

Lake Neshonoc Sedimentation Control Study

Prepared for the Lake Neshonoc Protection and Rehabilitation District

January 1992

Barr Engineering Company 8300 Norman Center Drive Minneapolis, MN 55437 Phone: (612) 832-2600 Fax: (612) 835-0186

49/32-007

Table of Contents

Summary .				•	• •	•	 • •	 •	• •	•		•	•	 •	•	 •	•		•	•	•	•	. •	•	•	•	• •	1
Introduction							 			•	•		•	 •	•	 •					•		, •	•	•	•		2
Data Compile	ation .		• •			•	 • •	 •		•	•		•	 •	•	 •	•	•		•					•	•		3
Data Analysi	s					•	 •				•		•		•	 	•	•		•		•						6
Outline of A	lternat	ives				•	 •	 •			•		•		•	 		•		•		•						10
Recommenda	itions						 •	 •			•		•	 •	•	 	•	•		•	•	•			•			15
References							 •	 •						 •	•			•		•	•	•	•		•			16

Figures

Appendix

I hereby certify that this report was prepared by me or under my direct supervision and that I am a duly Registered Professional Engineer under the laws of the State of Minnesota.

Joel W. Poso

ate //

Reg. No. 19950

Summary

Lake Neshonoc is a valuable water resource that is presently being degraded by deposition of sediment or sedimentation. Approximately 11 percent of the lake volume was filled between 1954 and 1985. If nothing is done in the next 30 years there will be severe impacts to the lake. The exposed portion of the delta will extend to about the midpoint of the lake near the campgrounds. This report is a study of the sedimentation problem involving four major steps: 1) data compilation, 2) data analysis, 3) outline of alternatives, and 4) recommendations.

Data compilation included gathering existing data related to Lake Neshonoc sedimentation such as maps, reports, records, photos, and interviews. A field investigation was done to update and add to this information. A list of the available data is contained in this report.

Analysis of the change of the lake bottom elevations shown on the bathymetric maps from 1954 to 1985 shows a clear picture of the growth of the delta at the upstream end of the lake. Volume estimates of the deposited sediment or sedimentation were made despite some discrepancies in the bathymetric data.

Volume estimates of the deposited sediment were also made with established sediment transport equations and methods. These methods produced substantially higher volume estimates of deposited sediment than those estimates from the bathymetric data. The higher rates may be justified by the fact that sediment is being deposited in the floodplain upstream of the lake.

An aerial survey of the watershed was made to investigate the sources of the sediment being transported by the stream. A primary source was identified as cropland. Another may be the erosion of the stream bed and banks along tributary streams as evidenced by deeply incised valleys. It is essential that existing soil conservation plans and plans being established by the local Soil Conservation Service be carried out to reduce the sediment load at the source. It may be helpful to identify and concentrate on critical areas within the watershed.

Dredging and sediment traps were also presented as alternatives to address the sedimentation problem. Budget costs for these alternatives were presented.

A sediment trap located in the delta just upstream of the lake was recommended. Costs depend on the method of construction. Construction cost is expected to be on the order of \$500,000.

Introduction

Lake Neshonoc is a 600-acre reservoir formed by a dam on the La Crosse River east of La Crosse, Wisconsin. Deposited sediment or sedimentation has decreased the lake's depth and surface area, with an 11 percent loss in lake volume between 1954 and 1985 (Figure 1). This report to the Lake Neshonoc Protection and Rehabilitation District will review alternatives and make recommendations to control lake sedimentation. This project is important because Lake Neshonoc serves the community in many ways, including recreation, boating, fishing, hydropower, and wildlife habitat.

The work completed for this report includes the following major steps:

- 1. Data Compilation
- 2. Data Analysis
- 3. Outline Alternatives
- 4. Recommendations

Stream flow naturally moves and carries sediment. The amount of sediment that a stream can move depends on several factors including the stream characteristics, the flow rate, the source of sediment, and the sediment size. Stream flow process tend to balance out the effect of each of these factors. For example, when the rate of sediment entering a stream exceeds what the stream can transport, the excess sediment is deposited, and the stream bed is built up or aggraded. Conversely, when the sediment source is lacking the stream bed is eroded or degraded. At some point an equilibrium is reached.

In the case of a reservoir, the inflow carrying sediment is slowed down and its sediment carrying capacity is reduced. The sediment is deposited creating a delta at the upstream end of the reservoir. This is a typical problem that must be accounted for in the design of dams. Soil conservation plans developed within the watershed address the problem at the source by reducing erosion, but do not eliminate the problem. The stream will continue moving sediment. If a reservoir is intended to last other means in addition to conservation plans are required to control the sediment. These may include direct removal of the sediment by dredging or passing the sediment by the reservoir by pipe or side channel.

Data Compilation

A fair amount of study has already been done on Lake Neshonoc. As a starting place, a very good data source is the Masters degree thesis by Paul Ritter, titled "Nutrient (N,P) Dynamics, Hydrology, and Sedimentation Rates of Lake Neshonoc, La Crosse, Wisconsin", submitted to the University of Wisconsin - La Crosse, dated June, 1986. The thesis primarily covers nutrient dynamics but also includes significant input on hydrology and sedimentation rates of Lake Neshonoc. It also contains a brief historical background and description of the lake and upstream watershed.

Other sources of data used in this study are listed and described below:

Bathymetric Maps

Bathymetric data was obtained for Lake Neshonoc for the years 1954, 1966, and 1985. The most current map is shown in Figure 1. The maps for 1954 and 1966 are contained in the Appendix. The maps show a loss of surface area as well as a loss of depth in the lake.

Sediment Borings

A sediment survey with borings was done in 1984 and 1989. Seven cross sections of the lake were taken, four on the downstream half of the lake in 1984 and three on the upstream half in 1989. These borings were taken through the ice using an auger on a calibrated steel rod. The data included with these borings are:

- the depth to the sediment,
- the depth to the bottom of the sediment, and
- a few descriptive comments.

A sediment survey was also completed during the field investigation for this study, April 26, 1991. This survey focused on the delta of the lake and upstream stream bed. Fifteen samples were taken in the delta and three taken in the upstream stream bed at Highway 162, County Road J, and Highway 27. The samples in the lake were taken primarily with an eggshell sampler. Samples in very shallow locations in the lake and samples in the stream bed were grab samples by a shovel. A grain size distribution analysis was done for each sample. One of the samples of the fine sediments in the lake was analyzed for organic content.

A copy of these data is contained in the Appendix.

Hydraulic Data

Some basic hydraulic data such as stream flows are given in the Ritter thesis previously mentioned. Other hydraulic data were collected during the April 26, 1991 field investigation for the purposes of this study. Three channel cross sections, including the channel bottom and water surface elevations, were taken on the La Crosse River upstream of the lake at Highway 162, County Road J, and Highway 27. The discharge during the investigation was approximately 220 cfs based on the flow rates at the dam.

Sediment Traps on Local Tributaries

According to Marc Schultz of the University of Wisconsin - Extension, La Crosse County experimental sediment traps were constructed on Dutch Creek and Burns Creek. These creeks are shown in Figure 2.

Approximately 425 cubic yards of material was removed from Burns Creek in summer of 1987 to construct a sediment trap. The trap was filled by early fall even though it was a relatively dry year.

The sediment trap on Dutch Creek was permitted for the dimensions of 1000 by 2.5 by 28 feet was located about 2400 feet upstream of the mouth of the creek. Approximately 2000 cubic yards were removed during the construction of the trap in late May, 1989. The trap was filled in about one year. Creek bed degradation was noted in the downstream channel.

Photographs and Video Tape

Several photographs and a video tape were collected for this study. They include:

- two photo copies of 1938 air photos of the lake.
- a photo copy of a 1967 air photo of the lake,
- a photo copy of a 1982 air photo of the lake,
- a color 8 X 10 air photo of a portion of the lake taken in 1989,
- color photos taken during a flight over the watershed and the field investigation done April 26, 1991, and

 a video tape of portions of the lake bottom exposed during the lake draw down for the dam repairs in the fall of 1985. (Obtained from Marc Schultz, County Resource Agent of the University of Wisconsin - Extension, La Crosse County).

Other Data

Other data include general data from the U.S.G.S., and information from discussions with James Leicht, Chairman of the Lake Neshonoc Protection and Rehabilitation District Board; officials from the Wisconsin Department of Natural Resources; Marc Schultz, County Resource Agent of the University of Wisconsin - Extension, La Crosse County; Professor Gary Parker, a sediment transport expert at the University of Minnesota; officials of the local Soil Conservation Service (SCS); Loyal Gakes of North American Hydro; and dredge suppliers.

The U.S.G.S. data includes the standard topographic maps for the area and stream gaging information at the La Crosse River near West Salem, Wisconsin (see Appendix). No U.S.G.S. data relating to stream sediment in the Lake Neshonoc watershed were found.

Some basic land use information is contained in the Ritter thesis. Soil surveys of the area are available from the SCS.

Related Reports

A list of references is given before the Appendix of this study. Of special note are the reports on the Upper Willow Reservoir in Wisconsin, and the Foot and Willmar Lake Improvements in Willmar, Minnesota. No other sedimentation studies were found relating to the Lake Neshonoc watershed.

Data Analysis

The goal in the data analysis is to understand the nature of the lake's sediment problem and how basic sedimentation processes are creating the problem.

During the April 26, 1991 field investigation, a small plane was chartered for aerial views of the lake and watershed. A watershed map is shown in Figure 3. Areas toured and photographed were the Lake Neshonoc delta, Burns Creek watershed, the La Crosse River up to Sparta, the lower portion of the Little La Crosse River, and Sparta. The watershed area upstream of Perch Lake in Sparta is considered a minor source of sediment to Lake Neshonoc. Most of the sediment from this area is trapped in Perch Lake or Angelo Pond a couple miles upstream.

The land use observed during the aerial tour was typically cropland and pastures in the low areas; wooded hills; and several urban areas most notably, Sparta. Ritter's thesis states that the watershed consists of 42 percent cropland, 40 percent woodland, 15 percent pasture or grassland, and 3 percent urban. Judging from the aerial view the primary source of sediment to the streams appears to be the croplands that extend right up to the stream banks. Very few gullies were noted. There were some areas of stream bank erosion. Logging and timber activities occurring in some of the upland areas is also contributing to the sediment load of the streams.

The sediment samples taken for this study show the sediments consists of at least two approximately distinct populations. The coarser population consists of sand ranging from 0.125 mm to 1 mm. The finer population consists mostly of silt finer than 0.05 mm. The finer population is essentially absent from the bed of the La Crosse River. It moves as wash load (suspended sediment) through the system, exchanging with the banks and floodplain. The coarser population is that found on the river bed, and constitutes the source for the bed material load, whether it be moving as bedload or suspended load.

The coarser material constitutes the source for most of the topset deposit in the reservoir, see Figure 4. Some of the finer material is deposited on the top of the delta, but most passes into the reservoir and across the dam. A certain fraction deposits in the reservoir to form the bottomset deposit.

Based on samples taken at Highway 27, County Road J, State Highway 162, the delta surface, and the delta channel, an overall median grain size of 0.30 mm was deduced for the bed material. Between State Highway 27 and the delta, there is no obvious change in median bed material grain size down the river.

The river profile shows a distinct upward concavity in the streamwise direction upstream of the reservoir. This suggests an aggradational environment: that is, river bed elevation is increasing in response to dam-induced backwater.

A bankfull discharge of 2450 cubic feet/second was estimated based on the two-year flood given in the U.S.G.S. flow data for the La Crosse River near West Salem. A flow duration curve was adopted from the U.S.G.S. data at this site.

Estimate of Lake Sedimentation Rate

The primary task in the analysis of the data for sedimentation control study is defining the sedimentation rate; the amount of sediment deposited in the lake over time. This is dependent on several factors including watershed characteristics, land use, sediment size, stream and lake hydraulics, and hydrology. The sediment transport process is very complex. Sediment load rate calculated from several established methods will vary widely. The services of Dr. Gary Parker, sediment transport expert from the University of Minnesota, were employed during the field investigation and for computation of the sediment loads to provide greater confidence in the results. The methods used to estimate the sedimentation rates are described below.

Bathymetric Maps

The bathymetric maps of the lake for the years 1954, 1966, and 1985 were used to estimate the change in lake volume over time. For lack of better information, it was assumed that the lake level at the time of the each survey was approximately the same. The comparison of bathymetric maps for the different years showed that the average annual sediment accumulation ranged from 7,800 to 29,000 cubic yards per year. The large range of values was due different interpretations of the maps. There appears to be inconsistencies with the areas within the contours for depths of four feet or greater. These inconsistencies are probably due to the number and accuracy of the soundings taken and the interpretation of the soundings when the contours were drawn. However, it appears that most of the sedimentation occurred at depths less than four feet.

As stated earlier, the finer material from suspended sediment or wash load settles in the deeper reaches while sands from the bed material load of the LaCrosse River settle in the shallower depths forming the delta (Figure 4). The best estimate for sedimentation at depths 4 feet and less (the bed material load) using the bathymetric maps is approximately 12,000 cubic yards/year.

Brownlie and Engelund-Hansen Methods

The bed material load was calculated by two different methods using the data presented above, specifically the reach of the La Crosse River between Highway 162 and the delta.

The first method is due to Brownlie. The Brownlie relations for hydraulic resistance and bed material load were applied assuming lower-regime conditions. The formula was modified slightly to treat mixtures of sediment. The second method is due to Engelund and Hansen. Their relation for upper-regime resistance was combined with their relation for bed material load.

The computed loads are as follows assuming the bulk density of the deposited sediment is 90 lbs/cubic foot:

• Brownlie: 58,400 cubic yards/year

• Engelund-Hansen: 60,800 cubic yards/year

Based on the bathymetric maps, bed material appears to be depositing in the delta at a rate of 12,000 cubic yards/year. This number is only about one-fifth of the computed bed material loads in the reach immediately upstream of the reservoir.

There are two possible reasons for this. The first concerns the inherent inaccuracy of load calculations in rivers. It is common for calculated values to be one-half to twice observed values. With this in mind, the above values are arbitrarily halved for the sake of estimation, assume the bed material load through the reach in question is 30,000 cubic yards/year.

This value is still considerably higher than the observed rate of deposition in the reservoir. It is likely that the remainder of the sediment is being deposited in the backwater zone between the delta front and the State Highway 162 bridge. Both topographical maps and aerial photographs show anastomosing (branching) channels flowing across a wide marsh, with clear evidence of recent and frequent avulsion. This suggests an environment undergoing rather rapid aggradation (bed deposition).

It is assumed here that part of the sediment supplied to the reach from the delta to State Highway 162 acts to cause the delta to prograde into the lake; the rest causes the bed and floodplain to aggrade upstream of the delta. If 30,000 cubic yards/year bed material load rate is used, the delta moves out at a rate of about 43 feet/year (a volume of approximately 12,000 cubic yards) and about 0.2 inches of material are deposited each year over the upstream floodplain and channel (a volume of approximately 18,000 cubic yards). These numbers do not seem unreasonable in light of the available evidence. For sedimentation in the lake delta 12,000 cubic yards/year will be used.

Wash Load (Fine Suspended Sediment)

The sediment deposited in Lake Neshonoc consists of bed material load and wash load (fine suspended sediment). All the bed material load of the stream which is mostly sand may be considered deposited in the lake. An estimate of the wash load is required to arrive at the total sedimentation rate in the lake.

Ritter measured suspended sediment at various locations and time during 1985. The simple average of the suspended sediment values measured at Highway 162 is 37 mg/l. To be correct, a discharge weighted average should be used. However, no discharge data are available for 1985 so the simple average will be used as a estimate. Ritter estimates that approximately 25 percent of the wash load was retained in the reservoir (use 10 mg/l). Applying 10 mg/l to the average discharge of 288 cfs gives a loading of about 2,800 tons/year or 3,000 cubic yards/year, assuming a density of 70 lbs/cubic foot.

Conclusion

Therefore, if the bed material load deposited in the lake is estimated at 12,000 cubic yards/year and the trapped wash load at about 3,000 cubic yards/year, the total estimated annual sedimentation rate is about 15,000 cubic yards/year using the combined bed material load and wash load estimates. It should be emphasized here that 15,000 cubic yards/year is an average rate, the range may be 4,000 to 60,000 cubic yards/year.

Another method of estimating sediment yield that was not used in this study is to estimate the amount of sheet and rill erosion that occurs in the watershed. Sheet erosion is usually calculated using the Universal Soil Loss Equation (USLE). The USLE calculates the amount of sheet and rill erosion which occurs in an area using data such as land use, type and rotation of crops, management practices, soil types, slope length, and climatic region. The equation only gives an estimate of the annual gross erosion that occurs in a field. It will not directly give an estimate of the sediment arriving at the reservoir. The gross erosion is multiplied by a "delivery ratio" which is a percentage of the gross erosion that will make it to the reservoir. Because of the detailed information needed, USLE becomes very data intensive and will have very questionable results when applied to a large watershed such as Lake Neshonoc's (398 square miles).

The USLE is best used for comparative studies, such as to determine the percent decrease or increase a certain farming practice will have on erosion rates. Direct methods to measure sedimentation rates, as presented above, are preferable to indirect methods such as the USLE, as long as the data are available.

Outline of Alternatives

There are three basic concepts to alleviate the Lake Neshonoc sedimentation problem: 1) limit the sediment entering the river, 2) create a bypass for the sediment through the lake, and/or 3) periodic removal of the sediment. The three alternatives for sediment control presented below are based on the first and the last concepts. There are potential environmental problems with the second one.

A bypass for the sediment could conceivably consist of a pipe placed in the lake to collect the sediment at the inflow to the lake and transport it to the outlet. Very rough calculations show that 10,000 feet of 4-foot diameter pipe would be required to pass 50 cubic feet/second of sediment and water. Using an estimate of \$75/foot for the cost of furnishing and installing the pipe, the cost would be approximately \$750,000. There are also permitting problems that would have to be considered. The outflow may have to meet waste water treatment standards. This would probably be the first time this procedure would be used in this country. Based on this these factors this concept was ruled out.

Modification of Land Use Practices

Controlling the sediment entering the creek requires land use management within the watershed to limit the sediment erosion at the source. The primary source of sediment in the Lake Neshonoc watershed appears to be from agricultural areas. There is progress in improved farm practices. Conservation plans are currently required to receive federal farm money and state tax credits. These plans include improved crop rotation and tillage practices. Erosion due to logging and timber activities is currently being addressed by La Crosse County regulations.

As an enhancement of the plans currently required, specific areas within the watershed which are contributing the most sediment to the creek should be located. Special conservation plans including such activities as creating buffer strips for these areas could be worked out with local conservation officials.

Dredging

Removing accumulated sediments by dredging is typically done by using mechanical or hydraulic methods. Mechanical dredging may be defined as the process of scooping material from the lake bottom and loading it into a boat or scow to be transported to a nearby disposal area. Hydraulic dredging removes material by pumping a sediment/water slurry through a pipe to a settling basin on land. An advantage of mechanical dredging is that no settling basin is required. With hydraulic dredging,

discharge requirements from settling basins may have to meet waste water treatment effluent standards, thus requiring very large basins, especially with the relatively small grain sizes found in the Lake Neshonoc.

If the dredging is limited to the edge of the delta at the upstream end of the lake, there may be a third method to remove the material. During the winter, excavating by standard excavation procedures, such as a dragline or backhoe, may be possible. A cold, dry winter would be preferable to insure solid ice. Drawing the lake down about a foot and some channelization of the inflow may improve the ice conditions. Settling basins would probably not be required and the material could be stockpiled.

A few dredging scenarios were considered for Lake Neshonoc: 1) restoration of the lake by removing all sediment accumulated since a given time; 2) removal the coarser sediments contained in the delta portion of the lake; and 3) concentrating dredging in small portions of the lake to improve fishing habitat, access, or other assets of the lake. These scenarios reflect various levels of dredging. The first requires the most; the second somewhat less; and the third could be "surgical" in nature, dredging in a few selected areas. The third could be combined with either of the other two scenarios.

The first scenario, removal of all the accumulated sediment, would require dredging the entire lake. The earliest available bathymetric map is dated 1954. It is likely that a large amount of sedimentation occurred prior to this time given the land use in the area. However, the lake limits in 1954 will be used as an example for the first scenario.

Since 1954, approximately 450,000 cubic yards of sediment has accumulated in the delta portion of the lake and about 110,000 cubic yards of finer sediments have settled out on the lake bottom. Figure 1 illustrates the accumulation at the delta. The sediment deposited in the delta since 1954 covers an approximate area of 0.5 miles by 0.5 miles. The lake is about 0.5 miles wide at the upstream end. Dredging 450,000 cubic yards would bring the average depth in the delta area to about 3.5 feet. Dredging 110,000 cubic yards off the lake bottom requires removing 0.2 feet over most of the lake bottom assuming the fine sediments have been evenly distributed. A comparison of the bathymetric maps for 1985 and 1954 presented in the Appendix shows the most of the deposition occurring near the outlet of the lake. Concentrating the dredging of 110,000 cubic yards at the outlet would require removing 2 feet over 34 acres.

Dredging the entire lake would have an initial severe impact on the aquatic life within the lake due to the increased turbidity of the water caused by the dredging. The bottom sediments are fine an stay in suspension for long periods of time. The use of the hydraulic dredging method for bottom sediments would require a very large settling basin.

The second scenario has potentially less adverse impacts. The dredging would be localized at the upstream portion of the lake and would remove the coarser sediments. Coarse material settles out faster which requires smaller settling basins if hydraulic dredging is used. It may be feasible to use silt curtains to reduce the impacts of the turbidity since a smaller area is dredged. As stated above, standard excavation methods may be feasible depending on ice conditions in the winter. If work was confined to areas completely iced over impacts due to turbidity could be avoided. Removing 450,000 cubic yards of material would bring the delta back to about the 1954 outline. The depth in the delta area would be about 3.5 feet as stated in the first scenario.

Dredging in the third scenario would be limited to a few selected areas within the lake. The amount of material to be removed would depend on the location to be dredged and the required depth. This could include dredging a few areas along the lake shore to depths and bottom contours that would improve fish habitat. Access to the lake could be improved at the upstream end of the lake where sedimentation is concentrated. Initial impacts of the turbidity may be reduced by dredging in small areas and using silt curtains to confine the suspended sediments. The feasibility of using hydraulic dredging in the fine bottom sediments would have to reviewed.

As an example for the third scenario, three locations could be dredged removing 100,000 cubic yards of material at each location. Two could be for improved fish habitat. The lake depth could be increased an additional 6 feet over two 10 acre areas. One location could be for improved access. Removing 100,000 cubic yards would deepen 0.5 mile of lake shore by 4 feet out to a distance of 250 feet from the shoreline.

Sediment Traps

Sediment traps control sedimentation by catching it at a specific location or locations. The trap size is dependent on the sediment size, the sediment load, and the desired frequency of sediment removal. The grain size analysis of the sediments entering Lake Neshonoc show that most of the sediment falls within the 0.1 to 0.5 mm range, which is fine to medium sand. Relatively large traps are required to remove these sands from the stream flow.

Several locations were considered for the sediment traps: at the outlets of local tributaries, such as Dutch and Burns Creek; on the La Crosse River at Highway 162, and at the delta in Lake Neshonoc. Considering all the factors, locating one large trap within the delta just upstream of the lake is considered to be the most favorable option (Figure 5). All the work is concentrated in one location. The large trap size required for the small sediments easily fits within the delta. Traps located upstream of the wetlands in the area may impact the wetlands by causing channel degradation.

The sediment trap shown in Figure 5 is designed for trapping 120,000 cubic yards of sediment. It is intended to last up to a 10 years depending on the sedimentation rate. The trap requires removal of 250,000 cubic yards of material to account for the required side slopes and expanded width of the trap to insure no circumvention. The dimensions of the trap bottom are approximately 1400 feet wide, 5 feet deeper than the existing channel, and 450 feet long. The upstream and downstream slopes of the trap would by 50:1 and 20:1, respectively, with side slopes of 4:1. The trap may be dredged hydraulically or mechanically. Standard excavation methods (backhoe or dragline) may possibly be used if done during the winter.

Costs

Dredging costs depends primarily on the amount of material to be moved, the dredging face, the transport distance, and elevation of the settling basin relative to the lake. Dredging a small amount of material, less than 100,000 cubic yards, results in higher unit prices since mobilization costs are a higher percentage of the work. The dredging face is the vertical height of the material to be removed. If this is kept around 5 feet the dredge does not have to be moved often resulting in smaller unit costs. With regard to transport distance and relative settling basin elevation, it is best if these factors are limited to less than 6000 feet and less than 25 feet, respectively. This is particularly true for hydraulic dredging. A range of dredging costs are presented below that reflect the majority of conditions for Lake Neshonoc.

Assuming there are disposal/stockpile sites nearby on the south shore of the lake, mechanical dredging may range for \$3 to \$5/cubic yard depending on the mobilization cost. Hydraulic dredging would be as low as \$2/cubic yard not including costs involved with the settling basins.

The possibility of using standard excavation procedures was reviewed by a contractor in St. Paul, Minnesota who estimated the work at \$2 to \$3/cubic yard. A local contractor may be able to bid the work for under \$2/cubic yard.

The option of leasing and purchasing a hydraulic dredge for use on the lake was reviewed. Leasing a dredge only makes sense if the machinery were used for only one year. However, with only one year, contracting the work out is likely more economical. The initial cost of an appropriately sized new dredge would cost about \$500,000. This dredge has a production rate of 18,000 cubic yards/month. Labor and operating costs would be about \$20,000/month.

The Kandiyohi County, Minnesota, Engineer, Gary Danielson, reports dredge costs ranging from \$0.14 to \$0.56/cubic yard for dredging Foot and Willmar Lakes near Willmar, Minnesota. Their dredge was bought used from the U.S. Corps of Engineers and refurbished. 1.5 million cubic yards were dredged between 1981 and 1986.

A used dredge such as the Kandiyohi dredge may cost approximately \$150,000 to get it operational at Lake Neshonoc. Given a dredge capacity of 25,000 cubic yards/month, operating and labor costs are estimated to be \$25,000/month. The sediment trap shown in Figure 5 could be constructed in two years for a total cost of \$400,000 or \$1.60/cubic yard. The dredge would then be available in the future years for maintenance of the sediment trap and lake depths with removal costs of approximately \$1.00/cubic yard. It should be noted that these costs do not include the costs of the settling basin.

Table 1 is a summarizes of the costs for a few dredging scenarios and the sediment trap previously described. In the first scenario, 560,000 cubic yards are removed throughout the lake, 450,000 cubic yards in the delta and 110,000 cubic yards near the outlet. The second requires removal of 450,000 cubic yards of the delta. In the third, 300,000 cubic yards are removed (100,000 cubic yards in three selected locations). Mechanical dredging was not reviewed for construction of the sediment trap.

Table 1. Summary of Costs

	Hydraulic Dredging	Mechanical Dredging	Standard Excavation
First Scenario 560,000 CY	\$1.0 to \$2.2 million ¹	\$1.7 to \$3.0 million	-
Second Scenario 450,000 CY	\$1.0 to \$1.8 million ¹	\$1.4 to \$2.3 million	\$0.9 to \$1.4 million ²
Third Scenario 300,000 CY	\$0.6 to \$1.2 million ¹	\$0.9 to \$1.5 million	-
Sediment Trap 250,000 CY	\$0.5 million ¹	-	\$0.5 to \$0.75 million ²

¹ Does not include costs of settling basin(s).

All costs given above do not consider the value of the excavated material for farming or fill purposes.

² Assumes winter construction.

Recommendations

It is our opinion that the best alternative to control sedimentation in Lake Neshonoc is the sediment trap located in the delta as illustrated in Figure 5. It is also essential that soil conservation plans be carried out to reduce the sediment load at the source. It may be helpful to identify and concentrate on critical areas within the watershed.

Standard excavation methods done in winter may be the most economical for trap construction. If the hydraulic dredge from Kandiyohi County, Minnesota is purchased, the sediment trap could be economically constructed and the dredge could be used as needed in the lake and for future maintenance of the sediment trap.

If a decision is made to construct the sediment trap further study of the sedimentation rates is warranted. Dr. Parker identified a computer model that could be used to improve the estimates of the sedimentation rates computed in this study and the predict the results of the trap. This would be part of the detailed design of the trap.

A settling basin or basins will be required if hydraulic dredging is selected. Possible sites need to be selected and discussed with the Wisconsin Department of Natural Resources. The design of basin will depend on the regulations of the return water.

References

- 1. American Society of Civil Engineering Manual and Reports on Engineering Practice No. 54, Sedimentation Engineering, 1975.
- 2. "Preliminary Report of Foot and Willmar Lake Improvements and Adjacent Lane Use Development for Willmar, Minnesota," City of Willmar Engineering Department, Verne E. Carlson, City Engineer, January, 1976 (Letters dated March 1986 where attached).
- 3. Ritter, P.G., "Nutrient (N,P) Dynamics, Hydrology, and Sedimentation Rates of Lake Neshonoc, La Crosse, Wisconsin," Masters Thesis, University of Wisconsin La Crosse, La Crosse, Wisconsin, June, 1986.
- 4. Schwab, G.O, et al., Soil and Water Conservation Engineering, John Wiley & Sons, 1966.
- 5. U.S. Department of Agriculture, Soil Conservation Service, National Engineering Handbook, Section 3, Sedimentation.
- 6. "Upper Willow Reservoir Lake Management Plan," Report prepared for the Upper Willow Rehabilitation District, by National Biocentric, Inc., May 1979.

Figures

Figure 1

1985 LAKE NESHONOC BATHYMETRIC MAP
(COPIED FROM RITTER, 1986)

Figure 2

LAKE NESHONOC AND ITS IMMEDIATE TRIBUTARIES (COPIED FROM RITTER, 1986)

Figure 3
LAKE NESHONOC WATERSHED
(COPIED FROM RITTER, 1986)

Figure 4
RESERVOIR DELTA FORM
(COPIED FROM REF. 1)

Figure 5
PROPOSED LAKE NESHONOC SEDIMENT TRAP

Appendix

- Fish Cribs
- ▲ Informational Buoys
- **★** Boat Landings

From 1940, this approximately 780 acre reservoir has been used as a fishery, for recreational boating, provided valuable habitat for a variety of wildlife, and is the source of hydroelectric power.

This reservoir, like so many others in agricultural regions, is plagued by decreasing water depth and area due to the sediments trapped in the take. Increasing siltation will cause detrimental lack of depth and further loss of surface area in

The Lake Neshonoc Protection and Rehabilitation District, along with the support of local residents and organizations want to preserve this natural resource for future generations. Continuing long term programs and policies are directed towards protection and eventual rehabitation of Lake Neshonoc and the La Crosse River watershed area.

We ask that everyone enjoy this scenic take and help us all with this effort.

> The Lake Neshonoc Protection & Rehabilitation Board of Commissioners

La Crosse River

_AKE SURVEY MAP

WISCONSIN CONSERVATION DEPARTMENT

BM "X"- Top of concrete walk on dam at south end.

913

High School

34 / 35

P. Pegi

C Clay

W Warl

5d Sand

Strift

Assumed elex 100 Water elev.

SEC. 27 SEC. 34 SWARTHOUT

DARW

TOWN OF WEST SALEM

Brush

wooded

C Cleared

A) in culturel

RECORDING ECHO SOUNDER
EQUIPMENT AND POLE SOUNDINGS MAPPED JUNE

dittil. Steep stope

Morsh ششه

o- Spring

- Permanent inlet

Permanent autlet

____ intermittent stream Mk Muck

PW Portally wooded Indefinite shoretine

LACROSSE

SEC. 2627.3136.35.34 T. - 17 - N. R. - 5,6 - K.W.

Assumed elev 100' Woter elev.

SEG. 27

SEC. 34 SWARTHOUT-

> TOWN OF WEST SALEM

TOPOGRAPHIC SYMBOLS

A Marsh

. 1 / Sam

B Bruth

e mooded

C Cleared

91.3

いうしょうして

LAKE NESHONOC SEDIMENT SURVEY February , 1984 Guage Height_____

X - Section I

Measurement Depth	to Top of Sediment Dep	th to Bottom of Sediment
100 North Shore Pt.	8	11½
200	8	12+
300	8	13+
400	8	13+
500	8½	13+
600	8	13+
700	8 sediment seems more solid here	11+
800	812	12+
900	8	13+
1000	7½	12+
1100	7	12+
1200	6 3/4	10
1300 Point	6	30' to shore fine sand, no sediment

LAKE NESHONOC SEDIMENT SURVEY February , 1984

X - Section II

Guage Height____

Measurement	Depth to Top of Sediment	Depth to Bottom of Sediment
100 Point	8	No reading-close to 100' hole of X-Section I
200	71/2	12+
300	7 3/4	12+
400	8 very loose sediment	13+
500	8	13+
600	7½	13 to solid, bottom a little sand
700	7½	12 sand
800	71,4	9 sand
900	7½	10+
1000	7½	13+
1100	714	13+ soft, shakes off easily
1200	7 3/4	13+ very loose
1300	7 3/4	13+ old marsh grass
1400	7½	12
1500	7½	12+ solid organic
1600	6	13+ old marsh grass
1700 100' to shor	re 5 3/4 sand at 5 3/4, organic sand	<pre>9 to bottom sand, sand over organic</pre>

Guage Height____

LAKE NESHONOC SEDIMENT SURVEY February , 1984

X - Section III

Measurement	Depth to Top of Sediment	Depth to Bottom of Sediment
100 North Shore	6'	6' sand little bit organic
200	7 '	7' sand
300	7½'	10 3/4 muck, grass root
400	7½'	13+
500	7 1/4'	13+
600	7'	9½ old marsh, solid organic
700	7'	12+
800	6 3/4'	9 3/4 sand
900	6121	11 sand
1000	6½'	$11\frac{1}{2}$ sand
1100	6½'	9½' some sand
1200	6 3/4'	9½
1300	6½'	10
1400	614'	9+
1500	6141	8 sand
1600	6141	10 muck
1700	6½'	10
1800	64'	12+ muck

1900 South Shore 1' to sand; 12' to shore

LAKE NESHONOC SEDIMENT SURVEY February , 1984

X - Section IV

Guage Height____

	Depth to Top of Sediment	Depth to Bottom of Sediment
100 South Shore	6 3/4	12
200	6	9 organic kind of clay
300	6	10 sand
400	6	91/2
500	6	10 to sand, layers of san and muck
600	6	11+
700	64	11+
800	6	9
900	6	13+ old marsh
1000	61/4	11
1100	61/4	9½ appears to be clay siz
1200	61/4	11 sand
1300	6	9 3/4 sand
1400	6	12 sand
1500	6	9½ organic
1600	6	12
1700	64	
1800	6 3/4	8+
1900	51/4	8+
2000	61/2	12 black organic
2100	6½	12+
2200	61/2	11^{1}_{2} black organic
2300	61/4	10 sand
2400	61/4	10½ black organic
2500	6 upper layer org well decomposed	
2600	6	8½
2700	4	4 sand
2800	3½	3½ sand
2900	31/4	$3\frac{1}{4}$ sand
3000	3	3 sand
0000		
3100	31/2	31/2

LAKE NESHONIC SEDIMENT SURVEY March 1989

V Measurement	Depth to top of Sediment	Depth to bottom of Sediment
50	3 ft.	Sand
100	5 ft.	10 ft. muck to peat
200	5 ft.	6 ft. muck over peat
300	5 ft.	6 ft. muck over peat
400	5' 6"	6 ft. muck over peat
500	6 ft.	7 ft. muck over peat
600	6 ft.	7' 6" muck over more decomposed
	2 2 3 7	peat
700	6 ft.	7 ft. muck over clay with some
		fibers
800	6 ft.	7' 6" muck over peaty muck
900	6' 6"	12 ft. & muck (stump)
1000	6' 6"	10' 6" muck
1100	6' 6"	9' 6" muck over peat
1200	6' 6"	7' muck over mucky sand
1300	6' 6"	7' muck over peaty muck
1400	6 ft.	6' 6" muck over peaty muck with
tas.		large fibers
1500	6 ft.	9' muck to hard bottom
1600	6 ft.	7' muck over clay muck
1700	6 ft.	10' 6" muck
1.800	6 ft.	7' muck over clay muck
1900	6' 6"	8' 6" muck over clay muck
2000	6' 6"	8' 6" muck over clay muck
2100	6 ft.	7' 6" muck over clay muck
2200	6' 6"	7' 6" muck over peaty muck
		with some fibers
2300	6 ft.	7 ft. muck over clay muck
2400	5' 6"	5' 8" muck over sandy muck
2500	2 ft.	sand 50 ft. from North
•		Shore
		Andreas Control of the Control of th

Page 2

VI

Measurement	Depth to top of Sediment	Depth to bottom of Sediment
100	3 ft.	Sand
200	6 ft.	7 ft. muck over clay muck
300	6' 6"	12 ft. and muck
400	6 ft.	12 ft. and muck
500	6 ft.	11 ft. muck
600	6 ft.	ll ft. muck
700	6 ft.	6' 6" muck over peaty muck
·		(stumps)
800	5' 6"	10 ft. muck
900	5' 6"	9 ft. muck
1000	5' 6"	10 ft. muck
1100	6 ft.	10 ft. muck
1200	5' 6"	8 ft. peaty muck
1300	5' 6"	8 ft. muck over sand
1400	5' 6"	9 ft. muck over sand
1500	5' 6"	8' 6" muck over sand
1600	5' 3"	5' 9" muck over sand
1700	5' 8"	7 ft. muck over sandy clay
1800	5' 3"	7 ft. muck over sandy clay
1900	5' 6"	7' 6" muck over peaty muck
2000	5' 3"	7' 6" muck over peat
2100	5 ft.	7 ft. muck over clay (stump)
2200	5' 3"	7' 3" muck over sandy muck
2300	4'8"	8 ft. muck over peat
2400	4' 6"	5 ft. sand
2500	4' 6"	5' 6" muck over sand
2600	4' 6"	5' 8" sand
2700	4' 3"	6' 8" muck (fibers) over sand
2800	4' 3"	6' 6" muck over mucky sand
2900	3' 3"	4 ft. to sand
3000	4 ft.	6' 3" muck over peat
3100	3' 6"	5' 6" muck over mucky sand
3200	3 ft.	3' 6" muck over sandy muck

^{*100} ft. from South Shore

Page 3

Measurement	Depth to top of Sediment	Depth to bottom of sediment
100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500	Depth to top of Sediment 3 ft. 3' 6" 3' 8" 4' 3" 4' 3" 4 ft. 4 ft. 4 ft. 4 ft. 4 ft. 5' 6" 3' 8" 3' 6" 3' 8"	Depth to bottom of sediment 3' 6" muck over sandy muck 6 ft. muck over peat 6' 6" muck over mucky clay 6 ft. muck over mucky peat 6 ft. muck over mucky peat 6 ft. muck over sand 7 ft. muck over sand 7 ft. muck over clay muck 9 ft. muck over mucky sand 9 ft. muck over clay muck 6 ft. muck over clay muck 7' 6" muck over clay muck 8 ft. muck over clay muck 9 ft. muck
1700 1800	3 ft. 3' 6"	9 ft. sand over mucky sand 8 ft. sand

MAS/dm/0021x

Scale 2 1"=2000'

Sediment Sample Locations

(See also annotated color photo)

Project: LAICE NESHONDE REHABILITATION-#49/32-007 JWTOI Date: 5-9-9/

Reported To: BARR ENGINEERING COMPANY Job No.: 1491

			wlyon D.S. MOZAL	v 7 H T		- Gae D.S. SOUTH
Boring No.		SAND BAR	Sterrature	SOUTH MOUTH	5307H MOUTH	BULLION MOUTH
Sample No.		I	1.	ΠA	IВ	こ こ
Depth (Ft)		0-4"	water 3 5 1	WANDENSON SURFACE	8" BELOW SURFACE	@ 2.7 wat
Type of Sample		JAR	LINER	JAR	JAR	& Z. 7 wat do LINER
Soil Classification		SA-> W/S. UT&	LINER LEAN CLAY W/ORGANICS	SILTY SAND W/ DRGANICS	SILTY SAND W/ DIGANOCS	LEAN CLAY W/DRGANICE
(ASTM: D2487/2488		A LITTLE ORGANIUS (SP-SM)	U/ORGANICS (CL/OH)	(sm)	(Sm/SC-SM	(CL/OH)
Mechanical Analys	sis	(SP-Sm)	CECTON	(3///	(3),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	C C2/0///
Dry Weight (Gra		476	278	297	314	284
Percent Passing		TIP		2//		207
Gravel 3'	,					
2'						
1'		:				
	4"					
	10				1.00	, _
	40	100	100	/30	100	000
	100	89.9	98.7	92.7	96.4	29.9
	200	24.1	93.1	44.6	78.7	98./
· · · · · · · · · · · · · · · · · · ·	200	19.3	90.9	25.1	649	95.9
Atterberg Limits						
Liquid Limit					_	
Plastic Limit					100	
Plasticity Index					South Street	
Moisture - Densit	у				C XX C SV	**
Water Content (%)				Be of the se	K.
Dry Density (PC	F)				e er	0
Unconfined Comp	ression			Cope. 1/2	To the second second	
Maximum Load (ps	·)			(*)	the Day Was	
Hand Penetromet	er (tsf)					
Organic Content	(%)		7.3			
Ph (Meter Metho	d)					
Specific Gravity						
Resistivity (ohm-						

Project: LAKE NESHONOL REHABILITATION -#49/32-007 JWT01 Date: 5-9-9/

Job No.: 1401 Reported To: BARR ENGINEERING COMPANY

Boring No.	TOTAL OF THE STATE	SOUTH MOUTH ON SAND BAIL	ON SAND BAR	SOUTH MOUTH ON SAND BAIL	FIRST IN DELTA	FIRST IN DELTA
Sample No.		# 11	3A	3B	4	4B
Depth (Ft)		@ SURFACE	\$ 1.3' dept	h \$1.3' dupt	e Surpace	TOP 5"
Type of Sam	ple	JAR	metal egg shell LINER	plastic esa shell LINEIL	LINER	JAR
Soil Classific	ation	JAND, FINE	5 TY SAND W/	SILTY SAND WI	SILTY SAND W/ SOME ORGANICS	SANDY SILTYCLAY
(ASTM: D2487/2488		(SP)	Some oncarics (Sm)	Some ORGANICS	(sm/sc-sm)	
Mechanical Analysis						
Dry Weight (Grams)		337	288	293	266	220
Percent Pa	assing					
Gravel	3"					
	2"					
	1"					
	3/4"					
	#4					
Sand	#10	100	190	100	100	120
	#40	86.8	89.2	95.6	91.5	98.5
	#100	3.9	30.9	44.9	5/.5	73.8
	#200	1.2	25.0	32.8	37.6	57.2
Atterberg Lir	nits					
Liquid Lim	it					
Plastic Lin	nit					
Plasticity I	ndex					
Moisture - D	Density					
Water Cor	ntent (%)					
Dry Densi	ty (PCF)					
Unconfined	Compression					
Maximum Loa	ad (psf)					
Hand Penet	rometer (tsf)					
Organic Co	ntent (%)					
Ph (Meter N	Method)					
Specific Gra	avity					
Resistivity (ohm-cm)					

Project: LAKE NESHONOL REMARILITATION - 49/32-007 JUT 01 Date: 5-9-91

Reported To: BARR ENGINEERING COMPANY Job No.: 1401

Boring No.	F1125T DELT		STREAM 300' LIPSTA		OF NORTH MOUT
Sample No.	4	C 5A	- 5B	50	6
Depth (Ft)	5".	-9" @ Suz	FACE @ 6"	@ SURFACE	#1-/wate
Type of Sample	BA		BAG BAG	JAR	LINER
Soil Classification	SILTY SA Some OR	No No	SA~0, F.~		Sity, CLAYEY SA.
(ASTM: D2487/248	18 (Sm/SP		T GRAINED	GRAINED (SP	(sc-sm/sm)
Mechanical Analys					
Dry Weight (Gran	ns) 3 5	58	351	213	477
Percent Passing					, , , , ,
Gravel 3"					
2"					·
1"					
3/4	1"				
#4	19	0	100		
Sand #1		7.9	99.9	/50	100
#4		3 . /	74.7	79.3	96.9
#1		4.6	6.0	3.8	45.9
#2		3.1	2.1	8.6	33.8
Atterberg Limits					
Liquid Limit					
Plastic Limit					
Plasticity Index					
Moisture - Density	,				
Water Content (%	(o)				
Dry Density (PCF	-)				
Unconfined Compr	ession				
Maximum Load (psf)	-				
Hand Penetromete	er (tsf)				
Organic Content (%)				
Ph (Meter Method					
Specific Gravity					
Resistivity (ohm-c	m)				

Project: LA	ILG NESHO	NOC REHABILIT	-ATION -#49/	32-007 JWT 01	Date: <i>5-9-</i> _	9/
Reported To:	BARRU	ENGINEERING	COMPANY	·	_ Job No.: <u>/ 4</u> s) /
·						
Boring No.		IN LAKE, SOUTH & DOWNSTHERM OF S	אדנו פי אי אדנו כ			
Sample No.		7				
Depth (Ft)		EURIUM-1	weter depth			
Type of Samp	ole	LINER				
Soil Classifica	ation	LEAN CLAY W/ DRGANICS				
(ASTM: D248	37/2488	(CL/OH)				
Mechanical A	nalysis					
Dry Weight	(Grams)	3,0				
Percent Pa	ssing					
Gravel	3"					
	2"					
	1"			-	19	
	3/4"					
	#4					
Sand	#10	100				
* <u>had thin</u> ()	#40	99.2				
	#100	95.2				
	#200	91.4				
Atterberg Lim	nits					
Liquid Limi	t					
Plastic Lim	it					
Plasticity Ir	ndex					
Moisture - D	ensity					
Water Con	tent (%)					-
Dry Density	y (PCF)					
Unconfined C	Compression					
Maximum Loa	d (psf)	-				
Hand Penetr	ometer (tsf)					
Organic Cor	ntent (%)					
Ph (Meter M	lethod)					
Specific Gra	vity					
Resistivity (ohm-cm)					

Project: LAKE NESHONOC REHABILITATION-#49/32-007 JWT 01 Date: 5-9-9/

Reported To: BARR ENGINEERING COMPANY Job No.: 1401

Boring No.		LACROSSE RIVER @ #162	ECOUNTY RD. J	LACROSSE RIVER Huy 27, NEAR SP	ARTA	
Sample No.		A	B	C		
Depth (Ft)		@ SURFACE	e Sunface	@ SURFACE		
Type of Sam	nple	JAR	JAR SAND, FINETO	JAR		
Soil Classification (ASTM: D2487/2488		SAND, FINE GHAINED (SP)	MEDIUM GALVED	GILAINED		
		(57)	(SP)	(SP/SP-SM)		
Mechanical	•					
Dry Weigh	nt (Grams)	458	257	224		
Percent P	assing					
Gravel	3"					
	2"					
	1"				4-	
	3/4"					
	#4	100	100			
Sand	#10	99.9	99.9	100		
	#40	93.6	59.6	74.4		
	#100	4.1	0.3	5.3		
	#200	9.4	0.6	5.0		
Atterberg Li	mits					
Liquid Lim	nit					
Plastic Lir	mit					
Plasticity	Index					
Moisture - [Density					
Water Co	ntent (%)					
Dry Dens	ity (PCF)					
Unconfined	Compression					
Maximum Lo	•					
	rometer (tsf)					
Organic Co						1
Ph (Meter Method)						
Specific Gravity						
Resistivity (ohm-cm)						

Grain Size Distribution Job No: 1+01 Date: 5-9-91

Project: LAICE NESHONOL REHABILITATION

49/32-027 JUT DI Soil Classification Boring No. Sample No. Depth (ft) 1 63.5' LEAN CLAY W/OBLANICS (CL/OH) #49/32-007 JUT DI Reported To: BARR ENGINEERING COMPANY * ALONG MONTH DR SAME BANK ~ 1408' D.S. SOUTH MOUTH U.S. STANDARD SIEVE SIZES #20 #30 #40 #50 #60 #80 #100 #200 ½" 3/8" #8 #10 3" 2%" 2" SHOWN SIZE E III PERCENT .005 .004 .003 .002 0.5 0.4 0.3 0.2 .05 .04 .03 .02 .01 5.0 4.0 3.0 PARTICLE SIZE IN MILLIMETERS GRAVEL SAND FINES COARSE FINE COARSE MEDIUM FINE

						G	rain Siz	e Distribution	on						
Boring #	No. Sa	mple No . <u>TL A</u>	Depth (ft)	Soil Class	ification				Joh No	: : LA	1401 Kr NES	M DAND C	Da /2 EH 4 B	te: <u>5-9</u>	1-5/ 10~1
			SURFACE							#491	32-007	JUTOI			
* .	<u>South</u>	MOSTH							Report	ed To:	BARIL	ENGIN	18812129	ComPA	27
		-				ı e	I.C. CTAND	ARD SIEVE SIZE	· ·						
;	3'' 2½'' 2	<i>"</i> 1"	· ½" ½" 3	/8" ¼" #-	4 #8 #1			#50 #60 #80 #1		200					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
100															
90															
80															
23 010 8															
AN SIZE 90															
五 元 元 元 元															
⊢ 40 Ζ ພ ບ ແ															
<u>o</u> 30					,					/					
20															
10															
C	50 أ	.0	10	.0 5.0	0 4.0 3.0 2.0	1.0 PARTICLE S	0.5 O.		0.1	.05	.04 .03	.02 .0	.005	.004 ,003 .0	02 .00
			GRAVEL				SAND		}			F	INES		
		COARSE	F	INE	COARSE	MEDIL	JM L	FINE							9/2
															2

		<u> </u>				Grain S	ize Di	stributi			,				
Boring	No. Sample No.	Depth (ft)	Soil Classi	fication		1000	150-5	m)		o:/_				Date: <u>5 9</u>	7 /
*	No. Sample No.	SOLFACE	31474	DA 0 01 -	:_(,)(>,, C.3	(3/1)	/		Projec	t: LAE	122 = 0	DAOL R	EH 131-17	7 7 5 7 5 7 5	
	DUTH MOUTH								Report	ted To:	RAUN	15,06126	ERING.	Co-11771 1	<i>y</i>
				Пор					1 tepon		J. 13 12 13				
	3" 2%" 2" 1	% % 3	./8'' ¼'' #4	ı #8 #10) #	U.S. STA 20 #30 #		SIEVE SIZE #60 #80 #1		‡200		:			
100															
90															
80															
2 70															
37 S Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z															
<u> </u>															
⊢ 40 2 30 4 30		-		• • • • • • • • • • • • • • • • • • •											
20															
10															
0				4.0 3.0 2.0	1.0		5 0.4 0.3	0.2	0.1	05	.04 .03	.02	01 .0	05 .004 .003 .0	002 .001
	50.0	10	5.0 5.0 	- -4.0 3.0 2.0	PARTICLE										1
		GRAVEL	SAND					1			FINES				
	COARSE	F	INE	COARSE	MED	F.C		FINE		1		-			19/25

				Grain Si	ze Distribution		
Boring N	o. Sample No.	Depth (ft)	Soil Classification	()		o: /40/ Da	
*	TIL W	<u>O JURPACS</u>	SAND, FINE	GRAIMS (SP)	Projec	I: LAKE DESHONDE REHAB!	LITA TOOL
						# 49/32-007 HWT 01 THEN TO: BARR ENGINEERING	
	SOUTH M	OJAN DAJ S	AND BAIL		Repor	ted To: BARR ENGINEERING	ComPANY
24	2%" 2"	1" ¾" %" 3.	/8" ¼" #4 #8		DARD SIEVE SIZES 0 #50 #60 #80 #100 #	#200	
100			N M NYKI KAN KAN NA N				
90					Na in the second se		
80							
					X		
Z 70 3 0							
ω ₆₀							
AN SIZ							
Η 50 Η 2							
- 40 - 40							
E S C E S							
v 30							
20							
10							
0 L	50.0	10	0.0 5.0 4.0 3.0	2.0 1.0 0.5	0.4 0.3 0.2 0.1	.05 .04 .03 .02 .01 .009	.001 .003 .002 .001 ا
1				PARTICLE SIZE IN M	ILLIMETERS		
<u> </u>	004505	GRAVEL	INE COARSE	SAND MEDIUM	FINE	FINES	
	COARSE	F	INE COARSE	MEDIUM	FINE		Ţ,

	Grain Size Distribution To g No. Sample No. Depth (ft) Soil Classification To a general (brass) egg shell The state of										
Boring ∗x	No.	Sample No.	Depth (f	Soil Class کرداد	ification	OME ORGANICS	(sm)	Job No	: 1401 : LAKE NESHONOC	Date: 5.9.91	
		met	el (brass) egg shell				rioject #	49/32-007 JUTO		
* _	<u>S</u> 20	THE MOSTA	ON 54~	BAIL	<u> </u>			Reporte	ed To: BARR ENGINE	iring Company	
							IDARD SIEVE SIZES		200		
100			¾ ½	5'' 3/8''	4 #8 #10						
90											
80											
2 70 3 0 1 0											
HAN SIZE											
1- 50 60 22 11.											
⊢ 40 Z S S S S S S S S S S S S S S S S S S											
⊕ 30											
20											
10										01 .005 .004 .003 .002 .001	
	1	50.0		10.0 5.	0 4.0 3.0 2.0	1.0 0.5 PARTICLE SIZE IN N	0.4 0.3 0.2 MILLIMETERS	0.1	.05 .04 .03 .02 .	.003.004.000.000	
	GRAVEL SAND							FINES			
		COARSE		FINE	COARSE	MEDIUM	FINE			2%	

					Grain Size	e Distributio	n	,	
Boring I	No. Sample No 3T3	. Depth #A./∙	(ft) が Soil Class	sification Same W/Same On	EGANICS ((m2	Job No:	: /40/	Date: 5-9-91 12-11-14-11-14-11-14 101
	plas	tic egg	shall				#	49/32-027 NWT	01
<u> </u>	COM HOU	درو المر	SAVO BAIL				Reporte	ed To: BARK ENGIN	ISERING COMPANY
						ARD SIEVE SIZES		200	
100 j	2%" 2"	1" %"	%" 3/8" ¼" ‡	#4 #8 #10 	#20 #30 #40	#50 #60 #80 #10	30 #2	#	
90									
80									
70 NMO HS									
HAN SIZE									
FINER TO									
PERCENT 30									
20									
10									
0									
1	50.0		10,0 5.		,0 0.5 0.4 LE SIZE IN MIL		0.1	.05 .04 .03 .02	.01 .005 .004 .003 .002 .00
		GRAVEI	_		SAND				FINES
	COARSE		FINE	COARSE ME	DIUM	FINE			
					E 011				14/2

Bori na N	lo. Sample No.	Depth (ft) Soil C		Size Distribution		Date: 5-9-9/
*	4	@ SURFACE SI	cty Sano Wisome Organics	(sm/sc-sm)	Project: LAKE NESHONOC	REHATSILITATION
*	First IN DE	ELTA			# 49/32-007 JW	TO 1
					Reported to. Direct Divis	
			U.S. S	TANDARD SIEVE SIZE	s	
3′ 100 г	' 2½'' 2''	1" %" %" 3/8" %	4" #4 #8 #10 #20 #30) # 40 #50 #60 #80 #10	00 #200	
90						
80						
70 M O H Ø						
AN SIZE						
7 8 8 7 7						
⊬ 40 2 30 8 30						
ā 30						
20						
10						
o l	50.0	10.0	5.0 4.0 3.0 2.0 1.0	0.5 0.4 0.3 0.2	0.1 .05 .04 .03 .02	.01 .005 .004 .003 .002 .00
		GRAVEL	PARTICLE SIZE SA	ND MILLIMETERS		FINES

FINE

MEDIUM

COARSE

FINE

COARSE

()	NI -	Canala Na	Dooth (ft)	Soil Classi	fication		re Distribution	ob No:	1401	Date: 5-9-9/
Boring *		Sample No 415	Depth (ft) <u>アッパ ラグ</u>	Soli Classi	Sizer	ongANICS (CL-M	Pr	roject:	LAKE NESHONOC	REHABILITATION
					······································			4	#49/37 - 007 JUT 0	<i>l</i>
*	FIR	57 /NJ	DEUTA				Re	teporte	dTo: BARR ENGIN	EERING COMPANY
	3" 2%	9	1" %" %"	3/8" ¼" #4	1 #8 #1		DARD SIEVE SIZES #50 #60 #80 #100	#2	200	
100		2 40 1000 111 121 12								
90) 									
80										
z 10	o									
NWOHS										
8 13 60										
Z K I										
m cc ⊢ p(
Z ii. - 46								1		
R C E N										
or 30	٥									
20										
10									1	
(الللثلثا	50.0		10.0 5.C	4.0 3.0 2.			0.1	.05 .04 .03 .02	.01 .005 .004 .003 .002 .000
					PARTICLE SIZE IN MILLIMETERS					
	-	COARSE	GRAVEL	L SAND FINE COARSE MEDIUM FINE			FINE			FINES
	L									J.

				:				e Distributio		. 1
Boring ≭	No. Sar	mple No.	Depth (ft) 5"-9"	Soil Classi	fication /	W/Son4	DRG ANICS	(Sm/Sp-sm)	Job No	NO: /40/ Date: 599/ ect: LAICE NESHONOC REHABILITATION
		-		/						F SLOTET = 30 7 LUT DI
*	Firs	ST IND	iLTA						Report	orted To: BARN ENGINEERING COMPANY
							U.S. STAND	ARD SIEVE SIZES		
100	3" 2%" 2'	1'	' %'' '%''	3/8" %" #4	, #8 #1	10	#20 #30 #40	#50 #60 #80 #10	# O # الإساليان	#200 ***********************************
90										
80										
N 70 N 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0					1					
THAN SIZE										
7 7 8										
E 40										
20										
10										
, (0.1	.05 .04 .03 .02 .01 .005 .004 .003 .002 .00
	50.	0	1	10.0 5.0 	4.0 3.0 2.		O 0.5 0 E SIZE IN MI	.4 0.3 0.2 LLIMETERS	0,1	,55 ,54 ,55 ,52 ,52 ,55 ,55 ,55 ,55 ,55 ,55 ,55
			GRAVEL				SAND			FINES
		COARSE		FINE	COARSE	МЕ	DIUM	FINE		7

Grain Size Distribution Boring No. Sample No. Depth (ft) Soil Classification

Job No: 1401

Project: LAILE NESHONDE REHABILITATION

49/32-007 JUTO!

Reported To: BARIL ENGINEERING COMPANY U.S. STANDARD SIEVE SIZES #200 #20 #30 #40 #50 #60 #80 #100 3" 2%" 2" ½" 3/8" ½" #4 #8 #10 SHOWN ū α E SE PERCENT

FOIL Minneapolis, MN 55410 — ESTING, INC.

Grain Size Distribution Boring No. Sample No. Depth (ft) Soil Classification 5C @ SURFACE SAND, FINE GINAINED (SP) Project: LAKE NESHONOL REHABILITATION # 49/32-007 NWT 01
Reported To: BAIRE ENGINEERING COMPANY * SOUTH BRANCH, DELTA CHANNEL U.S. STANDARD SIEVE SIZES #200 #20 #30 #40 #50 #60 #80 #100 " 3/8" " #4 #8 #10 3" 2%" 2" 100 SHOWN SIZE FINER .005 .004 .003 .002 .05 .04 .03 5.0 4.0 3.0 PARTICLE SIZE IN MILLIMETERS SAND GRAVEL **FINES** MEDIUM FINE FINE COARSE COARSE

											G	rain	Si	ze D)ist	ribı	utio	n													
Boring N ≭	lo. Sam	iple No.	Dep @ /	oth (ft) '-/'	Soil (Class	ification	on AYEY	SA-	رد ور	1012	44~	1C S	(50	! - S #1	1/5.	<u>n)</u>	Job N	Vo:_		40	2/	Je c	+0~	0.0	12.5		Date:_	5-9 -A TI	<u>7 -9 /</u> ما	
								//										rioje	;cı	# 4	91	/32	0	o 7	Ju	TO	<u> </u>				
K /N	LAKES	Down	W57K 4.4	m sF	NON	2771	No	UTH										Repo										C0 ~	7PA~	34	
														DARD					#20	no.											
100 p	′ 2%′′ 2′′ 		1" %"	"." 3 	3/8")	<i></i> #-	4 	#8#	#10 		#20	#30	#4	o #5	, #6];;;;;	1111						414	ЩЦ						ШШ	ПП
														X																-++	
90																															
80														1																	
z 70										111						, . . 															
SHOWN															X																
N SIZE																															
FINER THA																															
40																								\							
PERCENT 30																															
0.0				1																	X										
20										* * .			•									\mathcal{J}		1							
10																									#						
0	50.0				0.0	5.0	4.0	3.0 :	2.0	ШП 1.	.o		0.5	0.4 0	ШШ .з	0.2	ШЦ	0.1		.05	.04	03	ЩШі	∐∐∐ 02	لمنتا.	01	<u>հերրությունը։</u> Մ	005 .00	4 .003	اللللللة. 002	.00
	55.0			•	-		1			RTICL						RS			1												
			GRA\									SAN	ID						_							FINES	<u> </u>				
	С	OARSE		· · · · · · · · ·	INE		co	ARSE	<u> </u>	ME	טום	М		<u> </u>		FIN	٧E	·					<u> </u>								. 6
1								00	1C \A/-	est 561	th C	. <i>E</i>	OIL	INEER TING, I	NG	A Air	uneo:	oolis, I	MM	55/11	n										122
T-B3								30	ib WE	SI 561	ın 5	· 7	ES	TING,	INC.	MIN	ıııeal	JOHS, I	IAII A	JJ4 11	U										

						Grain S	ize Distributio			- 2 0 /
3oring ∣ *	No. Sample	No. D	epth (ft)	Soil Cla	ssification CLAY WORGAN	ics (cu/o,	<i>+</i>)	Job No	1401	Date: 5-9-91
,		1'0	veter dep	th				# #	: LAILE NESHONOC # 49/32-007 JWT	701
*/	N LAKE,	אדע פכל	D. 1. 1. 5.	REAL S	of South Mo.	ファイ		Report	ed To: BARR ENGINE	LIRING COMPANY
	3'' 2½'' 2''	1" 3	y ₄ y ₃	3/8" %"	#4 #8 #10		IDARD SIEVE SIZES 40 #50 #60 #80 #10		200	
100			4.							
90										
80										
άo								: IT 1		
z 70										
NHOWN										
ш 60 N										
NA SI										
# 50 ¥ + 1 + 20										
<u>.</u>										
# 40 E 30										
т щ										
20										
10										
0	50.0		1	10.0	5.0 4.0 3.0 2.0	1.0 0.5	0.4 0.3 0.2	0.1	.05 .04 .03 .02	01 .005 .004 .003 .002 .00
		GR	AVEL			SAND				FINES
	COA	RSE		FINE	COARSE	FINE				
						5.0	II.			

											Gr	ain	Size	Di	stril	outio													
Boring N	lo. Sampl 	e No .	D OS	epth (ft) אלאוט) Sc	oil Cla Sa	assific	ation	ر او د او د او د	D	(57	.)					Job Pro	No:	14 La	<u>o/</u> 65	NESA	4000	·c 12	S HAT	Da	te:	<u>ه کې د</u> کام د ، ډ	9 /_	
																.	110	goot.	# 49	/32	-00	77	wT	91	<u> </u>				
. +/	1 Cm 2220	<u> </u>	184	A	4/62												Rep							22-25	Co	m PA	NY		
													ANDA					#2	00										
3′ 100 г	12½11211 	ننانيان	1" %	4'' ''''	" 3/ 8"	''' 	#4		8 #10		#20	#30	#40	#50	#60 # [[[[[[[80 #1		#2					ППТ					Ш	
90																													
80								1 1 1	1 1 1					\mathbb{N}															i
														\ .i.\															
2 70 M O H S															;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;														
AN SIZE															1														
7 50 8 9 7 1															\parallel														
± 40		· [::																			1 111 1								
g. 30	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u> </u>												1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -															
20																													
10																													
o L	50.0	مسلنسلة	للسلل	 	10.0	<u> </u>	5.0 4.	0 3.0	2.0		1.0		.5 0.4			2	0.1	; ;	.05	.04 .	03	.02	.1	01	.005	.004	.003 .00	02	.00
										PARTIC				IME	TERS	· .													
		BCE	GRA	AVEL	FINE	E	NA.	EDIUN	SAND				INE	· ·							FINES								
L	COARSE FINE COARSE												OIL														and a time of the state of the		CYES
T Do				:				(3016 V	Vest 56	6th St.	千	OIL NGINE ESTIN	ERIN G, IN	NG M	linnea	apolis,	, MN	55410)									

	······································					Grain Siz	ze Distributio		/	
Boring ⊭	No.	Sample No.	Depth (ft) @ CunFace	Soil Classification	1 TO MEDIU.	- GRAINED	(SP)		: /401 : LAKE NESHONOC	Date: 5 4 9/
-								riojeci	#49/32-007JWT	-01
* /	17	COUNTY	KOND J				Additional to the second secon	Reporte		EERING COMPANY
							OARD SIEVE SIZES		200	
100		المالية المالي 1 من المالية ا	'' ½'' ½'' 3,	/8''	#8 #10	#20 #30 #40	#50 #60 #80 #10	,00 #.	200 Historia (n. 1811)	
90										
60						X				
2 70 MOHS										
SIS NA										
正 四 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三 三										
F- 40 Z W O C W										
	!				11.1					
20										
10										.01 .005 .004 .003 .002 .001
	1	50.0	10	.0 5.0 4.0 3		1.0 0.5 C	0.4 0.3 0.2	0.1	.05 .04 .03 .02	.01 .005 .004 .003 .002 .001
	-		GRAVEL		rAnt	SAND		*		FINES
		COARSE		INE COA	RSE	MEDIUM	FINE			
					:	5.00				En San

	***************************************				Grain S	ize Distributio		, ,	- (5.0.3)	
Bo ring ⊀	No.	Sample No.	Depth (ft)	Soil Classification	GRAINED (SP/	SP-sm)	Job No: Project:	: 1401 : LAKE NESHONOC	Date: 5-9-9/	
								#49/32-007 JWTO		
*	<u>A</u> T	HIGH DAY	1 27, NEAS	SPARTA			Reporte	ed To: BALL ENGLE	EILING CONTRANY	
										
	a a.	ş" 2"	1" %" %" 3/	8'' ¼'' #4 #8		DARD SIEVE SIZES 10 #50 #60 #80 #100	0 #2	200		
100										
90	' 									1
80	'									
. 70										
NMOHS										
	,									-
S Z										
Î 50	,									1
2										
F 40) -									
P E SC CE S										
or 30	"									
20										4
10	, 									-
(بلتلنا و	50.0	10.	0 5.0 4.0 3.0	2,0 1.0 0.5	0.4 0.3 0.2	0.1	.05 .04 .03 .02	.01 .005 .004 .003 .002 .0	001
					PARTICLE SIZE IN M	IILLIMETERS				
	-	COARSE	GRAVEL FI	NE COARSE	SAND MEDIUM	FINE			FINES	
····					5.01					75

Classification of Soils For Engineering Purposes ASTM:D 2487-85

				Soil C	lassification
	Criteria for Assigning G	roup Symbols and Group Na	mes Using Laboratory Tests ^A	Group Symbol	Group Name ⁸
Coarse-Grained Soils More than 50% retained on	Graveis	Clean Gravels	Cu≥4 and 1≤Cc≤3 [£]	GW	Well graded gravel ^F
No 200 sieve	More than 50% coarse fraction retained on	Less than 5% fines ^C	Cu<4 and/or 1>Cc>3 ^E	GP	Poorly graded grave
	No 4 sieve	Gravels with Fines More than 12% fines ^C	Fines classify as ML or MH	GM	Silty gravel ^{FGH}
		More than 12% tines	Fines classify as CL or CH	GC	Clayey gravel ^{F G H}
	Sands 50% or more of coarse	Clean Sands Less than 5% fines ⁰	Cu≥6 and 1≤ Cc≤3 [£]	sw	Well-graded sand
	fraction passes No 4 sieve	Less than 5% times.	Cu<6 and/or 1>Cc>3 [€]	SP	Poorly graded sand
	4 31878	Sands with Fines More than 12% fines	Fines classify as ML or MH	SM	Silty sand ^{GHI}
		More than 12% tines	Fines classify as CL or CH	sc	Clayey sand ^{G H /}
Fine-Grained Soils 50% or more passes the No. 200 sieve	Silts and Clays Liquid limit less than 50	inorganic	PI > 7 and plots on or above A'' line	CL	Lean clay ^{K L M}
INO. 200 SIEVE			PI <4 or plots below "A" line ^J	ML.	Silt ^{x L M}
		organic	Liquid limit - oven dried <0.75 Liquid limit - not dried	OL	Organic clay ^{X L M N} Organic silt ^{K L M O}
	Silts and Clays	inorganic	Pl plots on or above "A" line	CH.	Fat clay ^{X L M}
	Liquid limit 50 or more	- -	Pl plots below 'A' line	мн	Elastic silt ^{X L M}
		organic	Liquid limit - oven dried <0.75	ОН	Organic clay ^{KLMP}
			Liquid limit - not dried		Organic silt ^{K E M O}
ighly organic soils ibric Peat >67% Fibers	Primarily o Hemic Po	organic matter dark in color eat 33%-67% Fibers	and organic odor	PT Sapric I	Peat < 33% Fibers

^ABased on the material passing the 3-in. (75-mm) sieve

 $^{\mbox{\footnotesize{B}}}$ If field sample contained cobbles or boulders, or both, add with cobbles or boulders, or both" to group name

Gravels with 5 to 12% fines require dual symbols:

GW-GM well-graded gravel with silt

GW-GC well-graded gravel with clay

GP-GM poorly graded gravel with silt

GP-GC poorly graded gravel with clay

^DSands with 5 to 12% fines require dual symbols:

SW-SM well-graded sand with silt

SW-SC well-graded sand with clay

SP-SM poorly graded sand with silt

SP-SC poorly graded sand with clay

 $E_{\text{Cu}} = D_{60} / D_{10}$ Cc = $\frac{(D_{30})^2}{D_{10} \times D_{60}}$

FIf soil contains≥15% sand, add "with sand" to group

 $^{\rm G}$ If fines classify as CL-ML use dual symbol GC-GM or

 $^{\it H}$ lf fines are organic add "with organic fines" to group

"If soil contains≥15% gravel and "with gravel" to group

If Atterberg limits plot in hatched area, soil is a CL-ML silty clay

Kit soil contains 15 to 29% plus No. 200, add. with sand or "with gravel" whichever is predominant

Lift soil contains≥30% plus no. 200, predominantly sand add sandy" to to group name

MII soil contains≥30% plus No. 200 predominantly gravel add "gravelly to group name

^NP!≥4 and plots on or above "A "line

OPI≪4 or plots below "A" line

PI plots on or above 'A' line

^QPI plots below "A" line

- 3016 Vest 56th St.

Surveyed Cross Sections on the La Crosse River Upstream of Lake Neshonoc (4/26/91)

Section 1: 300' downstream of Hwy 162

Distances measured from left bank looking downstream

Section 2: 300' downstream of County Road J

Distances measured from right bank looking downstream

Section 3: 250' downstream of Highway 27

Distances measured from left bank looking downstream

All depths are measured relative to the water surface elevation. A negative depth is a distance above the water surface. See the water surface profile for elevation information.

Section 1 D.S. Hwy		Section 2 D.S. Count	ty Rd. J	Section 3 D.S. Hwy	
	DEPTH (Feet)	DISTANCE (Feet)		DISTANCE (Feet)	
	-2.3 0.0 1.3 1.8 1.9 2.1 2.3 2.6 3.1 3.6 3.3 3.0 2.0 0.0 -3.5	29.0	-0.90 -0.90 0.00 1.00 1.25 1.25 1.05 1.15 1.30 1.95 2.00 3.05 2.10 0.00	4.0 8.0 12.0 15.0 20.0 22.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 63.0	0.00 0.50 0.80 0.90 1.50 1.90 2.40 2.50 2.70 2.60 2.10 1.90 1.90 1.80 0.00
				65.0	-2.30

Stream Profile of the La Crosse River Upstream of Lake Neshonoc

LOCATION	DISTANCE FROM DAM (Feet)	WATER SURFACE ELEVATION	DEPTH (Feet)	CHANNEL BOTTOM ELEVATION
Dam	0	697.80	(9)	(688.8)
Delta	10000	697.80	(1)	(696.8)
700 Contour (1)	16000	(704)	(4)	700.0
Hwy 162	31800	709.50	3.6	705.9
720 Contour (1)	49000	(723.3)	(3.3)	720.0
County Road J	60000	728.00	3.1	725.5
730 Contour (1)	63000	(733)	(3)	730.0
5th Avenue (2)	72500			
740 Contour (1)	78000	(743)	(3)	740.0
6th Drive (2)	82000			
Hwy 27	88000	756.40	2.7	753.7

Survey data was taken 4/26/91. Information at the dam was received from North American Hydro.

⁽¹⁾ Elevations taken from the U.S.G.S. topographic maps for the area.

⁽²⁾ Water surface elevations were taken relative to the bridge decks, but the bridge deck elevations were not available.

HATION ID - 05383000

HA CROSSE RIVER NEAR WEST SALEM, WI
HARAMETER CODE - 00060 DISCHARGE
HATISTIC CODE - 00003 MEAN

DURATION TABLE OF DAILY VALUES FOR PERIOD OCT TO SEP

JUK;

EMERILIE CO

. AS S		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32 3	33 34	4 35	
	YEAR														NL	MBER	OF	DAYS	ΙN	CLAS	S															
RA 7514 15 15	1914									21	16 25		70 94	50 18	26 36	22 32	9 17	19 39	1 6	5 10	5 3	1 5	1 1	1 8	1		,1									
1916 1917 1918 1919 1920	1917 1918 1919						2		2	7 10 1 28	7 34 8 9 34	46 31 13 40 35	46	93	87 72 67 67 36	59 50 45 38 28	30 23 16 26 23	30 27 12 16 16	5 5 10 13 9	7 5 9 3 8	5 7 5 2 8	5 4 3 1 14	10 2 6 2 2	1 2 3 1	1 2 7 1	1 1 3 1 2	1	1 1 2	1		1 1 2 1					
.v21 .v22 .v23 .v24 * .v25	1922 1923 1924					2	2	7 4 6	8 12 22 33 3	32 30 34			36 20	23 18 33	50 30 22 31 60	30 19 10 29 29	9 12 7 23 18	11 14 6 18 14	4 11 2 12 3	1 4 5 4 7	3 3 11 8 7	2 6 4 5 9	2 8 3 5 4	2 2 2 3 3	5 1 3 2	* 2 2 2	1 3 1		1 1		1	1				
27 28 29	1926 1927 1928 1929 1930		1	3	2			9 15	3 11 18	24 12	18 35 25			43		30	32 27 23 37 9	17 18 21 28 7	14 6 14 10 3	6 7 7 8 1	4 3 4 6 1	1 4 10 3 2	6 1 3 2	2 3 1 1	1	2 1 1	2	1	2		2		1		1	
52 33	1931 1932 1933 1934 1935				1		1	2	1 7	25 36	31 13 57 99 22	36 49	73 60 82	50 22	34 46 44 15 55	5 23 27 9 33	2 23 10 4 24	1 13 8 1 26	2 3 14 3 13	6 1 1 17	3 4 3 3	5 1 7	6 2 1 3	1	3	4	1	1		1 1 1				1		
1937 1938 1939 1940	1937 1938 1939							5	11 3		65 74 30 48 114	60 29 73	51 96	40 41	16 23 47 64 15	27 38 16 27 7	11 13 28 14 6	4 7 24 4 5	5 2 10 4 6	2 6 8 4 5	4 10 1 1	1 4 4	3 2	3 2	3 1 2	6 2 3	1	1	1	2		1				
1941 1942 1943 1944 1945	1942 1943 1944										3 5	16	44 102 89	47 87 124 126 107	105 63 48	14 37 42 27 32	15 23 9 10 16	11 15 4 12 9	6 10 6 6 3	4 9 5 3 5	8 5 2 5 5	4 5 2 2	2 1 1 3 3	2 2 3 1 2	1 3 2	1 2	2	1	1 1 1	1						
6 7 1948	1947									10	41		26	149 105 97	52 97 63	29 76 31	17 28 11	9 9 3	8 6 1	3 5 1	3 5 2	2 3 2	3 1	2	1 1 1		4	3 1	1	1						

ATION ID - 05383000

CROSSE RIVER NEAR WEST SALEM, WI MAMMETER CODE - 00060 DISCHARGE ATISTIC CODE - 00003 MEAN

DURATION TABLE OF DAILY VALUES

: A\$	ŝ	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28 2	29 3	30 3	1 32	33	34 3	5
8.49	R YEAR 1949 1950					4	2					118 36		30 57	66	13	OF 5 2	DAYS 3 3	1 N 3 5	CLAS 2 3	s 2	1	2 1	1	4	1				2	1				
1952 195 3 1954	1951 1952 1953 1954 1955								5	14 1 10	85 12 9 12 33	60 75 69	54 18 96 144 41		67 149 84 61 83	28 19 28 7 24	8 6 12 7 9	3 11 5 4 6	8 9 10 4 13	7 9 5 9 5	4 3 11 4 5	7 1 5 1	2 4 2	1 1 1	1 1	3		1	1						
≥/56 >57 > 58 >59	1956 1957 1958 1959 1960		1	1	2	1	2	5 15	8 35	75 79	140 117 42	90 67 42	32 25 16 25 27	39 33 20 22 74	31 23 6 19 63	12 5 4 16 40	2 1 7 15	6 1 3 3	2 1 1 7	3 4 7	2 1 3 7	1 6	1	1	1 2 1	1	1	2	1	1	2	1		1	
52 63 44	1961 1962 1963 1964 1965		1		1	6		2	3	21 1 7 33 2	7 75 78	73 59 79 99 121	47 111 72 49 19	45 75 45 71 35	42 79 38 20 40	24 12 11 10 10	13 3 7 1 10	3 2 5 1 5	3 2 4 5	2 3 1 6	2 1 1	1 3 1	1 2 4	3 1 4	1 2 5	1 4	1 1 5	1	1	•	1		2		
.7 58 69	1966 1967 1968 1969 1970			5	1		2		1 11 2	4 2 7 2 3	48 2		27 65 47 39 66	54 59 68 81 78	74 47 32 86 52	60 13 36 39 33	16 11 19 26 11	17 8 6 5	16 1 4 4 9	9 3 4 7 4	3 2 6 4	5 4 3 3	1 2 4 2 1	1 3 2	1 2 1 2	2 1 1 2	1	2		2		1		1	1

DVSTAT - DAILY VALUES STATISTICAL PROGRAM

TATION ID - 05383000

A CROSSE RIVER NEAR WEST SALEM, WI

RAMETER CODE - 00060 DISCHARGE

ATISTIC CODE - 00003 MEAN

· . ASS	VALUE	TOTAL	ACCUM	PERCT	CLASS	VALUE	TOTAL	ACCUM	PERCT	CLASS	VALUE	TOTAL	ACCUM	PERCT
1	0.0	0	20727	100.00	13	244.0	3391	10802	52.12	25	1190.0	60	186	0.90
2	57.0	3	20727	100.00	14	278.0	3052	7411	35.76	26	1360.0	31	126	0.61
3	65.0	10	20724	99.99	15	317.0	1516	4359	21.03	27	1550.0	26	95	0.46
4	74.0	8	20714	99.94	16	362.0	796	2843	13.72	28	1770.0	21	69	0.33
- 5	85.0	22	20706	99.90	17	413.0	583	2047	9.88	29	2010.0	22	48	0.23
6	97.0	37	20684	99.79	18	471.0	347	1464	7.06	30	2300.0	12	26	0.13
7	110.0	119	20647	99.61	19	538.0	275	1117	5.39	31	2620.0	4	14	0.07
8	126.0	356	20528	99.04	20	614.0	211	842	4.06	32	2990.0	1	10	0.05
9	144.0	809	20172	97.32	21	701.0	164	631	3.04	33	3420.0	5	9	0.04
i ()	164.0	2296	19363	93.42	22	800.0	121	467	2.25	34	3900.0	2	4	0.02
1.1	187.0	30 93	17067	82.34	23	912.0	90	346	1.67	35	4450.0	2	2	0.01
12	213.0	3172	13974	67.42	24	1040.0	70	256	1.24					

HUE EXCEEDED 'P' PERCENT OF TIME

155.9 30 = 171.1

5 = 199.8

= 248.4

306.5

411.4

560.3

```
RATION CURVE STATISTICAL CHARACTERISTICS FOR ...
```

ATION 1D: 05383000

LA CROSSE RIVER NEAR WEST SALEM, WI

RAMETER CODE = 00060

MATION DATA VALUES ARE INTERPOLATED FROM DURATION TABLE:
DATA ARE NOT ANALYTICALLY FITTED TO A PARTICULAR STATISTICAL DISTRIBUTION,
AND THE USER IS RESPONSIBLE FOR ASSESSMENT AND INTERPRETATION.

DITIONAL CONDITIONS FOR THIS RUN ARE:

ATISTICS ARE BASED ON LOGARITHMS (BASE 10).

MARKER OF VALUES IS REDUCED FOR EACH NEAR-ZERO OR ZERO VALUE.

*HEMBER OF VALUES = 19 (NUMBER OF NEAR-ZERO VALUES = 0) : ISTING OF DATA FOLLOWS:

ERCENT OF TIME VALUE GUALED OR EXCEEDED	DATA VALUE	
95.0 90.0 85.0 80.0 75.0 70.0 65.0 60.0 55.0 50.0 45.0 40.0 35.0 30.0 25.0 20.0	155.9 171.1 181.5 191.1 199.8 208.5 217.9 228.0 238.2 248.4 258.8 269.2 280.0 293.2 306.5 323.3	(LOG = 2.19285) (LOG = 2.23325) (LOG = 2.25883) (LOG = 2.28122) (LOG = 2.3058) (LOG = 2.31911) (LOG = 2.33826) (LOG = 2.35799) (LOG = 2.37686) (LOG = 2.39515) (LOG = 2.41294) (LOG = 2.44716) (LOG = 2.44716) (LOG = 2.48641) (LOG = 2.48641) (LOG = 2.50966) (LOG = 2.50966)
15.0 10.0 5.0	354.1 411.4 560.3	(LOG = 2.54913) (LOG = 2.61421) (LOG = 2.74841)

41 AN OF LOGS = 2.40628

ANDARD DEVIATION OF LOGS = 0.13812 (VARIABILITY INDEX - SEE USGS WSP 1542-A)

WELFICIENT OF VARIATION = 0.05740

AFFICIENT OF SKEW = 0.74280

7GM 3407 VER 1 1 (REV 11/5/41)

U. S CEOLOGICAL SURVEY
AMBURL PEAR FLOW PREQUENCY AMALYSIS 100 PERASUE PCK ALL MISCOSSIE PERA CATA
FOLLOWING WAS COURSITERS SULL. 17-6. XUP-DAIE 19726/89 AT 1758 SEQ 1 0181

STATION - 05383000 /GRGS LA CROSSE RIVER WERR WEST SALEM. MI

05383000 /08GS

D	PUT DATA LISTING	SOFIRICAL PREQUENCY CURVES WEIGHLE PLOTFING							
WATER		MATER	RAIRED	SYSTEMATIC	FRC				
YEAR	01 SCHARGE CODES	YEAR	DISCRAMO	RECORD	EST DATE				
1914	1800.G	1935	\$200.0	0.0169	0.0169				
1915	1800.0	1970	7600.0	00339	0.0339				
1916	18500	1966	5940 0	0.0508	9.0508				
1917	2990.0	1956	5729 0	0.3678	0.0678				
1918	3130 0	1928	5160.0	0.0847	0.3847				
1919	3900 0	1945	4590.0	0.1017	01017				
1920	2600 0	1961	4490.0	0.1186	01186				
921	1150 0	1933	4310.0	0.1356	0.1356				
1922	2920 0	1942	4170.3	0.1525	0.1525				
: 923	2480.0	1946	4170.0	2 1595	3 1695				
1924	2600.0	1919	3900 0	0 1164	3 1864				
1925	2120 0	1934	3890.0	0 2234	2.2034				
1926	1920 0	1955	3650.0	02233	3.2203				
1927	1370.0	1967	3620 Q	0.2373	0.2373				
1928	5160 0	1938	3490.3	02542	2.2542				
1929	1170 0	1930	3270.0	9.2712	2.2712				
1930	3270.0	1959	3270.0	9.2881	0 2841				
1931	635 0	1918	3130.0	03051	2 3051				
1932	2340.0	1936	3020.0	03220	3.3220				
1933	4310.0	1941	3020.0	03390	03390				
1934	3890 0	1917	2990 0	0.3559	03559				
1935	8200C	1922	2920.0	01729	3.3729				
:936	3020.0	1947	2900.0	0 3398	0 3898				
1937	1100.0	1950	2900 0 -	0.4968	34068				
193#	3490.0	1943	2790.0	0.4237	04237				
1939	1510.0	1965	2610.0	0.4407	0.4407				
1940	11400	1920	2600.0	0.4576	0.4576				
1941	3020.0	1924	2600.0	04746	3.4746				
1942	4170 0	1923	2460.0	0.4915	3.4915				
:943	2790 0	1952	2470.0	0 5085	0.5085				
:944	2150.0	1932	2380.0	0.5254	0.,5254				
1945	4590.0	1968	2360.0	0.5424	0.5424				
1946	4170.0	1948	2300.0	0.5593	0.5593				
1947	2900.0	1944	21500	0.5763	0.5763				
1946	2300.0	1962	21500	0.5932	0.5932				
1949	20200	1925	2120.0	0.6102	0.6102				
1950	2900.0	1963	20600	0.6271	0 6271				
1951	1630.0	1949	2020.0	0 6441	0 6441				
1952	2470.0	1926	1920.0	0 6610	06610				
1953	1320 .0	1916	1850.0	0.6780	3.6780				

PGH J407 VER 3.7 (REV 11/5/81)

U. S. GEOLOGICAL SURVEY
ANNUAL PEAR FLOW PREQUENCY AMALYSIS LOG PERASON FOR ALL WISCONSIN PEAR CATA
POLLOWING MRC GUIDELINES BULL. 17-B. RUN-CATE 10/26/89 AT 1758 SEQ 1.0181

STATION - 05383000 /USGS LA CROSSE RIVER MEAR WEST SALEM. NI

-- CONTINUED ---

05383000 /05G\$

BOTICE -- PRELIMIEARY MACHINE COMPUTATIONS.

1914-1970

IRI	PUT DATA LISTI	ng .	EN IRICAL	PREQUENCY CORVE	IS — WEIBULL PLO	TTING POSITIO
WATER			WATER	RAIDCED	SYSTEMATIC	WRC
YEAR	SCHARGE	CODES	YEAR	DI SCHARGE	RECORD	ESTIMATE
		CONT:	**************************************			
1954	1730.0		1914	1800.0	0.6949	3.6949
1955	36500		1915	1800.0	07119	07119
1956	57200		1970	1800.0	07288	0.7288
1957	984.0		1960	1780.0	07458	07458
1958	1310.0		1969	17500	0.7627	0.7627
1959	3270.0		1954	1730.0	0.7797	0.7797
1960	1780 0		1951	1630.0	0.7966	0.7966
1961	4490.0		1939	1310 C	0.8136	0.8136
1962	2150.0		1927	1370 0	0.8305	08305
1963	2060.0		1953	1320.0	0.8475	0.8475
1964	1020.0		1950	1310.0	0.8644	0.8644
1965	2610.0		1929	1170.0	0.8814	0.8814
1966	5940.0		1921	1150.0	0.8943	5 9943
1967	3620.0		1940	11400	0.9153	09153
1968	23600		1937	1100.0	0.9322	0 9322
1969	17500		1964	1020.0	0.9492	0.9492
1970	18000		1957	944.0	0.9661	9.9661
1978	76000		1931	635.0	0.9031	0.9631

		: USGS								-1971				1000 /
11600 0					;		•	1				1	1 1	
			:		1 1		! ;			1		Į.	1 1	i
		NOTIO	E ***	MOTIO	E	•••	I.		! :			Į,	! !	į.
	1 .	PRELIMINAL USER IS I	RESPONS	IBLE FOR	ASSESS.	. •	I	1	ĺ			i	i i	i
	1 1	HEDIT	AND INT	erpretati	Q# .	•	£		!			!	!!	1
	: 1		I	4	1 3	ŀ	ì		i			i	1	ė
10000 0		P LO		L XEY			•	1		• I		1		
							1				0	10		š
		5 HISTOR	CALLY	ADJUSTED	PEAKS		ł.	1			. !	1	1 1	1
		WHEN POIN	ATIC-RE	CORD FREC	CURVE		i I	1	!	. 0		1	!!	!
	. :	TOPHOST S	YMBOL S	HOWS.		i	ì	1		9		i	ii	i
			1	1	1	!	1	1 .	•0 00	į	1	ł I	1 1	!
3160.0			-				+000	•00	<u></u>	•				`
			1	1	1	. 0	1 **0 *000	1	1	i i		!	1 1	1
	i		1	1	i	•0•0	1	1	1	į		i	1 1	į
			:	i I	100000	000	1	1	i			1	1 1	1
	1 1		1		•	!	!	1		1	ŀ	i	į į	!
			1	- 00	1	!	1	1	l I	1	!	!	1 1	÷
1000 1	1 1			0 0	1	! 	l	1	l	1		!	1 1	1
1000			1		i	l	i	i	ŧ	i	!	1	1	1
	1 .	• •	!	t t	i	 	1	1	l i	!	! 	1	1 1	- 1
	i 1	0	1	1	1	!	1	i	İ	1		i	1 1	į
			;	i	j	! }	1	1	i i	1		1		1
	1 (!	!	1	1	1	1	!	\$!	1 1	!
	; ;		1	i	i	1	i	i	1	; i	i	i	1 1	i
316 0	1 :		+	<u> </u>	1				 !	. 		1		
	1		1	1	İ	İ		İ		ĺ	!	į	1	i
	1 1		1	i i	1	! !	1	1	1	I L	1	1	1 1	1
			I	İ	1	1	1	1	İ	1		į	į į	į
				i i	1	i	!	1	!	t E		l l	1 1	1
					i	1	!	1	i	!		1	1	1
	,		:		,	:	1	1	1	3		1	1 1	1

U. S. GEOLOGICAL SURVEY
ANNUAL PEAR FILOW FREQUENCY AMALYSIS
FOLLOWING WAS GUIGELINES SOLL. 17-8... ROW-DATE 10/22/99 AT 1758 SEQ 1.0182 OPTIONS IN SEFECT -- PLOT MOBC LGPT MODE PPOS MORE EXPR CLIM STATION - 05306300 /USGS HORMAN CREEK NEAR LA CROSSE. WI 1961-1986 05386300 /USGS INPUT DATA SUMMARY HISTORIC GENERALIZED STD. DEROR OF SKEW GAGE BASE PEAKS SKEW GENERAL SKEW OPTION DISCHARGE YEARS OF RECORD -SYSTEMATIC HISTORIC DISEN-SET OUTLIER CRITERIA RIGE OUTLIER LOW OUTLIER 3 --- WRC WEIGHTED 400.0 STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF T WOFIDII-SYSTEMATIC PEAKS BELOW GAGE BASE WERE NOTEDD. 11 400.0
WOFIDSI-NO LOW OUTLIERS WERE DETECTED BELOW CHITEMION. 200.1
**WOFIDSW-HUMBER OF PEAKS BELOW FLOOD BASE EXCEDDS WRG SPDC. 11 400.0
WOFIDSI-NO BIGH OUTLIERS OR SISTORIC PEAKS EXCEDDED SHRASE. 8013.9
WOFIO02J-CALCS COMPLETED. RETURN CODE = 2 ANNUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III FLOOD BASE EXCEDIANCE LOGARITEMIC PROBABILITY NEAR LOGARITEMIC STANDARD DEVIATION LOGARITEMIC SKEW 0.6071 0.6071 2..7555 2..7555 0.5916 0.5916 SYSTEMATIC RECORD W R C ESTIMATE

ABBUAL EXCEEDANCE PROBABILITY	W R C ESTIMATE	SYSTEMATIC RECORD	PROBABILITY ESTIMATE	95-PCT COMFIG POR W X C LOWER	ESTIMATES OFFER
2 9950		~ **			
0.9900	**				
0 9500			***		
3 9000			****		
0 8000					
05000	626 6	628.8	626.6	4075	973.1
0.2000	1826 6	1827 2	1901 1	11616	3248 1
		1771 7	2211 7		1212 7

ANSUAL FREQUENCY CURVE ORDINATES -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES

10 - MEITA: - 0 0000		/U\$G\$	LIT	rie la ci	M SEED	IVEN KEAR	LEOF. WI		1934	-1941			053 02500	_
3300 0	; ; ; ;			! !	 	i !	i 	 	1		i !] 	1	1 [
	: 1 : ! : 1	PRELIMINAL USER IS THE HEET J	ESPONS	THE COMP	TATIOE RESESS	1:	! ! !	} ! !	1 	! !	} 	 		•
3160.0	i i			1			1	! !	! !	1	 	! ;		1
			MAL FRE SD (SYS (CALLY ATIC-RE IS COIN (MBOL S	QUENCY CO TEMATIC) ADJUSTED CORD FRES CIDE, ON: BOWS.	PRARE PRARE PRARE CURVE LY THE	; 1 1 1 1	1 000000	! ! ! •0000	I		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	†	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1000.0	 			1		 +000	100 ••	1 * I	1	! 	l 			! -
	1 1] 	1 00		1 1 1	; ; ;	! ! !	1	1 1 1		1	1
316 0				0 0) 	! !	1	! ! !	1		 		!	1
	, ;		0	1 1 i	i i i	t 1 1) i I	1 5 1	† 	1 1 1	! !		 	
	· ;		1 i 1	1 1 1	1 1 1	! !	1	1 1 1	 	1	 	1 1	! !	1
:00 3	; [! ! !	<u>.</u>		 	 	: !	<u>:</u>	<u> </u>	!			1
	1 1		; } i	1	 	1	1	1 1	1	1	1		1	! !
	1 1		l	1	!	1	1	1	<u> </u>	1	i 1	1 1	i	į

U. S. GEOLOGICAL SURVEY ANNUAL PEAK FLOW FREQUENCY AMALISIS FOLLOWING WRG GUIDELINES BULL. 17-B. LOG PERREUS FOR ALL WISCONSIS PERR DATA RUM-DATE 10/26/89 AT 1758 SEQ 1.0181 OPTIONS IN SEFECT -- PLOT MORC LGPT MODE PPOS MORE EXPR CLIM STATION - 05383000 /USGS LA CROSSE RIVER HEAR WEST SALEM. WI 1914-1978 05383000 / Q5G\$ INPUT DATA SUMMARY - YEARS OF RECORD --SYSTEMATIC HISTORIC HISTORIC GENERALIZED STD. ERROR OF SKEW FEARS SKEW GENERAL SKEW OPTION OSER-SET OUTLIER CRITERIA SIGN OUTLIER LOW OUTLIER WCF1341-NO SYSTEMATIC PEAKS WERE BELOW GAGE BASE. WCF1951-NO LOW GOTLIERS WERE DETECTED BELOW CRITERION. WCF1631-NO NIGH GUTLIERS OR HISTORIC PEAKS EXCEEDED BEBASE. ABBUAL FREQUENCY CURVE PARAMETERS -- LOG-PEARSON TYPE III FLOOD BASS EXCEEDANCE PROBABILITY LOGARITEMIC STABBARD DEVIATION FLOOD BASE DISCHARGE LOGARITEMIC SKEW 1.0000 HE MA REUNI ANNUAL FREQUENCY CURVE ORDINATES -- DISCHARGES AT SELECTED EXCEEDANCE PROBABILITIES ANNUAL EXCEEDANCE PROBABILITY PROBABILITY'
PEOPECTED 95-PCT COMPIDENCE LIMITS FOR W R C ESTIMATES LOWER UPPER W R C ESTIMATE SYSTEMATIC RECORD 614.9 704 1 1017 4 1236.6 1564 6 2446 8 3811.3 4797.4 6124 3 7166.2 8250.3 9382.3 10959.1 732.8 833.0 1179.1 1418.2 1776.1 2768.2 4421.0 5674.8 7404.6 8783.9 10232.1 11753.7 13883.9 589.4 581.2 1004.7 1231.0 1568.4 2465.2 1818.8 4772.7 6027.8 6992.6 7979.1 8991.8 10375.7 542 4 640.6 980.0 1208.5 1554.3 2465.3 3850.8 4852.0 6192.0 7276.1 8394.5 9416.7 11190.5 9950 9900 9500 9500 0 9000 0 5000 0 2000 0 1000 0 0400 0 0200 0 0050 0 0020 442.4 523.5 819.9 1033.5 1355.7 2196.5 3371.2 4147.2 5127.7 5859.1 6591.4 7329.5 8319.5