Subject: Soil Sampling Plan in Response to WDNR Review of Remedial Action Options Report Community Within the Corridor - East Block 2748 N. 32nd Street, Milwaukee, WI 53210 BRRTS \#02-41-263675, FID \#241025400

Dear Ms. Meyer:
On September 7, 2023, the Wisconsin Department of Natural Resources (WDNR) issued a Review of the Remedial Action Options Report submitted on July 25, 2023. In the review, WDNR noted that soil sample HS-5, collected in 2021 as part of remedial action documentation confirmatory sampling, identified Trichloroethylene (TCE) at $220 \mathrm{mg} / \mathrm{kg}$ at confirmatory soil sample EB-HS-5. Based on that concentration, the WDNR rescinded their earlier contained out decision and determined that a "separate hazardous waste determination will be required for the additional areas of excavation that are proposed within the Report." Please find enclosed a soil sampling plan to address WDNR's request for a hazardous waste determination for the proposed areas of excavation. We request that WDNR review and provide feedback as needed for this sampling plan. A review fee in the amount of $\$ 700$ is attached.

Proposed Additional Excavation Remedial Action Plan

On June 7, 2023, the WDNR completed a review of the Interim \& Remedial Action Status and recommended that additional remedial action be conducted "as soon as feasible", and that "additional active remedial action" would likely be required. We note that the vapor action level exceedances in residential units have not been an applicable condition since mid-July and that depressurization of greater than -0.010 inches of water has been maintained under all the residential units, however to move the project towards a successful outcome a Remedial Action Options Report was submitted to the WDNR on July 25, 2023 which proposed additional source removal to assuage WDNR concerns. Added resiliency actions including the use of biochar and the additional blowers/vapor extraction points were also proposed. The layout of the building and proposed areas of additional excavations are shown on Figures 1 to 4 and summarized in Table 1.

Evaluation of Known Soil Contamination vs. "Contained Out" Criteria

Sixteen areas were identified for additional soil source removal. We have evaluated the soils in these areas based on previously submitted data collected between 2021 and 2023. Soil sample locations and tabulated test results can be found in Appendix A with key data highlighted in yellow. Please find an evaluation of the various areas of proposed excavation as follows:

Vicinity of Soil Sample EB-HS-5

The following six areas were identified in the vicinity of soil sample EB-HS-5 with its concentration of 220 $\mathrm{mg} / \mathrm{kg}$ TCE and will have additional soil samples collected for soil characterization:

Unit	Location	Representative Sample
Hall	Hall to 1050	EB-HS-5 $(220 \mathrm{mg} / \mathrm{kg} \mathrm{TCE)}$
Hall	Corridor Outside 1048/1049	EB-HS-5 $(220 \mathrm{mg} / \mathrm{kg}$ TCE $)$
1048	Laundry	EB-HS-5 $(220 \mathrm{mg} / \mathrm{kg} \mathrm{TCE)}$
1056	Mechanical Electrical Room	EB-HS-5 $(220 \mathrm{mg} / \mathrm{kg} \mathrm{TCE)}$
1049	Storage Room	EB-HS-5 $(220 \mathrm{mg} / \mathrm{kg} \mathrm{TCE)}$
Hall	Hall to 1051	EB-HS-5 $(220 \mathrm{mg} / \mathrm{kg}$ TCE $)$

Units and Halls in the Vicinity of 1044, 1045, and 1050
The following five areas are characterized by confirmatory testing from the Remedial Action Documentation Report, specifically confirmatory samples EB-HS-8, EB-HS-9, EB-B-30, EB-HS-11, and EB-HS-12 with samples taken between 0.5 and 3.5 feet below the top of excavation surface:

Unit	Location	Representative Sample
Hall	Hall Outside 1044 and 1045	EB-HS-8, EB-HS-9, EB-HS-11, EB-HS-12, EB-B30 (max TCE concentration $3.7 \mathrm{mg} / \mathrm{kg}$)
1044	Main	EB-HS-8, EB-HS-9, EB-HS-11, EB-HS-12, EB-B30 (max TCE concentration $3.7 \mathrm{mg} / \mathrm{kg}$)
1045	Main	EB-HS-8, EB-HS-9, EB-HS-11, EB-HS-12, EB-B30 (max TCE concentration $3.7 \mathrm{mg} / \mathrm{kg}$)
1045	Bedroom	EB-HS-8, EB-HS-9, EB-HS-11, EB-HS-12, EB-B30 (max TCE concentration $3.7 \mathrm{mg} / \mathrm{kg}$)
1050	Main	EB-HS-8, EB-HS-9, EB-HS-11, EB-HS-12, EB-B30 (max TCE concentration $3.7 \mathrm{mg} / \mathrm{kg}$)

In "Contained-Out" Values for PCE, TCE and Vinyl Chloride", PUB-RR-969, published December 2013, the WDNR reported a "contained out" value for soils containing TCE of $8.8 \mathrm{mg} / \mathrm{kg}$. Therefore, based on a maximum concentration of TCE in the area of $3.7 \mathrm{mg} / \mathrm{kg}$ we conclude that TCE contaminated soils in the vicinity of Hall Outside 1044 and 1045, 1044, 1045 Main, 1045 Bedroom, and 1050 Main do not exhibits characteristics of hazardous waste and meet the WDNR's "contained out" criteria. No further characterization is necessary based on the concentration of TCE.

Southwest Garage and Stairwell 4

Ten soil samples were collected in the Southwest Garage and one soil sample was collected in Stairwell 4 on July 19 to 20, 2023 from 1 to 4 feet below top of slab.

Unit	Location	Representative Sample
1B-NW	Garage Near SW Garage Vapor Pin (Parking Space 2, Parking Space 6, and Parking Space 19)	SW-B6 (1 mg/kg TCE maximum)
NW Gym Stairwell	NW Gym Stairwell	$12 \mathrm{mg} / \mathrm{kg}$ TCE

The results were submitted to the WDNR previously. Based on the maximum TCE result of $1 \mathrm{mg} / \mathrm{kg}$ being less than the "contained out" criteria of $8.8 \mathrm{mg} / \mathrm{kg}$, we conclude that TCE contaminated soils in the southwest garage do not exhibit characteristics of hazardous waste and meet the WDNR's "contained out" criteria. No further characterization is necessary for SW Garage area excavations based on the most recent data submitted to WDNR.

However, Stairwell 4 had a residual TCE concentration of $12 \mathrm{mg} / \mathrm{kg}$ based on the July 2023 sampling. Additional characterization is proposed for Stairwell 4 area soils.

Northern Mechanical Room

The Northern Mechanical Room was evaluated based on test results from soil sample VE-1 collected during the Site Investigation from zero to one-foot below top of slab. The findings are summarized as follows:

Unit	Location	Representative Sample
N. Mech. Room	N. Mech. Room	VE-1 $(2.7 \mathrm{mg} / \mathrm{kg}$ TCE $)$

Based on the TCE result of $2.7 \mathrm{mg} / \mathrm{kg}$ being less than the "contained out" criteria of $8.8 \mathrm{mg} / \mathrm{kg}$, we conclude that TCE contaminated soils in the Northern Mechanical Room do not exhibit characteristics of hazardous waste and meet the WDNR's "contained out" criteria. No further characterization is necessary for the Northern Mechanical Room excavation.

Gym Area

The gym area excavations near vapor pins BB1 and BB2 are characterized by soil samples collected from locations SS-48, SS-51, and EB-B-27, and EB-B-32 during the site investigation. The gym area findings are summarized as follows:

Unit	Location	Representative Sample
1B-C	SW Portion of Gym (Vapor Pin BB1)	SS-48, SS-51, EB-B27, and EB-B-32 (max TCE 2.4 mg/kg)
1B-C	S Portion of Gym (Vapor Pin BB2)	SS-48, SS-51, EB-B27, and EB-B-32 (max TCE 2.4 mg/kg)

The maximum concentration of TCE was detected from EB-B-32 at $2.4 \mathrm{mg} / \mathrm{kg}$. Based on the TCE result of $2.4 \mathrm{mg} / \mathrm{kg}$ being less than the "contained out" criteria of $8.8 \mathrm{mg} / \mathrm{kg}$, we conclude that TCE contaminated soils in the Gym Area do not exhibit characteristics of hazardous waste and meet the WDNR's "contained out" criteria. No further characterization is necessary for the Gym Area Excavations.

Based on our review of all known data, areas Hall to 1050, Corridor Outside 1048/1049, 1048 / Laundry, 1056 Mechanical Electrical Room, 1049 Storage Room, Hall to 1051, and Stairwell 4 are proposed for additional sampling for hazardous waste characterization with representative TCE concentrations greater than $8.8 \mathrm{mg} / \mathrm{kg}$.

The remaining areas are documented with residual contamination of less than $8.8 \mathrm{mg} / \mathrm{kg}$ for TCE and we request WDNR's approval to proceed with remedial actions in those areas.

Proposed Additional Soil Sampling Plan

Each of the following areas are proposed to have additional soil samples collected between six inches below the native soil surface and one foot below the native soil surface prior to excavation and tested for VOCs (13 samples total), based on the source of contamination being the surface and documented soil contamination in the vicinity greater than $8.8 \mathrm{mg} / \mathrm{kg}$:

1. Hall to 1050 (2 samples);
2. Corridor Outside 1048/1049 (2 samples);
3. 1048 / Laundry (2 samples);
4. 1056 Mechanical Electrical Room (2 samples);
5. 1049 Storage Room (2 samples);
6. Hall to 1051 (2 samples); and
7. Stairwell 4 (1 sample)

In addition, prior to excavation, the following additional soil samples (13 soil samples total) will be collected between 3.5 feet below the native soil surface and 4 feet below the native soil surface prior to excavation and tested for VOCs:

1. Hall to 1050 (2 samples);
2. Corridor Outside 1048/1049 (2 samples);
3. 1048 / Laundry (2 samples);
4. 1056 Mechanical Electrical Room (2 samples);
5. 1049 Storage Room (2 samples);
6. Hall to 1051 (2 samples); and
7. Stairwell 4 (1 sample)

To select samples for testing in areas outside of Stairwell 4, initial samples will be collected at 6 inches to one foot below the native soil surface and screened for TCE vapors at 5 -foot intervals proceeding east to west in the areas, adjusted as necessary for obstructions. Based on the TCE vapor measurements, two samples from each area with the greatest TCE measurements will be tested for total volatile organic compounds (VOCs). A single sample will be collected from the Stairwell 4 area. The locations of the sample locations are shown on Figure 5.

Hand tools or mechanical augers will then be utilized to advance test holes to 3.5 below the native soil surface where additional soil samples will be collected and tested for total VOCs based on the selected near surface locations.

Following the receipt of test results, at least two samples will be selected to be tested for Total Characteristic Leaching Protocol (TCLP) VOCs based on the TCE concentrations analyzed. The results of TCLP testing will be used to characterize the soils for disposal.

The results will be utilized to characterize soils for disposal so that soils will be handled appropriately. Following source removal to 4 feet, confirmatory samples will be taken between six inches below the soil surface and one foot below the soil surface consisting of 2 samples per excavated area. In addition, two samples per excavated area will be collected to comply with WDNR's request for additional soil sampling between 4 and 8 feet for the purpose of estimating residual TCE mass at the conclusion of additional source removal excavations. The soil sampling between 4 and 8 feet below the existing surface will be accomplished utilizing hand tools or mechanical augers.

Closure

All residential areas of Community Within the Corridor - East Block have achieved and sustained residential Vapor Action Levels (VALs) for TCE in indoor air of less than $2.1 \mathrm{ug} / \mathrm{m} 3$ since mid-July and all residential areas have achieved and sustained depressurization of greater than 2.5 times the WDNR standard of -0.004 inches of water over the same period. More than 180,000 data points have been collected documenting indoor air quality, sub-slab vapor quality, and sub-slab depressurization.

The current blower systems are operating at 50% capacity, with added capacity to respond to changing conditions, and several additional blowers are scheduled to be installed for redundancy and resiliency in the next week. We have good reason to believe that all areas of the building, except perhaps the non-publicly accessible Northern Mechanical Room, will meet all VALs and depressurization requirements of the WDNR in the next few days.

The building has been completely evacuated despite indoor air quality standards being achieved and sustained throughout residential and publicly accessible areas since mid-July. According to RR Publication 800, no additional source removal is necessary for the Community Within the Corridor - East Block building in order to move forward with the commissioning process, preparation of an operations and maintenance plan, and occupancy, however additional source removal has been proposed as an additional measure to ensure that the Vapor Mitigation System is operating in a manner that is protective of the public health and environment.

It should be noted that many families have been displaced with no comparable replacement affordable housing options available for nearly six months. The iterative WDNR review process of 40 to 60 days has imposed further hardships on the Milwaukee area affordable housing market by slowing the pace of work to reopen a desperately needed housing resource. We request that WDNR make a collaborative effort to review our plan in a truly expedited manner so that we can move forward with additional actions and allow for safe occupancy as soon as possible.

Next Steps

Please note the following requests made to WDNR on behalf of CWC:

- We request that WDNR approve the "contained-out" decision for TCE contaminated soils with concentrations less than $8.8 \mathrm{mg} / \mathrm{kg}$ as soon as possible in order to begin excavation next week.
- We request that if WDNR has any feedback or comments as we move forward with sampling in areas with documented TCE in soil greater than $8.8 \mathrm{mg} / \mathrm{kg}$ that they notify us as soon as possible.
- For a project of this magnitude and complexity, we request to schedule a meeting with WDNR on a monthly basis to move the project forward.

In the meantime, we are planning to commence with further actions on an interim basis under NR 708 including additional sampling and source removal in areas with TCE concentrations in soil less than $8.8 \mathrm{mg} / \mathrm{kg}$ subject to obtaining approval of the "contained-out" decision. Having said that, we would like for excavation to commence next week in all areas except for the areas near HS-5 and Stairwell 4 where TCE detections in soil were $220 \mathrm{mg} / \mathrm{kg}$ and $12 \mathrm{mg} / \mathrm{kg}$, respectively.

Should you have any questions or require any additional information, please feel free to contact us at 262-821-1171. We appreciate your cooperation and support in moving this project forward.

Sincerely,
K. SINGH \& ASSOCIATES, INC.

Robert T. Reineke, PE
Senior Engineer

Pratap N. Singh, Ph.D., PE Principal Engineer
cc: \quad Shane LaFave / Community Within the Corridor Robert Fedorchak, PE / Patriot Engineering Pam Mylotta, PG / WDNR Jane Pfeiffer / WDNR

Attachments: Figures
Table
Appendix A - Soil Sample Locations and Historic Tabulated Test Results

Figures

KSingh $=$ Scientists
Consultants

East Building Level 1

- Soil Boring Locations

Vapor Mitigation Systems (Blowers)

- Vapor Pins

Fone

Table

Table 1
Estimated Additional Excavation Volumes

Unit	Location	Area (square feet)	$\begin{aligned} & \text { Depth } \\ & \text { (feet) } \end{aligned}$	Volume (cubic yards)	$\begin{aligned} & \text { Weight } \\ & \text { (tons) } \end{aligned}$	Representative Sample
Hall	Hall Outside 1044 and 1045	186	2.5	17.22	30.225	EB-HS-8, EB-HS-9, EB-HS-11, EB-HS-12, EB-B30 (max TCE concentration $3.7 \mathrm{mg} / \mathrm{kg}$)
1044	Main	100	2.5	9.26	16.25	EB-HS-8, EB-HS-9, EB-HS-11, EB-HS-12, EB-B30 (max TCE concentration $3.7 \mathrm{mg} / \mathrm{kg}$)
1045	Main	99	2.5	9.17	16.0875	EB-HS-8, EB-HS-9, EB-HS-11, EB-HS-12, EB-B30 (max TCE concentration $3.7 \mathrm{mg} / \mathrm{kg}$)
1045	Bedroom	100	2.5	9.26	16.25	EB-HS-8, EB-HS-9, EB-HS-11, EB-HS-12, EB-B30 (max TCE concentration $3.7 \mathrm{mg} / \mathrm{kg}$)
1050	Main	50	2.5	4.63	8.125	EB-HS-8, EB-HS-9, EB-HS-11, EB-HS-12, EB-B30 (max TCE concentration $3.7 \mathrm{mg} / \mathrm{kg}$)
Hall	Hall to 1050	126	2.5	11.67	20.475	EB-HS-5 (220 mg/kg TCE)
Hall	Corridor Outside 1048/1049	192	2.5	17.78	31.2	EB-HS-5 (220 mg/kg TCE)
1048	Laundry	150	2.5	13.89	24.375	EB-HS-5 (220 mg/kg TCE)
1056	Mechanical Electrical Room	92	2.5	8.52	14.95	EB-HS-5 (220 mg/kg TCE)
1049	Storage Room	384	2.5	35.56	62.4	EB-HS-5 (220 mg/kg TCE)
Hall	Hall to 1051	109.72	2.5	10.16	17.83	EB-HS-5 (220 mg/kg TCE)
1B-NW	Garage Near SW Garage Vapor Pin (Parking Space 2, Parking Space 6, and Parking Space 19)	400	3.5	51.85	91.00	SW-B6 (1 mg/kg TCE)
N. Mech. Room	N. Mech. Room	100	3.5	12.96	22.75	VE-1 (2.7 mg/kg TCE)
1B-C	SW Portion of Gym (Vapor Pin BB1)	200	1.5	11.11	19.50	SS-48, SS-51, EB-B27, and EB-B-32 (max TCE $2.4 \mathrm{mg} / \mathrm{kg}$)
1B-C	S Portion of Gym (Vapor Pin BB2)	200	1.5	11.11	19.50	SS-48, SS-51, EB-B27, and EB-B-32 (max TCE $2.4 \mathrm{mg} / \mathrm{kg})$
NW Gym Stairwell	NW Gym Stairwell	12	1.5	0.67	1.17	$12 \mathrm{mg} / \mathrm{kg}$ TCE
	Total	2,500.72	---	234.81	412.09	---

Appendix A
Soil Sample Locations and Historic Tabulated Test Results

KSingh|=

FIGURE 8A

KSingh|= yanm

SOIL SAMPLING RESULTS

FIGURE 8B

Sample	Unils	Mehod	$\begin{gathered} \text { NR } 720 \text { RCLs } \\ \text { for GW } \\ \text { Protection (1) } \end{gathered}$			$\begin{aligned} & \text { Badrgsound } \\ & \text { Bend } \\ & \text { Vandued } \end{aligned}$	Eb.RTS.1	EB.RTS.2	EB.RTs,	EBRTS.4	Eb.RTS. 5	EB.RTS.6	EbRTST. 7	8.7	B. 8	8.9	B.10	B.11	${ }_{8}^{1 / 12}$	B.16						
							$\frac{0.5 .2 .5}{\text { Sily Cuy }}$			$\frac{0.5 .2 .5}{\text { Silv CuY }}$	$\frac{0.5 .25}{\text { Silv CuY }}$	$\frac{0.5 .25}{\text { SilvClay }}$			$\frac{9.11}{\text { Sill Cliy }}$		${ }_{\substack{3.4 \\ \text { Fll }}}$	${ }_{\text {Flul }}^{\text {2.3 }}$	$\frac{.3 .5 .5}{\text { Sily Civ }}$	Gavell Clay						
Sicoe																										
							${ }_{4}^{4612021}$	${ }_{4}^{4612021}$	${ }_{4}^{4682921}$	${ }_{4}^{4612021}$	${ }_{\text {M60sf }}$	${ }_{4}^{4612021}$	Unsauraed 46	Unstuataed	Unstiuated	${ }_{\text {Unsturated }}^{4102020}$	${ }_{\text {Unsalurated }}^{4123202}$	Unstauraed 4 423202	Unstuaraed	Unsauraed						
Physical Characterisicis																										
Percent Mositure							10.7	10.2	122	20.0	${ }^{22,6}$	${ }^{11.4}$	10.0	15.8	10.5	${ }^{13.0}$	${ }_{7} 7.6$	${ }_{6} 6$	${ }^{9.2}$	18.0						
(1)																										
	moka	${ }^{22008}$	0.1402	${ }_{640}$	$\frac{60}{660}$		${ }^{4} 0.023$	${ }^{1} 0023$	<0045	${ }_{60027}$	0.032 J	${ }^{20} 024$	${ }^{2} 0023$	c0039	0.18	0.077			${ }_{60.034}$	\cdots						
	mgkg	${ }^{82008}$	0.0002	0.81	${ }^{36}$		c0.024	${ }_{0} 0.024$	<0.047	0.028			${ }^{2} 0.024$	${ }^{2} 0041$	C0.035	80.044	40.039	${ }^{2} 0038$	${ }^{2} 0035$							
1,1,2.7.ichlocoevenane	mgkg		0.0032	1.59	${ }^{2}$		${ }^{<0.022}$	<0.021	C0.042	C0.025	<0.023			${ }^{2} 0.036$												
11.-Vi.lchooethane		82208	0.483	5.06	${ }^{222}$		${ }^{6} 0.025^{+}+$		$0.39^{\circ}+$	$0.81^{4}+$	0.14 +	${ }^{2} 0.022^{+}+$	${ }^{\text {co.025 }}$	<0.042	40.036	C0.045	<0.040	C0.039	<0.036							
11,-i.ioliocoethene	mgkg	${ }^{82008}$	0.005	${ }^{320}$	${ }^{1,190}$	-	<0.224	<0.024	<0.46	<0.027	<0.31	<0.024	${ }^{20.024}$	${ }^{2} 0.40$	<0.034	<0.043	<0.038	${ }^{6} 0.38$	<0.034							
	mgkg	2008					<0.018	<0.018	${ }^{0} 0.35$	${ }_{0} 0.021$	<0.024	<0.019	${ }^{2} 0.018$	c0.031	${ }^{6} 0.026$	<0.033	¢0.029	¢0.029	<0.022							
1.2 .3 .7.inchlocoenerzene	mgkg	82008	-	62.	${ }_{934}$	-	${ }_{0} 0.028$	<0.028	${ }^{0} 0.054$	0.032	<0.036	${ }^{0} 0.029$	c0.028	c0.047	80.040	80.050	<0.045	c0.044	<0.040							
1.2 .3 Trichlocoopopane	ngkg	${ }^{82008}$	0.059	0.005	0.109	-	<0.025	<0.025	c0.49	80.029	<0.033	<0.026	${ }^{2} 0.025$	c0.042	<0.36	80.046	C0.041	c0.40	${ }^{60.037}$							
	mgkg	${ }^{82008}$	0.408	${ }^{24}$	${ }^{113}$		${ }^{80} 021$	${ }^{60.021}$	c0.40	<0.024	<0.027	80.021	${ }^{20} 021$	c0.035	80.030	80.038	c0.034	${ }^{\text {c.033 }}$	c0.30							
1.2 .4. Timentyberzene	mgkg	82008	${ }^{1.3787^{* *}}$	${ }_{219}$	${ }_{219}^{219}$	-	0.03 J	${ }^{0.033 \mathrm{~J}}$	5.2	0.29	2.2	0.067	${ }^{20.022}$	0.11	34	0.35	${ }^{60} 035$	0.28	c0.032							
12.2.bibomo.3.Chhoropopene	$\mathrm{ghg}^{\text {g }}$	2808	0.0002	0.008	${ }^{0.092}$	-	${ }^{0.12}$	<0.12	${ }^{6} 0.23$	${ }^{0} 0.14$	<0.16	<0.12	c0.12	$\stackrel{20}{ } 0^{+}$	${ }^{20.17}$	<0.22*	${ }^{6} 22^{+}$	c0.19	c0.18*							
12.2.bibomethane	mgkg	82208	0.0000282	${ }^{0.05}$	0.221	-	${ }^{80} 0.024$	${ }^{20.023}$	${ }^{60.046}$	${ }^{20.027}$	c0.30	${ }^{20.024}$	${ }^{20.024}$	c0.040	80.034	80.042	<0.038	c0.037	c0.034							
1.2.-Cechorobenerene	mgkg	${ }^{82608}$	${ }^{1.168}$	${ }^{366}$	${ }^{376}$	-	${ }^{80.020}$	${ }^{60.020}$	${ }^{60} 039$	${ }^{20.024}$	${ }^{20.026}$	${ }^{20.021}$	${ }^{20.020}$	${ }^{20.034}$	c0.029	c0.037	${ }^{20.033}$	c0.32	${ }^{20.030}$							
12.2.ichloroethane	mgkg	82608	0.0028	0.652	$\stackrel{28}{28}$	-	${ }^{60.024}$	${ }^{\text {co.024 }}$	${ }^{20.046}$	${ }^{60.028}$	c0.031	${ }^{60.024}$	${ }^{20.024}$	${ }^{20.040}$	c0.034	80.043	${ }^{20.038}$	c0.038	${ }^{20.035}$							
	mokg	82608	0.0033	${ }^{3.4}$	$\stackrel{15}{15}$	-	${ }^{0.0026+}$	${ }_{\text {co.026 }}$	${ }_{\text {co.050 }}{ }^{\text {+ }}$	${ }_{\text {co.030 }}$	${ }_{\text {co. } 034+}$	${ }_{\text {co.027 }}$	${ }_{\text {co.026 }}{ }^{\text {c/ }}$	${ }^{20.044}$	${ }^{20.038}$	${ }^{\text {co.047 }}$	c0.042	${ }^{\text {co.041 }}$	${ }^{20.038}$							
$1.3,5$. Tinemetybenerene	m9kg	${ }^{82608}$	${ }_{\text {1.3887" }}$	${ }^{182}$	${ }^{182}$	-	${ }^{20.023}$	${ }^{60.023}$	1.9	0.075	0.25	0.026	${ }^{60.023}$	${ }^{20.039}$	14	${ }^{0.0880}$	${ }^{<0.037}$	0.11	${ }^{20.034}$							
1,3.-iblhorobenzene	mgkg	${ }^{82008}$	${ }^{1.1528}$	${ }^{297}$	$\stackrel{29}{7}$	-	${ }^{<0.025}$	${ }^{2} 0.024$	${ }^{\text {co.047 }}$	${ }^{80} 028$	${ }^{60,032}$	${ }^{\text {co.025 }}$	${ }^{2} 0.024$	cout1	${ }_{0} 0.035$	C0.044	${ }^{20} 039$	${ }^{20.038}$	${ }^{20.035}$							
1,3-0.Chloforpopane	mgka	82008	0.0003	${ }^{2,37}$	$\stackrel{10.6}{ }$		${ }^{\text {co,022 }}$	${ }^{<0.022}$	${ }^{\text {co.043 }}$	${ }^{<0.026}$	${ }^{80.029}$	${ }^{8.022}$	${ }^{80} 0.022$	${ }^{80.037}$		${ }^{80.040}$	${ }^{80.035}$	${ }^{80.035}$	${ }^{20.032}$							
1.4.a.aloloroenenze	mgkg	${ }^{82008}$	0.144	${ }^{3.14}$	${ }^{10.4}$		${ }^{<0.022}$	${ }_{20.022}$	${ }^{<0.043}$	${ }^{<0.026}$	$\stackrel{0}{<0.29}$	${ }^{<0.023}$	${ }^{\text {co.022 }}$	${ }_{0}$	${ }^{20.032}$	80.040	${ }^{<0.036}$	80.035	${ }^{20.032}$							
		${ }^{22008}$	-	927 9	$\frac{\text { 星 }}{\frac{197}{907}}$		$\stackrel{\text { e.027 }}{\substack{40019}}$		${ }_{\text {coios2 }}$	-	<0.035	coioz	${ }_{\text {coicle }}$	${ }_{\text {coicle }}$		$\stackrel{\text { c.0.49 }}{60.055}$	-	Coios	coion							
4 4.Chorocoluene	mgk ${ }^{\text {a }}$	82208		${ }^{253}$	${ }^{253}$		${ }^{\text {c.021 }}$		<0.041	${ }^{2} 0.025$	${ }^{2} 0.028$	<0.022	${ }^{2} 0.021$		<0.31	8.039	${ }^{2} 0.034$	${ }^{2} 0.034$	${ }^{2} 0.31$							
Benzene	mgkg	82208	0.0051	1.6	${ }^{7} 07$		80.0000	<0.0089	0.065		0.04	0.011 J	${ }^{50.0089}$	0.077	0.13	0.046	${ }^{2} 0.014$	0.055	20.013							
Biomobenzene	mgkg		-	${ }_{342}$	${ }_{6} 6$		<0.022	<0.022	c0.042	${ }^{0} 0.025$	c0.028		${ }_{0} 0.022$	${ }^{0} 0.036$	${ }_{0} 0.031$	${ }^{0} 0.039$	${ }^{0} 0.035$	c0.34	<0.031							
Bromochlocomethene	mgkg				${ }_{9}^{906}$	-	${ }^{80} 0.20$												${ }^{20.038}$							
Bromodichoomentane		82208	0.0003	0.418	${ }^{\frac{1.83}{113}}$	-	c.0.23	co.	co.044		co.	co.	c.0.23	C0.038	coiole	co.	C0.036	${ }_{\text {coiose }}$	${ }_{\text {coio33 }}$							
${ }^{\text {Bramomomem }}$	${ }_{\text {mgkg }}^{\text {makg }}$	82008	${ }_{0}^{0.00053}$	${ }_{0.6}^{25.4}$	${ }^{\frac{113}{43}}$				$\stackrel{\text { c.0.09 }}{\substack{\text { cos }}}$	$\stackrel{\substack{\text { c.0.34 } \\ \hline 0.056 \\ \hline \\ \hline}}{ }$		C0.050	${ }_{\substack{0 \\ \text { co.0.48 }}}$	${ }_{\text {coiose }}$		${ }_{\text {co.0.08 }}$		${ }_{\text {co.0.77 }}^{\text {c/ }}$								
Catoon teractloride		82208	0.0039	0.916	${ }_{403}^{40}$		${ }^{6} 0.024$	0.02	${ }^{2} 0045$	${ }_{6} 0.027$	c0.30	${ }^{6} 0.024$	${ }_{20.023}$	20.039	60.034	40.04	c0038	${ }^{60} 037$	<034							
Chlocobenzene	mqkg	${ }^{22088}$		${ }^{370}$	${ }^{761}$	-	<0.024	${ }^{6} 0.023$	${ }^{\text {co.046 }}$	<0.027	c0.30	<0.024	${ }^{2} 0.024$	c0.040	c0.34	c0.042	<0.038	${ }^{20.037}$	c0.034	-						
Choroethane	kg	${ }^{82008}$	0.2266	${ }_{2,120}$	$2{ }^{2120}$	-	<0.31	<0.331	<0.59	${ }^{\text {co.036 }}$	co.40	c0.31	${ }^{2} 0.031$	c0.52	co.04	C0.055	80.049**	${ }^{\text {co.048. }}$	${ }^{2} 0.45$							
Chioroiom	mgkg	${ }^{82008}$	0.003	0.454	1.98	-	<0.023	${ }^{\text {co.022 }}$	c0.04	${ }^{6} 0.026$	¢0.029	<0.023	${ }^{2} 0.023$		<0.32	<0.041	${ }^{2} 0.36$	<0.36	${ }^{\text {c.033 }}$							
Chloromethane	mgkg	82008	0.0155	${ }_{1} 159$	${ }_{6}^{69}$	-	<0.20	<0.019	c0.038	${ }_{60} 0.02$	${ }^{60.025}$	<0.20	${ }^{20.019}$	${ }^{60} 03$	<0.228	80.035	<0.31	C0.31	${ }^{20.028}$							
	mgkg	82008	0.0412	${ }_{1}^{156}$	$\underline{230}$	-	${ }^{\text {co.025 }}$	${ }^{<0.025}$	${ }^{0.098 \mathrm{~J}}$	0.24	0.4	${ }^{\text {co.025 }}$	${ }^{20.025}$	c0.042	${ }_{0}^{0.052 ~ J}$	80.045	c.040	c0.39	${ }^{20} 036$							
dsi-1,3.i.cichoropopenene	mgkg	82008	0.0003	1.210	${ }^{1.210}$	-	${ }^{80.026}$	${ }^{60.025}$	c0.049	${ }^{80} 029$	${ }^{0.0033}$	¢0.026	${ }^{20.025}$	c0.043	c0.037	80.046	c.041	co.40	80.037							
	${ }_{\text {mgkg }}^{\text {moka }}$	${ }_{822008}^{8808}$	0.032	${ }_{\text {¢ }}^{8.28}$	$\frac{38.9}{143}$ 18	-					$\xrightarrow{\text { co.039 }}$		$\xrightarrow[\substack { \text { c.0.30 } \\ \begin{subarray}{c}{\text { coib }{ \text { c.0.30 } \\ \begin{subarray} { c } { \text { coib } } }\end{subarray}]{ }$	C0.50 $\substack{\text { coid }}$	${ }_{\substack{\text { c.0.033 } \\ \text { c024 }}}^{\substack{\text { a }}}$	$\xrightarrow{20.054}$				-						
Dichloodituorometane	mgkg	${ }^{22008}$	3.0863	${ }^{126}$	${ }_{550}$		<0.041	<0.041	c0.080	${ }_{0} 0.048$	${ }^{0} 0.53$	c0.042	c0.041	${ }^{0} 0.069$	c0.59	80.074	0.066	${ }^{0} 0.065$	c0.060							
Etrybenzene	mgkg	82008	${ }^{1.57}$	${ }_{8.02}$	${ }_{354}$		<0.011	0.013 J	0.61	0.088	0.33	0.016	c0.011	0.051	5.6	0.13	${ }^{60.018}$	0.08	<0.016							
Hexachorouluadiene	mgkg_{0}	${ }^{82608}$	-	(1.63	-		${ }_{\substack{\text { c.0.27 } \\ \text { C017 }}}$	${ }_{\substack{\text { <.0.27 } \\<0027}}$		$\stackrel{\text { c.031 }}{0000}$	$\stackrel{\text { c.035 }}{\substack{\text { coin }}}$	${ }_{\text {coiol }}$	coiolt	Co.046	Co.039	-0.049	co.044	$\stackrel{\text { C0.043 }}{\text { C007 }}$	${ }_{\text {coios }}$							
sionepener	mgho								${ }_{0}^{0.0 .39}$	${ }_{\text {coile }}^{\text {coin }}$	${ }_{0} 0.15$	${ }_{60.024}$	${ }_{\text {coiol }}$	${ }_{\text {coios }}$	${ }_{18}$	0.11	${ }_{\text {coios }}$	${ }_{\text {coios }}$	${ }_{\text {coiol }}$							
Wethy lettubut eher	mgkg	82008	0.027	63.8	${ }^{282}$	-	<0.024	<0.024	${ }^{0} 0.46$	<0.028	<0.31	<0.025	${ }^{0} 0.024$	<0.40	${ }_{0} 0.035$	${ }^{0} 0.043$	${ }^{\text {co.039* }}$	<0.038*	${ }^{0} 0.35$							
Mentryene Choride	makg	82008		${ }_{61.8}^{6.8}$.1.150		c0.10	c0.099	co.19	c0.11	${ }^{\text {co.13 }}$	c0,10	c0099	${ }^{60.17}$	0.14	c0.18	${ }^{0.29 \mathrm{~J}^{\circ}}$	${ }_{0} .27{ }^{\text {J }}$	0.14							
Nampabere	mgng	${ }^{82008}$	0.65872	${ }_{5}^{5.52}$	-	-	0.055	-0.023	. 22	${ }^{0.0025}$	0.12	0.013		0.15	3.9	O,	C0.033	0.998	${ }^{20.030}$							
N.rooplearzene	makg_{0}	${ }^{82008}$	-	${ }_{264}^{264}$	${ }_{264}^{264}$	-	${ }^{6} 0025$	${ }^{-0.025}$	0.74	0.061 J	026	${ }_{6} 0.026$	${ }^{6} 0025$	C0042	42	0.13	c0041	0.048	${ }_{60037}$	-						
O-ISoporo	${ }_{\text {ngkg }}$			162	${ }^{162}$		${ }^{0} 0.022$	c0.022	0.89	${ }^{0.0335}$	0.14		40.022	c0,37		${ }_{0} 0.040$	${ }^{2} 0.35$	${ }^{0.035}$	${ }^{60.032}$							
secautbenzene	Kg	${ }^{82088}$		145	145		<0.024	${ }_{60} 0.024$	0.72	0.052 J	0.095	${ }_{0} 0.025$	${ }^{2} 0.024$	c0.041		0.045 J	<0.039	${ }^{2} 0.38$	${ }^{2} 0.035$							
Styene	mqkg	2008	0.22	${ }^{867}$	${ }^{867}$		${ }^{2} 0.024$	${ }^{\text {co.023 }}$	80.046	${ }^{20.027}$	${ }^{2} 0.030$	${ }^{2} 0.024$	${ }^{2} 0.024$	c0.40	c0.034	80.042	${ }^{20.038}$	${ }^{2} 0.037$	c0.034							
	mokg	208		${ }^{183}$	$\frac{183}{145}$	-	${ }_{\text {c.0.24 }}$	${ }_{\text {co. } 0.29}$	0.088 ${ }^{0.004}$	${ }_{\text {coiol }}^{0.028}$	${ }^{\text {co. } 031}$	${ }^{<0.025}$	${ }_{\text {co.024 }}$	${ }^{2} \mathbf{C O} 0.41$	0.38	20.044	${ }^{2} 0.039$	${ }^{\text {co.038 }}$	${ }^{2} 0.035$	-						
Tetathoroethene	moka	${ }_{822008}^{8808}$	${ }_{\text {a }}^{0.0045}$	¢ ${ }_{83}^{38}$	- $\frac{145}{888}$		c0.23 0.012	$\xrightarrow{<0.022}$	co.	$\xrightarrow{\substack{\text { c.026 } \\ 0.039}}$	co.029	$\xrightarrow{\text { c0.023 }}$	20.023 $\substack{0.0090}$	co.038	${ }_{0.15}^{0.23}$			coi.36		-						
trass.12.2.i.ichloroenene	\%	${ }^{82008}$	0.022	1560	${ }^{1850}$		<0.021	¢0.021	c0.041	${ }^{2} 0.025$	0.03 J	${ }^{20.022}$	${ }^{2} 0.021$	${ }^{2} 0.036$	${ }_{0} 0.031$	80.039	${ }^{80.034}$	${ }^{2} 0.034$	${ }^{20.031}$	-						
				${ }_{1,510}^{10}$	${ }_{1}^{1.510}$		c0.022	c0.022	${ }^{2} 0.043$	${ }^{40} 0.026$	co.029	${ }^{40.023}$	${ }^{2} 0.022$	C0.37	80.032	E0.40	${ }^{20.035}$	20.035	80.032							
Trichloeathene		${ }^{2008}$	0.0036	1.3	8.41		${ }^{0.017 \mathrm{~J}}$	${ }^{20.0099}$	${ }^{20.019}$	0.02 J	0.02J	${ }^{0.071}$	0.032	${ }^{20.017}$	${ }^{2.2}$	0.16	${ }^{20.016}$	C0.016	80.014	-						
Trichlorofuromentane	$\mathrm{mgkg}_{\substack{\text { mak }}}^{\text {mak }}$	${ }^{2} 8608$	0.0001	$\xrightarrow{1,2,30} 0$	+1.30	-	c.0.26 c.0.16	$\underset{\substack { \text { <0.026 } \\ \begin{subarray}{c}{\text { colt }{ \text { <0.026 } \\ \begin{subarray} { c } { \text { colt } } } \\{\hline}\end{subarray}}{ }$		${ }_{\text {coicle }}$		${ }_{\substack{20.027}}^{20.0}$			${ }_{\substack{20.023}}^{\substack{20.0}}$	${ }_{\substack{20.099}}^{\text {en }}$	${ }_{6}$									
Xyeness, Toal	agk	82008	${ }^{3} 3.96$	${ }_{1,212}$	${ }_{1212}^{212}$		c0.013	0.026 J	1.1	0.12	0.28	0.12	20.013	0.37	15	1	${ }_{0} 0.022$	0.81	60.019							

KSingh
Engineers
Scientists
$\substack{\text { scientists } \\ \text { Consultants }}$

PROJECT NUMBER: 40441

Sample	Units	Method	$\begin{aligned} & \text { NR } 720 \text { RCLs } \\ & \text { for GW } \\ & \text { Protection (1) } \end{aligned}$			$\begin{array}{\|c} \text { Badground } \\ \text { Thersond } \\ \text { value } \end{array}$	Eb-RTS-1	${ }_{\text {EbRRS }}$ L 2	${ }_{\text {EbRRTS }}$ ER	${ }_{\text {Eb.RIS } 4 .}$		${ }_{\text {Ebrers }}$ E.	${ }_{\text {EB.RIS. } 7}$	${ }^{8.7}$	${ }^{8.8}$	8.9	${ }^{8,10}$	${ }^{8.11}$	${ }^{8,12}$	${ }_{8,16}$						
							Sill CiAY	F. Sandy Cliay	Givall C CLAY	Sily Cliay	Sill C CiAY	$\frac{0.5 .25}{\text { Silv Cuy }}$		${ }_{\text {SANO }}^{3} \mathrm{SCRANVEL}$	$\frac{\text { Sill }}{\text { Sily }}$	${ }_{\text {Sandy CliAY }}^{4.6}$	${ }_{\text {Fill }}^{3.4}$	${ }_{\text {L }}^{2.3}$	${ }_{\substack{\text { Sily } \\ \text { Slis } \\ \text { LiAY }}}$							
Soil Conditions							Moist	Moist	Moist	Moist	Most	Most	Unsturated	Unsiturated	Unstaturated	Unstaturated	Unstaturated	Unstatrated	Unstaturated	Unsaturated						
Sampling Date							4662021	4662021	4662021	4662021	4627221	4662021	4662021	41002202	41102020	44102202	41232202	42232202	441020220	${ }^{612525220}$						
Porlyçicic Aromatic hyjrocarions PPASs)																										
	mokg	${ }^{82700}$	-	${ }_{\text {IT, }}^{29}$	$\frac{121}{3010}$	-	-	-	-	-	-	-	-	${ }_{\text {0.060 }}^{0.0}$	O.11	0.09	-	-	<0.007	-						
Acenaphthene	${ }_{\text {mokg }}$	${ }^{82700}$	-	3590	45.200	-	-	-	-	-	-	-	-	01	047	0.041	-	-	S0064	-						
						-	-	-	-	-	-	-	-	0.023	0.052	S0050		-	<00047							
Antracene	mokg	82700	${ }^{196.492}$	17,900	100,000	-	-	-	-	-	-	-	-	0.19	0.55	0.074	-	-	80.006	-						
Bervalalathacene	mgkg	${ }^{82700}$		1.14		-	-	-	-	-	-	-	-	0.91	0.83	0.3	-	-	0.012 J							
Berocolpypene	mgkg	8270	0.47	0.115	$\underline{211}$	-	-	-	-	-	-	-	-	1.1	0.87	0.32	-		${ }^{20.0069}$							
	mgkg	${ }^{82700}$	0.4781	1.15	$\underline{21.1}$	-	-	-	-	-	-	-	-	1.5	0.95	0.57	-	-	${ }^{\text {co.007 }}$							
Benzog, hinjerenene	mokg	${ }^{82700}$	-			-	-	-			-	-		0.4	. 2.28	0.13	-	-	20.012							
Benrokflumantere	mokg	${ }^{8270}$		${ }^{11.5}$	$\frac{211}{11}$	-	-	-	-	-	-	-	-	0.49	${ }^{0.32}$	0.14	-	-	C0.011							
Chrresere	mokg	${ }^{82700}$	0.1442	${ }^{115}$	$\underline{2110}$	-	-	-	-	-	-	-	-	1.1	0.84	0.45	-	-	8.0.097							
Dibenza.hanhrraene	mokg	8270		${ }^{0.155}$	$\underline{2}$	-	-	-	-	-	-	-	-	0.13	0.097	0.035	-		20.0069							
fucoratene	makg	${ }^{82700}$	${ }^{888778}$		-30,100 30200 0.0	-	-	-	-	-	-	-	-	${ }^{22}$	${ }^{22}$	${ }^{0.55}$	-	-	${ }^{8}$							
Houene	mole	${ }^{82700}$		¢ 21.30	- ${ }_{\text {3,100 }}^{21.1}$	-	-	-	-	-	-	-	-	${ }_{0}^{0.083}$	0.48	0.12	-	-								
Napthalaene	mgkg	82700	0.658	${ }^{5.52}$	${ }^{241}$	-	-	-	-	-	-	-	-	0.064	2.1	0.67	-	-	<0.00055	-						
Penenatrene	mokg	${ }^{82700}$																								
Polychlorinated Siphenys PCBSs)																										
PCB-1221	mokg			0	0.883			-									<0.007	<0.007								
PCB-1232	mokg	${ }^{8022}$	${ }^{0.0094{ }^{\text {a }} \text {, }}$	0.19	${ }^{0.792}$	-	-	-	-	-	-	-	-	-	${ }^{\text {<0.0078 }}$	-	${ }^{\text {c0.007 }}$	${ }^{\text {c0.0078 }}$	-	-						
PCB-1242	mgkg	${ }^{8082}$	$0.0094 \times$	${ }^{0.235}$	0.972	-	-	-	-	-	-	-	-	-	く0.0059	-	<0.0058	<0.0058	-							
PCB-1248	mgkg	${ }^{8022}$	0.0004^{+3}	0.236	0.975	-	-	-	-	-	-	-	-	-	80.0070	-	<0.0070	80.007	-							
PCB-1254	mgkg	${ }^{8022}$	$0.0094{ }^{\text {a }}$	${ }^{0.239}$	1	-	-	-	-	-	-	-	\cdots	-	0.13	-	${ }^{\text {c.0038 }}$	0.11	-							
RCRAM Atals																										
${ }^{\text {a }}$ (Sainc	$\stackrel{\text { mokg }}{\text { mokg }}$	${ }^{600108}$	${ }_{1648}^{1648}$	${ }_{15,500}^{0.000}$	100,000	${ }_{364}$	-	-	\cdots	-	-	\cdots	-	69	34	${ }_{53}$	15	${ }_{42}$	${ }^{23}$	-						
Caanium	mokg	${ }^{60108}$	0.752	71.1	${ }_{985}$		-	-	-	-	-	-	-	0.418	0.38 B	0.21	0.22	0.828	0.57	-						
chome	mgha	60108	360,00	-		${ }^{44}$	-	-	-	-	-	-	-	17	15	${ }^{35}$	${ }_{5}^{5.5}$									
Lead	mgkg	60108	${ }^{27}$	400	800	${ }_{51.6}$	-	-	-	-	-	-	-	140	22	56	6.9	${ }_{5}$	${ }^{9.5}$	-						
Nercur	mgkg	${ }^{\text {7747A }}$	0.208	${ }^{3.13}$	${ }_{3.13}$		-	-			-	-		0.066	0.09	0.07	co.0068	0.05	0.0078 J							
边		-		-		-	-	-	-	-	-	-	-					-								
Seitum	${ }_{\text {mang }}^{\substack{\text { mokg } \\ \text { mokg }}}$	${ }^{600008}$	${ }_{0}^{0.529}$	${ }_{391}^{391}$	${ }_{\text {S } 540}^{560}$	-	-	-	-	-	-	-	-	${ }_{0}^{0.059}$	${ }_{0}^{0.58}$	${ }_{0.07}^{0.72}$	${ }_{\text {coin }}$	${ }^{2} 0.56$	${ }_{\text {c. }}^{0.56}$							
4.4.000	mokg	${ }^{8881}$	-	1.9	$\frac{9.57}{903}$												${ }_{\text {co.003 }}$	${ }^{\text {c.00036 }}$								
4 4,-DDT	$\mathrm{mog}^{\text {mok }}$	${ }^{8081}$	-	${ }_{1}^{1.89}$		-	-	-	-	-	-	-	-	-	-	-	${ }_{\text {co, } 0.00093}$	${ }^{\text {co.000 }}$	-	-						
Abdin	mokg	8881 A	-	0.04	0.187	-	\cdots	-	-	\cdots	-	-	-	-	-	-	<0.0073	<0.00074	-	-						
	mokg	${ }_{8081 / A}^{8081}$	-	${ }_{0}^{0.086}$	0.365	-	-	-	-	-	-	-	-	-	-	-	${ }_{\text {en }}^{0.000045}$	${ }_{\text {co.0.000 }}^{\text {coso }}$	-	-						
Beatabic	mgkg	${ }^{8081 /}$	-	0.301	1.28	-	-	-	-	-	-	-	-	-	-	-	${ }^{\text {c0.0.0055 }}$	0.023	-							
Selatabc	mgkg	${ }^{8081 A}$	-			-	-	-	-	-	-	-	-	-	-	-	<0.00056	c0.00056	-	-						
diedin	mokg	${ }^{8881} 8$	-	0.034	${ }^{0.194}$	-	-	-	-	-	-	-	-	-	-		${ }_{\text {coiole }}$	0.0036	-	-						
Enosion	mokg		-	${ }^{469}$	${ }^{1010}$	-	-	-	\cdots	\cdots	-	-	\cdots	-	-	\cdots	$\stackrel{0}{\text { co.000 }}$	${ }_{\text {coioleor }}$	\cdots	\cdots						
Enosuluan sulfale	mokg	${ }^{8088} \mathrm{~A}$		-		-	-	-	-	-	-	\cdots	\cdots	-	-	-	${ }^{\text {c0,000 }}$	${ }_{\text {coin }}$	-	\cdots						
Endin	mgkg	${ }^{\text {8081/ }}$	${ }^{0.1676}$	19	${ }^{246}$			-									${ }^{\text {c0.0022 }}$	<0.00225								
Endin adenvice	mokg	$8881 /$	0.1616	19	${ }^{246}$	-	-	-	-	-	-	-	-	-	-	-	${ }^{\text {c.0.0030 }}$	${ }^{\text {co.003 }}$	-	-						
Endin keione	mokg	${ }^{8088}$	\bigcirc	${ }_{0}^{0.568}$	$\stackrel{-254}{254}$	-	-	-	-	-	-	-	-	-	-	-	${ }_{\substack{\text { co.000 } \\<00038 \\ \hline}}$		-	-						
	mold							-						-	-	-	${ }_{0}^{0.000095}$ J	${ }^{40.00097}$	\cdots							
Heparator	mokg	${ }^{8081}$	0.062	0.14	0.654	-	-	-	-	-	-	-	-	-	-	-	${ }^{\text {c0,000 }}$	c0.00075	-	-						
Heenatio foxide	makg	${ }^{8088 / 4}$	${ }^{0.082}$	${ }_{0}^{0.072}$	$\frac{0.338}{}$	-	-	-	-	-	-	-	-	-	-	-		${ }^{\text {ce.0.0063 }}$	-	-						
Toxapenene	$\frac{\text { magk }}{\text { makg }}$	${ }^{8088}{ }^{\text {80, }}$	${ }_{0} 0.928$	${ }_{0} 0.43$	$\stackrel{209}{209}$	\cdots	\cdots	-	\cdots	-	\cdots	\cdots	-	-	\cdots	\cdots	${ }_{0}^{20.00075}$	${ }^{20.00075}$	\cdots	\cdots						
Heficicies																										
$\frac{24.5-1}{24.0}$	$\frac{\text { mokg }}{\text { mokg }}$	${ }^{81515 A}$	0.0382	${ }_{6}^{632}$		-	-	-	-	-	-	-	-	-	-	-	${ }_{\substack{\text { co.099 } \\ \text { cose }}}$		\cdots	-						
24.08	mgkg	81514		1900	24.600	-	-	-	-	-	-	-	-	-	-	-	¢0.10	0.10	-	-						
Dicamb	${ }_{\text {mokg }}$	${ }^{8151 / A}$	0.1553	1900	$\stackrel{24.600}{ }$	-	\cdots	\cdots	\cdots	-	-	-	-	-	-	-			\cdots	\cdots						
Silex (2,5.5P)	${ }_{\text {mox }}$	8151A	0.055	506	6.570	-	-	-	\cdots	-	-	-	-	-	-	-	${ }^{2}$	${ }^{\text {co.000 }}$	\cdots	\cdots						

Sample	Units	Method	NR 720 RCLsfor GWProtection (1)			$\begin{array}{\|c} \text { Badground } \\ \text { Thersond } \\ \text { value } \end{array}$	EbRTST 1	${ }_{\text {Es.rss.2 }}$	${ }_{\text {EbRRS }}$ E.	${ }^{\text {EbBris.4. }}$	${ }_{\text {eberss. } 5}^{\text {es }}$	${ }_{\text {E.BRTS } 6}$	${ }_{\text {EB.RTS. } 7}$	${ }^{8.7}$	${ }^{8.8}$	${ }^{8.9}$	${ }^{8.10}$	${ }^{8.11}$	${ }^{8.12}$	${ }^{\text {B.16 }}$
														SANO 8 CRRNVEL		${ }_{\text {Sandy }}^{4.14 Y}$	${ }_{\substack{3.4 \\ \text { Fill }}}$	${ }_{\text {cill }}^{\text {Fil }}$	${ }_{\substack{\text { Sily } \\ \text { Slis } \\ \text { LiAY }}}$	
Soil Conditions							Most	Most	Moist	Moist	Moist	Moist	Unsaturated	Unstaurated	Unstaturated	Unstaturated	Unstaurated	Unstaturated	Unstaturated	Unsaturated
Sampling Oaie							4662021	4662021	4662021	466221	4662021	4662021	4662021	41102220	4102020	4110220	421232020	42322020	44102020	625252020
Metho S57 (modified) Fluorinate d Alyl Sustances																				
	U9GKa	${ }_{53} 57$	\cdots	-	-	-	\cdots	-	-		-	-		-	-		-	-	-	${ }_{0}$
Pefluloonexenoioc adid PPHKN)	$\mathrm{ugKg}^{\text {g }}$	${ }^{537}$	-	-	-		-	-	-		-	-			-		-	-		<0.051
	ugkg	${ }^{537}$	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.35
Pefluluoratancicad (PFOA)	ugkg	${ }^{537}$	-	${ }_{1220}$	16.400	-	-	-	-	-	-	-	-	-	-	-	-	-		0.10
	ugkg	${ }^{37}$						-												¢0.044
	ugkg	${ }^{537}$	-	-	-		-	-	-											<0.027
Pefluruoundecanoc acad PPUUA)	ugkg	${ }^{537}$	-	-	-	-	\cdots	-	-	-	-	-	-	-	-	-	-	-		${ }_{0} 0.044$
Pefluorodeceanco acad P POOA	U9K0	${ }^{537}$	-	-	-		-	-	-			-								${ }^{20.0082}$
	U90Ka		-																-	${ }_{6} 0.0068$
	ugkg	${ }_{537}^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	${ }_{6}$
		57																		<0.034
	ugkg	${ }_{537}$						-												
	ugkg	${ }_{5}^{537}$	-	-	-	-	-	-	-	-	-	-	-		-		-			${ }^{<0.024}$
Perluo	Ugkg	${ }_{537}^{537}$	-					-	-	-	-	-	-	-			-			
Pefluroortanesulvoic ead P PFOS	ugkg	537	-	1260	16,400	-	-	-	-	-	-	-	-	-	-	-	-	-	-	${ }^{0.51 ~ J B}$
	ugkg	${ }^{537}$	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Ugkg		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\underset{\substack{<0.048 \\ \hline 0073}}{\substack{\text { core }}}$
Peflucoocranesulionamide (FOSA)	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-	\cdots	-	-	-	-	-	<0.10
NEFFOSA	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-		-		-			<0.029
NMerosa	ugkg	${ }^{33}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		${ }^{<0.050}$
	ugko	${ }_{5}^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	${ }_{\substack{0.48 \\ \hline 0.45 \\ \hline 0.0 \\ \hline}}$
NMefose		${ }_{537}$																		087
NEEFOSE	ugkg	537	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	<0.04
44.2 FTS	ugkg	57																		C0.45
	ugkg	57	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	C0.18
${ }^{\frac{1}{10.2-2 ~ F T S ~}}$	U9Kg	${ }_{537}^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
OONA	ugkg	53	-	-	-		-	-	-								-			${ }^{<0.022}$
HFPO.OAI(Genx)	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	\cdots	-	-	-	${ }^{0.13}$
	${ }_{\text {ugkg }}^{\text {ugkg }}$	${ }_{537}^{537}$																		${ }_{\substack{\text { <0.033 } \\ \text { c.027 }}}$

Eneineers
Scientists
scientists
Consultants

Sample							s5.6	${ }_{\text {SS } 116}$	${ }_{\text {ss-17 }}$	SS.19	S5.26	SS.28	S5.32	${ }_{5 S} 58$	SS.48	S5.51
Depth feen)						$\frac{0.1}{0.1}$	${ }_{\text {SAND }}^{0.1}$ GPAVELEL	${ }_{\text {can }}^{0.1}$	$\frac{0.1}{\text { Gavell S SAND }}$	$\frac{0.1}{0.1}$	${ }^{0.1}$	${ }^{0.1}$	0.1	0.1	0.1	${ }_{\text {Gavall }}^{0.1}$ SAND
Soil Tpee	Units	Mentod	Tors			Sily CLAY	SAND \& GRavel	SAND 8 GRavel	Giralily Sand			${ }_{\text {Silly Cur }}$	${ }_{\text {Slly Clar }}$			
${ }_{\text {Soll }}^{\text {Sol Contions }}$					Prooteion (1)	Unsatraed	Ster	$\underbrace{\text { at }}_{\substack{\text { Saturated } \\ \text { 392021 }}}$		${ }_{\text {Unsiavaled }}$		Unsauraed	Unsiuraed	Unsaturated	Unsaturated	$\underbrace{\text { 392021 }}_{\text {Unsturatad }}$
Physical Characterisitic																
Percent Mosistre						20.4	16.0	27.1	14.0	${ }_{5.7}$	10.7	15.2	10.2	15.6	14.1	${ }_{5}^{5.8}$
Percant Solics						${ }^{79.6}$	840	12.9	86.0	${ }^{94.3}$	89.3	84.8	b9, 8	84.4	85.9	94.2
Voatili O Organic Compoun																
1,1,1,2-Peracaloloreethane	mgkg	82008	0.054	2.78	${ }^{123}$	${ }^{60.035}$	<0.32	c.041	80.030	c0.033	c0.028	${ }^{2} 0.05$	00.28	c0.06	c0.19	${ }_{0} 0.22$
$1.1,1$. Trichloroentane	m9kg	82008	0.1402	640	${ }^{640}$	0.13	<0.226	${ }^{0.0033}$	0.11	<0.027	${ }^{2} 0.023$	<0.045	60.023	co.046	<0.15	<0.021
1,1,2-2.ertacalloroenhane	mokg	82008	0.0002	0.81	${ }_{36}^{36}$	20.30	e0.028	C0.35	0.026						C0.6	
	mokg		0.0032	${ }^{1.59}$	$\frac{181}{21}$	C0.26	<0,25	co.31	0.023	C0.25	${ }^{0.021}$	<0.042	C0.21	${ }^{20.043}$	0.14	<0.020
(1,-VClChooentane	mgkg	82008	0.4834	${ }_{5}^{5.06}$	$\underline{\underline{222}}$	0.13	-0.29	${ }^{20.036}$	${ }^{20.027}$	20.30	${ }^{20.025}$	<0.49	20.25	c0.050	<0.17	${ }^{20.023}$
(t-1-CCloroeatene	mgkg	${ }^{2008}$	0.005	${ }^{320}$	${ }_{1,190}$	${ }^{20.29}$	<0.22	e.034	${ }^{20.026}$	80.28	${ }^{20.024}$	<0.04	20.024	${ }^{\text {cout }}$	0.16	<0.022
(1,COCloropopene	mgng	8200	-	20		C0.22	C0.21	C0.20	-0.220	-0.022	${ }^{20.018}$	-0.36	${ }^{20.018}$		<0.12	017
退,	ming			${ }^{226}$		e.034	<0.32	C0.40	20.030	-0.033	e0.28				e.19	${ }^{\text {co.026 }}$
	monc	2000	O.0.9	0.005		\%0020	202	S000	O202	O20.	S02	O20.	S023	0.000	,	O.02
			为	${ }_{24}^{24}$	$\frac{15}{29}$		202	0.00								-0.19
	mong					<015	-0.20	20,	${ }^{2} 0.024$	0.005	$\stackrel{0.012}{ }$	Sits	(0.022	${ }^{2}$	4	c.020
,	mont			0.005	0											\%
	${ }^{4}$		${ }_{1}^{10.688}$	${ }_{376} 3$	${ }^{376}$	${ }_{6} 0025$	${ }_{\text {colo }}$	-0029	C022	C0024	C0020	co.a40	<0020	${ }_{\text {coiclo }}$	${ }_{\text {en }}$	${ }_{6}^{20.029}$
1.2.i.inloosoentane	mokg	${ }^{82008}$	0.0028	0.652	${ }^{287}$	${ }^{2} 0.30$	c0027	c0, 0	${ }^{20.026}$	${ }^{2} 0.28$	${ }^{2} 0.024$	c0047	${ }^{2} 0.024$	c0047	0.16	<0.022
	mgKg	${ }^{08}$	0.0033	${ }_{3} 3$	15	C0.32	<0.30	20.38	${ }^{80} 0.028$	<0.31	${ }^{2} 0.026$	c0.051	<0.026	${ }^{\text {C0.052 }}$		${ }^{0} 0.024$
1,3,5.Timentulberzene		82208	${ }^{1.3787^{\prime \prime}}$	182	${ }^{182}$	0.13	<0.22	${ }_{0} 0.03$	${ }_{0} 0.025$	${ }_{0} 0.027$	${ }_{0} 0.023$	<0.045	<0.023	<0.046	0.17 J	<0.021
13.3.ichloroberzene	mgkg	82008	${ }^{1.1528}$	${ }^{297}$	${ }^{297}$		<0.028	${ }^{2} 0.35$		c0.029		C0.048	<0.024	C0.048	C0.16	
1,3.i.ichoompopane			0.0003	${ }^{237}$	10.6	${ }^{2} 0.027$	<0.225	${ }^{0} 0.32$	<0.024	<0.026	${ }^{2} 0.022$	<0.043	80.022	<0.044	<0.15	80.020
14.0.ichloroberzene	mgKg	82008	0.144	${ }_{3}^{3} 7$	16.4	${ }^{6} 0.027$	<0.025	<0.32	${ }^{6} 0.024$	${ }^{6} 0.226$	${ }^{2} 0.022$	c0.043	${ }^{6} 0.022$	<0.044	0.15	<0.20
2.-Diblhoopropane				191	${ }^{191}$	co.03	c0.31	co.39	C0.029	C0.32	co.027	c0.03	${ }^{2} 0.027$	c0.05	c0.18	co.025
2.Chorocouvene	mgkg	82008	-	${ }^{907}$	${ }_{907}$	20.24	${ }^{2} 0.022$	60.28	<0.021	${ }^{2} 002$	c0.19	<0.37	c0.019	<0.38	0.13	${ }^{20.018}$
4.Chorootuene	mgkg	82008		${ }^{253}$	${ }^{\frac{235}{3}}$	${ }^{80} 026$	c0.024	c0.31	${ }^{20} 02$	${ }^{20} 025$	<021	<0.042	<0221	C0.42	0.14	80.020
Benene	mgKg	82008	0.0051	1.6	${ }^{2}$	0.28	${ }^{0.011 \mathrm{~J}}$	${ }^{20.013}$	${ }^{80.0096}$	co.011	${ }^{80.0089}$	<0.017	${ }^{80.0088}$	${ }^{60.018}$	0.39	${ }^{80.0082}$
Bomodenerene	mgKg	82008		${ }_{342}$	6	${ }^{20.027}$	${ }^{\text {co.025 }}$	c0.31	${ }^{\text {co.023 }}$	${ }^{80.026}$	${ }^{20.022}$	${ }^{\text {co.043 }}$	${ }^{<0.022}$	${ }^{\text {co.043 }}$	c0.14	${ }^{80.020}$
Biomochlomemenane	mgko	${ }^{82008}$			- ${ }^{\frac{906}{193}}$	${ }_{\substack{\text { <0.032 } \\<0028}}$	<0.300	-0.038	-0.028		${ }_{\substack{80.026 \\ 6023}}$	-0.051	${ }^{80.026}$	${ }_{\substack{\text { co.052 } \\ \text { C005 }}}$	<0.17	-0.024
Somodele	mgho	${ }^{22008}$	${ }_{0}^{0.00023}$	- 2.4 .4		${ }_{\text {coios }}$										${ }_{6} 8.0027$
Bomomethane	mgKg	82208	0.0051	${ }^{9.6}$	${ }_{43}$	<0.060	<0.066	c0.70	c0.052	c0.057	c0.048	<0.095	c0.048	c0,096	c.32	${ }^{0} 0.045$
Cateon tetachor	mgkg	03	0.0039		$\frac{403}{01}$	<0.029	${ }^{<0.027}$	${ }^{\text {co. } 034}$	${ }^{20.025}$	${ }^{\text {co.028 }}$		${ }^{<0.046}$	${ }^{20.023}$	${ }^{<0.046}$		${ }^{\text {co.022 }}$
Choroentene	molag	${ }^{22008}$	0.2266	${ }_{2}{ }_{2} 120$	$\stackrel{12120}{2120}$	${ }_{40}$	${ }_{6}$	${ }_{6}$	${ }^{2} 0.033$	${ }_{6} 0.0036$	${ }_{60}$	C0060	${ }_{\text {coices }}$	C0091	-020	
Chloovom	${ }_{\text {mokg }}$		0.0033	0.454	${ }^{1.98}$	${ }^{0} 0.028$	${ }^{6} 0.226$	${ }^{10} 033$	${ }^{2} 0.024$	${ }^{60.027}$	${ }^{2} 0.023$	c0,044	40.022	${ }^{\text {cou4 }}$	0.15	C0.021
	mgKg		0.0155	${ }^{159}$	669	${ }^{2} 0.24$	${ }^{2} 0.022$	<0.028	<0.021	${ }^{2} 0.023$	<0.019	C0.38	80.019	c0.39	0.13	c0.018
disi,2-2.ichloroentere	mgKg	8^{2208}	0.0412	${ }^{156}$	23.30	0.88	0.14	c0.36	${ }^{2} 0.027$	<0.029	${ }^{0} 0.025$	c0.049	${ }^{2} 0.025$	<0.049	<0.17	${ }^{0} 0.023$
dis i.3.0.i.lloroforoene			0.0003	${ }_{1,210}$	${ }_{1,210}^{10}$	c0.031	60.029	<0.037	<0.027	00.30	${ }^{0} 0.025$	c0.50	${ }^{2} 0.025$	C0.50	0.17	${ }^{20.023}$
Oibumediocomethane	mgk ${ }^{\text {a }}$	${ }^{828008}$	0.032	8.28 8 18			${ }_{\substack{\text { c.0.34 } \\ \text { coid }}}$	co.			C0.030 C0015				${ }^{6} 20$	
Dichlorodituoromehene	mokg	${ }^{82008}$	3.0883	126	${ }_{530}$	${ }^{20.051}$	<0.047	c0.59	${ }^{20.044}$	<0.49	${ }^{2} 0.041$	<0.080	${ }^{2} 0.041$	<0.081	${ }^{20.27}$	${ }^{\text {co.038 }}$
Etyluberzene	mgk	${ }^{82808}$	1.57	${ }^{8.02}$	${ }_{35} 3.4$	0.74	<0.013	<0.016	20.012	20.013	c0.011	<0.02	<0.011		0.10	c00010
Hexachlorobutadiene	mgkg	${ }^{82608}$		${ }^{1.63}$	${ }^{2} 1.19$	c0.034	<0.31	<0.39	<0.229	20.32	<0.027	${ }^{0} 0.053$	${ }^{2} 0.027$	c0.054	0.18	c0.025
soroopeve terer	mgkg	82008	-	2280	2260	c0.021	<0.19	c0.024	<0.018	60.20	${ }^{20.017}$	<0.03	<0.017	${ }^{\text {c.033 }}$	0.11	c0.015
	mgkg	82008		${ }^{268}$	${ }^{268}$	0.54	<0.027	c0.34	<0.22	60.028	${ }^{2} 0.023$	<0.046	${ }^{2} 0.023$	<0.046	0.16 J	<0.022
weetyl letrowive eher	mgkg	${ }^{82003}$	0.027	${ }^{66.8}$	${ }^{282}$	${ }^{20.030}$	${ }^{\text {co.027 }}$	${ }^{\text {co. } 035}$	${ }^{20.026}$	${ }^{80.028}$	${ }^{20} 024$	co.047	${ }^{20} 024$	c.048	c0.16	c0.022
Nentrene Choride	mgKg	82008	0.022	${ }^{61.8}$	1.150	c0.12	0.11	<0.14	<0.11	<0.12	80.099	<0.19	<0.098	<0.20	<0.66	<0.091
Naphtalene	mgkg	${ }^{82608}$	${ }^{0.658882}$	${ }_{5}^{5.52}$	$\stackrel{24.10}{ }$	1.2	0.028 J	${ }^{\text {co. } 029}$	0.12	0.13	0.14	0.111 J	${ }^{20.020}$	0.088 J	0.17 J	${ }^{6} 0.019$
	mgkg	${ }^{82008}$		${ }^{108}$	${ }^{108}$	${ }_{3}^{12}$		80.034						${ }^{20.095}$	${ }^{0.16}$	
P. Proplounene	mgkg	${ }^{82008}$		${ }^{264}$	${ }_{-64}^{66}$. 21		<0.036	${ }^{2}$		${ }^{20.025}$	C0043		<0.000	60.17	
	${ }_{\text {mghag }}^{\text {mokg }}$	${ }^{822008}$	-	${ }_{145}^{142}$	$\frac{162}{145}$	${ }_{1}^{1.9}$	${ }_{\substack{\text { e.0.025 } \\ \text { coid }}}$	${ }_{\substack{\text { C0.032 } \\ \text { c0, } \\ \hline}}$		${ }_{6}^{60.029}$		${ }_{<0}$			${ }_{6}^{20.16}$	
Strene	mgkg	82088	0.22	${ }^{867}$	${ }^{867}$	<0.229	<0.027	c0.034	<0.22	${ }^{4} 0.028$	0.12	${ }^{\text {co.046 }}$	${ }^{20.023}$	<0.047	92	40.022
eet-butberzene	m9kg	82008		${ }_{183}$	${ }^{183}$	0.2	<0.028	<0.35	20.026	c0.29	c0.024	${ }^{\text {co.048 }}$	<0.024	c0.048	<0.16	
Tetachloroethene	mgkg	82008	0.0045	${ }^{33}$	${ }^{145}$	${ }^{0.028}$	${ }^{20.026}$	c.033	-0.024	${ }^{<0.027}$	0.09	co.04	${ }^{20.022}$	${ }^{<0.045}$	<0.15	<0.021
Touene	m9kg	82008	1.1072	${ }_{8} 88$	${ }_{818}$	0.14	0.04	${ }^{20.013}$	0.015	0.049	0.039	${ }^{20.018}$	${ }^{\text {co.0089 }}$	${ }^{2} 0.018$	0.11	${ }^{20.0082}$
	mgkg	${ }^{82003}$	0.0026	${ }^{1360}$	1850	co.026	${ }^{\text {co. } 024}$	C0.31	2022	coioz	${ }_{0} 0.021$	<0.042	C0.021	${ }^{\text {co.042 }}$	0.14	${ }^{80.202}$
	mgne	2005		\%,so	${ }^{1.510}$	0.02	co.25	0.022	${ }^{20.024}$	-0.26	C0.022	${ }^{20.043}$	-0.022	co.044	0.15	c0.20
Trancooenene	mgkg	${ }^{82008}$	0.0036	$\stackrel{1.3}{1230}$	-	${ }_{\text {coinl }}^{\substack{\text { col2 }}}$			${ }_{\text {O.13 }}^{0}$		$\stackrel{.}{\text { c. }}$	${ }_{\substack{<0.020 \\<0.051}}^{\text {coser }}$	$\underset{\substack{0.003 \\ \hline 2026}}{ }$		${ }_{\text {20066 }}$	(0.025
Viny choride	mgKg	${ }^{82008}$	0.0001	0.067	2088	0.23	<0.018	${ }_{\text {coion }}$	<0.017	<0.019	${ }^{2} 0.016$	${ }_{60.031}^{40.026}$	${ }_{0} 0.006$	${ }_{0}^{60.032}$	c0.11	${ }^{2} 0.0015$

PRE-REMEDIATION SOIL QUALITY TEST RESULTS
COMMUNITY WITHIN THE CORRIDOR - EAST BLOCK
MILWAUKEE, WI
PROJECT NUMBER: 40441

Engineers
Scientists
Scientists
Consultants

PRE-REMEDIATION SOIL QUALITY TEST RESULTS COMMUNITY WITHIN THE CORRIDOR - EAST BLOCK

MILWAUKEE, WI
PROJECT NUMBER: 40441

Sample	Units	Method				${ }_{\text {s5 } 51}$	${ }_{\text {s5 } 5.6}$	${ }_{\text {SS.16 }}$	${ }_{\text {SS } 517}$	SS.19	${ }_{5 S}$ S26	${ }_{5 S}$ S28	ss.32	${ }_{5 S}$ S38	Ss.48	ss.51
						${ }_{\text {Silly } \mathrm{CLAY}}^{0.1}$	${ }_{\text {SANO }}^{0.1}$ ORANVEL	SAND 01.1		Sandy 0 PRVEL	SANO 8 ORPVEL		${ }_{\text {Silly }}^{\text {Siluy }}$	$\frac{\text { Sill }}{\text { OTAY }}$		${ }_{\text {Givaill }}^{0.1}$ SANO
Soil Conditions						Unsaturated	Salurated	Salurated	Unsaturated	Unsaturated	Moist	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated
ding Date						398221	399202	3982021	3922021	3992021	1992021	2242021	3332221	2242021	22422021	3992021
Meetho 5 S77 (modified) -Fluorinate Alky Sustances																
Peflucorounoicacal PPEAA)	ugk	${ }_{537} 5$	-	-	-	-	-	-	-							
	ugk	${ }^{537}$	-	-	-	-	-	-	-	-		-				
	ugk	${ }^{537}$	-			-	-		-	-	-	-	-	-		
Peafluorocataicic aid (PFOA)	ugkg	${ }_{57}$	-	${ }^{1260}$	${ }^{16,40}$	-	-	-	-	-	-	-	-	-	-	-
	ugk		-				-									
	ugkg	${ }^{337}$	-				-									
	ugkg	37	-	-		-	-	-	-	-	-					
	u9kg	537	-	-	-	-	-	-	-	-	-	-		-		
Pefluo	u9kg	${ }^{537}$	-													
	U9kg	${ }^{337}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ugkg	${ }_{57}$	-	-	-	-	-	-	-	-	-	-	-	-	-	
	ugkg	${ }_{537}^{53}$														
Peflucoronenanesululonicacid (PFPes)	ugkg	${ }^{537}$														
Perfluor hexanesulforic adid PPFH/4)	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pefluoronepanesulfonic Acid PPFths)	ugkg	${ }^{537}$	\cdots			-	-	-	-	-	-	-	-	-	-	-
	ugkg	${ }^{537}$	-	${ }^{1220}$	16.400	-	-	-	-	-	-					
Peffuluononanesuluticicadid P Pens)	ugko	${ }^{537}$	-			-	-	-	-	-	-	-	-	-	-	-
		${ }_{537}^{537}$	\cdots	\cdots	-	-	-	-	-	-	-	-	-	-	-	-
Peflucoooctanesulionamide (FOSA)	UgMg	${ }^{537}$	-	-		-	-	-		-	-		-	-	-	
NEFFOSA	ugko	${ }^{537}$	-			-	-	-	-	-	-			-		
Merosa	ughg	37	-			-	-									
	Ugheg	${ }^{37}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Ligke	${ }_{537} 5$														
NEFFOSE	O9M	${ }_{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
4.2 FTS	ugkg	${ }_{53}$	-	-	-	-	-	-	-	-	-	-	-	-	-	
${ }^{\frac{8}{2 / 2 F I S}}$	ugko	${ }^{637}$	-	-	-	-	-	-	-	-			-			
10.2 FTS	U9Kg	${ }_{537}$	\cdots	-	-	-	-	-	-	-	-	-	-	-	-	-
OONA	ugko	${ }_{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
trpoon (Genx)	ugkg		\cdots	-		-		-		-	-		-	-		-
E.538 Mijor	ugko	537	-	-	-	-	-	-		-	-	-	-	-		-
E.538 M Mor																

Enemeers
Scientists
Scientists
Consultants

PRE-REMEDIATION SOIL QUALITY TEST RESULTS
COMMUNITY WITHIN THE CORRIDOR - EAST BLOCK
MILWAUKEE, WI
PROJECT NUMBER: 40441

PRE-REMEDIATION SOIL QUALITY TEST RESULTS
COMMUNITY WITHIN THE CORRIDOR - EAST BLOCK
MILWAUKEE, WI
PROJECT NUMBER: 40441

Engineers
Scientists
Scientists
Consultants

PRE-REMEDIATION SOIL QUALITY TEST RESULTS

PROJECT NUMBER: 40441

				NRT20acls.	NR20acls.	VE-1	VE.2	VE=3			VE:5	VET 7	VE=8	${ }^{\text {EB, } \cdot 1 \cdot 1} \cdot 1$		
		Mehod	$\underset{\substack{\text { NNT20RCls } \\ \text { for }}}{ }$		lindurialse	$\frac{0.1}{\text { Sanay CAY }}$	${ }_{\text {Clajeves SAND }}^{0.1}$	$\frac{0.1}{\text { Sily }}$ Star	$\frac{0.1}{\text { Sild }}$ (iAY		$\frac{0.1}{\text { orlo }}$	$\frac{0.1}{0.1}$	${ }^{0.1}$	0.5 .1 .5	${ }^{0.51 .5}$	${ }^{0.51 .15}$
Soin			Poreciol	Uselol oried											-	
Sor				Provecion (1)	Pronecion (1)	Vnsalualed	Unsarualed		Unstauraed	${ }_{\text {Unsiutarad }}^{4142021}$	Unsaturaled	${ }_{\text {Unsen }}$	${ }^{\text {Unsemaraed }}$ 224202	Unsaurated	${ }_{4}^{414142021}$	Unsaturated 4
Popycelic A Armamic Hydrocatons PPAHS)																
1 -Methlymaphthalene	mokg	82700	-	${ }^{17.6}$	${ }^{227}$	-	-	-	-	-	-	-	-	-	-	-
2-Methyaphthaene		82700		${ }^{239}$	3010	-			-		-					
Acenaphthene	mokn			3590	45.200											
Acenaphy ${ }^{\text {antere }}$	monc	${ }^{82700}$	${ }^{109292}$	17900		-		-								
Berozolantracene	mokg	${ }^{82700}$		114	$\underline{21}$	-	-	-	-		-	-	-	-	-	
Benzolab yrene	mokg	82700	0.47	0.115	211	-			-					-		
Benrobiflucarantene	mgkg	82700	0.4781	${ }_{1}^{1.15}$	$\frac{21.1}{1}$	-	-	-	-	-	-	-	-	-	-	
Benozogh, ijeollene	mgk	82700				-	-		-				-	-	-	-
Benzokfluorantene	mgkg	82700		${ }^{11.5}$	${ }^{211}$	-	-	-	-	-	-	-	-		-	
Chrsene	mgkg	82700	0.142	115		-	-	-	-	-	-	-	-	-	-	
Diberza,.,.antrracene	mgkg	${ }^{8200}$		0.115	$\underline{2}$	-	-	-	-	-	-	-	-	-	-	-
Fuorantene	makg	82700	${ }^{888778}$	${ }^{2330}$	${ }^{30,100}$	-	-	-	-	-	-	-	-	-	-	-
Furene	mokg	82700	14.8299	${ }^{2390}$	30,100	-	-	-	-	-	-	-	-			
Inemol, 2, 3-c-cjprene	mgkg	82700		${ }^{1.15}$	2.11	-		-	-	-			-			
Naphitaene	mokg	82700	0.6582	${ }^{5.52}$	${ }^{24.1}$	-	-	-	-	-	-	-	-			
Phenantrene	mgkg	${ }^{82700}$				-	-	-	-				-			
Prene	mokg	82700	${ }^{54.4545}$	1790	$\underline{22600}$	-	-	-	-	-	-	-	-	-	-	-
P6B-122	$\stackrel{\text { mgkg }}{\text { makg }}$	${ }^{808024}$	${ }^{0.0094{ }^{\text {a }} \text { (}}$	$\stackrel{4.10}{0}$	${ }_{0}{ }^{2.883}$	-	-	-	-	-						-
PCB-1232	mgkg	802a	${ }^{0.00094}$	${ }^{0.19}$	0.92	-	-	-	-	-	-	-	-	-	-	
	molic	${ }^{8029}$						-					-	-	-	
PCB.1254	mokg	8002A	0.0094**	0.239	$\frac{1}{1}$	-	-	-	-	-	-	-	--	-	-	
PCB-1280	makg	8082	${ }^{0.0094^{*+1}}$	0.243	1	-								-	-	-
RCRA Meals																
${ }_{\text {asemen }}^{\text {Alsenic }}$	$\underset{\substack{\text { mokg } \\ \text { mokg }}}{ }$	${ }^{60108}$ 6008	${ }_{1648}^{0.584}$	${ }^{0.657}$	$\stackrel{3}{100000}$	-	-	-	-	-						
Cathium	${ }_{\text {makg }}$	${ }^{60108}$	${ }_{0} 0.752$		${ }_{985}$	-	-	-	-	-	-	-	-	-	-	-
Chromium	mgkg	60108	386.000°			-	-	-	-	-	-	-	-	-	-	
Copper													-	-	-	
Lead	mokg	60108	${ }^{27}$	400	${ }^{800}$	-	-	-	-	-	-	-	-	-	-	-
Meccur	mgkg	7471	0.208	${ }^{3.13}$	${ }^{3.13}$	-	-	-	-	-	-	-	-	-	-	-
						-	-	-	-	-	-	-				
Seanu	mgkg	${ }^{60108}$	0.52	${ }^{391}$	5840	-	-	-	-	-	-	-	-	-	-	-
2 zra	mon						-									
Oranochlorine Pesticides																
44:000	mgkg	8081	-	1.9	9.57	-		-	-	-						
4.4.0. ${ }^{\text {P }}$	mokg	${ }^{8081 /}$	-	2	${ }_{9}^{9.38}$								-			
A.abior	mokg	$8881 /$	-	${ }^{1.89}$	$\frac{8.53}{0.97}$	-							-	-	-	-
Aatim	mokg	${ }^{8089}$	- -	${ }_{0}^{0.096}$	-	-	-	-	-	-	-	-				
dischiorane	mgkg		\cdots			-										
beatablc	mgkg	8081 A	-	0.301	1.28											
dila BHC	mgkg	814	-				-	-	-		-	-	-			
	$\underset{\text { mgkg }}{\text { mokg }}$	881A	\cdots	${ }^{0.034}$	${ }^{0.144}$	-	-	-	-	-	-	-	-	-	-	-
Endosulfan II		${ }^{8081}$											-	-	-	
Endosuluan unfitie	mgkg	${ }^{8081}$				-	-	-	-	-	-	-	-	-	-	-
Enedin	mgkg	8081 A	0.1616	19	${ }^{246}$	-	-	-	-	-	-	-	-	-	-	-
Endiria adenyde	mgkg	8081 A	0.1616	19	246	-	-	-	-	-	-	-	-	-	-	-
Endiniketene	mgkg	$8881 / \mathrm{A}$				-	-	-	-	-	-	-	-	-	-	-
	mgkg	8081 A	0.0023	0.568	254	-	-	-	-	-	-	-	-	-	-	-
Heprathor	mok	${ }^{8081}$	0.062	0.14	0.654	-	-	-	-	-		-	-	-	-	-
Hepachlolo epexide	mgkg	${ }^{8881}$	0.082	0.072	0.388	-	-	-	-	-	-	-	-	-	-	
Mehorochlor	mokg	${ }^{80814}$	${ }_{4}^{4.32}$	${ }_{316}$	4	-	-	-	-	-	-	-	-	-		-
Toxaphene						-	-	-	-	-		-	-			
${ }_{2,5,5}$		${ }^{81514}$												-		
$\frac{2.40}{24.08}$	mokg	8151 A	0.0382	699	9640	-	-	-	-	-	-	-	-	-		
24.abe	mokg	${ }^{8151 / A}$	0153	-	$\stackrel{24600}{2400}$	-	-	-	-			-			-	-
Dichloprol	mok	${ }_{81514}$				-	-	-	-	-	-	-	-	-	-	-
$\underline{\text { Siliex (2, 4.5.TP) }}$	mgk	8151	0.05	506	6.570	-							-	-	-	-

COMMUNITY WITHIN THE CORRIDOR EAST BLOCK
MILWAUKEE, WI
PROJECT NUMBER: 40441

Sample	Units	Method				VE=1	VE:2	VE3	VE-4			$\frac{\mathrm{VE}-7}{0.1}$	VE:8			$\xrightarrow{\text { E.1.1.3 }}$
						${ }_{\text {Sandy }}^{0.1} \mathrm{CLYY}$	Claye SANO	${ }_{\text {Slly Clar }}$	${ }_{\text {Silly }}^{0.1} \mathrm{CLY}$		${ }_{\text {Slly CLAY }}$		Sandy CLAY	0.5 .15		
Soil Conditions						Unsturated	Unsaturated	Unsaturated	Unstaurated	Unsaturated	Unstaturated	Unstaturated	Unsaturated	Unsaturated	Moist	Unsturatad
Sampling Date						22422021	22422021	${ }_{21242021}$	22422021	41422021	${ }^{224242021}$	22442021	2242021	41412021	414142021	41412021
Metho 5337 modified) F Fluoinated Alky Substances																
	ugkg	${ }^{537}$	-	-	-	-	-	-	-		-		-			
Peflucorenenanaicicadid P PFPeAM)	UgKg	${ }_{5}^{57}$	-	-	-	-	-	-	-							
Perfluoronexaicicadid P PHM大)	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-		-	
	ugKg	${ }^{537}$	-			-	-	-	-	-	-	-	-	-		-
Pafluluorananoca aded P POAA	ugkg	${ }^{537}$	-	1260	16.400	-	-			-	-					
	ugkg	${ }^{537}$	-													
	ugkg	${ }^{337}$					-									
	UgKg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-	-		
	UGKg	${ }_{537}^{537}$														
			\cdots	-	-	-	-			-						
Pefluroo.-herexadeanoic adid (PFHKOA)	ugkg	537	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ugkg	${ }_{537}^{537}$	-	-	-	-	-	-	-	-	-	-		-		
	U9Mg	${ }_{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ugkg	${ }^{537}$	-			-	-	-		-	-					
	ugkg	${ }^{537}$	-	${ }^{1260}$	16.400	-	-	-	-	-	-	-	-	-	-	-
	ugkg	${ }_{5}^{537}$	-	-		-	-	-	-	-	-	-	-	-	-	-
	ugkg	${ }^{537}$	\cdots	-	-	-	-	-	-	-	-	-	-	-	-	-
	U9Kg	${ }^{337}$	-		-					-						
NEEFOSA											-			-		
NMeFSSA	ugKg	537	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	U9Kg	${ }^{337}$	-													
隹	Oghe					-			-							
Nefose	Ughog	${ }_{537} 53$	\cdots	\cdots	-	-	-	-	-	-	-	-	-	-	-	
4.2 FTS	ugkg	${ }^{537}$	--			-										
${ }^{6} 2.2 \mathrm{FT}$	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
${ }^{\text {B.2FIS }}$	ugkg	${ }^{537}$	-	-	-	-		-					-			
${ }^{10.2 \mathrm{FFS}}$	ugkg	537	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dond	ugkg	537	\cdots	-	-	-	-	-	-	-	-	-	-	-	-	-
	UGKg	${ }_{537}^{537}$	\cdots	-	-	-	-	-	-	-	-	-	-	\cdots	-	
E-538 Mior	U9Kg	${ }_{53}$		-							-					

Engineers
Scientists
Scientists
Consultants

PROJECT NUMBER: 40441

	Units	Method	NR 720 RCLsfor GW Protection (1)			E88.817		E88.818		EBB-199MW				EEB.2.21MW 5		E.8.8.22		E8.8.23					
						1.4	16.18	24	5.7	14.4	6.58 .5	2.5	${ }^{23.24}$		7.9	1.4	46	14	47				
						SAND 8 CIAY	${ }_{\text {Sily Clay }}$	Flll	Full	Flll	Fulu sily Clar	FILL	Slly Clay	flll	${ }_{\text {Sily Clay }}$	GRavel	${ }_{\text {sily Clay }}$	Gavell S SND	Silty Clay				
Silandios						Unsaturated	Unsatrated	Unsturated	Unsaturated	Unsatualed													
Physical Characerisitics																							
Percen MMosisue										${ }_{123}$	15.2	${ }^{14.6}$	14.9	${ }^{11.1}$	19.5	${ }^{3}$	11.9	${ }_{4}{ }^{2}$	${ }^{16.3}$	${ }_{13.2}$	15.7	12.1	18.7
Percen Soilis						877	848	85.4	85.1	88.9	80.5	97	88.1	95.3	83.7	86.8	84.3	87.9	1.3				
Voatie Ofargaic Compounds NOCS																							
11,1,2,2-terachloroeethane	mgkg	82008	${ }^{0.0534}$	278	${ }^{123}$	${ }^{\text {co. } 030}$ + +	${ }^{80.031}$ +	${ }^{0} 0.32$	<0.32	${ }^{0} 0.30$	${ }^{0.034}$	${ }^{0} 0.25$	<0.029	${ }^{0} 0.25$	${ }^{0} 0.32$	${ }^{0.030}{ }^{\text {+ }+}$	${ }^{\text {e0.03 }}$ + +	$0.029+$	${ }^{0} 0.034+$				
1,1,1-T.ichioloeothane	mgkg	82008	${ }^{0.1402}$	${ }_{640}$	${ }_{640}^{640}$	${ }^{6} 0.024$	${ }^{80} 0.226$	${ }^{8.1}$	0.32	${ }^{20} 0.025$	${ }^{80} 028$	${ }^{20.020}$	${ }^{20.024}$	${ }^{20.021}$	${ }^{80} 0.026$	8.025	${ }^{20.026}$	0.10	${ }^{60} 028$				
(1,2,2-2.efacalloreemane	makg	${ }^{82008}$	0.0002	${ }^{0.81}$	$\stackrel{36}{3}$	${ }^{20.026}$	${ }^{20.027}$		S022	${ }^{20.026}$	20.30	e0.21	80.025	C0.022	cout	${ }^{80.026}$	<0.027	${ }^{2}$	${ }^{20.029}$				
	mgkg	82008	0.0032	${ }^{1.59}$	$\stackrel{1}{21}$	${ }_{\text {co.023 + }}$	${ }_{\text {co.024 + }}$	${ }^{0.024}$	20.024	${ }^{20.023}$	c0.26	${ }^{20.019}$	co.022	0.019	${ }^{20.024}$	0.0.23 +	e0.024+	${ }_{\text {co.022 + }}$	${ }^{\text {co.20 }}$				
	mgkg	${ }^{82008}$	0.4834	${ }_{5}^{5.06}$	$\stackrel{222}{120}$	${ }_{\text {co. } 0.0266^{++}}$	${ }^{0.788^{+}}$	0.77	0.12	${ }^{20.027}$	${ }^{80.030}$	${ }^{20.022}$	${ }_{20.026}$	$\stackrel{80.022}{ }$	${ }^{<0.028}$	${ }^{20.027}{ }^{\text {co }}$	${ }^{20.0288^{+}}$	${ }_{\text {co.026 }}{ }^{\text {+ }}$	${ }^{\text {co. } 030}{ }^{\circ}+$				
(1-VCochoreemene	mgkg	${ }^{82008}$		${ }^{320}$	$\underline{1.190}$	${ }^{20.025}$	${ }^{20.026}$	0.26	${ }^{20.027}$	${ }^{20.025}$	80.29	${ }^{20.021}$	80.25	${ }^{20.021}$	${ }^{\text {co.027 }}$	80.226	co.027	${ }^{20.025}$	-0.229				
ti.uchloropopene	mokg	${ }^{82008}$	-	0	\%	-0.019	-0.200	80.220	${ }^{20.020}$	${ }^{20.0019}$	${ }^{20.022}$	c0.016	20.019	-0.016	C0.221	C0.220	${ }_{0}^{20.020}$	${ }^{20.0019}$	${ }^{<0.022}$				
	mgha	${ }^{20008}$	0.0519	${ }^{\text {0.0.05 }}$	$\stackrel{3}{0.199}$	${ }_{\text {coin }}$					$\xrightarrow{\text { <.0.34 }}$	-	${ }_{0}$	${ }^{\text {coin }}$	${ }_{0}$	${ }_{\text {co.027 }}$	${ }_{\text {co.028 }}+$		${ }_{0} 0.0 .31+$				
隹	${ }_{\text {mg }}^{\text {magg }}$	${ }^{22008}$	${ }_{0}^{0.048}$	${ }^{0.005}$	$\frac{0.09}{13}$	${ }_{0}{ }^{\text {c0.022 }}$	${ }_{0} 0.023$	${ }_{6} 0.023$	${ }_{<0} \times 023$	${ }_{0} 0.022$	c0.025	${ }^{60.018}$	<0.022	${ }^{20.019}$	${ }^{6} 0.024$	60.02	${ }^{0.0023}$	${ }^{0} 0.022$	<0,025				
1.24 Timinethberzene	mgkg	82008	${ }^{1.37877^{* *}}$	${ }^{219}$	219	${ }^{2} 0.023$	1.2	0.037 J	<0.24	${ }^{0.043 \mathrm{~J}}$	0.027	<0.019	${ }^{2} 0.023$	80.020	${ }^{0} 0.025$	0.056	${ }^{20.024}$	${ }^{4} 0.023$	<0.026				
12.-Vibrome.3.Chloroporone		${ }^{82008}$	0.0002	0.008	0.092	${ }^{\text {co.13 }}+$	${ }^{60.13}{ }^{\text {+ }+}$	<0.14	C0.14		0.15		<0.13	<0.11	<0.14	0.13 ${ }^{\text {+ }}$ +	${ }^{0.14 *+}$	${ }^{20.13}{ }^{\text {+ }}$	<0.15 +				
12.2.bibomethane		82808		0.05	0.221	${ }^{8} 0.025^{+}+$	${ }^{20.0226+}$	0.026	60.026	${ }_{0} 0.025$	80.02	80.021	${ }^{2} 0.024$	60.021	${ }^{0} 0.027$	${ }^{\text {co.02 }}$ + +	<0.026 +	${ }^{2} 0.025^{+}+$	0.029 +				
12.2.icilorobenezene	mgkg	82008	${ }^{1.168}$	${ }^{376}$		${ }^{2} 0.021+$	${ }^{80.023}{ }^{+}+$	${ }^{60} 023$	${ }^{60.023}$	c0.022	0.025	¢0.18	60.02	<0.018	${ }_{0} 0.023$	${ }^{2} 0.022^{+}$	$8.0 .023+$	${ }^{0} 0.021$ +					
12.2.i.i.loreethane	mgkg	82008	0.0028	0.652	$\underline{287}$	${ }^{20.025}{ }^{\text {+ }}$	${ }^{20.027}{ }^{\text {c }+}$	0.36	60.027	${ }^{20.025}$	c0.29	80.02	<0.025	80.021	C0.027	${ }^{40.026{ }^{+}+}$	${ }^{20.027}{ }^{\text {+ }+}$	${ }^{20.0255^{+}}$					
12.2.ichloropopone		82008	0.0033	${ }^{3.4}$	${ }^{15}$	${ }^{0} 0.027+$	${ }^{\text {co,029 + }}$	0.022	0.029	c0.028	00,32	${ }^{0} 0.023$	0.027	c0.023	c0.30	${ }^{0.0288+}$	${ }^{\text {co.02 }}$ + +	${ }^{0.027}$ +	${ }^{2} 0.022+$				
1.3 .5 Tinemetyberzene	mgkg	82208	${ }^{1.37877^{\prime \prime}}$	${ }_{182}$	${ }^{182}$	60.24	0.96	60.226	<0.026	<0.025	<0.028	80.20	<0.024	<0.021	<0.026	80.025	<0.226	<0.024	<0.028				
1,3.0.illoroberene			${ }^{1.1528}$	${ }^{297}$		${ }^{20.026}$			20.07	${ }^{\text {co.026 }}$	80.030		-0.025						${ }^{20.030}$				
	${ }_{\text {makg }}^{\substack{\text { maka }}}$	${ }_{828008}^{8208}$	${ }_{0}^{0.0003}$	-		${ }_{\text {co. } 0.023}^{\text {cot+ }}$	${ }_{\text {co. } 0.0255^{+}}$	${ }_{\substack{20.025 \\ \text { coit }}}$	c.0.25 co.025	${ }^{0} 0.024$	${ }_{60.027}$	${ }^{60.019}$	${ }_{0}$	${ }^{20.020}$	${ }_{\substack{20.025 \\ \text { c0. } \\ \hline}}$		${ }_{\text {coiole }}$						
22-0.iChloropopone	mgkg	82808		191	${ }^{191}$	<0.028	c0.30	c0.30	c0.30	80.02	c0.033	c.024	${ }^{2} 0.028$	${ }^{2} 0.024$	C0.31	c0.029	${ }^{40.030}$	${ }^{20.028}$	${ }^{20.033}$				
2.Chlocotouene	mgkg	82008	-	${ }^{907}$	${ }^{907}$	${ }^{0} 0.020$	${ }_{0} 0.021$	<0.021	<0.021	80.020	c0.023	<0.017	<0.020	c0.017	c0.022	c0.021	<0.021	${ }^{4} 0.020$	${ }_{0} 8.023$				
4.Chorotouene	mokg	82008		${ }^{233}$	${ }^{233}$	80.022	${ }^{20} 024$	<0.024	c0.024	${ }^{0} 0.023$	<0.026	80.019	c0022	80.019	c0.024	${ }^{80} 023$	${ }_{\text {co. } 024}$	<0.022	${ }^{<0.026}$				
Berzene	mgkg	82008	0.0051	1.6	${ }^{2}$	${ }_{\text {co.009 + }}+$	${ }^{0.23}{ }^{\text {+ }}$	0.011 J	0.012 J	c0.0094	co.011	${ }^{80.0078}$	80.002	c0.0880	c0.10	c.0096 + +	-0.099 + +	${ }^{\text {co.003 }}$ +	<0.011 + +				
Bomomenzene	makg	82008		${ }^{342}$	619	${ }_{\text {cosen }}$	${ }_{\text {co. }}$		c.024	${ }^{20.023}$	co.22	co.19	c.022		${ }^{\text {co.025 }}$	${ }^{0.023}+$			${ }^{\text {co.026 }}$				
Bomocoloromemane	mgkg	${ }^{82003}$	-	${ }^{216}$	$\frac{906}{19}$			${ }^{2} 0.029$	${ }^{80.029}$	${ }_{\text {coiol }}^{\substack{2028}}$	${ }_{\text {coin32 }}^{0.028}$	${ }_{\text {co.023 }}$	${ }_{\text {coiol }}^{\substack{2027}}$	${ }^{80.023}$									
Sole	${ }_{\text {mag }}^{\text {mag }}$ mag	${ }^{822008}$	${ }_{0}^{0.00033}$	(e.4.48				$\stackrel{\text { c.0.025 }}{\substack{\text { cos3 }}}$						${ }_{\text {coiol }}^{0.020}$									
Biomometane	mgkg	82808	0.0051	${ }^{9.6}$	${ }_{4}^{43}$	${ }^{\text {co.05 }}$ + +	${ }^{\text {co.05 }}$ +	c0.054	c0.054	c0.051	<0.59	c0.042	c0.050	${ }^{2} 0.043$	c0.05	${ }^{\text {co. } 0.522^{+}+}$	c0.054 +	${ }^{\text {co.051 }{ }^{\text {+ }} \text { + }}$	${ }^{2} 0.599^{\circ}+$				
Catoon teracholoride	makg	${ }^{82008}$	0.0039	0.916	$\frac{403}{03}$	${ }^{<0.025}$	${ }^{80.026}$	${ }^{\text {co. } 0206}$	${ }^{<0.026}$	${ }^{20.025}$	${ }^{\text {co. } 029}$	${ }^{20.020}$	${ }^{\text {co. } 024}$	${ }^{20.021}$	${ }^{\text {co. } 020}$	${ }^{80.025}$	${ }^{80.026}$	${ }^{80.024}$	${ }^{80.028}$				
	${ }_{\text {mal }}$	${ }^{232008}$									(e.029		-				$\stackrel{0}{20.020+}$		${ }^{20.029}+$				
Chorostane	mole	${ }^{202008}$	${ }_{0}^{0.2003}$	${ }_{\text {che }}^{2.4254}$	$\stackrel{21.10}{1.98}$	$\frac{0.0 .024+}{0.024+}$		${ }^{\text {Co.034 }}$	${ }_{6}$		${ }_{\text {coiol }}^{0.027}$	${ }_{\text {coiol }}$	${ }_{6}{ }^{20.0023}$	${ }_{6}$	${ }_{\text {coiole }}$	$\stackrel{0}{0.0024+}$			${ }^{\text {co.027 }}$				
	$\mathrm{mg}^{\prime} \mathrm{K}_{9}$	82008	0.0175	${ }^{159}$	669				<0.022	<0.021	0.024			0.007	c0.022		${ }^{<0.022}$	c0.20					
dis-1,2-2iciloroentere	mgkg	82008	0.0412	${ }^{156}$	2340	${ }^{0} 0.026$ +	$0.073^{+}+$	0.21	0.14	20.026	80.030	60.022	${ }^{2} 0.026$	80.02	C0.028	${ }_{\text {co.027 + }}$	${ }_{0} 0.028{ }^{\text {c }}$	${ }^{0.0026 ~+~}$	00.30 ${ }^{\circ}$				
	mgkg	82008	${ }^{0.0003}$	+1,200	$\frac{1,210}{120}$			${ }^{\text {co.028 }}$	${ }_{\text {c.0.28 }}$	${ }_{\text {coiol }}^{\substack{2027}}$	${ }_{\text {co. } 0.31}$	${ }_{\text {coi. } 022}$	${ }_{\text {coiol }}^{\substack{2026}}$	${ }_{\text {<0.023 }}$	-0.029			${ }^{80.026}$					
	mokg	${ }_{\text {82008 }}^{82088}$	0.032	8.28 34	3899 143 13						$\xrightarrow{\text { c.0.36 }}$			$\underset{\substack{20.027 \\ 0.0 .15}}{\substack{\text { che }}}$	${ }_{\substack{\text { c.0.34 } \\ \text { coid }}}^{\text {coid }}$								
Dichlorodifuormentane	mokg	82808	3.083	${ }^{126}$	${ }_{530}$	${ }^{2} 0.043$	c0.046	ع0.046	c0.046	${ }^{2} 0.04$	c0.050	40.036	20.04	${ }^{20.037}$	${ }^{\text {co.046 }}$	c0.04	${ }^{20.046}$	${ }^{20.043}$	${ }^{\text {co. } 050} 5$				
Etypberzene	mgkg	82008	1.57	${ }^{8.02}$	${ }_{3.4}$	<0.012	0.22	<0.013	80.013	0.012	co.014	${ }^{\text {co.0097 }}$	0.012	<0.010	<0.013	<0.012	<0.012	<0.012	20.14				
Hexachlorouludiene	mgkg	82008		${ }^{1.63}$	7.19	c0.029		c0.030 ${ }^{\text {+ }}$	00.030 ${ }^{\text {a }}$		c0.033		${ }^{20.028}$	0.022	${ }_{\text {coion }}$	O20	01	${ }^{20.028}$					
sopoove ether	mgkg	82008	-	$\stackrel{2260}{2}$	$\stackrel{2260}{208}$	${ }^{60.018}$	c0.019	co.019	${ }^{20.019}$	20.018	c0.020	${ }^{\text {coul }}$	80.017	${ }^{20.015}$	<0.019	20.018	${ }_{\text {co.0, }}^{0.009}$	${ }^{20.0018}$	${ }^{80.020}$				
sopropilienzene	makg	${ }^{82008}$	O27	${ }_{\substack{268 \\{ }^{268} \\ \hline}}$	$\frac{268}{222}$	${ }_{\text {coiol }}^{6025}$		-0.026	-0.026	<0.025	$\stackrel{0}{6029}$	-0.020	-0.024	${ }_{\text {< } 20.021}$	$\stackrel{\text { <0.026 }}{\substack{027}}$		${ }^{\text {co.026 }}$		${ }^{20.028}$				
	$\frac{\text { makg }}{\text { makg }}$	${ }^{82008}$	${ }_{0}^{0.0026}$		${ }_{\text {2 }}$			${ }_{\text {coin }}$	${ }_{\text {coin }}$	${ }_{\substack{\text { c.0.25 } \\ \text { coil }}}$	${ }_{\text {coin }}$	${ }_{\text {coiol }}$	${ }_{\text {coiol }}$	${ }_{\text {coiose }}$	${ }_{0}^{0.12}$ O/	${ }_{\text {coin }}^{\text {coin }}$	${ }_{\text {ene }}^{0.0 .11^{+}+}$		-				
Naphthaene	mgkg	82008	0.688782	${ }^{5.52}$	${ }^{24.10}$	0.025 J	0.083 J	0.059	0.95	0.17	0.028	<0.18	0.049 J	${ }^{20.018}$	<0.023	0.073	${ }^{<0.023}$	0.029 J	${ }^{0} 0.225$				
R.autiverene	K	82008		${ }^{108}$	$\stackrel{108}{28}$	${ }^{<0.025}$	${ }_{0} 0.026$	${ }^{20.027}$	${ }^{\text {co. } 027}$	${ }^{20.025}$	80.029	<0.021	${ }^{20.025}$	20.021	${ }^{20.027}$	${ }^{20.025}$	${ }^{20.026}$	${ }^{60} 025$	${ }^{20.029}$				
P.Propoplenerzene	makg	82008	-	${ }_{264}^{264}$	${ }_{264}^{264}$	${ }^{\text {co.027 }}$	${ }_{0}^{0.036 \mathrm{~J}}$	c.0.28	${ }^{\text {co.028 }}$	${ }^{20.027}$	c0.31	8.022	${ }^{20.026}$	${ }^{20.023}$	C0.29	C0.027	${ }^{20.028}$	${ }^{20.026}$	${ }^{2} 0.031$				
Prisporaviouene	makg	${ }^{828088}$	\cdots	${ }^{162}$	$\frac{162}{15}$	${ }_{\substack{<0.023 \\<0026}}$	0.080	${ }^{80.025}$	-0.025	${ }^{80.023}$		${ }^{80.019}$	${ }_{\text {coiol }}$	80.020	-0.025	${ }^{80.024}$	${ }_{\text {coicle }}^{\substack{0.025}}$	$\stackrel{\text { c0, } 023}{ }$	${ }_{8}^{80.027}$				
Scerumberzene	$\frac{\text { makg }}{\text { makg }}$	${ }^{820008}$	0.22	${ }_{867}^{148}$			${ }_{\text {co. } 0.022^{++}}^{4}$	${ }^{20.026}$	${ }_{\text {coiol }}$	${ }_{0}^{60.025}$	co.029	co.021	${ }^{20.024}$	${ }_{0}^{20.021}$	${ }_{0}$	${ }_{\text {co.025 }}{ }^{\text {cot }}$	${ }_{\text {co.0.02 }}+$	${ }_{\text {coich }}$	${ }_{\text {co. } 029}+$				
ert.fuyberzene	mgkg			${ }^{183}$	${ }^{183}$	60.22	<0.027	${ }^{0} 0.027$	<0.027	<0.026	80.030	<0.021	80.02	<0.022	<0.027	80.026	${ }^{0} 0.027$						
Tetaralocoethene	mgkg	82208	0.0045	${ }^{33}$	${ }^{145}$	${ }^{20.024}$	${ }_{0} 0.025$	$0.041 \mathrm{~J}^{+}$	<0.025 ${ }^{\text {+ }}$	${ }^{20.024}$	80.027	<0.20	${ }_{0} 0.023$	60.020 ${ }^{\text {+ }}$		80.024	<0.225	${ }_{60} 0.02$	${ }^{2} 0.027$				
Toune	mgkg	82008	1.1072	${ }_{818}$	${ }_{8}^{88}$	${ }_{\text {couen }}$	0.62^{+}	0.02	c0.010	0.038	0.011	${ }^{20.0078}$	${ }^{80.0093}$	${ }^{20.0080}$	${ }^{20.010}$	0.018^{+}	${ }_{\text {co.0.0 }}+$	${ }_{0}^{0.0388^{+}+}$	${ }^{\text {co.01 }+}$				
	makg	${ }^{82008}$	0.0626	+1560	$\stackrel{1850}{150}$			${ }_{\text {coich }}$	${ }_{\text {coiole }}$	$\underset{\substack{\text { c.023 } \\ \text { C023 }}}{ }$	$\xrightarrow{\text { cou26 }}$	-0.019	$\stackrel{\substack{\text { c.022 } \\ \text { ¢023 }}}{ }$	-0.019	co.024				$\xrightarrow{\text { co.026 }}$				
	${ }_{\text {mokg }}^{\text {makg }}$	${ }_{882008}^{8208}$	0.0036	${ }^{1.510}$		${ }_{\substack{0.023 \\ 0 .+5}}^{\text {ce. }}$		${ }_{1.0}^{1.7}$	${ }_{\text {coich }}^{0.41}$	${ }_{\text {coiole }}^{0.021}$		${ }_{\text {en }}^{\substack{80.0097}}$	${ }_{\text {coiolo }}$	-0.0000	${ }_{0}$	${ }_{0}^{0.0 .011}+$		${ }_{0}^{0.15}$	$\stackrel{0}{20.022}+$				
Trichloof fuopomenane	mgkg	82008		1,230	$\stackrel{1.230}{120}$	${ }^{\text {c0, } 027}$		${ }_{0} 0.029$	<0.029	${ }_{0} 0.028$	c0.032	${ }^{0} 0.023$	C0.027	${ }_{0} 0.023$	<0.30	${ }_{0} 0.028$	<0.029	${ }_{0} 0.027$					
Viny choride	makg	82008	0.0001	${ }^{0.067}$	${ }^{208}$	${ }^{\text {co.017 }}$	${ }^{\text {co.018 }}$	${ }^{\text {co.018 }}$	${ }^{20.018}$	co.017	co.019	${ }^{20.014}$	co.017	c.0.14	${ }^{20.018}$	${ }^{\text {co.017 }}$	${ }^{20.018}$	co.017	c0.019				
xxlenes, Toial						c0.014	0.59	0.082	0.015	0.070	<0.016	0.012	c0.014	20.012	c0.15	0.087	co.15	0.034	0.016				

Engineers
Scientists

Scientists
Consultants

PROJECT NUMBER• 40441

	Unis	Method	$\begin{array}{\|l} \text { NR } 720 \text { RCLs } \\ \text { for GW } \\ \text { Protection (1) } \end{array}$			E8B．17		E8B．8．18		EB8．19MW $/ 3$		EBB．202MW 4		EB．8．21／MW－5		E8B．22		E8B．23						
						$\frac{14}{\text { SAND } \mathrm{CLLAY}}$		${ }_{\text {clut }}^{24}$	${ }_{\text {chill }}^{5.7}$	$\frac{1.4 .5}{\text { FIU }}$		$\stackrel{2.5}{\text { F．ilu }}$	${ }_{\text {Silichay }}^{23.24}$	${ }_{\text {clu }}^{24}$	$\frac{7.9}{\text { Sily CiAY }}$	$\frac{1.4}{\text { GRNVEL }}$	$\frac{4.6}{\text { Sily CiAY }}$	$\frac{1.4}{\text { Gavell } \text { SAND }}$						
Soil																								
Sole						Unsauraed	Unsaural	Unsataled	Unsalualed	${ }_{\text {Unsialaed }}^{\substack{\text { U212021 }}}$	Unsalualed	$\xrightarrow{\text { Unsaturaed }}$ TV12021	${ }^{17212021}$	${ }^{6332021}$		${ }_{\text {Unsimaed }}^{562021}$	${ }_{5} 5$ 552021	${ }_{5}^{5552021}$	${ }_{5}^{552021}$					
Polycyeric A Aromatic Hyrocations PAHS）																								
1－Metyhaphataene	mgkg	82700	－	${ }^{17.6}$	$\stackrel{127}{ }$	${ }_{0}^{0.042}$ J	${ }^{80.0093}$	0.16	${ }^{1.7}$	－	0.044	－	coiole	${ }_{0}^{0.33}$	${ }^{80.0095}$	${ }_{0}^{0.039}$ J	${ }^{\text {c．0．009 }}$	0.19	${ }^{0.041 ~}$					
	nolk	2200		${ }^{390}$	$\stackrel{4520}{45}$	007	\％oin	0.18			0.05		20009	04	－00070		S00070	0.25						
退						0.025 J	C00050	0017	${ }_{0}^{0.55,}$		colos	－	－0．0049	0.45	＜00051		＜00051	${ }_{0}^{0044}$	\bigcirc					
退	Sors	8270	196992	17900	100，00	017	${ }^{200063}$	0.075	88	－	0035	－	${ }^{2} 000063$	0.68	＜00065	0.038	${ }^{200065}$	045	0016					
Benzodanathraene	makg	82700		${ }_{1}^{1.14}$	21	0.87	c0．0051	0.34	${ }_{9} 9$	－	0.13	－	c0，050	1.9		0.23	0.029 J	25	0.068					
Benololiprene	makg	82700	0.47	0.115	${ }^{211}$	0.91	${ }^{80.0073}$	0.4	9		0.17	－	${ }^{<0.0073}$	1.9	${ }^{20.0075}$	0.21	${ }_{0.031 \mathrm{~J}}$	24	0062					
Berozohilumantene	makg	82700	0.4781	1.15	21.1	1.1	${ }^{\text {co．0．082 }}$	0.56	$\frac{12}{12}$	－	0.18	－	＜0．0081	0.73	c0．008	021	0.027 J	$\frac{3}{35}$	0077					
Benroch hiveenerene	mgkg	82700				${ }_{0} 0.43$	＜0．012	0.2	${ }^{27}$	－	0.079	－	c0．012	19	c0．012	0.11	${ }_{0.013 \mathrm{~J}}$		0.036 J					
Benorofluranthene	mgkg	82700		11.5	211	0.36	＜0．011	0.23	${ }_{3} 4$		0.086	－	＜0．011	${ }_{0} 023$		0.12	c0．012	1.4	0.0016 J					
Chrsene	mgkg	82700	0.1442	115		1.0	＜0．010	0.43	${ }^{9.3}$	－	0.14	－	＜0．010	0.82	＜0．011	0.23	0.037 J		0.075					
obeerza，hanatracene	mgkg	82700		0.115	2	0.12	80．0073	0.061	0.97	－	0.029 J	－	20．072	0.76		0.027 J	${ }^{20.0075}$	0.27	${ }^{20.0078}$					
Fuwarathene	mgkg	${ }^{2700}$	${ }^{88.8778}$	${ }^{2390}$	${ }^{30,100}$		${ }^{80.0070}$	0.63	22	－	0.22	－	c0，070	${ }^{1.3}$	80．0072	0.42	0.042	7.5	0.12					
Fuvene	mgkg	82700	14.8299	${ }^{2390}$	${ }^{30,100}$	0.056	${ }^{\text {c．0053 }}$	0.027 J	${ }_{5}^{56}$	－	0.025 J	－	c．0053	3	c0．0054	0.014 J	${ }^{\text {c0．0005 }}$	0.22	0.019 J					
neenol，，2，－c－ciprene	mgkg	8200		${ }^{1.15}$	2.11	0.43	${ }^{2}$	0.19	2.9	－	0.076	－	2009	${ }^{1.5}$	co．00	0.10	0.014 J		0.035					
Naphtramene	пgkg	82700	0.6832	${ }^{5.52}$	${ }_{24.1}$	${ }_{0.030}$	${ }^{\text {c．0．038 }}$	0.12	5	－	0.028 J	－	c0．058	${ }^{1.7}$	80．0060	0.014	${ }^{80.0060}$	${ }^{0.052} \mathrm{~J}$	${ }^{0.028 ~}$					
Peneantrene	mgkg	${ }^{82700}$				${ }^{0.96}$		0.5	${ }_{28}^{28}$	－	${ }^{0.17}$	－	${ }_{\substack{\text { co．0052 } \\ \text { cout }}}$	${ }_{6}^{81}$		${ }_{0}^{0.16}$	${ }_{0}^{0.026 \mathrm{~J}}$	${ }_{6}^{\frac{37}{62}}$	015					
PCB－1221	mgkg	80824	$0.0094^{+\prime}$	0	0.883	${ }^{80.0084}$	－	－	－	${ }^{\text {c0．0073 }}$	－	${ }^{80.0067}$	－	－	－	＜0．0024		${ }^{\text {co．0003 }}$	－					
${ }^{\text {PCBC－1232 }}$	mgkg	88824		0.19	0.792	（0083			－							C0，00								
${ }^{\text {PCBC－242 }}$	mgkg	8082	$0.0094{ }^{0.0}$	${ }^{0.2035}$	$\stackrel{0.092}{0.95}$	${ }_{\text {＜}}^{\substack{0.0002}}$			－	${ }^{\text {coun }}$								${ }^{0.00022}$						
CCB－1254	mokg	88024	0．0024＊＊	0.239	1	${ }^{20.0041}$	－	－	－	${ }^{\text {c00003 }}$	－	${ }^{200058}$	－	－	－	${ }^{2} 00041$		0.12	－					
	makg	60108	0．584	${ }_{0}^{0.677}$	${ }^{3}$	${ }_{3} .7$ F2	－			－						7.4	－	4.8						
Casmum	${ }_{\text {mag }}$	600108	${ }_{0} 0.75$	\％1，	${ }_{\text {20，000 }}^{985}$	－	－	－	－	－	－	－	－	－	－	－	－	－	－					
Chomium	m9kg	60108	30，000＇			－	－	－	－	－	－	－	－	－	－	－	－	－						
Copper								－	－	－	－	－					－		－					
Lead	mgkg	60108	${ }^{27}$	${ }^{400}$	800	${ }^{36} \mathrm{Fl} 1 \mathrm{~F} 2 \mathrm{~V}$	－	－	－	－	－	－	－	－	－	32	－	43	－					
Neecur	mgkg	${ }^{74714}$	0.208	${ }^{3.13}$	${ }^{3.13}$		－	－	－	－	－	－	－	－	－		－							
						－	－	－	－	－	－	－	－	－	－	－	－	－	－					
Seenum	mgkg	60108	0.52	${ }^{391}$	${ }_{5480}^{50}$	－	－	－	－	－	－	－	－	－	－	－	－	－	－					
siver	mgkg	60108	0.899	${ }^{391}$	${ }_{540}$	－	－	－	－	－	－	－	－	－	－	－	－	－	－					
2 Znc							－	－		－	－													
44－000	mgkg	88014	－	1.9	9．57	－	－	－	－	${ }^{\text {co．0051 }}$	－	${ }^{\text {c．00093 }}$	－	－	－	－	－	－	－					
44－DDE	mgkg	8881 A	－	2	${ }_{9}^{9.38}$	－			－	c0．0049		20．0089												
4． 4.00	mgkg	80814	－	${ }^{1.89}$	${ }_{8}^{8.33}$	－			－	${ }^{\text {couna }}$		C0．0062												
Aatin	mgkg	8087	－	0．04	${ }^{0.0 .187}$	－			－	${ }^{20.0066}$	－	－0，002				－								
	makg	8087	－		${ }_{0}^{0.365}$	－	－	－		20003		S00097	－		－		－		－					
beiabhi	molk	88814		0.301	${ }^{1.28}$				－	＜0．0051	－	c．0．0092				－								
Selata HHC	mgk	${ }_{8088} 8$							－	${ }^{5} 0.0045$	－	${ }^{\text {c．00083 }}$												
Diedidin	mgkg	881A	\cdots	${ }_{0}^{0.034}$	${ }^{0.144}$	－	－	－	－	c0．0049		c．00090	－	－	－	－	－	－	－					
Enosulian	mgKg	8814								${ }_{\text {coioles }}$		${ }_{\substack{\text { c．0．0093 } \\ \text { C0009 }}}$												
Endosulfan sulfe	${ }_{\text {mg }}^{\text {mokg }}$	${ }_{8081}$		－		－	－	－	－	${ }^{6} 0.0052$	－	＜0．00096		－	－	－								
Endin	mgkg	8081 A	0.1816	19	${ }^{246}$	－	－	－	－	C0．0048	－	c．00088	－	－	－	－	－	－	－					
Endin adehylde	mgkg	80814	0.1616	19	${ }^{246}$	－			－	c0．0054	－	c0．0098	－			－								
Endim heote	mokg	${ }^{8087}$				－		－	－	${ }^{\text {ce．0．046 }}$	－	C0．0084	－	－	－	－	－	－	－					
隹	${ }_{\text {magh }}^{\substack{\text { makg } \\ \text { mokg }}}$	${ }_{8088} 808 \mathrm{~A}$	0.0023	0.508	${ }^{254}$	－	－	－	－	${ }_{\text {cele }}$	$\underline{-}$	C．0．00099	－	－	－	－	－	－	－					
Hepeathor	mgkg	88814	0.0682	0.14	0.654	－	－	－	－	＜0．0051	－	80．0093	－	－	－	－	－	－	－					
Hepatalior epoxide	mgkg	80814	0.082	0.072	$0.3{ }^{0.38}$	－		－	－	${ }^{80.0051}$	－	（0．00093	－		－	－	－		－					
Wethey	mghkg	80814	${ }^{4.32}$	${ }^{316}$	4	－	－	－	－	$\stackrel{\text { e．0002 }}{60.088}$	－	co．0009	－	－		－			－					
	makg	80814																						
24．5．7	mgkg	81514		${ }^{632}$	8210	－	－	－	－	${ }^{20.013}$	－	${ }^{00.0023}$	－	－	－	－	－	－	－					
2－4．0．	${ }_{\text {makg }}^{\text {mak }}$		0.0362	${ }^{699}$	$\frac{9640}{2400}$	－	侕	－	－	co．071	－		－	－	－	－		－	－					
icamba	makg		0.1553	${ }_{1000}$	$\frac{24600}{2400}$	－	－	－－	－	${ }^{80.0077}$	－	${ }^{200014}$	－	－	－	－		－						
Dichloprop	${ }_{\text {Kg }}$	81514					－		－	${ }^{\text {c．0．18 }}$	－	${ }^{\text {ce．0．033 }}$	－			－	－	－	－					
Silvex 24.45 T P）	mgkg	81514	0.055	${ }_{506}$	$\underline{6.50}$	－											－		－					

Sample	Units	Mentod	NR 720 RCLsfor GW Protection (1)			E8B.17		${ }_{\text {EBPB18 }}$		E8.8.19MMW		E8.8.20MWW-4		Ex.B.21mW		E8.B.22			
						$\frac{1.4}{\text { SAND } \mathrm{CLCAY}}$		${ }_{\text {FFlu }}^{\text {Fill }}$	${ }_{\text {Fill }}^{5 / 7}$			${ }_{\text {FFlu }}^{\text {F. }}$		24		$\frac{1.4}{\text { CRAVEL }}$			
Soll Condions						Unsaturated													
Samplig Oate						5442021	544221	6332021	6132221	72121202	71212021	71212021	71212021	$6{ }^{6322021}$	6312021	5562221	5 5152021	55152021	
Method S37 (modified) Fluoinited Aly/ Sustances																			
	UGMg	${ }_{\text {537 }}$	\cdots	-	-	-	-	-	-										
	${ }^{0} \mathrm{OK} \mathrm{K}_{9}$	${ }^{537}$	-	-	-	-	-	-			,						-		
	UGKg	537	-				-	-	-		-	-		-					
Pealluroootaniciadid (PFOA)	ugkg	${ }^{537}$	-	${ }^{1260}$	${ }^{16,400}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ugkg	${ }^{537}$																	
	ugkg	${ }^{537}$	-				-												
	ugkg	${ }^{337}$	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	
	U9Kg	${ }^{337}$	-	-	-	-	-												
	U9Kg	${ }_{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Pefluvor-.ecotadeandic a cid (PFOOA)	UgKg	${ }^{537}$																	
Pefluoroulanesulumicicadid PPESS	ugkg	${ }_{537}$	-			-													
Pefluoropenanesululonicacid (PFPes)	ugkg	${ }^{537}$																	
	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ugkg	${ }^{537}$				-	-	-	-	-	-								
Peflumococanessulioic a add (PFOS)	ugkg		-	${ }^{1220}$	${ }^{16,400}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ugKg	${ }^{537}$	-			-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Ughkg	${ }_{\substack{537 \\ 537}}$	-	\cdots	-	-	\cdots	-	-	-	-	-	-	-	-	-	-	-	-
Peflucoooctansulutoramide (FOSA)	ugkg	537	-	-	-	-	--	-	-	-	-	-		-			-		
NEEFOSA	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
NMerosa	ugkg	${ }^{337}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Oghg	${ }^{37}$	-																
	U9M,					-	-	-	-	-		-							
NEFFOSE	UgKg	${ }_{\text {cis }}^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
$4{ }^{4.2}$ FTS	ugkg	${ }^{537}$																	
${ }^{\text {Bi2 } 2 \text { FS }}$	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
${ }^{\text {B/2FIS }}$	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
10.2 FTS	ugkg	${ }^{57}$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	${ }_{\text {UgKgg }}^{\text {UGKg }}$	${ }_{\substack{537 \\ 537}}^{\text {cher }}$	\cdots	\cdots	-	-	-	-	-	--	-	-	-	--	-	\cdots	\cdots	-	--
E.5.58 Maior	UgKg		\cdots	\cdots	\cdots	-	-	-	-	-	-	-	-	-	-	-	-	-	-

[^0]

Engineers
scientists
scientists
Consultants

PRE-REMEDIATION SOIL QUALITY TEST RESULTS
COMMUNITY WITHIN THE CORRIDOR - EAST BLOCK
MILWAUKEE, WI
PROJECT NUMBER. 40441

PROJECT NUMBER: 40441

KSingh
Eneineers
Scientists
Scientists
Consultants

PRE-REMEDIATION SOIL QUALITY TEST RESULTS
COMMUNITY WITHIN THE CORRIDOR - EAST BLOCK
MILWAUKEE, WI
PROJECT NUMBER: 40441

PROJECT NUMBER: 40441

Sample				NR208Cls.	Nr20acls.								7mW 6						
	Units	Metrod		Non-Industria		${ }_{\text {chele }}^{\text {Filu }}$		${ }_{\text {che }}^{\text {Fill }}$	${ }_{\text {Sill }}^{\text {Silidy }}$		${ }_{\text {Fllulility }}^{8.1}$	${ }_{\text {l }}^{1.4}$		${ }_{\text {Sily }}^{2.4} \mathrm{CLYY}$		${ }_{\text {Sill }}^{\text {L CIAY }}$	${ }_{\text {Sill }}^{8.0} \mathrm{CAY} \mathrm{A}$	${ }_{\text {Sily }}^{24}$	
Soll Conditions					Contar	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unsaturated	Unstuturatd	Unsaturated						
Sampingo Date				Prouedion (1)	Probetion (1)	717212021	712121201	7171212021	7121212021	71712021	7121212021	71202021	71202021	71702021	71202021	71202021	71202021	7202021	71202021
Metho 537 I modified) -Fluoinited Alyl Sussanaes																			
		${ }_{537}^{537}$	-	-	-	--	\cdots	-	-	-	-		-	$\xrightarrow{0.000078 \mathrm{~S}}$	-	$\xrightarrow{\substack{\text { c.0.000 } \\ \text { c.000 } \\ \\ \text { a }}}$	--	c0.0.00053 0.00004	\cdots
		${ }_{537}$	-	-	-		-	-			-	${ }^{\text {co.000 }}$		${ }^{80.000036}$		${ }^{\text {co.000 }}$	-	${ }^{4} 0.000035$	
Peffluoronepanoic acad PPFtpA)	ugkg	537				-	-	-	-	-	-	<0.00040	-	<0.00004	-	<0.00039	-	<0.000043	
Pefluluorocanic adid P PFOA)	ugkg	${ }^{37}$	-	${ }_{1260}$	${ }_{16,400}^{10}$	-	-	-	-	-	-	c.0.00055	-	0.000063 JI	-	c.000054	-	c0.000061	-
Perfluorononanica acid PeFNA)	ugkg	${ }^{537}$	-					-				c.000023		c0.00026		c0.00023		c.000025	
Perfuluodecanoic adid (PFDA)	ugkg	${ }^{537}$	-	-	-							c.000050		c0.00056		c.000049		c.000055	
	ugkg	${ }^{337}$	-	-	-	-	-	-	-	-	-	C0.000 ${ }^{\text {che }}$		${ }^{\text {co.000299 }}$		C0.00073		${ }^{\text {co.000 }}$	
	ugko	${ }_{\text {537 }}^{5}$	-	-	-	-	-	-	-	-	-	${ }_{\text {colem }}$	-		-	${ }_{\text {coiden }}$			
	Ughg	${ }^{\text {537 }}$										${ }_{\text {coiden }}$						${ }_{\text {coide }}$	
	Ugh9	${ }_{537}^{537}$	-	-	-	-	-	-	-	-	-	${ }_{\text {coub }}$	-	-0.000044	-	${ }_{\text {couounas }}$		${ }^{2} 0.000043$	-
		${ }_{537}$	-	-	-	-	-	-	-	-	-	c.000069	-	<0.000 77	-	c0.00068	-	c0.00075	
	ugkg											c.0.00040		${ }^{\text {co.0.00044 }}$		${ }^{\text {co.0003939 }}$		${ }^{\text {co.000043 }}$	
Pefluoroentanesulvicicicid (PFPes)	ugkg	${ }_{5}^{537}$	-	-	-	-	-	-	-	-	-	co.o.0039 Cooons	-		-		-		
	U9Kg	${ }_{537}$	-	-		-	-	-	-	-	-	c.00005	--	${ }^{\text {c0.000057 }}$	-	c.000050	-	c0.000 ${ }^{\text {cose }}$	-
	ugkg	${ }^{537}$	-	1200	${ }^{16,400}$	-	-	-	-	-	-	c.0.00045	-	0.00010 J		c.00004	-	c.000049	
Pefluorononasesulforica adid P Pens)	ugkg	537	-			-	-	-	-	-	-	c.000030	-	<0.00034	-	¢0.00030	-	c.000033	
Pefluordeanesulinic adid $(P$ PFS)	ugkg	${ }^{537}$	-	-	\cdots	-	-	-	-	-	-	${ }^{\text {c.0.000 }}$	-	${ }^{\text {cosen }}$	-	${ }^{\text {c.0.000 }}$	-	${ }^{\text {co.0.000 }}$	-
	ugkg	${ }^{537}$	-	-	\cdots	-	-	-	-	-	-	${ }^{\text {co.0.000 }}$	-	${ }^{\text {coun }}$	-	co.ovab	-	co.ou0	-
Pellucooctasesulonamde (F-OSA	U9Kg	${ }_{577}^{537}$	-				-	-		-	-	${ }_{\text {coincoue }}$	-	${ }_{\text {coioue }}^{\text {coous }}$	-	$\stackrel{\text { c.0.00034 }}{\text { c.00048 }}$	-	${ }_{\text {coioleo }}^{\text {coous }}$	-
Neforsa	${ }_{\text {Ug }}^{\text {UGMg }}$	${ }_{537}^{537}$												${ }_{60.000057}$					
	ugkg	${ }^{537}$	-	-	-	-	-	-	-	-	-	c.0.00050	-	${ }^{\text {co.000 }}$	-	${ }^{\text {c.0.000 }}$ (${ }^{\text {a }}$	-	${ }^{\text {co.0000 } 55}$	-
	ugkg	${ }^{537}$										${ }^{\text {co.0.0022 }}$		${ }^{\text {co.00027 }}$		${ }^{\text {co.0002 }}$		${ }^{\text {co.00022 }}$	
NEEFOSE	9he	3	-				-					C000029		${ }_{\text {coile }}^{\text {cou00 }}$					
4 4.2-75	U9Kg	${ }_{537}$	-	-	-	-	-	-	-	-	-	${ }_{\text {co.000 }}$	-	${ }^{\text {co.00005 }}$	-	<0.000 ${ }^{\text {a }}$	-	${ }_{\text {coicheome }}$	-
6.2 FTS	ugkg	${ }^{537}$	-			-						c0.00028		c0.00031		c.000028		(0.00031	-
${ }^{8,2 \mathrm{FTST}}$	ugkg	${ }^{537}$	-			-		-				c.000036		c0.000041	-	${ }^{\text {c.0.00036 }}$			
${ }^{10.20 .2 ~ F T S ~}$	${ }_{\text {UGKg }}$	${ }_{\text {537 }}^{537}$	\cdots	-	-	-	-	-	-	\cdots	-		\cdots	co.	-	¢0.00039	-	co.00043	
HPPO.DA (Genx)	$\mathrm{UgKg}^{\text {g }}$	${ }_{567}$	-	-	-	-	-	-		-	-	${ }^{4}$	-	${ }^{\text {co.0000 }}$	-	${ }^{2}$	-	co.000 ${ }^{\text {cos }}$	-
E.53B Mior	和	537	-		-	-	-	-		-	-	c.000036	-	80.000		c0.000	-	c.000	
E.53B Minor	ugkg	537	-	-	-	-	-	-	-	-	-	c.00032	-	¢0.00036	-	c.0003 2	-	c0.00035	-

Engeneers
Scientist
scientists
Consultants

PRE-REMEDIATION SOIL QUALITY TEST RESULTS
COMMUNITY WITHIN THE CORRIDOR - EAST BLOCK
MILWAUKEE, WI
PROJECT NUMBER: 40441

Engineers
scientist
Scientists
Consultants

PRE-REMEDIATION SOIL QUALITY TEST RESULTS

\pm	Units	Method	$\begin{aligned} & \text { NR } 720 \text { RCLs } \\ & \text { for GW } \\ & \text { Protection (1) } \end{aligned}$			EB.8.31		E8.8.32		E8.833		EB. B_{34}		E8.8.35		Trip Bank	Trip Bank	Trip Bank	Trip Blank	Tip Bank	Trip Blank
						$\frac{24}{\text { GRAVEIPCIAV }}$		$\frac{24}{\text { Sill }{ }^{\text {a }} \text { AY }}$	${ }_{\text {Sily }}^{6.8} \mathrm{Cl\mid Y}$	$\frac{24}{2.4}$			$\frac{7.7 .5}{\operatorname{sand}}$	$\frac{2.4}{\text { Siluciay }}$		\cdots	-		\cdots	\cdots	
															Slinctar						
Sempenter						${ }^{\text {and }}$	Ontourand	${ }^{\text {IR202021 }}$	Univor201	Unatareal	Trat2021	Unsoraz1		Unsinaled	Cisina21	22552021	${ }^{3332021}$	${ }^{3920221}$	41412021	6332021	71202021
	ugkg	${ }_{5}^{37}$	-	\cdots	-	${ }_{\text {coun }}$	-	c.ovos	-	-	-		-		-	-	-			-	
		53	-	-	-		-	${ }_{\text {coin }}$	-	-					-						
	ugKg					<0.000039	-	c.00004													
Pefluroorcanoic acid (PFOA)	ugkg	537	-	${ }^{1260}$	${ }^{16,400}$	<0.000054	-	${ }^{\text {c.0000 } 2}$	-	-								-			
Pefluluoronanoicicad P PFNA)	ugkg					<0.00023	-	${ }^{\text {co.00026 }}$	-	-											
Pefluorodereanocicad (P PFA)	ugkg	537	-	-	-	<0.000049	-	c0.00056		-											
Pefluroumderanicicad (PFUnA)	ugKg	${ }_{537}$	-	-	-	<0.000043	-	${ }^{\text {co.000049 }}$		-											
Pefluorododeandic acid PPFOOA)	ugkg	537	-	-	-	c0.000 ${ }^{\text {cos }}$	-	c.0.00035	-	-	-	-	-	-	-	-	-	-	-	-	-
	ugkg	537	-	\cdots	-	<0.00022	\cdots	c0.00024	-	-	\cdots	-	-	\cdots	\cdots	-	-	-			
	ugkg	537	-	-	-	<0.000388	-	80.000 ${ }^{\text {a }}$	-	-		-	-	-	-		-	-			
	ugkg	${ }_{57} 5$	-	\cdots	-	<0.00039	-	c.0.00044	-	-	-	-	-	-	-	-	-	-	-	-	
	ugkg	537	-	\cdots	-	${ }^{\text {co.000688 }}$	-	${ }^{\text {co.00077 }}$	-	-	-	-	-	-	-	-	-	-	-	-	-
	ugkg	${ }^{537}$	-	-	-	c.0.00039	-	C0.00004	-	-	-	-		-	-		-				
	ugkg	${ }^{537}$		-	-	${ }^{\text {co.000388 }}$	-	C0.000043	-	-	-	-	-	-	-			-			
	ugk	${ }^{337}$	-	-	-		-	${ }_{\text {c.o.0003 }}$	-	-	-	-		-	-	-	-	-	-	-	
	ugkg	53	-	${ }^{1260}$	${ }^{16,400}$	c0.000 04	-	c.0.00050	-	-	-	-	-	-	-	-	-	-	-	-	
	ugkg	${ }_{53}^{57}$								-											
	Ugh	${ }_{537}^{337}$	-	\cdots	-		-	$\stackrel{\text { c.0.0000 }}{\text { couos }}$	-	-	-	-	-	-	-	-	-	-	-	-	-
Pefluluococanesulionmide (FOSA	ugkg	${ }_{537}$				<0.00034		${ }^{\text {co.000 }}$													
NEFFOSA	ugKg	577	-	-	-	${ }^{\text {co.0.00048 }}$	-		-	-	-	-	-	-	-	-	-	-	-	-	-
	U9GK	${ }_{537}^{57}$	-	-	-	-0.000099	\cdots	${ }^{2} 0.000056$	-	-	\cdots	-	-	-	\cdots	-	-	-	-	-	-
	ugkg	${ }_{57}$	-	-	-	<0.00022	-	c.000027	-	-		-				-					
NWerose	ugkg	537	-	-	-	<0.00029	-	c0.00033	-	-	-	-	-	-	-	-	-	-	-	-	-
NEEFOSE	ugkg	${ }_{537}$	-	\cdots	-	c.0.00048	-	${ }_{\text {co.000 }}$	-	-	-	\cdots	-	-	-	-	-	-	-	-	-
${ }^{4.2 .2 F S}$	U9GG	${ }_{537}^{537}$	-	\cdots	-		-	$\xrightarrow{\text { c.0.000 }}$ (0.0039	-	-	\cdots	-	-	-	-	-	-	-	-	-	-
${ }^{8} 2.2 \mathrm{FS}$	ugkg	57	-	-		80.00036	-	c.00004	-	-	-	-	-	-	-	-	-	-	-	-	
10.2 FTS	ugkg	${ }_{537}$	-	\cdots	-	c0.00039	-	${ }_{\text {co,000 }}$	-	-				-	-	-	-	-		-	-
Oind	U9kg	${ }_{537}^{537}$			-	${ }_{\text {c.o.ou0 }}$	-		-	\cdots	-	-	-	-	-	-	-	-	-	-	-
F.5.53 Mior		${ }_{537}$																			
E.53 Whin		${ }_{53} 5$				${ }^{\text {co.0003 }}$		c0.000 ${ }^{2}$													

Engineers
scientists
consultants

KSingh $=$
ysumatis

FIGURE 7

MLWAUKEE, WI
PROIECT NUMBER: 40411

Notes:
(1) From WDNR RCL.s Worksheet dated December 2018
BOLD thalicized values exceed Groundwaier Protection

BOLD values exceed Non-Industrial Diect Contact

$=$ Resultis sess than the reporting linit but
$=$ Resuris sesss than the erporting lint but greaer than o o equal to the method delection linit and the concentraion is an approximate valu

KSingh $\mid=$

East Building Level 1

Figure 1. Locations of Soil Borings and their VOC contents (in mg/kg)

Sample	Units	Method	$\begin{array}{\|c\|} \hline \text { NR } 720 \text { RCLL } \\ \text { for GW } \\ \text { Protection (1) } \end{array}$			Background Threshold Value	$\begin{array}{c\|} \text { Method } \\ \text { Detection Limit } \end{array}$	SW-B1	SW. B2	SW-B3	SW-B4	SW-B5	SW-B6	SW-B7	SW-B8	SW-B9	SW-810	SW-B11							
Depth (feet)								3-4	3-4	$3-4$	$3-4$	3-4	3.4	$3-4$	1-2	3.4	$3-4$	$3-4$							
Soil Type								Sily CLAY	Sily CLAY	Sily CLAY	Sily CLAY	Silty CLAY	Silty CLAY	Silty CLAY	Gravelly SAND	Silty CLAY	Sily CLAY	Sily CLAY							
Soil Conditions								Moist																	
Physical C haracteristics																									
1,1,1,2-Tetrachloroethane	mgKg	82008	0.0534	2.78	12.3	-	0.029	<0.029	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.033	<0.031	<0.034	<0.031							
11,1,-TTichloroethane	mgkg	8260B	0.1402	640	640	--	0.024	<0.024	<0.023	<0.023	<0.023	<0.023	<0.023	<0.023	<0.027	0.048 J	<0.028	1.5							
1,1,2,2-Tetrachloroethane	mg/Kg	8260B	0.0002	0.81	3.6	-	0.025	<0.025	<0.024	<0.024	<0.024	<0.024	<0.025	<0.024	<0.028	<0.027	<0.029	<0.027							
1,1,2-T.ichloroethane	mg/Kg	82608	0.0032	1.59	7.01	-	0.022	<0.022	<0.021	<0.022	<0.021	<0.021	<0.022	<0.021	<0.025	<0.024	<0.026	<0.024							
1,1-Dichloroeithane	mg/kg	82608	0.4834	5.06	$\underline{22.2}$	\cdots	0.026	<0.026	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.029	${ }^{0} 0.028$	<0.030	<0.028							
1,1-Dichloroethene	mg/Kg	82608	0.005	320	$\stackrel{1,190}{ }$	-	0.024	<0.024	<0.024	<0.024	<0.023	<0.024	<0.024	<0.024	<0.028	<0.026	<0.029	<0.026							
1,1-Dichloropropene	mgkg	82608	\cdots			-	0.019	<0.019	<0.018	<0.018	<0.018	<0.018	<0.018	<0.018	<0.021	<0.220	<0.022	<0.020							
1,2,3-TTrichlorobenzene	mgkg	82608	\cdots	62.6	934	-	0.029	<0.029	<0.028	<0.028	<0.028	<0.028	<0.028	<0.028	<0.033	<0.031	<0.034	<0.031							
1,2,3-TTichloropropane	mgkg	82608	0.0519	0.005	0.109	--	0.026	<0.026	<0.025	<0.025	<0.025	<0.025	<0.026	<0.025	<0.029	<0.028	<0.030	<0.028							
1,2,4-TTichlorobenzzene	mg/Kg	82608	0.408	24	113	--	0.021	<0.021	<0.021	<0.021	<0.021	<0.021	<0.021 F1	<0.021	<0.024	<0.023	<0.025	<0.023							
1,2,4, Trimenthybenzene	mgkg	82608	${ }^{1.37877^{* *}}$	219	219	--	0.022	<0.022	<0.022	<0.022	<0.022	<0.022	<0.022	<0.022	0.089	<0.024	<0.026	<0.024							
1,2-2ibiromo-3.Chloropropane	mgkg	8260B	0.0002	0.008	0.092	--	0.120	<0.12	<0.12	<0.12	<0.12	<0.12	$<0.12 \mathrm{~F} 1$	<0.12	<0.14	<0.13	<0.15	<0.13							
1,2 -ibiromoethane	mgkg	82008	0.0000282	0.05	0.221	--	0.024	<0.024	<0.023	<0.024	<0.023	<0.023	<0.024	<0.023	<0.027	<0.226	<0.028	<0.026							
1,2-Dichlorobenzzene	mgkg	82608	1.168	376	376	--	0.021	<0.021	<0.020	<0.020	<0.020	<0.020	<0.021	<0.020	<0.024	<0.022	<0.024	<0.023							
1,2-Dichloroethane	mgkg	82608	0.0028	0.652	288	-	0.025	<0.025	<0.024	<0.024	<0.024	<0.024	<0.024	<0.024	<0.028	<0.026	<0.029	<0.026							
1,2-Dichloropropapane	mg/Kg	82608	0.0033	3.4	15	\cdots	0.027	<0.027	<0.026	<0.226	${ }_{0} 0.026$	${ }_{0} 0.026$	<0.026	<0.026	<0.030	<0.029	<0.031	<0.029							
1,3,5,-Trimethybenzene	mgkg	8260B	${ }^{1.37877^{* *}}$	182	182	-	0.024	<0.024	<0.023	80.023	<0.023	<0.023	<0.023	<0.023	<0.027	<0.026	<0.028	<0.026							
1,3-Dichlorobenzene	mg/Kg	82608	1.1528	297	$\underline{29}$	--	0.025	${ }^{2} 0.025$	<0.024	<0.025	<0.024	<0.224	${ }^{0} 0.025$	<0.024	<0.028	<0.027	<0.029	<0.027							
1,3.-Dichloloropropane	mgkg	8260B	0.0003	2.37	10.6	--	0.023	<0.023	<0.022	<0.022	<0.022	<0.022	<0.022	${ }^{2} 0.022$	<0.026	<0.024	<0.027	<0.024							
1,4.Dichloroboenzene	mgkg	8260B	0.144	3.74	16.4	--	0.023	<0.023	<0.022	<0.022	<0.022	<0.022	<0.022	<0.022	<0.026	<0.024	<0.027	<0.025							
2,-Dichloloropropane	mgkg	82608	\cdots	191	191	--	0.028	<0.028	<0.027	<0.027	<0.027	<0.027	<0.027	<0.027	<0.032	<0.030	<0.033	<0.030							
2-Chlorotoluene	mgkg	8260B	--	907	$\underline{907}$	--	0.020	<0.020	<0.019	<0.019	<0.019	<0.019	<0.019	<0.019	<0.022	<0.021	<0.023	<0.021							
4 -Chlorotoluene	mg/kg	82608	--	253	253	\cdots	0.022	<0.022	<0.021	<0.021	<0.021	<0.221	<0.022	<0.021	<0.025	<0.024	<0.026	<0.024							
Benzene	mgkg	82008	0.0051	1.6	7.07	--	0.0092	<0.0092	<0.0089	<0.0090	<0.008	<0.0088	<0.0090	20.0088	0.042	<0.0098	<0.011	<0.0098							
Bromobenzene	mgkg	82608	-	342	679	-	0.022	<0.022	<0.022	<0.022	<0.021	<0.022	<0.022	<0.022	<0.025	<0.024	<0.026	<0.024							
Bromochloromethane	mg/Kg	8260B	-	216	906	-	0.027	<0.027	<0.026	<0.026	<0.026	<0.026	<0.026	<0.026	<0.030	<0.029	<0.031	<0.029							
Bromodichloromethane	mg/Kg	8260B	0.0003	0.418	1.83	\cdots	0.023	<0.023	<0.023	<0.023	<0.022	<0.022	<0.023	<0.023	<0.026	<0.025	<0.027	<0.025							
Bromotorm	mgkg	82608	0.0023	25.4	113	-	0.030	<0.030	<0.029	<0.030	<0.029	<0.029	<0.030	<0.029	<0.034	<0.033	<0.035	<0.033							
Bromomethane	mgkg	8260B	0.0051	9.6	43	\cdots	0.050	<0.050	<0.048	<0.049	<0.048	<0.048	<0.049	<0.048	<0.057	<0.053	<0.058	<0.054							
Carbon tetachloride	mgKg	8260B	0.0039	0.916	4.03	--	0.024	<0.024	<0.023	<0.024	<0.023	<0.023	<0.024	<0.023	<0.027	<0.026	<0.028	<0.026							
Chlorobenzene	mgkg	82608	--	370	761	-	0.024	<0.024	<0.023	<0.024	<0.023	<0.023	<0.024	<0.023	<0.027	<0.026	<0.028	<0.026							
Chloroethane	mgKg	8260B	0.2266	2,120	2.120	-	0.032	<0.032	<0.031	<0.031	<0.030	<0.030	<0.031	<0.031	<0.036	<0.034	<0.037	<0.034							
Chloroform	mgkg	82608	0.0033	0.454	1.98	-	0.023	<0.023	<0.022	<0.023	<0.022	<0.022	<0.023	<0.022	<0.026	<0.025	<0.027	<0.025							
Chloromethane	mgKg	82608	0.0155	159	669	--	0.020	<0.020	<0.019	<0.020	<0.019	<0.019	<0.020	<0.019	0.027 J	0.031 J	0.028 J	<0.022							
cis-1,2-2.ichloroethene	mgKg	8260B	0.0412	156	2.340	-	0.026	<0.026	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.029	<0.027	<0.030	<0.028							
cis-1,3--icichloropropene	mgKg	82008	0.0003	1,210	1.210	\cdots	0.026	<0.026	<0.025	<0.026	<0.025	<0.025	<0.026	<0.025	<0.030	<0.028	<0.031	<0.028							
Dibiromochloromethane	mgkg	82608	0.032	8.38	38.9	--	0.031	<0.031	<0.030	<0.030	<0.029	<0.030	<0.030	<0.030	<0.035	<0.033	<0.036	<0.033							
Dibromomethane	mgkg	82008	--	34	143	\cdots	0.017	<0.017	20.016	<0.017	<0.016	<0.016	<0.017	<0.016	<0.019	<0.018	<0.020	<0.018							
Dichlorodifluromethane	mgkg	82608	${ }^{3.0863}$	126	530	--	0.042	<0.042	<0.041	<0.041	<0.041	<0.041	<0.042	<0.041	<0.048	<0.045	<0.049	<0.045							
Ethybenzene	mgkg	82608	1.57	8.02	35.4	--	0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.035	<0.012	<0.013	<0.012							
Hexachloroutuadiene	mgKg	82003	\cdots	1.63	7.19	--	0.028	<0.028	<0.027	<0.027	<0.027	<0.027	<0.027 F1	<0.027	<0.032	<0.030	<0.033	<0.030							
soppropyl ether	mgKg	8260B	\cdots	2,260	$\underline{2.260}$	-	0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.017	<0.020	<0.019	<0.020	<0.019							
Isopropylbenzene	mgkg	8260B	\cdots	268	268	-	0.024	<0.024	<0.023	<0.024	<0.023	<0.023	<0.024	<0.023	0.032 J	<0.026	<0.028	<0.026							
Methy tert-buty lether	mgKg	8260B	0.027	63.8	282	--	0.025	<0.025	<0.024	<0.024	<0.024	<0.024	<0.024	<0.024	<0.028	<0.026	<0.029	<0.027							
Methylene Choride	mgKg	8260B	0.0026	61.8	1.150	-	0.100	<0.10	<0.099	<0.10	<0.098	<0.099	<0.10	<0.099	<0.12	<0.11	<0.12	<0.11							
Naphthalene	mgKg	82608	0.658182	5.52	24.10	--	0.021	<0.021	<0.020	<0.020	<0.020	<0.020	<0.021	0.021 J	0.11	<0.022	<0.024	<0.023							
n-Butybenzene	mgkg	82608	\cdots	108	108	--	0.024	<0.024	<0.024	<0.024	<0.023	<0.023	<0.024	<0.023	<0.028	<0.026	${ }^{2} 0.028$	<0.026							
N-Propylbenzene	mgkg	82608	--	264	264	--	0.026	<0.026	<0.025	<0.025	<0.025	<0.025	${ }^{<0.026}$	<0.025	0.042 J	<0.028	<0.030	<0.028							
p-Ssopropyltoluene	mgKg	82608	-	162	162	--	0.023	<0.023	<0.022	<0.022	<0.022	<0.022	<0.022	<0.022	<0.026	<0.024	<0.027	<0.024							
sec-Butybenzene	mgKg	82608	\cdots	145	145	-	0.025	<0.025	<0.024	<0.024	<0.024	<0.024	<0.025	<0.024	<0.028	<0.027	${ }^{<0.029}$	${ }^{20.027}$							
Styrene	mgKg	82608	0.22	867	867	--	0.024	<0.024	<0.023	<0.024	<0.023	<0.023	<0.024	<0.023	<0.027	<0.026	<0.028	<0.026							
leer-Buylbenzene	mgKg	8260B		183	183	-	0.025	<0.025	<0.024	<0.024	<0.024	<0.024	<0.025	<0.024	<0.028	<0.027	<0.029	<0.027							
Tetachloroethene	mgkg	82608	0.0045	${ }^{33}$	145	-	0.023	<0.023	<0.022	<0.023	<0.022	<0.022	<0.023	<0.022	0.031 J	<0.025	<0.027	<0.025							
Toluene	mgKg	82608	1.1072	818	818	--	0.0092	<0.0092	20.0089	<0.0090	<0.0088	<0.0089	0.0095 JB	20.0089	0.18 B	<0.0099	<0.011	<0.0099							
tans-1,2-2iochloroethene	mgkg	${ }^{82608}$	${ }^{0.0626}$	1560	1850	\cdots	0.022	${ }^{<0.022}$	${ }^{<0.021}$	${ }^{<0.021}$	<0.021	${ }^{<0.021}$	${ }^{<0.022}$	${ }^{<0.021}$	${ }^{<0.025}$	${ }^{<0.024}$	${ }^{<0.026}$	${ }^{20.024}$							
Tans-1,3--icichloropropene	mgKg	82608	--	1,510	1.510	\cdots	0.023	<0.023	<0.022	<0.022	<0.022	<0.022	<0.022	<0.022	<0.026	<0.024	<0.027	<0.024							
Tichloroethene	mgKg	8260B	0.0036	1.3	8.41	-	0.010	0.026 J	0.09	0.035	0.22	0.15	1	0.32	12	<0.011	<0.012	0.14							
TTichlorofluromethane	mgKg	8260B	--	1,230	1.230	-	0.027	<0.027	<0.026	<0.026	<0.026	<0.026	<0.026	<0.026	<0.030	<0.029	<0.031	<0.029							
Viny chloide	mgkg	${ }^{82608}$	${ }_{0}^{0.0001}$	${ }_{10.067}^{1212}$	$\frac{2.08}{1212}$	-	0.016	<0.016	<0.016	<0.016	<0.016	<0.016	${ }^{<0.016}$	<0.016	<0.019	<0.018	<0.019	${ }_{0}^{20.018}$							
Xylenes, Total	mg/Kg	82608	3.96	1,212	1212		0.014	<0.014	<0.013	<0.013	<0.013	<0.013	<0.014	0.014 J	0.33	<0.015	<0.016	<0.015							

KSingh
Engineers
Sclentst
Consultants

MILWAUKEE, WI

Sample	Units	Method		NR 720 RCLs Use for Direct Contact		Background Threshold Value	$\underset{\text { Petectiod Limit }}{\text { D }}$	SW. $\mathrm{B}^{\text {1 }}$	SW-B2	SW- ${ }^{\text {B }}$	SW- ${ }^{\text {b }}$	SW-B5	SW-B6	SW-B7	SW- Br^{8}	SW-B9	W-B10	W-B11
Depth (feet)								$3-4$	3 -4	3.4	$3-4$	3 -4	3.4	3 -4	1-2	3-4	3-4	3-4
Soil Type								Sily C CLAY	Silty CLAY	Silt CLAY	Silty CLAY	Silty CLAY	Sily CLAY	Sily CLAY	velly SAND	Sily CLAY	Sity CLAY	Sly CLAY
Soil Conditions								Moist										
npling Date								/1912023	1192023	1192023	\|1192023	11912023	/1912023	1192023	712012023	71202023	712012023	712012023

(1) From WDNR RCL.L Worksheet daled December 2018
lalicicied values exceed Groundwaier Protection, Noon- tadstrial Direct Contact. or Idusustial Diect-Contact RCL
$J=$ Resultis less than the reporting linit but greater than o o equal to the method detection linititad the concentration is an approximate value
$F_{1}=$ Matix spike andlor matix spike duplicate recovery exceeds control limits
$B=$ Compound was found in the blank and sample
$*=$ Combined essalished standard for NR 720 RCLI for sene and $1,3,5$-timenthybenzene

[^0]:

