Water Quality of Powers Lake, Kenosha County, WI

Herb Garn, Bill Rose, and Rebecca Rewey

U.S. Geological Survey, WRD, Middleton, Wisconsin

<u>In Cooperation with</u>: Powers Lake Management District Wisconsin DNR

PROBLEM

- Although water quality and trophic condition of Powers Lake are generally good (mesotrophic), increasing trends of some characteristics are of concern
- Continued and enhanced monitoring of Powers Lake is needed to more completely define conditions and to provide early warning of deteriorating conditions

USGS Projects with Powers Lake

	Lake water-quality	Watershed,	
Year	monitoring	Loading study	
1987		-	
1988			
1989			
1990			
1991			
1992			
1993			
1994			
1995			
1996			
1997			
1998			
1999			
2000			
2001			
2002			

Goals of the Powers Lake Monitoring Project

1. Continue to evaluate lake water quality and trophic state to build a long-term database

2. From a quantitative database, provide a more complete definition of the water quality of the lake and provide early warning of deteriorating conditions or trends

3. Assess the condition of the lake over time in comparison with other lakes in the region

A LAKE IS A REFLECTION OF ITS WATERSHED

EUTROPHICATION

- The natural process of physical, chemical, and biological changes associated with nutrient, organic matter, silt enrichment and sedimentation of a lake. The process may be accelerated by man-made influences, and is then called 'cultural eutrophication.'
- **Phosphorus**—the critical nutrient

EUTROPHICATION

TROPHIC CLASSIFICATION OF LAKES

Oligotrophic

Mesotrophic

Eutrophic

OLIGOTROPHIC LAKES

- Clear water, low productivity
- Algal populations low
- Deepest water contains oxygen
- Total Phosphorus conc. < 5 ug/L
- Chlorophyl *a* conc. < 2 ug/L
- Secchi depth > 4 m

MESOTROPHIC LAKES

- Moderate clarity, increased production
- Generally a good fishery
- Occasional algal bloom
- Deepest water has some oxygen depletion
- Accumulated organic sediments
- Total Phosphorus conc. 5-17 ug/L
- Chlorophyl *a* conc. 2-7 ug/L
- Secchi depth 2-4 m

EUTROPHIC LAKES

- Little clarity, very productive
- Rough fish common, occasional fish kills
- Frequent algal blooms
- Deep waters have oxygen depletion
- Accumulated rich sediments
- Total Phosphorus conc. > 17 ug/L
- Chlorophyl *a* conc. > 7 ug/L
- Secchi depth < 2 m

Lake Stratification

BASIC FOOD CHAIN

F15H

ZOOPLANKTON

0

NUTRIENTS

NITROGEN

Powers Lake

Water and Phosphorus Budgets

Water Temp and D.O. Profiles

Total Phosphorus Concentration

Chlorophyll a Concentration

Secchi Depth

Trophic State Index (TSI) 1986 - 2001

Annual Data Reports Published by the USGS

Regional Comparison

_	Parameter (late-summer values)	Percent distribution of lakes in southeast region	
-	Total Phosphorus (ug/L)		
	<0.010	best condition	7
Powers La	ke 0.010-0.020		21
	0.020-0.030		15
	0.030-0.050		21
	0.050-0.100		21
	0.100-0.150		3
	>0.150	worst condition	12
_	Chlorophyll a (ug/L)		
	0-5	best condition	22
Powers La	ke 5-10		31
	10-15		14
	15-30		12
	>30	worst condition	22
_	Secchi depth (meters)		
	>6.0	best condition	1
	3.0-6.0		9
Powers La	ke 2.0-3.0		26
	1.0-2.0		31
	<1.0	worst condition	33

Chloride and Sodium Concentrations

Bottom Total Phosphorus in August

Anoxic Volume on July 1

CONCLUSIONS

- Water quality is good in comparison to other lakes in the region and was consistent during the 15–year study period
- Phosphorus, chlorophyll *a* and Secchi depth indicate the lake is usually mesotrophic
- Algal growth is phosphorus limited
- Hypolimnion becomes anoxic in summer but minor amounts of phosphorus are released from bottom sediments

• Some indicators show an apparent trend of deteriorating conditions

