

BUREAU OF WATER QUALITY PROGRAM GUIDANCE

Wisconsin 2012 Consolidated Assessment and Listing Methodology (WisCALM) for Clean Water Act Section 305(b), 314, and 303(d) Integrated Reporting

April 2012

3200-2012-01

Amended Version 1

This document is intended solely as guidance, and does not contain any mandatory requirements except where requirements found in statute or administrative rule are referenced. This guidance does not establish or affect legal rights or obligations, and is not finally determinative of any of the issues addressed. This guidance does not create any rights enforceable by any party in litigation with the State of Wisconsin or WDNR of Natural Resources. Any regulatory decisions made by WDNR of Natural Resources in any matter addressed by this guidance will be made by applying the governing statutes and administrative rules to the relevant facts.

APPROVED:

Wester Jusan

Susan Sylvester, Director Bureau of Water Quality

2/12

Wisconsin 2012 Consolidated Assessment and Listing Methodology (WisCALM)

> Clean Water Act Section 305(b), 314, and 303(d) Integrated Reporting

Wisconsin Department of Natural Resources Revised April 2012

Wisconsin Department of Natural Resources 101 S. Webster Street • PO Box 7921 • Madison, Wisconsin 53707-7921 608-266-2621

Governor

• Scott Walker

Natural Resources Board

- David Clausen, Chair
- Preston D. Cole, Vice-Chair
- Christine L. Thomas, Secretary
- William Bruins
- Terry N. Hilgenberg
- Gregory Kazmierski
- Jane Wiley

Wisconsin Department of Natural Resources

- Cathy Stepp, Secretary
- Matt Moroney, Deputy Secretary
- Scott Gunderson, Executive Assistant
- Ken Johnson, Administrator, Division of Water
- Mike Staggs, Director, Fisheries and Habitat Management
- Jill Jonas, Director, Drinking Water and Groundwater
- Susan Sylvester, Director, Water Quality Bureau

Cover photo: Lake Michigan, L. Helmuth, WDNR

The Wisconsin Department of Natural Resources provides equal opportunity in its employment, programs, services, and functions under an Affirmative Action Plan. If you have any questions, please write to Equal Opportunity Office, Department of the Interior, Washington, D.C. 20240.

This publication is available in alternate format (large print, Braille, audio tape, etc.) upon request. Please call 608-267-7694 for more information.

Acknowledgements

This guidance document was prepared through the coordinated efforts of many people who provided extensive information and assistance.

Primary Authors/Editors

The 2012 Integrated Reporting Team:

- Nicole Clayton
- Lisa Helmuth
- Aaron Larson
- Robert Masnado
- Kristi Minahan
- Chris Pracheil

Major Contributors

Dan Helsel, John Lyons, Brian Weigel, Michael A. Miller, Tim Asplund, Mary Anne Lowndes

Additional Contributors

Jim Baumann, Jennifer Filbert, Toni Glymph, Mark Hazuga, Dave Heath, Jim Kreitlow, Russ Rasmussen, Candy Schrank, Ken Schreiber, Greg Searle, Tim Simonson, Mike Wenholz, Scott Van Egeren, Valerie Villeneuve

TABLE OF CONTENTS

BACKGROUND	7
1.0 WATER QUALITY STANDARDS: THREE ELEMENTS	8
2.0 WISCONSIN'S MONITORING PROGRAM AND DATA MANAGEMENT	10
2.1 Three Tiers of Monitoring	10
2.2 Use of Monitoring Data from Other Sources	11
2.3 Quality Assurance and Laboratory Analysis	12
2.4 Data Management	13
2.5 Data Requirements	14
3.0 THE ASSESSMENT PROCESS: AN OVERVIEW	15
3.1 General Condition Assessment	15
3.2 Impairment Assessment	15
4.0 LAKE CLASSIFICATION AND ASSESSMENT METHODS	16
4.1 Lake Classification	16
4.2 Lake General Condition Assessment	
4.3 Lake Impairment Assessment: Selecting representative stations and which lakes to evaluate	24
4.4 Lake Impairment Assessment: Fish & Aquatic Life (FAL) Uses	
4.5 Lake Impairment Assessment: Recreational Uses	
4.6 Lake Impairment Assessment: Public Health and Welfare Uses*	
5.0 STREAM & RIVER CLASSIFICATION AND ASSESSMENT METHODS	40
5.1 Stream and River Classifications	40
5.2 Stream and River General Condition Assessment	42
5.3 Stream and River Impairment Assessment: Fish & Aquatic Life Uses	47
5.4 Stream and River Impairment Assessment: Recreational Uses	54
6.0 PUBLIC HEALTH AND WELFARE USES APPLICABLE TO ALL WATERBODY TYPES	54
6.1 Fish Consumption Use Assessment	54
6.2 Contaminated Sediments	55
7.0 MAKING A DECISION TO LIST OR DELIST WATERBODIES	56
7.1 Independent Applicability & Tools to Resolve Data Conflicts	56
7.2 Professional Judgment	58
7.3 Threatened Waters	
7.4 Watch Waters	59
7.5 Identifying Sources of Impairment	59
7.6 De-listing Impaired Waters	60
7.7 Decision Documentation	60
8.0 INTEGRATED REPORT LISTING CATEGORIES	
8.1 Priority Ranking for TMDL Development	63
9.0 PUBLIC PARTICIPATION	
9.1 Requests for Data	
9.2 Public Comment on Consolidated Assessment and Listing Methodology	65
9.3 Informational Meetings on Draft Integrated Report, General Assessment and Proposed Updates to the	ıe
303(d) Impaired Waters List	
9.4 EPA Review, Comment and Administrative Decision on Wisconsin's Integrated Report/Data Submitte	
10.0 References Cited	
APPENDIX A. 2012 IMPAIRED WATERS ASSESSMENT DOCUMENTATION FORM	
APPENDIX B. SUMMARY OF FISH TISSUE CRITERIA FOR FISH CONSUMPTION ADVICE	71
APPENDIX C. CONSENSUS-BASED SEDIMENT QUALITY GUIDELINES RECOMMENDATIONS FOR USE &	
APPLICATION	73

LIST OF FIGURES

Figure 1. Wisconsin's Integrated Reporting Process	
Figure 2. SWIMS screen	
Figure 3. General Water Condition Continuum	15
Figure 4. Shallow, Mixed Lake	
Figure 5. Deep, Stratified Lake	
Figure 6. Distribution of Shallow and Deep lake types (for lakes less than 10 acres)	
Figure 7. Seepage Lake	19
Figure 8. Drainage Lake	19
Figure 9. Continuum of Lake Trophic States in relation to Carlson Trophic Status Index	
Figure 10. Large Lakes: Select well-spaced stations throughout lake	
Figure 11. Reservoirs/Flowages: Select stations along the deepest channel	
Figure 12. Lobed lakes with multiple deep holes: One station per deep hole	
Figure 13. Lobed lakes with one deep hole: Use Deep Hole station and another station representation	ve of
shallower area. Example: Fox Lake in Dodge County	
Figure 14. Independent Application Matrix	57

LIST OF TABLES

Table 1. Lake & Reservoir Natural Communities	17
Table 2. Trophic Status Index (TSI) Thresholds - General Assessment of Lake Natural Communities.	22
Table 3. Mean and Median inferred TP values calculated from top and bottom segments of sediment	
cores from 87 Wisconsin lakes (Garrison, unpublished data)	23
Table 4. Fish & Aquatic Life Impairment Thresholds for Lake Natural Communities	32
Table 5. Recreational Impairment Thresholds for Lake Natural Communities	37
Table 6. World Health Organization Thresholds of Risk Associated with Potential Exposure to	
Cyanotoxins.	39
Table 7. Fish Indices of Biological Integrity for Wisconsin Streams and Rivers	43
Table 8. Natural Communities, Codified FAL Use Designations and Applicable Fish IBI.	45
Table 9. Fish and Aquatic Life: Streams and Rivers General Assessment Thresholds	46
Table 10. Additional Parameters for River & Stream Impairment Assessments	47
Table 11. Lower and Upper Limits of 95% Confidence Interval in Terms of Ranks	48
Table 12. Impairment Thresholds for Rivers/Streams.	49
Table 13. Integrated Report (IR) Listing Categories	62

Background

Over 15,000 lakes and 84,000 miles of streams and rivers in Wisconsin are managed on an ongoing basis to ensure that their water quality condition meets state and federal standards. Water quality standards are the foundation of Wisconsin's water quality management program and serve to define goals for a waterbody by designating its uses, setting criteria to protect those uses, and establishing provisions to protect water quality from pollutants.

Waters are monitored to collect water quality data to determine, or *assess*, its current status or condition. Water quality monitoring results and assessment data are stored in state and federal databases and the majority of data are available online to agencies and the public. *General assessments* are known as "305(b) assessments" in the Federal Clean Water Act. Waters are reviewed by Wisconsin Department of Natural Resources (WDNR) biologists and placed in one of four categories depending on the general assessment: excellent, good, fair and poor.

Specific assessments are conducted to determine if a waterbody is "impaired" or not meeting water quality standards. Waters that do not meet water quality standards are placed on Wisconsin's Impaired Waters List—also known as the 303(d) list—under Section 303(d) of the Clean Water Act. Wisconsin is required to submit list updates every 2 years to the United States Environmental Protection Agency (EPA) for approval. WDNR has submitted Impaired Waters Lists in 1996, 1998, 2002, 2004, 2006, 2008, and 2010¹. EPA did not require and WDNR did not submit an Impaired Waters List in 2000.

Water quality assessments aid Department staff in determining management actions that are needed to meet water quality standards, including anti-degradation, or maintenance, of existing water quality condition (especially those waters ranked as "good" or "excellent") as well as restoration of impaired waters.

Each state must document the methodology used to assess waters, including how the state makes decisions to add or delete waters from the existing Impaired Waters List. Waters may be removed from the list (delisted) when water quality data identifies that the designated use has been restored (i.e., the water is meeting water quality standards). The same methodology must be used to delist a lake, stream or river as was used to list the water. The methodology for conducting general and specific assessments is outlined, and updated for 2012, in this Wisconsin Consolidated Assessment and Listing Methodology (WisCALM) report.

¹ Wisconsin's 2008 and 2010 Impaired Waters Lists are pending approval by EPA.

1.0 Water Quality Standards: Three Elements

Wisconsin's assessment process begins with water quality standards. WDNR is authorized to establish water quality standards that are consistent with the Federal Clean Water Act (Public Law 92-500) through Chapter 281 of the Wisconsin Statutes. These water quality standards are explained in detail in chs. NR 102, 103, 104, 105, and 207 of the Wisconsin Administrative Code (Wis. Adm. Code).

The water quality standards described in the Wis. Adm. Code rely on three elements to collectively meet the goal of protecting and enhancing the state's surface waters:

- Use designations, which define the goals for a waterbody by designating its uses,
- Water quality criteria, which are set to protect the water body's designated uses, and
- Anti-degradation provisions to protect water quality from declining.

Waters not meeting one or more of these water quality elements are to be included on the Impaired Waters List.

Designated Uses

Designated uses are goals or intended uses for surface waterbodies in Wisconsin which are classified into the categories of: Fish and Aquatic Life, Recreation, Public Health and Welfare, and Wildlife. The following designated uses are described in ch. NR 102, Wis. Adm. Code:

- *Fish and Aquatic Life:* All surface waters are considered appropriate for the protection of fish and other aquatic life. Surface waters vary naturally with respect to factors like temperature, flow, habitat, and water chemistry. This variation allows different types of fish and aquatic life communities to be supported. This category has subcategories as described below.
- *Recreational Use:* All surface waters are considered appropriate for recreational use unless a sanitary survey has been completed to show that humans are unlikely to participate in activities requiring full body immersion.
- *Public Health and Welfare:* All surface waters are considered appropriate to protect for incidental contact and ingestion by humans. All waters of the Great Lakes as well as a small number of inland water bodies are also identified as public water supplies and have associated water quality criteria to account for human consumption².
- *Wildlife:* All surface waters are considered appropriate for the protection of wildlife that relies directly on the water to exist or rely on it to provide food for existence.

Use Designations for Fish and Aquatic Life (FAL) are separated into the following sub-categories: Coldwater (Cold), Warmwater Sport Fish (WWSF), Warmwater Forage Fish (WWFF), Limited Forage Fish (LFF) and Limited Aquatic Life (LAL). More detail on these subcategories is located in the Streams and River Classification chapter of this report.

Water Quality Criteria – Numeric and Narrative

Each designated use has its own set of water quality criteria, either numeric or narrative requirements, that must be met to protect the intended use. Some of these requirements relate to the amount of the physical (e.g., temperature) or chemical (e.g., dissolved oxygen (DO)) conditions that must be met to avoid causing harm. Other requirements relate to allowable maximum concentrations of chemical compounds or levels of bacteria. Wisconsin's water quality criteria may be either numeric (quantitative) or narrative

² Distinct water quality criteria are specified for public water supply and non-public water supply waters. Wisconsin does not currently have a formal "Drinking Water" use designation in its standards. Establishment of a "Drinking Water" use designation may be considered as part of a future standards change. If so, specific drinking water use assessment procedures will be included in future updates to the WisCALM document.

(qualitative) and are authorized by state statutes and enumerated in chs. NR 102, 104, and 105, Wis. Adm. Code.

Numeric criteria: Numeric criteria are quantitative and are expressed as a particular concentration of a substance or an acceptable range for a substance. For example, the pH value shall be from 6-9 standard units. Numeric surface water quality criteria have been established for conventional parameters (e.g., DO, pH, temperature), toxics (e.g., metals, organics, unionized ammonia), and pathogens (e.g., *E. coli*, fecal coliform). These numeric criteria are established for each designated use.

Narrative criteria: All waterbodies must meet a set of narrative criteria which qualitatively describe the conditions that should be achieved. A narrative water quality criterion is a statement that prohibits unacceptable conditions in or upon the water, such as floating solids, scum, or nuisance algae blooms that interfere with public rights. These standards protect surface waters and aquatic biota from eutrophication, algae blooms, and turbidity, among other things. The association between a narrative criterion and a waterbody's designated use is less well defined than it is for numeric criteria; however, most narrative standards protect aesthetic or aquatic life designated uses. Wisconsin's narrative criteria are found in s. NR 102.04(1), Wis. Adm. Code.

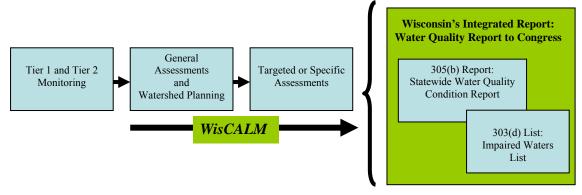
Anti-degradation

Wisconsin's anti-degradation policy is intended to maintain and protect existing uses and high quality waters. This part of a waterbody quality standard is intended to prevent water quality from slipping backwards and becoming poorer without cause, especially when reasonable control measures are available. The anti-degradation policy in Wisconsin is stated in s. NR 102.05(1) of the Wis. Adm. Code:

"No waters of the state shall be lowered in quality unless it has been affirmatively demonstrated to WDNR that such a change is justified as a result of necessary economic and social development, provided that no new or increased effluent interferes with or becomes injurious to any assigned uses made of or presently possible in such waters."

One component of Wisconsin's anti-degradation policy is the designation of Outstanding Resource Waters (ORW) and Exceptional Resource Waters(ERW). These are surface waters which provide outstanding recreational opportunities, support valuable fisheries and wildlife habitat, have good water quality, and are not significantly impacted by human activities. ORWs typically do not have any dischargers, while ERW designation offers limited exceptions for dischargers if human health would otherwise be compromised (e.g., expansion of wastewater treatment facilities to protect public health).

Inherent in the assessment process and Impaired Waters Listing process is the application of antidegradation provisions. Anti-degradation is an important aspect of pollution control because preventing deterioration of surface waters is less costly to society than attempting to restore waters once they have become degraded.


2.0 Wisconsin's Monitoring Program and Data Management

2.1 Three Tiers of Monitoring

WDNR's Surface Water Monitoring Strategy³ directs

monitoring efforts in a manner that efficiently addresses the wide variety of information needs, while providing adequate depth of surface water knowledge to support decision making. This monitoring strategy employs a three-tiered approach to information gathering to ensure that the status of Wisconsin's water resources can be determined in a comprehensive manner without depleting the capacity to conduct in-depth analyses and problem-solving where needed. The first two tiers of monitoring allow the state to assess waters and place evaluated waters into condition categories (excellent, good, fair and poor) as reflected in the Integrated Report, including the Impaired Waters List (Figure 1).

Figure 1. Wisconsin's Integrated Reporting Process

Three tiers of monitoring are incorporated into the Integrated Reporting Process:

Tier 1 – Statewide Baseline Monitoring: Establishing Trends

Under Tier 1 of the monitoring strategy, staff and partners collect baseline condition information to help satisfy Water Division information needs on a broad spatial scale. Tier 1or baseline monitoring helps obtain broad-scale, statewide assessments of Wisconsin's waters. This procedure is helpful when water resources are too numerous to evaluate individually. Wisconsin's over 84,000 stream miles, for example, call for this dispersed sampling effort which provides, through inference, technically rigorous and credible 'snapshot' of statewide water conditions. Baseline monitoring work provides core information for the state's Clean Water Act general assessment work (305(b)); however, the terms "Tier 1 monitoring" and "General Assessments" are not synonymous. A general assessment is simply reviewing existing data and consistently applying key parameters and minimum results to waters within a given area. This broad scale analysis identifies waters needing further evaluation or 'specific assessments.'

Under the tiered approach, metrics collected through Tier 1 monitoring include:

Lakes

Trophic Status Index (TSI)* Aquatic Macrophyte Community Index (AMCI) * Wisconsin DNR's Water Division Monitoring Strategy is available on WDNR's website at: http://WDNR.wi.gov/org/water/monit oring/strategy.htm

³ WDNR Water Division Monitoring Strategy, Nov. 2008. Wisconsin Department of Natural Resources, Madison, WI.

Contaminants in fish tissue—mercury and PCBs* Pathogen indicators * Game fish population dynamics

Streams and Rivers

Macroinvertebrate samples* Fish assemblage characteristics* Water chemistry* Contaminants in fish tissue—mercury and PCBs * Pathogen indicators* Gamefish, Endangered, & Threatened species surveys Habitat assessment

* Metrics used in the general assessment steps are described in chapter 4.2 and 5.2 of this report.

Tier 2 – Targeted Evaluation Monitoring: Site-specific Monitoring

Sites on waterbodies identified under Tier 1 as potentially being impaired are prioritized based on professional judgment and available resources and may be monitored more intensively under Tier 2 monitoring. Tier 2 is often used to verify whether waterbodies should be placed on the Impaired Waters List and to develop comprehensive water quality management plans or Total Maximum Daily Loads (TMDLs). Under this tier, confirmation of the impairment is made, along with documentation of the pollutant and possible cause(s). For instance, Tier 2 monitoring might focus on resurveying 'flagged' Tier 1 sites and expanding monitoring along the waterbody to determine whether a problem really exists, and the extent of the problem. Or, Tier 2 monitoring might be used to determine what the cause of the impairment is. Thus, it is a more comprehensive evaluation of individual waterbodies, often requiring cross-program collaboration. Tier 2 monitoring may also provide baseline data to determine how well a waterbody responds to management, as evaluated under Tier 3.

Tier 3 – Management Effectiveness and Compliance Monitoring: *Determining effectiveness of management practices and permit conditions*

Tier 3 monitoring evaluates management practices that have been implemented through TMDL implementation or a nonpoint source nine key elements plan. Tier 2 monitoring may also provide information for evaluating permit compliance and effectiveness. Effluent monitoring helps WDNR determine whether permitted entities are meeting their permit conditions and state regulations, and to assess the health of waters receiving effluent. Monitoring of public drinking water wells is also carried out under Tier 3 to ensure that surface and groundwater meet federal public health standards for contaminants in drinking water. Effectiveness of water-specific management actions is determined using core indicators from the more intensive sampling designs under Tier 2 that are specific to the problem being addressed. The chosen indicators are compared before and after management actions are implemented.

2.2 Use of Monitoring Data from Other Sources

In addition to Department-generated data, WDNR biennially seeks information from partners and the public to use in its assessment of waterbodies. Partners include: the U.S. Geological Survey, EPA, U.S. Fish and Wildlife Service, other state agencies, universities, regional planning commissions and major municipal sewerage districts. A news release on October 1, 2010, notified the public of their opportunity to submit data no later than December 31, 2010. Guidance was also provided on how to submit third party data. GovDelivery, a new web-based service used by WDNR, was used to solicit data from citizens. This service offers the public real-time updates on topics of interest via email or text messages, and will be used in the future to provide information regarding the Integrated Reporting Process and Wisconsin's Impaired Waters Program.

As applicable data is submitted, WDNR reviews the data and the procedures used to collect and analyze the data. WDNR will review information provided by any individual or group at any time; however, the data used for listing purposes must have been obtained using documented quality assurance procedures that meet or exceed WDNR procedures. WDNR has an internal website that outlines our State Quality Management Plan. Data submitters outside of WDNR are referred to EPA's site for questions on quality assurance project plans at http://www.epa.gov/QUALITY/qapps.html.

Agencies and individuals submitting data for assessment purposes must: meet minimum data requirements, demonstrate that sample collection occurred at appropriate sites and during critical periods, and use certified laboratories for sample analysis. If the quality assurance procedures are not adequate, staff may use this data to initiate further investigations by Department staff. If quality assurance procedures are adequate, WDNR may use this data to assess the water for possible listing.

WDNR may assist outside groups in the design and implementation of data quality procedures necessary for data to be used for assessments. Department staff will consult with EPA water quality criteria guidance, state water quality standards, and use professional judgment to interpret the results of field sampling to determine whether or not water quality standards are achieved. Groups outside of WDNR who regularly collect and submit data to WDNR may work with staff at Central Office to upload data into the SWIMS database to be considered as part of our evaluation and assessment process.

WDNR also supports a Citizen Based Monitoring Program for rivers, streams and lakes. As stated in the WDNR's Water Resources Monitoring Strategy for Wisconsin, "If citizens follow defined methodology and quality assurance procedures, their data will be stored in a Department database and used in the same manner as any Department-collected data for status and trends monitoring defined in the Strategy." Citizen data are currently used for general water quality assessments, including broad-scale statewide assessments. If these data indicate a potential water quality problem at a specific site, additional data may be collected by Department staff to verify the extent of the problem and determine if a waterbody should be placed on the Impaired Waters List.

Information that is not considered representative of current conditions or that does not follow WDNR's Quality Management Plan cannot be used in preparation of the Impaired Waters List. WDNR classifies these types of data as "evaluated" information, which may include:

- Information provided by groups, other agencies or individuals where collection methods are not documented and thus the data quality cannot be assured
- Projected surface water conditions based on changes in land use with no corresponding in-water data (i.e., desktop analyses or models)
- Visual observations that are not part of a structured evaluation
- Anecdotal reports

Though not used directly to update the impaired waters list, "evaluated" data may potentially be used to identify areas where further monitoring may be needed for future listing cycles.

2.3 Quality Assurance and Laboratory Analysis

For all Tier 1 (baseline) monitoring supporting general and statewide assessments, quality assurance measures are described within each applicable chapter of the *Wisconsin DNR Water Division Monitoring Strategy*. WDNR uses only certified laboratories sample analysis, primarily the State Lab of Hygiene and the University of Wisconsin Stevens Point Aquatic Entomology Laboratory. For targeted, or special, monitoring studies which are frequently used to discern impairment prior to listing a waterbody, quality assurance protocols, such as field blanks, duplicates or spikes, are incorporated as funds allow.

2.4 Data Management

Well organized and readily accessible data is fundamental to a smooth functioning, scientifically grounded water quality monitoring and assessment program. The WDNR has invested many resources into building and maintaining monitoring and assessment databases.

Monitoring Data –SWIMS

The Surface Water Integrated Monitoring System (SWIMS) (Figure 2) is a WDNR information system that holds chemistry (water, sediment), physical (flow), and biological (macroinvertebrate, aquatic invasive) data.

SWIMS is the state's repository for water and sediment monitoring data collected for Clean Water Act work and is the source of data sharing through the federal <u>Water Quality</u> <u>Exchange Network</u>, which is an online federal repository for all states' water monitoring data. WDNR Fisheries and Water Quality Biologists use the system to document

monitoring stations for both Watershed and Fisheries Program datasets, providing a gateway to fisheries management datasets housed at the U.S. Geological Survey.

The SWIMS database supports Citizen Based Stream Monitoring (CBSM) Level 2 Program volunteers. Level 2 volunteers come into the program with previous water monitoring experience, most volunteers having participated in the CBSM Level 1 Program (Water Action Volunteers or WAV Program). The Level 2 training focuses on the proper use of WDNR field methods and specialized equipment, such as transparency tubes, DO and pH meters. The Level 2 Program Coordinator trains volunteers to properly calibrate the instruments, use and store the equipment, record the data, etc. Volunteers chose monitoring locations on nearby streams with input from WDNR staff. The data collected by Level 2 volunteers are entered into the SWIMS database and quality assured by WDNR staff. SWIMS also supports the Citizen Lake Monitoring Network (CLMN) datasets, which are collected by citizen volunteers and used directly for lake general assessment work.

Assessment Data -- WATERS

The Water Assessment, Tracking and Electronic Reporting System (WATERS) is a data system that includes the following water program items:

- Water Division Objectives, Goals, Performance Measures, and Success Stories
- Clean Water Act Use Designations and Classifications (chs. NR 102 and 104, Wis. Adm. Code)
- Outstanding and Exceptional Resource Waters Designations (ch. NR 102, Wis. Adm. Code)
- Clean Water Act assessment data, including decisions regarding a waterbody meeting its attainable use or whether or not the water body is considered "impaired"
- impaired waters tracking information, including the methodology used for listing, the status of the TMDL creation, and restoration implementation work
- Fisheries Trout Classifications (s. NR1.02(7), Wis. Adm. Code)
- Watershed planning recommendations, decisions, and related documents

2.5 Data Requirements

By establishing data requirements, WDNR staff collects representative data as efficiently as possible with limited staff and fiscal resources and use those data in a manner that minimizes the chance of incorrectly characterizing that attainment status of any particular water. Recognize that extremely large datasets are neither available nor necessary for many water bodies in the state. Minimum data requirements have been established for indicators including:

- **Period of Record:** Data from the most recent 10-year period are used when assessing waters⁴. This window of time ensures that the data are representative of a wide range of factors that affect water quality (i.e., precipitation events, flow). WDNR is not obligated to use all data that fall within the 10-year time frame if some of the data are determined unrepresentative of the stressors and normal characteristics of any given water.
- **Sampling Period:** The sampling period required for assessment decisions depends upon the subject parameter and waterbody involved. Appropriate sampling periods are identified in subsequent chapters of this document.
- **Sample Type:** The indicator being evaluated will dictate what type of samples should be used for an assessment decision. In some cases, samples may be collected as instantaneous measurements vs. continuous measurements. In other cases, the choice may be between a grab sample and a composite sample. In either case, the selection of the values should result in using the most representative data available.
- Sample Size: Sample size is a much studied topic among water quality managers seeking to achieve balance between collecting enough data to make sound decisions while not collecting so much that scant resources are expended without adding significant value to the resulting decision. WDNR has outlined sample sizes that include smaller, representative datasets to make assessments. More samples are required for indicators that exhibit high degrees of variability (e.g., temperature). All available representative data should be reviewed to ensure that the minimum data requirements are met. However, in those cases where the minimum sample size is not met, a waterbody may still be listed as impaired if the available data provide overwhelming evidence of impairment. More information on how to make assessment decisions in those cases is available in the professional judgment section in chapter 7.

⁴ For lake Total Phosphorus and Chlorophyll a, a 5-year range is used to make impairment decisions, but data up to 10 years old may also be used to support impairment decisions.

3.0 The Assessment Process: An Overview

3.1 General Condition Assessment

Data collected under WDNR's tiered monitoring system are used to identify where a specific river or stream falls on a continuum of water condition, which is the core assessment to determine if a waterbody is attaining its applicable designated uses.

WDNR uses four levels of condition to represent waters' placement in the overall water quality continuum (Figure 3). Waters described as *excellent* and *good* clearly attain each assessed designated use; waters described as *fair* are also meeting their designated uses, but may be in a state that warrants additional monitoring in the future to assure water conditions are not declining. Waters that are described as *poor* may be considered "impaired" and added to the Impaired Waters List in accordance with Section 303(d) of the federal Clean Water Act.

Figure 3. General Water Condition Continuum

Excellent	Fully Supporting Designated Use
Good	Supporting Designated Use
Fair	Supporting Designated Use
Poor	Not Supporting Designated Use*

3.2 Impairment Assessment

The assessment of whether a waterbody is meeting a specific designated use inherently requires comparison to applicable water quality criteria, or, when numeric criteria do not exist, a well-defined reference condition or attainable use as a benchmark for comparison to narrative standards.

This section briefly outlines the concepts of indicators and associated thresholds to measure attainment status of Wisconsin lakes, rivers, and streams. For purposes of this guidance, the term "indicator" is used to describe the various measures of water quality, including those that represent physical, chemical, biological, habitat, toxicity, and body tissue data. The term "threshold" is used to when referring to the numeric value or narrative description that distinguishes attainment of the water quality standards versus values that indicate impairment. In the simplest sense, a waterbody is defined as "impaired" when it is not achieving any one of its designated uses – generally as a result of some human-induced activity that prevents the use from being fully attained.

Key Indicators for Assessments

Detailed assessments are tailored to the specific concerns for a waterbody. The assessment can include any of the parameters. Indicators are sub-divided into the following categories:

- Conventional physical-chemical indicators
- Toxicity-based indicators
- Biological indicators
- Lake eutrophication indicators

Exceedance Frequency

In the context of numeric water quality criteria, exceedance frequency refers to the number of times a criterion may be exceeded over a period of time before the water is considered impaired. If Wis. Adm. Code does not specify what constitutes an exceedance of the water quality criteria for specific parameters, exceedance criteria for those parameters are outlined in this WisCALM document in the Lakes and

Rivers/Streams chapters. Exceedance criteria that are outlined in guidance must be in line with the intent of the criteria in code. In some cases, WisCALM lists impairment thresholds for parameters that do not have codified water quality criteria (for instance, chlorophyll *a*). For parameters that do not have codified criteria, their impairment thresholds may be used as guidance for listing, but a waterbody does not have to be listed based on that parameter alone. In addition, a waterbody will be placed on the Impaired Waters List if it is not meeting any one of its designated uses, independent of whether or not the water is meeting water quality criteria.

Impairment Thresholds

Impairment thresholds are applied to determine whether waterbodies should be placed on the Impaired Waters List. These thresholds are usually expressed as ambient water concentrations of various substances based on numeric water quality criteria included in chs. NR 102-105, Wis. Adm. Code, WDNR technical documents, and federal guidance. In some cases, qualitative thresholds based upon narrative standards may be used to make impairment decisions. In those cases, a thoroughly documented analysis of the contextual information should be used in conjunction with professional judgment to collectively support a decision.

For some assessments methods, a single criterion or threshold may not be applicable across all the different waterbody types. For example, large shallow lakes in the southern portion of the state have naturally higher nutrient concentrations than the small shallow lakes in the northern part of the state. An initial waterbody classification analysis is required to ensure the assessment process applies the correct impairment threshold. For other assessment methods, the WDNR applies the same water quality criterion or threshold across all resource types. An example is the use of the same fish tissue mercury concentration for all our lakes and rivers in the assessment of Fish Consumption Advisories as part of the Public Health and Welfare Use (chapter 6.1).

Data Quality

Information used for assessments must be consistent with the WDNR Quality Management Plan or have been obtained using comparable quality assurance procedures. In general, monitored information contained in WDNR databases will be used, unless more recent information is available. These data will be used unless experts determine that the data are no longer representative of current conditions. Department staff will determine if changes in the watershed have occurred, such as significant changes in land use, decreases of nonpoint source controls, or increases in the amount of pollutants discharged from point sources. Proposed changes to the Impaired Waters List must be based on assessment methods identified in WisCALM or equivalent, documented methods.

4.0 Lake Classification and Assessment Methods

4.1 Lake Classification

WDNR classifies or groups similar lake types based upon physical data. Specifically, lake size, stratification characteristics, hydrology and watershed size are identified as the primary influences on a lake and, to a large degree, these characteristics determine the natural biological communities each lake type supports. Using this information, lakes should fall into one of ten natural community types (Table 1).

Natural Community	Stratification Status	Hydrology		
Lakes/Reservoirs <10 acres – Small	Variable	Any		
Lakes/Reservoirs <a>>>10 acres				
Shallow Seepage	Mixed	Seepage		
Shallow Headwater	Mixed	Headwater Drainage		
Shallow Lowland	Mixed	Lowland Drainage		
• Deep Seepage	Stratified	Seepage		
• Deep Headwater	Stratified	Headwater Drainage		
• Deep Lowland	Stratified	Lowland Drainage		
Other Classification (any size)				
Spring Ponds	Variable	Spring Hydrology		
 Two-Story Lakes 	Stratified	Any		
 Impounded Flowing Waters 	Variable	Headwater or Lowland Drainage		

 Table 1. Lake & Reservoir Natural Communities

The WDNR recognizes that lakes may vary geographically. Spatial data are available for each of the lakes. Regional differences in soils, climate and land use may explain additional variation in the bio-indicator metrics used in the classification of lakes⁵. However, WDNR has determined that lake size, hydrology and depth are more critical factors for initial classification of lakes, and that regional differences are secondary.

For most lakes, the WDNR's automated data packages automatically determine which natural community and which impairment thresholds are appropriate based on the parameters described below. However, if the biologist has information to suggest that a lake's automatically assigned natural community is inaccurate or not representative of the lake, a change to the natural community may be made if reasons for the change are documented. If a Partial Lake Listing is being considered, a different Natural Community may be assigned to the portion of the lake being considered for a Partial Lake Listing, based on site characteristics that are significantly different from those in the rest of the lake.

Reservoirs – Reservoirs are classified using the same classification schema as lakes, described below, though biologists may employ multiple sampling stations on reservoirs to provide more representative data. A reservoir is defined as a waterbody with a constructed outlet structure intended to impound water and raise the depth of the water by more than two times relative to the conditions prior to construction of the dam, and that has a mean water residence time of 14 days or more under summer mean flow conditions using information collected over or derived for a 30 year period.

Size: Small vs. Large - Lake classification begins by first separating lakes into those 10 acres and greater and those less than 10 acres.

Small Lakes – Lakes less than 10 acres are classified into the Small Lake community. These lakes are uniquely different from communities in larger lakes but there is limited monitoring data available in Wisconsin. Because data for lakes less than 10 acres is so limited, it is difficult to set quality thresholds for assessment. Currently, there are very few thresholds set for water quality, fisheries, or aquatic plants

⁵ Past Wisconsin studies have used eco-regions to explain landscape variability and EPA has proposed using this framework for assessment (Omernik 1987).

for lakes less than 10 acres⁶. To address these small lakes in the future, Wisconsin may look to emerging wetland assessment tools for guidance.

Large Lakes – Lakes 10 acres or more are classified as Large Lakes. Large Lakes are further subdivided, by stratification status, hydrology, and watershed size, as shown below.

Stratification Status: Shallow (Unstratified or Mixed) vs. Deep (Stratified) – Lakes that are 10 acres or greater may be further characterized by their tendency to mix or stratify thermally. Stratification is an important factor in determining overall lake water quality and availability of suitable habitat for fish and aquatic life. An equation developed by WDNR Researchers (Lathrop and Lillie, 1980) is used by WDNR to identify whether a lake is categorized as Deep (Stratified) or Shallow (Unstratified or Mixed)⁷. Although this model is used to automatically generate lake classifications from the WDNR database, staff is encouraged to use field data on depth, area, residence time, and temperature profiles to refine the model-based lake classifications.

The Lathrop/Lillie equation is represented by a ratio calculated as follows:

<u>Maximum Depth (meters) – 0.1</u> Log 10 Lake Area (hectares) or <u>Maximum Depth (feet)*0.3048 – 0.1</u> Log 10 (Lake Area (acres)*0.40469)

Shallow (Unstratified or Mixed) – When using the Lathrop/Lillie Equation, any value less than or equal to 3.8 predicts a mixed lake, which is placed in the Shallow category. Mixed lakes tend to be shallow, well-oxygenated, and may be impacted by sediment re-suspension. In addition, shallow lakes have the potential to support rooted aquatic plants across the entire bottom of the lake (Figure 4).

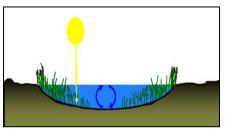
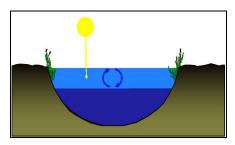



Figure 5. Deep, Stratified Lake

⁶ Total Phosphorus criteria apply to lakes of five acres and larger.

⁷ WDNR's decision to use the Lillie/Lathrop equation to determine stratification status also examined several other models for predicting lake stratification based on depth and area. These included work by Emmons et al. (1999), the Osgood Index (Osgood 1988), a Minnesota "lake geometry ratio" (Heiskary and Wilson 2005) and a model by WDNR Researchers (Lathrop and Lillie, 1980). The Lathrop/Lillie Equation was selected because it better distinguishes between clearly stratified and mixed lakes.

Deep (Stratified) –When using the Lathrop/Lillie Equation, any value greater than 3.8 predicts a stratified lake, which is placed in the Deep category. Stratified lakes tend to be deep, with a cold water refuge for fish, and the potential for anoxic conditions (without oxygen) in the bottom layer which may release nutrients from sediments into the water column. Aquatic plants are typically confined to shallow (littoral) waters around the perimeter of the lake (Figure 5). Stratified lakes exhibit thermal layering throughout the summer or they undergo intermittent stratification.

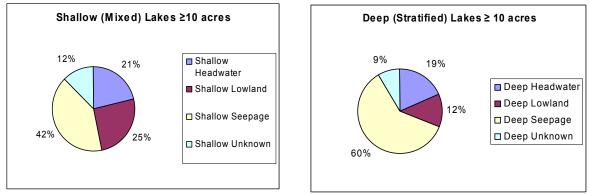


Figure 6. Distribution of Shallow and Deep lake types (for lakes less than 10 acres)

Hydrology and Watershed Size – Lake hydrology is the measure of the relative inflow/outflow of surface water compared to direct precipitation and groundwater inputs. Lake hydrology and lake watershed size are two other critical factors in lake classification. Both Deep and Shallow Lakes are further divided based on hydrology. The terms "seepage" or "drainage" are best used to describe the appropriate hydrologic category for lakes.

Seepage Lakes – A lake with no surface water inflow or outflow is considered a seepage lake (Figure 7). A seepage lake receives water from two sources: primarily from precipitation, both as overland sheet flow to the lake and directly onto the lake and seepage into the lake from groundwater. Seepage lakes tend to have lower nutrient concentrations, due to relatively small catchment areas, and may be poorly buffered against acid deposition.

Drainage Lakes – A lake is classified as a drainage lake if there is surface water flow into and/or out of a lake from a river or stream (Figure 8). Drainage lakes tend to have more variable water quality and nutrient levels, depending upon the amount of land area drained by the lake's watershed. For this reason, watershed size also plays a key role in the classification of Drainage Lakes (Emmons, et al, 1999). Drainage lakes are subdivided by watershed size as follows:

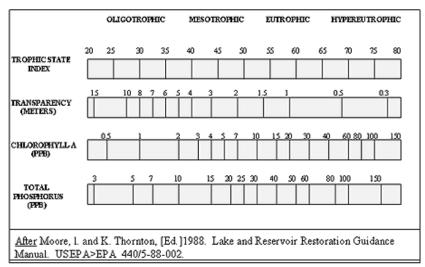
- <u>Headwater Drainage Lakes:</u> If the watershed draining to the lake is less than 4 square miles, the lake is classified as a Headwater Drainage Lake.
- <u>Lowland Drainage Lakes:</u> If the watershed draining to the lake is greater than or equal to 4 square miles, the lake is classified as a Lowland Drainage Lake.

Other Classifications (any size) – Three other classes representing unique natural communities are recognized in this classification scheme: Spring Ponds, Two Story Lakes, and Impounded Flowing Waters.

Spring Ponds –Spring ponds typically contain cold surface water and support coldwater fish species and are most often shallow headwater lakes. In order to be included in this category there should be documentation of a current or historical cold water fishery (e.g., stream trout) and evidence of spring hydrology.

Two Story Lakes – Two-story lakes are often more than 50 feet deep and are always stratified in the summer. They have the potential for an oxygenated hypolimnion during summer stratification and therefore the potential to support coldwater fish species in the hypolimnion. In order to be included in this category, documentation of a current or historical native cold water fishery (e.g., cisco, lake trout) will be necessary.

Impounded Flowing Waters—Rivers or streams that are impounded but do not meet the definition of reservoir above are considered to be "impounded flowing waters". Impounded flowing waters are lotic in nature and should be evaluated using the river and stream criteria that apply to the primary stream or river entering the impounded water.


4.2 Lake General Condition Assessment

The WDNR focuses on in-lake water quality metrics to assess a specific lake's fish and aquatic life designated use. These in-lake parameters correlate strongly with fish and other aquatic life communities (macroinvertebrates, aquatic plants, etc.) within a lake.

Wisconsin bases its General Condition Assessment for lakes on the Carlson Trophic State Index (TSI). The Carlson TSI is the most commonly used index of lake productivity. It provides separate, but relatively equivalent, TSI calculations based on either chlorophyll *a* concentration (chl *a*, or CHL in the equation below) or Secchi depth (SD, for which Wisconsin also uses satellite clarity data as a surrogate)⁸. Because TSI is a prediction of algal biomass, typically the chl *a* value is a better predictor than Secchi or satellite data. Water clarity as

measured by Secchi depth or satellite is a practical measure of algal production and water color. Algal production is known to be highly correlated with nutrient levels (especially phosphorus). High levels of nutrients can lead to eutrophication and blue-green algae blooms. This limits the amount of available light to macrophytes and adversely affects other aquatic organisms. Information from each of these parameters is valuable because the interrelationships between them can be used to identify other environmental factors that may influence algal biomass.

⁸ Carlson also provides an equation to convert total phosphorus concentration to TSI, but WDNR is not using that equation for purposes of water quality assessments or 303(d) Impaired Waters Listing.

TSI values range from low (less than 30), representing very clear, nutrient-poor lakes, to high (greater than 70) for extremely productive, nutrient-rich lakes (Figure 9). Very few lakes in Wisconsin would fall into the category of "very clear, nutrient poor lakes." The cutoff for excellent TSI values would certainly include these lakes (Table 2) but also includes some lakes in the mesotrophic category, based on sediment core data which indicates that some lakes are naturally more productive than others.

Data requirements

TSI is automatically calculated using a programming package (TSI Package) that draws from Department data in SWIMS. The rules used by the TSI Package are described below. These requirements are set to provide enough data to account for the average lake condition during the summer index period (when the lake responds to nutrient inputs and achieves maximum aquatic plant growth) over several years to account for unusual weather (dry, wet, hot, cold). Results from the TSI Package will be provided to biologists to use in their assessments. Biologists may use professional judgment in assessing package results.

a) Seasonal Range and Sampling Frequency.

- For chl *a* and Secchi data, the TSI Package requires 2 samples per year in each of 3 different years. Samples should be collected between July 15 September 15.
- For satellite clarity data, at least one satellite inferred clarity reading is required in each of 3 years (3 values minimum). Samples should be collected between July 1 September 30.

b) *Sampling Depth.* Chlorophyll a samples taken from the top 2 meters of the lake will be used to calculate TSI (excluding grab samples collected at 0 m). Samples can be grab samples or integrated samples.

c) Year Range. Sampling data are used from within the most recent 5 years (2006-2010).

d) *Sampling and Analytical Methods*. Field collection, preservation and storage should follow procedures outlined in the WDNR Field Procedures Manual and the Citizen Lake Monitoring Manual (<u>http://WDNR.wi.gov/lakes/CLMN/manuals/</u>). Laboratory analysis should follow standard methods (WSLH 1993). Data collected using different protocols may be considered, with limitations, based upon professional evaluation.

Calculations

a) For each year with sufficient data, first all values are converted to TSI using the calculations below (calculate TSI *separately* for chl *a*, Secchi, and satellite data)⁹. (Note: Satellite readings are automatically converted to clarity values (equivalent to Secchi depth) in SWIMS.)

 $\begin{array}{ll} TSI_{CHL} &= 9.81 \mbox{ ln} (CHL) + 30.6 \\ TSI_{SD} &= 60 - 14.41 \mbox{ ln} (SD) \mbox{ (satellite inferred clarity data can also be used in lieu of Secchi data in this equation)} \end{array}$

Where:

TSI = Trophic Status Index SD = Secchi depth (meters) CHL= Chlorophyll a concentration (µg/L)ln = natural log

⁹ Although Carlson's Trophic State Index also provides a calculation for TSI based on total phosphorus (TP), Wisconsin does not calculate TSI based on phosphorus for General Condition Assessments. TP concentrations are used to determine whether a waterbody exceeds thresholds for 303(d) listing as a pollutant.

b) For each year of data, an Annual Average is calculated from the data points within that year (Annual Averages are calculated separately for each parameter).

c) All available Annual Averages from the last 5 years are averaged together, to produce a Multiyear Average (Multi-year Averages are calculated separately for each parameter).

d) The TSI Package automatically prioritizes which TSI Multi-year Average to use in comparison against the General Condition Assessment Thresholds. Historically, there has been a tendency to average the three TSI values, but research suggests that this generally is not a good practice (Carlson and Simpson 1996). Therefore, Wisconsin has instituted a prioritization system for selecting which TSI score to use. When more than one Multi-year Average TSI score is available, whichever TSI score is based on the most direct measure of algal biomass will be used, as follows:

- TSI based on chl *a* will be used if available, since this is the most direct measure of trophic state.
- TSI based on measured Secchi data is the second preference; Secchi depth readings measures clarity as a surrogate for trophic state.
- TSI based on satellite data is the third preference, as it infers water clarity rather than measuring water clarity directly.

e) The final step in the General Assessment is to compare the lake-specific Multi-year Average TSI value to the lake general condition assessment thresholds shown in Table 2. As described previously, the lake condition assessment thresholds establish four categories for each Lake Natural Community: Excellent, Good, Fair, and Poor.

Condition	Condition Shallow				De	ep	
Level	Headwater	Lowland	Seepage	Headwater	Lowland	Seepage	Two-Story
Excellent	< 53	< 53	< 45	< 48	< 47	< 43	< 43
Good	53 - 61	53 - 61	45 - 57	48 - 55	47 - 54	43 - 52	43 - 47
Fair	62 - 70	62 - 70	58 - 70	56 - 62	55 - 62	53 - 62	48 - 52
Poor	<u>></u> 71	<u>></u> 71	<u>></u> 71	<u>> 63</u>	<u>> 63</u>	<u>> 63</u>	<u>> 53</u>

Table 2. Trophic Status Index (TSI) Thresholds – General Assessment of Lake Natural Communities

Note: Although TSI thresholds are not yet available for three natural communities: 1) Small Lakes; 2) Spring Ponds; and 3) Impounded Flowing Waters, by default assessments are completed for the most similar natural community for which thresholds are currently available.

How TSI General Condition Thresholds were Established

Excellent Condition

To establish the excellent range for TSI conditions, WDNR uses excellent or "reference" conditions inferred from total phosphorus (TP) values based upon preserved diatom communities from presettlement times found in lake bottom sediment cores.

Sediment cores measure fossilized diatom communities allowing a comparison of historical (presettlement) conditions and recent water condition. This allows the comparison of current water clarity measurements to historical conditions with changes represented by the changes in algae conditions over time. Diatoms are a type of algae containing siliceous cell walls that fossilize in lake sediments. Diatom taxa are known to prefer narrow ranges of water quality. Therefore, inferences about historical water condition can be made from fossilized diatom communities at the bottom of the sediment core. These inferred concentrations, when converted to TSI values using the Carlson equations, can be used as reference values. This approach will not work for most reservoirs, impounded flowing waters, or raised wetland lakes since these lakes are artificial and pre-settlement conditions do not exist. WDNR has not yet developed criteria specific to these artificially created waterbodies. WDNR has sediment core data spanning each of the 6 natural lake community types (Table 3) and derives excellent TSI thresholds from these data (Garrison, unpublished data). *The transition between excellent and good for each natural community is based on the 75th percentile of the TSI values calculated from sediment core bottom inferred phosphorus concentrations.* The bottom sediment core values represent reference lake conditions and using the 75th percentile gives some margin for lakes to have changed since the bottom of the sediment core accumulated (Table 3).

Sediment cores are not available for small lakes or spring ponds and are not appropriate for impounded flowing waters. Since adequate sediment core data from two-story lakes is not available, the 75th percentile value for deep seepage lakes was used for the threshold between excellent and good condition (Table 2). Ideally, sediment core data should be collected whenever monitoring is conducted on two-story lakes.

 Table 3. Mean and Median inferred TP values calculated from top and bottom segments of sediment cores from 87 Wisconsin lakes (Garrison, unpublished data)

			Mean Tl	P (µg/L)	Media	n TP (µg/L)	75 th	
			Тор	Bottom	Тор	Bottom	Percentile	
Lake			-				(µg/L)	TSI
Class	Natural Community	Ν					(Bottom	Threshold
1	Shallow Headwater	17	27	24	26	19	30.3	53
2	Deep Headwater	19	24	18	21	14	20.5	48
3	Shallow Lowland	11	28	25	28	24	30.5	53
4	Deep Lowland	43	25	19	20	15	20.0	47
5	Shallow Seepage	15	17	16	16	14	17.0	45
6	Deep Seepage	29	15	13	12	11	15.3	43

Poor Condition

Setting the threshold for Poor Condition was approached differently for each lake type, as most appropriate for the specific conditions exhibited by those lakes:

Shallow Lakes: The transition between a fair and poor condition for shallow lakes was set at a TSI of 71 (corresponding to TP concentration of 100 μ g/L) because this approximates TP concentrations that lead to a switch from aquatic plant dominated to algal dominated ecosystems in shallow lakes (Jeppesen et al. 1990). This represents a major ecosystem change and once it occurs, it is very difficult to restore to the aquatic plant dominated state.

Deep Lakes: The fair to poor transition threshold for deep lakes was set using a TSI value known to cause increased frequency of algal blooms, high amounts of blue-green algae and/or hypolimnetic oxygen depletion. A TSI of 63 (corresponding to TP of 60 μ g/L) was chosen because it represents the threshold between eutrophic and hyper-eutrophic lakes (Carlson 1977).

Two-Story Lakes: TSI values that cause significant hypolimnetic oxygen depletion should be used as the threshold for two-story lakes since this habitat component is critical for maintaining coldwater fisheries. This value will be highly dependent upon the lake's morphometry. Hypolimnetic oxygen demand is largely from the sediment; therefore, the greater the ratio of *sediment area to hypolimnetic water volume* the higher the hypolimnetic oxygen demand. That makes setting this threshold very difficult. A conservative TSI value of 53 (corresponding to a TP of 30 μ g/L) is recommended. Further research on these relationships is needed to derive accurate values for two-story lakes.

Good and Fair Condition

The transition value between the condition of "fair" and "good" for each natural community was selected as a mid-point between the excellent and poor TSI values (Table 2).

4.3 Lake Impairment Assessment: Selecting representative stations and which lakes to evaluate

Not all waters categorized as Poor in the General Condition Assessment should be considered Impaired or warrant 303(d) listing. Whether or not a waterbody should be listed as impaired is dependent on the strength of the data used to make the assessment. To submit a lake for the 303(d) List, it should exceed certain numeric listing thresholds or meet narrative listing criteria. A General Condition Assessment status of "Poor" or "Fair" based on TSI score serves as a flag that TSI values and other parameters such as TP, temperature, DO, and pH should be evaluated against the additional impairment thresholds outlined in Table 4A. In addition, best professional judgment may be needed for certain parameters (such as TSS and turbidity), or unique natural communities (such as two-story lakes or impounded flowing waters) for which there are currently no thresholds or criteria for certain parameters.

It is important to determine the relationship between the impairment and pollutant when placing a waterbody on Wisconsin's Impaired Waters List. There are a number of field-measurements that can be taken to more clearly define the condition of a lake and determine what specific impairments and pollutants may be present. Selecting the correct indicators is an important part of understanding the underlying causes of water quality problems. Collectively, the type of data collected and the frequency of sampling is critical for accurate listing and the development of a successful management strategy. Guidance on how to make attainment decisions for some of the more common pollutants or stressors observed in Wisconsin lakes is provided below.

Station Locations: Selecting representative stations for assessment

Most lakes will have only a single Deep Hole site to characterize the status of the lake. The Deep Hole site is the default site that the TP and chl *a* Packages used for assessments. If more than one station is named "Deep Hole", the packages will use both.

Lakes with multiple stations: Reservoirs, multi-lobed lakes, and very large lakes may not have a Deep Hole station and/or may need more than one sampling station to accurately characterize the lake's morphology and to assess the lake. In these cases, to determine which stations should be selected to use for assessments, use the following guidelines:

- Typically between two and five stations would be chosen to be representative of lake conditions, depending on the size and character of the lake.
- Select only 'active' stations that have data from within the past ten years.
- If there are stations that seem to be duplicative of the same location, contact SWIMS/WATERS support staff to determine whether those stations should be consolidated.
- For **reservoirs/flowages** (Figure 11), select stations that are roughly equally spaced along the thalweg (the deepest channel along the river line). Stations in flowing portions near the upstream entry point of the river may be eliminated.
- For very large lakes (Figure 10), select well-spaced stations representative of the entire lake.
- For lobed lakes,
 - if there are **multiple deep holes** (Figure 12), select a station for each deep hole.
 - if there is one deep hole but it is not be representative of the entire lake (Figure 13), select the deep hole as well as other stations to represent the other portions of the lake. It may be more difficult in these situations to determine which stations provide the best representation of the lake.

Once the biologist has selected which stations will be used to assess the lake, the additional stations should be indicated in WATERS. To do this, check the checkbox to the right of each station you wish to select¹⁰. These stations are then automatically represented in the TP and chl a Package results.

For lakes with multiple stations selected, when the packages calculate a Whole Lake Average for impairment assessments, each selected station is given equal weight in the calculation.¹¹

Note: The maps below are for illustrative purposes only; the stations shown may not be the most representative stations available.

Figure 10. Large Lakes: Select well-spaced stations throughout lake. Example: Lake Winnebago

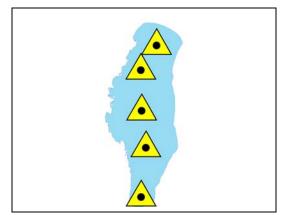


Figure 12. Lobed lakes with multiple deep holes: One station per deep hole. Example: Two Sisters Lake, Oneida County

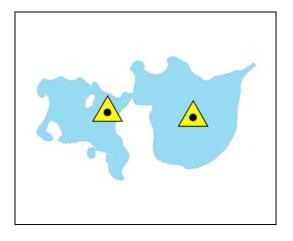


Figure 11. Reservoirs/Flowages: Select stations along the deepest channel. Example: Lake Petenwell, Juneau County

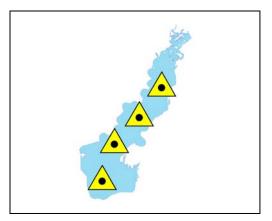
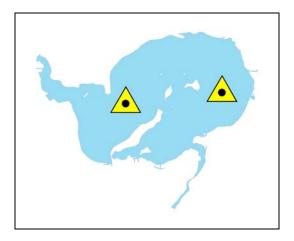



Figure 13. Lobed lakes with one deep hole: Use Deep Hole station and another station representative of shallower area. Example: Fox Lake in Dodge County

¹⁰ Data packages are updated every Friday evening. If new stations are selected, the biologist will need to re-run the packages the following week to incorporate the new information.

¹¹ In the future, WDNR may investigate using *area weighted average calculations* to do our Whole Lake Averages for lakes with multiple assessment stations. To do this, the lake acreage that each station represents would need to be entered into WDNR databases. Then, the automated data package would perform an area weighted mean calculation, which would weight the TP values from each station according to the acreage each station represents. However, guidance would need to be developed on how to determine how much acreage/volume each station represents, and programming would be needed to implement this change in WDNR's databases.

Calculating Station Annual Averages vs. Whole Lake Annual Averages

Because certain lakes will have multiple stations, these need to be taken into account when running calculations to determine threshold impairments. For each parameter on a lake, both individual Station Annual Averages *and* a Whole Lake Annual Average are calculated using the arithmetic mean of the appropriate sample values. For lakes with only a Deep Hole station, the Station Annual Average is equivalent to the Whole Lake Annual Average.

a) *Station Annual Averages.* For each station being assessed, a Station Annual Average is calculated. (For most lakes, only the Deep Hole station is used for assessment purposes.) For lakes with multiple assessment stations, individual station averages provide a spatial representation of TP levels within different portions of the lake. If considering a Partial Lake Listing, the station(s) meant to characterize the Partial Lake area should be assigned their own Assessment Unit and be compared against the appropriate Impairment Threshold for that portion of the lake (see below).

b) *Whole Lake Annual Average.* For lakes with multiple stations that are meant to represent the lake as a whole, combine the Station Annual Averages to calculate a Whole Lake Average (this is calculated automatically for parameters that have automated data packages). This calculation averages the Station Annual Averages together, weighting the averages from each station equally (see footnote 11). Compare the Whole Lake Annual Average to the appropriate Impairment Thresholds.

Whole Lake vs. Partial Lake Assessment

As a rule, a lake is a mixed system that functions as a single, contiguous unit. Therefore, in the vast majority of situations, each lake will be assessed as a whole unit, and, if degraded, the whole lake will be listed as impaired. However, in cases where a known or suspected localized pollution source is believed to cause impairment in only one portion of a lake (such as an isolated bay or well-defined lobe), biologists may consider assessing and listing that portion as impaired separate from the larger lake.

In cases where Partial Lake Assessments and/or Partial Lake Impairment Listing are warranted, the portion of the lake under consideration should be delineated as a separate Assessment Unit to differentiate it from the larger part of the lake. This is typically warranted when the geography of the lake is such that there is a physical barrier separating most of one portion of the lake from the main portion. In such cases, the partial lake area will typically be assigned its own Natural Community, which may differ from the greater lake.

For Partial-Lake assessments, a sampling station should be added that is representative of the partial-lake area. Such a station should be situated in open water, so that samples are not taken near-shore or in an effluent plume but in ambient lake water within the vicinity of the suspected source of the problem.

Partial Lake Impairment Listings

In cases where a localized pollution source is believed to cause impairment in only one portion of a lake, as evidenced by a high Station Annual Average for only one area of a lake, biologists may consider listing only that portion of the lake as impaired using the appropriate Natural Community threshold. However, if, for instance, one area of a lake is experiencing high algae concentrations due to algae that are being produced throughout the lake but are blown by the wind to a particular area, this would be considered a Whole Lake problem and Partial Lake listing would not be appropriate.

Lakes to review for Impairment

Biologists should review those lakes that have an evident impairment or suspected possible impairment:

- Lakes flagged by the **TP Package** or **chl** *a* **Package** as potentially exceeding impairment thresholds. WDNR has two automated data assessment packages that have been created to flag lakes that are potentially impaired: A TP Package, and a chl *a* Package. These packages flag those lakes that meet minimum data requirements and appear to exceed impairment thresholds for either Recreation or Fish & Aquatic Life Uses. These lakes are potential candidates for the impaired waters list and should be the top priority lakes for biologists to review.
- Other waters that biologists suspect may be impaired for which they wish to conduct a data review. Individual data queries can be run for any waterbodies that biologists wish to review.

Using the processes described below, data can be compared to the impairment thresholds in Table 4A, to determine whether any of these additional parameters exceed the listing thresholds.

4.4 Lake Impairment Assessment: Fish & Aquatic Life (FAL) Uses

Minimum data requirements and calculations for Pollutant and Impairment indicators

For all of the Lake Pollutant and Impairment Indicators, the following guidance on minimum data requirements apply for *Station Location, Year Range, Sampling and Analytical Methods,* and *Data Quality*. Guidance for frequency, seasonality, sampling depth, and any specific data quality notes are specific to different parameters and are provided under each Pollutant or Impairment Indicator. Some of the more common Pollutants and Impairments are described in the text below; these and others are also documented in Table 4A.

Station Location. See the "Station Location" section in chapter 4.3.

Sampling and Analytical Methods. Field collection, preservation and storage should follow procedures outlined in the WDNR Field Procedures Manual which is stored in the SWIMS system (<u>http://WDNR.wi.gov/org/water/swims</u>) and the Citizen Lake Monitoring Manual (<u>http://WDNR.wi.gov/lakes/CLMN/manuals/</u>). Laboratory analysis should follow standard methods¹² (WSLH 1993). Data collected using different protocols may be considered, with limitations, based upon professional evaluation of data.

Data Quality. Sample points may be excluded if there are quality control concerns or if the data were collected for specific studies that are not representative of overall lake conditions.

Total Phosphorus (TP)¹³

Phosphorus is one of Wisconsin's most common pollutants for lakes. In 2010, Wisconsin developed numeric criteria for TP and corresponding protocols for listing waterbodies for TP as a pollutant. In-lake TP values for the purpose of assessing water quality against criteria are calculated using a programming package that draws from Department data in SWIMS (TP Package). The rules used by the TP Package are described below. Results from the package are provided to biologists to use in their assessments; biologists may use professional judgment in assessing package results.

Minimum Data Requirements

¹² WSLH (Wisconsin State Laboratory of Hygiene). 1993. Manual of Analytical Methods. Environmental Science Section, Inorganic Chemistry Unit, Wisconsin State Laboratory of Hygiene, Madison, WI.

¹³ Heiskary, S, and C. B. Wilson, 2005. Minnesota Lake Water Quality Assessment Report: Developing Nutrient Criteria, Third Edition. Minnesota Pollution Control Agency, September 2005.

a) *Year Range.* Data are evaluated from the most recent 10 year period. However, for TP and chl *a*, data from the most recent 5 years will be used to recommend a lake for impairment consideration. A minimum of 2 years of data are required. For the 2012 listing cycle, 2006-2010 data will be used to automatically recommend impairment consideration.¹⁴ Additional data up to 10 years old may be used to supplement listing decisions.

b) *Seasonal Range and Sampling Frequency*. By default, sampling dates within the season of June 1-Sept. 15 will be used to calculate an annual summer average. For Deep (stratified) Lakes, samples from May and/or late September may be used if it can be demonstrated that the lake is thermally stratified during that time period. A minimum of three monthly samples separated by at least 15 days are required within this time frame from each assessment station to calculate the annual average. If more samples than the minimum are available, they will also be used in calculations unless excluded due to professional judgment. At least two years of three samples each are required to meet the minimum data requirement.

c) *Sampling Depth.* Only surface samples taken from the top 2 meters of the lake will be used (excluding grab samples collected at 0 m because these may contain a scum layer). Samples can be grab samples or integrated samples. (If samples were taken from more than one depth within this zone at a single station on a single day, average the samples for that station for that day to produce the station's daily average.)

d) *Units*. TP values should be expressed in ug/L, to be consistent with Water Quality Standards in ch. NR 102, Wis. Adm. Code.

e) *Data Quality*. If there is reason to believe that any data points are suspect, they should not be used for the calculations. However, samples that are flagged or qualified by a laboratory for exceeding standard holding times are generally acceptable.

Calculations and Exceedance Frequencies

a) *Calculations*. Calculate Station Averages and Whole-Lake Averages, as described in chapter 4.3.

b) *Exceedance Frequencies.* TP has separate thresholds for Recreational (REC) impairments and for Fish & Aquatic Life (FAL) impairments. If either threshold is exceeded in a majority of the years for which the required data are available (within the most recent five years), the lake is a candidate to be considered for impairment listing. At a minimum, at least two years should exceed the criterion to list. Because the REC threshold is lower than the FAL threshold, lakes exceeding FAL automatically also exceed REC.

c) *Hierarchy of Indicators.* In order to list a lake for the pollutant TP in Category 5A, there should also be evidence of an impairment of its Recreation or Fish & Aquatic Life Uses. Biological data such as chl a, fish data, DO, or pH may be used to provide evidence of a FAL impairment; chl a, excessive algal blooms, excessive macrophytes, or public complaints may be used as evidence of Recreational impairment. If biological data are not available or are available and do not indicate impairment, then these waters will be placed in Category 5P¹⁵.

¹⁴ For informational purposes, the TP Package calculates annual average TP for all data from the last 10 years (year 1 being the most recent, year 10 being the least recent). Although the automated flagging field is based on the most recent 5 years, biologists may use the older data to help inform their decisions regarding lake trends, impairment, and need for further monitoring.

¹⁵ If the water body is currently impaired for a different pollutant/impairment combination, it may be listed under a different category (e.g. if mercury atmospheric deposition impairment exists, water will be in Category 5B).

Chlorophyll a

Because chl *a* is the most direct measure of trophic status, chlorophyll a values may be used for impairment listing. Chlorophyll *a* results are also represented by a calculated value derived from a programming package called the "Chlorophyll *a* Package" that draws from Department data in SWIMS. The rules used by the chl *a* Package are described below.¹⁶

Minimum Data Requirements

a) *Year Range*. Data are evaluated from the most recent 10 year period. However, for TP and chl *a*, data from the most recent 5 years will be used to recommend a lake for impairment consideration. A minimum of 2 years of data are required. For the 2012 listing cycle, 2006-2010 data will be used to automatically recommend impairment consideration.¹⁷ Additional data up to 10 years old may be used to supplement listing decisions.

b) Seasonal Range and Sampling Frequency. A minimum of 6 chl a samples are required. Three samples per year, in each of two different years, should be collected to meet this requirement. However, 2 samples per year, in each of 3 years, are also considered equivalent/sufficient for meeting the 6 sample minimum¹⁸. Samples should be collected between July 15 – September 15. A minimum of two monthly samples separated by at least 15 days are required within this time frame from each assessment station to calculate the annual average. If more samples than the minimum are available, they will also be used in calculations unless excluded due to data quality concerns.

c) *Sampling Depth.* Only surface samples taken from the top 2 meters of the lake will be used (excluding grab samples collected at 0 m because these may contain a scum layer). Samples can be grab or integrated samples. (If samples were taken from more than one depth within this zone at a single station on a single day, average the samples for that station for that day to produce the station's daily average).

Calculations and Exceedance Frequencies

a) *Calculations*. Calculate Station Averages and Whole-Lake Averages, as described in chapter 4.3.

b) *Exceedance Frequencies.* Chlorophyll *a* has separate thresholds for Recreational (REC) impairments and for Fish & Aquatic Life (FAL) impairments. If either threshold is exceeded in a majority of the years for which the required data are available (within the most recent five years), the lake is a candidate to be considered for impairment listing. At a minimum, at least two years should exceed the threshold in order to list. Note that a different Recreational Use threshold is given in Table 5 for chl *a*.

Dissolved Oxygen (DO)

Low DO can be used as an impairment indicator. This standard implies an activity that causes a change in DO above and beyond natural variability, or some uncontrollable factor (such as drought).

Minimum Data Requirements

¹⁶ Note: For chlorophyll a, impairment thresholds for Fish and Aquatic Life Uses are set to correspond to the "Poor" general assessment status threshold, and impairment thresholds for Recreational Uses are set to correspond to the "Fair" general assessment threshold.

¹⁷ For informational purposes, the TP Package calculates annual average TP for all data from the last 10 years (year 1 being the most recent, year 10 being the least recent). Although the automated flagging field is based on the most recent 5 years, biologists may use the older data to help inform their decisions regarding lake trends, impairment, and need for further monitoring.

¹⁸ In order to make the best use the data available at this time, the 2012 Chlorophyll a Package was designed to require at least 2 samples per year in each of 3 different years in order to flag a lake for impairment consideration. For the 2014 cycle, WDNR plans to modify the Package to assess those with 3 samples in each of 2 years.

a) *Seasonal Range and Sampling Frequency*. A minimum of 10 discrete values over a period of 5 years, collected on separate calendar days during the ice-free period are required from each assessment station. If more samples than the minimum are available, they will also be used in calculations unless excluded due to professional judgment.

b) *Sampling Depth.* Samples should be taken from the epilimnion. In the case of two-story lakes, samples should be taken from both the epilimnion and hypolimnion.

c) Units. DO values should be expressed in mg/L.

d) *Data Quality*. If there is reason to believe that any data points are suspect, they should not be used for the calculations. Data should only be used from DO meters where calibration records are available, or from titration methods. (However, this information is all field-entered, so the data points are not automatically flags to indicate suspect data.)

Calculations and Exceedance Frequencies

a) *Calculations*. Data from the most recent 5-year period may be lumped together for this calculation (however, the data should all be from a single station). If 10% of values exceed DO criteria, the lake is not meeting criteria. Because low DO most commonly occurs in shallower portions of a lake, individual station data should be assessed separately to determine whether DO problems exist.

b) *Exceedance Frequency*. Compare data to the impairment threshold for DO listed in Table 4A. For all lakes except Two-Story Lakes, the threshold is less than 5 mg/L. For Two-Story Lake, the threshold is less than 5 for the epilimnion and less than 6 for the hypolimnion, where coldwater species may be found. If 10% or more of all DO values (from all assessment sites combined, cumulatively over the most recent five year period) are below the applicable thresholds, the impairment threshold is exceeded.

Aquatic Macrophyte Community Index (AMCI) and related plant metrics

Staff in WDNR's Science Services are determining which plant metrics may be useful as impairment indicators, to signify either degraded habitat or eutrophication. Because protocols for using these plant metrics are still under development, WDNR is *not* using plant metrics as *stand-alone impairment indicators* for the 2012 listing cycle. However, WDNR does expect some guidance to be developed that enables biologists to use plant data as *supporting* information for listing decisions, if they wish to do so. This new guidance will likely be incorporated into future WisCALM editions.

The AMCI (a multi-metric aquatic plant index) was created by Nichols, Weber, and Shaw (2000) using data from transect-based plant surveys of Wisconsin lakes. However, a new point-intercept survey technique (Mikulyuk et al, 2010) has been implemented in Wisconsin lakes since 2005 to make data more comparable between lakes and gain better coverage of an overall lake aquatic plant community. Current analysis is underway to recreate the AMCI to be consistent with the new monitoring technique. Data analysis of the point-intercept statewide dataset (N=234) indicates that ecoregion is the largest factor affecting aquatic plant communities statewide. Consequently metrics are being analyzed by ecoregion as well as statewide. New sensitive and tolerant species are being selected based on relationships with land-use disturbance indicators. The new AMCI will be used as a metric in general lake assessment for the 2014 cycle of integrated (305b) reporting. However, to use the AMCI as a tool for impairment (303(d)) listing, individual AMCI metrics should be utilized to indicate the cause and type of impairment.

The impairment indicated by different aspects of an aquatic plant community will vary. For example, maximum depth of plant growth (MDPG) and relative frequency of tolerant species (TOL) both indicate a eutrophication impairment, while frequency of floating-leaf plants (FLOAT) signifies a habitat degradation impairment. This approach has led to separate testing and calibration of the individual

metrics within the AMCI as well as new metrics suggested by the statewide aquatic plant dataset. The metrics that appear to be most strongly related to land-use disturbance are frequency of floating-leaf plants (buffer zone urban disturbance) and relative frequency of tolerant species (watershed agriculture disturbance). Appropriate scaling of these two metrics is being developed by calibrating for ecoregional and local environmental differences. Guidance for using these metrics as support for impairment listing will be developed for the 2014 cycle.

Table 4A. Fish & Aquatic Life Impairment Thresholds for Lake Natural Communities

Note: Data are evaluated from within the most recent 10 year period for all parameters. For TP and chl *a*, data from within the most recent 5 year period are used for impairment assessments.

	Min. Data	Exceedance	Impairment Threshold - LAKES - Fish & Aquatic Life Use						
	Requirement	Frequency		Shallow			Deep	p	
	(see text for details)	Headwater Drainage Lake	Lowland Drainage Lake	Seepage Lake	Headwater Drainage Lake	Lowland Drainage Lake	Seepage Lake	Two-story fishery lake	
Biological indica									
chl a	6 values (3 values/2 yrs, or 2 values/3 yrs) from July 15 - Sept. 15	Annual Average exceeds for at least 2 years (or majority of yrs of data)	≥60 ug/L (≥71 TSI)	≥60 ug/L (≥71 TSI)	≥60 ug/L (≥71 TSI)	≥27 ug/L (≥63 TSI)	≥27 ug/L (≥63 TSI)	≥27 ug/L (≥63 TSI)	≥10 ug/L (≥53 TSI)
Maximum Rooting Depth	Baseline aquatic plant survey	NA (1 survey)			(reserved unti	l sufficient guidan	ce available)		
Floating Leaf Plant Community	Baseline aquatic plant survey	NA (1 survey)			(reserved unti	l sufficient guidan	ce available)		
Conventional ph	ysico-chemical indicat	tors							
ТР	3 monthly values for 2 years (June 1- Sept. 15)	Annual Average exceeds for at least 2 years (or majority of yrs of data)	≥100 ug/L	≥100 ug/L	≥100 ug/L	≥60 ug/L	≥60 ug/L	≥60 ug/L	≥15 ug/L
DO	10 discrete ⁽¹⁾ epilimnetic values (ice free period, epilimnetic samples)	10% or more of all values	< 5 mg/L						
Temperature	20 discrete ⁽¹⁾ values	Vary (see thresholds)	Dail	y (mean) and sea Maximum	sonal T° fluctua n T° increase ex	tions (min. & max ceeding 3°F abov	. daily mean) ⁽²⁾ no e natural tempera	ot maintained; a ture ⁽²⁾	nd
рН	10 discrete ⁽¹⁾ values	Vary (see thresholds)	- 1	Change >0.5 units		de the range of 6. I seasonal maxim	0-9.0 um (mean) & mini	imum (mean) ⁽²⁾	
Turbidity	10 discrete ⁽¹⁾ values	(to be determined)			(reserved u	ntil sufficient data	available)		
TSS	10 discrete ⁽¹⁾ values	(to be determined)	(reserved until sufficient data available)						
Aquatic Toxicity	-based indicators								
Acute aquatic toxicity	2 values within a 3-	Maximum daily concentration not exceeded more than once every 3 years			≥ values pro	vided in Tables A	& B below		
Chronic aquatic toxicity	year period	Maximum 4-day concentration not exceeded more than once every 3 years			≥ values pro	vided in Tables A	& B below		

(1) Discrete values refer to samples collected on separate calendar days. DO, temperature and pH criteria are taken from s. NR 102.04, Wis. Adm. Code, Water Quality Standards for Wisconsin Surface Waters.

(2) Based on historical data or reference site.

Cubatanaa	Acute Thresholds (ug/L) a	t various hardness (ppm)) levels *
Substance	50	100	200
Cadmium, total recoverable			
- Lake Superior and Lake Michigan; and any lakes classified as "trout waters"	1.97	4.36	9.65
- All other lakes	4.65	10.31	22.83
Chromium ⁺³ , total recoverable			
- All lakes	1022	1803	3181
Copper, total recoverable - All lakes	8.07	15.51	29.84
Lead, total recoverable - All lakes	54.73	106.92	208.9
Nickel, total recoverable - All lakes	261	469	843
Zinc, total recoverable - All lakes	65.66	120.4	220.7
	Acute Thresholds (ug/L) at various pH levels	5*
	6.5	7.8	8.8
Pentachlorophenol			
- All lakes	5.25	19.4	53.01
	Acute Thresholds (r	ng/L) at various pH level	S*
	7.5	8.0	8.5
Ammonia - Lake Superior and Lake Michigan; and any lakes			
corresponding to "CW Categories 1 or 4"	13.28	5.62	2.14
- Any lakes corresponding to "CW Categories 2 or 3"	16.59	7.01	2.67
- All other lakes	19.89	8.41	3.20

* See Table 2 in s. NR 105.06, Wis. Adm. Code for calculation of acute thresholds with specific hardness or pH values CW Category 1 = Default category of cold water classification. This category includes all fish. [Note: CW Category 1 is always applicable in Lake Superior, Lake Michigan, and Green Bay north of 44° 32' 30" north latitude.] CW Category 2 = Inland lakes with populations of cisco, lake trout, brook trout or brown trout, but no other trout or

salmonid species. This category excludes data on genus Onchorhynchus.

CW Category 3 = Inland lakes with populations of cisco, but no trout or salmonid species. This category excludes data on genera Onchorhynchus, Salmo, and Salvelinus.

CW Category 4 = Inland trout waters with brook, brown, or rainbow trout, but no whitefish or cisco. This category excludes data on genus Prosopium.

CW Category 5 = Inland trout waters with brook and brown trout, but no whitefish, cisco, or other trout or salmonid species. This category excludes data on genera Prosopium and Onchorhynchus.

	Thresholds (ug/L)				
Substance	Acute toxicity	Chronic toxicity			
Arsenic ⁺³ , total recoverable					
- Lake Superior and Lake Michigan; and lakes classified as 'trout waters"	339.8	148			
- All other lakes	339.8	152.2			
Chromium ⁺⁶ , total recoverable					
- All lakes	16.02	10.98			
Mercury ⁺² , total recoverable					
- All lakes	0.83	0.44			
Cyanide, free					
- Lake Superior and Lake Michigan; and lakes classified as 'trout waters"	22.4	5.22			
- All other lakes	45.8	11.47			
Chloride					
- All lakes	757,000	395,000			
Chlorine, total residual					
- All lakes	19.03	7.28			
Gamma - BHC					
- All lakes	0.96	n.a.			
Dieldrin					
- Lake Superior and Lake Michigan; and lakes classified as 'trout waters"	0.24	0.055			
- All other lakes	0.24	0.077			
Endrin					
- All lakes	0.086	0.072			
oxaphene					
- All lakes	0.73	n.a.			
Chlorpyrifos					
- All lakes	0.041	n.a.			
Parathion					
- All lakes	0.057	0.011			

Substance	Chronic Thresho	lds (ug/L) at various ha	rdness (ppm) levels *
	50	100 100 100 100 100 100 100 100 100 100	200
Cadmium, total recoverable			
- All lakes	1.43	2.46	3.82
Chromium ⁺³ , total recoverabl	e		
- Lake Superior and Lake Michigan; and lakes classified as "trout waters"	48.86	86.21	152.1
- All other lakes	74.88	132.1	233.1
Copper, total recoverable - All lakes	5.72	10.35	18.73
Lead, total recoverable			
- All lakes	14.33	28.01	54.71
Nickel, total recoverable			
- All lakes	29.0	52.2	93.8
Zinc, total recoverable	_0.0		50.0
- All lakes	65.66	120.4	220.7
	Chronic Th	nresholds (ug/L) at vari	ous pH levels *
	6.5	7.8	8.8
Pentachlorophenol			
- Lake Superior and Lake Michigan; and lakes classified as "trout waters"	4.43	14.81	40.48
- All other lakes	5.33	17.82	48.7
	Chronic Th	nresholds (mg/L) at var	ious nH levels*
—	7.5	8.0	8.5
Ammonia All lakes (early life stages present) ⁽¹⁾	1.0		0.0
- @ 25 °C	2.22	1.24	0.55
- @ 14.5 °C or less	4.36	2.43	1.09
All lakes (early life stages absent) ⁽¹⁾			
- @ 25 °C	2.22	1.24	0.55

* See Table 4 (Cadmium), 4b (Ammonia) & 6 (all other substances) in s. NR 105.06, Wis. Adm. Code for calculation of thresholds with specific hardness or pH values (1) The terms "early life stage present" and "early life stage absent" are defined in subch. III of ch. NR 106, Wis. Adm. Code.

4.5 Lake Impairment Assessment: Recreational Uses

Excessive Algae

Algae, including blue-green algae, are naturally occurring organisms found throughout the state and are an important part of Wisconsin's freshwater ecosystem. However, excessive nutrient loading (particularly phosphorus) can cause algae populations to grow rapidly under certain environmental conditions and form "blooms" that can impact water quality and pose health risks to people, pets, and livestock. Blue-green algae pose the greatest nuisance and risk to those recreating. Most species of bluegreen algae are buoyant and when populations reach bloom densities, they float to the surface where they form scum layers or floating mats. In Wisconsin, blue-green algae blooms generally occur between mid-June and late September, although in rare instances, blooms have been observed in winter, even under the ice.

Algae blooms can cause many water quality problems including: a) reduced light penetration affecting the ability of macrophytes to thrive; b) discoloration of water; c) taste and odor concerns, and d) reduced DO concentrations due to massive decomposition of the cells when they die-off. Another important consequence of blue-green algae is their ability to produce naturally-occurring toxins. Effects of algal toxicity and related thresholds are discussed further in the Public Health Uses chapter.

Recreational Use impairments for lakes are primarily based on exceedances of the TP criteria (both TP and chl *a* should be calculated in the same way as described in chapter 4.4, "Lakes Fish & Aquatic Life"). It is important to note that the chl *a* thresholds and AMCI plant metrics in Table 5 were developed as rough guidance for Recreational Use Impairment. WDNR does not give these values as much weight as the TP values for determining Recreational Impairment. Biologists should weigh chl *a* and AMCI plant metrics using their best professional judgment for listing decisions.

- ▶ If TP criteria are exceeded and there are sufficient chl *a* data to demonstrate an exceedance of the values in Table 5 (corresponding to a "Fair" or "Poor" TSI), then the lake should be listed with the Pollutant "Total Phosphorus" and Impairment "Excess Algal Growth."
- ▶ If TP criteria are exceeded and either: a) insufficient chl *a* data are available; or b) cholorphyll a data meet minimum requirements but indicate levels below the values in Table 5 (corresponding to a "Good" or "Excellent" TSI), then the lake should be placed in Category 5P unless other significant evidence is available that Recreational Uses are impaired.
- ▶ If TP is high and chl *a* values are low, but excessive plant growth (submerged rooted vegetation and/or filamentous algae) is impairing the Recreational Use of the lake, biologists may consult the Aquatic Macrophyte Community Index metrics to support impairment listing (guidance not yet available; see below). In this case, the lake would be listed as "Recreational Restrictions Excessive Macrophytes" with the Pollutant "Total Phosphorus."
- If TP is high, but it is suspected to be due to natural conditions, see chapter 7.1 under "Site-Specific Factors".
- If chl *a* data or AMCI plant metrics exceed the rough guidance thresholds and a recreational use impairment is evident, but TP data: a) are insufficient; or b) meet minimum data requirements but do not exceed the thresholds, best professional judgment should be used to determine whether the lake should be listed. As an alternative, the lake could be listed as a Watch Water for further monitoring and assessment.
- In the absence of meeting minimum data requirements (for instance, nearshore data are available but not deep hole data), the professional judgment of the Regional Biologist should be used to consider listing any waterbody that experiences frequent and severe algal blooms where there is strong reason to believe that designated uses are impaired and nutrient levels may be contributing to such blooms.

Table 5. Recreational Impairment Thresholds for Lake Natural Communities

Note: Data are evaluated from within the most recent 10 year period for all parameters. For TP and chl *a*, data from within the most recent 5 year period are used for impairment assessments.

	Min. Data	Exceedance	Impairment Threshold - LAKES - Recreational Use						
L. P. M.	Requirement	Frequency (see text for details)		Shallow		Deep			
Indicators	(see text for details)		Headwater Drainage Lake	Lowland Drainage Lake	Seepage Lake	Headwater Drainage Lake	Lowland Drainage Lake	Seepage Lake	Two-story fishery lake
Conventional ph	ysico-chemical indicat	tors							
ТР	3 values from each of 2 years from June 1 - Sept. 15	Annual Average exceeds for at least 2 years (or majority of yrs of data)	≥40 ug/l	≥40 ug/l	≥40 ug/L	≥30 ug/L	≥30 ug/L	≥20 ug/L	≥15 ug/L
Biological indica	tors (to be used as s	upporting data only; t	hese thresholds	s are rough guio	lance)				
chl a*	3 values from each of 2 yrs (or 2values/3yrs) from July 15 - Sept. 15	Annual Average exceeds for at least 2 years (or majority of yrs of data)	≥25 ug/L	≥25 ug/L	≥17 ug/L	≥14 ug/L	≥12 ug/L	≥10 ug/L	≥6 ug/L
AMCI plant metrics* (Abundance of low light tolerant spp.)	Baseline aquatic plant survey within last 5 yrs	NA (one survey)			(reserved u	ntil sufficient data a	available)		

Uses, the chl a threshold for impairment is not based on a clear scientific breakpoint in water quality and is meant to be used only as loose guidance to provide supporting information in listing decisions. WDNR does not recommend listing for Recreational Use Impairment based solely on the chl a thresholds; rather, other corroborating evidence for listing would be needed. Similarly, biologists may consult research staff in Science Services to assess macrophyte data in the AMCI, but this should be used as supporting data rather than as a sole source for impairment listing.

Excessive Macrophytes

WDNR is considering adding a Recreational Impairment category for Excessive Macrophytes. Although healthy aquatic plant communities are necessary for a good quality lake system, impacted lakes that receive high nutrient inputs may respond not with excessive algal blooms (and the associated high chl *a* values), but instead may exhibit very high macrophyte growth. This can impact recreational boating and swimming if it becomes a severe problem, and a waterbody may be considered impaired for recreation accordingly.

Currently, WDNR does not have guidance on how to determine whether a Recreational Use is not being met due to excessive macrophytes. However, the Aquatic Macrophyte Community Index (AMCI) and the data that go into it are a good starting place for making an evaluation. WDNR hopes to develop metrics that correlate density of macrophytes or frequency of occurrence with impacts such as inhibited recreational uses or increased issuance of Aquatic Plant Management permits. When a category for Excessive Macrophytes is developed, listing will be based on biologists' best professional judgment on a case-by-case basis.

Invasive species such as Eurasian Water Milfoil and Curly Leaf Pondweed often contribute to high macrophyte levels. However, Wisconsin does not list waters as impaired due to invasive species, as no guidance is yet available from EPA on how to do so.

Inland and Great Lakes Beaches

Many, but not all, beaches are evaluated for Recreational Uses in Wisconsin. Federal criteria for *Escherichia coli* (*E. coli*) are applicable to the open waters of the Great Lakes – including beaches. In Wisconsin, inland beaches follow the same monitoring and assessment protocol as the Great Lakes beaches. *E. coli* is a species of bacteria that serves as an indicator of the presence of fecal matter in the water – suggesting that there may be harmful bacteria, viruses, or protozoans present that elevate risk to humans.

Monitoring for *E. coli* at many public beaches along the shorelines of Lake Michigan and Lake Superior is conducted in accordance with the Beach Environmental Assessment and Coastal Health Act of 2000

(the BEACH Act). Since 2003, approximately 122 monitoring sites¹⁹ at public beaches in Wisconsin are sampled for *E. coli* for implementation of the BEACH Act. Beaches included in the monitoring program get sampled between 1 and 4 times per week depending on the priority given to the beach. For more information on Wisconsin's Beach Program please visit: <u>www.wibeaches.us</u>.

Although *E. coli* may not be representative of the pathogen strains that result in illness to humans, its presence suggests that fecal matter may be in the water and that other pathogens may be present. It is often these and other pathogens that result in water borne illnesses in humans. Data from this effort are used to make decisions on which beaches are impaired – namely due to chronic closure problems due to the presence of high counts of *E. coli* bacteria.

EPA has established two different water quality criteria for *E. coli* – a single sample maximum of 235 colony forming units (cfu) /100 mL and a long-term geometric mean²⁰ maximum of 126 cfu/100 mL. Beach closure decisions are routinely made considering the single sample value. However, when evaluating *E. coli* data to determine if a beach should be included on the Impaired Waters List, WDNR relies on long-term data sets.

To assess the attainment of recreational uses at Wisconsin beaches, WDNR aggregates by month all data collected from beaches during the "beach season" (defined as May 1 through September 30) over the past five years²¹. The data is aggregated by month because it more closely approximates the "five samples per month" requirement of the geometric mean criterion and recognizes that typical sampling frequencies are often less than five times per month. For example, Monthly aggregate data sets with fewer than five data points are considered insufficient for assessing recreational use support. If one or more of the monthly-aggregated geometric means exceeds the criterion of 126 cfu/100ml, the beach will be identified as not supporting its recreation use and placed on the Impaired Waters List. When a beach is included on the proposed Impaired Waters List, the <u>pollutant</u> is listed as *E. coli* and the <u>impairment</u> is identified as "Recreational Restrictions – Pathogens." WDNR will propose to remove a beach from the Impaired Waters List when the monthly-aggregated geometric means of data collected during the previous five years meet the criterion of 126 cfu/100 ml. WDNR believes this is an appropriate way of recognizing chronic risk to human health associated with recreational activities in water with long-term elevated levels of *E. coli*.

¹⁹ A few beaches in Wisconsin have beaches large enough that multiple sites are sampled at the beach. In these cases, samples from multiple sites on one beach are often combined to make up a composite sample.

²⁰ A geometric mean is a <u>measure</u> of <u>central tendency</u> calculated by multiplying a <u>series</u> of numbers and taking the n^{th} root of the <u>product</u>, where *n* is the number of <u>items</u> in the series

²¹ For example, the five year assessment period for the 2012 Impaired Waters List is January 1, 2006 through December 31, 2010.

4.6 Lake Impairment Assessment: Public Health and Welfare Uses²²*

Harmful Algal Blooms- Blue Green Algal Toxin Health Risks

Algal toxins can be harmful to humans and animals alike through skin contact, inhalation, or ingestion. Some of the species commonly found in Wisconsin that produce algal toxins include *Anabaena* sp., *Aphanizomenon* sp., *Microcystis* sp., and *Planktothrix* sp. Where monitoring of blue-green algae occurs, notices are provided to local public health agencies when concentrations are presumed to exceed 100,000 cells/L. That value represents the threshold for high risk to humans as established by the World Health Organization (WHO) (Table 6). Illnesses related to blue-green algae can occur in both humans and pets. People may be exposed to these toxins through contact with the skin (e.g., when swimming), through inhalation (e.g., when motor boating or water skiing), or by swallowing contaminated water. In 2009, the Wisconsin Department of Health Services documented over 41 cases statewide of human health exposure related to blue-green algae blooms including respiratory ailments (coughing), watery eyes and rashes. Animals can be even more susceptible to risks by drinking water directly from water bodies with dense algal blooms or by licking their fur after swimming.

Biologists should use best professional judgment in determining whether the "High Risk" thresholds in Table 6 are exceeded on a regular basis. When a waterbody is proposed to be included on the Impaired Waters List due to frequent and elevated blue green algal cell counts or toxins, and data are available suggesting high TP concentrations, the Impairment should be identified as "Public Health-Harmful Algal Blooms." In the absence of meeting minimum data requirements for TP (for instance, nearshore data is available but not deep hole data), the professional judgment of the Regional Biologist should be used to consider listing any waterbody that experiences frequent and severe blue-green algal blooms or elevated levels of toxins where there is strong reason to believe that nutrient levels may be contributing to such blooms.

If data are frequently falling into the "Moderate Risk" category, the lake should be considered for Recreational Use listing based on the guidelines in that chapter.

Indicator (units)	Low Risk	Moderate Risk	High Risk
chl a (µg/L)	<10	10 - <50	>50
Cyanobacteria cell counts (cells/L)	< 20,000	20,000 - <100,000	≥ 100,000
Microcystin	<10	10 - ≤20	>20

Table 6. World Health Organ	ization Thresholds of Risk	Associated with Potential Ex	posure to Cyanotoxins.

²² Although in the future, WDNR hopes to categorize impairments due specifically to Blue Green Algal Toxins under a Public Health & Welfare Use impairment category, for 2012 they will be categorized under Recreational Use Impairments.

5.0 Stream & River Classification and Assessment Methods

5.1 Stream and River Classifications

The condition of streams and rivers in Wisconsin are currently assessed for the following use designations: Fish and Aquatic Life, Recreational Use, Fish Consumption (Public Health and Welfare) and General Uses. The following provides details on the classifications and water quality goals against which waters are assessed.

Fish and Aquatic Life: Stream and River Classifications

Wisconsin's Fish and Aquatic Life (FAL) use designations for streams and rivers are categorized into the following subcategories as defined in s. NR 102.04(3), Wis. Adm. Code:

- Coldwater (Cold) Community: Streams capable of supporting a cold water sport fishery, or serving as a spawning area for salmonids and other cold water fish species. Representative aquatic life communities associated with these waters generally require cold temperatures and concentrations of DO that remain above 6 mg/L. Since these waters are capable of supporting natural reproduction, a minimum DO concentration of 7 mg/L is required during times of active spawning and support of early life stages of newly-hatched fish.
- Warmwater Sport Fish (WWSF) Community: Streams capable of supporting a warm waterdependent sport fishery. Representative aquatic life communities associated with these waters generally require cool or warm temperatures and concentrations of DO that do not drop below 5 mg/L.
- Warmwater Forage Fish (WWFF) Community: Streams capable of supporting a warm waterdependent forage fishery. Representative aquatic life communities associated with these waters generally require cool or warm temperatures and concentrations of DO that do not drop below 5 mg/L.
- Limited Forage Fish (LFF) Community: Streams capable of supporting small populations of forage fish or tolerant macroinvertebrates that are tolerant of organic pollution. Typically limited due to naturally poor water quality or habitat deficiencies. Representative aquatic life communities associated with these waters generally require warm temperatures and concentrations of DO that remain above 3 mg/L.
- Limited Aquatic Life (LAL) Community: Streams capable of supporting macroinvertebrates and/or occasionally fish that can tolerate organic pollution. Typically this category includes small streams with very low-flow and very limited habitat. Certain marshy ditches, concrete line-drainage channels, and other intermittent streams. Representative aquatic life communities associated with these waters are tolerant of many extreme conditions, and require concentrations of DO that remain above 1 mg/L.

Fish and aquatic life use designations for individual waters are defined in chs. NR 102 or 104, Wis. Adm. Code. In some cases, coldwater fish communities referenced in the 1980 Trout Book (Wisconsin Trout Streams – Publication 6-3600(80)) may be *codified by reference*. Waters that are not referenced in code are considered *default* FAL waters and are assumed to support either a coldwater community or warmwater community depending on water temperature and habitat.

Assignment of designated uses for the protection of fish and aquatic life has been an iterative process dating back to the late 1960's. Many of the designated uses that are included in the Wis. Adm. Code date back to the 1980's. While efforts are underway to revise FAL use subcategories, the current codified

FAL use designation subcategories in ch. NR 102, Wis. Adm. Code will be used for evaluating water quality standards attainment status.

Natural Communities

Currently, streams and rivers are being evaluated for placement in a revised aquatic life use classification system, in which the new fish and aquatic life use subclasses are referred to as *Natural Communities*. Natural Communities are defined for streams and rivers using model-predicted flow and temperature ranges associated with specific fish and/or macroinvertebrate communities. This model, developed by the USGS and WDNR Science Services Research Staff, generated proposed stream natural communities based on a variety of base data layers at various scales, and was initially applied to the 1:100,000 scale NHD (National Hydrography Dataset) hydrography layer. The data was then extrapolated or "conflated" to the 1:24,000 scale WDNR hydrography layer (version 5). Due to differences in scale, some streams in the WDNR hydro layer were not assigned a predicted classification from the model. The Natural Communities data layer for Wisconsin rivers and streams identifies which fish index of biological integrity (F-IBI) to apply when assessing our waters. The following Natural Communities have been defined:

Ephemeral – Channels with water flow only after precipitation events (i.e., no base flow). No fish and few or no aquatic invertebrates are preset. Streams with 90% exceedance flows of less than 0.03 cfs^{23} are considered macroinvertebrate streams if their watershed area is less than 1.5 sq. miles or if it is between 1.5 and 3.9 sq. miles with a gradient of more than 53 ft/mile.

Macroinvertebrate – Very small, almost always intermittent streams (i.e., ceases flow for part of the year, although water may remain in the channel). Few or no fish present. A variety of aquatic macroinvertebrates are common, at least seasonally.

Cold Mainstem – Moderate to large but still wadeable perennial streams with cold summer temperatures. Coldwater fishes are abundant to common, transitional fishes are common to absent, and warmwater fishes are absent. The size of the stream is sufficient to support trout in a wide range of sizes.

Cool (Cold-Transition) Headwater – Small, usually perennial streams with cold to cool summer temperatures. Coldwater fishes are common to uncommon (fewer than 10 per 100 meters), transitional fishes are abundant to common and warmwater fishes are uncommon to absent. Headwater species are abundant to common, mainstem species are common to absent and river species are absent.

Cool (Cold-Transition) Mainstem - Moderate to large but still wadeable perennial streams with cold to cool summer temperatures. Coldwater fishes are common to uncommon, transitional fishes are abundant to common, and warmwater fishes are uncommon to absent. Headwater species are common to absent, mainstem species are abundant to common and river species are common to absent.

Cool (Warm-Transition) Headwater – Small, sometimes intermittent streams with cool to warm summer temperatures. Coldwater fishes are uncommon to absent, transitional fishes are abundant to common, and warmwater fishes are common to uncommon. Headwater species are abundant to common, mainstem species are common to absent and river species are absent.

²³ Note: Streams with flows less than 0.03 cfs but in larger watershed areas and lower gradient are put into the appropriate "headwaters" category.

Cool (Warm-Transition) Mainstem – Moderate to large but still wadeable perennial streams with cool to warm summer temperatures. Coldwater fishes are uncommon to absent, transitional fishes are abundant to common, and warmwater fishes are common to uncommon. Headwater species are common to absent, mainstem species are abundant to common, and river species are common to absent.

Warm Headwater – Small, usually intermittent streams with warm summer temperatures. Coldwater fishes are absent, transitional fishes are common to uncommon, and warmwater fishes are abundant to common. Headwater species are abundant to common, mainstem species are common to absent, and river species are absent.

Warm Mainstem – Moderate to large but still wadeable perennial streams with relatively warm summer temperatures. Coldwater fishes are absent, transitional fishes are common to uncommon, and warmwater fishes are abundant to common. Headwater species are common to absent, mainstem species are abundant to common, and river species are common to absent.

Warm Rivers – Non-wadeable large to very large rivers with warm summer temperatures. Coldwater fishes are absent, transitional fishes are common to uncommon, and warmwater fishes are abundant to common. Headwater species are absent, mainstem species are common to uncommon, and river species are abundant to common.

5.2 Stream and River General Condition Assessment

Fish and Aquatic Life General Assessments

WDNR uses biological indices, including fish indices of biological integrity (F-IBI) and the macroinvertebrate index of biological integrity (M-IBI), to determine current water quality condition.

Fish Indices of Biological Integrity

Multiple, peer-reviewed F-IBIs have been developed by WDNR research staff and are used to assess the biological health and quality of fish assemblages of streams and rivers (Lyons, Wang, and Simonson 1996, Lyons 1992, Lyons 2006). F-IBIs have been customized to account for differences in stream morphology, water temperature and fish species associated with rivers and streams (Table 7). A fish IBI has not been developed and validated for any of the small streams lacking sufficient perennial flow to support a fish community (i.e., the FAL Use Designation known as Limited Aquatic Life). A cool water fish IBI for streams with mean summer temperatures between 17.5°C and 21°C is currently in press and will be available for use as an assessment tool in the future (Lyons, personal communication). The indices use a large statewide database of standardized fish assemblage surveys from numerous reaches with different levels of human impact. An objective procedure was used to select and score the metrics that compose the various F-IBIs, choosing metrics that represent a variety of the structural, compositional, and functional attributes of fish assemblages.

	Cold F-IBI (Lyons, 1996)	Warm F-IBI (Lyons, 1992)	Small F-IBI (Lyons, 2003)	Large River F-IBI (Lyons, 2001)
Temperature	Maximum daily mean <22° C	Maximum daily mean >22° C	Maximum daily mean >22° C	NA
Stream Class Details	Any size watershed or stream gradient	Stream width should be between 2.5 m and 50 m, and depth should be ~1.25m	Designed for watersheds that are 4 km ² to 41 km ²	A "River" is defined as at least 3 km of contiguous, non- wadeable channel
Individual Metrics	 a) # intolerant species b) % tolerant species c) % top carnivore species d) % native or exotic stenothermal coldwater or coolwater species, e) % salmonid individuals that are brook trout 	 a) # native species b) # darter species c) # sucker species d) # sunfish species e) # intolerant species. f) % tolerant species o Percent omnivores g) % insectivores h) % top carnivores i) % simple Hthophils j) # of individuals per 300m² k) % diseased fish 	a) # native species b) # intolerant species c) # minnow species d) # headwater species e) Total catch per 100m, excluding tolerant species f) Catch per 100 m of brook stickleback g) % diseased fish	 a) Weight Biomass PUE b) # native species c) # sucker species d) # intolerant species e) # riverine species f) % diseased fish g) % riverine h) % lithophils i) % insectivore j) % round suckers

Table 7. Fish Indices of Biological Integrity for Wisconsin Streams and Rivers

Macroinvertebrate Indices of Biological Integrity

Data derived from aquatic macroinvertebrate samples, combined with stream habitat and fish assemblages, provide valuable information on the physical, chemical and biological condition of streams. Most aquatic macroinvertebrates live for one or more years in streams, reflecting various environmental stressors over time. Since the majority of aquatic invertebrates are limited in mobility, they are good indicators of localized conditions, upstream land use impacts and water quality degradation.

WDNR uses the M-IBI developed by Weigel (2003) to assess wadeable streams. The M-IBI is composed of various metrics used to interpret macroinvertebrate sample data. The M-IBI was developed and validated for cold and warm water wadeable streams and cannot be used as an assessment tool for non-wadeable rivers or small streams without perennial flow (Weigel, personal communication). The following metrics are included in the M-IBI:

- Species richness
- o Ephemeroptera-Plecoptera-Trichoptera
- Mean Pollution Tolerance Value
- Proportion of Depositional Taxa
- Proportion of Diptera (Dipt)
- Proportion of Chironomidae (Chir)
- Proportion of Shredders (Shr)
- Proportion of Scrapers (Scr)
- Proportion of Filterers (Fil)
- Proportion of Gatherers (Gath)
- Proportion of Isopoda (Isop)
- Proportion of Amphipoda

Each year, biologists assess flowing waters in approximately 24 watersheds statewide from data gathered through Tier I and Tier II monitoring projects. Fish and macroinvertebrate data are used to calculate the appropriate F-IBI and M-IBI score for the proper indices. General condition assessments of whether or not FAL use is supported require at least one F-IBI score or one M-IBI score (preferably one of each). Biological data collected within the last 10 years are evaluated, but at least one sampling event within the past 5 years is required for an assessment of condition. Biologists determine which F-IBI to apply based on the Natural Community classification, species assemblage and/or FAL designated use. Table 8 shows the general relationship between the proposed natural communities, existing FAL use designations, type of fish community generally found within each classification, and appropriate F-IBI to be used when evaluating stream condition.

Natural Communities and general relationship to current FAL Use Designations		Primary Fish Community	Fish IBI
Ephemeral	LAL	NA	NA
Macroinvertebrate	LAL, LFF	NA	NA
Cold Headwater	Cold I, II	Coldwater Fish	Cold IBI
Cold Mainstem	Cold I, II	Coldwater Fish	Cold IBI
Cool Mainstem (Cold Transition) Cool Mainstem (Warm Transition)	Cold II, III , I Cold III WWSF wadeable	Coolwater Fish Coolwater Fish	Warm IBI Warm IBI
Bn Warm Mainstem	WWSF wadeable	Warmwater Fish	Warm IBI
Cool Headwater (Cold Transition)	Cold III, II , I	Headwater Fish	Small Stream IBI *
Cool Headwater (Warm Transition)	LFF , WWFF, Cold III	Headwater Fish	Small Stream IBI *
Warm Headwater	WWFF, LFF	Headwater Fish	Small Stream IBI *
Warm River	WWSF	River Fish	Large Stream IBI

Table 8. Natural Communities, Codified FAL Use Designations and Applicable Fish IBI.

*Small Stream IBI = Intermittent IBI

Use Cold/Warm /small stream IBI until Cool (Cold transition) and Cool (Warm Transition) IBIs are available

The biological indices respond to watershed scale impacts of agricultural and urban land uses, riparian habitat degradation, sedimentation problems, and scouring. In general, as the rate of stream degradation increases, a corresponding decrease in the number of environmentally-sensitive species and an increase in environmentally tolerant species are observed. These changes in aquatic community composition are scored relative to a reference or "least-impacted" condition, and are placed in a condition category based on the resulting score. The condition categories (excellent, good, fair, poor) and corresponding F-IBI and M-IBI scores are shown in Table 9. To determine the biological condition of streams and rivers for assessments, the F-IBI or M-IBI values should be compared against these thresholds created for each FAL use subcategory.

For general condition assessments, all waters scoring in the excellent condition category are considered fully supporting, and all waters scoring good, fair, or poor are considered supporting FAL uses unless corroborating physical or chemical data exceed impairment thresholds. If biological index scores for a particular assessment unit (AU) result in conflicting condition categories, the water may be identified as a "watch water" and placed on a list for additional monitoring to attempt to resolve the conflicting datasets. All general assessment decisions are documented in WATERS.

	Condition	Management		Macroinvertebrate
Designated Use	Category ²⁴	Recommendation	Fish IBI	IBI
Cold Stream:		Consider O/ERW	Cold IBI 90-	
Stream supports	Excellent	Listing	100	7.5-10
coldwater fish and			Cold IBI 60-	
macroinvertebrate	Good	Maintain Condition	80	5.0-7.4
species			Cold IBI 30-	
	Fair	Restoration	50	2.6-4.9
		Consider 303(d)		
	Poor	Listing	Cold IBI 0-20	0-2.5
Small Cold		Consider O/ERW	Cold IBI 50-	
Stream: Trout	Excellent	Listing	60	7.5-10
absent, but other	~ .		Cold IBI 30-	
coldwater	Good	Maintain Condition	40	5.0-7.4
fishes/inverts self-			Cold IBI 10-	
sustaining	Fair	Restoration	20	2.6-4.9
		Consider 303(d)		
	Poor	Listing	Cold IBI 0-10	0-2.5
Warm Water		Consider O/ERW	Large River	
Sport Fish	Excellent	Listing	IBI 80-100	-
(WWSF) River			Large River	
	Good	Maintain Condition	IBI 60-79	-
			Large River	
	Fair	Restoration	IBI 40-69	-
		Consider 303(d)	Large River	
	Poor	Listing	IBI 0-39	-
Warm Water		Consider O/ERW	Warm IBI 65-	
Sport Fish	Excellent	Listing	100	7.5-10
(WWSF) Wadeable			Warm IBI 50-	
Stream	Good	Maintain Condition	64	5.0-7.4
			Warm IBI 30-	
	Fair	Restoration	49	2.6-4.9
		Consider 303(d)	Warm IBI 0-	
	Poor	Listing	29	0-2.5
Warm Water		Consider O/ERW	Small Stream	
Forage Fish	Excellent	Listing	IBI 100	7.5-10
(WWFF) Stream			Small Stream	
	Good	Maintain Condition	IBI 70-90	5.0-7.4
			Small Stream	
	Fair	Restoration	40-60	2.6-4.9
		Consider 303(d)	Small Stream	
	Poor	Listing	0-30	0-2.5
Limited Forage			Small Stream	
Fish (LFF) Stream	Attaining	Maintain Condition	IBI 40-100	2.6-10
		Consider 303(d)	Small Stream	
	Non-Attaining	Listing	IBI 0-30	0-2.5
Limited Aquatic	Attaining	Maintain Condition	-	2.6-10
Life (LAL) Stream		Consider 303(d)		
	Non-Attaining	Listing	-	0-2.5

Table 9. Fish and Aquatic Life: Streams and Rivers General Assessment Thresholds

²⁴ General assessments that are categorized as 'poor' will be evaluated to see if corroborating data exists to identify impairment. If data is insufficient to determine the pollutant/impairment, monitoring will be conducted as resources allow.

5.3 Stream and River Impairment Assessment: Fish & Aquatic Life Uses

To make an impairment assessment, all available data over the last 10-year period are reviewed. If a stream or river general assessment category is 'poor', an impairment assessment should be conducted. Data up to the past decade, preferably from within the past five years, can be used when conditions are confirmed to be stable throughout the assessment time period. Biological data alone can be used to list a water as impaired, as long as minimum data requirements are met. If corroborating water quality or physical habitat data exists, one 'poor' F-IBI or one 'poor' M-IBI may be sufficient for listing a water on the Impaired Waters List. Example: If the biological condition category is 'poor,' and minimum total phosphorous sampling requirements are met and the TP concentrations exceed the impairment threshold, the Impaired Waters Listing would be as follows: pollutant – "total phosphorus", impairment – "degraded biological community."

Additional targeted monitoring may be needed to identify a particular pollutant/impairment combination and could include supplemental physical and chemical data, as well as biological data, at additional monitoring sites to obtain adequate coverage of extent of impairment (Table 10). WDNR Biologists have extensive knowledge of the factors that influence community response in rivers and streams. Those insights should be considered when selecting what indicators to collect or when scheduling supplemental monitoring. Potential stressors and qualitative habitat surveys can help choose the appropriate parameters to be monitored and evaluated to confirm the impairment and to define the associated pollutant. Field collection, preservation and storage should follow procedures outlined in the WDNR Field Procedures Manual and laboratory analysis should follow standard methods (Wisconsin State Lab of Hygiene, 1993).

Indicator	Indicator
Alkalinity	Nitrogen – (Nitrate & Nitrite)
Ammonia*	Organic Compounds*
Biochemical Oxygen Demand	Periphyton
Chlorides*	pH*
Dissolved Oxygen*	Phosphorus – Ortho
Exotic Species – Abundance	Phosphorus – Total [*]
Exotic Species – Presence/Absence	Sediment Chemistry
Flow	Solids – Total Suspended
Habitat – Qualitative	Solids – Settleable
Habitat – Quantitative	Specific Conductivity
Hardness	Temperature [%]
Heavy Metals*	Toxicity – Ambient*
Land Use	Toxicity – Sediment
Nitrogen – Total Kjeldahl	Transparency

 Table 10. Additional Parameters for River & Stream Impairment Assessments

* = Numeric Water Quality Criteria are available in chs. NR 102 or 105, Wis. Adm. Code

Specific Protocols and Indicator Thresholds for Impairment Decisions

Total Phosphorus

For streams and rivers, TP can be linked as a pollutant causing biological impairment using WDNR's sampling protocol, which has been developed consistent with considerations of seasonality, timing and frequency of sample collection used by USGS for development of the TP criteria (s. NR 102.06(3), Wis. Adm. Code). Water samples should be collected once per month, for six months from May through October, ideally within the same year. Each sample should be collected approximately 30 days apart, with no samples collected within 15 days of one another. If more than one sample is available per month, the same lossest to mid-month should be used in the analysis. If one or more monthly samples are

missed within a year, additional samples may be collected in subsequent years corresponding with the missed months (for example, if July and August samples were not collected in year 1, they could be collected in year 2 to make a complete data set). If multiple years of data are available, the 3 most recent years of data should be used.

The impairment listing protocol uses a 95% confidence interval (CI) about the median for listing streams and rivers. Confidence intervals use measures of sample size and variation to suggest with a specified level of certainty that the true population statistic falls within a specified range of values. For example, with one year of data with 6 monthly samples, the 95% CI extends from the minimum to the maximum value (all samples), and with 12 observations, the 95% CI extends from the 3rd smallest to the 3rd largest observation (Table 11).

Sample		Lower level	Upper level
Size	Sampling	95% CI	95% CI
6	1	Rank 1	Rank 6
12	2	Rank 3	Rank 10
18	3	Rank 5	Rank 14

WDNR requires evidence of a biological impairment in order to list a water as impaired due to an exceedance of TP criteria. If minimum TP data requirements are met and the TP criteria are exceeded, a minimum of one 'poor' F-IBI or one 'poor' M-IBI is also required to corroborate the impairment of the FAL use and place it in Category 5A. If biological data are not available or are available and do not indicate impairment, then these waters will be placed in Category 5P²⁵.

Making an Impairment Decision

After monitoring data is collected and evaluated, impairment decisions should be made based on an exceedance of specified thresholds for indicators listed in Table 12 as long as the applicable data requirements are met and decisions follow the guidance on independent application provided in this methodology document. All Impaired Waters Listing decisions should be thoroughly documented in WATERS. If additional data that was collected to support an impairment assessment is determined to be inconclusive, the water may be placed in Category 5P (if phosphorus criteria are exceeded) or a "Watch Water" category (for all other pollutants) to monitor in the near future.

²⁵ If the water body is currently impaired for a different pollutant/impairment combination, it may be listed under a different category (e.g. if total suspended solids impairment exists, water will be in Category 5A).

Parameters	Minimum Data Requirement	Exceedance Frequency	Cold Waters	Warm Waters	Limited Forage Fish	Limited Aquatic Life
Conventional physical and c	hemical indicators		T		T	- 1
			>73°F	>86°F	>86°F	>86°F
	20 discrete daily values (May through October) *	10% of Mean Daily Temperature values exceeds specified	Lower Fox R	iver: >87°F	sconsin R: > 86	
76	Samples should be collected at a	maximum for applicable use designation			Hwy 10: >86°F Hwy 10: >87°F	
Temperature ²⁶	frequency of no less than 1 sample per hour	(Mean Daily Temperature is the arithmetic mean of all	Green Bay – South: >83°F Green Bay – North: >78°F			
	with a continuous recording thermograph or thermistor.	equally spaced samples colleted within a 24- hour period)	Lake Michigan – South: >76°F Lake Michigan – North: >73°F			
			Lake Superior: >73°F			
			Chequamegor	n Bay: >76°F		
рН	10 discrete * values	10% or more of all values within a continuous sampling period or for instantaneous w/in season	Outside the range of 6-0 to 9.0 or if a change is > 0.5 units outside natural seasonal maximum (mean) and minimum (mean)			seasonal
DO	3 days of continuous measurements (no less than 1 sample per hour) in July or August; minimum of 3 years of data	10% or more of all values	<6.0 mg/L and <7.0 mg/L during spawning season	<5.0 mg/L	<3.0 mg/L	<1.0 mg/L
TP ²⁷	6 monthly samples (May - October)	Lower 95% confidence interval of the sample population median exceeds threshold	≥0.100 mg/l for rivers; ≥0.075 mg/l for streams			
Biological indicators						
Fish IBI	2 Fish IBI Values	Either 1 value per 2 consecutive field seasons or 2 or more values within one field season with corroborating data.	See associated Natural Community/ Designated Use - Fish IBI Chart			
Macroinvertebrate IBI	3 Macroinvertebrate IBI Values	Either 1 value per 2 consecutive field seasons or 2 or more values within one field season with corroborating data.			atural Communi roinvertebrate I	

Table 12A. Impairment Thresholds for Rivers/Streams.

 ²⁶ Temperature values represent maximum temperatures in NR 102.
 ²⁷ One 'poor' F-IBI or one 'poor' M-IBI is also required to corroborate the impairment of the FAL use.

Impairment Thresholds for Rivers/Streams (continued from above).

Minimum Data Requirement	Exceedance	Criteria Table
	Frequency	Reference
	Maximum daily concentration not	≥ values provided in Table A below
Mercury ⁽⁺²⁾ *, ne (total drin, Endrin, Parathion		≥ values provided in Table B below
2 values within	Maximum 4-day concentration not exceeded more than once every 3 years	≥ values provided in Table C below
a 3-year period		≥ values provided in Table B below
	a 3-year period	2 values within a 3-year periodconcentration not exceeded more than once every 3 years2 values within a 3-year periodMaximum 4-day concentration not exceeded more than once every

* Discrete values refer to samples collected on separate calendar days

Substance	Acute Thresholds (ug/L) at Various Hardness (ppm) Levels*				
	50	200			
Cadmium, total recoverable					
- Cold Waters	1.97	4.36	9.65		
- Warm Waters & Limited Forage Fish	4.65	10.31	22.83		
- Limited Aquatic Life	13.03	28.87	63.92		
Chromium ⁺³ , total recoverable					
- All flowing waters	1022	1803	3181		
Copper, total recoverable					
- All flowing waters	9.29	16.82	30.45		
Lead, total recoverable					
- All flowing waters	54.73	106.92	208.9		
Nickel, total recoverable					
- All flowing waters	642.7	1361	2219		
Zinc, total recoverable					
- All flowing waters	65.66	120.4	220.7		
	Acute Thresholds (ug/L) at various pH levels*				
	6.5	7.8	8.8		
Pentachlorophenol					
- All flowing waters	5.25	19.4	53.01		
	Acute Thresholds (mg/L) at various pH levels*				
	7.5	8.0	8.5		
Ammonia					
- Cold Waters	13.28	5.62	2.14		
- Warm Waters & Limited Forage	19.89	8.41	3.2		
Fish - Limited Aquatic Life	30.64	12.95	4.93		

 Table 12B. Acute Aquatic Toxicity Thresholds for Rivers & Streams with Toxicity Related to Hardness and pH*

* See Table 2 in s. NR 105.06, Wis. Adm. Code for calculation of acute thresholds with specific hardness or pH values

Table 12C. Acute, Chronic Toxicuy Inresnotas Rivers & Streams Unrelated to Water Quality Thresholds (ug/L)					
Substance —	Threst	nolds (ug/L)			
	Acute toxicity	Chronic toxicity			
Arsenic ⁺³ , total recoverable					
- Cold Waters	339.8	148			
- Warm Waters, Limited Forage Fish, & Limited Aquatic Life	339.8	152.2			
Chromium ⁺⁶ , total recoverable					
- All flowing waters	16.02	10.98			
Mercury ⁺² , total recoverable					
- All flowing waters	0.83	0.44			
Cyanide, free					
- Cold Waters	22.4	5.22			
- Warm Waters, Limited Forage Fish, & Limited Aquatic Life	45.8	11.47			
Chloride					
- All flowing waters	757,000	395,000			
Chlorine, total residual					
- All flowing waters	19.03	7.28			
Gamma - BHC	0.06	•			
- All flowing waters Dieldrin	0.96	n.a.			
- Cold Waters	0.24	0.055			
- Warm Waters, Limited Forage					
Fish, & Limited Aquatic Life	0.24	0.077			
Endrin					
- Cold Waters, Warm Waters, & Limited Forage Fish.	0.086	0.072			
- Limited Aquatic Life	0.12	0.10			
Toxaphene					
- All flowing waters	0.73	n.a.			
Chlorpyrifos					
- All flowing waters	0.041	n.a.			
Parathion	0.057	0.011			
- All flowing waters	0.057	0.011			

Table 12D. Chronic Toxicity Threshold for River	rs & Streams with To	xicity Related to Har	dness or pH*
Substance	Chronic Thresholds	s (ug/L) at various har	dness (ppm) levels*
	50	100	175
Cadmium, total recoverable (all flowing waters)	1.43	2.46	3.82
c: (+3)			
Chromium ⁽⁺³⁾ , total recoverable			
Cold Waters	48.86	86.21	n.a.
Warm Waters, Limited Forage Fish, & Limited Aquatic Life			
	74.88	132.1	n.a.
Copper, total recoverable (all flowing waters)	6.58	11.91	n.a.
Lead, total recoverable (all flowing waters)	14.33	28.01	n.a.
Nickel, total recoverable (all flowing waters)	71.5	151.5	n.a.
Zinc, total recoverable (all flowing waters)	65.66	120.4	n.a.
	Chronic Thre	sholds (ug/L) at variou	us pH levels *
	6.5	7.8	8.8
Pentachlorophenol			
Cold Waters	4.43	14.81	40.48
Warm Waters, Limited Forage Fish, & Limited Aquatic Life	5.33	17.82	48.7
	Chronic Thre	sholds (mg/L) at vario	ous pH levels*
	7.5	8.0	8.5
Ammonia Cold Waters and Warm Waters (early life stages present) ⁽¹⁾			
- @, 25 °C	2.22	1.24	0.55
- @ 14.5 °C or less	4.36	2.43	1.09
Cold Waters and Warm Waters (early life stages absent) $^{(1)}$			
- @ 25 °C	2.22	1.24	0.55
$-\overset{\frown}{(a)}$ 7 °C or less	7.09	3.95	1.77
Limited Forage Fish (early life stages present) ⁽¹⁾	1.09	0.90	1.,,
- @ 27 °C	5.54	3.09	1.38
Limited Forage Fish (early life stages absent) ⁽¹⁾			
- @ 25 °C	6.69	3.73	1.67
- @ 7 °C or less	21.34	11.9	5.33
Limited Aquatic Life			
- @ 25 °C	14.5	8.09	3.62
- @ 7 °C or less	46.29	25.82	11.56

(1) The terms "early life stage present" and "early life stage absent" are defined in subch. III of ch. NR 106, Wis. Adm. Code.

5.4 Stream and River Impairment Assessment: Recreational Uses

Federal criteria for *E. coli* were developed after consideration of risk to the swimming public. All of the data used to establish the federal criteria were collected from swimming beaches. In general, flowing rivers and streams in Wisconsin do not provide comparable recreational activities for full body immersion. For those water bodies, WDNR utilizes that the long-standing water quality criterion for fecal coliform that is reflected in s. NR 102.04(5), Wis. Adm. Code. That section reads:

(a) *Bacteriological guidelines*. The membrane filter fecal coliform count may not exceed 200 per 100 ml as a geometric mean based on not less than 5 samples per month, nor exceed 400 per 100 ml in more than 10% of all samples during any month.

When a flowing stretch of a river or stream is included on the proposed Impaired Waters List, the <u>pollutant</u> is listed as fecal coliform and the <u>impairment</u> is identified as "Recreational Restrictions – Pathogens." In many instances where fecal coliform counts are high, *E. coli* data or other pathogen data are also collected for streams and rivers and may be used in lieu of or supplementary to fecal coliform data to make best professional judgment decisions to list or not list the waterbody as impaired.

6.0 Public Health and Welfare Uses²⁸ applicable to all waterbody types

6.1 Fish Consumption Use Assessment

Waterbodies may be designated as impaired on the 303(d) list based on the level of fish consumption advice, which, in Wisconsin, is due primarily to mercury, PCBs, dioxin and furan congeners, and Perfluoroctane sulfonate (PFOS). In 1998, 241 waters were added to the 303(d) list in Category 5B²⁹, "Waters Impaired by Atmospheric Deposition of Mercury," because mercury-based fish consumption advisories had been issued for these specific waterbodies based on advisory protocols then used by Wisconsin (1985 and 1986 Mercury Protocols).

In 2001, Wisconsin adopted a statewide general advisory that applies to all (non-Great Lakes) waters of the state based on statewide distribution of mercury in fish and species differences in mercury concentrations. The statewide general advisory eliminated the need for many of the pre-2001 advisories because the equivalent of more stringent advice now applied through the general advisory. In addition to the statewide general advisory, some waters still required more stringent advice or exceptions to the general advisory. Exceptions to the general advice apply to some species of fish from specific waters where higher concentrations of mercury, PCBs or other chemicals require advice more stringent than the general advisory.

Since 2002, the 303(d) list has been updated based on changes made to the list of specific advisory waters. However, most of the pre-2001 specific advisory waters remain on the 303(d) list until resampling of these waterbodies occurs to confirm that the general advisory is adequate. If new data collected from a pre-2001 advisory water indicates that an exception to the general advisory is not necessary, the waterbody would be removed from the 303(d) list.

²⁸ For the 2012 listing cycle, any impairments for Blue Green Algal Toxins will be listed as Recreational Use Impairments (see Lakes Assessment chapter). In the future, WDNR hopes to create an impairment category for Public Health and Welfare Uses for the 2014 listing cycle. This category would house impairments due to Fish Consumption Advisories, Contaminated Sediments, and Blue Green Algal Toxins.

²⁹ See chapter 8 for an explanation of Integrated Report Listing Categories.

For the 2012 impaired waters update, a waterbody will be proposed for removal from the 303(d) list when the most recent advisory update indicates that only the statewide general advisory is necessary for concentrations of bioaccumulating chemicals that are of concern in Wisconsin fish. The waters defined as impaired waters are those with specific contaminant data for game and panfish species that require advice more stringent than the statewide general advice based on examination of data in conjunction with WDNR of Health Services. Appendix B lists the fish tissue contaminant thresholds that are used when developing fish consumption advisories.

Specific waters will be proposed for de-listing where fish samples are collected and tested for the appropriate chemicals and where the general statewide advisory is determined to be adequate and exceptions are not necessary based on an evaluation of the concentrations of mercury, PCBs, dioxin/furans, or other chemicals using Wisconsin's fish advisory protocols. The general fish consumption advisory will still apply to these waters, but they will no longer be included on the 303(d) list.

Wisconsin Departments of Natural Resources and Health Services jointly manage the fish contaminant monitoring and advisory programs. The monitoring strategy for fish contaminants varies by the pollutant and the waterbody (see Wisconsin's Water Division Monitoring Strategy). WDNR fisheries staff conducts the fish sampling supported by a variety of fisheries funds. The Wisconsin State Laboratory of Hygiene supports most chemical analyses through general revenue and an agreement with the WDNR. Some EPA funds are used for supplies, lab and freezer rentals, advisory publications, and special analyses. More information on the number of fish sampled, frequency of sampling and number of sites in Wisconsin is detailed in Wisconsin's monitoring strategy: http://WDNR.wi.gov/org/water/monitoring/strategydetail T1.htm

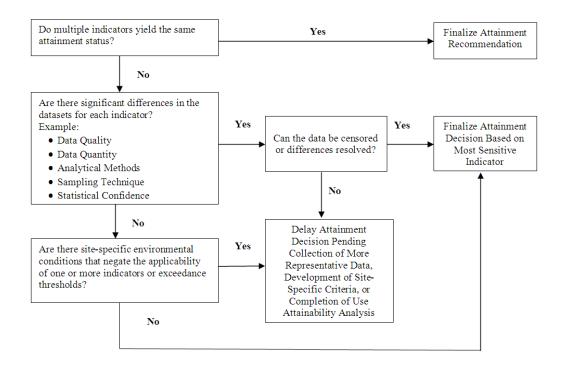
More information about the specific consumption advisory can be found in the publication: Choose Wisely, A Healthy Guide for Eating Fish in Wisconsin (PUB-FH-824 2010 or subsequent years.) It is available on line at <u>http://WDNR.wi.gov/fish/consumption/</u>.

6.2 Contaminated Sediments

Waterbodies that have sediment deposits that are known to have toxic substances that exceed state water quality criteria for ambient water (as specified in ch. NR 105, Wis. Adm. Code) will be included on the Impaired Waters List. These waters may be identified through various monitoring activities, including routine water quality monitoring, sediment analysis, and collection of fish tissue. In addition to a comparison to the water quality criteria found in ch. NR 105, Wis. Adm. Code, WDNR compares the concentrations of commonly found, in place contaminants to the values outlined in a sediment quality guidance document *Consensus-Based Sediment Quality Guidelines, WT PUB- 732, 2003* (See Appendix C). <u>http://www.WDNR.state.wi.us/org/water/wm/sms/documents.html</u>. The guidance was developed through an assimilation of results from multiple published effects-based toxicity testing to freshwater benthos, and serves as part of a tiered approach to evaluating potential ecological and human health risks at sites under evaluation for various reasons.

7.0 Making a Decision to List or Delist Waterbodies

Once data have been assessed to determine whether any parameters indicate impairment of a waterbody, a decision to list a waterbody as impaired or to delist a waterbody should be made. There are several nuances to this decision that are discussed in this chapter. These include resolution of conflicting results from different parameters on a waterbody, identification of which Use Designations are impaired, determination of the appropriate EPA category, and identification of "Causes" and "Sources" of impairment.


When minimum data requirements are met, an attainment decision should be made and documented unless there are circumstances that warrant a non-decision. When a decision is made to not list a waterbody due to few or insufficient data, that water should be included on a list of Watch Waters to be monitored as resources allow in order to allow sufficient data to be available for upcoming Impaired Waters Listing cycles.

7.1 Independent Applicability & Tools to Resolve Data Conflicts

Under Federal guidance, a water shall be listed on the Impaired Waters List if data is reflective of current conditions, data has met minimum data requirements, and the water does not meet water quality standards, including water quality criteria, designated uses, and/or antidegradation. This decision philosophy is referred to as *independent applicability*, consistent with the Clean Water Act that protects biological, chemical, and physical integrity of surface waters. However, EPA recognizes that there are certain situations in which factors beyond a strict interpretation of Independent Applicability should be considered to make the most appropriate listing decision. Accordingly, EPA allows states to formulate specific decision rules pertaining to circumstances under which one type of parameter should be given a greater 'weight' than others. Wisconsin has developed decision rules that use a hierarchy of indicators for certain parameters, which are described within the Lakes and Rivers & Streams chapters of this guidance document.

If one of the water quality standards are not met, but multiple data sets produce conflicting results (some indicating impairment and some not), WDNR staff should review all available data to assist in making an attainment decision. There are several factors biologists may use to resolve these differences to arrive at a listing decision. A decision matrix is described in Figure 14 to describe the process for *not* making attainment decisions using independent application. Cases where this process is used will be rare and should be well documented for that water in the WATERS database.

Figure 14. Independent Application Matrix

Independent Application Decision Matrix for Multiple Assessment Indicators

Data quality differences

If one parameter indicates impairment but another does not, differences between the two data sets in data quality, data quantity, analytical methods, sampling technique or statistical confidence may provide reason to weight one set of data more heavily than another.

Site-specific factors

Natural background levels of a pollutant may be higher than impairment thresholds or uncontrollable factors may cause an exceedance of water quality standards. In these circumstances, WDNR will determine whether criteria exceedance are reasonably expected to be due to natural or uncontrollable causes, as defined in the "Six Factors" of Use Attainability Analysis (40 CFR 131.10(g)). If assessment documentation supports that impairment is due to natural or uncontrollable factors, a Use Attainability Analysis (UAA) should be pursued to modify the Designated Use and/or associated criteria. However, a water with suspected naturally occurring pollutant levels that exceed applicable water quality criteria should be placed on the Impaired Waters List under Category 5C, until the appropriate designated use and/or site-specific water quality criteria have been approved by WDNR and EPA. Category 5C waters are those that are identified as impaired, but the cause of the impairment may be attributed to natural or uncontrollable source(s) (see Table 13).

Weight of Evidence

In certain cases where two data sets conflict with one another, states may apply a "weight of evidence" approach. This approach helps define the extent of the problem based on how it impacts the Designated Use, and allows biologists to consider aspects of the data that might indicate whether one data set should be weighted more greatly than another.

In all cases, Department staff will look for corroborating information, such as the various habitat and biological indices and water chemistry data. If the suite of available data does not suggest an evident

impairment, then the water will not be listed, but will be recommended for additional monitoring as resources allow. WDNR will provide a rationale for those cases where data are available that show that a water quality criterion has been exceeded, but the water has not been recommended for the impaired waters list. In most cases, the indicator has not reached the magnitude, duration or frequency to warrant placing a waterbody on the list.

Hierarchy of Indicators

In some situations, *a hierarchy of the indicators may be appropriate*. For example, biological indicators (e.g., fish or macroinvertebrate IBI) for assessment of the fish & aquatic life use may have precedence over chemical indicators in the impairment decision process, because they are direct measures of health of aquatic life. However, this hierarchical approach should be used with caution, knowing that exceedance of chemical indicators may correspond to a more recent event that was not reflected in the biological community data due to differences in collection periods or delays in community response. In such a case, a decision to rely on a hierarchical approach would be inappropriate.

7.2 Professional Judgment

WDNR staff most familiar with a waterbody should be directly involved in the assessment decision. Staff knowledge and experience along with the factors that influence water quality should be considered when reviewing and interpreting available data. Professional staff should explore a myriad of issues to determine the most relevant and appropriate data to use for attainment decisions, including: data quality, frequency and magnitude of exceedances, weather and flow conditions during sample collection, anthropogenic or natural influences on water quality in the watershed, etc. If any available data is not used because of professional judgment, clear documentation of the reasons for doing so should be included in the final attainment decision. Again, whether a waterbody is listed as impaired, or the decision has been made not to list a waterbody, all decisions should be *well documented* within the database and future management recommendations will be noted on waters that were not listed (for example, a formal use designation change is needed in order to list the water as impaired, and a recommendation would be made in WATERS to reflect this need).

Some questions to be considered include:

- Are the data representative of current water quality conditions?
- Are the data from a wide range of weather and flow conditions, or are they limited for critical hydrological regimes (low and high flows)? If data include extreme and rare weather events, should those data be included in or excluded from the analysis?
- Have land uses or point sources changed substantially since the data were collected?
- If the minimum data requirements are not met, do the limited data provide overwhelming evidence of impairment (e.g., not enough data collected, but evident fish kills and blue green algae blooms have been documented)?
- Are data representative of the entire period of record or are they clustered and non-representative?

7.3 Threatened Waters

Wisconsin recognizes *threatened* waters as defined by the United States Environmental Protection Agency (EPA):

Any waterbody of the United States that currently attains water quality standards, but for which existing and readily available data and information on adverse declining trends indicate that water quality standards will likely be exceeded by the time the next list of impaired or threatened waterbodies is required to be submitted to EPA..

Waters identified as *threatened* waters become a formal part of the Impaired Waters List, with all of the ramifications associated with impaired waters. Currently no guidance exists on how to formally list *threatened* waters as impaired, waters that fall into this category may be evaluated on a case-by-case basis. A biologist would have to provide sufficient data and information (e.g., 5-10 years of data and multiple samples per year to run a regression analysis) that clearly shows a "declining trend" to predict that the water would be impaired by the next listing cycle. If such significant data exists, the water could be considered for listing as threatened on the Impaired Waters List.

7.4 Watch Waters

Watch Waters are waterbodies that have insufficient or conflicting data such that an impairment decision cannot be made, and, therefore, are identified for further monitoring. These are waters that are not being recommended for the Impaired Waters List because of circumstances warranting further observation or evaluation.

7.5 Identifying Sources of Impairment

When a water is deemed impaired, the potential source(s) causing the impairment should be identified. Impairment sources affect which parameters are monitored, what model should be used for analysis and what type of restoration activities would be best on that individual water. In the WATERS database, under the "WDNR Impaired Waters Category" sources may be entered. Some possible sources of impairment include:

Atmospheric Deposition: Waters with fish consumption advisories (FCAs) caused by atmospheric deposition of mercury. To a very limited extent, it may include waters with advisories due to polychlorinated biphenyls (PCBs) where no discrete contaminated sediment deposits exist.

Contaminated Sediment: Waters identified through various monitoring activities, sediment core analysis, and collection of fish tissue that exceed ambient water quality criteria for toxics as specified in ch. NR 105, Wis. Adm. Code. In addition this may include waters where contaminated sediments contain pollutant concentrations that will cause "probable effects" in biological organisms based on guidelines outlined in the "Consensus-Based Sediment Quality Guidelines: Recommendations for Use and Application (2002).

Physical Habitat: Waters where codified uses are not being met due to a physical structure, such as a dam (e.g., a downstream segment is deemed impaired due to the presence of a dam preventing fish movement).

Point Source Dominated: Waters are categorized as point source dominated when the impairment is a result of a current discharge from an existing point source. The Wisconsin Pollutant Discharge Elimination System (WPDES) Permit Program issues and evaluates permits for point sources to assure the attainment of standards at the time of permit issuance. Existing laws and administrative rules including the water quality standards and WPDES permit rules preclude the issuance of a permit if it will not attain water quality standards. Waters in this category are likely between permit cycles, or may have obtained a variance to the water quality standards under current law.

Nonpoint Source (NPS) Dominated: Waters in which the impairment is a result of nonpoint source runoff, including urban stormwater runoff.

Nonpoint Source/Point Source Blend: Waters are placed in this category when impairments exists due to both point source contributions and nonpoint source runoff. Listing a waterbody which is impacted by a point source does not imply that the source is not meeting all the requirements in its discharge permit,

but only indicates that a TMDL is needed to determine relative contributions by each of the sources and what additional requirements may be needed.

7.6 De-listing Impaired Waters

Waters and/or associated pollutants and impairments are de-listed from the state's impaired waters list when the state determines and the EPA approves that the waters are no longer impaired or a particular pollutant impairment combination should be removed. One or more pollutant/impairment combination(s) may be removed from an impaired waters listing, but the entire water will not be removed until all pollutant/impairment combinations have been removed (de-listed). WDNR proposes to de-list a waterbody and/or associated pollutants and impairments from the Impaired Waters List only after monitoring the water or if staff have access to contemporary, representative, and high quality data that warrant de-listing. However, when a change to a water quality standard has been approved and an exceedance of that standard is the reason a waterbody was included on the Impaired Waters List, WDNR may propose to remove the water and/or associated pollutants and impairments from future lists, if the revised standard is achieved.

Water No Longer Impaired

WDNR de-lists waters that have been restored. New monitoring data will be collected through Tier 3 monitoring to evaluate the response of the waterbody to some sort of implementation or restoration strategy. Waters will be assessed through the same process identified as listing a waterbody on the 303(d) Impaired Waters List and must meet water quality standards to be removed from the list.

Water Listing Validation Found No Impairment

WDNR has identified some waters on historical Impaired Waters Lists that may be inappropriately listed. Common reasons include improper documentation of a past assessment, misidentification of a waterbody, and/or incorrect description of the reach and its specific location within a watershed. In those cases, contemporary information will be documented and WDNR may propose to de-list those waters if the most recent assessment indicates all designated uses are achieved.

EPA Approved TMDL

When EPA approves a TMDL, the water is removed from the list of impaired waters that require a TMDL. However, the water is still considered impaired until applicable water quality standards have been met. Waterbodies having completed TMDLs are moved from Category 5A or 5B to Category 4A. Once the water is restored, it may be moved to Category 1 or Category 2.

7.7 Decision Documentation

A primary goal of the WDNR is to document all impaired waters decisions, verify the current impaired waters list, and make this information accessible to the public. It is critical that WDNR staff fully document their impaired waters listing recommendations, supporting materials, and justification of their decisions, including any professional judgment used to support those decisions. As a part of this process, it is also highly important to document assessment decisions for waterbodies that were evaluated but deemed NOT impaired. Documentation of listing decisions and supporting information will be scribed onto a MS Word form called a "Data Documentation Form" to document impairment recommendations (Appendix A).

In the 2014 listing cycle, this data documentation form will be replaced by the "Imparied Waters Wizard" data entry tool in the WATERS database. This tool will be used to guide staff through the various database areas that need to be updated to document assessment decisions. When entered, the electronic submittal will go to the 303(d) coordinator, who will review and approve all documentation forms, and

work to resolve remaining issues with regional staff. Once approved, the documentation will be automatically uploaded to the WATERS database.

The WATERS data system for monitoring and assessment data provides WDNR staff with a systematic location and process for documenting assessment decisions. Data contained in these data systems are available for the public via the WDNR 'Surface Water Data Viewer' located at: http://WDNRmaps.wisconsin.gov/imf/imf.jsp?site=SurfaceWaterViewer. Information such as monitoring stations, Impaired Waters, WPDES permits, etc. can be accessed from this site. WDNR also maintains dynamic webpages created for Impaired Waters where the public can find water quality monitoring data, pollutants/impairments of concern, TMDL status, and possible management solutions for improving the waterbody.

8.0 Integrated Report Listing Categories

One of the elements of the Integrated Report (IR) is defining IR listing categories (Table 13) for each waterbody or assessment unit to communicate work conducted under the use designation, assessment and restoration elements of the water quality standards program. Wisconsin's IR listing categories loosely follow federal categories identified in the 2008 EPA Integrated Reporting Guidance document.

Table 13.	Integrated 1	Report (IR)	Listing	Categories
I upic 10.	micgratea	mepore (m)	Libring	Cuttgoiles

IR Category	How Categories Are Used in Wisconsin
Category 1	All designated uses are met, no use is threatened, and the anti-degradation policy is supported. This category requires that all designated uses have been assessed for a given water.
Category 2	Available information indicates one or more designated uses are met. This category is applied to waters that have been assessed and considered fully meeting one or more designated uses and is usually applied in Wisconsin to waters that have been restored and removed from the impaired waters list.
Category 3	There is insufficient available data and/or information to assess whether a specific designated use is being met or if the anti-degradation policy is supported. This category is also used for situations where the state has not yet had time or resources to analyze available data.
Category 4: Waters	where a Total Maximum Daily Load (TMDL) is approved by EPA or not required.
Category 4A	All TMDLs needed for attainment of water quality standards have been approved or established by EPA. This does not mean that all other designated uses have been evaluated and found to be meeting their designated use.
Category 4B	Required control measures are expected to achieve attainment of water quality standards in a reasonable period of time. Environmental Accountability Projects may be proposed as an alternative to TMDL development.
Category 4C	A waterbody where the impairment is not caused by a pollutant. Pollution is defined by EPA as the human-made or human-induced alteration of the chemical, physical, biological, and radiological integrity of water (Section 502(19)).
Category 5: Waters	where a TMDL is required.
Category 5A	Available information indicates that at least one designated use is not met or is threatened and/or the anti-degradation policy is not supported, and one or more TMDLs are still needed.
Category 5B	Available information indicates that atmospheric deposition of mercury has caused the impairment of the water. The water is listed for a specific advisory and no in-water source is known other than atmospheric deposition.
Category 5C	Available information indicates that non-attainment of water quality standards may be caused by naturally occurring or irreversible human-induced conditions.
Category 5P	Available information indicates that the applicable total phosphorus criteria are exceeded; however, biological impairment has not been demonstrated (either because bioassessment shows no impairment or because bioassessment data are not available).

Placing Assessment Units in Categories

The State of Wisconsin places waters in Category 3 unless additional data or information is available to move the water from a Category 3 to a different group. Waters that meet one or more designated uses -- and have no uses impaired will be included in Category 2. For example, if an assessment for fish and aquatic life results in the water being listed, restored, and removed from the impaired waters list, it may then be placed in Category 2, indicating that the water has been assessed and considered fully meeting one or more designated uses (with "unknowns" or no information available for the other use designations-unknowns could refer to unknown designated uses or pollutants/impairments.) This category cannot be used for situations in which one or more use designations have been restored but other use designations remain impaired. Waters will be placed in Category 2 after the state's new assessment methodology (WisCALM) has been applied through the watershed planning and targeted water assessment process initiated in 2009 or when the water has been fully assessed through an impaired waters listing and de-listing process.

WDNR assigns a listing category to both the overall water and individual pollutant/water combinations in our WATERS database. If one pollutant listing has been removed from a water (e.g., because the applicable criteria are now met for that pollutant) but additional pollutant listing(s) remain, the overall waterbody will remain in an impaired water category (i.e., Category 4 or 5) until all pollutant listings have been removed. Categories are also assigned to pollutant/water combinations, in part, to allow WDNR to track the TMDL status of each pollutant listing. For example, for a water with multiple pollutant listings, Category 4 a is assigned to pollutant listings when a TMDL has been developed, while other pollutant listings that do not have a completed TMDL are assigned to Category 5.

If a portion of a previously listed water is later determined to be no longer impaired, while other portions remain impaired, the originally listed water may be further subdivided to account for these differences in attainment status.

Moving Assessment Units between Categories

Waters are moved from one category to another during updates to the assessment database by water quality biologists and program coordinators. Once an assessment has been conducted the water will be moved from Category 3, which is the state's default category, to the updated category. This process usually occurs once a year during the update of the state's water assessments during basin plan updates.

Assessment Units with multiple pollutant/impairment listings

Wisconsin uses one category per water, as opposed to tracking a category for each pollutant/impairment listing combination. Because of this, the water will be placed in the more protective or restrictive category available. If a waterbody is listed for two use designation pollutant/impairment combinations (Fish and Aquatic Life, and Recreation) and one of the two remain impaired and the other is restored, the water will remain in an impaired water "category" such as 5A, 5B or 5C, or if applicable, 4B or 4C.

8.1 Priority Ranking for TMDL Development

Waters on the Impaired Waters List will be ranked by priority for Total Maximum Daily Load (TMDL) development. A TMDL is an analysis that determines how much of a pollutant a waterbody can assimilate before it exceeds water quality standards. Federal law requires that TMDLs be developed for impaired waters.

Waters are ranked "high," "medium" or "low." Rankings are evaluated during each listing cycle to determine if TMDL development can be completed based on staff and fiscal resources. If a TMDL is in development, we will rank the waterbody as a "high" priority. A ranking of "medium" indicates that information is currently being gathered that may be used for future TMDL development. All Category

5B waters (waters impaired by atmospheric deposition of mercury) will be assigned a "medium" priority. A ranking of "low" indicates that a TMDL will be completed in the future.

The following factors are considered when selecting waters for TMDL development:

- Availability of information: Large amounts of data are needed to develop a TMDL. Some waters already have some water quality data that can be used while others have little to no data to determine pollutant sources or loading. Waters with readily available data will more likely be a candidate for TMDL development within two to five years and assigned a "medium" or "high" priority ranking.
- **Likelihood to respond:** WDNR may consider the likelihood of the water to respond to management actions when assigning a rank.
- Severity of the impairment: WDNR will also consider the severity of the impairment in assigning a priority. In some cases, extreme conditions may be present that need attention more quickly than those that are not so extreme. Waters with frequent fish kills or acute toxicity issues are examples of this concern.
- **Public health concerns:** Waters with issues that may affect human health can be considered "high" priority if development and implementation of a TMDL can result in improving water quality.

Environmental Accountability Projects (EAPs)

Alternatives to a TMDL can be prepared for waters on the 303(d) list. These alternatives are referred to as "Environmental Accountability Projects" or EAPs. These are any planned implementation actions on the impaired water that will result in that water meeting water quality standards. EAPs are commonly used when the source of an impairment and the appropriate management action are readily identifiable, and the situation is not complex enough to require a TMDL analysis to identify multiple sources and management actions. Wisconsin currently has several projects that may have an EAP prepared to address specific pollutants and impairments (<u>http://WDNR.wi.gov/org/water/wm/wqs/303d/TMDL.html</u>).

9.0 Public Participation

Public involvement in the 2012 integrated assessment and 303(d) listing process is very important because ultimately for water quality restoration to occur, citizens of Wisconsin must be part of the solution. Public involvement is also required to obtain EPA approval of the state's Integrated Report. The public has several opportunities to comment on the Integrated Report as it is developed:

- Calls for data as public noticed by WDNR.
- As resources allow, the state may provide informal meetings with multiple interested parties or "one on one" discussions of specific waters or issues.
- Statewide public informational meetings to discuss the draft list of impaired waters and the WisCALM document used to determine impairments.
- Draft 305(b) report and 303(d) list as public noticed by WDNR with request for comments.
- Supporting documentation will be available upon request for the public notice period.
- Public comments must be sent to WDNR during the formal comment period to be considered in the listing decision submittal. However, comments may be sent to WDNR or directly to EPA about WDNR's Integrated Report at anytime during the process.

9.1 Requests for Data

The WDNR provided an opportunity for the public, partners and stakeholders to submit datasets for general and specific analyses including recommendations for impaired waters listings or changes to

listings. For the 2012 listing cycle, public data solicitation began in Fall 2010, and the deadline for data submittals was December 31, 2010.

9.2 Public Comment on Consolidated Assessment and Listing Methodology

Public comment will be requested for the state's general and impaired waters assessments. In addition to a public informational meeting, WDNR will provide access to online tools and methods to provide comments on assessments.

9.3 Informational Meetings on Draft Integrated Report, General Assessment and Proposed Updates to the 303(d) Impaired Waters List

From December 6 through January 15th, 2012, the WDNR will provide opportunities for public comment on the state's 2012 updates to the general (305(b)) assessment updates conducted in 2010-12 by WDNR biologists and water resource specialists, as well as the modifications to the Wisconsin 303(d) List of Impaired Waters proposed for 2012. The following information will be posted for public review:

- Updates to the state's Water Quality Management Plans ("Watershed Plans") which will include general assessment information gathered for the 2012 reporting period.
- **Statewide maps and summary analyses** to be presented in the Wisconsin 2012 Water Quality Report to Congress ("Integrated Report").
- Draft 2012 Impaired Waters List, highlighting changes from the 2010 list.

9.4 EPA Review, Comment and Administrative Decision on Wisconsin's Integrated Report/Data Submittal

Wisconsin will provide the EPA with an integrated dataset, a narrative report, GIS files, and a list of updates to the state's impaired waters on or before April 1, 2012. When this occurs, the WDNR will post the final submittal package on the agency's website for public informational purposes.

Comments must be submitted to Wisconsin Department of Natural Resources for review and copies can be submitted to EPA Region 5 Watersheds and Wetlands Branch. To review the comments and responses see: <u>http://WDNR.wi.gov/org/water/wm/wqs/303d/index.html</u>.

10.0 References Cited

Heiskary, S, and C. B. Wilson, 2005. Minnesota Lake Water Quality Assessment Report: Developing Nutrient Criteria, Third Edition. Minnesota Pollution Control Agency, September 2005.

Lyons, John, Lizhu Wang, and Timothy D. Simonson. 1996. Development and validation of an Index of Biotic Integrity for coldwater streams in Wisconsin, *North American Journal of Fisheries Management* 16:2, 241-256.

Lyons, John. 1992. Using the index of biotic integrity (1BI) to measure environmental quality in warmwater streams of Wisconsin. U.S. Forest Service General Technical Report NC-149.

Lyons, John. 2006. A fish-based index of biotic integrity to assess intermittent headwater streams in Wisconsin, USA. *Environmental Monitoring and Assessment* 122:239-258.

U. S. Environmental Protection Agency. 2005. Guidance for 2006 Assessment, Listing, and Reporting Requirements Pursuant to Sections 303(d), 305(b) and 314 of the Clean Water Act; United States Environmental Protection Agency. Washington, DC.

U. S. Environmental Protection Agency. 2006. Memorandum to Regions 1-10 Water Division Directors Regarding Information Concerning 2008 Clean Water Act Sections 303(d), 305(b), and 314 Integrated Reporting and Listing Decisions. Washington, D.C.

Weigel, B. M. 2003. Development of stream macroinvertebrate models that predict watershed and local stressors in Wisconsin. *Journal of the North American Benthological Society* 22:123–142.

Wisconsin State Laboratory of Hygiene. 1993. Manual of analytical methods, inorganic chemistry unit. Wisconsin State Laboratory of Hygiene, Environmental Sciences Section, Madison, WI.

APPENDIX A. 2012 Impaired Waters Assessment Documentation Form

	APPENDIX A: 2012 I	mpaire	d Waters Doo	cumentation Sheet			
Author:			Date Prepar	ed:			
Waterbody Name:			•	Code and Name:			
WADRS ID:	WBIC:			+ Click) to find ID numb			
Cho	oose from the followin	g to ind	icate what y	ou are recommending	:		
Proposed new im	npaired water listing						
Proposed new wa	Proposed new watch water listing						
Proposed change	s for water already on 30	3(d) list	(check type of	f change below) → TMI	DL ID #:		
	change to existing list (n	ew pollu	tants, impairm	ents, mileages, etc.)			
	for de-listing						
General 3	03(d) documentation for	water al	ready on list				
	Descript	on of w	aterbody seg	gment			
Start Mile:	Detail (describe odies, etc	segment using	g road crossings, converg	ence with other		
End Mile:	_						
Total miles:							
Lake Acres:							
Use Designat	ion Categories	Li	st use desigr	nation & data source fo	or each category.		
Current (Existing) Fish & Aquatic Life Use:							
Attainable (Potential) Fish & Aquatic Life Use:							
Designated (Codified) Fis	sh & Aquatic Life Use:						
Is it supporting its FAL A Is it supporting its Recrea	ttainable Use? Fu ational Use? Ful	illy supp y suppo	orting rting S	Supporting No Supporting Not	t supporting supporting		
Does a Specific Fish Cons	sumption Advisory Exist?	Y	es No _	Don't know			
If so, what is the specif				-			
			Impairmen				
Pollutants (Place an) are recommending ad							
Phosphorus	Sediment		Bacteria	PAHs	PCBs		
NH ₃ (Ammonia)	Thermal		Hg	Creosote	Metals		
Unknown	Other Pollutants:						

	you are recommending addir	re recommending for listing, de- ng a new pollutant to a waterbody
Degraded Habitat	Eutrophication	Temperature
Contaminated Fish Tissue	Chronic Toxicity	Aquatic Toxicity
Unknown	Other:	
Specific causes of impairment contributing to the impairment		
Information is based on: Monitoring data (specific data) less	than 5 years old? YES	NO
Viewer <u>i-SWDV</u> (CRTL + Click) waterbody, then "Layers" to ch 303(d) list, then click "Impaired on "SWIMS Station Points". Th Title" and your name and date screen. Save the file and attac map, check out page 12-14 on	may be used to construct the ma boose "Standards, Monitoring and d Waters 303d". If you want to s been choose "Print" (this will create under "Map Notes", click "OK" ar the it when you send in this sheet. the website	orm. The Intranet Surface Water ap. Choose "Find Location" to find the Assessment". If it is already on the how the monitoring stations, also click e a pdf map), add a title under "Map ad then "Open Map" at the next For additional help on how to make a ments/SWDV Basic User Guide
 Monitoring Study, Date, Results. frequency (attach additional sheets Stations: Parameters: 		ndicating magnitude, duration and
Database where data is stored (I	Fish Database, SWIMS, FishSED, I	Personal PC):

Norrativa an wh	y you are proposin	a this waterhady	to be listed on a	la listad?
ivarrative on wh	v vou are proposiri	a this waterbody	to be instea or c	ie-iisted?
	, , , , , , , , , ,	<u> </u>		

List and attach any additional reports, updated watershed tables, analyses etc. including use designation survey.

1.

2.

3.

4.

5.

APPENDIX B. Summary of Fish Tissue Criteria for Fish Consumption Advice

Summary of Mercury Adv PPM	visory Guidelines (R //Statewide Safe			//	//Site Specifi	ic O	nly//
	Unrestricted*	1 meal/week	1 meal/month	do not eat	1 meal/week		1 meal/month
men and older women	<0.16	0.16-0.65	>0.65		site specific ave >0.22 and max >0.33		site specific ave >0.65 and max >0.95
	panfish, bullheads, and inland trout	gamefish and other species	muskies		panfish, bullheads, and inland trout		gamefish and other species at a site ave >0.65
	Unrestricted	1 meal/week	1 meal/month	do not eat	1 meal/month		do not eat
Children and women of childbearing age	<0.05	0.05 - 0.22	0.22-0.95	>0.95	site specific ave >0.22 and max >0.33		site specific ave >0.65 and max >0.95
		panfish, bullheads, and inland trout	gamefish and other species	muskies	panfish, bullheads, and inland trout		gamefish and other species

Summary of Fish Tissue Criteria for Fish Consumption Advice in Wisconsin 2008.

Informational Item - Update on change in the fish consumption adivsory for mercury. February 2001. Department of Natural Resources. Natural Resources Board Agenda Item (Green Sheet). Also, 2007 Mercury Addendum.

Summary of PCB Advisory Guidelines (HPV = 0.05 ug/kg/day) PPM			General vs Site Specific				
GL Tissue Criteria	Unrestricted	1 meal/week	1 meal/month		6 meals/yr		do not eat
Panfish, inland trout, bullheads		0.06-0.22					
Gamefish and others	(General advice for inland waters)	0.06-0.22 for GLs (General advice for inland waters)	0.22-1.0		>1- 1.99 ppm		<u>></u> 2 ppm

Protocol For a uniform Great Lake Sport Fish Consumption Advisory. Great Lakes Sport Fish Advisory Task Force. September 1993.

Summary of Dioxin TEC Advisory Guidelines	
sum only furan and dioxin congeners x EPA HH TEFs for total TEC	do not eat
	> 10 (ng/kg) ppt dioxin equvalents
	dioxin equvalents

June 20, 1990. Henry Anderson, MD, Department of Health and Human Services. Memo to Jay Hochmuth. Department of Natural Resources.

	Unrestricted	1 meal/week	1 meal/month	6 meals/yr	do not ea
Panfish, inland trout, bullheads		0.16-0.66			
	(General advice for	0.16-0.66 for GLs	0.66-2.82	2.83-5.62	>5.62 ppr
Gamefish and others	inland waters)	(General advice			
		for inland waters)			

Hornshaw. 1999 Discussion Paper for Chlordane HPV. ILEPA.

Summary of PFOS advisory Guidelines								
GL Tissue Criteria	Unrestricted	1 meal/week		1 meal/month		6 meals/yr		do not eat
Panfish, inland trout, bullheads	<u><40</u> ppb for GLs (General advice for	40-200 ppb		200-800 ppb				
Gamefish and others		40 - 200 pb for GLs (General advice for inland waters)						>800 ppb

APPENDIX C. Consensus-Based Sediment Quality Guidelines Recommendations for Use & Application