From:	Todd Fischer <etf@new.rr.com></etf@new.rr.com>
Sent:	Thursday, September 21, 2023 2:33 PM
То:	Schultz, Josie M - DNR
Cc:	Rick Frieseke; Dale (Skip) Smith
Subject:	Re: General Liability Request Update for 505 Grand Avenue
Attachments:	Limited Phase II ESA 505 Grand Avenue_FINAL.pdf

CAUTION: This email originated from outside the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Hi Josie,

Thank you again for the time today. Attached is the vapor study that was done. Let me know if any issues or concerns.

Todd I

Todd Fischer Sent from my iPad

On Sep 19, 2023, at 2:26 PM, Schultz, Josie M - DNR <<u>josie.schultz@wisconsin.gov</u>> wrote:

Good Afternoon Todd,

I spoke with Rick Frieseke of Friess Environmental Consulting yesterday regarding the liability clarification letter for 505 Grand Avenue in Little Chute. I had mentioned to Rick that this would be considered a "General Liability Clarification" (GLC) for a prospective purchaser rather than an "Off-Site Exemption" (OSE) letter as an off-site exemption can only be issued to a current property owner. Rick voiced some concerns stating that you were really looking for an OSE letter, but would need this letter prior to your acquisition of the property.

To give you an idea of the difference between an OSE and GLC letter, the Smet Investments LLC General Property in Oshkosh recently received a <u>GLC letter for a</u> <u>prospective purchaser</u> on April 22, 2022. In comparison, this is the <u>OSE letter</u> that was sent to the current owner of 505 Grand Avenue, Mr. Dale Smith of Four D Investments, on July 21, 2022. The letters are very similar, and the GLC letter would state that you would satisfy all the requirements for the off-site exemption once you acquire the property.

DNR has drafted the GLC letter, and it will contain special language regarding the vapor mitigation system (VMS) within the building at 505 Grand Avenue; I'm hopeful that this

letter would be able to be sent next week, however there is additional internal review required.

With all of that being said, there are two options for receiving the OSE letter, if this is the letter that you need for the sale:

- 1. DNR could issue the off-site liability clarification letter, then once you acquire the property you can submit a request with another \$700 fee to get an OSE letter.
- 2. DNR is able to hold off on sending the letter until after you have purchased the property, and it can be sent as an OSE letter. DNR understands that these letters are often requested by the lender, so we can schedule a call with you and your lender to verbally discuss what the letter will say and indicate that you will receive the OSE once the acquisition has occurred.

I would be available this week to discuss these options and the vapor mitigation system with you and/or your lender. I have availability from 10:00 am til 2:30 pm tomorrow, or 2:00 pm til 4:00 pm on Thursday.

Thank you, Josie

We are committed to service excellence.

Visit our survey at http://dnr.wi.gov/customersurvey to evaluate how I did.

Josie M. Schultz Hydrogeologist – Northeast Region Remediation and Redevelopment Team Wisconsin Department of Natural Resources 110 S. Neenah Avenue, Sturgeon Bay, WI 54235 Cell Phone: 920-366-5685 Josie.Schultz@Wisconsin.gov

<image001.gif> dnr.wi.gov <image002.gif>

<image003.gif>

<image004.gif>

<image005.gif>

<image006.gif>

September 11, 2023

Todd Fischer 2220 W. Woodlark Road Appleton, WI 54911

RE: Limited Phase II Environmental Site Assessment for Vapor Intrusion at 505 Grand Avenue, Little Chute, Wisconsin – Cedar Corporation Project Number: F6983-001

Dear Mr. Fischer:

Cedar Corporation (Cedar) is providing this Limited Phase II Environmental Site Assessment (ESA) for vapor intrusion at 505 Grand Avenue in Little Chute, Outagamie, Wisconsin (Site) (reference Figure 1 – Detailed Site Map, attached). Cedar completed sub-slab vapor sampling at the Site based on an agreed upon scope of work between Todd Fischer (Client), and Cedar.

Background

Cedar was contacted by Mr. Fischer for a potential Phase I ESA. Mr. Fischer was aware of the open Wisconsin Department of Natural Resources (WDNR) Bureau for Remediation and Redevelopment Tracking System (BRRTS) case on the adjoining property to the north, Sandies Dry Cleaners & Laundry (Former) – SL (BRRTS #02-45-552222). Mr. Fischer noted that the WDNR is drafting a Liability Clarification Letter stating that he would not be liable for contamination related to the adjoining property, chose not to perform a Phase I ESA, but a Limited Vapor Assessment instead to address the immediate threat to human health as it related to his future business. Cedar was then authorized to perform the Limited Vapor Assessment on August 31, 2023.

Work Conducted

On September 5, 2023, Cedar staff mobilized to the Site to conduct sub-slab vapor sampling at the Site. The weather at the time of sampling was 76° Fahrenheit (°F), indicating samples were collected during the cooling season. Cedar collected two sub-slab vapor samples from the building. Vapor sample (VP-1) was installed approximately five feet from the north side of the building closest to the identified soil plume. The second vapor sample (VP-2) was placed approximately five feet from the northwest corner of the building closest to the identified groundwater plume (reference Figure 1 – Detailed Site Map, attached).

Foundation Observations

At the time of sampling, Cedar observed the basement to contain three (3) cooling systems for the freezers located in the bakery storefront on the main level. There was a box fan installed in the wall to regulate the temperature in the basement. The box fan was mainly used in the summers to help push hot air out of the basement. In the winter months, it appears that the box fan was not used in an attempt to keep heat within the basement. Additionally, there was an active vapor extraction system installed in the basement. The system was hung in the ceiling and vented outdoors (reference Photo Log, attached). There was no pressure meter as it was not a traditional sub-slab vapor system. At the time of the site visit, the fan to the system appeared to be off and/or not working properly.

The concrete slab in the basement appeared to be in good condition. The walls in the basement were constructed of concrete block or brick. The concrete block walls appeared to be in good condition with little evidence of water staining/seepage. There were two floor drains observed within the basement slab. The floor drains are presumed to drain to the Village of Little Chute's sanitary department.

The sampling areas were separated by a wall and was accessed by two different entrances. The eastern basement of the basement had the vapor mitigation system installed. The western basement did not appear to have a vapor mitigation system installed. Both basements had a floor drain. The eastern basement is where VP-1 was installed, which was closer to the soil contamination identified in the Sandies Dry Cleaners & Laundry (Former) – SL (BRRTS #02-45-552222). The western basement is where VP-2 was installed, which was closer to the groundwater contamination plume identified in the Sandies Dry Cleaners & Laundry (Former) – SL (BRRTS #02-45-552222).

Sampling Procedures

A water dam was placed around the vapor pins to verify and ensure a proper seal around the vapor pin. The water dam showed no visual indications of air gaps or compromised sampling conditions at any of the vapor pins. Once sampling quality was verified, the tubing connecting the pin to the flow regulator was purged prior to sample collection. Once the tubing was purged, air flow to the vapor canister was engaged. Prior to engaging the regulators, Cedar recorded the initial vacuum readings and times were collected in order to compare against the vacuum readings at the time of finalizing the sample collection. Vapor canisters were shut off at pressures between four and two inches of mercury (Hg). The final times and pressures were recorded (reference Photo Log, attached). After sub-slab samples were collected the vapor pins were removed and the pin locations were sealed with concrete.

Vapor samples were delivered to Synergy Environmental Lab, Inc under standard chain of custody practices. Vapor samples were analyzed for Volatile Organic Compounds (VOCs) under method TO-15 (reference Table 1 – Vapor Analytical Table; and Laboratory Report and Chain of Custody, attached).

Vapor Analytical Results

The VOC results were compared against the Wisconsin Vapor Risk Screening Levels (WI VRSLs) August 2023 update. There were VOCs detected in both of the sampling points collected and are listed below (reference Table 1 – Vapor Analytical Table; and Laboratory Report and Chain of Custody, attached).

The September 5, 2023, sampling event identified cis-1,2-dichloroethene (95,000 micrograms per cubic meter (ug/m³)) and vinyl chloride (2,550 ug/m³) at VP-1 exceeding the Small Commercial WI VRSLs. Tetrachloroethene (PCE) (6,900 ug/m³) and trichloroethene (TCE) (1,140 ug/m³) at VP-2 exceeding the Small Commercial WI VRSLs. These analytes detected are commonly associated with chlorinated solvents.

Conclusions

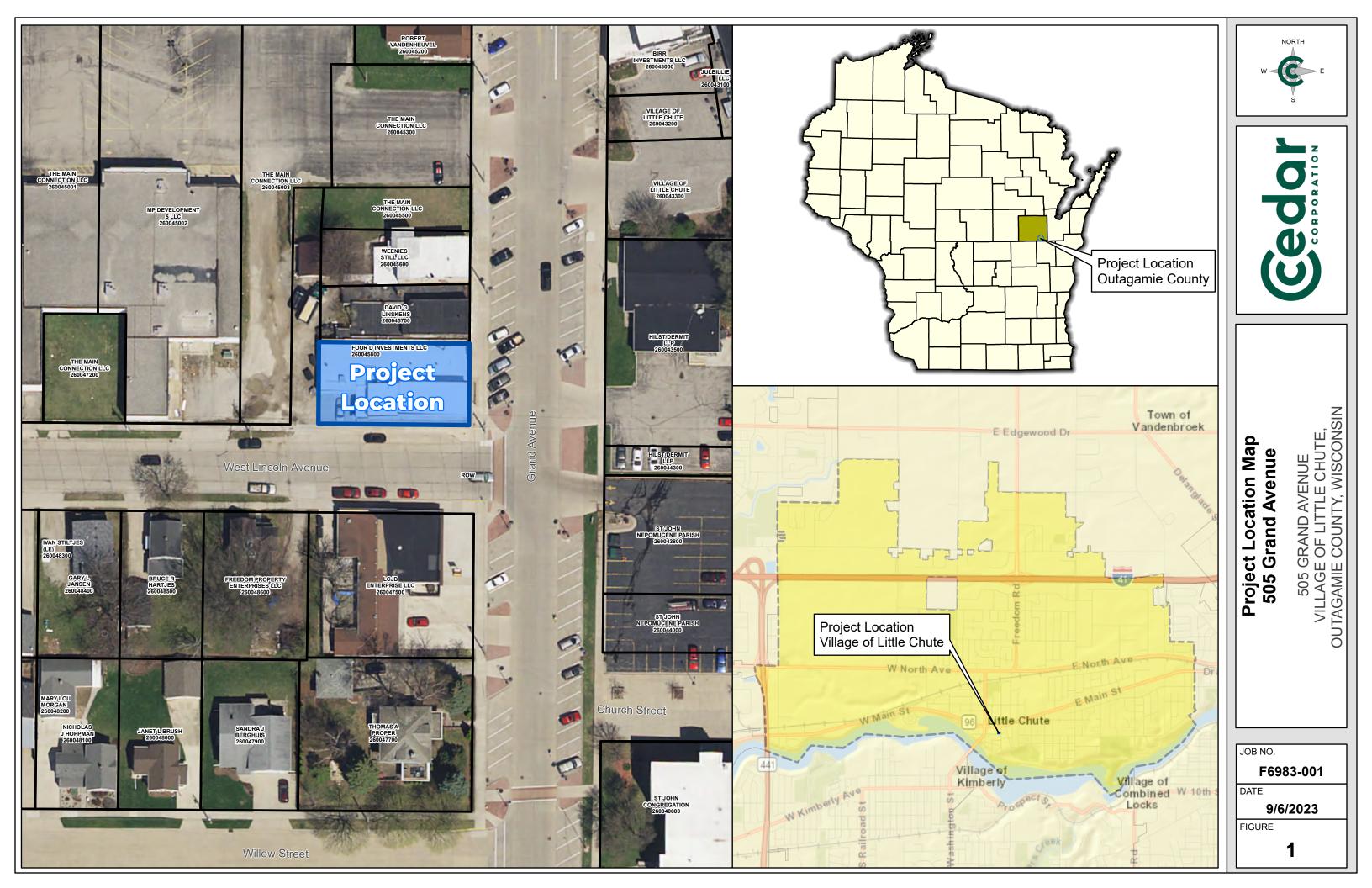
Based on the latest round of vapor sampling, VOC vapors were detected below the building foundation. Concentrations of cis-1,2-dichloroethene, vinyl chloride, PCE, and TCE were detected exceeding the Small Commercial WI VRSLs at VP-1 and VP-2. Vapor probe VP-1 was located closets to the soil plume and VP-2 was located closest to the groundwater plume. According to the Village of Little Chute Official Zoning Map (December 2016) the Site is zoned CB – Central Business. The Site is utilized as a commercial property on the first floor with small apartments on the second floor. The Site is owned by Four D Investments LLC. The first floor tenants are Bakers Outlet and American Family Insurance. Based on this information, the results discovered at the Site should be compared against the Small Commercial WI VRSLs. The analytes detected exceeded the Small Commercial WI VRSLs.

Recommendations

Cedar recommends the results from this Limited Phase II ESA be submitted to the WDNR under the Sandies Dry Cleaners & Laundry (Former) – SL (BRRTS #02-45-552222). The analytes detected are consistent with the analytes detected in the Sandies Dry Cleaners & Laundry (Former) – SL (BRRTS #02-45-552222) which adjoining the Site to the north. Additionally, Cedar recommends that an active sub-slab vapor mitigation system be installed in the basement to prevent infiltration into the building.

If you have any questions on the enclosed information, please contact me at (920) 491-9081 or by email at quin.lenz@cedarcorp.com.

Sincerely,


Quin Lenz, P.G. Professional Geologist

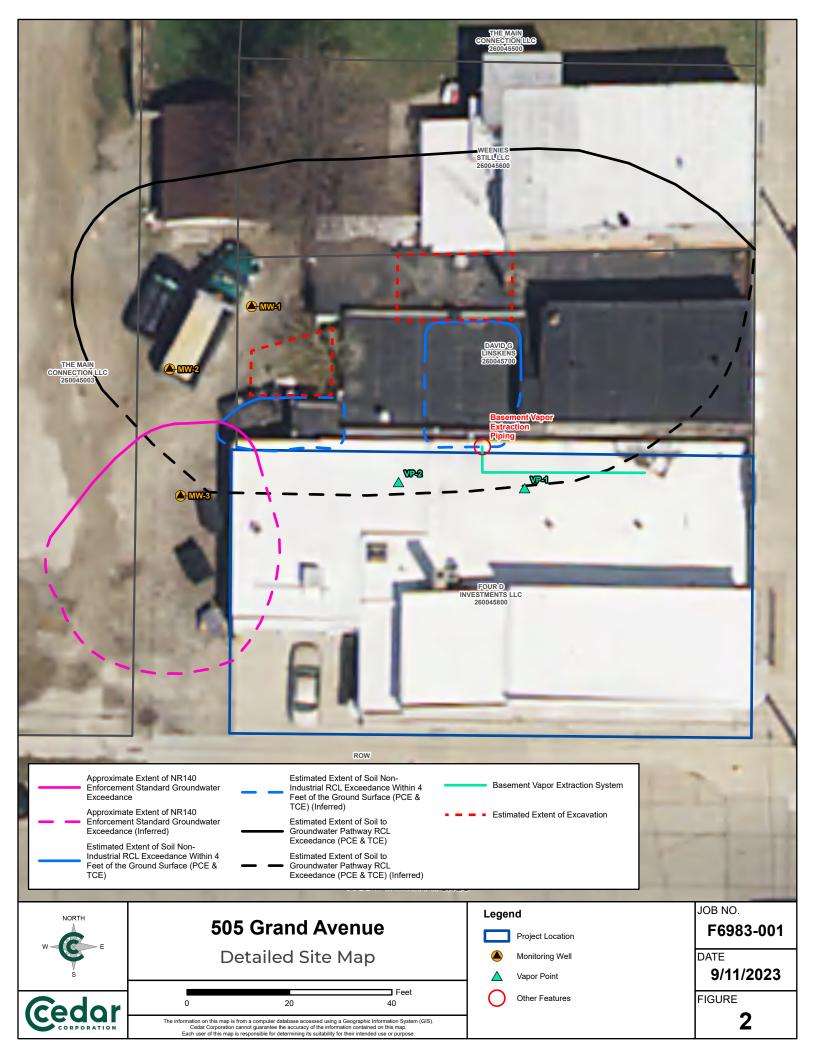

Enclosure(s)

Figure 1 – Location Map Figure 2 – Detailed Site Map Table 1 – Vapor Analytical Table Photo Log Laboratory Results and Chain of Custody

Den Claud

Dan O'Connell, P.G., C.P.G. Environmental Manager

Table 1 Vapor Analytical Results 505 Grand Avenue Little Chute, WI

Parameter	Residential Indoor Air VAL	Residential Sub- Slab VRSL	Small Commercial Indoor Air VAL	Small Commercial Sub-Slab VRSL	Large Commercial Indoor Air VAL	Large Commercial Sub-Slab VRSL	VP-1	VP-2
Sampling Date							9/5/2023	9/5/2023
Regulated Fill Time							30-minute	30-minute
Structure/Location Sampled							Sub-Slab	Sub-Slab
Acetone							<1,500	580
Benzene *	3.6	120	16	520	16	1,600	32J	12.3
Benzyl Chloride							<20.9	< 0.209
Bromodichloromethane Bromoform							<37.4	<0.374 <0.414
Bromotorm Bromomethane							<41.4	<0.414
1,3-Butadiene							<14.3	<0.143
Carbon Disulfide							171	137
Carbon tetrachloride *	4.7	160	20	680	20	2,000	<30.7	0.5J
Chlorobenzene							<25.1	0.32J
Chloroethane							<15.9	0.29J
Chloroform *	1.2	41	5.3	180	5.3	530	<30	11
Chloromethane **	94	3,100	390	13,000	390	39,000	<83.1	<0.831
Cyclohexane							224	11.8
Dibromochloromethane							<37.6	<0.376
1,4-Dichlorobenzene							<30.2	<0.302
1,3-Dichlorobenzene 1,2-Dichlorobenzene							<30.2 <23.5	<0.302 <0.235
Dichlorodifluoromethane **	100	3,500	440	15,000	440	44,000	<26.3	2.57
1,2-Dichloroethane * (1,2-DCA)	1.1	3,500	4.7	160	4.7	470	<24	<0.24
1,1-Dichloroethane * (1,1-DCA)	18	590	77	2,600	77	7,700	<18.7	0.32J
1,1-Dichloroethene ** (1,1-DCE)	210	7,000	880	29,000	880	88,000	170	20
cis-1,2-Dichloroethene	42	1,400	180	5,800	180	18,000	95,000	3,400
trans-1,2-Dichloroethene **	42	1,400	180	5,800	180	18,000	4,300	66
1,2-Dichloropropane							<28	0.88J
trans-1,3-Dichloropropene							<19.8	<0.198
cis-1,3-Dichloropropene							<23.4	<0.234
1,2-Dichlorotetrafluoroethane							<44.6	<0.446
1,4-Dioxane							<15.7	<0.157
1,2-Dibromoethane (EDB) Ethanol							<34.2	<0.342
Ethyl Acetate							<1500 <17.6	228 <0.176
Ethylbenzene *	11	370	49	1,600	49	4,900	26J	32
4-Ethyltoluene							<21.4	4.9
Heptane							1450	28.5
Hexachloro-1,3-butadiene							<48.9	<0.489
Hexane							<1500	42
2-Hexanone							<22.2	<0.222
Isopropyl Alcohol							187	27.3
Methyl ethyl ketone (MEK)							<17.8	33
Methyl isobutyl ketone (MIBK)							<16.8	31.1
Methyl Methacrylate						260,000	<21.7	1.11
Methylene Chloride ** Methyl-tert-butyl ether (MTBE)	<u>630</u> 	21,000	2,600	88,000	2,600		3,400 16	59 4.6
Naphthalene *	0.83	28	3.6	120	3.6	360	<67.5	2.41
Propene							<7.9	<0.079
Styrene							<18.1	20.5
1,1,2,2-Tetrachloroethane							<32.5	<0.325
Tetrachloroethene (PCE) **	42	1,400	180	5,800	180	18,000	600	6,900
Tetrahydrofuran							<13.1	<0.131
Toluene							87	83
1,2,4-Trichlorobenzene							<65.7	<0.657
1,1,1-Trichloroethane **	5,200	170,000	22,000	730,000	22,000	2,200,000	<24.9	0.38J
1,1,2-Trichloroethane							<25.8	<0.258
Trichloroethene (TCE) ** Trichlorofluoromethene	2.1	70 	8.8	290	8.8	880	284	1,140
Trichlorotrifluoroethane							<33.7 <40.2	2.3 0.84J
1,2,4-Trimethylbenzene							<40.2 74J	15.7
1,3,5-Trimethylbenzene							29.4J	3.4
Vinyl acetate							<20.3	<0.203
Vinyl Chloride *	1.7	56	28	930	28	2,800	2,550	5.2
		-			-			
m&p-Xylene	100	3,500	440	15,000	440	44,000	48J	43

Notes:

All units are in micrograms per cubic meter (ug/m3)

-- = No Established Standard

Bold/Red = Concentration exceeds Indoor Air VAL Bold/Blue = Concentration exceeds Sub-Slab VRSL

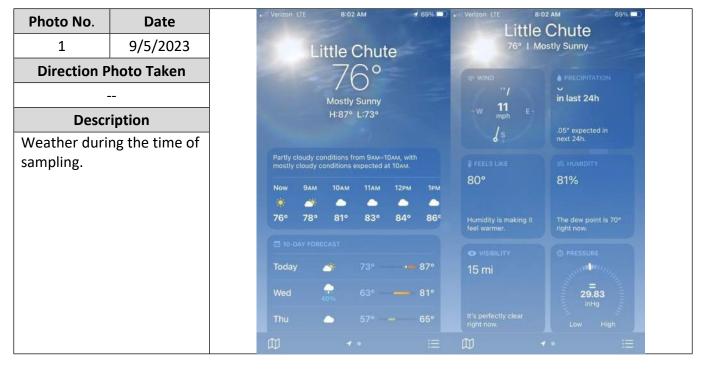
NA = Not analyzed

J = Reported value was between the limit of detection and the limit of quantitation.

All values are obtained from U.S. EPA Vapor intrusion Screening Level (VISL) calculator (three significant figures) and rounded to two significant figures

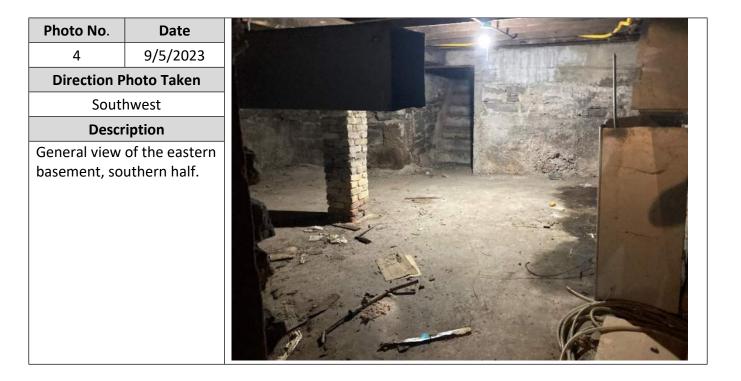
VAL = Vapor Action Level

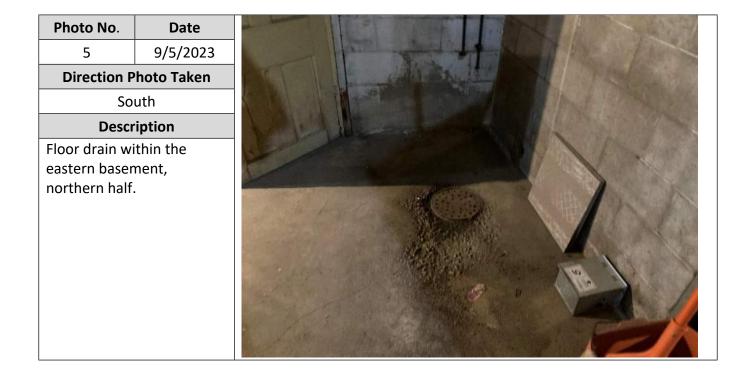
VRSL = Vapor Risk Screening Level


Yellow Highlight = Immediate action criteria

Carcinogens (*) = 10 x VAL or VRSL Non-carcinogens (**) = 3 x VAL or VRSL

VALs and VRSLs for xylene are mix.


Client	Todd Fischer	Project No.	F6983-001
Project	505 Grand Avenue	Date	9/8/2023
Prepared By	Quin Lenz		



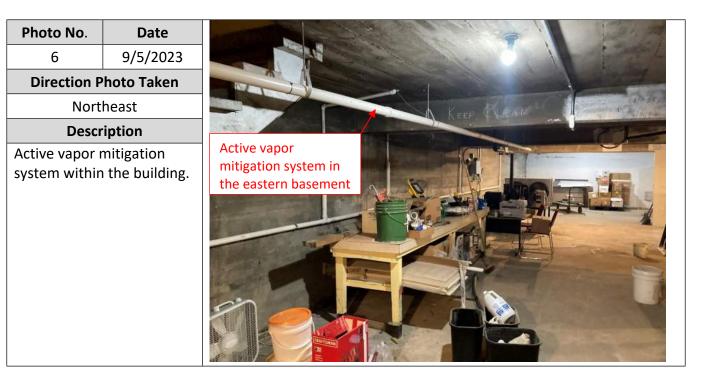
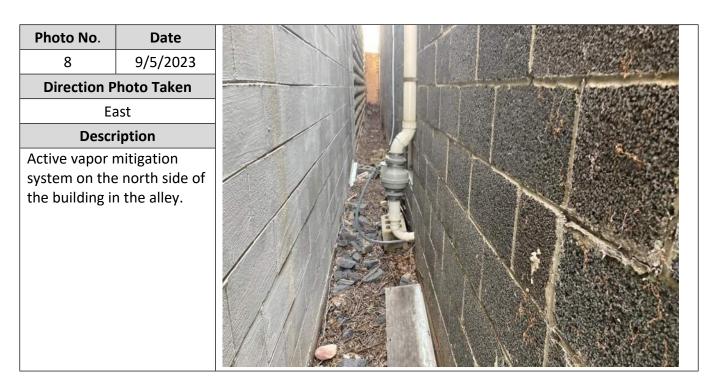
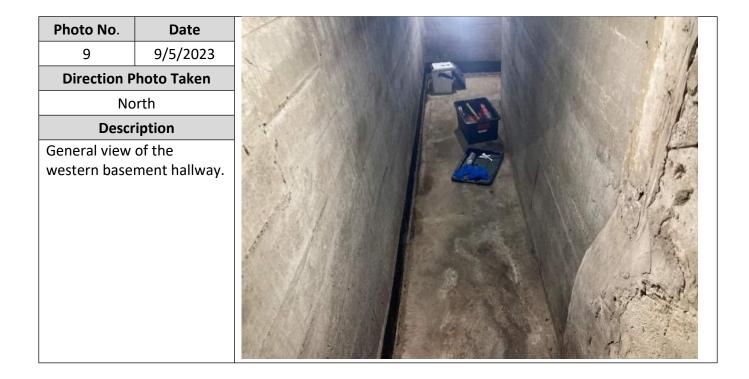
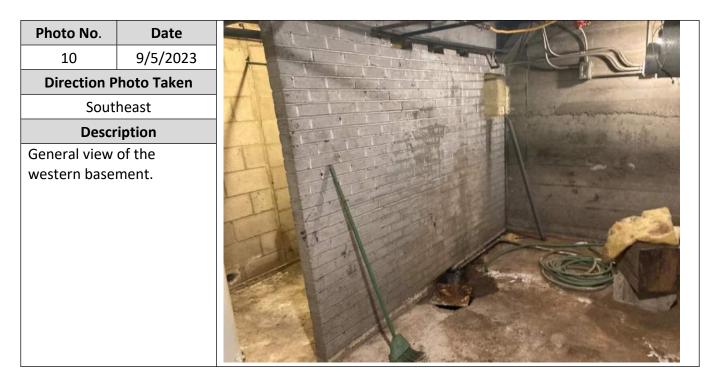
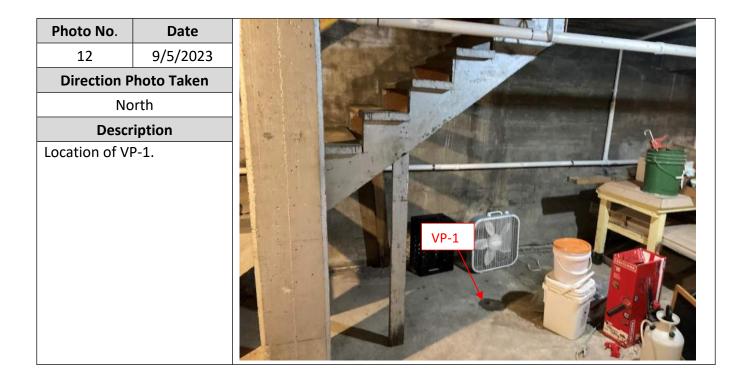


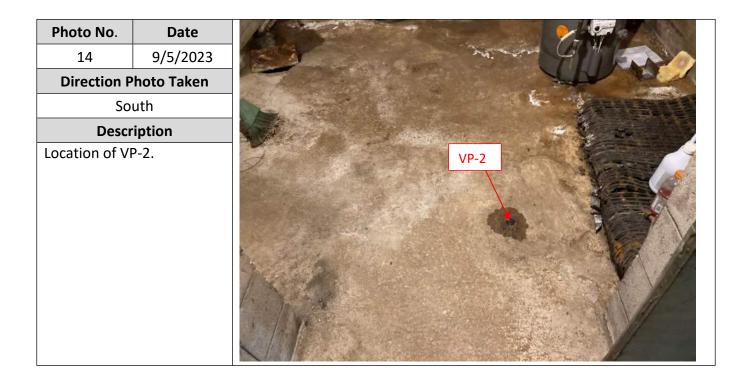
PHOTO LOG






Photo No.	Date				
7	9/5/2023				
Direction P	hoto Taken				
West					
Descr	iption				
Box fan instal north side of t to help regula temperature i basement. Th below the box the vapor mit system leaves	the building ite the in the e PVC piping x fan is where igation				




Photo No.	Date	
11	9/5/2023	ALANA YY YARA
Direction F	hoto Taken	
Sout	heast	
Desci	ription	Martin Contraction of the Contraction
Floor drain w western base		

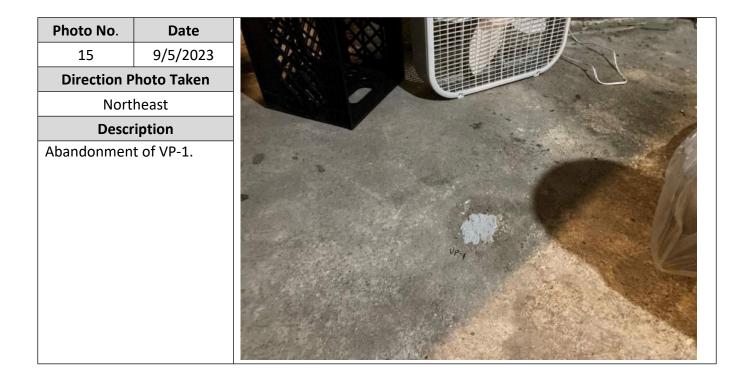

PHOTO LOG

Photo No.	Date			
13	9/5/2023			N. The
Direction F	Photo Taken			· Com
So	uth	the first		North Frank
Desc	ription		Alex and the N	
Typical vapor setup. Sampli				

PHOTO LOG

Synergy Environmental Lab, LLC.

1990 Prospect Ct., Appleton, WI 54914 *P 920-830-2455 * F 920-733-0631

DAN OCONNELL CEDAR CORPORATION 1695 BELLEVUE STREET GREEN BAY, WI 54311

Report Date 08-Sep-23

Project Name 5 Project #	505 GRAND	AVE, LITTLE	E CHUTE	Invoice # E42880							
Lab Code Sample ID Sample Matrix Sample Date	5042880A VP-1 Air 9/5/2023										
Sample Date	9/3/2023	Result	Unit	LOD I	LOO 1	Dil	Method	Ext Date	Run Date	Analyst	Code
Organic					τ.						
Air Samples											
Acetone		< 1500	ug/m3	29.9	95	100	TO-15		9/7/2023	CJR	1
Benzene		32 "J"	ug/m3	13.6	43.3	100	TO-15		9/7/2023	CJR	1
Benzyl Chloride		< 20.9	ug/m3	20.9	66.5	100	TO-15		9/7/2023	CJR	1
Bromodichlorometl	hane	< 37.4	ug/m3	37.4	119	100	TO-15		9/7/2023	CJR	1
Bromoform		< 41.4	ug/m3	41.4	132	100	TO-15		9/7/2023	CJR	1
Bromomethane		< 20	ug/m3	20	63.7	100	TO-15		9/7/2023	CJR	1
1,3-Butadiene		< 14.3	ug/m3	14.3	45.4	100	TO-15		9/7/2023	CJR	1
Carbon Disulfide		171	ug/m3	13.8	44	100	TO-15		9/7/2023	CJR	1
Carbon Tetrachlori	de	< 30.7	ug/m3	30.7	97.8	100	TO-15		9/7/2023	CJR	1
Chlorobenzene		< 25.1	ug/m3	25.1	79.8	100	TO-15		9/7/2023	CJR	1
Chloroethane		< 15.9	ug/m3	15.9	50.7	100	TO-15		9/7/2023	CJR	1
Chloroform		< 30	ug/m3	30	95.3	100	TO-15		9/7/2023	CJR	1
Chloromethane		< 83.1	ug/m3	83.1	264	100	TO-15		9/7/2023	CJR	1
Cyclohexane		224	ug/m3	21.2	67.4	100	TO-15		9/7/2023	CJR	1
Dibromochloromet	hane	< 37.6	ug/m3	37.6	120	100	TO-15		9/7/2023	CJR	1
1,4-Dichlorobenzer	ne	< 30.2	ug/m3	30.2	96	100	TO-15		9/7/2023	CJR	1
1,3-Dichlorobenzer	ne	< 30.2	ug/m3	30.2	96	100	TO-15		9/7/2023	CJR	1
1,2-Dichlorobenzer	ne	< 23.5	ug/m3	23.5	74.9	100	TO-15		9/7/2023	CJR	1
Dichlorodifluorome	ethane	< 26.3	ug/m3	26.3	83.6	100	TO-15		9/7/2023	CJR	1
1,2-Dichloroethane		< 24	ug/m3	24	76.3	100	TO-15		9/7/2023	CJR	1
1,1-Dichloroethane		< 18.7	ug/m3	18.7	59.6	100	TO-15		9/7/2023	CJR	1
1,1-Dichloroethene		170	ug/m3	21	66.8	100	TO-15		9/7/2023	CJR	1
cis-1,2-Dichloroeth	ene	95000	ug/m3	1970	6260	1000	TO-15		9/8/2023	CJR	1
trans-1,2-Dichloroe	ethene	4300	ug/m3	23.1	73.4	100	TO-15		9/7/2023	CJR	1
1,2-Dichloropropar	ne	< 28	ug/m3	28	89	100	TO-15		9/7/2023	CJR	1

Lab Code	5042880A
Sample ID	VP-1
Sample Matrix	Air
Sample Date	9/5/2023

Sample Date 9/5/2025										
	Result	Unit	LOD I	LOQ I	Dil	Method	Ext Date	Run Date	Analyst	Code
trans-1,3-Dichloropropene	< 19.8	ug/m3	19.8	63	100	TO-15		9/7/2023	CJR	1
cis-1,3-Dichloropropene	< 23.4	ug/m3	23.4	74.5	100	TO-15		9/7/2023	CJR	1
1,2-Dichlorotetrafluoroethane	< 44.6	ug/m3	44.6	142	100	TO-15		9/7/2023	CJR	1
1,4-Dioxane	< 15.7	ug/m3	15.7	50	100	TO-15		9/7/2023	CJR	1
EDB (1,2-Dibromoethane)	< 34.2	ug/m3	34.2	109	100	TO-15		9/7/2023	CJR	1
Ethanol	< 1500	ug/m3	15.2	48.2	100	TO-15		9/7/2023	CJR	1
Ethyl Acetate	< 17.6	ug/m3	17.6	55.9	100	TO-15		9/7/2023	CJR	1
Ethylbenzene	26 "J"	ug/m3	20.3	64.5	100	TO-15		9/7/2023	CJR	1
4-Ethyltoluene	< 21.4	ug/m3	21.4	68.1	100	TO-15		9/7/2023	CJR	1
Heptane	1450	ug/m3	26.5	84.5	100	TO-15		9/7/2023	CJR	1
Hexachlorobutadiene	< 48.9	ug/m3	48.9	156	100	TO-15		9/7/2023	CJR	1
Hexane	< 1500	ug/m3	23.5	74.8	100	TO-15		9/7/2023	CJR	1
2-Hexanone	< 22.2	ug/m3	22.2	70.7	100	TO-15		9/7/2023	CJR	1
Isopropyl Alcohol	187	ug/m3	10.9	34.7	100	TO-15		9/7/2023	CJR	1
Methyl ethyl ketone (MEK)	< 17.8	ug/m3	17.8	56.7	100	TO-15		9/7/2023	CJR	1
Methyl isobutyl ketone (MIBK)	< 16.8	ug/m3	16.8	53.6	100	TO-15		9/7/2023	CJR	1
Methyl Methacrylate	< 21.7	ug/m3	21.7	69	100	TO-15		9/7/2023	CJR	1
Methylene chloride	3400	ug/m3	15.9	50.6	100	TO-15		9/7/2023	CJR	1
Methyl tert-butyl ether (MTBE)	< 16	ug/m3	16	50.9	100	TO-15		9/7/2023	CJR	1
Naphthalene	< 67.5	ug/m3	67.5	215	100	TO-15		9/7/2023	CJR	1
Propene	< 7.9	ug/m3	7.9	25.1	100	TO-15		9/7/2023	CJR	1
Styrene	< 18.1	ug/m3	18.1	57.7	100	TO-15		9/7/2023	CJR	1
1,1,2,2-Tetrachloroethane	< 32.5	ug/m3	32.5	103	100	TO-15		9/7/2023	CJR	1
Tetrachloroethene	600	ug/m3	27.8	88.4	100	TO-15		9/7/2023	CJR	1
Tetrahydrofuran	< 13.1	ug/m3	13.1	41.7	100	TO-15		9/7/2023	CJR	1
Toluene	87	ug/m3	18.4	58.5	100	TO-15		9/7/2023	CJR	1
1,2,4-Trichlorobenzene	< 65.7	ug/m3	65.7	209	100	TO-15		9/7/2023	CJR	1
1,1,1-Trichloroethane	< 24.9	ug/m3	24.9	79.3	100	TO-15		9/7/2023	CJR	1
1,1,2-Trichloroethane	< 25.8	ug/m3	25.8	82.2	100	TO-15		9/7/2023	CJR	1
Trichloroethene (TCE)	284	ug/m3	23.7	75.4	100	TO-15		9/7/2023	CJR	1
Trichlorofluoromethane	< 33.7	ug/m3	33.7	107	100	TO-15		9/7/2023	CJR	1
Trichlorotrifluoroethane	< 40.2	ug/m3	40.2	128	100	TO-15		9/7/2023	CJR	1
1,2,4-Trimethylbenzene	74 ''J''	ug/m3	28.3	89.9	100	TO-15		9/7/2023	CJR	1
1,3,5-Trimethylbenzene	29.4 "J"	ug/m3	23.2	73.9	100	TO-15		9/7/2023	CJR	1
Vinyl acetate	< 20.3	ug/m3	20.3	64.5	100	TO-15		9/7/2023	CJR	1
Vinyl Chloride	2550	ug/m3	14.8	47.2	100	TO-15		9/7/2023	CJR	1
m&p-Xylene	48 "J"	ug/m3	37.7	120	100	TO-15		9/7/2023	CJR	1
o-Xylene	< 21.8	ug/m3	21.8	69.5	100	TO-15		9/7/2023	CJR	1

Project Name 5 Proiect #	505 GRAND	AVE, LITTLE	E CHUTE	E Invoice # E42880							
Lab Code Sample ID Sample Matrix Sample Date	5042880B VP-2 Air 9/5/2023	Result	Unit	LOD	100	Dil	Method	Ext Date	Run Date	Analyst	Codo
		Kesuit	Umt	LOD	LUQ	חח	Methou	Ext Date	Kull Date	Analyst	Coue
Organic											
Air Samples											
Acetone		580	ug/m3	29.9	95	100	TO-15		9/7/2023	CJR	1
Benzene		12.3	ug/m3	0.136	0.433	1	TO-15		9/7/2023	CJR	1
Benzyl Chloride		< 0.209	ug/m3	0.209	0.665	1	TO-15		9/7/2023	CJR	1
Bromodichlorometh	hane	< 0.374	ug/m3	0.374	1.19	1	TO-15		9/7/2023	CJR	1
Bromoform		< 0.414	ug/m3	0.414	1.32	1	TO-15		9/7/2023	CJR	1
Bromomethane		< 0.2	ug/m3	0.2	0.637	1	TO-15		9/7/2023	CJR	1
1,3-Butadiene		< 0.143	ug/m3	0.143	0.454	1	TO-15		9/7/2023	CJR	1
Carbon Disulfide		137	ug/m3	13.8	44	100	TO-15		9/7/2023	CJR	1
Carbon Tetrachlori	de	0.5 "J"	ug/m3	0.307	0.978	1	TO-15		9/7/2023	CJR	1
Chlorobenzene		0.32 "J"	ug/m3	0.251	0.798	1	TO-15		9/7/2023	CJR	1
Chloroethane		0.29 "J"	ug/m3	0.159	0.507	1	TO-15		9/7/2023	CJR	1
Chloroform		11	ug/m3	0.3	0.953	1	TO-15		9/7/2023	CJR	1
Chloromethane		< 0.831	ug/m3	0.831	2.64	1	TO-15		9/7/2023	CJR	1
Cyclohexane Dibromochloromet	hana	11.8 < 0.376	ug/m3	0.212 0.376	0.674	1	TO-15 TO-15		9/7/2023 9/7/2023	CJR	1 1
1,4-Dichlorobenzer		< 0.378	ug/m3 ug/m3	0.376	0.96	1	TO-15 TO-15		9/7/2023	CJR CJR	1
1,3-Dichlorobenzer		< 0.302	ug/m3	0.302	0.90	1	TO-15 TO-15		9/7/2023	CJR	1
1,2-Dichlorobenzer		< 0.302	ug/m3	0.235	0.749	1	TO-15		9/7/2023	CJR	1
Dichlorodifluorome		< 0.255	ug/m3	0.255	0.749	1	TO-15 TO-15		9/7/2023	CJR	1
1,2-Dichloroethane		< 0.24	ug/m3	0.203	0.763	1	TO-15		9/7/2023	CJR	1
1,1-Dichloroethane		0.32 "J"	ug/m3	0.187	0.596	1	TO-15 TO-15		9/7/2023	CJR	1
1,1-Dichloroethene		20	ug/m3	0.21	0.668	1	TO-15		9/7/2023	CJR	1
cis-1,2-Dichloroeth		3400	ug/m3	19.7	62.6	100	TO-15		9/7/2023	CJR	1
trans-1,2-Dichloroe		66	ug/m3	0.231	0.734	1	TO-15		9/7/2023	CJR	1
1,2-Dichloropropar		0.88 "J"	ug/m3	0.28	0.89	1	TO-15		9/7/2023	CJR	1
trans-1,3-Dichlorop		< 0.198	ug/m3	0.198	0.63	1	TO-15		9/7/2023	CJR	1
cis-1,3-Dichloropro	-	< 0.234	ug/m3	0.234	0.745	1	TO-15		9/7/2023	CJR	1
1,2-Dichlorotetraflu	-	< 0.446	ug/m3	0.446	1.42	1	TO-15		9/7/2023	CJR	1
1,4-Dioxane		< 0.157	ug/m3	0.157	0.5	1	TO-15		9/7/2023	CJR	1
EDB (1,2-Dibromo	ethane)	< 0.342	ug/m3	0.342	1.09	1	TO-15		9/7/2023	CJR	1
Ethanol		228	ug/m3	15.2	48.2	100	TO-15		9/7/2023	CJR	1
Ethyl Acetate		< 0.176	ug/m3	0.176	0.559	1	TO-15		9/7/2023	CJR	1
Ethylbenzene		32	ug/m3	0.203	0.645	1	TO-15		9/7/2023	CJR	1
4-Ethyltoluene		4.9	ug/m3	0.214	0.681	1	TO-15		9/7/2023	CJR	1
Heptane		28.5	ug/m3	0.265	0.845	1	TO-15		9/7/2023	CJR	1
Hexachlorobutadie	ne	< 0.489	ug/m3	0.489	1.56	1	TO-15		9/7/2023	CJR	1
Hexane		42	ug/m3	0.235	0.748	1	TO-15		9/7/2023	CJR	1
2-Hexanone		< 0.222	ug/m3	0.222	0.707	1	TO-15		9/7/2023	CJR	1
Isopropyl Alcohol		27.3	ug/m3	0.109	0.347	1	TO-15		9/7/2023	CJR	1
Methyl ethyl ketone	e (MEK)	33	ug/m3	0.178	0.567	1	TO-15		9/7/2023	CJR	1
Methyl isobutyl ket	one (MIBK)	31.1	ug/m3	0.168	0.536	1	TO-15		9/7/2023	CJR	1
Methyl Methacryla	te	1.11	ug/m3	0.217	0.69	1	TO-15		9/7/2023	CJR	1
Methylene chloride		59	ug/m3	0.159	0.506	1	TO-15		9/7/2023	CJR	1
Methyl tert-butyl et	her (MTBE)	4.6	ug/m3	0.16	0.509	1	TO-15		9/7/2023	CJR	1

Project Name 505 GRAND AVE, LITTLE CHUTE **Project #**

 Lab Code
 5042880B

 Sample ID
 VP-2

 Sample Matrix
 Air

 Sample Date
 9/5/2023

Sample Date 9/3	/2023										
	Result	Unit	LOD	LOQ	Dil	Method	Ext Date	Run Date	Analyst	Code	
Naphthalene	2.41	ug/m3	0.675	2.15	1	TO-15		9/7/2023	CJR	1	
Propene	< (0.079 ug/m3	0.079	0.251	1	TO-15		9/7/2023	CJR	1	
Styrene	20.5	ug/m3	0.181	0.577	1	TO-15		9/7/2023	CJR	1	
1,1,2,2-Tetrachloroethan	ie < (0.325 ug/m3	0.325	1.03	1	TO-15		9/7/2023	CJR	1	
Tetrachloroethene	6900	ug/m3	27.8	88.4	100	TO-15		9/7/2023	CJR	1	
Tetrahydrofuran	< ().131 ug/m3	0.131	0.417	1	TO-15		9/7/2023	CJR	1	
Toluene	83	ug/m3	0.184	0.585	1	TO-15		9/7/2023	CJR	1	
1,2,4-Trichlorobenzene	< ().657 ug/m3	0.657	2.09) 1	TO-15		9/7/2023	CJR	1	
1,1,1-Trichloroethane	0.38 "J"	ug/m3	0.249	0.793	1	TO-15		9/7/2023	CJR	1	
1,1,2-Trichloroethane	< (0.258 ug/m3	0.258	0.822	. 1	TO-15		9/7/2023	CJR	1	
Trichloroethene (TCE)	1140	ug/m3	23.7	75.4	100	TO-15		9/7/2023	CJR	1	
Trichlorofluoromethane	2.3	ug/m3	0.337	1.07	1	TO-15		9/7/2023	CJR	1	
Trichlorotrifluoroethane	0.84 "J"	ug/m3	0.402	1.28	1	TO-15		9/7/2023	CJR	1	
1,2,4-Trimethylbenzene	15.7	ug/m3	0.283	0.899) 1	TO-15		9/7/2023	CJR	1	
1,3,5-Trimethylbenzene	3.4	ug/m3	0.232	0.739) 1	TO-15		9/7/2023	CJR	1	
Vinyl acetate	< (0.203 ug/m3	0.203	0.645	1	TO-15		9/7/2023	CJR	1	
Vinyl Chloride	5.2	ug/m3	0.148	0.472	. 1	TO-15		9/7/2023	CJR	1	
m&p-Xylene	43	ug/m3	0.377	1.2	. 1	TO-15		9/7/2023	CJR	1	
o-Xylene	14.3	ug/m3	0.218	0.695	1	TO-15		9/7/2023	CJR	1	

Invoice # E42880

"J" Flag: Analyte detected between LOD and LOQ LOD Limit of Detection LOQ Limit of Quantitation Code Comment

1 Laboratory QC within limits.

All solid sample results reported on a dry weight basis unless otherwise indicated. All LOD's and LOQ's are adjusted for dilutions but not dry weight. Subcontracted results are denoted by SUB in the analyst field.

Authorized Signature

in

CHAIN OF STODY RECORD		S	Sva	erg	V	/				Chain # 52995										
Lab I.D. #			-						_				-				_			
QUOTE # :	E	nviro	nmei	ntal L	a	D,	L	L	C		v						ling I			2-Da
Project #:		1000 5		ergy-lab.net						-	(Ri	Husi	h Ai	cepto	SIS	L nly w	vith pr	Hequ ior au	ithoriza	3-DN ation)
Sampler: (signature)				 Appleton, V synergy@wi.t 								Norr								
	little Cl	1	WI	.,	1			sis	Rea	uest	ed					-		Othe	r Anal	vsis
Reports To: Dan. O Connell	Invoice To:		AME									Π				Τ				
Company Celler Cosporation	Company	ا د	1		1															
Address 1695 Bellevile St	Address		1										SOLIDS							
City State Zip Green Bay WI 54311	City State Zip		1		Sep 95)	p 95)					ENE			5)						
Phone 920 491 - 9081	Phone		1		O Sej	O Sep	ITE		6	110	THAI		NDE	24	15)	TR ST				
Email Dan. Oconnelle Ceder Corp. com	Email		7		DRO	d GR(NITR	EASE	827	OA AO	+ NAPHTHALENE		SUSPENDED	(EPA	(EFA 5250) AIR (TO - 15)	AETA				PID
Lab I.D. Sample I.D. Collectio		No. of Containers	Sample Type (Matrix)*	Preservation	DRO (Mod	GRO (Mod GRO	NITRATE/NITRITE	OIL & GREASE	PAH (EPA 8270)	PCB	PVOC + N	SULFATE	TOTAL SI	VOC DW (EPA 5	VOC AIR				1	FID
	108 N.		A	None		0.		0	۵.		- 0-	0	-	> >	×	< 00		-		++-
	102 N	i	A	None											×	٢				
					-		-			-	-		-	_	-	-		_		
					-	\vdash	+	-		+	+	+	+	+	+	-		-		
							_				-		_	_	-	-		_		
					-		+	-		+	+	+	+	-	+	+		-		
							+				1									
Commente/Coppiel Instructions (*Onesify groundwates */	Deinking V		N/	10A0A0 0-11 10	" A:		01	Clust												
VP-1 Start time 8:57, VP-2 Start time 935,	End time End time	908 ;	; stwf pr	pressure	2	, \$ 4Hz	jar j	Fille	pr.	essu	pre	2 35w	-Hy re	3	Hy					
Sample Integrity - To be completed by receiving la Method of Shipment:	100 A 10 100		ed By: (sign)	7	Tim [[2	ie	-	Date $S/2$	3			i By: (Time		Date
Temp. of Temp. Blank:°C On Ice: Cooler seal intact upon receipt: Xes No	0	Received	in Laboratory I	By: O.J.		~	_		1.		٦	Гime:	11	: 2	y		D	ate:	3/5	123