

1414 West Hamilton Avenue P.O. Box 8 Eau Claire, WI 54702-0008

January 19, 2012

Ms. Kimberly D. Bose, Secretary Federal Energy Regulatory Commission 888 First Street, NE Washington, D.C. 20426

Subject:

2011 Water Quality Monitoring Report For Big Falls Flowage (P-2390-01),

Thornapple Flowage (P-2475) And Turtle-Flambeau Flowage

(P-2390-02)

Dear Secretary:

Enclosed are the results of the water quality monitoring that Northern States Power Company – Wisconsin (NSPW) conducted during the 2011 field season on Big Falls and Thornapple Flowages. The samples were obtained after ice-out, in late July, and late August per the Federal Energy Regulatory Commission's license requirement to monitor long-term changes in water quality.

Also included in the report are the water quality sampling results for the Turtle-Flambeau Flowage (TFF) conducted by the Citizen's Self-help Lake Monitoring Program. The results of the TFF monitoring are being provided to you pursuant to Item J of the Water Quality Certificate of the Commission's order amending the Big Falls license to include the Turtle-Flambeau Flowage.

The results for Big Falls and Thornapple are summarized for the past eight years. While there appears to be some variability in some of the parameters analyzed, for the most part, the results have been relatively consistent. The data collected in 2011 is consistent with data from the previous years' sampling.

The WDNR and USFWS were provided 30 days to submit comments but none were received. Should you have any questions regarding this report, feel free to contact Matthew Miller of this office at (715) 737-1353 or by electronic mail at matthew.j.miller@xcelenergy.com.

Sincerely.

William Zawacki

Director, Hydro Plants

Enclosure: Water Quality Monitoring Report

c: Mr. Jeff Scheirer – WDNR (cover letter only)

Mr. Nick Utrup – USFWS (cover letter only)

Project Files

2011 Water Quality Monitoring Report for Big Falls Flowage (P-2390-01), Thornapple Flowage (P-2475) and Turtle Flambeau Flowage (P-2390-02)

Northern States Power Company – WI An Xcel Energy Company

January 2012

APPENDIX A

2011 Water Quality Fieldwork Data Sheets & Lab Analysis For Big Falls And Thornapple Flowages

Water Quality Sampling - Big Falls Flowage

Date: 4-29-1/ **	
Temperature:	¥
Weather Conditions:	
Depth of Bottom Sample:	
Secchi Disk Reading:	

Dissolved Oxygen and Temperature Profile

a Deola:	Temperature (C)	Dissolved and Dissolved
Surface		
2 .		
4		
6		
8	:	
10		
12		
14		
16		
18		
20		
22		
24		
26		
28		
30		
32		•
34		
36		
38		
40	·	
42		
44		•
46		

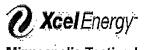
Remarks: * BIG FALLS NOT SAMPLED DUE TO

12 FT. DRAWDOWN FOR LEFT EMBANKMENT
REPAIRS

Water Quality Sampling - Thornapple Flowage

Date: 4-29-//	
Temperature: 45°	'n
Weather Conditions: SUNNY - WIND	5@5-11
Depth of Bottom Sample: 23 FT	<u> </u>
Secchi Disk Reading: 3.5 FT	•

Dissolved Oxygen and Temperature Profile


		Dissolved
Surface	Lemperature (C).	
	6,9	12,5.
2 -	6.8	12,4.
6	6.8	12.4
	6.8	- 12.4
8	6.8	12,4
10	6.8	12,4
12 :	6.8	12,4
14	6.8	12.3
16	6.8	12.3
18	6.8	12.3
20	6.8	12.3
22	6.8	12. 3
24	BOTTOM	
26		
28		
30		
32 -		ነ
34		
36		
38		
40		
42		
44		
46	COLLEGE COLLEG	

Remarks: RIVER FLOWS & 5,600 CFS

NO NAVIGATION HAZARDS OBSERVED

SAMPLES TAKEN AT 4TH BUDY FROM WEST

NO ACTIVITY AT NEST SITE - I IMMATURE EAGLE SUARING IN VICTURTY

Minneapolis Testing Laboratory Report

1518 Chestnut Avenue N Minneapolis, MN 55403

Phone: (612)630-4506

Fax: (612) 630-4367 Contact: Christine Keefe

Lab Certification MN ID: 027-053-197 Lab Certification WI ID:999071150

Report To:

Hydro Operation

Environmental Services-WI

Attention:

Matt Miller

Leroy Wilder

. Work Request#

WIHY0411

Date of Report

8/24/2011

					The same of the sa	
Sample Description:	воттом				LabWorks I.D.	EG94075
Location:	THORNAPPLE				Laboratory I.D.:	1184.24
					Collection Date:	4/29/2011
Customer Sample I.D.:					Date Submitted:	5/3/2011
Chain of Custody #.:	207385			Reporting	Analytical Method ·	Analysis Start
Constituent	Result	Units	Analyst	Limit (RL)		Date
Total Phosphorus	0.03	mg/L P	HRG	0.01	EPA 365.3	5/4/2011

Comments related to sample number EG94075:

Phone: (612)630-4506 Fax: (612) 630-4367

Contact: Christine Keefe Lab Certification MN ID: 027-053-197 Lab Certification WI ID:999071150

Report To:

Hydro Regulatory-WI

Environmental Services-WI

Attention:

Matt Miller

Leroy Wilder

Work Request #

WIHY0411

Date of Report

8/24/2011

Sample Description:	SURFACE THORNAPPLE				LabWorks I.D. Laboratory I.D.: Collection Date:	EG94074 1184.23 4/29/2011
Customer Sample I.D.:					Date Submitted:	5/3/2011
Chain of Custody #.: Constituent	207385 Result	Units	Analyst	Reporting Limit (RL)	Analytical Method	Analysis Start Date
Chlorophyll-a Send Chlorophyll A	2.7 Completed	ug/L	NLS MM	0.041	SM 19th 10200 H	5/4/2011 · 5/2/2011
Total Phosphorus	0.03	mg/L P	HRG	0.01	EPA 365.3	5/4/2011

Comments related to sample number EG94074:

emitte 1

Water Quality Sampling - Big Falls Flowage

Date: 7-26-11.

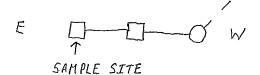
Temperature: 76°

Weather Conditions: 44 Curvey 4 Tours

Weather Conditions: M. SUNNY LIGHT WINDS

Depth of Bottom Sample: 11.5 M @ 1044.

Secchi Disk Reading: 4 FEET


Dissolved Oxygen and Temperature Profile

		Dissolved
- Depth -	Lemperature (C)	
Surface	25,8	6.58
2	25.8	6.56
4	25.6	6.66
6	25,2	6.56
8	25,2	4.59
10	25.2	6.58
12	25.2	6.53
14	25.1	6.52
16	24.9	6.38
18 .	24,5	6.32
20	24,5	6.32
22	24,3	6.29
24	24.3	6.33
26	24.2	6,27
28	24,1	6.31
30	24,1	6.25
32	24.1	6.20
34	24,1	6.18
36	24,1	6.11
38	BOTTOM	BOTTOM
40		
42		
44		•
46		

Remarks: - NO NAUIGATION HAZARDS

- I MATURE CAGLE SOARING ABOVE TRILARCE &
PERCHED IN TREE ON ISLAND ACROSS FROM NEST SITE

H:\excel5\bigfalls\wqsheet

Water Quality Sampling - Thornapple Flowage

Date: 7-26-//	
Temperature: 80°	*
Weather Conditions: SUNNY-LIGHT	WITHINS
Depth of Bottom Sample: 20 FT	0021000
Secchi Disk Reading: 45 FEFT	

Dissolved Oxygen and Temperature Profile

	Denin	Temperature (C)	Dissolved
	Surface		
	2 -	26, 4 26, 3	6.56
	4	25.9	6.54
	6	25.6	6.54 6.47
	8	25.7	6.46
	10	25,5	6.45
	12	25.4	6.41
L	14	24.6	6.14
L	16 -	24.2	5.76
L	18	24.2	5.68
L	20	23.7	5.00
L	22	BOTTOM	BOTTOM
L	24		
L	26		
L	28		
L	30		
	32 -		3
	34		
	36		
	38		
	40		
	42		
	44		THE RESERVE OF THE PERSON OF T
	46		

Remarks: - NO NAVIGATION HAZARDS

- NO ACTIVITY AT ENGLE NEST

- RIVER FLOW & 830 CFS

Phone: (612)630-4506 Fax: (612) 630-4367

Contact: Christine Keefe Lab Certification MN ID: 027-053-197 Lab Certification WI ID:999071150

Report To:

Hydro Regulatory-WI

Enviromental Service

Attention:

Matt Miller

Minneapolis Testing Laboratory Report

Leroy Wilder

Work Request #

Date of Report

WIHY0711

8/23/2011

Sample Description:

BOTTOM

LabWorks I.D. Laboratory I.D.:

EH01413

Location:

BIG FALLS FLOWAGE

Collection Date:

1204.27

Customer Sample I.D.:

0.01

Date Submitted:

7/26/2011 7/28/2011

Chain of Custody # .: 216119 Result

Limit of Units

Limit of Detection (LOD) Quantitation (LOQ)

Analytical Method

Analysis Start Date

Constituent Phosphorus

0.06

mg/LP

0.01

EPA 365.3

Analyst. HRG

8/3/2011

Comments related to sample number EH01413:

Phone: (612)630-4506 Fax: (612) 630-4367

Contact: Christine Keefe Lab Certification MN ID: 027-053-197 Lab Certification WI ID:999071150

. Report To:

Hydro Regulatory-WI

Environmental Service

Attention:

Matt Miller

Minneapolis Testing Laboratory Report

Leroy Wilder

Work Request #

WIHY0711

Date of Report

8/23/2011

Sample Description:

SURFACE

LabWorks I.D. Laboratory I.D.:

EH01412 1204.27

Location:

BIG FALLS FLOWAGE

Collection Date:

7/26/2011

Customer Sample I.D.:

Limit of Limit of

Date Submitted:

7/28/2011

Chain of Custody #.:
Constituent

216119 Result

Units Detection (LOD) Quantitation (LOQ)

Analytical Method

Analysis Start Date

Phosphorus

0.04

mg/L P 0.01

0.01

EPA 365.3

HRG

Analyst

8/3/2011

Chlorophyll-a

7.3 ·

ug/L

0.041

0.041

SM 19th 10200 H

7/28/2011

Comments related to sample number EH01412:

Phone: (612)630-4506

Fax: (612) 630-4367

Contact: Christine Keefe Lab Certification MN ID: 027-053-197 Lab Certification WI ID:999071150

Report To:

Hydro Regulatory-WI Environmental Servic

Attention:

Mått Miller

Minneapolis Testing Laboratory Report

Leroy Wilder

Work Request #

WIHY0711

Date of Report

8/23/2011

Sample Description:

BOTTOM

LabWorks I.D. Laboratory I.D.:

EH01415

Location:

THORNAPPLE FLOWAGE

1204.30

Customer Sample I.D.:

Collection Date: Date Submitted: 7/26/2011 7/28/2011

Chain of Custody #.: 216119

Limit of Limit of Detection (LOD) Quantitation (LOQ)

Analytical Method

Analysis Start Date

Constituent

Phosphorus

Result

0.04

mg/L P 0.01

Units

0.01

EPA 365.3

Analyst HRG

8/18/2011

Comments related to sample number EH01415:

Phone: (612)630-4506 Fax: (612) 630-4367

Contact: Christine Keefe Lab Certification MN ID: 027-053-197 Lab Certification WI ID:999071150

Minneapolis Testing Laboratory Report

Report To:

Hydro Regulatory-WI

Environmental Servic

Attention:

Matt Miller Leroy Wilder

Work Request #

WIHY0711

Date of Report

8/23/2011

Sample Description:

SURFACE

LabWorks I.D. Laboratory I.D.: EH01414 1204.29

Location:

THORNAPPLE FLOWAGE

Collection Date:

Customer Sample I.D.:

Limit of Limit of Date Submitted:

7/26/2011 7/28/2011

Chain of Custody # .:

216119

Detection (LOD) Quantitation (LOQ)

Analytical Method

Analysis Start Date

Constituent

Result

mg/LP 0.01

Units

0.01

EPA 365.3

Analyst HRG

8/3/2011

Phosphorus Chlorophyll-a

0.05 5.4

0.041 ug/L

0.041

SM 19th 10200 H

7/28/2011

Comments related to sample number EH01414:

Water Quality Sampling - Big Falls Flowage

Date: <u> </u>	
Temperature: 72	ř
Weather Conditions: <u>SUNNY</u>	WIND NW@10-15
Depth of Bottom Sample: 34.	
Secchi Disk Reading: 3 67	

Dissolved Oxygen and Temperature Profile

		Dissolved_
Depine	r remperature (C)	
Surface	22.3	7.51
2	22,3	7.52
	ZZ, 3 ZZ, Z	7.52
6	22,2	7.54
8	22./	7.60
10	22,0	7.59
12	21.9 21.8 21.7	7,46 7,45
14	21,8	7.45
16	21,7	7,52
18	21.6	7.49 7,53
20	21.6	7,55
- 22	21,6	7,52
24	Z1,5 2/.5	7,55 7,53
26	21,5	7,53
28	41,5	7.56
30	21,5	7,58
32	21.5	7,57
34	21,5	7,56
36	Z1.5	7.52
38	Bottom	Bottom
40		
42		
44		
46	•	

Remarks: - 2 EAGLES OBSERVED SO AN ING A BOVE PARK AREA BELOW LEFT

EMBANKMENT

- FLOWS & 1,150 CFS

- NO NAVIGATION HAZALDS

H:\excel5\bigfalls\wqsheet E

SAMPLE SITE

" material

Water Quality Sampling - Thornapple Flowage

Date: 8-24-1/	
Temperature: 78 SUNNY. NW WIND - 15-20	
Weather Conditions: Mostly sunny - beutiful day	78
Depth of Bottom Sample: 20 FT	
Secchi Disk Reading: 3 FT	

Dissolved Oxygen and Temperature Profile

e Depine		Dissolved
THE PARTY OF THE P	Temperature (C)	
Surface	45,7	6,52
2 -	23,7 23,7	6,50
	23,0	6,36
6	22.7	6,26
8	22.7	6.23
10	22,6	6,16
12	22,5	6,08
14	22,3	5,94
16	27,1	5,73 5,60 5,60
18	22,0	54/0
20	22,0	5,60
22	Bottom	Bottom
24		
26		
28		
30		
32 -		1
34		
36		
38		
40		
42		
44		
46		

Remarks: - NO NAVIGATION HAZARDS

- FLOWS & 1150 CFS

- NO ACTIVITY AT EAGLE NEST

H:\excel5\thomapp\wqsheet

Phone: (612)630-4506 Fax: (612) 630-4367

Contact: Christine Keefe Lab Certification MN ID: 027-053-197 Lab Certification WI ID:999071150

Report To:

Hydro Regulatory-WI

Environmental Services-WI

Attention:

Matt Miller

Minneapolis Testing Laboratory Report

Leroy Wilder

Work Request #

WIHY0811

Date of Report

9/23/2011

Sample Description:

воттом

LabWorks I.D. Laboratory I.D.:

EH04240 1211.07

Location:

BIG FALLS FLOWAGE

Customer Sample I.D.:

Collection Date: Date Submitted:

8/24/2011 8/26/2011

Chain of Custody # .:

217279

0.04

Limit of Units

Limit of Detection (LOD) Quantitation (LOQ)

Analytical Method

Analysis Analyst Start Date

Constituent Phosphorus Result

0.01

mg/L P

0.01

EPA 365.3

HRG

9/1/2011

Comments related to sample number EH04240:

Phone: (612)630-4506 Fax: (612) 630-4367

Contact: Christine Keefe Lab Certification MN ID: 027-053-197 Lab Certification WI ID:999071150

Minneapolis Testing Laboratory Report

Report To:

Hydro Regulatory-Wİ

Attention:

Environmental Services-WI

Matt Miller Leroy Wilder

Work Request # Date of Report

WIHY0811 9/23/2011 ·

Sample Description:

SURFACE

LabWorks I.D. Laboratory I.D.:

EH04239

Location:

BIG FALLS FLOWAGE

1211.06

Collection Date: Date Submitted:

8/24/2011 8/26/2011

Customer Sample I.D.:

Limit of Limit of Detection (LOD) Quantitation (LOQ) Units

Analytical Method

Analysis Analyst Start Date

Chain of Custody # .: Constituent

217279 Result 0.04

3.8

0.01 0.01

EPA 365.3

HRG

9/1/2011

Phosphorus Chlorophyll-a

ug/L 0.041

mg/L P

SM 19th 10200 H 0.041

8/30/2011

Comments related to sample number EH04239:

Phone: (612)630-4506 Fax: (612) 630-4367

Contact: Christine Keefe Lab Certification MN ID: 027-053-197 Lab Certification WI ID:999071150

Minneapolis Testing Laboratory Report

Report To:

Hydro Regulatory-WI

Environmental Services-WI

Attention:

Work Request # Date of Report

WIHY0811 9/23/2011

Matt Miller Leroy Wilder

LabWorks I.D.

EH04242

Location:

THORNAPPLE FLOWAGE

Laboratory I.D.:

1211.09

Customer Sample I.D.:

Sample Description:

Collection Date: Date Submitted:

8/24/2011 8/26/2011

Chain of Custody#.:#.: 217279

0.05

Limit of Units

mg/LP

Limit of

Analytical Method Analyst

Analysis Start Date

Constituent Phosphorus Result

BOTTOM

Detection (LOD) Quantitation (LOQ)

0.01

0.01

EPA 365.3

HRG

9/1/2011

Comments related to sample number EH04242:

Phone: (612)630-4506 Fax: (612) 630-4367

Contact: Christine Keefe' Lab Certification MN ID: 027-053-197 Lab Certification WI ID:999071150

Minneapolis Testing Laboratory Report

Report To:

Hydro Regulatory-WI

Environmental Services-WI

Attention:

Matt Miller

Leroy Wilder

Work Request #

WIHY0811

Date of Report

9/23/2011

Sample Description:

SURFACE

LabWorks I.D. Laboratory I.D.: EH04241

Location:

1211.08

THORNAPPLE FLOWAGE

Collection Date: Date Submitted:

8/24/2011 8/26/2011

Customer Sample I.D.:

217279

Limit of Limit of Detection (LOD) Quantitation (LOQ)

Analytical Method

Analysis Start Date

Chain of Custody # .: Constituent

Result

Units mg/LP 0.01

ug/L

0.01

EPA 365.3

HRG 9/1/2011

Analyst

Phosphorus Chlorophyll-a

2.5

0.04

0.041

0.041 SM 19th 10200 H 8/30/2011

Comments related to sample number EH04241:

APPENDIX B

Summary Of Total Phosphorous And Chlorophyll A Data For Big Falls And Thornapple Flowages 2004 - 2011

		Big Falls Flowage	<u>2</u>	<u>Th</u>	ornapple Flowa	<u>ge</u>
	Surface	Surface	Bottom	Surface	Surface	Bottom
	Total Phosphorus	Chlorophyll-A	Total Phosphorus	Total Phosphorus	Chlorophyll-A	Total Phosphorus
<u>Date</u>	<u>(mg/L P)</u>	<u>(ug/L)</u>	<u>(mg/L P)</u>	<u>(mg/L P)</u>	<u>(ug/L)</u>	<u>(mg/L P)</u>
5/5/2004	0.053	1.55	0.031	0.035	1.80	0.036
7/28/2004	0.037	3.10	0.084	0.050	4.60	0.049
8/25/2004	0.024	3.35	0.042	0.029	4.10	0.027
4/19/2005	0.050	0.50	0.057	0.055	0.70	0.051
7/25/2005	0.031	0.60	0.044	0.031	1.50	0.045
8/31/2005	0.020	1.50	0.092	0.029	2.75	0.030
4/26/2006	0.023	0.94	0.035	0.026	2.35	0.024
7/24/2006	0.029	0.50	0.099	0.035	4.03	0.041
8/23/2006	0.048	1.50	0.035	0.050	2.11	0.040
4/30/2007	0.028	1.95	0.067	0.039	4.50	0.033
7/31/2007	0.029	4.81	0.043	0.037	3.35	0.032
8/29/2007	0.052	4.45	0.027	0.049	2.93	0.033
4/30/2008	0.024	0.579	0.031	0.030	0.961	0.029
7/23/2008	0.032	2.80	0.043	0.041	11.0	0.051
8/26/2008	0.030	3.70	0.047	0.032	13.0	0.034
4/28/2009	0.030	5.5	0.033	0.040	11.0	0.033
7/28/2009 8/24/2009	0.033 0.021	6.9	0.099 0.032	0.021 0.023	4.8	0.053 0.075
4/28/2010	0.021	5.0 4.2	0.032	0.023	3.6 7.2	0.075
7/27/2010	0.023	1.8	0.048	0.029	0.76	0.07
8/31/2010	0.05	3.8	0.06	0.01	0.69	0.06
4/29/2011	NA*	NA*	NA*	0.03	2.70	0.03
7/26/2011	0.04	7.3	0.06	0.05	5.40	0.04
8/24/2011	0.04	3.8	0.04	0.04	2.50	0.05
Average (Ice-out sample)	0.03	1.90	0.04	0.04	3.90	0.03
Average (July sample)	0.04	3.48	0.07	0.04	4.43	0.05
Average (August sample)	0.04	3.39	0.05	0.03	3.96	0.04

^{*} No sampling conducted as reservoir was drawndown for repairs to left embankment

APPENDIX C

Summary Of Dissolved Oxygen And Temperature Data For Big Falls Flowage 2004 - 2011

Dissolved Oxygen and Temperature Profiles for the Big Falls Flowage in 2004.

5/5/2004 Date: Secchi Disk (ft.):

5.5 11.5 m

Depth of Bottom Sample: Weather Conditions:

cloudy, S wind, 50 F

Date:

Weather Conditions:

7/28/2004

Secchi Disk (ft.): 6.5 Depth of Bottom Sample:

12 m

clear, S wind, 75 F

Date: 8/25/2004

Secchi Disk (ft.): 6.5 Depth of Bottom Sample: 37 ft. Weather Conditions: cloudy, 75 F

Dissolved Depth Temperature Oxygen (ft.) (celsius) (mg/l) 12.4 10.1 Surface 12.4 10.4 2.0 4.0 12.4 10.4 12.4 10.2 6.0 12.3 10.3 8.0 12.2 10.4 10.0 12.0 12.1 10.4 12.1 10.6 14.0 10.6 16.0 12.1 18.0 10.6 12.0 20.0 11.9 10.5 22.0 11.8 10.3 24.0 11.7 10.3 26.0 11.6 10.3 10.3 28.0 11.6 30.0 11.6 10.2 10.2 32.0 11.6 34.0 11.6 10.2 10.2 36.0 11.5 38.0 11.3 10.1 40.0 11.3 9.7

Depth (ft.)	Temperature (celsius)	Dissolved Oxygen (mg/l)
Surface	24.2	7.4
2.0	24.2	8.0
4.0	24.1	8.1
6.0	24.0	8.1
8.0	24.0	7.6
10.0	23.9	7.1
12.0	23.9	6.4
14.0	23.7	6.1
16.0	23.5	6.0
18.0	23.3	5.7
20.0	23.1	5.6
22.0	23.0	5.3
24.0	22.8	5.1
26.0	22.7	4.9
28.0	22.5	4.1
30.0	22.4	4.4
32.0	22.2	4.2
34.0	22.0	3.9
36.0	21.7	3.2
38.0	20.4	1.1

		-
		Dissolved
Depth	Temperature	Oxygen
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>
Surface	21.2	8.9
2.0	21.2	8.9
4.0	19.8	8.8
6.0	19.7	8.8
8.0	19.6	8.7
10.0	19.6	8.7
12.0	19.6	8.6
14.0	19.6	8.5
16.0	19.6	8.4
18.0	19.5	8.3
20.0	19.4	8.4
22.0	19.2	8.3
24.0	19.2	8.2
26.0	19.0	8.2
28.0	18.8	7.8
30.0	18.7	7.8
32.0	18.4	7.4
34.0	18.2	7.2
36.0	17.9	5.4
38.0	17.6	4.4

Could not sample earlier due to excessively high river flows

Dissolved Oxygen and Temperature Profiles for the Big Falls Flowage in 2005.

Date:	4/19/2005	5	Date:	7/25/2005	5	Date:	8/31/2005	5
Secchi Dis	sk (ft.):	5.5	Secchi Dis	sk (ft.):	4	Secchi Dis	sk (ft.):	7
Depth of B	Sottom Sample:	11 m	Depth of E	Bottom Sample:	12.5 m	Depth of E	Bottom Sample:	37 ft.
Weather C		partly cloudy, S wind, 70 F	Weather C		cloudy, S wind, 75 F		Conditions:	Mostly sunny, 65 F
		Dissolved			Dissolved			Dissolved
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	Depth	Temperature	Oxygen
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>
Surface	15.4	10.1	Surface	26.5	6.3	Surface	21.6	8.2
2.0	15.2	10.2	2.0	26.4	6.2	2.0	21.5	8.2
4.0	14.9	10.2	4.0	26.2	6.0	4.0	21.3	8.3
6.0	14.8	10.2	6.0	26.1	5.9	6.0	21.2	8.1
8.0	14.8	10.2	8.0	26.1	5.9	8.0	21.1	8.0
10.0	14.8	10.2	10.0	26.0	5.7	10.0	21.1	8.0
12.0	14.8	10.2	12.0	25.9	5.9	12.0	21.0	8.0
14.0	14.8	10.2	14.0	25.7	5.6	14.0	21.0	8.0
16.0	14.8	10.2	16.0	25.5	5.3	16.0	21.0	8.0
18.0	14.7	10.1	18.0	25.4	5.0	18.0	20.9	8.0
20.0	14.6	10.1	20.0	25.2	5.2	20.0	20.9	7.9
22.0	14.7	9.8	22.0	25.1	5.0	22.0	20.9	7.7
24.0	14.8	9.9	24.0	25.1	5.0	24.0	20.8	7.5
26.0	14.7	10.0	26.0	25.1	5.1	26.0	20.8	7.4
28.0	14.7	10.0	28.0	25.1	5.2	28.0	20.6	6.9
30.0	14.7	10.0	30.0	25.0	5.5	30.0	20.5	6.7
32.0	14.6	10.0	32.0	24.9	5.3	32.0	20.5	6.6
34.0	14.6	10.0	34.0	24.9	5.1	34.0	20.5	6.5
36.0	14.6	10.0	36.0	24.8	4.2	36.0	20.5	6.4
38.0	14.5	9.9	38.0	22.4	0.2	38.0	20.5	2.3
40.0	14.3	9.6						

Dissolved Oxygen and Temperature Profiles for the Big Falls Flowage in 2006.

Date:	4/26/2006	i e	Date:	7/24/2006	3	Date:	8/23/2006	6
Secchi Dis	sk (ft.):	4	Secchi Dis	sk (ft.):	6	Secchi Dis	sk (ft.):	5
Depth of E	Bottom Sample:	13 m	Depth of B	Sottom Sample:	15 m	Depth of E	Bottom Sample:	38 ft.
Weather C	Conditions:	sunny, west wind @ 10 mph	Weather C	Conditions:	Partly cloudy, south	Weather C	Conditions:	Cloudy, south
					wind at 10 mph			wind @ 5 mph
		Dissolved			Dissolved			Dissolved
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	Depth	Temperature	Oxygen
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>
Surface	12.4	9.9	Surface	25.9	7.6	Surface	23.3	8.3
2.0	12.1	10.0	2.0	25.4	7.5	2.0	23.3	8.3
4.0	12.0	10.0	4.0	25.2	7.3	4.0	23.1	8.2
6.0	12.0	10.0	6.0	25.1	7.2	6.0	23.1	8.1
8.0	11.9	10.0	8.0	25.0	6.9	8.0	23.1	8.1
10.0	11.3	10.0	10.0	24.9	6.8	10.0	23.1	8.1
12.0	11.2	10.2	12.0	24.8	6.4	12.0	23.1	8.0
14.0	11.2	10.2	14.0	24.7	6.1	14.0	23.0	7.9
16.0	11.2	10.2	16.0	24.5	5.8	16.0	22.9	7.5
18.0	11.1	10.1	18.0	24.5	5.6	18.0	22.8	7.1
20.0	11.1	10.0	20.0	24.2	6.1	20.0	22.7	7.0
22.0	11.1	9.8	22.0	24.0	6.4	22.0	22.7	7.0
24.0	11.1	9.8	24.0	24.0	6.4	24.0	22.5	6.8
26.0	11.0	9.9	26.0	23.9	6.3	26.0	22.3	6.3
28.0	11.0	9.9	28.0	23.8	6.3	28.0	22.2	6.0
30.0	11.0	9.9	30.0	23.8	6.2	30.0	22.1	5.8
32.0	11.0	9.9	32.0	23.8	5.9	32.0	22.1	5.8
34.0	11.0	9.9	34.0	23.7	5.5	34.0	22.0	5.6
36.0	11.0	9.9	36.0	21.8	0.6	36.0	22.0	5.3
38.0	11.0	9.9	38.0	Bottom	Bottom	38.0	22.0	5.1
40.0	Bottom	Bottom	40.0			40.0	Bottom	Bottom

H:\references\bigfalls\WaterQualitySummary.xls

Dissolved Oxygen and Temperature Profiles for the Big Falls Flowage in 2007.

Date:	4/30/2007	7	Date:	7/31/2007	7	Date:	8/29/2007	7
Secchi Dis	sk (ft.):	4	Secchi Dis	sk (ft.):	7	Secchi Di	sk (ft.):	6
Depth of B	Sottom Sample:	12 m	Depth of B	ottom Sample:	12 m	Depth of	Bottom Sample:	12 m
Weather C	Conditions:	Partly cloudy, light wind	Weather C	Conditions:	Mostly sunny, south	Weather	Conditions:	Mostly sunny
					wind at 5 mph			N wind @ 10 mph
		Dissolved			Dissolved			Dissolved
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	Depth	Temperature	Oxygen
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>
Surface	15.8	9.40	Surface	28.1	7.43	Surface		
2.0	15.8	9.59	2.0	27.8	7.46	2.0		
4.0	15.7	9.74	4.0	27.4	7.41	4.0		
6.0	15.5	9.82	6.0	27.3	7.30	6.0	DO/Temperatur	e profile was not taken
8.0	15.4	9.76	8.0	27.2	7.28	8.0	due to equ	ipment problems
10.0	15.4	9.74	10.0	27.1	6.82	10.0		
12.0	15.4	9.66	12.0	27.0	6.68	12.0		
14.0	15.3	9.54	14.0	26.9	6.47	14.0		
16.0	15.2	9.47	16.0	26.8	6.26	16.0		
18.0	15.2	9.39	18.0	26.8	6.08	18.0		
20.0	15.2	9.35	20.0	26.6	5.45	20.0		
22.0	15.2	9.33	22.0	26.4	5.18	22.0		
24.0	15.2	9.28	24.0	26.3	5.15	24.0		
26.0	15.2	9.23	26.0	26.0	4.85	26.0		
28.0	15.2	9.08	28.0	25.8	4.78	28.0		
30.0	15.2	9.05	30.0	25.5	4.27	30.0		
32.0	14.8	8.99	32.0	25.4	4.00	32.0		
34.0	13.9	8.85	34.0	24.0	0.43	34.0		
36.0	12.9	8.75	36.0	Bottom	Bottom	36.0		
38.0	Bottom	Bottom	38.0			38.0		
40.0			40.0			40.0		

H:\references\bigfalls\WaterQualitySummary.xls

Dissolved Oxygen and Temperature Profiles for the Big Falls Flowage in 2008.

Date:	4/30/2008	3	Date:	7/23/2008	3	Date:	8/26/2008	3
Secchi Dis	sk (ft.):	4.5	Secchi Dis	sk (ft.):	5.5	Secchi Di	sk (ft.):	5.5
Depth of E	Sottom Sample:	11 m	Depth of E	Bottom Sample:	10 m	Depth of E	Bottom Sample:	11 m
Weather C	Conditions:	50 F, sunny, south	Weather 0	Conditions:	73 F, sunny, south	Weather (Conditions:	71 F, sunny, southeast
		wind @ 10 mph			wind @ 5 mph			wind 5-10 mph
		Dissolved			Dissolved			Dissolved
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	Depth	Temperature	Oxygen
<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>
Surface	5.8	11.8	Surface	24.7	7.60	Surface	22.7	7.04
2.0	5.9	11.8	2.0	24.4	7.58	2.0	22.5	6.95
4.0	5.7	11.9	4.0	24.2	7.58	4.0	22.3	6.91
6.0	5.7	11.9	6.0	24.1	7.50	6.0	22.3	6.77
8.0	5.7	11.9	8.0	24.0	7.36	8.0	22.3	6.31
10.0	5.7	11.9	10.0	23.9	7.31	10.0	22.2	6.39
12.0	5.7	11.9	12.0	23.8	7.27	12.0	21.9	6.71
14.0	5.7	11.9	14.0	23.7	7.27	14.0	21.8	6.82
16.0	5.7	11.9	16.0	23.7	7.19	16.0	21.8	6.93
18.0	5.7	11.9	18.0	23.7	7.09	18.0	21.7	6.91
20.0	5.7	11.9	20.0	23.5	6.95	20.0	21.7	6.80
22.0	5.7	11.9	22.0	23.5	6.84	22.0	21.6	6.80
24.0	5.7	11.9	24.0	23.5	6.75	24.0	21.6	6.82
26.0	5.7	11.9	26.0	23.3	6.06	26.0	21.6	6.91
28.0	5.7	11.9	28.0	23.3	6.05	28.0	21.6	6.91
30.0	5.7	11.9	30.0	23.2	5.61	30.0	21.5	6.82
32.0	5.7	11.9	32.0	23.1	5.34	32.0	21.5	6.81
34.0	5.7	11.8	34.0	23.1	4.82	34.0	21.4	6.83
36.0	5.7	11.8	36.0	Bottom	Bottom	36.0	21.4	6.71
38.0	5.7	6.0				38.0	Bottom	Bottom
40.0	Bottom	Bottom						

Dissolved Oxygen and Temperature Profiles for the Big Falls Flowage in 2009.

Date: 4/28/2009

Secchi Disk (ft.): 5.0
Depth of Bottom Sample (ft) 38

Weather Conditions: mostly sunny, wind NE @ 10

Temperature (F): 51

		Dissolved	
Depth	Temperature	Oxygen	
<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>	
Surface	9.4	10.65	
2.0	9.4	10.65	
4.0	9.4	10.64	
6.0	9.3	10.64	
8.0	9.3	10.64	
10.0	9.3	10.63	
12.0	9.3	10.62	
14.0	9.2	10.62	
16.0	9.2	10.61	
18.0	9.2	10.61	
20.0	9.2	10.60	
22.0	9.2	10.60	
24.0	9.2	10.59	
26.0	9.2	10.58	
28.0	9.2	10.57	
30.0	9.2	10.57	
32.0	9.2	10.56	
34.0	9.2	10.56	
36.0	9.2	10.54	
38.0	9.2	10.14	
40.0	Bottom	Bottom	

Date:	7/28/2009	
Secchi Disk (ft.)	•	6.5
Depth of Bottom	Sample (ft)	36

Weather Conditions: partly sunny, wind W @ 15

Temperature (F):

	Date:	8/24/2009	
	Secchi Disk (ft.):	Sample: ons: sunny, wind S	6.5
	Depth of Bottom	Sample:	36
5	Weather Condition	ons: sunny, wind S	@ 10
	Temperature (F)	• •	80

		Dissolved			Dissolved
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>
Surface	22.7	7.86	Surface	21.0	8.61
2.0	22.8	7.82	2.0	20.8	8.70
4.0	22.7	7.81	4.0	20.0	8.55
6.0	22.7	7.79	6.0	19.9	8.38
8.0	22.7	7.79	8.0	19.7	7.69
10.0	22.7	7.75	10.0	19.5	7.26
12.0	22.5	7.55	12.0	19.3	7.29
14.0	22.4	7.03	14.0	19.2	7.51
16.0	22.3	6.59	16.0	19.0	7.71
18.0	22.1	6.22	18.0	18.8	8.33
20.0	22.0	6.07	20.0	18.7	8.19
22.0	21.7	5.95	22.0	18.7	8.22
24.0	21.6	5.91	24.0	18.7	8.19
26.0	21.6	5.69	26.0	18.7	8.17
28.0	21.4	5.41	28.0	18.5	7.95
30.0	21.3	5.20	30.0	18.5	7.93
32.0	21.2	4.58	32.0	18.5	7.92
34.0	20.3	2.52	34.0	18.5	7.84
36.0	Bottom	Bottom	36.0	18.4	7.48
			38.0	Bottom	Bottom

Dissolved Oxygen and Temperature Profiles for the Big Falls Flowage in 2010.

Date: 4/28/2010

Secchi Disk (ft.): 5.0
Depth of Bottom Sample (ft) 36

Weather Conditions: mostly sunny, light winds

Temperature (F): 50

		Dissolved
Depth	Temperature	Oxygen
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>
Surface	14.8	10.79
2.0	14.2	10.52
4.0	14.1	10.41
6.0	14.0	10.23
8.0	14.0	10.10
10.0	13.9	10.04
12.0	13.8	9.94
14.0	13.8	9.87
16.0	13.7	9.85
18.0	13.4	9.70
20.0	13.2	9.63
22.0	13.1	9.52
24.0	13.1	9.57
26.0	13.0	9.53
28.0	13.0	9.44
30.0	13.0	9.33
32.0	13.0	9.20
34.0	13.0	9.19
36.0	12.9	9.12
38.0	Bottom	Bottom

Date: 7/27/2010
Secchi Disk (ft.): 3.0
Depth of Bottom Sample (ft) 36

Weather Conditions: cloudy, S wind @ 7

Temperature (F): 75

		Dissolved
Depth	Temperature	Oxygen
(ft.)	(celsius)	(mg/l)
Surface	24.7	6.44
2.0	24.7	6.29
4.0	24.6	6.35
6.0	24.6	6.26
8.0	24.6	6.49
10.0	24.6	6.34
12.0	24.6	6.27
14.0	24.6	6.34
16.0	24.6	6.26
18.0	24.4	6.21
	24.4 24.4	6.22
20.0		_
22.0	24.4	6.20
24.0	24.2	6.21
26.0	24.1	6.17
28.0	23.9	6.13
30.0	23.8	6.06
32.0	23.6	6.02
34.0	23.5	5.95
36.0	23.4	5.7
38.0	Bottom	Bottom

Date: 8/31/2010

Secchi Disk (ft.): 3.0
Depth of Bottom Sample: 36

Weather Conditions: partly cloudy, S wind @ 10

Temperature (F): 79

Depth (ft.) Surface 2.0	Temperature (celsius) 24.2 24.2	Dissolved Oxygen (mg/l) 6.70 6.68
4.0 6.0	24.2 24.2	6.68 6.67
8.0	24.2	6.66
10.0	24.2	6.66
12.0	24.2	6.66
14.0	24.2	6.66
16.0	24.1	6.63
18.0	24.0	6.60
20.0	24.0	6.59
22.0	24.0	6.60
24.0	24.0	6.60
26.0	24.0	6.58
28.0	24.0	6.60
30.0	24.0	6.59
32.0	23.9	6.59
34.0	23.9	6.55
36.0	23.8	6.34
38.0	Bottom	Bottom

Dissolved Oxygen and Temperature Profiles for the Big Falls Flowage in 2011.

Date: 4/29/2011

Secchi Disk (ft.):

Depth of Bottom Sample (ft):

Weather Conditions: mostly sunny, light winds

Temperature (F):

		Dissolved
Depth	Temperature	Oxygen
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>
Surface		

Not Sampled Due To Reservoir Drawdown

Bottom Bottom

Date: 7/26/2011
Secchi Disk (ft.): 4.0
Depth of Bottom Sample (ft) 36

Weather Conditions: mostly sunny, light winds

Temperature (F): 76

		Dissolved
Depth	Temperature	Oxygen
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>
Surface	25.8	6.58
2.0	25.8	6.56
4.0	25.6	6.66
6.0	25.2	6.56
8.0	25.2	6.59
10.0	25.2	6.58
12.0	25.2	6.53
14.0	25.1	6.52
16.0	24.9	6.38
18.0	24.5	6.32
20.0	24.5	6.32
22.0	24.3	6.29
24.0	24.3	6.33
26.0	24.2	6.27
28.0	24.1	6.31
30.0	24.1	6.25
32.0	24.1	6.20
34.0	24.1	6.18
36.0	24.1	6.11

Bottom

Bottom

38.0

ate	:			8/24/2011	

Secchi Disk (ft.): 3.0
Depth of Bottom Sample: 36

Weather Conditions: sunny, wind NW @ 10-15

Temperature (F): 72

		Dissolved
Depth	Temperature	Oxygen
<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>
Surface	22.3	7.51
2.0	22.3	7.52
4.0	22.3	7.53
6.0	22.2	7.54
8.0	22.1	7.60
10.0	22.0	7.59
12.0	21.9	7.46
14.0	21.8	7.45
16.0	21.7	7.52
18.0	21.6	7.49
20.0	21.6	7.55
22.0	21.6	7.52
24.0	21.5	7.55
26.0	21.5	7.53
28.0	21.5	7.56
30.0	21.5	7.58
32.0	21.5	7.57
34.0	21.5	7.56
36.0	21.5	7.52
38.0	Bottom	Bottom

APPENDIX D

Summary Of Dissolved Oxygen And Temperature Data For Thornapple Flowage 2004 - 2011

Dissolved Oxygen and Temperature Profiles for the Thornapple Flowage in 2004.

Date:	5/5/200	4	Date:	Date: 7/28/2004				Date: 8/25/2004			
Secchi Di	sk (ft.):	5	Secchi Dis	sk (ft.):	5		Secchi Dis	sk (ft.):	5.5		
Depth of I	Bottom Sample:	6 m	Depth of B	Bottom Sample:	19.5 ft		Depth of E	Bottom Sample:	6 m		
Weather	Conditions:	cloudy, S wind, 60 F	Weather C	Conditions:	partly sunny, 75 F		Weather C	Conditions:	overcast, 70 F		
		Dissolved			Dissolved				Dissolved		
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen		Depth	Temperature	Oxygen		
<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>	<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>		<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>		
Surface	10.0	10.1	Surface	23.2	7.6		Surface	20.4	9.4		
2.0	10.0	10.3	2.0	23.2	7.6		2.0	20.3	9.2		
4.0	10.0	10.4	4.0	22.6	7.1		4.0	20.2	9.0		
6.0	10.0	10.6	6.0	22.1	6.5		6.0	20.1	8.8		
8.0	10.0	10.6	8.0	21.9	6.2		8.0	19.9	8.4		
10.0	9.9	10.6	10.0	21.9	6.2		10.0	19.8	8.4		
12.0	9.9	10.6	12.0	21.8	6.2		12.0	19.5	8.0		
14.0	9.9	10.6	14.0	21.3	5.8		14.0	19.4	7.9		
16.0	9.8	10.6	16.0	21.1	6.2		16.0	19.4	7.9		
18.0	9.8	10.6	18.0	20.4	2.4		18.0	19.3	7.7		
20.0	9.8	10.3	20.0	19.2	0.9		20.0	18.6	5.9		

Could not sample earlier due to high river flows

Dissolved Oxygen and Temperature Profiles for the Thornapple Flowage in 2005.

Date:	4/19/200	5	Date:	7/25/2009	5	Date:	8/31/2005	5	
Secchi Di	isk (ft.):	5	Secchi Dis	sk (ft.):	4	Secchi Dis	sk (ft.):	5.5	
Depth of	Bottom Sample:	6 m	Depth of E	Bottom Sample:	6 m	Depth of E	Sottom Sample:	6 m	
Weather	Conditions:	cloudy, S wind, 70 F	Weather 0	Conditions:	cloudy, S wind, 82 F	Weather C	Conditions:	sunny, S wind, 70 F	
		Dissolved			Dissolved			Dissolved	
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	
Surface	10.2	10.7	Surface	25.4	7.4	Surface	22.4	8.1	
2.0	10.2	10.7	2.0	25.0	7.0	2.0	21.9	7.9	
4.0	10.1	10.8	4.0	24.7	6.7	4.0	21.5	7.7	
6.0	10.1	10.8	6.0	24.5	6.4	6.0	21.4	7.4	
8.0	10.1	10.8	8.0	24.4	6.0	8.0	21.3	7.4	
10.0	10.0	10.8	10.0	23.8	5.2	10.0	21.3	7.4	
12.0	9.9	10.8	12.0	23.5	5.3	12.0	21.3	7.3	
14.0	9.8	10.8	14.0	23.3	4.8	14.0	21.2	7.3	
16.0	9.8	10.8	16.0	23.2	4.6	16.0	21.2	7.2	
18.0	9.8	10.8	18.0	22.3	0.8	18.0	21.2	7.2	
20.0	9.8	10.8	20.0			20.0	21.2	7.1	

Date:	4/26/200	6	Date:	7/24/2000	3	D	ate:	8/23/2006	3	
Secchi Di	sk (ft.):	4	Secchi Dis	k (ft.):	6	S	ecchi Dis	k (ft.):	4	
Depth of I	Bottom Sample:	6 m	Depth of B	ottom Sample:	5 m	D	epth of B	ottom Sample:	6 m	
Weather	Conditions:	sunny, W wind @15 mph	Weather C	onditions:	Mostly sunny, S wind@10mph	W	Veather C	onditions:	cloudy, S wind@5 mph	
		Dissolved			Dissolved				Dissolved	
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen		Depth	Temperature	Oxygen	
<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>	<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>		<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	
Surface	13.9	10.1	Surface	25.1	7.6		Surface	24.3	9.6	
2.0	13.9	10.2	2.0	24.6	7.4		2.0	24.1	9.4	
4.0	13.7	10.2	4.0	24.3	7.2		4.0	23.6	8.6	
6.0	13.3	10.1	6.0	24.0	6.8		6.0	23.3	7.9	
8.0	13.0	10.0	8.0	23.8	6.7		8.0	23.3	7.8	
10.0	12.4	9.9	10.0	23.6	6.4		10.0	23.2	7.6	
12.0	12.3	9.8	12.0	23.5	6.2		12.0	23.2	7.4	
14.0	12.3	9.7	14.0	22.8	5.0		14.0	23.1	7.0	
16.0	12.3	9.7	16.0	19.7	0.3		16.0	23.0	6.7	
18.0	12.3	9.7	18.0	Bottom	Bottom		18.0	22.9	5.6	
20.0	12.3	9.5					20.0	Bottom	Bottom	
22.0	Bottom	Bottom								

Dissolved Oxygen and Temperature Profiles for the Thornapple Flowage in 2007.

Date: 4/30/2007			Date:	Date: 7/31/2007			Date: 8/29/2007		
Secchi Di	sk (ft.):	5	Secchi Dis	k (ft.):	5	Secchi Di	isk (ft.):	5	
Depth of I	Bottom Sample:	6 m	Depth of B	ottom Sample:	6 m	Depth of	Bottom Sample:	6 m	
Weather	Conditions:	cloudy, S wind @10 mph	Weather C	Conditions:	Mostly sunny, S wind @ 5 mp	h Weather	Conditions:	Mostly sunny, S wind @ 5 mph	
		Dissolved			Dissolved			Dissolved	
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	
<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>	<u>(ft.)</u>	<u>(celsius)</u>	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	
Surface	15.3	11.26	Surface	27.1	8.50	Surface			
2.0	14.7	11.27	2.0	26.7	8.31	2.0	DO/Temper	atures profiles were not taken	
4.0	14.4	11.33	4.0	25.9	7.54	4.0	due to	equipment malfunction	
6.0	14.3	11.32	6.0	25.8	7.35	6.0			
8.0	14.3	11.28	8.0	25.8	7.27	8.0			
10.0	14.1	11.28	10.0	25.7	7.22	10.0			
12.0	14.0	11.20	12.0	25.7	7.04	12.0			
14.0	13.9	11.13	14.0	25.5	6.81	14.0			
16.0	13.8	10.90	16.0	25.5	6.79	16.0			
18.0	13.1	10.43	18.0	25.1	6.27	18.0			
20.0	Bottom	Bottom	20.0	24.7	5.78	20.0			
22.0			22.0	Bottom	Bottom				

120119-5098
FERC
PDF
(Unofficial)
1/19/
/2012
11:12:39
AM

Date:	4/30/200	08	Date:	7/23/2008	3	Date:	8/26/2008	8	1
Secchi D	isk (ft.):	4	Secchi Dis	k (ft.):	5	Secchi Dis	sk (ft.):	5	(
Depth of	Bottom Sample:	NA	Depth of B	ottom Sample:	5.5 m	Depth of E	Bottom Sample:	5 m	[
Weather	Conditions:	55 F, sunny,	Weather C	onditions:	78 F, partly cloudy,	Weather (Conditions:	76 F, sunny,	
		south wind @ 10 mph			south wind @ 5 mph			southeast wind @ 5-1	0 mph
		Dissolved			Dissolved			Dissolved	
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	(
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	!
Surface			Surface	25.1	7.56	Surface	22.3	9.64	[
2.0			2.0	24.7	7.43	2.0	22.0	9.46	
4.0			4.0	24.2	7.27	4.0	21.8	9.25	
6.0	DO/te	mperature profile not taken	6.0	23.5	6.95	6.0	21.6	8.99	'
8.0	due t	to problems with DO meter	8.0	23.1	6.70	8.0	21.5	8.82	9
10.0			10.0	23.1	6.70	10.0	21.4	8.73	
12.0			12.0	22.9	6.46	12.0	21.4	8.70	
14.0			14.0	22.4	5.48	14.0	21.3	8.65	
16.0			16.0	21.8	4.36	16.0	21.3	8.62	9
18.0			18.0	21.6	4.12	18.0	21.3	8.60	1
20.0			20.0	Bottom	Bottom	20.0	Bottom	Bottom	Į

Dissolved Oxygen and Temperature Profiles for the Thornapple Flowage in 2009.

Date:		4/28/2009	Date:		7/28/2009		Date:		8/24/2009	
Secchi Di	isk (ft.):	5.5	Secchi Dis	k (ft.):	7		Secchi Dis	sk (ft.):	6.5	
Depth of	Bottom Sample (ft)	: 20	Depth of B	ottom Sample (ft)	18		Depth of E	Bottom Sample (ft	18	
Weather	Conditions: mostly	sunny, wind NE @ 10	Weather C	Weather Conditions: cloudy, wind W @ 5			Weather Conditions: sunny, wind S @ 10-15			
Temperat	ture (F):	57	Temperatu	ıre (F):	67		Temperati	ıre (F):	77	
		Dissolved			Dissolved				Dissolved	
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen		Depth	Temperature	Oxygen	
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>		<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	
Surface	8.3	10.90	Surface	22.4	8.65		Surface	21.1	9.95	
2.0	8.3	10.95	2.0	22.3	8.42		2.0	20.9	9.79	
4.0	8.2	10.96	4.0	21.8	7.18		4.0	20.6	9.41	
6.0	8.2	10.93	6.0	21.4	6.78		6.0	20.1	8.76	
8.0	8.2	10.93	8.0	21.1	6.16		8.0	19.7	8.68	
10.0	8.2	10.94	10.0	21.0	5.97		10.0	19.6	8.86	
12.0	8.2	10.92	12.0	20.7	6.16		12.0	19.5	8.27	
14.0	8.2	10.91	14.0	18.1	3.71		14.0	19.2	6.89	
16.0	8.2	10.90	16.0	17.0	1.45		16.0	19.1	6.65	
18.0	8.1	10.90	18.0	15.7	0.00		18.0	18.6	5.23	
20.0	8.1	10.86	20.0	Bottom	Bottom		20.0	Bottom	Bottom	
22.0	Bottom	Bottom								

Dissolved Oxygen and Temperature Profiles for the Thornapple Flowage in 2010.

Date: 4/28/2010	Date:	7/27/2010	Date:	8/31/2010
-----------------	-------	-----------	-------	-----------

=	0120119-5098
	FERC
	PDF
	(Unofficial)
	1/1
	19/2012
	11:
	12:39
	ΑM

Secchi Di	sk (ft.):	5.0	Secchi Di	sk (ft.):	3	(Secchi Dis	sk (ft.):	3	
Depth of I	Bottom Sample (ft)	: 20	Depth of E	Bottom Sample (ft)	20][Depth of E	Bottom Sample (ft	20	
Weather	Conditions: p. clou	ıdy, S winds 5-10	Weather (Weather Conditions: p. cloudy, S wind @ 5			Weather Conditions: cloudy, S wind @ 10			
			Temperat	ure (F):	84	-	Temperatu	ıre (F):	81	
		Dissolved			Dissolved				Dissolved	
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen		Depth	Temperature	Oxygen	
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	(mg/l)		<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	
Surface	13.8	11.90	Surface	25.4	4.46		Surface	23.0	5.82	
2.0	13.7	11.74	2.0	25.0	4.44		2.0	22.8	5.75	
4.0	12.6	11.83	4.0	24.6	4.37		4.0	22.8	5.74	
6.0	12.4	11.70	6.0	24.5	4.38		6.0	22.7	5.71	
8.0	12.3	12.02	8.0	24.5	4.37		8.0	22.6	5.71	
10.0	12.2	12.01	10.0	24.5	4.30		10.0	22.6	5.71	
12.0	11.8	10.50	12.0	24.3	4.23		12.0	22.6	5.71	
14.0	11.5	10.63	14.0	24.3	4.23		14.0	22.6	5.71	
16.0	11.2	10.44	16.0	24.2	4.35		16.0	22.6	5.70	
18.0	11.2	10.37	18.0	24.2	4.37		18.0	22.6	5.70	
20.0	11.2	10.25	20.0	24.2	4.3		20.0	22.6	5.7	
			22.0	Bottom	Bottom		22.0	Bottom	Bottom	

Dissolved Oxygen and Temperature Profiles for the Thornapple Flowage in 2011.

Date:		4/29/2011	Date:		7/26/2011	Date:		8/24/2011	
Secchi Di	isk (ft.):	3.5	Secchi Dis	sk (ft.):	4.5	Secchi Disk	(ft.):	3	
	Bottom Sample (ft):	22		Bottom Sample (ft)	20	Depth of Bot	Depth of Bottom Sample (ft)		
Weather Conditions: sunny, wind S @ 5-10							Weather Conditions: sunny, NW wind 15-2		
Temperature (F): 45		Temperati	ure (F):	80	Temperature	e (F):	78		
	, ,	Dissolved		, ,	Dissolved		, ,	Dissolved	
Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	Depth	Temperature	Oxygen	
<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	<u>(ft.)</u>	(celsius)	(mg/l)	<u>(ft.)</u>	(celsius)	<u>(mg/l)</u>	
Surface	6.9	12.5	Surface	26.4	6.56	Surface	23.7	6.52	
2.0	6.8	12.4	2.0	26.3	6.54	2.0	23.7	6.50	
4.0	6.8	12.4	4.0	25.9	6.54	4.0	23.0	6.36	
6.0	6.8	12.4	6.0	25.6	6.47	6.0	22.7	6.26	
8.0	6.8	12.4	8.0	25.7	6.46	8.0	22.7	6.23	
10.0	6.8	12.4	10.0	25.5	6.45	10.0	22.6	6.16	
12.0	6.8	12.4	12.0	25.4	6.41	12.0	22.5	6.08	
14.0	6.8	12.3	14.0	24.6	6.14	14.0	22.3	5.94	
16.0	6.8	12.3	16.0	24.2	5.76	16.0	22.1	5.73	
18.0	6.8	12.3	18.0	24.2	5.68	18.0	22.0	5.60	
20.0	6.8	12.3	20.0	23.7	5.00	20.0	22.0	5.60	
22.0	6.8	12.3	22.0	Bottom	Bottom	22.0	Bottom	Bottom	
24.0	Bottom	Bottom							

APPENDIX E

2011 Water Quality Monitoring Report

Turtle-Flambeau Flowage (FERC Project No. 2390-02) (Developed by Citizens Lake Monitoring Program & WDNR)

Turtle Flambeau Flowage - Confluence Of Turtle River And Little Turtle River 2011 Results

Turtle Flambeau Flowage - Confluence Of Turtle River And Little Turtle River was sampled 13 different days during the 2011 season. Parameters sampled included:

- water clarity
- temperature
- total phosphorus
- chlorophyll

The average summer (July-Aug) secchi disk reading for Turtle Flambeau Flowage - Confluence Of Turtle River And Little Turtle River (Iron County, WBIC: 2294900) was 5.45 feet. The average for the Northwest Georegion was 7.6 feet. Typically the summer (July-Aug) water was reported as **CLEAR** and **YELLOW**.

Chemistry data was collected on Turtle Flambeau Flowage - Confluence Of Turtle River And Little Turtle River. The average summer Chlorophyll was 6.8 μ g/l (compared to a Northwest Georegion summer average of 18.6 μ g/l). The summer Total Phosphorus average was 21.5 μ g/l. Lakes that have more than 20 μ g/l and impoundments that have more than 30 μ g/l of total phosphorus may experience noticable algae blooms.

The overall Trophic State Index (based on chlorophyll) for Turtle Flambeau Flowage - Confluence Of Turtle River And Little Turtle River was 49. The TSI suggests that Turtle Flambeau Flowage - Confluence Of Turtle River And Little Turtle River was **mesotrophic**. Mesotrophic lakes are characterized by moderately clear water, but have a increasing chance of low dissolved oxygen in deep water during the summer.

The Official Internet Site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Lake Water Quality 2011 Annual Report

Turtle Flambeau Flowage Lake Type: DRAINAGE

Iron County DNR Region: NO Waterbody Number: 2294900 GEO Region:NW

Site Name
Turtle Flambeau Flowage - Confluence Of Turtle River And Little Turtle River 263182

Date	SD (ft)	SD (m)	Hit Bottom	CHL	TP		TSI (CHL)			Clarity	Color	Perception
05/06/2011	(11)	()	Dottom		20	(00)	(0112)	51	LCVCI			
05/06/2011	3.25	1	NO			60			HIGH	CLEAR		1-Beautiful, could not be nicer
05/16/2011	3.25	1	NO			60			HIGH	CLEAR		1-Beautiful, could not be nicer
06/01/2011	3.5	1.1	NO			59			HIGH	CLEAR		1-Beautiful, could not be nicer
06/12/2011	4.75	1.4	NO			55			HIGH	CLEAR	YELLOW	1-Beautiful, could not be nicer
06/25/2011				3.8	21		45	52				
06/25/2011	4.75	1.4	NO			55			HIGH	CLEAR	YELLOW	1-Beautiful, could not be nicer 2-Very
07/06/2011	5	1.5	NO			54			HIGH	CLEAR	YELLOW	minor aesthetic problems
07/20/2011	5.5	1.7	NO			53				CLEAR	YELLOW	2-Very minor aesthetic problems
07/31/2011				5.39	18		48	51				
07/31/2011	6	1.8	NO			51				CLEAR	YELLOW	2-Very minor aesthetic problems 3-
08/13/2011	5.75	1.8	NO			52				CLEAR		Enjoyment somewhat impaired (algae)
												3- Enjoyment

Page 2 of 4

08/24/2011	5	1.5	NO	ļ	54	CLEA	RYELLOW	somewhat impaired (algae)
09/12/2011	6.25	1.9	NO	;	51	CLEA	RYELLOW	3- Enjoyment /somewhat impaired (algae)

05/06/2011									
Depth	Temp.	D.O.							
FEET	DEGREES F								
3	46.7								
6	45.8								
9	45.6								
12	45.3								
15	44.9								
16.75	44.9								

	06/25/2011										
Depth		D.O.									
FEET	DEGREES F										
3	70.1										
6	68.7										
9	64.7										
12	62.9										
15	62.6										
18	62.4										

07/31/2011										
Depth	Temp.	D.O.								
FEET	DEGREES F									
3	80.4									
6	77.7									
9	77.3									
12	75.5									
15	74.8									

08/24/2011										
Depth	Temp.	D.O.								
FEET	DEGREES F									
3	72.5									
6	72.1									
9	71.9									
12	71.6									
15	71.6									
17	71.4									

Date	Collector Comments
	Day before fishing opener- lots of boat traffic- osprey on the nest on the powerpole on Popko Circle- across from the islands near our site. Kit
	Bogenschneider recording data.
05/16/2011	It's been a cool spring. Kit Bogenschneider recording data.
06/01/2011	Generally windy- but this site is protected from whitecaps most days. Kit
	Bogenschneider recording.
06/12/2011	Almost dead calm. Kit Bogenschneider recording data
06/25/2011	Kit Bogenschneider recording data.
07/06/2011	Kit Bogenschneider recording data. Pretty day- winds nearly calm.
07/20/2011	4th day of extreme heat- recorded by Kit Bogenschneider
07/31/2011	data recorded by Kit Bogenschneider

08/24/2011 Cloudless sky- breezy- data recorded by Kit Bogenschneider 09/12/2011 data recorded by Kit Bogenschneider

Date	Data Collectors	Project
05/06/2011	Gary	Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv
05/06/2011	Heather Palmquist	IRON COUNTY: Turtle-Flambeau Flowage AIS Project
05/16/2011	Gary	Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv
06/01/2011	,	Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv
06/12/2011		Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv
06/25/2011		Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv
	Heather Palmquist	Turtle Flambeau Flowage Monitoring
07/06/2011		Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv
07/20/2011		Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv
07/31/2011		Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv
	Heather Palmquist	IRON COUNTY: Turtle-Flambeau Flowage AIS Project
08/13/2011		Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv
	Heather Palmquist	Turtle Flambeau Flowage Monitoring
08/24/2011		Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv
09/12/2011	, ,	Citizen Lake Monitoring - Water Quality - Turtle
	Bogenschneider	Flambeau Flow; At Turtle And L Turtle Riv

SD = Secchi depth measured in feet converted to meters; Chl = Chlorophyll a in micrograms per liter(ug/l); TP = Total phosphorus in ug/l, surface sample only; TSI(SD), TSI(CHL), TSI(TP) = Trophic state index based on SD, CHL, TP respectively; Depth measured in feet.

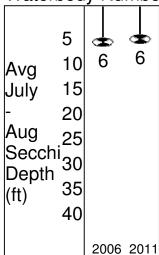
Wisconsin Department of Natural Resources Wisconsin Lakes Partnership

Report Generated: 09/21/2011

WISCONSIN DEPT. OF NATURAL RESOURCES

dnr.wi.gov

The Official Internet Site for the Wisconsin Department of Natural Resources


101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Legal Notices and Disclaimers | Accessibility Notice | Site Requirements Employment | Feedback | Site Map

Turtle Flambeau Flowage

Iron County

Waterbody Number: 2294900

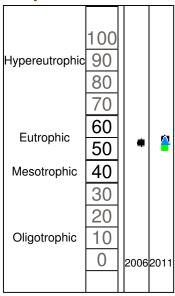
Lake Type: DRAINAGE

DNR Region: NO GEO Region:NW

Past secchi averages in feet (July and August only).

Year	Secchi Mean	Secchi Min	Secchi Max	Secchi Count
2006	6.2	6	6.8	7
2011	5.5	5	6	5

Report Generated: 09/21/2011


dnr.wi.gov

The Official Internet Site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Legal Notices and Disclaimers | Accessibility Notice | Site Requirements Employment | Feedback | Site Map

Trophic State Index Graph

Monitoring Station: Turtle Flambeau Flowage - Confluence Of Turtle River And Little Turtle River, Iron County

Past Summer (July-August) Trophic State Index (TSI) averages.

■ = Chlorophyll										
TSI(ChI) = TSI(TP) = TSI (Sec)	It is likely that algae dominate light attenuation.									
TSI(ChI) > TSI(Sec)	rge particulates, such as Aphanizomenon flakes dominate									
TSI(TP) = TSI(Sec) > TSI (Chl)	Non-algal particulate or color dominate light attenuation									
TSI(Sec) = TSI(Chl) >= TSI (TP)	The algae biomass in your lake is limited by phosphorus									
TSI(TP) > TSI(ChI) = TSI (Sec)	Zooplankton grazing, nitrogen, or some factor other than phosphorus is limiting algae biomass									

TSI	TSI Description
TSI < 30	Classical oligotrophy: clear water, many algal species, oxygen throughout the year in bottom water, cold water, oxygen-sensitive fish species in deep lakes. Excellent water quality.
TSI 30-40	Deeper lakes still oligotrophic, but bottom water of some shallower lakes will become oxygen-depleted during the summer.
TSI 40-50	Water moderately clear, but increasing chance of low dissolved oxygen in deep water during the summer.
TSI 50-60	Lakes becoming eutrophic: decreased clarity, fewer algal species, oxygen-depleted bottom waters during the summer, plant overgrowth evident, warm-water fisheries (pike, perch, bass, etc.) only.
TSI 60-70	Blue-green algae become dominant and algal scums are possible, extensive plant overgrowth problems possible.
TSI 70-80	Becoming very eutrophic. Heavy algal blooms possible throughout summer, dense plant beds, but extent limited by light penetration (blue-green algae block sunlight).
TSI > 80	Algal scums, summer fishkills, few plants, rough fish dominant. Very poor water quality.

Trophic state index (TSI) is determined using a mathematical formula (Wisconsin has its own

Turtle Flambeau Flowage - Deep Hole 2011 Results

Turtle Flambeau Flowage - Deep Hole was sampled **5** different days during the 2011 season. Parameters sampled included:

- water clarity
- temperature
- · dissolved oxygen
- total phosphorus
- chlorophyll

The average summer (July-Aug) secchi disk reading for Turtle Flambeau Flowage - Deep Hole (Iron County, WBIC: 2294900) was 4.75 feet. The average for the Northwest Georegion was 7.6 feet. Typically the summer (July-Aug) water was reported as **MURKY** and **BROWN**. This suggests that the secchi depth may have been mostly impacted by suspended sediments, tiny particles of soil or organic matter that are suspended in the water. Shallow lakes are often turbid because wind stirs up sediment from the bottom. High suspended sediments are often found in flowages and impoundments where precipitation runoff from the watershed transports solids via an incoming stream.

Chemistry data was collected on Turtle Flambeau Flowage - Deep Hole. The average summer Chlorophyll was 10.2 μ g/l (compared to a Northwest Georegion summer average of 18.6 μ g/l). The summer Total Phosphorus average was 28.5 μ g/l. Lakes that have more than 20 μ g/l and impoundments that have more than 30 μ g/l of total phosphorus may experience noticable algae blooms.

The overall Trophic State Index (based on chlorophyll) for Turtle Flambeau Flowage - Deep Hole was 52. The TSI suggests that Turtle Flambeau Flowage - Deep Hole was **eutrophic**. This TSI usually suggests decreased clarity, fewer algal species, oxygen-depleted bottom waters during the summer, plant overgrowth evident, warm-water fisheries (pike, perch, bass, etc.) only.

Lake Water Quality 2011 Annual Report

Site Name

55

Turtle Flambeau Flowage

Lake Type: DRAINAGE DNR Region: NO

Iron County Waterbody Number: 2294900

GEO Region:NW

Turtle Flambeau Flowage - Deep Hole

263059

Storet #

aesthetic problems

Date	_	SD	_	CHL	ΤP		TSI	TSI	Lake	Clarity	Color	Perception
	(IT)	(m)	Bottom			(SD)	(CHL)	(17)	Level			
04/27/2011	4.5	1.4	NO		23	55		52	NORMAL	CLEAR	BROWN	2-Very minor aesthetic problems
06/27/2011	5	1.5	NO	9.78	30	54	52	54	LOW	CLEAR	BROWN	2-Very minor aesthetic problems
07/26/2011	5	1.5	NO	7.27	36	54	50	56	LOW	MURKY	BROWN	2-Very minor aesthetic problems 2-Very

LOW

04/27/2011									
Depth Temp. D.O.									
FEET	DEGREES C	MG/L							
0	4.7	9.66							
3	4.7	9.64							
6	4.6	9.61							
9	4.6	9.6							
12	4.6	9.59							
15	4.6	9.59							
20	4.6	9.58							
25	4.6	9.56							
30	4.6	9.55							
35	4.6	9.53							
40	4.6	9.53							
45	4.6	9.53							

08/15/2011 4.5 1.4 NO

	06/27/2011									
Depth	Temp.	D.O.								
FEET	DEGREES C	MG/L								
0	20.6	7.7								
3 6	20.2	7.63								
	19.7	7.34								
9	19.5	7.23								
12	18.9	6.81								
15	18.7	6.59								
20	17.7	5.62								
25	16	4.68								
30	12.4	2.51								
35	10.9	.78								
40	10.2	.51								
45	10.2	.17								

07/26/2011									
Depth	•	D.O.							
FEET	DEGREES C	MG/L							
0	27.1	7.05							
3	26.1	6.98							
6 9	24.5	6.52							
-	24.3	6.25							
12	24.1	6.08							
15	23.7	6.02							
20	18.1	.86							
25	14.8	.18							
30	12.9	.04							
35	12	.05							
40	11.6	.08							
45	11.7	.12							

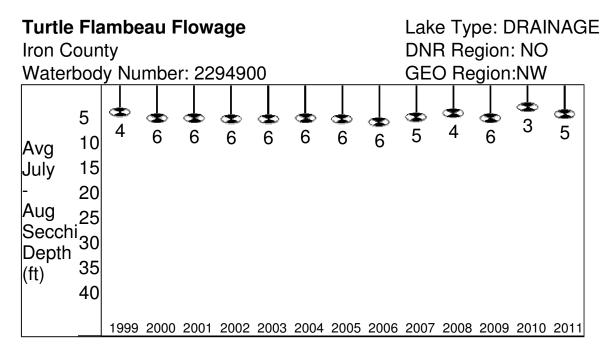
MURKY BROWN

	08/15/2011	
Depth	Temp.	D.O.

FEET	DEGREES C	MG/L
0	23.4	7.4
3	23.3	7.34
6	22.7	6.7
9	22.4	6.43
12	22.3	6.35
15	21.9	6.03
20	20	2.39
25	15.5	.06
30	13	.06
35	11.8	.08
40	11.4	.11
45	11.3	.15

Date	Collector Comments
04/27/2011	Cloudy/Overcast
06/27/2011	Sunny/Clear
07/26/2011	Sunny/Clear
08/15/2011	Sunny/Slight Overcast

Date	Data Collectors	Project
04/27/2011	James Leever	Citizen Lake Monitoring - Water Quality - Turtle Flambeau
		Flowage; Deep Hole
05/28/2011		Citizen Lake Monitoring - Water Quality - Turtle Flambeau
	•	Flowage; Deep Hole
06/27/2011		Citizen Lake Monitoring - Water Quality - Turtle Flambeau
		Flowage; Deep Hole
07/26/2011		Citizen Lake Monitoring - Water Quality - Turtle Flambeau
		Flowage; Deep Hole
08/15/2011	James Leever	Citizen Lake Monitoring - Water Quality - Turtle Flambeau
		Flowage; Deep Hole

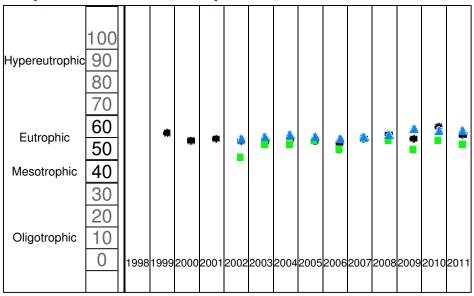

SD = Secchi depth measured in feet converted to meters; Chl = Chlorophyll a in micrograms per liter(ug/l); TP = Total phosphorus in ug/l, surface sample only; TSI(SD), TSI(CHL), TSI(TP) = Trophic state index based on SD, CHL, TP respectively; Depth measured in feet.

Wisconsin Department of Natural Resources Wisconsin Lakes Partnership

Report Generated: 09/21/2011

The Official Internet Site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621


Past secchi averages in feet (July and August only).

Year	Secchi Mean	Secchi Min	Secchi Max	Secchi Count	
1999	4.3	4.25	4.25	1	
2000	5.6	4.7	6.5	2	
2001	5.5	5.3	5.6	2	
2002	5.8	5.5	6	3	
2003	5.8	5.5	6	2	
2004	5.5	5	6	2	
2005	5.8	.8 5 6.5			
2006	6.3 6 6.5		6.5	2	
2007	5.3	5	5.5	2	
2008	4.5	4.5	4.5	2	
2009	5.5	5	6	2	
2010	3.4	3	5.5	6	
2011	4.8	4.5	5	2	

Report Generated: 09/21/2011

The Official Internet Site for the Wisconsin Department of Natural Resources

Trophic State Index Graph

Monitoring Station: Turtle Flambeau Flowage - Deep Hole, Iron County Past Summer (July-August) Trophic State Index (TSI) averages.

■ = Chlorophyll ■ = Total Phosphorus								
TSI(ChI) = TSI(TP) = TSI (Sec) It is likely that algae dominate light attenuation.								
TSI(ChI) > TSI(Sec)	Large particulates, such as Aphanizomenon flakes dominate							
TSI(TP) = TSI(Sec) > TSI (Chl)	Non-algal particulate or color dominate light attenuation							
TSI(Sec) = TSI(ChI) >= TSI The algae biomass in your lake is limited by phosphorus								
TSI(TP) > TSI(ChI) = TSI (Sec)	Zooplankton grazing, nitrogen, or some factor other than phosphorus is limiting algae biomass							

TSI	TSI Description
TSI < 30	Classical oligotrophy: clear water, many algal species, oxygen throughout the year in bottom water, cold water, oxygen-sensitive fish species in deep lakes. Excellent water quality.
TSI 30-40	Deeper lakes still oligotrophic, but bottom water of some shallower lakes will become oxygen-depleted during the summer.
TSI 40-50	Water moderately clear, but increasing chance of low dissolved oxygen in deep water during the summer.
TSI 50-60	Lakes becoming eutrophic: decreased clarity, fewer algal species, oxygen-depleted bottom waters during the summer, plant overgrowth evident, warm-water fisheries (pike, perch, bass, etc.) only.
TSI 60-70	Blue-green algae become dominant and algal scums are possible, extensive plant overgrowth problems possible.
TSI 70-80	Becoming very eutrophic. Heavy algal blooms possible throughout summer, dense plant beds, but extent limited by light penetration (blue-green algae block sunlight).
TSI > 80	Algal scums, summer fishkills, few plants, rough fish dominant. Very poor water quality.

Trophic state index (TSI) is determined using a mathematical formula (Wisconsin has its own version). The TSI is a score from 0 to 110, with lakes that are less fertile having a low TSI. We

Turtle Flambeau Flowage - NW Basin 2011 Results

Turtle Flambeau Flowage - NW Basin was sampled **13** different days during the 2011 season. Parameters sampled included:

- water clarity
- temperature
- total phosphorus
- chlorophyll

The average summer (July-Aug) secchi disk reading for Turtle Flambeau Flowage - NW Basin (Iron County, WBIC: 2294900) was 7.06 feet. The average for the Northwest Georegion was 7.6 feet. Typically the summer (July-Aug) water was reported as **MURKY** and **BROWN**. This suggests that the secchi depth may have been mostly impacted by suspended sediments, tiny particles of soil or organic matter that are suspended in the water. Shallow lakes are often turbid because wind stirs up sediment from the bottom. High suspended sediments are often found in flowages and impoundments where precipitation runoff from the watershed transports solids via an incoming stream.

Chemistry data was collected on Turtle Flambeau Flowage - NW Basin. The average summer Chlorophyll was 8.2 μ g/l (compared to a Northwest Georegion summer average of 18.6 μ g/l). The summer Total Phosphorus average was 17 μ g/l. Lakes that have more than 20 μ g/l and impoundments that have more than 30 μ g/l of total phosphorus may experience noticable algae blooms.

The overall Trophic State Index (based on chlorophyll) for Turtle Flambeau Flowage - NW Basin was 51. The TSI suggests that Turtle Flambeau Flowage - NW Basin was **eutrophic**. This TSI usually suggests decreased clarity, fewer algal species, oxygen-depleted bottom waters during the summer, plant overgrowth evident, warm-water fisheries (pike, perch, bass, etc.) only.

Lake Water Quality 2011 Annual Report

Turtle Flambeau Flowage

Lake Type: DRAINAGE DNR Region: NO

Iron County DNR Region: NO Waterbody Number: 2294900 GEO Region:NW

Site Name	Storet #
Turtle Flambeau Flowage - NW Basin	263049

Date	SD (ft)	SD (m)	Hit Bottom	CHL	ΤP		TSI (CHL)		Lake		Color	Perception
05/08/2011						55	(CHL)		Levei	,	BROWN	1-Beautiful, could not be nicer
05/08/2011	5.75	1.8	NO		27	52		54		CLEAR		1-Beautiful, could not be nicer
06/04/2011	5.5	1.7	NO			53				CLEAR	BROWN	1-Beautiful, could not be nicer
06/17/2011	6	1.8				51				CLEAR		1-Beautiful, could not be nicer
06/27/2011				2.73	11		42	47				
06/27/2011	5.5	1.7	NO			53				MURKY		1-Beautiful, could not be nicer
07/12/2011	6.5	2	NO			50				MURKY		1-Beautiful, could not be nicer
07/26/2011				5.74	16		48	50				
07/26/2011	7.25	2.2	NO			49				MURKY		1-Beautiful, could not be nicer
08/11/2011	7	2.1	NO			49				MURKY		1-Beautiful, could not be nicer
08/23/2011				10.6	18		53	51				
08/23/2011	7.5	2.3	NO			48				MURKY	BROWN	problems
09/06/2011	7	2.1	NO			49				MURKY	BROWN	2-Very minor aesthetic problems
												2-Very minor

09/19/2011	6	1.8	NO	51		MURKY		aesthetic problems
09/28/2011	6	1.8	NO	51		MURKY	BROWN	2-Very minor aesthetic problems
10/07/2011	7.5	2.3	NO	48		MURKY	BROWN	2-Very minor aesthetic problems

	05/08/2011										
Depth	Temp.	D.O.									
FEET	DEGREES F										
0	52.1										
3 6	51.9										
6	51.6										
9	46.7										
12	45.6										
15	45.1										
18	44.9										
21	44										
24	43.5										
27	42.8										
30	42.6										
33	42.4										
36	42.2										

	06/27/2011	
Depth	Temp.	D.O.
FEET	DEGREES F	
0	67.2	
0 3 6 9	67.2	
6	67.1	
	67.1	
12	67.1	
15	65.4	
18	64.7	
21	63.6	
24 27	55.5	
27	50.3	
30	47.6	
36 42	45.8	
42	45.6	

	07/26/2011									
Depth	Temp.	D.O.								
FEET	DEGREES F									
0	70.5									
0 3 6	70.5									
6	70.5									
9	70.5									
12	70.5									
15	70.3									
18	70.1									
21	65.6									
24	57									
27	51.6									
30	49.4									
36	47.6									
42	47.3									

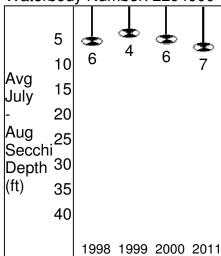
Date	Collector Comments
05/08/2011	Station ID corrected to 263049 per note from Sandy Wickman- DNR.
05/08/2011	walleye opener - heavy boat traffic
06/04/2011	calm
06/17/2011	calm for 3 days
06/27/2011	Station ID corrected to 263049 per note from Sandy Wickman- DNR.
07/26/2011	Station ID corrected to 263049 per note from Sandy Wickman- DNR.
08/23/2011	Station ID corrected to 263049 per note from Sandy Wickman- DNR.
08/23/2011	small algae bloom
09/28/2011	algae bloom algae bloom
10/07/2011	very windy

Date	Lab Comments
05/08/2011	LAB REAGENT BLANK EXCEEDES LOD BY -0.0019 MG/L
05/08/2011	NO SAMPLE RECEIVED- NO TEST DONE

Date	Data Collectors	Project
05/08/2011	Heather Palmquist and	IRON COUNTY: Turtle-Flambeau Flowage AIS
	Jim Blum	Project
05/08/2011	Jim Blum	Citizen Lake Monitoring - Water Quality - Turtle
		Flambeau Flowage - NW Basin
05/18/2011	Jim Blum	Citizen Lake Monitoring - Water Quality - Turtle
00/04/0044	Par Di ar	Flambeau Flowage - NW Basin
06/04/2011	Jim Bium	Citizen Lake Monitoring - Water Quality - Turtle
06/17/2011	lim Dlum	Flambeau Flowage - NW Basin
06/17/2011	JIIII DIUIII	Citizen Lake Monitoring - Water Quality - Turtle Flambeau Flowage - NW Basin
06/27/2011	Heather Palmquist	Turtle Flambeau Flowage Monitoring
06/27/2011		Citizen Lake Monitoring - Water Quality - Turtle
00/27/2011	onn Blam	Flambeau Flowage - NW Basin
07/12/2011	Jim Blum	Citizen Lake Monitoring - Water Quality - Turtle
		Flambeau Flowage - NW Basin
07/26/2011	Heather Palmquist	Turtle Flambeau Flowage Monitoring
07/26/2011	Jim Blum	Citizen Lake Monitoring - Water Quality - Turtle
		Flambeau Flowage - NW Basin
08/11/2011	Jim Blum	Citizen Lake Monitoring - Water Quality - Turtle
00/00/0044	Haathan Dalmaniat	Flambeau Flowage - NW Basin
	Heather Palmquist	Turtle Flambeau Flowage Monitoring
08/23/2011	Jim Bium	Citizen Lake Monitoring - Water Quality - Turtle Flambeau Flowage - NW Basin
09/06/2011	lim Blum	Citizen Lake Monitoring - Water Quality - Turtle
03/00/2011	onn Blann	Flambeau Flowage - NW Basin
09/19/2011	Jim Blum	Citizen Lake Monitoring - Water Quality - Turtle
		Flambeau Flowage - NW Basin
09/28/2011	Jim Blum	Citizen Lake Monitoring - Water Quality - Turtle
		Flambeau Flowage - NW Basin
10/07/2011	Jim Blum	Citizen Lake Monitoring - Water Quality - Turtle
		Flambeau Flowage - NW Basin

SD = Secchi depth measured in feet converted to meters; Chl = Chlorophyll a in micrograms per liter(ug/l); TP = Total phosphorus in ug/l, surface sample only; TSI(SD), TSI(CHL), TSI (TP) = Trophic state index based on SD, CHL, TP respectively; Depth measured in feet.

Wisconsin Department of Natural Resources Wisconsin Lakes Partnership


Report Generated: 11/28/2011

The Official Internet Site for the Wisconsin Department of Natural Resources

Turtle Flambeau Flowage

Iron County

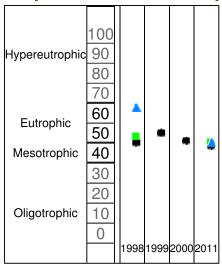
Waterbody Number: 2294900

Lake Type: DRAINAGE DNR Region: NO GEO Region:NW

Past secchi averages in feet (July and August only).

Year	Secchi Mean	Secchi Min	Secchi Max	Secchi Count
1998	6	5.7	6.2	2
1999	4.3	4.25	4.3	2
2000	5.6	4.5	6.5	4
2011	7.1	6.5	7.5	4

Report Generated: 11/28/2011


dnr.wi.gov

The Official Internet Site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Legal Notices and Disclaimers | Accessibility Notice | Site Requirements Employment | Feedback | Site Map

Trophic State Index Graph

Monitoring Station: Turtle Flambeau Flowage - NW Basin, Iron County

Past Summer (July-August) Trophic State Index (TSI) averages.

■ = Chlorophyll									
TSI(ChI) = TSI(TP) = TSI (Sec) It is likely that algae dominate light attenuation.									
TSI(Chl) > TSI(Sec) Large particulates, such as Aphanizomenon flakes dominate									
TSI(TP) = TSI(Sec) > TSI (Chl)	Non-algal particulate or color dominate light attenuation								
TSI(Sec) = TSI(Chl) >= TSI (TP) The algae biomass in your lake is limited by phosphorus									
TSI(TP) > TSI(ChI) = TSI (Sec)	Zooplankton grazing, nitrogen, or some factor other than phosphorus is limiting algae biomass								

TSI	TSI Description
TSI < 30	Classical oligotrophy: clear water, many algal species, oxygen throughout the year in bottom water, cold water, oxygen-sensitive fish species in deep lakes. Excellent water quality.
TSI 30-40	Deeper lakes still oligotrophic, but bottom water of some shallower lakes will become oxygen-depleted during the summer.
TSI 40-50	Water moderately clear, but increasing chance of low dissolved oxygen in deep water during the summer.
TSI 50-60	Lakes becoming eutrophic: decreased clarity, fewer algal species, oxygen-depleted bottom waters during the summer, plant overgrowth evident, warm-water fisheries (pike, perch, bass, etc.) only.
TSI 60-70	Blue-green algae become dominant and algal scums are possible, extensive plant overgrowth problems possible.
TSI 70-80	Becoming very eutrophic. Heavy algal blooms possible throughout summer, dense plant beds, but extent limited by light penetration (blue-green algae block sunlight).
TSI > 80	Algal scums, summer fishkills, few plants, rough fish dominant. Very poor water quality.

Trophic state index (TSI) is determined using a mathematical formula (Wisconsin has its own version). The TSI is a score from 0 to 110, with lakes that are less fertile having a low TSI. We base the overall TSI on the Chlorophyll TSI when we have Chlorophyll data. If we don't have chemistry data, we use TSI Secchi. We do this rather than averaging, because the TSI is used to predict biomass. This makes chlorophyll the best indicator. Visit Bob Carlson's website, dipin.kent.edu/tsi.htm, for more info.

Turtle Flambeau Flowage - Near Murrays Landing 2011 Results

Turtle Flambeau Flowage - Near Murrays Landing was sampled **14** different days during the 2011 season. Parameters sampled included:

- water clarity
- temperature
- total phosphorus
- chlorophyll

The average summer (July-Aug) secchi disk reading for Turtle Flambeau Flowage - Near Murrays Landing (Iron County, WBIC: 2294900) was 3.5 feet. The average for the Northwest Georegion was 7.6 feet. Typically the summer (July-Aug) water was reported as **CLEAR** and **BROWN**. This suggests that the Secchi depth may have been mostly impacted by tannins, stain from decaying matter. Tannins are natural and not a result of pollution. Tannins can be distinguished from suspended sediment because the water, even though it's brown, it looks clear, like tea. Though tannins are not harmful per se, they are often not perceived as aesthetically pleasing as clear water. Tannins can also be important for decreasing light penetration into the water and decreasing algal growth.

Chemistry data was collected on Turtle Flambeau Flowage - Near Murrays Landing. The average summer Chlorophyll was 2.4 μ g/l (compared to a Northwest Georegion summer average of 18.6 μ g/l). The summer Total Phosphorus average was 22 μ g/l. Lakes that have more than 20 μ g/l and impoundments that have more than 30 μ g/l of total phosphorus may experience noticable algae blooms.

The overall Trophic State Index (based on chlorophyll) for Turtle Flambeau Flowage - Near Murrays Landing was 41. The TSI suggests that Turtle Flambeau Flowage - Near Murrays Landing was **mesotrophic**. Mesotrophic lakes are characterized by moderately clear water, but have a increasing chance of low dissolved oxygen in deep water during the summer.

Lake Water Quality 2011 Annual Report

Turtle Flambeau Flowage

Lake Type: DRAINAGE DNR Region: NO

Iron County Waterbody Number: 2294900

GEO Region:NW

Site Name	Storet #
Turtle Flambeau Flowage - Near Murrays Landing	10019764

Date		SD		CHL	TP		TSI	TSI	Lake	Clarity	Color	Perception
		(m)	Bottom			(SD)	(CHL)	' '	Level			
05/08/2011					26			53				
05/08/2011	3	0.9	NO			61			NORMAL	CLEAR	BROWN	1-Beautiful, could not be nicer
06/22/2011				2.13	22		41	52				
06/22/2011	4.5	1.4	NO			55			NORMAL	CLEAR	BROWN	1-Beautiful, could not be nicer
08/15/2011				2.41	22		41	52				
08/15/2011	3.5	1.1	NO			59			NORMAL	CLEAR		1-Beautiful, could not be nicer

	05/08/2011									
Depth	Depth Temp.									
FEET	DEGREES F									
3	53.9									
6	53.7									

I	06/22/2011										
ı	Depth	D.O.									
ı	FEET	DEGREES F									
l	3	64.4									
ı	6	64.4									
ı	9	64.4									

	08/15/2011									
Depth	Depth Temp.									
FEET	DEGREES F									
3	72.8									
6	72.8									

Date	Collector Comments
05/08/2011	clear skies- calm
06/22/2011	clear skies- slight breeze

Date	Lab Comments
05/08/2011	NO SAMPLE RECEIVED- NO TEST DONE

Date	Data Collectors	Project

05/08/2011	Chris Niehaus	Turtle Flambeau Flowage Monitoring
05/08/2011	Heather Palmquist	IRON COUNTY: Turtle-Flambeau Flowage AIS Project
06/19/2011	Ryan Motiff	Clean Boats- Clean Waters - Iron County (county staff)
06/22/2011	Chris Niehaus	Turtle Flambeau Flowage Monitoring
06/22/2011	Heather Palmquist	IRON COUNTY: Turtle-Flambeau Flowage AIS Project
07/01/2011	John Preuss	Water Guard - Iron County
07/09/2011	Ryan Motiff	Clean Boats- Clean Waters - Iron County (county staff)
07/10/2011	Filip Grgic	Clean Boats- Clean Waters - Iron County (county staff)
07/17/2011	Ryan Motiff	Clean Boats- Clean Waters - Iron County (county staff)
07/22/2011	Ryan Motiff	Clean Boats- Clean Waters - Iron County (county staff)
07/30/2011	Ryan Motiff	Clean Boats- Clean Waters - Iron County (county staff)
08/13/2011	Ryan Motiff	Clean Boats- Clean Waters - Iron County (county staff)
08/15/2011	Chris Niehaus	Turtle Flambeau Flowage Monitoring
08/15/2011	Heather Palmquist	IRON COUNTY: Turtle-Flambeau Flowage AIS Project
08/17/2011	Heather Palmquist	Turtle Flambeau Flowage Monitoring
08/19/2011	Filip Grgic	Clean Boats- Clean Waters - Iron County (county staff)
08/27/2011	Ryan Motiff	Clean Boats- Clean Waters - Iron County (county staff)

SD = Secchi depth measured in feet converted to meters; Chl = Chlorophyll a in micrograms per liter(ug/l); TP = Total phosphorus in ug/l, surface sample only; TSI(SD), TSI(CHL), TSI(TP) = Trophic state index based on SD, CHL, TP respectively; Depth measured in feet.

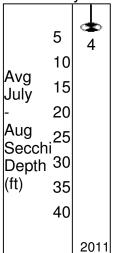
Wisconsin Department of Natural Resources

Wisconsin Lakes Partnership

Report Generated: 11/28/2011

dnr.wi.gov

The Official Internet Site for the Wisconsin Department of Natural Resources


101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Legal Notices and Disclaimers | Accessibility Notice | Site Requirements Employment | Feedback | Site Map

Turtle Flambeau Flowage

Iron County

Waterbody Number: 2294900

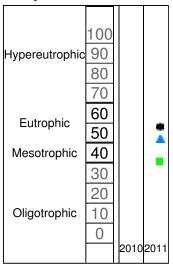
Lake Type: DRAINAGE DNR Region: NO

DNR Region: NO GEO Region:NW

Past secchi averages in feet (July and August only).

Year	Secchi Mean	Secchi Min	Secchi Max	Secchi Count	
2011	3.5	3.5	3.5	1	

Report Generated: 11/28/2011



The Official Internet Site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Legal Notices and Disclaimers | Accessibility Notice | Site Requirements Employment | Feedback | Site Map

Trophic State Index Graph

Monitoring Station: Turtle Flambeau Flowage - Near Murrays Landing, Iron County Past Summer (July-August) Trophic State Index (TSI) averages.

■ = Chlorophyll = Total Phosphorus								
TSI(Chl) = TSI(TP) = TSI (Sec) It is likely that algae dominate light attenuation.								
TSI(Chl) > TSI(Sec)	Large particulates, such as Aphanizomenon flakes dominate							
TSI(TP) = TSI(Sec) > TSI (Chl)	Non-algal particulate or color dominate light attenuation							
TSI(Sec) = TSI(Chl) >= TSI (TP) The algae biomass in your lake is limited by phosphorus								
TSI(TP) > TSI(ChI) = TSI (Sec)	Zooplankton grazing, nitrogen, or some factor other than phosphorus is limiting algae biomass							

TSI	TSI Description
TSI < 30	Classical oligotrophy: clear water, many algal species, oxygen throughout the year in bottom water, cold water, oxygen-sensitive fish species in deep lakes. Excellent water quality.
TSI 30-40	Deeper lakes still oligotrophic, but bottom water of some shallower lakes will become oxygen-depleted during the summer.
TSI 40-50	Water moderately clear, but increasing chance of low dissolved oxygen in deep water during the summer.
TSI 50-60	Lakes becoming eutrophic: decreased clarity, fewer algal species, oxygen-depleted bottom waters during the summer, plant overgrowth evident, warm-water fisheries (pike, perch, bass, etc.) only.
TSI 60-70	Blue-green algae become dominant and algal scums are possible, extensive plant overgrowth problems possible.
TSI 70-80	Becoming very eutrophic. Heavy algal blooms possible throughout summer, dense plant beds, but extent limited by light penetration (blue-green algae block sunlight).
TSI > 80	Algal scums, summer fishkills, few plants, rough fish dominant. Very poor water quality.

Trophic state index (TSI) is determined using a mathematical formula (Wisconsin has its own version). The TSI is a score from 0 to 110, with lakes that are less fertile having a low TSI. We base the overall TSI on the Chlorophyll TSI when we have Chlorophyll data. If we don't have chemistry data, we use TSI Secchi. We do this rather than averaging, because the TSI is used to predict biomass. This makes chlorophyll the best indicator. Visit Bob Carlson's website, dipin.kent.edu/tsi.htm, for more info.

Turtle Flambeau Flowage - SC Basin 2011 Results

Turtle Flambeau Flowage - SC Basin was sampled **7** different days during the 2011 season. Parameters sampled included:

- water clarity
- temperature
- · dissolved oxygen
- total phosphorus
- chlorophyll

The average summer (July-Aug) secchi disk reading for Turtle Flambeau Flowage - SC Basin (Iron County, WBIC: 2294900) was 4.13 feet. The average for the Northwest Georegion was 7.6 feet. Typically the summer (July-Aug) water was reported as **CLEAR** and **YELLOW**.

Chemistry data was collected on Turtle Flambeau Flowage - SC Basin. The average summer Chlorophyll was 10 μ g/l (compared to a Northwest Georegion summer average of 18.6 μ g/l). The summer Total Phosphorus average was 36.5 μ g/l. Lakes that have more than 20 μ g/l and impoundments that have more than 30 μ g/l of total phosphorus may experience noticable algae blooms.

The overall Trophic State Index (based on chlorophyll) for Turtle Flambeau Flowage - SC Basin was 52. The TSI suggests that Turtle Flambeau Flowage - SC Basin was **eutrophic**. This TSI usually suggests decreased clarity, fewer algal species, oxygen-depleted bottom waters during the summer, plant overgrowth evident, warm-water fisheries (pike, perch, bass, etc.) only.

The Official Internet Site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621 Legal Notices and Disclaimers | Accessibility Notice | Site Requirements

Lake Water Quality 2011 Annual Report

Turtle Flambeau Flowage

Lake Type: DRAINAGE DNR Region: NO

Iron County GEO Region:NW Waterbody Number: 2294900

Site Name	Storet #
Turtle Flambeau Flowage - SC Basin	263050

Date	SD	SD	Hit	CHL	ΤP	_	TSI	TSI	Lake	Clarity	Color	Perception
	, ,	, ,	Bottom			` ′	(CHL)	` ′	Level			
05/10/2011	3	0.9	NO		35	61		56				
05/11/2011	3	0.9	NO			61			HIGH	MURKY	BROWN	2-Very minor aesthetic problems
06/16/2011	3.5	1.1	NO	5.82	26	59	48	53	HIGH	CLEAR	BROWN	2-Very minor aesthetic problems
07/31/2011	4	1.2	NO	7.37	40	57	50	57	HIGH	CLEAR	YELLOW	2-Very minor aesthetic problems
08/23/2011	4.25	1.3	NO			56			NORMAL	CLEAR	YELLOW	2-Very minor aesthetic problems

05/11/2011		
Depth		D.O.
FEET	DEGREES F	
3	53.9	
6	53.6	
9	53.4	
12	53.2	
15	53	
18	53	

06/16/2011			
Depth	Depth Temp.		
FEET	DEGREES F	MG/L	
0	66.2	7.56	
3	65.6	7.36	
6	65.3	7.38	
9	65.3	7.38	
12	65.3	7.39	
15	65.1	7.32	
18	65.1		
21	63.8		

07/31/2011		
Depth	Temp.	D.O.
FEET	DEGREES F	MG/L
0	76.8	7.39
3	76.8	7.34
6	76.4	6.88
9	75.9	6.13
12	75.2	5.11
15	74.4	1.67
18	72.8	
21	70.5	

08/23/2011		
Depth	D.O.	
FEET	DEGREES F	MG/L
0	69.6	7.38
3	70.1	7.42

	6 9	70.1	7.4
	9	70.1	7.34
		70.1	7.28
	15	69.8	6.97
	18	69.4	
ı	21	69.2	

Date	Collector Comments
05/11/2011	storms 2 days prior
06/16/2011	rained one day prior
07/31/2011	heavy storms 2 days prior
08/23/2011	rained just before we took the reading.

Date	Lab Comments
05/10/2011	NO BOTTLE RECEIVED- NO TEST DONE

Date	Data Collectors	Project
05/01/2011	JAMES KREITLOW	
05/10/2011	JAMES KREITLOW	IRON COUNTY: Turtle-Flambeau Flowage AIS Project
05/11/2011	Heather Palmquist	Turtle Flambeau Flowage Monitoring
06/16/2011	Heather Palmquist	Turtle Flambeau Flowage Monitoring
07/31/2011	Heather Palmquist	IRON COUNTY: Turtle-Flambeau Flowage AIS Project
07/31/2011	Heather Palmquist	Turtle Flambeau Flowage Monitoring
08/17/2011	Heather Palmquist	Turtle Flambeau Flowage Monitoring
08/23/2011	Heather Palmquist	Turtle Flambeau Flowage Monitoring

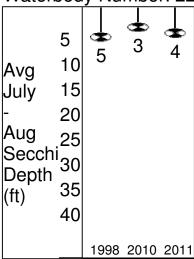
SD = Secchi depth measured in feet converted to meters; ChI = Chlorophyll a in micrograms per liter(ug/l); TP = Total phosphorus in ug/l, surface sample only; TSI(SD), TSI(CHL), TSI(TP) = Trophic state index based on SD, CHL, TP respectively; Depth measured in feet.

Wisconsin Department of Natural Resources Wisconsin Lakes Partnership

Report Generated: 09/21/2011

WISCONSIN
DEPT. OF NATURAL RESOURCES

The Official Internet Site for the Wisconsin Department of Natural Resources


101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621
Legal Notices and Disclaimers | Accessibility Notice | Site Requirements
Employment | Feedback | Site Map

dnr.wi.gov

Turtle Flambeau Flowage

Iron County

Waterbody Number: 2294900

Lake Type: DRAINAGE

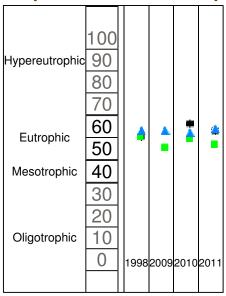
DNR Region: NO GEO Region:NW

Past secchi averages in feet (July and August only).

Year	Secchi Mean	Secchi Min	Secchi Max	Secchi Count
1998	4.9	4.8	4.9	2
2010	3	3	3	2
2011	4.1	4	4.25	2

Report Generated: 09/21/2011

dnr.wi.gov


The Official Internet Site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Legal Notices and Disclaimers | Accessibility Notice | Site Requirements

Employment | Feedback | Site Map

Trophic State Index Graph

Monitoring Station: Turtle Flambeau Flowage - SC Basin, Iron County Past Summer (July-August) Trophic State Index (TSI) averages.

■ = Secchi ■ = Chlorophyll ■ = Total Phosphorus			
TSI(ChI) = TSI(TP) = TSI (Sec)	It is likely that algae dominate light attenuation.		
TSI(Chl) > TSI(Sec) Large particulates, such as Aphanizomenon flakes dominate			
TSI(TP) = TSI(Sec) > TSI (Chl)	Non-algal particulate or color dominate light attenuation		
TSI(Sec) = TSI(Chl) >= TSI (TP)	The algae biomass in your lake is limited by phosphorus		
TSI(TP) > TSI(ChI) = TSI (Sec)	Zooplankton grazing, nitrogen, or some factor other than phosphorus is limiting algae biomass		

TSI	TSI Description
TSI < 30	Classical oligotrophy: clear water, many algal species, oxygen throughout the year in bottom water, cold water, oxygen-sensitive fish species in deep lakes. Excellent water quality.
TSI 30-40	Deeper lakes still oligotrophic, but bottom water of some shallower lakes will become oxygen-depleted during the summer.
TSI 40-50	Water moderately clear, but increasing chance of low dissolved oxygen in deep water during the summer.
TSI 50-60	Lakes becoming eutrophic: decreased clarity, fewer algal species, oxygen-depleted bottom waters during the summer, plant overgrowth evident, warm-water fisheries (pike, perch, bass, etc.) only.
TSI 60-70	Blue-green algae become dominant and algal scums are possible, extensive plant overgrowth problems possible.
TSI 70-80	Becoming very eutrophic. Heavy algal blooms possible throughout summer, dense plant beds, but extent limited by light penetration (blue-green algae block sunlight).
TSI > 80	Algal scums, summer fishkills, few plants, rough fish dominant. Very poor water quality.

Trophic state index (TSI) is determined using a mathematical formula (Wisconsin has its own version). The TSI is a score from 0 to 110, with lakes that are less fertile having a low TSI. We

Turtle Flambeau Flowage - SW Basin 2011 Results

Turtle Flambeau Flowage - SW Basin was sampled **20** different days during the 2011 season. Parameters sampled included:

- water clarity
- total phosphorus
- chlorophyll

The average summer (July-Aug) secchi disk reading for Turtle Flambeau Flowage - SW Basin (Iron County, WBIC: 2294900) was 4.58 feet. The average for the Northwest Georegion was 7.6 feet. Typically the summer (July-Aug) water was reported as **MURKY** and **BROWN**. This suggests that the secchi depth may have been mostly impacted by suspended sediments, tiny particles of soil or organic matter that are suspended in the water. Shallow lakes are often turbid because wind stirs up sediment from the bottom. High suspended sediments are often found in flowages and impoundments where precipitation runoff from the watershed transports solids via an incoming stream.

Chemistry data was collected on Turtle Flambeau Flowage - SW Basin. The average summer Chlorophyll was 11.8 μ g/l (compared to a Northwest Georegion summer average of 18.6 μ g/l). The summer Total Phosphorus average was 26.5 μ g/l. Lakes that have more than 20 μ g/l and impoundments that have more than 30 μ g/l of total phosphorus may experience noticable algae blooms.

The overall Trophic State Index (based on chlorophyll) for Turtle Flambeau Flowage - SW Basin was 53. The TSI suggests that Turtle Flambeau Flowage - SW Basin was **eutrophic**. This TSI usually suggests decreased clarity, fewer algal species, oxygen-depleted bottom waters during the summer, plant overgrowth evident, warm-water fisheries (pike, perch, bass, etc.) only.

The Official Internet Site for the Wisconsin Department of Natural Resources

Lake Water Quality 2011 Annual Report

Turtle Flambeau Flowage Lake Type: DRAINAGE

Iron County DNR Region: NO Waterbody Number: 2294900 GEO Region:NW

Site Name	Storet #
Turtle Flambeau Flowage - SW Basin	263048

Date	SD	SD	Hit	CHL	TP	TSI	TSI	TSI	Lake	Clarity	Color	Perception
	(ft)	(m)	Bottom			(SD)	(CHL)	(TP)	Level			
05/09/2011					20			51				
06/26/2011				5.79	20		48	51				
07/13/2011				6.48	25		49	53				

Date	Lab Comments
05/09/2011	NO BOTTLE RECEIVED- NO TEST DONE
07/13/2011	HOLDING TIME EXCEEDED BY 2 DAYS

Date	Data Collectors	Project
05/01/2011		
	KREITLOW	
05/09/2011		IRON COUNTY: Turtle-Flambeau Flowage AIS
	KREITLOW	Project
05/17/2011		
	KREITLOW	
06/16/2011		
	KREITLOW	
	<u>-</u>	Turtle Flambeau Flowage Monitoring
		Turtle Flambeau Flowage Monitoring
08/17/2011	Heather Palmquist	Turtle Flambeau Flowage Monitoring

SD = Secchi depth measured in feet converted to meters; Chl = Chlorophyll a in micrograms per liter(ug/l); TP = Total phosphorus in ug/l, surface sample only; TSI(SD), TSI(CHL), TSI(TP) = Trophic state index based on SD, CHL, <math>TP respectively; Depth measured in feet.

Wisconsin Department of Natural Resources Wisconsin Lakes Partnership

Report Generated: 09/21/2011

The Official Internet Site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Turtle Flambeau Flowage

Iron County

Waterbody Number: 2294900

		,				
Avg July - Aug Secchi Depth (ft)	5 10 15 20 25 30 35 40	1998	1999	6 6	2001	2010
1		. 500		_000	_00.	_5.0

Lake Type: DRAINAGE DNR Region: NO

GEO Region: NW

Past secchi averages in feet (July and August only).

Year	Secchi Mean	Secchi Min	Secchi Max	Secchi Count
1998	4.2	3.5	4.9	2
1999	4.1	4	4.2	3
2000	6.4	6.25	6.5	4
2001	5.4	5.4	5.4	1
2010	4.3	4	4.5	2

Report Generated: 09/21/2011



The Official Internet Site for the Wisconsin Department of Natural Resources

101 S. Webster Street . PO Box 7921 . Madison, Wisconsin 53707-7921 . 608.266.2621

Legal Notices and Disclaimers | Accessibility Notice | Site Requirements Employment | Feedback | Site Map

Trophic State Index Graph

Monitoring Station: Turtle Flambeau Flowage - SW Basin, Iron County Past Summer (July-August) Trophic State Index (TSI) averages.

■ = Chlorophyll ■ = Total Phosphorus					
TSI(ChI) = TSI(TP) = TSI (Sec)	It is likely that algae dominate light attenuation.				
TSI(Chl) > TSI(Sec)	Large particulates, such as Aphanizomenon flakes dominate				
TSI(TP) = TSI(Sec) > TSI (Chl)	Non-algal particulate or color dominate light attenuation				
TSI(Sec) = TSI(ChI) >= TSI (TP)	The algae biomass in your lake is limited by phosphorus				
TSI(TP) > TSI(ChI) = TSI (Sec)	Zooplankton grazing, nitrogen, or some factor other than phosphorus is limiting algae biomass				

TSI	TSI Description
TSI < 30	Classical oligotrophy: clear water, many algal species, oxygen throughout the year in bottom water, cold water, oxygen-sensitive fish species in deep lakes. Excellent water quality.
TSI 30-40	Deeper lakes still oligotrophic, but bottom water of some shallower lakes will become oxygen-depleted during the summer.
TSI 40-50	Water moderately clear, but increasing chance of low dissolved oxygen in deep water during the summer.
TSI 50-60	Lakes becoming eutrophic: decreased clarity, fewer algal species, oxygen-depleted bottom waters during the summer, plant overgrowth evident, warm-water fisheries (pike, perch, bass, etc.) only.
TSI 60-70	Blue-green algae become dominant and algal scums are possible, extensive plant overgrowth problems possible.
TSI 70-80	Becoming very eutrophic. Heavy algal blooms possible throughout summer, dense plant beds, but extent limited by light penetration (blue-green algae block sunlight).
TSI > 80	Algal scums, summer fishkills, few plants, rough fish dominant. Very poor water quality.

Trophic state index (TSI) is determined using a mathematical formula (Wisconsin has its own version). The TSI is a score from 0 to 110, with lakes that are less fertile having a low TSI. We

APPENDIX F

Agency Correspondence

.1414 West Hamilton Avenu P.O. Box 8 Eau Claire, WI 54702-0008

November 29, 2011

Mr, Jeff Scheirer Wisconsin DNR 875 South 4th Avenue Park Falls, WI 54552

Subject:

2011 Water Quality Monitoring Report For Big Falls Flowage (P-2390-01),

Thornapple Flowage (P-2475) And Turtle-Flambeau Flowage (P-2390-02).

Dear Mr. Scheirer:

Enclosed are the results of the water quality sampling for Big Falls and Thornapple flowages that Northern States Power Company – Wisconsin (NSPW) conducted during the 2011 field season. The samples were taken after ice-out and in late July and August. The samples were acquired from the deepest point of the reservoirs immediately upstream from the boat restraining barriers. The results are summarized for the past eight years and while there appears to be some variability in the parameters analyzed, for the most part, the results have been relatively consistent. The data collected in 2011 is consistent with data from the previous years' sampling.

Also included in the report are the water quality sampling results for the Turtle-Flambeau Flowage (TFF) gathered by the Wisconsin Citizen Lake Monitoring Program. The results of the TFF monitoring are being provided to you pursuant to the 2008 Water Quality Certification for Big Falls Hydro and the Federal Energy Regulatory Commission's subsequent order amending the Big Falls license to include the Turtle-Flambeau Flowage.

Please provide me with any comments that you might have by January 5, 2012. Should you have any questions concerning this report, feel free to contact me by telephone at (715) 737-1353 or by electronic mail at matthew.j.miller@xcelenergy.com.

Sincerely,

Matthew J. Miller

nestiten J. mills

Hydro Licensing Specialist

Enclosure: 2011 Water Quality Monitoring Report

c: Nick Utrup - USFWS

Project Files

1414 West Hamilton Avenue P.O. Box 8 Eau Claire, WI 54702-0008

November 29, 2011

Mr. Nick Utrup U.S. Fish & Wildlife Service 2661 Scott Tower Drive New Franken, WI 54229-9565

Subject:

2011 Water Quality Monitoring Report For Big Falls Flowage (P-2390-01),

Thornapple Flowage (P-2475) And Turtle-Flambeau Flowage (P-2390-02).

Dear Mr. Utrup:

Enclosed are the results of the water quality sampling for Big Falls and Thornapple flowages that Northern States Power Company – Wisconsin (NSPW) conducted during the 2011 field season. The samples were taken after ice-out and in late July and August. The samples were acquired from the deepest point of the reservoirs immediately upstream from the boat restraining barriers. The results are summarized for the past eight years and while there appears to be some variability in the parameters analyzed, for the most part, the results have been relatively consistent. The data collected in 2011 is consistent with data from the previous years' sampling.

Also included in the report are the water quality sampling results for the Turtle-Flambeau Flowage (TFF) gathered by the Wisconsin Citizen Lake Monitoring Program. The results of the TFF monitoring are being provided to you pursuant to the 2008 Water Quality Certification for Big Falls Hydro and the Federal Energy Regulatory Commission's subsequent order amending the Big Falls license to include the Turtle-Flambeau Flowage.

Please provide me with any comments that you might have by January 5, 2012. Should you have any questions concerning this report, feel free to contact me by telephone at (715) 737-1353 or by electronic mail at matthew.j.miller@xcelenergy.com.

Sincerely,

Matthew J. Miller

matthw J. Mille

Hydro Licensing Specialist

Enclosure: 2011 Water Quality Monitoring Report

c: Jeff Scheirer - WDNR

Project Files

20120119-5098 FERC PDF (Unofficial) 1/19/2012 11:12:39 AM
Document Content(s)
2011 Water Quality Report.PDF1-70