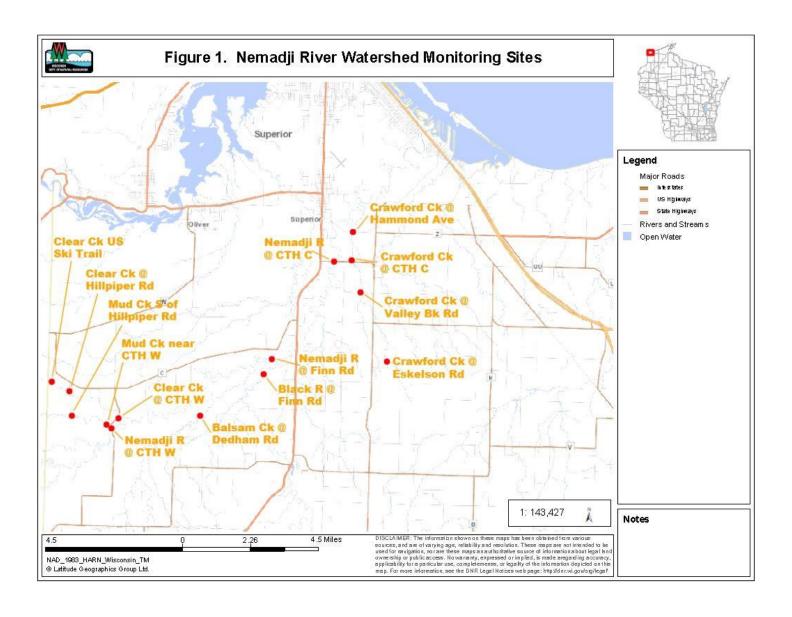
Nemadji River and Tributaries Water Quality Assessment

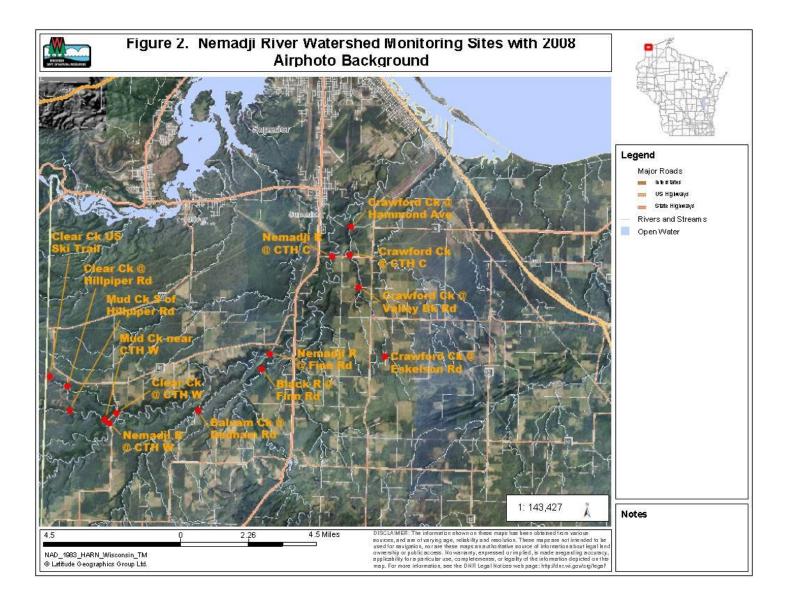
Craig Roesler – DNR, Spooner (3/24/14)

Introduction

Monitoring of the Nemadji River and several of its tributaries was conducted during 2008 to 2010 by Superior office staff to assess water quality conditions, and to help determine if these streams should be placed on Wisconsin's 303d list of impaired waters. Sites monitored are shown in figures 1 and 2. Streams monitored were the Nemadji River, Crawford Creek, Black River, Balsam Creek, Clear Creek, and Mud Creek.

The Wisconsin portion of the Nemadji River watershed is located in Douglas County in the northwest corner of the state. The upstream half of the watershed is located in Minnesota. The Nemadji River flows into Superior Bay on the south side of the City of Superior.


Crawford Creek was previously placed on the 303d list in 1998. The impairment identified is chronic aquatic toxicity. Pollutants identified at that time were creosote and PAH's. Dioxins are also present. Koppers Industries operated a wood treatment facility that discharged to the creek and contaminated sediments in the creek and its floodplain. The Department is working with the responsible party to better define the degree and extent of sediment contamination and to work toward the clean-up of the creek and flood plain soils.


Erodible clay soils interspersed with sands and silts are present in the Crawford Creek watershed. Flows are "flashy" with high peak flows during runoff events, and low base flows between runoff events. Eroding stream banks, high turbidity, high suspended solids concentrations, and fine sediment bed load are other concerns for this stream.

Much of the Nemadji River watershed also has erodible clay soils interspersed with sands and silts. Erosion of stream banks and drainageways to streams provides most of the sediment load to the Nemadji River. The river carries a large load of both suspended sediment and bed load sediment. The Nemadji River is estimated to deliver 127,000 tons of sediment per year to Superior Bay and Lake Superior. The Army Corps of Engineers removes about 33,000 tons of sediment (mostly sand) per year near the mouth of the river to maintain the navigation channel. The river has high turbidity and high suspended solids concentrations.

The Nemadji River was added to the 303d list in 2010. The high sediment load was judged to exceed the narrative water quality standard found in NR102.04 (a) of the Wisconsin Administrative Code, which states "Substances that will cause objectionable deposits on the shore or in the bed of a body of water, shall not be present in such amounts as to interfere with public rights in waters of the state." Minnesota placed the Nemadji River on its 303d list in 2004 due to exceedences of their turbidity standard (25 ntu), and began developing a TMDL in 2008. Wisconsin's listing in 2010 was based in large part on Minnesota's listing since conditions in the Minnesota and Wisconsin reaches are similar, although Wisconsin does not have a standard for turbidity or total suspended solids. The median turbidity measured in the Nemadji River at CTH C (Wisconsin) is 27.5 ntu (2006-2012), which exceeds Minnesota's turbidity standard. Including the Nemadji River on Wisconsin's 303d list would allow the two states to work together to develop a comprehensive TMDL that would benefit the entire watershed.

The other consideration that contributed to the listing decision was that creosote and PAH's from Crawford Creek are a continuing source of pollutants to the Nemadji River.

There are four point source discharges going directly or indirectly to the Nemadji River:

- Burlington Northern R.R. Co.; a taconite loading and storage facility (direct)
- Lakehead Pipeline Co.; oil storage tanks (direct)
- Superior Sewage Disposal System; municipal wastewater (direct)
- Four Corners School; school wastewater (indirect via unnamed tributary and Copper Creek to the Nemadji River)

The three direct discharges all enter the Nemadji River downstream of the Nemadji River monitoring site at CTH C. Monitoring the Nemadji River downstream of CTH C is difficult due to lack of access points and periodic backflows caused by Lake Superior seiches. The Four Corners School discharge is very small and located far upstream.

The data collected from this monitoring project does not support 303d listing of any of the other streams monitored (see discussion on p. 18).

Methods

One or more sites were monitored on each of the six streams:

- Nemadji River 3 sites
- Crawford Creek 3 sites
- Black River 1 site
- Balsam Creek 1 site
- Clear Creek 3 sites
- Mud Creek 2 sites

Monitoring was done for fish and macroinvertebrate communities, water chemistry, and stream habitat. The range of monitoring at each site varied (table 1).

Fish communities were assessed by electrofishing with a single anode backpack shocker on small stream sites, and a double anode tow barge stream shocker on larger stream sites. As many fish as possible were captured with a single upstream pass. Station lengths were 35 times the mean stream width, with a minimum length of 100 meters. Fish captured were counted and identified to species. Fish community data was used to determine the natural community of the stream, and to calculate potentially appropriate biotic indices.

Macroinvertebrate communities were assessed by collecting kick samples from riffles, using a 500 um mesh D-frame net. Samples were preserved in 85% ethanol and were processed by UW – Stevens Point's Aquatic Biomonitoring Lab. Macroinvertebrates were counted and identified to the lowest possible taxa. Biotic indices and other statistics were generated.

Water samples were collected and field parameters were measured following standard DNR protocols. Water samples were preserved, as needed, and shipped on ice to the Wisconsin State Lab of Hygiene for analysis. Field parameters measured were:

- Temperature
- pH
- Dissolved Oxygen
- Conductivity
- Transparency (using a transparency tube)

Site						Types of Monitoring	Done	
Nemadji River	Swims ID	WBIC	Latitude	Longitude	Water	<u>Macroinvertebrates</u>	Fish	Habita
Nemadji R @ CTH C	163003	2835300	46.63327	-92.09419	x	8-	300	
Nemadji R @ Finn Rd	163233	2835300	46.58611	-92.13708	x		x	x
Nemadji R @ CTH W	163047	2835300	46.55017	-92.24740	x	x	x	x
Crawford Creek								
Crawford Ck @ Hammond Ave	10015464	2835500	46.64780	-92.08208	x		X	x
Crawford Ck @ CTH C	10031796	2835500	46.63416	-92.08542		×		
Crawford Ck @ Vally Brook Rd	10032010	2835500	46.61938	-92.07584		x		
Crawford Ck @ Eskelson Rd	10031826	2835800	46.58692	-92.05675		x	x	x
Black River								
Black R @ Finn Rd	10030272	2836900	46.57887	-92.14029		x	X	x
Balsam Creek								
Balsam Ck @ Dedham Rd	10007599	2841400	46.55773	-92.18507	x	X	X	x
Clear Creek								
Clear Ck @ CTH W	10030271	2842800	46.55563	92.24165	x	x	x	x
Clear Ck @ Hillpiper Rd	10031879	2842800	46.56770	-92.27605		×		x
Clear Ck US Ski Trail		2842800	46.57161	-92.28800	x	X	X	X
Mud Creek								
Mud Ck near CTH W	10030270	2843000	46.55028	-92.24752	x	x	x	x
Mud Ck South of Hillpiper Rd	10031880	2843000	46.55594	-92.27283		x		

Lab parameters were:

- Total Phosphorus
- Ammonia N
- Total Kjeldahl N
- Nitrate plus Nitrite N
- Total Suspended Solids
- Turbidity
- Chlorophyll a
- Dissolved phosphorus

Findings and Discussion

Fish Communities

Complete fish survey results are contained in appendix A. Fish survey IBI's (index of biotic integrity) are summarized in table 2.

Fish community indices of biotic integrity (IBI) ranged from excellent to fair. Sites on the Nemadji River, Black River, Balsam Creek, and Mud Creek had IBI ratings of excellent. Clear Creek had IBI ratings of good.

The Crawford Creek sites had the lowest IBI ratings of fair. The percent of fish that are tolerant of environmental disturbances exceeded 75% at these sites (92-100%; table 2). Seventy-five percent tolerant fish is the maximum typically expected in a Cool-Cold Headwater stream. The high percentages of intolerant fish at the Crawford Creek sites probably reflects the influence of erodible clay soils in a small watershed with moderate development, limited fish habitat, and very low base flows.

The stream sites varied in size and natural stream community types (table 2-2), from Cool-Cold Headwaters to Warm Mainstems. Clear Creek upstream of the ski trail was the only site where a coldwater species was found (mottled sculpin; appendix A).

Macroinvertebrate Communities

Macroinvertebrate IBI (MIBI) ratings were excellent or good at all but one site (table 3). The MIBI for Crawford Creek at CTH C was rated as fair. MIBI ratings were generally similar to the IBI's for the fish communities. One exception was the Crawford Creek site at Eskelson Road, where the MIBI was excellent, while the fish IBI was only fair.

Hilsenhoff biotic index (HBI) ratings ranged from good to excellent. HBI's are mostly influenced by organic matter loading and the resultant dissolved oxygen concentrations. The HBI's suggest dissolved oxygen stress to macroinvertebrates is minimal.

		Small	Small	Cool -	Cool -	Warmwater	Warmwater		
		Stream	Stream	Warm	Warm	L. Superior	L. Superior	%	> 25
Stream Site	Date	IBI	IBI Rating	IBI	IBI Rating	<u>IBI</u>	IBI Rating	Tolerant	Fish?
Nemadji R @ Finn Rd	06/31/2008					80	excellent	30	yes
Nemadji R @ CTH W	09/11/2009					90	excellent	21	yes
Crawford Ck @ Hammond Ave	07/07/2006	40	fair					92	no, 23
Crawford Ck @ Eskelson Rd	08/23/2010	40	fair					100	yes
Black R @ Finn Rd	09/11/2009			80	excellent			30	yes
Balsam Ck @ Dedham Rd	09/21/2010			90	excellent			38	yes
Clear Ck @ CTH W	08/05/2009	60	fair	60	good			59	yes
Clear Ck US Ski Trail	08/24/2010	90	good					77	yes
Mud Ck near CTH W	09/01/2009	90	good	100	excellent			35	yes

Stream Site	Natural Stream Community*
Nemadji R @ Finn Rd	Warm Mainstem
Nemadji R @ CTH W	Warm Mainstem
Crawford Ck @ Hammond Ave	Cool-Cold or Cool-Warm Headwater
Crawford Ck @ Eskelson Rd	Cool-Cold or Cool-Warm Headwater
Black R @ Finn Rd	Cool-Warm Mainstem
Balsam Ck @ Dedham Rd	Cool-Warm Mainstem
Clear Ck @ CTH W	Cool-Warm Mainstem
Clear Ck US Ski Trail	Cool-Cold or Cool Warm Headwater
Mud Ck near CTH W	Cool-Warm Mainstem

Station						Species Richness	% EPT
No.	Date	MIBI	MIBI Rating	HBI	HBI Rating	(No. species)	(genera/individuals
163047	11/05/2009	8.64	excellent	3.83	very good	47	43/63
10031796	10/19/2010	3.84	fair	4.12	very good	20	30/55
10032010	11/04/2010	6.03	good	5.36	good	28	18/33
10031826	10/19/2010	9.03	excellent	4.48	very good	25	40/73
10030272	11/12/2009	9.55	excellent	4.39	very good	46	41/65
10007599	11/12/2009	8.27	excellent	3.23	excellent	40	49/79
10030271	11/05/2009	5.88	good	3.27	excellent	27	44/62
10031879	10/07/2010	9.27	excellent	3.62	very good	44	39/70
10031940	10/25/2010	8.58	excellent	3.31	excellent	25	58/72
10030270	11/12/2009	5.13	good	2.28	excellent	28	46/84
	10/25/2010	5.25	good	2.66	excellent	23	57/89
10031880	10/07/2010	6.61	good	3.69	very good	37	40/60
x of biotic in	ntegrity						
, Plecopter	a, Trichoptera	3					
	Station No. 163047 10031796 10032010 10031826 10030272 10007599 10030271 10031879 10031940 10030270 10031880	No. Date 163047 11/05/2009 10031796 10/19/2010 10032010 11/04/2010 10031826 10/19/2010 10030272 11/12/2009 10030271 11/05/2009 10031879 10/07/2010 10030270 11/12/2009 10030270 11/12/2009 10030270 10/25/2010 10031880 10/07/2010 x of biotic integrity	No. Date MIBI 163047 11/05/2009 8.64 10031796 10/19/2010 3.84 10032010 11/04/2010 6.03 10031826 10/19/2010 9.03 10030272 11/12/2009 9.55 10030271 11/05/2009 5.88 10031879 10/07/2010 9.27 10031940 10/25/2010 8.58 10030270 11/12/2009 5.13 10/25/2010 5.25 10031880 10/07/2010 6.61	No. Date MIBI MIBI Rating 163047 11/05/2009 8.64 excellent 10031796 10/19/2010 3.84 fair 10032010 11/04/2010 6.03 good 10031826 10/19/2010 9.03 excellent 10030272 11/12/2009 9.55 excellent 10007599 11/12/2009 8.27 excellent 10030271 11/05/2009 5.88 good 10031879 10/07/2010 9.27 excellent 10030270 11/12/2009 5.13 good 10/25/2010 5.25 good 10031880 10/07/2010 6.61 good	No. Date MIBI MIBI Rating HBI	No. Date MIBI MIBI Rating HBI HBI Rating 163047 11/05/2009 8.64 excellent 3.83 very good 10031796 10/19/2010 3.84 fair 4.12 very good 10032010 11/04/2010 6.03 good 5.36 good 10031826 10/19/2010 9.03 excellent 4.48 very good 10030272 11/12/2009 9.55 excellent 4.39 very good 10007599 11/12/2009 8.27 excellent 3.23 excellent 10031879 10/07/2010 9.27 excellent 3.62 very good 10031940 10/25/2010 8.58 excellent 3.31 excellent 10030270 11/12/2009 5.13 good 2.28 excellent 10031880 10/07/2010 6.61 good 3.69 very good	Station No. Date MIBI MIBI Rating HBI (No. species) HBI Rating (No. species) 163047 11/05/2009 8.64 excellent 3.83 very good 47 10031796 10/19/2010 3.84 fair 4.12 very good 20 10032010 11/04/2010 6.03 good 5.36 good 28 10031826 10/19/2010 9.03 excellent 4.48 very good 25 10030272 11/12/2009 9.55 excellent 4.39 very good 46 10007599 11/12/2009 8.27 excellent 3.23 excellent 40 10030271 11/05/2009 5.88 good 3.27 excellent 27 10031879 10/07/2010 9.27 excellent 3.62 very good 44 10030270 11/12/2009 5.13 good 2.28 excellent 28 10031880 10/07/2010 6.61 good 3.69 very good 37<

Water Chemistry

Water chemistry data for the Nemadji River and sampled tributaries is shown in table 4. Sampling frequency and duration varied by site making comparisons between sites tentative. No water samples were collected from the Black River.

Only the two Nemadji River sites had more than one sample collected for nutrients. Median concentrations of total phosphorus (TP) and total nitrogen (TN)(total Kjeldahl nitrogen plus nitrate and nitrite nitrogen) were low to moderate at these sites (table 4-2). TP concentration medians ranged from 30-46 ug/l. The percent of total phosphorus present in the dissolved form was low, with a median concentration of 3 ug/l. TN concentration medians ranged from 0.59-0.63 mg/l. More than 92% of the total nitrogen was present in an organic form.

The Nemadji River sites had low concentrations of ammonia and nitrate plus nitrite. Ammonia concentration medians were less than 0.015~mg/l. Nitrate plus nitrite concentration medians ranged from 0.029-0.038~mg/l.

All sites had fairly high total suspended solids (TSS) concentrations, fairly high turbidity, and fairly low transparency. The three Nemadji River sites and the Clear Creek site had the lowest turbidity medians (19-35 ntu), and the highest transparency medians (25-42 cm). The Mud Creek site had the highest turbidity median (57 ntu), and the lowest transparency median (17 cm).

Daytime dissolved oxygen (D.O.) concentrations were generally good. Only two concentrations were less than 5 mg/l. The Nemadji River at CTH C had a D.O. concentration of 4.5 mg/l on one date. Crawford Creek at Hammond Avenue had a D.O. concentration of 2.4 mg/l on one date.

Median conductivities ranged from 195 – 520 umhos/cm. Conductivity was highest in Clear Creek (median 520 umhos/cm), probably as a result of more groundwater discharge to this stream. pH median values ranged from 7.5 to 8.0

TABLE 4. NE							-							
Nemadji R. @	стн с		Station	163004										
				Lab par	ameter	5					Field para	meters		
	NH3	NO3+2	TKN	TP	TSS	Turbidity	Chl. A	DP	Temp	D.O.	D.O.sat.	рН	Cond.	Transp
Date	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(mg/l)	(NTU)	(ug/l)	(ug/l)	(C)	(mg/l)	(%)	(SU)	umhos/cm	(cm)
10/03/2006		ND		20	4	8.2	0.62	ND	12.2	8.5		7.8		
03/27/2007	0.09	0.172	1.13	234	162				0.1	4.5			83	7
04/25/2007	0.026	0.207	0.97	132	129				8	11.4			128	9
05/10/2007		0.031		47	17	27.5	2.54	6						
05/29/2007	ND	0.02	0.8	46	16				15.3	8.8		7.2		36.6
06/13/2007		ND	0.91	49	11		1.61	8						
06/27/2007	ND	0.036	0.624	38	17				23	9.8		7.9	255	30
07/16/2007		ND	0.51	22	8		1.81	ND						
07/24/2007	ND	0.031	0.41	40	18				24.3	7.6		7.8	292	23
08/30/2007	ND	ND	0.35	22	7			4	20.1	8.7		8		56
09/26/2007	ND	ND	0.61	54	31				14.1	10.3		7.9	237	21
09/18/2008		0.031	0.99	56	12		1.47	9						
05/20/2009		ND	0.81	47*	20		0.73	3						
06/23/2009	ND	ND	0.62	34*	16	17.2			18.7	8.7	93	7.8	227	38
06/30/2009		0.028	0.5	30	9		1.66	2						
07/29/2009					25	37.3			20.8	9.2	102.8	8.1	230	27
08/20/2009					548	1070			14.6	8.4	82.4	7.6	133	1.5
09/14/2009					10	15			21.7	8.4	95.4	8	274	64
09/29/2009					3	8.3			10.9	11	99.8	7.9	315	107
10/07/2009					46	45.3			8.6	13.2	112.7	7.6	200	20.5
10/30/2009					68	89.2			6.4	12.3	99.6	7.3	148	12
08/26/2010		0.055	1.42	79	51		1.19	10	17.9	7.9		7.7		20
07/18/2012		0.073	0.57	139*	15			17						
08/20/2012		0.029	0.4	36*	6			2						
09/18/2012		ND	0.22	30*	4			ND						
10/22/2012		0.035	ND	22*	4			ND	8.6	12.1	104	8.3	185	80
11/15/2012		0.097	0.26	19	5			3						

Nemadji R. (CTH C	cont.)	Station	163004										
				Lab par	ameter	s					Field par	ameters		
	NH3	NO3+2	TKN	TP	TSS	Turbidity	Chl. A	DP	Temp	D.O.	D.O.sat.	pН	Cond.	Transp
	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(mg/l)	(NTU)	(ug/l)	(ug/l)	(C)	(mg/l)	(%)	(SU)	umhos/cm	(cm)
Range =	ND09	ND207	ND-1.42	19-234	3-548	8-1,070	0.6-2.5	ND-17		4.5-13.2		7.2-8.3	83-315	1.5-107
Median =	ND	0.029	0.62	46	16	27.5	1.54	3		8.8		7.8	227	25
May-Oct*														
TP range =				22-139										

Nemadji R. @	Finn Rd		Station	163234								
			Lab para	meters					Field p	aramet	ers	
	NH3	NO3+2	TKN	TP	TSS	Turbidity	Temp	D.O.	D.O.sat.	рН	Cond.	Transp
Date	(mg/l)	(mg/l)	(mg/l)	(ug/I)	(mg/l)	(NTU)	(C)	(mg/l)	(%)	(SU)	(umhos/cm)	(cm)
10/09/2007	0.029	0.06	2.24	292*	326		12.3	10.3		7.9	162	5
11/06/2007	ND	0.075	0.76	36	15		3.7	13.7		7.9	197	42
12/04/2007	0.049	0.182	0.55	33	8		0	15.8		7.8	271	53
01/03/2008	ND	0.206	0.45	30	6		0	15.1		7.7	251	60
02/06/2008	ND	0.272	0.15	25	7		0	15		7.6	304	47
03/05/2008	0.033	0.313	0.2	25	6		0.6	13.2		7.7	298	55
04/03/2008	0.081	0.281	0.64	90	28		0.6	15.2		7.8	181	20
05/07/2008	0.022	ND	0.85	93*	89		10.5	11.1		7.6	124	13
06/04/2008	0.017	ND	0.78	61*	12		11.8	10.3		7.8	197	30
07/09/2008	ND	ND	0.51	28*	9		25.6	7.8		7.9		50
08/11/2008	ND	ND	0.19	23*	4		21	8.7		8		66
09/10/2008	ND	ND	0.32	27*	6		15.4	10.2		8	274	55
06/23/2009	ND	ND	0.61	29	16	17	20.8	8.5	95.2	8	265	41
07/29/2009					21	34.6	20.6	9.6	106.5	8.1	238	29
08/20/2009					592	935	14.5	8.9	86.8	7.5	141	2.5
09/14/2009					7	11.4	21	8.7	99.8	7.9	232	65
09/29/2009					4	9.3	11.4	11.1	101.7	7.9	319	96
10/07/2009					48	54.8	8.4	13.7	116.9	7.7	227	18
10/30/2009					93	106	6.1	12.6	101.7	7.4	159	10
Range =	ND081	ND313	.15-2.24	23-292	4-592	9.3-935		7.8-15.8		7.4-8.1	124-319	2.5-66
Median =	ND	0.038	0.55	30	12	34.6		11.1		7.8	232	42
May-Oct*												
TP range =				23-292								

Nemadji R. @	CTH W		Station	163048								
			Lab par	ameter	5				Field p	aramet	ers	
	NH3	NO3+2	TKN	TP	TSS	Turbidity	Temp	D.O.	D.O.sat.	рН	Cond.	Transp
Date	(mg/l)	(mg/l)	(mg/l)	(ug/I)	(mg/l)	(NTU)	(C)	(mg/l)	(%)	(SU)	(umhos/cm)	(cm)
06/23/2009	ND	0.02	0.73	25	7	11.2	23.4	9.8	114.7	8.4	231	60.5
07/29/2009					11	26.8	20.3	10.8	119.4	8.3	223	40
08/20/2009					454	505	14.6	9.1	90.2	7.7	165	3
09/14/2009					5	11.5	20.8	9.3	104	8	255	78
09/29/2009					3	8.8	11.4	11	101.7	7.9	292	95
10/07/2009					28	46.2	8.3	12.9	110	7.5	210	22
10/30/2009							6.5	12.5	101.3	7.5	142	8
Range =					3-454	8.8-505		9.1-12.9		7.5-8.4	142-292	3-95
Median =					9	19.2		10.8		7.9	223	40
Crawford Ck.	@ Hamn	nond Ave		Station	100154	66						
	Lab						Field					
	NH3	NO3+2	TKN	TP	TSS	Turbidity	Temp	D.O.	D.O.sat.	рН	Cond.	Transp
Date	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(mg/l)	(NTU)	(C)	(mg/l)	(%)	(SU)	(umhos/cm)	(cm)
06/23/2009	ND	ND	1.25	106	23	35.6	14.7	6.9	68.6	7.3	337	21
07/29/2009					7	12	16.1	8.4	86	7.7	367	76
08/20/2009					81	152	15	8.4	84.3	7.7	170	7
09/14/2009					14	12.5	17.6	6.1	64.1	7.7	296	40
10/07/2009					5	8.6	8.6	2.4	20.7		392	83
10/30/2009					37	155	7.1	11.2	92.7	7.1	164	8.5
08/09/2010					39	100	20.2	7.8	85.5	7.1		13
Range =					5-81	8.6-155		2.4-11.2		7.1-7.7	164-392	7-83
Median =					23	35.6		7.8		7.5	316.5	21

Balsam Ck. @	Deadha	m Rd.		Station	100075	99						
			Lab par	ameter	5				Field p	aramet	ers	
	NH3	NO3+2	TKN	TP	TSS	Turbidity	Temp	D.O.	D.O.sat.	рН	Cond.	Transp
Date	(mg/l)	(mg/l)	(mg/l)	(ug/I)	(mg/l)	(NTU)	(C)	(mg/l)	(%)	(SU)	(umhos/cm)	(cm)
06/23/2009	ND	ND	0.57	42	21	46	22.4	8.9	102.8	8.3	206	17
07/29/2009					22	53.4	19.5	10.2	111.3	8.3	195	19.5
08/20/2009					222	228	14.6	9.7	95.6	7.7	97	5
09/14/2009					14	39.7	19.6	8.9	97.6	7.9	253	30
10/30/2009					65	138	7.1	12.2	100.4	7.4	123	9.5
08/09/2010					16	38.8	23.2	8.1	91.5	8		24
10/23/2010					10	35.3	9.3	7.8	68.3	7.7		25
Range =					10-222	35.3-228		7.8-12.2		7.4-8.3	97-253	5-30
Median =					21	46		8.9		7.9	195	19.5
Clear Ck. @ C	TH W		Station	100302	72							
		iii.	Lab par	ameter.	5	5 5			Field p	aramet	ers	
	NH3	NO3+2	TKN	TP	TSS	Turbidity	Temp	D.O.	D.O.sat.	рН	Cond.	Transp
<u>Date</u>	(mg/l)	(mg/l)	(mg/l)	(ug/I)	(mg/l)	(NTU)	(C)	(mg/l)	(%)	(SU)	(umhos/cm)	(cm)
06/23/2009	ND	ND	0.45	35	20	21.6	21	9.4	106	8.3	523	38
07/29/2009					23	30.7	18.1	11.3	119.7	8.2	517	35
08/20/2009					364	303	14.4	9.7	95	7.6	250	4
09/14/2009					9	16.2	18.2	10.2	107.1	7.7	566	55
09/29/2009					6	14.3	10.8	10.2	100.9	7.6	614	65
10/07/2009					30	41.4	8.3	13.4	114.4	7.8	530	25
10/30/2009					145	193	6.8	12.2	100.6	7.7	305	7
08/09/2010					10	21.5	22	9.1	104.3	8.4		34.5
08/16/2010					22	49.4	17.6	9.5	99.9	8.1	438	22
08/18/2010					1120	933	17.2	9.1	94.7	7.8	781	4.5
10/06/2010							9.3	7.9	68.5	8		55
10/25/2010					22	31.5	8.1	11.8	100.2	8.2	426	28

TABLE 4. NE	IVIADJI	KIVEK A	ND IKIE	UIAKI	SIKEA	INIS WAI	EK QU	ALITY IVI	UNITORI	NG DA	IA (CONT.)	
Clear Ck. @ C	TH W (co	nt.)	Station	100302	72							
			Lab para	ameter	5				Field p	aramet	ers	
	NH3	NO3+2	TKN	TP	TSS	Turbidity	Temp	D.O.	D.O.sat.	рН	Cond.	Transp
	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(mg/l)	(NTU)	(C)	(mg/l)	(%)	(SU)	(umhos/cm)	(cm)
Range =					6-1120	14.3-933		7.9-13.4		7.6-8.4	250-781	4-65
Median =					22	31.5		10.0		7.9	520	31.3
Clear Ck. US S	ki Trail		Station	100319	40							
	30		Lab para	ameter	5	75			Field p	aramet	ers	
	NH3	NO3+2	TKN	TP	TSS	Turbidity	Temp	D.O.	D.O.sat.	рН	Cond.	Transp
Date	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(mg/l)	(NTU)	(C)	(mg/l)	(%)	(SU)	(umhos/cm)	(cm)
10/25/2010					29	32.4	8.2	8.1	96.5		402	35

Mud Ck. @ C1	H W		Station	100302	71							
	Lab						Field					
	NH3	NO3+2	TKN	TP	TSS	Turbidity	Temp	D.O.	D.O.sat.	рН	Cond.	Transp
Date	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(mg/l)	(NTU)	(C)	(mg/I)	(%)	(SU)	(umhos/cm)	(cm)
06/23/2009	ND	ND	0.85	41	24	38.3	22.1	9.1	104.1	8.2	455	26
07/29/2009					29	91.6	19.1	10.1	109.3	8.1	355	15
08/20/2009					396	409	14.5	9.8	95.5	7.5	178	1.5
09/14/2009					19	27.4	18.9	7.9	84.2	7.8	466	46
09/29/2009					7	14.8	10.9	9	89.4	7.7	553	69
10/07/2009					24	54.5	8.7	12.6	108	7.8	420	18
10/30/2009					203	250	6.6	12.4	101.6	7.5	207	6
08/09/2010					5	12.6	23.6	8.6	101.6	8.3		61
08/16/2010					20	59.6	18.7	7.9	84.7	8	364	16
08/18/2010					140	191	18.4	8.7	91.7	7	310	5
10/06/2010					11	36.3	9.7	7.5	65.8	7.7		45
10/25/2010					46	60.9	7.8	10.6	97.9	8.1	353	15
Range =					7-396	12.6-409		7.5-12.6		7-8.3	178-466	1.5-69
Median =					24	57		9		8	360	17

	NH3	NO3+2	TKN	TP	TSS	Turbidity	Chl. A	DP	Transp.	pН	Cond.
	(mg/l)	(mg/l)	(mg/l)	(ug/l)	(mg/l)	(NTU)	(ug/I)	(ug/l)	(cm)	(SU)	(umhos/cm)
Nemadji R @ CTH C	<0.015	0.029	0.62	46	16	27.5	1.5	3	25	7.8	227
Nemadji R @ Finn Rd	<0.015	0.038	0.55	30	12	34.6			42	7.8	232
Nemadji R @ CTH W					9	19.2			40	7.9	223
Crawford Ck @ Hammond Ave					23	35.6			21	7.5	316
Balsam Ck @ Deadham Rd					21	46			19.5	7.9	195
Clear Ck @ CTH W					22	31.5			31.3	7.9	520
Mud Ck near CTH W					24	57			17	8.0	360

Conclusions

The sites monitored in Wisconsin's portion of the Nemadji River watershed are diverse, with natural stream communities ranging from Cool-Cold headwaters to Warm mainstems. Erodible clay soils interspersed with sands and silts dominate the drainage areas for most sites. Erosion of stream banks and drainageways are the dominant source of sediment loads. Common stream concerns in this area include:

- High peak flows resulting from rapid runoff from clay soils.
- Low base flows resulting from limited groundwater discharge.
- Scouring of stream bed, and bank erosion resulting from high peak flows.
- High bed loads of sand and silt, reducing the substrate quality for fish and macroinvertebrates. .
- High TSS and turbidity, and low transparency resulting from erosion of clay soils.

Most of the Black River watershed extends south of the red clay plain area and has soils dominated by stony and sandy loams, and organic wetland soils. Water quality is likely to be better in that stream, but water sampling was not done at the Black River monitoring site. Both the fish IBI and the macroinvertebrate IBI for this site were excellent.

The Nemadji River and Crawford Creek have already been placed on Wisconsin's 303d list of impaired waters, as discussed in the introduction section. The data collected during this project does not provide any further supporting information for having these streams on the list.

WISCALM guidance (2014) indicates at least two samples of one biological assemblage (fish or macroinvertebrates) collected in different calendar years and having "poor" ratings are required to list a stream as impaired. Neither the Nemadji River nor Crawford Creek had any poor ratings for fish IBI's or macroinvertebrate IBI's (table 5).

Total phosphorus (TP) concentrations can also be used toward listing a stream as impaired. Six monthly samples collected from May to October are needed for this assessment. The lower bound of the 90% confidence interval of the mean must exceed 75 ug/l to list a stream as impaired. Only two sites on the Nemadji River (CTH C and Finn Road) had the needed samples collected (table 5). At both sites the 75 ug/l TP threshold is not exceeded.

The data collected during this project for the other streams does not support 303d listing. No poor ratings for fish IBI's or macroinvertebrate IBI's were found. Sampling for TP concentrations was inadequate to determine if the 75 ug/l threshold is exceeded (table 5).

STREAM /SITE	SWIMS		ORUS AND IBI SUN		Small	Cool warm	Warmwate
STREAM /SITE			1				
STREAM /SITE				te .	Stream	Transitional	L. Superior
I	ID NO.	<u>Year</u>	May-Oct TP	MIBI	<u>IBI</u>	<u>IBI</u>	<u>IBI</u>
Nemadji R @ CTH C	163003	2006-12	lower 90% C.I.< 75ug/l	no sample	10	0	no survey
Nemadji R @ Finn Road	163233	2007-9	lower 90% C.I.< 75ug/l	no sample	3	20	excellent
Nemadji R @ CTH W	163047	2009	insufficient samples	excellent	good	excellent	
Crawford Ck @ Hammond Ave	10015464	2006-10	insufficient samples	no sample	fair	*	1
Crawford Ck @ CTH C	10031796	2010	no samples	fair	no survey		G.
Crawford Ck @ Vally Brook Rd	10032010	2010	no samples	good	no survey	22	up Th
Crawford Ck @ Eskelson Rd	10031826	2010	no samples	excellent	fair	99	
Black R @ Finn Road	10030272	2009	no samples	excellent	8	excellent	27
Balsam Ck @ Dedham Road	10007599	2009 2010	insufficient samples	excellent	% %	excellent	
Clear Ck @ CTH W	10030271	2009	insufficient samples	good	fair	good	÷
Clear Ck @ Hillpiper Rd	10031879	2010	no samples	excellent	no survey	no survey	<u> </u>
Clear Ck US Ski Trail	10031940	2010	insufficient samples	excellent	good		4.
Mud Ck near CTH W	10030270	2009 2010	insufficient samples	good good	good	excellent	
Mud Ck South of Hillpiper Road	10031880	2010	no samples	good	no survey	no survey	6

(HW = headwater, IBI = i	ndex of bio	otic integrity,	DS = down:	stream, US = upstre	am)	
Nemadji R @ Finn Rd		06/31/2008				
SWIMS sta. no. 163233		Station lengt	Station length 425m			
Fish Species	Number	Thermal	Size	Tolerance		
common shiner	29	warmwater	medium	tolerant		
creek chub	4	transient	small	tolerant		
hornyhead chub	22	warmwater	medium	intermediate		
johnny darter	1	transient	medium	intermediate		
lamprey	1					
logperch	1	warmwater	large	intermediate		
rock bass	29	warmwater	large	intolerant		
sand shiner	11	warmwater	large	intermediate		
shorthead redhorse	7	warmwater	large	intermediate		
silver redhorse	6	warmwater	large	intermediate		
smallmouth bass	2	warmwater	large	intolerant		
stonecat	2	warmwater	medium	intermediate		
troutperch	7	transient	large	intermediate		
walleye	1	transient	large	intermediate		
white sucker	2	transient	medium	tolerant		
Total number	124					
% Coldwater	0	% small	3	% intolerant	26	
% Transitional	13	% medium	48	% intermediate	44	
% Warmwater	87	% large	49	% tolerant	30	
Model-predicted natura	I communi	ty - Warm ma	instem			
Does sampled population	on include	> 25 fish? - yes	;			
Does sampled population	on support	predicted con	nmunity? -	yes, but		
% medium slightly less	than 50-100)%				

(HW = headwater, IBI =	index of bid	otic integrity,	DS = down	stream, US = upstre	am)	
Nemadji R @ CTH W		09/11/2009				
SWIMS sta. no. 163048		Station lengt	th 440m			
Fish Species	Number	Thermal	Size	Tolerance		
common shiner	54	warmwater	medium	intermediate		
creek chub	3	transient	small	tolerant		
hornyhead chub	78	warmwater	medium	intermediate		
johnny darter	11	transient	medium	intermediate		
logperch	70	warmwater	large	intermediate		
longnose dace	38	transient	medium	intermediate		
muskellunge	1	transient	large	intolerant		
rock bass	25	warmwater	large	intolerant		
sand shiner	1	warmwater	large	intermediate		
silver redhorse	38	warmwater	large	intermediate		
smallmouth bass	3	warmwater	large	intolerant		
stonecat	7	warmwater	medium	intermediate		
troutperch	4	transient	large	intermediate		
walleye	3	transient	large	intermediate		
white sucker	18	transient	medium	tolerant		
Total number	354					
% Coldwater	0	% small	1	% intolerant	8	
% Transitional	22	% medium	58	% intermediate	71	
% Warmwater	78	% large	41	% tolerant	21	
Model-predicted natura	al communi	ty - Cool-War	m HW			
Does sampled populati	on include	> 25 fish? - yes	5			
Does sampled populati				no		
Sampled population inc				. F. 1995		
Small stream (intermitt	ent) IBI: 80	= good				
Warmwater Lake Super	ior basin IB	: 90 = excelle	nt			

(HW = headwater, IBI = i	ndex of bio	otic integrity,	DS = down	stream, US = upstre	eam)	
Crawford Ck @ Hammon	d Ave	07/07/2006				
SWIMS sta. no. 10015464		Station lengt	h 210m			
Fish Species	Number	Thermal	Size	Tolerance		
central mudminnow	2	transient	small	tolerant		
creek chub	10	transient	small	tolerant		
golden shiner	1	warmwater	medium	tolerant		
muskellunge	1	transient	large	intolerant		
troutperch	1	transient	large	intermediate		
white sucker	8	transient	medium	tolerant		
Total number	23					
% Coldwater	0	% small	52	% intolerant	4	
% Transitional	96	% medium	39	% intermediate	4	
% Warmwater	4	% large	9	% tolerant	92	
Model-predicted natura	l communi	ty - Cool-Cold	HW			
Does sampled population	n include >	25 fish? - no				
Does sampled population	n support	predicted con	nmunity? -	yes, but < 25 fish a	nd	
% tolerant > 75						
Small stream (intermitte	ent) IBI: 40	= fair				
Cool-Cold IBI: 20 = poor						

(HW = headwater, IBI = ir	ndex of bio	otic integrity,	DS = down	stream, US = upstre	eam)	
Crawford Ck @ Eskelson	Rd	08/23/2010				
SWIMS sta. no. 10031826		Station lengt	h 107m			
Fish Species	Number	Thermal	Size	<u>Tolerance</u>		
brook stickleback	11	transient	small	tolerant		
central mudminnow	12	transient	small	tolerant		
creek chub	24	transient	small	tolerant		
western blacknose dace	2	transient	small	tolerant		
white sucker	23	transient	medium	tolerant		
Total number	72					
% Coldwater	0	% small	68	% intolerant	0	
% Transitional	100	% medium	32	% intermediate	0	
% Warmwater	0	% large	0	% tolerant	100	
Model-predicted natural	communi	ty - Cool-Cold	HW			
Does sampled populatio	n include :	> 25 fish? - yes	5			
Does sampled populatio	n support	predicted con	nmunity? -	yes but % tolerant	> 75	
Small stream (intermitte	nt) IBI: 40	= fair				
Cool-Cold IBI: 30 = fair						

(HW = headwater, IBI = ir	ndex of bio	otic integrity,	DS = down	stream, US = upstre	am)	
Black R @ Finn Rd		09/11/2009				
SWIMS sta. no. 10030272		Station lengt	th 470m			
Fish Species	Number	Thermal	Size	Tolerance		
common shiner	258	warmwater	100	intermediate		
creek chub	76	transient	small	tolerant		
hornyhead chub	41	warmwater		intermediate		
johnny darter	11	transient	medium	intermediate		
logperch	6	warmwater	large	intermediate		
northern pike	1	transient	small	intermediate		
rock bass	2	warmwater	large	intolerant		
sand shiner	43	warmwater	large	intermediate		
shorthead redhorse	7	warmwater	large	intermediate		
smallmouth bass	6	warmwater	large	intolerant		
troutperch	3	transient	large	intermediate		
walleye	3	transient	large	intermediate		
western blacknose dace	1	transient	small	tolerant		
white sucker	90	transient	medium	tolerant		
Total number	548					
% Coldwater	0	% small	14	% intolerant	2	
% Transitional	34	% medium	73	% intermediate	68	
% Warmwater	66	% large	13	% tolerant	30	
Model-predicted natural	communi	ty - Cool-War	m mainste	m		
Does sampled populatio	n include	> 25 fish? - ye	s			
Does sampled populatio	n support	predicted con	nmunity? -	yes		
Cool-Warm IBI: 80 = exce	llent					

(HW = headwater, IBI = ir	ndex of bio	otic integrity,	DS = down	stream, US = upstre	am)	
Balsam Ck @ Dedham Rd		09/21/2010				
SWIMS sta. no. 10007599		Station lengt	th 370m			
Fish Species	Number	Thermal	Size	Tolerance		
brassy minnow	6	transient	small	intermediate		
common shiner	207	warmwater	medium	intermediate		
creek chub	155	transient	small	tolerant		
hornyhead chub	46	warmwater	medium	intermediate		
johnny darter	6	transient	medium	intermediate		
logperch	4	warmwater	large	intermediate		
longnose dace	18	transient	medium	intermediate		
northern redbelly dace	1	transient	small	intermediate		
rock bass	6	warmwater	large	intolerant		
shorthead redhorse	6	warmwater	large	intermediate		
stonecat	2	warmwater	medium	intermediate		
troutperch	38	transient	large	intermediate		
western blacknose dace	19	transient	small	tolerant		
white sucker	30	transient	medium	tolerant		
Total number	544					
% Coldwater	0	% small	33	% intolerant	1	
% Transitional	50	% medium	57	% intermediate	61	
% Warmwater	50	% large	10	% tolerant	38	
Model-predicted natural	communi	ty - Cool-War	m mainste	m		
Does sampled populatio	n include	25 fish? - yes	5			
Does sampled populatio	n support	predicted con	nmunity? -	yes		
Cool-Warm IBI: 90 = exce	llent					

(HW = headwater, IBI = ir	ndex of bio	tic integrity,	DS = down	stream, US = upstre	eam)	

Clear Ck @ CTH W		08/05/2009				
SWIMS sta. no. 10030271		Station lengt	h 255m			
Fish Species	Number	Thermal	Size	Tolerance		
bluntnose minnow	1	warmwater	medium	tolerant		
common shiner	102	warmwater	medium	intermediate		
creek chub	115	transient	small	tolerant		
hornyhead chub	10	warmwater	medium	intermediate		
johnny darter	6	transient	medium	intermediate		
logperch	1	warmwater	large	intermediate		
longnose dace	17	transient	medium	intermediate		
sand shiner	2	warmwater	large	intermediate		
shorthead redhorse	1	warmwater	large	intermediate		
troutperch	28	transient	large	intermediate		
western blacknose dace	40	transient	small	tolerant		
white sucker	87	transient	medium	tolerant		
Total number	410					
% Coldwater	0	% small	38	% intolerant	0	
% Transitional	72	% medium	54	% intermediate	41	
% Warmwater	28	% large	8	% tolerant	59	
Model-predicted natural	communi	ty - None				
Does sampled population	n include :	> 25 fish? - yes	5			
Does sampled population	n support	predicted con	nmunity? -	none predicted		
Sampled population indi	cates a Co	ol-Warm mair	nstem, but	also close to Cool-	Warm HW	
Cool-Warm IBI: 60 = good	I					
Small stream (intermitte	nt) IBI: 60	= fair				

(HW = headwater, IBI = ir	dex of bio	otic integrity.	DS = down	stream, US = upstre	am)	
(IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	iden or on	- tie iiie giiriji		su carry ou appere		
Clear Ck US Ski Trail		08/24/2010				
SWIMS sta. no. 10031940		Station lengt	th 153m			
Fish Species	Number	Thermal	Size	Tolerance		
brook stickleback	6	transient	small	tolerant		
common shiner	9	warmwater	medium	intermediate		
creek chub	134	transient	small	tolerant		
hornyhead chub	1	warmwater	medium	intermediate		
johnny darter	21	transient	medium	intermediate		
longnose dace	2	transient	medium	intermediate		
mottled sculpin	27	coldwater	small	intolerant		
western blacknose dace	57	transient	small	tolerant		
white sucker	1	transient	medium	tolerant		
Total number	258					
% Coldwater	10	% small	87	% intolerant	10	
% Transitional	86	% medium	13	% intermediate	13	
% Warmwater	4	% large	0	% tolerant	77	
Model-predicted natural	communi	ty - None				
Does sampled population	n include	> 25 fish? - yes	5			
Does sampled population				none predicted		
Sampled population indi	cates Coo	l-Warm HW o	Cool-Colo	IHW		
Small stream (intermitte	nt) IBI: 90	= good				
Cool-Warm IBI: 80 = exce	llent					
Cool-Cold IBI: 50 = good						

APPENDIX A. FISH SURVEY DATA FOR NEMADJI RIVER AND TRIBUTARIES (CONT.) (HW = headwater, IBI = index of biotic integrity, DS = downstream, US = upstream) Mud Ck near CTH W 09/01/2009 SWIMS sta. no. 10030270 Station length 152m Thermal Tolerance Fish Species Number Size common shiner 108 warmwater medium intermediate creek chub 102 transient small tolerant warmwater medium intermediate hornyhead chub 55 transient medium intermediate johnny darter 3 logperch warmwater intermediate large longnose dace 1 transient medium intermediate intolerant muskellunge 1 transient large pearl dace intermediate 1 transient small rock bass 1 warmwater intolerant large sand shiner 23 warmwater large intermediate smallmouth bass intolerant 4 warmwater large troutperch 22 tolerant transient medium walleye 1 transient large intermediate western blacknose dace tolerant 4 transient small white sucker tolerant 12 transient medium Total number 341 % Coldwater 0 % small 31 % intolerant 2 % Transitional 43 % medium 53 % intermediate 63 % Warmwater % tolerant 57 % large 16 35 Model-predicted natural community - Cool-Warm HW Does sampled population include > 25 fish? - yes Does sampled population support predicted community? - no Sampled population indicates Cool-Warm mainstem Station sampled is very close to confluence with Nemadji R Cool-Warm IBI: 100 = excellent Small stream (intermittent) IBI: 90 = good