling fluid used: Water □ 0 2 Air □ 0 1 Drilling fluid used: Water □ 0 2 Air □ 0 1 Drilling fluid used: Water □ 0 2 Bit of 0 1 16. Drilling sidilives used? □ Yes ☑ None ☑ 9 9 16. Drilling sidilives used? □ Yes ☑ None ☑ 9 9 17. Source of water (attach snalysis, if required): Themie □ 0 1 17. Source of water (attach snalysis, if required): Themie □ 0 1 17. Source of water (attach snalysis, if required): Themie □ 0 1 17. Source of water (attach snalysis, if required): Themie □ 0 1 17. Source of water (attach snalysis, if required): Themie □ 0 1 18. Bentonite scal, top				2	Ju Du			
15. Drilling fluid used: Water 0 2 Air 0 1 0 None [2] 9 9 16. Drilling fluid 0 3 None [2] 9 9					Annular encode co	al- a. Granular/C	_	
Drilling Mul □ 0 3 None 12 9 9 16. Drilling additives used? □ Yes 12 No Describe	15. Drilling fluid used: Water C 02	Air 🛛 01			halasi n			
16. Deilling additives used? If Yes IP No 17. Source of water (attach snalysis, if required): If thereby early IP No 17. Source of water (attach snalysis, if required): If thereby early IP No 18. Bentonite seal, top ft MSL or _17_ENLe ft. 19. Filter pack, top ft MSL or _17_ENLe ft. 10. Screen joint, top ft MSL or _21.50 ft. 11. Well bottom ft MSL or _21.50 ft. 12. Well bottom ft MSL or _21.50 ft. 13. Filter pack, bottom ft MSL or _21.50 ft. 14. Borehole, diameter ft MSL or _24.60 ft. 15. Dottom ft MSL or _24.60 ft. 16. Bortonite seal, top ft MSL or _21.50 ft. 11. Borehole, diameter ft MSL or _21.50 ft. 12. Screen type: Featory out [11] 13. Screen type: Featory out [11] 14. Other IIII ft IIII		None 🖾 99						
16. Dealling additives used? □ Yes g No Describe				Š d	% Benton	ite Bento	nite-coment grou	1 50
Describe	16. Drilling additives used?	Yes 📓 No						
17. Source of water (attach analysis, if required): If the provide it is the seal, top If the provide it is the provide it is the seal, top If the provide it is the provide it is the seal, top If the provide it is the provide it is the seal, top If the provide it is the provide it is the seal, top If the provide it is the provide it is the seal, top If the p				f f	How installed		Tremie	0 01
6. Bentonite seal, top ft. MSL or 1 6. Bentonite seal: a. Bentonite granule 3 32 F. Fine sand, uop ft. MSL or 19. Second point, 100 ft. MSL or 19. Second point, 100 11/2 in. Bentonite seal; manufacturer, product name & mech size G. Filter pack, top ft. MSL or 19. Second point, 100 ft. MSL or 21. Slo ft. H. Screen joint, top ft. MSL or 21. Slo ft. ft. ft. J. Filter pack, bottom ft. MSL or 21. Slo ft. ft. J. Filter pack, bottom ft. MSL or 24. Gt. ft. J. Filter pack, bottom ft. MSL or 24. Gt. ft. J. Filter pack, bottom ft. MSL or ft. ft. J. Filter pack, bottom ft. MSL or ft. ft. J. Filter pack, bottom ft. MSL or ft. ft. J. Filter pack, bottom ft. MSL or ft. ft. M. O.D. well easing ft. ft. ft. ft. M. O.D. well easing ft. ft. ft. ft. M. O.D. well easing ft. ft. ft. ft.				÷.			Tremie pumped	02
L. Bentonite seal, top ft. MSL or 1 0	17. Source of water (attach analysis, if req	uirea):						
E. Bentonite seal, topft. MSL or _1ft. MSL or _17. Sile ft. F. Fine sand, topft. MSL or _17. Sile ft. G. Filter pack, topft. MSL or _20. Sile ft. H. Screen joint, topft. MSL or _21. Sile ft. H. Well bottomft. MSL or _31. Sile ft. J. Filter pack, bottomft. MSL or _34. Sole ft. K. Borehole, diameterft. MSL or _34. Sole ft. M. O.D. well casingft. MSL or _34. Sole ft. M. D.D. well casingft. MSL orft. M. D.D. well casingft. M. D.D. well casing				6	and the second			1000
F. Fine sand, topft. MSL orft. MSL or		4			b. D1/4 in. 09	3/8 in. 01/2 in.		
P. Fine sand, top I. MSL of 20.86 ft. G. Filter pack, top ft. MSL or 20.86 ft. H. Screen joint, top ft. MSL or 21.86 ft. I. Well bottom ft. MSL or 31.86 ft. J. Filter pack, bottom ft. MSL or 31.86 ft. I. Well bottom ft. MSL or 31.86 ft. I. Well bottom ft. MSL or 31.86 ft. I. Well bottom ft. MSL or 31.96 ft. I. Borehole, bottom ft. MSL or 34.6 ft. I. Borehole, diameter ft. I. Borehole, diameter ft. M. O.D. well casing ft. J. P. in. ft. I. D. well casing ft.	E. Bentonite seal, topft. M	$SL \text{ or } _ ___ \square$			C			
G. Filter pack, topft. MSL or 20.36 ft. H. Screen joint, topft. MSL or 21.86 ft. I. Well bottomft. MSL or 31.86 ft. J. Filter pack, bottomft. MSL or 31.96 ft. I. Well bottomft. MSL or 31.96 ft. J. Filter pack, bottomft. MSL or 31.9 ft. K. Borehole, bottomft. MSL or 31.9 ft. K. Borehole, bottomft. MSL or 31.9 ft. K. Borehole, diameterft. M. O.D. well easingft. N. 1D. well casingft. I. thereby certify that the information on this form is true and correct to the best of my knowledge. Firm ACC.	F. Fine sand, topft. M	SL or _19 26 ft.		,7		12		
H. Screen joint, topft. MSL or _2 1.86 ft. I. Well bottomft. MSL or _31.86 ft. J. Filter pack, bottomft. MSL or _34.6 ft. K. Borehole, bottomft. MSL or _34.6 ft. Borehole, diameterft. M. O.D. well casingft. M. I.D. well casingft. M. O.D. well casingft. M. O.D. well casingft. M. O.D. well casingft. M. O.D. well casingft. M. I.D. Well casing		20 81 0						02
H. Sereen joint, topf. MSL or _21.86 ft. I. Well bottomft. MSL or 31.86 ft. J. Filter pack, bottomft. MSL or 34.6 ft. K. Borehole, bottomft. MSL or 34.6 ft. L. Borehole, diameterft. MSL or 34.6 ft. M. O.D. well easingft. N. 1D, well casingft. I. thereby certify that the information on this form is true and correct to the best of my knowledge. Firm A Context	G. Filter pack, top II. M.	SL or Conten I			b. Volume addee	1	_n-	
I. Well bottom ft. MSL or J1.86 ft. 9. Well casing: Flush threaded PVC schedule 40 f2 2.3 Flush threaded PVC schedule 80 2.4 Flush threaded PVC schedu	H. Screen joint, top ft. M	SL or _ 21.86 A		*	Red Flint #	40 7 bass (6		
J. Filter pack, bottom f. MSL or 34.0 ft. K. Borehole, bottom ft. MSL or 34.6 ft. K. Borehole, bottom ft. MSL or 34.6 ft. L. Borehole, diameter ft. MSL or 34.6 ft. M. O.D. well easing ft. ft. A. Other ft. M. O.D. well easing ft. A. Q _ in. ft. I. I. D. well casing ft. A. Q _ in. ft. I. I. Backfill material (below filter pack): None 14 Other ft. I. I. Backfill material (below filter pack): None 14 Other ft. I. I. Backfill material (below filter pack): None 14 Other ft. I. I. Backfill material (below filter pack): None 14 Other ft. I. I. Backfill material (below filter pack): None 14 Other ft. I. I. Backfill material (below filter pack): None 14 Other ft. I. I. Backfill material (below filter pack): None 14 Other ft. I. I. Backfill material (below filter pack): None 14 Other		7191.0				d	h ³	-
J. Filter pack, bottom ft. MSL or 34.6 ft. Other Image: Continuous stote in the store is true and correct to the best of my knowledge. J. Filter pack, bottom ft. MSL or 34.6 ft. 10. Screen material: P/C Image: Continuous stote is true and correct to the best of my knowledge. K. Borehole, bottom ft. MSL or 34.6 ft. 10. Screen material: P/C Image: Continuous stote is true and correct to the best of my knowledge. M. O.D. well casing ft. ft. 0. 10 in the formation on this form is true and correct to the best of my knowledge. 0. 10 in the formation on this form is true and correct to the best of my knowledge.	I. Well bottom	SL or SI Dye II		2	Well casing:			
K. Borchole, bottom ft. MSL or 34.3_ft. L. Borchole, diameter ft. MSL or 34.3_ft. M. O.D. well easing ft. A. O.D. well easing ft. N. I.D. well casing ft. I. Hereby certify that the information on this form is true and correct to the best of my knowledge. Nowledge.	J. Filter pack, bottom	SLor 34.0 A			andra an Andra andra andr			
L. Borehole, diameter		7.15		10		PVC .		
L. Borehole, diameter . 2.25 in. M. O.D. well easing	K. Borehole, bottomft, M	SL or <u>395</u> n			a. Screen type:			_
M. O.D. well easing 2.25 in. N. I.D. well casing 2.0 in. N. I.D. well casing 2.0 in. N. I.D. well casing 2.0 in. None 14. Other 0 in. 11. Backfill material (below filter pack): None 14. Other 0 in. None 14. Other 0 in. None 14. Other 0 in. None 14. Other 0 in.	L. Borehole, diameter 8.25 in.			2	and the second second			- • •
N. I.D. well casing 2.0_ in. 11. Backfill material (below filter pack): None II 14 Other II I hereby certify that the information on this form is true and correct to the best of my knowledge. If it is true and correct to the best of my knowledge.				1	b. Manufacturer			
N. I.D. well casing 2.0_ in. 11. Backfill material (below filter pack): None II 14. Other II I hereby certify that the information on this form is true and correct to the best of my knowledge. Other II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	M. O.D. well casing 2.25 in.			1	c. Slot size:		(). <u>10</u> in
Other Other I hereby certify that the information on this form is true and correct to the best of my knowledge. Other Signature Firm	N. I.D. well casing 2.0 in			11				
Signature - / Firm					1.2.2.2			
	Different standing of the second standing of			st of my know	wledge.			
	Signature Man 16-	F	AECO	m				

	Watershed/Wastow Remediation/Redev		Waste Mana	gement	MONITORING WE	LL CONSTRUC	CTION
Facility/Project Name	Local Grid Locati	an afthe			Well Name		
CURA		£. 05.		ft. 🖥 W.	Amw-	03	
Facility License, Permit or Monitoring No	Local Grid Origin	C (estimated	10 (🖸 🗄	Well Location	Unique Well No		
Facility ID	St. Planc	ft. N			Date Well Installed g	112120	22
Type of Well	Section Location			DR	Well Installed By: N	ame (first, last) a	nd Pinn
Well Code /	1/4 of	_ 1/4 of Sec	T		Adam	and for the second second se	
Distance from Waste/ Enf. Stds.	Location of Well u Upgradien	it 🔋 🖸 Si	idegradient	Gov. Lot Number	Horizon E	Exploration	-
	the second se	nent n Ll re		. Cap and lock?		Ø Yes	1 No
A. Protective pipe, top elevation				Protective cover p	alaa		
B. Well cating, top elevation	ft. MSL	TA	Ser.	a. Inside diameter		8	D_in.
C. Lond surface elevation	A. MSL			b. Length:			6.
D. Surface seal, bottom ñ. h				c. Material:		Steel	
						Other E	
12. USCS classification of soil near scre		. Casel	N	d. Additional pro	lection?	Yes C	J No
	SW D SP B			If yes, describe			
Bedrock				Surface scal:		Bentonite	
13. Sieve analysis performed?	Ver Blac					Concrete	
						Other E	
	lotary 50			. Malerial between	well casing and prote		30
Hollow Stem			ä.			Bentonite	
	Other 🗆 🛱		8			Other D	and some states
15. Drilling fluid used: Water [] 02	Air 🛛 01			5. Annular space se		pped Bentonite	
Drilling Mud [] 03	None 2 99			hLbs/gal n	nud weight Bentor	lite-sand slurry L	
	NONE IN 22			cLts/gal n	nud weight Be	intonite slurry	3 31
16. Drilling additives used?	Yes No			d% Benton	ite Bentoniu	e-cement grout L	3 50
					³ volume added for an	y of the above Tremie	
Describe				f. How installed		the second se	
17. Source of water (attach analysis, if n	equired):		х.			remie pumped [Gravity 5	
				6. Bentonite scal:	a Real	tonite granules [
					3/8 in. 01/2 in. 1		
E. Bentonite seal, topft.)	ASL or _ 10		/	B, 131/4 m. ea	ofenr oftenr 1		
	12510			7. Fine sand materi	al: Manufacturer, pro	duct name & me	cah size
F. Fine sand, topft. b	ASL or _62.ELft				#15 1 bus (12
	ISL OF LEY_SL D				d		44124
G. Filter pack. topft. h	ASL OF LATEL I						
H. Screen joint, top	15L or 65.51 f		1	a Red Flint	#40 7 bass	(50/65)	iesn size
		1	1	b. Volume adde	d	_h ³	
L. Well bottom A. I	MSL or 75.51 f			9. Well casing:	Flush threaded PVC		
	20122				Flush threaded PVC	schedule BO (
J. Filter pack, bottom fl. 1	ASL or 76_f	1.			0.16	Other [
			j `1	0. Screen material:	PUC		國
K. Borchole, bottom	ASL or _ Ile r			a. Screen type:		Fectory cut	
826			ð.		C	ontinuous slot	
L. Borehole, diameter 3.25 in	L	in a start start	1	-		_ Other	
225			1	b. Manufacturer			10 in.
M. O.D. well casing _2.25 in	L		1	c. Slot size:			
2.5			1	d, Slotted lengt			LO_A
N. I.D. well casing _2.0_ in	L		1	1, Backfill material	l (below filter pack);		□ 14 □ 望语
I hereby certify that the information on t	his form is true and	correct to the be	st of my kno	wiedge.			
Signames /	the second se	Firm					
Mand		AELO	m				

	Vatershed/Wastowator	waste Management	MONITORING WELL	CONSTRUCTION
Facility/Project Name	In the second		Well Name Augar	AU
Facility License, Permit or Monitoring No.	h.	A. DE.	AMW- Unique Well No.	
uctury License, Fermit or Monitoring No.		Long.		
Facility ID		h. E. S/C/N	Date Well Installed	1112077
	Section Location of Waste/Sou	203	Well Installed By: Nam	d y y y y
Type of Well		TN.R	Well Installed By: Nam	e (first, last) and Finn
Well Code/ Distance from Waste/ Enf. Stds.	I ocation of Well Relative to W	aste/Source Gov Lot Number	Trum	
	u 🖸 Upgradient 🔋 🗖 d 🗖 Downgradient n 🗖	Sidegradient	Horizon dril	line
A. Protective pipe, top clevation		1. Cap and lock?	Horizon dril	Yes D No
	ft. MSL	2. Protoctive cover	orba:	
.		a. Inside diamete	а	_ <u>1</u> _ in.
C. Land surface elevation	A. MSL	b. Length:		0. Steel 🖬 04
D. Surface seal, bottom A. MS	SL or ft.	C. Material		Other D
12. USCS classification of soil near screen	n:	d. Additional pro	tection?	Yes D No
OP OMO GCO GWO S	SW D SP M	In If sine describ	#4	
SM SC ML MH C Bedrock		3, Surface scale		Bentonite [] 30
	Yes \square No (ary \square 50 uger \square 41 ther \square \square Air \square 01 None \square 99 Yes \square No uired): SL or $_$ 42 SL or $_$ 42 SL or $_$ 41 SL or $_$ 40 SL or $_$ 41 SL or $_$ 41 S			Concrete 0 01
		Sand A Material batureau	well casing and protectiv	Other 🖬 🔛
14. Drilling method used: Ro Hollow Stem At		Waterial octwoor	wen ensuit and protectiv	Bentonite D 30
	ther D and			Other D
		5. Annular space se	al: a. Granular/Chippe	
15. Drilling fluid used: Water 0 0 2	Air 🗆 01	bLbs/gal 1	nud weight Bentonite	
Drilling Mud 🗆 0 3)	None 299	cLha/gal a	nud weight Bento	nite slarry 🛛 31
16, Drilling additives used?	Yes 🖬 No	d % Bentor	te Bentonite-ce	
		eFi	³ volume added for any o	
Describe		f. How installed		Tremie 0 01
17. Source of water (stach analysis, if requ	uired):		I (GU)	Gravity 🖾 0 8
		6. Bentonite scal:	a. Bentoni	te granules [] 33
		b, D1/4 in. 6	3/8 in. 01/2 in. Ben	tonite chips 🖬 32
E. Bentonite seal, topft. MS	slor_1_m	C		Other 🛛 🎎
C First and the A	SL or _ 60.59ft.	7. Fine sand materi	al: Manufacturer, produc	t name & mesh size
F. Fine sand, topft. MS		Rel Flint 7	15 1 bac (50/4)	
G. Filter pack, top ft. MS	SLor 61.59 AL			
	62.59	1.01	ial: Manufacturer, produ	
H. Screen joint, top ft. MS	SL orft.	-Red Flints	HYO & buse (A)	
	13	6. Volumo addo	dh	
L Well bottom ft. MS	SL or 77.59_fL	9. Well casing:	Flush threaded PVC sc	
J. Filter pack, bottom	SLAY 74 A-		Flush threaded PVC so	
	33	10, Screen material:	PVC	Other 口 操編 観測
K. Borchole, bottom	SLor_76_A.	a. Screen type:		Factory cut 🗹 11
				inuous slot 🔲 01
L. Borchole, diameter in.	1E2			Other 🛛 🕮
		b. Manufacturer		
M. O.D. well casing in.		c. Slot size:		0, <u>(0</u> in.
		d, Slotted lengt		_[0_fL
N. I.D. well casing in.		II. Backtill materia	I (below filter pack):	None 14 Other D 2015
I hereby certify that the information on this	s form is true and correct to the	best of my knowledge.		
d d d d d			the second s	
Signature /	Firm	ion	1. A.	

	****			MONITORING WE	ELL CONSTRUCTI
	Vatershed/Wastowate Remediation/Redevel	A			
	Local Grid Location		the second second second	Well Name	
CURA		ft. CS.	ft. 🛛 🖳	Amw-05	•
acility License, Pennit or Monitoring No.		(estimated:)	or Well Location	Unique Well N	lo. Well ID Na
Facility 1D	Lat	t. N.	h.e. s/C/N		
	Section Location of				m d d v v v v
Type of Well	1/4 of	1/4 of Sec	N.R	Well Installed By:	Name (first, last) and P
Well Code/ Distance from Waste/ Enf. Stds.	Location of Well Re	ative to Waste/Sour	CC Gov. Lot Number	CARL CARDON CARDON	
Source Apply	u 🛛 Upgradjent d 🗆 Downgradie	2007		Itarizon E	xplanation
	n. MSL -		- 1. Cap and lock?		Yes 🗆 No
	ft. MSL -		2. Protective cover		▼ .
61 - t			a. Inside diamete	er;	_8i
C. Land surface elevation	ft. MSL		b. Length: 539 c. Material:		Steel 🖬 🕻
D. Surface scal, bottom f. MS	Lor ft.				Other D
12. USCS classification of soil near screen		Carl Nex	d, Additional pr	otection?	Yes D N
			If yes, descrit		
Bedrock			3, Surface scal:		Bentonite D 2
13. Sieve analysis performed?	Yes No		\backslash		Concrete C ()
14. Drilling method used: Rot	tary D 50		4. Material betwee	n well casing and prot	-
Hollow Stem At	uger El 41				Bentonito D
0	ther D 🛱				Other 🗆 🗄
15. Drilling fluid used: Water 🖸 0 2	Air 🛛 01		5. Annular space s		ipped Bentonite 🖾 3
	None 199			mud weight Bento mud weight B	
				nite Beniord	
16. Drilling additives used?	Yes 🗹 No			³ volume added for a	
Describe			f. How installe		Tremie 🗖
17. Source of water (attach analysis, if requ	uired):				Fremie pumped 🔲 (
			6. Bentonite soal:	a. Ber	Gravity []
				03/8 in. D1/2 in.	
E. Bentonite seal, topft. MS	SLor1		/ c		- Other 🛛
	SL or 60.0 ft.		7. Fine sand mater	ial: Manufacturer, pr	oduct name & mesh s
F. Fine sand, topft. MS			1 Red Flint	11 - 1 - 1	s (60/bs)
G. Filter pack, top ft. MS	SL or 41.0 A.		b. Volume add		n3
				vial: Manufacturer, p	roduct name & mesh
H. Screen joint, top ft. MS	SLor 62.0 ft.		Red Flint		(0)(4)
I. Well bottom A. MS	SLor_72_ft		 b. Volume add 9. Well casing: 		It ² C schedule 40 🔟
	and the set pro set of the				C schedule 80
J. Filter pack, bottom	sLor_36fl-		N	811	Other
K. Borchole, bottom ft, MS	SLor 75 ft.		10. Screen material a. Screen type:		Factory cut
			a area type		Continuous slot
L. Borehole, diameter _& 25_ in.		- Barderad			Other 🗆
M. O.D. well casing 2.25 in.			b. Manatfacture c. Sku size:	ť	0.10
M. O.D. well casing			d. Slotted leng	th:	10
N. I.D. well casing 2.2 _ in.				al (below filter pack):	None 5
_					_ Other 🛛

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wast	ewater	Waste Management			
Remediation/Re	development 🕅	Other 🔄			
Facility/Project Name CVRA	County Name Chippev	wa	Well Name AMW-C)1	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu	mber	DNR Well I	ID Number
surged with block and pumped Image: Compression of the series of the	41 61 42 62 70 20 10	well casing) Date	a79.3 05/10/ ^{b.} mm [/] a ⁻ a c <u>11:15</u>	$\frac{36}{y} \frac{ft}{y}$ $\frac{2022}{y} \frac{a.m.}{y}$ $\frac{a.m.}{y} \frac{a.m.}{y}$ $\frac{a.m.}{y}$ $\frac{a.m.}{y}$ $\frac{a.m.}{y}$ $\frac{a.m.}{y}$ $\frac{a.m.}{y}$ $\frac{a.m.}{y}$	After Development $\begin{array}{c} - 79.37 \\ - 05/10/2022 \\ \hline y \\ \hline m \\ m' \\ \hline d \\ d' \\ y \\ \hline y \\ y \\ \hline y \\ \hline y \\ \hline y \\ \hline y \\ y \\$
casing	<u>5.0</u> gal. 5.0 gal.	Fill in if drilling fluid	s were used an	d well is at s	olid waste facility:
	<u> gal.</u>	14. Total suspended solids		mg/l	mg/l
9. Source of water added					mg/l
10. Analysis performed on water added?		16. Well developed by First Name: Chris Firm:AECOM			Struebing

17. Additional comments on development:

Name and Address of Facility Contact /Owner/Responsible Party First Last Name:Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm:	Signature: Chris Struebing
Street:	Print Name: Chris Struebing
City/State/Zip:	Firm: AECOM

.

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wastew	vater	Waste Management			
Remediation/Rede	velopment	Other 🛄			
Facility/Project Name CVRA	County Name Chippev	va	Well Name AMW-C)2	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu			1 ID Number
1. Can this well be purged dry? Image: Yes 2. Well development method Image: Amage: Amage	1 1 2 2 0 0 0 1	well casing) Date I	$\begin{array}{c} 29.7 \\ 05/13/ \\ 0.1 \\ 0$	78ft. 2022 / <u>y y y</u> Ma.m. _ D p.m. _ inches	$\frac{-y}{m} = \frac{m}{d} \frac{d}{d} \frac{d}{y} \frac{y}{y} \frac{y}{y}$ $\frac{-10}{30} = \frac{10}{p} \frac{a}{m}$ $\frac{-}{m} = \frac{10}{m}$
3. Time spent developing well 4. Depth of well (from top of well casisng)	9 <u>0 min.</u> . 9_ ft.		Turbid 🖾 1 (Describe) Dark Br		Turbid 🗹 25 (Describe) Dark Tan
5. Inside diameter of well $\underline{2}$. $\underline{0}$	in.				
 6. Volume of water in filter pack and well casing? 7. Volume of water removed from well? 		Fill in if drilling fluids	s were used an	d well is at	t solid waste facility:
8. Volume of water added (if any)		14. Total suspended solids		mg/l	mg/i
9. Source of water added		15. COD		mg/l	mg/l
10. Analysis performed on water added? (If yes, attach results)		16. Well developed by ^{First Name:} Chris _{Firm:} AECOM			Struebing

17. Additional comments on development:

depth from bottom 31.86 ft

Name and Address of Facility Contact /Owner/Responsible Party First Last Name: Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm:	Signature: Chris Struebing
Street:	Print Name: Chris Struebing
City/State/Zip:	Firm: AECOM

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Waste	ewater	Waste Management			
Remediation/Rec	levelopment 🕅	Other 🛄			
Facility/Project Name CVRA	County Name Chippev	va	Well Name AMW-C)3	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu			1 ID Number
surged with bailer and pumped	Yes I No 41 61 42 62 70 20 10 51 50		a66.7 05/13/ b^d_d_d c335 Clear □1	$71ft.$ 72022 $7y _y _y$ $a.m.$ $b p.m.$ $a.m.$ $b p.m.$	$05/13/2022$ $-\frac{1}{y} -\frac{1}{m} \frac{1}{d} \frac{1}{d} \frac{1}{y} \frac{1}{y} \frac{1}{y} \frac{1}{y}$ $-05:00 - \boxed{1} a.m.$ $-\frac{1}{y} p.m.$ $-\frac{1}{y} inches$ Clear $\boxed{2} 20$
	<u>90 _{min.} 5 51_{ft.}</u>		Turbid 🛛 1 (Describe) Dark Br		Turbid 25 (Describe) Clear
5. Inside diameter of well 2 .	<u>0 in.</u>				
	<u>5. 0</u> gal. 5. <u>0</u> gal.	Fill in if drilling fluid:	s were used an	d well is at	t solid waste facility:
	gal.	14. Total suspended solids		mg/l	mg/i
9. Source of water added		15. COD		mg/l	mg/l
10. Analysis performed on water added?		16. Well developed by ^{First Name:} Chris _{Firm:} AECOM			Struebing

17. Additional comments on development:

depth to bottom 75.51 ft

Name and Address of Facility Contact /Owner/Responsible Party First Last Name: Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm:	Signature: Chris Struebing
Street:	Print Name: Chris Struebing
City/State/Zip:	Firm: AECOM

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Remediation/Redevelopment Other	Route to: Watershed/Waste	water	Waste Management			
CVRA Chippewa AMW-04 Facility Licence, Permit or Monitoring Number County Code Wis. Unique Well Number DNR Well ID Number 1. Can this well be purged dry? Yes No Surged with bailer and bailed 41 surged with bailer and pumped 61 well casing) 05/12/2022 05/12/2022 pumped with block and bailed 42 Date 05/12/2022 05/12/2022 bind of all drop of 62 Surged with block, bailed and pumped 70 compressed air 220 Time c. 10:30 a.m. 12:00 pm. bided only 51 10 pumped slowly 50 13. Water clarity Clear 20 Clear 20 3. Time spent developing well		levelopment 🔛	Other 🛄			
Pacility License, Permit or Monitoring Number County Code Wis. Unique Well Number DNR Well ID Number 1. Can this well be purged dry? Yes Yes No 2. Well development method surged with bailer and bailed 4 1 Before Development After Development 1. Depth to Water 61 05/12/2022 05/12/2022 surged with block and builed 4 2 bailed and pumped 62 surged with block and pumped 62 Date $b m m' d d ' y y y m m m' d d ' y y y y m m m ' d d ' y y y y m m m ' d d ' y y y y m m m ' d d ' y y y y m m m ' d d ' y y y y m m m ' d d ' y y y y m m m ' d d ' y y y y m m m ' d d ' y y y y m m m ' d d ' y y y y m m m ' d d ' y y y y m m m ' d d ' y y y y m m m ' d d ' y y y d ' d ' y ' y y ' d ' d '$	CVRA		va		4	
2. Well development method surged with bailer and bailed 41 2. Well development method surged with block and bailed41surged with block and bailed42surged with block and pumped70compressed air20bailed only10pumped slowly51pumped slowly50Other	Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu			1 ID Number
3. Time spent developing well 90 min. 4. Depth of well (from top of well casisng) 72.59ft. 5. Inside diameter of well 2.0in. 6. Volume of water in filter pack and well casing 15.0_gal. 7. Volume of water removed from well 45.0_gal. 8. Volume of water added (if any)	2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly	4 1 6 1 4 2 6 2 7 0 2 0 1 0 5 1	(from top of well casing) Date Time 12. Sediment in well bottom	$\begin{array}{c} 68.8 \\ 05/12/ \\ 0.5 \\ m m' \overline{a} \overline{a} \\ 0.5 \\ 10:30 \\ 0.5 \\ $	36_ft. 2022 /yyyy ∑a.m. _□p.m. _inches	$ \begin{array}{c} \underline{-68.85}_{ft.} \\ \underline{05/12/2022} \\ \underline{-y}_{mm} m' d d' y y y y \\ \underline{-12:00}_{pm.} \\ \underline{-} \\ \underline{-}$
6. Volume of water in filter pack and well casing 15.0_gal. 7. Volume of water removed from well 45.0_gal. 8. Volume of water added (if any) gal. 9. Source of water added gal. 10. Analysis performed on water added? (If yes, attach results) Yes <sing no<="" td=""></sing>						(Describe)
casing 15_0_gal. 7. Volume of water removed from well 45_0_gal. 8. Volume of water added (if any) gal. 9. Source of water added gal. 10. Analysis performed on water added? Yes ∑ No 10. Analysis performed on water added? Yes ∑ No	5. Inside diameter of well2	<u>0 in.</u>				
8. Volume of water added (if any) gal. 9. Source of water added gal. 10. Analysis performed on water added? 10. Analysis performed on water added? 10. Analysis performed on water added? 11. Yes No 12. Yes No 13. COD 14. Total suspended 15. COD 16. Well developed by: Name (first, last) and Firm First Name: Chris Last Name: Struebing	casing		Fill in if drilling fluids	s were used and	d well is at	solid waste facility:
10. Analysis performed on water added? Image: Strue Stru					mg/l	mg/l
10. Analysis performed on water added? I Yes No First Name: Chris Last Name: Struebing	9. Source of water added		15. COD		mg/l	mg/l
Firm:AECOM						

17. Additional comments on development:

depth to bottom 72.59 ft

Name and Address of Facility Contact /Owner/Responsible Party First Last Name: Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm:	Signature: Chris Struebing
Street:	Print Name: Chris Struebing
City/State/Zip:	Firm: AECOM

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 7-98

Route to: Watershed/Wast	ewater	Waste Management			
Remediation/Re	development 🔤	Other 🛄			
Facility/Project Name CVRA	County Name Chippe	wa	Well Name AMW-0)5	
Facility License, Permit or Monitoring Number	County Code	Wis. Unique Well Nu			ll ID Number
surged with bailer and pumped Image: Surged with block and bailed surged with block and pumped Image: Surged with block, bailed and pumped surged with block, bailed and pumped Image: Surged with block, bailed and pumped compressed air Image: Surged with block, bailed and pumped bailed only Image: Surged with block, bailed and pumped pumped only Image: Surged with block, bailed and pumped pumped only Image: Surged with block, bailed and pumped pumped only Image: Surged with block, bailed and pumped pumped only Image: Surged with block, bailed and pumped pumped only Image: Surged with block, bailed and pumped Other Image: Surged with block, bailed and pumped 3. Time spent developing well Image: Surged with block, bailed and pumped well (from top of well casisng)	41 61 42 62 70 20 10	Well casing) Date	65.5 05/12/ $\frac{1}{100} \frac{1}{100} \frac{1}{1$	$\frac{56}{2022}$ $\frac{7}{y} \frac{1}{y} \frac{1}{y}$ $\frac{1}{y} \frac{1}{y} \frac{1}{y}$ $\frac{1}{y} \frac{1}{y}$ $\frac{1}{y} \frac{1}{y}$ $\frac{1}{y} \frac{1}{y}$	After Development <u>65.78</u> ft. 05/12/2022 <u>y m m d d y y y y</u> <u>05:50</u> \square a.m. <u>05:50</u> \square p.m. <u>inches</u> Clear \boxtimes 20 Turbid \square 25 (Describe) <u>Clear to light</u> <u>brown</u>
6. Volume of water in filter pack and well	<u> </u>				
7. Volume of water removed from well -5	5 <u>0</u> gal.	Fill in if drilling fluids			
8. Volume of water added (if any)	gal.	14. Total suspended solids		mg/l	 mg/l
9. Source of water added		15. COD		mg/l	mg/l
10. Analysis performed on water added?	es 🔀 No	16. Well developed by ^{First Name:} Chris _{Firm:} AECOM			Struebing

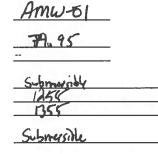
17. Additional comments on development:

Name and Address of Facility Contact/Owner/Responsible Party First Last Name:Name:	I hereby certify that the above information is true and correct to the best of my knowledge.
Facility/Firm:	Signature: Chris Struebing
Street:	Print Name: Chris Struebing
City/State/Zip:	Firm: AECOM

Appendix D Groundwater Sampling Forms

Well No.	<u>Mw-5</u>	5 A	_		Site Name/ AECOM Jol		CVRA			
Water Level (ft TPVC) Well Depth (ft TPVC)	<u> </u>		-		Weather Person(s) S	ampling	(eù - Tr Marcus Hop	okins	stight wi	hly,
Purging Method Purge Start Time Purge Stop Time	0840	<i>subm</i>	weible_	-						
Sampling Method Sampler Intake Depth (ft)	Sulom	withe		-						
Average Sample Flow Rate Sample Collection Time	094	0		EC (NE	(m)					
	1000		Field M	feasurements	and Observ	ations	1		-	
Time	DO (mg/L)	Temp (deg C)	pH	Cond (uMhos/cm)	ORP	Turbidity (NTU)	Color	Odor	Water Level (ft TPVC)	Vol. Purged (gal)
0845	11.0%	149	11.52	136	104.9	100	G	no		(gai)
0855				•					+	
0900										
0905		10.0	A AL	1110	44.				(Di	ļ
0910	11.05	1210	9.91	149	905	0.9	Gen 1	no	81.21	
6915	11.10	12.00	4.29	133	151.1	5.8	CLR	RD RD	8624	
6925	11.07	12.10	7.19	132	1512	14.0	CLA	N	81.21	+
0930	11.08	12.10	7.16	132	157.0	15.2	ar	no	5-21	<u> </u>
0935	11.08	12.40	7.12	183	156.0	17.3	ar	N	81.21	-6.590
Stabilization Criteria pH: Specific Conductance ORP Turbidity DO	<u>+</u> 0.1 <u>+</u> 3% <u>+</u> 10 mV <u>+</u> 10% (wh <u>+</u> 0.3 mg/L	en >10 NTU)							
Comments	pt m	read or	19 mar 19 19	ORP WI					0.4	ishtening
and the state	derit in			1, 220 APR 1						جاز بعا
Well Condition Protective Cove Concrete Pa	r	Required	_	Comments						•
Inner Well Casin	g p						<u></u>			
Form Completed By:	<u></u>				_ Title			······,	Date	6/4/22

 $\overset{\rm all}{=} \langle (v) \rangle$



Well No.

Water Level (ft TPVC) Well Depth (ft TPVC)

Purging Method Purge Start Time Purge Stop Time

Sampling Method Sampler Intake Depth (ft) Average Sample Flow Rate Sample Collection Time

1355

Site Name/Location AECOM Job No. Weather Person(s) Sampling

CVRA

Marcus Hopkins

Time	DO	Temp	рН	Cond	ORP	Turbidity	Color	Odor	Water Level		
	(mg/L)	(deg C)		(uMhos/cm)	(mV)	(NTU)			(ft TPVC)	(gal)	
15000	3.90	12.4	12.04	270	35	787	Bm	no	79.78		
1305	<u> </u>	14.2	7.13	27.6	102	243	Bm	no-	79.58		0
1310	6.37	14.1	7.94	annia	98.	155	tra	hom	71.88		3/7
1315	6.52	14,1	7.74	212	47	145	trun	no	79.09		
1320	4.83	13.1	12.62		- 7.5		Wand	wo	29115		
1325	7.05	124		1010197	- 170	249	(leng	nD	81.7		
1330	7.25	13.30	10.05	192	59	516	4Bm	no ·	80.09		
1335	7.49	13.50	6.98	174	117	209	Ut Bm	no	80.06		
1340		13.4	7.44	147	115	98.1	4 Brn	No	80.06		
1345	7.81	13.4	6.84	120	119	107	C+Pm	no	80.04		p:
1350	7.22	13.9	6.71	156	119	58.9	Libn	no	80.04		

Stabilization Criteria	
pH:	<u>+</u> 0.1
Specific Conductance	<u>+</u> 3%
ORP	<u>+</u> 10 mV
Turbidity	<u>+</u> 10% (when >10 NTU)
DO	± 0.3 mg/L

Comments

Well Condition

Repairs Required

Protective Cover _____ Concrete Pad _____ Inner Well Casing _____ Locking Cap Comments

Form Completed By:

6/7/22 Date

Well No.	
----------	--

Water Level (ft TPVC) Well Depth (ft TPVC) ---

Purging Method Purge Start Time Purge Stop Time

Sampling Method Sampler Intake Depth (ft) Average Sample Flow Rate Sample Collection Time Amw-oz 31.41 Gubmersible Submersible

1550

Site Name/Location AECOM Job No. Weather Person(s) Sampling

CVRA

Marcus Hopkins

			Field N	leasurements a	nd Observ	vations	1			
Time	DO (mg/L)	Temp (deg C)	рН	Cond (uMhos/cm)	ORP (mV)	Turbidity (NTU)	Color	Odor	Water Level (ft TPVC)	Vol. Purgeo (gal)
	area	Auses	di	7						

Stabilization Criteria	
pH:	<u>+</u> 0.1
Specific Conductance	<u>+</u> 3%
ORP	<u>+</u> 10 mV
Turbidity	<u>+</u> 10% (when >10 NTU)
DO	<u>+</u> 0.3 mg/L

il lauflow Cell. Comments crous 0

Comments

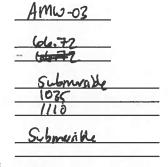
Well Condition

Repairs Required

Protective Cover ______ Concrete Pad ______ Inner Well Casing _____ Locking Cap _____

Form Completed By:

Date (1/7/22



Well No.

Water Level (ft TPVC) Well Depth (ft TPVC)

Purging Method Purge Start Time Purge Stop Time

Sampling Method Sampler Intake Depth (ft) Average Sample Flow Rate Sample Collection Time

1110

Site Name/Location AECOM Job No. Weather Person(s) Sampling

CVRA

Marcus Hopkins

Time	DO (mg/L)	Temp (deg C)	pН	Cond (uMhos/cm)	ORP (mV)	Turbidity (NTU)	Color	Odor	Water Level (ft TPVC)	Vol. Purg (gal)
11140	9.88	11.80	6.53	81	239	2139	Sm	no	67.11	
1045	9.60	12.50	6.93	91	249	1427	Bm	no	67.16	
1050	9.41	12.53	6.40	95	234	916	Bm	10	67.10	
1055	9.34	1278	6.19	94	225	796	Grn	no	67.11	
1100	9.24	1290	4.70	97	240	567	Rm	no	67.09	
1105	9.16	12.8	7.45	99	240	514	Bm	N	67.61	8.05
1110	Som	ich								

Stabilization Criteria	
pH:	<u>+</u> 0.1
pH: Specific Conductance	<u>+</u> 3%
ORP	<u>+</u> 10 mV
Turbidity	<u>+</u> 10% (when >10 NTU)
DO	<u>+</u> 0.3 mg/L

Comments

Well Condition

Repairs Required

Comments

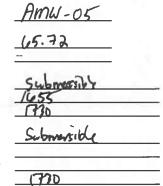
Protective Cover _____ Concrete Pad _____ Inner Well Casing _____ Locking Cap

Form Completed By:

Title

6/8/22 Date

			Well	Purging and Sa	mple Collec	tion					
ell No.	Amw-	04			Site Name/ AECOM Job		CVRA		55	14) 3 V	1077
ater Level (ft TPVC)	68.8	Y			Weather					1-1	- 1-1
ell Depth (ft TPVC)			-		Person(s) S	ampling	Marcus Ho	pkins	6.0.31	32/13/11/11	1001 5
rging Method	Subma	ride							0113	the sta	-
rge Start Time rge Stop Time	0855								A. 5 19	10 34	1.94
	Subma	all a									
mpling Method mpler Intake Depth (ft)	SUST	SIDE	and the second	1 agen	1.						
verage Sample Flow Rate	00-20	11-0	No. 1	1 MAO		WS)			103	301/	James
mple Collection Time	0921										
FNH 20	CAR	-	Field N	Ieasurements a	and Observ	ations	2.2	1111	R to	36.5	6 14
Time	DO	Temp	pH	Cond	ORP	Turbidity	Color	Odor	Water Level	Vol. Purged	
0.000	(mg/L)	(deg C)	11.57	(uMhos/cm)	(mV) 178	(NTU) \$7:1	CLA	NO	(ft TPVC)	(gal)	200
0900	7.71	12.9	10.67	279	168	303	ar	no	68.90	A LOUIS A	
0910	7.83	12.85	9.92	274	188	21.8	cia	YO	68.91		
0915	7.81	12.80	10.60	280	173	21.3	ar	no	6891	1.00	620
0920	7.83	12.80	8.77	277	2177	17.1	CLZ	no	68.91	19.20	
0925	7.93	12.86	9.26	277	208	19.9	ar	6m	68.91	dr.i	
0930	7.81	12.8	203	277	215	18.5	as	no	68.91	9.5 gal	120
0975	SAM	Le	1.2.26.26		1	10 10 1		21.0		Iva Dve	
tabilization Criteria H: pecific Conductance NRP urbidity 10	± 0.1 ± 3% ± 10 mV ± 10% (wh ± 0.3 mg/L		را ۲۰۰۵	6)2)	5	PP	15	A	12.8	2115	80 81
comments											
Well Condition Protective Cov	er	Required	_	Comments							



Well No.

Water Level (ft TPVC) Well Depth (ft TPVC)

Purging Method Purge Start Time Purge Stop Time

Sampling Method Sampler Intake Depth (ft) Average Sample Flow Rate Sample Collection Time

Site Name/Location AECOM Job No. Weather Person(s) Sampling

n CVRA

Marcus Hopkins

Time	DO (mg/L)	Temp (deg C)	рН	Cond (uMhos/cm)	ORP (mV)	Turbidity (NTU)	Color	Odor	Water Level (ft TPVC)	Vol. Purged (gal)
170	9.44	12.0	9.40	344	135	50.1	CL	3	65.79	
1705	6.62	12/5	8.85	710	1457	22	CLR	ho	65.80	
1710	9.59	2.8	3.74	270	Kazo	52.7	ChR	NO_	65.80	
1715	10.67	12.6	7.93	247	167.5	204	ChR	no	65.81	
1720	a.7	162.6	9.83	244	144.3	50.9	CLR	100	65.80	
1725 9.62	Y BEAM	12.3	13.8	2.50	466	228	Lle	ho	66.80	
1730	9.66	12.2	-NA-	2.48	15.2	21.3	C.L.R.	no	66.80	9-Gal

Stabilization Criteria	
pH:	<u>+</u> 0.1
Specific Conductance	<u>+</u> 3%
ORP	<u>+</u> 10 mV
Turbidity	<u>+</u> 10% (when >10 NTU)
DO	± 0.3 mg/L

Comments

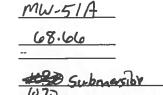
Well Condition

Comments

Protective Cover _____ Concrete Pad _____ Inner Well Casing _____ Locking Cap _____

Repairs Required

Date



Well No.

Water Level (ft TPVC) Well Depth (ft TPVC)

Purging Method Purge Start Time Purge Stop Time

Sampling Method Sampler Intake Depth (ft) Average Sample Flow Rate Sample Collection Time

Submainte

1110

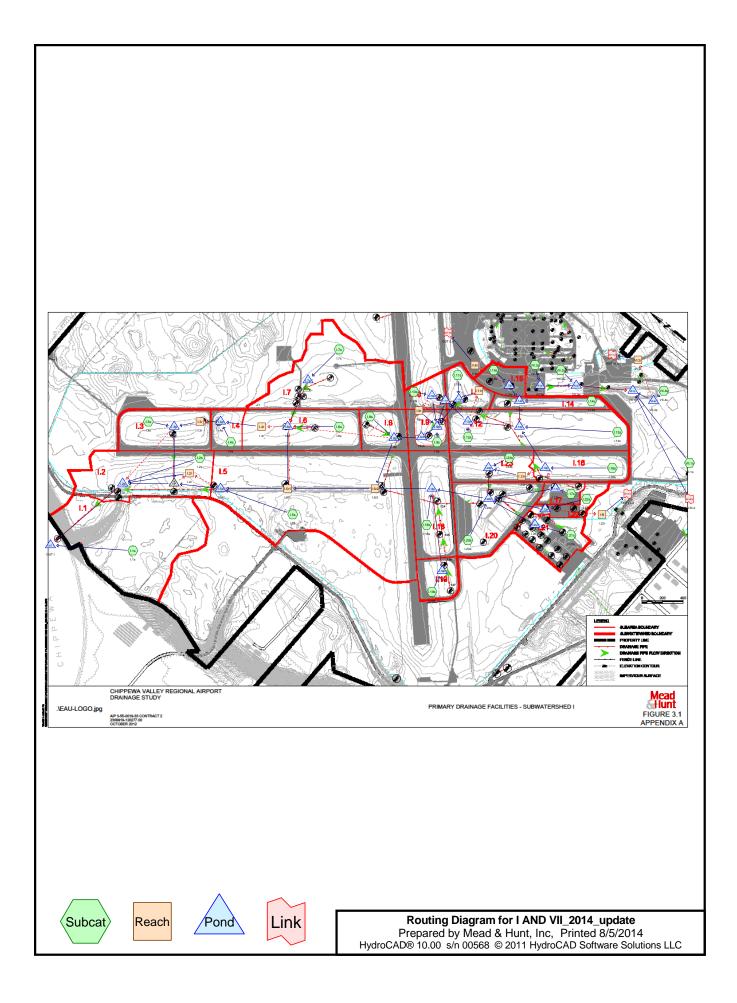
Site Name/Location AECOM Job No. Weather Person(s) Sampling

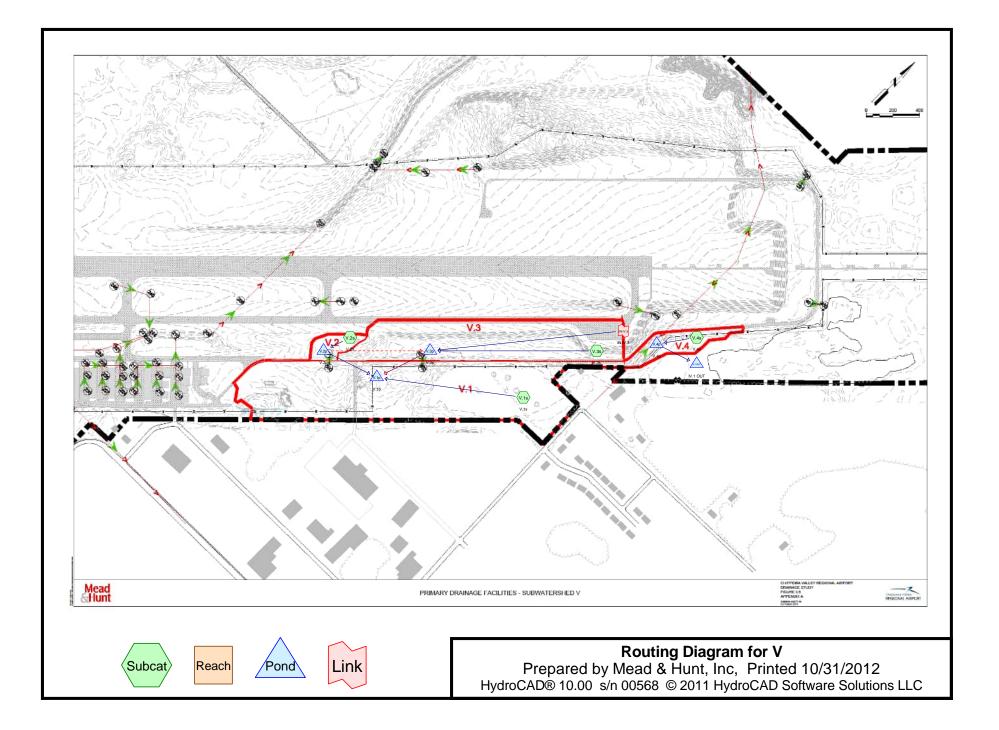
n <u>CVRA</u>

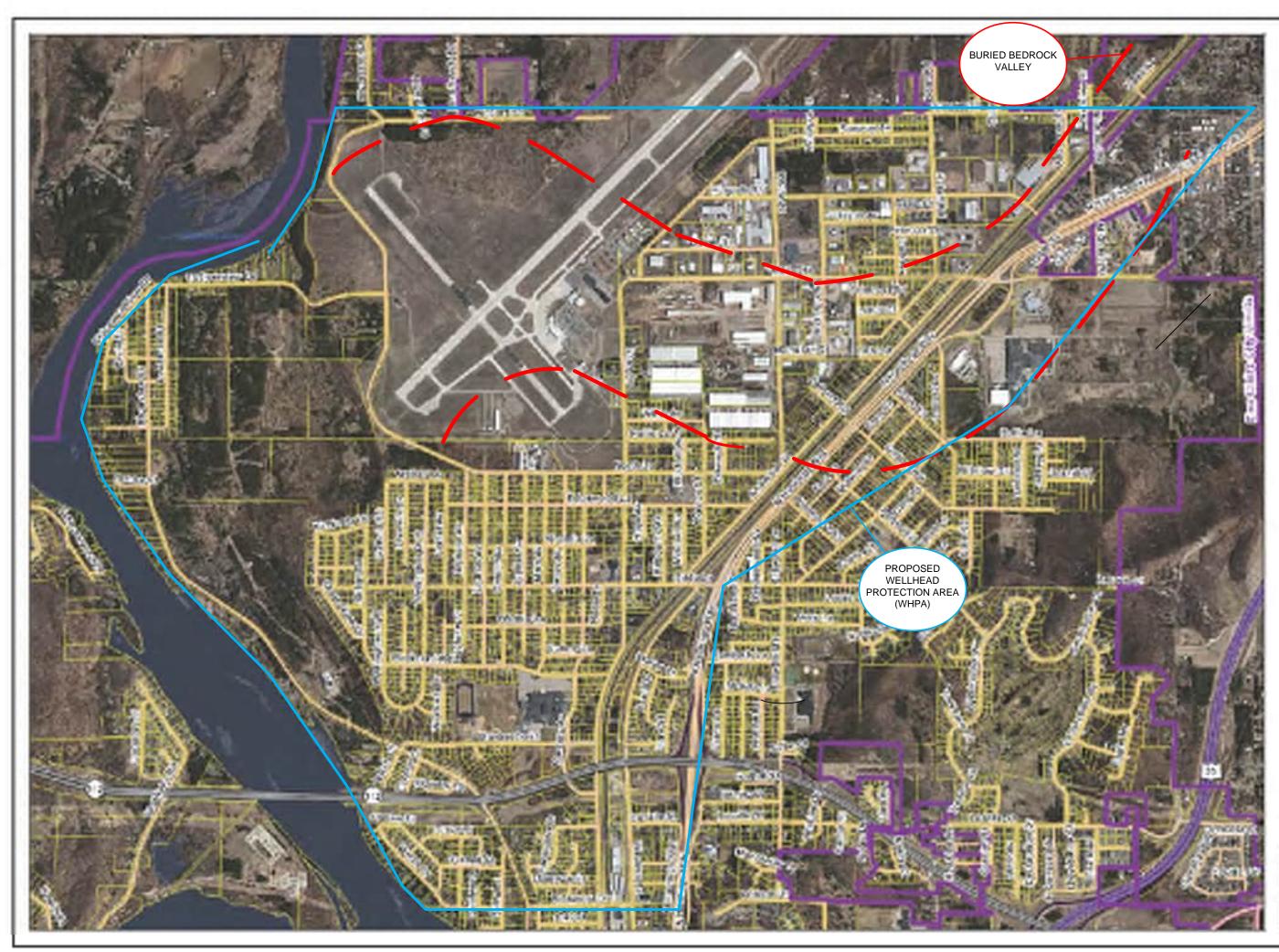
Marcus Hopkins

			Field IV	leasurements a	nd Observ	ations				
Time	DO (mg/L)	Temp (deg C)	рН	Cond (uMhos/cm)	ORP (mV)	Turbidity (NTU)	Color	Odor	Water Level (ft TPVC)	Vol. Purge (gal)
1035	7.32	13.9	8.44	410	75.4	65.4	4-4K	no	6667	
1040	8.14	14.0	8.46	228	110	11-1	CLR	np	681A	
1045	8.43	13.9	8.14	397	127.4	12.5	ar	no	68.69	
1050	8.53	14.10	7.73	385	140	14.5	cia	no	68.67	
1055	8.70	13.6	8.89	315	129	18.9	CLR	(na	80.80	
1100	8.71	13.2	6.78	392	162	73.2	rid	NO	105-68	
1105	8.78	13.2	4.7Ke	392	168	82.9	Cut	vo	68-68	
1110	897	136	6.74	393	173	102	av	0	68.65	

Stabilization Criteria				
pH:	<u>+</u> 0.1			
Specific Conductance	<u>+</u> 3%			
ORP	<u>+</u> 10 mV			
Turbidity	<u>+</u> 10% (when >10 NTU)			
DO	<u>+</u> 0.3 mg/L			

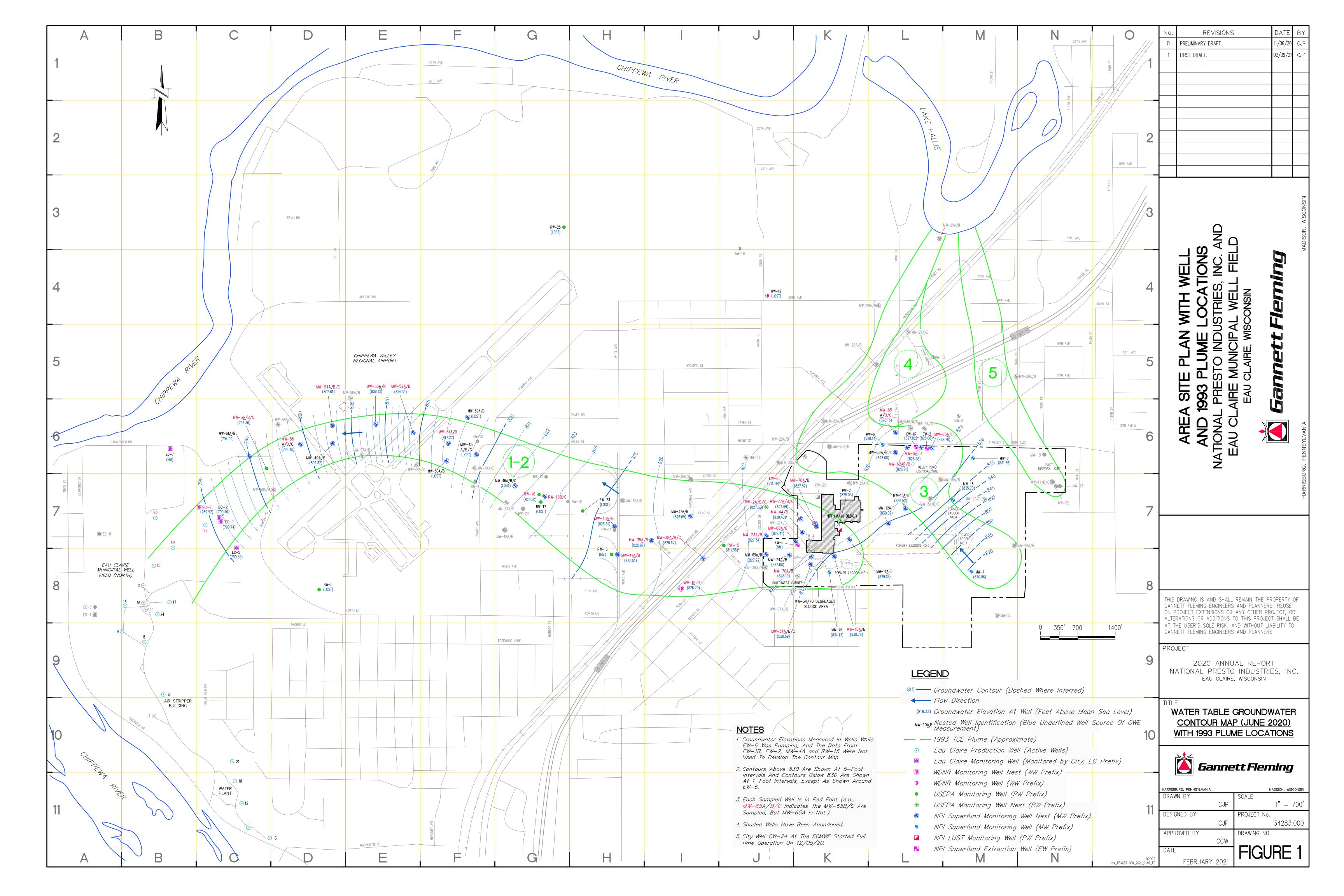

pt is bouncing all are again. possibly The senser? Comments


Duditudal as Dup 1


Tubidity value see not vellest adoub with , weat is very dear

Well Condition Protective Cover Concrete Pad Inner Well Casing Locking Cap	Repairs Required	Comments	10-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			
Form Completed By:	Morcus Hopkins		Title	 	Date	<u>atin</u>

Appendix E Storm Water Drainage, Bed Rock Valley, and Groundwater Flow Mapping



City of Eau Claire, WI Legend The Parcelo La Der Carty - tariana -distant in the local distance of the local d Taxab House o Gauge Analysis The and Tribups Streets Sere 1 Passan Passan Table

FIGURE 2 WELLHEAD PROTECTION AREA (WHPA)

-	800 1000 10001 at allot 4 second 64 at all 14
-	

Appendix F Hydraulic Gradient Calculation

CALCULATION SHEET

 Client
 Chippewa Valley Regional Airport

 Project
 Chippewa Valley Regional Airport

 Subject
 Horizontal Hydraulic Gradient

 Page __1_ of __1

 Project No. _60669304

 Prepared By BG Date _12/21/2022

 Reviewed By dsh Date _12/21/2022

Objective

Calculate the horizontal hydraulic gradient of the water table aquifer at the Chippawa Valley Regional Airport in Eau Claire, WI.

Assumptions

- 1. Water elevations were measured on June 7th 2022.
- 2. The horizontal hydraulic gradient is estimated from Figure 4.

Calculations

Horizontal Hydraulic Gradient

 $I_h = \Delta h_h / \Delta I_h$

Where:

I_h = Horizontal hydraulic gradient

 Δh_h = Difference in water elevation along the flow line depicted on Figure 4.

 ΔI_h = Length (distance) between the MW elevation and/or contours.

Distance Along	Difference in Elevation	Horizontal Gradient
Flow line (feet)	(ft. MSL)	(feet/foot)
1,700 AMW-03 to AMW-01	821.46 - 810.93 = 10.53	0.0062
3,200 AMW-05 to MW-55A	818.22 - 800.36 = 17.86	0.0056

The average horizontal hydraulic gradient is 0.0059

aecom.com

