Wisconsin Department of Natural Resources
Bureau of Watershed Management (WT/3)
101 S. Webster Street
PO Box 7921
Madison, WI 53707-7921
dnr.wi.gov

Final Report

Urban Nonpoint Source \& Storm Water Construction \& Targeted Runoff Management Small-scale Urban TMDL Grant Program
Form 3400-189U (03/16)
Page 1 of 2

NOTICE: This document is required under s. 281.65 \& s. 281.66, Wis. Stats., and chs. NR 153, 154, and 155. Wis. Adm. Code. A final project report must be submitted as part of the final reimbursement request. Personally identifiable information contained in this form will be used for determining reimbursement eligibility in the Urban Nonpoint Source \& Storm Water and Targeted Runoff Management Grant Programs and will not be used for any other purpose.

INSTRUCTIONS: Send the completed, electronic copy of this form and all attachments to the Department of Natural Resources (DNR) Region Nonpoint Source Coordinator. Please read all instructions prior to completion.

For a project with multiple site locations, an aerial photo map is attached with each site location labeled.

Additional Project Information

Narrative space will expand to fit.

Wisconsin Department of Natural Resources
Bureau of Watershed Management (WT/3)
101 S. Webster Street
PO Box 7921
Madison, WI 53707-7921
dnr.wi.gov

Final Report
Urban Nonpoint Source \& Storm Water Construction \&
Targeted Runoff Management Small-scale Urban TMDL Grant Program
Form 3400-189U (03/16)
Page 2 of 2

Grantee Certification

A responsible government official (authorized signatory) must authorize and date the final report form and submit it electronically to the DNR Regional Nonpoint Source Coordinator.
I certify that, to the best of my knowledge, the project is complete and the information contained in this final report and attachments is correct and true.

Name of Authorized Government Official	Title of Authorized Government Official John W. Sundelius, P.E., M.P.A.	Date
Director of Public Works/City Engineer	$12 / 12 / 2016$	

For DNR Use Only

Received complete reports with all attachments
Practices implemented were consistent with the grant agreement.
Comments about this project:
Longitude is -88.2299

| Name of Nonpoint Source Coordinator | Date |
| :--- | :--- | :--- |
| Erin Hanson | $12 / 27 / 2016$ |

Send the Final Report and attachments to the Community Financial Assistance Grants Manager and to the Runoff Management Grants Coordinator. Keep a printed copy for the Region file.

01/13/16

06/10/16

Post Construction Site Photos

Kavanaugh Pond - InputData.txt

Data file name: $W: \backslash$ PROJECTS $\backslash K 0006 \backslash 940668 \backslash 08$ Design\SLAMM $\backslash K a v a n a u g h ~ P o n d . m d b ~$ Winslamm version 10.1.6
Rain file name: C:\WinSLAMM Files \Rain Files \backslash WisReg - Green Bay WI 1969.RAN
 Runoff Coefficient file name: c: \WinsLAMM Files ${ }^{\text {WI_SLO6 }}$ Dec06.rsvx Residential Street Delivery file name: c: \WinSLAMM Files $\backslash W I \quad$ Res and other Urban Dec06.std
Institutional Street Delivery file name: $\mathrm{C}: \backslash \mathrm{WinSLAMM}$ Files $\backslash W I _$Com Inst Indust Dec06.std
Commercial street Delivery file name: C:\WinsLAMM files $\backslash W I=C o m ~ I n s t ~ I n d u s t ~$
Dec06.std
Industrial street Delivery file name: $\mathrm{c}: \backslash \mathrm{WinSLAMM}$ Files $\backslash W I _$Com Inst Indust Dec06.std
 Dec06.std
Freeway Street Delivery file name: C: \WinSLAMM Files \backslash Freeway Dec06.std
Apply Street Delivery files to Adjust the After Event Load Street Dirt Mass Balance:
False
Pollutant Relative Concentration file name: C:\WinSLAMM Files ${ }^{\text {WI_GEOO3.ppdx }}$
Cost Data file name:
Seed for random number generator: -42
Study period starting date: 01/02/69 Study period ending date: 12/28/69
Start of Winter Season: 11/25
Date: 07-21-2015
Site information:

End of Winter Season: 03/29
Time: 14:27:33

LU\# 1 - Residential: Medium Density Res. No Alleys Total area (ac): 14.384

3 - Roofs 3:	0.647 ac	Pitched	Connected	Connected
8 - Roofs 8:	1.510 ac	Pitched	Disconnected	Normal clayey

Medium/High Density No Alleys
13 - Paved Parking 1: 0.029 ac . Connected Connected
25 - Driveways 1: 0.806 ac . Connected Connected
28 - Driveways 4: 0.273 ac . Disconnected Normal Clayey Medium/High
Density No Alleys 31 - sidewalks 1: $\begin{array}{lll}0.158 ~ a c . & \begin{array}{l}\text { Connected } \\ \text { Disconnected }\end{array} \begin{array}{c}\text { Connected } \\ \text { Normal Clayey }\end{array} \text { Medium/High }\end{array}$
Density No Alleys
37 - Streets 1: 0.532 ac . Smooth Street Length $=0.28768$ curb-mi
Street width (assuming two curb-mi per street mile) $=30.525 \mathrm{ft}$ Default St. Dirt Accum. Annual winter Load $=2500$ 1bs 38 -- Streets 2: 1.093 ac . Intermediate Street Length $=0.57536$ curb-mi street width (assuming two curb-mi per street mile) $=31.35 \mathrm{ft}$ Default St. Dirt Accum. Annual winter Load $=2500 \mathrm{lbs}$ 39 - Streets 3: 0.216 ac . Rough Street Length $=0.115072$ curb-mi
Street width (assuming two curb-mi per street mile) $=30.9375 \mathrm{ft}$
Default St. Dirt Accum. Annual winter Load $=2750$ 1bs
47 - Large Landscaped Areas 3: 0.029 ac . Normal Clayey
53 - Smal1 Landscaped Areas 3: 8.271 ac. Normal Clayey
59 - Undeveloped Areas $3: 0.058 \mathrm{ac}$. Normal Clayey
69 - Isolated Areas: 0.029 ac . Normal Clayey
73 - Other Pervious Areas 3: 0.575 ac . Normal clayey

LU\# 2 - Industrial: Light Industria1 Total area (ac): 4.625
1-Roofs 1: 0.949 ac . Flat Connected connected
3-Roofs 3: 0.119 ac . Pitched Connected Connected 7 - Roofs 7: 0.105 ac . Flat Disconnected Normal Clayey Low Density 13 - Paved Parking 1: 1.523 ac . Connected Connected 22 - Unpaved Parking 4: 0.293 ac . Disconnected Normal Clayey Low
Density
25 - priveways 1: 0.118 ac. Connected Connected
31 - Sidewalks 1: 0.059 ac . Connected Connected
37 - Streets 1: 0.085 ac . Smooth Street Length $=0.0393125$ curb-mi
Page 1

Kavanaugh Pond - InputData.txt
Street width (assuming two curb-mi per street mile) $=35.71765 \mathrm{ft}$
Default St. Dirt Accum. Annual winter Load $=2500$ 1bs
38 - Streets 2: 0.401 ac . Intermediate street Length $=0.189625$ curb-mi
Street width (assuming two curb-mi per street mile) $=34.93171 \mathrm{ft}$
Default st. Dirt Accum. Annual winter Load $=2500 \mathrm{lbs}$
39 - Streets 3: 0.015 ac . Rough Street Length $=6.937501 \mathrm{E}-03 \mathrm{curb}-\mathrm{mi}$
Street width (assuming two curb-mi per street mile) $=35.2 \mathrm{ft}$
Default st. Dirt Accum. Annual winter Load $=2750$ 1bs 47 - Large Landscaped Areas 3: 0.162 ac. Normal Clayey Low Density 53 - Sma11 Landscaped Areas 3: 0.456 ac . Normal clayey Low Density 59 - Undeveloped Areas 3: 0.201 ac. Norma1 Clayey Low Density 73 - Other Pervious Areas 3: 0.128 ac. Normal Clayey Low Density 80 - Other Part Con Imp Areas 3: 0.010 ac . Disconnected Normal Clayey Low Density

LU\# 3 - Other Urban: Grass-Water Total area (ac): 4.147 51 - Small Landscaped Areas 1: 2.370 ac. Normal Clayey Low Density 70 - Water Body Areas: 1.777 ac. Low Density

Lu\# 4 - other Urban: Parks Total area (ac): 2.018 1-Roofs 1: 0.002 ac . Flat connected Connected 3-Roofs 3: 0.002 ac . Pitched Connected Connected 8 - Roofs 8: 0.005 ac . Pitched Disconnected Normal clayey Low
Density 13 - Paved Parking 1: 0.085 ac. Connected Connected 22 - Unpaved Parking 4: 0.004 ac. Disconnected Normal Clayey Low
Density
25 - Driveways 1: 0.024 ac . Connected Connected 31 - Sidewalks 1: 0.010 ac . Connected Connected 37 - Streets 1: 0.020 ac . Smooth Street Length $=0.0125116$ curb-mi
Street width (assuming two curb-mi per street mile) $=26.6129 \mathrm{ft}$ Default St. Dirt Accum. Annual winter Load $=2500$ 1bs 38 - Streets 2: 0.046 ac . Intermediate Street Length $=0.0278484$ curb-mi
Street width (assuming two curb-mi per street mile) $=27.1413 \mathrm{ft}$
Default St. Dirt Accum. Annual winter Load $=2500$ 1bs 47 - Large Landscaped Areas 3: 1.573 ac . Normal Clayey Low Density 53 - Sma11 Landscaped Areas 3: 0.017 ac. Normal Clayey 63 - Paved Playgrounds 1: 0.018 ac. Connected connected 66 - Paved Playgrounds 4: 0.018 ac. Disconnected Normal Clayey Low
Density
69 - Isolated Areas: 0.143 ac . Low Density 80 - Other Part Con Imp Areas 3: 0.050 ac. Disconnected Normal Clayey Low Density

LU\# 5 - Residential: Low Density Residential Total area (ac): 12.400 3 - Roofs 3: $0.236 \mathrm{ac} . \quad$ Pitched Connected Connected 8 - Roofs 8: 0.756 ac . Pitched Disconnected Normal Clayey Low
Density
13 - Paved Parking 1: 0.012 ac . Connected Connected 25 - Driveways 1: 0.397 ac Connected Connected 28 - Driveways 4: 0.161 ac . Disconnected Normal Clayey Low Density 31 - Sidewalks 1: $0.043 \mathrm{ac} . \quad$ Connected Connected 34 - Sidewalks 4: 0.043 ac . Disconnected Normal Clayey Low pensity 37 - Streets 1: 0.273 ac . Smooth Street Length $=0.1736$ curb-mi
Street width (assuming two curb-mi per street mile) $=25.92857 \mathrm{ft}$
Default St. Dirt Accum. Annual winter Load $=2500$ 1bs 38 - streets 2: 0.521 ac . Intermediate Street Length $=0.3348$ curb-mi
Street Width (assuming two curb-mi per street mile) $=25.66667 \mathrm{ft}$
Default St. Dirt Accum. Annual winter Load $=2500$ 1bs 39 - Streets 3: 0.074 ac. Rough Street Length $=0.0496$ curb-mi Street Page 2

```
                                    Kavanaugh Pond - InputData.txt
Width (assuming two curb-mi per street mile) = 24.75 ft
    Default St. Dirt Accum. Annual winter Load = 2750 1bs
    53 - Smal1 Landscaped Areas 3: 9.275 ac. Normal Clayey
    59 - Undeveloped Areas 3: 0.546 ac. Normal Clayey
    69 - Isolated Areas: 0.025 ac. Normal Clayey
    73 - Other Pervious Areas 3: 0.025 ac. Normal Clayey
    80 - Other Part Con Imp Areas 3: 0.012 ac. Disconnected Normal Clayey
Low Density
```

```
LU# 6 - Residential: Suburban Residential
```

Total area (ac): 3.143
8 - Roofs 8: 0.082 ac . Pitched Disconnected Normal Clayey Low
Density
16 - Paved Parking 4: 0.003 ac . Disconnected Normal Clayey Low
Density
25 - Driveways 1: 0.050 ac. Connected Connected
28 - Driveways 4: 0.038 ac . Disconnected Normal clayey Low Density
34 - Sidewalks 4: 0.003 ac . Disconnected Normal Clayey Low Density
37 - Streets 1: 0.022 ac . Smooth Street Length $=0.012572 \mathrm{curb}-\mathrm{mi}$
street width (assuming two curb-mi per street mile) $=28.875 \mathrm{ft}$
Default St. Dirt Accum. Annual winter Load $=2500$ 1bs
38 - Streets 2: 0.104 ac . Intermediate Street Length $=6.600299 \mathrm{E}-02$
curb-mi Street width (assuming two curb-mi per street mile) $=25.92857 \mathrm{ft}$
Default St. Dirt Accum. Annual winter Load $=2500$ 1bs
53 - Smali Landscaped Areas 3: 2.665 ac . Normal Clayey
59 - Undeveloped Areas 3: 0.173 ac . Normal Clayey
69 - Isolated Areas: 0.003 ac. Normal Clayey
LU\# 7 - Freeway: Rural Road ADT100 Total area (ac): 0.473
1 - Paved Lane/Shlder Area 1: 0.173 ac . Fair/Mod slope C\&G Freeway
Length $=0.0650375 \mathrm{mi}$ Freeway width (assuming two curb-mi per freeway mile) =
44.004 ft
$A D T=100$ veh/day Default Initial st. Dirt Loading
21 - Large Turf Areas 3: 0.229 ac . Normal Clayey
28 - Other Direct Con Imp Areas: 0.071 ac. Connected Connected
LU\# 8 - Freeway: Highway Rural 2 Lane 100 ROW ADT6000 Total area (ac): 0.654
1 - Paved Lane/Shlder Area 1: 0.235 ac . Fair/Mod sTope C\&G Freeway
Length $=0.053955 \mathrm{mi}$ Freeway width (assuming two curb-mi per freeway mile) $=72$
ft
ADT $=6000$ veh/day Default Initial St. Dirt Loading
21 - Large Turf Areas 3: 0.314 ac. Normal Clayey
28 - Other Direct Con Imp Areas: 0.105 ac . Connected Connected

Control Practice 1: Wet Detention Pond CP\# 1 (DS) - DS Wet Pond \# 1 Particle Size Distribution file name: Not needed - calculated by program Initial stage elevation (ft): 8.75 Peak to Average Flow Ratio: 3.8 Maximum flow allowed into pond (cfs) : No maximum value entered outlet Characteristics:

Outlet type: sharp crested weir

1. Sharp crested weir length (ft): 7
2. Sharp crested weir height from invert: 4.5
3. Sharp crested weir invert elevation above datum (ft):
10.5
outlet type: orifice 1
4. Orifice diameter (ft): 0.5
5. Number of orifices: 1 Page 3

Kavanaugh Pond - output Summary.txt
SLAMM for windows version 10.1.6
(c) Copyright Robert Pitt and John Voorhees 2012

A17 Rights Reserved
Data file name: $w: \backslash P R O J E C T S \backslash K 0006 \backslash 940668 \backslash 08$ Design\SLAMM\Kavanaugh Pond.mdb
Data file description:
Rain file name: C: \WinsLAMM Files \Rain Files \backslash WisReg - Green Bay WI 1969. RAN
Particulate solids Concentration file name: C: \WinsLAMM Files $\backslash \mathrm{V} 10.1$ WI_AVG01.pscx
Runoff Coefficient file name: c: \WinSLAMM Files $\backslash W I _S L 06$ Dec06.rsvx
Residential street Delivery file name: C: \WinSLAMM Files\WI_Res and Other urban Dec06.std
Institutional street Delivery file name: $C: \backslash$ WinsLAMM files $\backslash W I _C o m ~ I n s t ~ I n d u s t ~$ Dec06.std
Commercial street Delivery file name: C:\WinSLAMM Files $\backslash W I$ _Com Inst Indust Dec06.std
Industrial street Delivery file name: C:\WinSLAMM Files $\backslash W I _C o m ~ I n s t ~ I n d u s t ~$ Dec06.std Other Urban Street Delivery file name: C:\WinSLAMM Files C WI_Res and other Urban Dec06.std
Freeway Street Delivery file name: C: \WinsLAMM Files \backslash Freeway Dec06.std
Pollutant Relative Concentration file name: C: WinSLAMM Files\WI_GEO03.ppdx
Start of Winter Season: 11/25 End of Winter Season: 03/29
Mode1 Run Start Date: 01/02/69 Model Run End Date: 12/28/69
Date of run: 07-21-2015 Time of run: 14:28:32
Total Area Modeled (acres) : 41.844
Years in Model Run: 0.99

