Phase II Lake Study Report

Scope I.D.: 00L008

Long Lake Advancement Association

August 2005

Long Lake Association Phase II Report

Contents

1	Introduction 1.1 Authorization 1.2 Purpose	1 1
2	Septic System Evaluation	2
3	Stormwater Impacts	4 4 5
4	Stream Flow/Lake Level Monitoring	6 7
5	 Phosphorus Evaluation	8 9 9 9 9 10
6	Fishery Spawning Area Enhancement	11
7	Conclusions and Recommendations. 7.1 Conclusions. 7.2 Recommendations.	13 13 13

Tables

Table 5-1	2004 Total Phosphor	us Concentrations	– ug/l	3
				۰.

Figures

T .		D'1 G '	• • • • •			10
Figure 6	5-1 Northern	Pike Snawnin	σ Area Potential	l Habitat Impro	ovement Locations	12
I Iguie v		i i ike opuwiiii		i muonat mipi		····· 14

Appendices

Appendix A On Site Survey Forms Appendix B Stream Flow – Lake Level Monitoring Appendix C Phosphorus Testing Appendix D Northern Pike Spawning Habitat

1 Introduction

Long Lake is located in eastern Manitowoc County approximately 3 miles south of the city of Brillion. The lake covers 119 acres with a maximum depth of 38 feet. A dam on the south end of the lake controls the water level in the lake.

The Long Lake Advancement Association completed a Phase I lake planning study in May 2003. The study showed the lake to be highly eutrophic with a relatively small watershed. Phosphorus concentrations were high and have led to elevated algae levels and excessive weed growth. Chemical treatment for phosphorus removal was identified as a potential lake management strategy. Northern pike spawning was evaluated with a focus on the dam. Controlling water levels and providing increased spawning areas are a key in improving northern pike populations in the lake.

In October 2003, the Long Lake Advancement Association was awarded a Lake Planning Grant from the Wisconsin Department of Natural Resources (WDNR) to conduct a Phase II study to consider the sources of phosphorus loading to the lake.

1.1 Authorization

The Long Lake Advancement Association authorized Foth & Van Dyke to complete the Phase II study for Long Lake, and to prepare a report identifying the results. The study was completed through a collaborative effort between Foth & Van Dyke and the Long Lake Advancement Association volunteers.

1.2 Purpose

The purpose of the Phase II lake study was to address the following areas:

- Evaluate the septic systems around Long Lake. Determine the potential impact the septic systems have on the lake.
- Evaluate the impact of stormwater runoff on the lake. Make recommendations to improve stormwater management around Long Lake.
- Evaluate flows in and out of Long Lake and measure phosphorus in the inlet and outlet streams. Use the information to model phosphorus concentrations in the lake.
- Identify potential northern pike spawning areas and the means to improve these areas.

The results of the study will be used to provide the Long Lake Advancement Association with an understanding of the impact from septic systems and stormwater runoff on the lake water quality. This report may be used in conjunction with the Phase I study and possibly with future studies to develop a long term lake management plan for Long Lake.

2 Septic System Evaluation

A sanitary survey was conducted on July 3, 2004 at Long Lake. Staff from Foth & Van Dyke collected information from 62 residences. The completed survey forms are included in Appendix A.

The intent of the survey was to gather information on the type of septic systems, the system age, the system location in relation to the lake, and document any problems with the septic systems. A point system was developed for each of the categories. The point system is as follows:

Category	Criteria	Points
Septic System Age	Over 20 years	1
	11-20 years	2
	0-10 years	3
Horizontal Distance From Lake	0-50 feet	1
	51-100 feet	2
	101-150 feet	3
	151-200 feet	4
	Over 200 feet	5
Vertical Distance Above Lake	0-5 feet	1
	6-10 feet	2
	11-15 feet	3
	16-20 feet	4
	Over 20 feet	5
Septic System Operation	Problem	1
	No Problem	2

A septic system that graded as the worst possible would have 4 points with one point for each category. A septic system that graded as the best possible would have 15 points total. Generally, septic systems that score less than 10 points have a higher potential to impact the lake.

A total of 62 septic systems were evaluated. There were 42 holding tanks and 5 outhouses for which no score was given. Of the remaining 15 systems, 12 were conventional septic tank and disposal field type and 3 were mound systems. Adequate information was available for a complete score for 13 systems. The scores ranged from 5 to 14. There were 10 systems that scored 9 points or less and have a high potential to impact the lake. These systems represent 16% of the total systems evaluated. Note that of the 13 systems that had complete scores, 77% had scores of 9 or less and have a high potential to impact the lake. Most of the systems with a high potential for impacting the lake were located on West Shore Retreat and Popp Lane. These

areas are relatively low in relation to the lake and may not have adequate area for suitable septic systems.

With 68% of the on-site systems using holding tanks, the trend is to replace septic systems and fields with holding tanks. Many of the sites along the lake are on small lots and suitable areas for wastewater disposal are not available. Holding tanks are a good alternative to septic systems to eliminate potential discharges to groundwater.

3 Stormwater Impacts

Stormwater can affect the lake water quality by carrying pollutants into the lake. The pollutants get into stormwater when stormwater erodes soil or when contaminants are dissolved from the soil surface. Improving stormwater management around the lake can reduce the amount of pollutants that enter the lake.

3.1 Residential Stormwater

The sanitary survey form also included questions and space for drawing stormwater runoff patterns at each lot. Appendix A contains the sanitary survey forms. Information on stormwater is contained on the back side of each form. Erosion and stormwater runoff are difficult to quantify thus the survey form did not include numerical values for each lot. The information obtained did contain general trends that showed the following:

- Most lots slope to the lake but have a relatively low slope.
- The soil around the lake is generally clay loam and slowly permeable. Vegetation growth is good when established.
- Lawn grass is commonly planted over much of the property and close to the lake.
- Rip rap or stone walls are commonly placed along shore to control erosion.

Based on the observations made during the sanitary survey, Foth & Van Dyke recommends that homeowners work to channel clean water to the lake. Soil infiltration should be promoted but due to the low permeability of the soil, stormwater will often exceed the capacity of the soil and runoff into the lake. The following recommendations can be used by homeowners to improve stormwater management on their property:

- A. If a house has no gutters, install a raised gravel bed beneath the roofline. Stormwater will run off the roof and fall onto the raised gravel bed. There the water will be stored and soak into the ground without causing runoff and erosion.
- B. If a house has gutters and downspouts, there are several alternatives to reduce runoff and erosion:
 - Directly connect the downspouts to buried perforated plastic tubing that allows the rainwater to infiltrate into the ground. Due to low permeability, the plastic tubing should discharge to the lake or non-eroding channel.
 - Directly connect the downspouts to non-eroding channels to direct water to the lake.
- C. Where water comes from driveways or offsite, use non-eroding channels or pipes to direct the clean water to the lake.
- D. Construct terraces on sloped lots to reduce runoff.

- E. Remove leaves and other vegetation from the yard in areas where stormwater can wash the vegetation into the lake. Leaves contain high concentrations of phosphorus and nitrogen that can break down in the lake releasing the nutrients as potential food for algae and lake weeds.
- F. Use zero phosphorus lawn fertilizers to limit phosphorus getting into lake from lawns.
- G. Plant a vegetated buffer strip along the lake rather than lawn. The vegetated buffer strip will help reduce runoff getting into the lake.

WDNR has good information on residential practices to reduce runoff and erosion.

Foth & Van Dyke noted an area on the north end of Sunset Lane where residents have disposed of yard waste and lake weeds. This area is adjacent to the wetland between Boot Lake and Long Lake. The vegetative waste disposed of in this area will decompose and runoff into the wetland and eventually into the lake. The Lake Association should consider establishing a place where residents can take yard waste and lake weeds for disposal that does not impact the lake.

3.2 Non-Residential Stormwater

In addition to runoff on residential property, significant runoff can occur from roads, agricultural sites, construction sites and other areas that drain to the lake. The sanitary survey found significant runoff and pollution potential from agricultural areas on the west shore of the lake. Much of the agricultural runoff enters the lake from an agricultural area southwest of West Shore Retreat. In 2004, the field was planted in corn and with the high rainfall in spring, a large amount of water and sediment runoff entered the lake. Residents in the south portion of West Shore Retreat verified runoff flowing through their yards to the lake.

Potential improvements to reduce agricultural runoff include:

- Changing the crop to a perennial hay crop and reduce plowing the field
- Establish a vegetated buffer between the field and the property line to trap sediment
- Construct a stormwater detention pond to reduce sediment transport to the lake.

In addition, there are eroded ditches in the West Shore Retreat area. These were dry at the time of the inspection but residents say the ditches flow with water in spring and after rain events. Improvements to this area could include reinforcing the ditch sides with rip rap. Upstream of the ditches, water management to reduce runoff will aid in reducing erosion in the ditches.

4 Stream Flow/Lake Level Monitoring

The Phase I study identified water level management as a potential key to improving northern pike spawning success. The high phosphorus levels in the lake also required more data gathering in regard to where phosphorus comes into the lake. To aid in learning more about the lake, the inlet stream at the north end of the lake and an outlet stream at the south end of the lake were monitored for flow and phosphorus concentration. Lake levels were also monitored. Data was collected during the 2004 open water season (April 11 to December 12).

The inlet stream was monitored at the Boot Lake Road crossing. A staff gauge was installed and flow measurements were taken at three different times (April, May, and July) to create a stream flow/staff gauge chart. Staff gauge readings were taken weekly during the open water monitoring season. The detailed measurements and stream flows are contained in Appendix B. The peak staff gauge measurement occurred on May 25, 2004 correlating to an estimated flow of 1.89 cfs. The inlet stream flow was consistently above 0.5 cfs from early April until late June. After July 19, the inlet stream flow was reduced to near zero. The water in the inlet stream was impacted by the lake level. The staff gauge readings continued to drop throughout the summer even though there was little or no flow in the inlet stream because the lake level also dropped. The inlet stream flow beginning April 1, 2004 is estimated at 61.5 million gallons.

With significant stream inflow beginning with the first readings in April, it is assumed that the inlet stream was contributing flow in March. The March precipitation at Brillion was 4", well above normal and resulted in significant runoff into the stream. With April stream inflow estimated at 13.18 million gallons with 1.7" of precipitation, the March stream inflow is estimated at 15 million gallons. The annual inlet stream flow for 2004 is estimated at 76.5 million gallons.

The outlet stream was monitored at the County Line Road downstream of the Long Lake dam. A staff gauge was installed and flow measurements taken during April, May, and July to create a stream flow/staff gauge chart. See Appendix B for detailed information on the measurements and flows during the study period. The peak staff gauge measurement occurred on May 25 correlating to an estimated flow of 5.37 cfs. The outlet stream was dry in late June and dry after early August for the remainder of the year. The outlet stream flow beginning April 1, 2004 is estimated at 93.9 million gallons.

With high stream inflow estimated in March and an outlet stream discharge measured at the first reading in April, it is assumed that the outlet stream was discharging in March. With April stream outflow estimated at 1.4 million gallons, it is estimated that the March outflow is 3.0 million gallons. The annual outlet stream flow for 2004 is estimated at 96.9 million gallons.

The lake level was monitored near the middle of the lake during the open water season. The lake level began relatively high at a reading of 9.29, peaked on May 24 at 9.77, dropped to 8.56 in October and ended at 8.86 in December. The water level fluctuated 1.21 feet during the open water season. The level of the top of the dam in relation to the staff gauge is about 9.2. Elevations above this level had water going over the dam. Elevations below this level showed no water going over the dam. The effluent creek was dry beginning in early August and stayed dry for the remainder of the year.

The precipitation for 2004 totaled about 33.5 inches and was above the average of 30.2 inches. Based on precipitation, the inlet and outlet stream annual flow was also above normal. In a normal or dry year, stream flow would be lower and lake levels would likely be lower especially in spring.

4.1 Hydrologic Budget

The annual hydrologic budge of lakes can be estimated by the following formula:

 $\Delta S = (PPT + SW_{In} + GW_{In}) - (Evap + SW_{Out} + GW_{Out})$

Due to the lack of long term data, ΔS is estimated at 0. Then the following values are used:

The water input not measured is estimated at 33 acre-ft. This water could be groundwater or surface water that entered the lake by direct runoff or through wetlands. The water balance and nearby wetlands all along the lake indicate no significant net increase or decrease in water from groundwater.

5 Phosphorus Evaluation

Phosphorus concentrations were measured four times during the 2004 open water season. The detailed results are shown in Appendix C. The summary of the results are shown below.

Sample Point	April	May	July	August	Average
Inlet Stream	167	305	518	377	342
Mid-Lake Surface	95	69	94	79	84
Mid-Lake Bottom	95	84	946	988	528
Outlet Stream	83	59	136	Dry	93

Table 5-12004 Total Phosphorus Concentrations - ug/l

The water quality samples in the Phase I report were collected in the lake on the north end and south end of the lake. In the Phase II study, the inlet and outlet streams were sampled. The lake sample was near the lake center and in one of the deepest areas of the lake.

5.1 Mid-Lake Phosphorus

The total phosphorus concentration at the lake surface in Phase I (2001 and 2002) averaged 105 ug/l. The mid-lake surface concentrations in Phase II (2004) averaged 84 ug/l.

The samples collected at the lake bottom in Phase II were in one of the deepest parts of the lake (over 20 feet). Samples collected in April and May averaged 90 ug/l total phosphorus and were similar to surface water concentrations. In July and August, the lake bottom concentrations increased by a factor of 10, averaging 967 ug/l total phosphorus.

An explanation for this large increase is the potential for water in the deepest part of the lake to become anaerobic due to lack of oxygen in mid to late summer. Once a thermocline is established, the lower levels of a lake are cut off from oxygen sources and biological activity can deplete the available oxygen. Phosphorus contained in organic matter can be released during anaerobic decomposition. Phosphorus precipitated with natural iron compounds can also be released to solution under anaerobic conditions.

The Phase I report did note oxygen reduction in the lower parts of the lake during the summer months but only a small increase in phosphorus concentration was observed. The deeper sampling point in Phase II likely had oxygen depletion and the anaerobic conditions caused a significant phosphorus release. This phosphorus release was documented in the Phase I report. The October sampling event was taken during lake turnover and showed phosphorus concentrations of 180 ug/l average. The average phosphorus concentration during the remaining samples in Phase I was 106 ug/l. The high concentration of phosphorus during the fall turnover was likely caused by summer phosphorus release in the deepest part of the lake that mixed with the entire lake during the fall turnover.

5.2 Inlet Stream Phosphorus

The phosphorus concentration measured from the inlet stream was significantly higher than the average phosphorus concentration in the lake. The average of the four samples was 342 ug/l.

The phosphorus loading from the inlet stream was calculated based on the measured stream flow and measured phosphorus concentration. Appendix C contains a table with calculations showing the total phosphorus for the open water season. The total phosphorus loading from the inlet stream was estimated at 163 pounds for the time period beginning in April and based on the measured flow of 61.5 million gallons.

Note that the annual estimated flow of 76.5 million gallons was based on increased stream inflow during March. If the average phosphorus concentration for March was the same as the April data, then an additional 21 pounds of phosphorus were discharged into the lake for a total of 184 pounds.

5.3 Outlet Stream Phosphorus

The phosphorus concentration measured from the outlet stream was similar to the average surface phosphorus concentration measured in the lake. Only three samples were collected because the August sampling event found the stream to be dry. The average of the three samples was 93 ug/l.

The phosphorus loading from the outlet stream was calculated based on the measured stream flow and measured phosphorus concentration. Appendix C contains a table with calculations showing the total phosphorus for the open water season. The total phosphorus loading from the inlet stream was estimated at 52 pounds.

Note that the annual estimated outflow of 96.9 million gallons was based on additional stream outflow during March. If the average phosphorus concentration for March was the same as the April data, then an additional 2 pounds of phosphorus were discharged into the lake for a total of 54 pounds.

5.4 Phosphorus Budget

A phosphorus budget for the 2004 season was estimated based on available data. The hydrological budget along with phosphorus sampling of the inlet and outlet streams was used to develop the phosphorus budget.

The Phase I study showed Long Lake to be highly eutrophic. This Phase II study identifies a preliminary phosphorus budget by evaluating phosphorus inputs to the lake from the inlet stream and other sources as well as phosphorus discharge through the outlet stream. Figure 5-1 below shows the phosphorus budget for 2004.

The overall budget measured in 2004 is estimated at 246 pound of phosphorus per year. The largest input was from the inlet stream with 184 pounds (75%). Direct precipitation accounted for 32 pounds (13%) and other water inputs from groundwater or surface runoff accounted for 27 pounds (11%). Septic systems were estimated to contribute 3 pound (1%).

The outlet stream was estimated to discharge 54 pounds of phosphorus (22%). The largest output of phosphorus was deposition into the lake sediment with a total of 192 pounds (78%).

The WILMS model was developed for Long Lake. The total loading was estimated to be between 164 pounds and 750 pounds with a most likely value of 405 pounds. The model details are contained in Appendix C. The calculated phosphorus loading of 246 pounds is within the model range.

5.5 Internal Phosphorus Loading

The Phase I report conducted phosphorus testing throughout 12 month period in 2001 and 2002. The data collected included periods during lake turnover. A significant increase in total phosphorus occurred in October coinciding with the fall turnover.

Data collected in Phase II in July and August showed a significant increase in the bottom phosphorus concentrations with levels averaging 967 ug/l. This high level of phosphorus in the lower levels during summer indicates anoxic sediment phosphorus release. This phosphorus stays in the hypolimnion until fall turnover when all lake water is mixed. The increased phosphorus concentrations seen in October 2001 now are consistent with the observed summer anoxic sediment release observed in August 2004. Anoxic phosphorus release occurs in the hypolimnion of a lake where the oxygen is used up. Phosphorus in particulate form under aerobic conditions is changed to soluble phosphorus under anoxic conditions.

The data from the Phase I report shows the average water column concentration in Long Lake was 106 ug/l for the 5 samples not including October. The October average water column concentration was 180 ug/l. Assuming the lake averages 11.5 feet deep gives a total volume of about 450 million gallons. The mass of phosphorus at 106 ug/l is 395 pounds and the mass of phosphorus at 180 ug/l is 671 pounds. The difference in the two values is the internal phosphorus release calculated to be 276 pounds.

Note that the internal phosphorus release is greater than the annual phosphorus loading estimated in the above phosphorus budget.

The WILMS Internal Load Estimator Module was developed for Long Lake. The total loading was estimated to be between 61 pounds and 611 pounds with a most likely value of 469 pounds. The model details are contained in Appendix C. The calculated internal phosphorus loading of 276 pounds is within the model range.

6 Fishery Spawning Area Enhancement

Improving northern pike spawning success is one of the Lake Association's goals for fishery improvement. Northern pike spawn in April and prefer to lay eggs in shallow flooded marshes or grass. The marsh should remain flooded for 30 or 40 days after spawning to provide protection to newly hatched northern pike. The water depth in the flooded marsh area should be 6 to 12 inches.

Based on water level readings taken during the 2004 season, the water levels were high in spring and remained relatively high until the end of June. If the proper northern pike habitat existing in the lake, spawning could have been successful in 2004 without manipulating the water levels.

Good spawning habitat in Long Lake is limited due to shoreline development and marshes that have overgrown with woody vegetation. Foth & Van Dyke reviewed the existing spawning habitat with WDNR in July 2004 at Long Lake. Several sites for habitat improvement were identified and are shown on Figure 6-1.

The wetlands identified as potential spawning habitat are currently limited by lack of access to Long Lake, unsuitable vegetation, or improper depth. An ideal spawning marsh would be 1 acre up to 10 acres in size. The depth would 0 to 3 feet for over 50% of the marsh with a gently sloping gradient from the edge to the center. The center of the marsh should be up to 6 feet deep to allow cover for larger fish and prevent the marsh from overgrowing with vegetation. A center island would provide additional spawning habitat. The spawning marsh should be connected to the lake or inlet stream by a narrow, deep channel (6 feet wide and 6 feet deep). The channel will provide year round access by adult fish and newly hatched fish to and from the main lake. The channel depth will prevent vegetation from growing and clogging the channel. Appendix D contains a description of a northern pike spawning marsh.

The best sites for habitat improvement are the wetland between Long Lake and Boot Lake on the northwest corner of the lake and the large wetland adjacent to the inlet stream. An added benefit of constructing a spawning marsh in these areas would be the marsh would also act as a sedimentation basin and reduce the amount of phosphorus and other pollutants that enter the lake.

Construction of a spawning marsh will require removing existing vegetation, grading the marsh to the proper depth, and creating a connecting channel. When construction is completed, the marsh should be planted with native emergent vegetation. Issues involved with creating a spawning marsh are access for construction and maintenance and ownership of the land.

7 Conclusions and Recommendations

7.1 Conclusions

- Most on-site wastewater treatment systems around the lake were holding tanks (68%). Approximately 16% of the on-site wastewater treatment systems were septic tank/absorption field type that could potentially impact the lake.
- Residential stormwater management can be improved with the use of non-eroding channels or pipes to take clean water directly to the lake. Good yard maintenance should include eliminating phosphorus fertilizers and reducing runoff from lawns.
- Some yard waste and lake weeds are currently being disposed of in wetlands adjacent to the lake. This material can add nutrients to the lake as it decomposes.
- Agricultural runoff is significant on the west side of the lake near West Shore Retreat.
- A hydrologic budget was prepared using data collected from the inlet and outlet streams. Most of the water entered the lake from precipitation or the inlet stream. Water that left the lake was through the outlet stream or evaporation. Little groundwater flow was measured.
- The inlet stream had a phosphorus concentration that averaged 342 ug/l and contributed 75% of the annual phosphorus budget. The outlet stream averaged 93ug/ and accounted for 22% of the annual phosphorus discharge. Most of the phosphorus that left the lake water was deposited in the lake sediment (78% of annual phosphorus budget)
- Internal phosphorus loading was estimated to be at 276 pounds per year with anoxic sediment releasing phosphorus during the summer stratification period. The internal phosphorus loading was greater than the annual external phosphorus loading of 246 pounds.
- Potential fish spawning areas were identified with the best opportunities in the wetlands on the north end of the lake.

7.2 Recommendations

- Replace septic tanks with holding tanks where possible for optimum on-site treatment.
- Work with agricultural land user near West Shore Retreat to minimize runoff into the lake. Options include using a perennial hay crop, a vegetated buffer, and stormwater detention pond for sediment removal.
- Stormwater channels in West Shore Retreat should be improved to prevent erosion. Rip rap lined banks and stream bottom is recommended.
- Provide a site for disposal of yard waste and lake weeds that will prevent these materials from getting into the lake water.

- Improve stormwater runoff on residential lots by providing channels for clean water to get to lake, increasing natural vegetation near the lake, and using zero phosphorus lawn fertilizers.
- Develop a plan to significantly reduce phosphorus in the lake to improve water quality. The plan should consider the following alternatives:
 - 1. Aerate the deepest parts of the lake to prevent anoxic phosphorus release and minimize internal phosphorus loading.
 - 2. Chemically treat the lake with alum to reduce phosphorus in the lake water and seal the bottom sediments to minimize internal phosphorus loading.
 - 3. Conduct a more detailed analysis of the source of phosphorus in the inlet stream. If natural, consider chemical treatment of the inlet stream during periods of significant flow. If pollution sources are identified, develop a plan to reduce the pollution at the source.
- Develop a plan to enhance northern pike spawning. Identify specific sites where spawning areas can be constructed. Make contacts with land owners to assess interest in working to develop spawning areas. Prepare cost estimates for land, excavation, and other construction activities.
- Prepare a lake management plan based on the findings of the Phase I and Phase II reports and further studies into the source of phosphorus in the inlet stream. Apply for a final lake management grant from WDNR to accomplish the lake management plan. The lake management plan will be the basis for future lake protection activities including construction grant applications for funding the lake protection projects.

Appendix B

Stream Flow - Lake Level Monitoring

Long Lake Association

Lake Gauge Surface Water Monitoring Field Form To be completed once a week

	Inlet Stream	Mid-Lake	Outlet Stream
Date	Gauge Reading	Gauge Reading	Gauge Reading
4/11/2004	5.34	9.29	1.17
4/18/2004	5.34	9.26	0.94
4/24/2004	5.35	9.26	1.22
5/2/2004	5.29	9.23	0.96
5/9/2004	5.52	9.43	2.02
5/16/2004	5.47	9.40	1.80
5/24/2004		9.77	
5/25/2004	5.64		2.87
5/26/2004		9.52	
5/31/2004	5.61	9.57	2.62
6/5/2004	5.43	9.37	1.80
6/13/2004	5.54	9.48	2.40
6/20/2004	5.31	9.27	1.11
6/28/2004	5.22	9.17	0.04
7/5/2004	5.27	9.20	1.13
7/11/2004	5.27	9.20	0.101
7/18/2004	5.19	9.12	0.96
7/25/2004	5.10	9.04	0.81
8/1/2004	5.08	9.01	0.81
8/7/2004	4.98	8.94	Dry
8/15/2004	4.88	8.82	Dry
8/22/2004	4.88	8.82	Dry
8/30/2004	4.91	8.85	Dry
9/6/2004	4.91	8.85	Dry
9/12/2004	4.82	8.75	Dry
9/19/2004	4.80	8.73	Dry
9/26/2004	4.70	8.63	Dry
10/3/2004	4.65	8.59	Dry
10/9/2004	4.62	8.56	Dry
10/16/2004	4.62	8.56	Dry
10/23/2004	4.62	8.57	Dry
11/1/2004	4.68	8.62	Dry
11/7/2004	4.67	8.61	Dry
11/16/2004	4.72	8.63	Dry
11/28/2004	4.74	8.70	Dry
12/12/2004	4.90	8.86	Dry
12/14/2004	Lake Froze Over		

2.1" of rain on 5/8/04

2.35" of rain on 5/21 & 22

1.08" of rain on 5/29 & 30

No water going over dam, outlet creek below dam dry and full of dead carp 1.375" of rain on 7/3

Lake level 2.5" below top of dam steel piling No Water in Outlet Creek 1" rain on 10/22/04 1.15" rain on 10/29/04 .35" rain on 11/2/04 No Water in Outlet Creek Trace of Snow Rain & Snow throughout week of 12/5

STREAM CALIBRATION TABLE

Long Lake Upstream

AVERAGE

DEPTH

WIDTH

(ft)

VELOCITY

(ft/sec)

FLOW

(cfs)

Long Lake Downstream

LOCATION:	Long Lake -Inlet Stream	METER:	FLOMATE
DATE:	4/2/2004	START TIME:	9:30
TECHNICIAN(S)	: S. Janssen/Foth & Van Dyke	FINISH TIME:	10:15
GAUGE READIN		NG : 5.49	

STARTING POINT Below bridge on Boot Lake Rd

North Wind very windy 40

DEPTH

(ft)

WEATHER, STREAM CONDITIONS & NOTES:

DISTANCE

FROM

STATION

NUMBER

LOCATION: FLOMATE Long Lake Outlet Stream METER: DATE: 4/2/2004 START TIME: 11:15 TECHNICIAN(S): S. Janssen/Foth & Van Dyke FINISH TIME: 11:45 GAUGE READING : 2.61

STARTING POINT below dam aprroximately 25' narrows to channel

WEATHER, STREAM CONDITIONS & NOTES:

North Wind very windy 40

STATION	DISTANCE	DEPTH	AVERAGE	WIDTH	VELOCITY	FLOW
NUMBER	FROM	(ft)	DEPTH	(ft)	(ft/sec)	(cfs)
	BANK		(ft)			

	BANK		(ft)			
5.8	0.0	0.00	0.00	0.10	0.00	0
6.0	0.2	0.20	0.10	0.60	-0.06	-0.0036
7.0	1.2	0.70	0.45	1.00	0.06	0.027
8.0	2.2	1.10	0.90	1.00	0.04	0.036
9.0	3.2	1.20	1.15	1.00	0.05	0.0575
10.0	4.2	2.15	1.68	1.00	0.02	0.0335
11.0	5.2	2.15	2.15	1.00	0.05	0.1075
12.0	6.2	2.25	2.20	1.00	0.04	0.088
13.0	7.2	2.30	2.28	1.00	0.00	0
14.0	8.2	2.40	2.35	1.00	0.02	0.047
15.0	9.2	2.25	2.33	1.00	0.09	0.20925
16.0	10.2	2.15	2.20	1.00	0.04	0.088
17.0	11.2	1.95	2.05	1.00	0.02	0.041
18.0	12.2	1.80	1.88	1.00	0.08	0.15
19.0	13.2	1.65	1.73	1.00	0.15	0.25875
20.0	14.2	1.10	1.38	1.00	0.13	0.17875
21.0	15.2	0.55	0.83	1.00	0.19	0.15675
22.0	16.2	0.40	0.48	0.80	0.15	0.057
22.6	16.8	0	0.20	0.30	0.00	0
				16.80		
						1.5324

4.6	0.00	0.60	0.20	0.20	1.05	0.042
5.0	0.40	0.55	0.58	0.45	1.00	0.25875
5.5	0.90	0.60	0.58	0.30	0.67	0.115575
5.6	1.00	0.00	0.30	0.55	0.00	0
6.6	2.00	0.00	0.00	0.55	0.00	0
6.7	2.10	0.40	0.20	0.20	0.73	0.0292
7.0	2.40	0.40	0.40	0.65	0.86	0.2236
8.0	3.40	1.05	0.73	0.60	0.44	0.1914
8.2	3.60	0.00	0.53	0.45	0.00	0
8.9	4.30	0.00	0.00	0.40	0.00	0
9.0	4.40	0.30	0.15	0.55	1.01	0.083325
10.0	5.40	0.50	0.40	1.00	1.44	0.576
11.0	6.40	0.70	0.60	1.00	1.22	0.732
12.0	7.40	1.00	0.85	1.00	1.00	0.85
13.0	8.40	1.10	1.05	1.00	0.38	0.399
14.0	9.40	0.90	1.00	1.00	0.16	0.16
15.0	10.40	0.50	0.70	0.75	0.04	0.021
15.5	10.90	0.10	0.30	1.00	0.00	0.0003
17.0	12.40	0.1	0.10	0.75	0.00	0
				12.40		
						3.68215

Prepared By: SDJ Checked By: PAK

STREAM CALIBRATION TABLE

Long Lake Upstream

AVERAGE

DEPTH

(ft)

WIDTH

(ft)

VELOCITY

(ft/sec)

FLOW

(cfs)

Long Lake Downstream

LOCATION:	Long Lake -Inlet Stream	METER:	FLOMATE
DATE:	5/11/2004	START TIME:	8:30
TECHNICIAN(S)	: S. Janssen/Foth & Van Dyke	FINISH TIME:	9:00
		GAUGE READI	NG : 5.48

DEPTH

(ft)

LOCATION:	Long Lake Outlet Stream	METER:	FLOMATE
DATE:	5/11/2004	START TIME:	10:30
TECHNICIAN(S): S. Janssen/Foth & Van Dyke	FINISH TIME:	11:00
		GAUGE READI	NG : 1.98

STARTING POINT Below bridge on Boot Lake Rd

WEATHER, STREAM CONDITIONS & NOTES:

DISTANCE

FROM

BANK

STATION

NUMBER

North EastWind very windy 55

STARTING POINT below dam approximately 25' narrows to channel

WEATHER, STREAM CONDITIONS & NOTES:

North EastWind very windy 55

STATION	DISTANCE	DEPTH	AVERAGE	WIDTH	VELOCITY	FLOW
NUMBER	FROM	(ft)	DEPTH	(ft)	(ft/sec)	(cfs)
	BANK		(ft)	-		

	-			-		
6.0	0.0	0.00	0.00	0.00	0.00	0
7.0	1.0	0.30	0.15	1.00	0.01	0.0015
8.0	2.0	0.70	0.50	1.00	-0.04	-0.02
9.0	3.0	1.00	0.85	1.00	0.02	0.017
10.0	4.0	1.30	1.15	1.00	0.05	0.0575
11.0	5.0	1.60	1.45	1.00	0.10	0.145
12.0	6.0	1.90	1.75	1.00	0.04	0.07
13.0	7.0	2.15	2.03	1.00	0.05	0.10125
14.0	8.0	2.30	2.23	1.00	0.05	0.11125
15.0	9.0	2.40	2.35	1.00	0.04	0.094
16.0	10.0	2.35	2.38	1.00	0.04	0.095
17.0	11.0	2.15	2.25	1.00	0.05	0.1125
18.0	12.0	1.90	2.03	1.00	0.06	0.1215
19.0	13.0	1.45	1.68	1.00	0.04	0.067
20.0	14.0	1.10	1.28	1.00	0.00	0
21.0	15.0	0.95	1.03	1.00	-0.01	-0.01025
22.0	16.0	0.60	0.78	1.00	-0.02	-0.0155
23.0	17.0	0.30	0.45	1.00	0.00	0
24.0	18.0	0	0.15	0.50	0.00	0
				17.50		
						0.94775

						2.94755
				10.60		
15.2	10.60	0.00	0.25	0.10	0.00	2.5E-05
15.0	10.40	0.50	0.80	0.60	0.05	0.024
14.0	9.40	1.10	1.00	1.00	0.26	0.26
13.0	8.40	0.90	0.90	1.00	0.38	0.342
12.0	7.40	0.90	0.80	1.00	0.41	0.328
11.0	6.40	0.70	0.55	1.00	0.42	0.231
10.0	5.40	0.40	0.50	1.00	0.67	0.335
9.0	4.40	0.60	0.45	0.75	1.19	0.401625
8.5	3.90	0.30	0.40	0.60	1.25	0.3
7.8	3.20	0.50	0.70	0.55	0.91	0.35035
7.4	2.80	0.90	0.70	0.40	0.41	0.1148
7.0	2.40	0.50	0.40	0.35	0.60	0.084
6.7	2.10	0.30	0.15	0.20	0.78	0.0234
6.6	2.00	0.00	0.00	0.55	0.00	0
5.6	1.00	0.00	0.30	0.55	0.00	0
5.5	0.90	0.60	0.58	0.30	0.00	0
5.0	0.40	0.55	0.55	0.45	0.50	0.12375
4.6	0.00	0.55	0.20	0.20	0.74	0.0296

Prepared By: SDJ Checked By: PAK

Long La	ke	Outlet Stream S	tream						6/6/2005	
DATE		GAUGE (X)	CFS (Y)	n	(X*X)	(Y*Y)	(X*Y)	(X*X*X*X)	(X*X*Y)	
4/2/20	004	2.41	3.68215	3	5.8081	13.558229	8.8739815	33.73402561	21.38629542	
5/11/20	004	1.98	2.947555		3.9204	8.6880805	5.8361589	15.36953616	11.55559462	
7/12/20	004	1.2	0.005875		1.44	3.452E-05	0.00705	2.0736	0.00846	
		SUM (X)	SUM (Y)		SUM (X*X)	SUM (Y*Y)	SUM (X*Y)	SUM (X*X*X*X)	SUM (X*X*Y)	
		5.59	6.63558		11.1685	22.246344	14.71719	51.17716177	32.95035004	
		[S(X)] ^2	[S(Y)] ^2		[S(X*X)] ^2					
		31.2481	44.03092194		124.7353923					
		N (= 0.0								
		AVE (X)	AVE (Y)		AVE (X*X)					
		1.863333333	2.21186		3.722833333					
								PARABOLIC		
		SLOPE	3.126906618					SLOPE	0.859199018	
			-3.61460933					Y-INTERCEPT	-0.986794744	
	(JORRELATION	0.985890514					CORRELATION	0.967542547	
6 -										
5 -			y = 3. 1	3x -	3.61					
6 ⁴										
Ŭ,								^		
Ň										
eam										
, st										
2 1										
1										
'1									-	
0										
0)	0.5		1	1	5	2	25	.3	
0		0.0		•	Staff Gaug	- e Reading	-	2.0	Ŭ,	
					Clair Gaug	o neading				
						Prepared By	; SDJ			
						Checked By	: PAK			

2004 GAUGE	E-TO-CFS COI	NVERSION C	HART			LONG LAKE	- OUTLET ST	REAM			
GAUGE	CFS	GAUGE	CFS	GAUGE	CFS	GAUGE	CFS	GAUGE	CFS	GAUGE	CFS
0	-3.61	1.25	0.30	1.6	1.40	1.95	2.49	2.3	3.59	2.65	4.68
0.1	-3.30	1.26	0.33	1.61	1.43	1.96	2.52	2.31	3.62	2.66	4.72
0.2	-2.98	1.27	0.37	1.62	1.46	1.97	2.56	2.32	3.65	2.67	4.75
0.3	-2.67	1.28	0.40	1.63	1.49	1.98	2.59	2.33	3.68	2.68	4.78
0.4	-2.36	1.29	0.43	1.64	1.52	1.99	2.62	2.34	3.71	2.69	4.81
0.5	-2.05	1.3	0.46	1.65	1.55	2	2.65	2.35	3.75	2.7	4.84
0.6	-1.73	1.31	0.49	1.66	1.59	2.01	2.68	2.36	3.78	2.71	4.87
0.7	-1.42	1.32	0.52	1.67	1.62	2.02	2.71	2.37	3.81	2.72	4.90
0.8	-1.11	1.33	0.55	1.68	1.65	2.03	2.74	2.38	3.84	2.73	4.93
0.9	-0.79	1.34	0.58	1.69	1.68	2.04	2.78	2.39	3.87	2.74	4.97
1	-0.48	1.35	0.62	1.7	1.71	2.05	2.81	2.4	3.90	2.75	5.00
1.01	-0.45	1.36	0.65	1.71	1.74	2.06	2.84	2.41	3.93	2.76	5.03
1.02	-0.42	1.37	0.68	1.72	1.77	2.07	2.87	2.42	3.96	2.77	5.06
1.03	-0.39	1.38	0.71	1.73	1.80	2.08	2.90	2.43	4.00	2.78	5.09
1.04	-0.35	1.39	0.74	1.74	1.84	2.09	2.93	2.44	4.03	2.79	5.12
1.05	-0.32	1.4	0.77	1.75	1.87	2.1	2.96	2.45	4.06	2.8	5.15
1.06	-0.29	1.41	0.80	1.76	1.90	2.11	2.99	2.46	4.09	2.81	5.19
1.07	-0.26	1.42	0.83	1.77	1.93	2.12	3.03	2.47	4.12	2.82	5.22
1.08	-0.23	1.43	0.87	1.78	1.96	2.13	3.06	2.48	4.15	2.83	5.25
1.09	-0.20	1.44	0.90	1.79	1.99	2.14	3.09	2.49	4.18	2.84	5.28
1.1	-0.17	1.45	0.93	1.8	2.02	2.15	3.12	2.5	4.21	2.85	5.31
1.11	-0.14	1.46	0.96	1.81	2.06	2.16	3.15	2.51	4.25	2.86	5.34
1.12	-0.10	1.47	0.99	1.82	2.09	2.17	3.18	2.52	4.28	2.87	5.37
1.13	-0.07	1.48	1.02	1.83	2.12	2.18	3.21	2.53	4.31	2.88	5.40
1.14	-0.04	1.49	1.05	1.84	2.15	2.19	3.24	2.54	4.34	2.89	5.44
1.15	-0.01	1.5	1.09	1.85	2.18	2.2	3.28	2.55	4.37	2.9	5.47
1.16	0.02	1.51	1.12	1.86	2.21	2.21	3.31	2.56	4.40	2.91	5.50
1.17	0.05	1.52	1.15	1.87	2.24	2.22	3.34	2.57	4.43	2.92	5.53
1.18	0.08	1.53	1.18	1.88	2.27	2.23	3.37	2.58	4.47	2.93	5.56
1.19	0.11	1.54	1.21	1.89	2.31	2.24	3.40	2.59	4.50	2.94	5.59
1.2	0.15	1.55	1.24	1.9	2.34	2.25	3.43	2.6	4.53	2.95	5.62
1.21	0.18	1.56	1.27	1.91	2.37	2.26	3.46	2.61	4.56	2.96	5.65
1.22	0.21	1.57	1.30	1.92	2.40	2.27	3.50	2.62	4.59	2.97	5.69
1.23	0.24	1.58	1.34	1.93	2.43	2.28	3.53	2.63	4.62	2.98	5.72
1.24	0.27	1.59	1.37	1.94	2.46	2.29	3.56	2.64	4.65	2.99	5.75
			Pr	epared By: PAK							
			Cr	ieckeu by: SGL							

2004 GAUGE	-TO-CFS CO	NVERSION CH	HART			LONG LAKE	- INLET STR	EAM	
GAUGE	CFS	GAUGE	CFS	GAUGE	CFS	GAUGE	CFS	GAUGE	CFS
0	-20.73	3	-8.70	5.1	-0.28	5.4	0.92	5.7	2.13
0.1	-20.33	3.1	-8.30	5.11	-0.24	5.41	0.96	5.71	2.17
0.2	-19.93	3.2	-7.90	5.12	-0.20	5.42	1.00	5.72	2.21
0.3	-19.53	3.3	-7.50	5.13	-0.16	5.43	1.04	5.73	2.25
0.4	-19.13	3.4	-7.10	5.14	-0.12	5.44	1.08	5.74	2.29
0.5	-18.73	3.5	-6.70	5.15	-0.08	5.45	1.12	5.75	2.33
0.6	-18.32	3.6	-6.29	5.16	-0.04	5.46	1.16	5.76	2.37
0.7	-17.92	3.7	-5.89	5.17	0.00	5.47	1.20	5.77	2.41
0.8	-17.52	3.8	-5.49	5.18	0.04	5.48	1.24	5.78	2.45
0.9	-17.12	3.9	-5.09	5.19	0.08	5.49	1.28	5.79	2.49
1	-16.72	4	-4.69	5.2	0.12	5.5	1.32	5.8	2.53
1.1	-16.32	4.1	-4.29	5.21	0.16	5.51	1.37	5.81	2.57
1.2	-15.92	4.2	-3.89	5.22	0.20	5.52	1.41	5.82	2.61
1.3	-15.52	4.3	-3.49	5.23	0.24	5.53	1.45	5.83	2.65
1.4	-15.12	4.4	-3.09	5.24	0.28	5.54	1.49	5.84	2.69
1.5	-14.72	4.5	-2.69	5.25	0.32	5.55	1.53	5.85	2.73
1.6	-14.31	4.6	-2.28	5.26	0.36	5.56	1.57	5.86	2.77
1.7	-13.91	4.7	-1.88	5.27	0.40	5.57	1.61	5.87	2.81
1.8	-13.51	4.8	-1.48	5.28	0.44	5.58	1.65	5.88	2.85
1.9	-13.11	4.9	-1.08	5.29	0.48	5.59	1.69	5.89	2.89
2	-12.71	5	-0.68	5.3	0.52	5.6	1.73	5.9	2.93
2.1	-12.31	5.01	-0.64	5.31	0.56	5.61	1.77	5.91	2.97
2.2	-11.91	5.02	-0.60	5.32	0.60	5.62	1.81	5.92	3.01
2.3	-11.51	5.03	-0.56	5.33	0.64	5.63	1.85	5.93	3.05
2.4	-11.11	5.04	-0.52	5.34	0.68	5.64	1.89	5.94	3.09
2.5	-10.71	5.05	-0.48	5.35	0.72	5.65	1.93	5.95	3.13
2.6	-10.30	5.06	-0.44	5.36	0.76	5.66	1.97	5.96	3.17
2.7	-9.90	5.07	-0.40	5.37	0.80	5.67	2.01	5.97	3.21
2.8	-9.50	5.08	-0.36	5.38	0.84	5.68	2.05	5.98	3.25
2.9	-9.10	5.09	-0.32	5.39	0.88	5.69	2.09	5.99	3.29
	-								-
			Pr	epared By: PAK					
		1	0			1		1	

Long Lake Association

Inlet Stream Flow Calculation

				Weekly	Total
	Inlet Stream	Flow	Flow	Average	Million
Date	Gauge Reading	cfs	MGD	MGD	Gallons
4/11/2004	5.34	0.68	0.44	0.44	4.86
4/18/2004	5.34	0.68	0.44	0.44	3.09
4/24/2004	5.35	0.72	0.47	0.45	2.73
5/2/2004	5.29	0.48	0.31	0.39	2.73
5/9/2004	5.52	1.41	0.91	0.61	4.27
5/16/2004	5.47	1.20	0.78	0.84	5.90
5/25/2004	5.64	1.89	1.22	1.00	8.99
5/31/2004	5.61	1.77	1.14	1.18	7.08
6/5/2004	5.43	1.04	0.67	0.91	4.54
6/13/2004	5.54	1.49	0.96	0.82	6.54
6/20/2004	5.31	0.56	0.36	0.66	4.63
6/28/2004	5.22	0.20	0.13	0.25	1.98
7/5/2004	5.27	0.40	0.26	0.20	1.37
7/11/2004	5.27	0.40	0.26	0.26	1.56
7/18/2004	5.19	0.08	0.05	0.16	1.10
7/25/2004	5.10	0	0	0.03	0.19
8/1/2004	5.08	0	0	0.00	0.00
8/7/2004	4.98	0	0		
8/15/2004	4.88	0	0		
8/22/2004	4.88	0	0		
8/30/2004	4.91	0	0		
9/6/2004	4.91	0	0		
9/12/2004	4.82	0	0		
9/19/2004	4.80	0	0		
9/26/2004	4.70	0	0		
10/3/2004	4.65	0	0		
10/9/2004	4.62	0	0		
10/16/2004	4.62	0	0		
10/23/2004	4.62	0	0		
11/1/2004	4.68	0	0		
11/7/2004	4.67	0	0		
11/16/2004	4.72	0	0		
11/28/2004	4.74	0	0		
12/12/2004	4.90	0	0		
12/14/2004	Lake Froze Over				

Total

61.53 Million Gallons

Long Lake Association

Outlet Stream Flow Calculation

				Weekly	Total
	Outlet Stream	Flow	Flow	Average	Million
Date	Gauge Reading	cfs	MGD	MGD	Gallons
4/11/2004	1.17	0.05	0.03	0.03	0.37
4/18/2004	0.94	0.00	0.00	0.02	0.12
4/24/2004	1.22	0.21	0.13	0.07	0.40
5/2/2004	0.96	0.00	0.00	0.07	0.54
5/9/2004	2.02	2.71	1.75	0.88	6.13
5/16/2004	1.80	2.02	1.31	1.53	10.71
5/25/2004	2.87	5.37	3.47	2.39	21.50
5/31/2004	2.62	4.59	2.97	3.22	19.31
6/5/2004	1.80	2.02	1.31	2.14	10.68
6/13/2004	2.40	3.90	2.52	1.91	15.31
6/20/2004	1.11	0.00	0.00	1.26	8.82
6/28/2004	0.04	0.00	0.00	0.00	0.00
7/5/2004	1.13	0.00	0.00		0.00
7/11/2004	0.101	0.00	0.00		0.00
7/18/2004	0.96	0.00	0.00		0.00
7/25/2004	0.81	0.00	0		
8/1/2004	0.81	0.00	0		
8/7/2004	Dry	0	0		
8/15/2004	Dry	0	0		
8/22/2004	Dry	0	0		
8/30/2004	Dry	0	0		
9/6/2004	Dry	0	0		
9/12/2004	Dry	0	0		
9/19/2004	Dry	0	0		
9/26/2004	Dry	0	0		
10/3/2004	Dry	0	0		
10/9/2004	Dry	0	0		
10/16/2004	Dry	0	0		
10/23/2004	Dry	0	0		
11/1/2004	Dry	0	0		
11/7/2004	Dry	0	0		
11/16/2004	Dry	0	0		
11/28/2004	Dry	0	0		
12/12/2004	Dry	0	0		
12/14/2004					

Total

93.90 Million Gallons Appendix C

Phosphorus Testing

Laboratory Report

04/27/2004	Lab: 11313	33790	Sample: IO018285		Page 1 of 1
Laboratory:	Wisconsin State Laborato 2601 Agriculture Dr.	ry of Hygiene		DNR ID	113133790
	Madison Phone: 800-442-4618	WI 537077 9 Fax Phone : 60	996 8-224-6276		
Sample:					

Field #:	DOWNSTM #4	Sample #: IO018285
Collection Start:	04/02/2004 12:00 pm	Collection End:
Collected by:	JANSSEN	Waterbody/Outfall Id: 77500
ID #:	363327	ID Point #:
County:	Manitowoc	Account #: LM010
Sample Location:	LONG LAKE OUTLET - I	E COUNTY LINE RD
Sample Description:	STREAM	
Sample Source:	SU	Sample Depth:
Date Reported:	04/27/2004	Sample Status: COMPLETE
Project No:	LPL908	

Analyses and Results:

Analysis Method		Analysis D	ate Lab	Comment			
TOTAL PHOSPHORUS (AS P) (EPA 365.1)		04/07/2004	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
665	PHOSPHORUS TOTAL	7723140	0.083	MG/L	0.005		0.016

Analys	is Method	Analysis Dat	e Lab	Comment			
DISS	REACTIVE PHOSPHORUS AS P (ORTH04/07/2004	SAMP	LE RECE	IVED PAST	HOLDING TI	ME
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
671	PHOSPHATE ORTHO DISS	7723140	*ND	MG/L	0.002		0.006
		LO	D=0.00				
			2				

Analys	is Method	Analysis D	ate Lab	Comment			
TEMI	PERATURE ON RECEIPT-ICED	04/06/200	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
136	TEMPERATURE AT LAB	E1645696	ICED	С		0	

Laboratory Report

				• I				
04/27/2004		Lab: 113133	790	Sample: 10018286		113133790	Page 1 of 1	
)4/27/2004 Laboratory: Sample: Fie Collection S Collecte Co Sample Loca Sample Descrip Sample So Date Repc	Laboratory:	Wi 260 Ma	sconsin State Laboratory)1 Agriculture Dr. dison	of Hygier WI	ne 537077996	DNR ID	113133790	
	Pho	one: 800-442-4618	Fax Pho	one : 608-224-6276				
Sample:								
Fiel	ld #:	SURFACE		Sample #:	IO018286			
Collection S	tart:	04/02/2004 11:40 am		Collection End:				
Collected	d by:	JANSSEN		Waterbody/Outfall Id:	77500			
Ι	D #:	363017		ID Point #:				
Cou	inty:	Manitowoc		Account #:	LM010			
Sample Locat	tion:	LONG LAKE						
Sample Descript	tion:	DEEP HOLE - SURFA	CE					
Sample Sou	irce:	SU		Sample Depth:				
Date Repor	rted:	04/27/2004		Sample Status:	COMPLETE			
Project	No:	LPL908						

Analyses and Results:

Analys	is Method	Analysis L	Date Lab	Comment			
тота	L PHOSPHORUS (AS P) (EPA 365.1)	04/07/200	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
665	PHOSPHORUS TOTAL	7723140	0.095	MG/L	0.005		0.016

4nalysi	is Method	Analysis Da	te Lab	Comment			
DISS I	REACTIVE PHOSPHORUS AS P (0	ORTH04/07/2004	SAMF	LE RECE	IVED PAST	HOLDING TI	МЕ
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
671	PHOSPHATE ORTHO DISS	7723140	*0.005	MG/L	0.002		0.006

Dure Dub comment
004
Result Units LOD Report Limit LOQ
ICED C 0

Laboratory Report

			Laburat	ory Kepuit		
04/27/2004		Lab: 11313	3790	Sample: 10018284		Page 1 of 1
Laboratory:	Wisco 2601 A	nsin State Laborator Agriculture Dr.	y of Hygiene		DNR ID	113133790
	Madis	on	WI 53707	W1 537077996		
	Phone	800-442-4618	Fax Phone : (508-224-6276		
Sample:						
Field	d #: BC	оттом		Sample #:	IO018284	
Collection St	art: 04	/02/2004 11:20 am		Collection End:		
Collected	by: JA	NSSEN		Waterbody/Outfall Id:	77500	
П	D#: 36	3017		ID Point #:		
Cou	nty: M	anitowoc		Account #:	LM010	
Sample Locati	ion: LO	ONG LAKE				
Sample Descripti	ion: DI	EEP HOLE - BOTT	ОМ			
Sample Sout	rce: SU	J		Sample Depth:		
Date Report	ted: 04	/27/2004		Sample Status:	COMPLETE	;
Project	No: LE	PL908				
Analyses and	Results	•				

Analys	is Method	Analysis D	ate Lab	Comment			
тота	L PHOSPHORUS (AS P) (EPA 365.1)	04/07/200	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
665	PHOSPHORUS TOTAL	7723140	0.095	MG/L	0.005		0.016

Analys	is Method	Analysis D	Date Lab	Comment			
DISS	REACTIVE PHOSPHORUS AS P (O	RTH04/07/200	4 SAMP	LE RECE	IVED PAST	HOLDING TH	ME
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
671	PHOSPHATE ORTHO DISS	7723140	*0.007	MG/L	0.002		0.006
Analys	is Method	Analysis D	Date Lab	Comment			
темі	PERATURE ON RECEIPT-ICED	04/06/200	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
136	TEMPERATURE AT LAB	E1645696	ICED	С		0	

Laboratory Report

04/27/2004		Lab: 11313	3790	Sample: 10018287		Page 1 of 1
Laboratory:	Wiscons 2601 Ag Madison	sin State Laborator griculture Dr. n 800-442-4618	y of Hygien WI 5. Eax Phor	e 37077996 1e : 608-224-6276	DNR ID	113133790
~ .	I none.	000-442-4010	1 42 1 101			
Sample:						
Field	/#: 1			Sample #:	IO018287	
Collection Sta	art: 04/0)2/2004 10:00 am		Collection End:		
Collected	by: JAI	NSSEN		Waterbody/Outfall Id:	77500	
ID	#: 363	326		ID Point #:		
Coun	ty: Ma	nitowoc		Account #:	LM010	
Sample Location	on: LO	NG LAKE INLET -	BOOT LA	KE ROAD		
Sample Description	on: STI	REAM				
Sample Sour	ce: SU			Sample Depth:		
Date Report	ed: 04/2	27/2004		Sample Status:	COMPLETE	
Project 1	Vo: LPI	L908				

Analyses and Results:

136

Analysi	nalysis Method		ate Lab	Comment			
тота	L PHOSPHORUS (AS P) (EPA 365.1)	04/07/2004	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
665	PHOSPHORUS TOTAL	7723140	0.167	MG/L	0.005		0.016

Analys	is Method	Analysis Do	ate Lab	Comment			
DISS	REACTIVE PHOSPHORUS AS P (O	RTH04/07/2004	SAME	LE RECE	IVED PAST	HOLDING TI	ME
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
671	PHOSPHATE ORTHO DISS	7723140	*0.047	MG/L	0.002		0.006
Analys	is Method	Analysis Do	ate Lab	Comment			
TEMI	PERATURE ON RECEIPT-ICED	04/06/2004	l -				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
136	TEMPERATURE AT LAB	E1645696	ICED	С		0	

			Laborat	ory Report				
06/09/2004	26/09/2004 Lab: 113133790		790	Sample: IO0210	80		Page 1 of	
Laboratory:	Wisc 2601	onsin State Laboratory Agriculture Dr.	of Hygiene		DNR IL	DNR ID 113133790		
	Mad	ison	WI 5370	77996				
	Phon	e: 800-442-4618	Fax Phone :	608-224-6276				
Sample:								
Field	d #: 1	NLSTREAM1		Sample	e #: IO021080			
Collection St	art:)5/11/2004 09:00 am		Collection E	'nd:			
Collected	by:	JANSSEN		Waterbody/Outfall	Id: 77500			
П	D#: 3	363326		ID Poin	<i>t #:</i>			
Cou	nty:			Accoun	t #: LM010			
Sample Locat	ion: 1	LONG LAKE - BOOT	LAKE ROAD					
Sample Descript	ion: 1	INLET STREAM						
Sample Sou	rce:	SU		Sample Dep	oth:			
Date Report	ted: (06/08/2004		Sample Sta	tus: COMPLET	E		
Project	No: 1	LPL908						
Analyses and	Resul	ts:			,			
Analysis Met	hod		Analys	sis Date Lab Commen	t			
TOTAL PH	IOSPH	IORUS (AS P) (EPA 36	5.1) 05/20/	2004				
Code Des	criptio	n	Cas N	o Result Units	LOD	Report Limit	LOQ	
665 PH	OSPH	ORUS TOTAL	772314	0 0.305 MG/L	0.005		0.016	

Analysis Method		Analysis Date Lab Comment							
DISS REACTIVE PHOSPHORUS AS P (ORTH05/12/2004									
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ		
671	PHOSPHATE ORTHO DISS	7723140	0.217	MG/L	0.002		0.006		
Analysi:	s Method	Analysis De	ate Lab	Comment					

TEMI	PERATURE ON RECEIPT-ICED	05/12/2004	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
136	TEMPERATURE AT LAB	E1645696	ICED	С		0	
L			· · · ·				

Laboratory Report

06/09/2004		Lab: 11313	3790	Sample: 10021081		Page 1 of 1
Laboratory:	Wiscons 2601 Ag	in State Laborator riculture Dr.	y of Hygie	ene	DNR ID	113133790
	Madisor	1	WI	537077996		
	Phone :	800-442-4618	Fax Ph	one: 608-224-6276		
Sample:						
Field	#: OU]	ISTREAM4		Sample #:	IO021081	
Collection Sta	rt: 05/1	1/2004 11:00 am		Collection End:		
Collected l	by: JAN	ISSEN		Waterbody/Outfall Id:	77500	
ID	#: 363	327		ID Point #:		
Coun	ty:			Account #:	LM010	
Sample Locatio	on: LON	NG LAKE - E COU	NTY LIN	ERD		
Sample Description	n: OUI	FLET STREAM				
Sample Source	ce: SU			Sample Depth:		
Date Reporte	ed: 06/0	8/2004		Sample Status:	COMPLETE	
Project N	lo: LPL	.908				
Analyses and R	esults:					
Analysis Meth	od		A	Analysis Date Lab Comment		

тот	AL PHOSPHORUS (AS P) (EPA 365.1)	05/20/2004	\$				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
665	PHOSPHORUS TOTAL	7723140	0.059	MG/L	0.005		0.016

Analysis Method		Analysis D								
DISS REACTIVE PHOSPHORUS AS P (ORTH 05/12/2004										
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ			
671	PHOSPHATE ORTHO DISS	7723140	0.003	MG/L	0.002		0.006			

Analys	is Method	Analysis Date Lab Comment							
темі	PERATURE ON RECEIPT-ICED	05/12/2004							
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ		
136	TEMPERATURE AT LAB	E1645696	ICED	С		0			

Laboratory Report

06/09/2004		Lab: 113133	3790		Sample: 10021078		Page 1 of 1
Laboratory:	Wisconsin State Laboratory of F 2601 Agriculture Dr.			giene		113133790	
	Ma Pho	a dison one : 800-442-4618	WI Fax I	537 ?hone :	077996 608-224-6276		
Sample:							
Fie	ld #:	воттом 3			Sample #	: IO021078	
Collection S	tart:	05/11/2004 10:00 am			Collection End	:	
Collected	d by:	JANSSEN			Waterbody/Outfall Id	77500	
i	ID #:	363017			ID Point #	÷	

	Account #: LM010
	Account #. EMORV
LONG LAKE	
DEEP HOLE - BOTTOM	
SU	Sample Depth:
06/08/2004	Sample Status: COMPLETE
LPL908	
	LONG LAKE DEEP HOLE - BOTTOM SU 06/08/2004 LPL908

Analyses and Results:

Analysis Method		Analysis Date Lab Comment							
тота	L PHOSPHORUS (AS P) (EPA 365.1)	05/20/200	4						
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ		
665	PHOSPHORUS TOTAL	7723140	0.084	MG/L	0.005		0.016		

Analys	is Method	Analysis D	ate Lab	Comment			
DISS	REACTIVE PHOSPHORUS AS P (C	ORTH05/12/200	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
671	PHOSPHATE ORTHO DISS	7723140	0.035	MG/L	0.002		0.006

Analysis Method		Analysis Date Lab Comment						
TEME	PERATURE ON RECEIPT-ICED	05/12/2004						
Code	Description	Cas No	Result Units	LOD	Report Limit LOQ			
136	TEMPERATURE AT LAB	E1645696	ICED C		0			

Laboratory Report

06/09/2004		Lab: 11313	3790	Sample: IO021079		Page 1 of 1
Laboratory:	Wisconsin State Laboratory of H 2601 Agriculture Dr.			jiene	DNR ID	113133790
	Madiso	D n	WI	537077996		
	Phone .	800-442-4618	Fax F	Phone : 608-224-6276		
Sample:						
Field	<i>ł #:</i> SU	RFACE 2		Sample #:	IO021079	
Collection Sta	art: 05	/11/2004 09:45 am		Collection End:		
Collected	by: JA	NSSEN		Waterbody/Outfall Id:	77500	
IL)#: 36	3017		ID Point #:		
Cour	ity:			Account #:	LM010	
Sample Locati	on: LC	ONG LAKE				
Sample Descripti	on: DE	CEP HOLE - SURFA	CE			
Sample Sour	rce: SU	J		Sample Depth:		
Date Report	ed: 06	/08/2004		Sample Status:	COMPLETE	
Project	No: LP	L908				
Analyses and l	Results	:				

Analysis Method		Analysis Da	te Lab	Comment				
TOTA	AL PHOSPHORUS (AS P) (EPA 365.1)	05/20/2004						
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ	
665	PHOSPHORUS TOTAL	7723140	0.069	MG/L	0.005		0.016	

Analysis Method		Analysis D	Analysis Date Lab Comment							
DISS	REACTIVE PHOSPHORUS AS P (C)RTH05/12/200	4							
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ			
671	PHOSPHATE ORTHO DISS	7723140	0.002	MG/L	0.002		0.006			
Analys	is Method	Analysis D	ate Lab	Comment						

TEM	PERATURE ON RECEIPT-ICED	05/12/200	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
136	TEMPERATURE AT LAB	E1645696	ICED	С		0	

Laboratory Report

08/26/2004	Lab: 11313	33790	Sample: IP001084		Page 1 of 1
Laboratory:	Wisconsin State Laborato 2601 Agriculture Dr.	ry of Hygiene		DNR ID	113133790
	Madison WI 537077996 Phone: 800-442-4618 Fax Phone: 608-224-6276				

Sample:

Field #:	SURFACE	Sample #: IP001084
Collection Start:	07/12/2004 11:15 am	Collection End:
Collected by:	JANSSEN	Waterbody/Outfall Id: 77500
ID #:	363017	ID Point #:
County:	Manitowoc	Account #: LM011
Sample Location:	LONG LAKE - BOOT LAKE RD	
Sample Description:	DEEP HOLE - SURFACE	
Sample Source:	SU	Sample Depth:
Date Reported:	08/24/2004	Sample Status: COMPLETE
Project No:	LPL908	· ·

Analyses and Results:

Analys	Analysis Method		ate Lab	Comment					
тота	AL PHOSPHORUS (AS P) (EPA 365.1)	07/27/2004							
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ		
665	PHOSPHORUS TOTAL	7723140	0.094	MG/L	0.005		0.016		

nalysis Method Ana		Analysis Da	te Lab	Comment			
DISS RE	EACTIVE PHOSPHORUS AS P (O	DRTH07/14/2004	MATI	RIX SPIKE	QC EXCEE	DED	
Code I	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
671 1	PHOSPHATE ORTHO DISS	7723140	*0.001 MG/L	MG/L	0.002		0.006

Analys	Analysis Method		Analysis Da	Analysis Date Lab Comment						
TEMF	PERATURE ON RECEIPT-ICED		07/13/2004							
Code	Description		Cas No	Result	Units	LOD	Report Limit	LOQ		
136	TEMPERATURE AT LAB		E1645696	ICED	С		0			

Laboratory Report

		Laborato	ry Kepurt			
08/13/2004	Lab: 11313.	3790	Sample: IP001081			Page 1 of
Laboratory:	Wisconsin State Laborator 2601 Agriculture Dr. Madison Phone: 800-442-4618	atory of Hygiene WI 537077996 Fax Phone : 608-224-6276		DNR IL	0 113133790	
Sample:						
Field	# OUTLETSTRM		Sample #	: IP001081		
Collection Ste	<i>nt</i> : 07/12/2004 12:00 pm		Collection End	·.		
Collected	by: JANSSEN		Waterbody/Outfall Id	: 77500		
Conecieu II)#· 363327		ID Point #	÷		
Cour	aty: Manitowoc		Account #	: LM011		
Sample Locati	on: LONG LAKE - E COU	INTY LINE RD				
Sample Descripti	on: OUTLET STREAM					
Sample Description	re: SU		Sample Depth	ut i		
Date Report	ed: 08/13/2004		Sample Status	COMPLET	`E	
Project i	No: LPL908		-			
Analyses and I	Results:					
Analysis Metl	hod	Analysi	s Date Lab Comment			
TOTAL PH	OSPHORUS (AS P) (EPA 3	65.1) 07/26/2	004			
Code Desc	ription	Cas No	Result Units	LOD	Report Limit	LOQ
665 PHC	SPHORUS TOTAL	7723140	0.136 MG/L	0.005		0.016

Analysis Method	Analysis D	Analysis Date Lab Comment					
DISS REACTIVE PHOSPHORUS AS P (OR	TH•07/14/200	4 MATI	RIX SPIKE	QC EXCE	EDED		
Code Description	Cas No	Result	Units	LOD	Report Limit	LOQ	
671 PHOSPHATE ORTHO DISS	7723140	*0.047	MG/L	0.002		0.006	
Analysis Method	Analysis L	Date Lab	Comment				
TEMPERATURE ON RECEIPT-ICED	07/13/200	4					
Code Description	Cas No	Result	Units	LOD	Report Limit	LOQ	
136 TEMPERATURE AT LAB	E1645696	ICED	С		0		

I

Laboratory Report

08/13/2004		Lab: 113133	3790	Sample: IP001082		Page 1 0j 1
Laboratory:	Wi: 260	sconsin State Laborator 11 Agriculture Dr.	y of Hyg	giene	DNR ID	113133790
	Ma	dison	WI	537077996		
	Pho	one: 800-442-4618	Fax F	Phone : 608-224-6276		
Sample:						
Fie	ld #:	воттом		Sample #	IP001082	
Collection S	tart:	07/12/2004 11:00 am		Collection End		
Collected	d by:	JANSSEN		Waterbody/Outfall Id	77500	
	ID #:	363017		ID Point #		
Cor	untv:	Manitowoc		Account #	· LM011	

Sample Depth: Sample Status: **COMPLETE**

Analyses and Results:

Sample Source: SU

Sample Location: LONG LAKE

 Date Reported:
 08/13/2004

 Project No:
 LPL908

Sample Description: DEEP HOLE - BOTTOM

Analys	Analysis Method		Analysis Date Lab Comment							
тота	TOTAL PHOSPHORUS (AS P) (EPA 365.1)		07/26/2004							
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ			
665	PHOSPHORUS TOTAL	7723140	0.946	MG/L	0.005		0.016			

Analysis Method	Analysis Da	te Lab Comment				
DISS REACTIVE PHOSPHORUS AS I	P (ORTH07/14/2004	SPIKE QC EXC	EEDED, SP	IKE RECOVEF	$\mathbf{XY} = 80.2$	
Code Description	Cas No	Result Units	LOD	Report Limit	LOQ	
671 PHOSPHATE ORTHO DISS	7723140	*0.764 MG/L	0.002		0.006	
Analysis Method	Analysis Da	te Lab Comment	: N			
TEMPERATURE ON RECEIPT-ICEL	07/13/2004	07/13/2004				

ILMI	PERALUKE UN RECEIPT-ICED	07/15/2004						
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ	
136	TEMPERATURE AT LAB	E1645696	ICED	С		0		

		Laborato	ry Report	,				
2/13/2004	Lab: 11313.	3790	Sample: I	P001083			Page 1 of	
aboratory:	Wisconsin State Laborator 2601 Agriculture Dr.	ry of Hygiene DNR			DNR ID	113133790		
	Madison	WI 537077	996					
	Phone: 800-442-4618	Fax Phone : 60	8-224-6276					
ample:								
Fie	dd #: INLETSTRM			Sample #	: IP001083			
Collection S	Start: 07/12/2004 10:00 am		Colle	ction End	:			
Collecte	d by: JANSSEN		Waterbody/	Outfall Id	: 77500			
	<i>ID</i> #: 363326		1	D Point #	:			
Co	unty: Manitowoc		1	Account #	: LM011			
Sample Loca	tion: LONG LAKE - BOOT	LAKE RD						
amnle Descrin	tion: INLET STREAM							
Sample So	urce: SU		Sam	ole Depth	:			
Date Reno	rted: 08/13/2004		Sam	ole Status	COMPLETE	2		
Projec	t No: LPL908							
nalvses and	Results:							
Analysis Me	ethod	Analysis	Date Lab C	omment				
TOTAL P	HOSPHORUS (AS P) (EPA 3	65.1) 07/26/20	04					
Code De	scription	Cas No	Result U	Inits	LOD	Report Limit	LOQ	
665 PH	IOSPHORUS TOTAL	7723140	0.518 N	MG/L	0.005		0.016	
Analysis Me	ethod	Analysis	Date Lab C	omment				
DISS REA	CTIVE PHOSPHORUS AS I	P (ORTH07/14/20	004 MATRI	X SPIKE	QC EXCEED	ED		
Code De	scription	Cas No	Result 0	Units	LOD	Report Limit	LOQ	
	IOSPHATE ORTHO DISS	7723140	*0.414]	MG/L	0.002		0.006	
671 PH								
671 PH	ethod	Analysis	Date Lab C	omment				
671 PH Analysis Ma TEMPER	ethod ATURE ON RECEIPT-ICED	Analysis	Date Lab C	omment				
671 PF Analysis Ma TEMPER Code De	ethod ATURE ON RECEIPT-ICED	Analysis 07/13/20 Cas No	Date Lab C 104 Result	omment Units	LOD	Report Limit	LOQ	

			Laborato	ory Repo	rt			
/09/2004		Lab: 113133	790	Sample:	IP005412			Page 1 o
boratory:	Wisco	onsin State Laborator	y of Hygiene			DNR ID	113133790	
•	2601	Agriculture Dr.						
	Madi	son	WI 53707	7996				
	Phone	e: 800-442-4618	Fax Phone : 6	08-224-6276	j			
mple:								
Fiel	d#: 11	NLET STRM			Sample #:	IP005412		
Collection St	art 0	8/19/2004 03:00 pm		Col	lection End:			
Collected	bv J	ANSSEN		Waterbod	y/Outfall Id:	77500		
L	D#· 3	63326			ID Point #:			
 Cou	ntv: N	Anitowoc			Account #:	LM011		
Sample Locat	ion I	ONG LAKE - BOOT	LAKE RD					
mmle Descrint	ion I	NLET STREAM						
Sample Sou	rce S			Sa	mple Depth:	•		
Date Renor	ree. S tod: A	9/09/2004		Sa	mple Status.	COMPLETE	2	
Project	No I	PL908			-			
nalyses and	Result	ts:						
Analysis Me	thod		Analysi	is Date Lab	Comment			
TOTAL PH	IOSPH	ORUS (AS P) (EPA 3	65.1) 08/26/2	2004				
Code Des	criptio	n	Cas No	Result	Units	LOD	Report Limit	LOQ
665 PH	OSPH	ORUS TOTAL	. 7723140	0.377	MG/L	0.005		0.016
Analysis Me	thod		Analys	is Date Lab	Comment			
DISS REA	CTIVE	PHOSPHORUS AS I	• (ORTH08/26/2	2004 SAMI	PLE RECE	IVED PAST H	IOLDING T	ME
Code Des	criptio	n	Cas No	o Result	Units	LOD	Report Limit	LOQ
671 PH	OSPH	ATE ORTHO DISS	772314	0 *0.068	MG/L	0.002		0.006
Analysis Me	thad		Analys	is Date Lab	Comment	щ.		

темі	PERATURE ON RECEIPT-ICED	08/24/2004	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
136	TEMPERATURE AT LAB	E1645696	ICED	С		0	

Laboratory Report

09/09/2004	Lab: 113133790		3790	Sample: IP005413	Page 1 of I	
Laboratory:	Wiscons 2601 Ag Madison Phone :	sin State Laborator griculture Dr. n 800-442-4618	y of Hygiene WI 537 Fax Phone :	077996 608-224-6276	DNR ID	113133790
Sample:						
Fiela	/ #: BO'	гтом		Sample	#: IP005413	
Collection Sta	art: 08/1	9/2004 04:20 pm		Collection End	d:	
Collected	by: JAI	NSSEN		Waterbody/Outfall I	d: 77500	
IL)#: 363	017		ID Point	#:	
Coun	ty: Ma	nitowoc		Account	#: LM011	
Sample Location	on: LO	NG LAKE				
Sample Description	on: DE	EP HOLE - BOTT	DМ			
Sample Sour	ce: SU			Sample Dept	h:	

Sample Status: COMPLETE

Analyses and Results:

 Date Reported:
 09/09/2004

 Project No:
 LPL908

Analys	is Method	Analysis Date Lab Comment						
TOTAL PHOSPHORUS (AS P) (EPA 365.1)		08/26/2004						
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ	
665	PHOSPHORUS TOTAL	7723140	0.988	MG/L	0.005		0.016	

004 SAMPLE REG	CEIVED PAST	HOLDING TI	ME
Result Units	LOD	Report Limit	LOQ
) *0.784 MG/L	0.002		0.006
	Result Units () *0.784 MG/L	Result Units LOD *0.784 MG/L 0.002	Result Units LOD Report Limit • *0.784 MG/L 0.002

Analys	as methou						
TEM	PERATURE ON RECEIPT-ICED	08/24/200	4				
Code	Description	Cas No	Result Units	LOD	Report Limit	LOQ	
136	TEMPERATURE AT LAB	E1645696	ICED C		0		

		Laborato	ry Report			
09/09/2004	Lab: 11313	3790	Sample: IP00	5414		Page 1 of
Laboratory:	Wisconsin State Laboratory of Hygiene 2601 Agriculture Dr.			0 113133790		
	Madison	WI 53707	7996			
	Phone: 800-442-4618	Fax Phone : 6	08-224-6276			
Sample:						
Fie	eld #: SURFACE		Sai	nple #: IP005414		
Collection S	Start: 08/19/2004 04:00 pm		Collectio	n End:		
Collecte	d by: JANSSEN		Waterbody/Out	fall Id: 77500		
	<i>ID</i> #: 363017		ID P	oint #:		
Со	unty: Manitowoc		Acco	ount #: LM011		
Sample Loca	ntion: LONG LAKE					
Sample Descrip	otion: DEEP HOLE - SURF	ACE				
Sample So	urce: SU		Sample	Depth:		
Date Repo	orted: 09/09/2004		Sample	Status: COMPLET	E	
Projec	et No: LPL908					
Analyses and	l Results:		_			
Analysis M	ethod	Analysi	s Date Lab Com	nent		
TOTAL P	HOSPHORUS (AS P) (EPA 3	865.1) 08/26/2	004			
Code De	escription	Cas No	Result Unit	ts LOD	Report Limit	LOQ
665 PI	HOSPHORUS TOTAL	7723140	0.079 MG	/L 0.005		0.016
Analysis M	ethad	Analysi	s Date Lab Com	ment		
DISC DE	CTIVE DUCCDUCDUC AS	۔ ۵ (۵۵ ۳u ng/) <i>6/</i>)	004 SAMPLE	RECEIVED PAST	HOLDING TI	ME
DISS KEA	ACTIVE PHOSPHORUS AS	$\frac{Cas Na}{Cas Na}$	Result Uni	ts LOD	Report Limit	LOQ
671 PI	HOSPHATE ORTHO DISS	7723140	*0.003 MG	/L 0.002		0.006
Analysis M	lethod	Analvsi	s Date Lab Com	ment		
111111111111111						

TEMPE	ERATURE ON RECEIPT-ICED	08/24/2004	4				
Code	Description	Cas No	Result	Units	LOD	Report Limit	LOQ
136	TEMPERATURE AT LAB	E1645696	ICED	С		0	

Long Lake Association

Inlet Stream Flow Calculation

				Weekly	Total
	Inlet Stream	Flow	Flow	Average	Million
Date	Gauge Reading	cfs	MGD	MGD	Gallons
4/11/2004	5.34	0.68	0.44	0.44	4.86
4/18/2004	5.34	0.68	0.44	0.44	3.09
4/24/2004	5.35	0.72	0.47	0.45	2.73
5/2/2004	5.29	0.48	0.31	0.39	2.73
5/9/2004	5.52	1.41	0.91	0.61	4.27
5/16/2004	5.47	1.20	0.78	0.84	5.90
5/25/2004	5.64	1.89	1.22	1.00	8.99
5/31/2004	5.61	1.77	1.14	1.18	7.08
6/5/2004	5.43	1.04	0.67	0.91	4.54
6/13/2004	5.54	1.49	0.96	0.82	6.54
6/20/2004	5.31	0.56	0.36	0.66	4.63
6/28/2004	5.22	0.20	0.13	0.25	1.98
7/5/2004	5.27	0.40	0.26	0.20	1.37
7/11/2004	5.27	0.40	0.26	0.26	1.56
7/18/2004	5.19	0.08	0.05	0.16	1.10
7/25/2004	5.10	0	0	0.03	0.19
8/1/2004	5.08	0	0	0.00	0.00
8/7/2004	4.98	0	0		
8/15/2004	4.88	0	0		
8/22/2004	4.88	0	0		
8/30/2004	4.91	0	0		
9/6/2004	4.91	0	0		
9/12/2004	4.82	0	0		
9/19/2004	4.80	0	0		
9/26/2004	4.70	0	0		
10/3/2004	4.65	0	0		
10/9/2004	4.62	0	0		
10/16/2004	4.62	0	0		
10/23/2004	4.62	0	0		
11/1/2004	4.68	0	0		
11/7/2004	4.67	0	0		
11/16/2004	4.72	0	0		
11/28/2004	4.74	0	0		
12/12/2004	4.90	0	0		
12/14/2004	Lake Froze Over				

Total

61.53 Million Gallons

Long Lake Association

Outlet Stream Flow Calculation

				Weekly	Total
	Outlet Stream	Flow	Flow	Average	Million
Date	Gauge Reading	cfs	MGD	MGD	Gallons
4/11/2004	1.17	0.05	0.03	0.03	0.37
4/18/2004	0.94	0.00	0.00	0.02	0.12
4/24/2004	1.22	0.21	0.13	0.07	0.40
5/2/2004	0.96	0.00	0.00	0.07	0.54
5/9/2004	2.02	2.71	1.75	0.88	6.13
5/16/2004	1.80	2.02	1.31	1.53	10.71
5/25/2004	2.87	5.37	3.47	2.39	21.50
5/31/2004	2.62	4.59	2.97	3.22	19.31
6/5/2004	1.80	2.02	1.31	2.14	10.68
6/13/2004	2.40	3.90	2.52	1.91	15.31
6/20/2004	1.11	0.00	0.00	1.26	8.82
6/28/2004	0.04	0.00	0.00	0.00	0.00
7/5/2004	1.13	0.00	0.00		0.00
7/11/2004	0.101	0.00	0.00		0.00
7/18/2004	0.96	0.00	0.00		0.00
7/25/2004	0.81	0.00	0		
8/1/2004	0.81	0.00	0		
8/7/2004	Dry	0	0		
8/15/2004	Dry	0	0		
8/22/2004	Dry	0	0		
8/30/2004	Dry	0	0		
9/6/2004	Dry	0	0		
9/12/2004	Dry	0	0		
9/19/2004	Dry	0	0		
9/26/2004	Dry	0	0		
10/3/2004	Dry	0	0		
10/9/2004	Dry	0	0		
10/16/2004	Dry	0	0		
10/23/2004	Dry	0	0		
11/1/2004	Dry	0	0		
11/7/2004	Dry	0	0		
11/16/2004	Dry	0	0		
11/28/2004	Dry	0	0		
12/12/2004	Dry	0	0		
12/14/2004					

Total

93.90 Million Gallons

Date: 07/28/2005 Scenario: 1 Lake Id: Long Lake Watershed Id: 0 Hydrologic and Morphometric Data Tributary Drainage Area: 684.5 acre Total Unit Runoff: 7.6 in. Annual Runoff Volume: 433.5 acre-ft Lake Surface Area <As>: 119 acre Lake Volume <V>: 1373 acre-ft Lake Mean Depth <z>: 11.5 ft Precipitation - Evaporation: 3.2 in. Hydraulic Loading: 465.3 acre-ft/year Areal Water Load <qs>: 3.9 ft/year Lake Flushing Rate : 0.34 1/year Water Residence Time: 2.95 year Observed spring overturn total phosphorus (SPO): 101 mg/m^3 Observed growing season mean phosphorus (GSM): 60 mg/m³ % NPS Change: 0% % PS Change: 0%

NON-POINT SOURCE DATA

Land U	se	Acre	Low Most Li	kely	High Loading	% Low	Most Like	ely High
		(ac)	Loading	g (kg/ha	a-year)			Loading
(kg/year) -								
Row Crop AG		0.0	0.50	1.00	3.00	0.0	0	0
0								
Mixed AG		451.4	0.30	0.80	1.40	79.6	55	146
256								_
Pasture/Gra	.55	14.2	0.10	0.30	0.50	0.9	1	2
HD Urban (1	/8 Ac)	0.0	1.00	1.50	2.00	0.0	0	0
0								
MD Urban (1	/4 Ac)	67.7	0.30	0.50	0.80	7.5	8	14
Rural Res (>1 Ac)	0.0	0.05	0.10	0.25	0.0	0	0
0								
Wetlands		140.5	0.10	0.10	0.10	3.1	6	6
6								
Forest		10.7	0.05	0.09	0.18	0.2	0	0
1								
Lake Surfac 48	e	119.0	0.10	0.30	1.00	7.9	5	14

POINT	SOURCE D	АТА				an and the	
	Point So	urces	Water Load (m^3/year)	Low (kg/year)	Most Likely (kg/year)	High (kg/year)	Loading %

SEPTIC TANK DATA

Description	L	ow M	lost Likely	High	Loading %
Septic Tank Output (kg/capita-year)).3	0.5	0.8	
# capita-years	30				
<pre>% Phosphorus Retained by Soil</pre>		98	90	80	
Septic Tank Loading (kg/year)	0	.18	1.50	4.80	0.8

TOTALS DATA

Description		Most Likely	High	Loading %
Loading (lb)	164.2	404.7	749.5	100.0
Loading (kg)	74.5	183.6	340.0	100.0
Loading (lb/ac-year)	1.38	3.40	6.30	0.0
Loading (mg/m ² -year)	154.69	381.23	705.95	0.0
PS Loading (1b)	0.0	0.0	0.0	0.0
PS Loading (kg)	0.0	0.0	0.0	0.0
NPS Loading (lb)	153.2	369.6	632.7	99.2
NPS Loading (kg)	69.5	167.6	287.0	99.2
	iption Loading (lb) Loading (kg) Loading (lb/ac-year) PS Loading (mg/m ² -year) PS Loading (lb) PS Loading (kg) NPS Loading (lb) NPS Loading (kg)	iptionLowLoading (lb)164.2Loading (kg)74.5Loading (lb/ac-year)1.38Loading (mg/m^2-year)154.69PS Loading (lb)0.0PS Loading (kg)0.0NPS Loading (lb)153.2NPS Loading (kg)69.5	iption Low Most Likely Loading (lb) 164.2 404.7 Loading (kg) 74.5 183.6 Loading (lb/ac-year) 1.38 3.40 Loading (mg/m^2-year) 154.69 381.23 PS Loading (lb) 0.0 0.0 PS Loading (kg) 0.0 0.0 NPS Loading (lb) 153.2 369.6 NPS Loading (kg) 69.5 167.6	iptionLowMost LikelyHighLoading (lb)164.2404.7749.5Loading (kg)74.5183.6340.0Loading (lb/ac-year)1.383.406.30Loading (mg/m^2-year)154.69381.23705.95PS Loading (lb)0.00.00.0PS Loading (kg)0.00.00.0NPS Loading (lb)153.2369.6632.7NPS Loading (kg)69.5167.6287.0

Expanded Trophic Response Module

Date: 07/28/2005	Scenario: 1
Total Phosphorus:	100 mg/m^3
Growing Season	

Chorophyll a: 34 mg/m³ Secchi Disk Depth: 1.3 m Cholorphyll a Nuisance Frequency Chla Mean Min: 5 Chla Mean Max: 100 Chla Mean Increment: 5 Chla Temporal CV: 0.62 Chla Nuisance Criterion: 20

Mean	Freq %
5	0.5
10	7.7
15	21.9
20	37.8
25	52.0
30	63.5
35	72.3
40	79.0
45	84.1
50	87.9
55	90.7
60	92.8
65	94.4
70	95.6
75	96.6
80	97.3
85	97.8
90	98.3
95	98.6
100	98.9

Summary Trophic Response Module

Date: 07/28/2005 Scenario: 1 Average Spring Mixed Total Phosphorus:: 100 mg/m³ Growing Season Chlorophyll_a:: 29.0 mg/m³ Average Growing Season Chlorophyll_a:: 60 mg/m³ Natural Lake Secchi Depth (m) Impoundment Secchi Depth (m) Mixed Stratified Mixed Stratified 0.62 0.86 0.64 0.99

Wisconsin Trophic State Index (TSI)

Total Phosphorus::	100	mg/m^3	TSI	=	64	
Chlorophyll a::	34	mg/m^3	TSI	=	61	
Secchi Disc Depth::	1.3	m	TSI	=	56	ing an and the second second

Phosphorus Prediction and Uncertainty Analysis Module

Date: 07/28/2005 Scenario: 1 Observed spring overturn total phosphorus (SPO): 101.0 mg/m³ Observed growing season mean phosphorus (GSM): 60.0 mg/m³ Back calculation for SPO total phosphorus: 101 mg/m³ Back calculation GSM phosphorus: 60 mg/m³ % Confidence Range: 70% Nurenberg Model Input - Est. Gross Int. Loading: 28 kg

Lake Phosphorus Model	Low Total P (mg/m^3)	Most Likely Total P (mg/m ³)	High Total P (mg/m^3)	Predicted -Observed (mg/m ³)	% Dif.
Walker, 1987 Reservoir	31	77	142	17	28
Canfield-Bachmann, 1981 Natural Lake	35	63	92	3	5
Canfield-Bachmann, 1981 Artificial Lake	31	51	69	-9	-15
Rechow, 1979 General	12	29	54	-31	-52
Rechow, 1977 Anoxic	80	196	363	136	227
Rechow, 1977 water load<50m/year	26	64	119	4	7
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	55	136	252	35	35
Vollenweider, 1982 Combined OECD	37	77	128	-4	-5
Dillon-Rigler-Kirchner	31	77	143	-24	-24
Vollenweider, 1982 Shallow Lake/Res.	31	68	117	-13	-16
Larsen-Mercier, 1976	48	118	218	17	17
Nurnberg, 1984 Oxic	77	119	178	59	98

Lake Phosphorus Model	Confidence	Confidence	Parameter	Back	Model
	Lower	Upper	Fit?	Calculation	Type
	Bound	Bound		(kg/year)	
Walker, 1987 Reservoir	42	125	Tw	143	GSM
Canfield-Bachmann, 1981 Natural Lake	20	181	FIT	168	GSM
Canfield-Bachmann, 1981 Artificial Lake	e 16	147	FIT	251	GSM
Rechow, 1979 General	15	48	FIT	376	GSM
Rechow, 1977 Anoxic	109	317	FIT	56	GSM
Rechow, 1977 water load<50m/year	34	106	P Pin	172	GSM
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	63	243	FIT	136	SPO
Vollenweider, 1982 Combined OECD	36	138	FIT	193	ANN
Dillon-Rigler-Kirchner	42	125	P qs	240	SPO
Vollenweider, 1982 Shallow Lake/Res.	32	121	FIT	227	ANN
Larsen-Mercier, 1976	67	188	P Pin	158	SPO
Nurnberg, 1984 Oxic	69	191	P	29	ANN

Phosphorus Prediction and Uncertainty Analysis Module

Date: 07/28/2005 Scenario: 2 Observed spring overturn total phosphorus (SPO): 101.0 mg/m³ Observed growing season mean phosphorus (GSM): 60.0 mg/m³ Back calculation for SPO total phosphorus: 101 mg/m³ Back calculation GSM phosphorus: 60 mg/m³ % Confidence Range: 70% Nurenberg Model Input - Est. Gross Int. Loading: 125 kg

Lake Phosphorus Model Low Most Likely High Predicted % Dif. Total P Total P Total P -Observed (mq/m^{3}) (mq/m^{3}) (mg/m^3) (mg/m^3) Walker, 1987 Reservoir 77 31 142 17 28 Canfield-Bachmann, 1981 Natural Lake 35 63 92 3 5 Canfield-Bachmann, 1981 Artificial Lake 31 69 -9 51 -15 Rechow, 1979 General 12 29 54 -31 -52 Rechow, 1977 Anoxic 80 196 363 136 227 Rechow, 1977 water load<50m/year 26 64 119 4 7 Rechow, 1977 water load>50m/year N/A N/A N/A N/A N/A Walker, 1977 General 55 136 252 35 35 Vollenweider, 1982 Combined OECD 37 77 128 -4 - 5 Dillon-Rigler-Kirchner 31 77 143 -24 -24 Vollenweider, 1982 Shallow Lake/Res. 31 68 117 -13 -16 Larsen-Mercier, 1976 48 118 218 17 17 Nurnberg, 1984 Oxic 246 288 347 228 380

Lake Phosphorus Model	Confidence	Confidence	Parameter	Back	Model
	Lower	Upper	Fit?	Calculation	Type
	Bound	Bound		(kg/year)	
Walker, 1987 Reservoir	42	125	Tw	143	GSM
Canfield-Bachmann, 1981 Natural Lake	20	181	FIT	168	GSM
Canfield-Bachmann, 1981 Artificial Lake	16	147	FIT	251	GSM
Rechow, 1979 General	15	48	FIT	376	GSM
Rechow, 1977 Anoxic	109	317	FIT	56	GSM
Rechow, 1977 water load<50m/year	34	106	P Pin	172	GSM
Rechow, 1977 water load>50m/year	N/A	N/A	N/A	N/A	N/A
Walker, 1977 General	63	243	FIT	136	SPO
Vollenweider, 1982 Combined OECD	36	138	FIT	193	ANN
Dillon-Rigler-Kirchner	42	125	P qs	240	SPO
Vollenweider, 1982 Shallow Lake/Res.	32	121	FIT	227	ANN
Larsen-Mercier, 1976	67	188	P Pin	158	SPO
Nurnberg, 1984 Oxic	180	442	P	-415	ANN

Water and Nutrient Outflow Module

Date: 07/28/2005 Scenario: 1 Average Annual Surface Total Phosphorus: 101mg/m³ Annual Discharge: 4.65E+002 AF => 5.74E+005 m³ Annual Outflow Loading: 122.1 LB => 55.4 kg

Wisconsin Internal Load Estimator Date: 07/29/2005 Scenario: 1 <u>Method 1 - A Complete Total Phosphorus Mass Budget</u> Method 1 - A Complete Total Phosphorus Mass Budget 118 mg/m³ Phosphorus Inflow Concentration: 319.9 mg/m³ Areal External Loading: 381.2 mg/m²-year Predicted Phosphorus Retention Coefficient: 0.78 Observed Phosphorus Retention Coefficient: 0.63 Internal Load: 61 Lb 28 kg

Method 2 - From Growing Season In Situ Phososphorus Increases

Start of Anoxia Average Hypolimnetic Phosphorus Concentration: 150 mg/m³ Hypolimnetic Volume: 150 acre-ft Anoxia Sediment Area: 19 acres Just Prior To The End of Stratification Average Hypolimnetic Phosphorus Concentration: 950 mg/m³ Hypolimnetic Volume: 150 acre-ft Anoxia Sediment Area: 19 acres Time Period of Stratification: 120 days Sediment Phosphorus Release Rate: 16.0 mg/m²-day 4.36E-002 lb/acre-day Internal Load: 326 Lb 148 kg

Method 3 - From In Situ Phososphorus Increases In The Fall

Start of Anoxia Average Hypolimnetic Phosphorus Concentration: 150 mg/m³ Hypolimnetic Volume: 150 acre-ft Anoxia Sediment Area: 19 acres Just Prior To The End of Stratification Average Water Column Phosphorus Concentration: 180 mg/m³ Lake Volume: 1373.0 acre-ft Anoxia Sediment Area Just Before Turnover: 19 acres Time Period Between Observations: 120 days Sediment Phosphorus Release Rate: 30.0 mg/m²-day 8.17E-002 lb/acre-day Internal Load: 611 Lb 277 kg

Method 4 - From Phososphorus Release Rate and Anoxic Area

Start of Anoxia Anoxic Sediment A	rea: 19 acre			
End of Anoxia Anoxic Sediment Are	a: 19 acre			
Phosphorus Release Rate As Calcul	ated In Method	2: 16.0	mg/m^2-day	
Phosphorus Release Rate As Calcul	ated In Method	3: 16.0	mg/m^2-day	
Average of Methods 2 and 3 Releas	e Rates: 23.0	mg/m^2-da	ay	
Period of Anoxia: 120 days				
Default Areal Sediment Phosphorus	Release Rates	:		
Low	Most Likely	High		
6	14	24		
Internal Load: (Lb) 37	87	149		
Internal Load: (kg) 17	39	67		

Internal Load Comparison (Percentanges are of the Total Estimate Load) Total External Load: 405 Lb 184 kg

	Lb	kg	ક
From A Complete Mass Budget:	61	28	13.1
From Growing Season In Situ Phosphorus Increases:	326	148	44.6
From In Situ Phososphorus Increases In The Fall:	611	277	60.1
From Phososphorus Release Rate and Anoxic Area:	87	39	17.7

198

Predicted Water Column T	otal Pho	osphorus Concentra	tion (ug/l)			
Nurnberg+ 1984 Total Pho	sphorus	Model: Low	Most Likely	High		
		76	440	198		
Osgood, 1988 Lake Mixing Index: 5.1						
Phosphorus Loading Summary:						
	Low	Most Likely	High			
Internal Load (Lb):	61	468.6	87			
Internal Load (kg):	28	212.6	39			
External Load (Lb):	164	405	750			
External Load (kg):	75	184	340			
Total Load (Lb):	225	873	836			
Total Load (kg):	102	396	379			

Appendix D

Northern Pike Spawning Habitat

NORTHERN PIKE SPAWNING HABITAT

C18 FACTSHEET

Substrate Modification

DESCRIPTION AND PURPOSE

- A shallow, off-channel marsh is excavated adjacent to a stream or river, and planted with aquatic vegetation
- To provide suitable spawning habitat for northern pike within streams and rivers
- Used where existing spawning substrate is limiting (e.g., emergent vegetation within an area of slow velocity water)

NORTHERN PIKE SPAWNING HABITAT

Substrate Modification

C18 FACTSHEET 2 of 3

APPLICABILITY

Suitable for small to large watercourses

ADVANTAGES

- Little if any construction material is required major construction requirement is for
 excavation
- Other fish species such as yellow perch (*Perca flavescens*), brook stickleback (*Culaea inconstans*), fathead minnow (*Pimephales promelas*), pearl dace (*Margariscus margarita*), spottail shiner (*Notropis hudsonius*), northern redbelly dace (*Phoxinus eos*) and lake chub (*Couesius plumbeus*) may use the marsh for spawning and rearing
- Spawning marshes may provide habitat for other animal species (e.g., ducks, frogs and muskrats)

LIMITATIONS

- Will require the use of heavy equipment to construct
- Can be expensive to construct
- May require aquatic vegetation transplants plants may be available locally
- Detailed hydrological information may be required

DESIGN AND IMPLEMENTATION (REFER TO FIGURE)

- Northern pike prefer to spawn in shallow water (0.2 to 1.0 m deep) over a substrate of emergent vegetation – sedges (*Carex* spp.), bulrushes (*Scirpus* spp.) and flooded grasses are preferred
- Ideally a low-lying terrestrial or floodplain area adjacent to a watercourse can be excavated to construct a spawning and rearing marsh for northern pike – northern pike spawning marshes have ranged in size from 0.3-7.0 ha
- During excavation the top portion of the organic soil should be set aside so that it can be used as a growing medium for aquatic plants once the marsh is complete
- The spawning marsh is connected to the main waterbody by a narrow, deep channel (e.g., 2 x 2 m) which prevents overgrowth by aquatic vegetation or occlusion by silt
- The spawning marsh should be constructed with an undulating shoreline to maximize the surface area
- Approximately 50% of the marsh area should be constructed with a shallow gradient of 0.0 to 1.0 m depth from the marsh edge inward towards the marsh centre
- The shallowest portion (0.0 to 0.5 m depth) would be transplanted with *Carex* spp. whereas the deeper portion (0.5 to 1.0) would be planted with *Scirpus* spp.
- The most cost-effective method of establishing vegetation is to use a nearby donor wetland where small plots of emergent vegetation (0.3 x 0.3 m) are dug up and transplanted into the new marsh at a 0.8 to 1.5 m spacing during the spring

NORTHERN PIKE SPAWNING HABITAT

Substrate Modification

DESIGN AND IMPLEMENTATION CONT'D

- Inside the shallow outer area there should be a band of deeper water (1.5 to 2.5 m deep) to
 provide cover for larger fish and to prevent the marsh from overgrowing a small submerged
 island (0.5 m below the water surface) can be constructed in the deeper water to provide
 additional spawning area
- The deeper water will likely be colonized after a period a time by submergent vegetation which provides ideal cover for larger northern pike
- An outlet channel (optional) can be dug to control the water depth of the marsh or alternatively the marsh can be allowed to overflow and flood a low-lying area back to the watercourse - this flooded area may also provide additional spawning habitat
- The outlet/inlet canal should be at an elevation to ensure that young-of-the-year northern pike can emigrate into the main watercourse as water levels subside in the spring

MAINTENANCE

- An inspection should be completed once every several years
- If the marsh becomes overgrown with shrubs and trees they should be removed
- Should the shallow area of the marsh become overgrown with aquatic vegetation and shallower, the area may have to be re-excavated to design specifications
- Monitoring should be completed after construction to determine if northern pike are using marsh for spawning

REFERENCES AND FURTHER READING

Casselman, J.M., and C.A. Lewis. 1996. Habitat requirements of northern pike. Canadian Journal of Fisheries and Aquatic Science 53 (Suppl. 1): 161-174.

Kelso, J.R.M., and Hartig, J.H. 1995. Methods of modifying habitat to benefit the Great Lakes ecosystem. CISTI Occasional Paper 1: 294 pp.

Hammer, D.A. 1992. Creating freshwater wetlands. Lewis Publishers. 298 pp.

Morrow, J.V., G.L. Miller, and K.J. Killgore. 1997. Density, size, and foods of larval northern pike in natural and artificial wetlands. North American Journal of Fisheries Management 17: 210-214.

618

FACTSHEET

3 of 3