DATE: September 14, 2018 FILE REF: 02-16-297977

TO: John Hunt Remediation and Redevelopment (Project Manager)

Chris Saari Remediation and Redevelopment (Northern Region Supervisor)

Judy Fassbender Remediation and Redevelopment (Policy Section Chief)

Joseph Graham Office of Great Waters (Water Resource Management Specialist)

Cherie Hagen Office of Great Waters (Northern Region Supervisor)

Steve Galarneau Office of Great Waters (Director)

FROM: Scott Inman Remediation and Redevelopment (Sediment Engineer)

SUBJECT: Review Comments regarding Former Amoco Oil Barge Dock Issue Response Report

Site Name Former Amoco Terminal – Oil Barge Dock

BRRTs Site No. 02-16-297977

Upland Location 2904 Winter Street

Superior, Wisconsin

Waterbody Superior Bay, Lake Superior (WBIC 2751220)

Responsible Party BP Products North America, Inc.

201 Helios Way Houston, TX 77079

Responsible Party

Contact

unknown

Consultant Antea Group

5910 Rice Creek Parkway, Suite 100 Shoreview, MN 55126

Consultant

Contact

Wayne Hutchinson

Document Reviewed Issue Response Report

Superior Harbor Sediment Former Amoco Oil Barge Dock

Date Submitted November 17, 2017

Introduction

In a July 28, 2017 Closure Not Recommended Letter, we [the Department of Natural Resources (DNR)] requested that BP Products North America (BP) assess the potential for the Amoco Oil Barge Dock (Dock) to have contributed to the sediment contamination found in samples collected in the St. Louis Area of Concern by the *Mud Puppy II* in 2015. Although several core samples were collected, one sediment core [SW15-SLB03 (6-samples)] is pertinent because it was collected in the slip adjacent to the Dock, the others were not.

The Antea Group (Antea) responded to the request for BP by providing their 2017 *Issue Response Report*. For the Report, Antea performed various types of analysis to try to ascertain the source of sediment contamination. Antea performed the following:

- forensic analysis of the parent and alkylated polycyclic aromatic hydrocarbons (pPAH and aPAH) at SW15-SLB03
 - Enlisted Pace Analyatical Laboratory (Pace) to perform forensic analysis
- reviewed other BRRTs cases in the vicinity
- reviewed other properties in the vicinity
- reviewed concentrations of metals in coal data provided by USGS
- provided chemical composition of fuels that were distributed through the terminal
- reviewed historical Sanborn maps
- reviewed concentrations of metals, semivolatile organic compound (SVOC) and volatile organic compounds (VOC) chemistry to attempt to ascertain the source of the contamination

Based on their analysis, Antea concluded that the Dock was not a source and that there were several other sources to the sediment contamination. Antea therefore, requested a letter from us "confirming this harbor sediment issue is closed as it pertains to the Amoco Terminal Barge Dock."

I have reviewed the *Issue Response Report* and also performed analysis of the PAH results. I found Antea's conclusions and recommendations to be in direct contradiction to the information provided in the Report and my own conclusions. In particular, *section 4.2.1 PAH Assemblage Source Allocation* of the Report states that "definitive conclusions for whether or not coal or petroleum was the source could not be determined due to the limited hydrocarbon suite analysis."

My conclusion is that there may be multiple sources and pathways (surface and subsurface) to the sediment contamination in the slip, but we cannot dismiss the Dock based on the current information and analysis. Moreover, while it may not be "definitive" as to the exact percentage that the Dock contributed, the PAH forensic analysis is convincing that the Dock contributed to PAH contamination in the slip sediments. In addition, multiple lines of evidence, including the products that were transferred at the Dock (petroleum: gasoline, diesel, jet fuel, or crude oil) and the long operational history (1890-1993, 103 years), most of which was before environmental law, suggest that the products transferred at the Dock are the most likely sources. The plausible pathways include:

- From a tanker to the surface water
- A spill off the barge dock
- A break or leak in the above-ground pipeline, surface runoff to sediment

• A leak in the underground storage tank and a subsurface pathway to the sediment

Antea makes a good case that coal is the source of the arsenic (and plausible other metals) found in the sediments.

I, therefore, recommend the following:

- 1. Bureau of Remediation and Redevelopment (R&R):
 - a. Create a new Bureau for Remediation and Redevelopment Tracking Systems (BRRTS) case for the sediment in the slip.
 - b. Send Responsible Party letters to BP and the C. Reiss Coal Dock (for petroleum and coal, respectively).
 - c. Require BP to investigate adjacent (west and south of SW15-SLB03) to identify if a subsurface pathway exists at depth on their property associated with the gravel layer described on the core log for SW15-SLBO3
 - d. Request Murphy Oil (BRRTS NO. 03-16-000721) delineate the horizontal and vertical extent of their groundwater plume.

2. Office of Great Waters

- a. Concurrent with the R&R actions listed above, if possible, attempt to further the allocation discussion by collecting additional sediment cores and expanding the parameter list, as suggested by Pace, to include:
 - i. A detailed full scan GC/MS analysis
 - 1. Aliphatic hydrocarbons
 - ii. Microscopic analysis to detect any coal particles

PAH Forensic Analysis

I performed several analyses of the PAHs analytical results based on the methodology described in Stogiannidis and Laane's 2015 "Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities" (Stogiannidis and Laane, 2015). These analyses aid in the interpretation of the source of the PAHs. After performing said analysis, I agree with Antea's and Alan Jeffrey's (Pace) conclusions that SLB01, SLB02, SLB04, SLB05, and SLB06 of the SW15 series (which are not located in the slip adjacent to the Dock) are from a pyrogenic sources that are different from SLB03's source. Said locations are not discussed further. The results of my analyses of the six intervals for sediment core SLB03, the core location in the slip, are below:

SW15-SLB03 PAH results

1. aPAHs

- a. aPAH dominate the matrix in all six samples
- aPAHs range from 81-88% of the total PAH concentration based on 38 compounds (TPAH38)¹
- 2. Low molecular weight (LMW) PAHs
 - a. LMW PAHs dominate the matrix in all six samples
 - b. LMW PAHs range from 73-91% of TPAH38, the percentage increases with depth
- 3. Naphthalene Homologue Group
 - a. Naphthalenes are the most dominate PAH homologue group
 - b. Nathalenes (N0+N1+N2+N3+N4) account for 41-69% of the TPAH38; the percentage increases with depth
 - c. alkyl naphthalenes (N1+N2+N3+N4) account for 40-68% of the TPAH38; the percentage increases with depth.

4. Pattern

a. samples results exhibit a bell-shaped distribution pattern, an indication of a petrogenic source

5. Ring type

- a. 2-ring PAHs dominate the matrix in all six samples
- b. 2-ring PAHs range from 46-79% of TPAH38, the percentage increases with depth
- c. 6-ring PAHs account for only 1% of the TPAH38
- 6. Perylene content: Concentrations of perylene range from 0.6 to 1.4 ppm and are less than 0.7% of TPAH38
- 7. Samples contained ppm levels of benzene and xylene
- 8. TPAHs with MW > 202
 - a. Concentrations ranged from 21-61 ppm which is 13% to 33% of TPAH38, respectively; the percentage decreases with depth

PAH Forensic Interpretation

Relative to Bullets 1-8

The bullets above cannot rule out the Dock as a source. Moreover, these results suggest that products transferred at the Dock are the main source of PAH contamination at SLB03 because:

- Crude oils contain primarily the alkyl homologs of aromatic compounds and relatively small quantities of the unsubstituted "parent" aromatic structures. (NPS, 1997)
 - Consistent with Bullet 1, aPAHs dominated the matrix, ranging from 81-88% of the TPAH38
- Petroleum products contain mainly two- three-ringed PAHs (Stogiannidis and Laane, 2015);
 - Consistent with Bullet 2, LMW (two- three-ringed PAHs) account for 73 -91% of the TPAH38²

¹ Assuming ND = 1 RL. Analysis of ND treatment shows that NDs are 4% of the total or less, the exception being the 6-8 ft sample, that was 6%. Less than 15% is acceptable and will not affect the conclusions in this memorandum.

² Unless otherwise indicated, all results are from SW15-SLB03.

- The higher the coal rank, the more dominant the LMW compounds are over the HMW compounds (petrogenic characteristic). In higher coal ranks, the bell-shaped profile shifts to a pyrogenic-like skewed pattern that is dominated by parent PAHs. (Stogiannidis and Laane, 2015).
 - Although SW15-SLB03 is dominated by LMW PAHs (Bullet 2), the samples are also dominated by aPAHs (Bullet 1) not pPAHs. Suggesting that high coal ranks do not fit the data.
- Many crude oils are dominated by alkyl naphthalenes (Stogiannidis and Laane, 2015)
 - Consistent with Bullet 3, alkyl naphthalenes are the dominating PAHs, accounting for 40 – 68% of TPAH38
- Consistent with Bullet 4 and the attached graphs, the PAHs exhibit a bell-shaped pattern consistent with a Petrogenic source.
- Diesel PAHs are largely comprised of 2-3-ring PAHs and their alkylated homologues (Stogiannidis and Laane, 2015)
 - Consistent with Bullet 5, 2-3 ring alkylated homologous account for 63 79% of TPAH38.
- The PAH distribution patterns in coals are a function of coal rank. Lower rank coals such as lignite and sub-bituminous coal may contain significant amounts of perylene (Stogiannidis and Laane, 2015).
 - Consistent with Bullet 6, SW15-SLB03 contains low perylene concentrations, suggesting that if coal were present, it would be a higher rank, not low rank.
- Neither high nor low rank coal PAH distribution patterns are exhibited by the data, supported by Bullets 1, 5, and 6.
- Of the five target alkylated PAH series of diesel, the most abundant (>55%) is alkylated naphthalene and the least abundant (<0.02%) is chrysene; thus, the absence of chrysene can be used to identify diesel or diesel soot (Wang et al. 1999a, 2001)
 - Consistent with Bullet 3, alkyl naphthalenes account for 40 68% of TPAH38.
 - Alkylated chrysene accounts for 3-9% of TPAH38, higher than 0.02%. However, alkylated chrysene (C1+C2+C3+C4) ranged from 4.2-11.9 ppm, averaging 7 ppm, compared to a range of 0.4-5.4 ppm and averaged 1.9 ppm for SLB02 and SLB05. Thus, the ranges for chrysene overlapped, even though the TPAH38 concentration was up to 25x higher in LB03.
- LMW, 2-ringed PAHs and VOCs (benzenes) are generally not found in sediments. These compounds generally volatilize or dissolve in water. Consistent with Bullet 7, their presence in the solid phase suggests that an oil or another compound is trapping and altering their behavior, preventing these compounds from behaving as they normally would.
- PAHs having a MW greater than that of pyrene (202) are hardly present in light distillates such as jet B fuel or gasoline (Stogiannidis and Laane, 2015);
 - Consistent with bullet 8, PAHs with MWs weights greater than 202 are 13% to 33% of TPAH38; the percentage decreases with depth.

Addition Interpretation

- Weathering: The increase in naphthalene and LMW PAHs with depth is an indication of weathering at the surface and less with depth
- Diagnostic Ratios: There is a difference in the Phenanthrene / Anthracene (P/A) ratio of the samples at depth (6-8 ft and 8–10 ft) and the other four sampls. The P/A drops from 10.8 to 1.9 in proximity to the gravel layer. This could suggest multiple pathways of contamination (surface and subsurface).
- Petrogenic source:
 - a. The fraction of pyrogenic PAHs ((FI0 + PY0) / (PA2 + PA3 + PA4)) and the Pyrogenic Index (Σ (3-6 ring EPAPP)/(Σ 5 alkylated PAHS) 7-22% and indicate a petrogenic source
 - b. "The distributions of the PAHs in the SW15-SLB03 sediment indicated unequivocally that their source is a thermogenic product, rather than the pyrogenic products in SW15-SLB02 and SW15-SLB05" Allan Jeffrey, Pace, Appendix F.

Other Evidence:

- 1. The Dock was used to transport petroleum products that are most likely to have contaminated the sediment consistent with the forensic analysis. Appendix I includes analytical results of Gasoline Grades Produce Product Code 9, 10, 11. The product results indicate naphthalene concentrations of 2,690-5,080 ppm and 2-Methylnaphthalene concentrations of 963 to 4,105 ppm, sufficient concentrations to contaminate the sediments with found levels of LMW PAHs. Stated differently, the products transported at the Dock are consistent with the contamination found in the sediments at SW15-SLB03.
- 2. Appendix G Indicates a product "Jet Naptha" which is consistent with naphthlenes being the dominant homologue group.
- 3. Appendix F Figure 6, shows the distribution of coal and crude oil. Concentrations in SW15-SLB03 are higher for naphthalenes (N0-N4, up to 85 ppm) than the concentration in coal in Figure 6, which is up to 75 ppm. One would expect a higher concentration in the source material than found in the environment after dilution and dispersion.

Conclusions & Responses:

Antea's conclusions are restated, and then responses are offered.

Antea Conclusion 1:

Any residual soil or groundwater contamination related to the Amoco Barge Dock near sediment sample SW15-SLB03 has been identified and/or removed during the October 2002 delineation and excavation. Sidewall soil samples collected around the excavation area performed in October 2002 indicated no PVOC contaminant levels that exceeded NR 720 RCL or NR 746 Soil Screening Levels. Two rounds of groundwater sampling performed in the area of the excavation in November 2002 and April 2003 indicated no contaminant levels that exceeded NR 140 ES Standards.

Response 1:

The soil sample results after tank removal (Figure 5) support this conclusion. However, without containment, is like likely that there would be a subsurface pathway from the Dock to the sediments. The core log for SW15-SLB03 (attached) found a thin gravel layer on top of a clay confining layer at 9.2 ft. The core log called out "potential coal/coke" and a very strong chemical odor in the description for the gravel layer. Also, the presence of the contamination in the slip confirms that the site was not fully investigated.

Antea Conclusion 2:

The Murphy Oil Marine Terminal Tank #2 open LUST investigation (BRRTS #03-16-000721) is located upgradient of sediment sample site SW15-SLB03. The concentrations of PVOCs at the site greatly exceed the NR 720 RCL, and are a potential source for the results found in the sediment sample.

Response 2:

Antea also asserts that the Murphy Oil Marine Terminal Tank #2 (BRRTS NO. 03-16-000721) groundwater plume (MW-1 through MW-6) "is not delineated vertically or horizontally.....and this source may have been a contributor to the PVOCs found in the sediment sample in SW15-SLB03."

The concentrations of naphthalene in groundwater were indicated as 113, and 191 ppb in MW2, and MW-4, respectively. Although the referenced concentrations are in groundwater, the soil concentrations did not exceed NR 720 soil to groundwater pathway residual contaminate level of 658 ppb in either MW-2 or MW-4. The maximum concentration Antea indicated in the *Issue Response Report* was 398 ppb. It is unlikley to me that a low concentration dissolved phase plume would be the source of high solid phase concentrations in the sediment some distance away.

Conclusion 3:

After analysis of PAH ratios and concentration distributions, including independent expert analysis, it can be concluded that the sediment contamination found in SW15-SLB03 originates from a thermogenic (petrogenic) source, suggestive of coal. Sediment samples SW15-SLB01, SW15-SLB02, SW15-SLB04, SW15-SLB05, and SW15-SLB06 have PAH ratios that suggest pyrogenic sources-

Response 3:

The conclusion contradicts the text that "definitive conclusions for whether or not coal or petroleum was the source could not be determined due to the limited hydrocarbon suite analysis." I disagree that it is definitively coal, most of the evidence in this memorandum suggests that petroleum from the Barge Dock could have contributed and is likely the main source.

Conclusion 3:

Heavy metals contained in SW15-SLB03 are representative of coal compounds and do not resemble the contents of any gasoline, diesel, or other distillates that were historically shipped to the Amoco Barge Dock slip. Docks across the bay from the sediment sample location have been shipping iron ore or taconite pellets from 1893 up to the present day. These industrial shipping areas are a suspected source for the high levels of iron found in the sediment.

Response 3:

No disagreement.

Conclusion 4

The SVOC dibenzofuran detected in the sediment samples has been identified by the US EPA as relating to coal/coke sources.

Response:

Dibenzofuran is not a primary contaminant of concern, four of the six samples at SW15-SLB03 were non-detect. This is an insignificant contaminant compared to the metals, PAHs, and VOCs.

References

Eirwin et. all. National Park Service. 1997 (NPS, 1997). Environmental Contaminants Encyclopedia Entry on Alkyl PAHS (Alkyl Homogos of PAHS).

Efstahios Stogiannidis and Remi Laane. 2015. (Stogiannidis and Laane, 2015). Source Characterization of Polycyclic Aromatic Hydrocarbons by Using Their Molecular Indices: An Overview of Possibilities. University Amerstam, The Netherlands.

Wang Z, Fingas M, (Wang et al, 1999) Page DS (1999a) Oil Spill identification. J. Chromatogr A. 846:369-411.

Attachments

SW15-SLB03 Core Log SW15-SLB03 PAH Calculations SW15-SB03 Graphs

SEDIMENT BORING SW15-SLB03

RILLING CONTRACTOR Cetacean Marine RILLING METHOD Vibracore DGGED BY H. Williams						ELEVATION 592.3 ft (NAVD 88) (Sediment Surface) WATER DEPTH 10.5 ft				
MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR ANALYSIS (Sample ID at sample depth)	GRAPHICLOG	USCS CLASS	MATERIAL DESCRIPTION				
_	18	Composite	SW15-SLB03-0520							
-	24	Composite	SW15-SLB03-2040		SM	SILT & SAND: black/ dark grey, f grained sand, trace m grained sand, low plasticity, cohesive, moist, trace rootlets and small wood pieces throughout, strong hydrocarbon/ chemical odor, large branch (@6.75-7'), slight sheen				
	24	Composite	SW15-SLB03-4060							
_	24	Composite	SW15-SLB03-6080			SILT & SAND: black/ dark grey, f grained sand, trace				
_	24	Composite	SW15-SLB03-8010		SC-SM	m grained sand, trace clay, medium plasticity, very cohesive, moist, trace rootlets and small wood pieces throughout, strong hydrocarbon/ chemical odor, large branch (@6.75-7'), slight sheen				
o —					CL-ML	GRAVEL: black, f-c grained, very strong chemical odor, potentiall coal/coke, slight sheen SILTY CLAY: black/ dark brown, some vf grained				

SEDIMENT LOG SUPERIOR WATERFRONT.GPJ 11/12/15

SEDIMENT BORING SW15-SLB03

DATE DATE	COLLE	ECTED_ ED_ 7/9/	7/9/2015 2015 3:35:00 PM CTOR Cetacean Marine		LOC NOR EAS	OVERY 100% ATION Superior, WI RTHING* 5176498.19 TING* 567208.87	
		ETHOD_ H. Will	Vibracore iams		(Sed	VATION 592.3 ft (NAVD 88) liment Surface) ER DEPTH 10.5 ft	
DEPTH BELOW MUDLINE (ft)	SAMPLE INTERVAL (inches)	SAMPLE TYPE	SAMPLE SUBMITTED FOR ANALYSIS (Sample ID at sample depth)	GRAPHICLOG	USCS CLASS	MATERIAL DESCRIPTION	Depth (ft)
-10						sand, medium plasticity, cohesive, moist, trace rootlers, strong chemical odor, slight sheen	
-11 -						End of Boring at 1.75 ft.	
-12 –							
-13 –							
-14 –							
-15 —							
-16 -							
-17 –							
-18 -							
-19 –							
-20 —							
NOTE		NAD83 UTI	VI 15N (meters)				

PAGE 2 of 2

Table 1 - SW15-SLB03 PAH Analysis

						SW15	-SLB03			
PAH					Depth Inter	epth Interval (ft) and Concentration (μg/kg)				
Full Name	Shorthand	# rings	MW	0-0.5	0.5-2.0	2.0-4.0	4.0-6.0	6.0-8.0	8.0-10.0	а
1-Methylnapthalene	1M	2	142	1,500	9,400	13,000	16,000	7,500	12,000	
2-Methylnapthalene	2M	2	142	1,700	4,700	7,300	7,900	4,700	9,500	
Napthalene	N0	2	128	620	1,800	3,100	2,600	1,400	1,700	
C1-Napthalenes	N1	2	142	2,200	9,100	13,000	15,000	8,000	14,000	
C2-Napthalenes	N2	2	156	9,200	65,000	61,000	85,000	44,000	58,000	
C3-Napthalenes	N3	2	170	9,700	79,000	67,000	80,000	39,000	41,000	
C4-Napthalenes	N4	2	184	4,200	36,000	29,000	30,000	14,000	12,000	
Flourene	F0	3	166	290	1,200	1,100	1,100	510	670	
C1-Flourenes	F1	3	180	650	3,100	2,200	1,700	1,100	1,000	
C2-Flourenes	F2	3	194	1,500	4,700	3,800	2,600	1,700	1,100	
C3-Flourenes	F3	3	208	1,100	4,100	3,600	2,700	1,800	1,100	
Acenapthylene	AY	3	152	37	210	1300	420	440	270	
Acenaphthlene	AE	3	154	130	740	750	810	330	710	
Anthracene	A0	3	178	130	700	760	360	1,100	1,000	
Phenanthrene	P0	3	178	1,000	5,500	5,500	3,900	2,100	1,500	
1-Phenanthrenes/Anthracenes	PA1	3	192	2,900	12,000	10,000	6,700	4,100	2,700	
2-Phenanthrenes/Anthracenes	PA2	3	206	3,000	13,000	11,000	7,300	4,600	3,300	
3-Phenanthrenes/Anthracenes	PA3	3	220	2,800	12,000	10,000	8,100	5,300	4,600	
4-Phenanthrenes/Anthracenes	PA4	3	234	2,300	5,300	5,400	4,600	3,000	3,000	
Flouranthene	FLO	3	166	840	1,600	2,600	1,700	760	1,000	
Pyrene	PY0	4	202	840	2,700	3,100	1,900	940	1,100	
C1-Flouranthrenes/Pyrenes	FP1	4	180	2,200	5,300	6,100	3,900	2,000	2,200	
C2-Flouranthrenes/Pyrenes	FP2	4	194	2,300	5,400	5,800	3,700	1,900	2,100	
C3-Flouranthrenes/Pyrenes	FP3	4	208	1,700	4,200	4,400	2,900	1,500	1,700	
Benzo(a)anthracene	BaA	4	228	560	1,300	1,600	1,000	480	590	
Chrysene	C0	4	228	640	1,700	2,000	1,200	640	730	
C1-Chrysenes	C1	4	242	1,100	3,000	2,800	1,600	1,100	1,000	
C2-Chrysenes	C2	4	256	2,000	4,700	3,900	2,200	1,100	1,200	
C3-Chrysenes	С3	4	270	1,300	2,700	1,900	1,400	1,100	1,000	
C4-Chrysenes	C4	4	284	730	1,500	1,700	1,400	1,100	1,000	
Perylene	PER	5	252	270	600	1,300	1,400	1,100	1,000	
Benzo(b)fluoranthene	BbF	5	252	570	1300	1600	1100	500	730	
Benzo(a)pyrene	BaP	5	252	610	1200	1100	650	310	500	
Benzo(e)pyrene	BeP	5	252	670	1,700	1,800	1,400	1,100	1,000	
Benzo(k)flouranthene	BkF	5	252	420	300	420	320	160	250	
Dibenzo(a,h)anthracene	DA	5	278	170	230	260	1,400	1,100	1,000	
Indeno(1,2,3-cd)pyrene	IP	6	276	310	480	700	410	1,100	270	
Benzo(g,h,i)perylene	ghi	6	276	500	1200	1500	810	360	410	

Reported Totals with ND = 1/2 RL											
TPAH17	9,367	26,860	34,040	26,880	15,280	20,930	22,226				
TPAH	63,000	290,000	270,000	280,000	150,000	160,000	202,167				
Count of ND											
TPAH16	0	0	1	1	3	2	1.2				
TPAH17	0	0	1	1	3	2	1.2				
TPAH18	0	0	1	2	4	3	1.7				
TPAH34	0	0	1	3	7	6	2.8				
TPAH35	0	0	1	4	8	7	3.3				
TPAH38	0	1	2	5	9	8	4.2				

>PEC

> TEC

> MEC

Sample max

TPAH16	0	0	1,300	1,400	3,300	2,000	1,333
TPAH17	0	0	1,300	1,400	3,300	2,000	1,333
TPAH18	0	0	1,300	2,800	4,400	3,000	1,917
TPAH34	0	0	1,300	4,200	7,700	6,000	3,200
TPAH35	0	0	1,300	5,600	8,800	7,000	3,783
TPAH38	0	600	2,600	7,000	9,900	8,000	4,683
		Calculate	ed Totals wi	th ND = RL			Average
TPAH16	7,667	22,160	27,390	19,680	12,230	12,430	16,926
TPAH17	9,367	26,860	34,690	27,580	16,930	21,930	22,893
TPAH18	10,037	28,560	36,490	28,980	18,030	22,930	24,171
TPAH34	58,547	292,260	269,990	280,480	148,630	164,430	202,390
TPAH35	59,217	293,960	271,790	281,880	149,730	165,430	203,668
TPAH38	62,687	308,660	293,390	307,180	163,030	187,930	220,480
TD 444 6			Totals with			44.400	Average
TPAH16	7,667	22,160	26,740	18,980	10,580	11,430	16,260
TPAH17	9,367	26,860	34,040	26,880	15,280	20,930	22,226
TPAH18	10,037	28,560	35,840	27,580	15,830	21,430	23,213
TPAH34	58,547	292,260	269,340	278,380	144,780	161,430	200,790
TPAH35	59,217	293,960	271,140	279,080	145,330	161,930	201,776
TPAH38	62,687	308,360	292,090	303,680	158,080	183,930	218,138
		Calculat	ed Totals w	th ND = 0			Average
TPAH16	7,667	22,160	26,090	18,280	8,930	10,430	15,593
TPAH17	9,367	26,860	33,390	26,180	13,630	19,930	21,560
TPAH18	10,037	28,560	35,190	26,180	13,630	19,930	22,255
TPAH34	58,547	292,260	268,690	276,280	140,930	158,430	199,190
TPAH35	59,217	293,960	270,490	276,280	140,930	158,430	199,885
TPAH38	62,687	308,060	290,790	300,180	153,130	179,930	215,796
		ND % c	of Total with	ND = RL			Average
TPAH16	0%	ND % 0	of Total with 5%	ND = RL 7%	27%	16%	Average 9%
TPAH16 TPAH17	0% 0%				27% 19%	16% 9%	
		0%	5%	7%			9%
TPAH17	0% 0% 0%	0% 0%	5% 4%	7% 5% 10% 1%	19%	9%	9% 6% 8% 2%
TPAH17 TPAH18 TPAH34 TPAH35	0% 0% 0% 0%	0% 0% 0% 0% 0%	5% 4% 4% 0% 0%	7% 5% 10% 1% 2%	19% 24% 5% 6%	9% 13% 4% 4%	9% 6% 8% 2% 2%
TPAH17 TPAH18 TPAH34	0% 0% 0%	0% 0% 0% 0%	5% 4% 4% 0%	7% 5% 10% 1%	19% 24% 5%	9% 13% 4%	9% 6% 8% 2%
TPAH17 TPAH18 TPAH34 TPAH35	0% 0% 0% 0%	0% 0% 0% 0% 0% 0%	5% 4% 4% 0% 0% 1%	7% 5% 10% 1% 2% 2%	19% 24% 5% 6%	9% 13% 4% 4%	9% 6% 8% 2% 2% 2%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38	0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0%	5% 4% 4% 0% 0% 1%	7% 5% 10% 1% 2% 2%	19% 24% 5% 6% 6%	9% 13% 4% 4% 4%	9% 6% 8% 2% 2% 2%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38	0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% ND % of	5% 4% 4% 0% 0% 1% Total with N	7% 5% 10% 1% 2% 2% D = 1/2 RL 4%	19% 24% 5% 6% 6%	9% 13% 4% 4% 4%	9% 6% 8% 2% 2% 2% Average 5%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38	0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% ND % of 0%	5% 4% 4% 0% 0% 1% Total with N 2% 2%	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3%	19% 24% 5% 6% 6% 16% 11%	9% 13% 4% 4% 4% 9% 5%	9% 6% 8% 2% 2% 2% Average 5% 3%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18	0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% ND % of 0% 0%	5% 4% 4% 0% 0% 1% Total with N 2% 2% 2%	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5%	19% 24% 5% 6% 6% 16% 11% 14%	9% 13% 4% 4% 4% 9% 5% 7%	9% 6% 8% 2% 2% 2% Average 5% 3% 5%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34	0% 0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% ND % of 0% 0%	5% 4% 4% 0% 0% 1% Total with N 2% 2% 0%	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1%	19% 24% 5% 6% 6% 16% 11% 14% 3%	9% 13% 4% 4% 4% 5% 7% 2%	9% 6% 8% 2% 2% 2% Average 5% 3% 5% 1%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35	0% 0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% 0% ND % of 0% 0% 0%	5% 4% 4% 0% 0% 1% Total with N 2% 2% 0% 0%	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1%	19% 24% 5% 6% 6% 16% 11% 14% 3% 3%	9% 13% 4% 4% 4% 9% 5% 7% 2% 2%	9% 6% 8% 2% 2% 2% Average 5% 3% 5% 1%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34	0% 0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% ND % of 0% 0%	5% 4% 4% 0% 0% 1% Total with N 2% 2% 0%	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1%	19% 24% 5% 6% 6% 16% 11% 14% 3%	9% 13% 4% 4% 4% 5% 7% 2%	9% 6% 8% 2% 2% 2% Average 5% 3% 5% 1%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38	0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% 0% ND % of 0% 0% 0%	5% 4% 4% 0% 0% 1% Total with N 2% 2% 2% 0% 0%	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1%	19% 24% 5% 6% 6% 16% 11% 14% 3% 3% 3%	9% 13% 4% 4% 4% 9% 5% 7% 2% 2%	9% 6% 8% 2% 2% 2% Average 5% 3% 5% 1% 1%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38	0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% ND % of 0% 0% 0% 0%	5% 4% 4% 0% 0% 1% Total with N 2% 2% 2% 0% 0%	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1% 1% with ND =	19% 24% 5% 6% 6% 16% 11% 14% 3% 3% 3%	9% 13% 4% 4% 4% 9% 5% 7% 2% 2%	9% 6% 8% 2% 2% 2% Average 5% 3% 5% 1%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38	0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% ND % of 0% 0% 0% 0%	5% 4% 4% 0% 0% 1% Total with N 2% 2% 2% 0% 0% 0%	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1% 1% with ND =	19% 24% 5% 6% 6% 16% 11% 14% 3% 3% 3%	9% 13% 4% 4% 4% 9% 5% 7% 2% 2%	9% 6% 8% 2% 2% 2% Average 5% 3% 5% 1% 1%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 Concent	0% 0% 0% 0% 0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% ND % of 0% 0% 0% 0%	5% 4% 4% 0% 0% 1% Total with N 2% 2% 2% 0% 0% 0% 4 of Rings AHs Report	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1% 1% with ND =	19% 24% 5% 6% 6% 11% 14% 3% 3% 3%	9% 13% 4% 4% 4% 9% 5% 7% 2% 2% ing all 38	9% 6% 8% 2% 2% 2% 2% 5% 3% 5% 1% 1%
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38	0% 0% 0% 0% 0% 0% 0% 0% 0% 0%	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0	5% 4% 4% 0% 0% 1% Total with N 2% 2% 2% 0% 0% 0% # of Rings AHs Report 193,400	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1% 1% 2 with ND = ted 236,500 41,990 21,200	19% 24% 5% 6% 6% 16% 11% 14% 3% 3% 3 1 RL includ 118,600 26,840 11,860	9% 13% 4% 4% 4% 9% 5% 7% 2% 2% ing all 38	9% 6% 8% 2% 2% 2% 2% Average 5% 3% 5% 1% 1% 1% Average 155,137
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 Concent	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 16,677 13,370 2,710	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0	5% 4% 4% 0% 0% 1% Total with N 2% 2% 0% 0% 0% 0% 4 of Rings AHs Report 193,400 58,010 33,300 6,480	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1% 1% with ND = ted 236,500 41,990	19% 24% 5% 6% 6% 16% 11% 14% 3% 3% 3% 1 RL includ 118,600 26,840	9% 13% 4% 4% 4% 9% 5% 7% 2% 2% 2% ing all 38 148,200 21,950 12,620 4,480	9% 6% 8% 2% 2% 2% Average 5% 3% 1% 1% 1% Average 155,137 38,270 20,808 4,923
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 Concent	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 29,120 16,677 13,370	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0	5% 4% 4% 0% 0% 1% Total with N 2% 2% 0% 0% 0% 0% 4 of Rings AHs Report 193,400 58,010 33,300	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1% 1% 2 with ND = ted 236,500 41,990 21,200	19% 24% 5% 6% 6% 16% 11% 14% 3% 3% 3 1 RL includ 118,600 26,840 11,860	9% 13% 4% 4% 4% 9% 5% 7% 2% 2% 2% ing all 38 148,200 21,950 12,620	9% 6% 8% 2% 2% 2% Average 5% 3% 5% 1% 1% 1% Average 155,137 38,270 20,808
TPAH17 TPAH18 TPAH34 TPAH35 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 Concent	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 29,120 16,677 13,370 2,710 810	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0	5% 4% 4% 0% 0% 1% Total with N 2% 2% 2% 0% 0% 0% # of Rings AHs Report 193,400 58,010 33,300 6,480 2,200	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1% 1% with ND = ted 236,500 41,990 21,200 6,270 1,220	19% 24% 5% 6% 6% 16% 11% 14% 3% 3% 3% 1 RL includ 118,600 26,840 11,860 4,270 1,460	9% 13% 4% 4% 4% 9% 5% 7% 2% 2% 2% ing all 38 148,200 21,950 12,620 4,480 680	9% 6% 8% 2% 2% 2% Average 5% 3% 1% 1% 1% Average 155,137 38,270 20,808 4,923
TPAH17 TPAH18 TPAH34 TPAH35 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 Concent	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 29,120 16,677 13,370 2,710 810	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0	5% 4% 4% 0% 0% 1% Total with N 2% 2% 2% 0% 0% 0% 0% ## of Rings AHs Report 193,400 58,010 33,300 6,480 2,200	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1% 1% 236,500 41,990 21,200 6,270 1,220 = 1 RL inclu	19% 24% 5% 6% 6% 16% 11% 14% 3% 3% 3% 1 RL includ 118,600 26,840 11,860 4,270 1,460	9% 13% 4% 4% 4% 9% 5% 7% 2% 2% 2% ing all 38 148,200 21,950 12,620 4,480 680	9% 6% 8% 2% 2% 2% Average 5% 3% 1% 1% 1% Average 155,137 38,270 20,808 4,923
TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 Concent 2 3 4 5 6	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 10,677 13,370 2,710 810 eakdown	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0	5% 4% 4% 0% 0% 1% Total with N 2% 2% 2% 0% 0% 0% 0% ## of Rings AHs Report 193,400 58,010 33,300 6,480 2,200 gs with ND Reported	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1% 1% with ND = ted 236,500 41,990 21,200 6,270 1,220 = 1 RL inclu	19% 24% 5% 6% 6% 16% 11% 14% 3% 3% 3% 1 RL includ 118,600 26,840 11,860 4,270 1,460	9% 13% 4% 4% 4% 9% 5% 7% 2% 2% 2% ing all 38 148,200 21,950 12,620 4,480 680 PAHs	9% 6% 8% 2% 2% 2% Average 5% 3% 5% 1% 1% 1% Average 155,137 38,270 20,808 4,923 1,342 Average
TPAH17 TPAH18 TPAH34 TPAH35 TPAH16 TPAH17 TPAH18 TPAH34 TPAH35 TPAH38 Concent	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 29,120 16,677 13,370 2,710 810	0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0	5% 4% 4% 0% 0% 1% Total with N 2% 2% 2% 0% 0% 0% 0% ## of Rings AHs Report 193,400 58,010 33,300 6,480 2,200	7% 5% 10% 1% 2% 2% D = 1/2 RL 4% 3% 5% 1% 1% 1% 236,500 41,990 21,200 6,270 1,220 = 1 RL inclu	19% 24% 5% 6% 6% 16% 11% 14% 3% 3% 3% 1 RL includ 118,600 26,840 11,860 4,270 1,460	9% 13% 4% 4% 4% 9% 5% 7% 2% 2% 2% ing all 38 148,200 21,950 12,620 4,480 680	9% 6% 8% 2% 2% 2% Average 5% 3% 5% 1% 1% 1% Average 155,137 38,270 20,808 4,923 1,342

4

5

6

21%

4%

1%

11%

2%

1%

11%

2%

1%

7%

2%

0%

7%

3%

1%

7%

2%

0%

11%

3%

1%

	with NI	D= 1 RL in	cluding all	38 PAHs Re	ported			Average
Low Molecular Weight PAHs (3 or less	rings)	45,797	269,150	251,410	278,490	145,440	170,150	193,406
High Molecular Weight PAHs (4 or more	rings)	16,890	39,510	41,980	28,690	17,590	17,780	27,073
LN	MW	73%	87%	86%	91%	89%	91%	86%
Н	MW	27%	13%	14%	9%	11%	9%	14%
Concentration by	рац ц	amalagu	o Group wit	th ND = 1 D	1			Average
Concentration by Nathalenes (N0+N1+N2+N3		25,920	190,900		212,600	106 400	126,700	Average
Flourenes (F0+F1+F		3,540	•	173,100 10,700		106,400 5,110	3,870	139,270
Phenanthrenes/Anthracenes (A0+P0+PA1+PA2+PA3-	•	•	13,100	•	8,100	•	•	7,403
Flouranthrenes/Pyrenes (FL0+PY0+FP1+FP2		12,130	48,500	42,660	30,960	20,200	16,100	28,425
• • •		7,880	19,200	22,000	14,100	7,100	8,100	13,063
Chrysenes (C0+C1+C2+C	3+C4)	5,770	13,600	12,300	7,800	5,040	4,930	8,240
% of PAH Homologue (Group	to TPAH3	8 with ND =	= 1 RL				Average
Nathalenes (N0+N1+N2+N3	3+N4)	41%	62%	59%	69%	65%	67%	61%
Flourenes (F0+F1+F	:2+F3)	6%	4%	4%	3%	3%	2%	4%
Phenanthrenes/Anthracenes (A0+P0+PA1+PA2+PA3-	+PA4)	19%	16%	15%	10%	12%	9%	13%
Flouranthrenes/Pyrenes (FLO+PYO+FP1+FP2		13%	6%	7%	5%	4%	4%	7%
Chrysenes (C0+C1+C2+C	3+C4)	9%	4%	4%	3%	3%	3%	4%
aPAH by Homolo		roup with	ND = 1 RL					Average
Nathalenes (N1+N2+N3	3+N4)	25,300	189,100	170,000	210,000	105,000	125,000	137,400
Flourenes (F1+F	2+F3)	3,250	11,900	9,600	7,000	4,600	3,200	6,592
Phenanthrenes/Anthracenes (PA1+PA2+PA3-	+PA4)	11,000	42,300	36,400	26,700	17,000	13,600	24,500
Flouranthrenes/Pyrenes (FP1+FP2	:+FP3)	6,200	14,900	16,300	10,500	5,400	6,000	9,883
Chrysenes (C1+C2+C	3+C4)	5,130	11,900	10,300	6,600	4,400	4,200	7,088
aP	PAH38	50,880	270,100	242,600	260,800	136,400	152,000	185,463
%	6aPAH	81%	88%	83%	85%	84%	81%	83%
aPAH by Homolo	ogue Gr	roup with	ND = 1 RL					Average
Nathalenes (N1+N2+N3		40%	61%	58%	68%	64%	67%	60%
Flourenes (F1+F		5%	4%	3%	2%	3%	2%	3%
Phenanthrenes/Anthracenes (PA1+PA2+PA3+		18%	14%	12%	9%	10%	7%	12%
Flouranthrenes/Pyrenes (FP1+FP2		10%	5%	6%	3%	3%	3%	5%
Chrysenes (C1+C2+C	,	8%	4%	4%	2%	3%	2%	4%
CITY SCITES (CITCE) C.								
City yacites (CT+CZ+C								
				ed Diagnos				
P0 / A0		7.7	7.9	7.2	10.8	1.9	1.5	
P0 / A0 F10 / PYC	0	1.0	7.9 0.6	7.2 0.8	10.8 0.9	0.8	0.9	
PO / AO FIO / PYC BaA / CC	0 0		7.9 0.6 0.76	7.2 0.8 0.80	10.8 0.9 0.83	0.8 0.75	0.9 0.81	
P0 / A0 F10 / PYC	0 0	1.0	7.9 0.6 0.76 14%	7.2 0.8 0.80 22%	10.8 0.9 0.83 18%	0.8 0.75 13%	0.9	l
PO / AO FIO / PYC BaA / CC	0 0 + PA ₄)	1.0 0.88	7.9 0.6 0.76	7.2 0.8 0.80	10.8 0.9 0.83	0.8 0.75	0.9 0.81	l
P0 / A0 FI0 / PY0 BaA / C0 (FI0 + PY0) / (PA ₂ + PA ₃ +	0 0 + PA ₄)	1.0 0.88 21%	7.9 0.6 0.76 14%	7.2 0.8 0.80 22% 10%	10.8 0.9 0.83 18% 7%	0.8 0.75 13%	0.9 0.81 19%	
P0 / A0 Fl0 / PY0 BaA / C0 (Fl0 + PY0) / (PA $_2$ + PA $_3$ + Σ(3-6 ring EPAPP)/(Σ5 alkylated F	0 0 + PA ₄) PAHS)	1.0 0.88 21% 14%	7.9 0.6 0.76 14% 8%	7.2 0.8 0.80 22% 10%	10.8 0.9 0.83 18% 7%	0.8 0.75 13% 8%	0.9 0.81 19% 7%	
P0 / A0 F10 / PYC BaA / CC (F10 + PYO) / (PA $_2$ + PA $_3$ + $_3$	0 0 + PA ₄) PAHS)	1.0 0.88 21% 14%	7.9 0.6 0.76 14% 8%	7.2 0.8 0.80 22% 10% LMW PA	10.8 0.9 0.83 18% 7% H Ratios	0.8 0.75 13% 8%	0.9 0.81 19% 7%	l I
P0 / A0 F10 / PYC BaA / CC (F10 + PYO) / (PA $_2$ + PA $_3$ + $_3$ + $_4$ Σ(3-6 ring EPAPP)/(Σ5 alkylated F	0 0 + PA₄) PAHS) N0/N1 M/1M	1.0 0.88 21% 14% 28% 1.13	7.9 0.6 0.76 14% 8%	7.2 0.8 0.80 22% 10% LMW PA 24% 0.56	10.8 0.9 0.83 18% 7% H Ratios 17% 0.49	0.8 0.75 13% 8% 18% 0.63	0.9 0.81 19% 7% 12% 0.79	l I
P0 / A0 F10 / PY0 BaA / CC (F10 + PY0) / (PA $_2$ + PA $_3$ + $_3$ + $_4$ Σ(3-6 ring EPAPP)/($_3$ 5 alkylated F	0 0 + PA ₄) PAHS) NO/N1 M/1M NO/F0	1.0 0.88 21% 14% 28% 1.13 2.14	7.9 0.6 0.76 14% 8% 20% 0.50 1.50	7.2 0.8 0.80 22% 10% LMW PA 24% 0.56 2.82	10.8 0.9 0.83 18% 7% H Ratios 17% 0.49 2.36	0.8 0.75 13% 8% 18% 0.63 2.75	0.9 0.81 19% 7% 12% 0.79 2.54	l I
P0 / A0 FI0 / PY0 BaA / CC (FI0 + PY0) / (PA ₂ + PA ₃ + Σ(3-6 ring EPAPP)/(Σ5 alkylated F N 2N NO+N	0 0 + PA ₄) PAHS) NO/N1 M/1M NO/F0 N1/N2	1.0 0.88 21% 14% 28% 1.13 2.14 620	7.9 0.6 0.76 14% 8% 20% 0.50 1.50 1,800	7.2 0.8 0.80 22% 10% LMW PA 24% 0.56 2.82 3,100	10.8 0.9 0.83 18% 7% H Ratios 17% 0.49 2.36 2,600	0.8 0.75 13% 8% 18% 0.63 2.75 1,400	0.9 0.81 19% 7% 12% 0.79 2.54 1,700	l
P0 / A0 F10 / PY0 BaA / CC (F10 + PY0) / (PA $_2$ + PA $_3$ + $_3$ + $_4$ Σ(3-6 ring EPAPP)/($_3$ 5 alkylated F	0 0 + PA₄) PAHS) NO/N1 M/1M NO/F0 N1/N2 C1-C3	1.0 0.88 21% 14% 28% 1.13 2.14	7.9 0.6 0.76 14% 8% 20% 0.50 1.50	7.2 0.8 0.80 22% 10% LMW PA 24% 0.56 2.82	10.8 0.9 0.83 18% 7% H Ratios 17% 0.49 2.36	0.8 0.75 13% 8% 18% 0.63 2.75	0.9 0.81 19% 7% 12% 0.79 2.54	

