Data collectors $A(ex Ma)$	Lake Name
?	Rus K
Lead Monitor phone and	WBIC 1836700
Jonitor phone and email Start time (~15 min)	Date(s) 7-22-1 4
_	AIS sign?
End time (~ 15 min)	Secchi (ft)or m)
Total collector time (hrs x # collectors	Conductivity (ZM tow if \geq 99 umhos/cm) 39

swamp crayfish, rusty crayfish, didymo, and any other AIS found. hyacinth, water lettuce, zebra mussel, quagga mussel, water flea, Chinese mystery snail, banded mystery snail, faucet snail, New Zealand mud snail, Asian clam, red Brazilian waterweed, yellow floating heart, European frog-bit, yellow floating heart, water chestnut, Brazilian waterweed, fanwort, parrot feather, water Look for the following species: Purple loosestrife, Phragmites, flowering rush, Japanese knotweed, Yellow iris, Eurasian water-milfoil, curly-leaf pondweed, Hydrilla,

STEP 1: Record locations of sampling sites (in decimal degrees). Sampling sites include all public boat landings (BL), 5 target sites (TS) and the meander survey sites (MS). List appreciated. If needed, preserve with adequate ethanol include internal and external labels with WBIC, lake name, county, sample date, sample type (snails, spiny water flea or zebra mussel) and collector. Legibility is AIS found at each site or record none. Collect a sample of any new AIS found. Collect five new invasive plant specimens, 20 Dreissenids, and 3 of each snail species and

x.		- P1				
					P Spread Succession	d.
25			2 &			
		7				
		4		-91.2616	45.3384	7
11	37 37	S. C.		-91,2555	45.3388	1-51
	Marine 1 cms.			-91.2595	150 45.3417	15-3
1	The second of th			-91.2655	TS2 45, 3405	15-2
				-91,2640	45, 3389	15-1
	Cm5-1	Stained water	\mathcal{N}	-91,2632	45, 3355	BL-1
	Species, density 1-5 [‡]	-	Snorkel (Y or N*)	Longitude	Latitude	Site

*For lakes/sites not snorkeled, substitute:

Boat landing site — Examine rake throws and D-net samples for 30 minutes. Targeted site — Examine rake throws and D-net samples for 10 minutes. Meander — Examine 50 rake throws/D-net samples during meander survey.

† If lake/site was not snorkeled, indicate why: stained water, turbid water, blue-green bloom, chemical treatment, other (please describe).

‡ Density Ratings

- 1-A few plants or invertebrates
- 2 One or a few plant beds or colonies of invertebrates
- 3 Many small beds or scattered plants or colonies of invertebrates
- 4 Dense plant, snail or mussel growth in a whole bay or portion of the lake
- 5 Dense plant, snail or mussel growth covering most shallow areas

Report (3200-128) to DNR Science Services. Step 2: Collect Waterflea Tows from the deep hole (DH). Decant s water and preserve the sample. Submit the sample, this data form and the Water Flea Tow Monitoring 3 tous divided between 2

	<	*	Ł	4	4	4
	No.					,
			- 0	200	5 74 100	
		<	2		0) 7	7
Sample sent to, date	Samples combined (Y or N) Sample sent to, date	Ethanol added (Y or N)	Net diameter (30 or 50 cm)	Method (hor, obliq, vert)	Net ring depth	SITE
S	1 grant bother	Tous an accordance	O TOWS divide			2

Mussel Veliger Tow Monitoring Report (3200-135) to DNR Science Service. Step 3: Collect Veliger Tows from 3 sites; the deep hole (DH) and two other deep areas along the downwind side of the lake. Submit the sample, this data form and the

			_					
Step 6:	1 17	Step 5:		Step 4	/	//	×	Şite
Step 6: Data was entered into SWIMS on		Were snail vouche		Were plant vouch	3.00	事 小塚 の人 一日 一日	0.03/40 4 2013	Net ring depth
(7	A.	er specimens submitted for all	1 1	er specimens submitted? Yes _/				Net diameter (30 or 50 cm) Ethanol added (Y or N)
by_	000	Step 5: Were snail voucher specimens submitted for all records (circle)? Yes No If yes, where? (circle) UW-La Crosse or other		No (circle) If yes, indicate wi)			Ethanol added (Y or N)
7 4	3	es, where? (circle) UW-La Cro)	nere: Freckmann Herbarium, V	· ·			Samples combined (Y or N)
		osse or other		Step 4: Were plant voucher specimens submitted? Yes No (circle) If yes, indicate where: Freckmann Herbarium, Wisconsin State Herbarium, Other				Sample sent to, date
				~				

Notes:

Step 7: Data was proofed on