A

APPENDIX A

Public Participation Materials

Presentation Outline

- Onterra, LLC
- Why Create a Management Plan?
- Elements of a Lake Management Planning Project
 - Data & Information
- Planning Process

Onterra LLC

Onterra LLC

Onterra, LLC

- Founded in 2005
- Staff
 - Four full-time ecologists
 - One part-time ecologist
 - One field technician
 - Two summer interns
- Services
 - Science and planning
- Philosophy
 - Promote realistic planning
- Assist, not direct

A goal without a plan is just a wish! Why create a lake management plan?

- To create a better understanding of the lake's positive and negative attributes.
- To discover ways to minimize the negative attributes and maximize the positive attributes.
- To foster realistic expectations and dispel myths.
- To create a snapshot of the lake for future reference and planning.

Onterra LLC

Data and Information Gathering Environmental & Sociological Planning Process Brings it all together

Data and information gathering

- Study Components
- Water Quality Analysis
- Watershed Assessment
- Aquatic Plant Surveys
- Fisheries Data Integration
- Shoreline Assessment
- Stakeholder Survey

a Aliza and

Onterra LLC

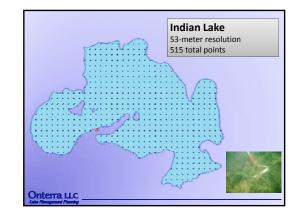
•

1

Water Quality Analysis

- General water chemistry (current & historic)
- Citizens Lake Monitoring Network
- Nutrient analysis
- Lake trophic state (Eutrophication)
- Limiting plant nutrient
- Supporting data for watershed modeling

Onterra LLC


Aquatic Plant Surveys

- Concerned with both native and nonnative plants
- Multiple surveys used in assessment
 - Early-season AIS Survey
 - Point-intercept survey
 - Aquatic plant community mapping
 - Volunteer survey findings

Onterra LLC

Fisheries Data Integration

• No fish sampling completed

Onterra LLC

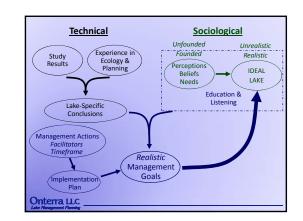
- Assemble data from WDNR, USGS, USFWS, & GLIFWC
- Fish survey results summaries (if available)
- Use information in planning as applicable

Stakeholder Survey

- Standard survey used as base
 - Planning committee potentially develops
 additional questions and options
 - Must not lead respondent to specific answer through a "loaded" question
- Survey must be approved by WDNR

Onterra LLC

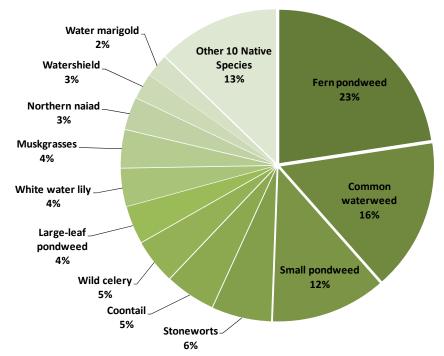
Shoreland Assessment


- Shoreland area is important for buffering runoff and provides valuable habitat for aquatic and terrestrial wildlife.
- It does not look at lake shoreline on a property-byproperty basis.
 Assessment ranks shoreland area from shoreline has
- Assessment ranks shoreland area from shoreline back
 35 feet

	Tha	ank Yo	u
Many of the gra	ohics used in this preser	ntation were supplied by:	•••••
-	Wisconsin Lakes Partnership	Extension	

Indian Lake Management Planning Project

November 2012 Update Submitted by: Dan Cibulka, Onterra, LLC


With the help of a Lake Management Planning Grant totaling nearly \$20,000 from the Wisconsin Department of Natural Resources (WDNR) and additional donations from individuals, a project is underway to create a lake management plan for Indian Lake. The lake management plan will contain historic and current data from the lake as well as provide guidance for its management by integrating stakeholder perceptions and goals with what is ecologically beneficial for the lake.

As described further below, numerous field studies were carried out upon Indian Lake during 2012. Because of the wealth of data that was collected just within the past few months, much of the data analysis has yet to be completed. This update intends to bring Indian Lake property owners up-to-date on the scientific studies that have occurred, provide some initial observations on the ecology of Indian Lake, and project a rough timeline for the remaining actions that will be taken as a part of this planning project.

In April of 2012, Onterra staff had their first glimpse of Indian Lake with a water quality sampling visit. The lake is sampled during the spring and fall to analyze water chemistry during the lake's mixing, or *turnover* events. When a lake turns over, many physical and chemical constituents (temperature, dissolved oxygen, nutrients, etc.) are evenly mixed within the water column. This gives ecologists an idea of what the nutrient balance is within the lake, and supports modeling of the lake's watershed. During the summer months, water quality samples were collected by Onterra staff in June, July and August. These results help ecologists understand how the physical and chemical constituents behave if the lake *stratifies*. Stratification is when a lake develops two separate layers of water – a warmer, upper layer and a cold lower layer of water. Water samples targeting the larval stage of the invasive zebra mussel were also taken by Onterra staff and sent into the WDNR as part of efforts to monitor the lake for this invasive species.

All aquatic plant surveys were conducted as scheduled, first by visiting the lake on June 5, 2012 to complete the curly-leaf pondweed (CLP) survey. This survey's purpose is to search the lake for CLP, and is scheduled early in the summer to coincide with this species peak growth. On July 11th, three crews, (six staff members) visited Indian Lake to complete the point-intercept survey. This is a grid-based survey designed to sample plants within the lake. Additionally, it provides an opportunity to search the lake for another Wisconsin invasive plant – Eurasian water milfoil. A third aquatic plant survey, the community mapping survey, was completed on this date as well. The purpose of this survey is to map the floating-leaf and emergent species that are found within the lake and are typically underestimated in the point intercept survey.

During all surveys, no aquatic invasive species were observed. Many interesting native species were observed however. Aquatic plants were found to grow to a depth of 19 feet in Indian Lake. Fern pondweed, a low-growing, submerged aquatic plant that was likely named after its palm-frond or fern-like leaves, was the most common plant encountered during the point-intercept survey (Figure 1).

Figure 1. Indian Lake aquatic plant relative frequency of occurrence. Created using data from a June 2012 aquatic plant point-intercept survey.

On September 26th, a crew visited Indian Lake to conduct the shoreline assessment survey. During this survey, the lake's shoreline is examined and classified into one of five development categories, based upon its level of human disturbance. The results of this survey may be used to prioritize areas for restoration, if the Indian Lake Association (ILA) wishes to pursue this.

In addition to collected ecological data from Indian Lake, sociological data was collected from the people who use and care for Indian Lake. This was approached in the form of a stakeholder survey, which was developed by Onterra staff and a planning committee comprised of (ILA) volunteers. This survey was distributed in August of 2012 to all riparian property owners, both association members and non-members. Within 2 months, over 50% of these surveys were returned, which is a great return rate for a survey of this type. The data has been tabulated by Association volunteers and provided to Onterra for analysis.

In the coming months, Onterra will be sorting through the immense amount of water quality, aquatic plant, shoreline assessment and stakeholder survey data that has been collected. Additionally, we will be looking at the watershed surrounding the lake and using a modeling program to estimate the amount of nutrients the lake receives on an annual basis. We will also be working with the WDNR to collect data and report upon the management of the fishery.

In summary, all project components are on schedule. Following data analysis and report creation, the Indian Lake Planning Committee and Onterra staff will tentatively meet next spring to discuss the project results and begin creation of management goals and actions the ILA will pursue to manage their lake in both a recreationally enjoyable and ecologically sound manner.

Indian Lake Management Planning Project

April 2013 Update Submitted by: Dan Cibulka, Onterra, LLC

In February of 2012, the Indian Lake Association (ILA) successfully applied for nearly \$20,000 in grant funds from the Wisconsin Department of Natural Resources (WDNR) to fund studies that will lead to the creation of a lake management plan for Indian Lake. Field surveys were conducted in summer of 2012 and winter of 2013 to collect scientific data for this endeavor; at this time, all surveys and data analysis are complete. The purpose of this update is to provide a very brief summary of the collected data, and outline the remaining steps to be taken in the lake management project.

Stakeholder Survey

In August of 2012, an anonymous written survey was sent to all ILA members and Indian Lake property owners to solicit their thoughts on Indian Lake's health and management. Volunteers from the ILA played a crucial role in designing the survey, distributing it to Indian Lake stakeholders, and collecting and tabulating the data. Over 50% of households receiving the survey provided their responses, which will be integrated into the Indian Lake Management Plan.

Water Quality

Indian Lake was sampled numerous times during 2012, and once through the ice in 2013. Numerous chemical, biological and physical water quality parameters were measured in order to make assessments about the lake. Additionally, historical data within WDNR databases were examined. Figure 1 displays the water clarity data that have been collected over the years from the deep-hole location in Indian Lake. This parameter is measured through the use of a white and black colored, 8-inch diameter disk that is lowered into the water until it disappears from view. The clarity data collected over the past few decades indicate that Indian Lake's water clarity is usually between eight and ten feet through the open water season, and falls within the category of *Excellent* when compared to similar lakes across the state of Wisconsin.

Watershed

A watershed (sometimes called the drainage basin) is the area surrounding the lake that contributes surface water runoff to the lake and is determined primarily by topography. Characteristics of a lake's watershed, such as its size and the land cover types it contains, impact the lake's water quality and ecology in a number of ways. Indian Lake's watershed was determined to be roughly 924 acres in size, which is relatively small for a lake the size of Indian Lake (~357 acres). Indian Lake holds much natural land (forests, wetlands, etc.) within its watershed which is ideal for the health of the lake. Lakes that have unnatural land cover types (urbanized or agricultural or other developed lands) within their watershed often see problems with elevated nutrients and sediment inputs, which may lead to algae blooms, dense aquatic plants or other problems. A survey designed to assess the development on the immediate watershed, or shoreland zone, was conducted on Indian Lake as well. This survey determined that roughly 64% of Indian Lake's shoreland is in a natural state, while a small portion (11%) has been highly developed and 25% is in a moderately developed state.

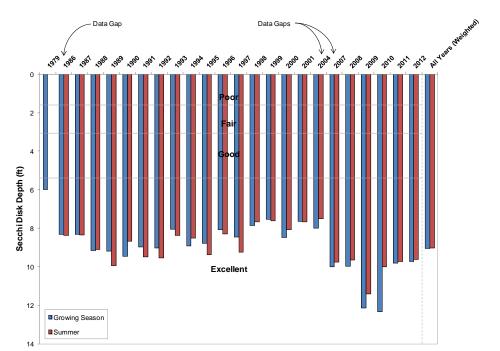
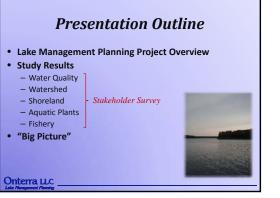


Figure 1. Indian Lake Secchi disk clarity values. Mean values calculated with surface sample data. Water Quality Index values adapted from WDNR PUB WT-913.

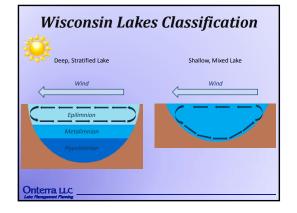
Aquatic Plants

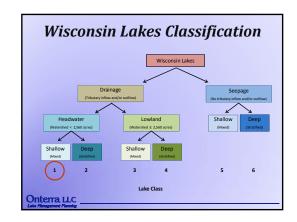
Numerous aquatic plant surveys were designed for this project, in order to examine the lake for invasive, non-native aquatic plant species and also to document the presence of native species in the lake. During all surveys, no aquatic invasive species were observed. Many interesting native species were observed however. Aquatic plants were found to grow to a depth of 19 feet in Indian Lake. Fern pondweed, a low-growing, submerged aquatic plant that was likely named after its palm-frond or fern-like leaves, was the most common plant encountered.

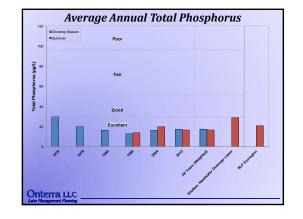

Fisheries

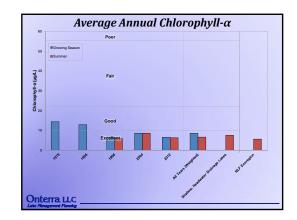
As a part of this project, Onterra worked collectively with local WDNR fisheries biologists to integrate data they had collected on Indian Lake to the management plan. These data include Native American spear harvesting records, creel survey and stocking data, angling regulations and WDNR management goals for the lake. Additionally, Onterra staff collected data regarding the sediment composition and coarse woody habitat in Indian Lake. The sediment composition was found to be 69% mucky/organic, 19% sand and 16% rock. A balanced sediment distribution is desired in a lake because some fish prefer spawning on harder substrates (such as walleye) while others (such as muskellunge) broadcast their eggs over mucky areas. Coarse woody habitat is preferred by some fish species to lay eggs, search for food, and escape predator fish.

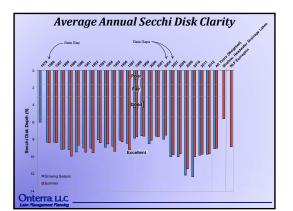
Summary and Remaining Steps

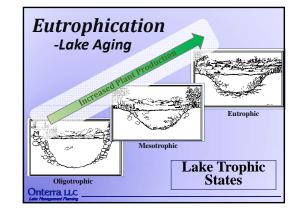

All studies conducted on Indian Lake point towards a healthy and vibrant ecosystem with minimal signs of human impact. In the coming months, Onterra staff will meet with the Indian Lake Planning Committee to discuss the project results and begin creation of management goals and actions the ILA will pursue in managing their lake. Following this process, the management plan document will be created and sent to the Planning Committee and WDNR for review.

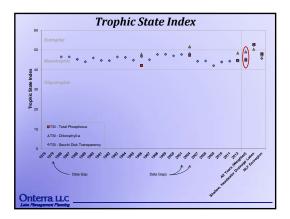


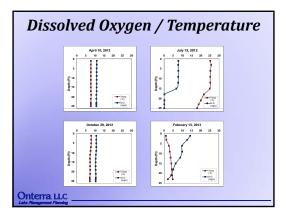


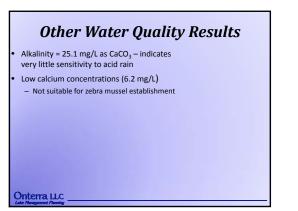


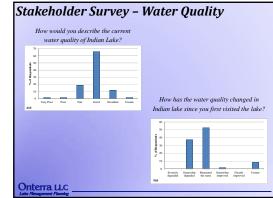


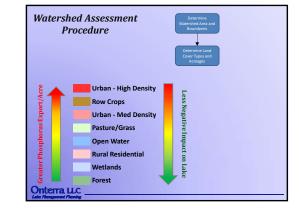


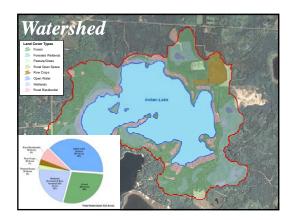


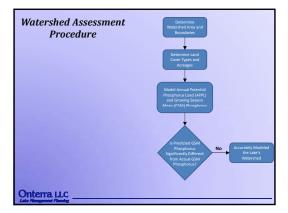


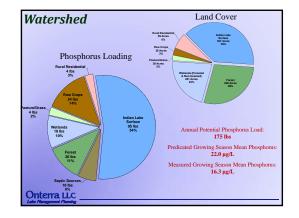


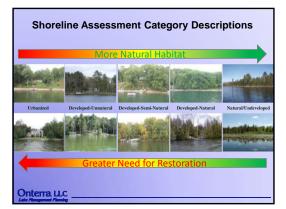


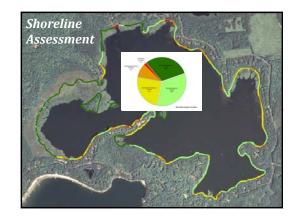


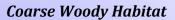


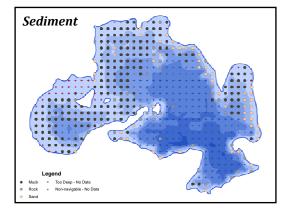


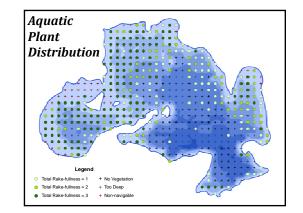


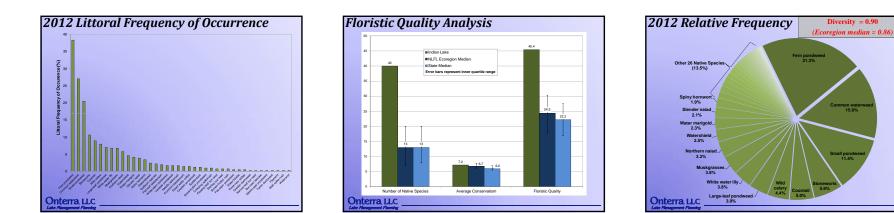


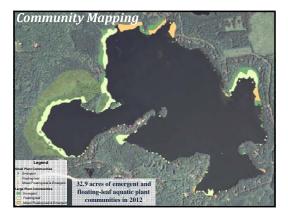


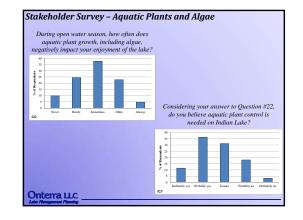


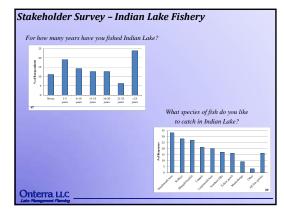


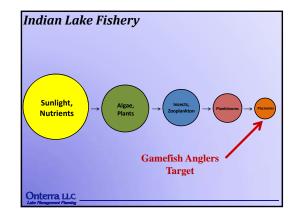

- Provides shoreland erosion control and prevents suspension of sediments.
- Preferred habitat for a variety of aquatic life.
- Periphyton growth fed upon by insects.Refuge, foraging and spawning habitat for fish.
- Reruge, foraging and spawning nabit
 Complexity of CWH important.
- Changing of logging and shoreland development practices = reduced CWH in Wisconsin lakes.
- Survey aimed at quantifying CWH in Indian Lake


Indian Lake Association Planning Meeting I





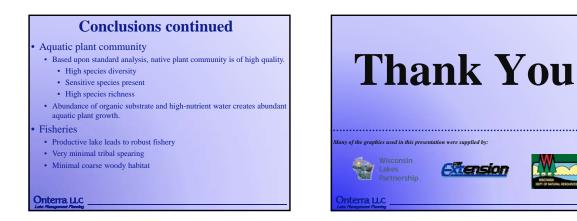




Indian Lake Fishery

- WDNR management for:
 - Panfish (consumptive opportunity)
 - Northern pike
- Quality size bass and walleye
- Walleye recruitment poor in recent years
 - Ample spawning substrate
 - WDNR placed Indian Lake on walleye stocking list in 2013

Onterra LLC



Conclusions

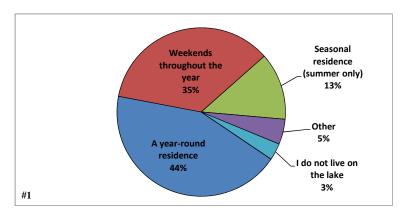
- Water quality for shallow, headwater drainage lake is excellent.
- Limited historic data, but no apparent trends detected.
- Lake is moderately productive, and modeling indicates no unaccounted sources of phosphorus entering the lake.
- Overall watershed is in excellent condition.
- Land cover exports minimal phosphorus.
- Shoreland zone is mostly undeveloped or developed-natural

Onterra LLC

Appendix A

B

APPENDIX B

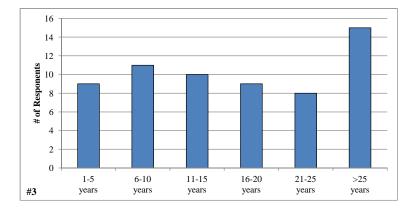

Stakeholder Survey Response Charts and Comments

Returned Surveys	61
Sent Surveys	116
Response Rate (%)	52.6

INDIAN LAKE PROPERTY

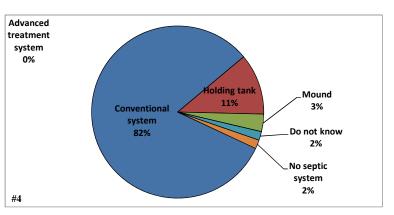
#1 How is your property on Indian Lake utilized?

	Total	%
A year-round residence	27	43.5
Weekends throughout the year	22	35.5
Seasonal residence (summer only)	8	12.9
Other	3	4.8
I do not live on the lake	2	3.2
	62	100.0

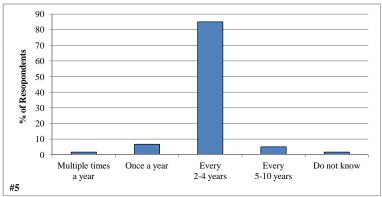


#2 How many days each year is your property used by you or others?

Answered Question	61
Average	185.4
Standard deviation	144.0


#3 How long have you owned or rented your property on Indian Lake?

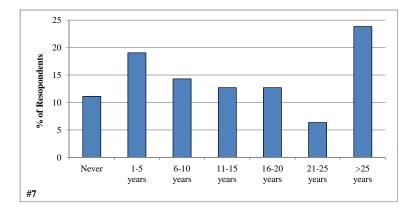
	Total	%
1-5 years	9	14.5
6-10 years	11	17.7
11-15 years	10	16.1
16-20 years	9	14.5
21-25 years	8	12.9
>25 years	15	24.2
	62	100.0


#4 What type of septic system does your property utilize?

	Total	%
Conventional system	50	82.0
Holding tank	7	11.5
Mound	2	3.3
Advanced treatment system	0	0.0
Do not know	1	1.6
No septic system	1	1.6
	61	100.0

#5 How often is the septic tank on your property pumped?

	Total	%
Multiple times a year	1	1.7
Once a year	4	6.7
Every 2-4 years	51	85.0
Every 5-10 years	3	5.0
Do not know	1	1.7
	60	100.0


RECREATIONAL ACTIVITY ON INDIAN LAKE

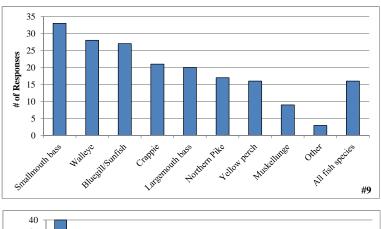
#6 How many years ago did you first visit Indian Lake?

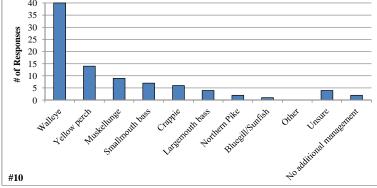
Answered Question	62
Average	21.4
Standard deviation	15.0

#7 For how many years have you fished Indian Lake?

	Total	%
Never	7	11.1
1-5 years	12	19.0
6-10 years	9	14.3
11-15 years	8	12.7
16-20 years	8	12.7
21-25 years	4	6.3
>25 years	15	23.8
	63	100.0

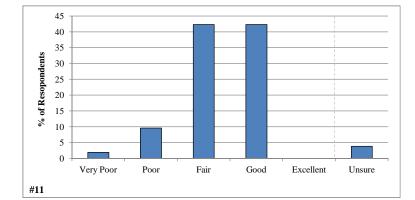
#8 Have you personally fished on Indian Lake in the past three years?

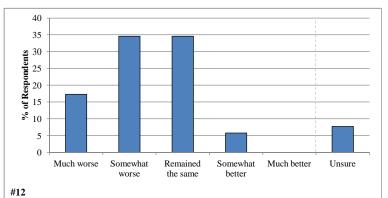

	Total	%
Yes	51	87.9
No	7	12.1
	58	100.0


#9 What species of fish do you like to catch on Indian Lake?

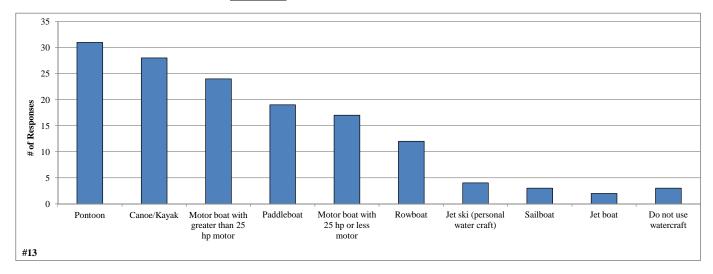
	Total
Smallmouth bass	33
Walleye	28
Bluegill/Sunfish	27
Crappie	21
Largemouth bass	20
Northern Pike	17
Yellow perch	16
Muskellunge	9
Other	3
All fish species	16

#10 What species of fish, if any, would you like to see more management emphasis placed upon?

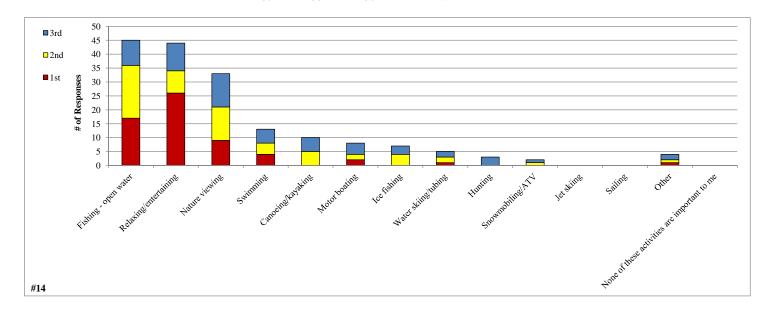

	Total
Walleye	40
Yellow perch	14
Muskellunge	9
Smallmouth bass	7
Crappie	6
Largemouth bass	4
Northern Pike	2
Bluegill/Sunfish	1
Other	0
Unsure	4
No additional management	2


#11 How would you describe the current quality of fishing on Indian Lake?

	Total	%
Very Poor	1	1.9
Poor	5	9.6
Fair	22	42.3
Good	22	42.3
Excellent	0	0.0
Unsure	2	3.8
	52	100.0


#12 How has the quality of fishing changed since you started fishing on the lake?

	Total	%
Much worse	9	17.3
Somewhat worse	18	34.6
Remained the Same	18	34.6
Somewhat better	3	5.8
Much better	0	0.0
Unsure	4	7.7
	52	100.0

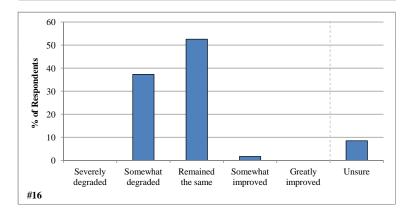

#13 What types of watercraft do you currently use on the lake?

	Total
Pontoon	31
Canoe/Kayak	28
Motor boat with greater than 25 hp motor	24
Paddleboat	19
Motor boat with 25 hp or less motor	17
Rowboat	12
Jet ski (personal water craft)	4
Sailboat	3
Jet boat	2
Do not use watercraft	3

	1st	2nd	3rd	% ranked
Fishing - open water	17	19	9	25.9
Relaxing/entertaining	26	8	10	25.3
Nature viewing	9	12	12	19.0
Swimming	4	4	5	7.5
Canoeing/kayaking	0	5	5	5.7
Motor boating	2	2	4	4.6
Ice fishing	0	4	3	4.0
Water skiing/tubing	1	2	2	2.9
Hunting	0	0	3	1.7
Snowmobiling/ATV	0	1	1	1.1
Jet skiing	0	0	0	0.0
Sailing	0	0	0	0.0
Other	1	1	2	2.3
None of these activities are important to me	0	0	0	0.0
	60	58	56	100.0

#14 Please rank up to three activities that are important reasons for owning your property on or near the lake.

INDIAN LAKE CURRENT AND HISTORIC CONDITION, HEALTH AND MANAGEMENT


#15 How would you describe the current water quality of Indian Lake?

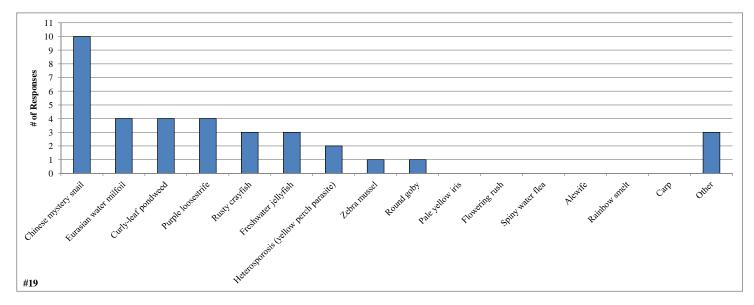
	Total	%
Very Poor	1	1.7
Poor	1	1.7
Fair	11	18.6
Good	39	66.1
Excellent	7	11.9
Unsure	1	1.7
	59	100.0

70 60 50 40 30 40 </tr

#16 How has the water quality changed in Indian Lake since you first visited the lake?

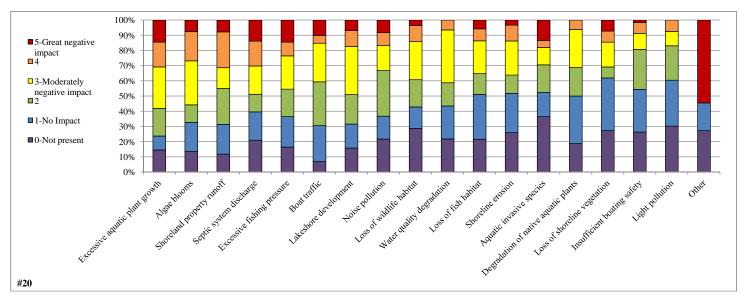
	Total	%
Severely degraded	0	0.0
Somewhat degraded	22	37.3
Remained the same	31	52.5
Somewhat improved	1	1.7
Greatly improved	0	0.0
Unsure	5	8.5
	59	100.0

Indian Lake Stakeholder Survey Data

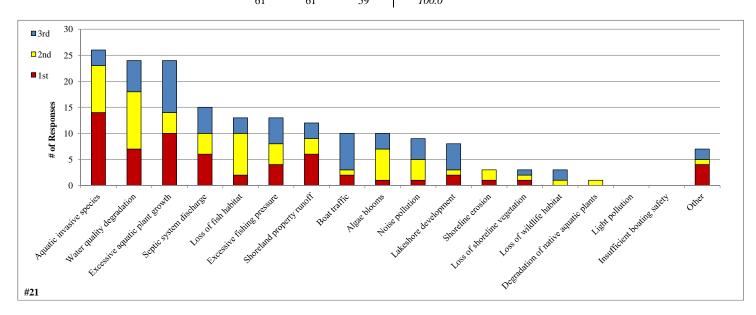

#17 Have you ever heard of aquatic invasive species?

#18 Are you aware of aquatic invasive species in the lake?

	Total	%		Total	%
Yes	61	98.4	Yes	17	32.1
No	1	1.6	No	36	67.9
	62	100.0		53	100.0


#19 Which aquatic invasive species are you aware of in the lake?

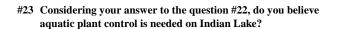
	Total
Chinese mystery snail	10
Eurasian water milfoil	4
Curly-leaf pondweed	4
Purple loosestrife	4
Rusty crayfish	3
Freshwater jellyfish	3
Heterosporosis (yellow perch parasite)	2
Zebra mussel	1
Round goby	1
Pale yellow iris	0
Flowering rush	0
Spiny water flea	0
Alewife	0
Rainbow smelt	0
Carp	0
Other	3


#20 To what level do you believe each of the following factors may be negatively impacting Indian Lake?

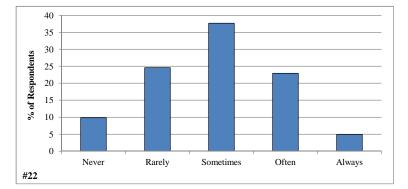
	0-Not present	1-No Impact	2	3-Moderately negative impact	4	5-Great negative impact	Unsure	Total	Average
Excessive aquatic plant growth	8	5	10	15	9	8	3	47	2.7
Algae blooms	7	10	6	15	10	4	9	45	2.4
Shoreland property runoff	6	10	12	7	12	4	9	45	2.4
Septic system discharge	9	8	5	8	7	6	17	34	2.3
Excessive fishing pressure	9	11	10	12	5	8	4	46	2.3
Boat traffic	4	14	17	15	3	6	2	55	2.3
Lakeshore development	9	9	11	18	6	4	3	48	2.3
Noise pollution	13	9	18	10	5	5	1	47	2.0
Loss of wildlife habitat	16	8	10	14	6	2	4	40	1.9
Water quality degradation	10	10	7	16	3	0	10	36	1.8
Loss of fish habitat	11	15	7	11	4	3	7	40	1.8
Shoreline erosion	15	15	7	13	6	2	2	43	1.8
Aquatic invasive species	16	7	8	5	2	6	12	28	1.7
Degradation of native aquatic plants	9	15	9	12	3	0	11	39	1.7
Loss of shoreline vegetation	15	19	4	9	4	4	2	40	1.6
Insufficient boating safety	15	16	15	6	4	1	3	42	1.5
Light pollution	16	16	12	5	4	0	6	37	1.3
Other	3	2	0	0	0	6	1	8	2.9

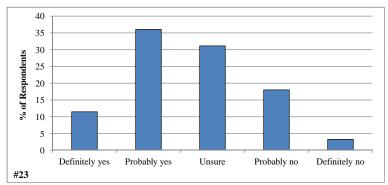
#21 From the list below, please rank your top three concerns regarding Indian Lake.

	1st	2nd	3rd	% Ranked
Aquatic invasive species	14	9	3	14.4
Water quality degradation	7	11	6	13.3
Excessive aquatic plant growth	10	4	10	13.3
Septic system discharge	6	4	5	8.3
Loss of fish habitat	2	8	3	7.2
Excessive fishing pressure	4	4	5	7.2
Shoreland property runoff	6	3	3	6.6
Boat traffic	2	1	7	5.5
Algae blooms	1	6	3	5.5
Noise pollution	1	4	4	5.0
Lakeshore development	2	1	5	4.4
Shoreline erosion	1	2	0	1.7
Loss of shoreline vegetation	1	1	1	1.7
Loss of wildlife habitat	0	1	2	1.7
Degradation of native aquatic plants	0	1	0	0.6
Light pollution	0	0	0	0.0
Insufficient boating safety	0	0	0	0.0
Other	4	1	2	3.9
	61	61	59	100.0

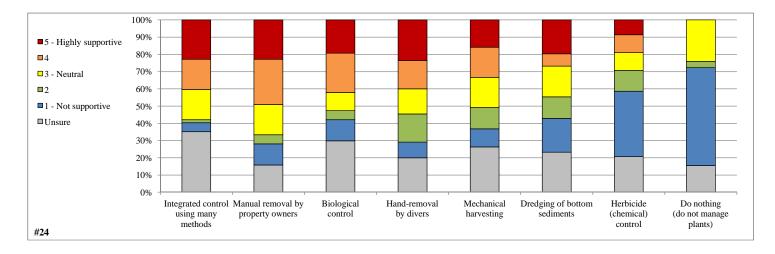


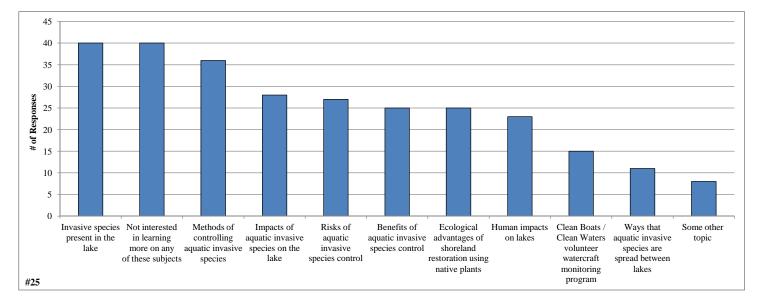
including algae, negatively impact your enjoyment of Indian Lake? Total % 9.8 Never 6 15 Rarely 24.6 Sometimes 23 37.7 14 Often 23.0 3 Always 4.9


61


100.0

#22 During open water season how often does aquatic plant growth,


	Total	%
Definitely yes	7	11.5
Probably yes	22	36.1
Unsure	19	31.1
Probably no	11	18.0
Definitely no	2	3.3
	61	100.0


	1 - Not supportive	2	3 - Neutral	4	5 - Highly supportive	Unsure	Total	Average
Integrated control using many methods	3	1	10	10	13	20	37	3.7
Manual removal by property owners	7	3	10	15	13	9	48	3.4
Biological control	7	3	6	13	11	17	40	3.4
Hand-removal by divers	5	9	8	9	13	11	44	3.3
Mechanical harvesting	6	7	10	10	9	15	42	3.1
Dredging of bottom sediments	11	7	10	4	11	13	43	2.9
Herbicide (chemical) control	22	7	6	6	5	12	46	2.2
Do nothing (do not manage plants)	33	2	14	0	0	9	49	1.6

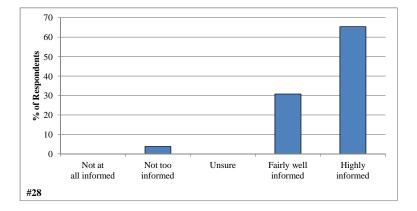
#24 Aquatic plants can be professionally managed using many techniques. What is your level of support for the responsible use of the following techniques on Indian Lake?

#25 Which of these subjects would you like to learn more about?

	Total
Invasive species present in the lake	40
Not interested in learning more on any of these subjects	40
Methods of controlling aquatic invasive species	36
Impacts of aquatic invasive species on the lake	28
Risks of aquatic invasive species control	27
Benefits of aquatic invasive species control	25
Ecological advantages of shoreland restoration using native plants	25
Human impacts on lakes	23
Clean Boats / Clean Waters volunteer watercraft monitoring program	15
Ways that aquatic invasive species are spread between lakes	11
Some other topic	8

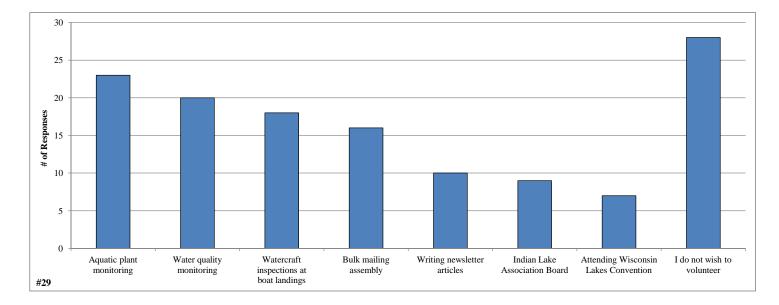
INDIAN LAKE ASSOCIATION, INC.

#26 Before receiving this mailing, have you ever heard of the Indian Lake Association?


	Total	%
Yes	63	100.0
No	0	0.0
	63	100.0

#27 What is your membership status with the Indian Lake Association?

	Total	%
Current member	47	92.2
Former member	2	3.9
Never been a member	2	3.9
	51	100.0


#28 How informed has the Indian Lake Association kept you regarding issues with the lake and its management?

	Total	%
Not at all informed	0	0.0
Not too informed	2	3.8
Unsure	0	0.0
Fairly well informed	16	30.8
Highly informed	34	65.4
	52	100.0

#29 Please circle the activities you would be willing to participate in if the Indian Lake Association requires additional assistance.

	Total
Aquatic plant monitoring	23
Water quality monitoring	20
Watercraft inspections at boat landings	18
Bulk mailing assembly	16
Writing newsletter articles	10
Indian Lake Association Board	9
Attending Wisconsin Lakes Convention	7
I do not wish to volunteer	28

Survey Number	1d Comment	9i Comment	10i Comment	14m Comment	19p Comment	20r Comment	21r Comment	25I Comment	Other Comments (and Question 30)
1 2									
3									We woud like to thank everyone who works for the association for al of your hard work - it is appreciated by us. Thank you!
4									
5					just more weedy				Buoys for shallow rock bars, advise property owners to not "clean" shoreline. Allow trees to fall in lake, do not take
6									excessive twigs. Ban jet ski's & airplances. Do not fertilize grass near lake that could runoff into lake. Promote catch and release.
						low lake level, rock bass			Our largest concern is the lake level. As a spring fed lake we believe the lake level should be raised by about a foot without
7									being detrimental to any stakeholder! The rock bass would be less of a concern; however, they should still be marked along
									with any other areas. Some shorelines, especially the east end, is very shallow.
8					None				Thank you for all the hard work you are doing. Are there plans to stock the lake with more fish?
10					None				Selling home, may be leaving Indian Lake. We love this lake and everything it stands for. I fish every night all summer and do very well catching fish. My catch goes back into the water. I also fish many more lakes around this area and Indian by far is the best. Sorry about being so late on the \$100 and other, if love more let us know. Keep up the Great work on this lake.
					None				We are glad & appreciative of the people who are managing this
11									beautiful lake. We live on the south shore and feel sorry for those who live near the gravel pit. We hope it will soon be gone. Anything that can be done to get rid of it would be a plus for all of us. Thank you.
12 13 14		None		Purchase for Profit snowshoeing					
14						Presence of boat landing - placing lake at significant risk of new invasive aquatice species and diseases; small septic systems - on small lots with large houses - cabins.	Presence of boat landing placing lake at significant risk of new aquatic invasives.		24.h. Better control of septic system inadequancy.
16									I would like to take care of invasive species as an individual NOT as an association.
17		bullhead							Wish jet skiers and water skiers would respect and obey shoreline wake rules (boats as well). Wish people would respect
									natural shorelines (not clear cutting everything on this shoreline).
18 19									Set up a separate fish restocking fund, donate whatever dollar
20 21									amount you wish!
22	primary residence 7 months, Florida 5					see #20.d. and #20.f ? 2 answers		methods for control of weeds	
23	months								We appreciate all the time and effort that has been done! We think the Indian Lake Association is wonderful!
24				pontooning			(f. jet skis) r. lake	build dam	need dam to heighten lake level and keep plant growth down,
25				-			level		improve fishing etc. Hats off and a thank you to the few people that have done a great
26	and used many								job trying to keep the Lake Association active and informed!!! As someone who is not retired and not living at the lake, I only
27	weeks in the summer								have certain times when I can help with these types of things.
28	winter in the south, Dec. thru March								I am happy that we have a Lake Association. The leadership of ILA is very good and every stakeholder should be an active member.
29						See 20.k.? - R. jet boats & skis	jet boats & skis		Get risk of the jet skis and boats. They kill of the fish and users have no respect for other individuals utilizing the lake for fishing
30				pontooning		Review answers to			they also destroy the natural habitat of the lake.
31						20.d. and 20.g. Review answer 20.I.			
32 33									
34 35									
36 37									
38 39									We are new to the lake. As we learn more about our lake, we
40						review#20.1.			may become more involved. We are concerned about the increasing number of off shore
41						1001000002011			The are contained and the initial state away from lake use by platforms etc. They essentially take away from lake use by others as boating regulations require boating restrictions. We should also be concerned about lake level. Does the outflow used to be checked? Evaporation probably is the big culprit, nothing we can do about that.
42									Concerned about large amount of weed growth in bay areas. Hampering boat launch. Not necessarily invasive species.
43									We applaud the work being done by the ILA. If I spent extended time at our cabins I would surely volunteer my time on its behalf. Thank you for your efforts.
44 45									Thenk you for your crions.
46	sometime weeks							Responded to 25.e.; shutdown public access	I teel we need to build a dam with trees at the run off creek to raise the water level. I also feel we need to build cribs in the lake to improve our fish quantity. I also feel we need to have beter control of illegal fishing on lakes. I saw a person fishing with 7 fishing poles at one time. Called both the DNR and sheriff and got no one that was interested to come out and do something about it. The best way to stop the aquatic plant problem and loss of quality and quantity of fish is to close the public ramp. Most lakes with AIS problems have public access. Think about it. Some people come to our lake from properties close to ours and come back the same day 5 times and take home their limit. We need to stop this soon or three will be no fish left in the lake and
									property value will decrease in unbelievable values.

Survey Number	1d Comment	9i Comment	10i Comment	14m Comment	19p Comment	20r Comment	21r Comment	25I Comment	Other Comments (and Question 30)
47						low lake level, it gets worse every year			They cannot volunteer because "we are elderly and unable." It is a wonderful lake except in the past our frontage was a lot deeper. Now it is very shallow and receeding. The weeds in the lake are taking over all the shoreline. We use to be able to swim only a few feet from shore and now impossible. We also could fish from our pier and now impossible. I'm afraid the lake is shrinking. We need more rain and snow. The drought and heat have done much damage to the lake. We need to close the outlet to keep some of the water to stay in. The cutting of the woods and quary have affected the lake. We have seen the changes in the last 36 years.
48						should mark rock bars			We are notified that we have to have our septic pumped every 2- 3 years. There are cottages/residences on Indian Lake (due to the fact of having never upgrading their septic/drain field) that do not adhere to this policy and are not reminded to do so. Tax records for this lake should all be reviewed and updated reminders sent to all in non-compliance.
49	4 seasons, not full time								A great concern remains about residents who continue to apply chemicals to their lawns, and disregard laws pertaining to cutting trees and removing shoreline buffering plants.
50									In regards to lake levels, understandint the drought levels, it seems as though when we gain levels due to rain we have a resident that allows water out of our creek opening somewhere on the lake, if this is true that should not be allowed. I purchased a boat lift 5 years ago and only been able to use it one year. Now it just sits on shore. This issue should be addressed. A permanent containment wall should be installed locaked and maintained to keep water levels constant. I would volunteer my time to monitor it but I am not there on a continual basis. Lake levels affect just about all of our concerns such as its hing, recreational activities, water quality, and invasive species.
51									Indian Lake is or seems unique in having several distinct shoreline characteristics, reedy to weedy to clear, etc. Because of this it is important to have as many representations for each of these microcosms engaged in a management plan.
52								weed control	In the bay we are in ("Boathouse Bay") our primary issues are weeds and silt. The weeds are controllable mechanically, but silfification is a real tough issue for us. Not only has the lower water level over the past 7 years encouraged weed growth, but our bottom is coming up to us with silt. Raking is somewhat effective, but there is just too much silt.
53							decrease in water		
54		re: g. if available	re: f. too many				level		In general, the fish habitat is strong although there needs to be
55		re. g. ii available	stunted and g./h. like to see stocking for these species.						attention made to lake weeds choking out lake areas. Larger predator fish need to be stocked to help reduce the explosion of stunted-growth fish including perch/panfish/northern (which seem to be severely stunted.)
56									Indian Lake shorelines differ markedly. It is difficult to separate the positives and negatives of 'our' shoreline versus the lake as a whole. While our first priority needs to be our own property. The association should promote an awareness of the lake as a whole.
57				1st, 2nd, 3rd not picked but categories a. c. e. f. h. j. k. l. m. (cross country skiing & snowshoeing)					
58		i. bullhead							We really appreciate all the work and effort that went into getting the Grant. We enjoy living here. We enjoy the lake and want it to be here for future generations.
59 60								Post sign by boat launch reinforcing clean boats coming in	
61									Ice fishing moratorium. DNR stocking of our lake with walleye, crappie and perch. I have not caught a walleye in about 10 years nor a crappie in about 5 years on Indian Lake. I'm a fair to good fisherman.
62 63							Water level		Doing a great job getting this done! Wish I could help out.
64									I think Indian lake is a scenic and beautiful lake in the Northwood's. There is always many sides to every argument. To someone with beautiful sand frontage his main concern is invasive species, to the person that has weed y and mucky frontage it might be all invasive species, because he/she has to fight to get there boat out every year. It was mentioned that hasving some kind of dyke to regulate the water at the creek that goes out of the lake. This would keep a more constant depth and less water fluctuation all year round. Someone on the other side of the lake is happy with the lake levels as they are. For the most part I believe that most people on the lake love to portion ride or watch the loons in the summer or just have a quiet drink on the dock (all great things). Water quality and invasive species are and should be top priorities, but I think the state of the fishing is a Close second. At one time Indian lake was a premier musky and walleye lake known throughout the Northwood's. I would like to fish fish or could care less about the fisheries. To rew if the fishing is god property values are higher. There are many lakes in the area that have some invasive species, mercury probems or other issues. But if it is a class hwusky lake or excellent walleye fisheries, people want to be on it, or own property on it. We are lucky we have a great lake to wk with and the upside is tremendous. I would hope the fisheries part is always and bard ond betaken to take a good hard look at how to improve, not for today but the future

C

APPENDIX C

Water Quality Data

30

30

The it 200 It is it 200 It is it 200 If is it 200 It is it 200 It is it 200 If is it 200 It is it 200 It is it 200 If is it 200 It is it 200 It is it 200 If is it 200 It is it 200 It is it 200 If is it 200 It is it 200 It is it 200 If is it 200 It is it 200 It is it 200 If is it 200 It is it 200 It is it 200 If is it 200 It is it 200 It is it 200 If is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is it 200 It is	Weather: Entry: Parameter Dis NO ₃ Lab Alkalinity Total Susp	100% clouds, ft TWH Depth (ft) 1 1 3 5 7 9 111 133 155 7 9 111 133 155 7 9 111 133 155 7 9 111 133 155 7 9 111 133 155 7 9 111 133 155 7 9 111 133 155 7 9 111 133 155 7 9 111 133 155 7 9 111 133 155 7 9 111 133 155 7 19 212 233 244 255 102 102 102 102 102 102 102 102	Temp (*C) (*C) (*C) (*C) (*C) (*C) (*C) (*C)	D.O. (mg/L) 11.0 10.9 10.9 10.9 10.9 10.9 10.9 10.9	8.9 8.8 8.8 8.7 8.7 8.7 8.7 8.6 8.6 8.6 8.6 8.6 8.6 8.5 8.5 8.5 8.5	LBB Seco (μ\$/cm) 61.0 61.0 61.0 61.0 61.0 61.0 61.0 61.0	Depth (ft):	24.0 7.1 0 5 5 5 5 5 5 5 5 20 20	5	10			Temp ('C) D.O.	3
$\frac{ perh}{(0) \ 1 \ (C) \ 7 \ (C) $	Parameter Dis NO ₃ Lab Alkainity Total Susy	Depth (ft) 1 3 5 7 9 111 13 155 17 19 21 23 24 25 23 Solved P (µg/L) ChLa (µg/L) TKK (µg/L) TKK (µg/L) Total P (µg/L) Total N (µg/L) Total N (µg/L) Total N (µg/L) Lab pH Lab pH	(*C) 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	(mg/L) 11.0 11.0 11.0 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.9 10.8 10.0 10.8	8.9 8.8 8.8 8.7 8.7 8.7 8.7 8.6 8.6 8.6 8.6 8.6 8.6 8.5 8.5 8.5 8.5	Sp. Cond. (μS/cm) 61.0 61.0 61.0 61.0 61.0 61.0 61.0 61.0		0 0 5 10 10 15 0 0 20 20	5	10			Temp ('C) D.O.	3
$\frac{1}{12} \frac{1}{12} \frac$	Dis NO ₃ Lab Alkalinity Total Susp	1 1 3 3 5 5 7 9 1 1 1 1 3 15 17 17 19 21 23 24 25 1 1 1 1 2 1 1 1 2 1 1 1 2 1 1 2 1 2	7.8 7.8	11.0 11.0 10.9 10.9 10.9 10.9 10.9 10.9	8.9 8.8 8.8 8.7 8.7 8.7 8.7 8.6 8.6 8.6 8.6 8.6 8.6 8.5 8.5 8.5 8.5	61.0 61.0 61.0 61.0 61.0 61.0 61.0 61.0		0 5 (j.j.) 10 - 15 - 0 20 -	5	10			Temp ('C) D.O.	3
$\frac{3}{12} \frac{78}{12} \frac{110}{100} \frac{88}{100} \frac{610}{100} \frac{110}{100} \frac{88}{100} \frac{610}{100} \frac{110}{100} \frac{110}{100}$	Dis NO ₃ Lab Alkalinity Total Susp	3 3 5 7 9 9 11 13 15 17 19 21 23 24 25 24 25 25 26 27 26 27 27 27 28 24 25 26 27 24 25 26 27 27 27 21 23 24 25 26 26 27 27 27 27 27 28 26 26 26 26 26 26 26 26 26 26	7.8 7.8	11.0 10.9 10.9 10.9 10.9 10.9 10.9 10.9	8.8 8.8 8.7 8.7 8.7 8.6 8.6 8.6 8.6 8.6 8.5 8.5 8.5	61.0 61.0 61.0 61.0 61.0 61.0 61.0 61.0		0 5 (j.j.) 10 - 15 - 0 20 -	5	ŢŢ			Temp ('C) D.O.	
$\frac{1}{1177} \frac{1}{78} \frac{1}{103} \frac{1}{88} \frac{1}{861} \frac{1}{610} \frac{1}{610} \frac{1}{1177} \frac{1}{78} \frac{1}{103} \frac{1}{103} \frac{1}{88} \frac{1}{861} \frac{1}{610} \frac{1}{610} \frac{1}{17778} \frac{1}{103} \frac{1}{88} \frac{1}{88} \frac{1}{610} \frac{1}{610} \frac{1}{127778} \frac{1}{103} \frac{1}{88} \frac{1}{88} \frac{1}{610} \frac{1}{610} \frac{1}{127778} \frac{1}{108} \frac{1}{108} \frac{1}{88} \frac{1}{88} \frac{1}{610} \frac{1}{610} \frac{1}{12} \frac{1}{27778} \frac{1}{108} \frac{1}{108} \frac{1}{88} \frac{1}{88} \frac{1}{610} \frac{1}{610} \frac{1}{12} \frac{1}{27778} \frac{1}{108} \frac{1}{108} \frac{1}{88} \frac{1}{88} \frac{1}{610} \frac{1}{610} \frac{1}{12} \frac{1}{27778} \frac{1}{108} \frac{1}{108} \frac{1}{88} \frac{1}{88} \frac{1}{610} \frac{1}{610} \frac{1}{12} $	Dis NO ₃ Lab Alkalinity Total Susp	7 99 111 13 15 17 19 21 23 24 25 25 20/ved P (μg/L) Chi-s (μg/L) TKN (μg/L) TKN (μg/L) TKN (μg/L) Total N (μg/L) Total N (μg/L) Cod. (μS/cm) Lob pH	7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.9 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	10.9 10.9 10.9 10.9 10.9 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	8.7 8.7 8.6 8.6 8.6 8.6 8.6 8.6 8.5 8.5 8.5 8.5	61.0 61.0 61.0 61.0 61.0 61.0 61.0 61.0		5 (1) 10 (1) 10					('C) D.O.]
$\frac{1}{12} \frac{1}{78} \frac{1}{103} \frac{1}{887} \frac{1}{613} \frac{1}{613} \frac{1}{103} \frac{1}{1$	Dis NO ₃ Lab Alkalinity Total Susp Mag	9 9 11 13 13 15 17 17 19 21 23 24 25 Total P (µg/L) ChI-a (µg/L) TKN (µg/L) TKN (µg/L) TKN (µg/L) TKN (µg/L) Total N (µg/L) Cotal (µg/L) Lab pH	7.8 7.8	10.9 10.9 10.9 10.9 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	8.7 8.7 8.6 8.6 8.6 8.6 8.6 8.5 8.5 8.5 8.5	61.0 61.0 61.0 61.0 61.0 61.0 61.0 61.0		(1) +110 					('C) D.O.]
$\frac{23}{26} \frac{7.8}{7.8} \frac{10.8}{10.8} \frac{8.5}{8.5} \frac{610}{610}$ $\frac{1}{225} \frac{7.8}{7.8} \frac{10.8}{10.8} \frac{8.5}{8.5} \frac{610}{610}$ $\frac{1}{100} \frac{1}{100} $	Dis NO ₃ Lab Alkalinity Total Susp	13 15 5 7 17 19 21 23 24 25 5 5 5 0/vef P (µg/L) ChI-a (µg/L) TKN (µg/L) TKN (µg/L) NH ₃ N (µg/L) NH ₃ N (µg/L) Total N (µg/L) Coda (µS/cm) Lab pH	7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	10.9 10.9 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	8.6 8.6 8.6 8.5 8.5 8.5 8.5	61.0 61.0 61.0 61.0 61.0 61.0 61.0 61.0		utdan 15 - Ω 20 -					('C) D.O.]
$\frac{23}{26} \frac{7.8}{7.8} \frac{10.8}{10.8} \frac{8.5}{8.5} \frac{61.0}{61.0}$ $\frac{10}{26} \frac{26}{7.8} \frac{7.8}{10.8} \frac{10.8}{8.5} \frac{8.5}{61.0}$ $\frac{10}{10} \frac{225}{7.8} \frac{7.8}{10.8} \frac{10.8}{8.5} \frac{8.5}{61.0}$ $\frac{10}{10} \frac{10}{10} \frac{10}$	Dis NO ₃ Lab Alkalinity Total Susp Mag	15 17 17 21 23 24 25 50 50/04 P (µg/L) 50/04 P (µg/L) 50/04 P (µg/L) 7KN (µg/L) 7KN (µg/L) 7KN (µg/L) 7KN (µg/L) 7KI (µg/	7.8 7.8 7.9 7.8 7.9 8.9 8.9 9.9	10.9 10.9 10.8 10.8 10.8 10.8 10.8 10.0 10.00 ND ND NA 440.00 30.00 ND 470.00 66.00	8.6 8.6 8.5 8.5 8.5 8.5	61.0 61.0 61.0 61.0 61.0 61.0 61.0		utdan 15 - Ω 20 -					('C) D.O.]
$\frac{23}{26} \frac{7.8}{7.8} \frac{10.8}{10.8} \frac{8.5}{8.5} \frac{61.0}{61.0}$ $\frac{10}{26} \frac{26}{7.8} \frac{7.8}{10.8} \frac{10.8}{8.5} \frac{8.5}{61.0}$ $\frac{10}{10} \frac{225}{7.8} \frac{7.8}{10.8} \frac{10.8}{8.5} \frac{8.5}{61.0}$ $\frac{10}{10} \frac{10}{10} \frac{10}$	Dis NO ₃ Lab Alkalinity Total Susp Mag	17 19 21 23 24 25 Тоtal Р (µg/L) Cht-a (µg/L) TKN (µg/L) TKN (µg/L) TKN (µg/L) Total N (µg/L) Total N (µg/L) Cotal (µS/cm) Lab pH	7.8 7.9 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 20.00 ND 5.35 450.00 ND 450.00 ND 470.00 65.00	10.8 10.8 10.8 10.8 10.8 10.0 10.00 ND ND NA 440.00 30.00 ND 470.00 66.00	8.6 8.5 8.5 8.5	61.0 61.0 61.0 61.0		20 -					('C) D.O.]
$\frac{23}{26} \frac{7.8}{7.8} \frac{10.8}{10.8} \frac{8.5}{8.5} \frac{610}{610}$ $\frac{1}{225} \frac{7.8}{7.8} \frac{10.8}{10.8} \frac{8.5}{8.5} \frac{610}{610}$ $\frac{1}{100} \frac{1}{100} $	Dis NO ₃ Lab Alkalinity Total Susp	21 23 24 25 25 20 20 20 20 20 20 20 20 20 20 20 20 20	7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8 7.8	10.8 10.8 10.8 10.8 10.8 10.0 10.00 ND NA 440.00 30.00 ND 470.00 66.00	8.5 8.5 8.5	61.0 61.0 61.0		20 -					('C) D.O.]
$\frac{24}{26} \overline{7.8} \overline{10.8} \overline{8.5} \overline{61.0} \overline{10} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1} \overline{1} 1$	Dis NO ₃ Lab Alkalinity Total Susp	24 25 50/ved P (µg/L) 50/ved P (µg/L) Chl-æ (µg/L) TKN (µg/L) TKN (µg/L) Total N (µg/L) Cond. (µS/cm) Lab pH	7.8 7.8 7.8 20.00 ND 5.35 450.00 20.00 ND 470.00 65.00	10.8 10.8 10.8 10.00 ND NA 440.00 30.00 ND 470.00 66.00	8.5	61.0							('C) D.O.]
25 7.8 10.8 8.5 610 initial initialinitial initial initial initial initial initial initia	Dis NO ₃ Lab Alkalinity Total Susp	25 Total P (µg/L) solved P (µg/L) Chl-a (µg/L) TKN (µg/L) NH ₂ N (µg/L) Total N (µg/L) Coda (µS/cm) Lab pH	7.8 20.00 ND 5.35 450.00 20.00 ND 470.00 65.00	10.8 10.00 ND NA 440.00 30.00 ND 470.00 66.00	8.5	61.0 61.0		25				-	D.O.	
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	Dis NO ₃ Lab Alkalinity Total Susp	solved P (µg/L) Chl-a (µg/L) TKN (µg/L) + NO ₂ -N (µg/L) NH ₃ -N (µg/L) Total N (µg/L) Cond. (µS/cm) Lab pH	20.00 ND 5.35 450.00 20.00 ND 470.00 65.00	10.00 ND NA 440.00 30.00 ND 470.00 66.00										
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	Dis NO ₃ Lab Alkalinity Total Susp	solved P (µg/L) Chl-a (µg/L) TKN (µg/L) + NO ₂ -N (µg/L) NH ₃ -N (µg/L) Total N (µg/L) Cond. (µS/cm) Lab pH	20.00 ND 5.35 450.00 20.00 ND 470.00 65.00	10.00 ND NA 440.00 30.00 ND 470.00 66.00										
$\frac{ \mathbf{Discled P}(\mu \mathbf{U})}{ \mathbf{C} ^{2}} \frac{5.3}{5.3} \frac{ \mathbf{A} }{ \mathbf{A} ^{2}} \frac{450.00}{450.00} \frac{440.00}{440.00} \frac{ \mathbf{A} ^{2}}{ \mathbf{A} ^{2}} \frac{1}{450.00} \frac{440.00}{440.00} \frac{ \mathbf{A} ^{2}}{ \mathbf{A} ^{2}} \frac{1}{450.00} \frac{440.00}{430.00} \frac{ \mathbf{A} ^{2}}{ \mathbf{A} ^{2}} \frac{1}{ A$	NO ₃ Lab Alkalinity Total Susp Mag	solved P (µg/L) Chl-a (µg/L) TKN (µg/L) + NO ₂ -N (µg/L) NH ₃ -N (µg/L) Total N (µg/L) Cond. (µS/cm) Lab pH	ND 5.35 450.00 20.00 ND 470.00 65.00	ND NA 440.00 30.00 ND 470.00 66.00										
$\frac{Che_{4} (p_{1}C)}{T(N) (p_{2}C)} \frac{5.35}{40.00} \frac{NA}{40.00} \frac{1}{40.00} \frac$	NO3 Lab Alkalinity Total Susp Mag	Chl-a (µg/L) TKN (µg/L) + NO ₂ -N (µg/L) NH ₃ -N (µg/L) Total N (µg/L) Cond. (µS/cm) Lab pH	5.35 450.00 20.00 ND 470.00 65.00	NA 440.00 30.00 ND 470.00 66.00										
$\frac{1}{100} \frac{1}{100} \frac{1}$	Lab Alkalinity Total Susp Mag	ТКN (µg/L) + NO ₂ -N (µg/L) NH ₃ -N (µg/L) Total N (µg/L) Cond. (µS/cm) Lab pH	450.00 20.00 ND 470.00 65.00	30.00 ND 470.00 66.00										
NH-N (µg/L) ND ND Total Nug/L) 470.00 465.00 466.00 Lab Cond. (µS/cm) 665.00 666.00 Lab DPI 7.50 7.52 Atkalintij (mgL CaCO_3) 24.40 Total Sups. Solids (mg/L) ND ND Calcium (mg/L) 2.50 NA Hardness (mg/L) 2.50 NA Color (SU) 10.00 NA Color (SU) 10.00 NA Color (SU) 10.00 NA a collected by TWH (Onterra) NA NA a collected by TWH (Onterra) LS Depth (t): 2.3. Weather: sunny, no wind, 75 'F LB Depth (t): 2.3. Weather: sunny, no wind, 75 'F LB Depth (t): 2.3. Weather: sunny, no wind, 75 'F LB Depth (t): 2.3. Weather: sunny, no wind, 75 'F LB Depth (t): 2.3. Yeather: sunny in wind, 75 'F LB Depth (t): 8.1 Image: Sunny in the sunny in th	Lab Alkalinity Total Susp Mag	NH ₃ -N (μg/L) Total N (μg/L) Cond. (μS/cm) Lab pH	ND 470.00 65.00	ND 470.00 66.00										
Lab Cond. (LSCm) 65.00 66.00 Alkalinity (mgL CaCG.3) 24.20 24.40 Total Suss. Solits (mgL) 6.50 NA Magnesium (mgL) 2.50 NA Hardness (mgL) 26.00 NA Color (SU) 10.00 NA Color (SU) 10.00 NA a collected by TWH (Onterra) Na Na a collected by TWH (Onterra) Na Na Date: 6/5/2012 LS Max Depth: 26.4 ULB Depth (ft): 3.0 Secchi Depth (ft): 2.0 Weather: sunny, no wind, 75*r ULB Depth (ft): 2.30 Entry: TWH Sp. Cond. 1 12 13 00 8.8 0 1 12 13 00 8.7 8.0 1 12 13 00 8.7 8.0 1 12 13 00 8.7 8.0 1 12 13 10 8.7 8.0 1 13 12 02 2 15 16 15 7 7.9 1 16 18 16 25 17.7 7.8 1 16 18 16 25 17.7 7.9 1	Alkalinity Total Susp Mag	Cond. (µS/cm) Lab pH	65.00	66.00										
Lab pH 7.50 7.52 Atkalnify (mgL CoCO) 224.0 24.440 Total Susp. Solids (mgL) ND ND Calcium (mgL) 2.50 NA Magnesium (mgL) 2.50 NA Hardness (mgL) 2.50 NA Color (SU) 10.00 NA Color (SU) 10.00 NA a collected by TWH (Onterra) NA Indian Lake Date: 6/5/2012 Indian Lake Date: 6/5/2012 ILS Max Depth: 28.4 ILS Max Depth (1): 3.0 USA (1) June 5, 2012 June 5, 2012 (1) (2) 10 5 5 3 12 18.0 8.0 6 9 1.5 5 5 3 3 1 1 5 5 3 5 1 5 5 5 3<	Alkalinity Total Susp Mag	Lab pH	7.50	00.00										
Total Supp. Solids (mg/L) ND ND Calcium (mg/L) 6.30 NA Magnesium (mg/L) 2.50 NA Hardness (mg/L) 2.600 NA Color (SU) 10.00 NA Turbidity (NTU) NA NA a collected by TWH (Onterra) Indian Lake Iso Depth (1): 3.0 Indian Lake Date: 6/5/2012 Max Depth: 26.4 Time: 12:35 ILS Depth (1): 3.0 Weather: sumy, no wind, 75*F ILB Depth (1): 2.3.0 Entry: TWH 3 2.02 8.9 6 19.6 8.9 8.0 13 18.7 6.7 7.9 24 17.2 2.7 7.8 13 18.5 6.7 7.9 24 17.2 2.7 7.8 13 18.1 6.7 7.9 24 17.2 2.7 7.8 13 18.1 6.7 7.9 24 </td <td>Total Susp Maç</td> <td>(mg/L CaCO₂)</td> <td>1.00</td> <td>7.52</td> <td></td>	Total Susp Maç	(mg/L CaCO ₂)	1.00	7.52										
$\frac{Calcium (mgL)}{Magnesium (mgL)} = \frac{6.30}{26.00} \frac{NA}{NA} + \frac{1}{10.00} \frac$	Мас	Colido (ma/l.)	24.20											
Magnesium (mg/L) 2.50 NA Hardness (mg/L) 2.600 NA Color (SU) 10.00 NA Turbidity (NTU) NA NA a collected by TWH (Onterra) NA NA Indian Lake Late: 6(5/2012 Time: 12.35 Weather: sunny, no wind, 75 'r: LIB Depth (tr): 23.0 Seccold bepth (tr): 23.0 Seccold bepth (tr): 3.0 Indian Lake Date: 6(5/2012 Time: 12.35 Max Depth: 26.4 ILB Depth (tr): 23.0 Seccold bepth (tr): 23.0 Seccold bepth (tr): 23.0 Seccold colspan="2">June 5, 2012 O 10 15 20 25 3 O 10 15 20 25 3 O 10 15 20 25 3 O 10 <td< td=""><td>Mag</td><td>Calcium (mg/L)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Mag	Calcium (mg/L)												
Color (SU) 10.00 NA Turbidity (NTU) NA NA a collected by TWH (Onterra) Indian Lake	Н	gnesium (mg/L)												
Turbidity (NTU) NA NA a collected by TWH (Onterra) Indian Lake Indian Lake Max Depth: 26.4 Date: 6/5/2012 ILS Depth (ft): 3.0 Weather: sunny, no wind, 75'r: ILS Depth (ft): 3.0 Entry: TWH Sp. Cond. Sp. Cond. 9 19.2 8.9 12 18.1 5.5 13 20.2 8.9 9 19.2 8.0 13 16.1 7.7.9 14 18.1 5.5 13 18.1 5.5 14 18.1 5.5 12 18.1 5.5 13 16.7 7.9 14 18.1 5.5 15 18.1 5.5 18 15.5 7.9 19 19.2 8.0 19 19.2 8.0 19 19.2 10 19 19.0 10 19 10		Color (SU)	26.00											
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$														
$\begin{array}{c} \text{Date: } 6/5/2012 \\ \text{Time: } 12:35 \\ \text{Weather: sumy, no wind, 75 'F} \\ \text{Entry: } \text{Twh} \end{array} \\ \end{array} \\ \begin{array}{c} \text{Depth} & \text{Temp} & \text{D.O.} \\ \hline 1 & 21:3 & 8.8 & 8.0 \\ \hline 3 & 20.2 & 8.9 & 8.0 \\ \hline 3 & 20.2 & 8.9 & 8.0 \\ \hline 9 & 19.2 & 8.9 & 8.0 \\ \hline 12 & 19.0 & 8.7 & 8.0 \\ \hline 12 & 19.0 & 8.7 & 8.0 \\ \hline 18 & 18 & 5.5 & 7.9 \\ \hline 221 & 18.1 & 5.5 & 7.9 \\ \hline 224 & 17.2 & 2.7 & 7.8 \\ \hline 18 & 18 & 5.5 & 7.9 \\ \hline 24 & 17.2 & 2.7 & 7.8 \\ \hline 10 & 10 & 15 & 20 & 25 & 3 \\ \hline 10 & 15 & 18.1 & 5.5 & 7.9 \\ \hline 20 & & & & & & & \\ \hline \end{array} $														
Time: 12:35 LLS Depth (1): 3.0 Weather: sump, no wind, 75*F LLS Depth (1): 23.0 Secchi Depth (1): 23.0 Secchi Depth (1): 23.0 Secchi Depth (1): 23.0 Secchi Depth (1): 8.1 Depth (1): 23.0 Secchi Depth (1): 8.1 Depth (1): 2.1 Secchi Depth (1): 8.1 June 5, 2012 (1): 10: 15: 20: 25: 3 9 9 19.2 8.0 15: 18.7 7.9 8.0 16: 18: 5: 7.9 24: 17.2 2.7 7.8 24: 17.2 2.7 7.8 20 Temp (C) Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2"Colspa="2"Colspa="2"Colspa="2"Colspan="2"Colspan="2"Colspan="2"Colspa=				Indian Lake					_					
(ft) (°C) (mg/L) pH (µS/cm) 1 21.3 8.8 8.0 3 20.2 8.9 8.0 6 19.6 8.9 8.0 12 19.0 8.7 8.0 15 18.7 7.9 8.0 18 18.5 6.7 7.9 24 17.2 2.7 7.8 - - - - - - - - -	Time: Weather:	12:35 sunny, no wind	, 75°F			ILB	Depth (ft): Depth (ft):	3.0 23.0						
3 20.2 8.9 8.0 6 19.6 8.9 8.0 9 19.2 8.9 8.0 15 18.7 7.9 8.0 18 18.5 6.7 7.9 21 18.1 5.5 7.9 - - - - - - - - -			(°C)	(mg/L)										_
6 19.6 8.9 8.0 9 192 8.9 8.0 12 19.0 6.7 8.0 15 18.7 7.9 8.0 21 18.1 5.5 7.9 24 17.2 2.7 7.8		1	21.3 20.2	8.8 8.9	8.0 8.0				5	10	15	20	25	3
12 19.0 8.7 8.0 15 18.7 7.9 8.0 18 18.5 6.7 7.9 21 18.1 5.5 7.9 24 17.2 2.7 7.8		6	19.6	8.9	8.0			U		1		- 7		
15 18.7 7.9 8.0 18 18.5 6.7 7.9 21 18.1 5.5 7.9 24 17.2 2.7 7.8 - - - - - - - - - - - -		12	19.0	8.7	8.0			5 -		I		Ī		
21 18.1 5.5 7.9 24 17.2 2.7 7.8		15		7.9						I		I		
20 - ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		21		5.5	7.9			E 10 -		I		I		
20 - ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓		24	17.2	2.7	7.8			£ 15		Ι		Ī		
								0 15 0		7		Ĩ		
									Ζ			-	(°C) D.O.	
								_						_

Parameter	ILS	ILB
Total P (µg/L)	15.00	28.00
Dissolved P (µg/L)	NA	NA
Chl-a (µg/L)	5.05	NA
TKN (µg/L)	NA	NA
NO ₃ + NO ₂ -N (µg/L)	NA	NA
NH ₃ -N (µg/L)	NA	NA
Total N (µg/L)	NA	NA
Lab Cond. (µS/cm)	NA	NA
Lab pH	NA	NA
Alkalinity (mg/L CaCO ₃)	NA	NA
Total Susp. Solids (mg/L)	NA	NA
Calcium (mg/L)	NA	NA
Magnesium (mg/L)	NA	NA
Hardness (mg/L)	NA	NA
Color (SU)	NA	NA
Turbidity (NTU)	NA	NA

Data collected by TAH and DAC (Onterra)

				Indian Lake						
	Time Weather	: 10:00 : Clear, light breez	e			ILB	Depth (ft): Depth (ft):	3.0 24.0		
		Depth] [luby 1	9 2012
		1	25.2	7.8	рН	(µS/cm)		0		
		6	25.3	7.8						
			25.2 25.2				-	5	1	7
		15	25.0	6.7					Ī	Ī
		21	20.1	0.2				َلَّ 10 -	- I	III
							-	5 9 15 -	7	I
Image: specific							-	20		Д (°С)
							-	25		D.O. (mg/L)
$\frac{\left \frac{1}{10000000000000000000000000000000000$							l l			-
$\frac{\left \frac{1}{10000000000000000000000000000000000$]			
$\frac{\left \frac{1}{10000000000000000000000000000000000$	Parameter		IIS	ШВ						
Image: State of the sta		Total P (µg/L)	16.00	48.00						
	D									
$\frac{\left \begin{array}{c} \hline NH_{r}N\left(gd \right) \\ \hline NH_{r}N\left(gd$	NO	TKN (µg/L)	370.00	1470.00						
$\frac{\left \frac{\text{Lia} \text{Cond} (p_{\text{Cond}} \frac{0}{100} $	NO	NH ₃ -N (µg/L)	ND	567.00						
$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$	La	Total N (µg/L) b Cond. (µS/cm)		1470.00 99.00						
$\frac{\boxed{\text{Total Sings Solds (mgL)} King Solds (mgL)}{Calcium (mgL)} \frac{King Solds (mgL)}{2.50 NA} \frac{King King Solds (mgL)}{Na} \frac{King King Sold (mgL)}{NA} \frac{King King Sold (mgL)}{NA} \frac{King King Sold (mgL)}{NA} \frac{King King Sold (mgL)}{NA} \frac{King King King Sold (mgL)}{King King King King King King King King $		Lab pH	7.70	6.83						
$\frac{\frac{Magnesium (mgL)}{1600 (M)} \frac{2.50}{NA} \frac{NA}{N}}{\frac{NA}{NA} \frac{NA}{NA} \frac$	Total Sus	sp. Solids (mg/L)	ND	9.00						
$ \frac{ $	M	Calcium (mg/L)								
$ \frac{ \mathbf{r}_{triadity}(NTU) NA NA \mathbf{NA} }{ \mathbf{r}_{triadity}(NTU) NA NA \mathbf{NA} } \\ \hline \\ \hline \\ \begin{tabular}{ l l l l l l l l l l l l l l l l l l $		Hardness (mg/L)	25.60	NA						
		Turbidity (NTU)								
<text><text></text></text>										
Time:10.00 Weather:ILSDepth (ft):3 3 3 5H:r: 116 116 116 116 116 117 114 8.6 116 116 116 117 21.4 8.6 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 8.4 116 116 116 112 20.9 12.9 116 116 116 112 20.9 116 116 116 116 112 116 116 116 116 116 112 116 116 116 116 116 112 116 116 116 116 116 116 116 116 1										
$\frac{ (\mathbf{f}_{1}) }{ $				Indian Lake						
$\frac{ 0 }{ 0 } \frac{1}{ 0 } \frac{274}{ 0 } \frac{ 0 }{ 0 } \frac{1}{ 0 $	Time Weather	: 10:00 : 0% clouds, 65F I	preezy	Indian Lake		ILB	Depth (ft): Depth (ft):	3 23		
	Time Weather	: 10:00 : 0% clouds, 65F t : Depth	Temp	D.O.		ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23	August	22 2012
$\frac{9}{12} \frac{21}{209} \frac{8.4}{15} \frac{1}{207} \frac{1}{7.1} \frac{1}{10} \frac{1}{18} \frac{206}{206} \frac{6.8}{6.8} \frac{1}{10} \frac{1}{24} \frac{1}{20.3} \frac{4.9}{24} \frac{1}{20.1} \frac{1}{2.2} \frac{1}{2.2} \frac{1}{10} \frac{1}{10}$	Time Weather	: 10:00 : 0% clouds, 65F t : Depth (ft) 1	Temp (°C) 21.4	D.O. (mg/L) 8.6	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time Weather	: 10:00 : 0% clouds, 65F t : Depth (ft) 1 3	Temp (°C) 21.4 21.2	D.O. (mg/L) 8.6 8.6	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time Weather	: 10:00 : 0% clouds, 65F t : Depth (ft) 1 3 6 9	Temp (°C) 21.4 21.2 21.1 21.1	D.O. (mg/L) 8.6 8.6 8.6 8.6	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time Weather	: 10:00 : 0% clouds, 65F f :	Temp (°C) 21.4 21.2 21.1 21.1 20.9 20.7	D.O. (mg/L) 8.6 8.6 8.6 8.6 8.4 7.1	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0	-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Time Weather	: 10:00 : 0% clouds, 65F ft : Depth (ft) 1 3 6 9 9 12 15 18	Temp (°C) 21.4 21.2 21.1 21.1 20.9 20.7 20.6	D.O. (mg/L) 8.6 8.6 8.6 8.6 8.4 7.1 6.8	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 5	-	
Parameter ILS ILB	Time Weather	: 10:00 : 0% clouds, 65F h : Depth (ft) 1 1 3 6 9 9 12 15 18 21	Temp (°C) 21.4 21.2 21.1 21.1 20.9 20.7 20.6 20.3	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 5	-	
Parameter ILS ILB Total P (µg/L) 19 52 Dissolved P (µg/L) 19 52 Dissolved P (µg/L) NA NA TKN (µg/L) NA NA TKN (µg/L) NA NA Total N (µg/L) NA NA TKN (µg/L) NA NA Total N (µg/L) NA NA Color (U) NA NA Lab Cond. (µs/cm) NA NA Total Susp. Solids (mg/L) NA NA Calcium (mg/L) NA NA Magnesium (mg/L) NA NA Hardness (mg/L) NA NA Color (SU) NA NA	Time Weather	: 10:00 : 0% clouds, 65F h : Depth (ft) 1 1 3 6 9 9 12 15 18 21	Temp (°C) 21.4 21.2 21.1 21.1 20.9 20.7 20.6 20.3	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 5	-	
Parameter ILS ILB Total P (µg/L) 19 52 Dissolved P (µg/L) NA NA Ch+a (µg/L) NA NA TKN (µg/L) NA NA MO ₂ + NO ₂ -N (µg/L) NA NA TKN (µg/L) NA NA NO ₃ + NO ₇ -N (µg/L) NA NA Colord (µS ^C (m) NA NA Lab Cond (µS ^C (m) NA NA Total Susp. Solids (mg/L) NA NA Calcium (mg/L) NA NA Magnesium (mg/L) NA NA Hardness (mg/L) NA NA Color (US) NA NA	Time Weather	: 10:00 : 0% clouds, 65F h : Depth (ft) 1 1 3 6 9 9 12 15 18 21	Temp (°C) 21.4 21.2 21.1 21.1 20.9 20.7 20.6 20.3	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9	рн	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 5 5 (1) 10 15 15	-	15 20 25 30
Total P (µg/L) 19 52 Dissolved P (µg/L) NA NA Chi-a (µg/L) 8.51 NA TKN (µg/L) NA NA NO ₃ + NO ₂ N (µg/L) NA NA NO ₄ + NO ₂ N (µg/L) NA NA NO ₅ + NO ₂ N (µg/L) NA NA Total N (µg/L) NA NA Lab Cond. (µS/cm) NA NA Lab Cond. (µS/cm) NA NA Calcium (mg/L) NA NA Total Susp. Solids (mg/L) NA NA Calcium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Hardness (mg/L) NA NA	Time Weather	: 10:00 : 0% clouds, 65F h : Depth (ft) 1 1 3 6 9 9 12 15 18 21	Temp (°C) 21.4 21.2 21.1 21.1 20.9 20.7 20.6 20.3	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
Total P (µg/L) 19 52 Dissolved P (µg/L) NA NA Chi-a (µg/L) 8.51 NA TKN (µg/L) NA NA NO ₃ + NO ₂ N (µg/L) NA NA NO ₄ + NO ₂ N (µg/L) NA NA NO ₅ + NO ₂ N (µg/L) NA NA Total N (µg/L) NA NA Lab Cond. (µS/cm) NA NA Lab Cond. (µS/cm) NA NA Calcium (mg/L) NA NA Total Susp. Solids (mg/L) NA NA Calcium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Hardness (mg/L) NA NA	Time Weather	: 10:00 : 0% clouds, 65F h : Depth (ft) 1 1 3 6 9 9 12 15 18 21	Temp (°C) 21.4 21.2 21.1 21.1 20.9 20.7 20.6 20.3	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9	рн	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
Total P (µg/L) 19 52 Dissolved P (µg/L) NA NA Chi-a (µg/L) 8.51 NA TKN (µg/L) NA NA NO ₃ + NO ₂ N (µg/L) NA NA NO ₄ + NO ₂ N (µg/L) NA NA NO ₅ + NO ₂ N (µg/L) NA NA Total N (µg/L) NA NA Lab Cond. (µS/cm) NA NA Lab Cond. (µS/cm) NA NA Calcium (mg/L) NA NA Total Susp. Solids (mg/L) NA NA Calcium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Hardness (mg/L) NA NA	Time Weather	: 10:00 : 0% clouds, 65F h : Depth (ft) 1 1 3 6 9 9 12 15 18 21	Temp (°C) 21.4 21.2 21.1 21.1 20.9 20.7 20.6 20.3	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9	pH	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
Dissolved P (µg/L) NA NA ChI-a (µg/L) 8.51 NA TKN (µg/L) NA NA NO ₂ + NO_2 N (µg/L) NA NA NO ₃ + NO_2 N (µg/L) NA NA NI-3 NA NA NO ₃ + NO_2 N (µg/L) NA NA NI-3 NA NA Total N (µg/L) NA NA Lab Cond. (µS/cm) NA NA Lab Cond. (µS/cm) NA NA Calaium (mg/L) NA NA Calaium (mg/L) NA NA Magnesium (mg/L) NA NA Hardness (mg/L) NA NA Color (SU) NA NA	Time Weather	: 10:00 : 0% clouds, 65F h : Depth (ft) 1 1 3 6 9 9 12 15 18 21	Temp (°C) 21.4 21.2 21.1 21.1 20.9 20.7 20.6 20.3	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9	pH	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
Chi-a (µg/L) NA TKN (µg/L) NA NO ₅ + NO ₇ N (µg/L) NA NH ₇ N (µg/L) NA Total N (µg/L) NA Lab Cond. (µs/con) NA Lab Cond. (µs/con) NA Total N (µg/L) NA Lab Cond. (µs/con) NA Alkalinity (mg/L GaCO2) NA Total Susp. Solids (mg/L) NA Calcium (mg/L) NA Magnesium (mg/L) NA	Time Weather Entry	: 10:00 : 0% clouds, 65F I : Depth (ft) 1 3 6 9 9 12 15 15 15 15 15 15 24	Temp ('C) 21.4 21.1 20.7 20.6 20.3 20.1 20.1 20.1	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9 2.2 2.2	pH	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
NO ₃ + NO ₂ N (µg/L) NA NA NH ₇ N (µg/L) NA NA Total N (µg/L) NA NA Lab Cond. (µg/cm) NA NA Lab Cond. (µg/cm) NA NA Alkalinity (mg/L GaCO2) NA NA Total Susp. Solids (mg/L) NA NA Calcium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA	Time Weather Entry	: 10:00 : 0% clouds, 65F H :	Temp (C) 21.4 21.2 21.1 20.7 20.6 20.3 20.1 20.1 	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9 2.2 2.2 2.2 1.1 8 8 4.9 2.2 1.1 8 8 4.9 2.2 1.1 8 8 8 4.9 2.2 1.1 8 8 8 9 8 9 8 9 8 8 8 8 8 8 8 8 8 8 8	pH	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
Total N (ug/L) NA NA Lab Cond. (US/com) NA NA Lab pH NA NA Alkalinity (mg/L GaCO2) NA NA Total Susp. Solids (mg/L) NA NA Caloium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Color (SU) NA NA	Time Weather Entry	: 10:00 : 0% clouds, 65F H :	Temp (C) 21.4 21.1 20.9 20.7 20.6 20.3 20.1 20.1 20.1 10 20.9 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9 2.2 2.2 	pH	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
Lab Cond. (µS/cm) NA NA Lab pH NA NA Alkalinity (mg/L CaCO ₃) NA NA Total Susp. Solids (mg/L) NA NA Calcium (mg/L) NA NA Magnesium (mg/L) NA NA Magnesium (mg/L) NA NA Color (SU) NA NA	Time Weather Entry Parameter D	: 10:00 : 0% clouds, 65F I :	Temp ('C) 21.4 21.1 20.7 20.6 20.3 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1	D.O. (mg/L) 8.6 8.6 8.6 8.6 8.4 7.1 6.8 4.9 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
Alkalinity (mg/L CaCO ₂) NA NA Total Susp. Solids (mg/L) NA NA Calcium (mg/L) NA NA Magnesium (mg/L) NA NA Hardness (mg/L) NA NA Color (SU) NA NA	Time Weather Entry Parameter D	: 10:00 : 0% clouds, 65F I : Depth (ft) 1 3 6 6 9 9 12 21 5 15 18 21 21 22 15 5 18 22 1 24 24 7 Total P (µg/L) issolved P (µg/L) TTKI (µg/L) TTKI (µg/L)	Temp ('C) 21.4 21.2 21.1 20.7 20.6 20.3 20.1 20.1 	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9 2.2 2.2 	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
Calcium (mg/L) NA NA Magnesium (mg/L) NA NA Hardness (mg/L) NA NA Color (SU) NA NA	Time Weather Entry	: 10:00 : 0% clouds, 65F I : Depth (ft) 1 3 6 6 9 122 155 188 24 24 24 24	Temp ('C) 21.4 21.2 21.1 20.7 20.6 20.3 20.1 20.1 1 20.1 20.1 20.1 20.1 20.1 20	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9 4.9 2.2 2.2 	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
Magnesium (mg/L) NA NA Hardness (mg/L) NA NA Color (SU) NA NA	Time Weather Entry	: 10:00 : 0% clouds, 65F I : Depth (ft) 1 3 6 6 9 9 122 155 188 24 24 24 24 24 24 24 24 24 24 24 24 24	Temp ('C) 21.4 21.2 21.1 20.7 20.6 20.3 20.1 20.1 1 20.0 20.1 20.1 20.1 20.1 20	D.O. (mg/L) 8.6 8.6 8.6 8.6 8.4 7.1 6.8 4.9 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	pH	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
Color (SU) NA NA	Time Weather Entry	: 10:00 : 0% clouds, 65F I : Depth (ft) 1 3 6 6 9 9 12 15 15 16 16 16 17 12 24 24 24 24 24 24 24 24 24 24 24 24 24	Temp ('C) 21.4 21.1 20.7 20.6 20.3 20.1 20.1 20.0 20.6 20.3 20.1 20.1 20.1 20.6 20.3 20.1 20.1 20.1 20.6 20.3 20.1 20.1 20.1 20.5 20.3 20.1 20.1 20.5 20.5 20.3 20.1 20.1 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
	Time Weather Entry	: 10:00 : 0% clouds, 65F I : Depth (ft) 1 3 6 6 9 9 12 21 5 15 16 18 21 21 21 21 21 21 21 21 21 21 21 21 21	Temp ('C) 21.4 21.2 21.1 20.7 20.6 20.3 20.3 20.1 	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 7.1 6.8 4.9 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	<u>р</u> Н	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30
	Time Weather Entry	: 10:00 : 0% clouds, 65F I : Depth (ft) 1 3 6 6 9 9 12 15 18 21 21 21 21 21 21 21 21 21 24 24 24 24 24 24 24 24 24 24 24 24 24	Temp ('C) 21.4 21.2 21.1 20.7 20.6 20.3 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1	D.O. (mg/L) 8.6 8.6 8.6 8.4 7.1 6.8 4.9 2.2 2.2 10 10 10 10 10 10 10 10 10 10 10 10 10	<u>р</u> Н	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.8 0 0 5 - (1) 10 - (1) - (1) - - - - - - - - - - - - - - - - - - -	-	15 20 25 30

Data collected by TAH, MJH, and MKH (Onterra)

Time:	10/29/2012 3:30 10% clouds, calm	n 40F			ILS ILB	Max Depth: Depth (ft): Depth (ft):	26.	3		
Entry						chi Depth (ft):	7.			
	Depth (ft)	Temp (°C)	D.O. (mg/L)	рН	Sp. Cond. (µS/cm)			Octobe	er 29, 2012	
	1	7.9 7.9	10.7 10.7	8.5 8.5	62 62		0	5 10	15 20	25 30
	5 7 9	7.9 7.8 7.6	10.7 10.7 10.7	8.5 8.6 8.6	62 62 62		5 -	H		
	11	7.3	10.7	8.5 8.5	62 62					
	15	7.3	10.4 10.4 10.4	8.5 8.5	62 62		01 - Depth (Ft) 12 -			
	19 21	7.3	10.4	8.5 8.5	62 62		ба 15 Д			
	23 24	7.2 7.2	10.5 10.4	8.5 8.5	62 62		20 -	- ‡ ‡		Temp (°C)
	25	7.2	10.4	8.5	62		25			
	LL	1								
Parameter	Total P (µg/L)	ILS 22	1LB 26							
Di	chl-a (µg/L)	NA 8.94	NA NA							
NO	TKN (μg/L) + NO ₂ -N (μg/L)	NA NA	NA NA							
· · ·	NH ₃ -N (µg/L) Total N (µg/L)	NA NA	NA NA							
	Cond. (µS/cm) Lab pH y (mg/L CaCO ₃)	NA NA NA	NA NA NA							
Total Sus	p. Solids (mg/L) Calcium (mg/L)	ND NA	2 NA							
Ma	gnesium (mg/L) łardness (mg/L)	NA NA	NA NA							
	Color (SU) Turbidity (NTU)	NA NA	NA NA							
			Indian Lake					_		
Date Time Weather: Entry	15:00	95% clouds,			ILS ILB Seci	Max Depth: Depth (ft): Depth (ft): bi Depth (ft):	3 23	-		
Time	15:00 TWH Depth	Temp	calm, 22 °F D.O.		ILB Sec Sp. Cond.	Depth (ft):	3 23	- Fabrus	ny 13 2012	
Time: Weather:	15:00 TWH (ft) 1	Temp (°C) 1	calm, 22 °F D.O. (mg/L) 14.3	рН	ILB Sec	Depth (ft): Depth (ft):	3 23 6.7 0	- Februa 5 10	ry 13, 2013 15 20	25 30
Time: Weather:	15:00 TWH (ft)	Temp (°C) 1 1.2 2.6	Calm, 22 °F D.O. (mg/L) 14.3 12.7 9.8	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7			25 30
Time: Weather:	15:00 TWH (ft) 1 3 6 9 12 12 15	Temp (°C) 1 1.2 2.6 3.1 3.5 3.9	calm, 22°F D.O. (mg/L) 14.3 12.7	рн	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5			25 30
Time: Weather:	15:00 TWH (ft) 1 3 6 9 9 12 15 18 21	Temp (°C) 1 1.2 2.6 3.1 3.5 3.9 4.2 4.4	calm, 22*F D.O. (mg/L) 14.3 12.7 9.8 9.8 8.8 6.3 5 3.8	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5			25 30
Time: Weather:	15:00 TWH (ft) (ft) 1 3 6 9 12 15 15 18	Temp (°C) 1 1.2 2.6 3.1 3.5 3.9 4.2	calm, 22*F D.O. (mg/L) 14.3 12.7 9.8 9.8 8.8 6.3 5	рн	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5			25 30
Time: Weather:	15:00 TWH (ft) 1 3 6 9 9 12 15 18 21	Temp (°C) 1 1.2 2.6 3.1 3.5 3.9 4.2 4.4	calm, 22*F D.O. (mg/L) 14.3 12.7 9.8 9.8 8.8 6.3 5 3.8	pH	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5 (1) 10 - tu e 0 15 -			- Temp
Time: Weather:	15:00 TWH (ft) 1 3 6 9 9 12 15 18 21	Temp (°C) 1 1.2 2.6 3.1 3.5 3.9 4.2 4.4	calm, 22*F D.O. (mg/L) 14.3 12.7 9.8 9.8 8.8 6.3 5 3.8	pH	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5 (1) 10 15 20			
Time: Weather:	15:00 TWH (ft) 1 3 6 9 9 12 15 18 21	Temp (°C) 1 1.2 2.6 3.1 3.5 3.9 4.2 4.4	calm, 22*F D.O. (mg/L) 14.3 12.7 9.8 9.8 8.8 6.3 5 3.8	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 (1) 10 4 4 10 5 (1) 10 5 (1) 10 5 5 (1) 10 5 5 (1) 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 10		-●- Temp (°C) -● D.0.
Time: Weather Entry:	15:00 TWH (ft) 1 3 6 9 9 12 15 18 21	Temp ('C) 1 1.2 2.26 3.3 1 3.5 3.9 4.2 4.4 4.7	calm, 22 'F D.O. (mg/L) 14.3 12.7 9.8 8.8 6.3 5 3.8 2.1 	pH	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5 (1) 10 15 20	5 10		
Time: Weather Entry: Parameter	15:00 TWH	Temp ('C) 1 2.6 3.1 3.5 3.9 4.2 4.4 4.7 	calm, 22 'F D.O. (mg/L) 14.3 12.7 9.8 9.8 6.3 5 3.8 2.1 	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5 (1) 10 15 20	5 10		
Time: Weather Entry: Parameter	15:00 TWH	Temp (C) 1 2.66 3.1 3.5 3.9 4.2 4.4 4.7 4.7 4.7 5 5 ND	calm, 22*r D.O. (mg/L) 14.3 12.7 9.8 9.8 6.3 5 3.8 2.1	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5 (1) 10 15 20	5 10		
Time: Weather Entry: Parameter Di	15:00 TWH (ft) 1 3 6 9 9 122 15 15 15 15 15 15 23 23 23 23 23 23 23 23 23 23 23 23 23	Temp ('C) 1 2.6 3.1 3.5 3.9 4.2 4.4 4.7 	calm, 22 'F D.O. (mg/L) 14.3 12.7 9.8 9.8 6.3 5 3.8 2.1 	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5 (1) 10 15 20	5 10		
Time: Weather Entry: Parameter Di NO	15:00 TWH Depth (ft) 1 3 6 9 12 15 18 21 23 23 23 23 23 24 24 23 24 23 24 24 23 23 23 23 23 23 23 23 23 23	Temp (C) 1 1.2 2.6 3.1 3.5 3.9 4.2 4.4 4.4 4.7 5 5 8 5 8 15 ND 420 23	calm, 22*r D.O. (mg/L) 14.3 12.7 9.8 9.8 9.8 6.3 5 3.8 2.1 	<u>рн</u>	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5 (1) 10 15 20	5 10		
Time: Weather Entry: Parameter Di NO; Lat	15:00 TWH	Temp (C) 1 1.2 2.6 3.1 3.5 3.9 4.2 4.4 4.4 4.7 5 5 8 5 8 15 ND 420 23	calm, 22*r D.O. (mg/L) 14.3 12.7 9.8 9.8 9.8 6.3 5 3.8 2.1 	<u>рН</u>	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5 (1) 10 15 20	5 10		
Time: Weather Entry: Parameter Di Di Lat Alkalinit Total Sus	15:00 TWH Depth (ft) 1 3 6 9 12 15 18 21 23 23 23 23 24 24 23 24 24 23 24 23 24 24 23 24 24 24 24 24 25 55 18 24 24 24 25 55 18 24 24 25 55 18 24 24 25 55 18 24 25 55 18 24 25 55 18 24 25 55 18 24 25 55 18 24 25 55 18 24 25 55 18 24 25 55 18 24 25 55 18 24 25 55 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 25 18 18 25 18 25 18 18 25 18 25 18 25 18 25 18 25 18 25 18 25 25 25 25 18 18 25 25 25 25 25 25 25 25 25 25	Temp ('C) 1 1 2.26 3.1 3.5 3.9 4.2 4.4 4.4 4.7 	calm, 22*r D.O. (mg/L) 14.3 12.7 9.8 9.8 9.8 9.8 9.8 9.8 9.8 9.8	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5 (1) 10 15 20	5 10		
Time: Weather Entry: Parameter Di Di Di Lai Lai Alkalinit Total Sus Ma	15:00 TWH	Temp (C) 1 1.2 2.6 3.1 3.5 3.9 4.2 4.4 4.4 4.7 5 5 8 5 8 15 ND 420 23	calm, 22*r D.O. (mg/L) 14.3 12.7 9.8 9.8 9.8 6.3 5 3.8 2.1 	рН	ILB Sec Sp. Cond.	Depth (ft): Depth (ft):	3 23 6.7 0 0 5 (1) 10 15 20	5 10		

2012-2013	Sur	face	Bot	tom
Parameter	Count	Mean	Count	Mean
Secchi Depth (feet)	6	7.3	NA	NA
Total P (µg/L)	6	17.8	6	30.5
Dissolved P (µg/L)	3	ND	3	ND
Chl a (µg/L)	5	6.6	0	NA
TKN (µg/L	3	413.3	3	833.3
NO3+NO2-N (µg/L)	3	21.5	3	31.5
NH3-N (µg/L)	3	20.0	3	411.5
Total N (µg/L)	2	420.0	2	970.0
Lab Cond. (µS/cm)	2	65.5	2	82.5
Lab pH	2	7.6	2	7.2
Alkal (mg/l CaCO3)	2	25.1	2	34.1
Total Susp. Solids (mg/l)	3	ND	3	5.5
Calcium (µg/L)	2	6.2	0	NA
Magnesium (mg/L)	2	2.5	0	NA
Hardness (mg/L)	2	25.8	0	NA
Color (SU)	2	10.0	0	NA
Turbidity (NTU)	0	NA	0	NA

Year	TP	Chl-a	Secchi
1976			
1979			
1986			46.5
1987			46.5
1988			45.3
1989			44.0
1990			46.0
1991			44.7
1992			44.6
1993			46.5
1994			46.2
1995			44.8
1996	42.2	47.9	46.7
1997			45.1
1998			47.8
1999			47.8
2000			47.0
2001			47.8
2004	47.3	51.6	48.1
2007			44.3
2008			44.4
2009			42.1
2010			43.9
2011			44.3
2012	44.7	48.5	44.5
All Years (Weighted)	44.8	49.1	45.4
Shallow, Headwater Drainage Lakes	52.7	50.4	52.4
NLF Ecoregion	48.1	47.5	45.7

		Secch	ii (feet)			Chloroph	yll-a (μg/L)		Total Phosphorus (µg/L)			
	Growing	Season	Sum	nmer	Growing	Season	Sum	nmer	Growing	Season	Sun	nmer
Year	Count	Mean	Count	Mean	Count	Mean	Count	Mean	Count	Mean	Count	Mean
1976									1	30.0	0.0	
1979	1	6.0	0		1	14.4	0		1	20.0	0.0	
1986	14	8.3	13	8.4								
1987	15	8.3	11	8.4								
1988	21	9.2	13	9.1								
1989	17	9.2	13	9.9								
1990	21	9.5	13	8.7								
1991	20	9.0	12	9.5								
1992	17	9.0	10	9.6								
1993	11	8.0	9	8.4								
1994	17	8.9	11	8.5								
1995	22	8.8	14	9.4	2	12.9	0		2	16.5	0.0	
1996	22	8.1	14	8.3	2	6.3	1	5.8	2	13.0	1.0	14.0
1997	19	8.5	13	9.3								
1998	16	7.9	10	7.7								
1999	15	7.6	10	7.6								
2000	15	8.5	11	8.1								
2001	11	7.6	6	7.7								
2004	2	8.0	1	7.5	1	8.5	1	8.5	2	16.5	1.0	20.0
2007	7	10.0	2	9.8								
2008	12	10.0	8	9.7								
2009	15	12.1	10	11.4								
2010	15	12.3	9	10.0								
2011	17	9.8	11	9.7								
2012	18	9.7	14	9.6	5	6.6	3	6.2	5	17.4	3.0	16.7
All Years (Weighted)		9.1		9.0		8.6		6.6		17.6		16.8
Shallow, Headwater Drainage Lakes				5.6				7.5				29.0
NLF Ecoregion				8.9				5.6				21.0

July 2012 N: July 2012 P:

370.0 16.0

Summer 2012 N:P 23 :1

APPENDIX D

Watershed Analysis WiLMS Results

Date: 5/6/2013 Scenario: Indian Lake Watershed Current

Lake Id: Indian_WS_Current

Watershed Id: 0

Hydrologic and Morphometric Data

Tributary Drainage Area: 566.0 acre Total Unit Runoff: 12.2 in. Annual Runoff Volume: 575.4 acre-ft Lake Surface Area <As>: 357 acre Lake Volume <V>: 3633 acre-ft Lake Mean Depth <z>: 10.2 ft Precipitation - Evaporation: 5.8 in. Hydraulic Loading: 748.0 acre-ft/year Areal Water Load <qs>: 2.1 ft/year Lake Flushing Rate : 0.21 1/year Water Residence Time: 4.86 year Observed spring overturn total phosphorus (SPO): 14.0 mg/m³ Observed growing season mean phosphorus (GSM): 16.3 mg/m³ % NPS Change: 0%

NON-POINT SOURCE DATA

Land Use	Acre	Low	Most Likely	High	Loading %	Low	Most Likely	High
	(ac)	Loa	ding (kg/ha-y	ear)		Lo	ading (kg/year)
Pine plantations	26	0.50	1.00	3.00	13.0	5	11	32
Mixed AG	0.0	0.30	0.80	1.40	0.0	0	0	0
Pasture/Grass	20	0.10	0.30	0.50	3.0	1	2	4
HD Urban (1/8 Ac)	0.0	1.00	1.50	2.00	0.0	0	0	0
MD Urban (1/4 Ac)	0.0	0.30	0.50	0.80	0.0	0	0	0
Rural Res (>1 Ac)	59	0.05	0.10	0.25	3.0	1	2	б
Wetlands	201	0.10	0.10	0.10	10.1	8	8	8
Forest	260	0.05	0.09	0.18	11.7	5	9	19
Lake Surface	357.0	0.10	0.30	1.00	53.7	14	43	144

POINT SOURCE DATA

Point Sources	Water Load	Low	Most Likely	High	Loading %
	(m^3/year)	(kg/year)	(kg/year)	(kg/year)	

SEPTIC TANK DATA

Description		Low	Most Likely	High	Loading %
Septic Tank Output (kg/capita-year)		0.3	0.5	0.8	
# capita-years	90				
% Phosphorus Retained by Soil		98	90	80	
Septic Tank Loading (kg/year)		0.54	4.50	14.40	5.6

TOTALS DATA

TOTALS DATA				
Description	Low	Most Likely	High	Loading %
Total Loading (lb)	78.6	178.1	501.6	100.0
Total Loading (kg)	35.6	80.8	227.5	100.0
Areal Loading (lb/ac-year)	0.22	0.50	1.41	0.0
Areal Loading (mg/m^2-year)	24.67	55.92	157.49	0.0
Total PS Loading (lb)	0.0	0.0	0.0	0.0
Total PS Loading (kg)	0.0	0.0	0.0	0.0
Total NPS Loading (lb)	45.5	72.6	151.4	94.4
Total NPS Loading (kg)	20.7	32.9	68.7	94.4

Phosphorus Prediction and Uncertainty Analysis Module

Date: 5/6/2013 Scenario: Indian Lake Watershed Current Observed spring overturn total phosphorus (SPO): 14.0 mg/m³ Observed growing season mean phosphorus (GSM): 16.3 mg/m³ Back calculation for SPO total phosphorus: 0.0 mg/m³ Back calculation GSM phosphorus: 0.0 mg/m³ % Confidence Range: 70% Nurenberg Model Input - Est. Gross Int. Loading: 0 kg

Lake Phosphorus Model	Total P	Most Likely Total P	High Total P	Predicted	% Dif.
	(mg/m^3)	(mg/m^3)	(mg/m^3)	(mg/m^3)	100
Walker, 1987 Reservoir	16	37	103	21	129
Canfield-Bachmann, 1981 Natural Lake	13	22	43	6	37
Canfield-Bachmann, 1981 Artificial Lake	13	22	37	6	37
Rechow, 1979 General	2	5	13	-11	-67
Rechow, 1977 Anoxic	20	45	126	29	178
Rechow, 1977 water load<50m/year	5	11	32	-5	-31
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	14	33	92	19	136
Vollenweider, 1982 Combined OECD	12	23	55	8	53
Dillon-Rigler-Kirchner	9	20	58	б	43
Vollenweider, 1982 Shallow Lake/Res.	9	19	47	4	26
Larsen-Mercier, 1976	12	27	77	13	93
Nurnberg, 1984 Oxic	8	17	48	1	6

Lake Phosphorus Model	Confidence	Confidence	Parameter	Back	Model
	Lower	Upper	Fit?	Calculation	Туре
	Bound	Bound		(kg/year)	
Walker, 1987 Reservoir	21	79	Tw	0	GSM
Canfield-Bachmann, 1981 Natural Lake	7	63	FIT	1	GSM
Canfield-Bachmann, 1981 Artificial Lake	7	63	FIT	1	GSM
Rechow, 1979 General	3	10	L qs	0	GSM
Rechow, 1977 Anoxic	26	97	FIT	0	GSM
Rechow, 1977 water load<50m/year	б	25	FIT	0	GSM
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	16	74	FIT	0	SPO
Vollenweider, 1982 Combined OECD	11	48	FIT	0	ANN
Dillon-Rigler-Kirchner	11	44	P L qs p	0	SPO
Vollenweider, 1982 Shallow Lake/Res.	9	40	FIT	0	ANN
Larsen-Mercier, 1976	16	58	P Pin	0	SPO
Nurnberg, 1984 Oxic	9	38	FIT	0	ANN

E

APPENDIX E

Aquatic Plant Survey Data

1 Point Number	45.8	30000000000000000000000000000000000000	-89.296366 -89.297724		Sant Much	d Pole	COMMENTS	NOTES	NUSIANCE	c Total Rake Fullness	 Brasenia schreberi 	Ceratophyllum demersum	Ceratophyllum echinatum	Chara spp.	Dulichium ar undinaceum	Elatine minima	Eleocharis acicularis	Eleocharis erythropoda	Eleocharis palu stris	- Elodea canadensis	Eriocaulon aquaticum	Iso etes spp.	Juncus pelocarpus	Lemna turionifera	Lobelia dortmanna Bidens beckii	Myriophyllum tenellum	Najas flexilis	Najas gracillima	Nitella spp.	Nuphar variegata		 Potamogeton amplifolius 		Potamogeton gramineus		Potamogeton pusillus Dotamogeton rohhinell		Determination in a set of formation	Potamogenii 20staniomis	Sagittaria cristata	Sparganum sp.	Sparganium androcladum	Sparganium angustifolium	Sparganium fluctuans	Spirodela polyrhiza	Utricularia intermedia	Utricularia vulgaris	Vallisneria americana	Aquatic moss	Freshwater sponge	Filamentous algae
2 3 4 5	45.8 45.8	07943 07939 07935	-89.297724 -89.297042 -89.296360 -89.295678	7	Muci Roci	k Pole				3 3 3			1							1					2				1			1					3	2										+	+	_	_
6 7 8	45.8 45.8	07931 08420 08416	-89.294996 -89.297036 -89.296354	16 14 16		Pole Rope Rope				1 1 0		1																	1	_						1												\mp	_	_	_
9 10 11	45.8 45.8	08412 08408 08403	-89.295672 -89.294990 -89.294308	17 18 20		Rope Rope Rope				0																																						_	_	_	_
12 13 14	45.8	08399 08897 08893	-89.293626 -89.297030 -89.296348		Rock	k Pole k Pole Rope				0 1 0										1																												_	_		_
17	45.8 45.8	08889 08885 08880	-89.295666 -89.294984 -89.294302	17 18 20		Rope Rope Rope				0																																							_		_
18 19 20	45.8 45.8	08876 08872 08868	-89.293620 -89.292938 -89.292256	17	Roci	Rope				0 1 1																						1				1												_	_	_	_
21 22 23	45.8 45.8	08864 09370 09366	-89.291574 -89.296342 -89.295660	5 17 19		k Pole Rope Rope				1 0 0							_			1																1 1												+	+	-	_
24 25 26 27	45.8 45.8	09362 09357 09353 09349	-89.294978 -89.294296 -89.293614 -89.292932	20 23 24 19		Rope Rope Rope				0 0 0 0																																						+	+	_	_
28 29 30	45.8 45.8	09345 09341 09876	-89.292250 -89.291568 -89.301111	17 3 3	San	Rope d Pole				0 1 2				1						1		1									1		1				1											1	+	_	_
31 32 33	45.8 45.8	09847 09843 09839	-89.296336 -89.295654 -89.294972	18 21 22		Rope Rope Rope				0																																						-	+	_	_
34 35 36	45.8 45.8	09834 09830 09826	-89.294290 -89.293608 -89.292926	23 21 18		Rope Rope Rope				0																																						+	_		_
37 38 39	45.8 45.8	109822 10424 10420	-89.292244 -89.312700 -89.312018		Rock	k Pole				0																																	_					+	+	_	_
40 41 42	45.8 45.8	10416 10411 10407	-89.311336 -89.310654 -89.309972	5	Much	k Pole k Pole d Pole				2 3 1								-		1					1		1				1	1				1	1	_					_		-			1	_	_	_
43 44 45	45.8 45.8	10358 10353 10349	-89.301787 -89.301105 -89.300423	16 20		d Pole Rope Rope				3 0 0							_																			3	3											+	+	-	_
46 47 48	45.8 45.8	10345 10341 10324	-89.299741 -89.299059 -89.296330	18 14 22	San	d Pole Rope				0																																						+	_	-	_
49 50 51 52	45.8 45.8	10320 10316 10311 10307	-89.295648 -89.294966 -89.294284 -89.293602	22 23 20		Rope Rope Rope				0 0 3										1																1 4												+	+	_	_
53 54 55	45.8 45.8	10303 10905 10901	-89.292920 -89.313377 -89.312695	12 0	San	d Pole	NONNAVIGABLE (PLANTS)			2	1			1						1							1		2		1					1												+	+	_	1
56 57 58	45.8 45.8	10897 10893 10888	-89.312012 -89.311330 -89.310648	4 10	Muci Muci Muci	k Pole k Pole				3 3 3		1								1												1			1		3						_					+	+	_	_
59 60 61	45.8	10884 10843 10839	-89.309966 -89.303145 -89.302463	9 13 14	Muci	k Pole Rope Rope				3 0 0		1								1																1 2	2											_	_	_	_
62 63 64	45.8 45.8	10835 10830 10826	-89.301781 -89.301099 -89.300417	18 0 0		Rope	DEEP DEEP			0																																							_		_
65 66	45.8 45.8	10822 10818 10814	-89.299735 -89.299053 -89.298371	0			DEEP DEEP DEEP																																									_	+	_	
68 69 70 71	45.8 45.8	10809 10805 10801	-89.297688 -89.297006 -89.296324	24 0		k Pole Rope	DEEP			0																																						+	_	_	_
72 73	45.8 45.8	10797 10793 10788	-89.295642 -89.294960 -89.294278	24 23 22		Rope Rope Rope				0																																						+	+	-	_
74 75 76 77	45.8 45.8	110784 111386 111382 111378	-89.293596 -89.314053 -89.313371 -89.312689	0	Muci	k Pole	NONNAVIGABLE (PLANTS)			0	1	3					_			1										-	1					3	_											+	+	-	_
78 79 80	45.8 45.8	11374 11370 11365	-89.312007 -89.311324 -89.310642	11	Mucl Mucl	k Pole k Pole Rope				3 3 3			1																							3 3	-											+	+	_	_
81 82 83	45.8 45.8	11361 11357 111337	-89.309960 -89.309278 -89.305868	13 10		k Pole k Pole				1 3 3	1		2							1										1						1 3										1		+	_		_
84 85 86	45.8	11332 11328 11324	-89.305186 -89.304503 -89.303821	1 7 14	Rock	k Pole d Pole Rope				0 3 2										1									2	_						3	3											1	_	_	_
87 88	45.8 45.8	11320 111316 111312	-89.303139 -89.302457 -89.301775	16 17 15		Rope Rope Rope				0																				_																		\mp	_	_	_
90 91 92	45.8 45.8 45.8	11307 11303 11299	-89.301093 -89.300411 -89.299729	9		k Pole				1										1																												_	_		_
94 95	45.8 45.8	11295 11291 11286	-89.299047 -89.298365 -89.297682	0			DEEP DEEP DEEP																																									\pm	_		_
97 98	45.8 45.8	11282 111278 111274	-89.297000 -89.296318 -89.295636	0			DEEP DEEP DEEP																																									+	+	_	_
100 101	45.8 45.8	11270 11265 11261	-89.294954 -89.294272 -89.293590	0 11 10		Rope	DEEP			0								+								F	-		+	+		-				+	+	+		+		+			+			+	+	+	
103 104	45.8 45.8	11249 11244 11863	-89.291544 -89.290861 -89.314047	6	Sana Muci	k Pole d Pole k Pole				1 2 3	1	2		1				+		1						F	-		+	1	1	-				1 3		+		+		+			+			1	+	+	
107	45.8 45.8	11859 11855 11851 11847	-89.313365 -89.312683 -89.312001	12	Muci Muci	k Pole k Pole k Pole				3 3 0																	-		3	+	_				1	3		+										+	+	+	
109 110	45.8 45.8	11847 11842 11838 11834	-89.311319 -89.310636 -89.309954	14 13		Rope Rope Rope				0 1 1						-				1						E	L		1	+	+	-				1	+	+	+	+		+	1					+	+	+	
112 113	45.8 45.8	11834 11830 11814 11809	-89.309272 -89.308590 -89.305862 -89.305180	2	Rock	Rope k Pole k Pole d Pole				1 1 1	1			1			1			1		1				E	L		+		1	-				1		+	+	+		+	1					1	+	+	1
115 116	45.8 45.8	11809 11805 11801 11797	-89.305180 -89.304498 -89.303815 -89.303133		Muc	d Pole k Pole Rope Rope				1 2 2 0				1						1							-		2													+						+	+	+	
118 119	45.8 45.8	11797 11793 11789 11784	-89.303133 -89.302451 -89.301769 -89.301087	17 18 19 19		Rope Rope Rope				0													+			F	-		+	+						+				+								+	+	+	
120	45.8	11784	-89.301087 -89.300405	19 20		Pole		1		U																t						1						t										_	+	1	

Point Number	30011112	BODE 10000 -89.299723	HLL DE L	SEDIMENT	POLE, ROPE COMMENTS	NOTES	NUSIANCE	Total Rake Fullness	Brasenia schreberi Ceratophyllum demersum	Ceratophyllum echinatum	Chara spp.	Dulichium arundinaceum Etation minimo	Eleocharis acicularis	Eleocharis erythropoda	Eleocharis palustris	El odea can adensis	Eriocaulon aquaticum	Iso etes spp.	Juncus pelocarpus Lemna turionifera	Lobelia dormanna	Bidens beckii	Myriophyllum tenellum	Najas flexilis Najas gracillima	Nitella spp.	Nuphar variegata	Nymphaea odorata	Pontederia cordata Potamogeton amplifolius	Potamogeton epihydrus	Potamogeton gramineus	Potamogeton praelongus	Potamogeton pusillus Potamogeton robbinsii	Potamogeton spirifius	Potamogeton zosteriformis	Sagittaria cristata	Sparganium sp.	Sparganium androcladum	Sparganium angustifolium Sparganium fluctuans	Spirodela polyrhiza	Utricularia intermedia	Utricularia vulgaris	Aquatic moss	Freshwater sponge	Filamentous algae
123 124 125 126 127	45.811772 45.811768 45.811768 45.811758 45.811758	-89.299041 -89.298359 -89.297676 -89.296994	0		DEEP DEEP DEEP DEEP DEEP																									_													
127 128 129 130	45.81175 45.81175 45.81174 45.81174	-89.296312 -89.295630 -89.294948 -89.294266	20 19 19		Rope Rope			0 1 0																							1										_		
131 132 133 134	45.811736 45.811736 45.811736 45.811726	-89.293584 -89.292902 -89.292220 -89.291537	19 17		Rope Rope Rope			0 0 1								1								1							1												1
135 136 137 138	45.81172 45.812340 45.812330 45.812330	-89.290855 -89.314041 -89.313359	12 6 11		Pole Pole			2 3 3 2		1	1					1								3							2 1									3	2		
139 140 141 142	45.81232	-89.311995 -89.311313 -89.310631	13 13 13	Muck				2 0 1 3								1				_											1												
143 144 145	45.812311 45.812303 45.812303	-89.309266 -89.308584 -89.307902	11 11 11	Muck Muck Muck	Pole Pole Pole			3 3 3	2	1	3					1					1										2 1 3 1												
146 147 148 149	45.812278 45.812274 45.812270	-89.307220 -89.303809 -89.303127 -89.302445	9 14 17	Sand	Rope Rope			2 3 0	1	1						1											1				3												
150 151 152 153	45.812268 45.812261 45.812253 45.812253	-89.301763 -89.301081 -89.300399 -89.299717	18 17 18		Rope Rope Rope			0																																			
154 155 156 157	45.812249 45.812249 45.812240 45.812236	-89.299035 -89.298353 -89.297670 -89.296988	19		Rope Rope Rope			0 1 0 0								1															1												_
158 159 160 161	45.81223 45.812228 45.812228 45.812228	-89.296306 -89.295624 -89.294942	19 19 18		Rope Rope Rope Rope			0 0 0 0 0																																			
162 163 164 165	45.812215 45.812215 45.812205 45.812205	-89.293578 -89.292896 -89.292214	16 16 14		Rope Rope Rope			1 1 1 3								1								1							1 1 1 3 1												
166 167 168	45.812198 45.812817 45.812813	-89.290849 -89.314035 -89.313353	2 4 9	Sand Muck Muck	Pole Pole			1 3 3	3	1	1					1			1			1				1					1 1												
169 170 171 172	45.812809 45.812809 45.812809 45.812799	-89.312671 -89.311989 -89.311307 -89.310625	12 11 11	Muck Muck Muck Muck	Pole Pole			3 3 3	1	1																					3 3 1 3 1												
173 174 175 176	45.812790 45.812780 45.812780 45.812780	-89.309943 -89.309260 -89.308578 -89.307896	11 6	Muck Muck Muck Muck	Pole Pole			3 3 3 2	2	1						1											1				3 3 3 2	1											_
177 178 179 180	45.812776 45.812772 45.812763 45.812763	-89.307214 -89.306532 -89.305850 -89.305168	8 9 4	Muck Muck Rock	Pole Pole			3 3 2 3								1								3							2	1									1	1	
181 182 183 184	45.812751 45.812743 45.812743 45.812743	-89.303121 -89.302439 -89.301757	10 14 13	Rock Rock	Pole Rope			1 2 0								1								2							1												
185 186 187	45.812734 45.81273 45.812725	-89.3003929 -89.2997107 -89.2990286	17 8 0 6 18		Rope DEEP Rope			0																																			
188 189 190 191	45.812713 45.812709	-89.2976644 -89.2969823 -89.2963001	2 18 19 8 19		Rope Rope Rope			0 0 0 0																																			
192 193 194 195	45.812704 45.812700 45.812696 45.812692	 -89.2949359 -89.2942538 -89.2935717 	5 18 3 16 1 14		Rope Rope Rope			0 0 1																1																			
	45.812688 45.812683 45.812679 45.813293		7 11 5 6	Sand Sand				2 2 2 2	2 1														1	2			2	:	2		1 1 1 1 1				1		_						
200 201 202	45.813289 45.813285 45.813281 45.813277	 -89.3133473 -89.3126652 -89.3119830 	5 4 2 10 9 11	Muck Muck Muck	Pole Pole			3 3 3 3			3					1															3												
204 205 206	45.813273 45.813269 45.813265	-89.3106188 -89.3099367 -89.3092545	4 6 1 8 8 7	Muck Muck Muck	Pole Pole Pole			3 3 3								1															3												
208 209 210	45.813261 45.813256 45.813252 45.813248	-89.3078903 -89.3072082 -89.3065260	2 3 4 7 5	Muck Muck Muck	Pole Pole			3 3 3								2															3												
212 213 214	45.813240 45.813236 45.813232	-89.3037975	2 6 9 6 6 6	Muck Muck Muck	Pole Pole Pole			3 3 3								1											2	:			1										2 1 1 2		
216 217	45.813223 45.813219 45.813215 45.813211	-89.3010690	8 8 6 5	Rock Rock	Pole			0 1 0										1														1											1
219 220 221	45.813202 45.813202 45.813198 45.813194	-89.2997048 -89.2990226 7 -89.2983405	1 0 8 18 5 18		DEEP Rope Rope			0																																			
223 224 225	45.813190 45.813186 45.813181	-89.2969763 -89.2962941 -89.2956120	8 18 8 18 5 18		Rope Rope			0																																			
227 228 229	45.813177 45.813173 45.813169 45.813169	-89.2942478 -89.2935656 -89.2928835	8 14 5 13	Rock Muck Muck	Pole Pole		Ħ	0 2 1 0		Ħ	+	+		E		1			+					1	1						2					+	+			+	+		
231 232 233	45.813160 45.813156 45.813770 45.813766	-89.2915193 -89.3140236 3 -89.3133414	4 2 0 9 4	Muck	Pole NONNAVIGABLE (P	LANTS)			1		1							1					1			1			1		2	2									1		
234 235 236	45.813762 45.813758	7 -89.3126593 3 -89.3119772 5 -89.3112950	2 6 8 5	Muck Muck	Pole Pole		Ħ	3 3 3 3		Ħ		╡	+				Ħ		+						4	+					3	1				4	+			+	+		
238 239 240	45.813746 45.813742 45.813733	-89.3099308 -89.3092486 -89.3078844	2 6 8 4 2 2	Muck Muck Muck	Pole Pole Pole		Ħ	3 2 3	1	1	+	+	1			1	Ħ	+	+						+	1	1				3	1		1		+	+	-	1		1 1	\square	1
241	45.813729	-89.3072022 -89.3065201	o 2 5 4	Muck	Pole			3																		1					3		L									Ħ	

Point Number	BODLITA A228132		30011000 -89.3058380	2 3	SEDIMENT	Pole_ROPE	COMMENTS	NOTES	Brasenia schreberi	Ceratophyllum demersum	Ceratophyllum echinatum	Chara spp.	Dulichium ar undinaceum	Elatine minima Eleocharis acicularis	Eleocharis erythropoda	Eleocharis palustris	Elodea canadensis	Eriocaulon aquaticum	Iso etes spp.	Juncus pelocarpus	Lemna turionitera Lobalia dortmanna	Bidens becki	Myriophyllum tenellum	Najas flexilis	Najas gracillima	Nuch ar variedata	Numbhae odorata	Pontederia cordata	Potamogeton amplifolius	Potamogeton epihydrus	Potamogeton gramineus	Potamogeton praelongus Potamogeton pusilitus	3	Potamogeton zosteriformis	Sagittaria cristata	Sparganium sp.	Sparganium androcladum	Sparganium fluctuans	Spirodela polyrhiza	Utricularia Intermedia	Utricularia vulgaris	Vallisneria americana	Aquatic moss Freshwater sponge	Filamentous algae	
244 245 246 247 248	45.8137 45.8137 45.8137 45.8137 45.8136	7132 709 7049	-89.3051558 -89.3044737 -89.3037916 -89.3031094 -89.3017452	5 6 2 8 9 5	Muck Muck Muck Rock Sand	Pole Pole			2 3 3 0 2																1	1						1	2 3 3									1	+	1	-
249 250 251 252	45.8136 45.8136 45.8136 45.8136	684 3799 3757	-89.3003809 -89.2996988 -89.2990166 -89.2983345	2 5 9 18 6 17	Rock	Pole Rope Rope			0																																	-	+		-
254 255 256	45.8136 45.8136 45.8136 45.8136 45.8136	3673 3631 3589 3547	-89.2976524 -89.2969703 -89.2962881 -89.2956060 -89.2949239	18 7 18 4 17 1 14		Rope Rope Rope Rope	1 1 1		0 1 0 0 2								1							1		2									_								+		-
259 260 261	45.8136 45.8136 45.8136 45.8136 45.8136	3462 642 3378	-89.2942417 -89.2935596 -89.2928775 -89.2921953 -89.2915132	5 12 2 12 9 7	Muck Muck Sand	Pole Pole			2 2 1 2 1	1		1					1							1	2	1					1	1			-							1	+	+	-
263 264 265 266	45.8142 45.8142 45.8142 45.8142	2438 2397 2356 2315	-89.3133356 -89.3126534 -89.3119713 -89.3112892	3 0 8 2 4 4	Muck Muck Muck	Pole Pole Pole	NONNAVIGABLE (PLANTS)		3 3 3		1	1					2										1		1				1 3 3		_							_	+		-
267 268 269 270 271	45.8142 45.8142 45.8142 45.8142 45.8141	2233 2109 2068	-89.3106070 -89.3099249 -89.3078785 -89.3071963 -89.3058320	2 2 1 0 7 0			NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS)		3			1												1	-				1			+	3		1							+	+	÷	-
274 275	45.8141 45.8141 45.8141 45.8141	1943 1902 186 1819	-89.3051499 -89.3044678 -89.3037856 -89.3031035	5 5 1 6 7 8 4 0	Muck Muck Muck	Pole Pole	DEEP		3 3 3																								3 3										+		-
	45.8141 45.8141 45.8141 45.8141 45.8141	1736 1694 1652 161	-89.3024214 -89.3017392 -89.3010571 -89.3003749 -89.2996928	6 20 2 0 8 0 5 0		Rope	DEEP DEEP DEEP		0																							1													-
282 283 284	45.8141 45.8141 45.8141 45.8141 45.8141	1527 1485 1443	-89.2990107 -89.2983285 -89.2976464 -89.2969643 -89.2962821	7 17 3 17 1 18		Rope Rope Rope Rope	, ,		1 0 1 0	1							1									1						1			_							+	+	+	-
286 287 288 289	45.8141 45.8141 45.8141 45.8141	1359 1317 1275 1232	-89.2956000 -89.2949178 -89.2942357 -89.2935536	2 6 9 2 5 7 1 10	Muck Rock Muck Muck	Pole Pole Pole			2 0 3 2	2												1									1	1	1		_							1	+		-
290 291 292 293 294	45.8141 45.8141 45.8141 45.8147 45.8147	1148 1106 7167	-89.2928714 -89.2921893 -89.2915072 -89.3126476 -89.3119654	4 6 1 2 2 0		Pole			2 3 1	1						1	1			1		1	1		1							1	1									2	+	+	-
295 296 297 298 299	45.8147 45.8147 45.8147 45.8146 45.8146	7044 7003 3962	-89.3112833 -89.3106011 -89.3099190 -89.3092368 -89.3078726	8 0 3 2 9 0	Muck	Pole	NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS)		3								1									1	1						3		_		1		1	1	1		1	+	-
300 301 302 303	45.8146 45.8146 45.8146 45.8146	3838 3796 3755 3713	-89.3071904 -89.3065083 -89.3058261 -89.3051440	5 1 1 3 6 5 2 6	Muck Muck Muck Muck	Pole			1 3 3 3	1				1			1					1					1	1				1	3		1					1			3		-
305 306 307 308	45.8146 45.8146 45.8146 45.8146 45.8146	663 3589 3547 3506	-89.3044618 -89.3037797 -89.3030975 -89.3024154 -89.3017333	3 13 9 16 4 17	Muck		1 1		1 0 1 0																							1	1		_								+		-
310 311 312	45.8146 45.8146 45.8146 45.8146 45.8146	638 638	-89.3010511 -89.3003690 -89.2996868 -89.2990047 -89.2983225	1 0 7 0 2 16		Rope			0																										_							+	+	+	-
314 315 316	45.8146 45.8146 45.8146 45.8146	3255 3213 3171 3129	-89.2976404 -89.2969582 -89.2962761 -89.2955940	4 14 9 17 5 18 1 8	Rock	Rope Rope Rope Pole			0 0 1 1			1					1									1						1										+	+		-
320 321	45.8146 45.8146 45.8146 45.8145	3045 3002 596	-89.2949118 -89.2942297 -89.2935475 -89.2928654 -89.2921833	7 2 3 8 8 8 4 8 4 5	Muck Muck Muck Sand	Pole Pole Pole			1 3 3 3 2					1			1				1		1	1	1						1		3 2 3		_							1	+	+	-
324 325 326	45.8145 45.8151 45.8151 45.8151 45.8151	1896 1855 1814	-89.2915011 -89.3119596 -89.3112774 -89.3105952 -89.3099131	i 0 4 0 9 0		Pole	NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS)		1			1							1				1				1								_		-					1	+	+	-
328 329 330 331	45.8151 45.8151 45.8151 45.8151	169 1649 1608	-89.3092309 -89.3085488 -89.3078666 -89.3071845	9 0 4 0 9 3 4 3	Muck	Pole Pole	NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS)		3 1 3								1										1		1				3		_					1			1	1	-
333 334 335 336	45.8151 45.8151 45.8151 45.8151	1525 1483 1442 514	-89.3065023 -89.3058202 -89.3051380 -89.3044559 -89.3037737	4 8 9 10 4 12 9 15	Muck Muck Muck	Pole Pole Pole Rope			3 2 2 0 0	2							1																3 2 1										+	1	
338 339 340	45.8151 45.8151 45.8151 45.8151 45.8151	1317 1276 1234	-89.3030916 -89.3024094 -89.3017273 -89.3010451 -89.3003630	9 17 4 19 9 0		Rope Rope Rope			1																							1			_							+	+	1	-
342 343 344 345	45.8151 45.8151 45.8151 45.8151 45.8150	115 108 1067 1025	-89.2996808 -89.2989987 -89.2983165 -89.2976344 -89.2969522	9 0 4 17 9 15 4 15		Rope Rope Rope Rope	DEEP		0								1																									-	+	-	-
347 348 349 350	45.8150 45.8150 45.8150 45.8150	0941 0899 0814 0772	-89.2962701 -89.295588 -89.2942237 -89.2935415	4 18 5 5 5	Rock Muck Muck	Rope Pole Pole Pole	· · · · · · · · · · · · · · · · · · ·		1 0 2 2								1										1					1	2									+	+	Ŧ	-
353 354	45.8150 45.8150 45.8156 45.8156	0688 0646 3584	-89.2928594 -89.2921772 -89.2914951 -89.3105894 -89.3099072	6 6 1 1 1 0		Pole			3						1	1		1	1	1			1				1	1					3										+	+	
356 357 358 359	45.8156 45.8156 45.8156	3502 646 3419 3378	-89.3092250 -89.3085429 -89.3078607 -89.3071786	9 0 4 0 8 1 2 3	Sand	Pole	NONNAVIGABLE (PLANTS) NONNAVIGABLE (PLANTS)		1 1							1												1					3								1		+	+	
361 362	45.8156 45.8156 45.8156 45.8156	3295 3253	-89.3064964 -89.3058143 -89.3051321 -89.30445	1 9 5 10	Muck Muck	Pole Pole			3 3 3 1	1 3							2									1			1				3		-								+	ŧ	-

ber -								Fullness	Brasenia schreberi Ceratophyllum demersum	Ceratophyllum echinatum		Dulichium ar undinaceum	ima acicularis	Eleocharis erythropoda	palu stris	adensis	aquation	ocarpus	on ifera tmanna	4i	Myriophyllum tenellum	s		egata odorata	Pontederia cordata Potamodeton amolifolius	otamogeton epihydrus	on gramineus	Potamogeton praelongus Potamogeton pusillus	otam ogeton rob bins il	on spiritlus	Potamogeton zosteriformis Sagittaria cristata	.ds t	Sparganium androcladum	Sparganium angustifolium Sparganium fluctuans	olyrhiza	ntermedia	vu Igaris americana	8	sponge	s algae
	45.815617 45.8156129	-89.30376784 -89.30308568	HLd30 15	SEDIMENT BOLE BODE	pe	NOTES	NUSIANCE	Total Rake Fullness	Brasenia schreberi Ceratophyllum der	Ceratophyll	Chara spp.	Dulichium a	Elatine minima Eleocharis acicularis	Eleocharis	Eleocharis palustris	Elodea canadensis	Errocaulon aquaticum Iso etes spp.	Juncus pelocarpus	Lemna turionifera Lobelia dortmanna	Bidens becki	Myriophyllt	Najas flexilis Najas craciliana	1 Nitella spp.	Nuphar variegata Nymphaea odorata	Pontederia cor data Potamogeton ampli	Potamoget	Potamogeton gramine	Potamogeton praelong Potamogeton pusiilus	۰.	Potamogeton spirillus	Potamogeton zost Sagittaria cristata	Sparganium sp.	Sparganiun	Sparganium angustifo Sparganium fluctuans	Spirodela polyrhiza	Utricularia intermedia	Utricularia vulgaris Vallisneria americana	Aquatic moss	Freshwater sponge	Filamentous algae
366 367	45.8156087 45.8156046	-89.30240353 -89.30172137	16 18	Ro	pe pe			0																				-										+		1
369	45.8156004 45.8155962	-89.30103922 -89.30035706	0		DEEP																																	_		_
371	45.815592 45.8155878	-89.29967491 -89.29899275	0 17 16	Ro				0		1																		1										+	<u> </u>	
373	45.8155837 45.8155795 45.8155753	-89.2983106 -89.29762844 -89.29694629	16 14 15	Ro Ro	ре			1		1						1			_			_	1	_				1			_						_	+	<u> </u>	
375	45.8155711 45.8155669	-89.29626414 -89.29558198	16	Ro Sand Po	pe			1 2								1	_					1	1		1			1			_						1	+		_
378	45.8155542 45.81555	-89.29353552 -89.29285337	4	Muck Po Muck Po	le			3																					3 3									_		_
380	45.8155458 45.8155416 45.8161189	-89.29217121 -89.29148906 -89.30785487	0	Muck Po	NONNAVIGABLE	(PLANTS)		2			1					1									2			1										+		
382	45.8161189 45.8161148 45.8161106	-89.30785487 -89.30717271 -89.30649054		Sand Po Muck Po Muck Po	le			1 3 3	_											1								1	3		1							+	<u> </u>	_
384	45.8161065 45.8161023	-89.30580838 -89.30512622	9	Muck Po Muck Po	le			3	1																				1									\pm		_
387	45.8160982 45.816094	-89.30444406 -89.3037619	12	Muck Po Ro	pe			2								2							1					1	1									-		_
389	45.8160899 45.8160857 45.8160815	-89.30307973 -89.30239757 -89.30171541	10 5 18	Muck Po Rock Po Rock Ro	le			3 3 0	1		3					2									1				1									+		_
391	45.8160774 45.8160732	-89.30171541 -89.30103325 -89.30035109	18 0	Ro				0											_			_		_							_						_	+	<u> </u>	
393	45.816069 45.8160648	-89.29966893		R	DEEP			1								1							1					1										\pm		_
396	45.8160607 45.8160565	-89.29830461 -89.29762245	14 14	Ro	ре			0								1												1										+		_
398	45.8160523 45.8160481 45.8160439	-89.29694029 -89.29625813 -89.29557597		Sand Po Sand Po	le			0 2 2			1											1 3						2	1									+	<u> </u>	
	45.8160312 45.816027	-89.29352949 -89.29284733	3	Muck Po Muck Po	le			1 3	_		1					1								1					1								-	+	<u> </u>	_
403	45.8160228 45.8160186	-89.29216517 -89.29148301	3 0	Muck Po	le NONNAVIGABLE	(PLANTS)		2	1							1								1 1			1											_		_
405	45.8165918 45.8165876 45.8165835	-89.30716679 -89.30648462	5	Muck Po Muck Po Muck Po	le			3 3 3								2				1									3									+		
407	45.8165835 45.8165793 45.8165752	-89.30580245 -89.30512029 -89.30443812		Muck Po Muck Po Muck Po	le			3 2 3	2							1									1			1										+	<u> </u>	
409	45.816571 45.8165669	-89.30375595 -89.30307378	11	Muck Po Muck Po	le			1 2	1							1									1													\pm		1
411 412	45.8165627 45.8165585	-89.30239162 -89.30170945	15 14	Ro	pe pe			1								1												1										_		_
414	45.8165544 45.8165502 45.816546	-89.30102728 -89.30034512 -89.29966295	9 15 18	Rock Po Ro Ro	pe			2 0															1					1	1									+		_
416	45.816546 45.8165418 45.8165377		18 15 15	Ro	pe			2															2							_								+	#	
418 419	45.8165335 45.8165293	-89.29761645 -89.29693428	16	Ro Sand Po	pe			1															1					1										\pm		_
421	45.8165251 45.8165082	-89.29625212 -89.29352346	0	Sand Po	NONNAVIGABLE			1			1											1															1			_
423	45.816504 45.8164998 45.8170729	-89.29284129 -89.29215913 -89.30784305		Muck Po Sand Po		(PLANTS)		2	1 1	1			1			1				1				1										1		1	1	+	<u> </u>	
425	45.8170729 45.8170688 45.8170646	-89.30784305 -89.30716087 -89.3064787	3	Muck Po Muck Po	le			3		1						1			_	1		_		-	,				3		_		1				_	+	<u> </u>	
427 428	45.8170605 45.8170563	-89.30579653 -89.30511435	8 7	Muck Po Muck Po	le le			3								1												1 1	3									+		_
430	45.8170522 45.817048	-89.30443218 -89.30375001	10	Muck Po	le			2 3 3	1							1									1				2									+		
432	45.8170439 45.8170397 45.8170355	-89.30306783 -89.30238566 -89.30170349	17	Muck Po Ro Sand Po	pe			3 1 1								1									1			3										+	<u> </u>	
434	45.8170314 45.8170272	-89.30102131 -89.30033914		Rock Po	le		-	0																							-							+		1
437	45.817023 45.8170188	-89.29965697 -89.2989748	15 13	Ro	pe			0															1															_		_
439	45.8170146 45.8170105 45.8170063	-89.29829262 -89.29761045 -89.29692828	14	Ro	pe			2								2							1															+		
441	45.8170003 45.8170021 45.8175458	-89.29624611	1		le			1 3													1								3									+	<u> </u>	_
443 444	45.8175416 45.8175375	-89.30647278 -89.3057906	55	Muck Po Sand Po	le le			3								1				1		1							3 2								0)		
446	45.8175333	-89.30510842 -89.30442624	8	Muck Po	le			3						1	\square	1	+		+		+			+		+		_	3						-			+	Ħ	
448	45.817525 45.8175209 45.8175167	-89.30374406 -89.30306188 -89.3023797	12		le		-	1 3 2	1	-			+	-		1	+		+		+	+	1	+		-	Ħ	1 3			+	-	Ħ	+	-		+	+	盽	4
450	45.8175125 45.8175084	-89.30169752 -89.30101535	2	Rock Po Sand Po	le le			1			1					1									1						1							\pm		1
453		-89.29965099	15	Muck Po	pe			0																														+		
455	45.8174958 45.8174916 45.8174875	-89.29896881 -89.29828663 -89.29760446	13	Muck Po Muck Po	le		-	2						-			+		+		+		2	+		+	Ħ	_		+	+		Ħ		-		_	+	Ħ	4
457	45.8174875 45.8174833 45.8180228	-89.29760446 -89.29692228 -89.30714904	5		le		L	1 3			1			1	H	_	1	H				1			1	1	H		3				H		1			Ŧ	F	-
459 460	45.8180186 45.8180145	-89.30646686 -89.30578467	2	Muck Po Sand Po	le		F	3 1			1	Ŧ			H		+	H	-		Ŧ	-		-	+ [+	H		3	┨			H			H	1	ŧ	Ħ	
462	45.8180103 45.8180062 45.818002	-89.30510249 -89.3044203 -89.30373812	5		le		F	3 3 3			1			1		1	+	+		1	+	+			2	+	Ħ	_	3 1 3		_		Ħ		-			+	#	4
464	45.818002 45.8179979 45.8179937	-89.30305593	9	Muck Po	le		╞	2 2	-		H			-		1	+		+		+	+		+		+	Ħ		3 1 2	+	+		Ħ					+	Ħ	7
466 467	45.8179895 45.8179854	-89.30169156 -89.30100938	0 11	Rock Po Muck Po	le le	_	F	0	-	T					E	+	Ŧ				+		1		1		E	1		┨	1	T	E					Ŧ	H	1
469	45.8179812 45.817977	-89.30032719 -89.29964501	10	Sand Po	le			1						1	\square	1	+		+		+		1	+	1	+		_							-		1	\pm	Ħ	
471	45.8179728 45.8179686 45.8179645	-89.29896283 -89.29828064 -89.29759846	6	Sand Po	le		L	1 3 1	-	-	1	_		1	Ħ	3	+		+		+			+	1	-	H	-		+	+	-	H		-		1	+	#	4
473	45.8179645 45.8185039 45.8184998	-89.30782532 -89.30714313	1	Rock Po	le		F	1				1		1										1	1	F			3				1		1			Ŧ	EF	-
475 476	45.8184956 45.8184915	-89.30646094 -89.30577874	5 6	Muck Po Muck Po	le le		-	3								1					1							-	3 3									\pm	E	
478	45.8184873 45.8184832 45.818479	-89.30509655 -89.30441436 -89.30373217	6	Muck Po Muck Po Muck Po	le		F	3 3 3		-				1		1	+		+		+	+		+			Ħ	_	3 3	+	+	-	Ħ		-			\pm	#	4
480 481	45.8184749 45.8184707	-89.30373217 -89.30304998 -89.30236779	9	Muck Po Muck Po Muck Po	le		F	3 3	_	-			-	1		1	+		+	1	+	+		+		t	Ħ	_	3	+	+	-	Ħ	-	-		+	+	Ħ	4
482 483	45.8184665 45.8184624	-89.3016856 -89.30100341	9 7	Muck Po Sand Po	le le			2	1							-			-	1		1	1	-			H	-	1				H					Ŧ	E	
484	45.8184582	-89.30032122	7	Muck Po	le		1	2		1		[1	L	1	1	<u> </u>		1					1 1	1	L[2			1	L_[1		1		шĽ	

Point Number	LATITUDE	LONGITUDE	DEPTH	POLE_ROPE		NOTES	NUSIANCE Total Rake Fullness	Brasenia schreberi	Ceratophyllum demersum	Ceratophyllum echinatum	Criara spp. Dutlehtum arundinaraum	Elatine minima	Eleocharis acicularis	Eleocharis erythropoda	Eleocharis palustris	Elodea canadensis	Eriocaulon aquaticum	Iso etes spp.	Lemma turion ifera	Lobelia dortmanna	Bidens beckii	Myriophyllum tenellum	Najas flexilis	Najas gracillima	Nitella spp. Nuchar variedata	Nymphaea odorata	Pontederia cordata	Potamogeton amplifolius	Potamogeton epihydrus	Potamogeton gramineus	Potamogeton praelongus	Potamogeton pusillus	Potamogeton spirillus	Datamagana santaifaranta	Sagittaria cristata	Sparganium sp.	Sparganium androcladum	Sparganium angustifolium	Sparganium fluctuans	spirodela polymiza Utricularia intermedia	Utricularia vulgaris	Vallisneria americana	Aquatic moss	Freshwater sponge	Filamentous algae
485	45.818454	-89.29963903		nd Pole			1											1																											
486	45.8189768	-89.30713721	3 Mu	ick Pole			3																										3												
487	45.8189726	-89.30645501	4 Mt	ick Pole			3																										3												
488	45.8189685	-89.30577282	5 M	ick Pole			3																										3												
489	45.8189643	-89.30509062	5 M	ick Pole			3									1																	3												
490	45.8189602	-89.30440842	6 M	ick Pole			3																										3												
491	45.818956	-89.30372623	5 M	ick Pole			3									1					1												3												
492	45.8189519	-89.30304403	6 Sa	nd Pole			3									1																	3												
493	45.8189477	-89.30236183	5 M	ick Pole			3									1																	3									1			
494	45.8189435	-89.30167964	6 M	ick Pole			3																										3												
495	45.8189394	-89.30099744	6 M	ick Pole			3														1												3									1			
496	45.8189352	-89.30031524	2 S#	nd Pole			2									1		1					1	1						1					1										
497	45.8194538	-89.30713129	1 Mu	ick Pole			3	2	1										1	1					1	1														1					
498	45.8194496	-89.30644909	2 Mu	ick Pole			2				2															1																			
499	45.8194455	-89.30576689	4 Mu	ick Pole			2									1									1								2												
500	45.8194413	-89.30508468	5 Mu	ick Pole			3																										3												
501	45.8194372	-89.30440248	3 Mu	ick Pole			3									1																	3												
502	45.819433	-89.30372028	4 Mu	ick Pole			3																										3												
503	45.8194289	-89.30303808	0 S#	nd Pole			1				-	1 1	1							1							1																		
504	45.8194247	-89.30235588	4 M.	ick Pole			2	1	1																	1							1						1						
505	45.8194205	-89.30167367	4 M.	ick Pole			3									1																	3												
506	45.8194164	-89.30099147	4 M.	ick Pole			3																										3												
507	45.8194122	-89.30030927	0		NONNAVIGABLE (PLANTS)																																								
508	45.8199225	-89.30576096	0		TERRESTRIAL						T	T						T	T	T									T	T	T			Т	T					T	Τ				
509	45.8199183	-89.30507875	0		TERRESTRIAL																																								
510	45.8199142	-89.30439654	0 M.	ick Pole			2	1							1											1	1														1				
511	45.81991	-89.30371433	2 M.	ick Pole			2		1																	1	1						1								1		1		
512	45.8199017	-89.30234992	0		NONNAVIGABLE (PLANTS)																																								
513	45.8198975	-89.30166771	2 M.	ick Pole			1	1																		1													1		1				
514	45.8198934	-89.3009855	3 R	ck Pole			3																									3	3												
515	45.8198892	-89.30030329	2 M.	ick Pole			1	1																		1																			

F

APPENDIX F

WDNR 2008 Comprehensive Survey

Comprehensive Fisheries Survey of Indian Lake, Oneida County Wisconsin during 2004.

Waterbody Identification Code 1598900

John Kubisiak Senior Fisheries Biologist Rhinelander June, 2007

Your purchase of fishing equipment and motor boat fuel supports boating access and Sport Fish Restoration.

Comprehensive Fisheries Survey of Indian Lake, Oneida County Wisconsin during 2004.

John Kubisiak Senior Fisheries Biologist June, 2007

EXECUTIVE SUMMARY

A comprehensive fisheries survey of Indian Lake was conducted during spring, 2004. Indian Lake has a diverse, high-quality fishery. Northern pike (population estimate, PE = 4.3 per acre) were the dominant gamefish, with good populations of walleye (PE = 1.4 adults and 1.6 total walleyes per acre), largemouth bass (PE = 1.2 per acre), and smallmouth bass (PE = 1.0 per acre). A few muskellunge were also present. Panfish species include black crappie, bluegill, pumpkinseed, bluegillxpumpkinseed hybrids, yellow perch, rock bass and bullheads. Panfish were abundant, with good size structure. Bass growth rates were average or above, while growth was slow for northern pike and older walleye. Growth rates were below regional averages for yellow perch and for bluegill and pumpkinseed.

Indian Lake supports good fisheries for panfish, northern pike, and lower density, quality-size walleye and bass. Fish populations show adequate natural reproduction, and no stocking is currently needed, but walleye recruitment should be periodically monitored.

Lake and location:

Indian Lake, Oneida County, T39N R9E Sec36 Located in north-east Oneida County in the town of Sugar Camp, about 9 miles south of Eagle River. It is part of the Upper Wisconsin River watershed and is drained by Indian Chain Creek.

Physical/Chemical attributes (Andrews and Threinen 1966):

Morphometry: 397 acres, maximum depth 26 feet.

Watershed: 2 square miles, including 464 acres of adjoining wetlands.

Lake type: Spring (No inlet; outlet is Indian Chain Creek).

Basic water chemistry: Soft – alkalinity 28 mg/l, conductance 62 µmhos.

Water clarity: Clear water of moderate transparency.

Littoral substrate: 55% sand, 20% muck, 15% gravel and some rock.

Aquatic vegetation: Submerged vegetation dense in the east bay and the northeast portion of the lake, moderate elsewhere. Floating and emergent plants adjoin the bog wetland in the east bay. Winterkill: None.

Boat landing: Asphalt and gravel ramp with parking for four vehicles with trailers.

Other features: Shoreline 70% upland with significant areas of shrub-conifer bog wetland.

<u>Purpose of Survey</u>: Assess status of gamefish, panfish and non-game species and develop management recommendations.

<u>Dates of fieldwork</u>: Walleye netting, April 20-25 2004. Panfish netting June 14-18 2004. Mini-fyke netting August 31 - September 1 2004. Hook & line bass marking May 26 2004. Electroshocking (entire shoreline) April 26, May 7, May 20, June 9, June 15 and September 9 2004.

BACKGROUND

After a single electroshocking run on July 22, 1963, Morehouse (1963) indicated "Panfish are quite abundant ... and will result in a greater problem in the near future." Muskellunge stocking was recommended to increase predation on panfish. "Ideal walleye spawning areas" were described and the walleye population was termed "good". No bass were found, but it was noted that local residents had reported good bass fishing in the past. In a summary paragraph from the Oneida County annual report, it was noted "Bullheads are numerous and are of good size which should make removal by commercial means economical." Commercial fisherman's reports indicate that 1,395 pounds of 10-12 inch bullheads were removed during October 1963.

A spring survey was conducted in 1972 (Berndt 1973). Gamefish were netted (24 net lifts from May 15-19), an electroshocking survey was performed on the night of May 19 and 8 seine hauls were collected on June 22. Gamefish populations were characterized as "a good population of walleyes... natural reproduction is occurring. Other predator game fish captured were muskellunge, northern pike, smallmouth bass, and largemouth bass." Yellow perch and bluegills were the most abundant panfish. Under Fish Stocking, the report recommended "No additional walleye stocking is recommended for a five-year period. Walleye year classes are represented from years when the lake wasn't stocked." Walleye reproduction was to be evaluated after five years (no evaluation is recorded). "Periodic support stocking of muskellunge is recommended on the assumption natural reproduction is limited."

Great Lakes Indian Fish and Wildlife Commission (GLIFWC) conducted a mark-recapture adult walleye population estimate in 1991 and 1992. They estimated 2.23 (\pm 0.73 SD) adult and 3.43 (\pm 1.0 SD) total walleyes per acre in 1991 and 1.47 (\pm 0.10 SD) adults per acre in 1992.

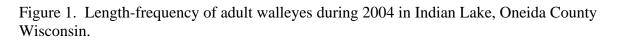
Fall young-of-year surveys were conducted in 1990, 91, 92, 93, 94 (GLIFWC) and 2004 (DNR).

METHODS

The ice went off Indian Lake the night of April 18, 2004. Eight standard fyke nets (3/4" bar mesh) were set April 20. These nets targeted walleye and were fished through April 25. Eight standard fyke nets were fished June 14-18 (targeting panfish). Six mini-fyke nets (3/16" bar mesh with 1" bar mesh exclusion netting across the mouth) were fished one night on August 31-September 1 (targeting juvenile and non-game fish). A WDNR-standard alternating current electrofishing boat was used to collect fish on April 26, May 7, May 20, June 9, June 15 and September 9, 2004 (the June 15 collection was an extra sample to better estimate largemouth and smallmouth bass populations). Hook and line marking of bass was attempted on May 26, after numerous beds were noted during the May 20 shocking survey, but cold weather had pushed most of the fish offshore. Length or length category (nearest half-inch) was recorded for all gamefish and on panfish during June. Adult gamefish were given a right-ventral fin clip and juveniles were given a top-tail clip for use in mark-recapture population estimates. Age structures (scales or spines) were removed from ten fish per species, per half-inch group.

RESULTS AND DISCUSSION

Walleye


During walleye netting, 379 walleyes were captured in 5 nights (including 1 juvenile and 80 recaptures), at a rate of 7.9 walleyes per net day (Table 1). Another 18 walleyes (8 were recaptures)

were captured during panfish netting. The first electrofishing sample on April 26 yielded 65 walleyes (12.7 fish per mile), and subsequent electrofishing runs produced 23, 25, 20 and 0 walleyes. The mark-recapture population estimate of 566 adult walleyes (\pm 89.4 SD), or 1.4 per acre, is below the predicted population of 1,437 (from a regression model of naturally reproducing northern Wisconsin walleye populations), but is still above 476, the lower 95% prediction interval of the model. Indian Lake was true to its reputation for producing "a few, nice-size walleye," and it appears that the population is maintaining itself at a moderate to low abundance.

The total walleye population (all fish 7 inches and larger) is estimated at 646 (\pm 153.0 SD). Fish less than 15 inches usually make up a large proportion of a naturally-reproducing walleye population. However, these sizes comprised only 15% of adult walleyes (Figure 1) and 28% of total walleyes estimated in Indian Lake, indicating weak to moderate yearclasses in recent years. Fall surveys show weak recruitment in early 1990s, while the September 2004 survey indicated a moderate yearclass (11.2 age 0 and 1.8 age 1 walleye per mile of shoreline).

Only males less than 17 inches are included in growth summaries. Slow growth of larger fish made scale ages suspect, and time constraints prevented additional ageing of spines. Growth of male walleye was about average out to age 6, but was very slow for older fish (Appendix A). Four larger male walleyes 20.2 to 21.1 inches in length were assigned ages of 11, 12, 16 and 17, indicating that growth rates of individual fish range from average to well below average.

Walleye were stocked sporadically from 1954 to 1991 (Table 2). In years past, it was common to stock on top of naturally reproducing populations. However, recent studies indicate that stocking to supplement natural reproduction is usually ineffective (Li et al. 1996). The walleye population in Indian Lake was below average in 2004, but still within the normal range in lakes supported by natural reproduction. The low population may simply be a result of weak recruitment in recent years, rather than a long-term decline. Fall surveys to monitor future recruitment are warranted.

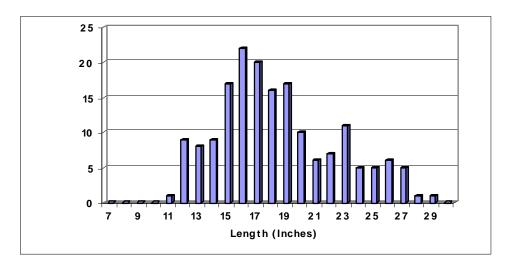
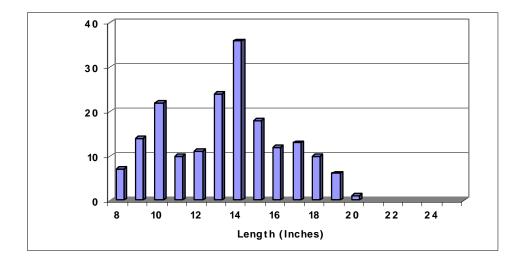


Table 1. Catch per unit effort of gamefish and panfish species during spring, 2004 comprehensive survey of Indian Lake, Oneida County Wisconsin. Netting catch rates are reported as number of fish per net night, while electrofishing catch rates are number of fish per mile of shoreline. Panfish data were not collected during all sampling events and were only collected on two 0.5-mile index stations on September 9.

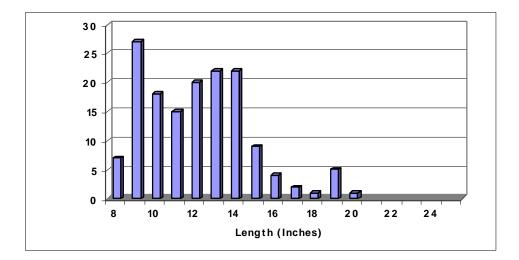
species	walleye netting	April 26 shocking	May 7 shocking	May 20 shocking	June 9 shocking	June 15 shocking	panfish netting	Sept 9 shocking
walleye largemouth	7.9	12.7	4.5	4.9	3.9	0	0.6	14.1
bass	0.8	1.8	2.0	2.7	4.1	5.7	2.0	6.9
smallmouth bass	0.7	1.0	4.9	8.6	7.1	9.0	1.4	7.5
northern pike	2.5	6.3	4.9	5.1	3.7	2.3	1.0	5.1
black bullhead	0.02						0.2	0
black crappie	1.8						4.1	9
bluegill	3.7						83.3	408
hybrid bluegill xpumpkinseed	0						0.3	2
pumpkinseed	0.7						31.0	6
rock bass	0.6						5.8	23
yellow bullhead	3.2						57.8	14
yellow perch	3.9						0.4	51


Smallmouth Bass

The current Wisconsin state hook and line record smallmouth is a 9 pound, 1 ounce fish caught in Indian Lake in 1950, and the lake continues to show some quality-size bass. Two hundred thirty-seven smallmouth bass were captured (including recaptures and juvenile fish) during spring sampling. The adult (greater than 8 inches) smallmouth bass population was estimated at $379 (\pm 82 \text{ SD})$, or 0.95 per acre. Smallmouth bass length-frequency (Figure 2) indicates adult size centered on 14 inches, with good numbers of fish out to 20 inches. Growth rates of smallmouth were average or above, with very good potential for producing quality-size fish (Appendix A). The largest smallmouth handled was 20.9 inches.

Year	Species	Size	Number
1954	walleye	fingerling	800
1955	muskellunge	fingerling	397
1957	muskellunge	fingerling	1,300
1958	muskellunge	fingerling	214
1964	muskellunge	fingerling	4,000
1965	muskellunge	fingerling	4,250
1966	walleye	fingerling	15,000
1968	walleye	fingerling	27,000
1969	muskellunge	fingerling	752
1970	walleye	fingerling	5,000
1971	muskellunge	fingerling	1,711
1973	muskellunge	fingerling	800
1976	walleye	fingerling	12,000
1977	muskellunge	fingerling (7inch)	800
1979	muskellunge	fingerling (9 inch)	411
1982	muskellunge	fingerling (12 inch)	800
1983	walleye	fingerling (2 inch)	20,000
1984	muskellunge	fingerling	300
1985	walleye	fingerling	20,000
1986	muskellunge	fingerling	800
1989	walleye	fingerling (2 inch)	20,000
1991	walleye	fingerling (2.8 inch)	10,100

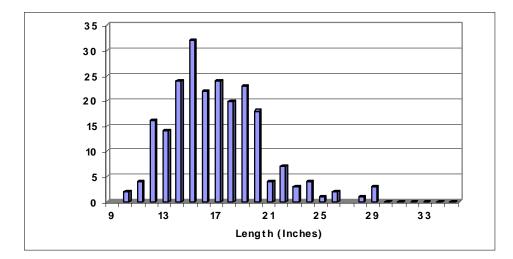
Table 2. Fish stocking record through 2006 in Indian Lake, Oneida County Wisconsin.


Figure 2. Length-frequency of smallmouth bass during 2004 in Indian Lake, Oneida County Wisconsin.

Largemouth Bass

The adult largemouth bass population was estimated at 461 (\pm 181 SD), or 1.2 per acre. The largest largemouth was 20.8 inches, but most of the 187 handled were less than 15 inches (Figure 3). A length-frequency that is truncated just after the legal length limit suggests that angler harvest may be impacting the number of larger fish. Similar to smallmouth, growth rates of largemouth bass were somewhat above regional averages.

Figure 3. Length-frequency of largemouth bass during 2004 in Indian Lake, Oneida County Wisconsin.



Northern Pike and Muskellunge

Two hundred sixty-four northern pike were captured (including 11 juveniles and 15 recaptures), all gears combined. The northern pike population (including sexually mature fish and all fish over 12 inches) was estimated at 1,718 (\pm 443 SD), or 4.3 per acre using the Schnabel multiple-capture method (Ricker 1975). Average size of adult northern pike was 17.2 inches, and low numbers of fish greater than 21 inches in length were observed (Figure 4). The largest northern pike was 29.9 inches. The relatively small average size can be attributed to slow growth. Female northern pike lengths-at-age were about a year behind average until age 6, and they were even further behind at older ages (Appendix A). Male pike were also growing at average to below average rates.

No muskellunge were captured during the survey, but several large ones were observed during the May 20 electroshocking survey. Muskellunge spawning habitat is available, but recruitment is likely suppressed by the abundant northern pike. Muskellunge were last stocked in Indian Lake in 1986 (Table 2). Fingerling muskellunge are vulnerable to predation by northern pike, making it difficult to establish muskies by stocking on top of an abundant northern pike population (Margenau 1999).

Figure 4. Length-frequency of adult northern pike during 2004 in Indian Lake, Oneida County Wisconsin.

Panfish

April netting produced good catches of yellow perch, bluegill, and yellow bullhead. Bluegill, yellow bullhead and pumpkinseed dominated June panfish netting (Table 1). Size structure of all panfish species was quite good, indicating adequate populations of predator fish (Figures 5 - 10). June bluegill catch rates of 83 per net night are high, but are below the 'high density' threshold of 100 fish per net night. The strong peak in bullhead size (Figure 10) suggests that most of the population is from one or two large yearclasses.

Bluegill and pumpkinseed were growing about a year behind regional averages at the smaller sizes, with lots of variation between individual fish lengths-at-age (Appendix A). Fish larger than about 7 inches were generally growing well. One possible explanation is panfish that remain in the shallow, vegetated areas of the lake are limited by food, but have good survival. Faster-growing fish may be living in areas with more food and more vulnerability to predators. One exception to the fast-growing larger fish was a 9.1-inch bluegill. Growth increments on this fish's scales were very small, but at 14 years of age, it had survived long enough to achieve a large size. Yellow perch were growing slowly, with length-at-age averaging over a year behind regional values. In contrast to other panfish, black crappie and rock bass were growing about average throughout their size range.

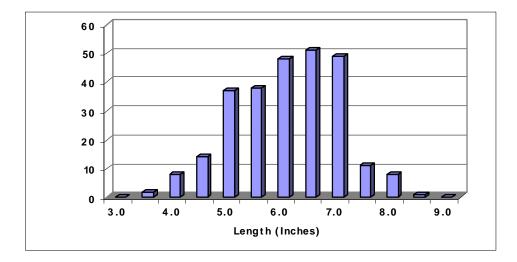


Figure 5. Length-frequency of bluegill during 2004 in Indian Lake, Oneida County Wisconsin.

Figure 6. Length-frequency of pumpkinseed during 2004 in Indian Lake, Oneida County WI.

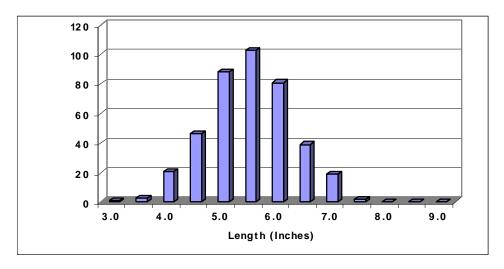
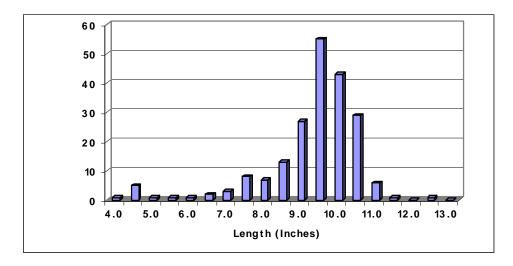



Figure 7. Length-frequency of black crappie during 2004 in Indian Lake, Oneida County WI.

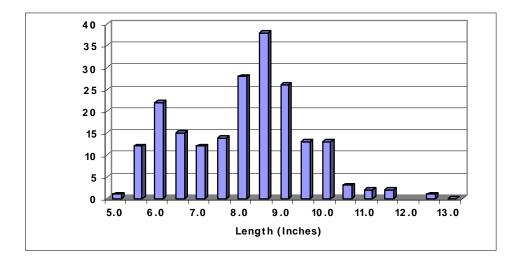


Figure 8. Length-frequency of yellow perch during 2004 in Indian Lake, Oneida County WI.

Figure 9. Length-frequency of rock bass during 2004 in Indian Lake, Oneida County Wisconsin.

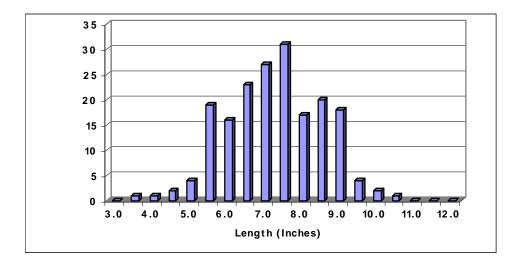
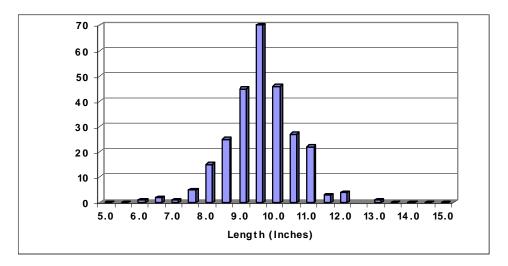



Figure 10. Length-frequency of yellow bullhead during 2004 in Indian Lake, Oneida County Wisconsin.

MANAGEMENT RECOMMENDATIONS

Indian Lake supports a diverse gamefish community. Northern pike are the dominant gamefish and likely control recruitment of other species. Northern pike are abundant with poor size structure and slow growth at older ages. The walleye population is moderate in density, with good numbers of fish larger than 15 inches. Walleye recruitment appears to be low to moderate. They may be affected by predation from the abundant northern pike. Smallmouth bass show moderate numbers and good size structure. Largemouth bass are slightly more abundant than smallmouth, but most fish were less than 14 inches. This could reflect angler harvest of legal-sized bass, especially largemouth. Both bass species are growing at average or above. Muskellunge are present in the lake, but survival of naturally reproduced or stocked muskies is probably very poor due to the abundant northern pike. Despite high panfish abundance, growth rates and size structure were generally good, with the exception of the slow-growing yellow perch. This indicates that the gamefish populations are in balance and are providing adequate predation on most panfish species. I recommend continuing to manage Indian Lake for panfish, northern pike, and moderate density, quality-size walleye and bass. No stocking is currently needed, but walleye recruitment should be periodically monitored.

ACKNOWLEDGEMENTS

Matt Andre, Tom Bashaw, Kevin Gauthier, Steve Gilbert, Dennis Goulee, Nate Guldan, Ben Heimbach, Steve Timler, Joelle Underwood, Brian Uttech and Keith Worrall assisted in the field. Steve Timler and I assigned ages from scales and spines. Matt Andre entered and summarized data. Mike Coshun calculated walleye and bass population estimates.

LITERATURE CITED

Andrews, L. M. and C. W. Threinen. 1966. Surface water resources of Oneida County. Wisconsin Conservation Department, Madison, Wisconsin. 284 pages.

Berndt, H. E. 1973. Lake Investigation – Indian Lake, Oneida County. Three-page memorandum with 11 pages of attached data. To John G. Brasch, Attn. A. R. Ensign, signed by R. W. Wendt. Wisconsin Department of Natural Resources, Woodruff Wisconsin.

Li, J., Y. Cohen, D.H. Schupp and I. R. Adelman. 1996. Effects of walleye stocking on year-class strength. N. Am. J. Fish. Mgmt. 16:840-850.

Margenau, T. L. 1999. Muskellunge stocking strategies in Wisconsin: The first century and beyond. N. Am. J. Fish. Mgmt. 19:223-229.

Morehouse, L. E. 1963. Indian Lake – Oneida County. Intra-department memorandum. Wisconsin Conservation Department, Woodruff, Wisconsin. 1 page memorandum with 10 pages of attached data.

Cover image courtesy of TerraServer-USA website and the United States Geological Survey. http://terraserver-usa.com

APPENDIX A FISH AGE RESULTS

When 50 or more fish were measured, the aged sub-samples were applied against the full length-frequency to eliminate bias from a non-random subsample. Too few female walleye were aged to accurately represent age and growth.

Table A.1. Male walleye length-at-age in Indian Lake, Oneida County Wisconsin during 2000 and 2004.

	Number	Indian	Northern
Age	of fish	avg	WI avg
		length	
2			10.6
3	16	12.1	11.6
4	12	13.9	13.0
5	3	15.0	14.5
6	8	15.4	15.8
7	6	16.0	16.9
8	2	16.7	18.1
9	2	16.5	18.9
10	1	16.3	19.7
11			20.4
12			20.6
13			21.3
14			22.0

Table A.2. Smallmouth bass length-at-age in Indian Lake, Oneida County Wisconsin during 2004.

	Number	Indian	Northern
Age	of fish	avg length	WI avg
2	16	6.6	6.9
3	21	8.8	9.3
4	16	11.5	11.8
5	18	13.3	13.5
6	13	15.4	15.2
7	14	17.0	16.1
8	5	17.3	17.1
9	6	18.1	17.7
10	3	18.6	18.3
11	2	18.9	18.5
12	3	20.7	19.8

Table A.3. Largemouth bass length-at-age in Indian Lake, Oneida County Wisconsin during 2004.

	Number	Indian	Northern
Age	of fish	avg length	WI avg
2	13	6.6	6.6
3	23	8.7	8.9
4	12	11.3	10.5
5	11	12.4	12.1
6	14	13.9	13.6
7	9	14.5	14.9
8	9	16.4	15.8
9	2	17.5	16.2
10	3	20.6	17.1
11	1	18.2	17.8
12	3	19.2	18.2

	Number	Indian	Northern
Age	of fish	avg length	WI avg
1	1	10.3	13.1
2	5	13.6	14.4
3	5	15.4	16.9
4	6	17.7	20.4
5	3	19.4	23.1
6	2	22.2	24.4
7	4	20.0	27.3
8	3	22.5	28.8
9	2	19.3	32.1
10	0		33.8
11	1	26.7	

Table A.4. Female northern pike length-at-age in Indian Lake, Oneida County Wisconsin during 2004.

Table A.6. Bluegill length-at-age in Indian
Lake, Oneida County Wisconsin during 2004.

	Number	Indian	Northern
Age	of fish	avg length	WI avg
1			2.5
2	2	3.2	3.9
3	9	3.8	5.0
4	20	4.6	6.2
5	36	5.9	6.8
6	17	7.5	7.8
7	6	8.7	8.2
8	4	8.2	8.7
9	1	7.5	8.7
10	1	8.0	9.2
14	1	9.1	

Table A.5. Male northern pike length-at-age in Indian Lake, Oneida County Wisconsin during 2004.

	Number	Indian	Northern
Age	of fish	avg length	WI avg
1			10.7
2	17	11.8	13.4
3	13	15.2	16.2
4	7	15.9	18.9
5	16	17.5	20.6
6	11	22.3	22.3
7	4	23.1	23.4
8	2	21.2	24.8
9	1	22.0	23.9
10	0		21.5
11	1	20.2	

Table A.7. Pumpkinseed length-at-age in Indian Lake, Oneida County Wisconsin during 2004.

	Number	Indian	Northern
Age	of fish	avg length	WI avg
1			2.2
2	2	3.3	3.6
3	10	3.8	4.8
4	10	4.5	5.7
5	34	6.0	6.5
6	20	6.9	6.8
7	1	7.4	7.3
8	1	7.5	7.3
9	1	7.3	

	Number	Indian	Northern
Age	of fish	avg length	WI avg
1			1.5
2	2	4.0	3.6
3	4	4.9	5.1
4	16	5.7	6.4
5	26	6.8	7.2
6	16	7.9	7.9
7	10	9.3	8.4
8	13	9.1	9.0
9	2	9.7	9.4
10	2	10.7	
11	1	10.0	

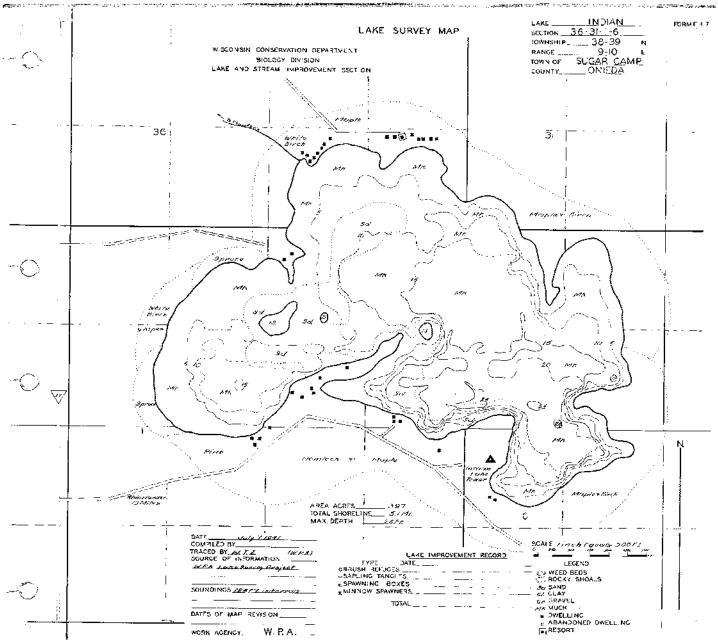

Table A.8. Rock bass length-at-age in Indian Lake, Oneida County Wisconsin during 2004.

Table A.10. Yellow perch length-at-age in Indian Lake, Oneida County Wisconsin during 2000 and 2004.

Age	Number of fish	Indian avg length	Northern WI avg	
1		length	3.4	1
2			5.3	
3	12	5.	9 7.1	1
4	12	5.	3 9.0)
5	18	7.	4 10.0)
6	23	7.	9 10.7	7
7	16	9.	1 11.0	5
8	11	11.	1 11.7	7
9	136	11.	0 10.4	1
10	5	12.	5 11.0	5
11	1	11.	9	

Table A.9. Black crappie length-at-age in Indian Lake, Oneida County Wisconsin during 2004.

	Number	Indian	Northern
Age	of fish	avg length	WI avg
1			3.4
2	6	5.8	5.3
3	8	7.6	7.1
4	23	7.5	9.0
5	9	9.9	10.0
6	10	11.1	10.7
7	4	11.2	11.6
8	1	11.9	11.7
9	1	12.7	10.4
10	1	13.8	11.6

