WDNR Grant #LPL185723

Elkhart Lake Improvement Association Elkhart Lake Water Quality & Habitat Improvement Project – Neuses Bay Tributary Final Report: March 6, 2024

Grant Cycle: March 15, 2023 to March 6, 2024

The scope of work defined in this grant is a joint effort coordinated by the Elkhart Lake Improvement Association (ELIA), in partnership with Wisconsin Department of Natural Resources (WDNR), and Stantec. The following represents grant activities completed as of March 6, 2024.

Goal 1a. Data Collection

ELIA contracted Stantec to acquire data and conduct a literature review in preparation for development of a concept plan. The results of the data collection effort are summarized in the attached *Elkhart Lake – Wetland Restoration Basis of Design & Hydrologic & Hydraulic Analysis Memo*.

Goal 1b. Site Assessment

Stantec conducted a site assessment in September 2023 to survey watershed conveyance patterns, collect water and soil samples, and take depth measurements within the project area. A wetland delineation was also completed in the field. The results of the site survey, sampling, and wetland delineation are summarized in the attached *Elkhart Lake – Wetland Restoration Basis of Design & Hydrologic & Hydraulic Analysis Memo*.

Goal 1c. Concept and Preliminary Design Plans

Desktop and field data were used to develop a hydrologic and hydraulic model specific to the project area watershed. This model was used to develop conceptual and preliminary design for stakeholder review. Preliminary design plans are included in the attached *Elkhart Lake – Wetland Restoration Basis of Design & Hydrologic & Hydraulic Analysis Memo*.

ELIA has secured additional funding from the WDNR Surface Water Program to finalize design plans for construction in 2024.

Goal 1d. Education and Outreach

- Throughout the grant period, ELIA updated educational materials focused on water quality studies, Aquatic Invasive Species (AIS), and ongoing management actions and distributed to members of the community via the website (www.keepelkhartblue.org) and at the local chamber, businesses, and government buildings.
- ELIA hosted an annual meeting in June 2023 and the Ecology Committee presented the project to members (see attached *Agenda* and *Minutes*).
- ELIA hosted a booth at the local Downtown Night in August 2023 to answer lake-related questions and educate the public about water quality improvement efforts.

То:	John Schott	From:	Christian Burnson, PE
	PO Box 725		209 Commerce Parkway
	Elkhart Lake, WI 53020		Cottage Grove, WI 53527
Project/File:	193806506	Date:	January 31, 2024

Background Information / Project Understanding

The Elkhart Lake Improvement Association (ELIA) hired Stantec to develop a concept wetland restoration plan to decrease nutrient transportation and provide water quality benefits to Elkhart Lake, and to quantify stormwater flows to the lake from a drainage area on the southwest side of the lake. The wetland in question receives runoff from the surrounding Shoreland Road Watershed (Watershed), most of which consists of row crop farmland and pasture. The Watershed in relation to the wetland and Elkhart Lake can be seen in Appendix A, included with this memo.

Phosphorous-laden sediments are conveyed via stormwater runoff originating from agricultural areas upstream in the Watershed and collect in the wetland area. Over time, these nutrient rich sediments have accumulated in the wetland. Phosphorus from accumulated sediments likely leaches into the ponded water in the wetland. When substantial rainfall events occur, the phosphorus-rich water in the wetland overtops a saddle point in a low adjacent ridge and flows through a residential property and is conveyed to Elkhart Lake via culverts.

Data Acquisition & Literature Review

Stantec was contracted to study the wetland, determine if the wetland was a significant source of phosphorous pollution into the lake, and devise a wetland restoration concept plan.

Stantec engineers visited the project site in September of 2023 to gather data and observe how runoff is conveyed through the Watershed. Six soil samples and two water samples were obtained in the wetland area, as well as approximate measurements of the depth of sediment deposits at the soils sampling locations (See Appendix B). The water samples were collected at a location which was relatively clear of aquatic vegetation. Four soil samples were collected from areas in the wetland and adjacent to ponded water. Additionally, one soil sample was obtained from the outlet of the upstream culvert beneath Shoreline Road, and another was obtained from the inlet of the downstream storm pipe beneath E Shoreline Road to provide comparisons to phosphorus present in wetland sediments.

Within the wetland area, the approximate sediment depth measurements were obtained at the soil sampling sites in the wetland by forcing a rod into the substrate until a consolidated layer was encountered, or until the rod could no longer be advanced by hand. Sediment deposits were estimated to range between 20" depth in the northern portion and 55" depth in the southern portion of the wetland. The team also recorded approximate GPS positions of the sample locations and all culverts in the Watershed (See Appendix B). A wetland delineation was performed by Stantec staff on the same day as the soil and water samples were collected. The Wetland Delineation Report and a Photo Log taken during the site visit are included with this memorandum in Appendix D.

The soil samples were delivered to the University of Wisconsin Soil and Forage Laboratory for total phosphorous testing. The water samples were sent to the Eurofins laboratory for detection of total phosphorous. The soil results showed the samples had an average total leachable phosphorous level of 0.103% of the total dried mass of the sample, with the highest of the six concentrations measured at the south portion of the wetland, and the lowest concentration measured at the north portion of the wetland and at the upstream culvert. The two water sample test results showed total phosphorous levels of 0.44 and 0.47 mg/L. Phosphorus testing results provided from the labs are included with this memorandum in Appendix E.

The Wisconsin Department of Natural Resources' (WDNR) standard for impaired shallow waters and streams is 0.04 mg/L and 0.075mg/L respectively. Literature values show the levels of total phosphorous found in Wisconsin wetland surface waters average 0.08 mg/L as of 2008¹. A study reviewed by Stantec showed the highest recorded level of phosphorus in wetland surface water is 1.7 mg/L in a wetland near Delavan Lake in July of 1994². Another study from 2007 showed the mean total phosphorous levels in protected wetlands surrounding Lake Michigan to be 0.0446 mg/L, with the peak level reaching 0.1793 mg/L³.

The level of total phosphorous in the surface water found in the wetland is five times higher than the Wisconsin average and ten times higher than the standard for impairment. This is likely due to sediment from surrounding farmland being carried by stormwater runoff accumulating in the soil and water of the wetland. Based on the literature reviewed and the soil and water testing performed, Stantec proposes a plan to perform a wetland scrape and restoration in the wetland area to remove accumulated phosphorus-laden sediment to improve water quality in Elkhart Lake.

¹ Zhongwei Liu , Yingru Li & Zhaohui Li (2009) Surface water quality and land use in Wisconsin, USA – a GIS approach, Journal of Integrative Environmental Sciences, 6:1, 69-89, DOI: 10.1080/15693430802696442

 ² Dale M. Robertson, John F. Elder, Gerald L. Goddard & William F. James (1998) Dynamics in Phosphorus Retention in Wetlands Upstream of Delavan Lake, Wisconsin, Lake and Reservoir Management, 14:4, 466-477, DOI: 10.1080/07438149809354353
 ³ Anett S. Trebitz, John C. Brazner, Anne M. Cotter, Michael L. Knuth, John A. Morrice, Gregory S. Peterson, Michael E. Sierszen, Jo

A. Thompson, and John R. Kelly "Water Quality in Great Lakes Coastal Wetlands: Basin-wide Patterns and Responses to an Anthropogenic Disturbance Gradient," Journal of Great Lakes Research 33(sp3), 67-85, (1 December 2007). https://doi.org/10.3394/0380-1330(2007)33[67:WQIGLC]2.0.CO;2

Proposed Scrape Plans

To reduce the levels of phosphorous entering the lake during rain events, Stantec proposes to remove accumulated sediments from the wetland to the maximum allowed depth for wetland scrapes of four feet, or until non-organic soils are encountered.

Appendix F shows conceptual plans for the wetland restoration. The plans demonstrate the approximate location of the existing wetland, culverts, a topographic map of the project area, and the proposed depth and grading plan for the scrape. These contours will likely be adjusted to support aesthetic and ecosystem function in the final design.

This work will return the wetland closer to pre-settlement conditions, improve the ecological effectiveness of the wetland, allow time for particulate and dissolved phosphorous to settle, and decrease the instances of water overtopping the shallow knoll into the adjoining property and thus flowing into the lake.

The conceptual design will advance upon receipt of future grant funding. We understand that Lakeshore Natural Resource Partnership (LNRP) has applied for a WDNR Surface Water Grant on behalf of ELIA to support final design.

H&H Model

To inform the planning phase of the wetland restoration and to understand the hydrology and hydraulics of the Watershed, a rainfall/runoff model was created. Stantec engineers used ArcGIS to classify the Watershed and subwatershed boundaries and land use based on aerial imagery and topography. Soil types and hydrologic soil groups from the Natural Resources Conservation Service (NRCS) were compiled to create a HydroCAD model. HydroCAD is a software application that is used to model storm runoff and to model best management practices using data about a watershed along with rainfall depths and distributions.

HydroCAD uses the Technical Release 55 method of predicting rainfall runoff, commonly known as the Curve Number Method developed by the NRCS. The Curve Number (CN) Method presents a procedure to calculate storm runoff for a small watershed by assigning watershed parameters based on land use, soils, and topographic data as parameters in the calculation routines. This method is one of the most commonly used modeling routines. Model parameters were defined based on collected publicly available data referenced above, topography obtained from the Sheboygan County GIS database, and site visits. Rainfall depths were derived from the National Oceanic and Atmospheric Administration's (NOAA) Atlas 14, as shown in Table 1, and the model used the Midwest and Southeast (MSE) State Rainfall Distribution Type 4 developed by the NRCS.

NOAA Atlas 14 F	NOAA Atlas 14 Rainfall Depths for 24-hour Storm Duration					
Return Interval 1 2 25 100 (year)						
Depth (inches)	2.22"	2.56"	4.73"	6.43"		

Table 1. NOAA Atlas 14 precipitation depths

The Shoreline Road Watershed encompasses roughly 163 acres and was broken down into seven distinct subwatersheds based on hydrologic features and topographic data derived from LiDAR and is shown in Appendix C. The Watershed discharges to Elkhart Lake via a 24" storm pipe running under E Shoreline Rd in what has been designated as Subwatershed 2 (SWS 2). The project wetland area is labeled as Subwatershed 1 (SWS 1). Subwatersheds are divided along ridges, hilltops, road centerlines, and high points that effectively divide flow paths. Hydrologic Soil Groups (HSG) for each of the mapped soil types were determined from NRCS Soil Survey Geographic Database for the mapped soils present in each subwatershed. HSGs are assigned a letter classification by the database, 'A' soils have the highest infiltration potential (lowest runoff potential), 'B' soils have a somewhat middling infiltration potential (middling runoff potential), 'C' soils have a low infiltration potential (high runoff potential), and 'D' soils have very low infiltration potential (very high runoff potential).

The soils in the Shoreline Road Watershed are predominately silty loams. Topography in the Watershed is mostly flat, with steeper slopes associated with drainage ditches and ravines that convey stormwater runoff to the lake. The soils largely fall under HSG categories D and B, which indicate that there is low to medium water infiltration of the soil and moderate to high rates of runoff during storm events. The main land use in the Watershed is agricultural mostly consisting of row crop and pasture. Also present are woodlands, several wetland area, paved roads, a restored prairie, and several acres of residential land use.

The HSGs and land use are used to assign a CN per unit of land and soil group. The CN parameter defines an area's potential for runoff. Land uses with higher rates of imperviousness will have a greater potential for runoff, thus a higher CN. Table 2 shows the weighted composite CNs for each subwatershed and the total weighted composite CN for the whole watershed.

Subwatershed	CN	Area (acres)
SWS 1	70	6.49
SWS 2	72	2.89
SWS 3	64	8.05
SWS 4	82	54.69
SWS 5	88	4.41
SWS 6	60	15.30
SWS 7	88	71.33
Total	81.18	163.06

Table 2. Composite CNs and Areas for Each Subwatershed in the Model

The modeling results expressed in Table 3 are based on assumptions from bathymetry and field analysis of the wetland. It is also assumed that the wetland contains a considerable depth of post-settlement agricultural sediment and routinely overflows the saddle (919' elevation) into Elkhart Lake. This conveys nutrients such as leached/dissolved and particulate phosphorous into the lake. Restoring the wetland by scraping out up to four feet of legacy sediments would result in a healthier wetland, and a reduction of phosphorous entering the lake.

Note that this project will do little to reduce flooding; the intent of creating the existing conditions H&H model was to provide ELIA with a tool to perform modeling for future stormwater projects elsewhere in the watershed.

A detailed report of the stormwater runoff modeling is attached to this report in Appendix G.

Storm Interval (year)	Peak Inflow (cfs)	Peak Outflow (cfs)	Peak Elevation (ft)	Peak Storage (acre-ft)
1	22.11	22.02	919.30	0.870
2	25.91	25.88	919.33	0.898
25	95.55	90.99	919.69	1.247
100	207.51	182.50	920.04	1.560

Table 3. Current Modeled Wetland Flow Rates

Conclusions and Recommendations

This memo provides a basis of design to accompany the concept plan for the wetland restoration proposed in the Shoreland Road Watershed adjacent to Elkhart Lake and to provide a summary of the hydrologic and hydraulic modeling performed to date for the Watershed. The modeling will serve as starting point for planning exercises for the design and implementation of stormwater treatment features elsewhere in the Watershed.

Stantec predicts that water in the project wetland is a likely a significant phosphorus input to Elkhart Lake. Performing a wetland scrape to remove legacy, post-settlement sediment will likely decrease phosphorus that reaches the lake. The wetland restoration project will also enhance the health and aesthetic quality of the wetland, provide habitat enhancements, and improve water quality in Elkhart Lake. These concept plans were used to apply for WDNR Surface Water Grant for the project. Should funds be obtained and the project proceeds to final design and construction,

Stantec recommends the following next steps:

- Topographic survey be performed in the project area to be used for final plans production.
- Additional soils testing to better understand the soil makeup and groundwater beneath the wetland sedimentation and understand how much accumulated sediment should be removed as part of the project.
- Research and discussion of the processes and mechanisms for phosphorous cycling.
- Final Design Plan development and development of a probable cost of construction.

January 31, 2024 John Schott Page 7 of 8

Reference: Elkhart Lake - Wetland Restoration & Hydrologic & Hydraulic Analysis

Regards,

STANTEC CONSULTING SERVICES INC.

White N. Burn

Christian Burnson PE, ENV-SP Civil Engineer Phone: (608) 843-0163 christian.burnson@stantec.com

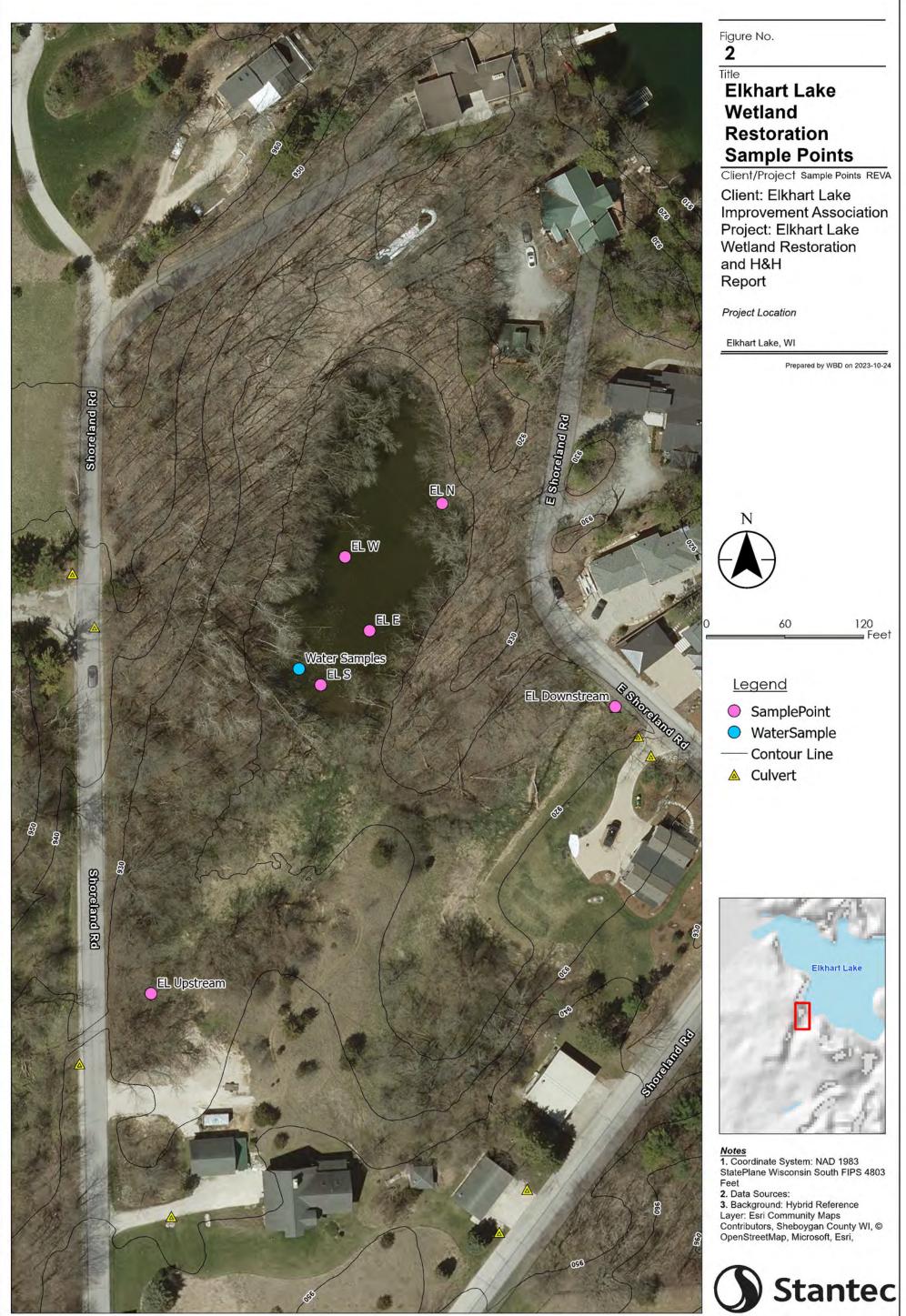
stantec.com

Attachment: Click or tap here to enter text.

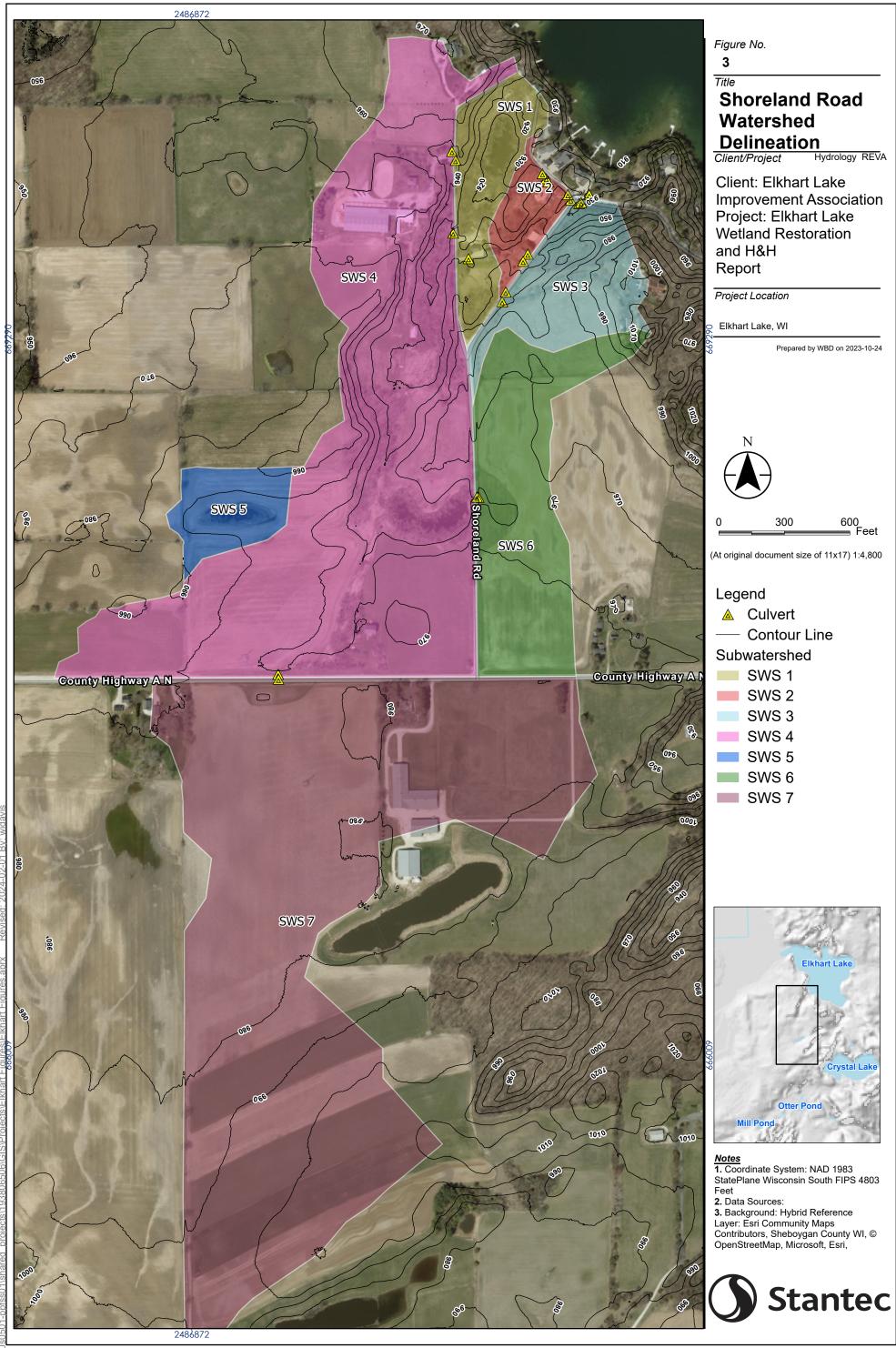
- Appendix A Location Map
- Appendix B Sampling Locations Map
- Appendix C Subwatershed Map
- Appendix D -- Wetlands Delineation Report and Photo Log
- Appendix E -- Laboratory Test Results
- Appendix F -- Wetland Restoration Concept Plans
- Appendix G -- HydroCAD Input / Output

January 31, 2024 John Schott Page 8 of 8

Reference: Elkhart Lake - Wetland Restoration & Hydrologic & Hydraulic Analysis


Appendix A

Location Map


Appendix B

Sampling Locations Map

Appendix C

Subwatershed Map

Appendix D

Wetlands Delineation Report and Photo Log

Assured Wetland Delineation Report

Elkhart Lake Wetland Restoration Town of Rhine, Sheboygan County, Wisconsin Stantec Project #:193806506 Lead Delineator: Sarah Majerus PWS

October 3, 2023

Prepared for:

Mr. John Schott Elkhart Lake Improvement Project PO Box 725 Elkhart Lake, WI 53020

Prepared by:

Stantec Consulting Services Inc. 12080 Corporate Parkway Suite 200 Mequon, WI 53092 Phone: (262) 241-4466

Elkhart Lake Wetland Restoration October 3, 2023

Table of Contents

1.0	INTRODU	CTION1	1	
2.0	METHODS	52	2	
2.1	WETLAND)S2	2	
2.2	WATERW	AYS2	2	
3.0	RESULTS		3	
3.1	SITE DES	CRIPTION AND TOPOGRAPHY	3	
3.2	SOILS		3	
3.3	MAPPED \	WWI	3	
3.4	CLIMATIC	CONDITIONS	3	
3.5		9S4		
		Wetland W1		
		Wetland Boundary		
		AYS5		
3.8	OTHER EN	NVIRONMENTAL CONSIDERATIONS	5	
4.0	CONCLUS	SION	7	
5.0	REFEREN	CES	3	
LIST O	F TABLES			
		of Soils Identified within the Study Area y of Wetlands Identified within the Study Area4		
LIST O	F APPEND	DICES		
APPEN	NDIX A	DELINEATOR QUALIFICATIONS	١	
APPEN	IDIX B	FIGURES	3	
APPEN	NDIX C	APT ANALYSIS	;	
APPEN	NDIX D	WETLAND DETERMINATION DATA FORMSD)	
APPEN				

Elkhart Lake Wetland Restoration Introduction October 3, 2023

1.0 INTRODUCTION

Stantec Consulting Services Inc. (Stantec) completed a wetland delineation on portions of two adjoining parcels (Tax Key IDs 59018258750 and 5901825854) located along the southwest shoreline of Elkhart Lake in the Town of Rhine, Sheboygan County, Wisconsin (the "Study Area") on behalf of the Elkhart Lake Improvement Association (ELIA). The wetland delineation was completed by Sarah Majerus on September 14th, 2023. Ms. Majerus of Stantec is an assured delineator qualified via the Wisconsin Department of Natural Resources (WDNR) Wetland Delineation Assurance Program (see Appendix A for Delineator Qualifications).

The Study Area is approximately 4.73 acres and located in Section 30, T16N, R21E in Sheboygan County, Wisconsin. Specifically, the Study Area is located between Shoreland Road and East Shoreland Road along the southwest shoreline of Elkhart Lake (Appendix B, Figure 1). The purpose and objective of the wetland determination and delineation was to identify the extent and spatial arrangement of wetlands, as well as to identify potentially jurisdictional waterways, within the Study Area.

Wetland and waterways may be subject to federal regulation under the jurisdiction of the U.S. Army Corps of Engineers (USACE), state regulation under the jurisdiction of the Wisconsin Department of Natural Resources (WDNR), and local regulation under jurisdiction of the local county, town, city, or village. Stantec recommends this report be submitted to local authorities, the WDNR, and USACE for final jurisdictional review and concurrence. Delineations completed by a WDNR Assured Delineator do not need to obtain WDNR concurrence.

Elkhart Lake Wetland Restoration Methods October 3, 2023

2.0 METHODS

2.1 WETLANDS

Wetland delineations were based on the criteria and methods outlined in the *Corps of Engineers Wetlands Delineation Manual,* Technical Report Y-87-1 (1987) and subsequent guidance documents, and applicable Regional Supplements to the *Corps of Engineers Wetland Delineation Manual.*

The wetland delineation involved the use of available resources to assist in the assessment such as U.S. Geological Survey (USGS) topographic maps, U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) soil survey, WDNR Wisconsin Wetland Inventory (WWI) mapping, and aerial photography.

The on-site wetland delineation was completed using the three criteria (vegetation, soil, and hydrology) and technical approach defined in the USACE 1987 Manual and applicable Regional Supplement. According to procedures described in the 1987 Manual and applicable Regional Supplement, areas that under normal circumstances reflect a predominance of hydrophytic vegetation, hydric soils, and wetland hydrology (e.g., inundated or saturated soils) are considered wetlands.

As recent weather patterns influence the visibility and presence of some wetland hydrology indicators, the antecedent precipitation in the three months leading up to the field investigation was reviewed. The current year's precipitation data were compared to the most recent long-term (30-year) precipitation averages and standard deviation to determine if precipitation was normal, wet, or dry for the area using the antecedent precipitation tool as developed by the USACE.

The wetland boundary and sampling points were identified and surveyed with a Global Positioning System (GPS) capable of sub-meter accuracy and mapped using Geographical Information System (GIS) software.

2.2 WATERWAYS

Review of waterway characteristics and determination of navigability and jurisdiction was beyond the scope of the investigation. However, if observed, waterways, waterbodies, culverts, and/or other connections to off-site wetland or aquatic features that may be under federal or state authority were surveyed using a GPS and mapped using GIS software.

Elkhart Lake Wetland Restoration Results October 3, 2023

3.0 RESULTS

3.1 SITE DESCRIPTION AND TOPOGRAPHY

The Study Area is comprised of wetland habitat that spans two adjoining residential properties. The wetland complex is located at the downstream end of a large gully tributary that discharges to Elkhart Lake, where hydrologic inputs are primarily surface water runoff and local groundwater discharge. The wetland drains east to Elkhart Lake via culverts under East Shoreland Road. Residential homes and adjoining structures are located outside of the Study Area

The Study Area contains steep slopes adjacent to wetland. Topography ranges from topographic highs of approximately 940 feet mean sea level (msl) along the west edge of the site to topographic lows of approximately 914 feet msl in wetland along the east boundary of the site, near East Shoreland Road. The Study Area is bordered by rural residential development to the south and west, and shoreline residential development to the north and east along Elkhart Lake.

3.2 SOILS

Soils present within the Study Area and their hydric status and hydric ratings are summarized in Table 1. Wetlands identified during the field investigation are located in areas mapped as non-hydric soils without WDNR wetland indicators (Appendix B, Figures 2 and 3).

Soil symbol: Soil Unit Name	Soil Unit Component	Soil Unit Component Percentage	Landform	Hydric Status
CrD2: Casco-Rodman complex, 12 to 20 percent slopes, eroded	Casco-Eroded	45-70	Moraines	No
	Rodman-Eroded	30-40	Moraines	No
	Fox	0-15	Moraines	No
CrE: Casco-Rodman complex, 20 to 30 percent slopes	Casco	45-70	Moraines	No
	Rodman	30-40	Moraines	No
	Fox	0-7	Moraines	No
	Casco-Eroded	0-8	Moraines	No

Table 1. Summary of Soils Identified within the Study Area

3.3 MAPPED WWI

There are no WWI wetlands identified within or directly adjacent to the Study Area (Appendix B, Figure 3).

3.4 CLIMATIC CONDITIONS

Average precipitation for the investigation area was obtained using the Antecedent Precipitation Tool (Gutenson and Deters, USACE). A total of 11.5 inches of precipitation occurred in the three-month period prior to the field investigation. When compared to the long-term precipitation data for the three months prior to the field investigation, precipitation conditions are considered normal (Appendix C). The Web-based

Elkhart Lake Wetland Restoration Results October 3, 2023

Water-budget Interactive Modeling Program (WebWIMP) determined that September is within the wet season for the Study Area.

3.5 WETLANDS

One wetland was identified and delineated within the Study Area. Wetland determination data forms were completed for six sample points along transects through the wetlands and adjacent uplands and are included in Appendix D. Photographs of the wetlands and adjacent lands are included in Appendix E. The wetland boundary and sample point locations are shown on Figure 4 (Appendix B). The wetland is summarized in Table 2 below and described in detail in the following section.

Table 2. Summary of Wetlands Identified within the Study Area

Wetland ID	Observed Wetland Type*	Mapped WWI Wetland Type**	Adjacent Surface Waters	Square Feet	Acres
W1	Shallow, Open Water / Hardwood Swamp / Wet Meadow	NA	Drains via culvert to Elkhart Lake	56,898	1.31
			TOTAL	56,898	1.31

*Wetland type based on Eggers & Reed, 2014

**Mapped WWI wetland may or may not correspond to field observed wetland type

3.5.1 Wetland W1

Wetland W1 is a shallow, open water hardwood swamp and wet meadow wetland community located in the central portion of the Study Area. Hydrologic sources for this wetland include surface water runoff from surrounding agricultural and residential areas, in addition to groundwater influence. The wetland generally follows an elevation of 916 feet msl and extends west and east of the Study Area via culverts under adjacent roadways.

Vegetation

Dominant plant species identified at sample points completed within the hardwood swamp community consist of basswood (*Tilia americana*, FACU), American elm (*Ulmus americana*, FACU) and common buckthorn (*Rhamnus cathartica*, FAC) in the canopy and clearweed (*Pilea pumila*, FACW) in the understory. Wet meadow is dominated by rice cut grass (*Leersia oryzoides*, OBL), reed canary grass (*Phalaris arundinacea*, FACW), and jewelweed (*Impatiens capensis*, FACW). Other common species identified in the wetland are listed on the data forms included in Appendix D. The dominant species within the wetland are comprised mostly of hydrophytic vegetation (OBL, FACW, and/or FAC) and meet the hydrophytic vegetation criterion.

Hydrology

The wetland has a permanently inundated hydroperiod in the northeast, with seasonal inundation/saturation in perimeter areas. Fluctuations in water levels are associated with runoff from large rain events that discharge from an approximately 160-acre watershed area. Primary indicators of wetland hydrology observed in W1 include High Water Table (A2), Saturation (A3), Drift Deposits (B3), Inundation Visible on Aerial Imagery (B7), Water-Stained Leaves (B9), Aquatic Fauna (B13), and Oxidized Rhizospheres on Living Roots (C3). Secondary indicators of wetland hydrology observed included Geomorphic Position (D2) and a positive FAC-Neutral Test (D5). Therefore, the wetland hydrology criterion was met.

Elkhart Lake Wetland Restoration Results October 3, 2023

Soils

Soils within the wetland are mapped by the NRCS as Casco-Rodman complex (CrD2) (Figure 2, Appendix B). The soils observed at the upland sample points were generally consistent with the Casco-Rodman complex series characteristics, which contain coarse sand and gravel and are excessively drained. Soils at wetland sample points, however, contained dark organic soil horizons over native soils. Organic soils likely formed after years of sediment deposition from storm events. NRCS Field Indicators of Hydric Soil identified at sample points within W1 included Depleted Below Dark Surface (A11), Loamy Mucky Mineral (F1), Depleted Matrix (F3), and Redox Dark Surface (F6). Therefore, the hydric soil criterion was satisfied.

3.5.2 Wetland Boundary

The wetland boundary was determined based on distinct differences in vegetation, hydrology, soils, and topography consisting of the following: 1) Transition from an open water, hardwood swamp, and wet meadow community dominated by basswood, American elm, clearweed, rice cutgrass, jewelweed, and reed canary grass to mesic forest and upland meadow habitat; 2) Transition from an area exhibiting wetland hydrology indicators within the wetland to a lack of wetland hydrology indicators within the adjacent upland; and 3) Transition from soils exhibiting hydric soil indicators to soils lacking indicators of hydric soil conditions. The transition from wetland to upland characteristics generally correlated with a well-defined topographic break.

3.6 UPLANDS

Upland within the Study Area consists of mesic forest situated on steep slopes surrounding W1, in addition to upland meadow located along shallow slopes at the south end of the wetland boundary. Mesic forest habitat is dominated by sugar maple (*Acer saccharum*, FACU), shagbark hickory (*Carya ovata*, FACU), red oak (*Quercus rubra*, FACU), basswood, black walnut (*Juglans nigra*, FACU), American elm, quaking aspen (*Populus tremuloides*, FAC), and common buckthorn in the canopy and Pennsylvania sedge (*Carex pensylvanica*, UPL), Virginia creeper (*Parthenocissus quinquefolia*, FACU), and yellow avens (*Geum aleppicum*, FAC) in the understory. Upland meadow habitat is dominated by smooth brome (*Bromus inermis*, UPL), Canada goldenrod (*Solidago canadensis*, FACU), and bergamot (*Monarda fistulosa*, FACU).

In general, upland areas were determined to be non-wetland based on the lack of wetland hydrology, hydric soils, hydrophytic vegetation, and a location in areas higher in the landscape that lacked suitable geomorphic position for wetland conditions to exist.

3.7 WATERWAYS

No waterways were identified within the Study Area; however, channelized flow does occur during rain events due to hydrologic inputs from a culvert under Shoreland Road and associated topography.

3.8 OTHER ENVIRONMENTAL CONSIDERATIONS

This report is limited to the identification of state and/or federally regulated wetlands and waterways within the Study Area. However, there may be other regulated features within the Study Area, including, but not limited to, historical or archeological features, endangered or threatened species, navigable waters, shoreland zones, and/or floodplains, etc. Federal, state, and local units of government and regional planning organizations may have regulatory authority to control or restrict land uses within or in close proximity to these features.

Elkhart Lake Wetland Restoration Results October 3, 2023

Specifically, in the state of Wisconsin, Wis. Adm. Code NR 151.12 requires that a "protective area" or buffer be determined from the top of the channel of lakes, streams and rivers, or at the delineated boundary of wetlands. In accordance with NR 151.12, the width of the "protective area" for less susceptible wetlands is determined by using 10% of the average wetland width, no less than 10 feet or more than 30 feet. Moderately susceptible wetlands, lakes, and perennial and intermittent streams identified on USGS topographic maps or NRCS county soil survey maps (whichever is more current) require a protective buffer of 50 feet, and outstanding or exceptional resource waters, highly susceptible wetlands, and wetlands in areas of special natural resource interest require protective buffers of 75 feet. The jurisdictional authority on wetland buffers rests with the WDNR. Local zoning authorities and/or a regional planning organization may have more restrictive buffers from wetlands than that imposed under NR 151.

Elkhart Lake Wetland Restoration Conclusion October 3, 2023

4.0 CONCLUSION

Stantec completed a wetland delineation of on portions of two adjoining parcels (Tax Key IDs 59018258750 and 5901825854) located along the southwest shoreline of Elkhart Lake in the Town of Rhine, Sheboygan County, Wisconsin on behalf of ELIA. The approximate 4.73-acre Study Area is located in Section 30, T16N, R21E, Town of Rhine, Sheboygan County, Wisconsin. The purpose and objective of the wetland delineation was to identify wetlands and potentially jurisdictional waterways within the Study Area.

One wetland (W1) was identified and delineated within the Study Area in accordance with state and federal guidelines and was subsequently surveyed with GPS and mapped using GIS software. A total of 1.31 acres of wetland was delineated within proximity to the Study Area. Wetlands were comprised of open water, hardwood swamp, and wet meadow habitat. Adjacent uplands were composed of mesic forest and upland meadow.

The wetlands identified for this report may be subject to federal regulation under the jurisdiction of USACE, state regulation under the jurisdiction of the WDNR, and local regulation under jurisdiction of the local county, town, city, or village. Stantec recommends this report be submitted to local authorities, the WDNR, and USACE for final jurisdictional review and concurrence.

Prior to beginning work at this site or disturbing or altering wetlands, waterways, or adjacent lands in any way, Stantec recommends that the owner obtain the necessary permits or other agency regulatory review and concurrence with regard to the proposed work to comply with applicable regulations.

The information provided by Stantec regarding wetland boundaries is a scientific-based analysis of the wetland and upland conditions present within the Study Area at the time of the fieldwork. The delineation was performed by experienced and qualified professionals using standard practices and sound professional judgment. The ultimate decision on wetland boundaries rests with the USACE and, in some cases, the WDNR or a local unit of government. As a result, there may be adjustments to boundaries based upon review by a regulatory agency. An agency determination can vary from time to time depending on various factors including, but not limited to recent precipitation patterns and the season of the year. In addition, the physical characteristics of the Study Area can change over time, depending on the weather, vegetation patterns, drainage activities on adjacent parcels, or other events. Any of these factors can change the nature and extent of wetlands within the Study Area.

The conclusions in the Report are Stantec's professional opinion, as of the time of the Report, and concerning the scope described in the Report. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. The Report relates solely to the specific project for which Stantec was retained and the stated purpose for which the Report was prepared. The Report is not to be used or relied on for any variation or extension of the project, or for any other project or purpose, and any unauthorized use or reliance is at the recipient's own risk.

Stantec has assumed all information received from the Client and third parties in the preparation of the Report to be correct. While Stantec has exercised a customary level of judgment or due diligence in the use of such information, Stantec assumes no responsibility for the consequences of any error or omission contained therein.

This Report is intended solely for use by the Client in accordance with Stantec's contract with the Client. While the Report may be provided to applicable authorities having jurisdiction and others for whom the Client is responsible, Stantec does not warrant the services to any third party. The report may not be relied upon by any other party without the express written consent of Stantec, which may be withheld at Stantec's discretion.

Elkhart Lake Wetland Restoration References October 3, 2023

5.0 **REFERENCES**

Eggers, S. D., & D. M. Reed. 2014. *Wetland Plants and Plant Communities of Minnesota and Wisconsin* (V. 3.1). U.S. Army Corps of Engineers, Regulatory Branch, St. Paul, MN District. Available at: http://www.mvp.usace.army.mil/

Environmental Laboratory. (1987). "Corps of Engineers Wetlands Delineation Manual," Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Gutenson, Joseph L and Deters, Jason C. U.S. Army Corps of Engineers (USACE). 2022. *Antecedent Precipitation Tool – Version 1.0.20*. Retrieved from: <u>https://github.com/erdc/Antecedent-Precipitation-Tool/releases/tag/v1.0.20</u>. Accessed September 2023.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Soil Survey Geographic (SSURGO) Database. Available online at http://websoilsurvey.nrcs.usda.gov/ or http://datagateway.nrcs.usda.gov/. Accessed September 2023.

Soil Survey Staff, Natural Resources Conservation Service, United States Department of Agriculture. Web Soil Survey. Available online at http://websoilsurvey.nrcs.usda.gov/. Accessed September 2023.

USACE and Wisconsin Department of Natural Resources (WDNR). *"Guidance for Submittal of Delineation Reports to the St. Paul District Army Corps of Engineers and the Wisconsin Department of Natural Resources"*, Issued March 4, 2015. Available online at http://dnr.wi.gov/topic/wetlands/documents/FinalWisconsinDelineationGuidance.pdf.

USACE. 2020. National Wetland Plant List, version 3.5. USACE Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory, Hanover, N.H. Retrieved from http://wetland-plants.usace.army.mil/.

USACE. 2011. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0), ed. J.S. Wakely, R.W. Lichvar, C.V. Nobel, and J. F. Berkowitz. ERDC/EL TR-12-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

U.S. Department of Agriculture, Natural Resource Conservation Service (USDA, NRCS). 2018. *Field Indicators of Hydric Soils in the United States*, Version 8.2. L.M. Vasilas, G.W. Hurt, and J.F. Berkowitz (eds.). USDA, NRCS in cooperation with the National Technical Committee for Hydric Soils.

United States Geological Survey (USGS). *Wisconsin 7.5 Minute Series (Topographic) Maps.* 1:24,000. Reston, VA: United States Department of the Interior, USGS.

Wisconsin Department of Natural Resources (WDNR), Bureau of Watershed Management. 2018. [Digital inventory of Wisconsin wetlands]. Wisconsin Wetland Inventory. WDNR Surface Water Data Viewer, https://dnrmaps.wi.gov/H5/?Viewer=SWDV.

WDNR 24K Hydro Full File Geodatabase (Updated August 23, 2021). [24k hydrography geospatial data layers]. Available online: https://data-wi-dnr.opendata.arcgis.com/datasets?t=water

WDNR. 1992. Wisconsin Wetland Inventory Classification Guide. PUBL-WZ-WZ203. .

Elkhart Lake Wetland Restoration Delineator Qualifications October 3, 2023

Appendix A DELINEATOR QUALIFICATIONS

Sarah Majerus PWS

Environmental Scientist

Sarah is an experienced wetland ecologist with more than 10 years of experience working with local nonprofits, businesses, and municipalities to provide integrated solutions that protect and conserve our resources. Sarah specializes in wetland identification and delineation, wetland and waterway permitting, botanical assessment and characterization, and habitat restoration planning and design. She is certified as a Professional Wetland Scientist (PWS) with the Society of Wetland Scientists and a State Assured Wetland Delineator with the Wisconsin Department of Natural Resources (WDNR).

EDUCATION

Bachelor of Science, Zoology and Biological Aspects of Conservation, University of Wisconsin - Madison, Madison, Wisconsin, 2004

CERTIFICATIONS & TRAINING

Grasses, Sedges & Rushes, University of Wisconsin - La Crosse, La Crosse, Wisconsin, 2018

Wetland Flora, Institute of Botanical Training, LLC, Mukwonago, Wisconsin, 2017

Advanced Hydric Soils, Wetland Training Institute, Portage, Wisconsin, 2014

Advanced Wetland Delineation, University of Wisconsin - La Crosse, Sturgeon Bay, Wisconsin, 2016

Basic Wetland Delineation, University of Wisconsin - La Crosse, Waupaca, Wisconsin, 2008

REGISTRATIONS

Professional Wetland Scientist #2586, Society of Wetland Scientists, 2015-Present

MEMBERSHIPS

Member, Wisconsin Wetlands Association

Member, Society of Wetland Scientists

Tony Evers, Governor Adam N. Payne, Secretary Telephone 608-266-2621 Toll Free 1-888-936-7463 TTY Access via relay - 711

April 3, 2023

Sarah Majerus, PWS Stantec 12075 Corporate Parkway Suite 200 Mequon, WI 53092

Subject: 2023 Assured Wetland Delineator Confirmation

Dear Ms. Majerus:

This letter provides Wisconsin Department of Natural Resources (WDNR) confirmation for the wetland delineations you conduct during the 2023 growing season. You and your clients will not need to wait for the WDNR to review your wetland delineations before moving forward with project planning. This will help expedite the review process for WDNR's wetland regulatory program. Your name and contact information will continue to be listed on our website at: http://dnr.wi.gov/topic/wetlands/assurance.html.

In the instance where a municipality may require a letter of confirmation for your work prior to moving forward in the local regulatory process, this letter shall serve as that confirmation. Although your wetland delineations do not require WDNR field review, inclusion of a Wetland Delineation Report is required for projects needing State authorized wetland, waterway and/or storm water permit approvals.

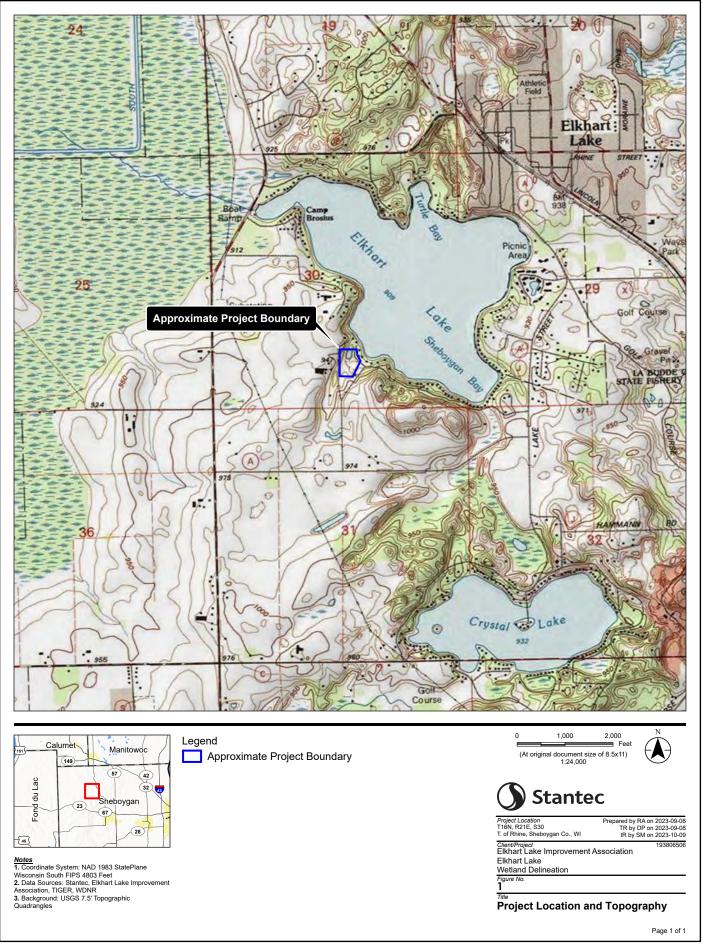
To comply with Chapter 23.321, State Statutes, please supply the department with a polygon shapefile of the wetland boundaries delineated within the project area. Please do not include data such as parcel boundaries, project limits, wetland graphic representation symbols, etc. If internal upland polygons are found within a wetland polygon, then please label as UPLAND. The shapefile should utilize a State Plane Projection and be overlain onto recent aerial photography. If a different projection system is used, please indicate in which system the data are projected. In the correspondence sent with the shapefile, please supply a brief description of each wetland's plant community (eg: wet meadow, floodplain forest, etc.). Please send these data to Calvin Lawrence (608-266-0756 or email at calvin.lawrence@wisconsin.gov).

If you or any client has a question regarding your status in the Wetland Delineation Professional Assurance Program, contact me by email at kara.brooks@wisconsin.gov or phone at 414-308-6780. Thank you for all your hard work and best wishes for the upcoming field season.

Sincerely,

Bad

Elkhart Lake Wetland Restoration Figures October 3, 2023


Appendix B FIGURES

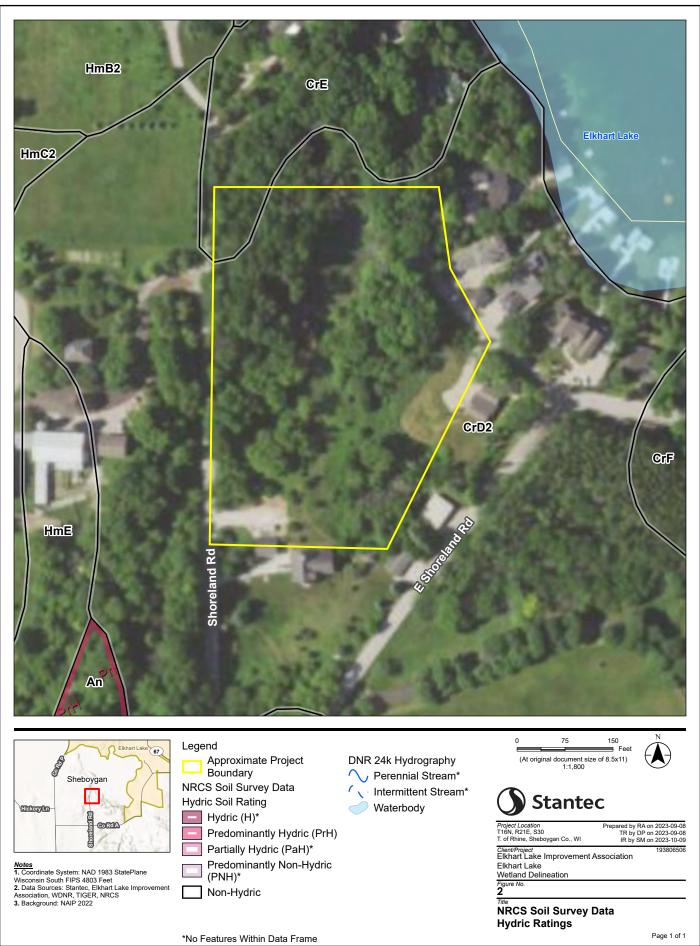

Figure 1. Project Location and Topography

Figure 2. NRCS Soil Survey Data – Hydric Ratings

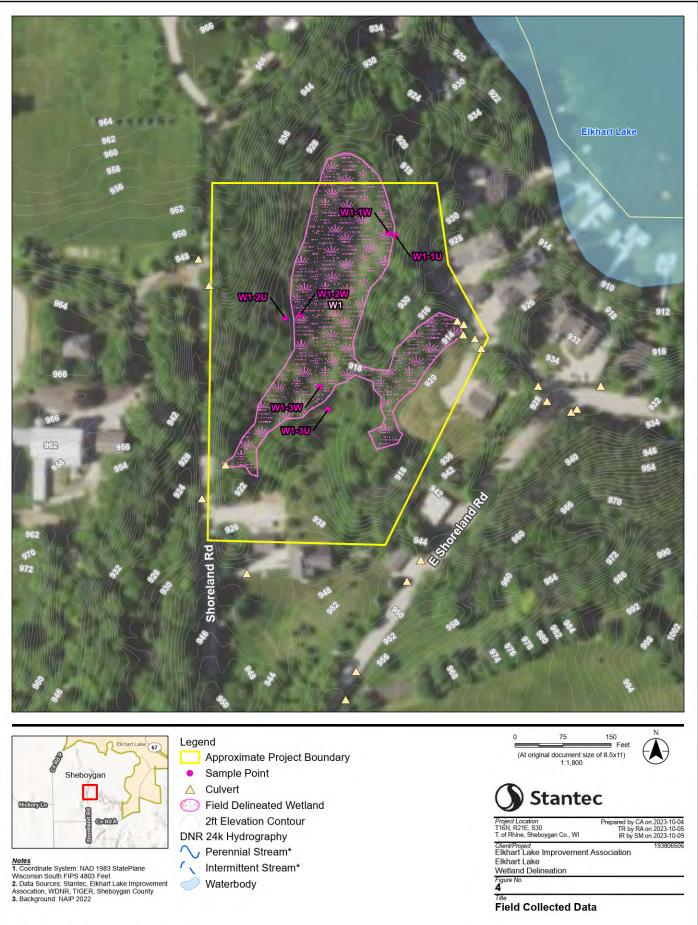

Figure 3. Wisconsin Wetland Inventory

Figure 4. Field Collected Data

Page 1 of 1

*No Features Within Data Frame

Elkhart Lake Wetland Restoration APT Analysis October 3, 2023

Appendix C APT ANALYSIS

Antecedent Precipitation vs Normal Range based on NOAA's Daily Global Historical Climatology Network

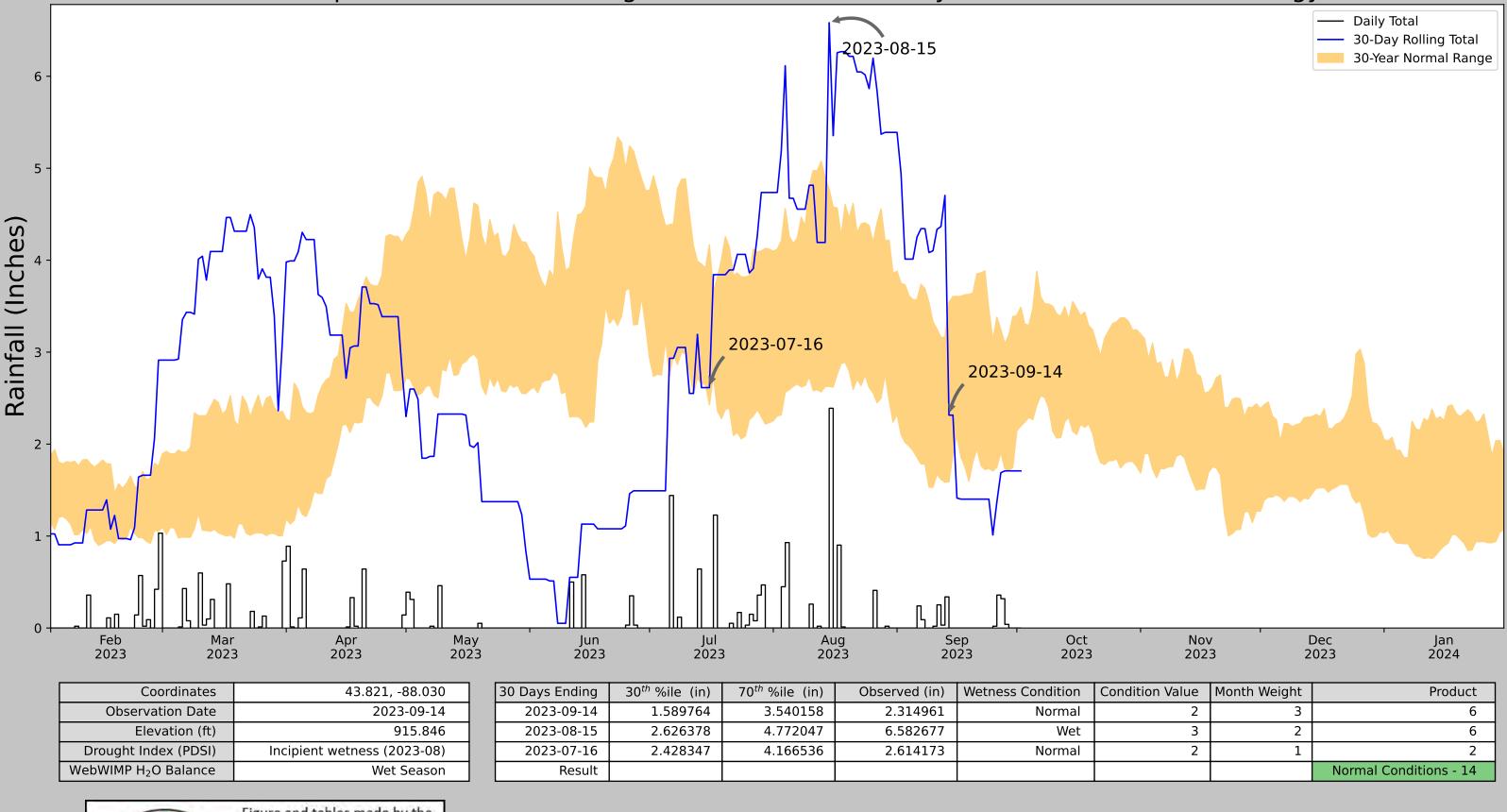


Figure and tables made by the **Antecedent Precipitation Tool** Version 1.0

Written by Jason Deters U.S. Army Corps of Engineers

Weather Station Name	Coordinates	Elevation (ft)	Distance (mi)	Elevation Δ	Weighted Δ	Days Normal	Days Antecedent
PLYMOUTH WWTP	43.73, -87.9714	828.084	6.934	87.762	3.729	11183	83
PLYMOUTH 5.4 NE	43.8119, -87.9105	849.081	6.423	20.997	3.025	0	3
HINGHAM WWTP	43.6408, -87.9097	763.123	6.891	64.961	3.549	5	0
SHEBOYGAN CO MEM AP	43.7747, -87.8492	750.984	6.836	77.1	3.603	1	4
SHEBOYGAN	43.75, -87.7167	647.966	12.789	180.118	8.059	164	0

Nov	-	Dec	Jan
202		023	2024
ondition Value	Month Weight		Product

ondition value	Month weight	Product
2	3	6
3	2	6
2	1	2
		Normal Conditions - 14

ASSURED WETLAND DELINEATION REPORT

Elkhart Lake Wetland Restoration Wetland Determination Data Forms October 3, 2023

Appendix D WETLAND DETERMINATION DATA FORMS

Project/Site: Elkhart Lake	City/County: Sheboygan County Sampling Date: 09/14/2023
Applicant/Owner: ELIA	State: WI Sampling Point: W1-1W
Investigator(s): S. Majerus	Section, Township, Range: S30, T016N, R021E
Landform (hillside, terrace, etc.): Depression Local re-	elief (concave, convex, none): Concave Slope %: 0
Subregion (LRR or MLRA): LRR K, MLRA 95B Lat: 43.82195	Long: -88.030041 Datum: WGS84
Soil Map Unit Name: Casco-Rodman complex, 12 to 20 percent slope:	
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly distu	
Are Vegetation, Soil, or Hydrology naturally problem	
SUMMARY OF FINDINGS – Attach site map showing sampling po	
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area
Hydric Soil Present? Yes X No	within a Wetland? Yes X No
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	
Sample point was observed along the edge of a ponded of A ponded of Antecedent precipitation evaluation	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (B9)	Drainage Patterns (B10)
X High Water Table (A2) X Aquatic Fauna (B13)	Moss Trim Lines (B16)
X Saturation (A3) Marl Deposits (B15)	X Dry-Season Water Table (C2)
X Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres on Liv	
X Drift Deposits (B3) Presence of Reduced Iron (C	
Algal Mat or Crust (B4) Recent Iron Reduction in Tille	
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
X Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present Yes No X Depth (inches)	
Water Table Present Yes X No Depth (inches)	
Saturation Present Yes X No Depth (inches) (includes capillary fringe)): 0 Wetland Hydrology Present? Yes X No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections) if available:
Remarks:	

Sampling Point: W1-1W

Tree Stratum (Plot size:30 ft_)	Absolute % Cover	Dominant	Indicator	Dominance Test worksheet:
1. Tilia americana	<u>20</u>	<u>Species</u> _{Yes}	<u>Status</u> FACU	
Ulmus americana	20	Yes		Number of Dominant Species That Are OBL, FACW, or FAC: 2 (A)
3				Total Number of Dominant Species Across All Strata: 3 (B)
5				
6				Percent of Dominant Species That Are OBL, FACW, or FAC:67 (A/B)
7				Prevalence Index worksheet:
	40	= Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)				OBL species 0 x 1 = 0
1				FACW species 100 x 2 = 200
2				FAC species $0 \times 3 = 0$
3				FACU species 20 x 4 = 80
4		·		UPL species $0 \times 5 = 0$
5				Column Totals: 120 (A) 280 (B)
6				
7				
	0	= Total Cover		Hydrophytic Vegetation Indicators:
Herb Stratum (Plot size: <u>5 ft</u>)	·			<u> </u>
	80	Yes	FACW	X 2 - Dominance Test is >50%
1. <u>Pilea pumila</u> 2				X_3 - Prevalence Index is ≤3.0 ¹
3				4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
4				
5				Problematic Hydrophytic Vegetation ¹ (Explain)
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7				
8				Definitions of Vegetation Strata:
9				Tree Weady plants 2 in (7.6 cm) or more in
10				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
11				
12				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
	80	- Tatal Cause		
Woody Vine Stratum (Plot size: <u>30 ft</u>)	·	= Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
1				Woody vines – All woody vines greater than 3.28 ft in
2				height.
3				
4				Hydrophytic Vegetation
	0	= Total Cover		Present? Yes ^X No
	·			
Remarks: (Include photo numbers here or on a sepa	ate sheet)			
	ate sheet.)			

Depth	Matrix			x Featur			onfirm the absence o		,	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remark	S
0-8	10YR 3/1	100	i				Mucky Loam	Likely depo	sitional materia	I from runoff event
8-12	10YR 3/2	100					Sandy Loam			
12-24	2.5Y 5/2	95	2.5Y 5/6	5	С	М	Fine Sandy Clay Loam			
	ncentration, D=Dep		I=Reduced Matrix, N					for Probler	M=Matrix. natic Hydric RR K, L, MLRA	
Histic Epip	-		MLRA 149B)	Curraco	(00) (211	,			(A16) (LRR K ,	
Black Histi			Thin Dark Surfa	ce (S9) (I	_RR R, ML	_RA 149B			Peat (S3) (LRF	
Hydrogen	Sulfide (A4)		High Chroma Sa	ands (S11	1) (LRR K ,	L)	Polyval	ue Below Sur	face (S8) (LRF	R K, L)
Stratified L	_ayers (A5)		X Loamy Mucky M	lineral (F	1) (LRR K	, L)	Thin Da	ark Surface (S	69) (LRR K, L)	
X Depleted E	Below Dark Surface (A	A11)	Loamy Gleyed M	∕latrix (F2	!)		Iron-Ma	anganese Ma	sses (F12) (LR	R K, L, R)
Thick Dark	k Surface (A12)		Depleted Matrix	(F3)			Piedmo	ont Floodplain	Soils (F19) (M	LRA 149B)
Sandy Mu	cky Mineral (S1)		Redox Dark Sur	face (F6)			Mesic S	Spodic (TA6)	(MLRA 144A , 1	45, 149B)
Sandy Gle	eyed Matrix (S4)		Depleted Dark S	Surface (F	7)		Red Pa	rent Material	(F21)	
Sandy Red			Redox Depressi					hallow Dark S		
Stripped N			Marl (F10) (LRR	Κ, L)			Other (Explain in Re	marks)	
Dark Surfa	ace (S7)									
³ Indicators of	hydrophytic vegeta	tion and w	etland hydrology mu	ist be pr	resent, ur	nless dis	turbed or problematic.			
	ayer (if observed):	:								
Type:									Ň	
Depth (inc	ches):						Hydric Soil Prese	ent?	Yes X	No
Remarks:										
I										

Project/Site: Elkhart Lake	City/County: Sheboygan County Sampling Date: 09/14/2023
Applicant/Owner: ELIA	State: WI Sampling Point: W1-1U
Investigator(s): S. Majerus	Section, Township, Range: S30, T016N, R021E
- · · · ·	relief (concave, convex, none): Linear Slope %: 5-8
	· · · <u> </u>
Subregion (LRR or MLRA): LRR K, MLRA 95B Lat: 43.821937	Long: -88.030001 Datum: WGS84
Soil Map Unit Name: Casco-Rodman complex, 12 to 20 percent slop	
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)
Are Vegetation, SoilX_, or Hydrologysignificantly dis	
Are Vegetation, Soil, or Hydrology naturally proble	matic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling p	point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area
Hydric Soil Present? Yes No X	within a Wetland? Yes No X
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	
Sample point was observed east and upslope from W1-1W. Gra Antecedent precipitation evaluation	avel material prevented observation of soils below 10 inches. ion indicates normal site conditions.
HYDROLOGY	
HYDROLOGY Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
	Secondary Indicators (minimum of two required) Surface Soil Cracks (B6)
Wetland Hydrology Indicators:	
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply) Surface Water (A1) Water-Stained Leaves (B9) High Water Table (A2) Aquatic Fauna (B13) Saturation (A3) Marl Deposits (B15) Water Marks (B1) Hydrogen Sulfide Odor (C1) Sediment Deposits (B2) Oxidized Rhizospheres on Intervention	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Living Roots (C3)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Living Roots (C3) Saturation Visible on Aerial Imagery (C9) C4)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Living Roots (C3) Saturation Visible on Aerial Imagery (C9) C4) Stunted or Stressed Plants (D1) Iled Soils (C6) Geomorphic Position (D2)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Living Roots (C3) Saturation Visible on Aerial Imagery (C9) C4) Stunted or Stressed Plants (D1) Iled Soils (C6) Geomorphic Position (D2) Shallow Aquitard (D3)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Living Roots (C3) C4) Saturation Visible on Aerial Imagery (C9) C4) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Living Roots (C3) Saturation Visible on Aerial Imagery (C9) C4) Stunted or Stressed Plants (D1) Iled Soils (C6) Geomorphic Position (D2) Shallow Aquitard (D3)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Living Roots (C3) C4) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Living Roots (C3) Saturation Visible on Aerial Imagery (C9) C4) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) S):
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Living Roots (C3) C4) Stunted or Stressed Plants (D1) Illed Soils (C6) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) s):
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Living Roots (C3) C4) Stunted or Stressed Plants (D1) Illed Soils (C6) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) s):
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6) Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) C4) Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) S): s): Wetland Hydrology Present? Yes No X

Remarks:

Sampling Point: W1-1U

ree Stratum (Plot size: <u>30 ft</u>)	Absolute <u>% Cover</u>	Dominant <u>Species</u>	Indicator <u>Status</u>	Dominance Test worksheet:
Acer saccharum	50	Yes	FACU	
Ulmus americana	20	Yes	FACW	Number of Dominant SpeciesThat Are OBL, FACW, or FAC:2(A)
Carya ovata	10	No	FACU	
Quercus rubra	10	No	FACU	Total Number of Dominant Species Across All Strata: 4 (B)
Tilia americana	10	No	FACU	
_Juglans_nigra			FACU	Percent of Dominant Species That Are OBL, FACW, or FAC:50(A/
·				Prevalence Index worksheet:
	110	_ = Total Cover		Total % Cover of: Multiply by:
apling/Shrub Stratum (Plot size:15 ft_)				OBL species 0 x 1 = 0
Rhamnus cathartica	10	Yes	FAC	FACW species 20 x 2 = 40
				FAC species 10 $x = 30$
				FACU species 105 x 4 = 420
				UPL species x 5 =100
				Column Totals: 155 (A) 590 (
				Prevalence Index = B/A = <u>3.81</u>
	10			Hydrophytic Vegetation Indicators:
- 0	10	= Total Cover		- 1 - Rapid Test for Hydrophytic Vegetation
<u>erb Stratum</u> (Plot size: <u>5 ft</u>) . <i>Carex pensylvanica</i>	20	Yes	UPL	2 - Dominance Test is >50%
Complum mogulatum	F	No	FACU	3 - Prevalence Index is ≤3.0 ¹
A		No	FACU	4 - Morphological Adaptations ¹
			FACU	(Provide supporting data in Remarks or on a separate sheet)
				Problematic Hydrophytic Vegetation ¹ (Explain)
				¹ Indicators of hydric soil and wetland hydrology must be present, unless
				disturbed or problematic.
-				
·				Definitions of Vegetation Strata:
				Tree – Woody plants 3 in. (7.6 cm) or more in
0				diameter at breast height (DBH), regardless of heigh
1				Sapling/shrub – Woody plants less than 3 in. DBH
2				and greater than or equal to 3.28 ft (1 m) tall.
	35	= Total Cover		
/oody Vine Stratum (Plot size: 30 ft)	. <u></u> .			Herb – All herbaceous (non-woody) plants, regardle of size, and woody plants less than 3.28 ft tall.
·				
				Woody vines – All woody vines greater than 3.28 ft
				height.
				Hydrophytic
				Vegetation
	0	= Total Cover		Present? Yes No X
		= Total Cover		
emarks: (Include photo numbers here or on a se	narata abaat)			
	parate sheet.)			

L

Color (moist) % Color (moist) % Type? Loc? Texture Remarks 6-6 107R 22 100	6-10	10YR 2/2 10YR 2/2 10YR 2/2 centration, D=Dep dicators: 1) edon (A2) (A3) Sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		I=Reduced Matrix, M Polyvalue Belov MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	MS=Mas w Surface ands (S11 /ineral (F	(S8) (LRF K, MI	d Grains. RR, L)	Sandy Loam Sandy Loam W/ grave W/ grave W/ grave Sandy Loam V/ grave Sandy Loam Sandy Loam V/ grave Sandy Loam Sandy	ng, M=Matrix. Iematic Hydric Soils ³ : (LRR K, L, MLRA 149B) tox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
6-10 10YR 2/2 100 Sandy Learn W/ grave/kill material	6-10	10YR 2/2		Polyvalue Belov MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	w Surface nce (S9) (L ands (S11 <i>I</i> lineral (F [.]	(S8) (LRF _RR R, MI) (LRR K, 1) (LRR K	d Grains. RR, L)	Sandy Loam W/ grave	ng, M=Matrix. Ilematic Hydric Soils ³ : (LRR K, L, MLRA 149B) iox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
ype: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ?Location: PL=Pore Lining, M=Matrix. ype: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ?Location: PL=Pore Lining, M=Matrix. ype: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ?Location: PL=Pore Lining, M=Matrix. ype: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ?Location: PL=Pore Lining, M=Matrix. ype: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ?Location: PL=Pore Lining, M=Matrix. ype: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ?Location: PL=Pore Lining, M=Matrix. ype: MLRA 1498) Indicators for Problematic Hydric Soils?	Type: C=Conc ydric Soil Ind Histosol (A1) Histic Epiped Black Histic Hydrogen St Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface ndicators of hy	Iccentration, D=Dep dicators: 1) edon (A2) (A3) isulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		Polyvalue Belov MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	w Surface nce (S9) (L ands (S11 <i>I</i> lineral (F [.]	(S8) (LRF _RR R, MI) (LRR K, 1) (LRR K	d Grains.	² Location: PL=Pore Linit Indicators for Prob 2 cm Muck (A10) Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below i Thin Dark Surface	ng, M=Matrix. Ilematic Hydric Soils ³ : (LRR K, L, MLRA 149B) iox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Appric Soil Indicators: Indicators for Problematic Hydric Soils ³ :	ydric Soil Ind Histosol (A1) Histic Epiped Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface	dicators: I) edon (A2) (A3) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		Polyvalue Belov MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	w Surface nce (S9) (L ands (S11 <i>I</i> lineral (F [.]	(S8) (LRF _RR R, MI) (LRR K, 1) (LRR K	R, RA 149B) L)	Indicators for Prob 2 cm Muck (A10) Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below 3 Thin Dark Surface	lematic Hydric Soils ³ : (LRR K, L, MLRA 149B) dox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Appric Soil Indicators: Indicators for Problematic Hydric Soils ³ :	ydric Soil Ind Histosol (A1) Histic Epiped Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface ndicators of hy	dicators: I) edon (A2) (A3) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		Polyvalue Belov MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	w Surface nce (S9) (L ands (S11 <i>I</i> lineral (F [.]	(S8) (LRF _RR R, MI) (LRR K, 1) (LRR K	R, RA 149B) L)	Indicators for Prob 2 cm Muck (A10) Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below 3 Thin Dark Surface	lematic Hydric Soils ³ : (LRR K, L, MLRA 149B) dox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Appric Soil Indicators: Indicators for Problematic Hydric Soils ³ :	ydric Soil Ind Histosol (A1) Histic Epiped Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface	dicators: I) edon (A2) (A3) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		Polyvalue Belov MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	w Surface nce (S9) (L ands (S11 <i>I</i> lineral (F [.]	(S8) (LRF _RR R, MI) (LRR K, 1) (LRR K	R, RA 149B) L)	Indicators for Prob 2 cm Muck (A10) Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below 3 Thin Dark Surface	lematic Hydric Soils ³ : (LRR K, L, MLRA 149B) dox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Mucky Mineral (S1) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Strictive Layer (if observed): Type: Dept	dric Soil Ind Histosol (A1) Black Histic Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface dicators of hy	dicators: I) edon (A2) (A3) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		Polyvalue Belov MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	w Surface nce (S9) (L ands (S11 <i>I</i> lineral (F [.]	(S8) (LRF _RR R, MI) (LRR K, 1) (LRR K	R, RA 149B) L)	Indicators for Prob 2 cm Muck (A10) Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below 3 Thin Dark Surface	lematic Hydric Soils ³ : (LRR K, L, MLRA 149B) dox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Suffde (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Mari (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Strictive Layer (if observed): Type: Loama	dric Soil Ind Histosol (A1) Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface	dicators: I) edon (A2) (A3) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		Polyvalue Belov MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	w Surface nce (S9) (L ands (S11 <i>I</i> lineral (F [.]	(S8) (LRF _RR R, MI) (LRR K, 1) (LRR K	R, RA 149B) L)	Indicators for Prob 2 cm Muck (A10) Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below 3 Thin Dark Surface	lematic Hydric Soils ³ : (LRR K, L, MLRA 149B) dox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
dric Soil Indicators: Indicators for Problematic Hydric Soils ³ : _ Histos (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B)	dric Soil Ind Histosol (A1) Histic Epiped Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface dicators of hy	dicators: I) edon (A2) (A3) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		Polyvalue Belov MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	w Surface nce (S9) (L ands (S11 <i>I</i> lineral (F [.]	(S8) (LRF _RR R, MI) (LRR K, 1) (LRR K	R, RA 149B) L)	Indicators for Prob 2 cm Muck (A10) Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below 3 Thin Dark Surface	lematic Hydric Soils ³ : (LRR K, L, MLRA 149B) dox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Suffde (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Mari (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Strictive Layer (if observed): Type: Loama	dric Soil Ind Histosol (A1) Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface	dicators: I) edon (A2) (A3) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		Polyvalue Belov MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	w Surface nce (S9) (L ands (S11 <i>I</i> lineral (F [.]	(S8) (LRF _RR R, MI) (LRR K, 1) (LRR K	R, RA 149B) L)	Indicators for Prob 2 cm Muck (A10) Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below 3 Thin Dark Surface	lematic Hydric Soils ³ : (LRR K, L, MLRA 149B) dox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2000) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Redox Depresent, unless disturbed or problematic. strictive Layer (if observed): Type: Depth (inches): Yes No X marks: Hydric Soil Present? Yes No X	Histosol (A1) Histic Epiped Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface	I) edon (A2) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	ice (S9) (I ands (S11 /lineral (F ⁷	-RR R, MI I) (LRR K, 1) (LRR K	.RA 149B) L)	2 cm Muck (A10) Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below 5 Thin Dark Surface	(LRR K, L, MLRA 149B) dox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2000) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Redox Depresent, unless disturbed or problematic. strictive Layer (if observed): Type: Depth (inches): Yes No X marks: Hydric Soil Present? Yes No X	Histosol (A1) Histic Epiped Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface	I) edon (A2) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	ice (S9) (I ands (S11 /lineral (F ⁷	-RR R, MI I) (LRR K, 1) (LRR K	.RA 149B) L)	2 cm Muck (A10) Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below 5 Thin Dark Surface	(LRR K, L, MLRA 149B) dox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) The Cost Praine Redox (S5) Marl (F10) (LRR K, L) Micators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Strictive Layer (if observed): Type:	Histic Epipeo Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface	don (A2) (A3) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		MLRA 149B) Thin Dark Surfa High Chroma Sa Loamy Mucky M Loamy Gleyed M	ice (S9) (I ands (S11 /lineral (F ⁷	-RR R, MI I) (LRR K, 1) (LRR K	.RA 149B) L)	Coast Prairie Rec 5 cm Mucky Peat Polyvalue Below Thin Dark Surface	lox (A16) (LRR K, L, R) or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Mari (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Hydric Soil Present? Yes No X Marriace (S7) Hydric Soil Present? Yes No X Depth (inches): Deptet (inches): Hydric Soil Present? Yes No X emarks: Hydric Soil Present? Yes No X	Black Histic Hydrogen Su Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface dicators of hy	(A3) sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		High Chroma Sa Loamy Mucky M Loamy Gleyed M	ands (S11 /lineral (F	l) (LRR K, 1) (LRR K	L)	5 cm Mucky Peat Polyvalue Below Thin Dark Surface	or Peat (S3) (LRR K, L, R) Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) If observed): Type: Type:	 Hydrogen St Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface dicators of hy 	sulfide (A4) ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		High Chroma Sa Loamy Mucky M Loamy Gleyed M	ands (S11 /lineral (F	l) (LRR K, 1) (LRR K	L)	Polyvalue Below Thin Dark Surface	Surface (S8) (LRR K, L) e (S9) (LRR K, L)
Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) If observed): Type: Type:	Stratified Lay Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface	ayers (A5) elow Dark Surface (A Surface (A12) ky Mineral (S1)		Loamy Mucky M Loamy Gleyed M	/lineral (F	1) (LRR K		Thin Dark Surface	e (S9) (LRR K, L)
Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Idicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. strippe:	Depleted Be Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface dicators of hy	elow Dark Surface (A Surface (A12) ky Mineral (S1)	.11)	Loamy Gleyed N			, _,		
	Thick Dark S Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface dicators of hy	Surface (A12) ky Mineral (S1)	,			·/			
	Sandy Muck Sandy Gleye Sandy Redo Stripped Mat Dark Surface dicators of hy	ky Mineral (S1)	•		(F3)				
Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic strippe: Depth (inches): Merit (inches): No Yes No Yes No Marris:	_ Sandy Gleye _ Sandy Redo _ Stripped Mat _ Dark Surface dicators of hy								
Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Depth (inches): Depth (inches): Methaddle for the strict of	_ Sandy Redo _ Stripped Mat _ Dark Surface dicators of hy	ed Matrix (S4)							
Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. strictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes NoX emarks:	_ Stripped Mat _ Dark Surface dicators of hy					.,			
Dark Surface (S7) dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. strictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes No _X emarks:	_ Dark Surface								
Extrictive Layer (if observed):					(11, 2)				romano _j
Type:				etland hydrology mi	ust be pr	resent, ur	ıless distı	urbed or problematic.	
Depth (inches):	-	yer (if observed):	:						
emarks:		hoc):						Hydric Soil Procent?	Vas Na X
								Hydric Soli Present?	
		gravel at 10"							
	······································	g							

Project/Site: Elkhart Lake	City/County:	Sheboygan County	Sampling Date: 09/14/2023
Applicant/Owner: ELIA		State: WI	Sampling Point: W1-2W
Investigator(s): S.Majerus	Sec	tion, Township, Range: S30,	
Landform (hillside, terrace, etc.): Depression	Local relief (concave,	· · ·	Slope %: 0
Subregion (LRR or MLRA): LRR K, MLRA 95B		Long: -88.030577	Oope % Datum: WGS84
Soil Map Unit Name: Casco-Rodman complex, 1		NWI classification:	Datum NA
Are climatic / hydrologic conditions on the site typical		s X No (If no, o	explain in Remarks.)
Are Vegetation, Soil, or Hydrology	·	e "Normal Circumstances" prese	
Are Vegetation, Soil, or Hydrology		needed, explain any answers in	Remarks.)
SUMMARY OF FINDINGS – Attach site map		, transects, important features	s, etc.
Hydrophytic Vegetation Present? Yes	X No Is the Sam	npled Area	
Hydric Soil Present? Yes	X No within a W	Vetland? Yes X	No
Wetland Hydrology Present? Yes	X No If yes, option	onal Wetland Site ID:	
Remarks: (Explain alternative procedures here or in	a separate report.)		
	long the edge of a ponded depression It precipitation evaluation indicates no		of W1.
HYDROLOGY			
Wetland Hydrology Indicators:		Secondary Indicators (min	nimum of two required)
Primary Indicators (minimum of one is required; che	<u>ck all that apply)</u>	Surface Soil Cracks (I	B6)
Surface Water (A1) X v	Water-Stained Leaves (B9)	Drainage Patterns (B1	10)
High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16	3)
Saturation (A3) N	Marl Deposits (B15)	Dry-Season Water Ta	able (C2)
	Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)	.)
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roots (C3)	Saturation Visible on A	Aerial Imagery (C9)
Drift Deposits (B3) F	Presence of Reduced Iron (C4)	Stunted or Stressed P	
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6)	X Geomorphic Position	(D2)
Iron Deposits (B5) T	Thin Muck Surface (C7)	Shallow Aquitard (D3)	,
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Microtopographic Reli	
Sparsely Vegetated Concave Surface (B8)		X FAC-Neutral Test (D5	j)
Field Observations:			
Surface Water Present Yes <u>No</u>			
	Depth (inches):13		
Saturation Present Yes X No	Depth (inches): 13	Wetland Hydrology Present?	Yes <u>X</u> No
(includes capillary fringe)	L		
Describe Recorded Data (stream gauge, monitoring	well, aerial photos, previous inspection	ons), if available:	
Remarks:			

Sampling Point: W1-2W

Tilia americana	Absolute <u>% Cover</u>	Dominant <u>Species</u>	Indicator <u>Status</u>	Dominance Test worksheet:
	20	Yes	FACU	Number of Deminent Creation
Ulmus americana	10	Yes	FACW	Number of Dominant Species That Are OBL, FACW, or FAC: 4
	<u> </u>			Total Number of Dominant Species Across All Strata:5(B)
	<u> </u>			Percent of Dominant Species That Are OBL, FACW, or FAC:80(A/4
	30	= Total Cover		Prevalence Index worksheet: Total % Cover of: Multiply by:
apling/Shrub Stratum (Plot size: <u>15 ft</u>)				
	50	Yes	FAC	OBL species 60 x 1 = 60
				FACW species 50 x 2 = 100
				FAC species 50 x 3 = 150
				FACU species 20 x 4 = 80
				UPL species 0 x 5 = 0
				Column Totals: 180 (A) 390 (I
				Prevalence Index = B/A = 2.17
	·			Hydrophytic Vegetation Indicators:
	50	= Total Cover		
erb Stratum_(Plot size:5 ft_)				<u>-</u> 1 - Rapid Test for Hydrophytic Vegetation
Leersia oryzoides	60	Yes	OBL	2 - Dominance Test is >50%
Pilea pumila	30	Yes	FACW	X_3 - Prevalence Index is ≤3.0 ¹
Impatiens capensis		No	FACW	4 - Morphological Adaptations ¹
				(Provide supporting data in Remarks or on a separate sheet)
				Problematic Hydrophytic Vegetation ¹ (Explain)
				¹ Indicators of hydric soil and wetland hydrology must be present, unles
				disturbed or problematic.
				Definitions of Vegetation Strata:
				Tree – Woody plants 3 in. (7.6 cm) or more in
)	<u> </u>			diameter at breast height (DBH), regardless of heigh
l				
2				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
	100			
oody Vine Stratum (Plot size: <u>30 ft</u>)		= Total Cover		Herb – All herbaceous (non-woody) plants, regardles of size, and woody plants less than 3.28 ft tall.
			<u> </u>	Woody vines – All woody vines greater than 3.28 ft
				height.
				1
				Hydrophytic Vegetation

SOIL	
------	--

Profile Desc	ription: (Describe t	to the de	oth needed to	document th	ne indica	tor or co	onfirm the absence	of indicators.)
Depth	Matrix			Redox Featu				
(inches)	Color (moist)	%	Color (mois	st) %	Type ¹	Loc ²	Texture	Remarks
0-3	10YR 2/2	100			·		Mucky Loam	Depositional material
3-8	10YR 2/2	95	7.5YR 4/6	5	С	PLM	Silty Clay Loam	Oxy rhiz
8-18	10YR 4/2	90	7.5YR 4/6	10	С	М	Clay Loam	
18-24	10YR 4/2	100					Sandy Clay	
		·			·			
		·						
		·						
¹ Type: C=C	oncentration, D=Dep	bletion. RI	M=Reduced Ma	trix. MS=Mas	sked San	d Grains	² Location: PL=	- Pore Lining, M=Matrix.
Hydric Soil	-							s for Problematic Hydric Soils ³ :
Histosol (Polyvalue	Below Surface	(S8) (LRF	RR.		Muck (A10) (LRR K, L, MLRA 149B)
	ipedon (A2)		/ MLRA 1		(- / (,		Prairie Redox (A16) (LRR K, L, R)
Black His	stic (A3)		Thin Dark	Surface (S9) (LRR R, MI	LRA 149E		Mucky Peat or Peat (S3) (LRR K, L, R)
Hydroger	n Sulfide (A4)		High Chro	ma Sands (S1	1) (LRR K	, L)	Polyva	alue Below Surface (S8) (LRR K, L)
	Layers (A5)		X Loamy Mu	icky Mineral (F	1) (LRR K	, L)	Thin D	Dark Surface (S9) (LRR K, L)
X Depleted	Below Dark Surface (A	(11)		eyed Matrix (F2	2)		Iron-N	langanese Masses (F12) (LRR K, L, R)
	rk Surface (A12)		X Depleted	Matrix (F3)				oont Floodplain Soils (F19) (MLRA 149B)
	ucky Mineral (S1)			rk Surface (F6)				Spodic (TA6) (MLRA 144A, 145, 149B)
	leyed Matrix (S4)			Dark Surface (I	-7)			Parent Material (F21)
Sandy Re				pressions (F8)				Shallow Dark Surface (F22)
Stripped			IVIAII (F 10	(LRR K, L)			Other	(Explain in Remarks)
	x <i>y</i>							
			vetland hydrolo	gy must be p	resent, ur	nless dis	turbed or problematio	D
	Layer (if observed):							
Type:								A No. X No.
	nches):						Hydric Soil Pres	sent? Yes X No
Remarks:								

Project/Site: Elkhart Lake	City/County: Sheboygan County Sampling Date: 09/14/2023
Applicant/Owner: ELIA	State: WI Sampling Point: W1-2U
Investigator(s): S.Majerus	Section, Township, Range: S30, T016N, R021E
	relief (concave, convex, none): Linear Slope %: 2-5
Subregion (LRR or MLRA): <u>LRR K, MLRA 95B</u> Lat: <u>43.821596</u>	Long: -88.030668 Datum: WGS84
Soil Map Unit Name: Casco-Rodman complex, 12 to 20 percent slope	es, eroded NWI classification: NA
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes X No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology significantly dist	urbed? Are "Normal Circumstances" present? Yes X No
Are Vegetation , Soil , or Hydrology naturally probler	natic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling p	oint locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area
Hydric Soil Present? Yes No X	within a Wetland? Yes No X
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	
Sample point was observed nort	hwest and upslope from W1-2W
Antecedent precipitation evaluation	on indicates normal site conditions.
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (B9)	Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3)Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres on L	iving Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iron (C	C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Till	ed Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present Yes No X Depth (inches):
Water Table Present Yes No X Depth (inches	.):
Saturation Present Yes No X Depth (inches	
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pro	evious inspections), if available:
Remarks:	

Sampling Point: W1-2U

	Absolute	Dominant	Indicator	
<u>Tree Stratum</u> (Plot size: <u>30 ft</u>)	% Cover		Status	Dominance Test worksheet:
1. Populus tremula	30	Yes	FAC	
				Number of Dominant Species
2. <u>Tilia americana</u>	20	Yes	FACU	That Are OBL, FACW, or FAC: (A)
3				Total Number of Dominant
4				Species Across All Strata: 6 (B)
5				
6				Percent of Dominant Species
7				That Are OBL, FACW, or FAC: <u>67</u> (A/B)
	50			Prevalence Index worksheet:
	50	_ = Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15 ft)				OBL species 0 x 1 = 0
1. Rhamnus cathartica	50	Yes	FAC	FACW species $0 x 2 = 0$
2				
3.				FAC species x 3 = 285
		· ·		FACU species 25 x 4 = 100
				UPL species 0 x 5 = 0
5				Column Totals: 120 (A) 385 (B)
6				Prevalence Index = B/A = 3.21
7				
	50			Hydrophytic Vegetation Indicators:
5 ft .		= Total Cover		 1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5 ft)				X 2 - Dominance Test is >50%
1. Rhamnus cathartica	10	Yes	FAC	- 3 - Prevalence Index is ≤3.0 ¹
2. Parthenocissus quinquefolia	5	Yes	FACU	
3. Geum aleppicum	5	Yes	FAC	4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)
4				
5.				Problematic Hydrophytic Vegetation ¹ (Explain)
				¹ Indicators of hydric soil and wetland hydrology must be present, unless
				disturbed or problematic.
7				
8				Definitions of Vegetation Strata:
9			<u> </u>	Tree – Woody plants 3 in. (7.6 cm) or more in
10		· ·		diameter at breast height (DBH), regardless of height.
11				
12				Sapling/shrub – Woody plants less than 3 in. DBH
	20			and greater than or equal to 3.28 ft (1 m) tall.
	20	= Total Cover		Herb – All herbaceous (non-woody) plants, regardless
Woody Vine Stratum (Plot size: <u>30 ft</u>)				of size, and woody plants less than 3.28 ft tall.
1				Manda and Aller
2				Woody vines – All woody vines greater than 3.28 ft in height.
3.				
4.				Hydrophytic
T				Vegetation
	0	= Total Cover		Present? Yes X No
		-		
Remarks: (Include photo numbers here or on a sepa	rata abaat)			
Remarks. (include photo numbers here of on a separ	ale sneel.)			

L

	Matrix			x Featu				
inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-14	10YR 2/2	100					Sandy Loam	
14-24	10YR 4/4	100					Sandy Clay Loam	
17-27				-				
		· ·		-				
		· ·						
		· ·						
		·						
Type: C=Co	oncentration, D=Dep	oletion, RM	=Reduced Matrix, N	/IS=Mas	sked Sand	d Grains.	² Location: PL=Pore Lin	ing, M=Matrix.
lydric Soil I	ndicators:						Indicators for Pro	blematic Hydric Soils ³ :
Histosol (-	-	Polyvalue Below	Surface	(S8) (LRF	R,	2 cm Muck (A10) (LRR K, L, MLRA 149B)
	pedon (A2)		MLRA 149B)					edox (A16) (LRR K, L, R)
Black His		-	Thin Dark Surfac				·	at or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)	-	High Chroma Sa					Surface (S8) (LRR K, L)
	Layers (A5)	-	Loamy Mucky M			L)		ce (S9) (LRR K, L)
	Below Dark Surface (A k Surface (A12)		Loamy Gleyed M		.)			Masses (F12) (LRR K, L, R Dain Soils (F19) (MLRA 149
	ucky Mineral (S1)	-	Redox Dark Sur					A6) (MLRA 144A, 145, 149E
	eyed Matrix (S4)	-	Depleted Dark S				Red Parent Mate	
Sandy Re		-	Redox Depressi		- /			ark Surface (F22)
	Matrix (S6)		Marl (F10) (LRR				Other (Explain ir	
Dark Surf	ace (S7)							
			tland hydrology mu	ist be pi	resent, ur	iless dist	turbed or problematic.	
	ayer (if observed):							
Туре:								
	nches):						Hydric Soil Present?	Yes No

Project/Site: Elkhart Lake	City/County: Sheboygan County Sampling Date: 09/14/2023
Applicant/Owner: ELIA	State: WI Sampling Point: W1-3W
Investigator(s): S.Majerus	Section, Township, Range: S30, T016N, R021E
· · · ·	Il relief (concave, convex, none): Concave Slope %: 0
· · · ·	· · · · · · · · · · · · · · · · · · ·
Subregion (LRR or MLRA): LRR K, MLRA 95B Lat: 43.821297 Soil Map Unit Name: Casco-Rodman complex, 12 to 20 percent slop	Long: <u>-88.030471</u> Datum: <u>WGS84</u> Des, eroded NWI classification: NA
Are climatic / hydrologic conditions on the site typical for this time of year?	
Are Vegetation, Soil, or Hydrology significantly dis	
Are Vegetation, Soil, or Hydrology naturally proble	
SUMMARY OF FINDINGS – Attach site map showing sampling	
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area
Hydric Soil Present? Yes X No	within a Wetland? Yes X No
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	
Sample point was observed at the edc	ge of a depression, along the south side of WI.
Antecedent precipitation evaluat	tion indicates normal site conditions.
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (B9)) Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1	1) Crayfish Burrows (C8)
Sediment Deposits (B2) X Oxidized Rhizospheres on	Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iron	(C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in T	Tilled Soils (C6) X Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)) Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present Yes No X Depth (inche	es):
Water Table Present Yes No X Depth (inche	es):
Saturation Present Yes No X Depth (inche	
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos, p	previous inspections), if available:
Demonitor	
Remarks:	

Sampling Point: W1-3W

Tree Stratum (Plot size: <u>30 ft</u>)	Absolute <u>% Cover</u>	Dominant <u>Species</u>	Indicator <u>Status</u>	Dominance Test worksheet:
1.		·		Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3 4				Total Number of Dominant Species Across All Strata: <u>2</u> (B)
5.				Percent of Dominant Species That Are OBL, FACW, or FAC:100(A/B)
7				Prevalence Index worksheet:
	0	_ = Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)				OBL species 0 $x 1 = 0$
1				FACW species 90 x 2 = 180
2				FAC species $0 \times 3 = 0$
3				FACU species 10 $x 4 = 40$
4				
5				· · · · · · · · · · · · · · · · ·
6				Column Totals: 100 (A) 220 (B)
7				Prevalence Index = B/A =
	0			Hydrophytic Vegetation Indicators:
5.#		= Total Cover		X 1 - Rapid Test for Hydrophytic Vegetation
<u>Herb Stratum</u> (Plot size: <u>5 ft</u>)				2 - Dominance Test is >50%
1. Phalaris arundinacea		Yes	FACW	X 3 - Prevalence Index is $\leq 3.0^{1}$
2. Impatiens capensis	40	Yes	FACW	4 - Morphological Adaptations ¹
3. <u>Cirsium arvense</u>	10	No	FACU	(Provide supporting data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5		<u> </u>		¹ Indicators of hydric soil and wetland hydrology must be present, unless
6		<u> </u>		disturbed or problematic.
7				
8				Definitions of Vegetation Strata:
9				Tree – Woody plants 3 in. (7.6 cm) or more in
10				diameter at breast height (DBH), regardless of height.
11		<u> </u>		Sapling/shrub – Woody plants less than 3 in. DBH
12		<u> </u>		and greater than or equal to 3.28 ft (1 m) tall.
	100	= Total Cover		
Woody Vine Stratum (Plot size: <u>30 ft</u>)				Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
1			<u> </u>	Woody vines – All woody vines greater than 3.28 ft in
2			<u> </u>	height.
3				Lu dro s butio
4				Hydrophytic Vegetation
	0	= Total Cover		Present? Yes X No
Remarks: (Include photo numbers here or on a separ	ate sheet)			1
	ale sheet.)			

epth	Matrix	-		x Featur			onfirm the absence of	
nches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	10YR 3/2	95	7.5YR 4/6	5	С	PL	Silt Loam	Oxy rhiz
6-18	7.5YR 4/2	95	7.5YR 4/6	5	С	PLM	Silty Clay Loam	
18-24	7.5YR 3/2	95	7.5YR 4/6	5	С	PLM	Sandy Clay Loam	
		·						
		·						
		·						
ype: C=C	oncentration, D=Dep	letion, RI	M=Reduced Matrix, I	MS=Mas	ked San	d Grains	. ² Location: PL=	Pore Lining, M=Matrix.
dric Soil	Indicators:						Indicators	s for Problematic Hydric Soils ³ :
Histosol	(A1)		Polyvalue Below	v Surface	(S8) (LRF	R,	2 cm M	Muck (A10) (LRR K, L, MLRA 149B)
Histic Ep	ipedon (A2)		MLRA 149B)				Coast	Prairie Redox (A16) (LRR K, L, R)
Black His	stic (A3)		Thin Dark Surfa	ce (S9) (I	_RR R, MI	RA 149E	3) 5 cm M	Mucky Peat or Peat (S3) (LRR K, L, R)
_ Hydroge	n Sulfide (A4)		High Chroma S	ands (S11	1) (LRR K ,	L)	Polyva	alue Below Surface (S8) (LRR K, L)
Stratified	Layers (A5)		Loamy Mucky M	lineral (F	1) (LRR K	, L)	Thin D	0ark Surface (S9) (LRR K, L)
_ Depleted	Below Dark Surface (A	.11)	Loamy Gleyed I	Matrix (F2	!)		Iron-M	langanese Masses (F12) (LRR K, L, R)
	rk Surface (A12)		X Depleted Matrix				Piedm	ont Floodplain Soils (F19) (MLRA 149B)
Sandy M	ucky Mineral (S1)		X Redox Dark Sur	face (F6)			Mesic	Spodic (TA6) (MLRA 144A, 145, 149B)
	leyed Matrix (S4)		Depleted Dark \$					arent Material (F21)
	edox (S5)		Redox Depress		,			Shallow Dark Surface (F22)
	Matrix (S6)		Marl (F10) (LRF					(Explain in Remarks)
	face (S7)			(I, L)				
		tion and w	vetland hvdrologv m	ust be pr	esent. ur	nless dis	turbed or problematic	2.
	Layer (if observed):		, ,,					
Type:								
Depth (i	nches):						Hydric Soil Pres	sent? Yes X No
marks:								

Project/Site:Elkhart Lake	City/County: Sheboygan County Sampling Date: 09/14/2023
Applicant/Owner: ELIA	State: <u>WI</u> Sampling Point: <u>W1-3U</u>
Investigator(s): S. Majerus	Section, Township, Range: S30, T016N, R021E
Landform (hillside, terrace, etc.): Backslope Loca	al relief (concave, convex, none): Convex Slope %: 2-5
Subregion (LRR or MLRA): LRR K, MLRA 95B Lat: 43.821197	Long: -88.030427 Datum: WGS84
Soil Map Unit Name: Casco-Rodman complex, 12 to 20 percent slo	
Are climatic / hydrologic conditions on the site typical for this time of year'	
Are Vegetation, SoilX_, or Hydrologysignificantly di	
Are Vegetation, Soil, or Hydrology naturally problem	lematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing sampling	point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes No _X	Is the Sampled Area
Hydric Soil Present? Yes No X	within a Wetland? Yes No X
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.)	
Sample point was observed south and upslope from W1-3U, in uplar	nd meadow habitat. Gravel prevented observation of soils below 8 inches.
Antecedent precipitation evalua	ation indicates normal site conditions.
·	
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (BS	9) Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C	C1) Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres or	n Living Roots (C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	n (C4) Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in	Tilled Soils (C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks	s) Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present Yes No X Depth (inch	ies):
	nes):
Saturation Present Yes No X Depth (inch	nes): Wetland Hydrology Present? Yes No _X
(includes capillary fringe)	
Describe Recorded Data (stream gauge, monitoring well, aerial photos,	previous inspections), if available:
Remarks:	

Sampling Point: W1-3U

Tree Stratum (Plot size: _ 30 ft)	Absolute % Cover	Dominant Species	Indicator Status	Dominance Test worksheet:
1				
2			<u> </u>	Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3 4				Total Number of Dominant Species Across All Strata: 1 (B)
5.				Percent of Dominant Species That Are OBL, FACW, or FAC: 0 (A/B)
7				Prevalence Index worksheet:
	0	= Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)				$\begin{array}{c c} \hline \\ \hline $
1				FACW species $0 x 2 = 0$
2				FAC species 0 x 3 = 0
3				FACU species $40 \times 4 = 160$
4				
5				UPL species $60 \times 5 = 300$
6				Column Totals: 100 (A) 460 (B)
7				Prevalence Index = B/A =4.6
	0			Hydrophytic Vegetation Indicators:
		= Total Cover		1 - Rapid Test for Hydrophytic Vegetation
<u>Herb Stratum</u> (Plot size: <u>5 ft</u>)				- 2 - Dominance Test is >50%
1. Bromus inermis		Yes	UPL	 ⁻ 3 - Prevalence Index is ≤3.0 ¹
2. Solidago canadensis	15	No	FACU	4 - Morphological Adaptations ¹
3. <u>Monarda fistulosa</u>	15	No	FACU	(Provide supporting data in Remarks or on a separate sheet)
4. Daucus carota	10	No	UPL	Problematic Hydrophytic Vagatation ¹ (Evaluin)
5. Poa pratensis	10	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
6		·	<u> </u>	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7		·	<u> </u>	
8		·	<u> </u>	Definitions of Vegetation Strata:
9				Tree – Woody plants 3 in. (7.6 cm) or more in
10				diameter at breast height (DBH), regardless of height.
11				
12				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
	100	T () O		
Woody Vine Stratum (Plot size: <u>30 ft</u>)		= Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
1				
2				Woody vines – All woody vines greater than 3.28 ft in height.
3	_			
4				Hydrophytic
	0			Vegetation
	0	= Total Cover		Present? Yes No X
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			

0-5 10YR 3/2 100 Sandy Loam W/ gravel 5-8 7.5YR 5/4 100 Sandy Loam W/ gravel	Depth	Matrix		Redo	x Featu	res				
5-8 7.5YR 5/4 100 Sandy Learn W/ gravel 5-8 7.5YR 5/4 100 Sandy Learn W/ gravel	nches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Rem	arks
ype: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=Matrix. ydric Soil Indicators: Indicators for Problematic Hydric Soils Histosol (A1) Polyvalue Below Surface (S8) (LRR R, L, RR) Histosol (A2) MLRA 1498 Histosol (A3) Thin Dark Surface (S9) (LRR R, NLRA 1498) Histosol (A4) High Chroma Sands (S11) (LRR K, L) Black Histo Thin Dark Surface (S9) (LRR R, NLRA 1498) Joppteted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A11) Depleted Matrix (F2) Sandy Rdux (S5) Redox Dark Surface (F7) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Sandy Gleyed Matrix (S6) Mart (F10) (LRR K, L) Dark Surface (S7) Mart (F10) (LRR K, L) Other (Explain in Remarks) Depleted Dark Surface (F7) Dark Surface (S7) Red Parent Material (F21) Stripped Matrix (S6) Mart (F10) (LRR K, L) Dark Surface (S7) Red Parent Material (F21) Idicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. settrictic Layer	0-5	10YR 3/2	100					Sandy Loam		
ype: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=Matrix. rdric Soil Indicators: Indicators for Problematic Hydric Soils	5-8	7.5YR 5/4	100					Sandy Loam	W/ gravel	
dric Soil Indicators: Indicators for Problematic Hydric Soils _ Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) _ Histic Epipedon (A2) MLRA 149B)									<u></u>	
dric Soil Indicators: Indicators for Problematic Hydric Soils Histos (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144, 145, 142, Sandy Gleyed Matrix (S4) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Hydric Soil Present? Yes										
dric Soil Indicators: Indicators for Problematic Hydric Soils Histos (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144, 145, 142, Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Ito Sale Present? Yes			<u> </u>							
dric Soil Indicators: Indicators for Problematic Hydric Soils Histos (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144, 145, 142, Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Ito Sale Present? Yes			<u> </u>							
dric Soil Indicators: Indicators for Problematic Hydric Soils Histos (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144, 145, 142, Sandy Gleyed Matrix (S4) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Hydric Soil Present? Yes										
dric Soil Indicators: Indicators for Problematic Hydric Soils Histosol (A1) Polyvalue Below Surface (S8) (LRR R,										
dric Soil Indicators: Indicators for Problematic Hydric Soils Histosol (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144, 145, 142, Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) The Depleted In thydrology must be present, unless disturbed or problematic. strictive Layer (if observed): Type: Pietmont Floodplain in Remarks) Depth (inches): Hydric Soil Present? Yes No										
dric Soil Indicators: Indicators for Problematic Hydric Soils Histos (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144, 145, 142, Sandy Mucky Mineral (S1) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Ito Sale Present? Yes										
dric Soil Indicators: Indicators for Problematic Hydric Soils _ Histos (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B) _ Histic Epipedon (A2) MLRA 149B)										
dric Soil Indicators: Indicators for Problematic Hydric Soils _ Histos (A1) Polyvalue Below Surface (S8) (LRR R, 2 cm Muck (A10) (LRR K, L, MLRA 149B)	/pe: C=C	oncentration, D=Dep	bletion, RM	=Reduced Matrix, I	MS=Mas	sked San	d Grains	² Location: PL=I	Pore Lining, M=Matrix	х.
Histosol (A1) Polyvalue Below Surface (S8) (LRR R,2 cm Muck (A10) (LRR K, L, MLRA 149B) Histic Epipedon (A2) MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Stratified Layers (A5) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Sandy Redox (S5) Redox Depressions (F8) Stripped Matrix (S6) Marl (F10) (LRR K, L) Dark Surface (S7) dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. strictive Layer (if observed): Type: Depth (inches): Depth (inches):										
Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, P) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144A, 145, 144) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 144) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Ito and wetland hydrology must be present, unless disturbed or problematic. strictive Layer (if observed): Type:				Polyvalue Below	v Surface	(S8) (LRF	R,		-	
Black Histic (A3)	-					(- / (,			
Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 144A, 145, 144, 145,	-			,	ce (S9) (RA 149B			
Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 1 Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 144, 145, 1	-							· <u> </u>		
Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, 2) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 1 Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 144, 144										
Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 1 Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Mesic Spodic (TA6) (MLRA 144A, 145, 144, 144							L)			
Sandy Mucky Mineral (S1)			.11)			2)				
Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Red Parent Material (F21) Sandy Redox (S5) Redox Depressions (F8) Very Shallow Dark Surface (F22) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Other (Explain in Remarks) dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic.	-									
Sandy Redox (S5)Redox Depressions (F8)Very Shallow Dark Surface (F22)Stripped Matrix (S6)Marl (F10) (LRR K, L)Other (Explain in Remarks)Other (Explain in Remarks) Dark Surface (S7) dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic strictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes No marks:				Redox Dark Sur	face (F6))		Mesic S	Spodic (TA6) (MLRA 14 4	4A, 145, 149B)
Stripped Matrix (S6)Marl (F10) (LRR K, L)Other (Explain in Remarks) Dark Surface (S7) dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. strictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes No marks:	Sandy G	leyed Matrix (S4)		Depleted Dark S	Surface (I	=7)		Red Pa	arent Material (F21)	
_ Dark Surface (S7) dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. strictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes No marks:	Sandy Re	edox (S5)		Redox Depressi	ions (F8)			Very Sł	hallow Dark Surface (F2	2)
dicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. strictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes No marks:	_ Stripped	Matrix (S6)		Marl (F10) (LRF	R K, L)			Other (I	Explain in Remarks)	
strictive Layer (if observed):	_ Dark Sur	face (S7)								
Type:				etland hydrology mu	ust be p	resent, ur	nless dis	turbed or problematic.		
Depth (inches): Hydric Soil Present? Yes No marks:		Layer (if observed):								
		nches):						Hydric Soil Prese	ent? Yes	No>
								•		
fusal at gravel at 8"	iusal at gra	avel at 8"								

ASSURED WETLAND DELINEATION REPORT

Elkhart Lake Wetland Restoration Site Photographs October 3, 2023

Appendix E SITE PHOTOGRAPHS

Client: Elkhart Lake Improvement Association Project: Elkhart Lake Wetland Delineation

Project Number: 193806506 Location: Sheboygan Co., WI

View of W1-1W, facing Southwest

View of W1-1W, facing South

View of W1-1W, facing Northwest

View of W1-1U, facing South

Client: Elkhart Lake Improvement Association Project: Elkhart Lake Wetland Delineation

Project Number: 193806506 Location: Sheboygan Co., WI

View of W1-1U, facing North

View of W1-2W, facing North

View of W1-2W, facing Southwest

View of W1-2U, facing South

Client: Elkhart Lake Improvement Association Project: Elkhart Lake Wetland Delineation

Project Number: 193806506 Location: Sheboygan Co., WI

View of W1-2U, facing North

View of W1-3W, facing South

View of W1-3W, facing North

View of W1-3U, facing West

t: Elkhart Lake Improvement Association ect: Elkhart Lake Wetland Delineation Project Number: 193806506 Location: Sheboygan Co., WI

View of W1-3U, facing East

Appendix E

Laboratory Test Results

soil-lab@mailplus.wisc.edu https://uwlab.soils.wisc.edu

Stantec / William Davis 209 Commerce Parkway Cottage Grove, WI 53527 Date10/11/2023Account #559060Lab #3359

COMMENTS:

Soil Total Leachable P

Sample #	Sample ID	Total Leachable P %	
1	EL-E	0.11	
2	EL-S	0.12	
3	EL-N	0.09	
4	EL-W	0.11	
5	EL-US	0.09	
6	EL-DS	0.10	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Christian Burnson Stantec Consulting Corporation 209 Commerce Parkway PO BOX 128 Cottage Grove, Wisconsin 53527-8955 Generated 9/20/2023 5:07:58 PM

JOB DESCRIPTION

Elkhart Lake

JOB NUMBER

500-239709-1

Eurofins Chicago 2417 Bond Street University Park IL 60484

See page two for job notes and contact information.

Eurofins Chicago

Job Notes

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to the NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory. This report is confidential and is intended for the sole use of Eurofins Environment Testing North Central, LLC and its client. All guestions regarding this report should be directed to the Eurofins Environment Testing North Central, LLC Project Manager who has signed this report.

Results relate only to the items tested and the sample(s) as received by the laboratory. The results, detection limits (LOD) and Quantitation Limits (LOQ) have been adjusted for sample dilutions and/or solids content.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Chicago Project Manager.

Authorization

under hedre

Generated 9/20/2023 5:07:58 PM

Authorized for release by Sandie Fredrick, Project Manager II Sandra.Fredrick@et.eurofinsus.com (920)261-1660

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Detection Summary	5
Method Summary	6
Sample Summary	7
Client Sample Results	8
Definitions	10
QC Association	11
QC Sample Results	12
Chronicle	13
Certification Summary	14
Chain of Custody	15
Receipt Checklists	17

Job ID: 500-239709-1

Laboratory: Eurofins Chicago

Narrative

Job Narrative 500-239709-1

Receipt

The samples were received on 9/16/2023 10:20 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.3° C.

General Chemistry

Method SM 4500 P E: The method blank for preparation batch 500-732778 and analytical batch 500-733187 contained Phosphorus as P above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 500-239709-1

Detection Summary

Client: Stantec Consulting Corporation Project/Site: Elkhart Lake Job ID: 500-239709-1

Client Sample ID: EL-1 Lab Sample ID: 500-						0-239709-1		
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Phosphorus as P	0.44	В	0.25	0.12	mg/L	1	SM 4500 P E	Total/NA
Client Sample ID: EL-2						Lab San	nple ID: 50	0-239709-2
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Ргер Туре
Phosphorus as P	0.47	<u>в</u>	0.25	0.12	mg/L		SM 4500 P E	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins Chicago

Method Summary

Client: Stantec Consulting Corporation Project/Site: Elkhart Lake

Method	Method Description	Protocol	Laboratory
SM 4500 P E	Phosphorus	SM	EET CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	EET CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater"

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Eurofins Chicago

Sample Summary

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-239709-1	EL-1	Water	09/14/23 12:30	09/16/23 10:20
500-239709-2	EL-2	Water	09/14/23 12:30	09/16/23 10:20

Client Sample Results

Client: Stantec Consulting Corporation Project/Site: Elkhart Lake							,	Job ID: 500-23	89709-1
Client Sample ID: EL-1						La	ab Sample	ID: 500-239	9709-1
Date Collected: 09/14/23 12:30							-	Matrix	: Water
Date Received: 09/16/23 10:20									
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phosphorus as P (SM 4500 P E)	0.44	В	0.25	0.12	mg/L		09/18/23 12:14	09/20/23 10:41	1

9/20/2023

Client Sample Results

Client: Stantec Consulting Corporation Project/Site: Elkhart Lake							·	Job ID: 500-23	9709-1
Client Sample ID: EL-2						La	ab Sample	ID: 500-239	709-2
Date Collected: 09/14/23 12:30							-	Matrix	Water
Date Received: 09/16/23 10:20									
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Phosphorus as P (SM 4500 P E)	0.47	В	0.25	0.12	mg/L		09/18/23 12:14	09/20/23 10:42	1

9/20/2023

8

Qualifiers

General Chemistry

Qualifier	Qualifier Description
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)
TNTC	Too Numerous To Count

QC Association Summary

Job ID: 500-239709-1

General Chemistry

Prep Batch: 732778

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-239709-1	EL-1	Total/NA	Water	SM 4500 P B	
500-239709-2	EL-2	Total/NA	Water	SM 4500 P B	
MB 500-732778/1-A	Method Blank	Total/NA	Water	SM 4500 P B	
LCS 500-732778/2-A	Lab Control Sample	Total/NA	Water	SM 4500 P B	

Analysis Batch: /33187

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
500-239709-1	EL-1	Total/NA	Water	SM 4500 P E	732778	
500-239709-2	EL-2	Total/NA	Water	SM 4500 P E	732778	
MB 500-732778/1-A	Method Blank	Total/NA	Water	SM 4500 P E	732778	9
LCS 500-732778/2-A	Lab Control Sample	Total/NA	Water	SM 4500 P E	732778	Ē

Eurofins Chicago

Job ID: 500-239709-1

Method: SM 4500 P E - Phosphorus

Lab Sample ID: MB 500-732 Matrix: Water Analysis Batch: 733187		МВ						Clie		le ID: Methoo Prep Type: To Prep Batch:	otal/NA
Analyte	Result	Qualifier	RI	_	MDL	Unit	0) Р	repared	Analyzed	Dil Fac
Phosphorus as P	0.0340	J	0.05	0 0	.024	mg/L		09/1	18/23 12:14	09/20/23 09:30	1
Lab Sample ID: LCS 500-732 Matrix: Water Analysis Batch: 733187	2778/2-A						Clier	nt Sa		Lab Control S Prep Type: To Prep Batch:	otal/NA
			Spike	LCS	LCS					%Rec	
Analyte			Added	Result	Qua	lifier	Unit	D	%Rec	Limits	
Phosphorus as P			0.500	0.487			mg/L		97	88 - 123	

Eurofins Chicago

Matrix: Water

Matrix: Water

Lab Sample ID: 500-239709-1

Lab Sample ID: 500-239709-2

Client Sample ID: EL-1 Date Collected: 09/14/23 12:30 Date Received: 09/16/23 10:20

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	SM 4500 P B			732778	FRG	EET CHI	09/18/23 12:14 - 09/18/23 16:14 ¹
Total/NA	Analysis	SM 4500 P E		1	733187	DM	EET CHI	09/20/23 10:41

Client Sample ID: EL-2 Date Collected: 09/14/23 12:30 Date Received: 09/16/23 10:20

ſ	_	Batch	Batch		Dilution	Batch			Prepared
	Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
	Total/NA	Prep	SM 4500 P B			732778	FRG	EET CHI	09/18/23 12:14 - 09/18/23 16:14 1
	Total/NA	Analysis	SM 4500 P E		1	733187	DM	EET CHI	09/20/23 10:42

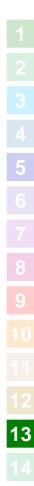
⁺This procedure uses a method stipulated length of time for the process. Both start and end times are displayed.

Laboratory References:

EET CHI = Eurofins Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Eurofins Chicago

Client: Stantec Consulting Corporation Project/Site: Elkhart Lake Job ID: 500-239709-1


12 13

Laboratory: Eurofins Chicago

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date		
Wisconsin	State	999580010	08-31-24		

••• ** €:		modelender		Cł	nain	of	Cus	tod	y R	ecor	d 4	.57	63	4	\$ \$\$		vironment Te tAmerica
iress	Poqui	latory Pro	aram. T				1	-	i din	F							
Client Contact		anager:				CONTRACTOR OF THE OWNER	RCRA	o	ther'		In i			7 		COC No	TAL-6
pany Name Stantel	Tol/Email	Chastie	1/151747	Bun	1 <u>500</u>	Reader rates at	and the second second second	dan server a			Date Carr		<u>وې اکم</u> محمد			of	COCs
ess 709 commence PKury		Analysis T			<u>Mager</u>			ΪT	TT							Sampler	
State/Zip Cottale Grove WI 53527		DAR DAYS	and the second se	RKING DAY	Ś											For Lab Use Only	
ne 607-621-0533	TA	T if different fr	om Below			Î	5									Walk-in Client:	
		2	weeks			źŻ	199									Lab Sampling	
ect Name Elkhart Loke			week		# of Cont.	Σg	Ø										
Elkhart Lake, wit			days day			Iple / MS	ST.									Job / SDG No 510-23	0 3/19
			Sample	T		San	a									200-22	9707
L'acati	Sample	Sample	Type			red	tal										
Sample Identific: 500-239709 COC	Date	Time	(C≕Comp, G≕Grab)	Matrix	# of Cont.	Filte	12									Sample Spe	cific Notes
=L-1.	OG his	12:30	1	sw	1	Ħ		++	++	+++	++			++	++		
	1/14		6	† · · ·		- -	λ	++			++			┼╌┾	+		
-L-J	09/14	12:30	6	SW			X										
	1																
			*											\uparrow			
					-			┼╌┼╴	╉		+++	-		++	┼┼		
				hereness								\square			44		
											\square			ТТ	TT		
								┼─┼╴	+		++			╋	++	<u> </u>	antentijes identi instructuistaanteisist
				<u> </u>				<u> </u>			4-4-		_	$\left \right $	+		in an in Welling and the state of the Part
<u></u>		<u>.</u>		- retain					$\uparrow \uparrow$		\dagger						
								+	++		++	++		┼╌┼╴	+		
۸								Lí.	┶┶┼								
irvation Used: 1= Ice, 2= HCI; 3= H2SO4; 4=HNO3; ble Hazard Identification.	5=NaOH; I	5= Other_					nole C		al (Af	e may h		L L	<u>samr</u>		retain	led longer than 1 mon	th)
ny samples from a listed EPA Hazardous Waste? Please	e List any E	PA Waste	Codes for	the samp	le in th		inpic L	10000	ar (71 i	oo may k	0 0000	0000 11	Samp	165 010	- i o tuini	icu longer man i mon	any.
ments Section if the lab is to dispose of the sample				ana ana ana aminin'i Situ	(manana) (katal							*		يستنتس			
Non-Hazard 🛛 Flammable 🚬 Skin Irritant	Poison	В	Unkń	own		1	Retu	rn to Clie	ent		Disposal	by Lab		L] Ar	chive for_	Months	
ial Instructions/QC Requirements & Comments												æ 4	سی ا	. 6	-		ġ.
			ų				i a dela secto de la composició de la comp	-	and the subscript		أستنبسي	<u>),/</u>	5	1.30	J	unter mainimentation de la companya	er Henri
istody Seals Intact: Yes No	Custody S	eal No		Tes (Provident Distance inter-	ar Temj	o. (°C): O	bs'd	-12	Corr	'd		_ Therm ID No	
quished by William Davis WBI	Company	Stante		Date/Tit 9/15	ne: 1[:3/	Re	ceived	ру.				Con	ipany [.]			Date/Time	
quished by	Company [,]	<u>r 'an'l</u>	-	Date/Tit			, ceived	by.			-	Corr	ipany:			Date/Time	
dalaran di	Company			1	1976).775			Ar	-	æ			Ac				
quished by	Company			Date/Tir	ne:	Re	ceived			by: //	ch	Com	ipany;	an I	1	Date/Time	
				1				All	IN	fel	W		El	XX	<u> </u>	91/6/23	1020
	aine friend in the second second					na an <u>alitatina</u>	ist in the second s	200 C C C C C C C C C C C C C C C C C C		10-1-1-00-00-00-00-00-00-00-00-00-00-00-	and the second					7 7	

Client: Stantec Consulting Corporation

Login Number: 239709 List Number: 1 Creator: Scott, Sherri L

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.3
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 500-239709-1

List Source: Eurofins Chicago

Appendix F

Wetland Restoration Concept Plans

ELKHART LAKE WETLAND RESTORATION CONCEPT DRAWINGS ELKHART LAKE IMPROVEMENT ASSOCIATION SHEBOYGAN COUNTY, WISCONSIN

NO SCALE

HEAR

SHEET INDEX

SHEET NUMBER	SHEET TITLE
G0.01	TITLE SHEET
G0.02	NOTES
C0.01	EXISTING SITE PLAN
C0.02	EXISTING CONDITIONS PLAN
C2.01	PROPOSED SITE & GRADING PLAN
C8.01	DETAILS

	Ctantor	209 Commerce Parkway Cottage Grove, WI 33527 www.stantec.com						
	NOT FOR	CONSTRUCTION						
	TITLE SHEET	ELKHART LAKE WETLAND RESTORATION ELKHART LAKE MPROVEMENT ASSOCIATION ELKHART LAKE, WI						
Z	DATE OF ISSUANCE January 23, 2024 NO REVISION DATE							
1	SURVEY DRAWN DESIGNE CHECKEI	D XXX						
	ROJ. NC							

CHRISTIAN BURNSON, P.E. NO. 45907

THE LOCATIONS OF EXISTING UTILITY INSTALLATIONS AS SHOWN ON THIS PLAN ARI APPROXIMATE. THERE MAY BE OTHER UNDERGROUND UTILITY INSTALLATIONS WITHIN THE PROJECT AREA THAT ARE NOT SHOWN.

STANTEC ASSUMES NO RESPONSIBILITY FOR DAMAGES, LIABILITY OR COSTS RESULTING FROM CHANGES OR ALTERATIONS MADE TO THIS PLAN WITHOUT WRITTEN CONSENT OF STANTEC.

THESE DRAWINGS HAVE BEEN PREPARED BASED ON INFORMATION PROVIDED BY OTHERS. STANTEC HAS NOT VERIFIED THE ACCURACY AND/OR COMPLETENESS OF THIS INFORMATION AND SHALL NOT BE RESPONSIBLE FOR ANY ERRORS OR OMISSIONS WHICH MAY BE INCORPORATED HEREIN AS A RESULT.

GENERAL

ALL WORK SHALL BE DONE IN ACCORDANCE WITH NATURAL RESOURCES CONSERVATION SERVICE (NRCS) CONSTRUCTION SPECIFICATIONS, UNLESS HERWISE NOTED. NRCS CONSTRUCTION SPECIFICATIONS ARE FREELY AVAILABLE ONLINE AS PART 657 OF THE NRCS NATIONAL ENGINEERIN HANDBOOK

WATERWAY AND WETLAND PERMITS HAVE BEEN NOT OBTAINED FROM THE WISCONSIN DEPARTMENT OF NATURAL RESOURCES. THESE DRAWINGS ARE CONCEPTUAL IN NATURE AND WERE PRODUCED FOR STAKEHOLDER DECISION MAKING. SHOULD THIS PROJECT PROCEED TO CONSTRUCTION. PERMITS WILL BE APPLIED FOR AND COPIES OF THESE PERMITS WILL BE PROVIDED TO THE CONTRACTOR WHEN AVAILABLE. CONTRACTOR SHALL COMPLY WITH ALL PERMIT REQUIREMENTS AT ALL TIMES.

SITE PREPARATION AND FROSION CONTROL

VERTICAL DATUM IS NAD83.

COORDINATE SYSTEM IS WISCONSIN COUNTY SYSTEMS: SHEBOYGAN COUNTY, US FOOT

THE CONTRACTOR SHALL VISIT THE SITE AND FAMILIARIZE THEMSELVES WITH ALL SITE CONDITIONS, PRIOR TO SUBMITTING A BID.

THE ENGINEER WILL APPLY FOR A WISCONSIN DEPARTMENT OF NATURAL RESOURCES (WDNR) NOTICE OF INTENT CONSTRUCTION SITE STORMWATER PERMIT PRIOR TO START OF CONSTRUCTION.

IF THE CONTRACTOR DETERMINES THAT CONTROL OF SURFACE WATER OR EXCAVATION DEWATERING IS REQUIRED, IT SHALL BE DONE IN ACCORDANCE WITH NRCS CONSTRUCTION SPECIFICATION 002. EXCAVATION

CONTRACTOR TO BE RESPONSIBLE FOR ALL NECESSARY UTILITY LOCATING REQUIRED TO CONSTRUCT PROJECT. CONTRACTOR SHALL ARRANGE FOR UTILITY LOCATING BY WISCONSIN DIGGERS HOTLINE, SUPPLEMENTED BY PRIVATE UTILITY LOCATING IF NECESSARY

EARTHWORK AND GRADING

EXCAVATION OF MATERIAL RELATED TO THE WETLAND RESTORATION SHALL BE DONE IN ACCORDANCE WITH NRCS CONSTRUCTION SPECIFICATIONS, INCLUDING CONSTRUCTION SPECIFICATION 002 EXCAVATION, CONSTRUCTION SPECIFICATION 003 EARTHFILL, AND CONSTRUCTION SPECIFICATION 0.2 TOPSOILING.

LANDSCAPING AND RESTORATION

RESTORATION SHALL BE IN ACCORDANCE WITH THE EROSION CONTROL PLAN AND NOTES, AND NRCS CONSERVATION PRACTICE STANDARD 657 -

ENGINEER WILL PROVIDE AND INSTALL FINAL SEED MIXES AND PLUG PLANTING MIXES FOR THE FOLLOWING VEGETATION ZONES SHOWN ON THE LANDSCAPE AND RESTORATION PLAN.

- EMERGENT ZONE SEED MIX
- WET MEADOW SEED MIX UPLAND PRAIRIE SEED MIX

EROSION CONTROL NOTES

GENERAL NOTES

- NATURAL RESOURCES (WDNR) AND PROJECT ENGINEER.
- 2. ACCEPTABILITY LIST (PAL)
- 3. 4.
- 5. EXTENT PRACTICABLE.
- CONSTRUCTION DEBRIS AND LITTER SHALL BE CLEANED DAILY.
- METALS, HYDROCARBONS, AND OTHER KNOWN ENVIRONMENTAL TOXICANTS. MULCH SHALL COVER A MINIMUM OF 80% OF THE SOIL SURFACE AND SHALL BE ½ TO 1 ½ INCHES THICK. IF THE CONDITIONS ARE TOO COLD TO APPLY A POLYMER/TACKIFIER, A MULCH CRIMPER OR BIODEGRADABLE NETTING SHALL BE USED AS A TEMPORARY ALTERNATE ANCHORING METHOD.
- COMPLETION
- ANY ONE TIME. MAINTAIN EXISTING VEGETATION AS LONG AS POSSIBLE

FROSION CONTROL INSTALLATION AND SEQUENCING

- 3. FLOWS SHALL BE DIRECTED DURING CONSTRUCTION TO THE SEDIMENT LOGS.

REMOVAL OF EROSION CONTROL MEASURES

EROSION CONTROL INSPECTION AND MAINTENANCE

- NOTING INSPECTION DATE AND TIMES, REPAIRS NECESSARY, AND REPAIRS MADE.

CONTRACTOR SHALL CONFORM TO ALL RELEVANT FEDERAL, STATE, AND LOCAL REGULATIONS; THE CONDITIONS INCLUDED IN ANY PERMIT; AND TO THE CONDITIONS INCLUDED IN THE PROJECT ENGINEER'S PLANS UNLESS OTHERWISE APPROVED BY THE WISCONSIN DEPARTMENT OF

EROSION CONTROL DEVICES SHALL CONFORM TO THE LATEST EDITION OF THE WDNR TECHNICAL STANDARDS AND WI DOT PRODUCT

A COPY OF THE EROSION CONTROL PLAN AND PERMITS SHALL BE KEPT ONSITE AND AVAILABLE FOR INSPECTION THROUGHOUT THE DURATION OF THE PROJECT. SUBMIT PLAN REVISIONS OR AMENDMENTS TO THE WORR AT LEAST 5 DAYS PRIOR TO FIELD IMPLEMENTATION. AT NO TIME MAY CONSTRUCTION EQUIPMENT OR FILL BE PLACED IN A WATERWAY OR WETLAND, EXCEPT AS APPROVED BY WORR PERMIT. THE CONTRACTOR SHALL NOT STORE ANY EQUIPMENT OR MATERIALS IN ANY WETLAND, FLOODPLAIN, OR FLOODWAY.

PUBLIC AND PRIVATE ACCESS ROADS SHALL BE KEPT FREE OF TRACKED SEDIMENT AND AT A MINIMUM CLEANED AT THE END OF EACH WORKDAY (NOT BY FLUSHING). AS WELL, THE CONTRACTOR SHALL TAKE MINIMIZATION MEASURES FOR DUST CONTROL TO THE MAXIMUM

BARE SOIL AREAS, INCLUDING SOIL STOCKPILES, LEFT UNDISTURBED FOR 7 DAYS, SHALL BE STABILIZED WITH: TEMPORARY OR PERMANENT SEED AND MULCH (PROPERLY ANCHORED BY CRIMPING, NETTING, OR TACKIFIER); HYDROMULCH; TARP; OR OTHER APPROVED METHOD.

THE USE, STORAGE AND DISPOSAL OF CHEMICALS, OIL & GREASE, CEMENT AND OTHER COMPOUNDS AND MATERIALS USED ON THE CONSTRUCTION SITE SHALL BE MANAGED DURING THE CONSTRUCTION PERIOD TO PREVENT THEIR TRANSPORT BY RUNOFF INTO WATERS OF THE STATE; IN THE EVENT OF ANY SPILL NOTIFICATION SHALL BE IMMEDIATELY REPORTED TO THE WDNR AND LOCAL AUTHORITIES. ALL

8. IF THE CONTRACTOR DETERMINES THAT DEWATERING WILL BE NECESSARY, A DEWATERING PLAN FOLLOWING WDNR TECHNICAL STANDARD 1061 SHALL BE SUBMITTED BY THE CONTRACTOR TO THE WDNR FOR APPROVAL. NOTIFY THE WDNR IF DEWATERING IS SCHEDULED TO OCCUR IN AREAS OF SOIL AND/OR GROUNDWATER CONTAMINATION, OR IF DEWATERING WILL OCCUR FROM A HIGH CAPACITY WELL (70 GPM OR GREATER). PROVIDE ANTI-SCOUR PROTECTION AND MAINTAIN NON-EROSIVE FLOW DURING DEWATERING.

BETWEEN SEPTEMBER 15 AND OCTOBER 15 STABILIZE WITH MULCH. TACKIFIER AND A PERENNIAL SEED MIX WITH WINTER WHEAT. ANNUAL BETWEEN SEPTEMBER 15 AND VENTOER 15 STABILLE WITH HOLD, TACHTELE AND A FELANNILE SELD HIA WITH WITH WITH A B EROSION MAT ON ALL BARE SOIL AREAS OF THE SITE. - MULCH SHALL CONSIST OF HAY OR STRAW FREE OF DISEASED PLANT RESIDUE, NOXIOUS WEEDS, HARMFUL CHEMICAL RESIDUES, HEAVY

10. IF SNOW COVER PREVENTS THE INSTALLATION OF THESE ITEMS: THE CONDITION OF THE SITE, INCLUDING THE AMOUNT OF SNOW COVER WILL BE NOTED ON EVERY EROSION AND SEDIMENT CONTROL INSPECTION REPORT. ONCE THE SNOW IS 2 INCHES OR LESS ON A MAJORITY OF THE SITE, THE ABOVE-MENTIONED WINTER STABILIZATION METHODS SHALL BE IMMEDIATELY EMPLOYED.

11. ALL FINISH GRADED DITCHES AND SWALES SHALL BE PLANTED, SODDED OR SEEDED AND MULCHED OR MATTED IMMEDIATELY AFTER

12. IF ANY ITEM IN THE EROSION CONTROL PLAN REQUIRES MODIFICATION, THE CONTRACTOR SHALL SUBMIT AN EROSION CONTROL PLAN REVISION TO THE PROJECT ENGINEER AND WONR STORMWATER SPECIALIST TO RECEIVE APPROVAL BEFORE PROCEEDING

13. ALL LAND DISTURBING ACTIVITIES SHALL BE CONDUCTED IN A LOGICAL SEQUENCE AS TO MINIMIZE THE AMOUNT OF BARE SOIL EXPOSED AT

14. ANY OFF-SITE SEDIMENT DEPOSITS SHALL BE CLEANED UP AND RESTORED OR STABILIZED WITH 24 HOURS, WEATHER PERMITTING, OF ANY OFF-SITE SEDIMENT DEPOSITION, ALL SEDIMENT SHALL BE PROPERLY DISPOSED OF AND STABILIZED IN AN UPLAND LOCATION ON OR OFF-SITE.

15. MAKE APPROPRIATE PROVISIONS FOR WATERING, AS NEEDED, DURING THE FIRST 8 WEEKS FOLLOWING SEEDING OR PLANTING AREAS WHENEVER MORE THAN SEVEN (7) CONSECUTIVE DAYS OF DRY WEATHER OCCUR (NO RAIN)

1. TRACKING PAD AND SEDIMENT LOGS SHALL BE INSTALLED PRIOR TO ANY LAND DISTURBING CONSTRUCTION ACTIVITIES.

2. ONCE THE TEMPORARY EROSION CONTROL DEVICES HAVE BEEN INSTALLED, GRADING AND RESTORATION ACTIVITIES CAN BE COMPLETED.

4. UPON COMPLETION OF GRADING ANY DISTURBED GROUND SHALL BE TEMPORALITY SEEDED AND MULCH PLACED WITHIN 7 DAYS.

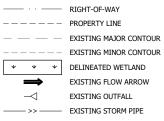
5. PERMANENT STABILIZATION SHALL OCCUR AFTER FINAL GRADING, OF ANY AREAS THAT WERE TEMPORARILY SEEDED

1. SEDIMENT LOGS SHALL BE REMOVED WHEN ALL LAND DISTURBING CONSTRUCTION ACTIVITIES HAVE BEEN COMPLETED AND THE AREA HAS REACHED FINAL STABILIZATION. ANY SOIL DISTURBANCE THAT HAS OCCURRED BECAUSE OF ITS REMOVAL SHALL BE IMMEDIATELY STABILIZED.

2. TRACKING PAD SHALL BE REMOVED WHEN ALL LAND DISTURBING CONSTRUCTION ACTIVITIES HAVE BEEN COMPLETED ALONG ITS ASSOCIATED ACCESS ROAD. ANY SOIL DISTURBANCE THAT HAS OCCURRED AS A RESULT ITS REMOVAL SHALL BE IMMEDIATELY STABILIZED.

INSPECT ALL EROSION CONTROL MEASURES PRIOR TO COMMENCING GRADING ACTIVITIES. EROSION CONTROL MEASURES SHALL BE INSPECTED WEEKLY AND WITHIN 24 HOURS OF EVERY ½ INCH OR GREATER RAIN EVENT. MAINTENANCE SHALL BE IN ACCORDANCE WITH THE WDNR TECHNICAL STANDARDS AND THE ENGINEER'S PLANS AND SPECIFICATIONS AND AS DEEMED NECESSARY BY REGULATORY AGENCIES, KEEP INSPECTION REPORTS ON-SITE AND AVAILABLE UPON REQUEST. ALL MAINTENANCE AND/OR REPAIRS SHALL BE COMPLETED WITHIN 24 HOURS OF NOTIFICATION BY THE EROSION CONTROL INSPECTOR. THE CONTRACTOR SHALL MAINTAIN AN EROSION CONTROL LOG BOOK ON SITE

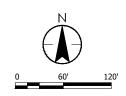
2. THE CONTRACTOR SHALL INSTALL AND MAINTAIN THE EROSION CONTROL MEASURES IN ACCORDANCE WITH WDNR TECHNICAL STANDARDS


A TRACKING PAD (1057) - MAINTENANCE SHALL TAKE PLACE BY SCRAPING OR TOP-DRESSING WITH ADDITIONAL AGGREGATE A MINIMUM 50-FOOT-LONG AND 12-INCH THICK PAD CONSISTING OF A MINIMUM OF 3-INCH CLEAR WASHED STONE SHALL BE MAINTAINED. THE WIDTH OF THE TRACKING PAD SHALL EXTEND THE FULL DISTANCE OF THE EGRESS POINT.

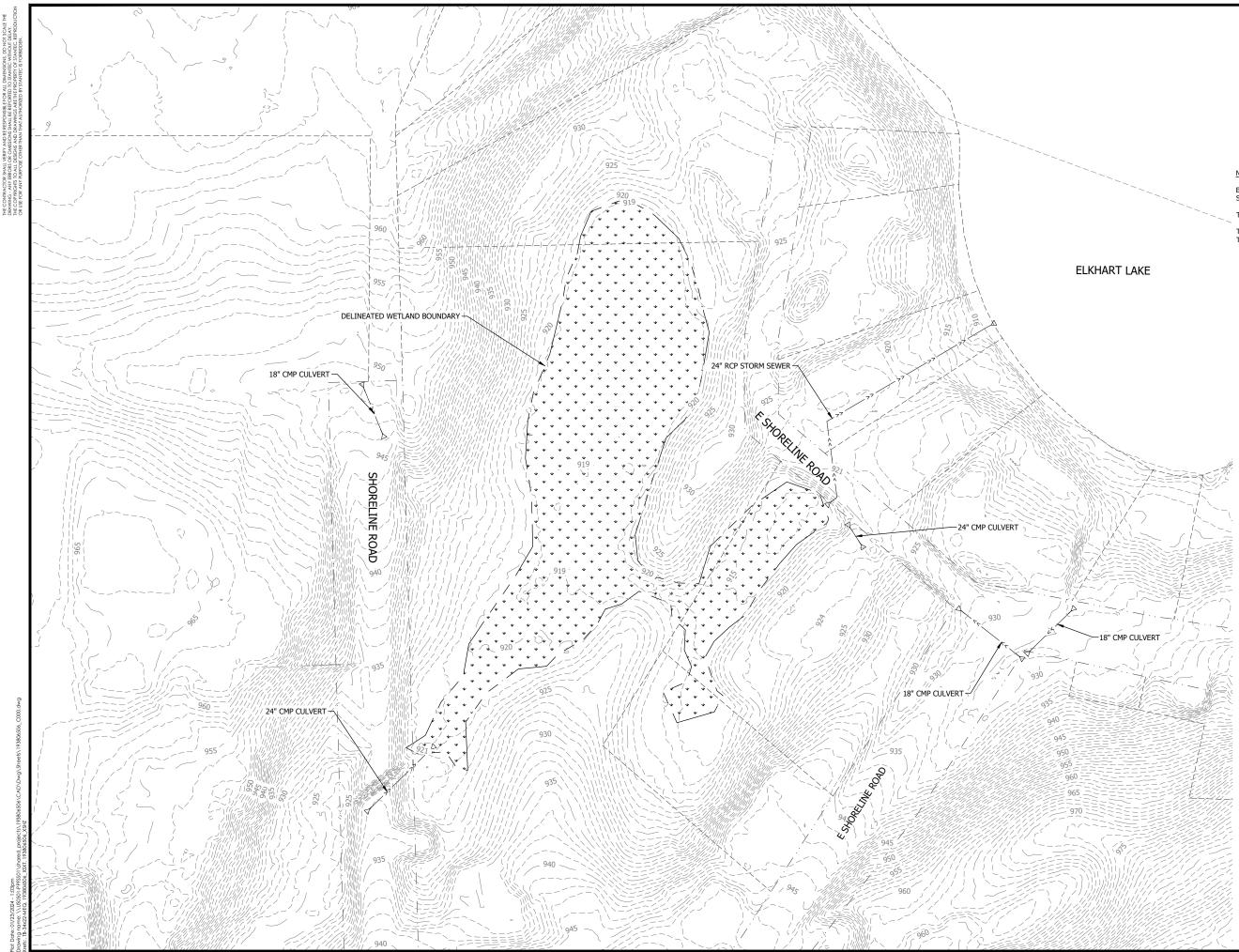
B. SEDIMENT LOGS (1056) - SEDIMENT /DEBRIS/DEPOSITS SHALL BE REMOVED WHEN THEY REACH 50% OF THE HEIGHT OF THE SEDIMENT LOGS. REMOVED SEDIMENT SHALL BE DEPOSITED IN A SUITABLE NON-WETLAND OR FLOODPLAIN AREA AND STABILIZED. SEDIMENT LOGS THAT ARE DAMAGED OR NOT PERFORMING AS DESIGNED SHALL BE REPAIRED OR REPLACED IMMEDIATELY

		209 Commerce Parkway 209 Contrage Grave, Wi 53527 www.stantec.com					
	NOT FOR	CONSTRUCTION					
SHECK	NOIES	ELKHART LAKE WETLAND RESTORATION ELKHART LAKE IMPROVEMENT ASSOCIATION ELKHART LAKE, WI					
JC NOR SURV DRA	EVIS EVIS						
DRA DESIG CHEG	DRAWN XXX DESIGNED XXX CHECKED XXX APPROVED XXX PROJ. NO. 193806506 SHEET NUMBER CONTRACT						

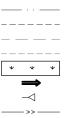
LEGEND


----- EXISTING MINOR CONTOUR * * * DELINEATED WETLAND EXISTING FLOW ARROW EXISTING OUTFALL

NOTES:


ELEVATION AND PARCEL DATA RETRIEVED FROM SHEBOYGAN COUNTY GEOSPATIAL HUB.

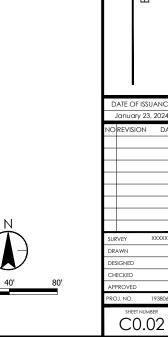
THE WETLAND WAS DELINEATED 09/14/2023.


THE CULVERTS WERE NOT SURVEYED AND THEREFORE ARE APPROXIMATE.

Stantec	209 Commerce Parkway Cottage Grove, WI 53527 www.stantec.com						
NOT FOR	CONSTRUCTION						
EXISTING SITE PLAN	ELKHART LAKE WETLAND RESTORATION ELKHART LAKE IMPROVEMENT ASSOCIATION ELKHART LAKE, WI						
Janua	DATE OF ISSUANCE January 23, 2024 NO REVISION DATE						
	XXXXXXXX XXX XXX XXX XXX XXX 193806506 TNUMBER D.01						

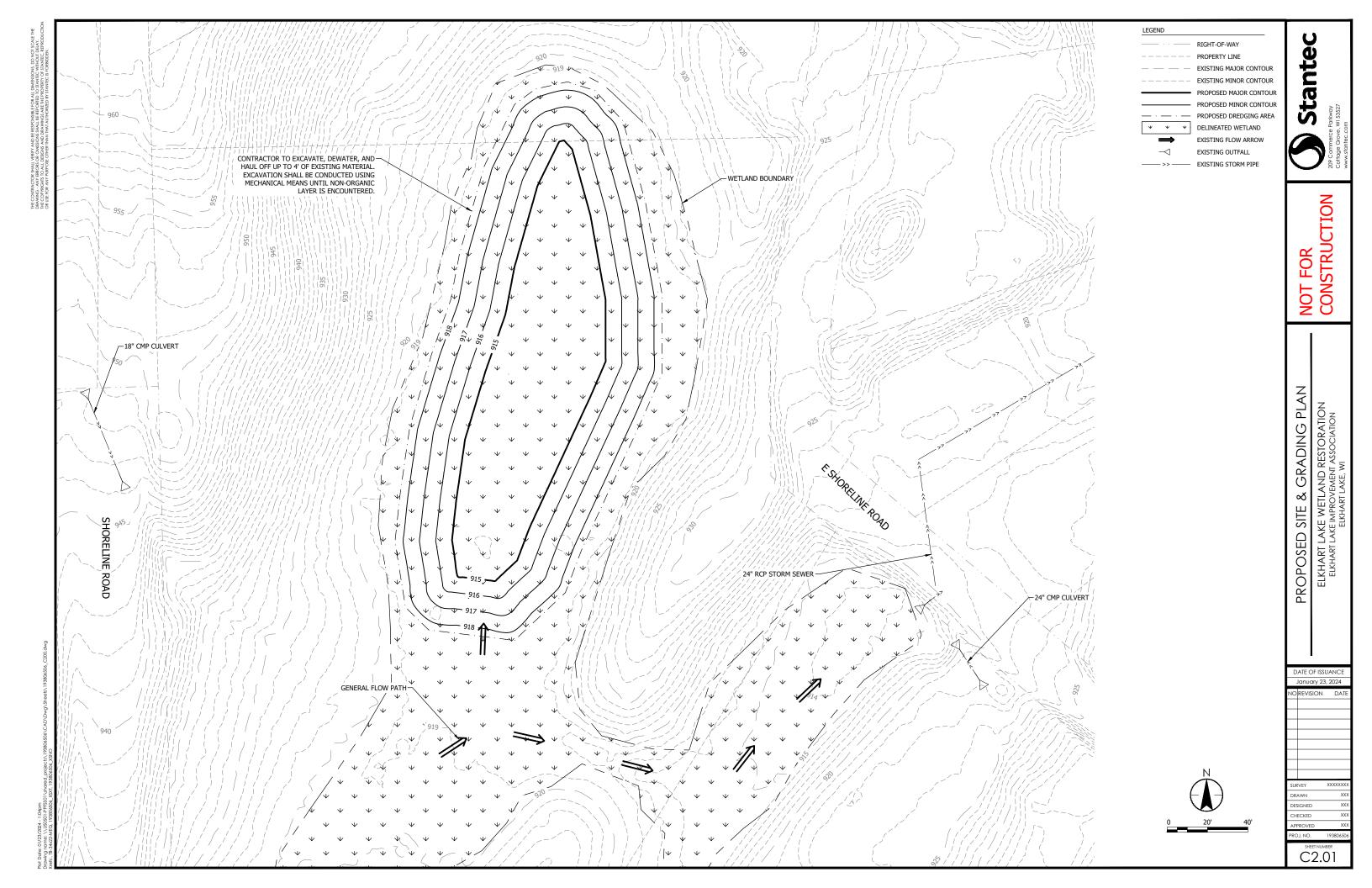
LEGEND

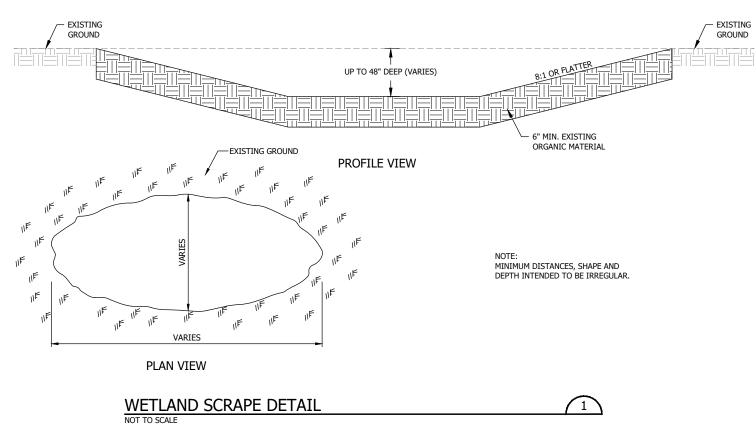
RIGHT-OF-WAY PROPERTY LINE EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR


DELINEATED WETLAND EXISTING FLOW ARROW EXISTING OUTFALL EXISTING STORM PIPE

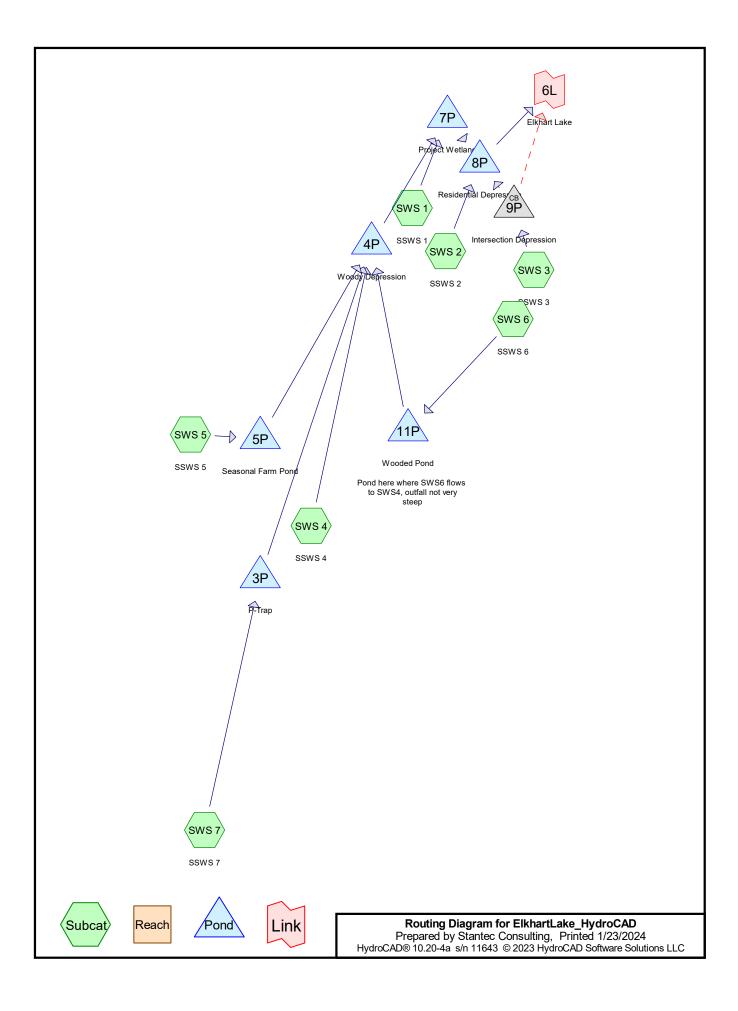
NOTES:

ELEVATION AND PARCEL DATA RETRIEVED FROM SHEBOYGAN COUNTY GEOSPATIAL HUB.


THE WETLAND WAS DELINEATED 09/14/2023.


THE CULVERTS WERE NOT SURVEYED AND THEREFORE ARE APPROXIMATE.

193806



- EXISTING GROUND

e		209 Commerce Parkway 209 Commerce Parkway Cottage Gove, Wi 53527 www.sfantec.com
	NOT FOR	CONSTRUCTION
	DEIAILS	ELKHART LAKE WETLAND RESTORATION ELKHART LAKE IMPROVEMENT ASSOCIATION ELKHART LAKE, WI
SUR DES CHI		
	J. NO. She	193806506 EET NUMBER 8.01

Appendix G

HydroCAD Input / Output

Project Notes

Rainfall events imported from "NRCS-Rain.txt" for 9199 WI Sheboygan

	Event#	Event	Storm Type	Curve	Mode	Duration	B/B	Depth	AMC
		Name				(hours)		(inches)	
_	1	1-Year	MSE 24-hr	4	Default	24.00	1	2.23	2
	2	2-Year	MSE 24-hr	4	Default	24.00	1	2.57	2
	3	25-Year	MSE 24-hr	4	Default	24.00	1	4.75	2
	4	100-Year	MSE 24-hr	4	Default	24.00	1	6.48	2

Rainfall Events Listing (selected events)

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.520	74	Farmstead, HSG B (SWS 4)
5.597	86	Farmstead, HSG D (SWS 4, SWS 7)
0.242	85	Gravel Road, HSG B (SWS 7)
0.096	91	Gravel Road, HSG D (SWS 7)
17.605	58	Meadow, HSG B (SWS 3, SWS 6)
3.850	69	Pasture, HSG B (SWS 4)
12.264	84	Pasture, HSG D (SWS 4)
4.507	98	Paved Road, HSG B (SWS 1, SWS 2, SWS 3, SWS 4, SWS 6, SWS 7)
0.695	98	Paved Road, HSG D (SWS 4, SWS 7)
5.366	68	Residential 1 acre, HSG B (SWS 1, SWS 2, SWS 4)
3.561	84	Residential 1 acre, HSG D (SWS 4, SWS 7)
0.295	75	Residential 1/4 acre, HSG B (SWS 1, SWS 2, SWS 3)
2.189	65	Residential 2 acre, HSG B (SWS 3, SWS 6)
6.429	78	Row Crop, HSG B (SWS 7)
79.830	89	Row Crop, HSG D (SWS 4, SWS 5, SWS 7)
0.557	98	Water, HSG B (SWS 1, SWS 4)
1.064	98	Water, HSG D (SWS 4)
2.089	60	Woods Fair, HSG B (SWS 3, SWS 6)
4.740	55	Woods Good, HSG B (SWS 1, SWS 2, SWS 4)
0.487	77	Woods Good, HSG D (SWS 4)
5.143	66	Woods Poor, HSG B (SWS 4)
4.930	83	Woods Poor, HSG D (SWS 4, SWS 5)
163.056	81	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
54.532	HSG B	SWS 1, SWS 2, SWS 3, SWS 4, SWS 6, SWS 7
0.000	HSG C	
108.524	HSG D	SWS 4, SWS 5, SWS 7
0.000	Other	
163.056		TOTAL AREA

ElkhartLake_HydroCAD

Prepared by Stantec Consulting
HydroCAD® 10.20-4a s/n 11643 © 2023 HydroCAD Software Solutions LLC

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.000	1.520	0.000	5.597	0.000	7.117	Farmstead	SWS 4, SWS 7
0.000	0.242	0.000	0.096	0.000	0.338	Gravel Road	SWS 7
0.000	17.605	0.000	0.000	0.000	17.605	Meadow	SWS 3, SWS 6
0.000	3.850	0.000	12.264	0.000	16.114	Pasture	SWS 4
0.000	4.507	0.000	0.695	0.000	5.202	Paved Road	SWS 1, SWS 2,
							SWS 3, SWS 4,
							SWS 6, SWS 7
0.000	5.366	0.000	3.561	0.000	8.927	Residential 1 acre	SWS 1, SWS 2,
							SWS 4, SWS 7
0.000	0.295	0.000	0.000	0.000	0.295	Residential 1/4 acre	SWS 1, SWS 2,
							SWS 3
0.000	2.189	0.000	0.000	0.000	2.189	Residential 2 acre	SWS 3, SWS 6
0.000	6.429	0.000	79.830	0.000	86.259	Row Crop	SWS 4, SWS 5,
							SWS 7
0.000	0.557	0.000	1.064	0.000	1.621	Water	SWS 1, SWS 4
0.000	2.089	0.000	0.000	0.000	2.089	Woods Fair	SWS 3, SWS 6
0.000	4.740	0.000	0.487	0.000	5.227	Woods Good	SWS 1, SWS 2,
							SWS 4
0.000	5.143	0.000	4.930	0.000	10.073	Woods Poor	SWS 4, SWS 5
0.000	54.532	0.000	108.524	0.000	163.056	TOTAL AREA	

Ground Covers (all nodes)

Elkhar	Lake	_Hydr	oCAD
-			-

Prepared by Stantec Consul	ting
HydroCAD® 10.20-4a s/n 11643	© 2023 HydroCAD Software Solutions LLC

Pipe Listing (all nodes)

Line#	Node Number	In-Invert (feet)	Out-Invert (feet)	Length (feet)	Slope (ft/ft)	n	Width (inches)	Diam/Height (inches)	Inside-Fill (inches)	Node Name
1	3P	972.00	971.00	55.0	0.0182	0.025	0.0	24.0	0.0	
2	4P	923.00	922.00	64.0	0.0156	0.025	0.0	24.0	0.0	
3	8P	914.00	909.00	240.0	0.0208	0.013	0.0	24.0	0.0	
4	9P	930.00	929.00	40.0	0.0250	0.025	0.0	18.0	0.0	I
										n
										t
										е
										r
										S
										е
										С
										ti
										0
										n
5	9P	930.00	929.00	52.0	0.0192	0.025	0.0	18.0	0.0	I
Ū	•		0_0.00	0210	010102	0.020	010		0.0	n
										t
										е
										r
										s
										е
										С
										ti
										0
										n

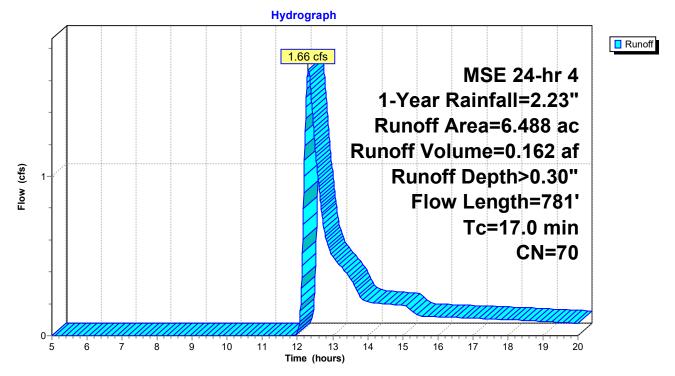
ElkhartLake_HydroCAD	N
Prepared by Stantec Consulting	
HvdroCAD® 10.20-4a s/n 11643 © 2023 HvdroCAD Software Solutions LLC	

Time span=5.00-20.00 hrs, dt=0.01 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment SWS 1: SSWS 1	Runoff Area=6.488 ac 22.13% Impervious Runoff Depth>0.30" Flow Length=781' Tc=17.0 min CN=70 Runoff=1.66 cfs 0.162 af
Subcatchment SWS 2: SSWS 2	Runoff Area=2.892 ac 17.12% Impervious Runoff Depth>0.36" Flow Length=680' Tc=9.5 min CN=72 Runoff=1.30 cfs 0.087 af
Subcatchment SWS 3: SSWS 3	Runoff Area=8.048 ac 7.77% Impervious Runoff Depth>0.16" Flow Length=1,413' Tc=17.1 min CN=64 Runoff=0.68 cfs 0.106 af
Subcatchment SWS 4: SSWS 4	Runoff Area=54.687 ac 6.14% Impervious Runoff Depth>0.74" Flow Length=3,302' Tc=37.4 min CN=82 Runoff=30.01 cfs 3.387 af
Subcatchment SWS 5: SSWS 5	Runoff Area=4.412 ac 0.00% Impervious Runoff Depth>1.09" Flow Length=300' Tc=11.0 min CN=88 Runoff=6.74 cfs 0.401 af
Subcatchment SWS 6: SSWS 6	Runoff Area=15.297 ac 4.31% Impervious Runoff Depth>0.09" Flow Length=1,367' Tc=32.3 min CN=60 Runoff=0.39 cfs 0.112 af
Subcatchment SWS 7: SSWS 7	Runoff Area=71.232 ac 0.35% Impervious Runoff Depth>1.07" Flow Length=3,349' Tc=65.4 min CN=88 Runoff=40.88 cfs 6.342 af
Pond 3P: P-Trap	Peak Elev=973.77' Storage=3.271 af Inflow=40.88 cfs 6.342 af Outflow=11.32 cfs 5.153 af
Pond 4P: Woody Depression	Peak Elev=927.43' Storage=0.667 af Inflow=33.16 cfs 8.644 af Outflow=21.64 cfs 8.617 af
Pond 5P: Seasonal Farm Pond	Peak Elev=972.63' Storage=0.401 af Inflow=6.74 cfs 0.401 af Outflow=0.00 cfs 0.000 af
Pond 7P: Project Wetland	Peak Elev=919.30' Storage=0.870 af Inflow=22.11 cfs 8.779 af Outflow=22.02 cfs 8.052 af
Pond 8P: Residential Depression	Peak Elev=916.77' Storage=0.535 af Inflow=22.40 cfs 8.194 af Outflow=20.15 cfs 8.104 af
Pond 9P: Intersection Depression Primary=0.36	Peak Elev=930.28' Inflow=0.68 cfs 0.106 af cfs 0.056 af Secondary=0.32 cfs 0.050 af Outflow=0.68 cfs 0.106 af
Pond 11P: Wooded Pond	Peak Elev=954.01' Storage=0.018 af Inflow=0.39 cfs 0.112 af Outflow=0.31 cfs 0.104 af
Link 6L: Elkhart Lake	Inflow=20.23 cfs 8.154 af Primary=20.23 cfs 8.154 af
Total Runoff Area = 163.05	6 ac Runoff Volume = 10 596 af Average Runoff Depth = 0.78"

Total Runoff Area = 163.056 acRunoff Volume = 10.596 afAverage Runoff Depth = 0.78"95.82% Pervious = 156.233 ac4.18% Impervious = 6.823 ac

Summary for Subcatchment SWS 1: SSWS 1

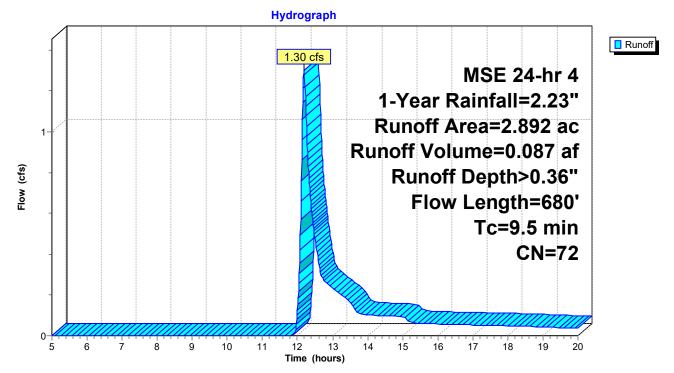

Runoff = 1.66 cfs @ 12.31 hrs, Volume= 0.162 af, Depth> 0.30" Routed to Pond 7P : Project Wetland

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 1-Year Rainfall=2.23"

	Area	(ac)	CN	Desc	cription					
*	0.	891	98	B Pave	Paved Road, HSG B					
*	2.	638	68	8 Resi	dential 1 a	cre, HSG E	3			
*	0.	096	75	6 Resi	dential 1/4	acre, HSG	B			
*	0.	545	98	8 Wate	er, HSG B					
*	2.	318	55	5 Woo	ds Good,	HSG B				
	6.	488	70) Weig	ghted Aver	age				
	5.	052		77.8	7% Pervio	us Area				
	1.	436		22.1	3% Imperv	/ious Area				
	Тс	Leng	th	Slope	Velocity	Capacity	Description			
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)				
	9.9	69	99	0.0558	1.18		Shallow Concentrated Flow,			
							Woodland Kv= 5.0 fps			
	7.1	8	31	0.0984	0.19		Sheet Flow,			
							Grass: Dense n= 0.240 P2= 2.57"			

17.0 781 Total

Subcatchment SWS 1: SSWS 1


Summary for Subcatchment SWS 2: SSWS 2

Runoff = 1.30 cfs @ 12.19 hrs, Volume= 0.087 af, Depth> 0.36" Routed to Pond 8P : Residential Depression

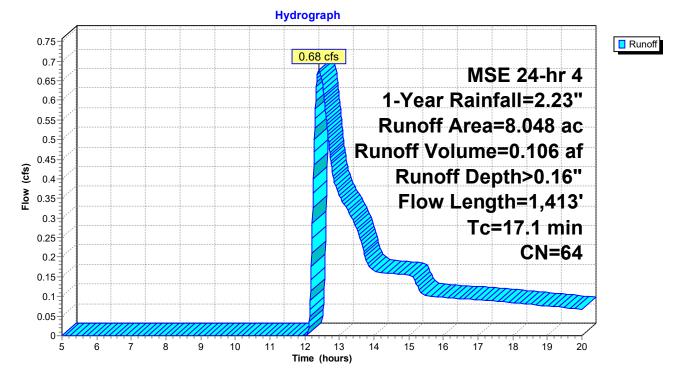
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 1-Year Rainfall=2.23"

_	Area	(ac)	CN	Desc	cription		
*	0.	495	98	Pave	ed Road, ⊦	ISG B	
*	2.	073	68	Resi	dential 1 a	cre, HSG E	3
*	0.	021	75	Resi	dential 1/4	acre, HSG	В
*	0.	303	55	Woo	ds Good, I	HSG B	
	2.	892	72	Weig	ghted Aver	age	
	2.	397		82.8	8% Pervio	us Area	
	0.	495		17.12	2% Imper\	/ious Area	
	Тс	Lengt	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	2.5	58	80 C).0638	3.79		Shallow Concentrated Flow,
							Grassed Waterway Kv= 15.0 fps
	7.0	10	0 0	0.0600	0.24		Sheet Flow,
_							Grass: Short n= 0.150 P2= 2.57"
	9.5	68	1 08	Fotal			

Subcatchment SWS 2: SSWS 2

Summary for Subcatchment SWS 3: SSWS 3

Runoff = 0.68 cfs @ 12.41 hrs, Volume= 0.106 af Routed to Pond 9P : Intersection Depression

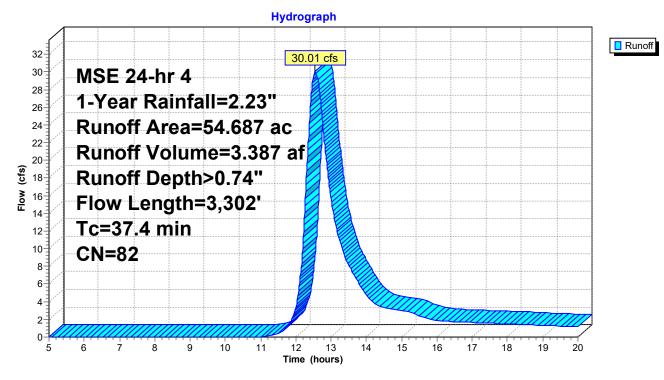

0.106 af, Depth> 0.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 1-Year Rainfall=2.23"

_	Area	(ac)	CN	Desc	cription					
*	3.	177	58	Mea	Meadow, HSG B					
*	0.	625	98	Pave	ed Road, H	ISG B				
*	0.	178	75	Resi	dential 1/4	acre, HSG	B			
*	2.	016	65	Resi	dential 2 a	icre, HSG E	3			
*	2.	052	60	Woo	ds Fair, H	SG B				
	8.	048	64	Weig	ghted Aver	age				
	7.	423		92.2	3% Pervio	us Area				
	0.	625		7.77	% Impervi	ous Area				
	Тс	Length	n S	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	12.4	1,313	3 0.	.0640	1.77		Shallow Concentrated Flow,			
							Short Grass Pasture Kv= 7.0 fps			
	4.7	100	0 0	.2089	0.35		Sheet Flow,			
							Cultivated: Residue>20% n= 0.170 P2= 2.57"			

17.1 1,413 Total

Subcatchment SWS 3: SSWS 3



Summary for Subcatchment SWS 4: SSWS 4

Runoff = 30.01 cfs @ 12.55 hrs, Volume= Routed to Pond 4P : Woody Depression 3.387 af, Depth> 0.74"

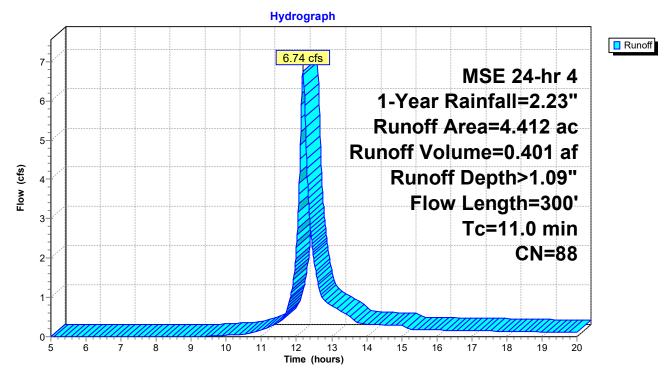
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 1-Year Rainfall=2.23"

	Area	(ac)	CΝ	Des	cription					
*	1.	520	74 Farmstead, HSG B			SG B				
*	2.	673	86	6 Farn	nstead, HS	G D				
*	3.	850	69	9 Past	ure, HSG	В				
*	1.	028	84	4 Past	ure, HSG	D				
*	0.	150	84	4 Past	ure, HSG	D				
*	11.	086	84	4 Past	ure, HSG	D				
*		697	98		ed Road, H	ISG B				
*		205	98		ed Road, F					
*		009	98		ed Road, F					
*		371	98		ed Road, H					
*		655	68			cre, HSG B				
*		292	84			cre, HSG D				
*		537	89		Crop, HS					
*		312	89		Crop, HS					
*		167	89		Crop, HS	G D				
*		012	98		er, HSG B					
*		060	98		er, HSG D					
*		004	98		Water, HSG D Woods Good, HSG B					
*		119	55							
*		487	77		ds Good,					
*		143	66		ds Poor, H					
*		306	83		ds Poor, H					
*		938 066	83 83		ods Poor, H ods Poor, H					
_					,					
		687	82		ghted Aver					
		329 358			6% Pervio					
	э.	300		0.14	% Impervi	ous Area				
	Тс	Leng	ıth	Slope	Velocity	Capacity	Description			
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description			
	7.2	2,00		0.0215	4.64	34.76	Channel Flow,			
							Area= 7.5 sf Perim= 14.7' r= 0.51' n= 0.030			
	18.2	1,20	02	0.0150	1.10		Shallow Concentrated Flow,			
							Cultivated Straight Rows Kv= 9.0 fps			
	12.0	ę	99	0.0201	0.14		Sheet Flow,			
_							Cultivated: Residue>20% n= 0.170 P2= 2.57"			
	37.4	3,30	02	Total						

Subcatchment SWS 4: SSWS 4

Summary for Subcatchment SWS 5: SSWS 5

Runoff	=	6.74 cfs @	12.19 hrs, Volume=				
Routed to Pond 5P : Seasonal Farm Pond							


0.401 af, Depth> 1.09"

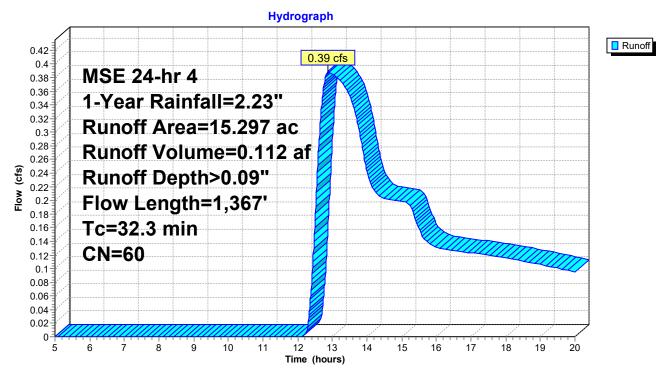
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 1-Year Rainfall=2.23"

	Area	(ac) (CN De	escription		
*	3.	792	89 Ro	w Crop, HS	G D	
*	0.	620	83 W	oods Poor, I	HSG D	
	4.	412	88 W	eighted Ave	rage	
	4.	412	10	0.00% Perv	ious Area	
	_					
	Tc	Length			Capacity	Description
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	1.4	205	0.077	9 2.51		Shallow Concentrated Flow,
						Cultivated Straight Rows Kv= 9.0 fps
	9.6	95	0.031	7 0.16		Sheet Flow,
						Cultivated: Residue>20% n= 0.170 P2= 2.57"
_	11.0	200	Total			

11.0 300 Total

Subcatchment SWS 5: SSWS 5

Summary for Subcatchment SWS 6: SSWS 6

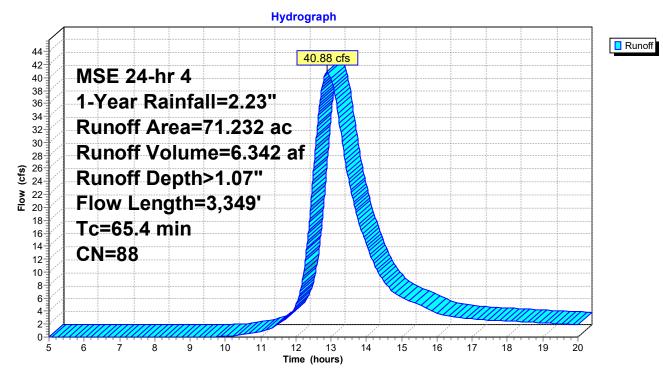

Runoff = 0.39 cfs @ 12.89 hrs, Volume= Routed to Pond 11P : Wooded Pond 0.112 af, Depth> 0.09"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 1-Year Rainfall=2.23"

_	Area	(ac)	CN	Desc	cription		
*	14.	428	58	Mea	dow, HSG	В	
*	0.	659	98	Pave	ed Road, ⊢	ISG B	
*	0.	173	65	Resi	dential 2 a	cre, HSG B	
*	0.	037	60	Woo	ds Fair, H	SG B	
	15.	297	60	Weig	ghted Aver	age	
	14.	638		95.6	9% Pervio	us Area	
	0.	659		4.31% Impervious Area			
	Тс	Length		Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	24.0	1,267	7 0.	0158	0.88		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	8.3	100) 0.	2808	0.20		Sheet Flow,
_							Woods: Light underbrush n= 0.400 P2= 2.57"
	30.3	1 267	7 T	otol			

32.3 1,367 Total

Subcatchment SWS 6: SSWS 6

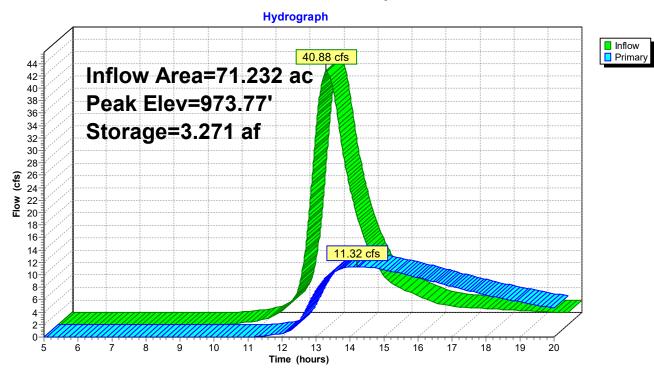


Summary for Subcatchment SWS 7: SSWS 7

Runoff = 40.88 cfs @ 12.87 hrs, Volume= Routed to Pond 3P : P-Trap 6.342 af, Depth> 1.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 1-Year Rainfall=2.23"

	Area	(ac)	CN	Desc	ription						
*	0.	242	85	Grav	el Road, H	ISG B					
*	0.	013	91	Grav	Gravel Road, HSG D						
*	0.	083	91	Grav	el Road, ł	ISG D					
*	0.	813	86	6 Farm	nstead, HS	SG D					
*	2.	111	86	6 Farm	nstead, HS	SG D					
*	0.	140	98	8 Pave	ed Road, F	ISG B					
*	0.	071	98	8 Pave	ed Road, F	ISG D					
*	0.	039	98	8 Pave	ed Road, F	ISG D					
*	0.	253	84	Resi	dential 1 a	cre, HSG E)				
*	0.	102	84			cre, HSG E					
*		914	84			icre, HSG E)				
*	6.	429	78		Crop, HS						
*		978	89		Crop, HS						
*		489	89		Crop, HS						
*	35.	555	89	Row	Crop, HS	G D					
	71.	232	88	8 Weig	ghted Aver	rage					
	-	982		99.6	5% Pervio	us Area					
	0.	250		0.359	% Impervi	ous Area					
		Leng		Slope	Velocity		Description				
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
	58.8	3,24	49	0.0105	0.92		Shallow Concentrated Flow,				
							Cultivated Straight Rows Kv= 9.0 fps				
	6.6	1(00	0.0902	0.25		Sheet Flow,				
_							Cultivated: Residue>20% n= 0.170 P2= 2.57"				
	65.4	3,34	49	Total							


Subcatchment SWS 7: SSWS 7

Summary for Pond 3P: P-Trap

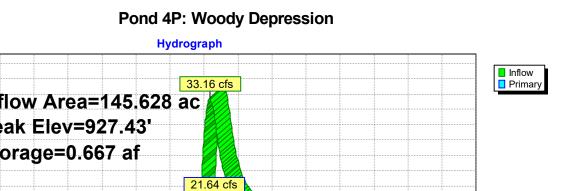
Primary	= = =	11.32 c 11.32 c	ofs @ 12 ofs @ 14	2.87 hrs, Vo .21 hrs, Vo .21 hrs, Vo	olume=		or 1-Year event : 72%, Lag= 80.7 min	
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 973.77' @ 14.21 hrs Surf.Area= 3.547 ac Storage= 3.271 af								
Center-c	Plug-Flow detention time= 159.1 min calculated for 5.153 af (81% of inflow) Center-of-Mass det. time= 114.9 min (950.9 - 836.0)							
Volume				0 0	e Descriptior			
#1	972	.00'	14.985	af Custo	m Stage Data	a (Prismatic) Listed	l below (Recalc)	
Elevatio	on Si	urf.Area	In	c.Store	Cum.Store			
(fee	et)	(acres)	(acı	e-feet)	(acre-feet)			
972.0	00	0.250		0.000	0.000			
973.0	00	2.000		1.125	1.125			
974.0	00	4.000		3.000	4.125			
975.0	00	5.860		4.930	9.055			
976.0	00	6.000		5.930	14.985			
Device	Routing	l	Invert	Outlet Dev	vices			
#1	Primary		972.00'		Ind Culvert			
<i>//</i> 1	i innai j		012.00			ction conforming to	fill Ke= 0.500	
							0.0182 '/' Cc= 0.900	
					-	netal, Flow Area= 3		
#2	Primary	/	975.50'				Broad-Crested Rectan	gular Weir
			010.00			0.60 0.80 1.00 1.		
				`	/	.70 2.70 2.64 2.63		
				2350. (L lig	,, 2.00 2			
Drimon	OutElou		1.22 of a	a 11 01 hrs		7' (Free Discharge	a)	

Primary OutFlow Max=11.32 cfs @ 14.21 hrs HW=973.77' (Free Discharge) 1=Culvert (Barrel Controls 11.32 cfs @ 5.10 fps) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 3P: P-Trap

Summary for Pond 4P: Woody Depression

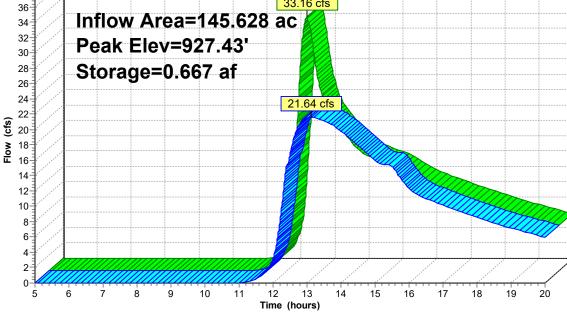
Inflow Area =		145.628 ac,	2.93% Impervious, Inflow I	Depth > 0.71" for 1-Year event		
Inflow :	=	33.16 cfs @	12.59 hrs, Volume=	8.644 af		
Outflow =	=	21.64 cfs @	13.11 hrs, Volume=	8.617 af, Atten= 35%, Lag= 31.3 min		
Primary :	=	21.64 cfs @	13.11 hrs, Volume=	8.617 af		
Routed to Pond 7P : Project Wetland						


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 927.43' @ 13.11 hrs Surf.Area= 0.334 ac Storage= 0.667 af

Plug-Flow detention time= 11.5 min calculated for 8.617 af (100% of inflow) Center-of-Mass det. time= 10.5 min (913.9 - 903.3)

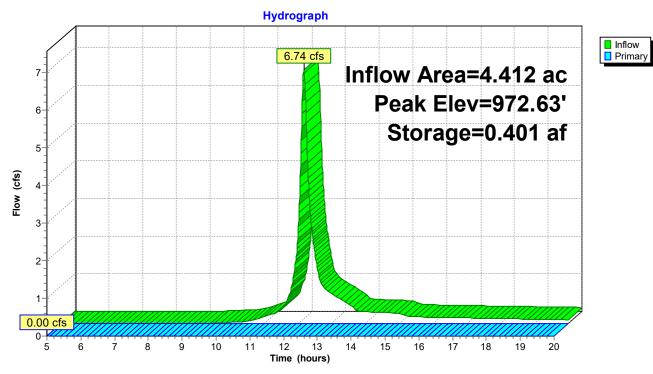
Volume	Inve	ert Av	vail.Storag	e Stora	age Description
#1	923.0	0'	4.840 a	f Cust	tom Stage Data (Prismatic) Listed below (Recalc)
					• • • • • • • • • • • • • • • • • • • •
Elevatio	n Sur	f.Area	Inc.	Store	Cum.Store
(feet	t) (acres)	(acre	-feet)	(acre-feet)
923.0	0	0.003		0.000	0.000
924.0	0	0.030		0.016	0.016
925.0	0	0.130		080.0	0.096
926.0	0	0.220		0.175	0.272
927.0	0	0.300		0.260	0.531
928.0	0	0.380		0.340	0.871
929.0		0.460		0.420	1.291
930.0		0.550		0.505	1.796
931.0		0.640		0.595	2.391
932.0		0.750		0.695	3.086
932.5		0.810		0.390	3.476
933.0		0.875		0.421	3.898
934.0	0	1.010		0.943	4.840
Device	Routing		Invert (Dutlet De)evices
<u>#1</u>	Primary				cound CMP_Round 24"
#1	Filliary				CMP, mitered to conform to fill, Ke= 0.700
					utlet Invert= 923.00' / 922.00' S= 0.0156 '/' Cc= 0.900
					5 Corrugated metal, Flow Area= 3.14 sf
#2	Primary				ng + 2.2 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir
π ∠	1 minary				eet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
				· ·	English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
					hrs HW=927.43' (Free Discharge)

1=CMP_Round 24" (Barrel Controls 21.64 cfs @ 6.89 fps)


2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

MSE 24-hr 4 1-Year Rainfall=2.23"

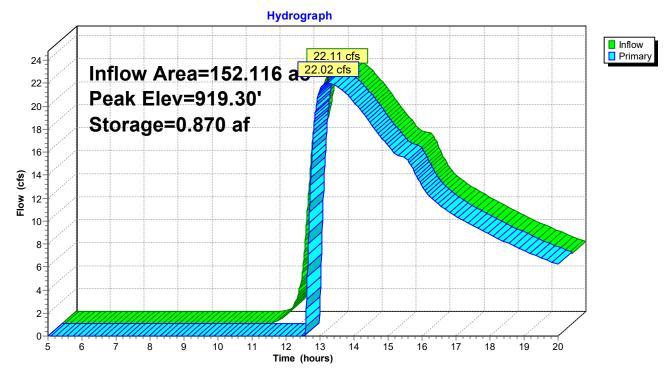
Printed 1/23/2024


Page 21

Summary for Pond 5P: Seasonal Farm Pond

Outflow = $0.00 \text{ cfs} \overline{\textcircled{0}}$	12.19 hrs, Volume=0.401 af5.00 hrs, Volume=0.000 af, Atten= 100%, Lag= 0.0 min5.00 hrs, Volume=0.000 af									
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 972.63' @ 20.00 hrs Surf.Area= 0.702 ac Storage= 0.401 af										
	Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)									
Volume Invert Avail.S	torage Storage Description									
#1 972.00' 1.	540 af Custom Stage Data (Prismatic) Listed below (Recalc)									
Elevation Surf.Area (feet) (acres)	Inc.Store Cum.Store (acre-feet) (acre-feet)									
972.00 0.570 973.00 0.780	0.000 0.000 0.675 0.675									
974.00 0.950	0.865 1.540									
	ert Outlet Devices									
#1 Primary 973.5										
Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=972.00' (Free Discharge)										

1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)



Pond 5P: Seasonal Farm Pond

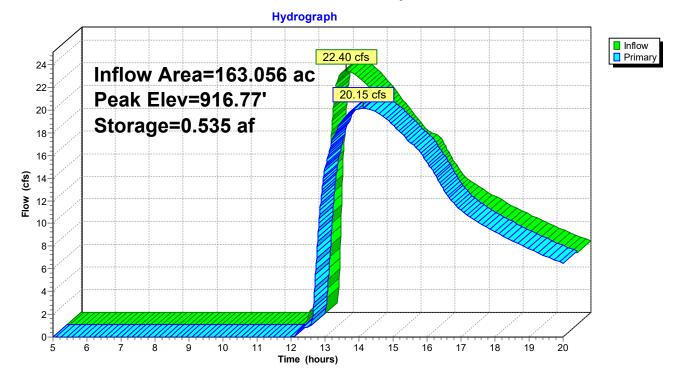
Summary for Pond 7P: Project Wetland

Inflow Area = Inflow = Outflow = Primary = Routed to I	22.11 c 22.02 c 22.02 c	rfs @ 13.08 rfs @ 13.23	3 hrs, Volume= 3 hrs, Volume= 3 hrs, Volume=							
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 919.30' @ 13.23 hrs Surf.Area= 0.898 ac Storage= 0.870 af										
U U	Plug-Flow detention time= 41.6 min calculated for 8.046 af (92% of inflow) Center-of-Mass det. time= 19.3 min(932.0 - 912.7)									
Volume	Invert Av	/ail.Storage	Storage Descript	tion						
#1 9	18.00'	1.560 af	Custom Stage D	ata (Prismatic) Listed below (Recalc)						
Elevation (feet)	Surf.Area (acres)	Inc.S (acre-f								
918.00	0.400		.000 0.00							
919.00	0.830	0.	.615 0.61	5						
920.00	1.060	0.	.945 1.56	60						
Device Rout	ing	Invert O	utlet Devices							
#1 Prim	ary		-	SideZ x 20.0' breadth Broad-Crested Rectangular Weir						
				40 0.60 0.80 1.00 1.20 1.40 1.60						
		C	pet. (English) 2.68	2.70 2.70 2.64 2.63 2.64 2.64 2.63						
Primary OutFlow Max=22.01 cfs @ 13.23 hrs HW=919.30' (Free Discharge)										

1=Broad-Crested Rectangular Weir (Weir Controls 22.01 cfs @ 1.42 fps)

Pond 7P: Project Wetland

Summary for Pond 8P: Residential Depression


Inflow Are	a =	163.056 ac,	4.18% Impervious, Inflow	Depth > 0.60" for 1-Year event
Inflow	=	22.40 cfs @	13.21 hrs, Volume=	8.194 af
Outflow	=	20.15 cfs @	14.11 hrs, Volume=	8.104 af, Atten= 10%, Lag= 54.1 min
Primary	=	20.15 cfs @	14.11 hrs, Volume=	8.104 af
Routed	to Lin	k 6L : Elkhart I	_ake	

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 916.77' @ 14.11 hrs Surf.Area= 0.367 ac Storage= 0.535 af

Plug-Flow detention time= 14.5 min calculated for 8.104 af (99% of inflow) Center-of-Mass det. time= 11.6 min (942.1 - 930.6)

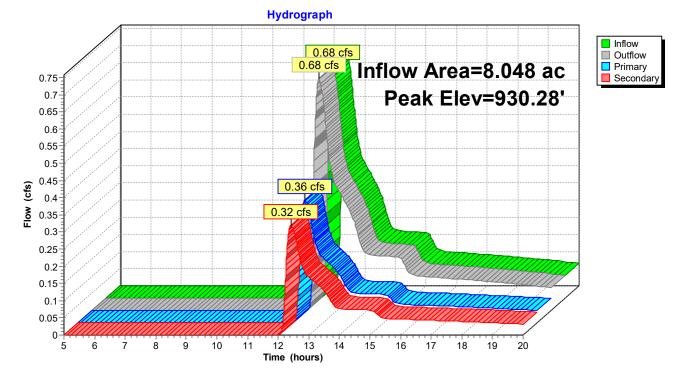
Volumo	Invort	Avail Storago	Storage Description				
Volume	Invert		Storage Description				
#1	914.00'	3.701 af	Custom Stage Data (Prismatic) Listed below (Recalc)				
Elevatic							
(fee	et) (acre	s) (acre-f	eet) (acre-feet)				
914.0	0.03	30 0.	0.000 0.000				
915.0	0.12	20 0.	075 0.075				
916.0	0 0.29	90 0.	205 0.280				
917.0	0.39	90 0.	340 0.620				
918.0	0 0.49	90 0.	440 1.060				
919.0	0 0.57	76 0.	533 1.593				
920.0	0.64	49 0.	612 2.206				
921.0	0.74	42 0.	695 2.901				
922.0	0.85	57 0.	799 3.701				
Device	Routing	Invert O	utlet Devices				
#1	Primary	914.00' 24	.0" Round RCP_Round 24"				
	,		240.0' RCP, end-section conforming to fill, Ke= 0.500				
			et / Outlet Invert= 914.00' / 909.00' S= 0.0208 '/' Cc= 0.900				
		n=	0.013 Concrete pipe, bends & connections, Flow Area= 3.14 sf				
#2	Primary		.5' long + 4.8 '/' SideZ x 18.0' breadth Broad-Crested Rectangular Weir				
	,		ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60				
			pef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63				
Primarv	OutFlow Max	=20.15 cfs @ [·]	I4.11 hrs HW=916.77' (Free Discharge)				
			s 20.15 cfs @ 6.41 fps)				

-2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Pond 8P: Residential Depression

Summary for Pond 9P: Intersection Depression

[57] Hint: Peaked at 930.28' (Flood elevation advised)

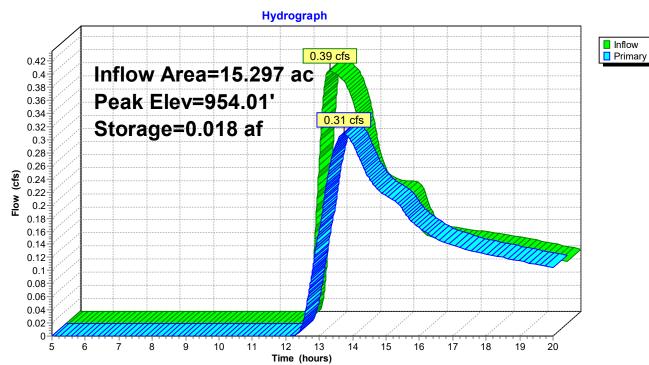

Inflow Area =	8.048 ac,	7.77% Impervious, Infl	ow Depth > 0.16" for 1-Year event				
Inflow =	0.68 cfs @	12.41 hrs, Volume=	0.106 af				
Outflow =	0.68 cfs @	12.41 hrs, Volume=	0.106 af, Atten= 0%, Lag= 0.0 min				
Primary =	0.36 cfs @	12.41 hrs, Volume=	0.056 af				
Routed to Pond	d 8P : Reside	ntial Depression					
Secondary =	0.32 cfs @	12.41 hrs, Volume=	0.050 af				
Routed to Link 6L : Elkhart Lake							

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 930.28' @ 12.41 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	930.00'	18.0" Round CMP_Round 18"
	-		L= 40.0' CMP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 930.00' / 929.00' S= 0.0250 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 1.77 sf
#2	Secondary	930.00'	18.0" Round CMP_Round 18"
			L= 52.0' CMP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 930.00' / 929.00' S= 0.0192 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 1.77 sf

Primary OutFlow Max=0.36 cfs @ 12.41 hrs HW=930.28' (Free Discharge) ←1=CMP_Round 18" (Barrel Controls 0.36 cfs @ 2.34 fps)

Secondary OutFlow Max=0.32 cfs @ 12.41 hrs HW=930.28' (Free Discharge) -2=CMP_Round 18" (Barrel Controls 0.32 cfs @ 2.09 fps)

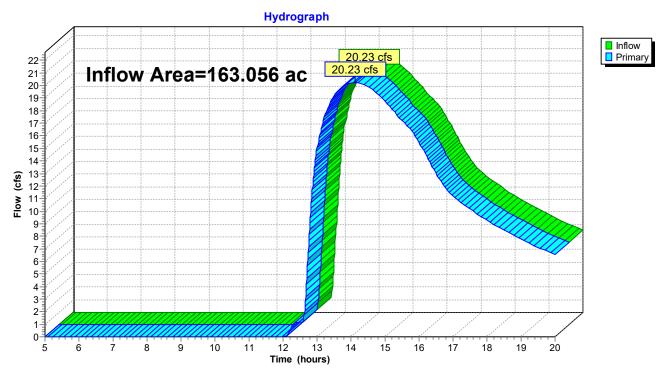


Pond 9P: Intersection Depression

Summary for Pond 11P: Wooded Pond

Inflow = 0).39 cfs @ 12.89	6 Impervious, Inflow Depth > 0.09" for 1-Year event 9 hrs, Volume= 0.112 af 5 hrs, Volume= 0.104 af, Atten= 21%, Lag= 51.7 min								
).31 cfs @ 13.75	5 hrs, Volume= 0.104 af								
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 954.01' @ 13.75 hrs Surf.Area= 1.274 ac Storage= 0.018 af										
Plug-Flow detention time= 46.6 min calculated for 0.104 af (93% of inflow) Center-of-Mass det. time= 28.3 min (944.3 - 916.0)										
Volume Invert	Avail.Storage	Storage Description								
#1 954.00'	1.395 af	Custom Stage Data (Prismatic) Listed below (Recalc)								
Elevation Surf.A (feet) (ac	Area Inc.St cres) (acre-fe									
954.00 1.	.270 0.	000 0.000								
955.00 1.	.520 1.	395 1.395								
Device Routing	Invert Ou	utlet Devices								
#1 Primary	954.00' 70	.0' long + 9.0 '/' SideZ x 2.0' breadth Broad-Crested Rectangular Weir								
		ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00								
		50 3.00 3.50								
		bef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 07 3.20 3.32								
Drimon (OutElow May-0.20 at a 2.275 bra 100/-054.041 (Erro Discharge)										

Primary OutFlow Max=0.30 cfs @ 13.75 hrs HW=954.01' (Free Discharge) ☐=Broad-Crested Rectangular Weir (Weir Controls 0.30 cfs @ 0.30 fps)


Pond 11P: Wooded Pond

HydroCAD® 10.20-4a s/n 11643 © 2023 HydroCAD Software Solutions LLC

Summary for Link 6L: Elkhart Lake

Inflow Area =	163.056 ac,	4.18% Impervious, Inflow [Depth > 0.60"	for 1-Year event
Inflow =	20.23 cfs @	14.11 hrs, Volume=	8.154 af	
Primary =	20.23 cfs @	14.11 hrs, Volume=	8.154 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

Link 6L: Elkhart Lake

ElkhartLake_HydroCAD	N
Prepared by Stantec Consulting	
HvdroCAD® 10.20-4a s/n 11643 © 2023 HvdroCAD Software Solutions LLC	

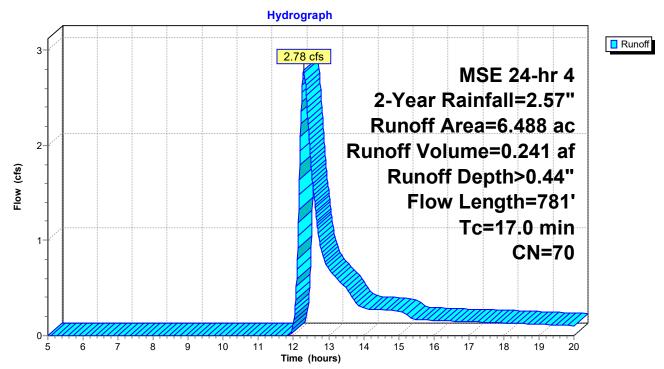
Time span=5.00-20.00 hrs, dt=0.01 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment SWS 1: SSWS 1	Runoff Area=6.488 ac 22.13% Impervious Runoff Depth>0.44" Flow Length=781' Tc=17.0 min CN=70 Runoff=2.78 cfs 0.241 af
Subcatchment SWS 2: SSWS 2	Runoff Area=2.892 ac 17.12% Impervious Runoff Depth>0.52" Flow Length=680' Tc=9.5 min CN=72 Runoff=2.03 cfs 0.125 af
Subcatchment SWS 3: SSWS 3	Runoff Area=8.048 ac 7.77% Impervious Runoff Depth>0.26" Flow Length=1,413' Tc=17.1 min CN=64 Runoff=1.51 cfs 0.176 af
Subcatchment SWS 4: SSWS 4	Runoff Area=54.687 ac 6.14% Impervious Runoff Depth>0.97" Flow Length=3,302' Tc=37.4 min CN=82 Runoff=39.82 cfs 4.439 af
Subcatchment SWS 5: SSWS 5	Runoff Area=4.412 ac 0.00% Impervious Runoff Depth>1.37" Flow Length=300' Tc=11.0 min CN=88 Runoff=8.41 cfs 0.502 af
Subcatchment SWS 6: SSWS 6	Runoff Area=15.297 ac 4.31% Impervious Runoff Depth>0.17" Flow Length=1,367' Tc=32.3 min CN=60 Runoff=1.04 cfs 0.211 af
Subcatchment SWS 7: SSWS 7	Runoff Area=71.232 ac 0.35% Impervious Runoff Depth>1.34" Flow Length=3,349' Tc=65.4 min CN=88 Runoff=51.32 cfs 7.953 af
Pond 3P: P-Trap	Peak Elev=974.02' Storage=4.197 af Inflow=51.32 cfs 7.953 af Outflow=13.48 cfs 6.401 af
Pond 4P: Woody Depression	Peak Elev=928.69' Storage=1.152 af Inflow=44.15 cfs 11.039 af Outflow=25.31 cfs 10.999 af
Pond 5P: Seasonal Farm Pond	Peak Elev=972.77' Storage=0.502 af Inflow=8.41 cfs 0.502 af Outflow=0.00 cfs 0.000 af
Pond 7P: Project Wetland	Peak Elev=919.33' Storage=0.898 af Inflow=25.91 cfs 11.240 af Outflow=25.88 cfs 10.492 af
Pond 8P: Residential Depression	Peak Elev=917.46' Storage=0.811 af Inflow=26.40 cfs 10.710 af Outflow=23.74 cfs 10.591 af
Pond 9P: Intersection Depression Primary=0.79	Peak Elev=930.42' Inflow=1.51 cfs 0.176 af 9 cfs 0.093 af Secondary=0.71 cfs 0.083 af Outflow=1.51 cfs 0.176 af
Pond 11P: Wooded Pond	Peak Elev=954.03' Storage=0.032 af Inflow=1.04 cfs 0.211 af Outflow=0.73 cfs 0.200 af
Link 6L: Elkhart Lake	Inflow=23.85 cfs 10.674 af Primary=23.85 cfs 10.674 af
Total Runoff Area = 163.05	56 ac Runoff Volume = 13.647 af Average Runoff Depth = 1.00"

I Runoff Area = 163.056 ac Runoff Volume = 13.647 af Average Runoff Depth = 1.00" 95.82% Pervious = 156.233 ac 4.18% Impervious = 6.823 ac

Summary for Subcatchment SWS 1: SSWS 1

Runoff = 2.78 cfs @ 12.30 hrs, Volume= 0.24 Routed to Pond 7P : Project Wetland

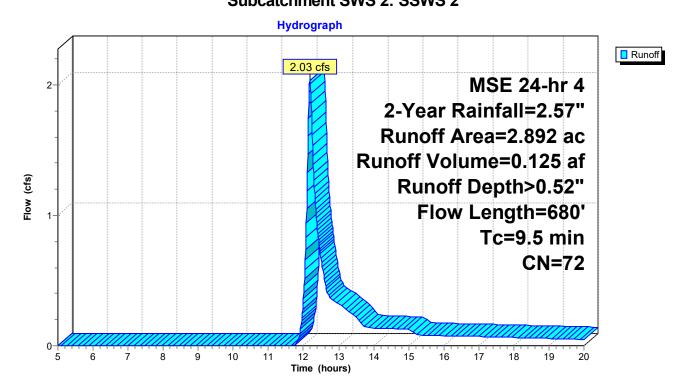

0.241 af, Depth> 0.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 2-Year Rainfall=2.57"

_	Area	(ac)	CN	Desc	cription						
*	0.	891	98	Pave	Paved Road, HSG B						
*	2.	638	68	Resi	dential 1 a	icre, HSG E	3				
*	0.	096	75	Resi	dential 1/4	acre, HSG	B				
*	0.	545	98	Wate	er, HSG B						
*	2.	318	55	Woo	ds Good,	HSG B					
	6.	488	70	Weig	ghted Aver	age					
	5.	052		77.8	7% Pervio	us Area					
	1.	436		22.1	3% Imperv	/ious Area					
	Tc	Lengt	h :	Slope	Velocity	Capacity	Description				
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)					
	9.9	69	9 0	.0558	1.18		Shallow Concentrated Flow,				
							Woodland Kv= 5.0 fps				
	7.1	8	1 0	.0984	0.19		Sheet Flow,				
							Grass: Dense n= 0.240 P2= 2.57"				

17.0 781 Total

Subcatchment SWS 1: SSWS 1


Summary for Subcatchment SWS 2: SSWS 2

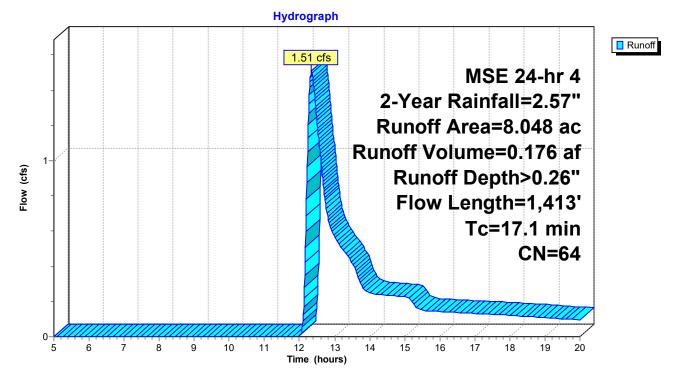
Runoff = 2.03 cfs @ 12.18 hrs, Volume= 0.125 af, Depth> 0.52" Routed to Pond 8P : Residential Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 2-Year Rainfall=2.57"

	Area	(ac)	CN	Desc	cription						
*	0.	495	98	Pave	Paved Road, HSG B						
*	2.	073	68	Resi	dential 1 a	cre, HSG E	3				
*	0.	021	75	Resi	dential 1/4	acre, HSG	B				
*	0.	303	55	Woo	ds Good, I	HSG B					
	2.	892	72	Weig	ghted Aver	age					
	2.	397		82.8	8% Pervio	us Area					
	0.	495		17.12	2% Imper\	/ious Area					
	Тс	Lengt	th	Slope	Velocity	Capacity	Description				
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)					
	2.5	58	80 C).0638	3.79		Shallow Concentrated Flow,				
							Grassed Waterway Kv= 15.0 fps				
	7.0	10	0 0	0.0600	0.24		Sheet Flow,				
							Grass: Short n= 0.150 P2= 2.57"				
	9.5	68	1 08	Fotal							

Subcatchment SWS 2: SSWS 2

Summary for Subcatchment SWS 3: SSWS 3


Runoff = 1.51 cfs @ 12.34 hrs, Volume= 0.176 af, Depth> 0.26" Routed to Pond 9P : Intersection Depression

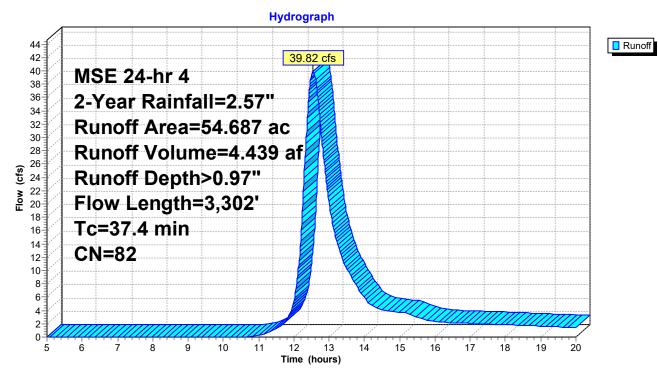
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 2-Year Rainfall=2.57"

	Area	(ac)	CN	Desc	cription		
*	3.	177	58	Mea	dow, HSG	В	
*	0.	625	98	Pave	ed Road, H	ISG B	
*	0.	178	75	Resi	dential 1/4	acre, HSG	BB
*	2.	016	65	Resi	dential 2 a	cre, HSG E	3
*	2.	052	60	Woo	ds Fair, H	SG B	
	8.	048	64	Weig	ghted Aver	age	
	7.	423		92.2	3% Pervio	us Area	
	0.	625		7.77	% Impervi	ous Area	
	Tc	Lengt	h	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	12.4	1,31	3 0	0.0640	1.77		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	4.7	10	0 0).2089	0.35		Sheet Flow,
							Cultivated: Residue>20% n= 0.170 P2= 2.57"

17.1 1,413 Total

Subcatchment SWS 3: SSWS 3

Summary for Subcatchment SWS 4: SSWS 4


[47] Hint: Peak is 115% of capacity of segment #1

Runoff = 39.82 cfs @ 12.55 hrs, Volume= Routed to Pond 4P : Woody Depression

4.439 af, Depth> 0.97"

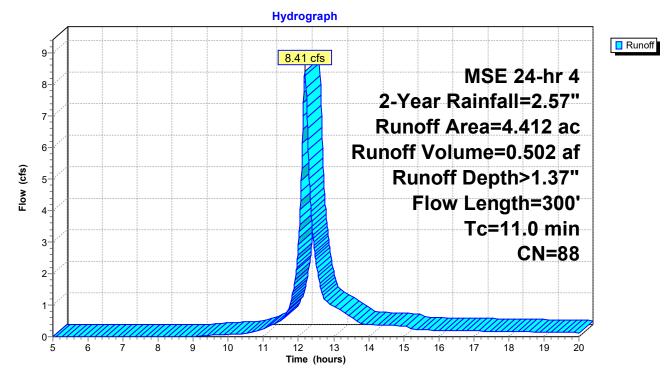
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 2-Year Rainfall=2.57"

	Area	(ac)	CN	Desc	cription		
*	1.	520	74	Farn	nstead, HS	SG B	
*	2.	673	86	Farn	nstead, HS	G D	
*	3.	850	69	Past	ure, HSG	В	
*	1.	028	84	Past	ure, HSG	D	
*	0.	150	84	Past	ure, HSG	D	
*	11.	086	84	Past	ure, HSG	D	
*	1.	697	98	8 Pave	ed Road, ⊦	ISG B	
*	0.	205	98	8 Pave	ed Road, ⊦	ISG D	
*	0.	009	98	8 Pave	ed Road, ⊦	ISG D	
*	0.	371	98	8 Pave	ed Road, ⊦	ISG D	
*	0.	655	68	8 Resi	dential 1 a	cre, HSG B	
*	1.	292	84	Resi	dential 1 a	cre, HSG D	
*	1.	537	89	Row	Crop, HS	G D	
*		312	89		Crop, HS		
*		167	89		Crop, HS	G D	
*		012	98		er, HSG B		
*		060	98		er, HSG D		
*		004	98		er, HSG D		
*		119	55		ds Good, I		
*		487	77		ds Good, I		
*		143	66		ods Poor, ⊦		
*		306	83		ds Poor, H		
*		938	83		ds Poor, H		
*		066	83		ds Poor, H		
		687	82		ghted Aver		
		329			6% Pervio		
	3.	358		6.14	% Impervi	ous Area	
		Leng		Slope	Velocity	Capacity	Description
_	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	
	7.2	2,00	00	0.0215	4.64	34.76	Channel Flow,
							Area= 7.5 sf Perim= 14.7' r= 0.51' n= 0.030
	18.2	1,20)2	0.0150	1.10		Shallow Concentrated Flow,
							Cultivated Straight Rows Kv= 9.0 fps
	12.0	ę	99	0.0201	0.14		Sheet Flow,
							Cultivated: Residue>20% n= 0.170 P2= 2.57"
	37.4	3,30		Total			

Subcatchment SWS 4: SSWS 4

Summary for Subcatchment SWS 5: SSWS 5

Runoff	=	8.41 cfs @	12.19 hrs,	Volume=				
Routed to Pond 5P : Seasonal Farm Pond								


0.502 af, Depth> 1.37"

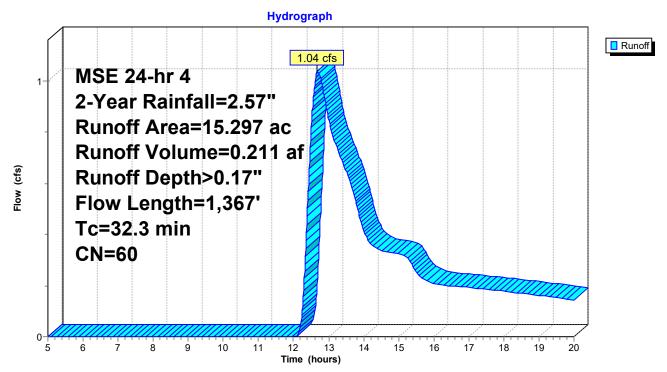
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 2-Year Rainfall=2.57"

	Area	(ac) (CN Des	cription		
*	3.	792	89 Rov	v Crop, HS	GD	
*	0.	620	83 Wo	ods Poor, H	ISG D	
	4.	412	88 We	ighted Avei	rage	
	4.	412	100	.00% Pervi	ous Area	
	Tc (min)	Length (feet)		Velocity (ft/sec)	Capacity (cfs)	Description
	1.4	205	0.0779	2.51		Shallow Concentrated Flow,
	9.6	95	0.0317	0.16		Cultivated Straight Rows Kv= 9.0 fps Sheet Flow, Cultivated: Residue>20% n= 0.170 P2= 2.57"
_	110	200	Tatal			

11.0 300 Total

Subcatchment SWS 5: SSWS 5

Summary for Subcatchment SWS 6: SSWS 6

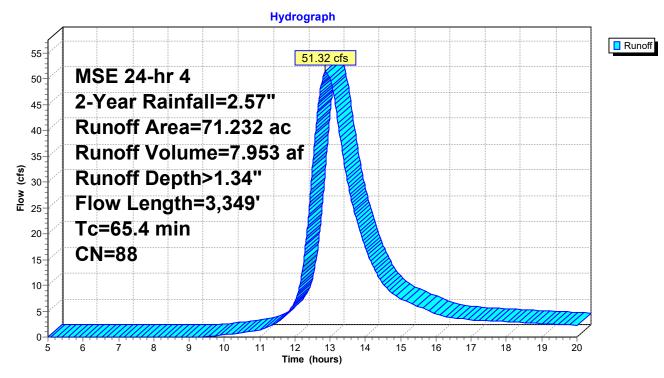

Runoff = 1.04 cfs @ 12.67 hrs, Volume= Routed to Pond 11P : Wooded Pond 0.211 af, Depth> 0.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 2-Year Rainfall=2.57"

_	Area	(ac)	CN	Desc	cription		
*	14.	428	58	Mea	dow, HSG	В	
*	0.	659	98		ed Road, ⊢		
*	0.	173	65	Resi	dential 2 a	cre, HSG B	
*	0.	037	60	Woo	ds Fair, H	SG B	
	15.	297	60	Weig	ghted Aver	age	
	14.	638		95.6	9% Pervio	us Area	
	0.659			4.31	% Impervi	ous Area	
	Тс	Length	n S	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	24.0	1,267	7 0.	0158	0.88		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	8.3	100	0.	2808	0.20		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 2.57"
	30.3	1 26	7 T	atal			

32.3 1,367 Total

Subcatchment SWS 6: SSWS 6



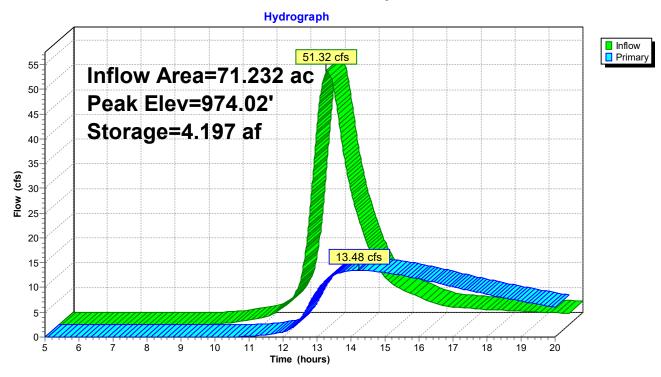
Summary for Subcatchment SWS 7: SSWS 7

Runoff = 51.32 cfs @ 12.87 hrs, Volume= Routed to Pond 3P : P-Trap 7.953 af, Depth> 1.34"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 2-Year Rainfall=2.57"

	Area	(ac)	CN	Desc	cription						
*	0.	242	85	Grav	el Road, H	ISG B					
*	0.	013	91	Grav	Gravel Road, HSG D						
*	0.	083	91	Grav	el Road, ł	ISG D					
*	0.	813	86	Farm	nstead, HS	SG D					
*	2.	111	86	Farm	nstead, HS	SG D					
*	0.	140	98	Pave	ed Road, F	ISG B					
*	0.	071	98	Pave	ed Road, F	ISG D					
*	0.	039	98	Pave	ed Road, F	ISG D					
*	-	253	84			cre, HSG E					
*		102	84			cre, HSG E					
*		914	84			cre, HSG E)				
*		429	78		Crop, HS						
*		978	89		Crop, HS						
*		489	89		Crop, HS						
*	35.	555	89	Row	Crop, HS	G D					
	71.	232	88	Weig	ghted Aver	age					
		982		99.6	5% Pervio	us Area					
	0.	250		0.359	% Impervi	ous Area					
		Leng		Slope	Velocity		Description				
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)					
	58.8	3,24	49	0.0105	0.92		Shallow Concentrated Flow,				
							Cultivated Straight Rows Kv= 9.0 fps				
	6.6	1(00	0.0902	0.25		Sheet Flow,				
							Cultivated: Residue>20% n= 0.170 P2= 2.57"				
	65.4	3,34	49	Total							

Subcatchment SWS 7: SSWS 7


Summary for Pond 3P: P-Trap

Inflow Area = 71.232 ac, 0.35% Impervious, Inflow Depth > 1.34" for 2-Year event Inflow = 51.32 cfs @ 12.87 hrs, Volume= 7.953 af Outflow = 13.48 cfs @ 14.23 hrs, Volume= 6.401 af, Atten= 74%, Lag= 82.1 min Primary = 13.48 cfs @ 14.23 hrs, Volume= 6.401 af Routed to Pond 4P : Woody Depression										
	Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 974.02' @ 14.23 hrs Surf.Area= 4.033 ac Storage= 4.197 af									
Center-c	Plug-Flow detention time= 164.7 min calculated for 6.396 af (80% of inflow) Center-of-Mass det. time= 119.8 min (951.8 - 832.0)									
Volume				ge Storage Description						
#1	972	.00'	14.985	af Custom Stage Data (Prismatic) Listed below (Recalc)						
Elevatio	on Si	urf.Area	In	c.Store Cum.Store						
(fee	et)	(acres)	(acı	e-feet) (acre-feet)						
972.0	00	0.250		0.000 0.000						
973.0	00	2.000		1.125 1.125						
974.0	00	4.000		3.000 4.125						
975.0	00	5.860		4.930 9.055						
976.0	00	6.000		5.930 14.985						
Device	Routing		Invert	Outlet Devices						
#1	Primary	/	972.00'	24.0" Round Culvert						
	, inner j		0.2.00	L= 55.0' CMP, end-section conforming to fill, Ke= 0.500						
				Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900						
				n= 0.025 Corrugated metal, Flow Area= 3.14 sf						
#2	Primary	/	975.50'	160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectange	ular Weir					
	,			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60						
				Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63						
Drimony	OutElou	I Mov -1	2 10 of o	≈ 14.22 hrs $H/M = 0.74.02$ (Erec Discharge)						

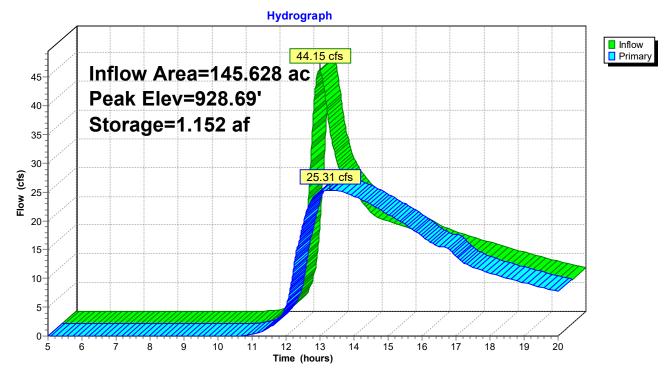
Primary OutFlow Max=13.48 cfs @ 14.23 hrs HW=974.02' (Free Discharge) 1=Culvert (Barrel Controls 13.48 cfs @ 5.29 fps) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by Stantec Consulting HydroCAD® 10.20-4a s/n 11643 © 2023 HydroCAD Software Solutions LLC

Pond 3P: P-Trap

Summary for Pond 4P: Woody Depression

Inflow Area =		145.628 ac,	2.93% Impervious, In	nflow Depth > 0.91" for 2-Year event				
Inflow	=	44.15 cfs @	12.59 hrs, Volume=	11.039 af				
Outflow	=	25.31 cfs @	13.29 hrs, Volume=	10.999 af, Atten= 43%, Lag= 42.1 min				
Primary	=	25.31 cfs @	13.29 hrs, Volume=	10.999 af				
Routed to Pond 7P : Project Wetland								

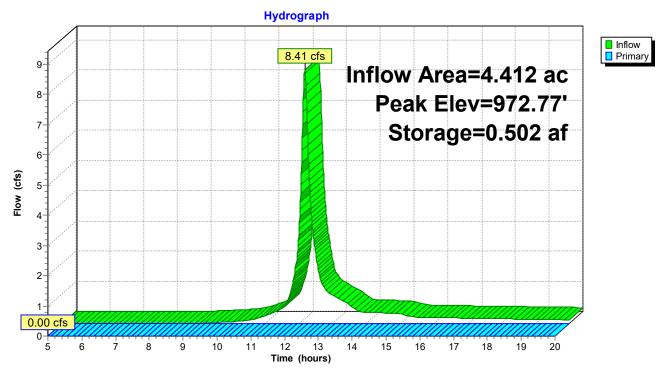

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 928.69' @ 13.29 hrs Surf.Area= 0.435 ac Storage= 1.152 af

Plug-Flow detention time= 18.0 min calculated for 10.999 af (100% of inflow) Center-of-Mass det. time= 16.9 min (917.0 - 900.0)

Volume	Inve	ert Av	vail.Storage	e Stora	age Description			
#1	923.0)0'	4.840 a	f Cust	tom Stage Data (Prismatic) Listed below (Recalc)			
Elevatio	on Sui	rf.Area	Inc.	Store	Cum.Store			
(fee	et) ((acres)	(acre-	feet)	(acre-feet)			
923.0	0	0.003	(000.	0.000			
924.0	0	0.030	().016	0.016			
925.0	0	0.130	(080.	0.096			
926.0	0	0.220).175	0.272			
927.0	0	0.300	().260	0.531			
928.0		0.380).340	0.871			
929.0		0.460).420	1.291			
930.0		0.550).505	1.796			
931.0		0.640).595	2.391			
932.0		0.750).695	3.086			
932.5		0.810).390	3.476			
933.0		0.875).421	3.898			
934.0	0	1.010	().943	4.840			
Device	Routing		Invert (Dutlet De	Devices			
#1	Primary				cound CMP_Round_24"			
π	i iiiiai y				CMP, mitered to conform to fill, Ke= 0.700			
					utlet Invert= 923.00' / 922.00' S= 0.0156 '/' Cc= 0.900			
					5 Corrugated metal, Flow Area= 3.14 sf			
#2	Primary				ng + 2.2 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir			
					eet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60			
				· ·	English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63			
	Primary OutFlow Max=25.32 cfs @ 13.29 hrs HW=928.69' (Free Discharge)							

1=CMP_Round 24" (Barrel Controls 25.32 cfs @ 8.06 fps)

2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

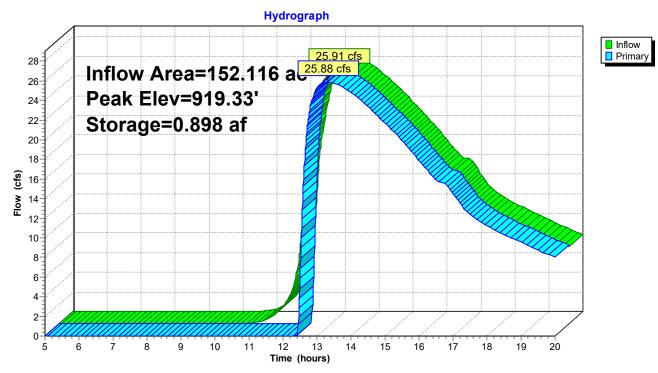


Pond 4P: Woody Depression

Summary for Pond 5P: Seasonal Farm Pond

Inflow = 8.41 cfs @ 12 Outflow = 0.00 cfs @ 5	00% Impervious, Inflow Depth > 1.37" for 2-Year event 2.19 hrs, Volume= 0.502 af 5.00 hrs, Volume= 0.000 af, Atten= 100%, Lag= 0.0 min 5.00 hrs, Volume= 0.000 af epression									
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 972.77' @ 20.00 hrs Surf.Area= 0.732 ac Storage= 0.502 af										
Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)										
Volume Invert Avail.Stora	ge Storage Description									
#1 972.00' 1.540	af Custom Stage Data (Prismatic) Listed below (Recalc)									
Elevation Surf.Area In	c.Store Cum.Store									
(feet) (acres) (acr	re-feet) (acre-feet)									
972.00 0.570	0.000 0.000									
973.00 0.780	0.675 0.675									
974.00 0.950	0.865 1.540									
Device Routing Invert	Outlet Devices									
#1 Primary 973.50'	38.0' long + 28.0 '/' SideZ x 42.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63									
Primary OutFlow Max=0.00 cfs @ 5.00 hrs HW=972.00' (Free Discharge)										

1=Broad-Crested Rectangular Weir (Controls 0.00 cfs)



Pond 5P: Seasonal Farm Pond

Summary for Pond 7P: Project Wetland

Inflow Area = Inflow = Outflow = Primary = Routed to Po	25.91 cfs @ 1 25.88 cfs @ 1	.75% Impervious, Inflow Depth > 0.89" for 2-Year event 3.23 hrs, Volume= 11.240 af 3.33 hrs, Volume= 10.492 af, Atten= 0%, Lag= 5.7 min 3.33 hrs, Volume= 10.492 af							
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 919.33' @ 13.33 hrs Surf.Area= 0.905 ac Storage= 0.898 af									
	Plug-Flow detention time= 34.5 min calculated for 10.492 af (93% of inflow) Center-of-Mass det. time= 16.6 min (931.9 - 915.3)								
Volume Ir	nvert Avail.Stora	age Storage Description							
#1 91	8.00' 1.560	0 af Custom Stage Data (Prismatic) Listed below (Recalc)							
		nc.Store Cum.Store							
(feet)		cre-feet) (acre-feet)							
918.00	0.400	0.000 0.000							
919.00	0.830	0.615 0.615							
920.00	1.060	0.945 1.560							
Device Routin	na Invert	Outlet Devices							
	<u>u</u>								
#1 Prima	ry 919.00'	•							
		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60							
		Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63							
Primary OutFlo	Primary OutFlow Max=25.87 cfs @ 13.33 hrs HW=919.33' (Free Discharge)								

1=Broad-Crested Rectangular Weir (Weir Controls 25.87 cfs @ 1.49 fps)

Pond 7P: Project Wetland

Summary for Pond 8P: Residential Depression

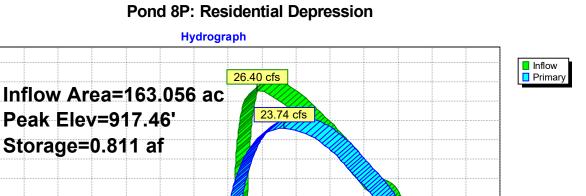
Inflow Area =		163.056 ac,	4.18% Impervious, Inf	low Depth > 0.79" for 2-Year event
Inflow	=	26.40 cfs @	13.28 hrs, Volume=	10.710 af
Outflow	=	23.74 cfs @	14.47 hrs, Volume=	10.591 af, Atten= 10%, Lag= 71.5 min
Primary	=	23.74 cfs @	14.47 hrs, Volume=	10.591 af
Routed	to Lin	k 6L : Elkhart l		

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 917.46' @ 14.47 hrs Surf.Area= 0.436 ac Storage= 0.811 af

Plug-Flow detention time= 18.6 min calculated for 10.591 af (99% of inflow) Center-of-Mass det. time= 15.6 min (945.6 - 930.0)

Volume	Invert	Avail Storago	Storage Description			
			Storage Description			
#1	914.00'	3.701 af	Custom Stage Data (Prismatic) Listed below (Recalc)			
Elevatio			-			
(fee	et) (acre	es) (acre-f	eet) (acre-feet)			
914.0	0.0	30 0.	000 0.000			
915.0	0.1	20 0.	075 0.075			
916.0	0.2	.90 0.	205 0.280			
917.0	0.3	90 0.	340 0.620			
918.0	0.4	.90 0.	440 1.060			
919.0	0.5	7 6 0.	533 1.593			
920.0	0.0	49 0.	612 2.206			
921.0	0.7	42 0.	695 2.901			
922.0	0.8	57 0.	799 3.701			
Device	Routing	Invert O	utlet Devices			
#1	Primary	914.00' 2 4	0.0" Round RCP_Round 24"			
	,	L=	= 240.0' RCP, end-section conforming to fill, Ke= 0.500			
		In	let / Outlet Invert= 914.00' / 909.00' S= 0.0208 '/' Cc= 0.900			
		n=	0.013 Concrete pipe, bends & connections, Flow Area= 3.14 sf			
#2	Primary		5.5' long + 4.8 '/' SideZ x 18.0' breadth Broad-Crested Rectangular Weir			
	5		ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60			
			pef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63			
		0				
Primary OutFlow Max=23.74 cfs @ 14.47 hrs HW=917.46' (Free Discharge)						
1=RCP_Round 24" (Inlet Controls 23.74 cfs @ 7.56 fps)						

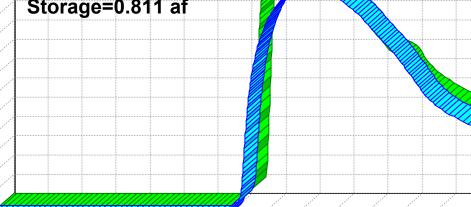
2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)


28-

26-

Elow (cfs)

ģ


Time (hours)

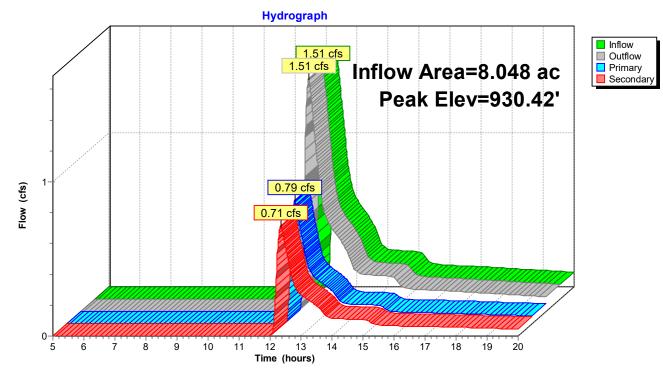
MSE 24-hr 4 2-Year Rainfall=2.57"

Printed 1/23/2024

Page 52

Summary for Pond 9P: Intersection Depression

[57] Hint: Peaked at 930.42' (Flood elevation advised)

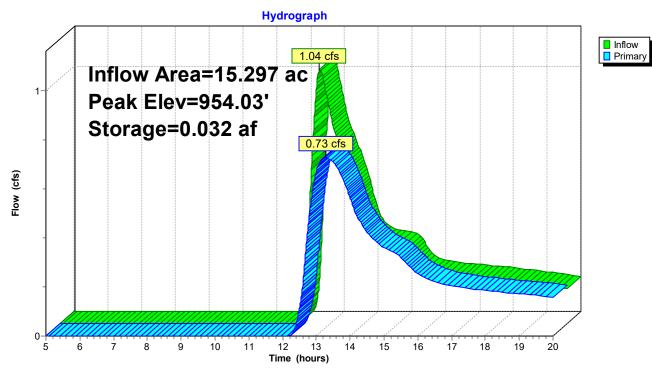

Inflow Area =	8.048 ac,	7.77% Impervious, Inflov	v Depth > 0.26" for 2-Year event				
Inflow =	1.51 cfs @	12.34 hrs, Volume=	0.176 af				
Outflow =	1.51 cfs @	12.34 hrs, Volume=	0.176 af, Atten= 0%, Lag= 0.0 min				
Primary =	0.79 cfs @	12.34 hrs, Volume=	0.093 af				
Routed to Pond 8P : Residential Depression							
Secondary =	0.71 cfs @	12.34 hrs, Volume=	0.083 af				
Routed to Link 6L : Elkhart Lake							

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 930.42' @ 12.34 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	930.00'	18.0" Round CMP_Round 18"
			L= 40.0' CMP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 930.00' / 929.00' S= 0.0250 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 1.77 sf
#2	Secondary	930.00'	18.0" Round CMP_Round 18"
			L= 52.0' CMP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 930.00' / 929.00' S= 0.0192 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 1.77 sf

Primary OutFlow Max=0.79 cfs @ 12.34 hrs HW=930.42' (Free Discharge) ←1=CMP_Round 18" (Barrel Controls 0.79 cfs @ 2.91 fps)

Secondary OutFlow Max=0.71 cfs @ 12.34 hrs HW=930.42' (Free Discharge) -2=CMP_Round 18" (Barrel Controls 0.71 cfs @ 2.62 fps)

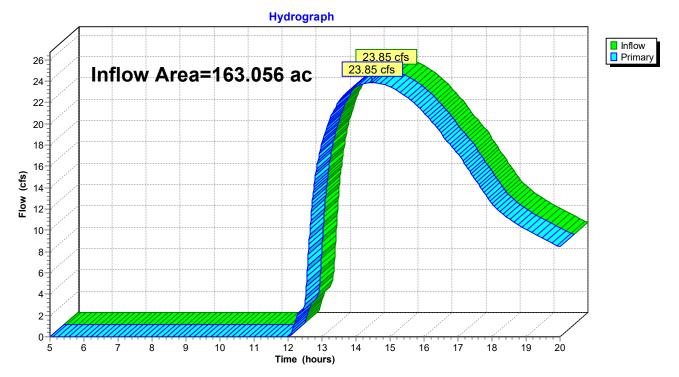


Pond 9P: Intersection Depression

Summary for Pond 11P: Wooded Pond

Inflow Area = 15.297 ac, 4.31% Impervious, Inflow Depth > 0.17" for 2-Year event Inflow = 1.04 cfs @ 12.67 hrs, Volume= 0.211 af Outflow = 0.73 cfs @ 13.27 hrs, Volume= 0.200 af, Atten= 30%, Lag= 36.1 min Primary = 0.73 cfs @ 13.27 hrs, Volume= 0.200 af Routed to Pond 4P : Woody Depression 0.200 af							
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 954.03' @ 13.27 hrs Surf.Area= 1.276 ac Storage= 0.032 af							
Plug-Flow detention time= 39.2 min calculated for 0.200 af (95% of inflow) Center-of-Mass det. time= 23.3 min (914.5 - 891.2)							
Volume Invert Avail.Storage Storage Description							
#1 954.00' 1.395 af Custom Stage Data (Prismatic) Listed below (Recalc)							
Elevation Surf.Area Inc.Store Cum.Store (feet) (acres) (acre-feet) (acre-feet)							
954.00 1.270 0.000 0.000							
955.00 1.520 1.395 1.395							
Device Routing Invert Outlet Devices							
 #1 Primary 954.00' 70.0' long + 9.0 '/' SideZ x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32 							
Drimony OutElow May-0.70 of a 22.07 hrs. LIW-054.021 (Free Discharge)							

Primary OutFlow Max=0.72 cfs @ 13.27 hrs HW=954.03' (Free Discharge) ☐=Broad-Crested Rectangular Weir (Weir Controls 0.72 cfs @ 0.40 fps) Prepared by Stantec Consulting HydroCAD® 10.20-4a s/n 11643 © 2023 HydroCAD Software Solutions LLC



Pond 11P: Wooded Pond

Summary for Link 6L: Elkhart Lake

Inflow Area =	163.056 ac,	4.18% Impervious, Inflow	Depth > 0.79"	for 2-Year event
Inflow =	23.85 cfs @	14.47 hrs, Volume=	10.674 af	
Primary =	23.85 cfs @	14.47 hrs, Volume=	10.674 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

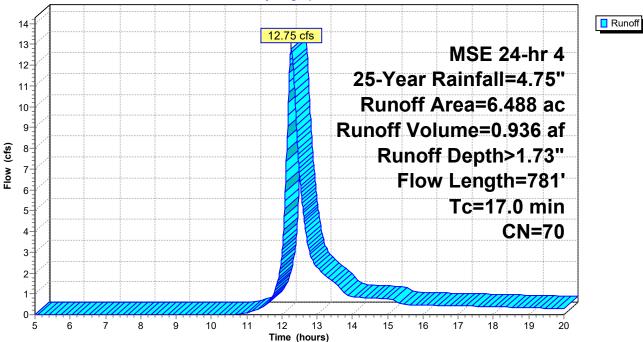
Link 6L: Elkhart Lake

ElkhartLake_HydroCAD M Prepared by Stantec Consulting HydroCAD® 10.20-4a s/n 11643 © 2023 HydroCAD Software Solutions LLC

Time span=5.00-20.00 hrs, dt=0.01 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment SWS 1: SSWS 1	Runoff Area=6.488 ac 22.13% Impervious Runoff Depth>1.73" Flow Length=781' Tc=17.0 min CN=70 Runoff=12.75 cfs 0.936 af
Subcatchment SWS 2: SSWS 2	Runoff Area=2.892 ac 17.12% Impervious Runoff Depth>1.89" Flow Length=680' Tc=9.5 min CN=72 Runoff=8.09 cfs 0.454 af
Subcatchment SWS 3: SSWS 3	Runoff Area=8.048 ac 7.77% Impervious Runoff Depth>1.31" Flow Length=1,413' Tc=17.1 min CN=64 Runoff=11.56 cfs 0.882 af
Subcatchment SWS 4: SSWS 4	Runoff Area=54.687 ac 6.14% Impervious Runoff Depth>2.69" Flow Length=3,302' Tc=37.4 min CN=82 Runoff=111.01 cfs 12.254 af
Subcatchment SWS 5: SSWS 5	Runoff Area=4.412 ac 0.00% Impervious Runoff Depth>3.28" Flow Length=300' Tc=11.0 min CN=88 Runoff=19.45 cfs 1.205 af
Subcatchment SWS 6: SSWS 6	Runoff Area=15.297 ac 4.31% Impervious Runoff Depth>1.06" Flow Length=1,367' Tc=32.3 min CN=60 Runoff=12.03 cfs 1.345 af
Subcatchment SWS 7: SSWS 7	Runoff Area=71.232 ac 0.35% Impervious Runoff Depth>3.22" Flow Length=3,349' Tc=65.4 min CN=88 Runoff=121.44 cfs 19.143 af
Pond 3P: P-Trap	Peak Elev=975.44' Storage=11.674 af Inflow=121.44 cfs 19.143 af Outflow=19.62 cfs 11.949 af
Pond 4P: Woody Depression	Peak Elev=933.46' Storage=4.317 af Inflow=130.08 cfs 25.623 af Outflow=92.89 cfs 24.576 af
Pond 5P: Seasonal Farm Pond	Peak Elev=973.52' Storage=1.106 af Inflow=19.45 cfs 1.205 af Outflow=0.36 cfs 0.102 af
Pond 7P: Project Wetland	Peak Elev=919.69' Storage=1.246 af Inflow=95.55 cfs 25.512 af Outflow=90.98 cfs 24.619 af
Pond 8P: Residential Depression	Peak Elev=921.23' Storage=3.074 af Inflow=93.27 cfs 25.535 af Outflow=66.61 cfs 23.997 af
Pond 9P: Intersection Depression Primary=5.9	Peak Elev=931.37' Inflow=11.56 cfs 0.882 af 4 cfs 0.461 af Secondary=5.62 cfs 0.420 af Outflow=11.56 cfs 0.882 af
Pond 11P: Wooded Pond	Peak Elev=954.15' Storage=0.188 af Inflow=12.03 cfs 1.345 af Outflow=10.08 cfs 1.318 af
Link 6L: Elkhart Lake	Inflow=67.50 cfs 24.418 af Primary=67.50 cfs 24.418 af
Total Runoff Area = 163.	056 ac Runoff Volume = 36.218 af Average Runoff Depth = 2.67" 95.82% Pervious = 156.233 ac 4.18% Impervious = 6.823 ac

Summary for Subcatchment SWS 1: SSWS 1


Runoff = 12.75 cfs @ 12.26 hrs, Volume= Routed to Pond 7P : Project Wetland 0.936 af, Depth> 1.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 25-Year Rainfall=4.75"

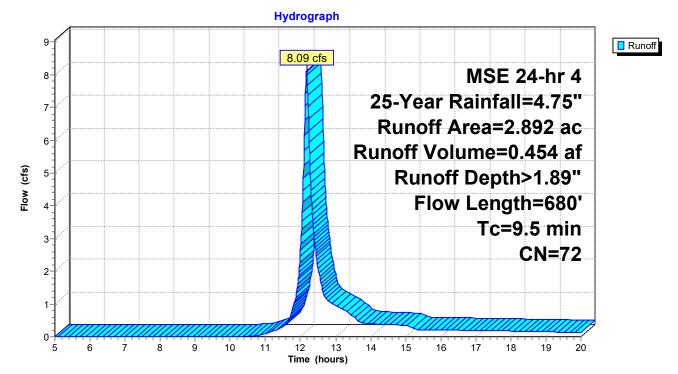
	Area	(ac)	CN	Desc	cription		
*	0.	891	98	Pave	ed Road, H	ISG B	
*	2.	638	68	Resi	dential 1 a	cre, HSG E	3
*	0.	096	75	Resi	dential 1/4	acre, HSG	B
*	0.	545	98	Wate	er, HSG B		
*	2.	318	55	Woo	ds Good,	HSG B	
	6.	488	70	Weig	ghted Aver	age	
	5.	052		77.8	7% Pervio	us Area	
	1.	436		22.1	3% Imperv	ious Area/	
	Тс	Lengt	h	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	9.9	69	9 0	.0558	1.18		Shallow Concentrated Flow,
							Woodland Kv= 5.0 fps
	7.1	8	1 0	.0984	0.19		Sheet Flow,
							Grass: Dense n= 0.240 P2= 2.57"

17.0 781 Total

Subcatchment SWS 1: SSWS 1

Hydrograph

Summary for Subcatchment SWS 2: SSWS 2


Runoff = 8.09 cfs @ 12.17 hrs, Volume= 0.454 af, Depth> 1.89" Routed to Pond 8P : Residential Depression

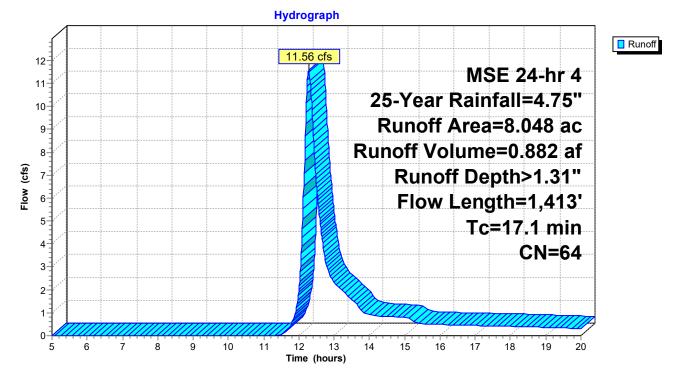
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 25-Year Rainfall=4.75"

_	Area	(ac)	CN	Desc	cription		
*	0.	495	98	Pave	ed Road, ⊦	ISG B	
*	2.	073	68	Resi	dential 1 a	icre, HSG E	3
*	0.	021	75	Resi	dential 1/4	acre, HSG	B
*	0.	303	55	Woo	ds Good, I	HSG B	
	2.	892	72	Weig	ghted Aver	age	
	2.	397		82.8	8% Pervio	us Area	
	0.	495		17.12	2% Imper\	∕ious Area	
	Тс	Length	າ 5	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	2.5	580	0.	0638	3.79		Shallow Concentrated Flow,
							Grassed Waterway Kv= 15.0 fps
	7.0	100) ().	0600	0.24		Sheet Flow,
_							Grass: Short n= 0.150 P2= 2.57"
	0 5	000	<u>т</u>	- 4 - 1			

9.5 680 Total

Subcatchment SWS 2: SSWS 2

Summary for Subcatchment SWS 3: SSWS 3


Runoff = 11.56 cfs @ 12.28 hrs, Volume= 0.882 af, Depth> 1.31" Routed to Pond 9P : Intersection Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 25-Year Rainfall=4.75"

	Area	(ac)	CN	Desc	cription		
*	3.	177	58	Mea	dow, HSG	В	
*	0.	625	98	Pave	ed Road, ⊦	ISG B	
*	0.	178	75	Resi	dential 1/4	acre, HSG	B
*	2.	016	65	Resi	dential 2 a	cre, HSG E	3
*	2.	052	60	Woo	ds Fair, H	SG B	
	8.	048	64	Weig	ghted Aver	age	
	7.	423		92.2	3% Pervio	us Area	
	0.	625		7.77	% Impervi	ous Area	
					-		
	Tc	Length	า :	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	12.4	1,313	30	.0640	1.77		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	4.7	100) ()	.2089	0.35		Sheet Flow,
							Cultivated: Residue>20%

17.1 1,413 Total

Subcatchment SWS 3: SSWS 3

Summary for Subcatchment SWS 4: SSWS 4

[47] Hint: Peak is 319% of capacity of segment #1

Runoff = 111.01 cfs @ 12.51 hrs, Volume= Routed to Pond 4P : Woody Depression

12.254 af, Depth> 2.69"

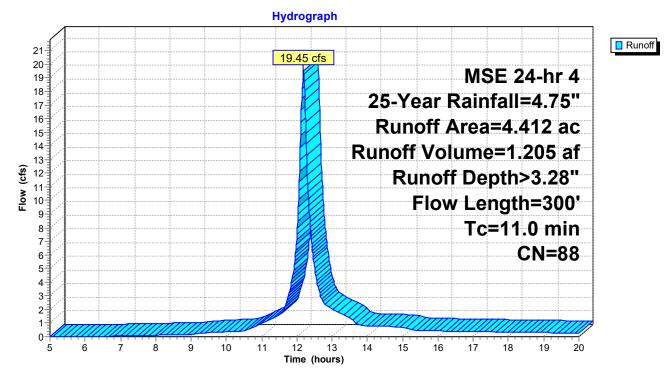
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 25-Year Rainfall=4.75"

	Area	(aa)	CN		cription		
*		520	74		nstead, HS		
*		673	86		istead, HS		
*		850	69		ure, HSG		
*		028	84		ure, HSG		
*		150	84		ure, HSG		
*		086	84		ure, HSG		
*		697	98		ed Road, H		
*		205	98		ed Road, F		
*		009	98		ed Road, F		
*		371	98		ed Road, ⊦		
*		655	68			cre, HSG E	}
*	1.	292	84			cre, HSG D	
*	1.	537	89	9 Row	Crop, HS	GD	
*	0.	312	89	9 Row	Crop, HS	G D	
*	15.	167	89	9 Row	Crop, HS	G D	
*	0.	012	98		er, HSG B		
*		060	98		er, HSG D		
*		004	98		er, HSG D		
*		119	55		ds Good, I		
*		487	77		ds Good,		
*		143	66		ds Poor, H		
*		306	83		ds Poor, H		
*		938	83		ds Poor, H		
_		066	83		ds Poor, H		
		687	82		ghted Aver		
		329			6% Pervio		
	3.	358		6.14	% Impervi	ous Area	
	То	Leng	th	Slope	Velocity	Capacity	Description
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	Description
	7.2	2,00		0.0215	4.64	34.76	Channel Flow,
	1.2	2,00	50	0.0215	4.04	54.70	Area= 7.5 sf Perim= 14.7' r= 0.51' n= 0.030
	18.2	1,20	12	0.0150	1.10		Shallow Concentrated Flow,
	10.2	1,20		0.0100	1.10		Cultivated Straight Rows Kv= 9.0 fps
	12.0	Ç	99	0.0201	0.14		Sheet Flow,
		,		5.0201	0.11		Cultivated: Residue>20% n= 0.170 P2= 2.57"
	37.4	3.30)2	Total			
	U	5,50					

Hydrograph Runoff 120 111.01 cfs **MSE 24-hr 4** 110-25-Year Rainfall=4.75" 100-Runoff Area=54.687 ac 90 Runoff Volume=12.254 af 80-70-Runoff Depth>2.69" Flow (cfs) 60-Flow Length=3,302' 50 Tc=37.4 min 40-**CN=82** 30-20-10-0-7 5 6 8 ģ 10 11 12 13 14 15 16 17 18 19 20 Time (hours)

Subcatchment SWS 4: SSWS 4

Summary for Subcatchment SWS 5: SSWS 5


Runoff = 19.45 cfs @ 12.18 hrs, Volume= Routed to Pond 5P : Seasonal Farm Pond 1.205 af, Depth> 3.28"

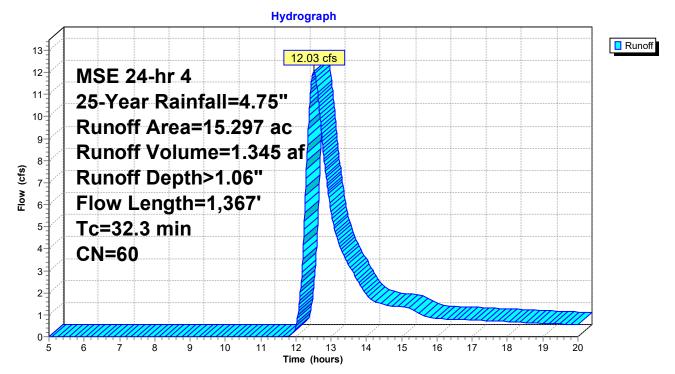
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 25-Year Rainfall=4.75"

	Area	(ac) (CN I	Des	cription		
*	3.	792	89 I	Row	Crop, HS	G D	
*	0.	620	83 \	Noc	ds Poor, H	ISG D	
	4.	412	88 \	Neig	ghted Aver	age	
	4.	412		100.	00% Pervi	ous Area	
	Tc (min)	Length		ope t/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	(min)	(feet)				(015)	
	1.4	205	0.07	779	2.51		Shallow Concentrated Flow,
	9.6	95	0.03	317	0.16		Cultivated Straight Rows Kv= 9.0 fps Sheet Flow, Cultivated: Residue>20% n= 0.170 P2= 2.57"
	11 0	200	Tot	~			

11.0 300 Total

Subcatchment SWS 5: SSWS 5

Summary for Subcatchment SWS 6: SSWS 6

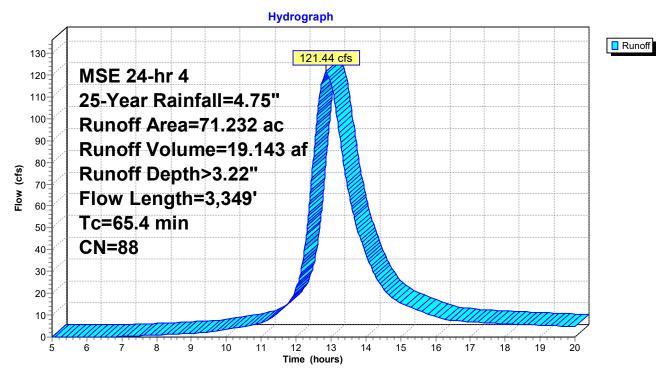

Runoff = 12.03 cfs @ 12.52 hrs, Volume= Routed to Pond 11P : Wooded Pond 1.345 af, Depth> 1.06"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 25-Year Rainfall=4.75"

_	Area	(ac) (CN	Desc	cription		
*	14.	428	58	Mea	dow, HSG	В	
*	0.	659	98	Pave	ed Road, ⊦	ISG B	
*	0.	173	65	Resi	dential 2 a	icre, HSG B	
*	0.	037	60	Woo	ds Fair, H	SG B	
	15.	297	60	Weig	ghted Aver	rage	
	14.	638		95.6	9% Pervio	us Area	
	0.	659		4.31	% Impervi	ous Area	
	Тс	Length		lope	Velocity	Capacity	Description
	(min)	(feet)) ((ft/ft)	(ft/sec)	(cfs)	
	24.0	1,267	0.0	0158	0.88		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	8.3	100	0.2	2808	0.20		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 2.57"
_	20.2	1 267	7 To	tal			

32.3 1,367 Total

Subcatchment SWS 6: SSWS 6



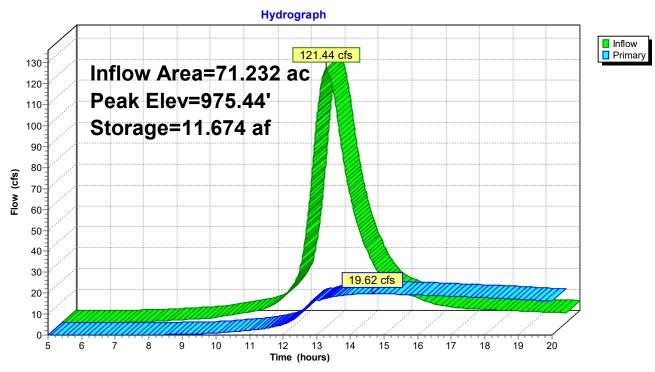
Summary for Subcatchment SWS 7: SSWS 7

Runoff = 121.44 cfs @ 12.86 hrs, Volume= Routed to Pond 3P : P-Trap 19.143 af, Depth> 3.22"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 25-Year Rainfall=4.75"

	Area	(ac)	CN	Desc	cription		
*	0.	242	85	5 Grav	el Road, H	ISG B	
*	0.	013	91	l Grav	el Road, H	ISG D	
*	0.	083	91	l Grav	el Road, H	ISG D	
*	0.	813	86	6 Farm	nstead, HS	SG D	
*	2.	111	86	6 Farm	nstead, HS	SG D	
*	0.	140	98	8 Pave	ed Road, F	ISG B	
*	0.	071	98	8 Pave	ed Road, F	ISG D	
*	0.	039	98	8 Pave	ed Road, F	ISG D	
*	-	253	84	l Resi	dential 1 a	cre, HSG E)
*		102	84			cre, HSG E	
*		914	84			cre, HSG E)
*	-	429	78		Crop, HS		
*		978	89		Crop, HS		
*		489	89		Crop, HS		
*	35.	555	89	Row	Crop, HS	G D	
	71.	232	88	3 Weig	ghted Aver	age	
	-	982			5% Pervio		
	0.	250		0.35	% Impervi	ous Area	
	_					_	
	Tc	Leng		Slope	Velocity		Description
	(min)	(fee		(ft/ft)	(ft/sec)	(cfs)	
	58.8	3,2	49	0.0105	0.92		Shallow Concentrated Flow,
							Cultivated Straight Rows Kv= 9.0 fps
	6.6	1	00	0.0902	0.25		Sheet Flow,
_							Cultivated: Residue>20% n= 0.170 P2= 2.57"
	65.4	3,3	49	Total			

Subcatchment SWS 7: SSWS 7


Summary for Pond 3P: P-Trap

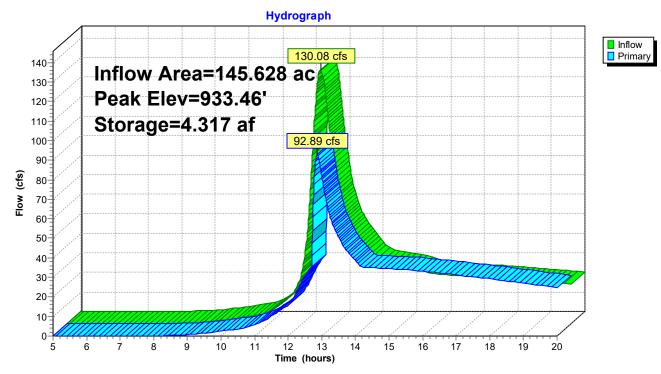
Inflow Ard Inflow Outflow Primary Route	= 121.44 = 19.62	cfs @ 12 cfs @ 14 cfs @ 14	35% Impervious, Inflow Depth > 3.22" for 25-Year event 2.86 hrs, Volume= 19.143 af 4.64 hrs, Volume= 11.949 af, Atten= 84%, Lag= 106.5 min 4.64 hrs, Volume= 11.949 af epression			
	Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 975.44' @ 14.64 hrs Surf.Area= 5.922 ac Storage= 11.674 af					
			min calculated for 11.941 af (62% of inflow) min(955.8 - 815.6)			
Volume	Invert A	vail.Stora	age Storage Description			
#1	972.00'		5 af Custom Stage Data (Prismatic) Listed below (Recalc)			
Elevation	n Surf.Area	i In	nc.Store Cum.Store			
(feet			re-feet) (acre-feet)			
972.00	/	· · · · · ·	0.000 0.000			
973.00			1.125 1.125			
974.00			3.000 4.125			
975.00	0 5.860)	4.930 9.055			
976.00	0 6.000)	5.930 14.985			
Device	Routing	Invert	Outlet Devices			
#1	Primary	972.00'				
	Primary	975.50'	L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 3.14 sf 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63			

Primary OutFlow Max=19.62 cfs @ 14.64 hrs HW=975.44' (Free Discharge) 1=Culvert (Barrel Controls 19.62 cfs @ 6.25 fps) 2=Broad-Crested Rectangular Weir (Controls 0.00 cfs)

Prepared by Stantec Consulting HydroCAD® 10.20-4a s/n 11643 © 2023 HydroCAD Software Solutions LLC

Summary for Pond 4P: Woody Depression

Inflow Are	ea =	145.628 ac,	2.93% Impervious,	Inflow Depth > 2.11" for 25-Year event
Inflow	=	130.08 cfs @	12.55 hrs, Volume	= 25.623 af
Outflow	=	92.89 cfs @	12.86 hrs, Volume	= 24.576 af, Atten= 29%, Lag= 18.6 min
Primary	=	92.89 cfs @	12.86 hrs, Volume	= 24.576 af
Routed	to Po	ond 7P : Project	Wetland	

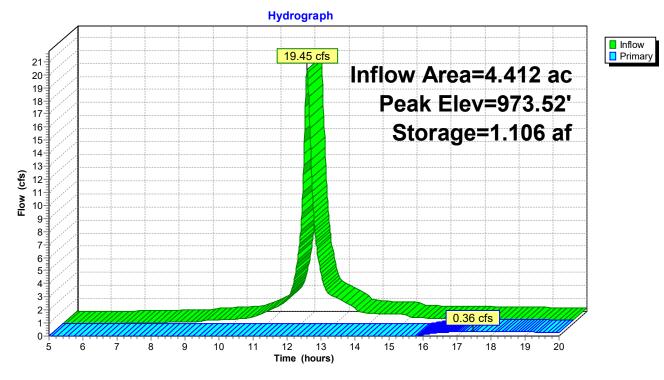

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 933.46' @ 12.86 hrs Surf.Area= 0.937 ac Storage= 4.317 af

Plug-Flow detention time= 52.3 min calculated for 24.576 af (96% of inflow) Center-of-Mass det. time= 39.4 min (918.9 - 879.5)

Volume	Inv	ert A	vail.Storage	e Stora	rage Description
#1	923.0	20'	4.840 a	f Cust	stom Stage Data (Prismatic) Listed below (Recalc)
Elevatio	on Su	rf.Area	Inc.	Store	Cum.Store
(fee	et)	(acres)	(acre	-feet)	(acre-feet)
923.0)0	0.003		0.000	0.000
924.0	00	0.030	(0.016	0.016
925.0	00	0.130	(0.080	0.096
926.0	00	0.220	().175	0.272
927.0	00	0.300	().260	0.531
928.0	00	0.380	().340	0.871
929.0)0	0.460	().420	1.291
930.0)0	0.550	().505	1.796
931.0)0	0.640	().595	2.391
932.0)0	0.750	().695	3.086
932.5	50	0.810).390	3.476
933.0)0	0.875).421	3.898
934.0)0	1.010	().943	4.840
Device	Routing		Invert (Dutlet De	Devices
#1	Primary				Cound CMP_Round 24"
			L	.= 64.0'	CMP, mitered to conform to fill, Ke= 0.700
			I	nlet / Ou	utlet Invert= 923.00' / 922.00' S= 0.0156 '/' Cc= 0.900
					5 Corrugated metal, Flow Area= 3.14 sf
#2	Primary		933.00'	6.0' lon	ng + 2.2 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir
			ŀ	lead (fe	eet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			(Coef. (Er	English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
Primary	OutFlow	Max=9)2.75 cfs @	12.86 h	hrs HW=933.46' (Free Discharge)

←1=CMP_Round 24" (Barrel Controls 35.97 cfs @ 11.45 fps)

2=Broad-Crested Rectangular Weir (Weir Controls 56.79 cfs @ 1.83 fps)

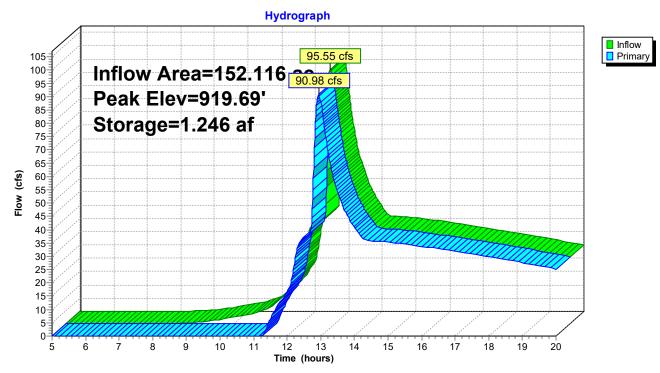


Pond 4P: Woody Depression

Summary for Pond 5P: Seasonal Farm Pond

Inflow = 19.45 cfs @ 12 Outflow = 0.36 cfs @ 12	00% Impervious, Inflow Depth > 3.28" for 25-Year event 2.18 hrs, Volume= 1.205 af 7.47 hrs, Volume= 0.102 af, Atten= 98%, Lag= 317.0 min 7.47 hrs, Volume= 0.102 af epression
	e Span= 5.00-20.00 hrs, dt= 0.01 hrs Surf.Area= 0.869 ac Storage= 1.106 af
Plug-Flow detention time= 482.7 r Center-of-Mass det. time= 310.8 r	nin calculated for 0.102 af (8% of inflow) nin(1,082.6 - 771.8)
Volume Invert Avail.Stora	age Storage Description
#1 972.00' 1.540	af Custom Stage Data (Prismatic) Listed below (Recalc)
	nc.Store Cum.Store re-feet) (acre-feet)
972.00 0.570	0.000 0.000
973.00 0.780	0.675 0.675
974.00 0.950	0.865 1.540
Device Routing Invert	
#1 Primary 973.50'	38.0' long + 28.0 '/' SideZ x 42.5' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
Primary OutFlow Max=0.35 cfs @	② 17.47 hrs HW=973.52' (Free Discharge)

Primary OutFlow Max=0.35 cts @ 17.47 hrs HW=973.52' (Free Discharge) **—1=Broad-Crested Rectangular Weir** (Weir Controls 0.35 cfs @ 0.40 fps)



Pond 5P: Seasonal Farm Pond

Summary for Pond 7P: Project Wetland

Inflow Area = Inflow = Outflow = Primary = Routed to Por	95.55 cfs @ 12 90.98 cfs @ 12	.75% Impervious, Inflow Depth > 2.01" for 25-Year event 2.86 hrs, Volume= 25.512 af 2.93 hrs, Volume= 24.619 af, Atten= 5%, Lag= 4.7 min 2.93 hrs, Volume= 24.619 af al Depression							
	Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 919.69' @ 12.93 hrs Surf.Area= 0.990 ac Storage= 1.246 af								
0		nin calculated for 24.619 af (96% of inflow) nin (925.9 - 914.9)							
Volume In	vert Avail.Stora	age Storage Description							
#1 918	.00' 1.560	0 af Custom Stage Data (Prismatic) Listed below (Recalc)							
Elevation S (feet) 918.00		nc.Store Cum.Store <u>cre-feet) (acre-feet)</u> 0.000 0.000							
919.00	0.400	0.615 0.615							
920.00	1.060	0.945 1.560							
Device Routing	g Invert	Outlet Devices							
#1 Primar	y 919.00'	45.0' long + 25.0 '/' SideZ x 20.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.63							
Primary OutFlow Max=90.95 cfs @ 12.93 hrs HW=919.69' (Free Discharge)									

1=Broad-Crested Rectangular Weir (Weir Controls 90.95 cfs @ 2.10 fps)

Pond 7P: Project Wetland

Summary for Pond 8P: Residential Depression

[81] Warning: Exceeded Pond 7P by 1.67' @ 13.40 hrs

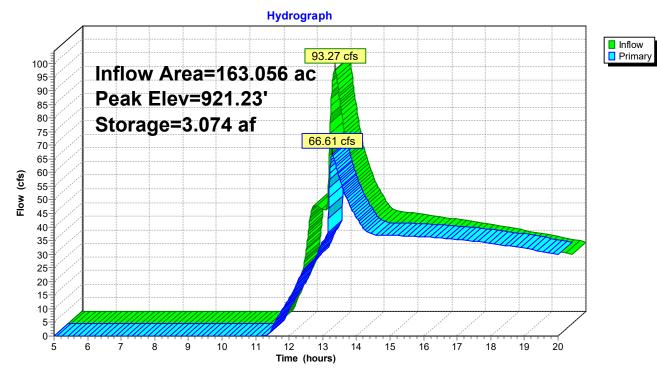
 Inflow Area =
 163.056 ac, 4.18% Impervious, Inflow Depth > 1.88" for 25-Year event

 Inflow =
 93.27 cfs @
 12.93 hrs, Volume=
 25.535 af

 Outflow =
 66.61 cfs @
 13.28 hrs, Volume=
 23.997 af, Atten= 29%, Lag= 21.0 min

 Primary =
 66.61 cfs @
 13.28 hrs, Volume=
 23.997 af

 Routed to Link 6L : Elkhart Lake
 13.28 hrs, Volume=
 23.997 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 921.23' @ 13.28 hrs Surf.Area= 0.768 ac Storage= 3.074 af

Plug-Flow detention time= 45.1 min calculated for 23.981 af (94% of inflow) Center-of-Mass det. time= 28.6 min (950.4 - 921.8)

Volume #1	Invert A 914.00'	vail.Storago 3.701 a	e Storage Description af Custom Stage Data (Prismatic) Listed below (Recalc)
Elevation			Store Cum.Store
(feet)	(acres)	(acre	<u>-feet) (acre-feet)</u>
914.00	0.030	(0.000 0.000
915.00	0.120	(0.075 0.075
916.00	0.290	(0.205 0.280
917.00	0.390		0.340 0.620
918.00	0.490		0.440 1.060
919.00			0.533 1.593
920.00	0.649		0.612 2.206
921.00			0.695 2.901
922.00	0.857		0.799 3.701
922.00	0.007	,	0.799 5.701
Device F	Routing	Invert (Outlet Devices
#1 F	Primary	914.00'	24.0" Round RCP_Round 24"
	innery		L= 240.0' RCP, end-section conforming to fill, Ke= 0.500
			nlet / Outlet Invert= 914.00' / 909.00' S= 0.0208 '/' Cc= 0.900
			n= 0.013 Concrete pipe, bends & connections, Flow Area= 3.14 sf
#0 F			
#2 F	Primary		96.5' long + 4.8 '/' SideZ x 18.0' breadth Broad-Crested Rectangular Weir
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
		(Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63

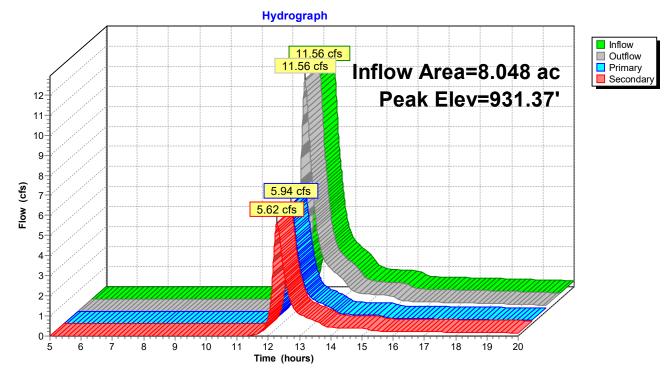
Primary OutFlow Max=66.28 cfs @ 13.28 hrs HW=921.23' (Free Discharge) ←1=RCP_Round 24" (Inlet Controls 37.75 cfs @ 12.02 fps)

2=Broad-Crested Rectangular Weir (Weir Controls 28.52 cfs @ 1.28 fps)

Pond 8P: Residential Depression

Summary for Pond 9P: Intersection Depression

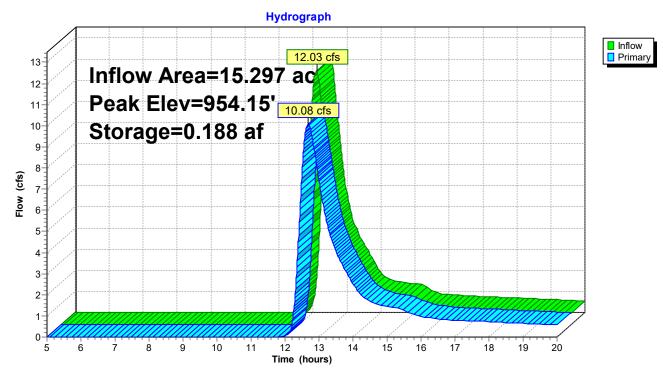
[57] Hint: Peaked at 931.37' (Flood elevation advised)


Inflow Area =	= 8.048 ac,	7.77% Impervious, In	nflow Depth > 1.31" for 25-Year event						
Inflow =	11.56 cfs @	12.28 hrs, Volume=	0.882 af						
Outflow =	11.56 cfs @	12.28 hrs, Volume=	0.882 af, Atten= 0%, Lag= 0.0 min						
Primary =	5.94 cfs @	12.28 hrs, Volume=	0.461 af						
Routed to	Pond 8P : Reside	ntial Depression							
Secondary =	5.62 cfs @	12.28 hrs, Volume=	0.420 af						
Routed to Link 6L : Elkhart Lake									

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 931.37' @ 12.28 hrs

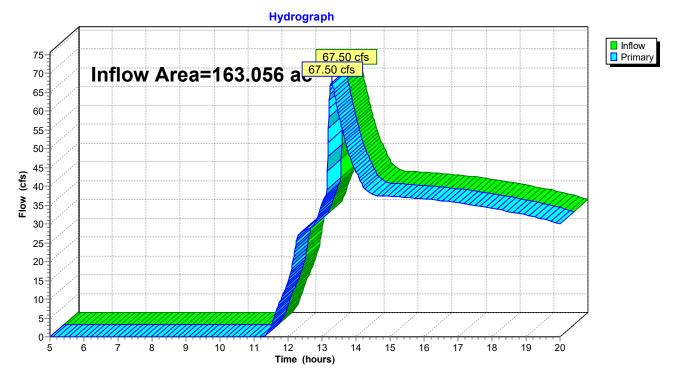
Device	Routing	Invert	Outlet Devices
#1	Primary	930.00'	18.0" Round CMP_Round 18" L= 40.0' CMP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 930.00' / 929.00' S= 0.0250 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 1.77 sf
#2	Secondary	930.00'	18.0" Round CMP_Round 18" L= 52.0' CMP, mitered to conform to fill, Ke= 0.700 Inlet / Outlet Invert= 930.00' / 929.00' S= 0.0192 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 1.77 sf

Primary OutFlow Max=5.94 cfs @ 12.28 hrs HW=931.37' (Free Discharge) ←1=CMP_Round 18" (Inlet Controls 5.94 cfs @ 3.51 fps)


Secondary OutFlow Max=5.62 cfs @ 12.28 hrs HW=931.37' (Free Discharge) -2=CMP_Round 18" (Barrel Controls 5.62 cfs @ 4.37 fps)

Pond 9P: Intersection Depression

Summary for Pond 11P: Wooded Pond


Primary OutFlow Max=10.08 cfs @ 12.68 hrs HW=954.15' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 10.08 cfs @ 0.97 fps) Pond 11P: Wooded Pond

Summary for Link 6L: Elkhart Lake

Inflow Area =		163.056 ac,	4.18% Impervious, Inflow	Depth > 1.80"	for 25-Year event
Inflow	=	67.50 cfs @	13.28 hrs, Volume=	24.418 af	
Primary	=	67.50 cfs @	13.28 hrs, Volume=	24.418 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

Link 6L: Elkhart Lake

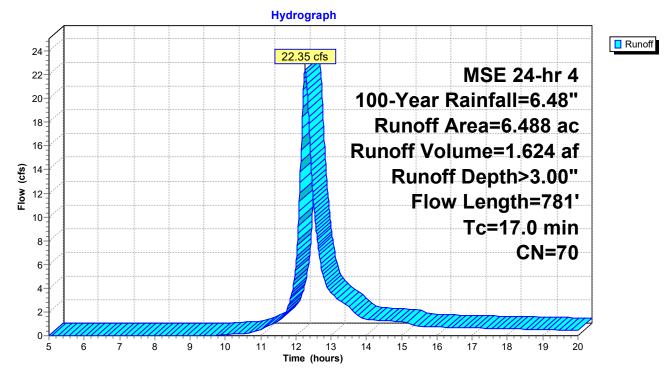
ElkhartLake_HydroCAD MS Prepared by Stantec Consulting HydroCAD® 10.20-4a s/n 11643 © 2023 HydroCAD Software Solutions LLC

Time span=5.00-20.00 hrs, dt=0.01 hrs, 1501 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment SWS 1: SSWS 1	Runoff Area=6.488 ac 22.13% Impervious Runoff Depth>3.00" Flow Length=781' Tc=17.0 min CN=70 Runoff=22.35 cfs 1.624 af
Subcatchment SWS 2: SSWS 2	Runoff Area=2.892 ac 17.12% Impervious Runoff Depth>3.21" Flow Length=680' Tc=9.5 min CN=72 Runoff=13.73 cfs 0.773 af
Subcatchment SWS 3: SSWS 3	Runoff Area=8.048 ac 7.77% Impervious Runoff Depth>2.44" Flow Length=1,413' Tc=17.1 min CN=64 Runoff=22.28 cfs 1.638 af
Subcatchment SWS 4: SSWS 4	Runoff Area=54.687 ac 6.14% Impervious Runoff Depth>4.19" Flow Length=3,302' Tc=37.4 min CN=82 Runoff=171.04 cfs 19.099 af
Subcatchment SWS 5: SSWS 5	Runoff Area=4.412 ac 0.00% Impervious Runoff Depth>4.87" Flow Length=300' Tc=11.0 min CN=88 Runoff=28.24 cfs 1.792 af
Subcatchment SWS 6: SSWS 6	Runoff Area=15.297 ac 4.31% Impervious Runoff Depth>2.07" Flow Length=1,367' Tc=32.3 min CN=60 Runoff=25.31 cfs 2.642 af
Subcatchment SWS 7: SSWS 7	Runoff Area=71.232 ac 0.35% Impervious Runoff Depth>4.80" Flow Length=3,349' Tc=65.4 min CN=88 Runoff=177.75 cfs 28.491 af
Pond 3P: P-Trap	Peak Elev=975.81' Storage=13.839 af Inflow=177.75 cfs 28.491 af Outflow=95.28 cfs 19.844 af
Pond 4P: Woody Depression	Peak Elev=933.94' Storage=4.782 af Inflow=209.85 cfs 42.231 af Outflow=200.02 cfs 40.379 af
Pond 5P: Seasonal Farm Pond	Peak Elev=973.61' Storage=1.185 af Inflow=28.24 cfs 1.792 af Outflow=4.14 cfs 0.685 af
Pond 7P: Project Wetland	Peak Elev=920.04' Storage=1.560 af Inflow=207.51 cfs 42.003 af Outflow=182.50 cfs 40.718 af
Pond 8P: Residential Depression	Peak Elev=921.64' Storage=3.399 af Inflow=188.98 cfs 42.345 af Outflow=175.17 cfs 40.195 af
Pond 9P: Intersection Depression Primary=11.61	Peak Elev=933.45' Inflow=22.28 cfs 1.638 af cfs 0.854 af Secondary=10.67 cfs 0.784 af Outflow=22.28 cfs 1.638 af
Pond 11P: Wooded Pond	Peak Elev=954.25' Storage=0.324 af Inflow=25.31 cfs 2.642 af Outflow=22.79 cfs 2.603 af
Link 6L: Elkhart Lake	Inflow=177.61 cfs 40.979 af Primary=177.61 cfs 40.979 af
Total Runoff Area = 163.	056 ac Runoff Volume = 56.058 af Average Runoff Depth = 4.13" 95.82% Pervious = 156.233 ac 4.18% Impervious = 6.823 ac
	33.02 / 0 r cividus - 130.233 at 4.10 / 0 111 pcividus - 0.023 at

Summary for Subcatchment SWS 1: SSWS 1

Runoff = 22.35 cfs @ 12.26 hrs, Volume= 1.6 Routed to Pond 7P : Project Wetland


1.624 af, Depth> 3.00"

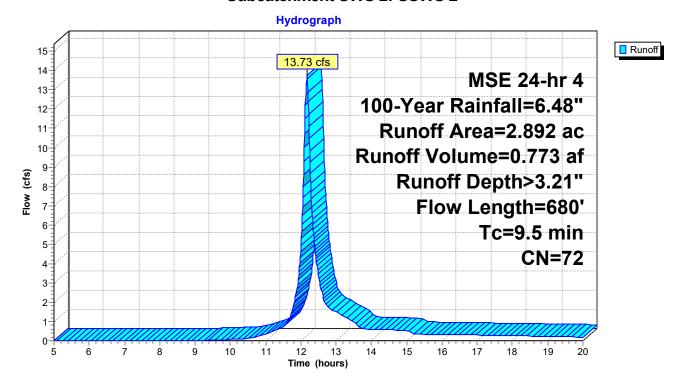
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 100-Year Rainfall=6.48"

	Area	(ac)	CN	Desc	cription		
*	0.	891	98	Pave	ed Road, H	ISG B	
*	2.	638	68	Resi	dential 1 a	icre, HSG E	3
*	0.	096	75	Resi	dential 1/4	acre, HSG	B
*	0.	545	98	Wate	er, HSG B		
*	2.	318	55	Woo	ds Good,	HSG B	
	6.	488	70	Weig	ghted Aver	age	
	5.	052		77.8	7% Pervio	us Area	
	1.	436		22.1	3% Imperv	/ious Area	
	Tc	Lengt	h :	Slope	Velocity	Capacity	Description
	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	9.9	69	9 0	.0558	1.18		Shallow Concentrated Flow,
							Woodland Kv= 5.0 fps
	7.1	8	1 0	.0984	0.19		Sheet Flow,
							Grass: Dense n= 0.240 P2= 2.57"

17.0 781 Total

Subcatchment SWS 1: SSWS 1

Summary for Subcatchment SWS 2: SSWS 2


Runoff = 13.73 cfs @ 12.17 hrs, Volume= 0 Routed to Pond 8P : Residential Depression

0.773 af, Depth> 3.21"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 100-Year Rainfall=6.48"

_	Area	(ac)	CN	Desc	cription		
*	0.	495	98	Pave	ed Road, ⊦	ISG B	
*	2.	073	68	Resi	dential 1 a	cre, HSG E	3
*	0.	021	75	Resi	dential 1/4	acre, HSG	B
*	0.	303	55	Woo	ds Good, I	HSG B	
	2.	892	72	Weig	ghted Aver	age	
	2.	397		82.8	8% Pervio	us Area	
	0.	495		17.12	2% Imper\	/ious Area	
	Тс	Lengt	th	Slope	Velocity	Capacity	Description
_	(min)	(fee	t)	(ft/ft)	(ft/sec)	(cfs)	
	2.5	58	80 C	.0638	3.79		Shallow Concentrated Flow,
							Grassed Waterway Kv= 15.0 fps
	7.0	10	0 0	0.0600	0.24		Sheet Flow,
_							Grass: Short n= 0.150 P2= 2.57"
	9.5	68	T 08	otal			

Subcatchment SWS 2: SSWS 2

Summary for Subcatchment SWS 3: SSWS 3

Runoff = 22.28 cfs @ 12.26 hrs, Volume= 1.638 af, Depth> 2.44" Routed to Pond 9P : Intersection Depression

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 100-Year Rainfall=6.48"

	Area	(ac)	CN	Desc	cription		
*	3.	177	58	Mea	dow, HSG	В	
*	0.	625	98	Pave	ed Road, H	ISG B	
*	0.	178	75	Resi	dential 1/4	acre, HSG	BB
*	2.	016	65	Resi	dential 2 a	cre, HSG E	3
*	2.	052	60	Woo	ds Fair, H	SG B	
	8.	048	64	Weig	ghted Aver	age	
	7.	423		92.2	3% Pervio	us Area	
	0.	625		7.77	% Impervi	ous Area	
	Tc	Lengt	th	Slope	Velocity	Capacity	Description
	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)	
	12.4	1,31	3 (0.0640	1.77		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	4.7	10	0 0).2089	0.35		Sheet Flow,
							Cultivated: Residue>20%

17.1 1,413 Total

Subcatchment SWS 3: SSWS 3

Summary for Subcatchment SWS 4: SSWS 4

[47] Hint: Peak is 492% of capacity of segment #1

171.04 cfs @ 12.51 hrs, Volume= Runoff = Routed to Pond 4P : Woody Depression

19.099 af, Depth> 4.19"

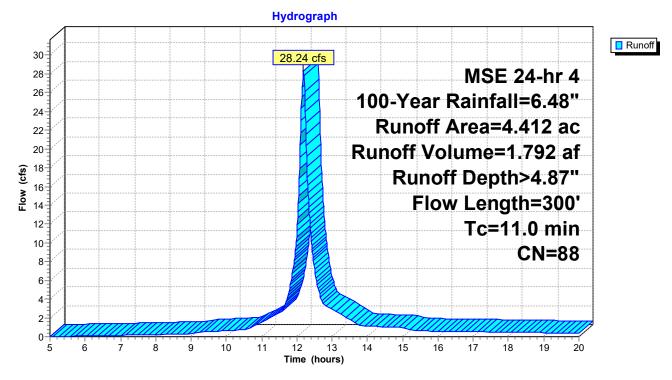
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 100-Year Rainfall=6.48"

	Area ((ac)	CN	Desc	cription		
*	1.5	520	74	Farn	nstead, HS	SG B	
*	2.6	673	86	6 Farn	nstead, HS	SG D	
*	3.8	850	69	Past	ure, HSG	В	
*	1.0	028	84	Past	ure, HSG	D	
*		150	84		ure, HSG		
*	11.(086	84	Past	ure, HSG	D	
*		697	98		ed Road, F		
*		205	98		ed Road, F		
*		009	98		ed Road, F		
*		371	98		ed Road, F		
*		655	68			icre, HSG B	
*		292	84			icre, HSG D	
*		537	89		Crop, HS		
*		312	89		Crop, HS		
*		167	89		Crop, HS	G D	
*		012	98		er, HSG B		
*		060	98		er, HSG D		
*		004	98		er, HSG D		
*		119	55		ds Good, I		
*		487	77		ds Good, I		
*		143	66		ds Poor, H		
*		306	83		ds Poor, H		
т ×		938	83		ds Poor, H		
<u>~</u>		066	83		ds Poor, H		
		687	82		ghted Aver		
	51.3				6% Pervio		
	3.3	358		6.14	% Impervi	ous Area	
	-			~		A B	
,		Leng		Slope	Velocity	Capacity	Description
(I	min)	(fee	<i>.</i>	(ft/ft)	(ft/sec)	(cfs)	
	7.2	2,00	00	0.0215	4.64	34.76	Channel Flow,
							Area= 7.5 sf Perim= 14.7' r= 0.51' n= 0.030
	18.2	1,20)2	0.0150	1.10		Shallow Concentrated Flow,
							Cultivated Straight Rows Kv= 9.0 fps
	12.0	ç	99	0.0201	0.14		Sheet Flow,
							Cultivated: Residue>20% n= 0.170 P2= 2.57"
	37.4	3,30		Total			

Hydrograph 190-Runoff 171.04 cfs 180 170 MSE 24-hr 4 160-100-Year Rainfall=6.48" 150-140 Runoff Area=54.687 ac 130 Runoff Volume=19.099 af 120-110 Runoff Depth>4.19" Flow (cfs) 100-Flow Length=3,302' 90 80 Tc=37.4 min 70 60 **CN=82** 50-40 30-20-10 0-7 5 6 8 ģ 10 11 12 13 14 15 16 17 18 19 20 Time (hours)

Subcatchment SWS 4: SSWS 4

Summary for Subcatchment SWS 5: SSWS 5


Runoff = 28.24 cfs @ 12.18 hrs, Volume= Routed to Pond 5P : Seasonal Farm Pond 1.792 af, Depth> 4.87"

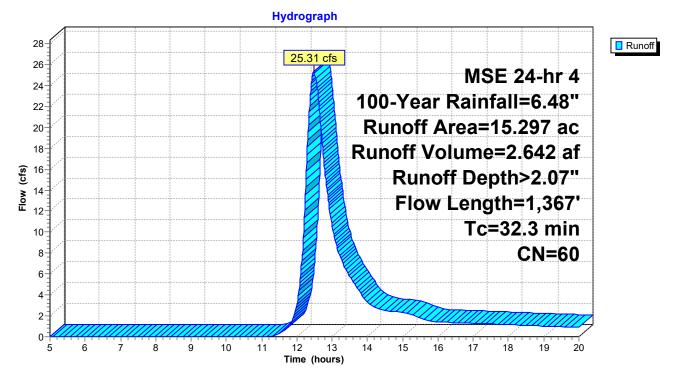
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 100-Year Rainfall=6.48"

	Area	(ac) (CN Des	cription		
*	3.	792	89 Row	/ Crop, HS	GD	
*	0.	620		ods Poor, H		
	4.	412	88 Wei	ghted Aver	rage	
	4.	412	100	.00% Pervi	ous Area	
	Тс	Length			Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.4	205	0.0779	2.51		Shallow Concentrated Flow,
						Cultivated Straight Rows Kv= 9.0 fps
	9.6	95	0.0317	0.16		Sheet Flow,
						Cultivated: Residue>20% n= 0.170 P2= 2.57"
	11 0	300	Total			

11.0 300 Total

Subcatchment SWS 5: SSWS 5

Summary for Subcatchment SWS 6: SSWS 6

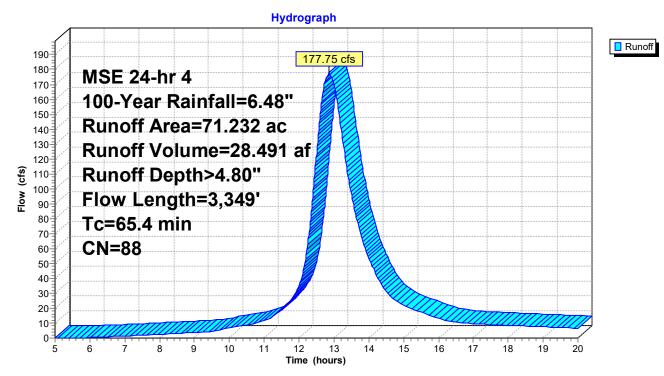

Runoff = 25.31 cfs @ 12.49 hrs, Volume= Routed to Pond 11P : Wooded Pond 2.642 af, Depth> 2.07"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 100-Year Rainfall=6.48"

	Area ((ac)	CN	Desc	cription		
*	14.4	428	58	Mea	dow, HSG	В	
*	0.	659	98	Pave	ed Road, ⊦	ISG B	
*	0.	173	65	Resi	dential 2 a	cre, HSG B	
*	0.	037	60	Woo	ds Fair, H	SG B	
	15.	297	60	Weig	ghted Aver	age	
	14.	638		95.6	9% Pervio	us Area	
	0.	659		4.31	% Impervi	ous Area	
	Тс	Length	18	Slope	Velocity	Capacity	Description
	<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	24.0	1,267	7 0.	.0158	0.88		Shallow Concentrated Flow,
							Short Grass Pasture Kv= 7.0 fps
	8.3	100) ().	.2808	0.20		Sheet Flow,
_							Woods: Light underbrush n= 0.400 P2= 2.57"
	00.0	4 00-	, –				

32.3 1,367 Total

Subcatchment SWS 6: SSWS 6

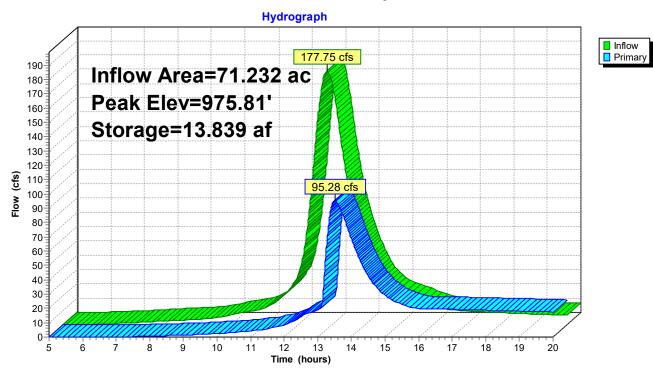


Summary for Subcatchment SWS 7: SSWS 7

Runoff = 177.75 cfs @ 12.86 hrs, Volume= Routed to Pond 3P : P-Trap 28.491 af, Depth> 4.80"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs MSE 24-hr 4 100-Year Rainfall=6.48"

	Area	(ac)	CN	l Desc	ription								
*	0.	242	85	5 Grav	el Road, H	ISG B							
*	0.	013	91		Gravel Road, HSG D								
*	0.	083	91	Grav	Gravel Road, HSG D								
*	0.	813	86	6 Farm	Farmstead, HSG D								
*	2.	111	86	6 Farm	Farmstead, HSG D								
*	0.	140	98										
*	0.	071	98	8 Pave	Paved Road, HSG D								
*	0.	039	98	8 Pave	Paved Road, HSG D								
*	0.	253	84	Resi	Residential 1 acre, HSG D								
*	0.	102	84	Resi	dential 1 a	cre, HSG E)						
*	1.	914	84			cre, HSG E)						
*	6.	429	78		Crop, HS								
*		978	89		Crop, HS								
*		489	89		Crop, HS								
*	35.	555	89	Row	Crop, HS	G D							
	71.	232	88		ghted Aver								
		982			5% Pervio								
	0.	250		0.359	% Impervi	ous Area							
	_					_							
	Tc	Leng		Slope	Velocity		Description						
_	(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)							
	58.8	3,2	49	0.0105	0.92		Shallow Concentrated Flow,						
							Cultivated Straight Rows Kv= 9.0 fps						
	6.6	1	00	0.0902	0.25		Sheet Flow,						
							Cultivated: Residue>20% n= 0.170 P2= 2.57"						
	65.4	3,3	49	Total									


Subcatchment SWS 7: SSWS 7

Summary for Pond 3P: P-Trap

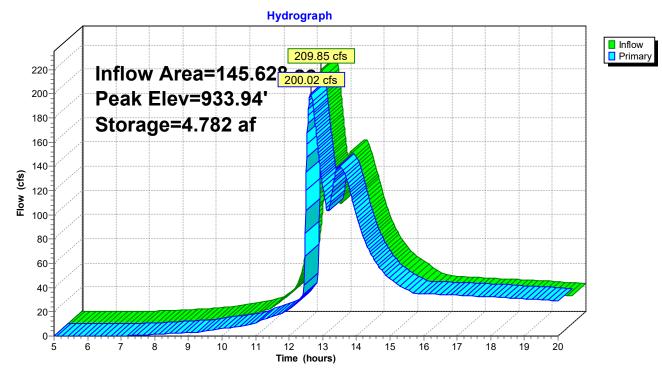
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 975.81' @ 13.51 hrs Surf.Area= 5.973 ac Storage= 13.839 af Plug-Flow detention time= 153.0 min calculated for 19.830 af (70% of inflow) Center-of-Mass det. time= 96.8 min (904.5 - 807.7) Volume Invert Avail.Storage Storage Description #1 972.00' 14.985 af Custom Stage Data (Prismatic) Listed below (Recalc) Elevation Storage Cum.Store (feet) (acres) (acre-feet) 972.00 0.250 0.000 0.000 973.00 2.000 1.125 1.125 974.00 4.000 3.000 4.125 975.00 5.860 4.930 9.055 976.00 6.000 5.930 14.985 Device Routing #1 Primary 972.00' 24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/ #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir #2 Primar	Inflow Area = 71.232 ac, 0.35% Impervious, Inflow Depth > 4.80" for 100-Year event Inflow = 177.75 cfs @ 12.86 hrs, Volume= 28.491 af Outflow = 95.28 cfs @ 13.51 hrs, Volume= 19.844 af, Atten= 46%, Lag= 38.9 min Primary = 95.28 cfs @ 13.51 hrs, Volume= 19.844 af Routed to Pond 4P : Woody Depression								
Center-of-Mass det. time= 96.8 min (904.5 - 807.7) Volume Invert Avail.Storage Storage Description #1 972.00' 14.985 af Custom Stage Data (Prismatic) Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store $(feet)$ (acres) (acre-feet) (acre-feet) 972.00 0.250 0.000 0.000 973.00 2.000 1.125 1.125 974.00 4.000 3.000 4.125 975.00 5.860 4.930 9.055 976.00 6.000 5.930 14.985 Device Routing Invert Outlet Devices #1 Primary 972.00' 24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 m= 0.025 Corrugated metal, Flow Area= 3.14 sf 460'' log + 30 ''' Sidez x 22.0' breadth Broad-Crested Rectangular Weir #2 Primary 975.50' 160.0' log + 30 '' Sidez x 22.0' breadth Broad-Crested Rectangular Weir									
#1 972.00' 14.985 af Custom Stage Data (Prismatic) Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (acres) (acre-feet) (acre-feet) 972.00 0.250 0.000 0.000 973.00 2.000 1.125 1.125 974.00 4.000 3.000 4.125 975.00 5.860 4.930 9.055 976.00 6.000 5.930 14.985 Device Routing Invert Outlet Devices #1 Primary 972.00' 24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60									
Elevation Surf.Area (acres) Inc.Store (acre-feet) Cum.Store (acre-feet) 972.00 0.250 0.000 0.000 973.00 2.000 1.125 1.125 974.00 4.000 3.000 4.125 975.00 5.860 4.930 9.055 976.00 6.000 5.930 14.985 Device Routing Invert Outlet Devices #1 Primary 972.00' 24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 3.14 sf #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	#1	972.00'	14.985	5 af Custom Stage Data (Prismatic) Listed below (Recalc)					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				-					
973.00 2.000 1.125 1.125 974.00 4.000 3.000 4.125 975.00 5.860 4.930 9.055 976.00 6.000 5.930 14.985 Device Routing Invert Outlet Devices #1 Primary 972.00' 24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir #ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	/	· · · · · · · · · · · · · · · · · · ·							
974.00 4.000 3.000 4.125 975.00 5.860 4.930 9.055 976.00 6.000 5.930 14.985 Device Routing Invert Outlet Devices #1 Primary 972.00' 24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir									
975.00 5.860 4.930 9.055 976.00 6.000 5.930 14.985 Device Routing Invert Outlet Devices #1 Primary 972.00' 24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' #2 Primary 975.50' #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60									
976.00 6.000 5.930 14.985 Device Routing Invert Outlet Devices #1 Primary 972.00' 24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 3.14 sf #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	974.00								
DeviceRoutingInvertOutlet Devices#1Primary972.00'24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 3.14 sf#2Primary975.50'160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	975.00	5.860)	4.930 9.055					
#1 Primary 972.00' 24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 3.14 sf #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir Head (feet)	976.00	6.000)	5.930 14.985					
#1 Primary 972.00' 24.0" Round Culvert L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 3.14 sf #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir Head (feet)	Device F	Routina	Invert	Outlet Devices					
L= 55.0' CMP, end-section conforming to fill, Ke= 0.500 Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 3.14 sf #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60		<u> </u>							
#2 Primary 975.50' Inlet / Outlet Invert= 972.00' / 971.00' S= 0.0182 '/' Cc= 0.900 #2 Primary 975.50' 160.0' long + 3.0 '/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.40 1.60	<i>T</i> 1	mary	012.00						
COEL (English) 2.06 2.70 2.04 2.03 2.04 2.04 2.03	#2 F	Primary	975.50'	Inlet / Outlet Invert= $972.00' / 971.00' = 0.0182'/$ Cc= 0.900 n= 0.025 Corrugated metal, Flow Area= 3.14 sf 160.0' long + 3.0'/' SideZ x 22.0' breadth Broad-Crested Rectangular Weir					

Primary OutFlow Max=95.19 cfs @ 13.51 hrs HW=975.81' (Free Discharge) 1=Culvert (Barrel Controls 21.03 cfs @ 6.70 fps) 2=Broad-Crested Rectangular Weir (Weir Controls 74.16 cfs @ 1.49 fps)

Pond 3P: P-Trap

Summary for Pond 4P: Woody Depression

Inflow Area =		145.628 ac,	2.93% Impervious, Inflow	Depth > 3.48	for 100-Year event	
Inflow	=	209.85 cfs @	12.54 hrs, Volume=	42.231 af		
Outflow	=	200.02 cfs @	12.64 hrs, Volume=	40.379 af, At	tten= 5%, Lag= 5.6 min	
Primary	=	200.02 cfs @	12.64 hrs, Volume=	40.379 af		
Routed to Pond 7P : Project Wetland						

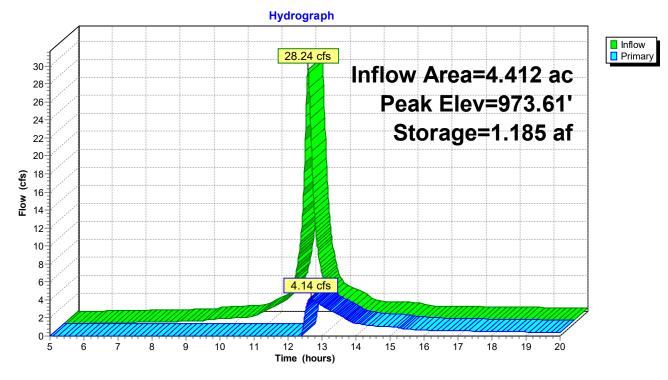

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 933.94' @ 12.64 hrs Surf.Area= 1.002 ac Storage= 4.782 af

Plug-Flow detention time= 39.7 min calculated for 40.352 af (96% of inflow) Center-of-Mass det. time= 25.0 min (876.6 - 851.6)

Volume	Inv	vert A	vail.Storage	e Stora	ge Description	
#1	923.	00'	4.840 a	f Cust	m Stage Data (Prismatic) Listed below (F	Recalc)
						,
Elevatio	on Su	urf.Area	Inc.	Store	Cum.Store	
(fee	et)	(acres)	(acre-	-feet)	(acre-feet)	
923.0	00	0.003	(0.000	0.000	
924.0	00	0.030	(0.016	0.016	
925.0	00	0.130	(080.0	0.096	
926.0	00	0.220).175	0.272	
927.0	00	0.300	().260	0.531	
928.0		0.380).340	0.871	
929.0		0.460).420	1.291	
930.0		0.550).505	1.796	
931.0		0.640).595	2.391	
932.0		0.750).695	3.086	
932.5		0.810).390	3.476	
933.0		0.875).421	3.898	
934.0	00	1.010	().943	4.840	
Device	Routing		Invert (Dutlet De	vices	
#1	Primary				Ind CMP_Round 24"	
πı	i innary				CMP, mitered to conform to fill, Ke= 0.70	iO
					et Invert= 923.00' / 922.00' S= 0.0156 '/'	
					Corrugated metal, Flow Area= 3.14 sf	00 0.000
#2	Primary	,			+ 2.2 '/' SideZ x 22.0' breadth Broad-Cr	ested Rectangular Weir
	· · · · · · · · · · · · · · · · · · ·				t) 0.20 0.40 0.60 0.80 1.00 1.20 1.40	•
					glish) 2.68 2.70 2.70 2.64 2.63 2.64 2	
			-	(, ,	
Primary	Primary OutFlow Max=199.75 cfs @ 12.64 hrs HW=933.94' (Free Discharge)					

-1=CMP_Round 24" (Barrel Controls 36.86 cfs @ 11.73 fps)

2=Broad-Crested Rectangular Weir (Weir Controls 162.89 cfs @ 2.54 fps)



Pond 4P: Woody Depression

Summary for Pond 5P: Seasonal Farm Pond

Inflow Area = 4.412 ac, 0.00% Impervious, Inflow Depth > 4.87" Inflow = 28.24 cfs @ 12.18 hrs, Volume= 1.792 af Outflow = 4.14 cfs @ 12.68 hrs, Volume= 0.685 af, Atte Primary = 4.14 cfs @ 12.68 hrs, Volume= 0.685 af Routed to Pond 4P : Woody Depression 28.24 cfs 12.68 hrs, Volume=	for 100-Year event en= 85%, Lag= 29.7 min							
Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 973.61' @ 12.68 hrs Surf.Area= 0.884 ac Storage= 1.185 af								
Plug-Flow detention time= 203.0 min calculated for 0.685 af (38% of inflow Center-of-Mass det. time= 116.3 min (880.0 - 763.7)	Plug-Flow detention time= 203.0 min calculated for 0.685 af (38% of inflow) Center-of-Mass det. time= 116.3 min (880.0 - 763.7)							
Volume Invert Avail.Storage Storage Description								
#1 972.00' 1.540 af Custom Stage Data (Prismatic) Lis	ted below (Recalc)							
Elevation Surf.Area Inc.Store Cum.Store								
(feet) (acres) (acre-feet) (acre-feet)								
972.00 0.570 0.000 0.000								
973.00 0.780 0.675 0.675								
974.00 0.950 0.865 1.540								
Device Routing Invert Outlet Devices								
#1 Primary 973.50' 38.0' long + 28.0 '/' SideZ x 42.5' brea Head (feet) 0.20 0.40 0.60 0.80 1.00 Coef. (English) 2.68 2.70 2.70 2.64 2	1.20 1.40 1.60							
Primary OutFlow Max=4.12 cfs @ 12.68 hrs HW=973.61' (Free Discharge)								

1=Broad-Crested Rectangular Weir (Weir Controls 4.12 cfs @ 0.89 fps)

Pond 5P: Seasonal Farm Pond

Summary for Pond 7P: Project Wetland

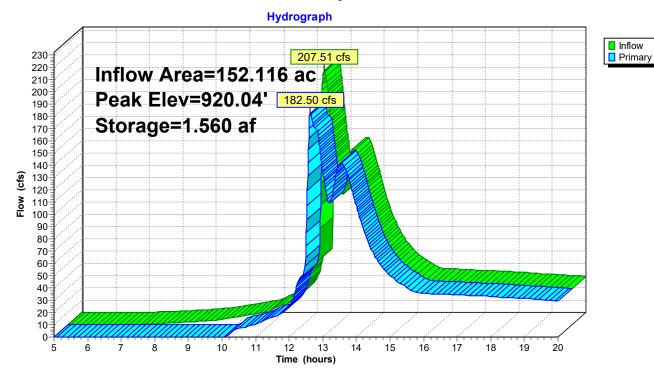
[93] Warning: Storage range exceeded by 0.04'

 Inflow Area =
 152.116 ac, 3.75% Impervious, Inflow Depth > 3.31" for 100-Year event

 Inflow =
 207.51 cfs @
 12.63 hrs, Volume=
 42.003 af

 Outflow =
 182.50 cfs @
 12.63 hrs, Volume=
 40.718 af, Atten= 12%, Lag= 0.0 min

 Primary =
 182.50 cfs @
 12.63 hrs, Volume=
 40.718 af


 Routed to Pond 8P : Residential Depression
 40.718 af

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 920.04' @ 12.63 hrs Surf.Area= 1.060 ac Storage= 1.560 af

Plug-Flow detention time= 19.1 min calculated for 40.718 af (97% of inflow) Center-of-Mass det. time= 9.3 min (883.0 - 873.7)

Volume	l	nvert A	vail.Storage	Storage Description	
#1	91	8.00'	1.560 af	Custom Stage Data (Prismatic) Listed below (Recalc)	
Elevatio	n	Surf.Area	ı Inc.S	Store Cum.Store	
(fee	et)	(acres)) (acre-t	feet) (acre-feet)	
918.0	00	0.400	0	.000 0.000	
919.0	00	0.830	0	.615 0.615	
920.0	00	1.060	0	.945 1.560	
Device	Routi	ng	Invert O	utlet Devices	
#1	Prima	ary	919.00' 4	5.0' long + 25.0 '/' SideZ x 20.0' breadth Broad-Crested Rectangula	r Weir
		-	Н	ead (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60	
				oef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63	

Primary OutFlow Max=182.49 cfs @ 12.63 hrs HW=920.04' (Free Discharge) 1=Broad-Crested Rectangular Weir (Weir Controls 182.49 cfs @ 2.48 fps) Pond 7P: Project Wetland

Summary for Pond 8P: Residential Depression

[81] Warning: Exceeded Pond 7P by 1.67' @ 14.45 hrs

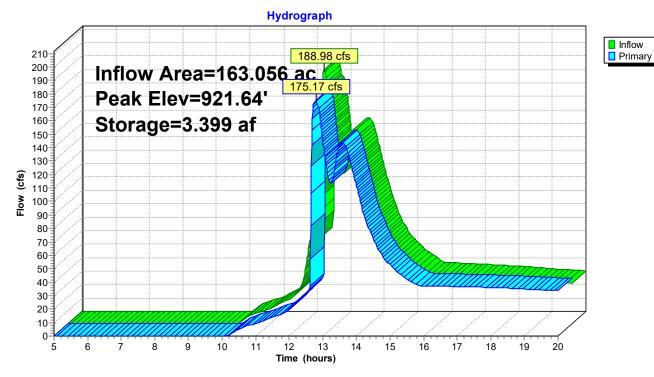
 Inflow Area =
 163.056 ac,
 4.18% Impervious, Inflow Depth >
 3.12" for 100-Year event

 Inflow =
 188.98 cfs @
 12.63 hrs, Volume=
 42.345 af

 Outflow =
 175.17 cfs @
 12.81 hrs, Volume=
 40.195 af, Atten= 7%, Lag= 10.9 min

 Primary =
 175.17 cfs @
 12.81 hrs, Volume=
 40.195 af

 Routed to Link 6L : Elkhart Lake
 12.81 hrs, Volume=
 40.195 af


Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 921.64' @ 12.81 hrs Surf.Area= 0.816 ac Storage= 3.399 af

Plug-Flow detention time= 31.7 min calculated for 40.168 af (95% of inflow) Center-of-Mass det. time= 16.0 min (895.8 - 879.9)

Volume	Invert A	vail.Storage	e Storage Description
#1	914.00'	3.701 a	f Custom Stage Data (Prismatic) Listed below (Recalc)
	0 ()		
Elevatior			Store Cum.Store
(feet)) (acres)) (acre-	-feet) (acre-feet)
914.00	0.030) (0.000 0.000
915.00	0.120) (0.075 0.075
916.00) 0.290) (0.205 0.280
917.00) 0.390) (0.340 0.620
918.00) 0.490) (0.440 1.060
919.00) 0.576	6 (0.533 1.593
920.00	0.649) (0.612 2.206
921.00) 0.742	2 (0.695 2.901
922.00			0.799 3.701
Device	Routing	Invert C	Dutlet Devices
#1	Primary	914.00' 2	24.0" Round RCP_Round 24"
	,		= 240.0' RCP, end-section conforming to fill, Ke= 0.500
			nlet / Outlet Invert= 914.00' / 909.00' S= 0.0208 '/' Cc= 0.900
			= 0.013 Concrete pipe, bends & connections, Flow Area= 3.14 sf
#2	Primary		06.5' long + 4.8 '/' SideZ x 18.0' breadth Broad-Crested Rectangular Weir
112	rinnary		Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60
			Coef. (English) 2.68 2.70 2.70 2.64 2.63 2.64 2.64 2.63
		C C	Joon (English) 2.00 2.10 2.10 2.04 2.00 2.04 2.04 2.00

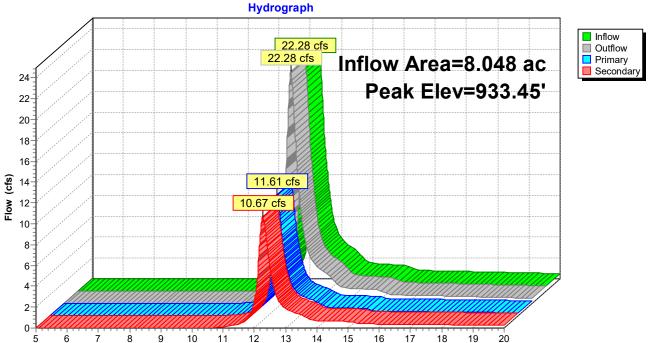
Primary OutFlow Max=175.01 cfs @ 12.81 hrs HW=921.64' (Free Discharge) ←1=RCP_Round 24" (Barrel Controls 38.80 cfs @ 12.35 fps)

2=Broad-Crested Rectangular Weir (Weir Controls 136.20 cfs @ 2.14 fps)

Pond 8P: Residential Depression

Summary for Pond 9P: Intersection Depression

[57] Hint: Peaked at 933.45' (Flood elevation advised)


Inflow Area =		8.048 ac,	7.77% Impervious, I	Inflow Depth > 2.44" for 100-Year event		
Inflow	=	22.28 cfs @	12.26 hrs, Volume=	= 1.638 af		
Outflow	=	22.28 cfs @	12.26 hrs, Volume=	= 1.638 af, Atten= 0%, Lag= 0.0 min		
Primary	=	11.61 cfs @	12.26 hrs, Volume=	= 0.854 af		
Routed to Pond 8P : Residential Depression						
Secondary = 10.67 c		10.67 cfs @	12.26 hrs, Volume=	= 0.784 af		
Routed to Link 6L : Elkhart Lake						

Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 933.45' @ 12.26 hrs

Device	Routing	Invert	Outlet Devices
#1	Primary	930.00'	18.0" Round CMP_Round 18"
			L= 40.0' CMP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 930.00' / 929.00' S= 0.0250 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 1.77 sf
#2	Secondary	930.00'	18.0" Round CMP_Round 18"
			L= 52.0' CMP, mitered to conform to fill, Ke= 0.700
			Inlet / Outlet Invert= 930.00' / 929.00' S= 0.0192 '/' Cc= 0.900
			n= 0.025 Corrugated metal, Flow Area= 1.77 sf

Primary OutFlow Max=11.60 cfs @ 12.26 hrs HW=933.45' (Free Discharge) ←1=CMP_Round 18" (Barrel Controls 11.60 cfs @ 6.56 fps)

Secondary OutFlow Max=10.66 cfs @ 12.26 hrs HW=933.45' (Free Discharge) -2=CMP_Round 18" (Barrel Controls 10.66 cfs @ 6.03 fps)

Pond 9P: Intersection Depression

Printed 1/23/2024

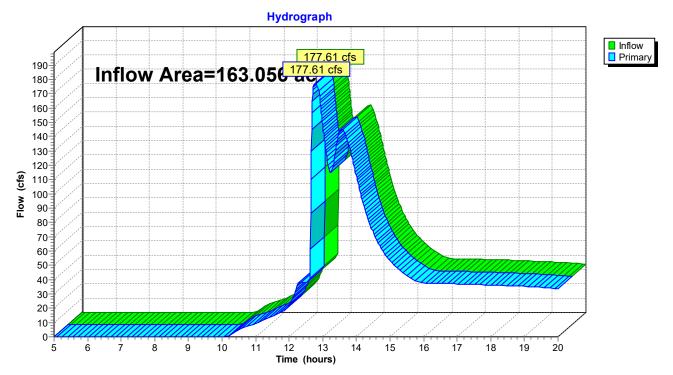
Page 104

11 12 13 Time (hours)

Summary for Pond 11P: Wooded Pond

Routed to Pond 4P : Woody Depression Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs Peak Elev= 954.25' @ 12.61 hrs Surf.Area= 1.332 ac Storage= 0.324 af Plug-Flow detention time= 16.2 min calculated for 2.603 af (99% of inflow) Center-of-Mass det. time= 10.9 min (838.3 - 827.4) Volume Invert Avail.Storage Storage Description #1 954.00' 1.395 af Custom Stage Data (Prismatic) Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (acres) (acre-feet) 954.00 1.270 0.000 0.000 955.00 1.520 1.395 1.395 Device Routing Invert Outlet Devices #1 Primary 954.00' 70.0' long + 9.0 'l' SideZ x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32	Inflow Area = 15.297 ac, 4.31% Impervious, Inflow Depth > 2.07" for 100-Year event Inflow = 25.31 cfs @ 12.49 hrs, Volume= 2.642 af Outflow = 22.79 cfs @ 12.61 hrs, Volume= 2.603 af, Atten= 10%, Lag= 7.5 min Primary = 22.79 cfs @ 12.61 hrs, Volume= 2.603 af								
Center-of-Mass det. time= 10.9 min (838.3 - 827.4) Volume Invert Avail.Storage Storage Description #1 954.00' 1.395 af Custom Stage Data (Prismatic) Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (acres) (acre-feet) (acre-feet) 954.00 1.270 0.000 0.000 955.00 1.520 1.395 1.395 Device Routing Invert Outlet Devices #1 Primary 954.00' 70.0' long + 9.0 '/' SideZ x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.70 2.77 2.89 2.88 2.85	Routing by Stor-Ind method, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs								
#1 954.00' 1.395 af Custom Stage Data (Prismatic) Listed below (Recalc) Elevation Surf.Area Inc.Store Cum.Store (feet) (acres) (acre-feet) (acre-feet) 954.00 1.270 0.000 0.000 955.00 1.520 1.395 1.395 Device Routing Invert Outlet Devices #1 Primary 954.00' 70.0' long + 9.0 '/' SideZ x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.77 2.89 2.88 2.85									
Elevation Surf.Area Inc.Store Cum.Store (feet) (acres) (acre-feet) (acre-feet) 954.00 1.270 0.000 0.000 955.00 1.520 1.395 1.395 Device Routing Invert Outlet Devices #1 Primary 954.00' 70.0' long + 9.0 '/' SideZ x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85	Volume Invert Avail.Storage Storage Description								
(feet) (acres) (acre-feet) (acre-feet) 954.00 1.270 0.000 0.000 955.00 1.520 1.395 1.395 Device Routing Invert Outlet Devices #1 Primary 954.00' 70.0' long + 9.0 '/' SideZ x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85	#1 954.00' 1.395 af Custom Stage Data (Prismatic) Listed below (Recalc)								
#1 Primary 954.00' 70.0' long + 9.0 '/' SideZ x 2.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85	(feet) (acres) (acre-feet) (acre-feet) 954.00 1.270 0.000 0.000								
Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 Coef. (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85	Device Routing Invert Outlet Devices								

Primary OutFlow Max=22.79 cfs @ 12.61 hrs HW=954.25' (Free Discharge) ☐ 1=Broad-Crested Rectangular Weir (Weir Controls 22.79 cfs @ 1.27 fps)


Hydrograph InflowPrimary 25.31 cfs 28 Inflow Area=15.297 ac 26-22.79 cfs 24 Peak Elev=954.25' 22-Storage=0.324 af 20-18-**Elow (cfs)** 12-10-8-6 4 2-0-5 6 Ż 8 ģ 10 11 12 13 14 15 16 17 18 19 20 Time (hours)

Pond 11P: Wooded Pond

Summary for Link 6L: Elkhart Lake

Inflow Are	ea =	163.056 ac,	4.18% Impervious, Inflow	/ Depth > 3.02"	for 100-Year event
Inflow	=	177.61 cfs @	12.79 hrs, Volume=	40.979 af	
Primary	=	177.61 cfs @	12.79 hrs, Volume=	40.979 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 5.00-20.00 hrs, dt= 0.01 hrs

Link 6L: Elkhart Lake

2023 ELIA ANNUAL MEETING

Osthoff Resort Grand Libelle Ballroom

Friday, June 9th, 2023 5:30 p.m.

> KEEP ELKHART BLUE

AGENDA – WELCOME!

5:30 PM Registration - Social Time 6:00 PM Opening Comments and Buffet 6:30 PM Meeting Call to Order (Schott)

- Roll call (Elias)
- Approval of agenda
- Review and approval of minutes from 2022 Annual Meeting
- Public Comments from the Floor
- Treasurer's Report (Boeldt)
- Budget review and approval
- Committee Reports
 - Nominating Committee (Froh)
 - Ecology Committee
 - Aquatic Invasives/Clean Boats Clean Water (Hanlon)
 - Water Quality (Majerus, Elias)
- Public Outreach (Strigenz, Sofen)
- Website Update (Boeldt)
- President's Comments

7:00 PM Adjournment

Annual Members Meeting Minutes -

Elkhart Lake Improvement Association (ELIA)

June 23, 2022 Laack's Ballroom, Johnsonville, WI

Opening Comments

John Schott - Welcoming comments were made to the group of approximately 100 attendees.

- · Special mention to two Board members we have lost this past year:
 - Tom Nelson Life Time Director
 - John Fetherston
- Board Changes
 - o Thanks were made to Joe Majerus and Awais Siddigue for their service on the Board. - Joe Maierus retirement from board mid-term. Sarah Maierus appointed to fill this open position. Awais Sidigue retirement from board end of term. John Steffes - proposed new board member

Presentation - Matt Brauer - Sheboygan County Planning & Conservation -discussed the AIS County Program

Call to Order - (Schott)

Roll Call - (Elias)

Membership Meeting -

- Approval of minutes from 2021 annual meeting
 - a. It was moved and seconded to approve the minutes as presented from the 2021 Annual Meeting.
 - b. Motion passed unanimously.
- 2. Treasurers Report Randy Boeldt An updated report was reviewed for the membership with the overall comment that we are in a strong financial position. Approved.

Committee Reports -

- 1. Nomination of Board Members for 2025 term (Froh)
 - a. Randy Boeldt
 - b. Chris Strigenz
 - c. Bill Easom
 - d. John Steffes
 - e. Dee Sheehan

A motion for unanimous consent approval was made and passed unanimously.

Ecology Committee -

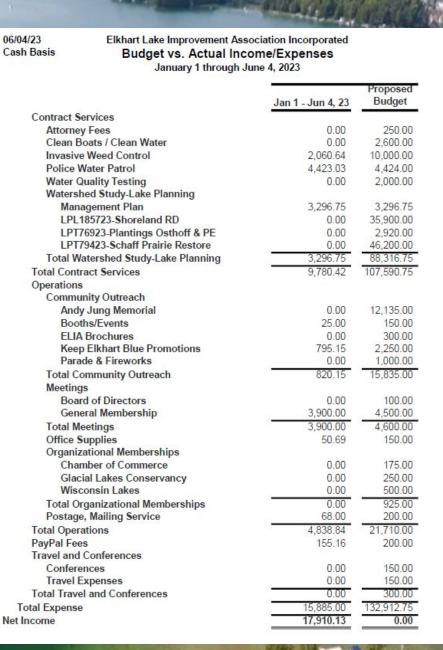
- 3. Aquatic / Clean Boat Clean Water Program (Hanlon) The report is that we have a capable group of young people who are staffing the boat landings and helping boaters better understand their role in Keeping Elkhart Blue through the Clean Boat program. The State continues to be very supportive in subsidizing our time which makes it possible to get as many hours put into the staffing as we can manage.
- 4. Lake Water Quality (Majerus) -Information concerning weed abatement and algae treatment was presented. Additional information concerning the recent award of a \$10,000 County Stewardship grant was discussed as was its use to help us develop our updated Lake Management Plan. In conjunction with reserve funds donated for the purpose of lake management activities, we are looking at gathering additional data concerning our watershed area, inputs to the lake, and coordinating what the county and Lakeshore Natural Resource Partnership, to develop an assessment for the entire Sheboygan River basin, of which we are a part. The level of boating activity was brought forward and the current record of citations and warnings was presented. There was a guestion as to the concerns being addressed by Crystal and Little Elkhart to address heavy wave activity. Spring 2022 Fish Survey results were shared.

Shared a summary of the Point Intercept Survey figure with 954 sampling points, a 35 meters sampling interval, and the rake used to collect samples. Results include the number of vegetated sites in 2012 compared to 2021.

5. Public Outreach - Keep Elkhart Blue (Strigenz, Sofen) - The role of merchandizing products to help promote our ELIA message to the public was reviewed by Chris. While we make money from the sales, the key point for us to build awareness of who we are and what we do. We also have an active social media presence with a FaceBook page that is frequently updated. We will be staffing a booth on Monday, Aug 9th, for Down Town night. Merchandise samples were shared and purchasing locations.

QR Code brand awareness was introduced and placed in local businesses.

6. Website update - (Elias/Boeldt) -Randy reviewed the current status of our website and outlined the general content available to those who get to our page, and it is an extensive listing!President's comments - (Schott)


Adjourn – Motion was made to adjourn. Motion carried – meeting adjourned at 6:50pm.

/04/23 Financial Report/Bal	Elkhart Lake Improvement Association Incorporated Financial Report/Balance Sheet As of June 4, 2023				
_	Jun 4, 23				
ASSETS Current Assets Checking/Savings Marketable Securities Vanguard Federal Money Market Restricted Funds Andy Jung Memorial Catharine Stayer Fam.Foundation Mike Sheehan Memorial	12,135.00 38,302.89 1,487.53				
Total Restricted Funds	51,925.42				
Vanguard Federal Money Market	82,073.47				
Total Vanguard Federal Money Market	133,998.89				
Western Union Western Union Cost W.U. Unrealized Gain (Loss)	14,684.72 (926.53)				
Total Western Union	13,758.19				
Total Marketable Securities	147,757.08				
National Exchange Bank & Trust	16,660.23				
Total Checking/Savings	164,417.31				
Total Current Assets	164,417.31				
TOTAL ASSETS	164,417.31				
LIABILITIES & EQUITY	0.00				

KEEP ELKHART BLUE 06/04/23 Cash Basis Elkhart Lake Improvement Association Incorporated Budget vs. Actual Income/Expenses January 1 through June 4, 2023

	Jan 1 - Jun 4, 23	Proposed Budget
Income		
Direct Public Support		
Individual Contributions	7,309.36	16,000.00
Membership Dues Paid	5,200.00	8,000.00
Prepaid PayPal Fees	88.33	100.00
Total Direct Public Support	12,597,69	24,100.00
Government Grants		
Sheboygan County Stewardship	0.00	10,900.00
Lakeshore Natural Resource Part	4,613.98	4,613.98
E.L. Tourism Commission	0.00	1,500.00
Town of Rhine	0.00	1,000.00
Village of Elkhart Lake	0.00	3,550.00
WIDNR		
Clean Boats / Clean Water	1,737.50	3,200.00
LPL185723 - Shoreland RD	0.00	10,000.00
LPT76923 - Osthoff & PE	0.00	2,190.00
LPT79423-Schaff Prairie Restore	11,550.00	46,200.00
Total WI DNR	13,287.50	61,590.00
Total Government Grants	17,901,48	83,153,98
Investments		
Interest & Dividends	2,880.42	3,000.00
Unrealized Gain (Loss)	27.46	0.00
Total Investments	2,907.88	3,000.00
Other Types of Income		
Amazon Smile/Miscellaneous Rev	77.08	0.00
Bring in Stayer Foundation Money from Reserve	s	20.658.77
Total Other Types of Income	77.08	20,658.77
Program Income		
Keep Elkhart Blue Sales	311.00	2,000.00
Total Program Income	311.00	2,000.00
Total Income	33,795.13	132,912.75
Expense		A SHAT AND AND A
Boating Safety		
Boat Maintenance & Storage	452.38	500.00
Boat Registration	0.00	32.00
Boating Regulation Brochures	0.00	300.00
Bouys - New and Maintenance	71.20	500.00
Total Boating Safety	523.58	1,332.00
Business Expenses		
501 (c)(3) Registration Fees	0.00	80.00
Insurance - Liability, D and O	558.00	1,200.00
Technology/Website	29.00	500.00
Total Business Expenses	587.00	1,780.00

2024-2025 Board Roster (3-year Terms)

Board Members	<u>Term Expires</u>
Mike Froh	2024
Rick Gebhardt	2024
Kim Elias	2024
Sarah Majerus	2024
Mary Jo Vollrath	2024
Randy Boeldt	2025
Chris Strigenz	2025
Bill Easom	2025
John Steffes	2025
Dee Sheehan	2025
Peter Gunther	2026
Kevin Sofen	2026
Nancy Hanlon	2026
Lauren Hall	2026
John Schott	2026

2024-2025 Officers (Annual Election)

Executive Committee John Schott Chris Strigenz Kim Elias Randy Boeldt

President Vice President Secretary Treasurer

KEEP ELKHAR

BLUE

Ecology Committee Updates:
Aquatic Invasive Species
Clean Boats Clean Waters
Comprehensive Lake Management Plan
Grant Projects
Water Quality Report

2022 Elkhart Lake Public Survey

- 140+ total respondents THANK YOU!
 - 70% live along the lake shoreline
 - 60% are seasonal residents
 - 69% are ELIA members
- Lake is most utilized for swimming and boating, fishing, wildlife viewing, scenic viewing, entertaining, and solitude
- Majority of respondents report that algae, aquatic plants, and shoreline development has either somewhat or greatly increased over time
- Only 11 percent of respondents reported that aquatic plants and algae never impact their use of Elkhart Lake

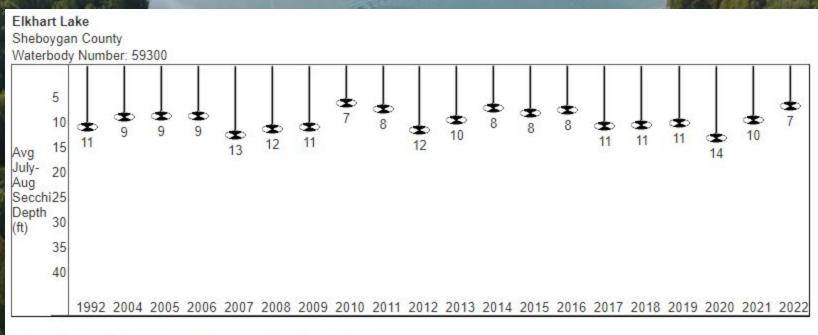
KEEE

BLUE

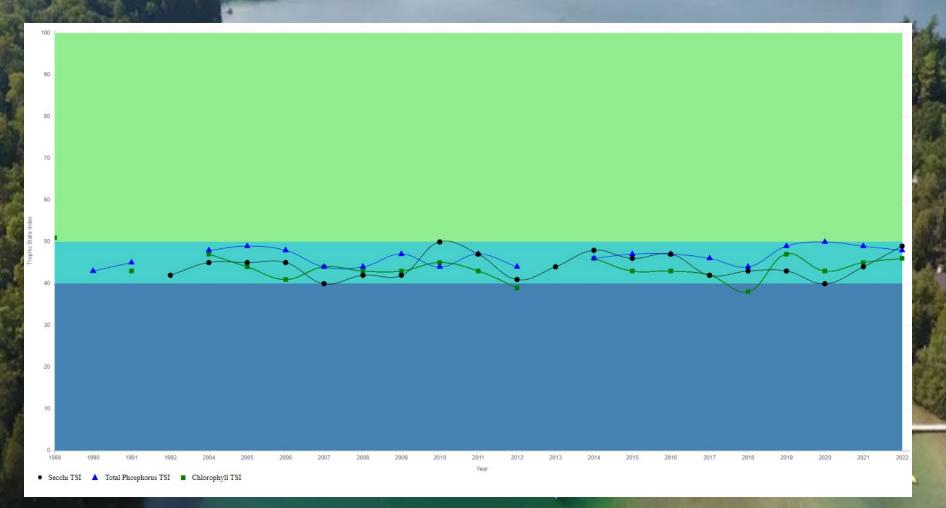
- Comments/Concerns:
 - Water Quality and Runoff
 - Boat Traffic and Wake Boats
 - Fishery

2022 Comprehensive Lake Management Plan Recommendations

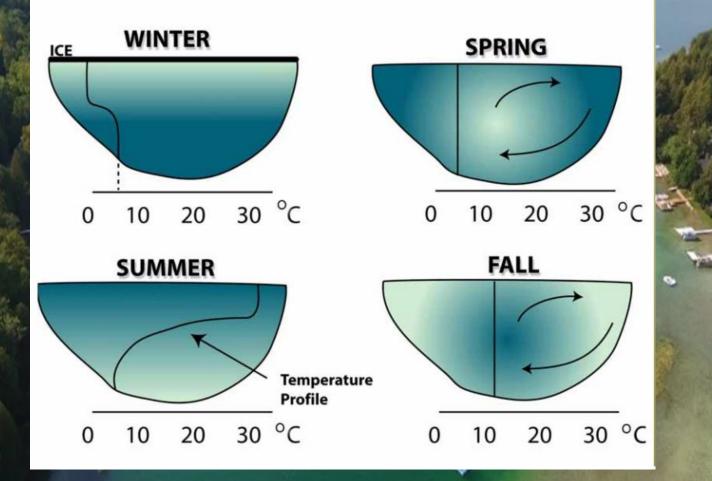
- Continue to monitor the lake water quality
- Continue to monitor dissolved oxygen
- Take sediment cores in the lake to evaluate legacy phosphorus in lake sediment
- Continue Clean Boat Clean Waters (CBCW) program to prevent the spread of AIS*
- Continue efforts to control the spread of AIS
- Perform aquatic plant inventory every 5 years to evaluate the success of AIS control efforts
- Continue WDNR fish survey efforts
- Implement fish habitat improvement projects (fish sticks and tree drops)
- Implement small-scale shoreline projects that capture surface water runoff and promote native habitat*


2022 Comprehensive Lake Management Plan Recommendations

- Continue to support efforts by partners at Sheboygan County and NRCS to implement conservation practices on agricultural lands (no till, cover crops, pollinator habitat)
- Convert marginal farmland to native habitat*
- Build upon Sheboygan County efforts to reduce peak flows and phosphorus loading via design and construction of stormwater management solutions within major tributary areas in the Elkhart Lake watershed (sedimentation basins, habitat restoration, and/or water control structures)*
- Work with partners and property owners to restore, preserve and protect natural habitat within the Elkhart Lake watershed


Secchi Depth Averages

KEEP ELKHART BLUE


Past secchi averages in feet (July and August only).

Trophic State Index Graph

Annual Lake Mixing

KEEP ELKHART BLUE

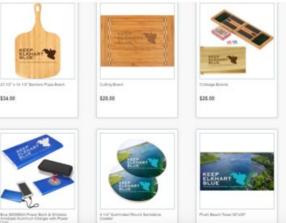
Keep Elkhart Blue - Public Outreach

KEB Local Merchandise

\$34.00

KEB Special Order Options

Hat (Front)



Tote Bag


```
Sling Backpack
```


one the Part with Navy Blue Lit

Keep Elkhart Blue – Public Outreach

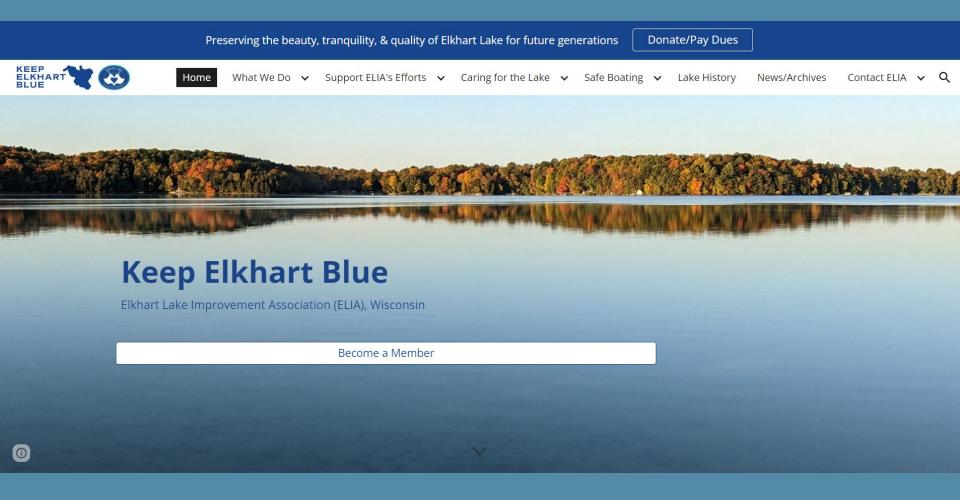
Facebook Postings

Webpage

http://keepelkhartblue.org/

• QR Code – Brand Awareness Builder

GET INVOLVED


HELP THE CAUSE

JOIN COMMUNITY

KeepElkhartBlue.org

President's Message

Original Board of Directors

Terrett J.Arndt	Elkhart Lake
Floyd Dixon	Elkhart Lake
Alfred Linnemann	Elkhart Lake
Howard P. Kraem	er Elkhart Lake
John Linnehan	Elkhart Lake
William Thieman	Elkhart Lake
Harry Bremer	Elkhart Lake
Ernst Groth	Elkhart Lake

- Founded in 1964
- Articles of Incorporation created July 11, 1968
- Filed with the State July 12, 1968
- Signed by Secretary of State July 17, 1968
- First Annual Meeting July 23, 1968

E.L.I.A. Annual Members Meeting Minutes June 9, 2023 Osthoff Resort, Elkhart Lake, WI

Please review to the PowerPoint Presentation for Meeting outline and details.

Call to Order – (Schott)

John Schott – Welcoming comments were made to the group of approximately 120 attendees. Special thanks too to Sue Staum our retiring board member, for putting this annual meeting together and all her years of service on this board. She will be missed!

- **<u>Roll Call</u>** (Elias) Establishment of a quorum.
- Approval of Agenda dated 06/9/2023
- **<u>Review and Approval of Minutes</u>** 06/23/2022
 - a. It was moved and seconded to approve the minutes as presented from the 2022 Annual Meeting. Motion passed unanimously.
 - b. Minutes are posted on ELIA website and approved as presented.
- <u>Treasurers Report</u> (Boeldt)

An updated report was reviewed for the membership including the receipt of \$83,153.98 in government grants. Overall comment that we are in a strong financial position. Approved. (refer to PowerPoint Presentation for details).

Committee Reports:

- 1. <u>Nominee of Board of Directors</u>: (Froh) Presented the recommendations for the slate of Board of Directors for the 2024 2026 term:
 - **a.** Renewals for Schott, Hanlon, Sofen and Gunther. Staum has chosen to retire for the board and in her place the nominating committee recommended Lauren Hall.
 - **b.** Motion was made and unanimous approval of the Board of Directors as presented was passed. We thank Sue sincerely for her service to ELIA!

2. Ecology:

a. Invasive Species Committee / Clean Boats/Clean Waters (Hanlon) Provided an update regarding Aquatic Invasive Species (AIS); they are the same three; Eurasian Watermilfoil, Curly-Leaf Pondweed and zebra mussels. Continued efforts to control the spread of AIS.

- The CBCW program is continuing to prevent the spread of AIS. Discussed the employees to support CBCL at the boat launch.
- Our contract for weed control has been signed and the permits are now in process. Notifications have been made concerning the treatment process. This will again include the Sheboygan Bay algae island.
- b. Lake Water Quality (Elias / Majerus)
 - **2022 Elkhart Lake Public Survey** Majerus presented the findings of the survey including 140 respondents. Top concerns are Water Quality and Runoff, Boat Traffic and Wake Boats, Fishery.

- **Grants:** Majerus reviewed the 2022 Comprehensive Lake Management Plan Recommendations including recommended new and continued activities to help manage the lake (refer to PowerPoint Presentation).
 - <u>Native Shoreline Gardens</u>, including 350 sq. ft. native plantings, and/or rain gardens, will be designed and installed in two locations along the lake.
 - <u>Grasshopper Hill Prairie & 25-acre Prairie Restoration & Tree Planting</u> <u>Installation & Tree Planting -</u> install a 25-acre prairie restoration on the Schaff property, a direct drainage area on the south side of Elkhart Lake to reduce runoff into the lake, decreasing nutrient and sediment loading. Will also support GLC prairie maintenance.
 - <u>Runoff Management Study & Design -</u> Completed as part of the CLMP Modelling for the agricultural portion of the watershed analysis. Additional general data collection is in progress.
- Lake Sampling Elias explained the continued use of the Citizen Lake Monitoring Network (CLMN) program to sample and monitor the lake water quality since 1990, including WDNR protocols, schedule, and sampling locations.
- Lake Water Quality– Elias summarized the lake's heath including:
 - Historic Secchi disk graphed results explaining water clarity over long periods monitors the health of a lake, noting a slight downward trend but remaining good water quality.
 - Trophic State Index, including Total Phosphorus, 1990-2022 graph. Mesotrophic state (moderate nutrients and productivity); fertile with higher phosphorous levels, and moderately clear water. Biological productivity is elevated including fish production.
 - Phosphorus levels slight increase last few years. Phosphorus can be problematic because excess nutrients can cause algal blooms and excessive plant growth in the lake, impacting the ecological and recreational potential of the lake. This is why ELIA completed the 2022 Comprehensive Lake Management Plan and subsequent Grant Projects.
 - Discussed the lake turnover process being the seasonal mixing of the entire water column.

3 Public Outreach / Keep Elkhart Blue (Strigenz / Sofen)

- a. Merchandise Support -Strigenz shared KEB local merchandise and specialorder items and explained the support and awareness provided through merchandise. Upcoming activities include ELIA 4th of July Float, Downtown Night will be Aug 14 and we will have our booth as usual, and noted KEB Facebook Postings.
- b. Sofen showed the newest KEB keychain, explained the QR Code, and importance of KEB and best management practices.

4. <u>Website Update</u> (Boeldt)

a. Shared the website, how to renew your membership and DONATE! Check out website and provide suggestions and content!

5. President's Comments (Schott)

- a. Caring for the lake discussion.
- b. Partnerships have made us successful.
- c. Questions and Answers.

Adjourn Motion was made to adjourn. Motion carried – meeting adjourned at 7:20pm.